
Simulating Network Lateral Movements through the
CyberBattleSim Web Platform

by

Jonathan Esteban

B.S. Computer Science and Engineering,
Massachusetts Institute of Technology (2020)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 13, 2022

Certified by. .
Michael Siegel

Principal Research Scientist
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Simulating Network Lateral Movements through the

CyberBattleSim Web Platform

by

Jonathan Esteban

Submitted to the Department of Electrical Engineering and Computer Science
on January 13, 2022 , in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Modern cyber attacks demand immediate action plans based on an overwhelming
amount of information and options. Microsoft has made available a highly param-
eterizable model of enterprise networks with the capability of simulating automated
cyber-attacks. We provide an extension of this project by means of a web platform.
The platform allows a user to model an enterprise network topology, interact with
the topology manually, and simulate an automated adversarial agent. Leveraging the
CyberBattleSim toolkit, we enable the swift prototyping of different network con-
figurations that can then be analyzed by a defensive security team member either
manually or automatically through the automated agent. We demonstrate that the
platform can simulate any network topology supported by CyberBattleSim as well as
evaluate different Q-Learning strategies. This in turn can provide us with valuable
insight regarding the progression of cyber attacks, aiding us at generating appropriate
cyber-attack response plans.

Thesis Supervisor: Michael Siegel
Title: Principal Research Scientist

3

4

Acknowledgments

This thesis is dedicated to my family and friends, who were each a beacon of inspira-

tion throughout my MIT career.

I would also like to express my everlasting gratitude towards my supervisors, Dr.

Michael Siegel and Dr. Keman Huang, for lending me their support and making me

feel welcomed at the CAMS (Cybersecurity at MIT Sloan) research laboratory. Addi-

tionally, I wish to thank BV TECH S.p.A. for their collaboration in this project.1 Fi-

nally, I would like to thank the CAMS community for providing me with a tremendous

amount of invaluable feedback throughout my research and a familial environment

that I could fallback to during the tough and enduring Covid-19 pandemic.

Again, I cannot thank them enough, I am incredibly grateful, and I wish them all

success along their own professional and personal journeys.

1This work was funded in part by "Fondo Europeo di Sviluppo Regionale Puglia POR Puglia
2014 – 2020 – Asse I – Obiettivo specifico 1a – Azione 1.1 (R&S) - Titolo Progetto: Suite prodotti
CyberSecurity e SOC" and BV TECH S.p.A.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

Contents

1 Introduction 13

1.0.1 Reinforcement Learning Within Cyber Security 14

1.0.2 Contributions . 14

1.0.3 Motivation . 15

2 Related Work 17

3 Approach 21

3.1 Network Modeling . 21

3.1.1 General Properties . 25

3.1.2 Vulnerabilities . 25

3.1.3 Services . 27

3.1.4 Firewall Rules . 27

3.2 Human-interactive simulation . 27

3.3 AI-learning simulation . 31

3.4 Backend Routing . 36

4 Results 39

4.1 Human Interaction with CTF Network Topology 39

4.2 Q-Learning AI Interaction with CTF Network Topology 41

5 Conclusions 47

5.1 Future Work . 47

7

A Supplementary Information 49

A.1 Reinforcement Learning . 49

A.2 CyberBattleSim . 50

A.2.1 How CyberBattleSim works 50

B Additional Figures 55

8

List of Figures

3-1 Network modeling interface on sample network topology. 22

3-2 The network modeling page, showcasing a newly added node. 23

3-3 "General Properties" tab within the network modeling interface. . . . 25

3-4 "Vulnerabilities" tab within the network modeling interface. 26

3-5 "Services" tab within the network modeling interface. 28

3-6 "Firewall rules" tab within the network modeling interface. 29

3-7 Initial, post-breach interface on sample network topology. Only one

node has been compromised, accumulated reward is 0, and the logs are

empty. 31

3-8 Attack progression on sample network topology. One node has been

compromised and another node has been revealed, accumulated reward

is 6, and the logs have informed a discovery and reward. 32

3-9 Attack progression on sample network topology showcasing a blocked

action via a firewall, resulting in a score penalty. 33

3-10 Attack progression on sample network topology showcasing a successful

connect-and-infect of a "Website" node via a stolen credential. Owned

nodes are shown in red. 34

3-11 Entire network has been compromised and all flags have been acquired. 35

3-12 Simulation Parameters . 37

3-13 Simulation Running . 38

3-14 Simulation Ended . 38

4-1 Sample solution for Toy Capture-The-Flag Network Topology. 40

9

4-2 Step 1 of attack progression under Q-Learning AI agent 42

4-3 Step 2 of attack progression under Q-Learning AI agent 42

4-4 Step 3 of attack progression under Q-Learning AI agent 43

4-5 Step 4 of attack progression under Q-Learning AI agent 43

4-6 Step 5 of attack progression under Q-Learning AI agent 44

4-7 Step 6 of attack progression under Q-Learning AI agent 44

4-8 Step 7 of attack progression under Q-Learning AI agent 45

4-9 Step 8 of attack progression under Q-Learning AI agent 45

A-1 Visual representation of lateral movement in a computer network sim-

ulation . 51

A-2 A random agent interacting with the simulation 54

B-1 Initial Environment . 56

B-2 Page content has a link to GitHub . 56

B-3 Navigate GitHub history . 57

B-4 Solutions Actions . 57

B-5 Access blob using SAS token . 58

B-6 Navigate to parent URL and find 3 files 58

B-7 Navigate to parent URL and find 3 files (cont.) 59

B-8 Navigate to parent URL and find 3 files (cont.) 59

B-9 Navigate to Sharepoint site . 60

B-10 Azure resource with credentials from Sharepoint 60

B-11 Obtain Azure VM and public IP information 61

B-12 SSH into IP . 61

B-13 SSH into Website with MySQL credentials 62

B-14 Search SSH History . 62

B-15 execute command: su -u website monitor using stolen password . . . 63

B-16 execute command: cat /azurecreds.txt 63

B-17 Access Azure Resource Manager with monitor’s credentials 64

10

List of Tables

3.1 Technical Node Attributes . 24

3.2 Q-Learning Parameters . 36

4.1 Q-Learning CTF Simulation Parameters. Descriptions found in Table

3.1 . 41

11

THIS PAGE INTENTIONALLY LEFT BLANK

12

Chapter 1

Introduction

Modern cyber attacks demand immediate critical decision making [1]. Determining

the optimal response to an adversary’s attack to an Industrial Control System (ICS)

is a difficult challenge given the overwhelming amount of information and options ICS

operators have at their disposal. Actions configured to preserve the system’s integrity

come at different trade-offs for the system’s availability and security. [2] [3]

Furthermore, as an ICS operator imposes security policies during a cyber attack,

an adversary is able to acquire new information and change their attacking strategies.

This was seen in the case of the Attacks of Ukraine’s Power Grids, which suffered two

cyber attacks within a year. A post-mortem analysis suggested that based on their

experience with the first attack, the attackers were able to adapt to new challenges

and improve their adversarial strategy. [4]

The analysis also proposed a series of active defense recommendations. Among

these was a call to train both IT and OT network personnel in cybersecurity incident

response plans. The authors also recommended the development of active defense

models that visualizes and predicts the evolution of cyber attack strategies. This

thesis aims at tackling both of these recommendations.

To achieve these goals, we have developed a cyber-attack simulator platform: an

interactive web application that could help business professionals and operators im-

prove their decision-making abilities when faced with cyber attack crises. To achieve

this, we leveraged Microsoft’s CyberBattleSim research toolkit. CyberBattleSim al-

13

lows for the simulation of post-breach lateral movement during a cyber attack. [5] The

toolkit abstracts a fixed network topology into a collection of computer nodes, each

with their own predefined vulnerabilities that an automated adversary could exploit

in order to continue moving through the network. CyberBattleSim uses OpenAI Gym

internally, thus providing an interactive environment for researchers to create and ap-

ply different reinforcement learning models on the model network. More information

regarding CyberBattleSim can be found in Section A.2

1.0.1 Reinforcement Learning Within Cyber Security

Reinforcement learning is a type of machine learning with which autonomous agents

learn how to conduct decision-making by interacting with their environment. [6] [7]

Agents may execute actions to interact with their environment, and their goal is to

optimize some notion of reward. One popular and successful application is found

in video games where an environment is readily available: the computer program

implementing the game. [8] The player of the game is the agent, the commands

it takes are the actions, and the ultimate reward is winning the game. The best

reinforcement learning algorithms can learn effective strategies through repeated ex-

perience by gradually learning what actions to take in each state of the environment.

The more the agents play the game, the smarter they get at it. Recent advances in

the field of reinforcement learning have shown we can successfully train autonomous

agents that exceed human levels at playing video games. [9] Additional information

on Reinforcement Learning can be found in Section A.1

1.0.2 Contributions

This thesis offers the following contributions. First, a user interface to model the

network topology and computer node vulnerabilities. Second, an human-interactive

attack simulator that provides a sand-boxed environment to help red team users

predict the evolution of cyber incidents and understand the consequences of their

response plans. Finally, an automated attack simulator that employs the Q-Learning

14

reinforcement learning technique to evaluate the network’s security. The reward func-

tion of the automated adversaries is based on the discovery and ownership of computer

nodes in the network. Thus, the reinforcement learning model outputs the optimal

action to compromise the entire network.

1.0.3 Motivation

Our main motivation for this project lies in enabling security experts to investigate

how automated agents interact within simulated network environments. We hope to

see this project be utilized by the cyber-security research community to test different

automated attack strategies. Lastly, we would like to reciprocate the gesture of

Microsoft open-sourcing CyberBattleSim; we hope to extend their contributions by

providing a streamlined user-interface that effectively showcases the modeling and

simulation components.

15

THIS PAGE INTENTIONALLY LEFT BLANK

16

Chapter 2

Related Work

To our knowledge, there is no publicly available frontend-interface for CyberBat-

tleSim. In fact, research that makes use of the toolkit is very limited. We suppose

that this is due to the fact that the CyberBattleSim project is relatively new. How-

ever, we are confident that the toolkit’s goal of enabling researchers to investigate RL

learning in the context of computer networks will garner academic attention in due

time.

The paper “Incorporating Deception into CyberBattleSim for Autonomous De-

fense” by Walter et. al. [10] demonstrates that CyberBattleSim is readily extensi-

ble and can be used to investigate the effects of cyber deception within the toolkit.

These deceptive elements included Decoys, Honeypots, and Honeytokens, each with

their own set of penalties. They investigated how these deception techniques influ-

enced the maximum expected cumulative reward of the automated adversary as well

as the percentage of attacker wins and the amount of wasted resources. The paper

showed that, as expected, the attacker’s rate of progress is inversely proportional to

the amount of deceptive elements on the network. Thus, the authors set the stage for

other researchers to design advanced autonomous defender agents that can employ

deceptive strategies.

Work by Standen et. al on "CybORG: A Gym for the Development of Autonomous

Cyber Agents" [11] was similar to that of CyberBattleSim in that the authors devel-

oped a network simulation environment (CybORG) that can also employ automated,

17

decision-making agents. In contrast to CyberBattleSim, the CybORG virtual Gym

also supports emulation, which allows for a more realistic training of agents. For

example, the adversarial action space can support the Metasploit Framework [10][12]

and both attacker and defender agents can execute terminal commands. The results

of this paper demonstrated that AI agents can be trained on simulated networks and

then be run on an emulated infrastructures. It remains to be seen if the project will

eventually support blue-agent training. Lastly, the project appears to be in the early

stages of development and, at the time of writing, the paper’s authors have not made

their codebase publicly available.

Previous work on reasoning the optimal strategies to defend against Advanced

Metering Infrastructures (AMI) was conducted by Ismail et al. in "A Game Theoret-

ical Analysis of Data Confidentiality Attacks on Smart-Grid" [1]. The authors of the

paper were able to construct a game-theoretical model of AMI smart grids to evaluate

offensive and defensive patterns. In particular, they worked towards finding the Nash

equilibrium within different scenarios, in which neither the attacker nor the defender

may improve upon their strategies. The authors were able to derive a set of devices

within AMI that would yield the most reward when compromised. In addition, the

authors identified the minimum defense budget needed on each device in order to

protect them against cyber-attacks.

Also within the space of applying game theory to cyber-security lies “A Hybrid

Game Theory and Reinforcement Learning Approach for Cyber-Physical Systems Se-

curity” by Khoury et al [13]. The model presented in the paper leverages multi-agent

reinforcement learning (MARL) to run a game between an adversary and cyber-

physical system (CPS) operator. The authors propose a hybrid approach based on

game theory as a tool to formalize the game interactions between the human and

adversaries within a CPS environment. To simulate the virus spread within a CPS

network the authors collected a predefined known and discovered vulnerabilities, de-

rived optimal attack sequences and defense policies using MARL and Q-learning, and

finally created a simulation framework composed of a network simulator and an re-

inforcement learning toolkit. From their results, the authors determined that MARL

18

agents learn the best policy for an automated response at run-time.

The risk assessment of attack graphs was studied by Munoz-Gonzalez et al. in

"Dynamic Security Risk Management Using Bayesian Attack Graphs". [14] In the

paper, the authors were able to leverage Bayesian networks to model attack graphs

and evaluate real-world network vulnerabilities. The authors conducted this study

to better help system administrators react to cybersecurity threats. They found

that using Bayesian networks allowed them to effectively measure the probabilities of

consecutive, successful attacks.

This project contributes to the field of network simulation by extending Microsoft’s

CyberBattleSim project; we present a graphical web interface to model and simulate

enterprise networks. To ensure interoperability with CyberBattleSim, we directly

exposed CyberBattleSim’s inner mechanisms through an application programming

interface (API) and created a frontend wrapper for the parent project. Thus, we

provide a user-interface for creating network topologies, exploring topologies as a hu-

man attacker, and running automated AI strategies to compromise simulated network

environments.

19

THIS PAGE INTENTIONALLY LEFT BLANK

20

Chapter 3

Approach

Our technical contributions include a full-stack application that allows for the model-

ing of network topology and visualization of cyber attacks on this network. This was

achieved using the frameworks Vue.js for the frontend and Flask for the backend. The

frontend codebase has three main components: network modeling, human-interactive

simulation, and AI-agent simulation. The backend Flask server receives actions from

the user interface, passes them into the CyberBattleSim toolkit, which in turn relays

the response back to the user interface.

3.1 Network Modeling

The network modeling component is where the user can create and tweak the network

topology abstraction. This network topology is visualized through a graph, where the

nodes represent a computer or computer system in the enterprise network and directed

edges point to another node obtained by exploiting a vulnerability or connecting via

a leaked credential.

Besides adding or removing nodes to the graph, a user may edit various attributes

of a node, including: intrinsic value, vulnerabilities, services, available ports and

firewalls. These attributes are defined within the CyberBattleSim project and are

described in Table 3.1. Many of these attributes have their own nested properties,

allowing the user to finely specify a node’s behavior.

21

Figure 3-1: Network modeling interface on sample network topology.

22

Figure 3-2: The network modeling page, showcasing a newly added node.

23

Table 3.1: Technical Node Attributes

name description

services List of port/protocol the node is listening

vulnerabilities List of known vulnerabilities for the node

value Intrinsic value of the node (translates into a reward if the node
gets owned)

properties Properties of the nodes, some of which can imply further vul-
nerabilities

firewall Firewall configuration of the node

agent installed Attacker agent installed on the node? (i.e. is the node com-
promised?)

privilege level Escalation level

reimagable Can the node be re-imaged by a defender agent?

owned string String displayed when the node gets owned

status Machine status: running or stopped

24

Figure 3-3: "General Properties" tab within the network modeling interface.

3.1.1 General Properties

The main properties of a node are shown within the "General Properties" tab. These

properties include: node ID, the intrinsic value of the node, the text displayed when

the node is compromised, a boolean representing whether an adversary has already

captured the node, and property tags. Newly created nodes are instantiated with

universally unique identifiers (UUID) as their ID. This preserves the invariant that

no two nodes will have the same ID when created. The frontend form validation also

ensures that ID uniqueness is preserved. In order for a proper CyberBattle Simulation

to take place, at least one agent should be installed within a node. This ensures that

the agent has an initial environment to attack from.

3.1.2 Vulnerabilities

Node vulnerabilities are abstracted with the following details in mind: outcome type,

cost of exploit, rate of successful exploitation, rate of detection, and whether the

vulnerability requires local or remote access to be executed. An example of a remote

25

Figure 3-4: "Vulnerabilities" tab within the network modeling interface.

vulnerability could be a publicly hosted site exposing SSH credentials. Conversely, a

local vulnerability could be extracting authentication token from a stolen device or

escalating to administrator privileges from within the node.

CyberBattleSim provided us with several predefined outcome categories, includ-

ing: leaked credentials, leaked references to other computer nodes, leaked user data,

and privilege escalation on the node. Vulnerabilities can also be labeled as remote

or local. Once a vulnerability has been exploited, the outcome is presented to the

adversary along with the reward associated with the value of the node.

26

3.1.3 Services

Along with vulnerabilities, a node may also have running services. Services describe

processes which run on an exposed port which can be configured to require credentials

for authentication. For example, a web browser may expose an HTTPS service and

a file transfer tool may expose an SSH service under a credential.

3.1.4 Firewall Rules

Finally, a user may add firewall rules to a node. Firewall rules can be used to block

or allow certain ports. These rules can be defined for both outgoing and incoming

traffic. Ports that are not explicitly allowed in the configuration are automatically

assumed to be blocked. That said, explicitly blocking a port allows a user to provide

a reason for the block.

As the user modifies the enterprise network abstraction model on the frontend,

the changes are reflected on the CyberBattleSim backend model. Once the user is

satisfied with the current topology, they may now use the human-interactive attack

simulator or the automated attack simulator.

3.2 Human-interactive simulation

In red team versus blue team dynamics, the red team consists of offensive security

strategists who try to attack a company’s cyber-security defenses. The blue team in

turn, defends against and responds to the red team’s attack. We implemented the use-

case of a human red team player who tries to attack an organization’s cybersecurity

defenses. In the scope of our project, a blue team member would design the network

topology, as described in the previous sections, and would hand it over to the red

team player for them to try to compromise. The red team player starts off in control

of the node that the blue team player has configured to be initially breached. This

starting node may have low privileges, and may represent the gateway between public

and private domain, such as a web server. On this page, the player is presented with

27

Figure 3-5: "Services" tab within the network modeling interface.

28

Figure 3-6: "Firewall rules" tab within the network modeling interface.

29

a sub-graph containing discovered (green) and owned (red) nodes, a list of actions for

the currently selected node, and logs that inform the player of rewards or penalties.

The red team player’s goal is to maximize their cumulative reward by incremen-

tally discovering and taking ownership of nodes in the network. This component of

the platform allows a human to move through the sand-boxed network, discovering

new nodes as they exploit new vulnerabilities and acquire hidden credentials. This

mode could provide valuable insight into how a human player would approach com-

promising the network. As designed by Microsoft’s CyberBattleSim, the environment

is partially observable, meaning that the agent does not know of the nodes and edges

of the network graph in advance. The red team player takes actions to gradually

explore the network from the nodes it currently owns. We support three kinds of

actions, which allows the player to run exploits as well as explore the network that is

visible to them. These actions are: running a local attack, running a remote attack,

and connecting from a source node via learned credentials. Local actions require that

the node where the underlying operation would take place is already owned by the

player. After a node gets discovered or owned, the player is given a reward, which

represents the intrinsic value of the node.

30

Figure 3-7: Initial, post-breach interface on sample network topology. Only one node
has been compromised, accumulated reward is 0, and the logs are empty.

3.3 AI-learning simulation

We also implemented the use-case of an automated AI player playing as the attacker

using Q-Learning, a type of reinforcement learning algorithm used by the Cyber-

BattleSim project. In this scenario, a blue team member would design the network

topology, input the specific AI learning simulation parameters (as defined in Table

4.1) and run the simulation. This component of the site allows a for an AI adversary

to move through the sand-boxed network, discovering new nodes as it exploits new

vulnerabilities and discovers hidden credentials. This mode can be used to find Cyber

Kill Chains, evaluate different Q-Learning strategies and learn about different attack

paths at a faster rate than a human player.

The component’s page presents the user with a list of parameters, and once sub-

mitted, shows a live progress of the AI learning algorithm. As the simulation is

running, the user may view the reward-over-time chart and the sub-network that the

AI agent can currently observe and interact with. Once complete, a gallery of figures

31

Figure 3-8: Attack progression on sample network topology. One node has been
compromised and another node has been revealed, accumulated reward is 6, and the
logs have informed a discovery and reward.

32

Figure 3-9: Attack progression on sample network topology showcasing a blocked
action via a firewall, resulting in a score penalty.

33

Figure 3-10: Attack progression on sample network topology showcasing a successful
connect-and-infect of a "Website" node via a stolen credential. Owned nodes are
shown in red.

34

Figure 3-11: Entire network has been compromised and all flags have been acquired.

35

Table 3.2: Q-Learning Parameters

name description

iteration count Maximum number of iterations in each episode

episode count Number of training episodes

gamma Gamma discount factor

learning rate Determines the weight of successful actions.

epsilon
Explore vs Exploit: 0.0 to exploit the learned
policy only without exploration vs 1.0 to explore
purely randomly

epsilon decay Epsilon gets multiplied by this value after each
episode

attacker reward Creates goal to reach at least the specified cumu-
lative total reward

low availability Creates goal to bring the availability to lower than
the specified Service Level Agreement (SLA) value

own at least Creates goal to own at least the specified number
of nodes

own at least percent Creates goal to own at least the specified percent-
age of the network nodes

is shown. These figures include progression of total reward, network observability

over time, as well as duration of episodes.

3.4 Backend Routing

The backend of the project involves a simple Flask server that relays user-submitted

data into CyberBattleSim’s internal model. All data is sanitized on the frontend

and backend to keep the network model’s preconditions consistent. Each action that

the user can make on the frontend has a corresponding API route exposed on the

backend server. The source code of CyberBattleSim was modified lightly to allow for

the serialization and deserialization of the data being transmitted.

36

Figure 3-12: Simulation Parameters

37

Figure 3-13: Simulation Running

Figure 3-14: Simulation Ended

38

Chapter 4

Results

The goal for this project was to create a web platform in which a user can model

network topologies and interact with them either manually or via an AI agent. Cru-

cially, the platform must be highly interoperable with the CyberBattleSim project.

Our metric for success was to replicate CyberBattleSim’s capture-the-flag (CTF)

topology with the network modeling component and be able to carry out the same

agent actions supported by CyberBattleSim. These actions enable a human or AI

agent to manipulate the environment.

4.1 Human Interaction with CTF Network Topology

Testing the Human-interactive component involved going through the solution to the

CTF provided by CyberBattleSim (shown in Figure 4-1) and applying each action.

The replicated CTF environment can be seen in Figure 3-1. Because every node

property listed in Table 3.1 can be configured, virtually any network topology can

be abstracted into CyberBattleSim’s model. The step-by-step walk-through of the

CTF solution can be seen in Appendix B. Thus we have shown that we can both

model and manually interact with network topologies that are compatible with the

CyberBattleSim project.

39

Figure 4-1: Sample solution for Toy Capture-The-Flag Network Topology.

40

Table 4.1: Q-Learning CTF Simulation Parameters. Descriptions found in Table 3.1

name value

iteration count 300

episode count 5

gamma 0.015

learning rate 0.9

epsilon 0.9

epsilon decay 0.75

attacker reward 0

low availability 1

own at least 0

own at least percent 100%

4.2 Q-Learning AI Interaction with CTF Network

Topology

We applied Q-Learning to the CTF Network Topology to demonstrate the platform’s

capability of running CyberBattleSim reinforcement learning techniques on network

models. Figures 4-2 through 4-9 display the results of running Q-Learning on the

CTF Network with the parameters in Table 4.1. The plots to the left of each figure

show accumulated reward over time. Meanwhile, network graphs to the right of each

figure show the sub-network available to the AI agent, with discovered nodes shown in

green and owned nodes shown in red. The results demonstrate that the web platform

can be used to evaluate different Q-Learning strategies without the need of using the

CyberBattleSim platform directly.

41

Figure 4-2: Step 1 of attack progression under Q-Learning AI agent

Figure 4-3: Step 2 of attack progression under Q-Learning AI agent

42

Figure 4-4: Step 3 of attack progression under Q-Learning AI agent

Figure 4-5: Step 4 of attack progression under Q-Learning AI agent

43

Figure 4-6: Step 5 of attack progression under Q-Learning AI agent

Figure 4-7: Step 6 of attack progression under Q-Learning AI agent

44

Figure 4-8: Step 7 of attack progression under Q-Learning AI agent

Figure 4-9: Step 8 of attack progression under Q-Learning AI agent

45

THIS PAGE INTENTIONALLY LEFT BLANK

46

Chapter 5

Conclusions

This project provides a way to build and simulate enterprise networks, making it pos-

sible to frame cybersecurity challenges in the context of reinforcement learning via

a web platform. This tool shows that high-level abstractions of cyber security con-

cepts can help us understand how real cyber-agents would behave in actual enterprise

networks.

5.1 Future Work

Future work on the CyberBattleSim web platform includes adding support for other

AI algorithms. Permitting other types of AI agents would allow the user to compare

different attacker strategies. Microsoft’s CyberBattleSim project has already provided

a suite of agents as starting points, thus this task would be a matter of extending the

current API to support these agents. In addition, adding support for a defender agent

could prove to be worthwhile, as CyberBattleSim readily supports defensive players.

Finally, at the time of writing, the CyberBattleSim continues to be developed. Thus

future work could include adding frontend support to new features planned for the

project, such as simulating network traffic and file systems.

47

THIS PAGE INTENTIONALLY LEFT BLANK

48

Appendix A

Supplementary Information

A.1 Reinforcement Learning

Reinforcement learning is a technique within machine learning in which autonomous

agents learn how to conduct decision-making by interacting with their environment

and accumulating knowledge. [15] Agents may perform actions to interact with their

environment in order to optimize a reward function. Reinforcement learning algo-

rithms can learn effective strategies through repeated experience by gradually learn-

ing what actions to take within each state of the environment. The more agents

interact with the environment, the better they optimize obtaining reward.

Reinforcement Learning can be applied in the context of cyber security. [16]

In this case, the automated agent is the attacker or a defender, which evolve in the

environment that is provided by a simulated computer network. The actions available

to the agents are the network and computer commands. An automated attacker’s goal

would be to compromise the network while an automated defender’s goal would be

to circumvent the attacker’s actions by executing a set of protective measures.

Reinforcement Learning techniques can be readily applied using OpenAI Gym, a

software tool that provides interactive environments for researchers to develop, train,

and evaluate machine learning algorithms. [17]

49

A.2 CyberBattleSim

Microsoft developed CyberBattleSim in an attempt to leverage AI and machine learn-

ing to solve cybersecurity challenges, in particular, autonomous systems. In a simu-

lated enterprise network, the CyberBattleSim toolkit serves to investigate how rein-

forcement learning techniques can be applied to improve security within an network

environment. CyberBattleSim uses the Python-based OpenAI Gym interface, which

allows for the training of automated agents using reinforcement learning algorithms.

[5]

Thus, using CyberBattleSim, we are able to construct a highly abstract simulation

of computer systems, making it possible to frame cybersecurity challenges in the

context of reinforcement learning. [11] CyberBattleSim provides a network model in

which cyber-agents can interact and evolve in a sand-boxed, simulated environments.

This type of high-level abstraction prevents direct application to real-world systems,

which safeguards against potential nefarious use of automated agents trained with it.

With that said, it can still prove to be useful for gaining insights with respect to how

real cyber-agents would behave in an actual enterprise network.

A.2.1 How CyberBattleSim works

CyberBattleSim focuses on threat modeling the post-breach lateral movement stage

of a cyber-attack. The environment consists of a network of computer nodes. It is

parameterized by a fixed network topology and a set of predefined vulnerabilities that

an agent can exploit to laterally move through the network. The simulated attacker’s

goal is to take ownership of some portion of the network by exploiting these planted

vulnerabilities. While the simulated attacker moves through the network, a defender

agent watches the network activity to detect the presence of the attacker and contain

the attack.

To illustrate, the graph in figure A-1 depicts a toy example of a network with

machines running various operating systems and software. Each machine has a set

of properties, a value, and pre-assigned vulnerabilities. Black edges represent traffic

50

running between nodes and are labelled by the communication protocol.

Figure A-1: Visual representation of lateral movement in a computer network simu-
lation

Suppose the agent represents the attacker. The post-breach assumption means

that one node is initially infected with the attacker’s code (we say that the attacker

owns the node). The simulated attacker’s goal is to maximize the cumulative reward

by discovering and taking ownership of nodes in the network. The environment is

partially observable: the agent does not get to see all the nodes and edges of the

network graph in advance. Instead, the attacker takes actions to gradually explore

the network from the nodes it currently owns. There are three kinds of actions,

offering a mix of exploitation and exploration capabilities to the agent: performing a

local attack, performing a remote attack, and connecting to other nodes. Actions are

parameterized by the source node where the underlying operation should take place,

and they are only permitted on nodes owned by the agent. The reward is a float that

represents the intrinsic value of a node (e.g., a SQL server has greater value than a

test machine).

In the depicted example, the simulated attacker breaches the network from a

simulated Windows 7 node (on the left side, pointed to by an orange arrow). It

proceeds with lateral movement to a Windows 8 node by exploiting a vulnerability in

51

the SMB file-sharing protocol, then uses some cached credential to sign into another

Windows 7 machine. It then exploits an IIS remote vulnerability to own the IIS

server, and finally uses leaked connection strings to get to the SQL DB.

This environment simulates a heterogeneous computer network supporting multi-

ple platforms and helps to show how using the latest operating systems and keeping

these systems up to date enable organizations to take advantage of the latest harden-

ing and protection technologies in platforms like Windows 10. The simulation Gym

environment is parameterized by the definition of the network layout, the list of sup-

ported vulnerabilities, and the nodes where they are planted. The simulation does

not support machine code execution, and thus no security exploit actually takes place

in it. We instead model vulnerabilities abstractly with a precondition defining the

following: the nodes where the vulnerability is active, a probability of successful ex-

ploitation, and a high-level definition of the outcome and side-effects. Nodes have

preassigned named properties over which the precondition is expressed as a Boolean

formula.

Vulnerability outcomes

There are predefined outcomes that include the following: leaked credentials, leaked

references to other computer nodes, leaked node properties, taking ownership of a

node, and privilege escalation on the node. Examples of remote vulnerabilities in-

clude: a SharePoint site exposing ssh credentials, an ssh vulnerability that grants

access to the machine, a GitHub project leaking credentials in commit history, and

a SharePoint site with file containing SAS token to storage account. Meanwhile, ex-

amples of local vulnerabilities include: extracting authentication token or credentials

from a system cache, escalating to SYSTEM privileges, escalating to administrator

privileges. Vulnerabilities can either be defined in-place at the node level or can be

defined globally and activated by the precondition Boolean expression.

52

Measuring progress

CyberBattleSim provides a basic stochastic defender that detects and mitigates ongo-

ing attacks based on predefined probabilities of success. CyberBattleSim implements

mitigation by reimaging the infected nodes, a process abstractly modeled as an oper-

ation spanning multiple simulation steps. To compare the performance of the agents,

we look at two metrics: the number of simulation steps taken to attain their goal and

the cumulative rewards over simulation steps across training epochs.

With the Gym interface, CyberBattleSim can easily instantiate automated agents

and observe how they evolve in such environments. Figure A-2 shows the outcome of

running a random agent on this simulation—that is, an agent that randomly selects

which action to perform at each step of the simulation.

53

Figure A-2: A random agent interacting with the simulation

54

Appendix B

Additional Figures

55

Figure B-1: Initial Environment

Figure B-2: Page content has a link to GitHub

56

Figure B-3: Navigate GitHub history

Figure B-4: Solutions Actions

57

Figure B-5: Access blob using SAS token

Figure B-6: Navigate to parent URL and find 3 files

58

Figure B-7: Navigate to parent URL and find 3 files (cont.)

Figure B-8: Navigate to parent URL and find 3 files (cont.)

59

Figure B-9: Navigate to Sharepoint site

Figure B-10: Azure resource with credentials from Sharepoint

60

Figure B-11: Obtain Azure VM and public IP information

Figure B-12: SSH into IP

61

Figure B-13: SSH into Website with MySQL credentials

Figure B-14: Search SSH History

62

Figure B-15: execute command: su -u website monitor using stolen password

Figure B-16: execute command: cat /azurecreds.txt

63

Figure B-17: Access Azure Resource Manager with monitor’s credentials

64

Bibliography

[1] Ziad Ismail, Jean Leneutre, David Bateman, and Lin Chen. A game theoretical
analysis of data confidentiality attacks on smart-grid ami. Selected Areas in
Communications, IEEE Journal on, 32:1486–1499, 07 2014.

[2] Xiaohe Fan, Kefeng Fan, Yong Wang, and Ruikang Zhou. Overview of cyber-
security of industrial control system. In 2015 international conference on cyber
security of smart cities, industrial control system and communications (SSIC),
pages 1–7. IEEE, 2015.

[3] Heng Zhang, Yuanchao Shu, Peng Cheng, and Jiming Chen. Privacy and per-
formance trade-off in cyber-physical systems. IEEE Network, 30(2):62–66, 2016.

[4] Defense Use Case. Analysis of the cyber attack on the ukrainian power grid.
Electricity Information Sharing and Analysis Center (E-ISAC), 388:1–29, 2016.

[5] Microsoft Defender Research Team et al. Cyberbattlesim, 2021.

[6] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,
Georg Ostrovski, et al. Human-level control through deep reinforcement learning.
nature, 518(7540):529–533, 2015.

[7] Thanh Thi Nguyen and Vijay Janapa Reddi. Deep reinforcement learning for
cyber security. IEEE Transactions on Neural Networks and Learning Systems,
page 1–17, 2021.

[8] Kun Shao, Zhentao Tang, Yuanheng Zhu, Nannan Li, and Dongbin Zhao. A
survey of deep reinforcement learning in video games, 2019.

[9] Vlad Firoiu, Tina Ju, and Josh Tenenbaum. At human speed: Deep reinforce-
ment learning with action delay, 2018.

[10] Erich Walter, Kimberly Ferguson-Walter, and Ahmad Ridley. Incorporat-
ing deception into cyberbattlesim for autonomous defense. arXiv preprint
arXiv:2108.13980, 2021.

[11] Maxwell Standen, Martin Lucas, David Bowman, Toby J. Richer, Junae Kim,
and Damian Marriott. Cyborg: A gym for the development of autonomous cyber
agents, 2021.

65

[12] David Maynor. Metasploit toolkit for penetration testing, exploit development,
and vulnerability research. Elsevier, 2011.

[13] Joseph Khoury and Mohamed Nassar. A hybrid game theory and reinforcement
learning approach for cyber-physical systems security. In NOMS 2020 - 2020
IEEE/IFIP Network Operations and Management Symposium, pages 1–9, 2020.

[14] Nayot Poolsappasit, Rinku Dewri, and Indrajit Ray. Dynamic security risk man-
agement using bayesian attack graphs. IEEE Transactions on Dependable and
Secure Computing, 9(1):61–74, 2012.

[15] Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare,
and Joelle Pineau. An introduction to deep reinforcement learning. CoRR,
abs/1811.12560, 2018.

[16] Xiaorui Liu, Juan Ospina, and Charalambos Konstantinou. Deep reinforcement
learning for cybersecurity assessment of wind integrated power systems. IEEE
Access, 8:208378–208394, 2020.

[17] Iker Zamora, Nestor Gonzalez Lopez, Victor Mayoral Vilches, and Alejandro Her-
nandez Cordero. Extending the openai gym for robotics: a toolkit for reinforce-
ment learning using ros and gazebo, 2017.

66

