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Abstract

Diving operations are inherently complex due to navigation and communication limitations.
Until recently, fixed-beacon acoustic localization techniques have served as the primary
means of improving diver navigation. However, modern artificial intelligence and acoustic
modem technologies have enabled accurate relative navigation methods between a diver and
an autonomous vehicle.

Human-robot collaboration takes advantage of each member’s strengths to create the
most effective team. This concept proves especially advantageous within the ocean domain,
where humans are naturally deficient navigators. Yet humans serve as the team’s creative
spirit, offering the critical thinking and flexibility needed to succeed in an unpredictable and
dynamic environment. Recent underwater human-robot cooperative navigation systems typ-
ically rely on autonomous surface vehicles (ASVs), specially designed underwater vehicles, or
stereo cameras. This thesis proposes a diver navigation method exhibiting significantly im-
proved accuracy over dead reckoning without relying on a surface presence, cameras, or fixed
acoustic beacons. Specifically, we develop and evaluate the communication architecture and
autonomous behaviors required to guide a diver to a target location using subsurface human-
autonomous underwater vehicle (AUV) teaming with no requirement for ocean current data
or exact diver speeds. By depending on acoustic communication and commercial AUV navi-
gation capabilities, our method has increased accessibility, applicability, and robustness over
former techniques.

We utilize the Woods Hole Oceanographic Institution (WHOI) Micromodem 2’s two-
way-travel-time (TWTT) capability to enable range-only single-beacon navigation between
two kayaks serving as proxies for the diver and Remote Environmental Monitoring Units
(REMUS) 100 AUV. During processing, a nonlinear least-squares (NLS) method, called in-
cremental smoothing and mapping 2 (iSAM2), utilizes odometry and range measurements to
provide real-time diver position estimates given unknown ocean currents. Field experiments
demonstrate an average online endpoint error of 4.53 meters after transits four hundred
meters long. Additionally, simulations test our method’s performance in more challenging
situations than those experienced in the field. Overall, this research progresses the interop-
erability of divers and AUVs.

Thesis Supervisor: John Leonard
Title: Samuel C. Collins Professor of Mechanical and Ocean Engineering
Massachusetts Institute of Technology
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Chapter 1

Introduction

This chapter provides the motivation for this thesis and a brief overview of each chapter.

1.1 Motivation

In 1997, an IBM computer called Deep Blue beat Garry Kasparov in chess, marking the first

time a computer won a chess match against a reigning world champion. In response, Kas-

parov invented Advanced Chess, where human-computer teams face off against each other.

The interesting discovery from this experiment was that, although computers commonly

beat humans, human-computer teams always defeated a computer playing alone [1]. The

human-machine team was superior.

Human-robot collaboration relies on effective communication to reduce the human’s cog-

nitive load and physical demand, thereby improving the team’s efficacy. Recent advances in

this field have allowed robots to serve increased roles within care facilities, schools, hospitals,

entertainment, industry, space exploration, and military operations [2]. Among other places,

the confidence in human-robot teaming is visible in recent military research and documen-

tation. By 2010, the United States Army Telemedicine and Advanced Technology Research

Center had already invested in several projects to use robots to assist with casualty evacua-

tion [3]. Since then, the Department of Defense specified its investment in the human-robot

combat team with the Third Offset Strategy introduction in 2014 [4]. The 2018 National

Defense Strategy continued this trend by acknowledging the role that autonomous systems

and emerging technologies will have on the battlefield while reaffirming that the United

States military’s strength is its people [5].
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A group where humans collaborate with autonomous robots is called a human-autonomy

team (HAT) [6]. Moravec’s Paradox describes one reason for the interest in this emerging

relationship: "it is comparatively easy to make computers exhibit adult level performance

on intelligence tests or playing checkers, and difficult or impossible to give them the skills

of a one-year-old when it comes to perception and mobility" [7]. In other words, humans

and robots have complementary skill sets. Another critical benefit of retaining the human

in the loop is to ensure the ethical and legal use of force. The United States military is

at the forefront of developing ethical principles for artificial intelligence and autonomous

systems [8] [9]. Therefore, HATs have the potential to result in the most effective and

ethical combination.

The navigation and communication challenges inherent to divers provide a unique oppor-

tunity for HATs to excel in the ocean domain. Humans are deficient underwater navigators

without the help of a compass, especially in dark or murky waters. Divers commonly utilize

magnetic compasses and kick counts to navigate from point to point. Many magnetic diving

compasses are marked in five- to ten-degree intervals, making it difficult to hold an accurate

bearing and decreasing the diver’s navigation ability. For example, a consistent error of five

degrees for one kilometer results in an endpoint error of nearly 90 meters.

Uncertain ocean current predictions increase inaccuracy. Assuming a constant ocean

current of 0.1 knots throughout a one-kilometer dive can leave the diver over 140 meters

from their intended target. The U.S. Navy Dive Manual defines the work limits of SCUBA

divers as below a one-knot ocean current [10], so experiencing ocean currents above 0.1

knots is common. Often, divers find the ocean current value for their dive plan by utilizing

ocean current readings from distant buoys. Thorough dive planning can mitigate the risk of

failure by acknowledging the inherent error in this measurement and building in appropriate

contingencies. Still, this inaccuracy significantly contributes to the uncertainty of success

and extended time allotted for even simple underwater navigation operations.

The difficulty of underwater tasks in conjunction with diving’s physiological dangers

shows why diving in pairs is necessary. However, dive pairs are limited in their ability to

communicate underwater, regularly relying on a short list of hand gestures to send simple

messages to each other. Low visibility conditions inhibit this type of communication because

it requires both divers to see each other. Additionally, the signals must be agreed upon

before the dive, making it challenging to accurately convey complicated messages or dive
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Figure 1-1: AUV acoustic localization methods [11]

plan adjustments. Conversely, terrestrial teams take advantage of accurate localization and

low latency, high data-rate communications using the electromagnetic (EM) spectrum.

The infrastructure broadly available on land is less accessible to divers and autonomous

underwater vehicles (AUVs) because EM signals attenuate rapidly in water. Standard un-

derwater acoustic localization techniques involve pre-positioned long baseline (LBL), short

baseline (SBL), or ultra-short baseline (USBL) beacons. Using acoustic transducers, divers

and AUVs can determine their position using the range or bearing from these known beacon

locations. However, in addition to requiring a significant time investment to install, these

methods limit the survey site to the area within the beacons’ acoustic range. Another option

involves SBL or USBL systems on ships. Figure 1-1 illustrates these methods.

Autonomous surface vehicles (ASVs) can also employ USBL arrays. However, a signifi-

cant issue with putting a USBL array on a surface vessel, particularly a small one, is that it

requires a highly accurate inertial measurement unit (IMU) to compensate for the surface

motion. Additionally, regardless of whether the vehicle is human-crewed or autonomous,

the reliance on these surface platforms limits the system’s scalability and applicability due

to the communication architecture.

Fortunately, AUV navigation has improved with advances in inertial navigation systems

(INSs) and simultaneous localization and mapping (SLAM) [11]. Provided the AUV can de-
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termine its location with sufficient accuracy, a dive team can localize its position relative to

the AUV. Therefore, it is possible to develop an accurate navigation system for divers with-

out relying on pre-positioned beacons, ASVs, or surface ships, thus maintaining reliability

while increasing versatility.

This thesis focuses on improving the diver’s ability to navigate to a target. Ð. Nađ

et al. [12] created an AUV-guided navigation system for divers that relied on ASVs and

visual cues from the AUV. By eliminating these constraints, the HAT can be more robust

and serve in more diverse environments, such as turbid or dark waters. As previously

mentioned, removing the ASV would simplify the communication architecture and increase

applicability. Suppose a search and rescue operation occurred in a busy shipping lane. If the

system required an ASV, it would be necessary to cordon off the search area to ensure there

are no collisions. However, without the ASV, all elements are subsurface, so the operation

could be conducted without disturbing ship traffic.

Lastly, this thesis seeks to progress the underwater HAT, where heterogeneous members

with dynamically changing roles and responsibilities cooperate to achieve the objective.

Recent research in this area has utilized specially designed AUVs [13] [14]. However, these

AUVs are not widely available, and their designs limit their capabilities outside the human-

robot relationship. Leading commercial AUVs have the means to enable human-autonomy

teaming while also providing a suite of advanced sensors for environmental mapping and

other tasks. More capable AUVs expand the potential functions they can serve within the

team. Therefore, while this thesis focuses on navigating to a target location, it serves as

an early step in the broader underwater HAT’s objective to understand their operational

domain and perform a set of diverse roles to accomplish the mission.

1.2 Thesis Overview

This thesis evaluates the feasibility and effectiveness of a dive navigation method that pro-

vides significant endpoint accuracy improvement over dead reckoning (DR) using subsurface

human-autonomy teaming. This approach relies on the Woods Hole Oceanographic Insti-

tution (WHOI) Micromodem 2 [15], the Georgia Tech Smoothing and Mapping (GTSAM)

factor graph-based state estimation library [16], and the Robot Operating System (ROS™)

middleware system for robotics [17]. A custom ROS package, called ros_hat [18], was de-
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signed to integrate all required sensors and software to allow teaming between a Remote

Environmental Monitoring Units (REMUS) AUV [19] and a diver. Although the eventual

goal is to have this software run on a submersible dive tablet and REMUS 100 [20], this

thesis sought to prove and evaluate this concept using kayaks as proxies for the diver and

AUV. Consequently, this novel communication architecture opens many new opportunities

to progress the undersea HAT, thereby increasing the diver’s capabilities and safety.

Chapter 2 provides the background for this thesis by reviewing underwater human-robot

teaming, range-only single-beacon (ROSB) navigation, acoustic telemetry, and nonlinear

least-squares (NLS) state estimation using factor graphs. In addition to introducing two

critical components to our HAT navigation architecture, namely the Micromodem 2 and

incremental smoothing and mapping 2 (iSAM2), this chapter includes a brief history of how

divers have utilized technology to increase their localization, navigation, and communication

capabilities. It is important to note that the most recent HAT research efforts use custom-

built AUVs focused on providing safety monitoring and task assistance to divers at very close

distances. Instead, we view the AUV as a versatile element, having the ability to perform

both cooperative and individual tasks that contribute to completing the overall mission.

Chapter 3 outlines the software, hardware, and equations that enable our human-autonomy

teaming technique. This chapter introduces our software architecture, messaging sequence,

and messaging structure. Within the call-and-response communication between the AUV

and diver, the diver’s state estimate is updated using odometry and range measurements,

thereby providing real-time location updates for the diver to navigate to a geographic coor-

dinate of interest.

Chapter 4 discusses the full-scale kayak-to-kayak experiments used to validate the func-

tionality and accuracy of this diver navigation method. Along with describing the final

experiment’s protocols, equipment, and setup, this chapter describes the preliminary field

tests utilized to find the Micromodem 2’s two-way-travel-time (TWTT) ranging accuracy.

The range data collected in both experiments ensured accurate noise modeling for sim-

ulations, which sought to test the performance of the cooperative navigation method in

more challenging situations than those experienced in the field. This chapter concludes by

analyzing the results from the simulations and field experiments. To the best of our knowl-

edge, there are no similar diver-AUV cooperative navigation results to compare with our

method. Therefore, we compare our technique to DR methods available on state-of-the-art
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submersible dive tablets. Although this is not a perfect comparison, it shows the endpoint

accuracy improvement through human-autonomy teaming.

Lastly, Chapter 5 presents conclusions from the simulations and field experiments. How-

ever, adding an AUV to the dive team is not only intended to improve the dive team’s

navigation ability; the dive team adds the entire library of AUV capabilities, from auto-

matic target recognition to bathymetric surveying to environmental monitoring. Along with

discussing the profusion of opportunities unlocked through underwater HATs, this chap-

ter closes by recommending future research to improve our system’s cooperative navigation

function through environmentally adaptable autonomous behaviors.
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Chapter 2

Background

This chapter reviews diver navigation methods and current underwater human-autonomy

teaming research. It also introduces acoustic communication and state estimation techniques

foundational to this thesis.

2.1 Diver Navigation and Underwater Human-Robot Teaming

This section provides a brief history of utilizing technology to improve a diver’s capabilities.

It is critical to understand this progression to appreciate the difficulties inherent to the

ocean domain. First, we review the development of acoustic devices for improving a diver’s

localization and communication. Then, we discuss recent underwater human-robot teaming

efforts and examine state-of-the-art submersible tablets.

The United States Navy pioneered research into acoustic-based diver navigation and

communication. In 1970, the Department of the Navy filed for a patent of a novel diver

navigation interface that relied on vibrating sensors [21]. This work built on a previous

patent for converting a message into vibratory stimuli for long-range communication that

required a quick response [22]. The inventor, Joseph Hirsch, claimed humans respond to

tactile information faster than auditory or visual information. Hirsch [23] implemented

this in a system where vibrations notify pilots of potential collisions. A back pad placed

beneath the diver’s wetsuit brought this communication method into the ocean domain.

Acoustic messages sent by a remote station were detected by the receivers on the diver’s

belt and translated into vibrations. The vibration location on the diver’s back corresponded

to navigation corrections - top meaning swim forward, right side meaning turn right, etc.
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However, the remote command station could only send these navigation corrections if it

knew the diver’s position and heading. Sonar determined the diver’s location, and the diver

sent their heading using four pushbuttons, with each one corresponding to a unique acoustic

signal representing one of the cardinal directions. The acoustic transmitter on the diver’s

belt sent this message to the command station, which could then acoustically respond with

navigation corrections provided it had an accurate diver location from sonar [21].

The Navy continued to invest in diver navigation in the late 1970s when it requested

the Applied Physics Laboratory at the University of Washington develop a system capable

of monitoring divers conducting underwater construction tasks. Four requirements for the

project were that it tracked up to eight targets, had a range of one mile, had a circular error

probable (CEP) of five feet, and included a radio frequency link that allowed the command

station to see the diver’s path from up to five miles away. The resulting system, called

the portable acoustic tracking system (PATS), relied on an array of six fixed transducers at

known locations. The inventors estimated it would take about an hour to deploy and retrieve

the array. The deployment team used multiple small boats to place four buoyant survey

transducers in a square with 250-foot sides. Of those four, the two on opposite corners were

about 40 feet higher than the others to provide depth dispersion to resolve the diver’s depth.

They then set the two reference transducers approximately 750 feet apart on opposite sides

of the square. Each diver wore an acoustic pinger on their back, which was about the size

of a SCUBA tank. The system relied on time-division multiple access (TDMA) to allow

eight divers to use the fixed transducers synchronously. At their assigned time, the diver’s

pinger transmitted two pulses. Each survey transducer utilized the first pulse to determine

the signal’s travel time and the delay between the first and second to resolve the diver’s

depth. The survey transducers then sent their timing information to a surface buoy, which

transmitted 180-byte packets via radio link to a shoreside or seaside receiving unit. The

receiving unit transformed the timing information into the diver’s local three-dimensional

coordinates [24]. The 1970s also saw the Navy invest in handheld diver navigation hardware

and software.

A patent granted to the United States Navy in 1978 improved the diver’s ability to swim

along their desired course. The handheld system combined the outputs from a magnetic

compass and Doppler sonar to display the heading the diver should swim to get from one

point to another while compensating for ocean current. It also provided course corrections
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to the diver. Before this, divers performed mental math to calculate their adjusted course

based on readings from a drift meter [25]. However, the Navy was not the only group in the

late 20th century seeking to file patents related to improving diver navigation capabilities.

In 1993, the Hughes Aircraft Company, owned by Howard Hughes, filed a patent for

an improved acoustic navigation system for divers. Increased Global Positioning System

(GPS) capabilities allowed this system to find the diver’s global coordinates instead of their

local coordinates like previous methods. The system relied on two buoys to locate the

divers and provide two-way communication between the command station and the diver.

The command station was located at the bottom of the base buoy and monitored by the

divemaster. At their assigned time slot, each diver’s acoustic transducer communicated a

unique identification signal along with its last known location. The buoys received this

message and responded with their GPS coordinates. A processor attached to the diver

calculated the range from the two buoys using the water’s sound speed and the signal’s

TWTT. Then, the processor combined the range from the two buoys with the diver’s depth

sensor reading to determine the diver’s position in the global coordinate system. The diver’s

location information could then be acoustically transmitted to the base buoy and passed

through a cable to the command station to populate the computer’s screen. This process

allowed the divemaster to track the divers. Additionally, the divemaster at the command

station could use a keyboard to send messages to the base buoy, which then relayed those

messages to the divers. Each diver had a wrist-worn interface that made this two-way

communication possible; it processed incoming messages, displayed messages received, and

provided a keyboard for the diver to send simple messages. For example, the watch showed

navigation corrections sent by the divemaster via the base buoy [26]. Figure 2-1 compares

this method with PATS. Overall, this technology advanced diver navigation by providing

global positioning and improving two-way communication.

Early efforts by the United States Navy and defense contractors decidedly improved a

diver’s ability to navigate underwater accurately. From the early 1970s to the late 1990s,

acoustic ranging methods and GPS allowed divers to navigate and localize themselves within

a global coordinate system instead of a local coordinate system. Command stations also

gained the ability to monitor the diver’s location, log the diver’s path, and communicate

with the diver. However, all these early systems relied on pre-staged surface beacons. As

previously mentioned, reliance on those types of beacons comes with significant constraints.
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Figure 2-1: Early diver navigation systems [24] [26]

For example, it took about an hour for a series of small boats to set up or break down

PATS [24]. Additionally, the fixed transducers’ range and location determined the diver’s

survey area, requiring a costly time expense to move the dive spot. This scenario is unlikely

in underwater construction tasks where the location of the pipe or cable is known. However,

in complex search and rescue operations, a small, portable system capable of rapid imple-

mentation with negligible surface disruption is desirable. Fortunately, 21st-century advances

in acoustic communication and autonomous vehicles enable mobile navigation systems and

human-robot teaming.

Two significant research efforts into robotic dive buddies over the last decade are Cog-

nitive Autonomous Diving Buddy (CADDY) [13] and Advancing Diver-Robot Interaction

Capabilities (ADRIATIC) [14]. Since 2014, the CADDY project has improved an AUV’s

ability to track a diver. Early research into camera-based diver tracking relied on detect-

ing the periodic kicking motion of the diver in video streams [27]. More recently, CADDY

researchers relied on a combination of pressure sensors, stereo cameras, forward-looking

multibeam sonar, and USBL systems to track the diver [28] [29]. They also invented Diver-

Net, consisting of 17 inertial sensors placed on the diver, to give the most reliable relative

location and pose data. The sensors provide the body parts’ absolute orientations, which

are then translated into the relative orientation and sent via an acoustic modem to the
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AUV [30]. However, the update rate is too low for the AUV to maintain the correct orien-

tation and distance from the diver at all times. Between DiverNet updates, the sonar and

stereo cameras on the AUV work together to estimate the diver’s pose. The eigenvectors

from the stereo camera’s point cloud serve as inputs to a long short-term memory (LSTM)

recurrent neural network (RNN), which outputs the diver’s heading. Although this system

affords a high update rate, the stereo cameras only give reliable estimations when the AUV

is within three meters of the diver [29]. In low visibility conditions, one could expect that

stereo cameras would have even less range. Therefore, cameras do not provide a dependable

solution for a system intended for use in all visibility conditions.

Active and passive sonar for use in harbor surveillance systems is a rich field [31]. How-

ever, using an AUV’s sonar for diver detection and tracking is less studied. The benefit

of using sonar over camera images is that sonar provides greater ranges and is not depen-

dent on ocean visibility. Most research has used forward-looking multibeam sonar for this

application. DeMarco et al. [32] trained Hidden Markov Models (HMMs) to perform diver

detection and tracking by classifying blob clusters extracted from a sonar image. Neural

network approaches are also common. Kvasić et al. [33] trained five high-performing object

detection and localization networks on sonar images instead of camera images. These convo-

lutional neural network (CNN) algorithms were Tiny YOLO v3, YOLO v2, YOLO v3-SPP,

YOLO v3, and VGG-16. However, research associated with the CADDY project found that

neural networks are not reliable detection algorithms for sonar because the images are low

quality, and noise affects the neural network efficacy [28]. Additionally, a primary issue with

using multibeam sonar for this application is that if the diver leaves the AUV’s field of view,

it is difficult for the AUV to reacquire the diver, especially if there are other moving objects

in the area.

CADDY researchers created an algorithm that fused USBL and sonar sensor outputs

to compensate for these weaknesses. Instead of relying on a neural network approach,

they relied on clustering contours and finding the cluster that matched the expected target

description. The first step in their process is to convolve the sonar image with a two-

dimensional Gaussian function. After this blurring step, binarization is performed, and

contours are clustered together in the resulting image. Each cluster is ranked based on how

closely it matches the expected target and its distance from where the USBL measurement

places the diver. After successfully detecting the diver, an extended Kalman filter (EKF)
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tracks the diver [28].

USBL systems are accurate and precise but prone to outlier measurements [29]. The

CADDY AUV can augment USBL measurements with cameras and sonar because it is near

the diver. Depending on the frequency selected, their forward-looking sonar (FLS) has a

range between five and 15 meters [28]. However, when more considerable distances separate

the diver and AUV, acoustic methods similar to USBL must be more heavily relied upon

even though they have higher latency and lower update rates.

Aside from detecting and tracking divers, the CADDY and ADRIATIC projects have im-

proved divers’ safety and advanced communication between divers and AUVs. One explored

method of communication is through wearable sensors on the diver’s body. In addition

to DiverNet’s ability to send pose information to the AUV, adding a heart rate monitor

or a breathing monitor to the system allows it to communicate the diver’s physiological

status [30]. ADRIATIC applied the concept of wearable sensors to gloves, which can acous-

tically send hand signals to the AUV using strain sensors and an IMU. While water visibility

and the necessity for both divers to be looking decreases hand signals’ effectiveness, this sens-

ing glove recognizes the hand gesture and acoustically sends it to the AUV [14]. Therefore,

they ensure that the diver can communicate with the AUV even when visibility is low and

diver-AUV orientation is not ideal. Although the ADRIATIC research relied upon stan-

dard PADI-approved diver signals, CADDY researchers have established a gesture-based

human-robot language called CADDIAN.

CADDIAN increases the depth of communication possible between the diver and AUV.

As of publication, the language contained 51 commands throughout five core categories:

problems, movement, setting variables, feedback, and tasks. More complicated messages,

such as retasking the AUV to photograph a point of interest, are accomplished via a series

of hand gestures. The operator must meticulously execute these hand gestures when com-

municating via CADDIAN to ensure the AUV has the best chance at understanding the

message [34]. Aside from using kinesics, dynamic retasking of underwater robots has been

accomplished by divers using fiducial markers [35] and dive tablets [36]. Dive tablets provide

many useful tools to increase a diver’s communication, navigation, and survey capabilities.

Although many dive computers are available to assist with tracking decompression stops,

surface intervals, temperature, bottom time, and depth, very few handheld tools are available

that help divers navigate or communicate with a robot. The AQUATablet, developed over
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a decade ago, allows a diver to interact with an underwater vehicle via a tether or visually.

When tethered to the robot, the tablet serves as a joystick, allowing the diver to drive

the robot to deeper depths or more dangerous areas. For tether-less mode, the dive tablet

displays fiducial markers that the diver shows the AUV. These markers can be pre-made or

dynamically generated, allowing the diver to create a custom fiducial marker representing

their desired instruction for the AUV. Additionally, the number of bits of information in the

fiducial tag is dependent on the water visibility; the marker can store more data if the water

clarity is high and vice versa [36]. However, the AUV’s need to be within visual range or

tethered to the diver restricts the team’s capabilities.

The CADDY project utilized a dive tablet to enable acoustic communication between

the diver, AUV, and ASV. In addition to allowing divers to send commands to the AUV, the

support team on the surface could send messages to the diver via the acoustic modems on the

ASV and the dive tablet. The tablet could also gather the diver’s physiological status from

the DiverNet sensors and notify the surface team if the diver’s conditions deteriorated [13].

Stilinović et al. [37] discusses how the CADDY ASV remains above the diver’s position,

thereby allowing the diver’s tablet to determine its relative position from the ASV without

the risk of multipath propagation. Using this relative position, the tablet can then display

the diver’s global location on its map. Many research efforts rely on custom dive tablets for

their experiments. However, Shark Marine Technologies [38] provides commercially available

diver-held systems.

The three dive tablets available through Shark Marine are the E-TAC, the Dive Tablet 2,

and the Navigator [38]. The E-TAC is the smallest and simplest of the three. It offers multi-

domain navigation with a depth rating of 50 meters and an altitude rating of 15,000 meters.

A magnetic compass, gyroscope, and accelerometer provide DR capabilities. Although DR

navigation provides inaccurate location estimates, the diver can remove the accrued error

by getting a fix with the tablet’s GPS sensor. Additionally, the depth sensor and camera

make it a useful tool for beach profiling operations [39]. The Dive Tablet 2 offers more

capabilities than the E-TAC. Although larger and heavier, it provides more attachments,

such as a Doppler velocity log (DVL) and an FLS. Along with this system’s improved

compass and orientation capabilities, these two tools make the tablet more suitable for diver

DR navigation than the E-TAC [40]. However, neither offer as much as the Navigator,

which is the company’s most modular tablet. The Navigator was explicitly designed for
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mine countermeasure (MCM) and search and rescue (SAR) operations. In addition to

the advanced DR and FLS capabilities available on the Dive Tablet 2, the Navigator’s

attachments include multiple types of bathymetric sonars, a side-scan sonar, and an acoustic

positioning system compatible with LBL beacons. It also has a head-mounted display to

allow the diver to see the screen in zero visibility conditions [41]. Even though the three

tablets offer different capabilities, they all run the same software.

DiveLog provides a standard interface between all three Shark Marine tablets. It allows

the user to create waypoint navigation paths within standard map formats or custom map

files. If a sonar sensor is attached, DiveLog will calculate the declared targets’ location and

save that information with a picture of the sonar image. Additionally, DiveLog includes a

Tactical Navigation Screen, which displays the diver’s heading, depth, and estimated position

on the map to assist with DR navigation. DiveLog can also calculate the diver’s course over

ground (COG) if a DVL is attached to the tablet [42]. However, although the Shark Marine

products’ capabilities are impressive, the diver’s positional error still increases without bound

over time without GPS fixes or external information from acoustic transducers.

ASVs and GPS intelligent buoys (GIBs) can serve as navigation aids for divers. One

benefit of using an ASV over a buoy is that if multiple divers are in the water, it can change

its position to optimize the diver’s acoustic communication capability. A patent published

in 2020 and assigned to the United States Navy describes an improved diver navigation

method enabled by a single GIB or ASV. This patent’s goals are similar to the other systems

- improve the diver’s safety, provide a communication link between a command station and

the diver, globally localize the diver, and provide navigation guidance to the diver [43].

However, this approach is unique compared to other recent underwater HAT navigation

techniques because the mobile robot does not need to be in proximity to the diver.

Figure 2-2 shows the communication architecture of the patent described in the previous

paragraph. The buoy or ASV gets its location from GPS and interacts with the diver through

an acoustic modem and USBL array consisting of four hydrophones. The acoustic modem

starts the localization process by sending an acoustic pulse to the diver. The transducer on

the diver’s tablet detects this pulse and acoustically responds with their depth and unique

identification message. The USBL array uses the ocean’s sound speed, round-trip travel

time, and phase difference at each hydrophone to determine the diver’s distance and bearing.

The diver’s location information is then sent via radio frequency link to a distant command
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Figure 2-2: Communication architecture of the system described in the "Diver navigation,
information, and safety buoy" patent [43]. The red arrows denote communication between

those elements.

station at sea or on land, allowing them to track the diver in the water. The acoustic modem

also sends the diver location information back to the diver, whose tablet has a processor

capable of calculating its estimated global latitude and longitude. These coordinates serve

as an input to a Kalman filter, which outputs the diver’s predicted position. Additionally,

the command station can send navigation directions through the ASV or GIB to the diver

using simple 40-bit messages. These messages are then displayed on the diver’s tablet [43].

The combination of an AUV and ASV also provides an accurate navigation aid for

divers. In 2020, CADDY researchers published a paper detailing their human-robot navi-

gation technique called the pointer strategy. Although CADDY research frequently utilized

dive tablets, this approach does not require one. Instead, this method relies on a complex

control system that allows their specially designed over-actuated AUV to maintain a con-

stant range from the diver. Calculating the diver’s relative position from the AUV is crucial

to this ability and is done using a combination of depth sensors, stereo cameras, sonar, and

USBL measurements. Proper processing of the stereo camera’s point cloud results in the

diver’s distance, azimuth, elevation, and orientation. The sonar and USBL systems serve

as alternate diver position detectors if they are outside the camera’s range. Additionally,
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Figure 2-3: CADDY pointer strategy [12]. The red arrows denote communication between
those elements.

the diver’s depth is acoustically transmitted to the AUV to ensure they are both at the

same depth. An ASV positioned above the human sends its GPS location to the AUV.

After calculating its position, the AUV can determine the diver’s global coordinates using

the relative position information retrieved from its sensor suite. Provided it also knows the

target location, the AUV can place itself between the diver and target so that the diver can

swim in the AUV’s direction to travel towards the target. In this way, the AUV serves as a

pointer to the target. Figure 2-3 illustrates this orientation. As the diver swims towards the

AUV, it adjusts its position to maintain a constant standoff distance from the diver until

it is within a pre-determined range of the target. At that point, the guidance mission con-

cludes [12]. Due to the diver’s visual requirement, this system’s effectiveness is dependent

on water visibility. However, another recent HAT navigation system does not require visual

communication between the diver and robot.

Like CADDY, the ADRIATIC project uses a novel over-actuated AUV explicitly designed

to assist the diver with tasks and safety monitoring. Their dive buddy AUV concept is a

handheld dive tablet attached to propulsion skids [14]. The tablet is a Kenautics D2 Diving

Navigation System that includes a DVL, microelectromechanical systems (MEMS) attitude

and heading reference system (AHRS), pressure sensor, FLS system, low-light video camera,
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and GPS [44]. The diver can use the tablet on the vehicle to perform dynamic mission

programming and setting reconfiguration. Additionally, the D2 AUV has an acoustic modem

to communicate with the diver’s acoustic modem. The diver’s modem transmits messages

formed via the previously mentioned sensing glove. These modems are also used for range-

only localization to augment the camera and sonar measurements used to track the diver.

Although this AUV concept is in its infancy and just recently built for the first time, the

eventual goal is for it to have the ability to lead a diver to a target location [14]. Overall,

this system’s communication architecture and capabilities are the most similar found during

the literature review to this thesis. However, the D2 AUV is not widely available, and the

sensors onboard are less capable than those on leading commercial AUVs. Developing a

range-only diver navigation method using established high-performing AUVs will result in

a more skillful and available HAT.

Since the 1970s, diver navigation systems have improved in similar ways to many other

technologies - the size has decreased, and the autonomy has increased. Early examples, such

as PATS and the Hughes Aircraft Company system, employed pre-staged surface buoys.

Improved robot autonomy and acoustic techniques allow modern methods to rely on AUVs

and ASVs. Furthermore, recent AUV-guided diver navigation methods have relied on novel

AUVs. However, improved AUV DR navigation in concert with modern acoustic, state esti-

mation, and diver technologies enable a reliable range-only diver navigation system without

any surface presence using commercial AUVs.

2.2 Range-Only Single-Beacon Navigation

Using range measurements calculated via an acoustic signal’s travel time to localize an under-

water vehicle is common and offers significant navigation improvements over dead reckoning

methods. Although range-only localization initially relied on fixed beacons, research has

extended this approach to moving vehicles within the past two decades. One example is the

homing problem, where a single vehicle uses range measurements from a static beacon to

travel to its location. A more recent technique is the moving long baseline (MLBL) concept,

where AUVs with less accurate navigation systems localize themselves using range measure-

ments from AUVs with highly capable navigation systems. These concepts demonstrate the

benefit of using heterogeneous underwater elements to cooperatively accomplish a task and
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provide the inspiration for extending ROSB navigation to teams involving humans.

Early research into underwater ROSB navigation came in the form of the homing prob-

lem. An inherent issue with range data is that a single observation does not provide the

receiving vehicle with enough information to determine its position or the direction to travel

towards the beacon. Vaganay et al. [45] determined that a vehicle path perpendicular to

the direction of the fixed beacon maximized the Fisher information matrix, which quantifies

the amount of information an observation contains about the state estimate [46]. Therefore,

driving a heading perpendicular to the bearing of the beacon provides the best configuration

to localize it. However, as this research focused on the homing problem, maintaining that

heading is insufficient because it would cause the AUV to drive a fixed-radius circle around

the static beacon. Instead, the authors implemented an EKF onboard the AUV to estimate

its error covariance ellipsoid and the beacon’s location. Upon each range measurement, these

state variables helped determine the heading the AUV should steer. This behavior formed

a spiral-like trajectory, with the AUV initially driving nearly perpendicular to the beacon’s

direction and, eventually, driving directly at the beacon as its confidence in the beacon’s

location increased [45]. Research into range-only measurements eventually advanced from

the homing problem to cooperative navigation between multiple AUVs.

Vaganay et al. [47] first introduced the multi-vehicle relative navigation technique known

as the MLBL concept. These authors recognized that removing the requirement for pre-

surveyed beacons made this concept less logistically demanding and more appropriate for

large area surveys than traditional LBL methods. Their MLBL system relied on three types

of AUVs: the communication and navigation aid (CNA) vehicles, the search, classify, and

map (SCM) vehicles, and the reacquire and identify (RI) vehicles. Each vehicle type served

a specific role within the mission. Specifically, CNA vehicles enabled the MLBL concept

by serving as moving beacons, SCM vehicles provided automatic target recognition (ATR)

using sonar, and RI vehicles identified the targets at the locations of interest communicated

by the SCM vehicles [47]. Accomplishing a complex mission through a heterogeneous AUV

infrastructure served as an inspiration for this thesis.

For the MLBL research mentioned above, the two CNAs were positioned behind and

on each side of the SCM and RI vehicles. Figure 2-4 illustrates this vehicle configuration.

The less capable vehicles received two minutes of range measurements to the CNAs every

15 minutes throughout the transit. Simulations showed that the SCM vehicle could have an
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Figure 2-4: Moving long baseline (MLBL) vehicle configuration during transit. The
communication and navigation aid (CNA) vehicles are 500 meters apart. Additionally, the

reacquire and identify (RI) vehicles are 250 meters ahead of the CNAs and the search,
classify, and map (SCM) vehicles are 350 meters ahead of the CNAs [47].

absolute position error as high as 60 meters after 60 minutes of travel if relying exclusively

on its DR navigation solution with DVL bottom-lock. However, when using their MLBL

filter to incorporate the ranges from the two CNAs, each of the 100 simulations resulted in

an absolute position error below 15 meters after 60 minutes [47]. It is important to note

that this configuration relied on range measurements from two CNAs. ROSB navigation

only uses one CNA, thus requiring more complex autonomous behaviors to eliminate the

spatial ambiguity problem.

Fallon et al. [48] extended the MLBL concept to a single ASV serving as the CNA

for multiple AUVs. This research comments on the importance of a CNA trajectory that

benefits localization for other AUVs with pre-planned paths. They determine that a non-

linear estimator’s measurement function can provide accurate and unambiguous location

estimates using range measurements to a CNA if the two vehicles’ relative position changes

throughout the transit. Conversely, if their relative motion remains constant, the system’s

uncertainty grows. Therefore, they recommend two relative geometry configurations for an

AUV navigating relative to an ASV: one is that the ASV zigzags across the AUV’s path,
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Figure 2-5: The zigzag behavior (left) and circling behavior (right) provide beneficial
range-only single-beacon relative geometry between a communication and navigation aid

vehicle and a second autonomous vehicle [48].

and the other is that the ASV encircles the AUV continuously [48]. Figure 2-5 provides

a visual of these two methods. However, ROSB navigation performance degrades without

successful acoustic communication regardless of the relative motion between elements.

2.3 Acoustic Communication and the Woods Hole Oceano-

graphic Institution Micromodem 2

Underwater acoustic telemetry requires adaptations to traditional digital communication

techniques due to the ocean channel’s inherent rapid fading and time dispersive nature. It

is essential to understand these principles to appreciate the difficulty of underwater commu-

nication. First, we introduce the environmental factors that impact the transmitted signal.

For example, attenuation is the weakening of the signal as it travels through the ocean and

multipath propagation means the signal takes multiple indirect paths to the receiver, with

each one requiring a different amount of time. Additionally, receivers must also account

for frequency spreading caused by the transmitter’s and receiver’s relative motion, called

the Doppler shift. Then, we discuss the signal processing techniques required to overcome

these difficulties and introduce the WHOI Micromodem 2 [15], a state-of-the-art acoustic
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Figure 2-6: Acoustic attenuation at relevant frequencies and ranges.

communication device.

Radio channels operate using high-frequency EM waves with the potential to carry large

quantities of data. However, EM waves rapidly attenuate in water, thus requiring underwater

communication to rely on acoustic transmissions. Although acoustic waves also experience

attenuation as they travel through the ocean due to absorption and scattering, it is at a

much lower degree than EM waves. An approximation for the attenuation coefficient of

ocean acoustic signals is

𝛼′ ≃ 3.3 × 10−3 +
0.11𝑓2

1 + 𝑓2
+

44𝑓2

4100 + 𝑓2
+ 3.0 × 10−4𝑓2, (2.1)

where 𝛼′ is in decibels per kilometer and 𝑓 is the frequency in kilohertz [49]. This attenua-

tion is a primary reason acoustic communication is generally performed below 30 kilohertz,

reducing the data each signal can carry compared to higher frequency radio waves.

Acoustic modems on AUVs typically use transducers rated for frequencies between 10

and 28 kilohertz [50]. Figure 2-6 uses Equation 2.1 to show the estimated attenuation at

ranges relevant to our cooperative navigation approach. Since the attenuation is low across

all frequencies shown in that figure, it is beneficial to use higher frequencies because the

signal can carry more data.

One can visualize the multipath propagation of acoustic transmissions through a ray-
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tracing approach. For an omnidirectional source, the signal spherically expands from the

transmission point and eventually bounces off the ocean surface and seafloor. Multipath can

even occur with a theoretically perfect planar wave because sound bends towards regions of

low sound speed. Snell’s law models this phenomenon with

𝑐𝑜𝑠(𝜃)

𝑐
= constant, (2.2)

where 𝜃 is the ray angle with respect to the horizontal plane and 𝑐 is the local sound

speed [49]. Since each of the multiple paths is a different length, the receiving transducer

detects numerous arrivals of the same packet. These arrivals cause intersymbol interference

(ISI), which makes equalization, or distortion reversal, difficult. Although ISI occurs in

airborne radio channels, it is generally no larger than two or three symbol intervals. However,

in the underwater acoustic channel, ISI can span several tens of symbol intervals [51].

Frequency spreading caused by the relative motion of the source and receiver also ad-

versely affects communication. Accounting for Doppler shift is especially important with

communication between two AUVs or an AUV and a diver, where the relative speed and

relative heading between both elements rapidly varies. Kilfoyle and Baggeroer [52] wrote

that the one-way Doppler shift can be estimated by

△𝑓𝑑𝑜𝑝𝑝𝑙𝑒𝑟 ≈
0.35𝐻𝑧

𝑉 * 𝑓𝑠𝑜𝑢𝑟𝑐𝑒
, (2.3)

where 𝑉 is the relative speed of the two elements in knots and 𝑓𝑠𝑜𝑢𝑟𝑐𝑒 is the frequency in

kilohertz of the acoustic signal at the source. This Doppler spreading causes a frequency

translation as well as continuous frequency spreading, the latter of which is much more

difficult for a receiver to mitigate [52]. Overall, acoustic communication receivers must be

robust enough to operate in these harsh environments and adaptable enough to account for

the constantly changing nature of the medium.

Early acoustic telemetry devices relied on frequency-shift keying (FSK), where modifica-

tion of the carrier signal frequency represents changes in the digital signal. Receivers of this

signal rely on energy detection, or incoherent, algorithms, which are designed to be robust

to the channel’s multipath and Doppler spreading. To decode the incoming message, the

signal passes through narrow-band filters, and the receiver makes decisions based on the

energy output of those filters. Incoherent methods do not compensate for ISI but are still
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Figure 2-7: Signal frame consisting of a channel probe, training sequence, and data
block [53].

subject to its effects. Consequently, they suffer from bandwidth inefficiency and, therefore,

are inappropriate for larger data rates [52].

Before the 1990s, phase-shift keying (PSK) modulation was deemed ill-suited for acous-

tic communication due to the ocean channel’s reverberation and spatiotemporal fluctuation.

In PSK, the digital signal is encoded in the carrier signal’s phase. Therefore, receivers re-

quire coherent, or phase detection, algorithms to decode these incoming transmissions [52].

Although more complex, PSK offers higher data rates and power efficiency than FSK. Sto-

janovic et al. [51] [53] demonstrated the first successful coherent receiver for ocean acoustic

communication. The contribution of this influential research was an adaptable receiver that

jointly performed synchronization, where the timing is aligned between the sender and re-

ceiver to assist in data extraction, and equalization, which seeks to remove the ISI [54]. This

process relies on the signal frame shown in Figure 2-7. Although the following paragraph

presents a brief overview of the process, Stojanovic et al. [51] [53] and Johnson et al. [54]

provide more in-depth descriptions.

To start the process, the incoming signals are sampled at the Nyquist rate or higher,

brought to baseband, and then decimated. Next, they are frame synchronized through

matched filtering to the known channel probe at the beginning of each message. Then, the

training sequence allows the receiver to coarsely estimate and, therefore, remove the mean

Doppler shift. Any remaining Doppler shift is eliminated by a phase-locked loop [54]. Each

input signal is then coherently combined in the feedforward section, after which decisions

are made on the encoded information. Finally, the receiver updates its parameters, such as

the carrier phase estimate and feedback equalizer coefficients, by analyzing the minimum

mean square error (MMSE) of its symbol prediction [51]. Stojanovic et al. [53] provides an

equation to calculate the MMSE:

𝑀𝑀𝑆𝐸 = 𝐸{|𝑑𝑛 − 𝑑𝑛|2}, (2.4)
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where 𝑑𝑛 is the transmitted symbol and 𝑑𝑛 is the receiver’s estimated symbol. These com-

biner and channel estimate parameters are rapidly changed to track the varying acoustic

channel. Experiments with this new receiver structure showed successful PSK modulation,

with 1,000 symbols per second transmitted over 48 nautical miles [51]. An additional benefit

to this method is it takes advantage of the multipath nature of the environment by combin-

ing the signal’s various arrivals to increase the signal-to-noise ratio (SNR) [55]. Since the

1990s, coherent communication technology has improved and is now considered the more

robust acoustic messaging method.

The WHOI Micromodem 2 [15], first introduced in 2010, takes advantage of these in-

coherent and coherent communication techniques to provide a compact, low-power, and

robust acoustic messaging platform. The Micromodem 2 offers increased performance over

the WHOI Micromodem 1 [56]. For example, the Micromodem 2 has improved processing

power and decreased power consumption compared to its predecessor. It also allows both

frequency-hopping FSK (FH-FSK) and PSK modulation, with FH-FSK offering a data rate

of 80 bits per second and PSK offering a burst data rate as high as 5,388 bits per second.

The modem transmits data in packets, which may be broken up into multiple frames de-

pending on the selected data rate and quantity of data. There are seven data rates, with

Rate 0 being the only one to use FSK modulation. Rate 1 through Rate 6 utilize quadrature

phase-shift keying (QPSK), where each phase symbol is ninety degrees apart and represents

two bits. The data rates use various error correction codes and cyclic-redundancy checks to

ensure the fidelity of every frame. Recently, WHOI engineers within the Acoustic Communi-

cation Group developed the Flexible Data Protocol (FDP), which provides greater flexibility

and utility than their standard communication protocol. Overall, the Micromodem 2 pro-

vides a high-performing acoustic communication device specifically designed for underwater

networking and navigation [57].

One Micromodem 2 function involves pinging another modem system to determine the

signal’s travel time. Specifically, the ping function determines the TWTT, which equals the

time it takes for a signal to travel from a transmitting transducer to a second transducer and,

then, for a reply signal from the second transducer to reach the original transmitter. Upon

receiving the reply, the first modem system subtracts the turnaround time, or the time it

takes for the second modem system to generate a reply signal, from the TWTT and divides

the result by two to determine the one-way-travel-time (OWTT). Then, the OWTT can be
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multiplied by the sound speed to calculate the range between the transducers [48]. State

estimation algorithms can utilize these range measurements to achieve accurate localization

of autonomous vehicles.

2.4 Nonlinear Least-Squares Estimation and Factor Graphs

This section provides the background on NLS analysis and factor graphs required to un-

derstand the state estimation method used to localize the diver. First, we discuss why we

chose an NLS approach. Then, we show the process to get from the maximum a posteriori

(MAP) equation to the NLS cost function. We conclude by discussing standard optimization

methods to solve the NLS cost function.

We build on the research from Fallon et al. [48], which compared the use of an EKF,

particle filter (PF), and NLS approach for cooperative navigation between an AUV and an

ASV using range measurements. Their problem statement is very similar to ours in the

reliance on ranging data between autonomous elements. Using a 70-minute transit where

two autonomous kayaks localized themselves off a single CNA, those authors concluded that

the PF outperformed the EKF, the online NLS algorithm outperformed the PF, and the

post-processed NLS solution performed the best. Since the EKF has a fixed linearization

point, imprecise range and odometry measurements during the transit resulted in sporadic

position estimates requiring extended time periods to reconverge back to an accurate value.

Conversely, NLS methods reoptimize their entire path upon each new measurement, resulting

in better performance throughout the test. Additionally, this method relied heavily on

nonlinear range measurements, which are more accurately captured by the PF and NLS

approaches. However, the PF requires more computational power than the NLS method.

Although not accomplished in this thesis, our process will eventually operate on a computer

attached to a submersible dive tablet. For that reason, a more efficient state estimation

algorithm is beneficial due to processing constraints on the tablet’s computer. Overall,

Fallon et al. [48] recommended NLS approaches for future work in cooperative navigation.

Since our HAT navigation architecture shares many similarities with their method, we take

their advice and rely on NLS estimation.

The iSAM2 algorithm [58] is a state-of-the-art NLS method that uses a factor graph-

based approach to provide real-time location estimates and efficient incremental optimiza-
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Figure 2-8: Simple cooperative navigation state estimation example.

tion. Similar to Dellaert and Kaess [59], we introduce the foundational elements of that

algorithm through a simple example. However, our example is representative of the AUV-

ASV cooperative navigation method from the previous paragraph.

As the AUV traveled through the ocean, OWTT range measurements to the ASV aug-

mented its dead reckoning solution. Figure 2-8 represents the first few steps of this problem.

At position 𝑥1, a GPS fix determines the AUV’s initial position. Following that fix, the

AUV travels forward and receives two range measurements to the ASV, located at 𝑙1 for the

first and 𝑙2 for the second. An effective state estimation algorithm would find all the AUV’s

unknown state variables, such as its position, given all the measurements it receives. The

most common algorithm to determine these variables is the MAP estimate, which seeks to

solve the equation

𝑋𝑀𝐴𝑃 = argmax
𝑋

𝑝(𝑋|𝑍), (2.5)

where 𝑋 is the unknown state variables, 𝑍 is the measurements, and 𝑝(𝑋|𝑍) is the posterior

density representing the probability of the state variables given the measurements [59].

Bayes’ theorem states that

𝑝(𝑋|𝑍) =
𝑝(𝑍|𝑋)𝑝(𝑋)

𝑝(𝑍)
, (2.6)

but since all the measurements 𝑍 are given, 𝑝(𝑍) is ignored as a normalization factor that

does not impact the MAP estimate [59]. Additionally, rewriting 𝑝(𝑍|𝑋) as a likelihood

underscores that the value is a function of the state variables (𝑋) because the measurements
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(𝑍) are provided and merely serve as parameters. Therefore, since the likelihood (𝑙(𝑋;𝑍))

is proportional to 𝑝(𝑋|𝑍), the restructured MAP equation is

𝑋𝑀𝐴𝑃 = argmax
𝑋

𝑙(𝑋;𝑍)𝑝(𝑋), (2.7)

which provides the best form of this estimate to visualize its connection to factor graphs [59].

However, before describing factor graphs, we find the posterior for our AUV-ASV example

using Bayes’ theorem to serve as a comparison. In Figure 2-8, the posterior density (𝑝(𝑋|𝑍))

is proportional to

𝑙(𝑋;𝑍)𝑝(𝑋) = 𝑙(𝑥1; 𝑧1)𝑙(𝑥2, 𝑙1; 𝑧2)𝑙(𝑥3, 𝑙2; 𝑧3) (2.8)

× 𝑝(𝑙1)𝑝(𝑙2)𝑝(𝑥1)𝑝(𝑥2|𝑥1)𝑝(𝑥3|𝑥2)𝑝(𝑥4|𝑥3), (2.9)

where 𝑧1 is the GPS measurement, 𝑧2 is the first range measurement to 𝑙1, and 𝑧3 is the

second range measurement to 𝑙2.

A factor graph is a bipartite graph that seeks to represent a global function as a series of

simpler local functions. Within a factor graph, there are factors (𝜑𝑖) and variables (𝑥𝑗). The

relationships between factors and variables are expressed through edges (𝑒𝑖𝑗), which show

that each factor is only a function of the variables adjacent to it [60]. Overall, the factor

graph defines the global function as a product of the local factors through

𝜑(𝑋) =
∏︁
𝑖

𝜑𝑖(𝑋𝑖), (2.10)

with 𝑋𝑖 ⊆ 𝑋 being the subset of variables in 𝑋 that neighbor the factor 𝜑𝑖 [59].

The factor graph from our simple example is seen in Figure 2-9, where the small numbered

black circles represent factors, the large white circles represent variables, and the black lines

represent edges. This graph is represented by the equation

𝜑(𝑋) = 𝜑1(𝑥1)𝜑2(𝑥2, 𝑙1)𝜑3(𝑥3, 𝑙2) (2.11)

× 𝜑4(𝑙1)𝜑5(𝑙2)𝜑6(𝑥1)𝜑7(𝑥2, 𝑥1)𝜑8(𝑥3, 𝑥2)𝜑9(𝑥4, 𝑥3). (2.12)

The factor order in Equation 2.11 and 2.12 mimics Equation 2.8 and 2.9, respectively, so it

is clear which values the factors correspond to in the original posterior density calculation.
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Figure 2-9: Simple cooperative navigation factor graph example.

Therefore, Dellaert and Kaess [59] show that, since the product of factors is proportional to

the posterior density, Equation 2.5 can be rewritten as

𝑋𝑀𝐴𝑃 = argmax
𝑋

∏︁
𝑖

𝜑𝑖(𝑋𝑖). (2.13)

Odometry and two-dimensional range factors are the primary measurements in our simple

example and, more broadly, this thesis. In Figure 2-9, odometry factors link adjacent poses

𝑥𝑖−1 to 𝑥𝑖 and range factors connect a pose 𝑥𝑖 to a landmark 𝑙𝑖−1. The measurement model

(ℎ𝑖(𝑋𝑖)) for an odometry factor is defined as

ℎ(𝑥𝑖−1, 𝑥𝑖) , ⊖𝑥𝑖−1 ⊕ 𝑥𝑖, (2.14)

where, for this example, 𝑥𝑖−1 and 𝑥𝑖 represents subsequent global coordinates of the AUV,

⊖ represents pose inversion, and ⊕ represents pose composition [61]. Additionally, being

global coordinates, the poses are in the special Euclidean group SE(2), which is the set of

rigid body motions in two dimensions. The measurement model for a range factor is

ℎ(𝑥𝑖, 𝑙𝑖−1) ,‖ 𝑡𝑥𝑖 − 𝑡𝑙𝑖−1
‖2, (2.15)

where 𝑡𝑥𝑖 represents the AUV’s global translation vector at 𝑥𝑖, 𝑡𝑙𝑖−1
represents the ASV’s

global translation vector at 𝑙𝑖−1, and ‖ 𝑒 ‖2 represents the Euclidean distance between those
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two points [61].

Throughout this thesis, we assume measurements are corrupted by additive Gaussian

noise with known covariance. Therefore, the equation for each factor is

𝜑(𝑋𝑖) ∝ exp
{︁
− 1

2
‖ ℎ𝑖(𝑋𝑖) − 𝑧𝑖 ‖2Σ𝑖

}︁
, (2.16)

where ℎ𝑖(𝑋𝑖) is the model that predicts the measurement given 𝑋𝑖, 𝑧𝑖 is the measurement

from the sensor and ‖ 𝑒 ‖2Σ𝑖
, 𝑒𝑇Σ−1

𝑖 𝑒 is the squared Mahalanobis distance with covariance

matrix Σ𝑖 [58]. However, by removing the 1/2 and taking the negative log of Equation 2.16,

Dellaert and Kaess [59] show it can be substituted into Equation 2.13 to convert the MAP

estimate to an NLS problem:

𝑋𝑀𝐴𝑃 = argmin
𝑋

∑︁
𝑖

‖ ℎ𝑖(𝑋𝑖) − 𝑧𝑖 ‖2Σ𝑖
. (2.17)

As mentioned previously, the measurement functions are nonlinear. Therefore, to solve

Equation 2.17, the measurement function (ℎ𝑖(.)) must be linearized using the Taylor expan-

sion

ℎ𝑖(𝑋𝑖) = ℎ𝑖(𝑋
0
𝑖 + ∆𝑖) ≈ ℎ𝑖(𝑋

0
𝑖 ) + 𝐻𝑖∆𝑖, (2.18)

where 𝐻𝑖 is the measurement Jacobian, 𝑋0
𝑖 is the linearization point, and ∆𝑖 is the state

update vector [59]. The measurement Jacobian is the partial derivative of the measurement

function at the linearization point. Substituting the above equation into Equation 2.17

results in

∆* = argmin
Δ

∑︁
𝑖

‖ ℎ𝑖(𝑋
0
𝑖 ) + 𝐻𝑖∆𝑖 − 𝑧𝑖 ‖2Σ𝑖

, (2.19)

where ∆* is the state update solution at this linearization point [59]. The covariance (Σ𝑖)

can be eliminated from the above equation by, instead, pre-multiplying each term by Σ
−1/2
𝑖 .

This is possible because, as shown by Dellaert and Kaess [59], the Mahalanobis norm can

be rewritten as

‖ 𝑒 ‖2Σ, 𝑒⊤Σ−1𝑒 =
(︁

Σ−1/2𝑒
)︁⊤ (︁

Σ−1/2𝑒
)︁

=‖ Σ−1/2𝑒 ‖22 . (2.20)
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Then, by reordering Equation 2.19 and setting 𝐴𝑖 = Σ
−1/2
𝑖 𝐻𝑖 and 𝑏𝑖 = Σ

−1/2
𝑖

(︀
𝑧𝑖 − ℎ𝑖(𝑋

0
𝑖 )
)︀
,

that equation becomes

∆* = argmin
Δ

‖ 𝐴∆ − 𝑏 ‖22, (2.21)

where 𝐴 ∈ R𝑚×𝑛 is the sparse measurement matrix containing all Jacobians (𝐴𝑖) and 𝑏 is

a right-hand-side vector containing all prediction errors (𝑏𝑖) [59]. An important relation to

recognize is that the measurement matrix (𝐴) represents the original factor graph linearized

at 𝑋0
𝑖 . The measurement matrix for our simple cooperative navigation problem is shown

below.

[𝐴|𝑏] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛿𝑙1 𝛿𝑙2 𝛿𝑥1 𝛿𝑥2 𝛿𝑥3 𝛿𝑥4 𝑏

𝜑1 𝐴13 𝑏1

𝜑2 𝐴21 𝐴24 𝑏2

𝜑3 𝐴32 𝐴35 𝑏3

𝜑4 𝐴41 𝑏4

𝜑5 𝐴52 𝑏5

𝜑6 𝐴63 𝑏6

𝜑7 𝐴73 𝐴74 𝑏7

𝜑8 𝐴84 𝐴85 𝑏8

𝜑9 𝐴95 𝐴96 𝑏9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In equation 2.21, ∆ is equal to

(︀
𝛿𝑙⊤1 , 𝛿𝑙

⊤
2 , 𝛿𝑥

⊤
1 , 𝛿𝑥

⊤
2 , 𝛿𝑥

⊤
3 , 𝛿𝑥

⊤
4

)︀
. Once ∆ is found, the new

state estimate is calculated by 𝑋0
𝑖 ⊕ ∆, where ⊕ is simple addition for our scenario. This

new state estimate is then used as the linearization point in the following iteration [58].

Dellaert and Kaess [59] describe multiple nonlinear optimization methods to find ∆ using

the NLS cost function (𝑐(𝑋)) derived from Equation 2.17:

𝑐(𝑋) ,
∑︁
𝑖

‖ ℎ𝑖(𝑋𝑖) − 𝑧𝑖 ‖2Σ𝑖
. (2.22)

An important reminder is that the right side of Equation 2.22 corresponds to the summation

of factors within the nonlinear factor graph. Therefore, our example’s NLS problem aims to

find the global minimum of the sum of the odometry and two-dimensional range factors.

This thesis relies on three nonlinear optimization methods: gradient descent, Gauss-
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Newton, and Powell’s dogleg algorithm. Each of these start with an initial state estimate

(𝑋0) and revise that state using an update (∆) to find the subsequent state estimate (𝑋1).

This process continues to get from each state (𝑋𝑡) to the following state (𝑋𝑡+1).

Gradient descent is a popular technique in machine learning algorithms. Dellaert and

Kaess [59] show this method calculates the update value (∆) with the equation

∆ = −𝛼∇𝑐(𝑋)|𝑋=𝑋𝑡 . (2.23)

The step size (𝛼) is a user-selected parameter that determines whether large or small steps

should be taken in the negative gradient direction. An issue with this method is it converges

slowly near the global minimum.

The Gauss-Newton method offers fast convergence by relying on direct methods for least

squares. The update is found using the normal equations

𝐴⊤𝐴∆ = 𝐴⊤𝑏, (2.24)

where 𝐴 is the measurement Jacobian and 𝑏 contains the prediction errors [59]. The Hessian,

being the set of all second partial derivatives taken with respect to ∆, is equal to 𝐴𝑇𝐴 and

determines whether the solution is a global minimum, local minimum, or saddle point. For

example, if the Hessian is positive semi-definite, it is a global minimum. This technique

can result in diverging estimates if the objective function is not quadratic and the prior is

inaccurate [59].

Although both gradient descent and Gauss-Newton have drawbacks, Powell’s dogleg

algorithm [62] combines both to efficiently and accurately perform NLS optimization. This

algorithm computes the gradient descent update and takes that step. Next, it calculates

the Gauss-Newton update and moves from the gradient descent solution toward the Gauss-

Newton solution but stops at a trust-region boundary. At each iteration, Powell’s dogleg

algorithm determines the size of the trust-region based on a gain ratio that signifies whether

the cost function from Equation 2.22 has decreased [59]. Another NLS optimization method

is Levenberg-Marquardt, which also relies on a trust region. However, Powell’s dogleg is more

efficient, which is beneficial due to the eventual computational constraints of the computer

on the diver’s submersible tablet.

Overall, factor graph-based NLS estimation using Powell’s dogleg algorithm provides
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efficient and accurate state updates for underwater cooperative navigation problems relying

on range measurements. The measurement matrix, representing the underlying factor graph,

serves as a foundational element of iSAM2 to provide efficient real-time location updates.

For more in-depth coverage of these methods, we recommend Kaess et al. [58], Dellaert and

Kaess [59], and Kschischang et al. [60].

2.5 Incremental Smoothing and Mapping 2

Assuming Gaussian noise and measurement models with known covariances, iSAM2 tries

to solve the linear least-squares problem shown in Equation 2.21. Two graphical models

important to iSAM2 are the Bayes net and the Bayes tree. A Bayes net represents the

graphical model version of the square root information matrix (𝑅), which has been used in

SLAM problems to solve the robot trajectory and map [63]. A Bayes Tree is a directed data

structure with nodes that represent the cliques within the Bayes net [64]. It is important

to introduce these models to understand iSAM2 and why it provides an advantageous state

estimation algorithm for our proposed system.

The measurement matrix, introduced in the previous section, represents the system’s

Gaussian factor graph with the number of rows equal to the number of measurements. As

shown by Dellaert and Kaess [59], QR factorization converts the measurement matrix (𝐴)

into a Bayes net. This matrix decomposition method seeks to solve

𝐴 = 𝑄𝑅, (2.25)

where 𝐴 is the measurement matrix, 𝑄 is an orthogonal matrix, and 𝑅 is an upper triangular

matrix associated with the Bayes net [59]. Therefore, this step converts a Gaussian factor

graph, represented by 𝐴, into a chordal Bayes net (𝑅) through elimination. Figure 2-

10 shows the Bayes net for our simple cooperative navigation example. The 𝑅 matrix

representing that Bayes net is below, where the 𝑋s represent non-zero entries.
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Figure 2-10: Bayes net for our simple cooperative navigation example.

𝑅 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑙1 𝑙2 𝑥1 𝑥2 𝑥3 𝑥4

𝑋 𝑋

𝑋 𝑋

𝑋 𝑋

𝑋 𝑋

𝑋 𝑋

𝑋

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The key graphical model within iSAM2 is the Bayes tree. Cliques are groups of fully

connected variables. The example we have been utilizing through these past two sections has

a relatively uninteresting clique structure considering there are no more than two variables

in a clique. Two examples from our Bayes net are the root clique 𝐶1 = {𝑥3, 𝑥4} and

𝐶2 = {𝑙2, 𝑥3} = {𝑙2 : 𝑥3}. The tree’s root clique represents the last variables eliminated.

Additionally, 𝐶2 is written as {𝑙2 : 𝑥3} to delineate the separator (𝑥3), which serves as the

intersection between that clique and its parent clique [59]. Figure 2-11 shows the full Bayes

tree for the simple ASV-AUV cooperative navigation example. Kaess et al. [64] provides

more complicated examples and explains the full algorithm to turn a chordal Bayes net into

a Bayes tree.

Bayes trees are useful because they encode the problem’s joint density 𝑃 (𝑋), where 𝑋

is the set of variables in the tree [59]. However, other graphic models accomplish this as

well. The true utility of the Bayes tree within the SLAM problem is that the structure
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Figure 2-11: Bayes tree for our simple cooperative navigation example.

Algorithm 1 One step of the iSAM2 algorithm [58]

In/Out: Bayes tree (𝜏), nonlinear factors (𝜑), linearization point (𝑋0
𝑖 ), update (∆)

In: New nonlinear factors (𝜑′), new variables (𝑋0′
𝑖 )

1: Add new odometry or range factors (𝜑 := 𝜑 ∪ 𝜑′)
2: Initialize new variables (𝑋0

𝑖 := 𝑋0
𝑖 ∪𝑋0′

𝑖 )
3: Update linearization point using fluid relinearization
4: Update Bayes tree by recalculating cliques affected by new variables and relinearization
5: Complete partial state update by solving for ∆ using Powell’s dogleg algorithm
6: Calculate the current state estimate ∆* = 𝑋0

𝑖 + ∆

captures the flow of information during elimination, thereby causing newly added factors to

have minimal impact baring a loop closure [58]. To add a factor between variables 𝑥𝑗 and

𝑥𝑘, all cliques involving those variables up through the root are converted back to a factor

graph. After the measurement is added, the factors are relinearized, and the full Bayes tree

is recreated through elimination [59]. The parts of the Bayes tree below the affected cliques

and not containing 𝑥𝑗 and 𝑥𝑘 are untouched. For example, to add a new odometry factor

𝜑(𝑥4, 𝑥5) in our simple example, only the root clique would be affected. Kaess et al. [64]

contains more detailed information on this process and on how the Bayes tree promotes

efficient incremental inference.

The Bayes tree enables iSAM2’s fluid relinearization and partial state updates to provide

a computationally efficient and accurate SLAM method. Whereas an EKF has the potential

to diverge due to its fixed linearization point, iSAM2 tracks each variable’s linearization
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point and only relinearizes when necessary. When the state update (∆𝑖) is calculated at each

linearization point (𝑋0
𝑖 ), iSAM2 marks variables in ∆𝑖 that exceeded threshold 𝛽 compared

to the previous state update vector (∆𝑖−1). Only the linearization point for these marked

variables is updated, saving computational power over other methods that relinearize every

variable. Similarly, iSAM2 only performs nonlinear optimization on variables impacted

by the addition of the new factor. This partial state update starts performing full back-

substitution at the root but stops when it encounters a clique with all variables in ∆ changing

less than threshold 𝛼. Therefore, along with providing real-time state estimates, it smooths

the entire path at each step in a computationally efficient manner [58]. We summarize

iSAM2’s main steps in Algorithm 1. Some of the steps provide information specific to this

thesis, such as the relevant factor types and the nonlinear optimization method.

Along with providing more detail on iSAM2’s algorithmic process, Kaess et al. [58]

compares it to other state-of-the-art SLAM methods and shows that iSAM2 is the most

computationally efficient and accurate. Therefore, iSAM2 provides the best online NLS

state estimation algorithm for the diver.
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Chapter 3

Methods

This chapter details the software, hardware, cooperative navigation approach, and commu-

nication architecture that enables our human-autonomy teaming technique.

3.1 Software and Hardware

Cooperative navigation between the AUV and diver is enabled by the ROS™ middleware

for robotics [17]. The highest software organization unit within ROS is the package, and

the three most important ROS packages for our HAT architecture are ros_remus [65],

ros_acomms [66], and ros_hat [18]. Both ros_remus and ros_acomms are existing reposito-

ries managed by members of The Acoustic Communications Group at WHOI. The former

provides autonomous mission planning capabilities to a REMUS AUV [65], and the latter

allows ROS messages to be encoded and transported across an acoustic link via the Mi-

cromodem 2 [66]. However, during this research, we created the ROS Human-Autonomy

Teaming repository, abbreviated as ros_hat, to enable cooperative navigation between a

REMUS AUV and a diver. Being familiar with these repositories and how they interact

with sensors is foundational to understanding our HAT navigation approach.

During all testing and simulation, our computers had Ubuntu 20.04 Linux operating

systems using ROS Noetic Ninjemys, which was released on May 23rd, 2020 [67]. Common

components of ROS packages are nodes, messages, and services. Each node is an executable

that performs specific tasks contributing to the overall goal of the package. Nodes communi-

cate with each other through messages and services. By subscribing to a specific category of

message, known as a topic, a node receives messages published by other nodes to that topic.
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Services are different and operate in a request and response manner [68]. These capabilities

are foundational to the function of ros_remus, ros_acomms, and ros_hat.

The proven performance of the REMUS AUV series, combined with its hardware and

software capabilities, makes it our choice for this HAT navigation technique. Gallimore et

al. [69] discusses the REMUS’s autonomy computer, which allows us to send commands

to the vehicle’s operating system and receive data from its sensor suite while ensuring the

primary computer retains control of its safety. Colloquially, the operating system is referred

to as the front seat computer, while the autonomy computer is referred to as the back seat

computer. The reason for these terms can be understood by envisioning someone driving

a car with a passenger in the back seat providing navigation instructions; even though the

passenger is telling the driver where to go, the driver operates the vehicle and is responsible

for its safety.

Existing software enables the communication between the front seat and back seat com-

puters. The back seat computer runs ros_remus to provide mission planning capabilities via

actions sent to the REMUS’s front seat using the Remote Control (RECON) protocol [70].

The specific node that accomplishes this is the REMUS Node [65]. Important actions for this

thesis are transits, where the REMUS travels from one point to another, and circles, where

the REMUS circles a specific coordinate. The front seat controls the vehicle via a series

of preprogrammed objectives, which include the action to perform as well as depth, sensor

configuration, and other necessary parameters. Once a ROS node posts an action on the

back seat computer, it is converted from Python data types to American Standard Code for

Information Interchange (ASCII) messages with eight-bit checksums. The RECON client

sends this information to the front seat over a User Datagram Protocol (UDP) socket [69].

Once the action reaches the front seat, it overrides the current vehicle behavior. In this way,

the back seat computer can control the REMUS. However, once this action finishes, the

front seat computer regains control, provided the back seat does not send another action.

Sensor data follows the reverse process from the vehicle’s operating system to the auton-

omy computer. For example, location data from the INS gets passed through RECON to the

REMUS Node and posted within the status topic for other ROS nodes to access [65]. These

nodes can then determine a specific action to post based on the sensor data. Farrell et al. [71]

defines an AUV behavior as converting sensor readings to vehicle actions. Behavior-based

autonomy takes a series of behaviors and arranges them together in an appropriate order to
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navigate the vehicle and accomplish a mission. An early version of RECON demonstrated

the impact of behavior-based autonomy through chemical plume tracing. Specifically, it

allowed a REMUS to enter an operating area, detect a chemical plume, and follow that

plume to its source [71]. Although HAT navigation is a different mission, we utilize data

from sensors and acoustic messages to influence the vehicle’s behavior.

The WHOI Micromodem 2 is the standard acoustic communication device on RE-

MUS AUVs [20]. Acoustic communication between two autonomous elements is enabled by

ros_acomms. The four important nodes within ros_acomms are the Acomms Driver Node,

the Packet Dispatch Node, the Message Queue Node, and the TDMA Node. Although the

primary roles of each are below, the ros_acomms documentation [66] provides more detailed

node descriptions and capabilities as well as information on other nodes within the repository

that enable simulation.

1. Acomms Driver Node

• Communicates with the Micromodem 2 using pyAcomms

2. Packet Dispatch Node

• Uses the appropriate codec to decode the bits sent from the Acomms Driver Node

into the proper ROS message

3. Message Queue Node

• Uses the appropriate codec to encode a ROS message into its compact bit-packet

form

4. TDMA Node

• Queries the Message Queue Node at a predetermined interval

• Passes messages to the Acomms Driver Node for transmission

The Message Queue Node subscribes to a group of topics the user wants acoustically

transmitted. Once another ROS node posts a message to one of those topics, the Message

Queue Node uses a series of codecs to encode the data into a compact bit-packet represen-

tation. For our HAT navigation method, the TDMA Node queries the Message Queue Node

every 15 seconds looking for new data to transmit because that slot duration provided the
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fastest communication between the diver and AUV. If there are packets in the queue, the

highest priority message gets passed to the Acomms Driver Node for transmission. However,

if that message is less than the rate’s packet size, the Message Queue Node bundles as many

messages as will fit. Sending the packet to the modem is assisted by pyAcomms [72], which

serves as the interface between the Micromodem 2 and Acomms Driver Node. On the receiv-

ing modem, the Acomms Driver Node handles the incoming packet from the Micromodem

2 and passes the data to the Packet Dispatch Node, which accomplishes the reverse of the

Message Queue Node to publish the received ROS message for other nodes to access [66].

In this way, ros_acomms allows ROS messages to be sent underwater from one computer to

another.

Our novel ROS package, called ros_hat, relies on ros_remus and ros_acomms. On the

diver side, the ros_hat software is designed to run on a processor attached to a submersible

dive tablet and interact with the tablet’s sensors. For the REMUS, ros_hat operates on the

back seat computer, utilizing existing ros_remus capabilities to collect important sensor data

and control the vehicle. Specifically, ros_remus communicates the autonomous decisions

made by ros_hat to the vehicle’s front seat computer using RECON. Similarly, ros_acomms

serves as the interface between ros_hat and the Micromodem 2.

Although ros_hat runs on both the diver’s tablet and the REMUS, it serves very different

roles on each. The three main nodes within ros_hat are the Navigator Node, Director

Node, and Estimator Node. The Navigator Node operates on the REMUS’s back seat

computer, while the Director Node and Estimator Node run on the diver’s submersible

tablet. The primary roles and responsibilities of each are shown below.

1. Navigator Node

• Receive message data from the Micromodem 2 using ros_acomms

• Determine the next coordinate the REMUS should travel to based on the diver’s

estimated location

• Ensure the back seat computer retains control of the REMUS by initializing and

updating a transit action using ros_remus

• Collect necessary sensor outputs using ros_remus for transmission to the diver

• Transmit the appropriate message to the diver using ros_acomms
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Figure 3-1: Overview of our system’s hardware and software architecture.

2. Director Node

• Receive message data from the Micromodem 2 using ros_acomms

• Calculate range measurements using data sent by the REMUS

• Pass range data to the Estimator Node

• Collect necessary data from sensors and nodes for transmission to the REMUS

• Transmit the appropriate message to the REMUS using ros_acomms

3. Estimator Node

• Receive range data from the Director Node

• Receive odometry data from the AHRS

• Given an initial fix, provide online diver location estimates using odometry and

range measurements

Figure 3-1 provides an overview of our navigation method’s hardware and software ar-

chitecture. Although not completed in this thesis, we plan to have an ADLE3800PC com-

puter [73] run the required software on the diver’s submersible tablet. Aside from the Micro-

modem 2, the diver’s tablet requires a depth sensor, a GPS or Global Navigation Satellite
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System (GNSS) receiver, and an AHRS. Depth data from both elements are needed to turn

a three-dimensional range into a two-dimensional range, as will be explored in Section 3.3.

The GPS or GNSS receiver is required to get the diver’s initial position before they sub-

merge for the transit. Additionally, the AHRS we utilized for this research is the Sparton

M2 AHRS [74]. Fortunately, WHOI’s Deep Submergence Lab had written a ROS node for

the Sparton M2 [75], which we used to get accurate heading data to other ros_hat nodes.

On the REMUS, ros_hat nodes require data from the GPS, INS, and conductivity,

depth, and temperature (CTD) sensors in addition to the Micromodem 2. The AUV needs

a GPS or GNSS receiver for the same reason as the diver. The INS offers a high-accuracy

navigation solution to the REMUS using a fiber optic gyroscope (FOG) and DVL [76]. As

will be discussed in Chapter 4, a more accurate REMUS location estimate is beneficial to

the performance of our HAT navigation method. Appendix B provides additional details

on the nodes and topics within ros_hat as well as in-depth diagrams showing the specific

software and hardware architecture proposed for our HAT navigation method.

3.2 Communication Sequence

This section describes the communication sequence between the diver and REMUS AUV

throughout the transit. It is crucial to understand how data is exchanged between both

elements because the diver’s state estimation algorithm and the REMUS’s autonomous

behavior are dependent on receiving updated information from their teammate. First, we

discuss how the Micromodem 2 transmits four critical message types between the diver and

REMUS using ros_acomms. Then, we discuss how the ros_hat nodes control the message

traffic between the diver and AUV.

The Navigator Node and Director Node control the transmitted packet’s type and

content on the REMUS and diver, respectively. We use the Micromodem 2’s Rate 1 FDP

communication, which utilizes QPSK modulation and Bose–Chaudhuri–Hocquenghem error-

correcting code [57]. There are four unique acoustic messages sent between the diver and

AUV: an Initialization Packet, a Follower Packet, a Leader Packet, and a Terminate Packet.

Figure 3-2 shows the contents of these messages. The diver’s submersible tablet sends the

Initialization Packet, Follower Packet, and Terminate Packet, while the REMUS always

responds with a Leader Packet.

58



Figure 3-2: Initialization, Follower, Leader, and Terminate Packet contents.

Figure 3-3: Message codec for the Initialization Packet. The precision parameter
represents the number of decimal points desired for the variable.
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As discussed in the previous section, the Message Queue Node within ros_acomms uses

codecs to convert ROS messages into a compact bit-packet representation for acoustic trans-

mission. Conversely, the Packet Dispatch Node uses the same codecs to decode the received

data into a ROS message [66]. Within a message codec, the user defines the range of values

each variable can hold. The largest message sent in our HAT navigation process is the

Initialization Packet due to the two pairs of latitudes and longitudes with six decimals of

precision, which offer about four inches of accuracy per value [77]. Figure 3-3 shows the mes-

sage codec for this ROS topic. Given the precision we set for each variable, the transmitted

message can be expressed with 16 bytes. However, the packet also requires an additional

nine bytes for the header, one byte to identify ros_acomms sent the packet, and another byte

to identify the message type within the codec. Therefore, the Initialization Packet requires

the modem to transmit 27 data bytes.

Each FDP packet sent by the Micromodem 2 can hold eight mini-frames, with the first

mini-frame holding nine data bytes and the others holding 13. Consequently, it takes three

mini-frames to transmit the Initialization Packet. Since we utilize Rate 1 communication,

each mini-frame contains 896 symbols, so three mini-frames have 2,688 QPSK symbols [57].

As discussed in Section 2.3, the Micromodem 2’s signal frame contains more than just

the data; it includes a frequency-modulated probe, null time, and overhead symbols, which

include the training data. We used the default probe length and null time of 200 symbols

and 250 milliseconds, respectively. Additionally, there are 702 overhead symbols. Therefore,

the signal frame requires an additional 902 symbols along with the data symbols.

As shown in the Micromodem 2 User Guide [57], the packet duration (𝑑) can be found

by

𝑑 =
packet length (in QPSK symbols)

bandwidth
. (3.1)

Given the 2,688 data symbols, 200 probe symbols, and 702 overhead symbols, the Ini-

tialization Packet contains a total of 3,590 symbols. Therefore, it takes 718 milliseconds

to transmit that quantity of QPSK symbols with a five-kilohertz bandwidth. By adding

the 250-millisecond null time, we calculate the transmission duration for the Initialization

Packet as 968 milliseconds. Table 3.1 shows a similar analysis for the other transmission

types relevant to our algorithm.
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Packet Analysis
Type Initialization Leader Follower Terminate Ping Ping reply

Probe symbols 200 200 200 200 200 200
Overhead symbols 702 702 702 702 702 702

Header bytes 9 9 9 9 6 7
ros_acomms byte 1 1 1 1 0 0
Message type byte 1 1 1 1 0 0

Data bytes 16 12 13 1 0 0
Total bytes 27 23 24 12 6 7
Mini-frames 3 3 3 2 1 1

Data symbols 2688 2688 2688 1792 896 896
Total symbols 3590 3590 3590 2694 1798 1798

Symbol time (ms) 718 718 718 539 360 360
Null time (ms) 250 250 250 250 250 250
Duration (ms) 968 968 968 789 610 610

Table 3.1: Packet lengths (in symbols) and durations (in milliseconds) for all
transmissions [57]. The number of data symbols is dependent on the number of

mini-frames, which is determined by the total data bytes. Additionally, the total number
of symbols per transmission is the sum of the three bolded values in each column. Lastly,

the packet duration is the sum of the time to transmit the symbols and the null time.

The communication sequence starts with the diver pressing a button on the submersible

tablet to trigger the transmission of an Initialization Packet. Upon reception of the Ini-

tialization Packet, the REMUS responds with a Leader Packet. Then, a call-and-response

process begins with the diver sending a Follower Packet and the REMUS responding with a

Leader Packet. However, the REMUS must ping the diver to populate the variables within

the Leader Packet. Algorithm 2 shows the Micromodem 2’s ping sequence. Let the diver

have Modem 0, and the REMUS have Modem 1.

Algorithm 2 Micromodem 2 Ping Sequence [57]
Modem 1 initiates the ping sequence
1: Modem 1 sends ping to Modem 0
2: Modem 0 detects ping
3: Modem 0 sends ping response to Modem 1
4: Modem 1 receives response and calculates OWTT

The "Follower, ping, Leader" cycle continues until the diver broadcasts a Terminate

Packet, at which point the REMUS surfaces to conclude the trial. Algorithm 3 and Algo-

rithm 4 show how the Director Node and the Navigator Node control the message traffic

between the diver and AUV.
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Algorithm 3 Director Node communication procedure
Require: Diver presses button on tablet to transmit Initialization Packet

Send Initialization Packet
repeat

if Leader Packet received then
Send Follower Packet

end if
until Diver presses button on tablet to transmit Terminate Packet
Send Terminate Packet

Algorithm 4 Navigator Node communication procedure
if Initialization Packet received then

Send Leader Packet
else if Follower Packet received then

Conduct ping
Send Leader Packet

else if Terminate Packet received then
Surface REMUS

end if

3.3 Range calculation

The external measurement the diver relies on for localization is their range to the AUV.

This section shows how the Micromodem 2 determines an acoustic signal’s OWTT and

how that OWTT is subsequently used to calculate the range between the diver and the

REMUS. After discussing how the TWTT can be used to find the OWTT, we provide

the equations and steps required for the diver to receive the OWTT information from the

REMUS, convert a three-dimensional range into a two-dimensional range, and pass that

data to the Estimator_Node for addition to the factor graph.

The Micromodem 2 offers two methods to get the range between transducers: one is based

on a packet’s arrival time, and the other utilizes a ping as described in Algorithm 2. Grund

et al. [78] details the process to get OWTT measurements using synchronous navigation.

Once the modem receives a pulse-per-second (PPS) signal from GPS, it can maintain that

signal using its real-time clock (RTC). Therefore, given synchronous navigation is enabled,

the modem transmits acoustic messages at the top of the second. The receiving modem

reports the packet’s arrival time in the reception statistics. Provided both modems’ clocks

are synchronized, and the transducers are within a second of acoustic travel distance, the

OWTT is found by reading the fractional seconds of the reception time [57]. This technique
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is acceptable for the ranges within our HAT navigation method. However, without an

expensive precision clock, such as a chip-scale atomic clock (CSAC), the modem’s RTC

drifts at two parts per million [57], which could add 20 meters of range error per hour if both

clocks drift in opposite directions with a sound speed of 1500 meters per second. Conversely,

the modem’s ping function removes the requirement to synchronize clocks and eliminates

the impact of clock drift by using TWTT. Therefore, although it adds an additional step in

the communication sequence, we chose the ping for its sustained accuracy independent of

dive length.

Within Algorithm 4, the REMUS sends a Rate 1 FDP ping to the diver. As described

by Fallon et al. [48], the Micromodem 2 uses the elapsed time between when it sent the ping

and when it received the ping reply (𝑇𝑒𝑙𝑎𝑝𝑠𝑒𝑑) to calculate the OWTT using the following

equations:

𝑇𝑊𝑇𝑇 = 𝑇𝑒𝑙𝑎𝑝𝑠𝑒𝑑 − 𝑇𝑡𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑, (3.2)

𝑂𝑊𝑇𝑇 =
𝑇𝑊𝑇𝑇

2
, (3.3)

where 𝑇𝑡𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑 equals 1,915 milliseconds, which is the known time it takes for the Micro-

modem 2 to detect a ping and send a Rate 1 FDP ping response [79]. Although we reference

the OWTT frequently throughout the remainder of this document, it is important to note

that it is calculated using the TWTT.

After calculating the OWTT, the Micromodem 2 posts it within a CACMD National Marine

Electronics Association (NMEA) string. The Navigator Node monitors the modem’s raw

NMEA strings by subscribing to the appropriate ros_acomms topic. Therefore, when the

Navigator Node detects the CACMD string, it retrieves the OWTT from that string and

saves the REMUS’s location and relevant sensor outputs for inclusion in the ensuing Leader

Packet. Through this process, the Leader Packet’s contents represent the REMUS’s state

upon receiving the OWTT measurement to the diver.

Similar to the CACMD string posted upon reception of the ping response, the modem

outputs a CACMA string when it receives a ping. Upon detecting this NMEA string, the

Director Node saves the diver’s depth as well as other variables that will be discussed in

the following section. These variables represent the diver’s state upon receiving the ping.

Therefore, the Director Node must simply wait until it receives the Leader Packet to have
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a complete picture of the HAT’s state during the previous ping.

When the Director Node receives the Leader Packet, it uses the OWTT to calculate the

two-dimensional range to the REMUS’s location when it received the ping response. Fallon

et al. [48] shows that the following equation turns the OWTT into a three-dimensional range

(𝑟3𝐷,𝑖):

𝑟3𝐷,𝑖 = 𝑂𝑊𝑇𝑇𝑖 * 𝑐𝑖, (3.4)

where 𝑂𝑊𝑇𝑇𝑖 is the OWTT from the CACMD NMEA string and 𝑐𝑖 is the sound speed. The

Director Node retrieves both those values from the Leader Packet. The two-dimensional

range (𝑟2𝐷,𝑖) is then calculated by an equation from Fallon et al. [48]:

𝑟2𝐷,𝑖 =
√︁

𝑟23𝐷,𝑖 − (𝑑𝑅,𝑖 − 𝑑𝑑,𝑖)2, (3.5)

where 𝑑𝑅,𝑖 is the REMUS’s depth as reported in the Leader Packet and 𝑑𝑑,𝑖 is the diver’s

depth when they received the ping. After these calculations, the Director Node passes this

two-dimensional range to the Estimator Node.

3.4 Online Diver Localization With Incremental Smoothing

and Mapping 2

As discussed in Sections 2.4 and 2.5, our state estimation method is iSAM2 using Powell’s

dogleg algorithm for NLS optimization. The GTSAM library [16] allows these algorithms

to be implemented on the Estimator Node to provide computationally efficient location

updates for the diver throughout the entire dive. We utilize three factors in GTSAM: the

prior factor, the odometry factor, and the two-dimensional range factor. First, the prior

factor initializes the diver’s position. Then, odometry and range factors progress the diver

from that initialization point to the target. This section also details how NMEA strings

posted by the Micromodem 2 ensure range factors are added at the correct location within

the factor graph. Once the diver’s location is predicted, ros_hat software posts navigation

instructions to guide the diver to the target. Overall, the Estimator Node is the keystone

of our system; all other algorithms are designed to provide the Estimator Node with the

appropriate information so it can accurately predict the diver’s location throughout the
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transit.

The Estimator Node is dormant until the diver elects to send an Initialization Packet.

At that point, a prior factor is added to the formerly empty factor graph. Since GTSAM

operates in a local coordinate system, this prior factor sets the diver’s location at (0.0, 0.0).

However, the diver must be receiving GPS signals when the Initialization Packet is sent

because the Estimator Node saves the latitude and longitude to assist in future conversions

between local and global coordinates. After setting the prior, the system no longer needs

GPS data, so the diver can submerge to commence the transit. Algorithm 5 shows the steps

to add the initial prior factor.

Algorithm 5 Add initial prior factor
Require: Prior noise model (Λ𝑝)

In: Nonlinear factor graph (Φ), variables (𝑋), global heading from AHRS (𝜃𝑖)
1: Convert 𝜃𝑖 to local frame heading (Θ𝑖)
2: Current local pose (𝑋𝑖) = (0.0, 0.0, Θ𝑖)
3: Format 𝑋𝑖 as a prior factor (Φ𝑖) with Λ𝑝

4: Add Φ𝑖 to Φ (Φ := Φ ∪ Φ𝑖)
5: Initialize new variables (𝑋 := 𝑋 ∪𝑋𝑖)
return Φ, 𝑋

After adding the prior factor, the Estimator Node begins adding odometry factors every

second. An odometry factor requires heading and speed. The global heading data is gathered

from an AHRS and converted to the local reference frame. Conversely, the system does not

have a method of measuring the diver’s speed, so we rely on a constant speed approximation.

Specifically, the diver’s speed is assumed to be zero until the Estimator Node detects a

specific ROS message. At that point, the diver’s speed is assigned a positive value set

within the node’s parameters. The diver can toggle their speed estimate between zero

and that constant value throughout the dive using ROS messages. As will be discussed

in Chapter 4, this is currently conducted using a Linux laptop’s terminal. However, we

eventually envision the submersible tablet having a button to accomplish this. The constant

speed approximation adds error to the odometry factors due to inconsistent swimming and

unknown ocean currents. To compensate for this, we place low confidence in these factors

by artificially increasing their covariance. Algorithm 6 shows how the Estimator Node adds

an odometry factor.

As shown in Algorithm 6, the Estimator Node provides the diver’s entire smoothed

path once they elect to send a Terminate Packet. Although iSAM2 optimizes the diver’s
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Algorithm 6 Add odometry factor
Require: Odometry noise model (Λ𝑜), diver’s speed (𝜐), diver’s initial global coordinates

(𝐶𝑜)
In: Nonlinear factor graph (Φ), variables (𝑋), local heading from last factor (Θ𝑖−1),
global heading from AHRS (𝜃𝑖), time since last factor (𝛿𝑇 )
1: Convert 𝜃𝑖 to local frame heading (Θ𝑖)
2: Calculate change in local heading (𝛿Θ) = Θ𝑖 - Θ𝑖−1

3: Calculate change in distance (𝛿𝐷) = 𝜐 × 𝛿𝑇
4: Format odometry factor (Φ𝑖) using 𝛿Θ, 𝛿𝐷, and Λ𝑜

5: Add Φ𝑖 to Φ (Φ := Φ ∪ Φ𝑖)
6: Predict current pose (𝑋𝑖) using 𝑋𝑖−1, 𝛿𝐷, and 𝛿Θ
7: Initialize new variables (𝑋 := 𝑋 ∪𝑋𝑖)
8: Calculate local iSAM2 estimate (𝑋𝑖) using incomplete linear ∆ found through fluid
relinearization
9: Convert 𝑋𝑖 to global coordinates (𝐶𝑖) using 𝐶𝑜

if Terminate Packet sent then
return Φ, 𝑋, 𝐶𝑖, smoothed path

else
return Φ, 𝑋, 𝐶𝑖

end if

entire path every time it is updated, the Estimator Node only publishes the current location

estimate until the diver is ready to end the mission, presumably indicated by the transmission

of a Terminate Packet. Therefore, once navigation is complete, the diver receives the most

accurate representation of their trajectory.

GTSAM also offers the ability to place factors retroactively. This is beneficial for our

HAT navigation method because REMUS coordinates sent within the Leader Packet are

outdated. As discussed in Section 3.2, the REMUS sends a Leader Packet containing state

variables from when it had received the ping response. However, due to the slot duration

we set for the TDMA Node, there could be up to 15 seconds between when the Navigator

Node sets the variables in the Leader Packet and when it gets transmitted to the diver. By

the time the diver’s Director Node performs the range calculation and passes the result to

the Estimator Node, that information is more than 15 seconds old. In that time, odometry

factors have been added to the factor graph, progressing the diver’s location estimate for-

ward from the location they were when the REMUS performed the ping. Fortunately, the

capabilities of the Micromodem 2 and GTSAM overcome this potential error.

The previous section discussed how the Director Node saves the diver’s depth upon

detecting a ping via the CACMA string. Along with saving the depth, it also marks the current
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factor number on the Estimator Node. This factor number serves as a location placement

for adding the eventual range factor. Therefore, when the Leader Packet arrives about 15

seconds later, the Director Node includes this factor number in the range data sent to the

Estimator Node. Instead of adding the range factor to the most recent odometry factor, the

Estimator Node adds it at the correct location in the graph. This process ensures the range

factors are as accurate as possible. Algorithm 7 shows the steps for adding a two-dimensional

range factor on the Estimator Node.

Algorithm 7 Add two-dimensional range factor
Require: Range noise model (Λ𝑟), diver’s initial global coordinates (𝐶𝑜)

In: Nonlinear factor graph (Φ), variables (𝑋), two dimensional range (𝑟2𝐷), factor number
(𝜑) when CACMA string posted, data from Leader Packet → REMUS coordinates (𝐶𝑅),
REMUS location uncertainty (𝜎𝑅)
1: Convert 𝐶𝑅 to local coordinates (𝑋𝑅) using 𝐶𝑜

2: Format 𝑋𝑅 as a prior factor (Φ𝑅) with 𝜎𝑅
3: Add Φ𝑅 to Φ (Φ := Φ ∪ Φ𝑅)
4: Initialize new variables (𝑋 := 𝑋 ∪𝑋𝑅)
5: Format two-dimensional range factor (Φ𝑟) using Λ𝑟, 𝑟2𝐷, and 𝑋𝑅

6: Add Φ𝑟 to Φ at 𝜑 (Φ := Φ ∪ Φ𝑟)
7: Calculate local iSAM2 estimate (𝑋𝑖) using complete ∆ from full back-substitution
8: Convert 𝑋𝑖 to global coordinates (𝐶𝑖) using 𝐶𝑜

return Φ, 𝑋, 𝐶𝑖

Figure 3-4 details the sequence of Micromodem 2 commands and responses that occur

during a single "Follower, ping, Leader" cycle [57] [79]. Although the time stamps were

created using a single cycle, the timing was consistent across all cycles. Additionally, the

time delay between when a ros_hat node posts a packet and when they are transmitted

is due to the TDMA Node’s timing. As a result, the Director Node gets a Leader Packet

about every 29 seconds. Fortunately, the ping operates independent of the TDMA Node, so

its inclusion does not require additional time. Therefore, after the Initialization Packet is

sent, the Estimator Node adds an odometry factor every second and a two-dimensional

range factor every 29 seconds.

Algorithm 8 shows the full process running on the Estimator Node. An important

parameter is the number of ranges to receive before adding them as factors to the graph.

Since range measurements can lead to ambiguity without proper location diversity, this

parameter seeks to mitigate that uncertainty by receiving ranges to multiple locations before

updating the graph. For the first 𝑅 ranges, the Estimator Node saves the range information
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in a Python dictionary. For the cooperative navigation field trials and simulations discussed

in Chapter 4, we set 𝑅 equal to three. On range 𝑅+ 1, all previous ranges are added to the

factor graph in succession. Subsequent ranges are added immediately to the graph. This

capability causes early iSAM2 estimates to be less erratic.

Algorithm 8 Estimator Node process
Require: Number of ranges to receive before adding to graph (𝑅)

In: Nonlinear factor graph (Φ), variables (𝑋)
Out: Diver’s estimated global coordinates; diver’s smoothed path
Initialize: Φ = ∅, 𝑋 = ∅
if Initialization Packet sent then

Add prior factor according to Algorithm 5
repeat

if ≥ 1 second since last odometry factor was added then
Add odometry factor according to Algorithm 6

end if
if Range data received from Director Node then

if Number of ranges received ≤ 𝑅 then
Save range data

else if Number of ranges received = 𝑅 + 1 then
for Each saved range do

Add range factor according to Algorithm 7
end for

else
Add range factor according to Algorithm 7

end if
end if

until Terminate Packet sent
end if

Once the Director Node receives the diver’s estimated coordinates from the Estimator

Node, it guides the diver according to Algorithm 9. Eventually, the submersible tablet’s

screen will show these directions. However, as Chapter 4 will discuss, it is currently accom-

plished using a Linux laptop terminal.

Algorithm 9 Director Node guidance to diver

Require: Target coordinates (𝐶𝑇 )
In: Diver’s estimated global coordinates (𝐶𝑖)
1: Calculate distance (𝑑𝑇 ) to target using 𝐶𝑖 and 𝐶𝑇

2: Find bearing (𝜃𝑇 ) from 𝐶𝑖 to 𝐶𝑇

Publish: 𝑑𝑇 , 𝜃𝑇
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3.5 Range-Only Single-Beacon Autonomous Behavior Algo-

rithm

The cooperative navigation research detailed in Section 2.2 serves as the inspiration for our

ROSB approach. Within that research, the authors recommended two CNA behaviors to

ensure beneficial relative geometry between the CNA and the AUV throughout the transit:

the zigzag behavior and the circling behavior [48]. This section discusses why we chose the

circling behavior. Then, it details the algorithms behind the three stages of our autonomous

circling behavior, as shown in Figure 3-5. First, the REMUS circles the start location.

Then, the REMUS circles the diver throughout the transit once they depart. Lastly, the

REMUS circles the target. This autonomous behavior aims to provide the diver with range

measurements to diverse locations to benefit their state estimation.

During our AUV behavior development, we sought to keep the diver and vehicle close

enough to decrease acoustic transmission power but far enough apart to ensure safety. Size,

weight, and power are critical measurement metrics for any underwater vehicle system.

Keeping the diver and AUV relatively close makes it possible to use less acoustic transmission

power for communication, thus saving energy for other sensors. Our goal was to keep the

AUV and diver between 15 and 100 meters apart throughout the transit. We initially

favored the zigzag behavior but discovered in simulation that the REMUS’s operating system

frequently rejected subsequent waypoints for violating the vehicle’s turn radius. Once a

point was rejected, the back-seat computer abandoned control to the front seat, causing the

vehicle to perform undesired actions, such as returning to the start location. Conversely,

the circling behavior did not have this issue and met all the requirements necessary for our

HAT algorithm. Additionally, simulations and field tests by Masmitja et al. [80] [81] support

this choice by concluding a circular trajectory centered around the target provides the best

ROSB tracking with AUVs for static and dynamic targets.

The Navigator Node provides the user with a parameter to adjust the circle’s size.

Through simulation, we found that a 25-meter radius circle accomplished the goal of keeping

the diver and AUV between 15 and 100 meters apart. Our autonomous behavior also

maintains two meters of vertical distance between each element. When the Navigator

Node receives the Follower Packet, it uses the diver’s depth value to adjust the vehicle’s

position in this manner. Therefore, even if they are at the same location, vertical dispersion
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Figure 3-5: Example of our autonomous circling behavior for the REMUS. During Step 1,
the REMUS circles the starting location. Step 2 involves the REMUS circling the diver

throughout the transit. Lastly, the REMUS circles the target location at Step 3.

keeps the diver safe.

The REMUS circles the insertion point via a preprogrammed objective on the vehicle’s

operating system. At that point, ros_hat is passive and has not taken control of the vehicle.

Upon receiving the Initialization Packet, the Navigator Node marks the diver’s starting

coordinates and the target coordinates. Both of these are used throughout the transit to

predict the diver’s current and future location. The REMUS continues to circle the start

location until the first Follower Packet’s arrival. Then, the Navigator Node takes control

of the vehicle.

Figure 3-5 shows both the diver’s ground truth path and online estimated coordinates to

highlight that the REMUS determines its next waypoint using the estimated value. Although

the behavior aims to drive a circle, it is accomplished through transit actions, which instruct

the REMUS to travel from one coordinate to another. This technique provided the best way

to ensure the Navigator Node retained control of the vehicle throughout the transit. It also

resulted in the most consistent vehicle movement. Early efforts using circle actions resulted

in unpredictable motion because it was difficult to control where the vehicle entered and
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Figure 3-6: Close-up view of the circling behavior the REMUS performs during the dive.

departed each circle. Erratic paths from one circle to the next made timing difficult, and

the diver was frequently outside the circle when REMUS started its pattern. Conversely,

transit actions afford the most control, making it the best choice for this behavior. Although

this approach makes our circle look like an octagon, we still refer to it as the circling behavior.

Figure 3-6 shows a more detailed look at the circle the REMUS performs throughout the

dive. We define two types of waypoints within this autonomous behavior: entry points and

intermediate points. The entry point serves as the location where the REMUS starts the

circle. The intermediate points are the numbered vertices of the octagon. The Navigator

Node uses two different processes to find each waypoint type. However, throughout the entire

dive, only one transit action gets posted to the front-seat computer because the Navigator

Node updates the goal coordinates of that transit action instead of posting a completely new

action. Algorithm 10 summarizes how it calculates each entry point.

After finding the first entry point, the Navigator Node calculates the first intermediate

point. However, it does not update the action yet. Instead, it begins to monitor the AUV’s

distance from the entry point. Once it determines it is within 15 meters of that location,

it updates the transit action. This process is used at every waypoint, ensuring the transit

action never completes and the back-seat computer retains control throughout the dive.
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Algorithm 10 Find entry point

Require: Circle radius (𝑟), target coordinates (𝐶𝑇 )
In: REMUS’s current location (𝐶𝑅

𝑜 ); recent Follower Packet data → diver’s estimated
coordinates (𝐶𝑑

𝑜 ), depth (𝐷𝑑), speed (𝑠𝑑), and time of estimation (𝑡𝑑)
Assume: Diver travels at heading from 𝐶𝑑

𝑜 to 𝐶𝑇

1: Set initial time allotted (𝑇 ) to find entry point {We start with 5 seconds}
repeat

2: Predicted time at entry point (𝑇𝐸) = current time + 𝑇
3: Predict the diver’s location (𝐶𝑑

𝑖 ) at 𝑇𝐸 using 𝐶𝑑
𝑜 , 𝑠𝑑, and 𝑡𝑑

4: Set 𝐶𝑑
𝑖 as the base of the circle

5: Calculate the entry point (𝐶𝑅
𝐸 ) to the circle using 𝑟 and 𝐶𝑑

𝑖

6: Find the distance between 𝐶𝑅
𝑜 and 𝐶𝑅

𝐸

7: Find the speed required (𝑠𝑅) to reach 𝐶𝑅
𝐸 in 𝑇 seconds

8: 𝑇 += 1 second
until 1.4 m/s ≤ 𝑠𝑅 ≤ 1.6 m/s {goal speed is 1.54 m/s}
9: Calculate depth (𝐷𝑅) using 𝐷𝑑 to maintain proper depth dispersion
if this is the first entry point then

return Post transit action with 𝐶𝑅
𝐸 and 𝐷𝑅

else
return Update transit action with 𝐶𝑅

𝐸 and 𝐷𝑅

end if

Based on the goal to perform a 25-meter radius circle, the distance between intermediate

points is about 30 meters. Therefore, the REMUS travels about 240 meters each circle, which

takes about 2 minutes and 35 seconds at 3 knots. Algorithm 11 and Algorithm 12 show

how the REMUS performs the circle around the diver. Like Figure 3-6, these algorithms

describe a counterclockwise circle. However, the Navigator Node is agnostic to the direction.

Whether the circles are clockwise or counterclockwise is determined based on the relative

locations of the diver and REMUS at the beginning.

Algorithm 11 Find intermediate point 1

Require: Intermediate leg length (𝐿), target coordinates (𝐶𝑇 ), diver’s initial coordinates
(𝐶𝑑)
In: REMUS’s current location (𝐶𝑅

𝑜 ), entry point coordinates (𝐶𝑅
𝐸 ), recent Follower Packet

data → diver’s depth (𝐷𝑑)
1: Calculate transit bearing (𝜃𝑡) from 𝐶𝑑 to 𝐶𝑇

2: Calculate heading to intermediate point 1 (𝜃1) = 𝜃𝑡 − 45𝑜

3: Find intermediate point 1 (𝐶𝑅
1 ) using 𝐶𝑅

𝐸 , 𝐿, and 𝜃1
4: Calculate depth (𝐷𝑅

1 ) using 𝐷𝑑 to maintain proper depth dispersion
repeat

5: Calculate distance (𝑑) between 𝐶𝑅
𝑜 and 𝐶𝑅

𝐸

until 𝑑 ≤ 15 meters
return Update transit action with 𝐶𝑅

1 and 𝐷𝑅
1
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Algorithm 12 Complete the circle
Require: Intermediate leg length (𝐿)

In: REMUS’s current location (𝐶𝑅
𝑜 ), intermediate point 1 coordinates (𝐶𝑅

1 ), bearing from
entry point to intermediate point 1 (𝜃1), recent Follower Packet data → diver’s depth (𝐷𝑑)
for 𝑖 = 1 to 6 do

1: Heading to next point (𝜃𝑖+1) = 𝜃𝑖 − 45𝑜

2: Find intermediate point 𝑖 + 1 (𝐶𝑅
𝑖+1) using 𝐶𝑅

𝑖 , 𝐿, and 𝜃𝑖+1

3: Calculate depth (𝐷𝑅
𝑖+1) using 𝐷𝑑 to maintain proper depth dispersion

repeat
4: Calculate distance (𝑑) between 𝐶𝑅

𝑜 and 𝐶𝑅
𝑖

until 𝑑 ≤ 15 meters
return Update transit action with 𝐶𝑅

𝑖+1 and 𝐷𝑅
𝑖+1

end for

To get from the entry point to the first intermediate point in Figure 3-6, the Navigator

Node finds the heading 45-degrees less than the bearing from the diver’s initial position to the

target and calculates the coordinate 30 meters from the entry point at that heading. Getting

from intermediate point to intermediate point is accomplished similarly, as the Navigator

Node finds the coordinates 30 meters away at a heading 45 degrees less than the heading to

its previous point. When the REMUS determines it is at intermediate point seven, it follows

Algorithm 10 to find the entry point to the next circle.

Throughout the dive, the Navigator Node monitors the REMUS’s distance from the

target. Once within a certain range set by the operator, it triggers the REMUS to contin-

uously circle the target, as shown in step three of Figure 3-5. Algorithm 13 shows how the

Navigator Node finds the entry point to circle the target.

Algorithm 13 Find entry point to circle the target

Require: Circle radius (𝑟), target coordinates (𝐶𝑇 )
In: Recent Follower Packet data → diver’s depth (𝐷𝑑)
1: Set 𝐶𝑇 as the circle’s center
2: Calculate the entry point (𝐶𝑅

𝐸 ) to the circle using 𝑟 and 𝐶𝑇

3: Calculate depth (𝐷𝑅) using 𝐷𝑑 to maintain proper depth dispersion
return Update transit action with 𝐶𝑅

𝐸 and 𝐷𝑅

The autonomous behavior enabled by the Navigator Node uses all the algorithms within

this section to circle the diver throughout the dive. Algorithm 14 shows the full process.
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Algorithm 14 HAT navigation autonomous behavior
Require: Circle radius (𝑟), initial circle objective on front-seat computer

Initialization: Performing preprogrammed circle objective, Initialization Packet re-
ceived, first Follower Packet received
1: Find first entry point using Algorithm 10
repeat

while Distance from target ≤ 50 meters do
2: Find intermediate point 1 using Algorithm 11
3: Complete the circle using Algorithm 12
4: Find next entry point using Algorithm 10

end while
5: Find entrance point to circle target using Algorithm 13
6: Find intermediate point 1 using Algorithm 11
7: Complete the circle using Algorithm 12

until Terminate Packet received

3.6 Summary

This chapter outlined our proposed HAT navigation method. The communication sequence

discussed in Section 3.2, implemented using the software and hardware from Section 3.1,

serves as the heartbeat to this process. The REMUS transits from the start location to

the target using the behavior detailed in Section 3.5. Concurrently, the diver navigates

according to directions based on their estimated coordinates, as provided by the algorithms

in Section 3.4 using range calculations discussed in Section 3.3. In this way, every aspect of

our method works together to get the diver to the target location without a surface presence

or ocean current data.
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Chapter 4

Experiments and Simulations

This chapter outlines the experiments and simulations used to validate the methods proposed

in Chapter 3. First, we performed preliminary field tests to determine important ranging

accuracy and speed parameters within our software. Then, we used kayaks as proxies for the

REMUS and diver to test our HAT technique by performing real-time navigation assistance

throughout a 400-meter transit. Lastly, simulations tested our method’s performance in

more adverse conditions than those experienced in the field. Throughout this chapter, we

label the kayak serving as a proxy for the diver as the "diver kayak" and the kayak acting

as a proxy for the REMUS as the "REMUS kayak."

4.1 Equipment Overview

Before discussing the field experiments performed during this research, it is important to

review the equipment that allowed us to test the Micromodem 2’s ranging performance and

evaluate the methods from Chapter 3 using kayaks as proxies for the REMUS and diver.

This critical equipment is shown in Figure 4-1 and listed below.

• Micromodem 2 25-kilohertz PSK deck box [82]

• 25-kilohertz transducer towfish [50]

• Arrow 100 GNSS receiver [83]

• Garmin GPS 18x receiver [84]

• Sparton M2 AHRS [74]
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Figure 4-1: Key equipment used during our tests and experiments. Top left:
Micromodem 2 25-kilohertz PSK deck box [82]. Top center: Garmin GPS 18x

receiver [84]. Top right: Sparton M2 AHRS [74]. Bottom left: 25-kilohertz transducer
towfish [50]. Bottom center: Arrow 100 GNSS receiver [83]. Bottom right: Sea-Bird

Scientific SBE 37 SMP pumped MicroCAT [85].

• Sea-Bird Scientific SBE 37 SMP pumped MicroCAT [85]

As previously mentioned, our software runs on Linux laptops using ROS Noetic Ninjemys

[67]. Custom ros_hat nodes designed for these tests send ping requests and messages

via ros_acomms to the deck box, which contains the Micromodem 2 power amplifier [86],

coprocessor [87], and digital signal processor (DSP) mainboard [88]. The Micromodem 2

then passes the data to the transducer for transmission. On the receiving side, the transducer

converts the acoustic signal to an electrical signal and sends it to the Micromodem 2 within

the deck box. The packet data is then made accessible to the ros_hat nodes with the help

of ros_acomms.

The other sensors connect directly to the laptops and provide data for the ros_hat nodes.

The Garmin GPS receiver and Arrow 100 GNSS receiver supply ground truth coordinates.

The Garmin has an R95 accuracy of three meters [84], while the Arrow 100 GNSS receiver

uses Differential GPS (DGPS) to provide an R95 accuracy of less than one-meter [83]. These

accuracies mean 95% of the location values provided by the device would fall within that

distance of the actual coordinates. Additionally, the Sparton M2 AHRS provides heading
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measurements, and the Sea-Bird SBE 37 SMP provides sound speed data to convert OWTT

values into ranges.

4.2 Static Ping Test

This section details the ping test used to verify the Micromodem 2’s performance. Specif-

ically, we sought to answer two questions: what is the Micromodem 2’s static ranging

accuracy, and is that accuracy range-dependent? First, we list the equipment required for

this test. Then, we describe the experimental setup and process. As a reminder, the Mi-

cromodem 2 uses its ping function to find the TWTT, which is then used to calculate the

OWTT. We conclude this section by discussing the results and how they compared to the

modem’s advertised static ranging accuracy.

4.2.1 Equipment

Table 4.1 shows the equipment for this test.

Static Ping Test Equipment
Quantity Equipment Specification Purpose

2 Deck Box 25 kHz PSK Micromodem 2
2 Towfish 25 kHz Transducer
1 Arrow 100 Single reading per location Ground truth
2 Laptop (Ubuntu 20.04) ROS Noetic Ninjemys Execute software

Table 4.1: Equipment for the static ping test on September 22nd, 2021.

4.2.2 Description

On September 22nd, 2021, we conducted three static ping tests at a dock in Woods Hole,

Massachusetts. As mentioned in Chapter 3, our goal was to keep the diver and REMUS

between 15 and 100 meters apart. However, the largest dock we could access was 60 meters

long. Therefore, the goal of this test was to determine the ping-derived OWTT accuracy at

multiple ranges between zero and 60 meters.

The iSAM2 algorithm assumes measurements are corrupted by additive Gaussian noise

with known covariance. The Micromodem 2 advertises an OWTT positive bias of 84 mi-

croseconds and a standard deviation of 42 microseconds at four-kilohertz bandwidth [57].
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Figure 4-2: Static ping test set-up.

Figure 4-3: Picture from the static ping test performed on September 22nd, 2021.

However, those values were established using synchronized clocks and packets transmit-

ted through a coaxial cable connecting side-by-side modems. Therefore, by corroborating

these values using pings in the ocean, we could calculate the proper covariance matrix for

OWTT-derived range factors with increased confidence.

Figure 4-2 shows this test’s intended set-up and Figure 4-3 provides a picture of our

actual environment. In that image, we are located with one of the deck boxes observing

data posted to its associated laptop. Additionally, a towfish is hung off the cleat immediately

to our left. The second laptop, deck box, and towfish are behind us on the same dock.

The ROS node written for this test ran on one of the laptops and used ros_acomms to

trigger the modem to send a ping every five seconds. The OWTT value calculated from each

ping sequence was saved in a bag file, which is a type of ROS file that records all messages

posted to user-specified topics [89]. Using bag files is beneficial because MATLABr [90]
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functions can easily access the saved message data using the ROS Toolbox [91].

Utilizing this ROS node, we performed twenty minutes of ping data collection at three

different distances. The transducer locations were determined using the Arrow 100, which

provided R95 accuracies between 0.48 meters and 0.71 meters at these locations. The steps

for each trial are shown below.

1. Place transducers at desired locations

2. Use Arrow 100 to determine each location’s coordinates

3. Run software to conduct 20-minute ping data collection

After all three trials, we used MATLAB to compare the OWTT-derived range to the

ground truth range calculated using coordinates provided by the Arrow 100. One issue with

this test was that we did not have a CTD to measure the sound speed. As seen in Equation

3.4, this is a critical value in calculating the range. Although we set the depth of each modem

at two meters and found the water temperature using local buoy data, we did not have an

accurate salinity value. Fortunately, about a week after this test, we received the Sea-Bird

SBE 27-SMP MicroCAT and measured the water’s salinity at this location. Therefore, the

sound speed utilized for this test was calculated with the correct temperature and depth

but a questionable salinity reading. Regardless, we do not believe this uncertainty adds

significant error due to the short distances between the modems.

4.2.3 Results

Table 4.2 shows the data gathered from this test. It is difficult to resolve the range bias (𝜇) as

the Arrow 100 does not provide exact locations, making the ground truth ranges imperfect.

However, the bias and standard deviation, or sigma (𝜎), values show that the modem’s

ranging accuracy is independent of range within the distances relevant to us. Therefore,

by subtracting each trial’s ground truth OWTT from the modem’s OWTT data, we could

combine each trial’s OWTT errors into a single figure to get the total standard deviation

value. As shown in Figure 4-4, our static ping test validates the Micromodem 2’s advertised

42-microsecond standard deviation. This value helped calculate the range factor noise model

for our kayak-to-kayak cooperative navigation experiment.
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Static Ping Test
Metric Trial 1 Trial 2 Trial 3

Pings transmitted 287 289 267
Successful pings 279 260 267

Ping success percentage 97.21 89.97 100
Ground truth range (meters) 8.40 30.42 55.24

Modem range bias (centimeters) -5.54 2.20 -11.01
Modem range sigma (centimeters) 3.63 3.83 3.35

Maximum absolute error (centimeters) 13.70 13.03 19.04

Table 4.2: Results from static ping test on September 22nd, 2021

Figure 4-4: Combined static ping test data: 𝜇 = -31.89 microseconds; 𝜎 = 42.47
microseconds

4.3 100-Meter Paceline Test

As mentioned in Chapter 3, our HAT navigation method relies on a constant speed ap-

proximation within the odometry factors. Traditionally, divers estimate their speed through

paceline dives, where they swim along a 100-meter line and time how long it takes to get

from one end to the other. After multiple trips back and forth, they calculate their aver-

age time in seconds per trial and divide 100 by that number to get their average speed in

meters per second. This test sought to duplicate that process with kayaks. First, we list
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the required equipment for a 100-meter paceline test with a kayak. Then, we discuss the

experimental process and provide the results.

4.3.1 Equipment

Table 4.3 shows the equipment for this test.

Paceline Test Equipment
Quantity Equipment Specification Purpose

1 Kayak Human operated Mobility
1 Survey tape 100-meter Measure distance
1 Buoy With anchor Mark 100-meter point
1 Timer N/A Time trial

Table 4.3: Equipment for the paceline test on October 24th, 2021.

4.3.2 Description

On October 24th, 2021, we conducted the 100-meter paceline test at Bourne’s Pond in

Falmouth, Massachusetts. Our full-scale experiments used kayaks as proxies for the REMUS

and diver. Therefore, we performed the paceline process to find the kayak’s average paddling

speed. To set up the test, we attached the end of a survey line to the corner of a dock and

paddled to the 100-meter mark, where we placed a buoy. For each trial, the kayak operator

determined the time to paddle from the dock’s corner to the buoy or vice versa.

4.3.3 Results

Table 4.4 shows the results of the five paceline trials. This 0.92-knot average speed value

served as the constant speed parameter for the diver kayak in the experiments and the diver

in the simulations. According to the Navy Dive Manual, a comfortable swimming speed for

a diver is 0.8 knots [10]. Therefore, our estimated kayak speed is similar to that of a diver.

Paceline Results
Metric Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Time (seconds) 215 207 224 205 210
Speed (meters per second) 0.47 0.48 0.45 0.49 0.48

Speed (knots) 0.91 0.93 0.87 0.95 0.93
Average speed = 0.92 knots

Table 4.4: Results from the 100-meter paceline test on October 24th, 2021
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4.4 Dead Reckoning Experiment

This experiment’s goal was to serve as a comparison to the HAT method by showing the

navigation accuracy without range data from the REMUS kayak. Along with providing

the equipment required to perform this experiment, this section discusses the experimental

setup and the algorithms within the Dead Reckoning Node, which was created specifically

for this test. After setting the initial position with a GPS fix, the Dead Reckoning Node

uses time, speed, and heading measurements to predict the diver’s location throughout the

transit. We conclude this section by comparing the kayak’s final estimated position to the

corresponding ground truth location.

4.4.1 Equipment

Table 4.5 shows the equipment for this experiment. Both the Garmin GPS 18x and the

Sparton M2 AHRS were connected to the laptop via Universal Serial Bus (USB) ports.

Diver Kayak Equipment for the Dead Reckoning Experiment
Quantity Equipment Specification Purpose

1 Kayak Human operated Diver proxy
1 Sparton M2 AHRS Data rate: 1 Hz Global heading
1 Garmin GPS 18x Data rate: 1 Hz Ground truth
1 Laptop (Ubuntu 20.04) ROS Noetic Ninjemys Execute software

Table 4.5: Dead reckoning equipment for the diver kayak on November 6th, 2021.

4.4.2 Description

On November 6th, 2021, we conducted the 400-meter DR experiment at Bourne’s Pond in

Falmouth, Massachusetts, using the coordinate information in Table 4.6. The first trial

started at Location 1 and set Location 2 as the target, while the second trial proceeded in

the opposite direction.

400-meter Dead Reckoning Experiment Coordinates
Label Latitude (degrees North) Longitude (degrees West)

Location 1 41.5703500 70.5537100
Location 2 41.5668011 70.5529324

Table 4.6: Dead reckoning experiment coordinates for November 6th, 2021.

Our custom-made Dead Reckoning Node enabled these trials. The kayak’s operator
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interacted with the node by posting ROS messages via the Linux laptop’s command line.

One ROS message started the DR process, while the second stopped the DR process. Table

4.7 shows the steps to complete a 400-meter DR trial.

Dead Reckoning Experiment Process
Step Event

1 Paddle kayak to start location
2 Launch Dead Reckoning Node
3 Post ROS message to start the navigation assistance
4 Paddle to the target based on guidance from the Dead Reckoning Node
5 Post ROS message to stop the navigation assistance

Table 4.7: Steps to complete a dead reckoning trial.

Once the operator starts the DR process, the Dead Reckoning Node sets the kayak’s

initial location using a GPS fix. Then, the node provides guidance using Algorithm 15,

which repeats every second. Therefore, every second, the distance to the target, bearing

to the target, and current Sparton M2 heading are published within a ROS message and

posted to the terminal window for the kayak operator to see. To paddle to the target,

the operator matches their current heading with the target bearing until the distance to

the target equals zero. Theoretically, this should bring the kayak to the desired location.

However, inconsistent paddling and unknown ocean currents push the kayak off course from

where the Dead Reckoning Node believes they are.

Algorithm 15 One step of the Dead Reckoning Node

Require: Target coordinates (𝐶𝑇 ), diver kayak’s estimated speed (𝜐) {0.92 knots}
In: Global heading from Sparton M2 AHRS (𝜃𝑖), estimated diver kayak location (𝐶𝑖)
1: Change in time (𝛿𝑇 ) = 1 second
2: Calculate change in distance (𝛿𝐷) = 𝜐 × 𝛿𝑇
3: Estimate new diver kayak location (𝐶𝑖+1) using 𝐶𝑖, 𝛿𝐷, 𝜃𝑖
4: Find distance to target (𝑑𝑇 ) using 𝐶𝑖+1 and 𝐶𝑇

5: Find bearing to target (𝜃𝑇 ) using 𝐶𝑖+1 and 𝐶𝑇

6: 𝐶𝑖 = 𝐶𝑖+1

Publish: 𝑑𝑇 , 𝜃𝑇 , 𝜃𝑖

Algorithm 15 uses geodesy in steps three through five. Step three utilizes the destination

function within the GeoPy Python client [92] to calculate new coordinates given a bearing

and distance from an original location. Specifically, GeoPy performs this function using

geodesic algorithms discussed by Karney [93] with the World Geodetic System 1984 (WGS

84) ellipsoid model [94]. Step four relies on the Vincenty Python library [95] to calculate
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the distance between two coordinates accurately. This method also uses WGS 84 as the ref-

erence ellipsoid to provide distances within one millimeter of the ground truth value, which

is more accurate than the great-circle or Euclidean approach [95]. Lastly, step five uses the

following equations to calculate the bearing to target (𝜃𝑇 ):

𝑋 = cos(𝑙𝑎𝑡𝐴) sin(𝑙𝑎𝑡𝐵) − sin(𝑙𝑎𝑡𝐴) cos(𝑙𝑎𝑡𝐵) cos(𝑙𝑜𝑛𝐵 − 𝑙𝑜𝑛𝐴), (4.1)

𝑌 = sin(𝑙𝑜𝑛𝐵 − 𝑙𝑜𝑛𝐴) cos(𝑙𝑎𝑡𝐵), (4.2)

𝜃𝑇 = atan2(𝑌,𝑋), (4.3)

where (𝑙𝑎𝑡𝐴, 𝑙𝑜𝑛𝐴) are the diver kayak’s predicted location in radians and (𝑙𝑎𝑡𝐵, 𝑙𝑜𝑛𝐵) are

the target’s coordinates in radians [96]. These equations are derived from the haversine

formula.

4.4.3 Results

Figure 4-5 and 4-6 compare the DR path to the ground truth path for both trials. The DR

path represents where the Dead Reckoning Node believed the kayak was throughout the

transit, while the ground truth path depicts the coordinates reported by the Garmin GPS

18x.

Table 4.8 shows the results from both trials. The accuracy values were determined using

the vdist MATLAB function [97], which calculates the distance between two coordinates

using Vincenty’s formula. We define the DR to target endpoint error as the difference

between the Dead Reckoning Node’s final location prediction and the target coordinates.

Similarly, the ground truth to target endpoint error represents the kayak’s actual distance

from the target at the end of the trial. However, the most important value is the difference

between the final DR prediction and the last ground truth coordinate because it reflects the

performance of the navigation method. A perfect endpoint solution would have the final

estimate equal the corresponding ground truth location. Yet, although the Dead Reckoning

Node reported the kayak was at the target location, it was actually much further away.
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Figure 4-5: 400-meter dead reckoning trial 1 results from November 6th, 2021.

Figure 4-6: 400-meter dead reckoning trial 2 results from November 6th, 2021.
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Endpoint Error (in meters)
Label DR to target Ground truth to target DR to ground truth
Trial 1 0.92 68.28 68.51
Trial 2 0.66 51.35 51.27

Table 4.8: Dead reckoning experiment results (in meters) from November 6th, 2021.

4.5 Cooperative Navigation Experiment

Through these cooperative navigation trials, we sought to implement and prove the validity

of the methods described in Chapter 3. First, we list the equipment used onboard the two

kayaks that served as proxies for the REMUS and the diver. However, some aspects of

our method were no longer possible because we used kayaks. Therefore, we examine these

changes and discuss their impact on the experiment. Then, we explain the experimental

setup and detail the steps performed by both kayak operators. Lastly, we evaluate the

performance of our system during this field experiment by analyzing how well it guided the

diver kayak to the target and how effectively it calculated the diver kayak’s path throughout

the transit.

4.5.1 Equipment

REMUS Kayak Equipment
Quantity Equipment Specification Purpose

1 Kayak Human operated REMUS proxy
1 Deck Box 25 kHz PSK Micromodem 2
1 Towfish 25 kHz Transducer
1 Arrow 100 Data rate: 1 Hz Ground truth
1 Laptop (Ubuntu 20.04) ROS Noetic Ninjemys Execute software

Table 4.9: Cooperative navigation equipment for the REMUS kayak on November 6th,
2021.

This experiment relied on the diver kayak and the REMUS kayak. Table 4.9 lists the

equipment for the REMUS kayak. Furthermore, Figure 4-7 provides a visual of the REMUS

kayak’s setup and shows how the electronics were connected. The transducer’s cable was

secured to the front of the kayak such that the towfish hung a meter below the waterline.

Additionally, the GPS or GNSS receiver was fastened directly above the towfish. Therefore,

the ground truth coordinates reflected the transducer’s location. It is important to note

that the image in Figure 4-7 was taken before the November 6th experiment. As such, it
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Figure 4-7: Left: REMUS kayak set-up for the cooperative navigation experiment.
Although this figure shows a Garmin GPS 18x receiver, the November 6th experiment
replaced that with an Arrow 100 GNSS receiver. Right: Diagram displays how the

hardware was connected onboard the kayak.

shows the Garmin GPS 18x receiver, which was replaced by the Arrow 100 GNSS receiver

for the November 6th experiment.

Diver Kayak Equipment
Quantity Equipment Specification Purpose

1 Kayak Human operated Diver proxy
1 Deck Box 25 kHz PSK Micromodem 2
1 Towfish 25 kHz Transducer
1 Sparton M2 AHRS Data rate: 1 Hz Global heading
1 Garmin GPS 18x Data rate: 1 Hz Ground truth
1 Laptop (Ubuntu 20.04) ROS Noetic Ninjemys Execute software

Table 4.10: Cooperative navigation equipment for the diver kayak on November 6th, 2021.

Table 4.10 lists the equipment for the diver kayak. Additionally, Figure 4-8 displays

the diver kayak on Bourne’s Pond and shows how the electronics were connected. Like the

REMUS kayak’s image in Figure 4-7, this picture was taken at an earlier trial and did not

perfectly reflect the setup used on November 6th. The towfish, laptop, GPS receiver, and

deck box remained in the exact location, with the towfish secured to the back of the kayak

and the GPS receiver fastened to the kayak above the towfish. However, while Figure 4-8

shows the Sparton M2 next to the laptop, we moved it towards the front of the kayak on
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Figure 4-8: Top: Diver kayak set-up for the cooperative navigation experiment. Although
this figure shows the Sparton M2 next to the laptop, it was moved to the front of the

kayak for the November 6th experiment. Bottom: Diagram displays how the hardware
was connected onboard the kayak.

November 6th. This change was because we believe electromagnetic interference from the

computer caused the Sparton M2 to output incorrect heading data during an earlier trial.

After performing a better calibration and increasing its distance from the laptop, it acted

appropriately.

4.5.2 Adjustments to Facilitate Experimentation With Kayaks

Adjustments to the Director Node and Navigator Node were made to facilitate experimen-

tation with the kayaks. However, the communication process discussed in Section 3.2 and

the state estimation process detailed in Section 3.4 were unchanged. Table 4.11 summarizes

the reasons for the modifications as well as their impact.

One change is that we did not include depth sensors in this experiment. However,

since both towfish remained at constant depths of one meter, the three-dimensional range

calculation in Equation 3.4 was equivalent to the two-dimensional range. Therefore, the

Director Node calculates the two-dimensional range (𝑟2𝐷,𝑖) using a modified version of the

equation discussed by Fallon et al. [48]:
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Impacts of Using Kayaks as Proxies
Kayak Change Consequence
REMUS No CTD Constant sound speed and towfish depth
REMUS No INS Arrow 100 supplies coordinates for Leader Packet
REMUS No autonomy Operator visually navigates kayak
Diver No depth sensor Constant towfish depth
Diver No dive tablet Interaction with operator occurs via laptop terminal

Table 4.11: Impacts of using kayaks as proxies for the diver and REMUS.

𝑟2𝐷,𝑖 = 𝑂𝑊𝑇𝑇𝑖 * 𝑐𝑖, (4.4)

where 𝑂𝑊𝑇𝑇𝑖 is the OWTT and 𝑐𝑖 is the sound speed from the most recently received

Leader Packet. Additionally, unlike the REMUS, which provides updated sound speed

values throughout the transit, our sound speed value was constant and determined using a

single measurement taken with the Sea-Bird SBE 27-SMP MicroCAT immediately before

the start of the experiment. Table 4.12 shows this measurement.

Sea-Bird SBE 27-SMP MicroCAT measurement
Salinity 27.45 parts per thousand

Temperature 14.12 degrees Celsius
Pressure 0.80 decibars

Sound speed 1495.03 meters per second

Table 4.12: Salinity, temperature, pressure, and sound speed readings from the Sea-Bird
SBE 27-SMP MicroCAT on November 6th, 2021.

Another impact of replacing the REMUS with a kayak is that the Navigator Node

no longer needed to create and update transit actions to implement an autonomous be-

havior. Instead, the REMUS kayak’s operator visually adjusted their course throughout

the transit to mimic the autonomous behavior as best they could. However, it was much

more complicated than anticipated to perform perfect 25-meter-radius circles. As such, the

OWTT-derived ranges were between 6.29 meters and 36.63 meters, indicating the kayaks

were closer than our 15-meter minimum distance goal.

Lastly, since the REMUS kayak does not have an INS to predict its location, we populated

the Leader Packet coordinates using the Arrow 100, which had an average R95 accuracy of

0.54 and 0.69 meters for the first and second trials, respectively. Therefore, the coordinates

within the Leader Packet were more accurate than an INS would have provided.
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Figure 4-9: Cooperative navigation experiment scheme of maneuver.

4.5.3 Description

On November 6th, 2021, we conducted the 400-meter cooperative navigation experiment at

Bourne’s Pond in Falmouth, Massachusetts. Table 4.13 provides the coordinates for the two

trials. The first started at Location 1 and set Location 2 as the target, while the second

proceeded in the opposite direction. These coordinates are the same as the dead reckoning

experiment. Additionally, both experiments were conducted within a two-hour window to

replicate the environmental conditions as much as possible.

400-meter Cooperative Navigation Experiment Coordinates
Label Latitude (degrees North) Longitude (degrees West)

Location 1 41.5703500 70.5537100
Location 2 41.5668011 70.5529324

Table 4.13: Cooperative navigation experiment coordinates for November 6th, 2021.

Figure 4-9 shows this experiment’s intended setup, and Figure 4-10 provides a picture of

our actual environment at Bourne’s Pond. Although Bourne’s Pond has a depth between one

and three meters, it offered a favorable experiment location due to a lack of boat traffic, which

could have impeded our transit or hindered our acoustic communication. Furthermore, as

the WHOI Micromodem 1 had performed well in 1999 communicating with another modem

kilometers away in water between three and eight meters deep [98], we were confident the

Micromodem 2 would perform well at Bourne’s Pond.

The diver kayak’s operator interacts with the ros_hat nodes through ROS messages

posted via the command line. The operator posted messages to four topics during these

trials. When the Director Node receives a message on the HNI_trigger topic, it triggers the

Initialization Packet to be transmitted. Posting to the swim topic sets the kayak’s estimated
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Figure 4-10: Image showing our cooperative navigation environment at Bourne’s Pond.
The diver kayak travels toward the target using directions posted to the laptop terminal,

while the REMUS kayak moves to provide diverse ranging locations.
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speed to 0.92 knots, which is the value determined with the paceline tests. Additionally, a

message on the stop_swim topic resets the kayak’s estimated speed to zero, and a message

on the HNT_trigger prints iSAM2’s smoothed path to a comma-separated values (CSV)

file. Table 4.14 summarizes the steps performed by the diver kayak’s and REMUS kayak’s

operators to complete a cooperative navigation trial.

Diver Kayak Process
Step Event

1 Paddle kayak to start location
2 Launch software
3 Post HNI_trigger message to send Initialization Packet
4 Once first Leader Packet received, post swim message to update kayak speed
5 Paddle to the target according to guidance provided by the Director Node
6 Once at target location, post stop_swim message to set kayak speed to zero
7 Post HNT_trigger message to have the Estimator Node save the smoothed

path coordinates to a CSV file
REMUS Kayak Process

Step Event
1 Paddle kayak to location about 25-meters from diver kayak’s start point
2 Launch software
3 Once first Follower Packet received, begin transit
4 Paddle around the diver kayak in 25-meter-radius circles

Table 4.14: Diver kayak and REMUS kayak steps to conduct a cooperative navigation trial.

As described in Algorithm 9, the Director Node uses the diver kayak’s estimated po-

sition to calculate the distance to the target and the bearing to the target. Like the Dead

Reckoning Node, the Director Node uses the Vincenty Python library [95] to calculate

the distance between the estimated kayak location and the target coordinate. Additionally,

the Director Node uses Equations 4.1 through 4.3 to calculate the bearing to the target.

These values get posted to the terminal window along with the current Sparton M2 heading.

Therefore, to travel to the target, the diver kayak’s operator matches their current heading

with the target bearing until the distance to the target equals zero.

4.5.4 Results

Figures 4-11 and 4-12 display the results of these two trials. Within each figure, there are

two images. The left image compares the real-time estimates calculated via iSAM2 with

the ground truth path according to the Garmin GPS 18x. Every time a new odometry or

range factor is added to the graph, the Estimator Node predicts the kayak’s current location
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Figure 4-11: Cooperative navigation trial 1 results from November 6th, 2021. Left:
Real-time kayak location estimates. Right: Kayak’s final smoothed path.

Figure 4-12: Cooperative navigation trial 2 results from November 6th, 2021. Left:
Real-time kayak location estimates. Right: Kayak’s final smoothed path.
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according to Algorithm 8. Therefore, the real-time estimates show where iSAM2 thought

the kayak was during the trial. Conversely, the image on the right shows the final smoothed

path of the diver kayak.

As mentioned in Section 2.4, NLS state estimation algorithms attempt to find the path

that best represents all the measurements it receives. Figure 4-13 helps visualize how iSAM2

uses the two-dimensional range factors from the entire transit to calculate the smoothed

path. Although the final coordinates of the real-time estimates and the smoothed path are

the same, Figures 4-11 and 4-12 show the trajectory of the smoothed solution matches the

ground truth path much better.

Table 4.15 quantifies the navigation accuracy of this experiment. We define the iSAM2

to target endpoint error as the difference between the Estimator Node’s final location pre-

diction and the target coordinates. Similarly, the ground truth to target endpoint error

represents the diver kayak’s actual distance from the target. However, as previously men-

tioned, the critical value in determining the efficacy of the navigation approach is the distance

between the final iSAM2 prediction and the last ground truth coordinate.

Endpoint Error (in meters)
Label iSAM2 to target Ground truth to target iSAM2 to ground truth
Trial 1 3.62 6.81 3.89
Trial 2 2.21 4.63 5.16

Table 4.15: Cooperative navigation experiment endpoint results (in meters) from
November 6th, 2021.

Path Accuracy (in meters)
Real-time Smoothed Path

Label Max distance Avg distance Max distance Avg distance
Trial 1 22.89 6.17 4.50 1.42
Trial 2 12.70 6.40 4.99 2.42

Table 4.16: Cooperative navigation experiment path results from November 6th, 2021.

The results in Table 4.16 show how capable our navigation method is at determining

the kayak’s location throughout the trial. We assess this performance using the maximum

and average distances between the real-time estimates and their corresponding ground truth

locations. For example, the maximum difference between iSAM2’s real-time estimate and the

kayak’s actual location for trial one was 22.89 meters, which Figure 4-11 shows as occurring

near the beginning of the transit.
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Figure 4-13: Local iSAM2 solution with range rings for both trials from November 6th,
2021. Each blue X marks the REMUS kayak’s location upon completing a ping sequence.
These coordinates served as the landmark locations for the two-dimensional range factors
within the factor graph on the Estimator Node. Left: Cooperative navigation trial 1 .

Right: Cooperative navigation trial 2.
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Table 4.16 also displays values representing the smoothed path’s accuracy. At the end of

each trial, we use MATLAB to create a vector of values representing the minimum distance

between each point of the smoothed path and the ground truth track. These values determine

how accurately the smoothed solution represents the ground truth trajectory. For example,

if both paths lined up perfectly at a location, the distance between them would be zero.

Then, we quantify the accuracy of the smoothed solution by finding the maximum and

average values within that vector.

4.6 Micromodem 2 Ping, Packet, and Range Analysis

This section analyzes the acoustic performance of the Micromodem 2. First, we discuss

the cooperative navigation experiments’ ping and packet success rates. Then, we evaluate

the same metrics across all field trials performed during this research and comment on our

decision to change from Rate 5 to Rate 1 pings. Lastly, we compare the ground truth range

measurements to the OWTT-derived range measurements to assess the modem’s ranging

performance. This analysis provided critical parameters for the simulations discussed in the

following sections.

The November 6th cooperative navigation experiment relied on the Micromodem 2’s

Rate 1 communication with a 25-kilohertz center frequency and a five-kilohertz bandwidth.

As mentioned in Section 3.2, this Rate 1 FDP communication uses QPSK modulation and

Bose–Chaudhuri–Hocquenghem error-correcting code [57]. Table 4.17 shows the communi-

cation success rates for this experiment.

Communication Performance on November 6th

Category Transmitted Successful Percent success
Ping 57 57 100.00

Packet 116 116 100.00

Table 4.17: Ping and packet success rates for both cooperative navigation trials on
November 6th, 2021.

Throughout all our experiments, we relied on Rate 1 packets. However, early testing

used Rate 5 pings. Rate 5 utilizes QPSK modulation but performs error correction with

Hamming code to enable faster data transmission. For example, the burst rate for an FDP

mini-packet is 508 bits per second with Rate 1 and 2,797 bits per second with Rate 5 [57].

However, Rate 5 is less robust to acoustic clipping, which Mei et al. [99] defines as a type
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of waveform distortion that occurs when an amplifier tries to increase the electrical signal’s

amplitude past its maximum capability.

Table 4.18 and Table 4.19 quantify the Micromodem 2’s communication performance

throughout this research. Most missed pings came during an early October cooperative

navigation trial in Woods Hole, Massachusetts. Chapter 5 discusses that trial in more

detail. After experiencing those issues, we switched from Rate 5 pings to Rate 1 pings,

which had an increased success rate albeit with a smaller sample size.

Ping Success
Type Transmitted Successful Percent success
Rate 1 57 57 100.00
Rate 5 919 1002 91.72

Combined 976 1059 92.16

Table 4.18: Ping success rate throughout all field tests and experiments.

Packet Success
Type Transmitted Successful Percent success
Rate 1 713 717 99.44

Table 4.19: Packet success rate throughout all field tests and experiments.

Given the 42.47-microsecond ping-derived OWTT standard deviation from our Septem-

ber 22nd test and 1495.03 meters per second sound speed, the range factor’s standard devi-

ation for the November 6th cooperative navigation trials was set equal to 6.35 centimeters.

However, as Fallon et al. [48] states, a modem’s ranging accuracy is expected to decrease

when using TWTT due to the relative motion of the vehicles as the transmitted ping travels

from one vehicle to the other and back.

Figure 4-14 shows the range errors for every range factor during the cooperative navi-

gation experiment. Each time the REMUS kayak transmitted a ping, the Navigator Node

saved the coordinates posted by the Arrow 100. Similarly, every time the diver kayak re-

ceived a ping, the Director Node saved the coordinates provided by the Garmin GPS 18x.

Within that figure, we define the GPS-derived range as the distance between those two

coordinates and the OWTT-derived range as the distance calculated using Equation 4.4.

Figure 4-15 displays a histogram of the data from Figure 4-14. The x-axis is defined

as the ground truth range minus the modem range. The ground truth range is calculated

using coordinates provided by the GPS and GNSS receivers, and the modem range is calcu-
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Figure 4-14: Range error data for both cooperative navigation trials on November 6th,
2021. Within each figure, the range measurements are in the order they occurred during
the trial. For example, range number 1 is the first range measurement during the trial.

Figure 4-15: Range error histogram for both cooperative navigation trials on November
6th, 2021. Range bias (𝜇) = -0.41 meters, and range standard deviation (𝜎) = 2.90 meters.
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lated using the OWTT. During these trials, the Arrow 100 supplied coordinates with R95

accuracies between 0.49 and 0.73 meters, while the coordinates from the Garmin GPS 18x

had R95 accuracies between 3.30 and 3.90 meters. Due to the uncertainty of the locations

involved in calculating the ground truth range, it is difficult to make confident conclusions

about the range bias (𝜇) and range sigma (𝜎). However, given our cooperative navigation

experiment data, we calculate the Micromodem 2’s dynamic ranging accuracy as having a

negative bias of 0.41 meters and a standard deviation of 2.90 meters.

4.7 Simulating the Diver’s Ground Truth Path

Although the kayak provided the ground truth path in the field experiments, simulations

require software to fabricate the diver’s actual coordinates during the transit. Critical pa-

rameters for the simulations were the ocean current speed, ocean current heading, and diver’s

estimated kick speed, which we define as the speed they would travel unhampered by ocean

currents. Although the ocean current was assumed constant throughout our simulations, we

added noise to the diver’s estimated kick speed and heading to replicate real-world variabil-

ity. This section discusses how we added noise to those values and details the algorithm we

used to simulate the diver’s ground truth trajectory. Properly simulating the diver’s ground

truth path was critical to the overall HAT navigation simulation.

Usually, divers use 100-meter paceline tests to estimate their kick speed. However, their

average pace during the dive is unlikely to equal that value. To replicate that bias, we

add zero-mean Gaussian noise to the original speed estimate, which we set equal to 0.92

knots to mimic the DR and cooperative navigation experiments. Additionally, we assume

the standard deviation of the added noise is 0.05 knots. Therefore, at the start of each

simulation, the new mean kick speed (𝜐𝑁 ) is found by

𝜐𝑁 = 0.92 + 𝒩 (0, 0.052). (4.5)

There is also variability in a diver’s pace during the dive itself. Consequently, the diver’s

kick speed (𝜐𝑖) at each time interval is found by adding zero-mean Gaussian noise with a

0.05-knot standard deviation to the noisy mean kick speed:

𝜐𝑖 = 𝜐𝑁 + 𝒩 (0, 0.052). (4.6)
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Noise is also added to the diver’s global heading because they are unlikely to hold the

submersible tablet perfectly straight throughout the transit, thereby introducing a tempo-

rary heading bias. Additionally, momentary or persistent uneven kicking can add inaccuracy

even if the diver is holding the tablet properly. Given these error sources, we assume the

diver maintains a course within five degrees of the desired heading before incorporating the

ocean current’s impact. For example, if the diver holds 207 degrees on their submersible

tablet, we assume the ground truth bearing is between 202 and 212 degrees. With these

assumptions, we calculate the actual heading for each time step by

Θ𝑖 = 𝜃𝑖 + 𝒰(−5, 5), (4.7)

where 𝜃𝑖 is the diver’s global heading according to the simulated dive tablet and 𝒰(−5, 5)

represents a uniform distribution between negative five and five degrees.

Algorithm 16 shows the steps needed to generate the diver’s ground truth path given

these assumptions and noise models. During step three, the diver’s speed over ground (SOG)

and course over ground (COG) are calculated by adding one vector representing the noisy

kick speed and heading to a second vector signifying the constant ocean current.

Algorithm 16 Find the Diver’s Next Ground Truth Location

Require: Ocean current speed (𝜐𝑂) and heading (𝜃𝑂), diver’s new mean kick speed (𝜐𝑁 )
In: Diver’s global heading in degrees (𝜃𝑖) and current ground truth location (𝐶𝐺𝑇

𝑖 )
1: Current kick speed (𝜐𝑖) = 𝜐𝑁 + 𝒩 (0, 0.052) {𝜎=0.05 knots}
2: Current global heading (Θ𝑖) = 𝜃𝑖 + 𝒰(−5, 5) {added noise in degrees}
3: Calculate diver’s speed over ground (SOG) and course over ground (COG) using 𝜐𝑖,
Θ𝑖, 𝜐𝑂, and 𝜃𝑂

4: Calculate diver’s new ground truth location (𝐶𝐺𝑇
𝑖+1) using SOG, COG, and 𝐶𝐺𝑇

𝑖

return 𝐶𝐺𝑇
𝑖+1

4.8 Dead Reckoning Simulation

The purpose of the DR simulations is to serve as a comparison to the HAT cooperative

navigation simulations discussed in the following section. Using MATLAB, we analyzed the

performance of DR navigation in 13 different environments using 26 separate simulations.

Our software performs similarly to the Dead Reckoning Node used in the field. Specifically,

given a starting coordinate, the MATLAB script uses time, speed, and heading measure-
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ments to predict the diver’s location throughout the transit. After describing the algorithm

used for these simulations, we conclude this section by evaluating the DR method’s perfor-

mance.

4.8.1 Description

A custom MATLAB script simulated the diver’s DR and ground truth paths using Algo-

rithm 17. We assume the diver holds the bearing from their estimated position to the target

throughout the simulation. Therefore, each time a new DR estimate is made, 𝜃𝑖 in Algo-

rithms 16 and 17 is set equal to the new bearing to the target. Appendix C shows the entire

MATLAB script used to perform these simulations.

Algorithm 17 One Step of the Dead Reckoning Simulation

Require: Target coordinates (𝐶𝑇 ), ocean current speed (𝜐𝑂) and heading (𝜃𝑂), diver’s kick
speed estimate (𝜐𝐸), diver’s new mean kick speed (𝜐𝑁 ) {calculated using Equation 4.5}
In: Dead reckoning estimate (𝐶𝐷𝑅

𝑖 ), ground truth location (𝐶𝐺𝑇
𝑖 )

1: Change in time (𝛿𝑇 ) = 1 second
2: Calculate bearing to target (𝜃𝑖) using 𝐶𝐷𝑅

𝑖 and 𝐶𝑇

{Assume diver holds bearing 𝜃𝑖}
3: Calculate diver’s dead reckoning estimate (𝐶𝐷𝑅

𝑖+1) using 𝛿𝑇 , 𝜐𝐸 , 𝜃𝑖, and 𝐶𝐷𝑅
𝑖

4: 𝐶𝐷𝑅
𝑖 = 𝐶𝐷𝑅

𝑖+1

5: Calculate ground truth location (𝐶𝐺𝑇
𝑖+1) using Algorithm 16

6: 𝐶𝐺𝑇
𝑖 = 𝐶𝐺𝑇

𝑖+1

Both the dead reckoning estimate and ground truth location start at an initial user-

defined coordinate. Then, the algorithm updates the dead reckoning estimate using the kick

speed estimate and bearing to the target. However, simulated ocean currents, inconsistent

kick speeds, and imprecise headings push the diver off course from the dead reckoning

estimate. Therefore, the algorithm updates the diver’s ground truth location at each step

using the diver’s SOG and COG, which reflect the impacts from the ocean current and added

noise. The trial ends once the dead reckoning estimate is within two meters of the target.

We conducted 26 MATLAB simulations according to the properties listed in Table 4.20.

Regardless of the transit length, the bearing from the diver’s starting location to the target

was 207 degrees. Therefore, a 207-degree ocean current is in the direction of the diver’s

transit, a 27-degree ocean current is opposite the direction of the diver’s transit, and a 117-

degree ocean current provides a right-to-left crosscurrent. The goal of these dead reckoning

simulations was to serve as a comparison to the cooperative navigation simulations.
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Simulation Parameters
Trial Distance Ocean current speed Ocean current heading
1, 2 400 meters 0.1 knots 27 degrees
3, 4 400 meters 0.1 knots 117 degrees
5, 6 400 meters 0.1 knots 207 degrees
7, 8 400 meters 0.3 knots 27 degrees
9, 10 400 meters 0.3 knots 117 degrees
11, 12 400 meters 0.3 knots 207 degrees
13, 14 400 meters 0.5 knots 27 degrees
15, 16 400 meters 0.5 knots 117 degrees
17, 18 400 meters 0.5 knots 207 degrees
19, 20 400 meters 0.2 knots 117 degrees
21, 22 600 meters 0.2 knots 117 degrees
23, 24 800 meters 0.2 knots 117 degrees
25, 26 1000 meters 0.2 knots 117 degrees

Table 4.20: Simulation parameters.

4.8.2 Results

Table 4.21 shows the results for the 13 different sets of simulation parameters provided

in Table 4.20. The endpoint error metrics within that table are equivalent to those from

the November 6th dead reckoning experiment. Additionally, the values in Table 4.21 repre-

sent the average results of the two trials performed for each set of simulation parameters.

However, Appendix D provides the data for each individual trial.

Dead Reckoning Simulation Endpoint Results (in meters)
Trial DR to target Ground truth to target DR to ground truth
1, 2 1.88 40.25 38.37
3, 4 1.88 44.51 44.32
5, 6 1.88 65.69 67.57
7, 8 1.88 125.15 123.26
9, 10 1.88 131.02 131.19
11, 12 1.88 116.01 117.89
13, 14 1.88 218.80 216.92
15, 16 1.88 218.26 218.21
17, 18 1.88 215.71 217.59
19, 20 1.64 87.51 87.62
21, 22 1.88 144.32 143.87
23, 24 1.65 197.65 198.54
25, 26 1.88 221.29 221.57

Table 4.21: Endpoint results (in meters) from the dead reckoning simulations. The
displayed values represent the average results from the trials in the left-most column.
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Figure 4-16: One-kilometer dead reckoning simulation. Ocean current speed = 0.2 knots.
Ocean current heading = 117 degrees.

Figure 4-16 displays trial 25’s results by plotting the DR path and the ground truth

path. The ocean current for this simulation was set at 0.2 knots with a 117-degree heading.

4.9 Cooperative Navigation Simulations

Eventually, we intend for our HAT navigation method to be utilized during multi-kilometer

transits in all environments safe for diving. Therefore, through these simulations, we sought

to test how our system performed in more difficult environments than those experienced in

the field. First, we list the equipment used to conduct these simulations and discuss how the

operator can control the simulated diver by manipulating the Sparton M2 AHRS. Then, we

explain how the REMUS’s location uncertainty was simulated and how the Micromodem 2

performance from the cooperative navigation field trials helped model range measurements

for the simulations. After describing the process required to conduct a simulation, we

evaluate how well our system guided the simulated diver to the target and how effectively

it calculated the diver’s path throughout the transit. This section concludes by comparing

the ping and packet success rates from the simulations to those from the field experiments.
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4.9.1 Equipment

The cooperative navigation simulations required a Sparton M2 AHRS, a Software Develop-

ment Box, a core-board simulator, and a computer. Table 4.22 provides the specification

and purpose for each piece of equipment.

Simulation Equipment
Quantity Equipment Specification Purpose

1 Sparton M2 AHRS Data rate: 1 Hz Global heading
1 Software Development Box Dual Micromodem 2 Communication
1 Core-board simulator REMUS 100 Simulate AUV
1 Computer (Ubuntu 20.04) ROS Noetic Ninjemys Execute software

Table 4.22: Equipment to simulate cooperative navigation trials.

A REMUS 100 core-board simulator imitated the vehicle’s front seat computer and

sensors. Along with the standard sensor suite, our core-board build had a Phins C3 INS [76]

and RECON. The desktop computer serves as the simulated vehicle’s back seat computer.

Therefore, RECON provides the link between the computer and the core-board, which can

post messages and respond to commands the same way a REMUS would during field use.

The REMUS Vehicle Interface Program (VIP) is a graphical user interface that provides

mission planning capabilities, posts sensor data, and plots the vehicle’s location on a map

[100]. We used VIP to program the initial circling objective and visualize the vehicle’s path

throughout the simulation. Therefore, combining the core-board and VIP software allowed

us to plan and execute missions like a real REMUS 100.

A Sparton M2 AHRS provided the diver’s global heading data throughout the simulation.

Therefore, the person running the simulation could manually adjust the diver’s heading

by rotating the AHRS. This capability allowed them to respond to ros_hat’s navigation

guidance as a diver would.

The Linux desktop computer has a Ryzen 9 5950x 16-core, 32-thread processor with 62.7

gibibytes (GiBs) of random access memory (RAM). Although it runs software to simulate

both the REMUS and diver, the nodes for each are compartmentalized. Communication

between the two groups is accomplished with acoustic messaging via the Dual Micromodem

2 DSP Software Development Box [101], which has two Micromodem 2 stacks that commu-

nicate through coaxial cables. These modems post the same NMEA strings as they would

in the field, which is crucial for ros_hat to function correctly. Through this equipment, we
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tried to provide as authentic a simulation as possible.

4.9.2 Simulating Vehicle Location Error and Two-dimensional Ranges

Although we let the coordinates provided by the core-board simulator be the REMUS’s

ground truth location, we still predict the vehicle’s actual location error throughout the

dive. We assume the simulated REMUS 100 has a Phins C3 INS and that its DVL has

bottom lock throughout the dive. We also assume that the C3 accrues error according to

its area survey pattern model, which advertises a CEP accuracy equal to 0.04% of the total

distance traveled provided its DVL has bottom lock [76]. However, even with this excellent

navigation solution, the REMUS’s error is unbounded.

This additive uncertainty builds on the REMUS’s original location accuracy, which we

assume is provided by the Arrow 100. Consequently, every time the REMUS received a fix

within this simulation, the vehicle’s location uncertainty reset to 0.73 meters, which was the

greatest R95 error the Arrow 100 experienced during the cooperative navigation experiment

on November 6th. However, the core-board simulator does not calculate the vehicle’s location

uncertainty itself. Instead, the Navigator Node used Algorithm 18 to find this value.

Algorithm 18 Simulate REMUS 100 uncertainty
Require: Initial R95 uncertainty (𝑈𝑜)

Assume: Phins C3 CEP accuracy = 0.04% of distance traveled
In: REMUS’s initial global coordinates (𝐶𝑜)
1: Convert Phins C3 CEP accuracy to R95 accuracy
2: Current REMUS location (𝐶𝑖) = 𝐶𝑜

3: Current R95 uncertainty (𝑈𝑖) = 𝑈𝑜

repeat
{The following steps repeat every second}
4: INS provides next REMUS location (𝐶𝑖+1)
5: Calculate distance (𝑑𝑖) between 𝐶𝑖 and 𝐶𝑖+1

6: Calculate added uncertainty (𝑈+) using 𝑑𝑖 and Phins C3 R95 accuracy
6: New R95 uncertainty (𝑈𝑖+1) = 𝑈𝑖 + 𝑈+

7: Convert 𝑈𝑖+1 to RMS uncertainty (𝑈𝑅𝑀𝑆) {RMS format required by GTSAM}
8: 𝑈𝑖 = 𝑈𝑖+1

return 𝑈𝑅𝑀𝑆

until Trial ended

The REMUS’s location error is included in the Leader Packet and transmitted to the

diver. As stated in Chapter 3, this value exclusively serves to calculate a landmark location’s

covariance within the factor graph. However, the location error in these simulations also
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impacts the two-dimensional range calculation because the Software Development Box’s

published OWTT does not reflect the distance between the simulated REMUS and diver.

Therefore, inexact two-dimensional ranges reflecting the modem’s ranging accuracy and the

REMUS’s location error must be simulated instead.

To simulate noisy range measurements, we assume the range error and the REMUS’s

location uncertainty are linearly related, which allows us to increase the range error through-

out the transit based on how much the REMUS’s location uncertainty has increased. Each

time the REMUS transmits a ping, the ground truth range is calculated using the ground

truth diver and REMUS coordinates. Then, the Director Node calculates imprecise two-

dimensional ranges by adding zero-mean Gaussian noise to this value. We let the standard

deviation of the added noise depend on the modem’s range accuracy and the REMUS’s

location uncertainty. Additionally, we assume the modem’s range accuracy has a constant

standard deviation of 2.90 meters to reflect the results of our cooperative navigation exper-

iment. However, the REMUS’s location uncertainty increases throughout the dive. There-

fore, each time the Director Node receives a Leader Packet, it calculates how much the

REMUS’s location error has increased since its last GPS fix. Then, the combined standard

deviation (𝜎𝑓⊗𝑔) is found by convolving two Gaussian distributions representing the error

sources. Bromiley [102] provides the equation to accomplish this:

𝜎𝑓⊗𝑔 =
√︁
𝜎2
𝑓 + 𝜎2

𝑔 , (4.8)

where 𝜎𝑓 and 𝜎𝑔 are the two distribution’s standard deviations. In our case, we set 𝜎𝑓 equal

to the change in the REMUS’s root mean square (RMS) location error and 𝜎𝑓 equal to 2.90

meters. Lastly, the Director Node calculates the noisy two-dimensional range (𝑅𝑁 ) using

𝑅𝑁 = 𝑅𝐺𝑇 + 𝒩 (0, 𝜎2
𝑓⊗𝑔), (4.9)

where 𝑅𝐺𝑇 is the ground truth two-dimensional range and 𝜎𝑓⊗𝑔 is the combined standard

deviation calculated using Equation 4.8. This range is passed to the Estimator Node for

inclusion in the range factor.
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4.9.3 Description

Using the steps listed in Table 4.23, we completed 13 trials with the same environmental

conditions as the dead reckoning simulations, which are provided in Table 4.20. The simu-

lation’s operator controlled the diver and interacted with the ros_hat nodes through ROS

messages posted via the command line. These simulations utilized the same ROS messages as

the cooperative navigation experiment. Additionally, the operator manipulated the diver’s

heading within the simulation using the Sparton M2. Similar to the field experiments, the

Director Node posts the recommended heading, distance to the target, and current Sparton

M2 heading values to the terminal screen. Therefore, the operator aligns the Sparton M2

heading with the recommended heading to steer the simulated diver towards the target.

REMUS Simulation Process
Step Event

1 Launch REMUS software
Diver Simulation Process

Step Event
1 Launch diver software
2 Post HNI_trigger message to send Initialization Packet
3 Once first Leader Packet received, post swim message to update diver speed
4 Manipulate the Sparton M2 according to guidance posted to the terminal
5 Once at the target location, post stop_swim message to set diver speed to zero
6 Post HNT_trigger message to have the Estimator Node save the smoothed

path coordinates to a CSV file

Table 4.23: Steps to conduct a cooperative navigation simulation.

It is also important to note that, although the core-board simulator and VIP collaborate

to simulate the REMUS’s ground truth path, it cannot perform the same function for the

diver. Consequently, along with the software discussed in Chapter 3, these simulations

require an extra ROS node that fabricates the diver’s ground truth location according to

Algorithm 16. Therefore, the same noise is added to the diver’s speed and heading for the

dead reckoning and cooperative navigation simulations. However, the Estimator Node is

unaware of these changes and adds odometry factors using the Sparton M2 heading and

0.92-knot speed estimate.
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4.9.4 Results

Table 4.24 quantifies the navigation accuracy of the 26 simulations, while Table 4.25 com-

pares the real-time estimates to the smoothed path. The metrics within both tables are

equivalent to those from the November 6th cooperative navigation experiment results de-

scribed in Section 4.5.4. Additionally, the values in Tables 4.24 and 4.25 represent the

average results of the two trials performed for each set of simulation parameters listed in

Table 4.20. However, Appendix D provides the data for each individual trial.

Cooperative Navigation Simulations: Average Endpoint Results (in meters)
Trial iSAM2 to target Ground truth to target iSAM2 to ground truth
1, 2 1.55 1.67 2.25
3, 4 5.18 9.27 7.13
5, 6 5.97 2.75 3.88
7, 8 3.23 6.84 9.36
9, 10 4.42 9.68 10.85
11, 12 5.64 6.82 5.92
13, 14 8.70 23.66 15.44
15, 16 8.85 20.41 12.04
17, 18 9.84 19.20 9.79
19, 20 1.42 6.88 5.62
21, 22 1.48 5.26 3.82
23, 24 1.58 6.26 5.81
25, 26 1.77 6.36 4.89

Table 4.24: Endpoint results (in meters) from the cooperative navigation simulations. The
displayed values represent the average results from the trials in the left-most column.

As a comparison to Figure 4-16 in Section 4.8.2, Figure 4-17 shows the real-time lo-

cation estimates and final smoothed path for a one-kilometer simulation. Similar to the

field experiments, these figures were made with the help of bag files and MATLAB’s ROS

Toolbox) [91]. Specifically, a MATLAB script plotted the paths and evaluated the endpoint

error using the vdist function [97] after the simulation concluded.

4.9.5 Micromodem 2 Ping, Packet, and Range Analysis

Due to the perfect communication performance during the November 6th cooperative nav-

igation tests, we did not intentionally drop packets or pings throughout the simulations.

However, communication using the Software Development Box was naturally imperfect.

Therefore, comparing Table 4.26 to Table 4.18 shows the simulation’s ping success rate was

higher than the Rate 5 ping rate but lower than the Rate 1 ping rate. Additionally, the
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Cooperative Navigation Simulations: Path Results (in meters)
Real-time Smoothed Path

Trial Max distance Avg distance Max distance Avg distance
1, 2 9.72 3.97 6.27 1.66
3, 4 11.31 5.17 6.89 2.03
5, 6 10.55 4.17 4.86 1.71
7, 8 28.92 9.75 6.43 1.63
9, 10 27.03 11.21 5.15 1.75
11, 12 33.07 13.00 9.70 2.45
13, 14 51.25 19.32 6.80 2.13
15, 16 51.26 19.10 7.18 1.75
17, 18 53.65 20.46 6.90 2.16
19, 20 16.43 6.82 7.23 2.02
21, 22 17.95 8.10 5.16 1.83
23, 24 30.08 8.73 6.66 1.70
25, 26 17.78 7.78 7.08 1.99

Table 4.25: Path estimation results (in meters) from the cooperative navigation
simulations. The displayed values represent the average results from the trials in the

left-most column.

differences between Table 4.26 and Table 4.19 show the simulation’s packet success rate was

lower than we experienced in the field.

Software Development Box Communication Performance
Category Transmitted Successful Percent success

Ping 1083 1049 96.86
Packet 2202 2168 98.46

Table 4.26: Ping and packet success rates for the cooperative navigation simulations.
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Figure 4-17: One-kilometer cooperative navigation simulation. Ocean current speed = 0.2
knots. Ocean current heading = 117 degrees. Left: Real-time diver location estimates.

Right: Diver’s final smoothed path.

4.10 Analysis of Results

This section evaluates the efficacy of our proposed HAT cooperative navigation method by

answering the following questions using the results from the field exercises and simulations:

1. How much better is the cooperative navigation method than the dead reckoning ap-

proach?

2. How does the ocean current speed impact the cooperative navigation performance?

3. How does the ocean current heading impact the cooperative navigation performance?

4. How does the dive distance impact the cooperative navigation performance?

5. How close should a diver expect to be from their ground truth position while using

the cooperative navigation method in real-time?

6. How accurate should the diver expect their smoothed iSAM2 solution to be?

We compared the endpoint errors of the cooperative navigation and DR approaches

to quantify the relative performance. The endpoint error equals the distance between the
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method’s final diver location estimate and the diver’s corresponding ground truth coordinate.

Additionally, we define the cooperative navigation improvement as the difference between

the DR endpoint error and the iSAM2 endpoint error.

Table 4.27 provides the improvement values for both field trials and the 13 different sets

of simulation parameters provided in Table 4.20. Our proposed HAT cooperative naviga-

tion approach provides superior navigation based on those results, with the minimum and

maximum average improvements equaling 36.11 and 216.67 meters, respectively. However,

the performance of both methods is impacted by the environment and dive length.

Improvement = Dead reckoning endpoint error - iSAM2 endpoint error (in meters)
Trial Distance Ocean Current Improvement

Field 1 400 meters Unknown Unknown 64.62
Field 2 400 meters Unknown Unknown 46.11

1, 2 400 meters 0.1 knots 27 degrees 36.11
3, 4 400 meters 0.1 knots 117 degrees 37.18
5, 6 400 meters 0.1 knots 207 degrees 63.68
7, 8 400 meters 0.3 knots 27 degrees 113.89
9, 10 400 meters 0.3 knots 117 degrees 120.33
11, 12 400 meters 0.3 knots 207 degrees 111.97
13, 14 400 meters 0.5 knots 27 degrees 201.47
15, 16 400 meters 0.5 knots 117 degrees 206.17
17, 18 400 meters 0.5 knots 207 degrees 207.80
19, 20 400 meters 0.2 knots 117 degrees 82.00
21, 22 600 meters 0.2 knots 117 degrees 140.05
23, 24 800 meters 0.2 knots 117 degrees 192.73
25, 26 1000 meters 0.2 knots 117 degrees 216.67

Table 4.27: Endpoint error differences between the dead reckoning and cooperative
navigation solutions (in meters). All improvement values are averages except for the field

trials.

Figure 4-18 compares the ocean current speed with the iSAM2 endpoint error, which

represents the ability of our navigation method to predict the diver’s final location. Since

we did not conduct simulations with every ocean current speed between zero and 0.5 knots,

we did a linear fit of our data to extrapolate the results. The linear fit predicts an endpoint

error of 4.37 meters at 0.1 knots and 12.50 meters at 0.5 knots. Therefore, we can infer that

increased ocean current speeds decrease the performance of our HAT cooperative navigation

method.

Although there is a clear correlation between the ocean current speed and performance,

Figure 4-19 shows that the effect of ocean current heading is less severe. The x-axis represents
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Figure 4-18: Impact of ocean current speed on the endpoint error of our cooperative
navigation approach.

Figure 4-19: Impact of relative ocean current heading on the endpoint error of our
cooperative navigation approach.
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Figure 4-20: Impact of transit distance on the endpoint error of our cooperative navigation
approach.

the ocean current’s relative heading, defined as the difference between the bearing from the

start location to the target and the ocean current heading. Therefore, a zero-degree relative

heading means the ocean current flows in the direction of the diver’s travel, while a 180-

degree relative heading implies the opposite. Due to the shallow slope of the linear fit, it does

not appear there is a strong connection between the endpoint error and relative heading.

The last variable changed during the simulations was the dive length. Figure 4-20 com-

pares the dive length with the endpoint error using simulation trials 19 through 26. Specif-

ically, those simulations maintain a 0.2-knot ocean current at a 117-degree bearing with

dive distances between 400 meters and one kilometer. Although there is a significant dif-

ference between the two trial’s endpoint accuracies for the 400- and 800-meter dive lengths,

the linear fit suggests the dive length does not impact the endpoint error at the simulated

distances.

Along with analyzing how varying environmental factors impacted iSAM2’s endpoint

error, we also examined how increasing ocean current speeds, varying ocean current headings,

and longer dive distances impact the real-time estimates during the dive and the smoothed

solution at the end of the dive. The accuracy of these solutions is measured using four

metrics. The first and second metrics are called the online maximum distance and the

online average distance, respectively. These values assess iSAM2’s real-time performance
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Figure 4-21: Impact of ocean current speed on the online maximum distance (top left),
online average distance (top right), smoothed path maximum distance (bottom left),

and smoothed path average distance (bottom right).

by finding the maximum and average differences between the diver’s estimated location and

their ground truth position during the dive. The third and fourth are the smoothed path

maximum and the smoothed path average distances, respectively. These metrics quantify

the accuracy of the smoothed solution by finding its maximum and average distances from

the ground truth path.

Figure 4-21 compares the ocean current speed with the accuracy of the cooperative

navigation method according to the metrics defined in the previous paragraph. We can

infer that our HAT cooperative navigation method degrades as the ocean current speed

increases by performing linear fits on our simulation results. The online performance is

most impacted because the odometry factors assume the diver travels at 0.92 knots at the

heading provided by the AHRS. This assumption becomes less and less accurate as the ocean

current speed increases. Although our algorithm intentionally places low confidence in the

odometry factors, the speed and heading inaccuracies still cause erratic iSAM2 estimates

during the dive. Fortunately, the smoothed solution is impacted significantly less by higher

ocean current speeds.

Figure 4-22 and Figure 4-23 demonstrate the effect increased ocean current speeds have
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Figure 4-22: 400-meter cooperative navigation simulation results. The ocean current speed
and heading are 0.1 knots and 117 degrees, respectively. A 117-degree ocean current

heading represents a right-to-left crosscurrent for the diver. Left: Real-time diver location
estimates. Right: Diver’s final smoothed path.

Figure 4-23: 400-meter cooperative navigation simulation results. The ocean current speed
and heading are 0.5 knots and 117 degrees, respectively. A 117-degree ocean current

heading represents a right-to-left crosscurrent for the diver. Left: Real-time diver location
estimates. Right: Diver’s final smoothed path.
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Figure 4-24: Impact of ocean current heading on the online maximum distance (top left),
online average distance (top right), smoothed path maximum distance (bottom left),
and smoothed path average distance (bottom right). We define the relative heading as
the bearing from the diver’s start location to the target minus the ocean current heading.

on the real-time and smoothed solutions. Both figures show a 400-meter dive length with a

117-degree ocean current heading. However, the ocean current in Figure 4-22 is 0.1 knots,

while the ocean current in Figure 4-23 is 0.5 knots. Clearly, the real-time solution in the

latter figure is significantly less stable. Since the diver uses those estimates to navigate,

their path to the target is negatively impacted. Specifically, the diver makes untraditional

turns near the target. However, the smoothed solution matches the diver’s irregular path

to provide an accurate result.

Figure 4-24 shows that the relative heading of the ocean current has a negligible impact

on the cooperative navigation performance. Additionally, Figure 4-25 shows that longer dive

lengths may increase the online maximum distance. However, it does not appear that the

online performance is impacted as much by the dive length as by the ocean current speed.

Regardless, the linear fits for the other three metrics show minimal impact by the longer

dive lengths.

Lastly, Table 4.28 provides maximum and average accuracy values for our cooperative

navigation method. Although the average values provide useful information about the per-

formance of our approach, the maximum distances are the most impactful. For example,
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Figure 4-25: Impact of transit distance on the online maximum distance (top left), online
average distance (top right), smoothed path maximum distance (bottom left), and

smoothed path average distance (bottom right).

although divers can expect to be about seven meters away from their ground truth location

at the end of the dive, it is critical to realize that they could be nearly 20 meters away.

Similarly, during the transit, the diver should know that their estimated position could have

an error of 55 meters, even though it is more likely to be around 10 meters.

Maximum and average accuracy values (in meters)
Metric Maximum distance Average distance

Endpoint error 19.62 7.24
Real-time estimate 54.49 10.27

Smoothed path 14.58 1.91

Table 4.28: Maximum and average accuracy values (in meters) from the cooperative
navigation field trials and simulations.
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Chapter 5

Conclusions and Future Work

Chapter 5 concludes this thesis by discussing its contribution and proposing future work

focused on increasing the capabilities of the diver-AUV team.

5.1 Contribution

This thesis introduced a novel cooperative navigation technique between a REMUS 100

and a diver. Our approach leverages new and existing software repositories to perform

ROSB navigation through a new AUV behavior and acoustic communication architecture.

Although we did not test our proposed system using a REMUS 100 or diver, we have shown

through kayak-to-kayak field experiments and simulations that our approach dramatically

improves navigation performance compared to traditional DR solutions. Additionally, while

DR diverges from the ground truth location throughout the dive, our method combines all

the range measurements throughout the transit to provide accurate trajectory mapping to

the diver. Therefore, along with improving the diver’s ability to navigate to the target, our

system shows them how they arrived at that location.

5.2 Future Work

Future work in human-autonomy teaming between a diver and a REMUS AUV can be cat-

egorized in two ways: improving the team’s cooperative navigation ability and expanding

the team’s capabilities beyond navigation. This section addresses the former by considering

improvements to the autonomous behavior and the state estimation algorithm. Specifically,
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we propose experiments to test our current autonomous behavior and recommend research

into how it can incorporate more variables, such as distance from the diver and turning ra-

dius, to calculate its next waypoint. We also believe effort should be focused on how existing

Micromodem 2 functions can be used to teach the AUV about the operating environment

and calculate the diver’s speed. After recommending adaptations to the diver’s software to

provide them with a confidence level of their state estimate, we conclude this section by

introducing how the diver-AUV team could advance with soundscape analysis and cooper-

ative surveys. The diver-AUV team is just beginning to develop, and there is much more

work to be done.

5.2.1 Improving the Autonomous Behavior

Improving the autonomous behavior will progress the diver’s navigation ability. First, we

believe efforts should focus on validating the AUV’s circular behavior. Then, we recommend

incorporating intermittent surfacing, additional optimization parameters, and environmental

monitoring to improve the cooperative navigation performance.

It is important to verify that a circling behavior provides adequate navigation solutions

to the REMUS. The AUV rolls to one side while turning, potentially impacting the DVL’s

bottom lock and decreasing the INS’s performance. Although we propose a circling behavior

in this thesis, a rectangular path could provide similar location diversity to the diver while

benefiting INS performance. Figure 5-1 provides a visual of the rectangle behavior.

Performing a field test to determine the impact of a circular versus a rectangular behavior

on the INS would provide valuable information to improve our ROSB approach. The test

would start with a REMUS 100 circling a coordinate for an extended period and then

surfacing. Software onboard the back seat computer would compare the vehicle’s estimated

location to the GPS coordinates it received at the end of the trial. Then, the AUV would

complete the same process but with a rectangular path instead. Less endpoint error indicates

superior INS performance. If the rectangle behavior offers significant INS improvements, our

autonomous behavior should be adapted to perform that pattern instead.

Another approach to decreasing the REMUS’s location drift is to have the vehicle in-

termittently surface to get a GPS fix. The behavior to enable this capability already exists

on the Navigator Node. Specifically, the software monitors the AUV’s R95 uncertainty and

triggers a porpoise behavior to surface the vehicle if it exceeds a user-defined value. After
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Figure 5-1: Cooperative navigation rectangle behavior.

receiving a fix and resetting the vehicle’s location uncertainty, the behavior submerges the

AUV back to the appropriate depth.

We did not utilize this capability during the simulations because we sought to assess

the performance of a cooperative navigation approach with no surface presence during the

transit. Additionally, simply surfacing the vehicle without knowing what is on the surface

could result in a collision. Therefore more research should be done on using an upward-

facing acoustic Doppler current profiler (ADCP), passive acoustic monitoring, or acoustic

pinging to determine whether it is safe for an AUV to surface. After mitigating the collision

risk, the AUV can safely surface during the transit to reset its location uncertainty, resulting

in more accurate two-dimensional ranges for iSAM2. This behavior will likely improve the

diver’s location estimate and enable longer dives.

Future efforts should also adapt our autonomous behavior to calculate the REMUS’s

next waypoint using more variables. This thesis introduced a relatively simple behavior

that predicts the diver’s location, calculates a new waypoint based on that location, and

performs a circle. Early simulations showed this behavior maintains the desired 15- to

100-meter REMUS-diver dispersion provided there is no ocean current. However, once the

simulations incorporated ocean currents, there were multiple occurrences of the REMUS and

diver being at the same location. Even with our autonomous behavior’s two-meter depth

dispersion, it is imperative to maintain the proper horizontal distance to ensure the diver’s

safety. Therefore, the Navigator Node should calculate its next waypoint in a way that
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Figure 5-2: October 8th cooperative navigation trial.

provides beneficial range diversity while maintaining a safe distance from the diver.

Although we experienced perfect communication during the cooperative navigation ex-

periment on November 6th, an earlier trial from October 8th showed the impact of unsuc-

cessful pings on the navigation solution. Figure 5-2 shows the unstable real-time estimates

and high endpoint error results from a trial where only six of the 15 pings were successful.

Our early experiments used a dinghy as a proxy for the REMUS 100. We believe the

decreased acoustic communication performance resulted from a combination of acoustic clip-

ping with Rate 5 pings, a high multipath environment, and the dinghy’s motor having a

frequency near our 25-kilohertz signals. Although the motor’s impact is unconfirmed, sub-

stituting the dinghy for a kayak and moving the experiment to Bourne’s Pond increased the

ping success rate even though we were still using Rate 5 pings in a very shallow environ-

ment. However, divers that utilize our HAT cooperative navigation method will not have

the luxury of removing noise sources or changing their environment. Therefore, future work

should adapt our autonomous behavior to monitor the environment’s acoustic properties

and adjust the vehicle’s location to benefit communication with the diver.

Fortunately, the Micromodem 2 automatically analyzes key acoustic communication met-

rics and publishes the results within a Communications Cycle Receive Statistics (CST)
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Figure 5-3: Modem statistics for all mini-packets transmitted and received by the diver
kayak during the first November 6th cooperative navigation trial.

NMEA string. Figure 5-3 shows CST data from a November 6th cooperative navigation

trial. The Micromodem 2 determines the input SNR after bandpass filtering the incoming

signal and the output SNR after the adaptive equalizer attempts to eliminate the multipath

and Doppler shift effects. A high input SNR and low output SNR indicate the equalizer

is having difficulty tracking the channel, typically due to significant multipath [103]. Addi-

tionally, the P2B shift represents the modem converting the incoming data from 12-bits to

16-bits during basebanding. Lower P2B shifts indicate high signal strengths [57], and, when

paired with a low gain, also suggest the signal is being clipped. Therefore, by analyzing

Figure 5-3, we can determine that we are likely in an environment with high multipath and

that we should decrease our transmission power to mitigate acoustic clipping.

The REMUS 100 could perform a similar analysis in real-time to evaluate the acoustic
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environment and adapt its path to benefit communication. For example, if the AUV detected

an area where the acoustic noise was high enough to impact communication, it could relocate

itself and instruct the diver to avoid that area. This approach would result in the diver

swimming indirect paths from the start to the target. However, our simulation results show

iSAM2 still performs accurate trajectory mapping when the diver makes unconventional

turns during the dive.

Although autonomously adapting to the acoustic environment in real-time is beneficial,

the REMUS could also preemptively map the environmental properties of the operating area

through a reconnaissance mission. This step would occur before the diver entered the water

and require the REMUS to passively monitor the acoustic environment and ocean current

field as it traveled a pre-determined route. Using the information from this behavior, the

REMUS could calculate an optimal trajectory for the diver that accounts for the ocean

current and avoids areas where poor acoustic communication is likely. Overall, an environ-

mentally adaptable autonomous behavior is paramount to improving our HAT cooperative

navigation approach and should be a primary area of future research.

5.2.2 Improving State Estimation on the Submersible Tablet

Future work should focus on implementing the ros_hat nodes on a submersible dive tablet

and progressing the capabilities of the diver’s software. Therefore, this subsection recom-

mends incorporating existing Micromodem 2 and GTSAM capabilities on the submersible

tablet. Specifically, estimating the diver’s speed using the Doppler shift and quantifying

iSAM2’s confidence in the diver’s location would improve navigation and build trust be-

tween the teammates.

As discussed in Section 4.10, increased ocean current speeds negatively impacted our

method’s performance more than varying ocean current heading or longer dive lengths. Since

this thesis used a constant speed assumption to create the odometry factors within iSAM2,

higher ocean current speeds caused greater discrepancies between the diver’s estimated speed

and heading and their actual SOG and COG. Adding odometry factors that reflect the diver’s

SOG and COG is likely to mitigate the negative impact from high ocean current speeds.

Fortunately, as shown in Figure 5-3, the Micromodem 2’s CST message reports the

Doppler shift between the transmitter and receiver as the relative speed between the two

entities. Therefore, the diver’s SOG and COG can be calculated using this relative speed
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value along with the REMUS’s SOG and COG. Incorporating the algorithms to determine

the diver’s SOG and COG within the Director Node would eliminate our system’s reliance

on the constant speed assumption, benefiting the state estimation algorithm and improving

the real-time navigation performance.

Estimating the diver’s SOG using the Doppler shift has other benefits for the diver.

First, it would remove the requirement for the diver to manually notify the Director Node

when they start or stop swimming. Instead, the diver’s speed would automatically update

every time a new packet or ping arrived. Second, the ocean current speed and heading could

be estimated by comparing the diver’s SOG and COG with their expected speed and AHRS

heading. These ocean current values would help determine a recommended heading for the

diver to swim the most direct route to the target.

Along with improving our system’s performance, future work should go towards increas-

ing its transparency. GTSAM provides functions to quantify the confidence of iSAM2’s

current location estimate [104]. A useful improvement would be to incorporate these func-

tions into the Estimator Node and publish the data to the dive tablet’s screen. To develop

trust between the diver and this cooperative navigation method, the diver must know when

the software is confident in the solution and vice versa. If the diver is provided with a

solution of low confidence, they could perform certain actions to improve the result. For

example, they could remain in a single location for a few minutes and wait for numerous

range measurements to arrive, potentially increasing the Estimator Node’s confidence in

their prediction. In this way, the HAT could use the diver’s adaptability and creativity to

improve the system’s navigation performance.

5.2.3 Beyond Navigation

The future work recommended thus far has been focused on improving the performance and

useability of our cooperative navigation algorithm. However, the HAT has additional ben-

efits after reaching the target. Two of those are environmental monitoring and cooperative

surveying.

The REMUS 100 could provide passive acoustic monitoring capabilities for a diver work-

ing at the target location. This function relies on algorithms trained to detect certain noises

within an ocean soundscape. For example, if a neural network on the REMUS’s back seat

computer could determine whether a boat was nearby, it could notify the diver to maintain
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an adequate depth.

Another future capability at the target location is that the REMUS and diver could

cooperatively survey the target area. A survey with a robot and human working together is

called a cyborg survey. Provided automatic target recognition capabilities are sufficient to

allow the REMUS 100 to locate points of interest in real-time, the REMUS could navigate

the diver to a survey box and then perform a cyborg survey. As the REMUS conducts

a broad survey of the area, it marks points of interest and acoustically transmits their

coordinates to the diver. The diver then travels to each location using our HAT cooperative

navigation method to analyze the target more thoroughly. A potential application of this

is within Project Recover, which seeks to locate and recover remains of lost World War II

veterans in the Pacific Ocean [105]. Overall, cyborg surveys are a natural extension of the

cooperative navigation approach proposed in this thesis.

5.3 Concluding Remarks

This thesis provides the software and communication architecture necessary to enable co-

operative navigation between a REMUS 100 and a diver. Although developing a system

that improves upon a diver’s dead reckoning solution is beneficial, there are many options

available to accomplish this, with some providing endpoint accuracy below a meter [106].

Therefore, this research separates itself from the other methods through underwater human-

autonomy teaming. Additionally, unlike previous underwater human-robot teaming efforts,

we rely on commercial AUV navigation capabilities and acoustic communication to pro-

vide subsurface navigation from the diver’s starting location to the target. Overall, this

research takes an early step towards developing a reliable and competent underwater HAT

that improves the capabilities and safety of divers.
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Appendix A

List of Acronyms

ADCP acoustic Doppler current profiler

ADRIATIC Advancing Diver-Robot Interaction Capabilities

AHRS attitude and heading reference system

ASCII American Standard Code for Information Interchange

ASV autonomous surface vehicle

ATR automatic target recognition

AUV autonomous underwater vehicle

CADDY Cognitive Autonomous Diving Buddy

CEP circular error probable

CNA communication and navigation aid

CNN convolutional neural network

COG course over ground

CSAC chip-scale atomic clock

CST Communication Cycle Receive Statistics
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CSV comma-separated values

CTD conductivity, temperature, and depth

DGPS Differential Global Positioning System

DR dead reckoning

DSP digital signal processor

DVL Doppler velocity log

EKF extended Kalman filter

EM electromagnetic

FDP Flexible Data Protocol

FH-FSK frequency-hopping frequency-shift keying

FLS forward-looking sonar

FOG fiber optic gyroscope

FSK frequency-shift keying

GiB gibibyte

GIB Global Position System intelligent buoy

GNSS Global Navigation Satellite System

GPS Global Positioning System

GT ground truth

GTSAM Georgia Tech Smoothing and Mapping

HAT human-autonomy team

HMM Hidden Markov Model
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HNF human-autonomy teaming navigation Follower Packet

HNI human-autonomy teaming navigation Initialization Packet

HNL human-autonomy teaming navigation Leader Packet

HNT human-autonomy teaming navigation Terminate Packet

IMU inertial measurement unit

INS inertial navigation system

iSAM2 incremental smoothing and mapping 2

ISI intersymbol interference

LBL long baseline

LSTM long short-term memory

MAP maximum a posteriori

MCM mine countermeasure

MEMS microelectromechanical system

MIT Massachusetts Institute of Technology

MLBL moving long baseline

MMSE minimum mean square error

NLS nonlinear least-squares

NMEA National Marine Electronics Association

OWTT one-way-travel-time

PADI Professional Association of Diving Instructors

PATS portable acoustic tracking system
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PF particle filter

PPS pulse-per-second

PSK phase-shift keying

QPSK quadrature phase-shift keying

RAM random access memory

RECON Remote Control

REMUS Remote Environmental Monitoring Units

RI reacquire and identify

RMS root mean square

RNN recurrent neural network

ROS Robot Operating System

ROSB range-only single-beacon

RTC real-time clock

SAR search and rescue

SBL short baseline

SCM search, classify, and map

SCUBA self-contained underwater breathing apparatus

SE special Euclidean

SLAM simultaneous localization and mapping

SNR signal-to-noise ratio

SOG speed over ground
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SPP spatial pyramid pooling

TDMA time-division multiple access

TWTT two-way-travel-time

UDP User Datagram Protocol

USB Universal Serial Bus

USBL ultra-short baseline

USN United States Navy

VGG Visual Geometry Group (Oxford University)

VIP Vehicle Interface Program

WGS 84 World Geodetic System 1984

WHOI Woods Hole Oceanographic Institution

YOLO You Only Look Once
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Appendix B

Software Architecture

B.1 Repository Breakdown

The lists below provide the nodes, services, messages, and actions our HAT navigation

algorithm relied on within each software repository.

ros_acomms [66]

Nodes:

• Acomms Driver Node

• Packet Dispatch Node

• Message Queue Node

• TDMA Node

Services:

• /queue_tx_packet

• /get_next_packet_data

• /write_nmea_string

Messages:

• /nmea_from_modem

• /packet
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• /from_acomms/initial_packet

• /from_acomms/follower_packet

• /from_acomms/leader_packet

• /from_acomms/terminate_packet

ros_remus [65]

Node:

• REMUS Node

Services:

• /mission_command

• /update_transit

Messages:

• /status

• /ctd

• /fix

Action:

• /transit

ros_hat [18]

Nodes:

• Navigator Node

• Director Node

• Estimator Node

• Stopwatch Node

• Depth Node
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• Arrow Node

Messages:

• /HNI_trigger

• /HNT_trigger

• /swim

• /stop_swim

• /tablet_data

• /beacon_data

• /initial_packet

• /follower_packet

• /leader_packet

• /terminate_packet

• /diver_state

• /diver_depth

• /arrow

• /ping_trigger

• /leader_trigger

Other software repository [75]

Node:

• Sparton Node

Message:

• /spartonm2/ahrs
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B.2 ros_hat Information

This section provides more information on the nodes and messages within ros_hat.

B.2.1 Node descriptions

Navigator Node

• Receive message data from the Micromodem 2 using ros_acomms

• Determine the next coordinate the REMUS should travel to based on the diver’s

estimated location

• Ensure the back seat computer retains control of the REMUS by initializing and

updating a transit action using ros_remus

• Collect necessary sensor outputs using ros_remus for transmission to the diver

• Transmit the appropriate message to the diver using ros_acomms

Director Node

• Receive message data from the Micromodem 2 using ros_acomms

• Calculate range measurements using data sent by the REMUS

• Pass range data to the Estimator Node

• Collect necessary data from sensors and nodes for transmission to the REMUS

• Transmit the appropriate message to the REMUS using ros_acomms

Estimator Node

• Receive range data from the Director Node

• Receive odometry data from the AHRS

• Given an initial fix, provide online diver location estimates using odometry and range

measurements
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Stopwatch Node

• If a ping sequence fails, trigger the Navigator Node to send another ping

• If an acoustic message sequence fails, trigger the Navigator Node to send another

Leader Packet

• Provide parameters for the user to adjust the time allotted for each of these triggers

to occur

Depth Node

• Interface with a depth sensor to provide depth measurements to the Director Node

Arrow Node

• Interface with the Arrow 100 GNSS receiver to provide location data to the Director

Node

B.2.2 Message content

/HNI_trigger

• string trigger_str

/HNT_trigger

• string trigger_str

/swim

• string trigger_str

/stop_swim

• string trigger_str

/tablet_data

• string sparton_heading

• string bearing_to_target

• string dist_to_target
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/beacon_data

• float32 sound_speed

• float32 two_dim_range

• float32 beacon_lat

• float32 beacon_lon

• uint32 factor_number

• float32 beacon_loc_uncertainty

• uint32 time_of_fix

/initial_packet

• float32 diver_depth

• float32 diver_latitude

• float32 diver_longitude

• float32 target_latitude

• float32 target_longitude

/follower_packet

• float32 diver_sog

• float32 diver_depth

• float32 diver_latitude

• float32 diver_longitude

• uint32 diver_time_of_fix

/leader_packet

• float32 remus_depth

• float32 remus_loc_uncertainty_sigma
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• float32 remus_latitude

• float32 remus_longitude

• float32 sound_speed

• float32 owtt

/terminate_packet

• uint8 terminate

/diver_state

• float32 diver_latitude

• float32 diver_longitude

• uint32 time_of_estimate

• uint32 factor_number

/diver_depth

• float32 diver_depth

/arrow

• float64 latitude

• float64 longitude

• int32 utc_epoch_time

• float32 horizontal_rms_error

/ping_trigger

• bool ping_trigger

/leader_trigger

• bool leader_trigger

B.3 Software Maps

The ros_acomms [66] and ros_remus [65] documentation pages were referenced to make the

software maps below.

141



Figure B-1: Software map for the REMUS.
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Figure B-2: Software map for the diver.
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Appendix C

Dead Reckoning Simulation

MATLAB Script

The MATLAB [90] code below was used to perform the dead reckoning simulations. The

parameters shown in the example are for a 400-meter trial with an ocean current speed

and heading of 0.2 knots and 117 degrees True, respectively. Aside from commonly avail-

able MATLAB functions, this script also uses vdist [97], which calculates the distance

between two coordinates using Vincenty’s formula. Additionally, the equations within the

next_coords function are based on the haversine formula [96].

1 % parameters

2 start_lat = 41.5593119;

3 start_lon = −70.6879216;

4 target_coord = [41.5561076, −70.6901034]; % 400−meter trial

5 ocean_current_speed_kts = 0.2;

6 ocean_current_heading_deg = 117;

7 original_speed_estimate_kts = 0.92;

8

9 % initialize the kick speed and distance to target

10 mean_kick_speed_kts = original_speed_estimate_kts + normrnd(0,0.05);

11 dist_to_target = vdist(start_lat,start_lon,target_coord(1),target_coord(2));

12

13 % get the ocean current vector (assume constant ocean current speed and ...

heading)

14 ocean_current_speed_ms = ocean_current_speed_kts * 0.5144;
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15 converted_angle = mod(360 − ocean_current_heading_deg + 90,360);

16 ocean_curr_N = ocean_current_speed_ms * sin(converted_angle * pi/180);

17 ocean_curr_E = ocean_current_speed_ms * cos(converted_angle * pi/180);

18

19 % get the starting position

20 diver_gt_lat(1) = start_lat;

21 diver_gt_lon(1) = start_lon;

22 without_o_curr_lat(1) = start_lat;

23 without_o_curr_lon(1) = start_lon;

24

25 % initialize the previous coordinate as the starting position

26 prev_coord = [diver_gt_lat(1), diver_gt_lon(1)];

27 without_o_curr_prev_coord = [diver_gt_lat(1), diver_gt_lon(1)];

28

29 % while the DR solution is greater than 2 meters from the target

30 i = 1;

31 while dist_to_target > 2

32 latA = without_o_curr_prev_coord(1) * pi/180;

33 lonA = without_o_curr_prev_coord(2) * pi/180;

34 latB = target_coord(1) * pi/180;

35 lonB = target_coord(2) * pi/180;

36 X = cos(latA)*sin(latB) − sin(latA)*cos(latB)*cos(lonB−lonA);

37 Y = sin(lonB−lonA)*cos(latB);

38 bearing_to_target = atan2(Y,X) * 180/pi;

39

40 % add noise to diver's heading

41 r = −5 + (5+5)*rand(1,1);

42 diver_heading = bearing_to_target + r;

43 converted_heading = mod(360 − diver_heading + 90,360);

44

45 % add noise to diver's speed

46 diver_kick_speed = (mean_kick_speed_kts + normrnd(0,0.05))*0.5144; % m/s

47

48 % set the equations x(1) = diver_sog, x(2) = diver_cog (converted)

49 F = @(x) [(diver_kick_speed * cos(converted_heading * pi / 180)) + ...

ocean_curr_E − (x(1) * cos(x(2) * pi / 180));

50 (diver_kick_speed * sin(converted_heading * pi / 180)) + ...

ocean_curr_N − (x(1) * sin(x(2) * pi / 180))];

51
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52 % make an initial guess

53 x0 = [diver_kick_speed;converted_heading];

54

55 % solve the equations

56 [x,¬] = fsolve(F,x0);

57

58 % calculate the distance the diver traveled over one second

59 distance = (x(1) * 1)/1000;

60 without_o_curr_dist = (original_speed_estimate_kts * 0.5144 * 1)/1000;

61

62 % convert answer back to compass angle reference frame

63 diver_cog = mod(450 − x(2),360);

64

65 % find the diver's new coordinates: next_coords(prev_lat, prev_lon, ...

COG, distance)

66 [next_lat, next_lon] = next_coords(prev_coord(1), prev_coord(2), ...

diver_cog, distance);

67 [without_o_curr_next_lat, without_o_curr_next_lon] = ...

next_coords(without_o_curr_prev_coord(1), ...

68 without_o_curr_prev_coord(2), bearing_to_target, ...

without_o_curr_dist);

69

70 % update the lat and lon matrices

71 diver_gt_lat(i+1) = next_lat;

72 diver_gt_lon(i+1) = next_lon;

73 without_o_curr_lat(i+1) = without_o_curr_next_lat;

74 without_o_curr_lon(i+1) = without_o_curr_next_lon;

75

76 % reset the previous coordinates to the new diver location

77 prev_coord = [next_lat, next_lon];

78 without_o_curr_prev_coord = [without_o_curr_next_lat, ...

without_o_curr_next_lon];

79

80 % find new distance to target (what DR thinks)

81 dist_to_target = vdist(without_o_curr_next_lat, ...

without_o_curr_next_lon,target_coord(1),target_coord(2));

82 i = i + 1;

83 end

84 fprintf('DR distance from target = %2.2f \n',dist_to_target);
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85 actual_dist = vdist(diver_gt_lat(end), ...

diver_gt_lon(end),target_coord(1),target_coord(2));

86 fprintf('GT distance from target = %3.2f \n',actual_dist);

87 dist_between = vdist(diver_gt_lat(end), ...

diver_gt_lon(end),without_o_curr_lat(end),without_o_curr_lon(end));

88 fprintf('GT distance from DR = %3.2f \n',dist_between);

1 function [lat_final,lon_final] = next_coords(lat, lon, bearing, distance)

2 % bearing in degrees

3 % distance in kilometers (km)

4 R = 6371; % Earth's radius in km

5

6 lat2 = asin(sin(pi / 180 * lat) * cos(distance / R) + cos(pi / 180 * ...

lat) * sin(distance / R) * cos(pi / 180 * bearing));

7 lon2 = pi / 180 * lon + atan2(sin( pi / 180 * bearing) * sin(distance / ...

R) * cos( pi / 180 * lat ), cos(distance / R) − sin( pi / 180 * ...

lat) * sin(lat2));

8

9 lat_final = 180 / pi * lat2;

10 lon_final = 180 / pi * lon2;
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Appendix D

Simulation Results

Definitions

iSAM2-target endpoint accuracy = the distance between iSAM2’s final prediction of

the diver’s location and the target coordinates.

GT-target endpoint accuracy = the distance between the diver’s final ground truth

location and the target coordinates.

iSAM2-GT endpoint accuracy = the distance between iSAM2’s final prediction of the

diver’s location and the diver’s final ground truth location.

Real-time maximum = the maximum distance throughout the transit between iSAM2’s

real-time prediction of the diver’s location and the diver’s ground truth coordinates.

Real-time average = the average distance throughout the transit between iSAM2’s real-

time prediction of the diver’s location and the diver’s ground truth coordinates.

Smoothed path maximum = the maximum distance between iSAM2’s smoothed diver

path and the diver’s ground truth path.

Smoothed path average = the average distance between iSAM2’s smoothed diver path

and the diver’s ground truth path.

DR-target endpoint accuracy = the distance between the dead reckoning algorithm’s

final prediction of the diver’s location and the target coordinates.

DR-GT endpoint accuracy = the distance between the dead reckoning algorithm’s final

prediction of the diver’s location and the diver’s final ground truth location.
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Ocean Current Endpoint

Length Speed Heading DR-target GT-target DR-GT

400 0.1 27 1.88 46.91 45.03
400 0.1 27 1.88 33.58 31.70
400 0.1 117 1.88 46.61 46.03
400 0.1 117 1.88 42.40 42.60
400 0.1 207 1.88 75.68 77.56
400 0.1 207 1.88 55.69 57.57
400 0.3 27 1.88 133.30 131.41
400 0.3 27 1.88 116.99 115.10
400 0.3 117 1.88 130.30 130.34
400 0.3 117 1.88 131.73 132.03
400 0.3 207 1.88 128.97 130.85
400 0.3 207 1.88 103.05 104.93
400 0.5 27 1.88 201.99 200.11
400 0.5 27 1.88 235.60 233.72
400 0.5 117 1.88 218.82 218.65
400 0.5 117 1.88 217.69 217.77
400 0.5 207 1.88 229.82 231.70
400 0.5 207 1.88 201.60 203.48
400 0.2 117 1.88 88.16 88.38
400 0.2 117 1.88 86.86 86.86
600 0.2 117 1.65 157.71 156.79
600 0.2 117 1.65 130.92 130.95
800 0.2 117 1.88 197.21 198.11
800 0.2 117 1.88 198.08 198.97
1000 0.2 117 1.64 218.38 218.58
1000 0.2 117 1.64 224.19 224.55

Table D.2: Dead reckoning results from all simulation trials. The ocean current speed is in
knots and the ocean current heading is in degrees True. All other values are in meters.
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