
An Interactive Approach to Generating SQL Queries
from Natural Language

by

Ramya Durvasula

B.S. Computer Science and Engineering, Mathematics
Massachusetts Institute of Technology (2020)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

Jan 28, 2022

Certified by. .
Armando Solar-Lezama

Professor
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

An Interactive Approach to Generating SQL Queries from

Natural Language

by

Ramya Durvasula

Submitted to the Department of Electrical Engineering and Computer Science
on Jan 28, 2022, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this thesis, we contribute nalini, an natural-language based interactive interface
for SQL query generation. Motivated by a lack of usability of existing systems,
nalini was built with the intention of using it for complex query generation. The
interface allows users to use a natural language and mathematical operations with a
minimal structure. We evaluated nalini with a first-use study with five participants,
where participants were asked to generate queries from the TPC-H decision support
benchmark. Our study showed that users were able to use nalini to generate complex
queries, and points to promising areas of future work.

Thesis Supervisor: Armando Solar-Lezama
Title: Professor

3

4

Acknowledgments

I’m really excited about being able to share this work with the world, and there are

a lot of people without whom this thesis would not be possible.

First and foremost, I’d like to thank my mentor and PI, Armando. Not only has

he been an incredibly inspiring researcher to work with and learn from, but he has

been such a caring, patient mentor. Thank you, Armando, for welcoming back into

your lab after the toughest year of my life and trusting me to explore my own, new,

research question.

Thank you also to Navid; your work has inspired me, and your hands-on help

was extremely helpful! Thank you to my lab mates who brought me into the PL

community. I’d especially like to thank Jack who spent time mentoring me on a

different project last year.

To David, Non, Tanya, Angela, Shruthi, Sravya, Lilly, Connie, Albert, Mayukha,

and Brent, thank you for housing and/or living with me at various points during

this thesis process and being patient with the incredible number of pandemic-induced

moves.

To Kat, Saffron, David, Non, Sravya, and Advaith, thank you for the extremely

valuable input as I developed this work. Thank you to Eric for your technical advise,

and thank you to everyone who volunteered to participate in the user study.

To my parents, brother, and Advaith, thank you for your unwavering support and

for helping me in every way you could.

And of course, thank you to Katrina, Vera, Myriam, and Ellen for making sure I

actually got this submitted!

5

6

Contents

1 Introduction 13

1.1 Contributions . 15

1.2 Outline . 16

2 Nalini 17

2.1 Sample Use Case . 17

2.2 Overview . 22

2.3 Query Synthesis Engine . 23

2.3.1 Semantic Parsing . 26

2.3.2 Hint Resolution . 30

2.3.3 Table Relationship Discovery 34

2.3.4 SQL Rendering . 36

2.4 Scope . 38

2.5 Implementation . 40

2.5.1 Web Interface . 40

2.5.2 Semantic Parser . 40

3 Related Work 41

3.1 nalini vs SQLizer . 41

3.2 Interactive Interfaces for Query Generation 42

3.3 Sketch-Based Synthesis . 43

3.4 Large Language Models . 43

3.5 Semantic Parsing . 44

7

3.6 Wolfram . 44

4 Evaluation: First-Use Study 47

4.1 Methods . 47

4.2 Quantitative Results . 48

4.2.1 Task Completion . 48

4.2.2 Post-Study Survey Results . 50

4.3 Qualitative Results . 51

4.3.1 Use of Natural Language . 51

4.3.2 Iteration . 52

4.3.3 Optimizations and Shortcuts 54

4.3.4 Commonly Attempted Constructs 55

4.3.5 A Shift in Focus . 55

4.3.6 Comparisons to Other Methods 56

5 Conclusion 59

5.1 Future Work . 59

5.1.1 Understanding Participants 60

5.1.2 Supporting a richer SQL Vocabulary 60

5.1.3 Developing a more sophisticated semantic parser 61

5.1.4 Increasing confidence in the synthesis algorithm 62

5.1.5 Improving the user experience 63

5.2 Final Words . 63

A First-Use Study Queries and Prompts 65

8

List of Figures

2-1 The TPC-H schema, as specified in the original benchmark [1]. This

figure was created by the Transaction Processing Performance Council. 18

2-2 The starting screen of nalini with a sample database matching the

TPC-H specifications loaded upon startup. A preview of each table

in the database is visible in the Database Preview section. The

Query Generation panel consists of a place to input column and filter

descriptions, as well as a section for the generated SQL to appear.

From there, the query can be executed to create or edit any table in

the database. The Table Relationships panel allows the user to view

and edit keys that are shared amongst tables (and thus can be used

for joins). 20

2-3 Demonstration: Generated Query . 21

2-4 Grammar of logical forms produced by nalini’s semantic parser. Here,

h denotes a hint; ??h denotes to a table hint while ?h denotes a column

hint. 28

2-5 Grammar of modified relational algebra produced by nalini query

engine; each expression in this grammar can be directly rendered using

SQL syntax. 39

9

10

List of Tables

2.1 Table showing the normalized and null-corrected formulas for calculat-

ing weighted similarities between a hint interpretation 𝐻𝑚 and a valid

column reference 𝐴𝑛. 35

4.1 High-level attributes of TPC-H queries participants were asked to write

using nalini during the user study. 49

4.2 Summary of user task completion. 50

A.1 TPC-H query number, prompts given to participants, and gold queries

used to evaluate correctness in the order of the first-use study. 68

11

12

Chapter 1

Introduction

Ever since the relational data model was pioneered decades ago[7], querying data

in relational databases has become an increasingly common operation, with SQL

(Structured Query Language) emerging as the standard query language [16].

In today’s data-driven world, the user base of database systems is growing quickly;

many new users are non-experts [16]. However, SQL queries can often be very difficult

to write. The process typically requires expert knowledge of both the query language

and the specific data being queried.

Perhaps the most obvious barrier to writing an accurate SQL query is the fact

that the programmer must understand quite a lot about their data: its format, its

exact schema, and the precise relationships necessary to create join paths. Whereas

a full-time data scientist may have all of the requisite knowledge needed for ad-hoc

query writing, a business user may need help building out a data pipeline for metrics,

and a developer may spend much more time than necessary gathering usage data.

Also, as is necessary for any language, working with SQL requires that the pro-

grammer understands its syntax and semantics. Although there is a standard version

of SQL recognized by both the American National Standards Institute (ANSI) and

the International Organization for Standardization (ISO), no database vendor is fully

compatible with the standard. As a result, there are numerous dialects of SQL used

today, including MySQL[9], PostgreSQL[11], sqlite[8], sql-server[18], and dozens of

other enterprise-oriented proprietary dialects. Each dialect has its own combina-

13

tion of syntax variations regarding date and time specification, string representation,

column aliasing, aggregate operations, and case sensitivity [14]. As a result, even

someone who has SQL experience may find it challenging to write a query in a new

environment.

An important goal of the database community is thus to enable non-experts to

easily write accurate, executable queries based on their specifications. There has

been a lot of work in this area, including using a combination of rule-based and

deep-learning natural language approaches and programming-by-example approaches.

Some approaches include an interactive component as well. While the advances in

NLP-to-SQL research have steadily brought us closer to a fully-automated solution,

there is still quite a lot of work to be done. A 2020 study of 12 state-of-the-art NLP-

to-SQL methods showed that although natural language methods have performed well

on specific databases or against specific benchmarks, their performance significantly

degrades when applied to complex queries [15]. These systems, including Templar [3],

NSP [12], SQLNet [26], TypeSQL [28], SyntaxSQLNet [29], GNN [6], IRNet [13], and

NaLIR [16], all use a variety of deep learning approaches to the NLP-to-SQL problem.

However, they all have the same fundamental assumption that a SQL select statement

can be uttered in a single sentence. All of these sytems showed 0% accuracy when

tested against the TPC-H benchmark

In reality, many select statements are written as part of ETL (extract, transform,

load) pipelines and generate entire tables, with complex business logic applied to

many separate columns. These types of specifications are not natural to express in

one-sentence queries.

On the other hand, programming-by-example interfaces, such as SCYTHE [25]

and PATSQL [24] have demonstrated better performance on complex queries, but

are not as easy to intuitively use. For a non-technical user, it can be extremely

cumbersome to create input/output tables to communicate the intention.

Thus, we motivate the development of a tool that combines the effectiveness of

program-synthesis based work with the ease-of-use of natural-language based solu-

tions.

14

1.1 Contributions

In this work, we develop nalini, a natural language interactive interface for SQL

query generation.

In contrast to other natural language based SQL tools, nalini does not answer

a single question posed by the user. Instead, the interface has a query generation

panel where users provide individual natural language descriptions of each column

in their desired output table. Users can optionally add filters, each of which also

takes a natural language input. Once the user attempts to generate SQL, they are

either provided with a generated query, which they can then execute against their

database, or with error messages indicating which fragments of the inputs were not

understood, which they can then use to tweak their inputs. nalini displays previews

of all database tables alongside the query generation panel, with the intention of

enabling users to go back and forth quickly and frequently. They can also use the

web interface to view and update the SQL backing any table in the database as well

as view and update the database schema.

We evaluated nalini’s efficacy through a first-use study with 5 participants. The

results of the study demonstrate nalini’s success as a proof of concept. The novel

minimally-structured format of the natural language input, along with the use of

meaningful error messages enabled nalini to achieve the following desired outcomes:

• Participants interact using natural language. After seeing a few examples

of how nalini could be used, all participants interacted with nalini using a

combination of English words and phrases, database-specific table and column

names, and mathematical expressions, without requiring specific directions or

documentation.

• Participants completely and correctly generated SQL queries. Unlike

any of the existing NLP-based solutions, with a limited scope and human inter-

active loops, users were able to successfully generate complex queries from the

TPC-H decision support benchmark.

15

1.2 Outline

In the following chapters of this thesis, we present an in-depth look at nalini’s design,

evaluation, and limitations. In Chapter 2, we walk through a sample usage of nalini

and then give an in-depth description of the system. In Chapter 3, we provide tech-

nical background and contextualize our technical contributions by comparing nalini

to existing approaches to automated SQL query generation. Chapter 4 provides the

methods and results of our first-use study. Finally, in Chapter 5, we re-contextualize

the primary finding of this work and describe avenues for future experimentation.

16

Chapter 2

Nalini

2.1 Sample Use Case

In this section, we provide a high-level overview of our technique and its implemen-

tation in nalini through a simple motivating example. The example is loosely based

on Query 7 from the TPC-H decision support benchmark [1], and the data follows

the TPC-H schema and constraints. See Figure 2-1 for the full schema.

Our user, Michael, is a regional manager at large paper supply corporation who

doesn’t have a lot of experience with SQL. His boss expressed concern that in 1995,

the company’s supply chain was particularly inefficient because of their international

shipping methods. In particular, Michael’s boss wants him to look into the amount

of international shipping that was done via trucks.

Michael decides to look into the historical data. Rather than exporting data into a

spreadsheet to do a one-time analysis, Michael explicitly wants to create a new table

in his business intelligence pipeline, so that other analysts and stakeholders can trace

the inputs of his analysis and use his table for further analysis. Michael sets out to

create a table that calculates, for the calendar year 1995, the total gross discounted

revenue derived from sales that involved items being shipped from a supplier in one

country to a customer a different country, and that were shipped via trucks.

Previously, he might have requested the help of a data scientist, perhaps based

out of a different office location, to generate and execute the SQL query for him.

17

Figure 2-1: The TPC-H schema, as specified in the original benchmark [1]. This
figure was created by the Transaction Processing Performance Council.

18

Instead, he opens up nalini to write the query on his own (see Figure 2-2).

Michael knows that he wants his output table to have three columns: customer_nation,

supplier_nation, and revenue. He clicks the "Add Column" button in the Query

Generation panel twice to create a total of three columns. For the first column, he

types customer_nation into the "column name" input and types "customer nation

name" into the column description area beside it. Similarly, he types supplier_nation

into the second "column name" input and types "supplier nation name" into the sec-

ond column description area. He names his third column revenue, and then realizes

that he actually isn’t sure how to calculate gross revenue.

After checking with a salesperson at his branch, Pam, he confirms that to calculate

gross discounted revenue, he needs to multiply the sale price of each lineitem by 1 mi-

nus the discount percentage and then add up the discounted revenues for each lineitem

to get the gross discounted revenue. Scrolling through the columns of the lineitem

table, he sees that there are in fact columns named l_extendedprice and l_discount

which correspond to the sale price and discount percentage, respectively. He types

total lineitem extendedprice * (1-discount) into the description area for the

revenue column.

At present, Michael’s description will include items shipped within a single na-

tion, so Michael clicks the "Add filter" button and types customer nation name is

not supplier nation name into the filter description field. He also needs to con-

sider only lineitems that were shipped in 1995, so he adds another filter with the

description ship date must be in 1995. Finally, he realizes he needs to check that

the lineitems whose revenue he is summing were shipped via truck. He recalls that

there is a column that would say "TRUCK" if the shipping method was truck-based

delivery, but he isn’t sure what table that row is in. It would be time-consuming

for him to check. Michael knows that he can add his new filter condition as a stan-

dalone filter, like his date filter, or as part of one of the column descriptions. In

this case, he adds a description of that filter to his description of the revenue col-

umn so that it now reads total lineitem extendedprice * (1-discount) for

lineitems with shipping method "TRUCK".

19

Figure 2-2: The starting screen of nalini with a sample database matching the TPC-
H specifications loaded upon startup. A preview of each table in the database is
visible in the Database Preview section. The Query Generation panel consists of
a place to input column and filter descriptions, as well as a section for the generated
SQL to appear. From there, the query can be executed to create or edit any table
in the database. The Table Relationships panel allows the user to view and edit
keys that are shared amongst tables (and thus can be used for joins).

20

SELECT nation2.n_name AS customer_nation,
nation1.n_name AS supplier_nation,
SUM((l_extendedprice * (1 - l_discount))) AS revenue

FROM supplier
JOIN nation nation1 ON s_nationkey = nation1.n_nationkey
JOIN lineitem ON s_suppkey = l_suppkey
JOIN orders ON l_orderkey = o_orderkey
JOIN customer ON o_custkey = c_custkey
JOIN nation nation2 ON c_nationkey = nation2.n_nationkey

WHERE l_shipmode = ’TRUCK’
AND (l_shipdate >= date ’1995-1-1’)
AND (l_shipdate <= date ’1995-12-31’)
AND NOT ((nation2.n_name = nation1.n_name))

GROUP BY customer_nation,
supplier_nation

Figure 2-3: Demonstration: Generated Query

Michael clicks the "Generate SQL!" button under his specifications, and eagerly

awaits his completed query. However, nalini does not generate a query - instead,

under the text field where he specified the date filter, it reads Unable to resolve:

"ship date must be in 1995". Michael edits his filter description to be ship date on

or after 1/1/1995 and ship date before 1/1/1996 and clicks "Generate SQL!"

once again.

This time, his completed query, detailed in Figure 2-3, appears in the UI. Michael

examines the generated query.

The SELECT clause has three columns as expected; the customer_nation and

supplier_nation columns are selected as the n_name columns from two different

instantiations of the nation table, nation1 and nation2. These two columns also

appear in the GROUP BY clause, as the revenue is an aggregate over these two values.

The revenue column is calculated using the correct arithmetic expression based on

values from the lineitem table.

The FROM clause includes many joins; although perhaps not written the way an

experience data scientist would have written it, it provides the correct outcome. The

clause starts with the supplier table, which is joined with both the nation table to

21

get the supplier nation and with the lineitem table to get all lineitems for all sales

that were shipped from a supplier in the supplier nation. The revenue is calculated

based on these lineitems after the filters have been applied. The lineitem table is

then joined with the order table to get the corresponding order, which is joined with

the customer table, which is then joined with the nation table to finally get the

customer nation for each lineitem.

The WHERE clause contains a filter stating that l_shipmode must be equal to TRUCK

- after a quick inspection of the lineitem table, Michael verifies that this was, in fact,

the column he was looking for. There are two filters to ensure that the date is in

1995, as well as a final filter to ensure that the customer and supplier nations do not

have the same name. Note that in practice, the final filter could have been replaced

with an equivalent but more efficient check that the two keys are different.

After quickly verifying the SQL, Michael types itnl_truck_shipping into the

"table name" field and clicks the "Execute Query" to create a new table in the

database based on this query. He scrolls to the bottom of the web page to view his

new table.

2.2 Overview

Now that we’ve seen an example of nalini in action, we’ll describe our novel tech-

nique and implementation. At a high level, the system consists of two components:

the interactive web interface, which the user interacts with, and the engine, which is

implemented as an API.

The web interface is the bridge between the user and the database. Most of

the supported database interactions are simple functions that rely only on basic

SQL query execution. Once the web interface is initially configured to connect to

a database, the user can use the interface to view previews of all database tables. If

the table was created using a SQL SELECT query, the user can edit the backing SQL

and re-execute the query. The user may also delete tables and create new tables by

writing new SQL queries from scratch.

22

The web interface also allows the user to interact with the nalini engine. The

engine API takes as input a list of one or more column specifications and a list of

zero or more filter specifications. Every column specification consists of an optional

column name which, if specified, must consist only of alphanumeric characters and

underscores, and required column description, which can be any plaintext string.

Every filter specification contains only a plaintext string description. Note that in

order to use the query generation engine, the user is expected to view and modify

information in the "Table Relationships" section of the table to keep the database

schema up-to-date as tables are generated and modified.

The engine API generates a SQL query from the input through a series of stages

detailed in Section 2.3. If the engine is unable to synthesize a query, the web interface

surfaces the uninterpretable phrases to the user. Otherwise, the web interface displays

the complete query, which the user can make edits to (if desired) and execute. The

remainder of the chapter explains the algorithms and implementation of nalini in

further detail.

2.3 Query Synthesis Engine

The query synthesis engine consists of several independent components which work

together to generate a complete SQL query. In this section, we explain the high-level

steps of the process and then go into detail about each of the constituent functions

using our motivating example for guidance. The algorithm for the general synthesis

approach can be found in Algorithm 1.

The input to the query synthesis engine consists of a set of columns 𝐶, each of

which consists of a column description and optional column name, a set of filters 𝐹 ,

each of which consists of a filter description, a type environment Γ, which contains

information about the database and its schema, and a confidence threshold 𝛾. The

confidence threshold 𝛾 is used as a cut-off for each natural language hint to determine

if it can be resolved to a database reference, or if the user needs to provide additional

or more clear information.

23

Algorithm 1 General synthesis methodology
1: procedure SQLSynthesize(𝐶,𝐹 ,Γ, 𝛾)
2: Input: natural language column descriptions 𝐶, natural language filter de-

scriptions 𝐹 , type environment Γ, confidence threshold 𝛾
3: Output: the top-ranked synthesized SQL query

◁ Sketch Generation
4: Column_Sketches := SemanticParse(𝐶)
5: Filter_Sketches := SemanticParse(𝐹)

◁ Dependency Resolution
6: Resolved_Hints, Uninterpretable_Hints :=

ResolveDependencies(Column_Sketches, Filter_Sketches, Γ, 𝛾)
◁ Error Propagation

7: if Length(Uninterpretable_Hints) > 0 then
8: return Uninterpretable_Hints

◁ Table Graph Synthesis
9: Table_Graph, Dependency_Lookup :=

SynthesizeJoins(Column_Sketches, Filter_Sketches, Resolved_Hints, Γ)
◁ SQL Rendering

10: SQL_Query :=
RenderSQL(Column_Sketches, Filter_Sketches, Table_Graph, Depen-

dency_Lookup)
11: return SQL_Query

24

The first step of the algorithm is to run the natural language descriptions through

nalini’s semantic parser, which we detail further in Section 2.3.1. The parser, which

we built from scratch using the SEMPRE framework [4] uses standard semantic

parsing techniques to translate English descriptions into sketches of SQL columns and

filters respectively. The column and filter sketches specify the shapes of the output

SQL fragments (e.g. as a tree of operations) rather than specifying a complete SQL

fragment. Where the eventual query will contain references to database columns

or values, the parsed sketch will contain a hole annotated with the corresponding

fragment of the English description. As a result, the semantic parser can operate

without any knowledge of the database schema or values. The database-agnostic

nature of the semantic parser is extremely valuable, as it means that the semantic

parser does not have to be fine-tuned or retrained every time the user wishes to query

a new database.

Once all column and filter descriptions have been parsed into column and filter

sketches, respectively, our technique employs program synthesis to fill in all of the

holes with proper references to database columns (see Section 2.3.2). Our program

synthesis does not make use of types. For each hole, in order to choose the best-fitting

dependency completion out of the many possible completions, our approach defines

confidence scores based on the schema of the database. Given that nalini is intended

to be a simple, lightweight proof of concept, the confidence scores do not make any

use of the actual contents of the database tables.

In the case that no likely dependency match was found for one or more holes,

the nalini engine will return a response at this point in the process. The response

contains the original input as well as annotations indicating which fragments of the

descriptions could not be interpreted as references to database columns. Upon re-

ceiving a response with this structure, the web interface will display it to the user so

that the user can modify their inputs and try to generate their query again.

If all holes can be interpreted as database references, the engine will then move

on to the next step, which is to synthesize the tree representing the FROM and JOIN

clauses of the SQL query. We detail this algorithm in Section 2.3.3. At a high level,

25

the tree of table relationships is synthesized by running each dependency through a

depth-first search on schema edges and then running a simple algorithm to combine

the dependencies from all columns and filters into one tree.

The last step of the synthesis process is to actually render the SQL query from

all of the synthesized data structures, which we detail in Section 2.3.4. This is a

deterministic process where the syntax of the SQL dialect actually comes into play.

The engine then returns the completed query.

There is one notable caveat we have not yet mentioned: the semantic parser

framework we used to build nalini’s parser relies on an unconfigurable tokenizer

that converts all input phrases to lowercase and splits on some tokens, even if the

value is enclosed by quotation marks. For example, the phrase "Customer#0001" will

be tokenized as ["customer", "#", "0001"] rather than remaining together as a

single string. To bypass this limitation, we include a pre-processing step before calling

the semantic parser to save the original input queries, and convert exact quotes back

to their original forms before displaying them back to the user as uninterpretable

hints or in a rendered SQL query.

2.3.1 Semantic Parsing

Inspired by the technique used to build SQLizer [27], nalini relies on a custom

semantic parser to map natural English phrases to sketches of SQL query fragments.

This strategy enables us to generate high-quality intermediate representations of the

user’s desired output columns and filters which can be built with only knowledge of

the English language. In other words, generation of the intermediate representation

does not require any database-specific schema information or training data.

The SQL column and filter sketches generated by our semantic parser, like all out-

puts of semantic parsers, are logical forms, or unambiguous statements in a domain-

specific language (DSL) which follow a context-free grammar.

In order to map a sequence of tokens to a logical form, a semantic parser must

have a context-free grammar and a designated root non-terminal symbol. The parser

specifies a list of rules that can be used to derive non-terminals from the input token

26

sequence, and can define any number of intermediate non-terminal symbols to use as

part of those rules. The process of tokenization poses its own challenges; for instance,

a multi-word phrase such as "January 1st 1995" should be recognized as a single

token representing a date. To handle named entity recognition during tokenization,

as well as enable more sophisticated rule-generation based on part-of-speech tags and

other attributes, most semantic parsers make use of a linguistic processing module.

The other major objective of a semantic parser is to distinguish between the many

possible logical forms that can be derived from a single natural language utterance.

Typically, this is done via statistical methods that assign a score, or probability, to

each candidate logical form based on a set of (utterance, logical form) pairs used as

training examples. The parser either returns the top value by likelihood or a ranked

list of possible candidates.

We implemented nalini’s semantic parser using an existing toolkit for build-

ing semantic parsers called Sempre[4], which was also used to build SQLizer [27].

We drew on Stanford CoreNLP library [17] for named entity recognition. Our im-

plementation contains 113 rules, each of which is quite simple; we did not leverage

part-of-speech tagging or any of the other pre-trained CoreNLP models while writing

rules.

To assign likelihoods to each possible derivation, the Sempre framework maps

each derivation to a to a feature vector 𝜃 of approximately 40 dimensions, where

each feature is an indication of how well the derivation applies to the utterance.

For example, one feature corresponds to the number of grammar rules used in the

derivation. Another set of features is used to indicate how many skipped words with

each part of speech were not used in the derivation (skipping a transitive verb like

"is" may not be problematic, but failing to include a noun like "lineitem" may lead to

a less accurate derivation). There are also features that encode the relative simplicity

of the denotation.

For a given utterance, each possible derivation is given a score proportional to

their likelihood by taking the dot product of the feature vector 𝜃 and a fixed weight

vector 𝑤. In the Sempre framework, the weight vector 𝑤 is calculated by maximiz-

27

columnSketch := expr (, source)? (, filterSet)?
filterSketch := filterSet (, source)?

source := ??h
filterSet := expr (, expr)*

expr := value | unaryOp, expr | binaryOp, expr, expr
value := number | string | date | ?h

columnValue := ColumnName (, TableName)?
date := day | month | year

unaryOp := NOT | aggOp
aggOp := SUM | COUNT | AVG | MIN | MAX

binaryOp := + | − | × | ÷ | = | > | ≥ | ≤ | < | AND | OR

Figure 2-4: Grammar of logical forms produced by nalini’s semantic parser. Here,
h denotes a hint; ??h denotes to a table hint while ?h denotes a column hint.

ing an objective function which rewards correct output based on a set of (utterance,

derivation) training examples (𝑥𝑖, 𝑦𝑖). Our implementation uses a small set of only

fifteen hand-generated training examples to provide examples of order of operations

in arithmetic, preferences for parsing phrases as dates and quotes, and usage of over-

loaded/ambiguous keywords such as "of" and "over."

In nalini’s semantic parser, input sequences are English natural language phrases

corresponding to either column or filter descriptions. The logical forms correspond

to SQL column and filter sketches, respectively, where the structure of arithmetic,

boolean, and aggregate operators is defined and holes are left to represent references

to columns in the database.

The grammar defining the logical form representations is given in Figure 2-4. In

the grammar of our DSL, the rule for 𝑐𝑜𝑙𝑢𝑚𝑛𝑆𝑘𝑒𝑡𝑐ℎ defines logical forms mapped

from column descriptions, while the rule for 𝑓𝑖𝑙𝑡𝑒𝑟𝑆𝑘𝑒𝑡𝑐ℎ defines logical forms mapped

from filter descriptions.

Recall that in our running example, the user provides three column descriptions.

The first two, customer nation name and supplier nation name are parsed as:

28

(columnSketch(expr(value(colHint[customer nation name]))))

and

(columnSketch(expr(value(colHint[customer nation name]))))

respectively.

The third column description, total lineitem extendedprice * (1-discount)

for lineitems with shipping method "TRUCK", is parsed as a column sketch with

both a 𝑠𝑜𝑢𝑟𝑐𝑒 and a 𝑓𝑖𝑙𝑡𝑒𝑟𝑆𝑒𝑡 as follows:

(columnSketch

(expr(SUM(*(colHint[lineitem extendedprice])(−(1)(colHint[discount])))))

(source(tableHint[lineitems])

(filterSet[(=(colHint[shipping method])("TRUCK"))])

)

Note that if the phrase with shipping method "TRUCK" had been replaced with

if type of shipping is "TRUCK" or that have shipment vehicle "TRUCK", we

would have ended up with the same exact logical form with the exception of the hint

text (which would be type of shipping or shipment vehicle, respectively).

When parsing a filter, we define the root non-terminal to be 𝑓𝑖𝑙𝑡𝑒𝑟𝑆𝑘𝑒𝑡𝑐ℎ, so for

example customer nation name is not supplier nation name parses to:

filterSketch((filterSet[

(=(colHint[customer nation name])(colHint[supplier nation name]))

]))

29

and ship date on or after 1/1/1995 and ship date before 1/1/1996 parses to:

(filterSketch(filterSet[

(≥(colHint[ship date])(date(1)(1)(1995))),

(<(colHint[ship date])(date(1)(1)(1996)))

]))

Notice that both a column description and filter description can always parse to a

single hint string, the parser will always return a valid derivation, even if it is not

particularly meaningful.

2.3.2 Hint Resolution

The next stage of the query generation process is sketch completion, or the process

of filling in the holes left in all of the column and filter sketches. Given the column

and filter sketches and the type environment Γ, which encodes the database schema,

we fill each hole with a with the most likely reference to a column in our database

table. We define a reference to a column as having three parts: 𝑐, the column name,

𝑡, the table the column can be found in, and optionally, 𝑗, another table from which

we should arrive at 𝑡 via joins. In a valid column reference, 𝑐 must be the name of a

column in the schema, 𝑡 must be the name of a table in the schema, 𝑗 is either the

name of a table in the schema or None. Additionally, 𝑐 must be a column of table 𝑡,

and 𝑗 cannot be equal to 𝑡. Note that our approach is based on the assumption that

for any two tables 𝑥 and 𝑦 in our database, there exists at least one way to join 𝑥

to 𝑦 using equi-joins. We define an equi-join to be a join where every join condition

must consist of one or more equality checks. Because of our general assumption, we

do not have to impose an additional constraint that tables 𝑡 and 𝑗 must be connected

via equi-joins.

For example, the column reference (n_name, nation, customer) refers to the

30

n_name column of the nation table, as do the column references (n_name, nation,

supplier) and (n_name, nation, None)—the difference is that in the first two

column references, the nation table is interpreted as a table joined to the customer

and supplier tables respectively, and in the third column reference, there is no such

constraint. In Section 2.3.3, we detail how these column references are used to put

together a complete representation of a SQL query. In this section, we explain our

algorithm and heuristics for finding the most probable column reference for each hole

in the column and filter sketches.

Overall Algorithm

At a high level, for each sketch, we combine knowledge of the database schema,

namely the names of the tables and their columns, with the natural language hints

provided in the input, to generate a confidence score for each valid column reference.

Algorithm 3 details this procedure for filling holes.

Recall that our input is separated into a list of column sketches and a list of filter

sketches. We iterate through each hole independently, whether it is within a column

expression, column-associated filter, or standalone filter, and use both the column

hint and the optional source hint to find the best column by calling the TopCol

function. For each hole, the TopCol function returns the most likely column as well

as a score 𝑝 ∈ [0, 1]; if 𝑝 < 𝛾, the column reference is not considered sufficiently likely,

and the hint is marked as uninterpretable. After attempting to resolve the holes

in all sketches generated by the user’s natural language inputs, this phase of query

synthesis either returns the list of uninterpretable hints, which will halt execution of

the synthesis engine, or will pass the resolved hints to the next phase.

Top Column

The heuristic used to determine the most likely column reference and its score takes

three inputs: the column hint (required) col_hint, the source hint (optional) source_hint,

and the type environment Γ. Additionally, it makes use of two manually-tuned con-

stants 𝛼 and 𝛽 which are used to weight the relative important of matching the table

31

Algorithm 2 Hint resolution
1: procedure ResolveDependencies(𝑐𝑠, 𝑓𝑠, Γ, 𝛾)
2: Input: column sketches 𝑐𝑠, filter sketches 𝑓𝑠, type environment Γ, confidence

threshold 𝛾
3: Output: 𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑑_𝐻𝑖𝑛𝑡𝑠, 𝑈𝑛𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑙𝑒_𝐻𝑖𝑛𝑡𝑠
4: resolved_hints = {}
5: uninterpretable_hints = {}
6: function UpdateHints(hole_ptr, top_col)
7: if top_col.Score ≥ 𝛾 then
8: resolved_hints[hole_ptr] = top_col
9: else

10: uninterpretable_hints[hole_ptr] = top_col
11: for column_sketch in cs do
12: col_src = cs.Source if cs.Source else None
13: for (hole_ptr, hint_str) in GetHoles(column_sketch) do
14: UpdateHints(hole_ptr, TopCol(hint_str, col_src, Γ))
15: for filter_sketch in cs.Filter do
16: for (hole_ptr, hint_str) in GetHoles(filter_sketch) do
17: UpdateHints(hole_ptr, TopCol(hint_str, col_src, Γ))
18: for filter_sketch in fs do
19: for (hole_ptr, hint_str) in GetHoles(filter_sketch) do
20: fil_src = fs.Source if fs.Source else None
21: UpdateHints(hole_ptr, TopCol(hint_str, fil_src, Γ))
22: return resolved_hints, uninterpretable_hints

32

hint and the join hint respectively.

This algorithm is enumerative in nature. First, the database schema is used to

generate a complete list of all possible column references 𝐴𝑛 of the form (𝑗, 𝑡, 𝑐) and

(None, 𝑡, 𝑐); this list must only be generated once per query. Then, using a heuristic,

a score is calculated for each possibility, and the column reference with the highest

score is returned along with its score.

The heuristic is simple: the natural language hints are used to enumerate all likely

interpretations as column references 𝐻𝑖, and then a similarity function GetSimilar-

ity, based on word embedding distance, is used to assign similarity scores between

each interpretation 𝐻𝑚 and each column reference 𝐴𝑛. The score of the column

reference 𝐴𝑛 is equal to the maximum score GetSimilarity(𝐻𝑚, 𝐴𝑛) over all 𝑛.

To enumerate the likely interpretations from a column hint, the hint is separated

into tokens and consecutive tokens are interpreted as columns, tables, and join tables

while preserving the hint order.

For example, discount, which only has one token, can only be interpreted as

(None, None, "discount"). The column hint lineitem discount can be interpreted

as (None, None, "lineitem discount") and as (None, "lineitem", "discount"). In this

case, the second interpretation is the one that should receive the best match, since

"discount" is a column in the lineitem table. Meanwhile, for a column hint like

extended price, which can be interpreted as (None, None, "extended price") and

(None, "extended", "price"), we would expect the first interpretation to receive the

best match since "l_extendedprice" is a column of the lineitem table.

The number of possible interpretations grows quickly with the number of tokens

in the column hint. For example, the column hint customer nation name can be

interpreted as any of: (None, None, "customer nation name"), (None, "customer",

"nation name"), (None, "customer nation", "name"), ("customer", None, "nation

name"), ("customer nation", None, "name"), ("customer", "nation", "name"). In

this case, the final interpretation, representing a column matching "name" in a table

matching "nation" joined from a table matching "column" is the interpretation most

likely to match the natural language intention.

33

Additionally, if a source hint is provided as input to the function, additional pos-

sible interpretations are added to our list 𝐻. For example, the column hint lineitem

discount already leads to three possible interpretations, but with the source hint

orders, we add ("orders", None, "lineitem discount"), (None, "orders", "lineitem

discount"), and ("orders", "lineitem", "discount") to 𝐻 as well.

To calculate the similarity between the tuple 𝐻𝑚 and 𝐴𝑛, we calculate similarities

between the interpreted and actual values on a scale of 0 to 1 for the column, table,

and join respectively. The similarity between two strings is calculated as the cosine

difference of the vector embeddings of both strings in the OpenAI ada engine. The

ada engine is the simplest of four large language models released by OpenAI under

the name GPT-3, with 300M parameters. We are only leveraging the underlying

word embeddings generated in training, rather than leveraging its full capabilities as

a language generation engine. We chose ada over other similar language models which

also handle multi-word phrases, such as BERT primarily because its API was free and

convenient to use.

The heuristic to determine the similarity score has different formulas based on

which tuple elements are present in the column reference 𝐴𝑛 and the hint interpre-

tation 𝐻𝑚; this is to ensure that all scores are normalized based on what is included

and weighed appropriately.

We define 𝑐_𝑠𝑖𝑚, 𝑡_𝑠𝑖𝑚, and 𝑗_𝑠𝑖𝑚 as the ada-based similarity between the

column actual name and interpretation, the table actual name and interpretation,

and the actual join table name and interpretation.

Defining 𝛼 and 𝛽 such that 1 > 𝛼 > 𝛽 > 0, the score for each (𝐻𝑚, 𝐴𝑛) pair is

given by the Table 2.1:

In nalini’s implementation, 𝛼 = 0.45 and 𝛽 = 0.3; these values were hand-tuned.

2.3.3 Table Relationship Discovery

Once all of the holes in column and filter sketches have been filled with the best

candidate for column resolution, the query generation engine synthesizes a tree rep-

resenting the sources of those columns, and their relationship to each other. This

34

GetSimilarity(𝐻𝑚, 𝐴𝑛)
𝐴𝑛 has 𝑡𝑎𝑏𝑙𝑒, 𝑐𝑜𝑙𝑢𝑚𝑛 𝐴𝑛 has 𝑗𝑜𝑖𝑛, 𝑡𝑎𝑏𝑙𝑒, 𝑐𝑜𝑙𝑢𝑚𝑛

𝐻𝑚 has 𝑐𝑜𝑙𝑢𝑚𝑛
only

c_sim (1− 𝛽)*c_sim

𝐻𝑚 has 𝑡𝑎𝑏𝑙𝑒,
𝑐𝑜𝑙𝑢𝑚𝑛

𝛼*t_sim + (1− 𝛼)*c_sim (1− 𝛽)𝛼*t_sim + (1− 𝛽)(1−
𝛼)*c_sim

𝐻𝑚 has 𝑗𝑜𝑖𝑛,
𝑡𝑎𝑏𝑙𝑒, 𝑐𝑜𝑙𝑢𝑚𝑛

(1− 𝛽)𝛼*t_sim + (1− 𝛽)(1−
𝛼)*c_sim

𝛽*j_sim + (1− 𝛽)𝛼*t_sim +
(1− 𝛽)(1− 𝛼)*c_sim

𝐻𝑚 has 𝑗𝑜𝑖𝑛,
𝑐𝑜𝑙𝑢𝑚𝑛

(1− 𝛽)(1− 𝛼)*c_sim 𝛽*j_sim + (1− 𝛽)𝛼*t_sim +
(1− 𝛽)(1− 𝛼)*c_sim

Table 2.1: Table showing the normalized and null-corrected formulas for calculating
weighted similarities between a hint interpretation 𝐻𝑚 and a valid column reference
𝐴𝑛.

subroutine takes as input the column sketches 𝑐𝑠, filter sketches 𝑓𝑠, resolved hints

𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑_ℎ𝑖𝑛𝑡𝑠, and the type environment Γ and uses a simple shortest path algo-

rithm repeatedly to build up a best guess of the table graph.

Based on the database schema, the query engine first creates a graph represen-

tation of all of the tables in the database. Each table is a node. Edges are created

when a column in one table has values that can be equi-joined to values in a column

of a different table. For instance, in the TPC-H database, there are columns named

𝑝_𝑝𝑎𝑟𝑡𝑘𝑒𝑦, 𝑝𝑠_𝑝𝑎𝑟𝑡𝑘𝑒𝑦, and 𝑙_𝑝𝑎𝑟𝑡𝑘𝑒𝑦 in the part, partsupp, and supp tables re-

spectively, all of which contain values that are used as primary keys for parts, so there

are edges generated between each pair from the group of three tables.

Then, the 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑_ℎ𝑖𝑛𝑡𝑠 dictionary is traversed to determine which root node

is most common among all of the column and filter dependencies. The root node of

a column reference is the join table if there is a join table; otherwise, it is the table

field. If there is a tie for the most common root node, one of the most common nodes

is selected at random. Since all joins are inner joins, the starting node of the join tree

can actually be an instance of any of the tables used in the final join tree–we use the

maximum rule simply because it makes intuitive sense to start from the table which

is referenced the most by the user. In our running example, we had nine holes, five

of which were filled with references to the lineitem table, so we instantiate a copy

35

of the lineitem table as our root node.

Then, we iterate through each of the resolved hints and generate paths to the

root. Going back to our original example, lets say we have matched the hint customer

nation name to the column reference (customer, nation, n_name). Since this column

reference has a join hint, our first step is to run a DFS to determine the shortest path

between customer and nation; this is a direct link between the customer and nation

tables joined on 𝑐_𝑛𝑎𝑡𝑖𝑜𝑛𝑘𝑒𝑦 = 𝑛_𝑛𝑎𝑡𝑖𝑜𝑛𝑘𝑒𝑦. Now that we know we want the

𝑛_𝑛𝑎𝑚𝑒 column to come from a nation table joined to a customer table, we need to

synthesize the most likely (simplest) connection between our root lineitem table and

the customer table. Presumably, this is the customer of the lineitem. We call DFS

once again and determine that the shortest path joins from the lineitem table to the

orders table and from the orders table to the customer table. We instantiate all

three of the tables needed in this path (orders, customer, and nation), and update

the dependency lookup table to contain a pointer to the new nation table.

We repeat the same process for the next column reference, (supplier, nation,

name), leading to building up a new branch from lineitem to supplier and then to

nation. Dependencies based on the root, such as (None, lineitem, l_shipmode)

are pointed straight to the root. Note that when we have to join paths for the same

exact phrases ("customer nation name" and "supplier nation name") again as part

of the filters, we will create duplicate branches attached to the root. However, we

actually want the filter to apply on the same tables that the nation names are coming

from, so we introduce a final step of graph consolidation. In this step, redundanct

branches are merged, and their corresponding dependency lookups are updated. Note

that this will merge multiple copies of the same table as long as they have the same

parent, but that the two instances of the nation table representing the customer and

supplier nations will stay since they come from different parent nodes.

2.3.4 SQL Rendering

In the final step of the query generation process, the column and filter sketches, the

table graph, and the dependency lookup dictionary are used to put together a single

36

Algorithm 3 Table Graph Creation
1: procedure SynthesizeJoins(𝑐𝑠, 𝑓𝑠, 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑_ℎ𝑖𝑛𝑡𝑠, Γ)
2: Input: column sketches 𝑐𝑠, filter sketches 𝑓𝑠, resolved hints 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑_ℎ𝑖𝑛𝑡𝑠,

type environment Γ
3: Output: 𝑡𝑎𝑏𝑙𝑒_𝑔𝑟𝑎𝑝ℎ, 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑙𝑜𝑜𝑘𝑢𝑝
4: edges = GetGraphFromSchema(Γ)
5: root = DetermineRootNode(𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑_ℎ𝑖𝑛𝑡𝑠)
6: table_graph = root
7: for (column, table, join) in resolved_hints do
8: branch_path = []
9: if join then

10: branch_path.append(DFS(join, table, edges))
11: branch_path.append(DFS(table, root, edges))[1:]
12: new_table_ptr = AttachBranch(table_graph, branch_path, root)
13: UpdateDepLookup(new_table_ptr, column)
14: consolidated_graph, consolidated_lookup = Consolidate(table_graph,

dep_lookup)
15: return consolidated_graph, consolidated_lookup

data structure representing an entire query. This data structure is then expressed as

a query in SQL. While nalini is currently built to write PostgreSQL queries, the

final step of query rendering can easily be rewritten to support any dialect of SQL.

Components of the SQL query

The SELECT clause is built by filling in the column sketches with the dependencies

in the lookup dictionary. At this stage, the AS keyword will be used to add the

user-inputted column aliases to the SELECT statements.

The FROM clause, along with the JOIN statements, are generated directly from the

table graph.

The filter sketches, with dependencies filled in, comprise the optional WHERE and

HAVING clauses; which clause it belongs in is determined by the presence or absence

of an aggregate function.

Finally, the GROUP BY clause is synthesized by checking which column expressions

contain aggregate functions. If one or more synthesized column expressions contains

an aggregate function, the remaining columns are added to the GROUP BY clause

37

(unless all columns have an aggregate, in which case the GROUP BY clause is not

rendered at all).

2.4 Scope

The implementation of our novel technique supports standard arithmetic operations,

boolean operations, and aggregate functions, enabling nalini to generate a relatively

wide variety of SQL queries. However, there are a few key assumptions made in order

to bound the technical scope of this work.

First of all, we assume all joins are inner joins, and furthermore, all joins are

equi-joins, as defined in 2.3.3. Also, the only supported operations on date and string

types are comparisons.

In general, rather than supporting a wide variety of SQL syntax, we require the

user to make use of simpler syntax and functions in order to replicate certain behavior.

For example, nalini cannot directly generate nested queries, but a user can generate

one or more intermediate tables to incrementally build toward their target table.

Complex logic such as CASE and EXISTS statements are not directly supported, but

filters that would typically be found in WHERE and HAVING clauses can be combined

with multi-step logic to reach the same outcomes. We give an example of this chaining

approach in ??.

The grammar specifying the queries that nalini can render is formalized in Figure

2-5. Note that nalini is designed to work in cases where columns in different tables

in the same database have identical names. For this reason, the grammar allows for

the table name to be included as part of a column value. Although there is no formal

constraint listed, database systems typically necessitate that table names are unique

within a database.

38

sqlSelectQuery := sqlColumns, sqlFilters, sqlJoins

sqlJoins := TableName (, (TableName, joinCondition))*
joinCondition := columnValue = columnValue

sqlColumns := sqlColumn (, sqlColumn)*
sqlColumn := expr (, ColumnAlias)?

sqlFilters := sqlFilter (, sqlFilter)*
sqlFilter := expr

expr := value | unaryOp, expr | binaryOp, expr, expr

value := number | string | date | columnValue
columnValue := ColumnName (, TableName)?

date := day | month | year

unaryOp := NOT | aggOp
aggOp := SUM | COUNT | AVG | MIN | MAX

binaryOp := + | − | × | ÷ | = | > | ≥ | ≤ | < | AND | OR

Figure 2-5: Grammar of modified relational algebra produced by nalini query engine;
each expression in this grammar can be directly rendered using SQL syntax.

39

2.5 Implementation

2.5.1 Web Interface

We implemented nalini primarily in Python and used Django, a high-level Python

web framework, to write the interactive web interface. We configured nalini to use

a local Postgres database and used Django’s communication module to read to and

write from the database. Since nalini runs locally, we used ngrok to create a secure

tunnel to localhost for external access.

2.5.2 Semantic Parser

We wrote our custom semantic parser as an extension to the SEMPRE semantic pars-

ing framework: grammars and training examples are written in SEMPRE’s domain-

specific language, classes are written in Java, and scripts are executed via Ruby. In

order to enable the synthesis engine to communicate with the semantic parser, we

wrote custom shell scripts.

40

Chapter 3

Related Work

The work presented in this thesis is related to a broad range of prior work attributed to

the natural language processing, programming languages, and database communities.

In this chapter, we compare the technique implemented in nalini with some related

approaches.

3.1 nalini vs SQLizer

Because our work has a lot in common with SQLizer [27], we start this section by

contextualizing the similarities and differences between the two systems. The general

approaches are relatively similar. The first step of both nalini and SQLizer’s query

generation processes is to parse the natural language input using a database-agnostic

semantic parser to get a query sketch. In a second step, holes are filled in using

information about the database.

One key difference is the problem space that the two tools address. Whereas

SQLizer makes the assumption that every query description is one sentence long,

nalini is designed to handle more complex queries by allowing the user to input

individual descriptions for each column and filter necessary in the query’s output.

SQLizer is intended to be fully automatic, while nalini makes use of an interactive

interface, allowing humans to tweak their inputs until arriving at their desired queries.

Both tools use the Sempre [4] semantic parsing framework to build the semantic

41

parser. Since the code for SQLizer is not available, we note that the semantic

parser for nalini was build from scratch and could not build off of the work done

in SQLizer. The SQLizer parser was also much more sophisticated, making use of

several pre-processing steps and part-of-speech tagging.

The two tools also differ significantly in how they fill holes in the sketches. Because

SQLizer supports a much richer SQL vocabulary, it relies on a more sophisticated

synthesis algorithm. Not only does it make use of the actual database contents to

assign confidence scores to various possible assignments, its algorithm also includes

a fault-localization step. In this step, if a hole cannot be filled with high enough

confidence, it is replaced with another fragment of a SQL query that evaluates to

the same type. The entire synthesis algorithm is type-driven. In contrast, nalini is

given much more information about the structure of the eventual query, since users

explicitly specify their desired output columns and tables.

3.2 Interactive Interfaces for Query Generation

The idea of using an interactive interface for query generation is not unique to nalini.

A prominent SQL query generation system, NaLIR [16], used an interactive interface

to supplement natural-language driven query synthesis. NaLIR is also based on the

fundamental assumption that the natural language query description provided by the

user consists of a single sentence. It uses a dependency parser to translate the user’s

statement into a query tree, and then asks the user to refine the visually-rendered

generated parse tree. This study showed that interaction with the user can be quite

useful, especially in the context of a refinement loop.

In addition to natural language-based query generation, another field of study

is query generation using programming-by-example (PBE). The programming-by-

example paradigm asks the user to give the synthesis engine one or more example

input/output pairs. In the context of database query generation, this lends itself

naturally to use of an interactive interface. Both PATSQL [24] and SCYTHE [25],

which are recent PBE-based SQL-query generators, make use of a refinement loop

42

where the user can tweak their input and the desired query as much as possible

before exiting it. The demo for SCYTHE is not available. The user interface for

nalini, which has a database preview on the left and a query generation panel on

the right, is inspired by the web interface used in the PATSQL demo, although the

query generation panel looks notably different. Our implementation for nalini also

borrows from PATSQL the idea that all constants used in the final query must be

supplied by the user. We chose not to explore programming-by-example in this work

because it can be quite impractical for users to specify a concise, yet fully descriptive

example when dealing with arithmetic operations and complex logic.

3.3 Sketch-Based Synthesis

One of the most central ideas in our technique is Sketch-based synthesis, which was

first explored in the Sketch system [22, 23, 21]. In the Sketch system, a sketch-

based approach is defined by its two steps: first, the outline of a program is synthesized

with holes in place of constants, and then the holes are instantiated with the appropri-

ate constants. The concept of programming by sketching has evolved to include other

types of holes; for our context, we use columns and table names. Our particular use of

sketch-based synthesis was inspired by SQLizer [27], which generates query sketches

from natural language, fills in the holes using type-driven synthesis, and then uses

a fault-localization algorithm to refine the query until reaching a certain confidence

threshold. Other tools for database query generation also rely a sketching approach,

including NaLIR [16], which uses natural language along with an interactive interface,

and PATSQL [24] and SCYTHE [25], which are programming-by-example interfaces.

3.4 Large Language Models

There have been many deep-learning [3, 12, 28, 29, 6, 13] and rule-based [16, 27]

attempts to develop text to SQL tools. All of the recent state-of-the-art methods face

the fundamental problem of understanding word similarity, and take advantage of

43

pre-trained embedding vectors of tokens to quantify it [3, 12, 28, 29, 6, 13, 16, 27, 15].

One common set of pre-trained embedding vectors is Word2Vec [19], which is used

by similar systems such as SQLizer and NaLIR. One drawback of Word2Vec is

that its embeddings are not context-aware; for example, the word "running" in the

phrase "running a mile" has the same embedding as the same word in the phrase

"running for president." In recent years, there have been advances in context-aware

word embeddings, and large language models such as ELMo [20], BERT [10] and

OpenAI’s GPT-3 [5] have been made available to the public. Our work uses the

smallest possible version of GPT-3’s word embeddings, simply because it is the most

recently released language model (language is always evolving) and because it is easily

accessible via an API.

3.5 Semantic Parsing

The concept of semantic parsing has been used in a wide variety of natural-language

and programming-language related research in the past. In general, semantic parsing

uses a formal, often domain-specific, language to generate logical forms which best

represent input sentences. Much of the work done using both a neural semantic

parser [12] and the Sempre framework [4] has made use of semantic parsing to query

databases and knowledge engines. However, because these approaches do not make

use of sketch-based synthesis, and generate entire queries directly through semantic

parsing, these approaches require that the parser is trained on the specific knowledge

engine. We believe that our approach, like the approach taken by SQLizer [27] is

much more robust and extensible because the semantic parser only needs to be trained

on the English language, rather than on a specific database or knowledge graph.

3.6 Wolfram

Another reference worth mentioning is the WolframAlpha Computational Intelligence

Engine, which uses the Wolfram Natural Language Understanding System (a custom

44

semantic parser) [2] along with an interactive user interface in order to facilitate

queries against a computational and knowledge engine. Although we did not use any

of their contributions directly, the seamless interface for users to be able to interact

using a combination of mathematical operations and natural English phrases, without

any instructions at all, was certainly an inspiration while designing nalini.

45

46

Chapter 4

Evaluation: First-Use Study

To evaluate nalini, we conducted a first-use study with five users, all of whom are

early-career software engineers and/or quantitative analysts with computer science

degrees and industry programming experience. All participants had some prior expo-

sure to SQL; the average self-reported SQL knowledge was 5.2 on a 7-point Likert scale

(𝜎 = 1.3). Participants reported having SQL exposure in a variety of different dialects

(including PostgreSQL, MySQL, Transact-SQL, PL/SQL, SparkSQL, and PySpark)

and environments (including Snowflake, Navicat, Sublime, Sequel Pro, DBeaver, Db-

Visualizer, Jupyter Notebooks, Microsoft SQL Server, and Palantir Foundry).

4.1 Methods

Due to the ongoing COVID-19 pandemic, we conducted our studies via video con-

ference with screen-sharing enabled. Each participant was given a private URL to

access nalini, which had already been connected to a Postgres database that meets

the specifications for the TPC-H decision support benchmark. For convenience, we

limited the length of the generated tables.

We began each study with a 15-minute orientation to get each participant ac-

quainted with the user interface as well as to contextualize the data they were work-

ing with. Then, working with the interviewer, each participant spent 15 minutes

completing three short warm-up tasks. Through the warm-up tasks, the participant

47

was gradually introduced to multi-column table generation, filters, join logic, and

multi-step queries. We then asked participants to use nalini to write five queries.

We chose queries from the TPC-H decision support benchmark because they are de-

signed to include a wide variety of structures and are known to be difficult to support

using existing NLP-to-SQL methods.

Users were asked to write queries meeting the specifications for Q6, Q3, Q1, Q5,

and Q2 from the decision support benchmark; the ordering was based on how much

text input was necessary to specify the queries to nalini. Attributes of the selected

queries can be found in Table 4.1. For each query, we made slight modifications to the

written specification to improve clarity and include parameters. For example, instead

of the original phrasing of "all lineitems shipped in a given year" where the parameter

year is later specified to have the value 1994, we might write "all lineitems shipped

in 1994." Given that nalini does not support sorting or complex string operations,

we removed the sorting requirements for Q1, Q2, Q3, and Q6 and replaced the string

operation in Q2 that required the ’like’ operation with a similar filter that checked

for an exact match. Note that Q4 was omitted because nalini does not yet directly

support the SQL ’exists’ operation, and Q2 already provided a good example of a

multi-step query. For a full list of the query prompts and the gold queries, see Table

A.1.

As they worked, participants were asked to explain their thought processes out

loud. Participants took 45-60 minutes to complete the five queries, and then com-

pleted a quick exit survey.

4.2 Quantitative Results

4.2.1 Task Completion

In order to evaluate participants’ success on the query writing tasks, we compared

the final output table of each query they wrote with the output table of the golden

query. We define table 𝐴 to be equivalent to table 𝐵 as long as the tables contain the

48

Query nu
m

co
lu

m
ns

nu
m

fil
te

rs

nu
m

sr
c

ta
bl

es

ar
it

hm
et

ic

st
ri

ng
co

m
pa

ri
so

n

da
te

fil
te

r

ag
gr

eg
at

io
n

m
ul

ti
-s

te
p

Q6 1 5 1 ! ! !

Q3 4 3 3 ! ! ! !

Q1 8 1 1 ! ! !

Q5 2 5 6 ! ! ! !

Q2 8 1 5 ! ! ! !

Table 4.1: High-level attributes of TPC-H queries participants were asked to write
using nalini during the user study.

same values; row ordering, column ordering, and column names may vary. We define

a query 𝑞 as equivalent to the gold query 𝑔 if and only if the table produced by 𝑞 is

equivalent to the table produced by 𝑔.

The participants’ performance on the query writing tasks is summarized in Table

4.2. All participants were able to use nalini to execute queries equivalent to Q6 and

Q1, the two queries which require arithmetic expressions, date filters, and aggregates,

and had only one source table. All participants generated a correct query equiva-

lent to Q3, which requires arithmetic expressions, string comparison, date filters, and

aggregates, and also joins between multiple tables. Four participants were able to

successfully execute that query; one had a WiFi interruption and due to time con-

straints did not re-create the query and execute it against the database. Q5, which

required more complex joins and filtering, proved to be slightly more difficult. Only

one participant (P4) used nalini to generate a correct query. All other participants

used inputs to nalini that generated a correct SQL query with the exception of a

single missing join condition. Participants P1, P2, and P5 did not notice the error

and executed the incorrect query, while P3 manually added the missing condition and

was able to produce the correct result. Finally, three participants (P1, P3, and P5)

were able to write queries equivalent to Q2. The goal of Q2 is to produce a table with

49

Participant Q6 Q3 Q1 Q5 Q2
P1 ∙ ∙ ∙ ∙ ∙
P2 ∙ ∙ ∙ ∙ ∙
P3 ∙ ∙ ∙ ∙ ∙
P4 ∙ ∙ ∙ ∙ ∙
P5 ∙ ∙ ∙ ∙ ∙

∙ Participant generated a table equivalent to the table produced by the
gold query

∙ Participant generated a correct query but failed to execute it due to WiFi
interruption

∙ Participant executed an incorrect query which differed from a correct
query by one join condition

∙ Participant failed to generate the correct table independently but was
able to after being assisted through the first stage of a multi-stage query.

Table 4.2: Summary of user task completion.

information about each part and the supplier that supplies the part at the minimum

cost. The gold query is a nested query which also includes aggregation, arithmetic,

and string comparisons. In order to produce the desired result, P3 used two chained

queries, one of which found the minimum-cost supplier for each part and one of which

used joins to find all of the other necessary information. P1 and P5 both built two

tables, one of which contained part information (including the minimum-cost sup-

plier), and one of which contained supplier information, and then combined them

to create a third table matching the desired output. Two participants, P2 and P4,

were unable to independently generate the desired output table. However, once the

two-step approach was explained to them, they were able to use nalini to build the

first table, update the database schema, and build the final output table using their

first table.

4.2.2 Post-Study Survey Results

On 7-point Likert scales, participants positively rated nalini overall (𝜇 = 5.6, 𝜎 =

0.7). Participants rated nalini positively for ease of use (𝜇 = 5.6, 𝜎 = 0.9) and

felt that the columns-and-filters approach was intuitive (𝜇 = 5.6, 𝜎 = 0.5). When

50

asked to rate the "naturalness" of their inputs (as opposed to "code-like" inputs),

participants rated nalini as more natural (𝜇 = 4.6, 𝜎 = 1.1), and even with its bare-

bones implementation and limited capabilities, participants said that they would use

nalini again as opposed to writing raw SQL (𝜇 = 4.2, 𝜎 = 1.8).

4.3 Qualitative Results

Based on our observations, all participants quickly developed an understanding of

what nalini is capable of and how to use it to write the desired queries. Participants

developed a common flow: first, they read and understood the prompt. Some made

additional notes in the shared document that had the prompt. Then, they wrote nat-

ural language descriptions in the nalini web interface, switching frequently between

the text input area and scrolling through the table previews. The SQL query gener-

ation process was iterative, with participants tweaking their natural language inputs

and generated queries until receiving the desired result and executing the query.

4.3.1 Use of Natural Language

We observed participants successfully using a wide variety of natural language con-

structs to generate their desired queries. We also observed a lot of attempted natural

language constructs that were not understood by our semantic parser; we detail them

in 4.3.4.

To give an example of a successful construct, to specify the revenue column for Q6,

one participant typed sum(l_extendedprice * l_discount), which is already SQL

syntax, one typed total of lineitem price times lineitem discount, which was

much more natural, and one typed sum lineitem extprice * discount, which

was a mix of both. Another participant also incorporated one of the necessary fil-

ters and typed total (extendedprice * discount) if lineitem quantity less

than 24. Similar variation was observed for all queries. All participants also used

a mix of constructs themselves, with the exception of P5 who never used shorthand

when referring to column names (e.g. always typing "l_discount" instead of "dis-

51

count" or "lineitem discount") and used mathematical symbols whenever possible

(e.g. "=" instead of "equals" or "is"). P5 also expressed this aversion verbally, say-

ing "At this point, SQL just comes so naturally to me that it’s more work for me to

think any other way."

4.3.2 Iteration

When using nalini to generate a query, we observed three types of interaction loops.

First, participants’ natural language inputs often did not lead to a generated query

on the first try, so they had to tweak their inputs. Then, when a query was generated,

participants checked that the query was correct and either edited their inputs or the

SQL query itself until getting the desired query. Lastly, though rare, after attempting

to execute a SQL query, participants may have had to edit the SQL further or start

over with natural language to get their desired output table.

Generating a SQL query

All five participants naturally encountered phrases that were not recognized by the

system and relied on the error messages for unrecognized phrases to tweak their

inputs. For example, a participant had to clarify that they wanted the 𝑝_𝑚𝑓𝑔𝑟

column of the part table because part manufacturer did not match any columns.

The error messages were also particularly useful when participants used phrases and

syntax patterns that were not recognized by nalini’s semantic parser (see 4.3.4).

Refining the Generated Query

Once a SQL query was generated, participants frequently had to make changes be-

fore executing. The most common issue was that a hint had been interpreted as the

incorrect column. For example, both P2 and P3 ran into an issue where the phrase

nation matched the c_nationkey column from the customer table, but the inten-

tion was actually to read the n_name column from the nation table. We observed

that P2 made this change by changing their input string (in this case, nation name

52

worked). P3, who had a bit more SQL experience, opted to change the SQL query

directly. Another scenario that occurred for multiple participants (P1 and P2) was

misinterpretation of the phrases date and lineitem date as corresponding to the

o_orderdate column from the orders table and the l_receiptdate column from the

lineitem table, respectively. The intended column in this case was the l_shipdate

column from the lineitem table. Both participants adjusted their natural language

inputs by typing the exact column name l_shipdate into the column description

field.

There were other types of instances where participants directly modified SQL

code. Some participants made minor tweaks: P5 had a typo in the word "ASIA" and

P1 needed to swap a greater than sign with a less than sign. Some required more

careful inspection and thought process: for Q5, which involved joins between six

source tables, nalini generated an incomplete join clause for four participants (P1,

P2, P3, and P5)—P3 noticed the error and added an additional join clause themself.

Adjustments after Query Execution

Sometimes participants wanted to make changes after executing the query and went

back to make changes to the underlying SQL. This proved time-consuming, since once

executed, the web interface does not preserve the natural language used to generate

the query.

In certain cases, users modified the SQL directly and re-executed the query. For

example, P1 did this when realizing that they used a greater than comparison rather

than a greater than or equal to comparison in Q6. P2 similarly edited SQL to add

a column alias after seeing that the default column name was min while working on

Q2. Sometimes, users opted to start from the beginning and type in all of the natural

language inputs again. For example, P5 did this when forgetting to include a filter

for Q1, and P1 did this for Q5 when they realized they forgot to aggregate all of

the constituent rows. Another method of progressing after generating an incorrect

table that we observed was the generation of a new table based on the incomplete

generated table. For example, when P4 was generating Q2, they forgot to filter by

53

region in the second step and created a new table using the natural language interface

with the same columns and a filter applied.

There were also rare cases where the generated SQL did not compile, and partici-

pants found workarounds by editing the generating SQL. P3 encountered a situation

where mismatched parenthesis in their input were rendered as mismatched parenthe-

sis in their output - this did not compile when SQL was executed. P4 had a similar

situation where they didn’t notice that a column was matched incorrectly (the query

contained the phrase n_regionkey = "ASIA" instead of r_name = "ASIA") and had

to edit the SQL manually after finding the source of the compilation error.

Combining Interaction Loops

It is worth mentioning that while these cycles of iteration tended to happen sequen-

tially as participants moved between stages of the query generation process, some

users combined these interaction loops during their processes. In particular, P4

adopted a strategy of generating a SQL query every time they added one or two

columns or filters; this enabled them to incrementally check that descriptions were

being understood by the system. P1, who was the most fluent in PostgreSQL specif-

ically, also tended to execute generated queries before inspecting them, using both

the generated output and the query syntax together to verify correctness. P1’s ap-

proach was successful for most queries; they identified minor errors in their generated

queries for Q1 and Q3, but the approach failed for Q5, where the generated query

had a missing join condition.

4.3.3 Optimizations and Shortcuts

We also observed several trends in usage. Once participants discovered phrases and

syntax patterns that worked, they tended to reuse them. For example, once users saw

that not all columns needed aliasing, they stopped adding aliases for columns where

the default name (e.g. o_orderpriority) would make sense. Once they found an ab-

breviation that worked for a particular column (e.g. extprice for l_extendedprice),

54

they tended to reuse the abbreviation for future queries. Some participants began

to copy/paste phrases from the prompt text into nalini. Those who did (P1, P2,

and P4) continued doing so for queries after the first query they copy/pasted for.

Similarly, some participants (P2, P3, P5) began to copy/paste column names and

continued doing so after doing it for the first time.

4.3.4 Commonly Attempted Constructs

There were several constructs that multiple participants attempted to use which are

not yet supported by nalini. Between Q6 and Q3, all participants attempted to

use the keyword "between" (e.g. discount between 0.05 and 0.07, ship date

between jan 1 1994 and dec 31 1994) and found that it was not supported, opt-

ing instead to specify upper and lower bounds separately. Similarly, three out of

five participants tried specifying date ranges using the "in" keyword (e.g. ship date

in 1994). Two out of five participants tried to use "and" in a distributed manner

(e.g. discount more than 0.05 and less than 0.07). Two out of five partici-

pants tried to use "both" in their natural language inputs (e.g. customer nation

and supplier nation both have name "ASIA"). While working on Q1, two par-

ticipants also referred to a previously described column, which represented the gross

discounted revenue, when trying to describe a new column which represented gross

discounted revenue after tax was applied.

4.3.5 A Shift in Focus

Several participants commented on how using nalini differs from writing SQL queries

by hand. P2 and P5 felt that using nalini allowed them to spend most of their time

thinking about what they were trying to produce, and why, rather than spending

time figuring out how to write SQL to fit their output. P4 made a comment about

how "It’s actually so nice to not have to worry about typos and exact spelling."

P1, P3, and P5 all noted that this required a shift in mindset, and that they kept

trying to approach problems as though they were writing SQL queries. P1, P3, and

55

P5 all asked questions at various points during the study about how to ensure that

a certain join path was generated and then correct themselves to think about the

output in terms of columns instead. Interestingly, P1 did actually find a way to force

certain join paths by using multi-step query chaining to build up the join tree one

step at a time in a way that they could control.

P1 stated that the query prompts, which were formatted as short multi-sentence

paragraphs, were extremely comparable to the emails they receive on a daily basis

from business analysts at their company, and that the columns-and-filters approach

was much more aligned with the way that queries are specified than the one-sentence

prompts required by other NLP-to-SQL tools.

4.3.6 Comparisons to Other Methods

In addition to their ability to complete the presented tasks, participants made several

verbal comments that provide valuable insight into nalini’s strengths, limitations,

and potential future improvements.

During the guided tutorial, all participants were enthusiastic and eager to test

out the abilities to nalini, using several different text inputs to generate the same

desired queries. All participants responded positively the first time they saw SQL

syntax generated automatically ("This is so cool!", "This is awesome!").

As they completed some of the queries, participants commented on nalini’s util-

ity. P1 said "this can save so many hours of query writing, even, and perhaps es-

pecially, for folks with a solid understanding of databases already". In reference to

nalini producing a complex join clause, P3 said "this thing does all the heavy lifting,

all the brutal stuff".

Participants also expressed ways in which nalini could be improved. Four of

five participants noted that the runtime was too long, with P1 commenting that they

would have changed their general strategy to include more incremental iteration if the

synthesis engine ran faster. P2 and P3 expressed interest in UI improvements such

as being able to click on a column name to indicate getting information form that

column and using color to indicate which natural language phrases were mapped to

56

which columns. P5 felt that a visualization of the joins that were constructed would

be helpful.

Usability in the Workplace

As part of the exit survey, participants were asked about how nalini might fit into

their existing processes at work.

P1 was particularly enthusiastic about being able to use it at their workplace–as a

data scientist, often burdened with requests from other people, they could use nalini

to make this process self-service or at least much faster. They also mentioned that

they have to frequently switch between SQL dialects due to the multiple tools at their

workplace and frequently spent time looking up syntax, which could be addressed by

nalini.

P2, who had very little SQL experience relative to the other participants, said

"I literally would have had to look up the syntax of every single part of this query"

while working on Q5, and said that whenever they have had to use SQL at work in

the past, it was for very simple projections, filters, aggregations that nalini is well

suited to. P5 only said that their existing work processes were easy enough to use for

software engineers, perhaps indicating that they would be unlikely to prefer using a

tool like nalini.

P3 and P4 made note that joins are often confusing and difficult to write, with

P3 stating that "Nalini covers a lot of the most tedious yet basic SQL functionality

(e.g. joins) that can waste developer time".

P1, P3, and P4 all emphasized that runtime would have to be improved in order

for them to get the most benefit out of nalini, since they all currently write SQL in

environments that allow rapid iteration.

P1 and P3 also said better support for nested queries would be necessary for it

to be useful at the data analysis level, but that it is already useful for simple joins

and cleaning steps that are key components of most ETL (extract, transform, load)

tasks.

P3, P4, and P5 all commented on the fact that nalini could identify which table

57

a column should come from even if there were multiple tables that had columns with

the same name. P3 mentioned that in enterprise systems, many database interfaces

include a "data dictionary" which maps column names to natural language descrip-

tions of the column’s contents, and suggested that since column names themselves

are often esoteric and difficult to interpret, nalini could be more useful if it was

integrated with that information

P2 indicated that most of the people they work with (who are bankers) copy

data into excel to do these types of transformations rather than creating tables in

their database, which leads to a lot of duplicated work and unnecessary file transfer.

They said that something approachable like nalini that makes working in a database

environment as easy as working in Excel could reduce a lot of unnecessary work.

58

Chapter 5

Conclusion

We contribute nalini, an interactive interface for natural language-based SQL query

generation. Our goal was to address the need for an easy-to-use, user-friendly way

to write SQL code, especially given the lack of general usability of current natural

language and programming-by-example tools. We built nalini using simple and

straightforward implementations of many of its constituent components, including

the semantic parser, the synthesis algorithm, the data-based word-similarity function,

and the user interface, leaving a lot of space for further improvement. Our first-use

study validates the hypothesis that nalini’s approach centered on natural language

descriptions of columns and filters is both intuitive for the user and descriptive enough

for existing synthesis techniques to generate SQL queries. Iterative interaction with

the user enables nalini to be effective without necessarily relying on state-of-the-art

technology.

5.1 Future Work

Having built a minimal proof-of-concept to address these technological gaps, we have

revealed several areas of interest which are ripe for future research.

59

5.1.1 Understanding Participants

Fundamentally, a tool intended to make life easier for people can only be as good

as our understanding of the people whose needs we aim to address. Our first-use

study was conducted on a very niche set of people: young (22-25 year old) American

technologists who have computer science degrees from nationally-recognized univer-

sities and whose work environments typically have access to cutting-edge technology.

While they have enough in common with typical SQL developers to have valuable

insights during a first-use study, there remains a larger question of what groups of

people have the most to gain by using a tool like nalini, and what features are most

important for them. For example, a fully-featured user interface may be much more

valuable for non-technical users than for engineers who are used to debugging and

are comfortable with command-line interactions, and English syntax patterns that

are natural for developers in India or Nigeria may be completely unrecognized by a

system built for Americans. Once the big picture questions of who nalini may be

most useful for are answered, we can start to ask questions about technical details.

What dialect(s) of SQL should be supported? What functions are most important to

include? What language model is best-suited for matching hints to columns? What

existing SQL-writing environment(s) should nalini be integrated in? We empha-

size that nalini functions as a proof of concept, and that there are many factors

concerning usability and accuracy that need to be addressed through broader study.

5.1.2 Supporting a richer SQL Vocabulary

Our user study was based on only a small subset of TPC-H queries because many

of the more complex queries could not yet be supported. A natural area of further

development for nalini is the scope of the SQL queries that can be created. The

existing system is designed such that with minimal changes to the semantic parser and

query rendering component, nalini should be able to support additional operations

such as string operations, date operations, window functions, case statements, and

the "between" keyword.

60

Other operations, such as incorporating ordering and limiting, may require addi-

tional thought to the user interface as well. Perhaps it makes sense to add another

free-form text inputs, similar to the filter text inputs, where the user can type phrases

like "sorted by revenue descending" and "only show top ten" to indicate their inten-

tion.

A few potential extensions to the SQL language supported by nalini that would

require more in-depth user studies and development to address: expanded support

for joins, and native support for nested queries. Our study only addressed queries

where the necessary joins are inner joins. Before building out a solution, it remains

to be studied how a user might specify the need for a left, right, or outer join: does

a natural language solution make sense? Is that easiest to indicate using the user

interface? Should multiple resultant queries be presented to the user so that they can

see the possibilities and choose for themselves?

Nested queries (and "exists" clauses) pose similar questions. Our study only

included one chained query, which showed that it is possible to use the chained-query

approach, to build nested queries using the chaining approach, but not necessarily

intuitive. Is there a distinction between types of problems where the existence of a

nested query needs to be specified by the user and types of problems when it can be

inferred and generated with only the provided information? Depending on the answer

to that question, nalini not be well-suited to the problems in its current state; it

could require a change in its fundamental assumptions about query structure.

5.1.3 Developing a more sophisticated semantic parser

The general approach of always allowing for a programmatic solution and gradually

building automation and NLP capabilities is good for further development, as we can

theoretically have a good understanding of the types of phrases users try to use with

nalini and use it to inform future feature development. Even with the minimal SQL

grammar supported by nalini at present, there many possible improvements to the

semantic parser can be improved to generate queries with the same structure from a

much broader subset of natural language inputs.

61

For example, with minimal changes, the parser can support keywords that ap-

ply to nonconsecutive words, such as "between", "both", and "and" and support

keywords that are split into multiple parts such as "either/or", "same/as", and

chained comparisons (e.g. x < y < z). Another future area of study is using part-

of-speech tagging to allow for more complex constructs which could correspond to

joins. For example, the phrase people who drive a car that was in at least

one accident in 2010 in a city with population more than 1 million con-

tains quite a few nested relationships. If part-of-speech tagging can be employed

to get meaningful parses of such complex phrases, it makes way for the synthesis

algorithm to be modified to support SQL rendering of those inputs as well.

Another area to explore is breaking the assumption that the semantic parser must

be entirely database agnostic. Other natural language to SQL attempts [27, 16] have

made use of pre-processing and tagging steps to label phrases that might match exact

table names, column names, or database values. For example, without any knowledge

of what columns the hints might correspond to it is hard to distinguish whether the

phrase [colHint] + [colHint] should be parsed as an arithmetic operation or a

string operation.

5.1.4 Increasing confidence in the synthesis algorithm

Our current synthesis algorithm is relatively simple; it independently fills all holes,

and then independently uses each column dependency to contribute to the overall

table graph. Other synthesis engines [27, 4, 12] have demonstrated improvements in

synthesis accuracy by using more holistic synthesis algorithms.

For instance, instead of only using the top parsed value for each input, the synthe-

sizer could explore the top-𝑘 parsed values for each input, adding robustness. While

resolving hints, the synthesis engine could also take into account context. Using type

analysis, it may be obvious that an argument to a function is more likely to be one

column than another. Similarly, the way a hint is resolved could be influenced by

knowledge of the source tables of other hints in the same column or filter. Intu-

itively, it may make sense to assign ratings to sets of possible dependency resolutions

62

to choose the best combination, rather than choosing the best match for each hole

independently. During our first-use study, we observed examples where users unsuc-

cessfully tried to reference previous columns; perhaps it would be helpful if columns

could have dependencies on each other.

5.1.5 Improving the user experience

The interactive interface used in nalini is bare-bones compared to most modern-

day enterprise software in the data engineering space. Now that we have observed

that nalini’s columns and filters approach can be intuitive, how can we continue to

expand on the user experience to make it frictionless? There are quite a few aspects

to consider. How can the system be designed to minimize the query engine’s runtime?

What existing coding environments should a tool like this be embedded in? What

additional visual cues, such as color-coding table columns with the phrases they are

linked to, would be useful to the user? Is there a visual way to represent joins and

table graphs that we could explore?

5.2 Final Words

The author hopes to continue developing nalini to empower SQL users everywhere.

Please contact ramya.durvasula@gmail.com with any questions, comments, or sug-

gestions, or to test out nalini yourself!

63

64

Appendix A

First-Use Study Queries and Prompts

TPC-H
Query

Prompt Gold Query

Q6 The Forecasting Revenue
Change Query considers all
the lineitems shipped in
1994 with discounts between
0.05 and 0.07 inclusive.
The query should list the
amount by which the total
revenue would have increased
if these discounts had been
eliminated for lineitems with
l_quantity less than 24. Note
that the potential revenue
increase is equal to the
sum of (l_extendedprice *
l_discount) for all lineitems
with discounts and quantities
in the qualifying range.

SELECT
SUM(l_extendedprice * l_discount)

AS potential_revenue_increase
FROM lineitem
WHERE l_shipdate >= date ’1994-1-1’

AND l_shipdate <= date ’1994-12-31’
AND l_discount >= 0.05
AND l_discount <= 0.07
AND l_quantity < 24

65

Q3 The Shipping Priority Query
considers only orders where
the customer market segment
is "BUILDING". The query
creates a table with four
columns: the order key, poten-
tial revenue, order date, and
shipping priority. The query
considers only orders placed
before March 15, 1995. Poten-
tial revenue is defined as the
sum of l_extendedprice * (1-
l_discount) for lineitems that
were not shipped until after
March 15, 1995.

SELECT
o_orderkey AS orderkey,
o_orderdate AS orderdate,
o_shippriority AS shippriority,
SUM((l_extendedprice * (1-l_discount)))

AS potential_revenue
FROM orders

JOIN customer ON o_custkey = c_custkey
JOIN lineitem ON

o_orderkey = l_orderkey
WHERE l_shipdate > date ’1995-3-15’

AND o_orderdate < date ’1995-3-15’
AND c_mktsegment = "BUILDING"

GROUP BY
orderkey,
orderdate,
shippriority

Q1 The Pricing Summary Report
Query provides a summary
pricing report for all lineit-
ems shipped as of Septem-
ber 2, 1998. The result ta-
ble contains columns for RE-
TURNFLAG and LINESTA-
TUS. For each RETURN-
FLAG and LINESTATUS, the
table contains columns with
totals for extended price, dis-
counted extended price, dis-
counted extended price plus
tax, average quantity, average
extended price, and average
discount.

SELECT
l_returnflag,
l_linestatus,
SUM(l_extendedprice) AS tot_price,
SUM(l_extendedprice * (1-l_discount))

AS tot_disc_price,
SUM(l_extendedprice) * (1-l_discount)

* (1+l_tax)) AS tot_taxed_disc_price,
AVG(l_quantity) AS avg_quantity,
AVG(l_extendedprice) AS avg_ext_price,
AVG(l_discount) AS avg_discount

FROM lineitem
WHERE l_shipdate <= date ’1998-9-2’
GROUP BY

l_returnflag,
l_linestatus

66

Q5 The Local Supplier Volume
Query lists for each nation
in the region "ASIA" the
name of the nation and rev-
enue volume that resulted
from lineitem transactions in
which the customer ordering
parts and the supplier fill-
ing them were both within
that nation. The query con-
siders only orders placed in
1994. Revenue volume for all
qualifying lineitems in a par-
ticular nation is defined as
sum(l_extendedprice * (1 -
l_discount)).

SELECT
n_name,
SUM(l_extendedprice * (1-l_discount))

AS revenue_volume
FROM lineitem

JOIN orders ON l_orderkey = o_orderkey
JOIN customer ON

o_orderkey = c_nationkey
JOIN nation ON

c_nationkey = n_nationkey
JOIN region ON

n_regionkey = r_regionkey
JOIN supplier ON l_suppkey = s_suppkey

WHERE s_nationkey = c_nationkey
AND o_orderdate >= date ’1994-1-1’
AND o_orderdate <= date ’1994-12-31’
AND r_name = ’ASIA’

GROUP BY n_name

67

Q2 The Minimum Cost Supplier
Query finds, in the region
named "EUROPE", for each
part with size = 15, the sup-
plier who can supply it at
minimum cost. For the min-
imum cost supplier(s), the
query lists the supplier’s ac-
count balance, name and na-
tion; the part’s ID number
and manufacturer; the sup-
plier’s address, phone number
and comment information.

SELECT
s_acctbal,
s_name,
n_name,
p_partkey,
p_mfgr,
s_address,
s_phone,
s_comment

FROM part
JOIN partsupp ON p_partkey = ps_partkey
JOIN supplier ON ps_suppkey = s_suppkey
JOIN nation ON

s_nationkey = n_nationkey
JOIN region ON

n_regionkey = r_regionkey
WHERE p_size = 15

AND r_name = ’EUROPE’
AND ps_supplycost = (

SELECT
MIN(ps_supplycost)

FROM partsupp
JOIN supplier ON

ps_suppkey = s_suppkey
JOIN nation ON

s_nationkey = n_nationkey
JOIN region ON

n_regionkey = r_regionkey
WHERE p_partkey = ps_partkey

AND r_name = ’EUROPE’
)

Table A.1: TPC-H query number, prompts given to partic-
ipants, and gold queries used to evaluate correctness in the
order of the first-use study.

68

Bibliography

[1] Tpc-h decision support benchmark. http://www.tpc.org/tpch/.

[2] Wolfram natural language understanding system.
https://www.wolfram.com/natural-language-understanding/. Accessed: 2022-
01-28.

[3] Christopher Baik, H. V. Jagadish, and Yunyao Li. Bridging the semantic gap
with sql query logs in natural language interfaces to databases. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE), pages 374–385, 2019.

[4] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing
on Freebase from question-answer pairs. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing, pages 1533–1544, Seattle,
Washington, USA, October 2013. Association for Computational Linguistics.

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

[6] Zhi Chen, Lu Chen, Yanbin Zhao, Ruisheng Cao, Zihan Xu, Su Zhu, and Kai
Yu. ShadowGNN: Graph projection neural network for text-to-SQL parser. In
Proceedings of the 2021 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, pages
5567–5577, Online, June 2021. Association for Computational Linguistics.

[7] E. F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13(6):377–387, jun 1970.

[8] SQLite Consortium. Sqlite, January 2022.

[9] Oracle Corporation. Mysql, January 2022.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding, 2019.

69

[11] The PostgreSQL Global Development Group. Postgresql, January 2022.

[12] Daya Guo, Yibo Sun, Duyu Tang, Nan Duan, Jian Yin, Hong Chi, James Cao,
Peng Chen, and Ming Zhou. Question generation from sql queries improves
neural semantic parsing, 2018.

[13] Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and
Dongmei Zhang. Towards complex text-to-sql in cross-domain database with
intermediate representation, 2019.

[14] Mona Khalil. Sql server, postgresql, mysql... what’s the difference? where do i
start?, January 2022.

[15] Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. Natural
language to sql: Where are we today? Proc. VLDB Endow., 13(10):1737–1750,
jun 2020.

[16] Fei Li and H. V. Jagadish. Constructing an interactive natural language interface
for relational databases. Proc. VLDB Endow., 8(1):73–84, sep 2014.

[17] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven
Bethard, and David McClosky. The Stanford CoreNLP natural language process-
ing toolkit. In Proceedings of 52nd Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages 55–60, Baltimore, Maryland,
June 2014. Association for Computational Linguistics.

[18] Microsoft. Microsoft data platform, January 2022.

[19] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space, 2013.

[20] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word represen-
tations, 2018.

[21] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik. Sketch-
ing concurrent data structures. In Proceedings of the 29th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’08, page
136–148, New York, NY, USA, 2008. Association for Computing Machinery.

[22] Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodík, and Kemal Ebcioğlu.
Programming by sketching for bit-streaming programs. In Proceedings of the
2005 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’05, page 281–294, New York, NY, USA, 2005. Association for
Computing Machinery.

[23] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. Combinatorial sketching for finite programs. In Proceedings of the 12th
International Conference on Architectural Support for Programming Languages

70

and Operating Systems, ASPLOS XII, page 404–415, New York, NY, USA, 2006.
Association for Computing Machinery.

[24] Keita Takenouchi, Takashi Ishio, Joji Okada, and Yuji Sakata. Patsql. Proceed-
ings of the VLDB Endowment, 14(11):1937–1949, Jul 2021.

[25] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. Synthesizing highly ex-
pressive sql queries from input-output examples. SIGPLAN Not., 52(6):452–466,
jun 2017.

[26] Xiaojun Xu, Chang Liu, and Dawn Song. Sqlnet: Generating structured queries
from natural language without reinforcement learning, 2017.

[27] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. Sqlizer:
Query synthesis from natural language. Proc. ACM Program. Lang., 1(OOP-
SLA), oct 2017.

[28] Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir Radev. Typesql:
Knowledge-based type-aware neural text-to-sql generation, 2018.

[29] Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu Wang, Zifan Li,
and Dragomir Radev. Syntaxsqlnet: Syntax tree networks for complex and
cross-domaintext-to-sql task, 2018.

71

