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Abstract

Urban air mobility (UAM) is a relatively new concept in the transportation industry.
As on-demand services like Uber and Lyft have transformed our daily lives, our ob-
jective is to explore how on-demand UAM impacts mobility patterns by modeling the
supply-side of such a service within a realistic, high-fidelity simulation. We present a
design and implementation of UAM within SimMobility, a multi-scale, multi-modal
activity- and agent-based simulation software, which was developed in the MIT In-
telligent Transportation Systems (ITS) Lab. This includes a network of vertiports,
fleet of UAM aircrafts, and controller logic to accommodate passenger requests and
control the fleet. We also implement novel service features including priority land-
ing, stand designation, and matching algorithm customization through parameterized
buffer times. Explicit models to simulate key characteristics of UAM services, sup-
ported by a comprehensive review of the underlying literature, has enabled us to
develop a uniquely realistic simulation consistent with state-of-the-art technological
developments, as well as the current urban landscape. The contribution of this thesis
is twofold: first in the realistic simulation of UAM supply as described, and second
in providing a replicable architecture that can be emulated for future SimMobility
mobility service controllers.

Thesis Supervisor: Ali Shamshiripour
Title: Research Scientist

Thesis Supervisor: Moshe Ben-Akiva
Title: Professor of Civil Engineering
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Chapter 1

Introduction

The recent development of advanced air mobility (AAM) offers short-haul air travel to

a wider audience for a variety of applications. There are several potential applications

of AAM that have been discussed in the transportation community, from package

delivery services to passenger travel [9]. One flavor of AAM of growing interest

to the transportation industry is urban air mobility (UAM), which refers to short-

haul air travel for passengers in an urban context. For the scope of this thesis, we

focus on UAM as an on-demand mobility service. Passengers request rides to various

destinations within a city or to another city. Current similar on-demand services for

ground transport, namely Uber and Lyft, have radically disrupted transportation in

the past few years. Considering how the problem of commuting and travel within a

congested urban area is a persistent question for transportation research, UAM offers

a novel way to circumvent some city congestion by diverting some traffic to the air

network, away from ground travel.

Some existing literature attempts to model demand [3, 7, 8, 9, 10], while other

research characterizes the supply of potential UAM services. On the supply-side,

different works have proposed specifications for UAM infrastructure, aircrafts, and

operations – this includes details on aircraft attributes, vertiport locations, and flight

logistics [1, 3, 7, 8, 9, 10, 12, 17, 18, 20]. Although there is growing literature on the

subject, there are still gaps to be filled in order to realistically model both supply

and demand. There is very little existing research that simulates UAM in a realistic,
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high-fidelity, agent-based and activity-based simulation, taking supply, demand, and

their interactions all into consideration. Though there is some work on this as seen

in MATSim [17], this area of study remains underdeveloped, missing key features

like rebalancing, charging, and vertiport-level operations for UAM. We aim to bridge

these gaps by designing, implementing, and testing a more realistic UAM service

within SimMobility.

SimMobility is a state-of-the-art, multi-scale, integrated, activity- and agent-based

mobility simulator developed by the MIT Intelligent Transportation Systems (ITS)

Lab. The demand and supply components are fully integrated in SimMobility with

proper feedback loops, allowing for a realistic simulation of how changes in supply

characteristics influence all travel related choices [2]. The software enables modeling

of the plans and actions of millions of agents – including agents from pedestrians to

drivers, infrastructure from traffic lights to GPS, vehicles from cars to trains, and

time periods from a second-level granularity to year-level granularity. As a result, the

software allows us to simulate and observe the effects from different technology and

policy scenarios [5, 15, 16].

This thesis is part of a higher-level research project at the ITS Lab, to compre-

hensively model both the supply and demand of UAM and observe its effects in a

typical day of operations in various prototypical cities [15]. The overarching goal is to

augment SimMobility to accommodate UAM scenarios. This entails prototype city

generation and the development and calibration of different behavioral models on the

demand-side. On the supply-side, the UAM service operations must be realistically

designed and parameterized, and the codebase needs to be able to accommodate this

conceptual design.

Within this larger project, the contribution of this thesis is the design and imple-

mentation of the supply-side of an on-demand UAM service integrated with SimMo-

bility. More in detail, this includes the effective simulation of vertiport and aircraft

operations as well as complex algorithms for matching and rebalancing among other

roles of the hypothetical UAM controller mimicking a UAM service provider in the

real world. This new code must also be integrated into SimMobility, feeding into and
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Figure 1-1: Desired components and behavior for a UAM service controller within
SimMobility.

learning from results in tandem with SimMobility. The details of this are further

discussed in the next section.

In order to augment SimMobility for the UAM scenario for the supply-side, we

need effective simulation of all parts of a UAM service – from interfacing with pas-

sengers trying to use the service, all the way to maintaining a network of vertiports

and fleet of aircrafts to accommodate these passengers. The high-level components

for a UAM service within SimMobility are shown in Figure 1-1.

A passenger within the population will submit a request to take a trip to the UAM

service, represented by the UAM controller in SimMobility. The UAM controller

fulfills a variety of functions, including matching trip requests to aircrafts, tracking

the status and schedules of all the aircrafts in its fleet, managing vertiport operations,

and rebalancing the fleet. The controller takes the passenger request and attempts to

assign this trip to an available aircraft. This UAM aircraft will perform the schedule

by serving passengers (picking up and dropping off), flying through the air network,
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and charging.

The contributions of this thesis are two-fold: (1) to effectively simulate UAM sup-

ply as described above; (2) to provides a replicable software architecture that can be

emulated for future external controllers and modules to work with SimMobility. The

novel architecture we propose, instead of implementing the UAM controller directly

within the C++ code of SimMobility, implements this in a separate module external

to SimMobility. With this architecture, while there is no significant loss of informa-

tion, enables a level of flexibility and customization which is favorable for projects

with not much initial information and a need for several iterations to converge on an

optimal service design. Leveraging this UAM controller, we are able to model the

supply of UAM accurately. We use the newly designed and implemented controller

to observe the impact of various UAM operations parameters including the fleet size

on the performance of the simulated UAM service.

The rest of this manuscript will adhere to the following structure. In section 2,

we evaluate literature on UAM to derive elements of our design and to identify gaps

in existing research. In section 3, we provide a detailed look into the methodology,

by describing the software needs based on our designed UAM scenario, then showing

how our implementation meets these needs. In section 4, we analyze results from

running the controller. In section 5, we conclude and reflect on our findings, while

providing some possible directions for future work.
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Chapter 2

Related Works

Although urban air mobility is a relatively new concept, the underlying literature has

been growing at a fast pace, approaching the problem from many different angles.

Existing research on UAM has focused on both on the demand side [3, 7, 8, 9, 10, 20]

and the supply side as reviewed in this section.

On the supply-side, different studies have proposed UAM service, aircraft, and

vertiport operational specifications, which we took into account for the design of the

UAM supply for this thesis. The literature largely assumes the Electric Vertical Take-

Off and Landing (eVTOL) technology, which as the name suggests, enables vertical

take-off and landing [3, 7, 8, 9, 10, 18]. In an urban setting, vertical take-off and

landing helps conserve valuable space. Passenger capacity ranges from 2-5 seats per

aircraft [3, 8, 9, 10, 18]. Both the proposed aircraft specifications in these studies

and actual eVTOLs under development claim that aircrafts will be able to fly at a

cruising speed in the range of 125-175 km/h [1, 3, 7]. The ranges of trips that these

aircrafts could serve varies widely – some research considered shorter distances up

to 100 km [3, 8, 10], while other studies considered longer trip ranges of up to 480

km [7]. Having heterogeneous fleets composed of different aircrafts is explored in the

literature, but most literature worked with homogeneous fleets [3, 8, 10]. Kim et. al

delve into this deeper and find that fleet size is a more influential factor than the

composition of the fleet itself [12].

Uber Elevate proposes a specific charging scheme to achieve higher operational
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efficiency given the limited aircraft ranges [11]. That is, while passengers are deboard-

ing/boarding the aircraft, the aircraft is charged for a duration of about 7 minutes

before taking off for the next flight, allowing the aircraft to optimize airtime before

having to stop for a full-term charge. We heavily consider existing evidence on recent

technology developments, particularly by Lilium and ABB, which claim rapid battery

charge in their eVTOLs of approximately full charge of batteries in 30 minutes and

up to 80% of battery in 15 minutes [1]. eVTOL battery design and behavior is a

topic of interest for a lot of literature, which more go in depth to develop complex

methodologies to model battery charge and discharge.

Alongside efforts to characterize UAM aircrafts, there is also some literature at-

tempting to characterize UAM vertiports. The vertiport, as a central hub of UAM

activity, must support takeoff/landing of aircrafts as well as picking up/dropping off

of passengers. Since UAM is a mode of air travel, there are additional procedures that

need to take place before and after flights, similarly to airplane travel. To accommo-

date this functionality, some existing literature separates takeoff/landing clearing slots

and stands where passengers will board and de-board these aircrafts [18]. Aircraft

behavior should accommodate occupying these different spaces and taxiing between

them [18, 19]. A couple studies consider the times that aircrafts might spend in these

different phases, for instance turnaround time (the time spent at the gate) from 1-6

minutes [4, 19] and clearing time for takeoff/landing of 45-60 seconds [4, 13].

Studies considered both UAM services with pre-determined routes and with non-

deterministic routes [7, 10]. Similarly to existing on-demand services for ground

transport, like Uber and Lyft, rideshare options can be available, where multiple

passengers share an aircraft [10]. The route choice problem is not one that has

been deeply explored for UAM, but Rothfeld et. al consider shortest path using

Dijkstra’s between all origin-destination pairs [17]. Rebalancing, or distributing fleet

to predicted areas of high demand, is also a relatively new area of study for UAM,

but Kim et. al propose particle swarm optimization or a genetic algorithm for this

purpose [12].

Rothfeld et. al implement UAM services in an agent-based simulation environ-
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ment called MATSim [17]. The study builds a centralized air network and sets up

an infrastructure for vertiports. The UAM aircrafts in this research serve on-demand

requests, and follow schedules. While their implementation addresses some impor-

tant parts of UAM services, a few major details are missing. Though they account

for static waiting, boarding, and deboarding times, the state dynamics of aircrafts

inside the vertiports are not implemented beyond pick-up, drop-off, flying, and stay-

ing tasks. Modeling these at a granular level can potentially introduce new issues

to explore, for instance with aircraft power consumption while hovering, which have

not been addressed. Although there has been literature exploring rebalancing and

charging/power consumption for UAM aircrafts, these features not been implemented

within an agent-based simulator. These may be critical characteristics of a UAM

service to simulate – predictively rebalancing can improve efficacy and performance

of the service; charging can be an important constraint in the aircraft movements

throughout the network and congestion at vertiports for charging resources.

Despite the sizable literature on UAM, the lack of a realistic, high-fidelity agent-

based simulation software that accounts for the complex interaction of demand and

supply prevents both operators and planning and regulations agencies from obtaining

a comprehensive understanding of future scenarios. The objective of this thesis is to

deliver a realistic design and implementation of the UAM service supply in SimMo-

bility, while incorporating the ongoing technological developments in the field, as well

as including important features such as vertiport operations, aircraft charging and

power consumption while on the fly or in hovering phase, priority landings, details of

aircraft state dynamics inside and in between the vertiports, and rebalancing.
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Chapter 3

Methodology

We propose a design and implement a solution to effectively simulate UAM infras-

tructure and supply, integrated with the existing SimMobility software.

3.1 Background on SimMobility

SimMobility is a multi-scale, integrated, activity- and agent-based mobility simulator

developed by the ITS Lab [2, 6, 14]. This C++-based, parallelized software has a

hybrid time-based and event-based design, through which we can design and simulate

various transportation scenarios in an urban context.

SimMobility has three main modules, which enable it to simulate mobility on a

wide range of granularities, as seen in Figure 3-1 taken from [2]. The long-term module

simulates high-level land use, economic activity, and agents’ life cycles. The mid-term

module simulates the agents’ daily activity and transportation supply/demand. The

short-term module simulates the movement and behavior of agents in the simulation

at the finest granularity. The expansion to the codebase to enable UAM simulation

will be added in the mid-term module.

There are two main components, pre-day and within-day, for running SimMobility

in the mid-term module. In the pre-day, agents follow a Day Activity Schedule (DAS)

based on a calibrated demand model. The DAS details the agent’s general schedule

for the day, including activities it needs to perform at different locations at specific
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Figure 3-1: Overview of long-term, mid-term, and short-term SimMobility modules,
from Adnan et. al.

times of day and preferred modes of transportation between these locations. After the

pre-day runs, the agents run within-day models to transform the DAS into decisions

and actions. Since actual message communications and movements are happening in

the within-day, the movements and activities that the agent performs are subject to

change from the initial DAS. For instance, if there is more congestion than expected

in the first leg of a trip, an agent may miss the bus they planned to take in their DAS,

and may need to wait for the next bus or find a different mode of transportation to

complete this leg of the trip, resulting in re-routing. The supply simulator explicitly

represents aspects of the supply involved in the simulation. At a high level, the mid-

term module establishes consistency in the interaction between the within-day and

supply components.

Lastly, there is a day-to-day learning module which enables a feedback loop from

the results of the within-day and supply run to update agents’ expectations about

the transportation system performance indicators such as travel times, which will

affect their choices in the next day. For instance, if in the first day, there is too

much demand for MoD, when within-day runs, much of the agents’ preferred mode of

MoD will not be accommodated with the quality of service that they assumed in the
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pre-day – the day-to-day module will take this knowledge back to the pre-day, such

that a portion of the agents will choose other alternatives and thereby the transport

demand for this mode decreases.

A mobility service is a service provided by an organization satisfying trip requests

from users. Within the context of SimMobility, each mobility service is associated

with a controller, which is a piece of software that manages a certain mode of trans-

portation, coordinating the behavior and movement for a fleet of aircrafts. Different

mobility services may run in parallel, and users have the ability to use any of these

services for their trips. There are already controllers within SimMobility for other

modes of transportation, including bus, on-hail taxis, and mobility on demand (MoD).

The UAM controller should fulfill similar functions as these existing controllers, man-

aging a fleet of aircrafts and serving passenger requests. It qualifies as a mobility on

demand service, but for air travel rather than ground transportation.

3.2 UAM Software Needs

To properly simulate UAM within SimMobility, there are software needs on both the

demand-side and the supply-side. There have been expansions on the demand-side,

namely in creating a new switching model for the pre-day component and building

out the day-to-day learning script to learn parameters specific to UAM. Since the

scope of my thesis is in the supply-side, I will focus on the high-level design of what

needs to be done to effectively simulate UAM supply, in correspondence to the UAM

scenarios and specifications that we’ve scoped out.

Aligned with how SimMobility works, the UAM implementation must operate as

a hybrid time-based and event-based simulation. The overall simulation time period

is broken up into shorter frame ticks, and during each tick, every element of the

simulation performs their designated action for the duration of the tick. Additionally,

components such as the controller and the vertiports and the aircrafts must be able

to communicate with each other to trigger different actions to take place.
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3.2.1 Network of vertiports

Our simulation will run in a simulated city, with its own population, infrastructure,

and modes of transportation. The support for a UAM service will require a network

of vertiports, where each vertiport is a multi-functional central station for UAM

activity. In a network representation, these vertiports represent the nodes, while all

possible flight routes between them are the links. We considered the network to be

fully connected, meaning that a UAM aircraft can fly between any two vertiports in

a city’s UAM network. This simplifies the problem of route choice, since the shortest

Euclidean distance between two vertiports will always be the direct route. We chose

to make this decision since the air network is assumed to not be largely congested.

Yet, this assumption could be relaxed in further studies, since different factors such

as bad weather conditions and congestion of the airspace in certain areas could mean

an indirect route between two vertiports could be better than the direct one [9].

Each vertiport will need to support a wide range of operations, such as: takeoff,

landing, holding waiting passengers, and charging of UAM aircrafts. As opposed to

the current ground-based mobility-on-demand services, UAM requires more compli-

cated procedures before take-off and after landing due to maintenance and charging

requirements. After landing, the aircrafts taxi to a stand where charging starts. Pas-

sengers board into the aircraft after charging finishes, and the aircraft starts taxiing

to the FATO (Final Approach and Take-Off Area) area where they can take off from

the vertiport into the air. On the other end of the flight when an aircraft is ready to

land, there must be an available FATO to receive the aircraft, and then they taxi to

a stand to de-board passengers and charge.

Queue maintenance: Since the number of stands and FATOs per vertiport are

limited, the simulation needs to be able to have a way of maintaining queues for

these spaces. In general, these queues are first-in-first-out, and serve both aircrafts

that on their way to take off or coming in trying to land. As soon as an aircraft

leaves the space (finishes charging at the stand, or completes landing, for instance),

the first aircraft in the queue can move into the space. Queue maintenance is a
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key functionality that the simulation must support, since it’s one metric to evaluate

congestion and the UAM service as a whole. The one exception to this first-in-first-

out behavior is in our priority queue feature, which is further discussed in section

3.2.4.

Stand designation: One design enhancement we make is the separation between

arrival-designated stands and departure-designated stands. For each vertiport, some

stands will prioritize arriving aircrafts while other stands will prioritize departing

aircrafts, in order to increase throughput of incoming aircrafts. As an input to each

vertiport, there are a number of stands which prioritize arriving aircrafts and a number

of stands which prioritize departing aircrafts.

3.2.2 Vertiport-to-vertiport mobility-on-demand service

The UAM service that we’re simulating is an on-demand travel mode. People will

be able to make requests to the service, which will attempt to match them with an

eligible aircraft that can pick them up and drop them off at a desired origin vertiport

and destination vertiport. Similarly to on-demand ground transportation services like

Uber and Lyft, flights can be pooled, serving multiple passengers going from the same

origin to the same destination.

As a mode of travel, UAM must integrate with other modes of transport which

may come before (access) or after (egress) a UAM trip. For instance, a passenger

might take the bus from where they currently are to reach the origin vertiport. After

their UAM trip, from the destination vertiport, they may need to walk a few minutes

to reached their actual desired destination. With our design and implementation,

we are able to model a variety of access/egress modes along with the UAM travel

mode, including public transportation, private car, walking, and Mobility on Demand

(MoD).

All of these different legs of an individual’s overall journey will be represented as

moving along a network made up of nodes and edges, as depicted in Figure 3-2. The

squares represent vertiports, and the circles are potential origin and destination nodes.

When an agent travels from an origin to a destination, they take an access leg which
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Figure 3-2: Network representation of the UAM air network.

is dotted to a vertiport, where they then take a UAM flight. From that vertiport,

they travel along the egress leg to their final destination. The within-day component

deals with the problem of route choice from origin to destination, including access

and egress. This is not a simple deterministic model that always chooses the closest

vertiport. Although for the UAM subset of the network, we always choose the direct

route, we use a behavioral probabilistic choice model to determine an agent’s route

from origin to destination, including choosing the vertiports used for the UAM trip.

3.2.3 UAM aircrafts

UAM aircrafts also have complex operations that must be simulated, mainly dealing

with moving through the network of vertiports, charging, and handling UAM pas-

sengers. The typical flow of a UAM aircraft serving a trip is shown in Figure 3-3, in

parallel to the flow of actions that a passenger on that aircraft would experience. An

aircraft starts idle at a vertiport, and when it has a trip to serve, moves to a vertiport

stand to charge for the upcoming trip and board any passengers. Once that process

is complete, the aircraft starts taxiing to FATOs and waits nearby if no FATOs are

available at the time. Upon availability of an FATO, the aircraft uses it to take off,

and flies to its destination vertiport. At the end of its flight, the aircraft hovers until

an FATO becomes available for landing (see section 3.2.4 for information on priority

queuing). After landing, the aircraft taxis to a stand, where it charges and de-boards

its passengers. In order to progress through these states and serve passengers, air-

26



Figure 3-3: Overview of state flow for UAM aircrafts and passengers.

crafts should keep track of their current schedule (what trips are on their schedule to

serve) and any passengers they’re currently holding.

The passenger goes through the same flow of states while inside the aircraft,

but may start waiting at a stand before the aircraft arrives. The time at which

the passenger starts waiting is called the waiting start time, and the passenger

waiting time is the time spent from then until when boarding starts. The travel

time also starts at this waiting start time, and ends when the passenger deboards.

The passenger boards and deboards during the corresponding turnaround time for

the aircraft.

3.2.4 UAM controller

With the vertiport network infrastructure and fleet of aircrafts in place, the last

component needed is a UAM controller.

Keeping track of aircraft charge and state: The controller should have full

visibility into all aircrafts in the fleet, being able to see any given aircraft’s current
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state and charge. This is crucial to keep track of aircrafts that are in danger of

running out of charge while holding passengers, and for the logic of the matching and

rebalancing algorithms.

One design enhancement to the vertiport queuing is priority queue mainte-

nance by the controller. As detailed in section 3.2.1, vertiport spaces are limited and

there must be queuing practices in place for the stands and FATOs. However, when

aircrafts are waiting for an FATO for landing, they are still depleting charge while

hovering. To combat this, the controller needs to keep track of vertiport queues and

re-order them to prioritize aircrafts that may run out of charge. Whenever an aircraft

dips below a minimum threshold of charge or has been hovering for a certain amount

of time (maximum hovering time), it should be moved to the front of the queue

to land as soon as possible.

Matching requests: The core logic of the matching algorithm is as follows: pick

the aircraft that can take the least amount of time to serve a given passenger trip

request. However, there are a variety of conditions that an aircraft must fulfill in order

to be considered eligible for matching, as well as exceptions. In order for an aircraft

to be eligible for matching, the following conditions and parameters are considered:

• Trip length

• Distance from the request’s origin vertiport

• Amount of aircraft charge

• Capacity of the aircraft

• Whether aircraft currently has a trip assigned

Whenever the controller matches a trip request, the aircraft is assigned the trip

in its schedule items and takes action to embark on and complete the trip. Any trips

unable to be matched with an eligible aircraft for any reason, will remain in the queue

of trip requests and the controller will attempt to match the passenger request in the

next frame tick.
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Pooling trips: Since our on-demand UAM service will support pooling trips, we

also accommodate this in our matching algorithm. For all incoming trip requests, we

should not only consider empty aircrafts, but also aircrafts that meet the following

conditions:

• At least one seat available

• Assigned other passengers within a specified time period (pool match buffer

time)

The matching algorithm should compute a time predicted to serve the trip request

for these aircrafts as well. However, pooling should be given a slight preference over

solo trips. The controller needs to keep track of the aircraft that can serve the fastest

solo trip and aircraft that can serve the fastest pooled trip. If the best pooled aircraft

can serve the trip faster or only pool priority time slower than the best solo aircraft,

then the pooled aircraft should be chosen.

Request offset: The request offset is a learned parameter per vertiport that

represents passengers learning how much time in advance they need to make a request.

Expected hover time: The expected hover time is another learned parameter

per vertiport, representing the amount of time a UAM aircraft is expected to wait at

each vertiport for an FATO for landing. This time is used in the matching algorithm

when calculating the required aircraft charging time.

Rebalancing fleet: The controller must also support rebalancing. If aircrafts

simply remain where they are after serving a trip, this could lead to an imbalance of

aircrafts in the network and congestion. In order to learn from the past trip requests

and in an attempt to better predict where demand might come from in upcoming

requests, the controller rebalances its fleet. The controller will send aircrafts to with

no current schedule items to “cruise” to the vertiports where the most recent requests

originated, in expectation that by the time they get there, there will be some passenger

requests that can conveniently use these aircrafts to get to their destination faster.

Rebalancing utilizes aircraft resources, and in order to ensure that enough aircrafts

are available for matching, we designed a cruise buffer time parameter. When an
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aircraft is assigned to cruise to a certain vertiport, it waits for a certain amount of

time before proceeding to fly – this gives the controller the opportunity to assign the

aircraft a passenger before leaving.

In summary, the UAM supply simulation must be a time-based simulation that

comprises a network of vertiports, fleet of aircrafts, and a controller that will control

the matching of trip requests and rebalancing of the UAM fleet.

3.3 Implementation

3.3.1 High-level architecture

The bulk of the UAM supply implementation takes place in a module external to

the main SimMobility software. In this section, we outline the high-level flow of the

implementation, as detailed in Figure 3-4.

The process begins by running the pre-day, within-day, and supply of SimMobility.

Taking the output of the within-day module, we extract trip-level information for

UAM trip legs, including the origin/destination vertiports and the time at which the

agent arrives to the origin vertiport. We pre-process this data by offsetting the origin

vertiport arrival time by a fixed dwelling period to get the waiting start time for

the UAM trip leg. For each trip leg, we store the metadata of person ID, origin,

destination, and waiting start time to pass along to the main simulation. The UAM

controller implemented in Python is analogous to the supply module of SimMobility

– the simulation creates a fleet, network of vertiports, and queue of trip requests for a

controller to manage, representing the supply. The simulation reads some additional

learned inputs from the database when initializing the vertiports: the request offset

and expected hovering time for each vertiport. These values are learned by the

supply module via the within-day loop in the external module – based on outputs

from the UAM controller simulation, the within-day component of the module updates

these values.

The output of the supply simulation is the total waiting time and total travel
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Figure 3-4: High-level architecture of UAM implementation as an external module &
interactions with SimMobility.

time per UAM trip. The total travel time is aggregated by vertiport-to-vertiport

pair, while the total waiting time is aggregated by zone-to-zone pair. As part of

the day-to-day learning process, based on these outputs, the corresponding tables

in the database are updated. These are then read by the supply component within

the SimMobility mid-term module, by a simple teleporting controller. Whenever an

individual is scheduled to take a UAM trip, we utilize the existing “Walk” mode

in SimMobility and have them travel for the predicted travel time according to the

vertiport origin-destination pair they’re traveling in between.

This high-level architecture is different from the typical controller design and im-

plementation within SimMobility. This alternative would have been to implement the

UAM supply fully integrated into the mid-term module of SimMobility, building out

the vertiport network components, UAM aircrafts, and fit into the existing infrastruc-

ture for controllers and movement within the simulation. Though this would have

been more integrated with SimMobility at a fundamental level, there were some key

reasons why we chose this flow in designing UAM supply to work with SimMobility.

31



Since UAM is not an existing service and has not actually been simulated in

very many software settings, we wanted to be able to test out a variety of scenar-

ios and controller designs in rapid iterations. By externalizing the UAM controller,

this has enabled us to build a highly customizable piece of software with complex

service operations and algorithms. While SimMobility is a massive piece of software,

the external module is lightweight. Implementing UAM within SimMobility would

require significant additional code to build out an air network infrastructure and ac-

commodate agent movement within this network, then to pass it between the air and

road networks. With the external module coded in Python, this representation can

be much simpler without unnecessary complications. Additionally, we were able to

add any parameters and outputs we needed, which is considerably more difficult in

SimMobility.

Of course, there are trade-offs in deviating from the typical controller implemen-

tation. With the external module, we were unable to leverage built-in functionalities

of messaging and the ground transportation infrastructure. There is also some loss of

information since we are aggregating by vertiport-to-vertiport pair and time of day

instead of the trip level. Despite not being able to use baked-in elements of SimMo-

bility, we considered these to be elements that we were willing to give up in order to

get more complexity for the UAM situation in particular.

3.3.2 Python module

In this section, we will discuss further the implementation of the supply component

of the external UAM module.

Trip class

The first main class is the Trip class, which represents an individual UAM flight. Each

Trip has a unique id attribute, and has metadata of origin_id, destination_id,

and waiting_start_time passed in from the SimMobility DAS. The waiting_start_time

corresponds to the time at which the person associated with the Trip starts their
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waiting period at the origin vertiport.

A Trip can represent a UAM flight in a aircraft taken by multiple passengers

going from the same origin to the same destination. If two Trips get assigned to the

same aircraft, only one Trip will be kept. The person_ids list is an array that holds

the person associated with the Trip.

After SimMobility runs, the DAS passes all of the information about UAM trip legs

to the controller module, initializing one Trip object per trip leg. All Trips are put

into a queue which is sorted in increasing order of the trips’ waiting_start_time.

The UAM controller uses and maintains this queue in order to serve all passenger

requests in time order. Whenever a request is matched to be served by an aircraft,

this Trip object is directly used as a schedule item for the aircraft to serve. The

usage of Trips by the controller and aircrafts are further discussed in the following

sections.

Vertiport class

The UAM air network is composed of Vertiport objects which correspond to indi-

vidual veritports. Each Vertiport is initialized with:

• a unique id attribute

• x and y coordinates corresponding to its location

• num_fatos and num_stands_arriving and num_stands_departing correspond-

ing to the number of FATOs and stands it holds

• request_offset: an operational parameter representing the time after a trip’s

waiting_start_time that the controller should attempt to match it to an avail-

able aircraft.

• expected_hovering: an operational parameter representing the expected hover

time

There are multiple data structures around the FATO and stand representations to

effectively simulate occupying and waiting for these spaces. The fatos, stands_arriving,
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and stands_departing are data structures which hold the aircrafts currently occupy-

ing the FATOs, stands which prioritize arriving aircrafts, and stands which prioritize

departing aircrafts respectively. However, the number of these spaces are limited, so

the waiting_for_fatos, waiting_for_stands_arriving, and waiting_for_stands_departing

queues hold the aircrafts currently waiting for available FATOs and stands. These

are populated first-in-first-out by aircrafts trying to enter these spaces. The order

of the waiting_for_fatos queue is modified with the priority queue enhancement,

as described in section 3.2.4. Each data structure has an associated add and remove

method to maintain their elements, which the Vehicles use to enter and queue for

these spaces.

To initialize the Vertiport objects with correct metadata, the UAM module reads

from the SimMobility database and loads the Vertiports into a map.

Vehicle class

The Vehicle class represents aircrafts within the service fleet. Each Vehicle object

is initialized with:

• a unique Vehicle id attribute

• capacity: the number of passengers the aircraft can hold at once

• move_speed: the speed at which the aircraft can move

• hover_speed: the rate at which the aircraft depletes charge while hovering

The following key variables maintain the charging, occupancy, and behavioral

state of the aircraft:

• passengers: a dictionary that holds the people currently aboard the aircraft

• schedule_items: a queue that holds the Trip objects assigned the aircraft,

which dictate the vertiport that the aircraft will travel to next

• dist_can_travel: the distance that the aircraft can travel with the amount of

time it has been charged for
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Figure 3-5: UAM aircraft state transitions.

• state, prev_state: the current state, the activity the aircraft is performing

and the directly previous state. This is discussed in further detail in Figure 3-5.

• state_duration_time: the time that the aircraft needs to spend in its current

state before attempting to move to the next one

• hover_time: the time that the aircraft has been hovering. Increments when an

aircraft starts hovering and gets reset to zero when the aircraft is able to land.

At the beginning of simulation, all Vehicles start in the FULLY_CHARGED_IDLE

state distributed evenly across the vertiports, with a full charge. First, we can

step through the state flow when an aircraft is departing a vertiport. When a

Vehicle receives a directive from the controller to serve a request, it transitions to

WAITING_FOR_STAND, where it enters the waiting queue for a stand, or the vertiport’s

waiting_for_stands_departing queue. If there’s an open stand, the aircraft can

immediately transition to the CHARGING state and enter the vertiport’s stands data

structure. When all passengers are boarded and the aircraft is ready to take off, it

transitions to TAXI_TO_FATO, then at the end of taxiing enters the WAITING_FOR_FATO

state and gets put in the vertiport’s waiting_for_fatos queue. Similarly to the

WAITING_FOR_STAND state, as soon as there’s space in the FATOs for the aircraft,

the aircraft gets put in the vertiport’s fatos and transitions to TAKEOFF, then transi-
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tions to the FLYING state when it clears the takeoff area. Next, we can step through

the state flow when a aircraft is arriving to its destination vertiport. When the

aircraft has reached the destination vertiport, it immediately transitions from the

FLYING state to the WAITING_FOR_FATO state and gets put in the destination verti-

port’s waiting_for_fatos queue, since the FATOs accommodate both aircrafts that

are taking off and landing. Once the aircraft reaches the front of the queue, it enters

the LANDING state, then clears the FATO area and proceeds to TAXI_TO_STAND.

Once it has finished taxiing, it enters the WAITING_FOR_STAND state, then when it

reaches the front of this waiting_for_stands_arriving queue, transitions to the

CHARGING state and gets put in the stands data structure. If the aircraft other-

wise does not have any schedules to serve, it charges to 100% battery capacity, then

transitions back to the FULLY_CHARGED_IDLE state. When in either the CHARGING or

FULLY_CHARGED_IDLE state, the aircraft is considered to be eligible by the controller

to be matched to a trip request.

The state_duration_time attribute is key to the state flow shown above. The

times spent in some of the states are parameterized and set before the simulation

is run (namely takeoff/landing times and taxi times), while others are computed

during the simulation (charging times), but waiting times spent in queues cannot be

precomputed.

All of the state changes and aircraft behavior is held in the frame_tick function of

this class, which is essentially a state machine. This external supply module is run as

a time-based simulation, which progresses in frame tick increments of 5 seconds over

a total simulation runtime. Every tick, every aircraft’s frame_tick function is called,

and based on its current state and state_duration_time , the aircraft will complete

some action and update its internal state. If the state_duration_time has not

expired for the current state, for example, if the aircraft needs to charge for a while

longer, then the frame_tick function will keep the aircraft in its current state and

decrement pause time by the tick duration. However, if the state_duration_time

reaches zero or some other event happens, the aircraft may change state.

Whenever an Vehicle transitions its state, change_state is called. This is a
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helper function which takes in the previous state and new state to correctly set the

state_duration_time, remove or add the aircraft from any Vertiport data struc-

tures, and adjust the aircraft’s schedule and passengers as needed.

There are also move and charge functions which are called within frame_tick

whenever the aircraft is FLYING or CHARGING. They modify the aircraft’s dist_can_travel

attribute which corresponds to charge, and the move function also increments hover_time

for use with the priority queue feature described in section 3.2.4.

UAM Controller logic

The UAM controller logic has full visibility into the network of Vertiport objects,

fleet of Vehicle objects, and Trip request queue, which it leverages to perform

matching and rebalancing procedures.

Every frame tick, the controller accesses each Vertiport object’s waiting_for_fato

queues and checks the queuing aircrafts’ dist_can_travel (representing its charge)

and hover_time, implementing the priority queue procedure described in section

3.2.4.

The matching algorithm is implemented in match_trips, which is called every

frame tick of the simulation. Each time match_trips is called, the controller goes

through the request queue of Trips. If the Trip’s waiting_start_time plus the

associated request_offset is greater than the current simulation time, then the

controller attempts to match it with an available Vehicle. The categories of available

Vehicles are outlined below:

1. Empty aircrafts, can serve a solo trip

• FULLY_CHARGED_IDLE or CHARGING state

• Empty schedule_items, empty passengers (no current schedule or pas-

sengers to serve)

2. Partially empty aircrafts, can serve a pooled trip

• FULLY_CHARGED_IDLE or CHARGING state
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• Length of Vehicle passengers list is less than capacity of the aircraft

• Current schedule item’s assigned_time is less than pool_match_buffer_time

offset from the current simulation time

3. Rebalanced aircrafts, can serve a solo trip

• FULLY_CHARGED_IDLE state

• Vehicle’s state_duration_time is > 0, meaning the aircraft has not

started cruising to its rebalanced location yet

• Current schedule item is designated as a cruising rebalancing trip

For each Vehicle, the controller calculates how much time it would take to serve

the request, by computing and summing the following:

• The time for the Vehicle to travel from its current Vertiport to the origin

Vertiport (calculated by aircraft’s move_speed and distance between verti-

ports)

• The time for the Vehicle to travel from the origin Vertiport to the desti-

nation Vertiport (calculated by aircraft’s move_speed and distance between

vertiports)

• The time for the Vehicle to charge for these flights (calculated by charging

profile)

• The expected_hover_time for the destination Vertiport (set as parameter)

Throughout the function, for each individual Trip request, the best pooled aircraft

and best solo aircraft, along with their associated times, are kept track of. Once

all aircrafts are checked, the controller chooses the best pooled aircraft, if it has a

lower time to serve the trip, or if it is slower by less than the pool_priority_time.

Otherwise, the trip request is matched with the best solo aircraft. Once the best

aircraft is picked for the given trip request, the controller calls assign_trip on the

chosen Vehicle to alter its schedule_items, which should set it in to action the
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next time its frame_tick function is called. The controller iterates through all the

Trips that need to be matched, removing from the request queue ones that have been

matched, and leaving those that weren’t able to be matched. This ensures that next

frame tick, the Trips that have been request first will be attempted to be matched

again over newer requests, since they come earliest in the queue.

Rebalancing is handled via the rebalance function. The controller maintains

latest_vertiports, a dictionary of Vertiport objects mapped to how many matched

Trips originated from those vertiports. There is no entry for a Vertiport in this

dictionary if the number of matched requests is zero. Whenever a Trip request is

matched in match_trips and assigned to a Vehicle, the entry in latest_vertiports

corresponding to the origin vertiport is incremented. In rebalance, while there

are entries in latest_vertiports, each available aircraft (qualified by being in

the FULLY_CHARGED_IDLE state and having no schedule items) is assigned a ver-

tiport to cruise to from latest_vertiports. The controller calls assign_trip

on the chosen aircraft to add the cruising item to its schedule, but also adds the

cruise_buffer_time as the aircraft’s state_duration_time before the aircraft ac-

tually moves, per the enhancement described in section 3.2.4. Then, the chosen ver-

tiport from latest_vertiports has its value decremented, or the entry is removed

from the dictionary if the value is zero. When the length of latest_vertiports is

zero or there are no available aircrafts to cruise, the controller ends its rebalancing

for the frame tick.
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Chapter 4

Results

4.1 Running the simulation

In order to run the simulation, there are a few additional procedures to handle inputs

and outputs. The direct input from the SimMobility module to the external UAM

module is a CSV file of the UAM trip legs from the DAS. This is pre-processed to get

the trip metadata as described in the initialization process for Trips in section 3.3.2.

There are several user-configured parameters and learned operational parameters from

the SimMobility database as well. During the run, the controller writes to a log every

time a UAM aircraft is assigned a trip or changes state. This log is post-processed

to extract the time spent in each aircraft state per UAM trip, which allows us to

glean key components of passenger waiting time and travel time. We can use these

values to update the request offset and expected waiting time in the within-day loop

as detailed in section 3.3.1 on high-level architecture. The passenger waiting time and

travel time outputs are aggregated and fed to the within-day script for next day’s run

of SimMobility.

4.2 Inputs & Configuration

For our experiment, we assume an AI (auto-innovative) protoype city. The demand

model is calibrated such that there are 18 million total trips in the city, with an air
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Figure 4-1: UAM aircraft charging profile.

network of 23 vertiports. The vertiport layouts were selected based on [18], which

guide how the number of stands and number of FATOs per vertiport were chosen.

The number of stands per vertiport ranges from 8 to 56 while the number of FATOs

per vertiport ranges from 2 to 14. The UAM ticket price was set at $4.52/km based

on [9].

For our scenarios, we assume a homogeneous fleet of UAM aircrafts, meaning

all aircrafts have the same charging profiles, flight speeds, and passenger capacities.

These specifications are detailed in Table 4-1, based on what is within the range of

existing literature: a flight speed of 200 km/h [3, 4, 7, 9], a maximum trip distance

of 250 km [3, 7, 9], and 3 seats in the aircraft [7, 9, 10]. The aircrafts for our UAM

service will be piloted, in context of user preference for piloted air travel in demand-

side literature [7, 9]. Based on the Lilium/ABB eVTOLs [1] and the assumption of a

maximum trip range of 250 km, we designed the charging profile in Figure 4-1, which

is dependent on the trip length that the aircraft is expected to fly for an upcoming

trip.

We set the take-off and landing clearing times to 60 seconds and the taxi time to

0 seconds, in alignment with existing literature [4, 13, 19]. The parameters used by

the UAM controller are set as follows: pool match buffer time is set to 2.5 minutes;
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Table 4.1: UAM aircraft specifications.

UAM Aircraft Specifications
Flight speed 200 km/h
Max trip distance 250 km
Number of seats 3 seats

pool priority time is set to 3 minutes; maximum hover time is set to 12 seconds.

After sufficient iterations of day-to-day learning, the equilibrium demand for this

setup was 33.7K UAM trips resulting in a penetration rate of 0.187%. The results in

the following section are based off of this demand and these inputs.

4.3 Testing the UAM module

We test our UAM module by adjusting independent variables among our parameters,

then observing how these changes affect the results. In the case of our UAM module,

we found that different components of passenger waiting time and travel time are good

indicators for the quality of service, and therefore, overall UAM service performance.

As existing literature indicated, fleet size is a potentially critical parameter for

UAM scenarios [12], we focus on the effect that fleet size has on different components

of passenger waiting time – in particular the total passenger waiting time and hover

time. The total passenger waiting time is defined as the time it takes from when

the passenger starts waiting at the stand for the aircraft until when they reach the

destination vertiport stand. The hover time is defined as the time the passenger’s

aircraft spends hovering, waiting to land at the destination FATO.

We run the UAM scenario for the PM peak period (4PM-5PM) on a range of fleet

sizes, from 50 to 1500 aircrafts, keeping all other parameters constant as described in

the previous section. We then observe the total passenger waiting time and hover time.

From Figure 4-2(a), we can see that there is an optimal fleet size at 250-300. Before

this point, the waiting time is extremely high, and after this optimal size, the total

waiting time increases. When the fleet size is too low, there are not enough vehicles to
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(a) Total Passenger Waiting Time by
Fleet Size. (b) Hover Time by Fleet Size.

Figure 4-2: Components of waiting time over varying fleet sizes.

(a) Total Passenger Waiting Time by
Fleet Size. (b) Hover Time by Fleet Size.

Figure 4-3: Omitting the priority landing queue enhancement, components of waiting
time over varying fleet sizes.

accommodate all passenger requests, causing longer wait times. Meanwhile, when the

fleet size is too high, there is more congestion in the air network resulting in longer

waiting times. In Figure 4-2(b), we see that as the fleet size increases, the hover time

increases as well. When the fleet gets larger, the network becomes more congested,

making waiting queues for FATOs longer.

We also ran the UAM scenario on the same period with varying fleet sizes without

the priority queue enhancement. From Figure 4-3(a), we observe a similar overall

curve to the total passenger waiting time as it varies with fleet size. However, whereas

the hover time with the priority landing remained under 30 seconds for 1500 aircrafts,

without the priority landing the hover time grew way past this threshold to 120

seconds at 1500 aircrafts as seen in Figure 4-3(b). These results demonstrate the

importance of this added feature to limit how much time aircrafts spend hovering

and how much power they need to consume while waiting.
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Chapter 5

Conclusion

With our novel design and implementation for the UAM supply module, we are able

to effectively simulate supply while gaining insights on key metrics for UAM services.

Simulating UAM supply is an underdeveloped area of study, let alone within a state-

of-the-art, multi-scale, agent-based software like SimMobility. Our implementation

and design of UAM takes into consideration complex operational details of potential

UAM services such as queuing at vertiports, charging, and enhancements for rebal-

ancing and optimizing matching requests. Particularly with the detailed vertiport

operations, we were able to separate out components of passenger waiting and travel

times, and analyze these granular waiting times to improve our UAM service design.

Additionally, with the implementation of this design as an external module that

integrated with SimMobility, we created a replicable architecture for future mobility

controllers to emulate. For mobility services like UAM with uncertainty and a need for

multiple iterations of development and design, this external module flow offers a high

degree of flexibility. For UAM, this architecture allowed for a development process

which resulted in novel service features, including the priority queuing, cruise and pool

match buffer times, request offset, and stand designation. Because the module is not

directly embedded into SimMobility, this module is lightweight and customizable.

Ultimately, the supply-side implementation architecture offers an alternative to how

controllers were implemented in SimMobility, that prioritizes flexibility in design,

exploration of new design possibilities, and rapid development.
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There are many streams of work moving forward that could be followed. One is

implementing the controller internally in C++. Since the UAM vertiport, aircraft,

and service operations have been designed, we could implement this within the Sim-

Mobility codebase to adhere to the typical pattern of implementation other controllers

follow. Another is utilizing a heterogeneous fleet instead of homogeneous with the

current Python UAM controller. Having different types of aircrafts that serve short

and long trip ranges could lead to interesting patterns and differences in the UAM

service performance.
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