
The Locality-First Strategy for
Developing Efficient Multicore Algorithms

by

Helen Jiang Xu

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2022

© Helen Jiang Xu, MMXXII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document
in whole or in part in any medium now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

January 26, 2022

Certified by. .
Charles E. Leiserson

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

The Locality-First Strategy for

Developing Efficient Multicore Algorithms
by

Helen Jiang Xu

Submitted to the Department of Electrical Engineering and Computer Science
on January 26, 2022, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

To scale applications on multicores up to bigger problems, software systems must be
optimized both for parallelism to take full advantage of the multiple cores and for
locality to exploit the memory system for cache-friendliness. Parallelization alone
does not suffice to reach peak performance due to the processor-memory gap: the
increasing divergence of processor and memory speeds. Locality and parallelism are
difficult to optimize for independently — and even more challenging to combine —
because they tend to conflict with each other.

I advocate that algorithm developers employ a locality-first strategy for devel-
oping efficient parallel and cache-friendly algorithms for multicores. That is, they
should first understand and exploit locality as much as possible before introducing
parallelism. I argue that an algorithm developer can achieve high-performing code
more easily with the locality-first strategy than with either a parallelism-first strategy
or a strategy of trying to optimize both simultaneously.

I present ten artifacts that leverage the locality-first strategy to create fast multi-
core algorithms that are simple to describe and implement. For example, locality-first
data structure design in graph processing achieves about 2× speedup over the state
of the art. Additionally, I prove mathematically that multicore cache-replacement
algorithms that take advantage of locality outperform all other online algorithms.
The other eight artifacts make similar contributions in their respective domains. To-
gether, these artifacts demonstrate that the locality-first strategy provides an effective
roadmap for algorithm developers to design and implement theoretically and practi-
cally efficient multicore code.

Thesis Supervisor: Charles E. Leiserson
Title: Professor of Computer Science and Engineering

3

4

Acknowledgments

This thesis would not have been possible without the steadfast support of my mentors,
collaborators, friends, and family. I’d like to use this opportunity to thank as many
of them as I can.

First and foremost, I want to thank my advisor, Charles E. Leiserson, for inspir-
ing me to strive every day to challenge and improve myself a researcher, teacher, and
all-around person. I am grateful to Charles for his guidance and support throughout
my PhD as not only a brilliant researcher but also a phenomenal mentor. His per-
formance engineering class enabled me to pursue many new exciting lines of research
spanning algorithm design, analysis, and engineering. Since then, he has taught me
invaluable lessons not only about research but also about writing, communication,
and mentoring. In addition to the technical aspects, Charles has created a social lab
environment in the Supertech group through events such as standup comedy classes
and apple picking. Thanks to his efforts, my time at MIT has been full of fascinating
collaborations and discussions. I look forward to carrying forward everything he has
taught me onwards and upwards.

I would like to thank Tao B. Schardl for all of his help and support during my
PhD. I first met TB before coming to MIT when he took the time to chat with me
about the Supertech group. Since then, I have been lucky to work closely with him on
algorithms problems as well as on this thesis, my defense, and endless statements and
presentations. His contributions, patience, and openness to chat about any questions
have been invaluable to this thesis.

Thanks to Julian Shun and Virginia Vassilevska Williams for their service on
my thesis and RQE committees. I thank Julian for sharing his expertise in graph
algorithms and processing. His input has shaped the work in this thesis (Terrace,
PPCSR, PCSR) on dynamic graph processing. I thank Virginia for her guidance on
sparse matrix algorithms and for including me in many fun games of tennis.

I would also like to thank my other mentors without whom I would not be here
today.

• My undergraduate advisor, Michael Bender, was the first person who taught
me that computer science could be beautiful and fun. As someone from a
non-technical background, I was unsure that CS would be a good fit for me,
and I was especially skeptical that I could be interested in research. In my
first semester, he saw how to connect my other interests with CS and how to
get me interested in the topics. Since then, he has supported me in so many
other ways: introducing me to Charles and other members of our research
community, inviting me to speak at Stony Brook, and sharing food and literature
recommendations.

• Thanks to Cynthia Phillips for always inviting me to explore new opportunities.
I spent my summer before my PhD working with her at Sandia, during which
I got to see many beautiful landscapes as well as beautiful theorems.

5

• I thank Shahin Kamali for his invaluable career advice and his support through-
out my PhD. Our work on parallel cache replacement was my first foray into
parallel algorithms research: he helped me discover new topics in online algo-
rithms to build on my theoretical interests. I am also grateful for his help and
effort to improve my dissertation, statements, and presentations.

• I would also like to thank Michael Pellauer and Joel Emer for being a joy to
work with and for their helpful suggestions on my thesis. Michael hosted me
(virtually) at NVIDIA in 2020 as part of the Architecture Research Group.
Thanks to his efforts to meet with me every day in the summer and to continue
our collaboration, I was able to see a hardware architect’s perspective on sparse
problems and to incorporate it into multicore algorithm engineering.

Thanks to all of my coauthors for their indispensable contributions to the work
presented in this thesis. My collaborators are all not only technically brilliant but
also lovely to work with.

• Brian Wheatman coauthored the PCSR, PPCSR, and Terrace papers on dy-
namic graph processing. Many thanks to Brian for our discussions on cache-
efficient parallel algorithms and data structures as well as for sharing his per-
formance engineering expertise.

• Prashant Pandey coauthored the Terrace paper on dynamic graph processing.
Prashant deserves thanks not only for sharing his expertise in data structures
but also for inviting me along for many awesome hikes. I am also grateful for
his and Kavita’s hospitality while hosting me in India for their wedding.

• Quanquan Liu coauthored the scan-hiding and smoothed analysis papers. In
addition, I also thank Quanquan for our discussions on graph algorithms and
data structures. In addition to being an excellent researcher, she is a great
tennis partner and fun company to visit local restaurants with (especially Mary
Chung’s).

• William (Bill) Kuszmaul coauthored the smoothed analysis paper. Thanks to
Bill for many interesting discussions about theoretical algorithm design and
analysis. Also, I am especially grateful for his and Rose’s hospitality during the
last part of my PhD.

• Peter Ahrens and Nicholas Schiefer coauthored the PHIL paper. Special thanks
to Peter for introducing me to sparse problems and our visits to Tosci’s when
writing the paper and to Nick for helping with my first move in Cambridge.

• Sean Fraser coauthored the prefix-sums and included/excluded sums papers. I
am grateful for his work in developing all of the algorithms in the aforementioned
papers.

6

In addition to the mentors and coauthors mentioned so far, I am grateful to every-
one I have worked with and discussed research with. I would like to thank the coau-
thors I have not yet mentioned: Aydın Buluç, Andrea Lincoln, Jayson Lynch, Rezaul
Chowdhury, Rathish Das, Rob Johnson, Simon Mauras, Martín Farach-Colton, Tyler
Mayer, James Aimone, Ojas Parekh, Ali Pinar, and William Severa. This thesis would
not have been possible without their contributions. Thanks to the members of the Su-
pertech group, especially Tim Kaler, Matthew Kilgore, Billy Moses, and Alexandros
Iliopoulos, for fostering a lively and open research environment. Additional thanks
to Cree Bruins for supporting the Supertech group and for her infallible cheer and
friendliness. I would also to thank Deanna Montgomery for her service as the EECS
Communication Lab manager. Being part of the Comm Lab has been one of the high-
lights of my time at MIT, and I am grateful for her input in all communication-related
matters.

Finally, I am grateful to all of my friends and family for their encouragement
and support. Thanks to my childhood friends: Nii for being my ride-or-die, Fay for
the Shakespeare and adventures, Ash for the fun trips and good times, Kense for
always coming through, and Dillon and Mimz for hanging out with me. Thanks to
my more recent friends: Helena for the chats and weird snacks, Yen-Ling for carrying
me through my TQEs and for the infinite hot pot, Wanrong for the plays, egg tarts,
and tea times, and Ryan for always hyping up my aspirations. Special thanks to Ilia
for the drinks, meat, and support in this last stretch of my grad school life. I thank
my parents, Ye and Bryant, for supporting me in all of my endeavors and always
keeping a place to return to, especially during the pandemic. Thanks to my brother,
Allan, for the hikes, drives, and karaoke jams. I would not have made it this far
without them.

I am grateful for the support of my research sponsors. This research was sponsored
in part by: a National Physical Sciences Consortium Fellowship, the United States
Air Force Research Laboratory and the United States Air Force Artificial Intelligence
Accelerator under Cooperative Agreement Number FA8750-19-2-1000, Los Alamos
National Laboratory (LANL) under Subcontract Number 531711, the National Sci-
ence Foundation (NSF) under grant CCF-1533644, and the Intelligence Advanced
Research Projects Activity (IARPA) under grant 138076-5093555.

The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed
or implied, of the United States Air Force or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

7

8

Contents

1 Introduction 13

2 The Locality-First Strategy 17
2.1 Creating efficient multicore algorithms 17
2.2 The locality-first strategy for general multicore algorithm engineering 23
2.3 Enhancing locality by changing the data layout 25
2.4 Exploiting locality without changing the data layout 28

3 Terrace: A Hierarchical Graph Container for Skewed Dynamic
Graphs 33
3.1 Introduction . 34
3.2 Preliminaries . 39
3.3 Hierarchical data structure design . 40
3.4 Data structure choices . 41
3.5 Implementation of Terrace . 46
3.6 Evaluation . 48
3.7 Related work . 56
3.8 Conclusion . 58

4 A Parallel Packed Memory Array to Store Dynamic Graphs 59
4.1 Introduction . 60
4.2 Packed Memory Array . 63
4.3 PMA modifications . 65
4.4 Intra-operation parallelism . 66
4.5 Inter-operation parallelism . 71
4.6 Parallel Packed Compressed Sparse Row 72
4.7 Parallel graph operations . 74
4.8 Empirical evaluation . 76
4.9 Conclusion . 81

5 A Fill Estimation Algorithm for Sparse Matrices and Tensors in
Blocked Formats 83
5.1 Introduction . 84
5.2 Background . 91
5.3 PHIL . 96

9

5.4 Theoretical analysis . 102
5.5 Experimental results . 104
5.6 Conclusion . 108

6 Write-Optimized Skip Lists 111
6.1 Introduction . 112
6.2 Structure and operations of a write-optimized skip list 116
6.3 Structural bounds . 119
6.4 Simple runtime bounds . 121
6.5 High probability insertion-only bounds 122
6.6 High probability bounds with insertions and deletions 126
6.7 Conclusion . 128

7 Beyond Worst-Case Analysis of Multicore Caching Strategies 131
7.1 Introduction . 132
7.2 Preliminaries . 134
7.3 Cyclic analysis for online problems 137
7.4 Cyclic analysis for multicore caching 142
7.5 Advantage of LRU with locality of reference 144
7.6 Related multicore caching models . 149
7.7 Conclusion . 151

8 Multicore Paging Algorithms Cannot Be Competitive 153
8.1 Introduction . 153
8.2 Non-competitiveness of lazy algorithms 154
8.3 Conclusion . 157

9 Closing the Gap Between Cache-Oblivious and Cache-Adaptive
Analysis 159
9.1 Introduction . 160
9.2 Preliminaries . 164
9.3 Technical overview . 168
9.4 Cache-adaptivity of randomly shuffled profiles 174
9.5 Robustness of worst-case profiles . 190

9.5.1 Box-size perturbations . 192
9.5.2 Start-time perturbations . 194
9.5.3 Box-order perturbations . 196

9.6 Related work . 198
9.7 Conclusion . 200

10 Cache-Adaptive Exploration: Experimental Results and Scan-
Hiding for Adaptivity 201
10.1 Introduction . 202
10.2 Generalized scan-hiding . 203
10.3 Strassen’s algorithm . 206

10

10.4 Scan-hiding and Strassen’s algorithm 208
10.5 Experimental study . 214
10.6 Conclusion . 216

11 Work-Efficient Parallel Algorithms for Accurate Floating-Point Pre-
fix Sums 219
11.1 Introduction . 220
11.2 Characterizing prefix-sum algorithms 223
11.3 Low sum-depth prefix sums . 224
11.4 Evaluation . 225
11.5 Vectorizing prefix sums . 229
11.6 Conclusion . 230

12 Multidimensional Included and Excluded Sums 233
12.1 Introduction . 234
12.2 Preliminaries . 240
12.3 Included Sums . 241
12.4 Excluded sums and the box complement 243
12.5 Box-complement algorithm . 245
12.6 Experimental evaluation . 250
12.7 Conclusion . 252

13 Conclusion 253
13.1 Thesis summary . 253
13.2 Applicability of the locality-first strategy 255

A Packed Compressed Sparse Row 257
A.1 Graph storage formats . 258
A.2 Packed Compressed Sparse Row . 260
A.3 Results . 262

B Cache Adaptivity 269
B.1 What bad memory profiles look like 270
B.2 Pseudocode for MM-Scan . 272
B.3 Additional figures . 273
B.4 Proof of Theorem 9.14 and Lemma 9.13 274
B.5 Proof of the No-catch-up Lemma . 275
B.6 Standardizing (𝑎, 𝑏, 𝑐 = 1)-regular algorithms 276
B.7 Triangle profiles . 278
B.8 Pseudocode for AdaptiveStrassen 282

C Included and Excluded Sums 287
C.1 Analysis of corners algorithm . 287
C.2 Pseudocode and proofs for BDBS-1D 290
C.3 Pseudocode and proofs for box-complement 292
C.4 Additional experimental data . 294

11

Bibliography 297

12

Chapter 1

Introduction

This thesis is concerned with scaling applications on multicores by optimizing al-
gorithms both for locality to take advantage of the memory system and for par-
allelism to make full use of the multiple cores. Parallelism alone is not enough be-
cause of the processor-memory gap: the divergence between processor and memory
speeds [90, 299]. Unfortunately, as we shall see, locality and parallelism are hard to
achieve independently. Furthermore, they are even more difficult to achieve together
because they tend to trade off with each other.

The seemingly fundamental tension between locality and parallelism poses chal-
lenges to developing efficient codes on multicores. As we shall see, exploiting locality
involves computing on the same or similar data over time. Computing on the same or
similar data in parallel can result in correctness and performance issues, however. In
this chapter, we will see concrete examples of how optimizing for one of these features
can disrupt the other.

To overcome these tensions, I advocate a “locality-first strategy” for creating high-
performance multicore algorithms that are optimized for both locality and parallelism.
Specifically, I advocate the following thesis statement:

Thesis statement: To create efficient parallel algorithms for multicores,
algorithm developers should use a locality-first strategy. That is, they
should first understand, enhance, and exploit locality as much as possible
as a first step before introducing parallelism.

To employ the locality-first strategy, let us first understand the different kinds
of locality. Algorithm developers take advantage of spatial locality and temporal
locality in order to fit the underlying hardware. Spatial locality is the tendency of
programs to access nearby memory locations in a short time period, whereas tem-
poral locality is the tendency of programs to access the same memory location over
time [124, 305]. A program may exhibit spatial locality, temporal locality, both, or
neither, depending on the problem.

As we shall see in detail in Chapter 2, locality and parallelism tend to conflict
with each other in fundamental ways. At a high level, exploiting locality involves
computing on the same or similar data over time. Unfortunately, computing on

13

HighLow

High

Spatial
Locality

Temporal Locality

Chapters 3-6
Terrace
PPCSR
PHIL

Write-optimized
skip lists

Chapters 7-12
Multicore caching
Cache adaptivity

Prefix sums
Included sums
Excluded sums

Figure 1-1: Graphical illustration of the main artifacts in this thesis.

the same data in parallel can cause nondeterministic behavior, and computing on
similar data over time can cause contention. These issues disrupt correctness and
performance in parallel programs.

Contributions
In support of the thesis statement, I present ten intellectual artifacts that demon-
strate the potential for the locality-first strategy to overcome seemingly fundamental
tensions between parallelism and cache-friendliness. These artifacts fall into two cate-
gories based on whether they enhance locality by changing the data layout or whether
they exploit naturally-occurring locality in the algorithm’s access pattern. Figure 1-1
illustrates the organization of the artifacts into these two categories.

The ten principal artifacts and their contributions are as follows:

• The Terrace artifact [294]: A dynamic-graph-processing system optimized for
skewed dynamic graphs. Terrace enhances spatial locality with a hierarchical
data representation that takes advantage of naturally-occurring graph skewness.
Terrace is on average 2× faster than Aspen [128], a state-of-the-art dynamic-
graph-processing system, on graph queries. Furthermore, it overcomes tradi-
tional tradeoffs between queries and updates and supports similar updatability
compared to Aspen. I developed the Terrace artifact with Prashant Pandey,
Brian Wheatman, and Aydın Buluç.

• The Parallel Packed Compressed Sparse Row (PPCSR) artifact [379]:
A dynamic-graph-processing system optimized for spatial locality. PPCSR en-
hances spatial locality by storing all of the data contiguously in a “Packed Mem-
ory Array” data structure. PPCSR supports graph queries about 1.6× faster

14

than Aspen while maintaining competitive update throughput. I developed the
PPCSR artifact with Brian Wheatman.

• The PHIL artifact [6], an efficient algorithm to speed up sparse tensor algebra
via blocked formats. PHIL exploits spatial locality by estimating fill, an im-
portant quantity in blocked sparse tensor operations. PHIL estimates the fill
with provable time and accuracy guarantees. Its advantage is evident in the
empirical evaluation: it estimates the fill at least 2× faster than OSKI [371], a
state-of-the-art fill-estimation algorithm, and up to 40−50× faster than OSKI.
I developed the PHIL artifact with Peter Ahrens and Nicholas Schiefer.

• The write-optimized skip list artifact [49]: A cache-optimized randomized
data structure. The write-optimized skip list enhances spatial locality in data
structure design. It achieves write-optimized bounds in that it supports asymp-
totically optimal searches, inserts, and deletes. Furthermore, it supports inserts
and deletes asymptotically faster than searches. I developed the write-optimized
skip list artifact with Michael A. Bender, Martín Farach-Colton, Rob Johnson,
Simon Mauras, Tyler Mayer, and Cynthia Phillips.

• The cyclic analysis artifact [210]: A measure for beyond worst-case analy-
sis of online algorithms applied to parallel cache-replacement. Cyclic analysis
mathematically supports the locality-first strategy for algorithms that exploit
temporal locality. Specifically, it provides theoretical grounding for the estab-
lished practical superiority of the Least-Recently-Used (LRU) [342] algorithm
because LRU takes advantage of temporal locality. I developed the cyclic anal-
ysis artifact with Shahin Kamali.

• The lower bounds artifact [209]: Worst-case analysis of online algorithms
for parallel cache-replacement. The lower bounds artifact motivates the study
of beyond-worst-case analysis measures to mathematically explain the empir-
ical superiority of algorithms that take advantage of temporal locality. The
lower bounds show that a large class of online algorithms for parallel cache-
replacement are equally arbitrarily far from optimal. I developed the lower
bounds artifact with Shahin Kamali.

• The smoothed analysis artifact [41]: Beyond-worst-case analysis of cache-
adaptive algorithms. The smoothed analysis for cache-adaptive algorithms pro-
vides mathematical grounding for algorithms that take advantage of temporal
locality in shared memory. Specifically, it closes the gap between cache-oblivious
and cache-adaptive algorithms. I developed the smoothed analysis artifact with
Michael A. Bender, Rezaul A. Chowdhury, Rathish Das, Rob Johnson, William
Kuszmaul, Andrea Lincoln, Quanquan C. Liu, and Jayson Lynch.

• The scan-hiding artifact [246]: A technique for converting non-cache-adaptive
algorithms into cache-adaptive ones. Scan-hiding enhances temporal locality in
a large class divide-and-conquer algorithms. I developed the scan-hiding artifact
with Andrea Lincoln, Quanquan C. Liu, and Jayson Lynch.

15

• The CAST_BLK and PAIR_BLK artifacts [151]: Two algorithms for fast-and-accurate
parallel prefix sums. These algorithms exploit naturally-occurring spatial local-
ity without changing the data representation. The CAST_BLK and PAIR_BLK
algorithms achieve comparable performance to the state-of-the-art parallel pre-
fix algorithm with at least 5× more accuracy. I developed the CAST_BLK and
PAIR_BLK artifacts with Sean Fraser and Charles E. Leiserson.

• The bidirectional box-sum and box-complement artifacts [389]: Two effi-
cient algorithms for multidimensional included and excluded sums. These algo-
rithms naturally achieve good spatial locality without changing the data layout.
These artifacts improve the asymptotic work for the multidimensional included-
sums and excluded-sums problems from exponential to linear in the number of
dimensions. This improvement in higher-dimensions is borne out in the em-
pirical evaluation. I developed the bidirectional box-sum and box-complement
artifacts with Sean Fraser and Charles E. Leiserson.

Thesis organization
The rest of this thesis has a simple structure. Chapter 2 provides context for the
locality-first strategy as a method for general algorithm engineering on multicores.
Chapters 3-12 present the principal artifacts. Chapter 13 summarizes the thesis and
takes a step back from the principal artifacts to discuss the broader applicability of
the locality-first strategy.

The appendices present auxiliary technical material to several of the principal
artifacts. Appendix A introduces Packed Compressed Sparse Row, a serial storage
format for dynamic graphs that underlies the artifacts in the domain of dynamic graph
processing (Chapters 3 and 4). Appendix B contains additional background material
and proofs for the artifacts in the domain of cache-adaptive algorithms (Chapters 9
and 10). Appendix C supplements the proofs and experimental results in the included-
sums and excluded-sums chapter (Chapter 12).

16

Chapter 2

The Locality-First Strategy

This chapter argues that the locality-first strategy provides a principled method for
general multicore algorithm engineering in four parts.

Section 2.1 motivates the need for a principled method for algorithm engineering
on multicores by describing the challenges involved in optimizing programs on multi-
cores. As we shall see, both parallelism and locality are difficult to achieve separately.
They are even more challenging to achieve simultaneously because they often conflict
with each other.

Section 2.2 justifies why the locality-first strategy is a good method for general al-
gorithm engineering with practical and principled reasons. For example, the locality-
first strategy simplifies multicore algorithm development by focusing on the serial
execution first.

Section 2.3 shows how the locality-first strategy created the artifacts that enhance
spatial locality — Terrace, PPCSR, PHIL, and the write-optimized skip list artifacts
— by changing the data layout.

Section 2.4 explains how the locality-first strategy relates to the artifacts that
exploit locality without changing the layout — the cyclic analysis, lower bounds,
smoothed analysis, scan-hiding, CAST_BLK, PAIR_BLK, bidirectional box-sum, and box-
complement artifacts.

2.1 Creating efficient multicore algorithms
Why do we need a principled method for creating efficient multicore algorithms? To
get good performance for a multicore application, a performance engineer must de-
sign algorithms to exploit two principal multicore hardware features: a steep cache
hierarchy and multiple cores numbering into the hundreds. Exploiting each of these
features is complex and requires theoretical and practical expertise. Without a prin-
cipled approach, optimizations for one feature may be pessimizations for the other.

To understand the issues involved more deeply, this section is broken into four
parts. The first part reviews multicore hardware and argues that the cache hierarchy
and the multiple cores are the salient hardware features in algorithm engineering
on multicores. The second part explores cache-friendly algorithms and how they

17

enable a performance engineer to take advantage of the cache hierarchy. The third
part addresses task-parallel algorithms, which abstract and simplify the programming
of multiple cores, and the issues of nondeterminism and scalability that complicate
parallel programming. The fourth part illustrates the problems inherent in trying to
optimize for both cache-friendliness and parallelism at the same time by providing
concrete examples such as false sharing and contiguous data.

Multicore hardware features
To understand in detail the issues involved in cache-friendly algorithms, parallel algo-
rithms, and their interaction, however, it will be helpful to review the characteristics
of multicore hardware. Modern multicore processors are characterized by three salient
architectural features — the cache hierarchy, multiple cores, and vector units — as
well as a host of other architectural features such as prefetching, instruction-level
parallelism, and symmetric multithreading, which we won’t discuss.

The Amazon c5.metal instance [10] provides a good example of a modern mul-
ticore. It contains two Intel Cascade Lake [91] processors each with 24 cores for a
total of 48 physical cores, and a clock speed of 3.4GHz. Each core is hyperthreaded
(Intel’s term for symmetric multithreading), so it has a total of 96 virtual cores. Each
core has a private 32Kb L1 cache that takes about 0.5 seconds to access [115] and
a 1MB L2 cache that takes about 7ns to access. Each processor also has a shared
L3 cache of 1.375 MB/core for a total of 33 MB/processor that takes about 25ns to
access [115]. The entire system has 192 GB of main memory that takes about 100ns
to access [115]. Each core also has vector units capable of 8 simultaneous 64-bit float-
ing point operations. The c5.metal instance has a steep cache hierarchy, almost 100
virtual cores, and vector units.

Of the three salient features of a multicore, vector processing is comparatively well-
understood and exploited by applications because of advances in compiler technol-
ogy [233,248,268]. In contrast, compilers cannot access a huge space of cache-friendly
optimizations because they cannot arbitrarily rearrange data representations. Fur-
thermore, although there has been progress on automatic task parallelism to take
advantage of the multiple cores [142, 316, 366], these technologies are still immature
and not widely used. For example, the automatic parallelization feature in gcc cur-
rently only applies to loops that the compiler can determine contain no dependen-
cies [284,380]. Although there remain many compelling open questions in the area of
vectorization, this thesis focuses on the hard problem of creating multicore algorithms
that exploit the cache hierarchy and the multiple cores.

Furthermore, although GPUs are a key part of today’s computing substrate, GPU
algorithm engineering is outside of the direct scope of this thesis because it is a sepa-
rate subsystem from multicores. Multicore systems such as the Amazon p2 instance
series may offer multicore processors with attached GPUs that rely on the multi-
core as a host processor to run programs and store data GPUs [314]. The CPU and
GPU are separate computing systems: algorithms for CPUs and GPUs are written
in different languages and are run on one of the platforms but not both simultane-
ously. Furthermore, not all multicore platforms have attached GPUs. For example,
the c5.metal instance, one of Amazon’s most powerful multicores, does not have

18

a GPU. Furthermore, although GPUs exhibit more parallelism than multicores can
outperform GPUs by orders of magnitude on irregular workloads [89] because GPUs
are optimized for regular workloads. These results demonstrate that especially for
irregular applications such as dynamic graph processing in Chapters 3 and 4, mul-
ticores can achieve comparable or better performance compared to GPUs. Finally,
the locality-first strategy also applies to GPU programming because GPUs have hi-
erarchical memory [173]. Specifically, GPUs have on-chip shared memory and global
memory. Accessing shared memory on a GPU is about 100× faster than accessing
global memory on a GPU [173]. Therefore, optimizing GPU programs for tempo-
ral locality has the potential for significant performance improvement by avoiding
accesses to global memory [172]. The focus of this thesis is on multicore algorithm
engineering because multicores can solve general problems efficiently.

Designing algorithms for both cache-friendliness and parallelism is necessary for
peak performance on a multicore. In the Cascade Lake processor, the maximum
speedup from cache-friendliness was about 100× (the difference between a L1 and
main memory access). Additionally, the maximum parallel speedup was almost 100×
(the number of cores). Optimizing algorithms for only one of these features leaves
orders of magnitude of performance on the table.

Cache-friendly algorithms
To understand how to optimize programs on multicores, let us first turn our attention
to how to exploit locality for cache-friendliness.

To understand in detail the issues involved in creating cache-friendly algorithms,
it will be helpful to review the types of locality that algorithms can optimize for.
As mentioned in Chapter 1, there are two types of locality: spatial locality — the
tendency of programs to access nearby data over time — and temporal locality — the
tendency of programs to access the same data over time. Depending on the problem,
an algorithm may exploit either spatial locality, temporal locality, or both.

To see why exploiting locality is important for cache-friendliness, let us consider a
simplified multicore memory system. The first main component of a memory system
is the cache hierarchy : a sequence of memory stores with varying access speeds and
sizes. For simplicity, let us consider a cache hierarchy with two levels: a large slow
main memory and a small fast cache. Optimizing algorithms for temporal locality
exploits the cache hierarchy by maximizing accesses to the cache and avoiding slow
accesses to memory. The second main component of a memory system is the cache
line : the unit of data transfer between cache and main memory. A computer’s
memory is divided into contiguous, non-overlapping units called cache lines. Cache
lines are usually multiple bytes (e.g. 64 bytes). If a program requests data that is not
already in the cache, the memory system brings the entire cache line that data resides
in from main memory to cache. Optimizing algorithms for spatial locality exploits
cache lines by maximizing the amount of contiguous useful data and minimizing
memory block transfers.

The classical Disk-Access Machine (DAM) model [3] due to Aggarwal and
Vitter formalizes this simplified memory system. It models two levels of memory: a
small bounded-size cache of size 𝑀 , and an unbounded-size memory. Any data must

19

be brought to the cache first before it is processed. Data is transferred in blocks of
size 𝐵 between the cache and the memory, and transfers have unit cost. Algorithms
that achieve speedup in 𝑀 in the DAM model take advantage of temporal locality to
reuse data as much as possible while it is in cache. On the other hand, algorithms that
achieve speedup in 𝐵 in the DAMmodel take advantage of spatial locality to minimize
cache-line transfers. The DAM model enables algorithm developers to reason about
cache-friendliness in a straightforward way without requiring them to know the exact
details of the underlying memory system [19,367].

Unfortunately, the DAM model abstracts away important details of the real-world
memory systems. In reality, memory systems have many levels of cache, so maximiz-
ing cache-friendliness requires reusing data optimally in all of the levels. These levels
of cache and main memory make up Random Access Memory (RAM). Additionally,
memory systems contain a disk: a larger and slower level of storage outside of RAM.
Memory-block sizes differ between RAM and disk, so a single setting of the block size
𝐵 may not capture all of the benefits of block transfers between multiple levels of
memory.

To understand a concrete example of the challenges that these details pose to en-
gineering real-world cache-friendly algorithms, let us consider the classical B-tree [34],
a widely-used data structure in large indexes and databases.

The gap between the theory and practice of B-trees illustrates the general com-
plexity of developing cache-friendly algorithms. In theory, the B-tree [34] achieves
asymptotically optimal performance in the DAM model when the tree-node size is
set to the block-size parameter 𝐵 [76]. Programming a theoretically optimal B-tree
is difficult because it requires knowledge of the underlying memory-block size, which
depends on the architecture. Furthermore, in practice, the optimal tree-node size
depends not only on the underlying hardware but also on the workload [42]. The
right tree-node size can even vary by orders of magnitude [42]. For example, B-
trees in databases and file systems often use a node size of 16Kb [258, 266, 275],
while B-trees optimized for range queries use larger node sizes around 1MB [289,300].
The complexity of engineering efficient B-trees demonstrates that developing efficient
cache-friendly algorithms involves expertise in both the hardware and the problem.

Parallel algorithms
Let us turn our attention to how to optimize programs for task parallelism, a type of
parallelism that distributes tasks performed by threads across cores [134,231,322,353].
Since the focus of this thesis is on how to take advantage of the multiple cores, the
remainder of this thesis will refer to “task parallelism” as parallelism.

Although tremendous progress has been made in mitigating challenges to de-
veloping efficient parallel algorithms, creating parallel algorithms is still notoriously
difficult because of the issues of nondeterminism and scalability [203, 286, 319, 334].
Dynamic multithreading [24, 30, 155, 237] platforms have emerged as the domi-
nant way to take advantage of task parallelism. Dynamic multithreading enables a
processor-oblivious programming model that enables algorithm developers to ex-
pose parallelism without explicitly scheduling the physical cores. The fundamental
challenges of nondeterminism and scalability remain, however, because they stem

20

from the ability of parallel algorithms to perform logically discrete computations at
the same time.

Nondeterminism is one of the key difficulties in developing correct and efficient
parallel algorithms [238]. Parallel algorithms may exhibit nondeterministic be-
havior — different behavior on different runs even on the same input — due to how
the operating system schedules and executes threads during any particular run of the
program [319]. For example, parallel algorithms may contain determinacy races, or
nondeterministic behavior due to two parallel threads accessing the same memory
location and at least one updating it. Determinacy races may disrupt correctness and
performance [145]. Additionally, determinacy races pose challenges to traditional de-
bugging techniques, because the bug may not occur in every run of the program [145].

Researchers [54, 55, 62, 68, 145] have proposed deterministic parallelism in re-
sponse to the problem of nondeterminism, but many practical parallel codes still ex-
hibit nondeterministic behavior. Deterministic parallel programs avoid programmer-
observable nondeterminism. They simplify testing and debugging by theoretically
reducing reasoning about correctness to reasoning about the corresponding serial
program. Additionally, deterministic algorithms can be practically fast [64]. Many
real-world parallel codes exhibit nondeterministic behavior, however, because existing
parallel-programming technologies do not provide a general framework for determinis-
tic parallel programming [319]. Because of the nondeterminism issue, creating correct
and efficient parallel codes requires theoretical and practical expertise.

Furthermore, tremendous research effort has been devoted to addressing the “scal-
ability” issue, but developing general scalable parallel algorithms remains challenging.
Scalable parallel algorithms achieve improved performance by computing with more
cores. As we shall see, algorithm developers can use “work-span analysis” [108, Chap-
ter 27] to theoretically characterize scalability by identifying and analyzing logically
parallel tasks. Achieving good scalability requires insight, however, to parallelize
seemingly serial computations in a clever way [65, 66, 129, 175, 203, 204, 239, 249, 319,
334, 339]. Moreover, profiling the scalability of parallel codes is much more difficult
than profiling the runtime distribution in serial codes [177,320]. To address this issue,
researchers have introduced efficient scalability profilers based on “work-span analy-
sis” [177, 320]. These technologies are immature, however, and may not apply to
other threading models. Because of the scalability issue, developing efficient parallel
codes requires both deep theoretical design and analysis as well as careful engineering.

Work-span analysis1 [108, Chapter 27] formalizes scalability by analyzing the
cost of parallel algorithms in terms of their “work” and “span.” For concreteness,
let 𝒜 be an algorithm. The work of 𝒜, denoted by Work(𝒜), is the total time
to execute the entire algorithm in serial. The span2, denoted by Span(𝒜), is the
longest serial chain of dependencies in the computation (or the runtime on an infinite
number of processors). The parallelism of an algorithm is defined as the work
divided by the span, or Work(𝒜)/Span(𝒜). Algorithms with more parallelism are

1This thesis omits the theoretical foundations of work-span analysis because the main contribu-
tions are not in the analysis of parallel algorithms, but the formal model is presented in tutorial
fashion in [319, Chapter 2].

2Sometimes called critical-path length [67] or computational depth [62].

21

more scalable because more of the work can be performed in parallel. Work-span
analysis characterizes scalability in parallel algorithms without the exact details of
the underlying machine.

Work-span analysis enables algorithm developers to predict how much speedup a
parallel algorithm will achieve on a given machine. Given some program running on 𝑃
processors, let 𝑇1 be the time taken by the serial execution and 𝑇𝑃 be the time taken
by the 𝑃 -processor execution. The speedup of the program is defined as 𝑇1/𝑇𝑃 . In
traditional work-span analysis, the potential speedup is upper bounded by 𝑃 due to
the Work Law, which states that 𝑇𝑃 ≥ Work(𝒜)/𝑃 . If the program achieves speedup
𝑃 , we say that the application exhibits linear speedup. In practice, to achieve linear
speedup, a program should exhibit ample parallelism, or parallelism much larger
than the number of processors [155].

Unfortunately, real-world parallel algorithms may not achieve the speedups pre-
dicted by work-span analysis due to other constraints on multicores. In practice, mem-
ory size and memory bandwidth bottleneck scalability for many applications [334,355].
For example, the parallel scalability of algorithms for the “graph-processing” problem
studied in this thesis are limited by memory bandwidth because the problem often
requires random memory access [334]. The complexity of interactions between paral-
lelism and the memory system demonstrates the difficulty of achieving good practical
scalability.

Tensions between parallelism and cache-friendliness
Cache-friendliness and parallelism are difficult to optimize for independently and even
more difficult to combine because they tend to conflict with each other. At a high
level, exploiting temporal locality involves computing on the same data over time,
and exploiting spatial locality involves computing on similar (nearby) data over time.
But computing on the same or similar data in parallel often leads to nondeterminism
and cache-line contention, which may affect correctness and performance.

One example of this tension is false sharing: a performance bug that occurs when
multiple workers access different locations in the same cache line in parallel, repeat-
edly invalidating that cache line in each worker’s private cache and wasting system
bandwidth [362]. One solution to false sharing is to pad each variable with extra
bytes to force them onto different cache lines. Padding the elements disrupts cache-
friendliness however, because the elements of interest are now further apart and re-
quire more cache-line reads.

Another example is the data representational choice of keeping data contiguous
(e.g., in a list) or non-contiguous (e.g., in a tree). Keeping data in a list maxi-
mizes spatial locality by increasing the number of elements fetched per read and
eliminating pointer-chasing. Concurrently modifying a list is much more complicated
than concurrently modifying a tree, however, because a tree can support efficient
concurrent updates by locking a small part at a time (e.g. with hand-over-hand lock-
ing [181]), while a list-based data structure may have to lock the entire data in the
worst case [379]. These examples demonstrate the conflicts between cache-friendliness
and parallelism.

22

2.2 The locality-first strategy for general multicore
algorithm engineering

This section presents rationale for why the locality-first strategy is a useful method
for creating algorithms that achieve both cache-friendliness and parallelism. Specifi-
cally, it discusses both practical and principled reasons for a locality-first approach to
algorithm optimization for multicores. It also concretizes those reasons by explaining
how each one relates to the principal artifacts.

This section justifies the locality-first strategy in four parts. The first part explains
that the locality-first strategy simplifies algorithm engineering by focusing on serial
optimizations first before parallelism. The second part explains how the locality-first
strategy creates efficient algorithms by optimizing for the total work. The third part
demonstrates that optimizing for locality takes advantage of other types of hardware
features available in multicores such as vector units and GPUs. Finally, the fourth
part organizes the principal artifacts into categories based on the type of locality they
exhibit and therefore how they relate to and support the locality-first strategy.

Enabling easier practical algorithm engineering
The locality-first strategy makes writing parallel codes easier because it focuses on
optimizing the serial execution first. Section 2.1 shows that writing parallel algo-
rithms is strictly more difficult than writing serial algorithms. Parallelism may in-
troduce nondeterministic behavior and race conditions, which affect correctness and
performance. Parallelism complicates performance measurement, an integral part of
principled performance engineering, because of additional variability from nondeter-
minism in the thread scheduler [319]. Profiling the scalability of parallel codes is
much more difficult than profiling the runtime distribution in serial codes [320]. The
locality-first strategy simplifies algorithm design because it first produces a serial,
working specification for a parallel code before moving on to parallelization.

The artifacts in this thesis concerning dynamic graph processing reflect this pro-
gression. Appendix A presents “Packed Compressed Serial Row”, a serial “Packed
Memory Array” data structure for dynamic graphs that enhances spatial locality be-
fore introducing parallelism. The Parallel Packed Compressed Sparse Row (PPCSR)
artifact (Chapter 4) takes the next step and introduces parallelism on top of (se-
rial) Packed Compressed Sparse Row. Since dynamic graph applications have ample
parallelism, The Terrace artifact (Chapter 3) further improves performance by trad-
ing some of the parallelism in PPCSR for improved locality by taking advantage of
problem structure.

A principled approach to creating efficient algorithms
The locality-first strategy draws inspiration from Cilk’s work-first principle of min-
imizing the work of a serial algorithm, even if it adversely affects parallel scalability,
because the work has a more direct impact on performance [155]. Although the Cilk
multithreaded language presented the work-first principle in the context of dynamic
multithreading, the artifacts in this thesis demonstrate its potential in general multi-

23

core software optimization. As we shall see later in this section, optimizing for spatial
locality reduces work by taking advantage of other hardware features in multicores.
In general, optimizing for cache-friendliness by exploiting locality reduces work in
serial, which enables algorithms to reach their peak efficiency after parallelization.

Furthermore, in reality, exploiting temporal locality offers opportunities for con-
tinuous speedups due to the multiple levels of the cache hierarchy. For example, in
modern multicores, there are multiple levels of cache (e.g. L1, L2, L3) before main
memory. The DAM model expresses speedups in terms of a single memory block
size 𝐵 and a single memory size 𝑀 . In reality, these analyses apply between any
two levels of cache, resulting in more continuous speedups from exploiting locality.
The maximum improvement available from taking advantage of the cache hierarchy
can range up to orders of magnitude. For example, an L1 cache hit takes about 1
nanosecond, while a main memory access takes about 100 nanoseconds [115]. Addi-
tionally, a disk seek takes about 10 million nanoseconds. In contrast, speedups from
parallelization are maximized at 𝑃 , the number of processors. Therefore, optimizing
for locality first offers multiple levels of improvement at the different levels of cache
before parallelization. Chapter 9 concerns cache-oblivious algorithms, which use all
levels of the cache hierarchy asymptotically optimally.

Although parallelism and cache-friendliness are in tension, the artifacts in this
thesis demonstrate that trading off some parallelism for improved locality can still
improve overall performance. The artifacts in this thesis support the observation
in the original Cilk-5 presentation of the work-first principle that there is ample
parallelism in the common case [155]. For example, “blocking” (e.g. the “blocked
formats” in Chapter 5, or the “blocked prefix sums” in Chapter 11) improves overall
performance by taking advantage of locality at the cost of some parallelism.

Taking advantage of other multicore hardware features
Optimizing for locality enables efficient usage of hardware features than enable dif-
ferent types of parallelism in multicores. In reality, multicores support other types of
parallelism besides task parallelism, such as “instruction-level” and “data-level” paral-
lelism. Optimizing for spatial locality enables better use of instruction-level paral-
lelism such as cache prefetching, a hardware-supported optimization that brings data
before it is needed into cache to reduce future latency [343]. For example, the PMA
data structure in Chapter 4 achieves fast scan performance from cache prefetching
because it exploits spatial locality by storing all of its data contiguously. Additionally,
algorithms with good spatial locality can make better use of data-level parallelism
via SIMD instructions that take advantage of hardware-level vector units [148]. Vec-
torizing the “Packed Memory Array” (PMA) data structure in Chapter 4 is more
straightforward than vectorizing tree-based data structures because the PMA is con-
tiguous in memory [379]. Optimizing for spatial locality by storing data contiguously
enables other types of parallelism in multicores such as instruction-level and data-level
parallelism.

24

2.3 Enhancing locality by changing the data layout
The Terrace, PPCSR, PHIL, and write-optimized skip list artifacts apply the locality-
first strategy to enhance spatial locality by changing the underlying data layout
(Chapters 3-6).

The Terrace, PPCSR, and PHIL artifacts target sparse graph and sparse tensor ap-
plications and demonstrate that optimizing for spatial locality first, even at the cost of
some parallelism, can improve overall performance. Many sparse computations, such
as sparse graph applications, exhibit minimal temporal locality [249,276,334]. There-
fore, these chapters focus on improving spatial locality by co-locating data through
cache-friendly data structure design.

This section overviews this thesis’s contributions regarding enhancing spatial lo-
cality in the domain of sparse applications in two steps. First, it presents challenges
to locality in sparse applications. Next, it summarizes each of the artifacts in the
domain of sparse applications and explains how each uses the locality-first strategy
to address challenges to locality.

Finally, this section explains how to use the locality-first strategy to create the
write-optimized skip list, a cache-friendly randomized data structure.

Background on sparse applications
Sparse graphs and sparse tensors appear in many fundamental applications that range
from scientific computing [87,369] to social networks [141,279]. Sparse datasets have
many more zeroes than nonzeroes. For example, in social networks, most of the users
are not connected to most of the other users. If the vertices are users and edges
are connections between users, most of the entries representing connections would be
empty.

Sparsity disrupts spatial locality because of the presence of zeroes between actually
present values, limiting the effectiveness of fetching multiple adjacent elements in a
cache line. To illustrate this issue, let us consider an adjacency matrix representation
of a graph [108]. In an adjacency matrix, a zero represents a lack of connection be-
tween vertices, while a nonzero represents an edge. Therefore, a naive representation
of sparse data exhibits poor spatial locality because most of the data is zeroes.

Performance engineers can improve spatial locality and algorithm complexity in
sparse applications with compressed representations that store only the nonzeroes and
the locations of the nonzeroes [361]. These compressed representations enable fast
algorithms with work proportional to the number of nonzeroes. In practice, these
data structures reduce the work by orders of magnitude because they allow direct
computation over only the existing data.

As we shall see in the artifacts in this section, the introduction of metadata,
or the locations of the nonzeroes, raises challenges and opportunities for designing
scalable and cache-friendly data structures and algorithms to store and process the
metadata.

25

Storing and processing dynamic graphs
Terrace and PPCSR apply the locality-first strategy to design and implement fast
parallel dynamic-graph-processing systems that are optimized for spatial locality first.

Many real-world graphs ranging from machine learning graphs [303] to social net-
works [141,279] exhibit graph irregularity, or a sparse and skewed structure. These
graphs have a skewed distribution of vertex degrees, where there are a few high-
degree vertices and many low-degree vertices [279]. Furthermore, these graphs are
often dynamic: they change over time. For example, dynamic-irregular graphs
arise naturally in social networks, computational biology, and the Internet. Much
larger problems on the order of gigabytes and up to terabytes can be efficiently solved
by exploiting irregularity, which is crucial for scaling applications to handle large
graphs [335].

Graph updates pose challenges to exploiting irregularity for locality because pre-
processing the graph into a cache-friendly representation is infeasible when the graph
changes over time. Existing static-graph-processing systems optimized for graph ir-
regularity achieve high performance and low space usage by preprocessing a cache-
friendly graph partitioning based on vertex degree [95]. In the dynamic setting,
however, finding an optimal partitioning is not feasible in the presence of updates.
Therefore, existing high-performance dynamic-graph-processing systems such as As-
pen [128] use a one-size-fits-all representation, which pre-selects one type of data
structure upfront for all vertices. The one-size-fits-all approach leaves performance
on the table because it disrupts spatial locality by using separate per-vertex data
structures.

To address these challenges to locality, the Terrace artifact applies the locality-
first strategy to dynamic graph-processing by using cache-friendly data structures
that adapt to naturally occurring irregular graph structure [294]. Terrace uses a
hierarchical data structure design to dynamically partition vertices based on their
degrees and adapt to skewness in the underlying graph. The evaluations in Chapter 3
show that Terrace supports faster batch insertions for batch sizes up to 1M when
compared to Aspen [128]. On graph query algorithms, Terrace is between 1.7 −
2.6× faster than Aspen. Surprisingly, in some cases Terrace is even faster (up to
1.3× faster) than Ligra [335], a state-of-the-art static-graph-processing system, on
graph queries. The reason for these performance gains is that Terrace experiences
significantly fewer cache misses (in some cases, up to about 3× fewer than Ligra and
about 6× fewer than Aspen) during graph queries because it exploits graph skewness
for cache-friendliness.

One of the main components of Terrace is the Parallel Packed Compressed
Sparse Row (PPCSR) artifact, a dynamic-graph-processing system that applies the
locality-first strategy to enhance spatial locality by co-locating all of its data [379].
PPCSR is built on top of a parallel Packed Memory Array (PMA) [44, 196] data
structure. The PMA is well suited for storing and processing dynamic graphs because
it supports updates and efficient scans by storing data in one contiguous block of
memory [378]. Concurrently updating a PMA raises challenges, however, because an
update requires rewriting the entire structure in the worst case [379]. The difficulty of

26

updating a PMA exemplifies the tension between parallelism and cache-friendliness.
Surprisingly, one of the main findings in Chapter 4 is that the PMA can achieve
the best of both worlds. Specifically, the PMA is well-suited to concurrent updates
despite occasionally requiring a rewrite of the entire structure because 1) most of the
updates only write to a small part of the structure and 2) the worst case is highly
parallel and cache-efficient [379]. These results demonstrate the performance benefits
of optimizing for locality first via cache-friendly data structures in dynamic graph
processing.

Finding block structure in sparse tensors
This thesis also studies the locality-first strategy in the domain of blocked formats,
which address memory bandwidth issues in sparse tensor kernels by enhancing spa-
tial locality. A common issue that arises in parallel implementations of sparse ten-
sor algebra, such as sparse matrix-vector multiplication (SpMV), is limited memory
bandwidth due to irregular memory traffic from the locations of the nonzeros.

To regularize memory traffic and improve memory bandwidth issues, researchers
have developed blocked storage formats to take advantage of natural blocked struc-
ture, or clusters of nonzeroes, in sparse matrices [373]. Blocked storage formats store
dense blocks of nonzeros instead of storing the nonzeros individually to take advan-
tage of the natural blocked structure of some blocked sparse matrices and tensors.
These blocked storage formats simplify memory traffic and enable instruction-level
parallelism such as vectorization [212]. For example, choosing the correct blocking can
speed up SpMV by more than a factor of 2 on matrices with blocked structure [372].
Blocked storage formats must choose a block size that is carefully tuned to match the
structure of a tensor to avoid unnecessary overhead, however.

The PHIL artifact supports the locality-first strategy by enabling efficient usage
of blocked storage formats. PHIL estimates the fill, a metric for block-size quality,
with provable guarantees. The fill has important applications in autotuning pipelines,
but computing the fill exactly is too expensive. As a result, researchers developed
OSKI [371], an empirically fast-and-accurate heuristic for estimating the fill that
samples matrix rows. In contrast to OSKI, the number of samples that PHIL requires
is independent of the size of the input. This advantage of PHIL over OSKI is evident
in the empirical evaluation in Chapter 5: PHIL estimates the fill at least 2× faster
than OSKI on small matrices and 40 − 50× faster on large matrices. Since PHIL
has provable accuracy guarantees, it also provides useful estimates of the fill even
in pathological test cases where OSKI fails to estimate the fill within any useful
error. PHIL’s empirical success demonstrates the potential for efficient algorithms to
enhance spatial locality in sparse tensor applications.

Enhancing spatial locality in data structures
The write-optimized skip list artifact uses the locality-first strategy to enhance
spatial locality in general data structures. Although the write-optimized skip list is a
serial data structure, it is a first step towards an efficient parallel and cache-efficient
skip list. The skip list is an elegant and simple randomized in-memory data structure
that supports efficient searches, inserts, and deletes. As we shall see in Chapter 6,

27

there are theoretical challenges to getting the skip list to generalize well to exter-
nal memory, however. The intuitive method to convert an in-memory skip list to
an out-of-memory skip list does not achieve good high-probability guarantees. The
write-optimized skip list overcomes these challenges and to achieve write-optimized
bounds. That is, given a memory-block size 𝐵, for 0 < 𝜀 < 1, a write-optimized skip
list on 𝑁 elements supports queries of size 𝐾 in 𝑂(log𝐵𝜀 𝑁 +𝐾/𝐵) I/Os with high
probability (w.h.p.) and insertions and deletions in 𝑂((log𝐵𝜀 𝑁)/𝐵1−𝜀) amortized
I/Os w.h.p. That is, the write-optimized skip list supports asymptotically optimal
searches, inserts, and deletes. Furthermore, it supports inserts and deletes asymp-
totically faster than searches. The write-optimized skip list applies the locality-first
strategy by first exploiting spatial locality in data structure design as a step towards
efficient parallel data structures.

2.4 Exploiting locality without changing the data
layout

The cyclic analysis, lower bounds, smoothed analysis, scan-hiding, CAST_BLK, PAIR_BLK,
bidirectional box-sum, and box-complement artifacts apply the locality-first strategy
to exploit locality in problems without changing the data layout. These artifacts take
advantage of naturally-occurring spatial and temporal locality by modifying algorithm
access patterns to make them cache-friendly (Chapters 7-12).

The cyclic analysis and smoothed analysis artifacts theoretically ground the locality-
first strategy via “beyond-worst-case” analysis [315] and demonstrate that algorithms
that are designed to fully exploit temporal locality are mathematically good despite
potential disruptions to cache-friendly access patterns due to parallelism. These arti-
facts study the case where algorithms exhibit temporal locality, but multiple threads
compete for space in a shared cache. These artifacts address a potential concern with
the locality-first strategy that locality trades off with parallelism.

These artifacts characterize the practical benefits of the locality-first strategy by
bringing theory and practice together via “beyond-worst-case” analysis. Beyond-
worst-case analysis is a class of algorithmic techniques that consider algorithm per-
formance outside of a single worst-case input. Beyond-worst-case analysis closes the
gap between theory and practice in cases where worst-case analysis fails to capture
realistic inputs. For example, it compares algorithms on more realistic inputs, such
as those with locality, whereas traditional worst-case analysis compares algorithms
on a single worst-case input. As a result, beyond-worst-case analysis presents a more
holistic view of algorithm performance.

This section overviews this thesis’ contributions in mathematically grounding the
locality-first strategy with respect to two problems: “multicore cache-replacement”
and “cache-adaptive algorithms.” Specifically, it summarizes the cyclic analysis and
lower bounds artifacts for “multicore cache-replacement” and the smoothed analysis
and scan-hiding artifacts for “cache-adaptive algorithms.” For each problem, this
section describes challenges to locality due to parallelism in shared caches, summarizes
the relevant artifacts, and explains how they support the locality-first strategy.

28

Finally, this section demonstrates how to apply the locality-first strategy when the
problem has spatial locality and not much temporal locality. Since spatial locality
is easy to achieve in these problems, the main focus is on other optimizations. By
understanding locality in the problem first and exploiting it as much as possible,
the locality-first strategy created the CAST_BLK and PAIR_BLK artifacts for the “prefix
sums” problem, the bidirectional box-sum artifact for the “included sums” problem,
and the box-complement artifact for the “excluded sums” problem.

Multicore cache replacement
As we shall see in more detail in Chapter 8, multiple parallel threads in a multicore
environment disrupt the cache-friendliness of each individual thread’s memory access
pattern by causing cache evictions due to threads contending for space. Every proces-
sor with a cache needs to implement a cache-replacement algorithm, or an algorithm
that manages the data in cache by deciding what to evict and what to keep when
the cache becomes full. Single-core cache-replacement is a classical problem in online
algorithms [342] and has inspired a decades-long line of both theoretical and practi-
cal research [195,207]. The multicore setting differs significantly from the single-core
setting, however: for example, López-Ortiz and Salinger [251] demonstrated that com-
petitive ratio of canonical cache-replacement algorithms such as Least-Recently-Used
and Furthest-In-Future grows with the length of the input in the multicore setting (as
opposed to growing with the size of the cache in the single-core setting). This diver-
gence between multicore and single-core cache-replacement mathematically validates
the tension between parallelism and cache-friendliness.

The cyclic analysis and lower bounds artifacts mathematically ground the locality-
first strategy for the multicore cache-replacement problem by validating the empirical
superiority of the Least-Recently-Used (LRU) algorithm because LRU takes advan-
tage of locality.

The cyclic analysis artifact mathematically justifies the locality-first strategy
by showing the advantage of LRU in the presence of temporal locality via the cyclic
analysis artifact, a new technique for beyond-worst-case analysis [210]. Cyclic anal-
ysis compares online algorithms on the entire space of inputs rather than a single
worst-case input. Under cyclic analysis, LRU is the single best online algorithm
on inputs with (temporal) locality in the multicore setting. These results demon-
strate the potential of alternative beyond-worst-case measures to separate multicore
cache-replacement algorithms and to capture real-world performance. Specifically,
cyclic analysis grounds the observed superiority of LRU in practice because it ex-
ploits naturally-occurring locality [8].

The lower bounds artifact motivates beyond-worst-case analysis for multicore
caching algorithms by showing that all known deterministic algorithms are equally
arbitrarily far from optimal [209]. This work answers an open question from past work
about the existence of a competitive algorithm in the negative. This lower bound
fails to capture real-world differences between algorithms due to naturally-occurring
locality, however. Despite these negative equivalence results from worst-case anal-
ysis, algorithms exhibit different real-world performance due to locality, motivating
alternative measures that capture these differences.

29

Cache-adaptive algorithms
Additionally, multiple programs sharing a cache each experience memory fluctua-
tions, or dynamically changing cache sizes,that potentially disrupt each program’s
cache-friendliness [94, 122, 123]. Systems that require programs to share a cache
such as shared-memory machines, multicore architectures, and time-sharing systems
are ubiquitous in modern computing. Memory fluctuations are the common case in
shared-memory machines such as multicores, where threads share cache and RAM.
Multiple programs in a shared cache pose challenges to taking advantage of locality,
however. For example, optimally cache-friendly algorithms in a fixed-size cache may
not be optimal when the cache size changes over time. In the worst case, an algorithm
may become logarithmically worse when the cache size fluctuates [45]. This diver-
gence between algorithm performance in fixed-size and variable-size caches further
reinforces the tension between parallelism and cache-friendliness.

To cope with memory fluctuations, experimentalists have developed heuristics
and experimentally fast algorithms that perform well in practice but unfortunately
are vulnerable to worst-case inputs [295, 296]. These algorithms include empirically
efficient algorithms for major operations such as database sorts and joins. Although
these empirical solutions achieve performance improvements on practical workloads,
they lack theoretical analysis and worst-case guarantees.

To provide mathematical grounding for algorithms in the face of cache fluctua-
tions, researchers have studied cache-adaptive algorithms that gracefully handle
changes in cache allocation with worst-case guarantees [43,45]. An algorithm is cache
adaptive if it achieves optimal utilization of the dynamically changing cache. Prior
work on cache adaptivity, used worst-case analysis to separate algorithms, however,
which may be overly pessimistic due to carefully constructed worst-case inputs.

The smoothed analysis and scan-hiding artifacts mathematically ground the locality-
first approach for cache-adaptive algorithms. These artifacts prove that algorithms
that take advantage of temporal locality as much as possible adapt well to cache
fluctuations.

The smoothed analysis artifact supports the locality-first strategy by showing
that “cache-obliviousness” provides a solid foundation for adaptivity when the mem-
ory profile, or the sequence of fluctuations in the memory size, is not adversarial [41].
Smoothed analysis [348] is a type of beyond-worst-case analysis that considers algo-
rithm performance on a shuffled (randomized) input. Additionally, cache-oblivious
algorithms achieve asymptotically optimal performance on all fixed cache sizes with-
out knowledge of the memory size [153,154]. They may perform poorly on the worst-
case memory profile, however, when the available memory changes over time [45].
Smoothed analysis closes this gap between cache-obliviousness and cache-adaptivity:
if one takes an arbitrary profile and performs a random shuffle on the location of
“significant events” in the profile, then the shuffled profile becomes optimally cache-
adaptive in expectation, even if the initial profile is adversarially constructed. The
optimal expected performance of cache-oblivious algorithms mathematically supports
the locality-first strategy because cache-oblivious algorithms take advantage of tem-
poral locality.

30

The smoothed analysis artifact builds on the scan-hiding artifact, which applies
the locality-first strategy to convert non-cache-adaptive algorithms to cache-adaptive
algorithms by improving their temporal locality [246]. Scan-hiding applies to a large
class of non-cache-adaptive algorithms, including all currently known subcubic ma-
trix multiplication algorithms. These results provide guidance for analyzing cache-
adaptive algorithms beyond the adversarial worst case. They ground the locality-first
strategy by proving that algorithms that exploit temporal locality perform well.

Problems with high spatial locality and low temporal locality
The CAST_BLK, PAIR_BLK, bidirectional box-sum, and box-complement artifacts study
the case where spatial locality is easy to achieve, so the main contributions are in other
optimizations. These artifacts differ in their techniques due to the problem domain
that each addresses, but they all involve first understanding locality and exploiting it
as much as possible.

The CAST_BLK and PAIR_BLK artifacts, two fast-and-accurate algorithms for paral-
lel prefix sums, involve first understanding and exploiting locality before optimizing
for accuracy. Parallel prefix sums are a fundamental subroutine in a wide range of
applications and have therefore been targeted for efficient implementations [61, 187].
Specifically, floating-point prefix sums appear in scientific computing applications
such as summed-area table generation [178] and the fast multipole method [118]. Un-
fortunately, floating-point summation introduces error due to limited machine preci-
sion [182]. Therefore, the goal of the accurate prefix sums problem is to minimize
error while maintaining good performance. The CAST_BLK and PAIR_BLK algorithms
achieve comparable performance to the state of the art with significantly higher ac-
curacy. They employ the locality-first strategy by first understanding locality in
the accurate prefix sums problem and then optimizing for parallelism and accuracy
because locality is relatively easy to achieve in prefix sums.

The bidirectional box-sum artifact for the “included-sums” problem and the
box-complement artifact for the “excluded-sums” problem apply the locality-first
strategy to understand and exploit locality before optimizing the overall work of
the algorithms. As we shall see, these problems have opportunities for exploiting
naturally-occurring spatial locality, but not much temporal locality. The included-
sums and excluded-sums problems underlie scientific computing applications such as
summed-area table generation and the fast multipole method. These problems take
as input a 𝑑-dimensional array, a 𝑑-dimensional box size, and a binary associative
operator ⊕. The included-sums problem requires that the elements within over-
lapping boxes cornered at each element within the array be reduced using ⊕. The
excluded-sums problem reduces the elements outside each box. The bidirectional
box-sum and box-complement artifacts improve the state-of-the-art theoretical and
practical performance of included-sums and excluded-sums algorithms, respectively.
Specifically, given a 𝑑-dimensional tensor of size 𝑁 , these artifacts reduce the total
work for the included-sums and excluded-sums problems from Θ(2𝑑𝑁) to Θ(𝑑𝑁).
The bidirectional box-sum and box-complement artifacts take advantage of spatial
locality and improve overall efficiency by asymptotically reducing the work required
to solve the problems when compared to the state of the art.

31

32

Chapter 3

Terrace: A Hierarchical Graph
Container for Skewed Dynamic
Graphs

This chapter presents Terrace, a dynamic-graph-processing framework that overcomes
traditional tradeoffs between query and algorithm speed in dynamic graph process-
ing by leveraging the locality-first strategy with cache-friendly data structures. Ter-
race supports graph queries about 2× faster than Aspen [128], a state-of-the-art
high-performance dynamic-graph-processing system, while maintaining similar up-
date throughput. Terrace enhances spatial locality in dynamic graph processing with
dynamic cache-friendly data structures that adapt to naturally-occurring skewness
in the underlying graph. As we shall see in the exhibits in this chapter, Terrace
experiences significantly fewer cache misses than Aspen. With additional optimiza-
tions for locality, Terrace even experiences fewer cache misses than Ligra [335], a
state-of-the-art static-graph-processing system, on some applications. This improved
cache performance translates into improved graph algorithm performance without
sacrificing updatability.

This work was conducted in collaboration with Prashant Pandey, Brian Wheat-
man, and Aydın Buluç [294].

Abstract
Various applications model problems as streaming graphs, which need to quickly
apply a stream of updates and run algorithms on the updated graph. Furthermore,
many dynamic real-world graphs, such as social networks, follow a skewed distribution
of vertex degrees, where there are a few high-degree vertices and many low-degree
vertices.

Existing static graph-processing systems optimized for graph skewness achieve
high performance and low space usage by preprocessing a cache-efficient graph par-
titioning based on vertex degree. In the streaming setting, the whole graph is not
available upfront, however, so finding an optimal partitioning is not feasible in the
presence of updates. As a result, existing streaming graph-processing systems take a
“one-size-fits-all” approach, leaving performance on the table.

33

This chapter presents Terrace, a system for streaming graphs that uses a hierar-
chical data structure design to store a vertex’s neighbors in different data structures
depending on the degree of the vertex. This multi-level structure enables Terrace to
dynamically partition vertices based on their degrees and adapt to skewness in the
underlying graph.

The experiments show that Terrace supports faster batch insertions for batch sizes
up to 1M when compared to Aspen, a state-of-the-art graph streaming system. On
graph query algorithms, Terrace is between 1.7×–2.6× faster than Aspen. Terrace
is also between 0.5×–1.3× as fast as Ligra, a state-of-the-art static graph-processing
system. Surprisingly, in some cases, Terrace is even faster than a static system without
updates because Terrace exploits locality.

3.1 Introduction
Many real-world sparse graphs, such as social networks or road networks, change
over time. Therefore, systems for storing and processing dynamic (i.e. streaming)
graphs [83, 128, 139, 144, 168, 229, 254] have been designed to process a stream of
updates (e.g., edge weight update, or edge insertions and deletions) and a stream of
queries quickly. That is, both query-processing time and graph-update time must be
fast.

The ability to quickly apply a batch of updates is critical for efficient streaming
graph processing. For example, in incremental triangle counting, insertion (or dele-
tion) time accounted between 25% – 90% of the overall time [255]. Similarly, on 32
cores, updating the graph takes up to 90% of the overall running time in incremen-
tal connected components [263]. This chapter focuses on data structure design for
dynamic graph processing in order to support both efficient updates and queries.

In practice, dynamic real-world graphs follow skewed vertex degree distributions
as shown in Table 3.1. For example, real-world graphs, such as those from social
networks [141,279] or computational biology, contain a few very high-degree vertices
and many low-degree vertices. This skewness presents unique challenges for efficiently
representing dynamic graphs. However, these diverse distributions also present an
opportunity to build cache-efficient graph representations via adaptive data structures
that take advantage of degree distributions.

Existing static graph-processing systems that optimize for skewness demonstrate
the potential for improved cache locality. For example, PowerLyra [95] partitions
vertices based on their degree to improve locality of vertex computations. Other
frameworks preprocess the graph into cache-friendly formats to improve locality. For
example, Cagra [403] uses segmenting to divide the graph into cache-friendly sub-
graphs. Similarly, Gridgraph [404] partitions vertices and edges into blocks for lo-
cality. These techniques greatly improve locality in computations on static graphs,
but do not easily translate to graphs that evolve over time. GPU-based static graph
processing systems also exploit the skewness to support fast graph algorithms and use
the vertex’s degree to decide which scheduler to use to run iterations [157,247,293].

34

Vertex IDs
Pointers to
edges

Edges

0 1 2

…nghs of 0

…

nghs of 1 nghs of 2

…

Figure 3-1: A high-level design for graph storage formats. There is a vertex structure that
keeps track of where the neighbors (nghs) for each vertex are stored, and a structure for
each vertex’s edges.

Graph % <10 Nghs % <100 Nghs % <1000 Nghs
LiveJournal 65 97.2 99.98
Twitter 64.56 95.39 99.51
Protein 30.47 61.49 98.80

Table 3.1: Distribution of degree of vertices in three different real-world graphs. Columns
show the % of vertices that have less than 10, 100, 1000 neighbors (nghs). The maximum
degree in the graphs are: LiveJournal (20333), Twitter (2997487), and Protein (3779).

In contrast, many existing dynamic graph-processing systems take a “one-size-
fits-all” approach to data structure design, leaving performance on the table when
processing and updating skewed graphs. Figure 3-1 illustrates a classical design for
a graph storage format: a list of pointers (one for each vertex) to preselected data
structures holding each vertex’s neighbors (nghs). For example, the canonical static
Compressed Sparse Row [361] (CSR) format stores a list of offsets into an edge list.
Dynamic graph systems adopt a similar two-level design: Stinger [139] stores neigh-
bors in a variant of a blocked adjacency list, while Aspen [128] stores each vertex’s
neighbors in a separate probabilistic balanced tree (C-tree). Since the neighbor data
structures can only be accessed after a memory indirection, these dynamic systems
must incur at least two cache misses per vertex during a graph traversal. Moreover,
in tree-based representations such as Aspen, traversing a vertex’s neighbors requires
non-sequential memory accesses, which are slower than sequential memory accesses
in array-based representations such as CSR.

The ideal structure for storing a vertex’s neighbors in a dynamic graph framework
depends on the access pattern of graph algorithms and the cost of doing updates.
If a vertex has low degree, a simple data structure such as an array incurs minimal
indirection and supports efficient traversal and updates. If a vertex has high degree,
however, a more complex data structure such as a tree with better asymptotic search
and update performance may be more suitable. Even though a balanced tree may
have asymptotically better performance than an array, in the context of storing a
vertex’s neighbors, these data structures exhibit crossover points in their performance
depending on the degree of the vertex.

Characterizing graph skewness. Table 3.1 presents the distribution of vertex

35

Kernel Ligra Aspen Terrace
BFS 3.5M 6.3M 1.1M
PR 174M 197M 128M

Table 3.2: Average cache misses in breadth-first search (BFS) and PageRank (PR) on the
LiveJournal graph over 100 rounds. Cache misses are higher in PR as it was run for 10
iterations compared to a single iteration in BFS.

degrees in three different real-world graphs that exhibit skewness. These graphs are
picked from three different domains. A major fraction of all the vertices in these
graphs have less than 10 neighbors which can be easily packed in a single cache
line along with other meta information about the vertex, e.g., the vertex degree.
However, there is also high variance between degree of vertices: the maximum degree
in these graphs goes up to 2.99 million (in the Twitter graph). Therefore, the high-
degree vertices must be stored in a sophisticated structure to enable efficient updates
and queries. Furthermore, graph-processing systems must treat low- and high-degree
vertices differently to achieve better cache locality and good performance.

Exploiting skewness in streaming graphs. This chapter introduces Terrace,
a dynamic graph-processing framework that exploits skewness present in real-world
graphs to build a cache-optimized representation. The main idea behind Terrace is
a hierarchical data structure design that stores a vertex’s incident edges in different
data structures based on its degree. That is, a vertex’s degree determines what type
of data structure its edges will be stored in. The hierarchical design and degree cutoffs
can be adapted to the distribution of a particular graph for improved performance
and space usage.

A key insight behind Terrace is that neighbors of low-degree vertices can be stored
in place rather than in a separate data structure, reducing latency and improving
locality. That is, a few neighbors of each vertex can be stored directly in the vertex
structure. Storing neighbors in-place in the vertex structure avoids cache misses for
low-degree vertices during a graph traversal because it avoids following pointers for
low-degree vertices.

At a high level, Terrace stores edges in three main types of data structures: a
sorted array that stores a few neighbors per vertex in place, a shared Packed Memory
Array [44, 196] (PMA) that compactly stores neighbors of medium-degree vertices,
and per-vertex B-trees [108, Chapter 18] for high-degree vertices. The PMA and B-
tree are cache-efficient structures with asymptotically better update and query costs
than traditional packed lists.

Cache miss analysis. Existing static and dynamic graph-processing systems incur a
high number of cache misses during graph kernels because they use a uniform out-of-
place per-vertex structure regardless of vertex degree. To verify this hypothesis, Ta-
ble 3.2 reports1 the number of cache misses during graph kernels in Ligra [335] and
Aspen [128], two state-of-the-art graph processing systems, as well as in Terrace. The

1This experiment measures the number of cache misses using the perf utility in Linux. To
compute the average number of cache misses, the experiments measures the total cache misses for
1, 10, 20, 100 rounds of kernel runs and then computes the average for a single run.

36

experiment measures cache misses during breadth-first search and PageRank [387], as
these two kernels have distinct access patterns and can be used as representatives for
access patterns in other graph kernels. Ligra is a static graph framework that stores
its edges in CSR format, while Aspen supports dynamic graphs using compressed
trees. Both Ligra and Aspen incur more cache misses than Terrace because they
require indirection to access neighbors for all vertices, while Terrace stores neighbors
of low-degree vertices in place. The improved locality in Terrace translates into graph
kernel performance: Figure 3-3 summarizes the results of the evaluation.

Contributions

To be specific, the contributions in this chapter are as follows:

• The design of a dynamic graph-processing system using hierarchical data struc-
tures for improved locality.

• An implementation of Terrace, a graph-processing system using the hierarchical
design in Cilk [191].

• An experimental study of Terrace compared to Aspen [128] and Ligra [335], two
state-of-the-art graph-processing frameworks, that demonstrates that Terrace
supports faster updates and queries.

The goal of this chapter is to demonstrate how to organize vertex neighbors dy-
namically in a hierarchical way rather than in a “one-size-fits-all” framework. Al-
though the idea of handling low- and high-degree vertices separately has been intro-
duced in the static setting, this work takes the first step in hierarchical processing
for the dynamic setting. Therefore, one of the main contributions is the multilevel
design of Terrace and the characterization of desirable data structure properties at
each level rather than a new data structure. The simplicity of the design of Terrace
is its strength.

In terms of evaluation, this chapter compares Aspen and Terrace on update
throughput, and all systems on graph kernel performance. There is an extension
of Ligra, called Ligra+ [337], that adds compression on top of the regular graph rep-
resentation in Ligra. On the tested graphs, Ligra+ was slower than Ligra although
more space-efficient, so this chapter only includes the results for Ligra.

The implementation of Terrace extends the interface proposed by Ligra [335] with
functionality for updating the graph. Therefore, all algorithms implemented with
Ligra and Aspen, such as graph-traversal algorithms, local graph algorithms [338],
and others [126,127] can be run on top of Terrace with minor cosmetic changes.

Figure 3-2 shows that Terrace achieves up to 80 million updates per second and
supports faster batch insertions (between 1.1×–3.1×) for batch sizes up to 1M when
compared to Aspen. Table 3.6 contains the full results of batch insertions and
deletions in Terrace and Aspen. Figure 3-3 shows that Terrace performs the shared
graph kernels 1.7×–2.6× faster than Aspen and up to 1.3× faster than Ligra. On

37

100 101 102 103 104 105 106 107

101

103

105

107

Batch Size

T
hr
ou

gh
pu

t
(e
dg

es
pe

r
se
co
nd

s)

Terrace Insert LJ
Terrace Insert Orkut

Aspen Insert LJ
Aspen Insert Orkut

Figure 3-2: Batch insert throughput in Aspen and Terrace as a function of batch size on
the LJ and Orkut graphs. The LJ graph has about 85 million edges, while the Orkut graph
has about 234 million edges.

BFS PR BC CC SSSP TC
0

1

2

3

N
or
m
al
iz
ed

R
un

ni
ng

T
im

e

Ligra Aspen Terrace

Figure 3-3: Average time to run kernels across all graphs in Ligra, Aspen, and Ter-
race normalized to Ligra. The four kernels tested for all systems were breadth-first search
(BFS), PageRank (PR), single-source betweenness centrality (BC), and connected compo-
nents (CC). Aspen does not have publicly available implementations of single-source shortest
paths (SSSP) or triangle counting (TC), so this plot omits it from SSSP and TC.

the kernels that do not have implementations in Aspen, Terrace is about 1.6× slower
than Ligra.

Terrace overcomes traditional tradeoffs between fast updates and locality of graph
computations. Existing state-of-the-art systems lie on either end of the spectrum: for
example, Ligra is a static system and faster for graph computations, while Aspen is
dynamic but slower for graph computations. Terrace shows how to support updates
as fast as Aspen while being faster or similar to Ligra for graph computations.

Map. The rest of the chapter is organized as follows. Section 3.2 provides back-
ground on graph processing and the data structures underlying Terrace. Section 3.3
discusses the high-level hierarchical design of Terrace, and Section 3.4 concretizes
that design with specific data structures and a comparative theoretical analysis. Sec-

38

tion 3.5 describes the implementation of Terrace. Section 3.6 provides an empirical
evaluation of Terrace compared to Ligra and Aspen. Finally, Section 3.7 reviews
related work and Section 3.8 provides concluding remarks.

3.2 Preliminaries
This section introduces reviews graph preliminaries necessary to understand the data
stored in graph-processing systems. It also formalizes the B-tree and Packed Memory
Array data structures that underlie Terrace.

Graph preliminaries. A graph is a way of storing objects as vertices and connec-
tions between those objects as edges.

Definition 3.1 (Graph) A graph 𝐺 = (𝑉,𝐸,𝑤) is a set of vertices 𝑉 , a set of edges
𝐸, and an edge weight function 𝑤. This thesis denotes the number of vertices with
|𝑉 |, the number of edges with |𝐸|, and the degree2 of a vertex 𝑣 ∈ 𝑉 , or the number
of edges incident to vertex 𝑣, with 𝑑𝑒𝑔(𝑣). Each vertex 𝑣 ∈ 𝑉 is represented by a
unique non-negative integer less than |𝑉 | (i.e. 𝑣 ∈ {0, 1, . . . , |𝑉 | − 1}). Each edge is
a 2-tuple (𝑢, 𝑣) where 𝑢, 𝑣 ∈ 𝑉 . Finally, the weight function 𝑤 maps each edge 𝑒 ∈ 𝐸
to a non-zero real weight (𝑤(𝑒) ∈ R, 𝑤(𝑒) ̸= 0).

Dynamic-graph-processing systems must store and process graph vertices and
edges.

B-trees. The B-tree data structure generalizes balanced binary trees to work well in
the external-memory model (Chapter 1) and is widely used in databases [108, Chapter
18]. This chapter considers B-trees with node size (fanout) Θ(𝐵), where 𝐵 is the
cache-line size from the external-memory model. A B-tree on 𝑁 elements takes 𝑂(𝑁)
space and supports updates and point queries in 𝑂(log𝐵 𝑁) transfers. Furthermore,
a B-tree on 𝑁 elements supports range queries in 𝑂(log𝐵 𝑁 + 𝑘/𝐵) transfers, where
𝑘 is the number of elements in the query range. Since a B-tree takes 𝑂(𝑁) space,
scanning a B-tree takes 𝑂(𝑁/𝐵) transfers. B-trees support fast updates but are
slower to traverse than array-based structures because their nodes are not contiguous
in memory.

Packed Memory Array. The Packed Memory Array [44, 196] (PMA) data struc-
ture is an array-based order-maintenance data structure that keeps spaces between
elements. A PMA on 𝑁 elements takes 𝑂(𝑁) space and supports updates in amor-
tized and worst-case 𝑂(log2(𝑁/𝐵)) transfers in the external-memory model. Point
queries in a PMA take 𝑂(log(𝑁/𝐵)) transfers and range queries that return 𝑘 ele-
ments take 𝑂(log(𝑁/𝐵)+𝑘/𝐵) transfers. Since the PMA takes 𝑂(𝑁) space, scanning
the entire PMA takes 𝑂(𝑁/𝐵) transfers. Since the focus of Chapter 4 is on paral-
lelizing PMAs, Chapter 4 contains additional details about the PMA’s structure and
bounds.

2This chapter focuses only on directed graphs and uses degree to mean out-degree. An undirected
graph can be represented by a directed graph with edges in both directions.

39

Although, B-trees asymptotically dominate PMAs in terms of updates and queries,
in practice PMAs are faster to scan because their elements are stored contiguously in
memory. Due to these properties, as we shall see in detail in Chapter 4, PMAs are
used to efficiently represent sparse graphs [240,378,379].

3.3 Hierarchical data structure design
This section proposes the three-level data structure design that Terrace implements
to take advantage of skewness in graphs. This hierarchical design represents a ver-
tex’s incident edges in different data structures depending on that vertex’s degree, in
contrast to the classical “one-size-fits-all” design that uses one type of data structure
for all vertices. The hierarchical design improves cache-friendliness without sacrificing
updatability by choosing cache-friendly data structures as much as possible.

Balancing locality and updatability. The first principle in the design of Terrace is
that order-maintenance array-based and tree-based data structures provide different
guarantees and exhibit crossover points in terms of updatability and traversal cost.
Trees designed for the external-memory model (e.g. B-trees) are quick to update and
achieve asymptotically optimal cost to list all elements, but access memory out-of-
order. In contrast, ordered array-like structures have asymptotically worse insertion
cost than trees, but support fast traversals because they are stored contiguously in
memory. In practice, there is a crossover point in the update performance of tree-
like and array-like structures based on the number of elements in the structures.
Therefore, the choice of structure for a vertex’s neighbors should depend on that
vertex’s degree.

Separating vertices based on degree. The next principle in the design of Terrace
is that vertices should share contiguous array-based structures for locality, but only if
their degree is not too high. Sharing an array-like structure between vertices avoids
cache misses while switching vertices during a traversal through the edges. If the
vertices have high degree, however, the effect of saving a single cache miss per vertex
is negligible because the cost to traverse all the edges dominates. Furthermore, sharing
the data structure between vertices trades improved locality for slower updatability
because the update cost depends on the total size of the structure. Storing high-
degree vertices in an array-like structure will slow down updates for all vertices in
the structure regardless of their degree. Therefore, high-degree vertices should store
their neighbors in separate per-vertex data structures so they do not affect the cost of
updating smaller-degree vertices. High-degree vertices are more suited to tree-based
structures, because they require better asymptotic updatability guarantees.

One size does not fit all. Since the benefit of a contiguous data structure depends
on the degree of vertices that use it, this chapter proposes that graph systems store
vertex neighbors in either array-like or tree-like structures based on vertex degree.
Specifically, it proposes a hierarchical design that stores the neighbors of medium-
degree vertices in a shared array-based structure and the neighbors of high-degree
vertices in per-vertex trees.

40

Storing the neighbors of medium-degree vertices in an array-based structure im-
proves cache locality during traversals. The hierarchical design limits the maximum
degree that any vertex in the array-based structure can have, so the total size of the
array-based structure is bounded. In contrast, storing the neighbors of high-degree
vertices in per-vertex trees ensures that updating those vertices does not bottleneck
the update throughput of the entire system.

Storing neighbors in place. In addition to storing neighbors in different data
structures based on vertex degree, one natural optimization is to store some neighbors
in place because accessing neighbors requires accessing at least one cache line to look
up the pointer to the next data structure. Storing each vertex’s neighbors in an
out-of-place data structure disrupts locality during graph queries and updates. In
contrast, storing some neighbors in place in the same cache line can save a cache miss
from accessing a separate data structure.

Therefore, this section proposes the following the three-level design:

1. A list of in-place neighbors and any necessary metadata for each vertex,

2. a shared array-based data structure containing neighbors of medium-degree
vertices, and

3. individual tree-based data structures for each high-degree vertex.

3.4 Data structure choices
This section describes Terrace, an implementation of the high-level hierarchical de-
sign in Section 3.3 using the PMA and B-tree data structures from Section 3.2. To
concretize the implementation, this section theoretically analyzes the resulting sys-
tem. Since the hierarchical design chooses different data structures depending on
vertex degree, the resulting theoretical analysis falls into cases depending on vertex
degree. Finally, this section concretizes the tradeoffs between updatability and scan
performance with a microbenchmark that compares PMAs and B-trees.

Implementation overview. Terrace concretizes the first level of the hierarchical
design with an array of vertex blocks containing metadata and in-place neighbors for
each vertex. Next, Terrace implements the second level as a Packed Memory Array
(Section 3.2) as an associative structure to store the neighbors of medium-degree
vertices. Finally, Terrace implements the third level with individual B-trees [108,
Chapter 18] for each high-degree vertex.

This chapter denotes the maximum number of in-place neighbors per vertex with
the parameter 𝑆 and the maximum number of neighbors per vertex in the PMA with
the parameter 𝐿. A vertex can have all its neighbors stored in place if its degree is
less than 𝑆, or spread across the in-place and PMA levels or in-place and B-tree levels
depending upon whether its degree is greater or smaller than 𝑆 + 𝐿. That is, if a
vertex 𝑣 has neighbors only in place, deg(𝑣) ≤ 𝑆. If a vertex 𝑣 has neighbors in the
in-place and PMA level, 𝑆 < deg(𝑣) ≤ 𝑆 + 𝐿. Similarly, if a vertex 𝑣 has neighbors
in the in-place and B-tree level, deg(𝑣) > 𝑆 + 𝐿.

41

In-place level. The first level in Terrace consists of a list of vertex blocks designed
to store a few neighbors of each vertex in place and avoid a cache miss for accessing
the neighbors of in-place vertices. Each vertex has a corresponding vertex block, and
vertex blocks are ordered by vertex index. The vertex block corresponding to vertex
𝑣 stores the degree of 𝑣, up to 𝑆 neighbors of 𝑣 sorted in place, and a pointer to
the root of the corresponding B-tree in the third level (if 𝑣 has high degree). The
number of in-place neighbors 𝑆 is a configurable parameter and is adjusted so that
each vertex block can fit in a cache line or two, if Terrace must store extra attributes
(e.g., weights) per edge.

Array-like level. The second level in Terrace stores up to 𝐿 neighbors per medium-
degree vertex in a single shared PMA to support cache-efficient traversals when edges
are accessed in order. Chapter 4 details the parallel PMA in Terrace. Storing neigh-
bors in the PMA provides good cache locality since all neighbors of a given vertex
are stored in consecutive memory locations, like in the edge list of CSR. The cost of
performing an update or query operation in a PMA is asymptotically higher than in
a B-tree, however. Since the cost to update the PMA in Terrace depends on the total
PMA size, Terrace limits the degree of each vertex that stores its neighbors in the
PMA.

The maximum number of neighbors per vertex in the PMA level, 𝐿, is a con-
figurable parameter that balances update throughput and cache locality in Terrace.
That is, the parameter 𝐿 exploits the crossover point between PMA and B-tree inser-
tions in practice: when neighbors of a vertex are stored in a few consecutive pages,
insertions in a PMA are competitive with insertions in a B-tree even though B-tree
insertions asymptotically dominate PMA insertions.

Tree-like level. The third level in Terrace consists of individual B-trees (one for each
vertex with degree > 𝑆 + 𝐿). B-trees are a good candidate for storing high-degree
vertices because they are quick to modify, have minimal space overhead, and support
asymptotically optimal scans.

As we shall see, in practice, PMAs and B-trees exhibit a tradeoff between scan and
update performance because they have different amounts of spatial locality. PMAs
support faster scans while B-trees support faster inserts. The hierarchical design
balances each data structure’s strengths to overcome traditional tradeoffs that arise
from choosing one type of data structure.

Putting it all together. As illustrated in Figure 3-4b, the neighbors of any vertex
may be stored in at most two levels in Terrace. Each vertex has a vertex block in the
first level. Each vertex block can only store a small number of neighbors, however. If
a vertex’s neighbors do not fit in its vertex block, its remaining neighbors are stored
in either the PMA or B-tree level. Terrace maintains a global order of neighbors for
each vertex across different levels, i.e., the in-place neighbors are always in sorted
order and the biggest in-place neighbor is smaller than the smallest neighbor in the
PMA or B-tree.

Figure 3-4b illustrates how Terrace stores four vertices with different degrees
when 𝑆 = 2, 𝐿 = 3. Vertex 0 has only two neighbors, so all of its neighbors fit in the

42

first level. Vertices 1 and 3 have 5 neighbors each, so their neighbors are distributed
between the in-place and PMA level. The first two neighbors are stored in the vertex
block and the next three neighbors are stored in the PMA. Vertex 2 has 10 neighbors,
so its first two neighbors are stored in its vertex block and the last field in the vertex
block contains the pointer to the root of the corresponding B-tree where rest of the
neighbors are stored.

43

(a) A sample directed graph.

(b) An example showing how vertices of different degrees are stored in Terrace. Specifically, Terrace
stores vertices 0-3 from the graph in Figure 3-4a when 𝑆 = 2, 𝐿 = 3. The first level is an array of
vertex blocks. The second level is a shared PMA, and the last level consists of individual per-vertex
B-trees.

Figure 3-4: An example of a graph stored in Terrace. If a vertex has reasonably high
degree, its edges may be stored across multiple data structure levels.

44

Operation Ligra [335] Aspen [128] Terrace

add_edge(𝑢, 𝑣) 𝑂((|𝐸|+ |𝑉 |)/𝐵) 𝑂(log |𝑉 |+ 𝑐2 log(deg(𝑢))/𝐵) in exp.
𝑂(𝑆/𝐵)
𝑂(𝑆/𝐵 + log2(PMA_SIZE/𝐵))
𝑂(𝑆/𝐵 + log𝐵(deg(𝑢)− 𝑆))

when deg(𝑢) ≤ 𝑆
when 𝑆 < deg(𝑢) ≤ 𝑆 + 𝐿
when deg(𝑢) > 𝑆 + 𝐿

find_edge(𝑢, 𝑣) 𝑂(log(deg(𝑢)))
𝑂(log |𝑉 |+ 𝑐/𝐵)
𝑂(log |𝑉 |+ 𝑐 log(deg(𝑢))/𝐵)

in exp.
w.h.p.

𝑂(𝑆/𝐵)
𝑂(𝑆/𝐵 + log((deg(𝑢)− 𝑆)/𝐵))
𝑂(𝑆/𝐵 + log𝐵(deg(𝑢)− 𝑆))

when deg(𝑢) ≤ 𝑆
when 𝑆 < deg(𝑢) ≤ 𝑆 + 𝐿
when deg(𝑢) > 𝑆 + 𝐿

get_neighbors(𝑢) 𝑂(deg(𝑢)/𝐵) 𝑂(log |𝑉 |+ deg(𝑢)/𝐵 + 𝑑𝑒𝑔(𝑢)/𝑐) 𝑂(deg(𝑢)/𝐵)

Table 3.3: The table lists the theoretical runtime performance of graph representations
storing a graph 𝐺(𝑉,𝐸). All bounds are Ω(1), but this table omits the added 1 for ease
of notation. The parameter 𝑐 is expected size of nodes in Aspen (called 𝑏 in the Aspen
paper [128] and set to 28). Furthermore, 𝑆 and 𝐿 denote the cutoffs for the medium-degree
and high-degree structures in Terrace, and PMA_SIZE denotes the size of the middle-level
PMA in Terrace. The size of the middle-level PMA is bounded by 𝑂(𝑛𝐿), where 𝑛 is the
number of vertices in the graph. The theoretical performance is measured in the external-
memory model discussed in Chapter 1. The node size in the 𝐵-tree is Θ(𝐵) where 𝐵 is the
memory-block size from the external-memory model.

Theoretical analysis

Table 3.3 shows the asymptotic runtime of operations in Ligra, Aspen, and Terrace
in the external-memory model (Chapter 1). Given an edge (𝑢, 𝑣) or vertex 𝑢, the
operations in Table 11.1 are as follows:

• add_edge(𝑢, 𝑣) adds an edge from vertex 𝑢 to 𝑣.

• find_edge(𝑢, 𝑣) returns whether the edge (𝑢, 𝑣) exists in the graph.

• get_neighbors(𝑢) returns all neighbors of vertex 𝑢.

The runtime of operations in Terrace depends on the degree of the vertex in
question. For an in-place vertex, adding, querying, or listing all neighbors incurs only
𝑂(𝑆/𝐵) cache misses.

For a medium-degree vertex, adding an edge requires inserting a new item in the
PMA or moving an item from the in-place neighbors and adding the new item in
the in-place list. Therefore, the number of cache misses is dominated by the insert
operation in the PMA, which in turn depends on the overall size of the PMA. Querying
a vertex requires a binary search on that vertex’s neighbors, which only depends on
the degree of the vertex. Listing all neighbors of a vertex requires a sequential scan
through that vertex’s neighbors in the PMA, which again only depends on the degree
of the vertex. For a high-degree vertex, adding, querying, or listing is dominated by
inserting/searching through the B-tree consisting of all the neighbors of the vertex
and hence depends only on the degree of the vertex.

Ligra uses CSR as its underlying representation, which is a static graph format
designed for queries but not updates. Therefore, adding an edge in Ligra depends on
the total number of vertices and edges in the graph. Querying or listing in Ligra only
depends on the degree of the vertex.

Aspen is a dynamic representation based on probabilistic balanced C-trees that
supports fast concurrent updates and queries. Specifically, it stores a tree per vertex
to hold its neighbors as well as a tree of pointers to each of the per-vertex trees.
Since Aspen stores the vertex array as a tree, it requires at least 𝑂(log |𝑉 |) work per

45

operation 3. Its insertion cost may improve upon Terrace for medium- and high-degree
nodes depending on the expected size of C-tree nodes.

Data structure microbenchmarks

Although the PMA and B-tree have the same (optimal) asymptotic scan cost in the
external-memory model, they exhibit significant differences in scan performance in
practice due to differences in their structure. The PMA stores all data contiguously
for efficient sequential scans, while the B-tree stores its data in cache-line sized blocks
connected by pointers for asymptotically faster searches and updates. The external-
memory model does not capture the relative performance benefit of accessing sequen-
tial cache lines (in the PMA) compared to pointer chasing (in the B-tree) [42].

To illustrate tradeoffs between the PMA and B-tree and guide when to prefer
each data structure, Figure 3-5 reports the results of a micro-benchmark that tests
insertion, get (point query), and sum (aggregating all values) time in both a PMA
and B-tree and report the results in Figure 3-5. The PMA supports scanning over all
elements (in the sum benchmark) 2 − 5× than the B-tree, but is 1.5 − 5.2× slower
for inserts and gets.

Terrace’s hierarchical design exploits this tradeoff between the PMA and B-tree.
When a vertex’s degree is relatively small, Terrace stores its neighbors in a PMA for
faster scans. On the other hand, when the number of neighbors is large, Terrace uses
the B-tree to balance insertion and scan cost.

103 104 105 106 107 108 109
0

2

4

Elements in data structureP
M
A

ru
nt
im

e
(n
or
m
al
iz
ed

to
B
-t
re
e)

Insert
Get
Sum

Figure 3-5: Normalized running time of insert, get, and sum in a PMA (normalized to a
B-tree).

3.5 Implementation of Terrace
This section explains how to optimize for cache locality to achieve both fast update
and queries in Terrace. Specifically, it will describe how to tune the degree cutoff pa-

3Aspen may perform an additional optimization called a flat snapshot [128] to flatten the node
tree into an array, but this analysis omits it because it relies on amortization of the cost across
multiple queries.

46

rameters between levels in Terrace for cache locality. Next, it will explain how Terrace
supports batch updates and multi-threading for fast updates and queries. Finally, it
will give a brief description of the VertexSubset/EdgeMap API in Ligra [335], which
Terrace uses to implement graph kernels.

Optimizing Terrace for cache locality. For unweighted graphs, vertex blocks
in the first level are sized to fit in a single cache line so that accessing in-place
neighbors only requires a single cache miss. For concreteness, let us first consider
32-bit (4-byte) neighbors. To support 64-bit (8-byte) neighbors, Terrace would size
each vertex block to two cache lines. Since the metadata in each vertex block takes
12 bytes (4 bytes for the degree and 8 bytes for the B-tree pointer), a cache line of 𝐵
bytes can hold up to (𝐵 − 12)/4 in-place neighbors. Since a cache line is typically 64
bytes on most x86 machines, Terrace sets the maximum number of in-place neighbors
𝑆 = (64− 12)/4 = 13.

When the graph is weighted, Terrace uses two consecutive cache lines per vertex
block to pack metadata, neighbors, and weights. For concreteness, let us consider
32-bit (4-byte) weights. Similarly to the unweighted case, Terrace would double the
vertex block size for 64-bit (8-byte) weights. After accounting for metadata, there is
space for 14 neighbors with weights in two cache lines, so Terrace sets 𝑆 = 14 in the
weighted case.

Finally, Terrace restricts the maximum number of neighbors for a vertex that can
be stored in the second level (PMA) to 𝑆 + 𝐿 = 1024 throughout the evaluation so
that all of the neighbors of a single vertex can fit in a small number of consecutive
4 KB pages. 𝑆 and 𝐿 are configurable parameters and the performance of Terrace
is not sensitive to slight changes to these parameters. Section 3.6 presents a detailed
evaluation to understand Terrace’s performance sensitivity to these parameters.

Batch updates. Given the hierarchical design in Terrace, we perform batch updates
in phases. The first phase of a batch update sorts all the edges in the batch based
on the destination vertex and then based on the source vertex. For each vertex, the
second phase merges in-place neighbors and the new incoming neighbors in a new
sorted list of neighbors. Finally, the last phase stores the first 𝑆 neighbors from the
merged list in place and insert the rest either in the PMA or the B-tree depending on
the degree of the vertex. If the degree of a vertex becomes greater than 𝑆+𝐿 during
a batch insertion, the algorithm removes that vertex’s neighbors from the PMA and
inserts them in a B-tree along with the new incoming neighbors.

Deletes are implemented symmetrically to insertions. Given a sorted batch of
edges to delete, the batch delete algorithm first removes all of those edges that were
stored in-place and then deletes the rest either in the PMA or B-tree.

After deletion, if a vertex degree drops from the B-tree to the PMA level, we delete
the B-tree and put all of its edges into the PMA level. To fill the new empty spaces in
the vertex block, we move the smallest edges from the corresponding vertex’s PMA
or B-tree to the vertex block.

Multi-threading. Terrace supports updating multiple vertices at once, but only a
single thread may update a given vertex at a time.

47

Since the vertex blocks and B-trees in Terrace are not shared between vertices,
multiple threads can concurrently update individual vertices in those levels with-
out contention. Terrace uses lightweight spin locks to synchronize threads trying to
update neighbors in the same vertex.

Since the PMA in the second level of Terrace is shared between vertices, multi-
threaded updates in the PMA require additional locks. Terrace uses the locking-based
thread-safe PMA from Chapter 4 to implement the second level.

VertexSubset and EdgeMap API. Terrace implements the VertexSubset/EdgeMap
interface proposed by Ligra [335] to define graph kernels. The VertexSubset data
structure represents a set of active vertices, and the EdgeMap primitive applies a
function to edges incident to a set of vertices.

More formally, an EdgeMap takes as input a graph 𝐺 = (𝑉,𝐸,𝑤), a VertexSubset
𝑈 , and two boolean functions 𝐹 and 𝐶. A call to EdgeMap applies function 𝐹 to a
set of edges 𝐸 ′ such that an edge (𝑢, 𝑣) is in 𝐸 ′ if and only if 𝑢 ∈ 𝑈 and 𝐶(𝑣) = 𝑡𝑟𝑢𝑒.
It returns a VertexSubset 𝑈 ′ such that vertex 𝑢 ∈ 𝑈 ′ if and only if (𝑢, 𝑣) ∈ 𝐸 ′ and
𝐹 (𝑢, 𝑣) = 𝑡𝑟𝑢𝑒.

The VertexSubset in Terrace has one optimization which can help with some
algorithms. Specifically, it has a boolean flag which specifies if the subset includes
all of the vertices. If the flag is set, then membership queries into the VertexSubset
simply return true instead of performing a lookup. This optimization helps with
algorithms that process all of the vertices at each step.

3.6 Evaluation
This section empirically evaluates Terrace and demonstrates that it overcomes tra-
ditional tradeoffs to support both fast updates and queries. It compares Terrace to
Aspen [128], a state-of-the-art graph-streaming system. It also includes Ligra [335],
a static graph-processing system, as a baseline for running graph algorithms. Ligra is
static and supports faster graph algorithms compared to dynamic systems. It com-
pares all systems in terms of running time for different graph algorithms and memory
footprint, and Terrace and Aspen on edge update (insert/delete) throughput. Finally,
it tests different Terrace configurations to investigate the performance effects of the
level cutoff parameters and the three-level structure.

Experimental setup. We implemented Terrace as a c++ library parallelized using
Cilk [191] and the Tapir/LLVM [322] branch of the LLVM [234,235] compiler (version
9). We compiled Aspen and Ligra with g++ version 7.5 as recommended by the
respective authors. All experiments were run on a 48-core 2-way hyper-threaded
Intel® Xeon® Platinum 8275CL CPU @ 3.00GHz with 189 GB of memory from
AWS [10]. However, to perform a fair evaluation and avoid non-uniform memory
access (NUMA) issues across sockets we ran all experiments on a single socket with
24 physical cores and 48 hyper-threads.

Graph kernels. Table 3.4 details the algorithms we implemented in Terrace: breadth-
first search (BFS), PageRank (PR), connected components (CC), single-source be-

48

Graph kernel Input Output Notes
Breadth-first search (BFS) Source vertex |𝑉 |-sized array of parent IDs
PageRank (PR) |𝑉 |-sized array of ranks No early exit
Connected components (CC) |𝑉 |-sized array of component labels No shortcut
Triangle counting (TC) Number of triangles
Betweenness centrality (BC) Source vertex |𝑉 |-sized array of centrality scores Single source
Single-Source shortest paths (SSSP) Source vertex |𝑉 |-sized array of distances Bellman-Ford

Table 3.4: A list of graph kernels and inputs and outputs used to evaluate graph represen-
tation systems.

tweenness centrality (BC), triangle counting (TC), and single-source shortest paths
(SSSP). The algorithms are almost exactly the same as in Ligra [335] with minor
cosmetic changes. The CC implementation does not have a shortcut, and the PR
implementation runs for a fixed number (10) of iterations (i.e. it does not early-exit).
Finally, the SSSP algorithm implements Bellman-Ford [108, Chapter 24].

Datasets. Table 3.5 lists the graphs used in the evaluation and their sizes. We tested
on real social network graphs, a graph from computational biology, and a synthetic
graph. Social network graphs usually have a few very high-degree vertices while
the rest of the vertices have low degree according to a power-law distribution [27].
We used the LiveJournal (LJ) and Orkut social network graphs from the SNAP
dataset [241]. LiveJournal is a directed graph of the LiveJournal social network [69],
and Orkut is an undirected graph of the Orkut social network. Additionally, we used
the Twitter social network graph, which is a directed graph of the Twitter network
of follower relationships [35].

We also use the Protein network graph [25]. The protein network graph is an
induced subgraph and is available in the data repository of the HipMCL algorithm
4 [25]. It contains 1/8-th of the original vertices of the sequence similarity network
that contained all the isolate genomes from the IMG database at the time. Unlike
social network graphs, the protein network graph is not heavily skewed and most
(98.8%) vertices have degree less than 1000. We also generated an arbitrary graph
by sampling edges from an rMAT generator [93] with 𝑎 = 0.5; 𝑏 = 𝑐 = 0.1; 𝑑 = 0.3 to
match the distribution from Aspen [128] (we will refer to this graph as the rMAT
graph).

To evaluate SSSP, we generated weighted graphs from unweighted graphs by as-
signing random integer weights in the range [0, 256).

We used symmetrized versions of all of the graphs for a fair comparison with
the publicly available version of Aspen, which supports only unweighted undirected
graphs.

Since LiveJournal, Orkut, and Twitter are static graphs which may have been
preprocessed with vertex reordering [376], we randomly relabeled the vertices in all of
the input graphs to model the dynamic streaming graph setting. Reordering is more
difficult in streaming graphs because a good ordering may change with the stream of
edges [18].

System descriptions. Terrace and Aspen differ significantly in their underlying data
structures and parallelization approaches. Aspen takes a purely functional approach
with compressed trees, while Terrace modifies a single hierarchical data structure

49

Dataset Vertices Edges Avg. Degree
LiveJournal 4, 847, 571 85, 702, 474 17.8
Orkut 3, 072, 627 234, 370, 166 76.2
rMAT 8, 388, 608 563, 816, 288 60.4
Protein 8, 745, 543 1, 309, 240, 502 149.7
Twitter 61, 578, 415 2, 405, 026, 092 39.1

Table 3.5: A list of (symmetrized) graph datasets, number of vertices, number of edges,
and average degree of those graphs used to evaluate graph representation systems.

with locks directly. Aspen allows read-only operations (e.g. queries) during writing
transactions, and vice versa (i.e. it does not use locks). It requires that the writer
is sequentialized, however. In contrast, Terrace uses locks and allows for concurrent
reading and writing in different regions of the data structure.

In this evaluation, we performed updates and queries in a phased manner, so
queries did not need to acquire locks. The space overhead of locking still remains
and impacts the cache-behavior during graph computations, however. This behavior
is the same in Aspen as it uses functional trees and there is no overhead of locking if
there are no updates. Section 3.7 further discusses mixing concurrent updates and
queries in graph streaming systems.

Ligra is a static graph processing system that uses CSR as its underlying graph
representation.

Update throughput

Setup. To evaluate insertion and deletion throughput, we first insert edges from an
existing graph in Terrace. We then add a new batch of directed edges (with potential
duplicates) to the existing graph and delete the same batch of edges from the graph.
The batch insertion and deletion are performed using multiple threads. The graph
layout remains the same at the start of every batch of insertions and deletions because
the set of edges during insertion and deletion is the same. We perform the update
evaluation on the LJ and Orkut graphs. To generate edges for updates, we sample
directed edges from the same rMAT generator that we used to generate the synthetic
rMAT graph. We report the average of 10 trials.

Results. We show that Terrace achieves throughput up to 48 million edges per
second for batch insertions and up to 9 million edges per second for batch deletions.
We report our findings in Table 3.6. On LJ, Terrace outperforms Aspen on batches
of up to 1, 000, 000 edges, while Aspen is faster on a batch size of 10, 000, 000. On
Orkut, Terrace is faster on batch sizes up to 100, 000, while Aspen is faster on batch
sizes of at least 1, 000, 000. For edge deletion, Aspen outperforms Terrace for batch
sizes greater than 1000 on LJ and 100 on Orkut.

Discussion. Terrace is up to 3× faster than Aspen on batch sizes up until 1, 000, 000
on LJ and up to 1.75× faster than Aspen on batch sizes up until 100, 000, but does
not scale with larger batch sizes as Aspen does. Aspen scales with large batches be-
cause it implements insertions as a per-vertex tree merge. As the batch size increases,

50

Insert Delete

LJ Orkut LJ Orkut

Batch Size Terrace Aspen T/A Terrace Aspen T/A Terrace Aspen T/A Terrace Aspen T/A
1E1 3.93E5 1.25E5 3.14 2.11E5 7.28E4 1.75 1.42E6 1.31E5 10.86 7.49E5 1.28E5 5.86
1E2 1.11E6 7.11E5 1.56 8.12E5 4.32E5 1.11 2.41E6 7.62E5 3.16 1.37E6 7.55E5 1.82
1E3 5.48E6 2.77E6 1.98 3.25E6 1.97E6 1.23 4.72E6 2.98E6 1.59 1.97E6 2.83E6 0.69
1E4 1.96E7 6.56E6 2.99 1.06E7 4.93E6 1.70 5.55E6 7.38E6 0.75 2.52E6 7.05E6 0.36
1E5 4.83E7 1.57E7 3.09 2.35E7 1.26E7 1.70 8.68E6 1.61E7 0.54 3.62E6 1.46E7 0.25
1E6 4.40E7 3.46E7 1.27 1.71E7 2.69E7 0.52 9.23E6 3.43E7 0.27 4.36E6 3.32E7 0.13
1E7 2.82E7 1.03E8 0.27 2.59E7 7.76E7 0.25 6.61E6 1.05E8 0.06 4.62E6 1.05E8 0.04

Table 3.6: Throughput for inserting and deleting edges with varying batch sizes in the LJ
and Orkut graphs in Terrace and Aspen. T/A denotes the ratio of the respective throughputs
(Terrace/Aspen).

the number of edges per vertex increases and the overhead of the merge operation is
amortized over a larger number of edges. In contrast, Terrace implements batch up-
dates in phases at each level of the structure and performs updates at the granularity
of each vertex. For larger batches, the vertex with the most updates dominates the
running time.

Most highly dynamic graphs do not require the throughput that Aspen achieves on
huge batches, however. For example, Twitter averages 9, 346 tweets per second [193]
and peaked at 140, 000 tweets per second [313]. At its peak, Facebook is estimated
to process about 13 million transactions per second [92]. Snapchat, another social
network, saw around 210 million snaps per day in 2019 (about 2,500 per second) [347].
Applications in cybersecurity process about 10–15 million edges per second [56].

Terrace is not yet optimized for batch deletions which makes Terrace slower for
deletions than Aspen for most batch sizes. Batch deletions are not as straightforward
as insertions and require a careful engineering effort. Supporting batch deletions is
not an inherent limitation of Terrace’s design, however.

Query performance

We evaluate the performance of Terrace, Aspen and Ligra on BFS, PR, (single-source)
BC, and CC, and report the results in Table 3.7. We plot the normalized time to
Ligra using data from Table 3.7 of the various kernels in Figures 3-6, 3-7, 3-8, and 3-9.
Since the publicly available version of Aspen is unweighted, we compare Terrace and
Ligra on SSSP in Table 3.8. Finally, we compare Terrace and Ligra on TC, since
the intersection primitive that the TC algorithm is based on is not yet optimized in
Aspen and performs poorly. Table 3.9 presents the performance of Terrace and Ligra
on TC. For each graph kernel, we took the average of 10 trials.

Traversals in graph kernels can be divided into two main categories. Vertices
may be accessed in an arbitrary order as in PR, or in an order defined by the graph
topology as in BFS. CC follows a similar traversal to PR, and BC follows a similar
traversal to BFS. In arbitrary order, systems with more locality such as Ligra and
Terrace can iterate over the edges with fewer cache misses than systems that store
edges out of place. In topology-defined order, all of the systems are likely to incur a
cache miss when accessing the neighbors of an arbitrary vertex.

51

LJ Orkut rMAT TwitterProtein
0

0.5

1

1.5

2

N
or
m
al
iz
ed

R
un

ni
ng

T
im

e

Ligra Aspen Terrace

Figure 3-6: Time to run BFS normalized to Ligra.

LJ Orkut rMAT TwitterProtein
0

1

2

N
or
m
al
iz
ed

R
un

ni
ng

T
im

e

Ligra Aspen Terrace

Figure 3-7: Time to run PR normalized to Ligra.

LJ Orkut rMAT TwitterProtein
0

1

2

3

4

N
or
m
al
iz
ed

R
un

ni
ng

T
im

e

Ligra Aspen Terrace

Figure 3-8: Time to run BC normalized to Ligra.

Breadth-first search. Figure 3-6 illustrates the relative speed on BFS of all the
systems. On average, Terrace outperforms Ligra and Aspen by 1.2× and 1.6×, re-
spectively. Terrace performs better since it saves cache misses with its in-place level.
All of the graphs tested exhibit skewness, so most of their vertices can be stored in
place. Terrace performs worse on Twitter than the other graphs because Twitter has
much higher maximum degree, so many edges are stored in the relatively unopti-

52

LJ Orkut rMAT TwitterProtein
0

0.5

1

1.5

2

N
or
m
al
iz
ed

R
un

ni
ng

T
im

e

Ligra Aspen Terrace

Figure 3-9: Time to run CC normalized to Ligra.

BFS PR

Terrace Ligra Aspen Terrace Ligra Aspen
Graph 𝑇1 𝑇96 𝑇1 𝑇96 𝑇1 𝑇96 𝑇1 𝑇96 𝑇1 𝑇96 𝑇1 𝑇96

LJ 0.44 0.02 0.85 0.03 1.20 0.05 8.35 0.31 11.90 0.42 21.41 0.71
Orkut 0.44 0.02 0.71 0.03 0.97 0.04 23.65 0.42 26.08 0.80 41.55 1.05
rMAT 0.68 0.04 1.53 0.05 1.91 0.07 63.18 2.16 100.98 3.12 153.18 3.95
Protein 0.57 0.03 0.61 0.04 1.16 0.05 137.28 4.97 278.00 6.70 242.30 8.50
Twitter X 0.33 X 0.23 X 0.32 X 18.26 X 19.83 X 24.03

BC CC

Terrace Ligra Aspen Terrace Ligra Aspen
Graph 𝑇1 𝑇96 𝑇1 𝑇96 𝑇1 𝑇96 𝑇1 𝑇96 𝑇1 𝑇96 𝑇1 𝑇96

LJ 2.18 0.09 2.42 0.10 6.38 0.29 2.31 0.09 2.33 0.11 3.63 0.15
Orkut 2.86 0.10 3.29 0.12 5.61 0.34 3.34 0.12 4.16 0.17 6.08 0.22
rMAT 7.74 0.28 7.98 0.31 17.60 0.88 16.34 0.41 15.25 0.59 21.87 0.82
Protein 1.5 0.09 1.43 0.12 2.31 0.15 42.16 1.27 45.17 1.58 62.64 2.11
Twitter X 2.53 X 2.06 X 4.72 X 4.32 X 4.32 X 5.23

Table 3.7: Running times (in seconds) of Terrace, Ligra, and Aspen on BFS, PR, BC, and
CC. 𝑇1 denotes the time on one thread, and 𝑇96 denotes the time on all (96) threads. Single
thread numbers for Twitter graph are omitted due to time constraints.

mized B-tree level of Terrace. Future optimizations include replacing the B-tree with
an optimized balanced tree representation, such as Aspen’s C-trees [128].

PageRank. Figure 3-7 illustrates the relative speed on PR of all the systems and
shows that Terrace achieves between 1.2×–2× speedup over Aspen and outperforms
Ligra by 1.3× on average. Terrace shows better performance on PR because it sup-
ports faster ordered access of in-place neighbors and neighbors stored in the second
level PMA. For most input graphs, a considerable fraction of all edges reside in the
in-place and PMA level (see Table 3.11). Moreover, the VertexSubset optimization
described in Section 3.5 also helps to improve the PR algorithm running time in
Terrace.

Betweenness centrality. Figure 3-8 illustrates the relative speed on BC of all the
systems. Terrace achieves similar (.8 × −1.1×) performance compared to Ligra and
outperforms Aspen by 1.6×–3×. BC is similar to BFS in that it follows a topology-

53

defined order and is computationally- and memory-intensive. Therefore, Aspen and
Ligra diverge further than in BFS because Aspen incurs relatively more cache misses.

Connected components. Figure 3-9 illustrates the relative speed on CC of all the
systems. On average, Terrace achieves 1.2× speedup over Ligra and 1.7× speedup
over Aspen. CC starts with all vertices in the frontier, so more in-place neighbors
are accessed during larger frontiers in Terrace which helps to avoid unnecessary cache
misses.

Terrace Ligra T/L
Graph 𝑇1 𝑇96 𝑇1 𝑇96 𝑇1 𝑇96

LJ 9.10 0.39 7.42 0.22 1.22 1.77
Orkut 13.60 0.53 8.00 0.28 1.70 1.89
rMAT 45.95 1.61 35.85 1.01 1.28 1.59

Table 3.8: Running times (in seconds) of Terrace and Ligra on SSSP. 𝑇1 denotes the time
on one thread, and 𝑇96 denotes the time on all (96) threads. T/L denotes the ratio of the
respective throughputs (Terrace/Ligra).

Terrace Ligra T/L
Graph 𝑇1 𝑇96 𝑇1 𝑇96 𝑇1 𝑇96

LJ 34.06 1.30 21.18 0.60 1.60 2.17
Orkut 191.79 6.52 111.00 3.08 1.72 2.12
rMAT 54.30 1.54 257.80 5.04 0.21 0.31

Table 3.9: Running times (in seconds) of Terrace and Ligra on TC. 𝑇1 denotes the time
on one thread, and 𝑇96 denotes the time on all (96) threads. T/L denotes the ratio of the
respective throughputs (Terrace/Ligra).

Single-source shortest paths. Table 3.8 shows that Terrace is between 1.6×–1.9×
slower than Ligra on SSSP. The graph traversal in SSSP is similar to that of BFS,
so Terrace can take advantage of in-place neighbors. However, Terrace incurs ex-
tra overhead for storing weights compared to Ligra because it must store additional
empty spaces in the PMA to store the weights array. In the weighted case, accessing
neighbors in the PMA level is more expensive than in CSR.

Triangle counting. Table 3.9 shows that Terrace is up to 2.2× slower than Ligra on
TC. TC is a computationally intensive kernel that repeatedly loops over vertices and
edges, so the smaller representation in Ligra has better locality. Terrace performs
well on TC on rMAT because rMAT is more skewed than the other graphs, so almost
all vertices can be stored in place. However, for other graphs whenever neighbors are
spread across the PMA or the B-tree, looping over neighbors to compute intersections
is inefficient and incurs multiple cache misses.

54

Graph Terrace Ligra Aspen T/A
LJ 1.43 .34 1.18 1.2
Orkut 2.41 .91 1.77 1.3
rMAT 8.73 2.13 4.32 2.02
Protein 19.05 5.27 9.08 2.09
Twitter 43.78 9.87 20.85 2.09

Table 3.10: Memory footprint (in GB) of relabeled and original graphs on the different
systems. T/A denotes the ratio of the respective memory footprints (Terrace/Aspen).

Graph % In-place % PMA % B-tree
LJ 20.12 77.20 2.66

Orkut 7.44 84.06 8.49
rMAT 5.72 93.72 0.54
Protein 2.67 83.00 14.32
Twitter 8.38 39.68 51.92

Table 3.11: Percentage space distribution of three layers in Terrace for different graphs.

Memory usage

Table 3.10 reports the memory footprint of the different systems. The space usage
of Terrace is up to 2.1× higher than Aspen because Aspen uses data compression
techniques, while Terrace uses uncompressed data structures with extra space over-
head. Adding data compression to Terrace would decrease space usage and add a
small amount of computational overhead.

We present the distribution of the memory in the three levels of Terrace in Ta-
ble 3.11. For every graph in our evaluation besides Twitter, most of the edges (between
77%− 94%) are stored in the PMA level. The PMA data structure maintains extra
space to support fast update operations.

At a high level, there is an inherent tradeoff between the amount of empty space
and the speed of updates. We plan to investigate the potential tradeoff between space
utilization and update speed in future work.

Terrace configurations

We perform two categories of Terrace micro-benchmarks: we evaluate the performance
impact of the 1) cutoffs between levels (𝑆 and 𝐿), and 2) data structures in different
levels of the hierarchy.

Setup. To test the level cutoffs, we vary the values of 𝑆 (number of in-place neigh-
bors) and 𝐿 (maximum degree to stay in the PMA). Specifically, we set 𝑆 = 29
(default is 13) to fit the vertex block in two cache lines instead of one. To test the
medium-degree cutoff, we fix 𝑆 = 13 and vary 𝐿 between 28 to 212 (default is 210).

To verify the effects of each level of Terrace, we omit one out of the three levels
in Terrace and measure the performance. Specifically, we use three different configu-
rations: Inplace+PMA, Inplace+Btree, and PMA+Btree.

55

BFS PR CC BC
0

0.5

1

1.5

N
or
m
al
iz
ed

R
un

ni
ng

T
im

e

29-10 13-12 13-11 13-9 13-8

Figure 3-10: Normalized time of Terrace with different level cutoffs. The cutoffs are in
the format 𝑆 − 𝐿 where 𝑆, 2𝐿 are the in-place and PMA cutoffs, respectively. For example,
the original Terrace configuration can be denoted 13− 10.

We evaluate the performance on four graph kernels BFS, PR, CC, and BC. We
use three datasets (LiveJournal, Orkut, and rMAT) for both sets of experiments.
We also use the Twitter graph when omitting Terrace levels to evaluate the impact
of B-trees on the performance, since B-trees contain a significant fraction of edges in
Twitter (see Table 3.11). We report the results by averaging the running times over
all datasets and normalized the running time of the modified Terrace with the default
configuration.

Discussion. Figure 3-10 illustrates the effect of varying the level cutoff parameters
𝑆 and 𝐿. Terrace is not sensitive to changes in the configuration: the variance in
the performance for different graph kernels varies between 1% – 16%. The highest
variance is seen in PR and CC, since these both require traversals in an arbitrary
order which slightly increases the sensitivity to the change in configuration compared
to BFS and BC.

Figure 3-11 presents the results of omitting levels in Terrace. Using only the
in-place and PMA levels improves the performance by 15% – 20% for PR and CC
because the PMA allows fast sequential access. However, removing the B-tree (and
only keeping the in-place and PMA levels) reduces the update throughput by 40%
which aligns with the update-query tradeoff described in Section 3.4. Using only the
in-place and B-tree reduces the performance by 14% – 88% as the B-tree has poor
cache locality compared to the PMA. Therefore, the three-level Terrace design strikes
a balance between updatability and graph kernel performance.

3.7 Related work
This chapter focuses on dynamic graphs in the streaming setting [57], but there has
been significant research effort devoted to processing graphs in the static setting [112,
163,252,256,280,293,308,335,375]. For a more detailed survey on static frameworks,
see [265,391].

Many streaming graph systems apply updates in batches [128, 139, 229, 254] to

56

BFS PR CC BC
0

1

2

N
or
m
al
iz
ed

R
un

ni
ng

T
im

e

Inplace+PMA Inplace+Btree PMA+Btree

Figure 3-11: Normalized time of Terrace with different hierarchical configurations.

amortize the work of writing to the graph. Batching updates improves update
throughput but may delay the time an update appears in the graph because an
update may have to wait for a batch to become sufficiently large.

There are two main approaches to applying updates in streaming graph systems.
The first and the more popular approach, which this chapter adopts, phases updates
and queries separately [11,83,85,139,144,168,277,327–329,358,368,385]. Separating
updates and queries can improve the performance of queries because it removes the
need to synchronize writing and reading to the graph data structure. Phasing may
delay queries, however, because they must wait until an update phase is finished.
The second approach uses snapshotting [97, 197, 198, 227, 254] to enable concurrent
updates and queries. Snapshots may even improve query performance by converting
the graph storage format into one more amenable to queries [128]. More frequent
snapshots are required for a more updated view of the graph, but taking snapshots
requires extra processing. Common traversal-based graph operations on dynamic
graphs prefer the most up-to-date state of the graph [253]. For more details, refer to
a survey on streaming graph systems [57].

Although both update approaches theoretically support incremental graph work-
loads, many recent works on dynamic graph algorithms model the first approach
of applying updates in atomic batches. Specifically, the batch-parallel model has
emerged as the primary theoretical model for design and analysis of incremental graph
algorithms [2, 57,130,131,146,285,363].

Finally, previous work has also focused on graph databases [79, 137, 218, 226, 306,
331] that support transactions while processing a streaming graph. Unfortunately,
support for transactions in graph databases induces significant overhead when com-
pared to state-of-the-art graph-streaming systems such as Stinger [264]. Therefore,
the focus of this chapter is on data structure design, which is independent of support
for transactions.

57

3.8 Conclusion
This chapter improves the performance of dynamic graph processing via hierarchical
data structure design by taking advantage of the inherent skewness in the degree
distribution of real-world graphs. Terrace dynamically adapts to the skewness in the
underlying graph. It stores a vertex’s incident edges in different data structures based
on its degree and support cache-efficient updates and traversals.

We believe Terrace strikes an appropriate balance between batch update speed
and graph algorithm performance. It is faster than or competitive with Aspen, a
state-of-the-art streaming graph processing system, on batch updates of practical
batch sizes. At the same time, Terrace is 2× faster than Aspen on average, and is
competitive with or outperforms Ligra, a fast static graph-processing system, on most
tested graph kernels.

Future work. The hierarchical design approach offers promise for building high-
performance streaming graph representations. In future work, it would be interesting
to combine it with incremental graph algorithms that optimize for dynamic graphs [56,
131,169,255,263,341] to build highly-optimized streaming graph systems.

Future work includes reducing the memory footprint of Terrace using a compressed
B-tree implementation and lowering the upper density bound in the PMA to reduce
the space overhead to perform a comparison with Aspen with similar memory over-
heads. By design, the PMA uses a constant fraction of extra slots to support fast
inserts. The PMA implementation in Terrace uses twice the space of a packed array,
but could easily be changed to use a smaller constant to reduce the space usage at the
cost of slightly more expensive insertions. Terrace explores the space-time tradeoff in
dynamic graph storage: varying its memory usage would illuminate additional points
along the tradeoff.

Locality-first strategy. Terrace applies the locality-first strategy via cache-friendly
data structure design for dynamic graph processing to improve performance by en-
hancing spatial locality. The first step in the locality-first strategy is to understand
locality in the problem. Graph processing does not have much temporal locality in
any given scan, but has opportunities to exploit spatial locality. Furthermore, the
parallelism-first design with separate data structures per neighbor list offers additional
opportunities for spatial locality by co-locating as many neighbor lists as possible.
Additionally, naturally-occurring graph skewness presents opportunities for improv-
ing spatial locality by co-locating low-degree vertices without sacrificing updatability.
The next step in the locality-first strategy is to exploit the identified locality: Terrace
optimizes for spatial locality with cache-friendly data structures that take advantage
of graph skewness. Terrace achieves the best of both worlds in updatability and query
speed by leveraging the locality-first strategy.

58

Chapter 4

A Parallel Packed Memory Array to
Store Dynamic Graphs

This chapter presents Parallel Packed Compressed Sparse Row (PPCSR), a dynamic-
graph-processing framework that uses the locality-first strategy to enhance spatial
locality with the Packed Memory Array data structure [44, 196]. PPCSR supports
graph queries about 1.6× faster than Aspen [128], a state-of-the-art high-performance
dynamic-graph-processing system, while maintaining competitive update throughput.
PPCSR is built on the Packed Memory Array data structure, an array-based data
structure that stores all of its data contiguously. As we shall see in this chapter,
although tree-based data structures such as the one underlying Aspen asymptotically
dominate PMAs, PMAs are fast in practice because they exploit spatial locality.
Finally, the parallel PMA that underlies PPCSR is one of the main components in
Terrace (Chapter 3) and contributes to Terrace’s cache-friendliness.

This work was conducted in collaboration with BrianWheatman [379]. Appendix A
describes an earlier serial version of PPCSR, called Packed Compressed Sparse Row
(PCSR) [378].

Abstract
The ideal data structure for storing dynamic graphs would support fast updates as well
as fast range queries which underlie graph traversals such as breadth-first search. The
Packed Memory Array (PMA) seems like a good candidate for this setting because it
supports fast updates as well as cache-efficient range queries. Concurrently updating
a PMA raises challenges, however, because an update may require rewriting the entire
structure.

This chapter introduces a parallel PMA with intra- and inter-operation parallelism
and deadlock-free polylogarithmic-span operations. It shows that the PMA is well-
suited to concurrent updates despite occasionally requiring a rewrite of the entire
structure because 1) most of the updates only write to a small part of the structure
and 2) the worst case is highly parallel and cache-efficient.

To evaluate the parallel PMA, we implemented Parallel Packed Compressed Sparse
Row (PPCSR), a dynamic-graph-processing framework based on the parallel PMA.
We show that PPCSR is on average about 1.6x faster on graph kernels than Aspen,

59

a state-of-the-art graph-streaming system. PPCSR achieves up to 80 million updates
per second and is 2 − 5x faster than Aspen on most batch sizes. Finally, PPCSR
is competitive with Ligra and Ligra+, two state-of-the-art static graph-processing
frameworks.

4.1 Introduction
As discussed in Chapter 3, there has been significant research effort devoted to systems
for storing and processing dynamic graphs [83, 128, 139, 144, 168, 229, 254] because
many real-world graphs change in real-time. These systems must process a stream
of updates (e.g. edge-weight update, or edge insertions and deletions) and a stream
of queries quickly. This chapter focuses on parallel data structure design optimized
specifically for fast cache-efficient range queries1 while still maintaining fast updates.

A suitable data structure for dynamic graphs must support efficient vertex neigh-
bor queries in order to gather a vertex’s neighbors for the next phase of the algorithm.
Many graph algorithms, such as breadth-first search and betweenness centrality, can
be expressed by iteratively processing a set of active vertices and their neighbors [335].
Therefore, efficient data structures for graph processing should store neighbors as close
as possible for locality during range queries.

There is a tradeoff between update and range query performance in data structure
design. For example, a hash table can achieve 𝑂(1) amortized update cost [108,
Chapter 11], but a range query 𝑟(𝑢, 𝑣) must take 𝑂(𝑣 − 𝑢) work. At the other
extreme, a range query in a sorted array with 𝑛 elements takes 𝑂(log 𝑛 + 𝑘) work,
where 𝑘 is the number of elements in the range, but updating a sorted array takes
𝑂(𝑛) work.

In the static setting, Compressed Sparse Row (CSR) [361], a canonical storage
format for sparse graphs, achieves optimal performance for range queries by storing
edges in a contiguous sorted array. Unfortunately, CSR is a static storage format:
adding an edge to CSR may require shifting the entire edge array. Inspired by the
cache-friendliness of CSR, Appendix A introduces Packed Compressed Sparse Row
(PCSR) [378], a dynamic graph storage format that replaces the edge array in CSR
with a Packed Memory Array (PMA) [44,196] for (amortized) 𝑂(log2 |𝐸|) update cost
and asymptotically optimal range queries.

There are a couple of factors that make PCSR a good candidate for processing
dynamic graphs beyond its theoretical guarantees. First, the observed update cost of
PCSR is much better in practice than its theoretical bound might suggest because
the worst-case rewrites are cache-efficient [378]. Additionally, PCSR avoids pointer
indirections in contrast with non-contiguous data structures such as search trees (e.g.
B-trees), which require pointer chasing. Finally, PCSR supports efficient scans and
has good cache locality because the elements are laid out contiguously in memory.

1A range query 𝑟(𝑢, 𝑣) in a data structure takes two indices 𝑢, 𝑣 and returns all elements in the
range [𝑢, 𝑣].

60

Parallelization strategies
This chapter proposes parallel modifications to augment the PMA with both intra-
and inter-operation parallelism to improve the performance. Intra-operation par-
allelism exploits logically parallel work present in the operations themselves, while
inter-operation parallelism enables multiple threads to update or query the data
structure at the same time.

For example, a PMA could support inter-operation parallelism without intra-
operation parallelism by running the operations at the same time, but doing the
work of each sequentially [51, 114].

The PMA is well-suited to intra-operation parallelization because the expensive
operations are highly parallel. In the worst case, an update in a PMA with 𝑛 elements
may require rewriting the entire structure, which takes 𝑂(𝑛) work. This work can
be parallelized, however. As we will see, updating a PMA has 𝑂(log2 𝑛) span in the
worst case.

Furthermore, we will use the shared-memory multiple-writer / multiple-
reader model for inter-operation parallelism for generality.

There are several challenges in supporting concurrent updates in a PMA when
compared to search trees. In parallel search trees with locking, updates or queries
may only need to acquire a few locks at a time (e.g. in hand-over-hand locking) to
do an update or a query. Furthermore, purely functional trees may not even require
locking because they can take a snapshot without traversing the entire structure [128].
These tree-based locking or snapshotting schemes do not directly translate to a PMA.
Furthermore, an update to a search tree requires updating only a few nodes and point-
ers, while an update to a PMA (in the worst case) may require table doubling and
rewriting the entire structure [378], which would seem to put the PMA at a disadvan-
tage in terms of the fraction of the structure that needs to be locked. Previous work
confirms this intuition: a PMA with locking and multiple writers achieves much lower
update throughput when compared to search-tree variants optimized for writes [114].

This chapter overcomes these challenges to concurrent updates and shows that
a parallel PMA with locking can simultaneously achieve high update throughput
and fast queries. Past work showed that PMAs have much slower updates than
tree-based structures [114]. In contrast, this chapter shows that PMAs can achieve
similar or even better update throughput than tree-based structures in many cases.
The PMA achieves fast updates in practice because the worst case of rewriting the
entire structure during an update not only happens extremely rarely, but is also fast
than the worst-case bound suggests because the rewrite is cache-efficient.

Contributions

This chapter introduces Parallel Packed Compressed Sparse Row (PPCSR), a
graph storage format based on a PMA with parallel modifications to support both
inter- and intra-operation parallelism. Along the way, it shows how to parallelize
a PMA with polylogarithmic span for each operation. Furthermore, it introduces a

61

BFS PR BC CC Average
0

1

2

3

N
or
m
al
iz
ed

R
un

ni
ng

T
im

e

Ligra Ligra+ Aspen PPCSR

Figure 4-1: Time to run kernels normalized to Ligra averaged across all graphs. The
four kernels tested were breadth-first search (BFS), PageRank (PR), betweenness centrality
(BC), and connected components (CC).

deadlock-free locking scheme with polylogarithmic span2.
We implemented PPCSR and found that it enables fast serializable phased up-

dates and queries. That is, multiple writers can update concurrently, or multiple
readers can read concurrently, but not both. To enable queries PPCSR extends the
interface from Ligra [335], a static graph-processing framework. Therefore, all al-
gorithms implemented with Ligra, such as graph-traversal algorithms, local graph
algorithms [338], and others [126, 127] can be run on top of PPCSR with minor cos-
metic changes.

We evaluate PPCSR and compare it to Aspen [128], Ligra [335], and Ligra+ [337],
three state-of-the-art graph processing frameworks. Aspen is a graph-streaming
framework, while Ligra and Ligra+ are static graph-processing frameworks. Although
we expect the static graph-processing frameworks to outperform dynamic systems,
we compare them on query cost to evaluate the cost of updatability. Therefore, we
compare Aspen and PPCSR on update throughput, and all systems on graph kernel
performance.

PPCSR supports efficient queries because it takes advantage of spatial locality.
As shown in Figure 4-1, PPCSR outperforms Aspen by about 1.6x on average on the
four tested graph queries. PPCSR is competitive with Ligra and Ligra+. On average,
PPCSR is 1.25x slower than Ligra.

Furthermore, PPCSR achieves up to 80 million updates per second. As shown in
Figure 4-2, PPCSR is 2− 5x faster than Aspen on small-batch updates but between
2− 5x slower on batch sizes of at least 10 million.

To be specific, our contributions are as follows:

• The design and theoretical analysis of a parallel PMA that supports intra- and
inter-operation parallelism.

• An implementation of PPCSR on top of the parallel PMA using Cilk [191].

• An experimental study of PPCSR compared to Aspen, Ligra, and Ligra+ that
demonstrates that PPCSR supports efficient updates and queries.

2Assuming grabbing a lock takes 𝑂(1) work.

62

101 102 103 104 105 106 107
104

105

106

107

108

Batch Size

T
hr
ou

gh
pu

t
(e
dg

es
pe

r
se
co
nd

s)
PPCSR Insert LJ
PPCSR Insert ER
Aspen Insert LJ
Aspen Insert ER

Figure 4-2: Insert throughput as a function of batch size on the LJ and ER graphs. The
LJ graph is about 85 million edges, while the ER graph is about 1 billion edges.

Map. The rest of the chapter is organized as follows. Section 4.2 details the Packed
Memory Array data structure that underlies PPCSR. Section 4.3 describes modifi-
cations to the PMA to make parallelization easier Sections 4.4 and 4.5 show how
to exploit intra- and inter-operation parallelism in the PMA. Section 4.6 introduces
PPCSR and describes how to augment the serial PCSR with locks to enable multi-
ple writers. Section 4.7 describes how to implement graph operations with the PMA
operations from Section 4.4. Section 4.8 presents the results from the experimental
evaluation. Finally, Section 4.9 presents concluding remarks.

4.2 Packed Memory Array
This section reviews details of the Packed Memory Array (PMA) data structure that
underlies PPCSR. Specifically, this section describes the operations that the PMA
supports, its asymptotic guarantees, and how it maintains its structure.

A Packed Memory Array [44, 196] maintains elements in order in an array with
(a constant fraction of) spaces between its elements. A PMA holds 𝑛 elements in
𝑁 = 𝑂(𝑛) cells and supports updates with amortized 𝑂(log2 𝑛) work. Point queries
in a PMA take 𝑂(log 𝑛) work, and range queries 𝑟(𝑠, 𝑡) that return 𝑘 elements have
𝑂(log 𝑛+ 𝑘) work.

The PMA is composed of a contiguous implicit complete binary tree with leaves
of size log𝑁 . That is, the implicit tree has 𝑁/ log𝑁 leaves and height log(𝑁/ log𝑁).
Each leaf 𝑖 ∈ {0, . . . , 𝑁/ log𝑁 − 1} encompasses cells in the region [𝑖 log𝑁, (𝑖 +
1) log𝑁), and each internal node encompasses all of the cells of its descendants. The
height of a node is the distance from that node to a leaf.

Each node of the PMA tree has an upper and lower bound on its density, or the
fraction of occupied cells in its region, that defines the number of empty cells allowed
in that node. The upper and lower density bounds in each node are related to the

63

…--51 ---8 -20

…--41 --85 -20

insert(4)

Figure 4-3: An example of inserting into a PMA with a leaf size of 4 and a leaf density
bound of 0.5.

height of that node.

Operations. A PMA implements three external operations :

• insert: inserts an element into the PMA.

• delete: deletes an element from the PMA.

• search: finds an element in the PMA.

Range queries in a PMA can be implemented by searching for the start of the
range and doing a forward scan until the end of the range.

In order to implement the external operations, a PMA also supports the following
internal operations as subroutines:

• count_non_nulls: given a region, returns a list of counts of the number of
elements in each PMA leaf in that region.

• redistribute: given a PMA node, spreads elements from that node evenly
among the leaves in the subtree rooted at that node.

• double_pma: doubles the size of the PMA.

• halve_pma: halves the size of the PMA.

The functions count_non_nulls and redistribute take start and end in-
dices 𝑠, 𝑡 that must be at the beginning and end of PMA nodes, respectively (i.e. 𝑠, 𝑡
mod log𝑁 = 0). Additionally, (𝑡− 𝑠)/ log𝑁 = 2𝑥 for some non-negative integer 𝑥.

During insertions, a PMA enforces its density bounds by redistributing elements
to neighbor nodes whenever a node violates its density bound so that the densities
of both siblings are equal. Figure 4-3 illustrates an example of an insert and a redis-
tribution in a PMA. Deletions are symmetric to insertions: if a deletion violates any
node’s density bound, it redistributes elements in that node.

In practice, PMAs support updates much faster than their update bound of
𝑂(log2 𝑛) might suggest because the update cost comes from the amortization cache-
efficient redistributes [378]. These redistributes occur in contiguous memory and
exhibit high spatial locality.

64

Scanning a PMA. The PMA supports cache-efficient scans, i.e., reading 𝑆 sequen-
tial elements takes 𝑂(1+𝑆/𝐵) cache-line transfers in the external-memory model [3].
In practice, a PMA supports fast scans because all of the data is stored contiguously
in memory, so it has good spatial locality.

4.3 PMA modifications
This chapter details modifications to a PMA that aid in parallelization without im-
pacting the PMA’s theoretical guarantees. These modifications enable efficient par-
allelization of updates in PPCSR while maintaining fast scans.

Density bound To ensure that parallel threads can always insert without waiting
or blocking, the parallel PMA enforces a stricter upper density bound on its leaves that
ensures leaves are never completely full. Given an original upper density bound at the
leaves 𝑑leaf, the new upper density bound at the leaves of the PMA ismin(𝑑leaf, (log𝑁−
1)/ log𝑁). Since

lim
𝑁→∞

(log𝑁 − 1)/ log𝑁 = 1,

the additional density requirement does not impact the asymptotic behavior of the
PMA. The extra bound ensures that a thread can always place an element immedi-
ately into the PMA and will only wait in the redistribute phase of an insert.

Packed-left property To parallelize locking, the parallel PMA enforces a packed-
left property of the nodes in the PMA so that inserts into one region do not spill
over into others. Instead of evenly distributing elements in the PMA leaves, the
parallel PMA puts them all contiguously at the beginning of the leaf. The packed-
left property along with the non-full density bound ensure that a thread will never
shift elements into another node’s region, which facilitates locking. Similarly, a delete
would re-compress elements to the left at the beginning of each leaf.

Scanning over a PMA with the packed-left property asymptotically reduces the
number of wasted accesses. When scanning over a standard PMA, each cell is checked
to see if it is null or not. The packed-left property reduces the number of empty cells
evaluated to 𝑂(𝑁/ log𝑁) from 𝑂(𝑁) because a pass through each leaf evaluates at
most one empty cell.

The packed-left property maintains the work bounds of the original PMA because
the original PMA evenly distributes elements in a leaf after inserting into that leaf [44,
52], which requires reading and writing to each cell in that leaf. In the worst case,
inserts into a PMA with the packed-left property also require reading and writing to
each cell in the associated leaf. Furthermore, a PMA with the packed-left property
maintains the cache-efficiency of the original PMA.

65

4.4 Intra-operation parallelism
This section provides theoretical grounding for the parallel PMA’s practical perfor-
mance by proving that PMA insertions have polylogarithmic span. Along the way, the
section proves that the internal operations that insert uses also have polylogarithmic
span. It begins by describing the the parallel primitives prefix sum and memcpy, which
the PMA uses to implement its operations. It then proves that the internal operations
well as the external operation search, which insert relies on, have polylogarithmic
span.

Parallel primitives
First, let us review core parallel primitives necessary to implement the PMA opera-
tions.

Parallel prefix sum. The prefix_sum(𝐴,𝑁) operation takes as input a list 𝐴 of 𝑁
numbers and outputs a list 𝐴′ where ∀𝑖 ∈ {0, 1, . . . , 𝑁 − 1},

𝐴′[𝑖] =
𝑖∑︁

𝑗=0

𝐴[𝑖].

Parallel implementations of prefix sum [61] can be done in place in 𝑂(𝑁) work
and 𝑂(log𝑁) span.

Parallel memcpy. The memcpy(src, dest, size) operation copies size bytes of
data from location src to location dest. It can be implemented in parallel using a
single parallel for loop in 𝑂(size) work and 𝑂(log(size)) span.

Internal operations
The count_non_nulls(𝑠, 𝑡) function returns the number of non-nulls in each leaf
in a region in the PMA defined by start and end indices 𝑠, 𝑡.

Lemma 4.1 count_non_nulls(𝑠, 𝑡) has work 𝑂(𝑡− 𝑠) and span 𝑂(log(𝑡− 𝑠)).

Proof. We can count the number of non-empty cells in each leaf in parallel using
the parallel prefix operation. There are 𝑡− 𝑠 cells in the range, for work 𝑂(𝑡− 𝑠) and

66

span 𝑂(log(𝑡− 𝑠)) = 𝑂(log(𝑡− 𝑠)).

1 def redistribute(s, t):
2 counts = count_non_nulls(s, t)
3 temp[t - s] # create array
4 parallel_prefix_sum(counts)
5 # copy and pack all edges to temp
6 parallel_for k in [s, t); k += log(N):
7 if i == s: start = 0
8 else: start = counts[i-1]
9 for j in [k*log(N), (k+1)*log(N)):

10 if pma[j] is not null:
11 temp[start] = pma[j], start++
12 pma[j] = null
13

14 num_leaves = (t - s) / log(N)
15 end_idx = counts.size - 1
16 leaf_avg = counts[end_idx] / num_leaves
17 extra = counts[end_idx] % count_per_leaf
18

19 parallel_for i in [0, num_leaves):
20 # number of items for this leaf
21 for_leaf = leaf_avg + (i < extra)
22 # start of leaf in temp and in PMA
23 tmp_start = leaf_avg*i + min(i, extra)
24 leaf_start = s + (i * log(N))
25

26 # copy edges into PMA
27 memcpy (&pma[leaf_start],
28 &temp[tmp_start], for_leaf)

Figure 4-4: Pseudocode for redistribute(𝑠, 𝑡).

The redistribute function enforces the density bound of a region in the PMA.
Specifically, the redistribute(𝑠, 𝑡) function guarantees that all nodes in the region
defined by 𝑠, 𝑡 respect their density bounds.

Theorem 4.2 redistribute(𝑠, 𝑡) has 𝑂(𝑡− 𝑠) work and 𝑂(log(𝑡− 𝑠)) span.

Proof. The pseudocode3 for redistribute(𝑠, 𝑡) can be found in Figure 4-4.
By Lemma 4.1, the call to count_non_nulls(𝑠, 𝑡) has 𝑂(𝑡 − 𝑠) work and

𝑂(log(𝑡 − 𝑠)) span. The function then prefix sums all the leaves in the range in
𝑂(𝑡− 𝑠) work and 𝑂(log(𝑡− 𝑠)) span.

The first parallel_for has 𝑂(𝑡 − 𝑠) work and 𝑂(log(𝑡 − 𝑠)) span. The second
parallel_for iterates over the number of leaves, which is (𝑡− 𝑠)/ log𝑁 , so the span
of the second parallel_for is

𝑂(log((𝑡− 𝑠)/ log𝑁)) = 𝑂(log(𝑡− 𝑠)).

3Unless otherwise specified, all divisions in pseudocode are integer division (rounded down).

67

Therefore, the work and span of this parallel_for are 𝑂(𝑡 − 𝑠) and 𝑂(log(𝑡 − 𝑠)),
respectively.

The total work and span of redistribute(𝑠, 𝑡) are therefore𝑂(𝑡−𝑠) and𝑂(log(𝑡−
𝑠)), respectively.

Resizing the PMA. If the PMA becomes too dense or sparse, it may have to be
resized with the double_pma and halve_pma functions. Given a PMA of 𝑁 cells,
both subroutines take 𝑂(𝑁) work and 𝑂(log𝑁) span. At a high level, the functions
densify the data, resize the PMA, and redistribute the data into the new size.

Lemma 4.3 The double_pma procedure has work 𝑂(𝑁) and span 𝑂(log𝑁).

Proof. PMA doubling requires initializing a new PMA of size 2𝑁 , copying over the
old PMA into the new one, and redistributing in the new PMA. Initializing the new
PMA of size 2𝑁 and copying over the old data has work 𝑂(𝑁) and span 𝑂(log𝑁)
since these operations take 𝑂(1) work per cell. As shown in Theorem 4.2, redistribute
also has work 𝑂(𝑁) and span 𝑂(log𝑁). Therefore, double_pma has work 𝑂(𝑁)
and span 𝑂(log𝑁).

Finally, the halve_pma function is the inverse of the double_pma function
and requires initializing a new PMA of half the size and copying over the elements
into the new PMA. It has the same asymptotic behavior as double_pma with 𝑂(𝑁)
work and 𝑂(log𝑁) span.

External operations
Next, we will turn our attention to the search function, a key subroutine in the
insert function. The search function search(𝑣) checks a sorted region of the PMA
and returns the location of the smallest element that is at least 𝑣 in that region.

1 # returns the index of the first element with value at least v
2 def search(v):
3 lo = 0
4 hi = N
5 while (lo < hi):
6 mid = (hi - lo) / 2
7 if pma[mid] is null:
8 # gets beginning of next leaf
9 mid = ((mid / log(N)) + 1) * log(N)

10 # do a linear scan of size O(log N)
11 if mid > hi:
12 for i in [lo, hi):
13 if pma[i] >= v: return i
14 # pma[mid] guaranteed to be non -null
15 if pma[mid] is v: return mid
16 elif pma[mid] > v: hi = mid
17 else: lo = mid
18 return lo

Figure 4-5: Pseudocode for search(𝑣).

68

Lemma 4.4 search(𝑣) has 𝑂(log(𝑁)) work and span.

Proof. The pseudocode for the search function can be found in Figure 4-5. The
PMA uses a modified binary search to deal with null values. If the midpoint pma[mid]
is null, the search algorithm sets the midpoint to the beginning of the next PMA leaf
in 𝑂(1) instructions. Since the parallel PMA enforces the packed-left property in its
leaves, the beginning of each leaf is guaranteed to be non-null. Checking whether a
cell is null and computing the beginning of the next leaf take constant time. Suppose
that at some level of the binary search hi − lo = ℓ. The maximum size of the next
step is ℓ/2 + log𝑁 . If log𝑁 ≈ ℓ/2, meaning that the search does not decrease the
size of the next step by a constant fraction, then the algorithm can just look at all
the cells serially with work and span 𝑂(log𝑁). Otherwise, ℓ/2 + log𝑁 = 𝑂(ℓ/2), so
the next search steps decrease the size of the search space by a constant fraction for
at most log𝑁 binary search steps.

1 # inserts the element v in sorted order
2 def insert(v):
3 depth = log(N / log(N)), height = depth
4 index = search(v)
5 # slide elements to the right until a null space is found
6 slide_right(index)
7 pma[index] = v
8 # range of this leaf we inserted into
9 start = (index / log(N)) * log(N)

10 end = start + log(N)
11 counts = count_non_nulls(start , end)
12 # non -integer division
13 density = float(counts [0]) / log(N)
14 while density > density_bound(depth):
15 # get start and end of parent nodes
16 start = get_parent_start(start , depth)
17 end = get_parent_end(end , depth)
18 count = get_element_count(start , end)
19 density = float(count) /
20 (log(N) >> (height - depth))
21 depth = depth - 1
22 if depth < 0:
23 double_pma ()
24 return
25 redistribute(start , end)

Figure 4-6: Pseudocode for inserting into a PMA.

The insert(𝑣) function inserts an element 𝑣 into a sorted PMA in amortized
𝑂(log2𝑁) work [44] with the parallel modifications as described in Section 4.3. Each
insert in a PMA requires a search to find the location to insert the element, which
has 𝑂(log𝑁) span because it is a binary search on the PMA.

Theorem 4.5 insert(𝑣) has 𝑂(log2𝑁) worst-case span.

69

Proof. The pseudocode for the insert(𝑣) function can be found in Figure 4-6.
By Lemma 4.4, the search(𝑣) function has 𝑂(log𝑁) span. The slide-right function
touches at most 𝑂(log𝑁) cells of the PMA, so it also has 𝑂(log𝑁) span. There
are at most 𝑂(log𝑁) calls to count_non_nulls(𝑠, 𝑡) and parallel prefix sum,
which each have 𝑂(log𝑁) span. Lastly, there is one call to either double_pma or
redistribute(𝑠, 𝑡), which have 𝑂(log𝑁) span by Theorem 4.2 and Lemma 4.3.

The bound in Theorem 4.5 is tight for the worst case when the entire PMA must
be redistributed. The worst case is rare, however, and only happens once every 𝑂(𝑁)
operations. To more accurately characterize the average case, we will now consider
the amortized span, or the total span of a set of parallel operations performed one
at a time.

Theorem 4.6 insert(𝑣) has 𝑂(log𝑁) amortized span.

Proof. The pseudocode for the insert(𝑣) function can be found in Figure 4-6. The
bulk of this proof will focus on analyzing the cost of the count_non_nulls(𝑠, 𝑡)
function, which varies over inserts.

As before, search and slide_right have 𝑂(log𝑁) span.
Each insertion requires counting the elements in the corresponding leaf to check

its density, which has 𝑂(log log𝑁) span. This is done by the helper routine
get_element_counts which returns the number of elements in a region by count-
ing them in parallel with logarithmic span. For every 𝑁/ log𝑁 insertions, the PMA
has to redistribute a larger section. Specifically, it has to redistribute 2𝑖 leaves every
𝑁/(2𝑖 log𝑁) insertions for positive integers 𝑖.

Let 𝐻 = log(𝑁/ log𝑁), the height of the PMA. We calculate the “extra” span
𝑇 (𝑁) of these redistributes over 𝑁 insertions.

𝑇 (𝑁) =
𝑁

log𝑁

𝐻∑︁
𝑗=1

1

2𝑗

(︁ 𝑗∑︁
𝑖=1

log(2𝑖 log𝑁)
)︁

=
𝑁

log𝑁

𝐻∑︁
𝑗=1

1

2𝑗

(︁
𝑗 log log𝑁 +

𝑗∑︁
𝑖=1

𝑖
)︁

=
𝑁

log𝑁

(︁
log log𝑁

𝐻∑︁
𝑗=1

𝑗

2𝑗
+

𝐻∑︁
𝑗=1

𝑗(𝑗 + 1)

2𝑗+1

)︁
≤ 𝑁

lg𝑁
(2 log log𝑁 + 4) = 𝑂

(︁𝑁 log log𝑁

log𝑁

)︁
.

The “total span” of counting the non-nulls over 𝑁 insertions is therefore
𝑂 ((𝑁 log log𝑁)/ log𝑁 +𝑁 log log𝑁)Dividing the “total span” by𝑁 yields𝑂(log log𝑁)
amortized span for the calls to count_non_nulls(𝑠, 𝑡) over 𝑁 insertions.

There is one call to either double_pma or redistribute(𝑠, 𝑡) on each insertion,
which both have 𝑂(log𝑁) span by Lemma 4.3 and Theorem 4.2.

Deleting an element from the PMA is symmetric to inserting an element and has
𝑂(log2𝑁) work, 𝑂(log2𝑁) worst-case span, and 𝑂(log𝑁) amortized span. A delete

70

requires a search to find the element, a slide left to overwrite it, and a redistribute
with lower density bounds to maintain the density requirements.

4.5 Inter-operation parallelism
This section describes a locking scheme to support theoretically-efficient concurrency
with multiple parallel writers. Grabbing all the locks naively in serial disrupts par-
allelism because it makes the span 𝑂(𝑁) in the worst case. Therefore, this section
explains how to grab locks in parallel to maintain the worst-case bounds from Sec-
tion 4.4.

Description of locks The scheme augments the PMA with one lock per leaf4 of
the PMA. The proofs in this section assume grabbing a lock takes 𝑂(1) work.

The parallel PMA uses reader-writer locks with a ranking system for prioritizing
redistribute. When unlocking a lock, a thread can mark the lock so that the lock
can only be taken by another thread with higher rank.

Grabbing locks in parallel Next, this section will show how to grab locks in
parallel without deadlock and with polylogarithmic span. The only time a PMA will
need need to grab multiple locks at once is on a redistribute, when a thread will
grab all the locks in the subtree rooted at the node it is redistributing.

This section describes an algorithm called lock_order for grabbing contiguous
sequences of locks on leaves in parallel. The lock_order algorithm grabs locks
according to implicit priorities of each leaf in the PMA. It then serially iterates over
each priority in order and grabs the locks with that priority in parallel.

The lock_order algorithm first assigns implicit priorities to each leaf in the
PMA depending on its index. The priority of a leaf with index 𝑖 is popcount(𝑖).
The popcount function returns the number of ones in the bit representation of a
number. For example, since 5 = 0b101, popcount(5) = 2. We provide an example
of how to assign priorities to nodes in Figure 4-7.

Remark 4.7 The height of the root of any subtree defines the “pattern” of pop-
counts, but not the minimum popcount of the leaves in that subtree. For example,
consider leaves 0-3 and 4-7 in Figure 4-7, which correspond to two subtrees with roots
at the same level. The popcounts of consecutive leaves in each subtree have the
same differences between them but have different minimums in the different subtrees.
The unique minimum priority of any leaf in a subtree is the priority of the first leaf
in that subtree. Consider leaves 4-7 in the second: their minimum popcount is 1
because the upper bit must be set (4 = 0b100).

The lock_order algorithm is deadlock-free and has polylogarithmic span.
4Locking each leaf is equivalent to locking nodes at any set depth in the tree, which trades off

between locking overhead and parallelism.

71

Theorem 4.8 Grabbing locks for any two nodes in the PMA using lock_order
is deadlock-free.

Proof. This proof will proceed with case analysis. Suppose two threads are trying
to grab locks for two nodes 𝑎 and 𝑏. We denote the set of leaves in the subtree rooted
at some node 𝛾 with leaves(𝛾).

Case 1: leaves(𝑎) ∩ leaves(𝑏) = ∅. Since the regions have no locks in common, grab-
bing them in parallel will not cause deadlock.

Case 2: leaves(𝑎) = leaves(𝑏). If 𝑎 = 𝑏, there will be a unique leaf with lowest
priority according to Remark 4.7. The thread that grabs it first will grab the
rest of the region while the other one waits for it, avoiding circular wait.

Case 3: leaves(𝑎) ⊂ leaves(𝑏) (w.l.o.g.). Let left𝑎 be the leftmost leaf in leaves(𝑎).
Since left𝑎 has smaller priority than all the other leaves in leaves(𝑎), both threads
will attempt to grab it before any other leaf in leaves(𝑎). Therefore, whoever
grabs left𝑎 will be able to grab leaves(𝑎) first. There is no circular wait because
the thread trying to grab the locks of 𝑎 need no locks outside of leaves(𝑎).

In all cases, there is no circular wait and therefore no deadlock.

Lemma 4.9 Grabbing all the locks for any node in the PMA according to lock_order
has polylogarithmic span assuming 𝑂(1) work to grab a lock.

Proof. There are at most log𝑁 distinct priorities because there are at most log𝑁
bits required to represent the priority of a node. Furthermore, there are at most 𝑁
locks with each priority, so grabbing all the locks with a given priority in parallel has
𝑂(log𝑁) span. Therefore, the total span is 𝑂(log2𝑁) in the worst case.
Since most operations take locks for a small region of the PMA (e.g. inserts or small
redistributes), it is rare to have to wait on another thread with a lock.

0Leaves 1 2 3 4 5 6 7

0Priorities 1 1 2 1 2 2 3
Figure 4-7: The indices of leaves in a PMA and the associated priorities.

4.6 Parallel Packed Compressed Sparse Row
This section introduces Parallel Packed Compressed Sparse Row (PPCSR), a parallel
dynamic graph representation based on the parallel PMA. Along the way, it reviews
the serial Packed Compressed Sparse Row [378] (PCSR) data structure based on the
PMA as a basis for PPCSR. Next, it describes a locking protocol for PPCSR in order

72

to enable multiple parallel writers. Section 4.7 describes how to implement graph
operations in parallel using the operations described in Section 4.4.

Compressed Sparse Row. Compressed Sparse Row (CSR) is a common storage
format for sparse graphs [317,361]. It stores a graph as a set of three dense arrays: a
vertex array, an edge array, and a weights array. The edge array holds the edges first
sorted by source, then by destination. The weights array stores the weights according
to the order of edges in the edge array. The vertex array has one entry for each vertex
corresponding to the start of its region in the edge and weight array.

Packed Compressed Sparse Row. PCSR replaces the dense edge and weight array
of CSR with a PMA. Each cell in the vertex list stores pointers to the beginning and
end of the region in the edge PMA corresponding to the edges of that vertex.

PCSR also stores sentinels at the beginning of a vertex’s region in the edge PMA.
Sentinels are special elements that hold pointers to the region’s source in the vertex
array. These sentinels facilitate updates to the vertex list when elements are shifted
in the edge PMA.

One important difference between PCSR and a traditional PMA is that the PMA
in PCSR stores multiple sorted lists (one for each vertex in the graph). Under the
hood, the insert and search operations in PCSR are augmented with lo and hi vari-
ables that denote the beginning and end of the sorted neighbor list of interest.

PCSR requires a constant factor more space than CSR. The vertex array takes
twice as much space because it stores a pointer to the beginning and end of each
region. The edge PMA takes 𝑂(𝑚+ 𝑛) cells compared to the 𝑚 cells in CSR.

Figure 4-8 contains an example of a graph stored in PPCSR.

Vertex IDs

Start/End

Edges

0 1 2

…

…

(6, 10)(4, 6)(0, 4)

-32S -S1S -12

Locks …

Figure 4-8: An example of a graph stored in PPCSR format. “S” denotes a sentinel at the
beginning of a vertex’s region in the edge PMA. The tall lines denote leaf boundaries and
elements are packed left in leaves.

Section 4.5 describes how to lock a traditional PMA with one lock per node. In
PPCSR, where there may be more than one lock per node from multiple vertices,
grabbing all the associated vertex locks can be done sequentially. A vertex lock may
also encompass multiple PMA leaves. Figure 4-9 presents an example of how vertex
regions might be distributed among PMA nodes.

73

Θ(lg N) Θ(lg N) Θ(lg N) Θ(lg N)

0 1 2 3 4 5

Figure 4-9: An example of the edge PMA in PPCSR with locks on vertices. The boxes
represent the leaf boundaries of the PMA and the lines under the PMA represent regions
associated with vertices in the graph (with their corresponding locks).

4.7 Parallel graph operations
This section shows how to implement the PPCSR system from Section 4.6 using the
parallel PMA from earlier sections. Specifically, it will show how to implement graph
operations using the parallel PMA operations from Section 4.4.

A graph represents data as 𝑛 vertices and 𝑚 edges. Section 3.2 presents graph
preliminaries and notation necessary to understand graph processing systems.

Graph operations
Graph storage formats support the following read operations:

• find_weight: returns the weight of an edge or 0 if it is not in the graph.

• find_neighbors: returns the neighbors of a vertex.

Additionally, graph storage formats support the following write operations:

• add_edge: sets the weight of an edge if it is already in the graph, or adds the
edge and its weight it if it is not yet in the graph.

• delete_edge: removes an edge from the graph.

• add_vertex: adds a vertex to the graph.

• delete_vertex: removes a vertex from the graph.

Read operations
Let us first consider the read-only operations find_weight and find_neighbors.

The find_weight routine corresponds directly with search in the PMA.
From Lemma 4.4, find_weight has 𝑂(log(𝑢)) work and span.

The find_neighbors function finds the neighbors of a vertex in the graph.
More formally, given a vertex 𝑢 ∈ 𝑉 , find_neighbors(𝑢) returns a new set 𝑆𝑢 of
vertices such that for all 𝑣 ∈ 𝑉 , 𝑣 ∈ 𝑆𝑢 if and only if (𝑢, 𝑣) ∈ 𝐸. The pseudocode for
find_neighbors can be found in Figure 4-10.

Lemma 4.10 find_neighbors(𝑢) has 𝑂(𝑑𝑒𝑔(𝑢)) work and 𝑂(log(𝑑𝑒𝑔(𝑢))) span.

Proof. Each parallel_for loop that iterates over 𝑂(𝑢)) cells has work 𝑂(𝑑𝑒𝑔(𝑢))
and span 𝑂(log(𝑢)) because it iterates through 𝑂(𝑑𝑒𝑔(𝑢)) cells in parallel. As men-
tioned in Section 4.4, a parallel prefix sum on an array of length𝑁 can be implemented
with span 𝑂(log𝑁) [61]. The rest of the function takes 𝑂(1) work.

74

1 def find_neighbors(u):
2 start = vertices[u].start
3 end = vertices[u].end
4 counts[end - start]
5 # end - start = O(deg(u))
6 parallel_for i in [start , end):
7 if edges[i] is not null:
8 counts[i - start] = 1
9 else:

10 counts[i - start] = 0
11

12 parallel_prefix_sum(counts)
13 output[counts[end - start - 1]]
14 parallel_for i in [start , end):
15 if counts[i] > counts[i-1]:
16 output[counts[i-1]] = edges[i]
17 return output

Figure 4-10: Pseudocode for find_neighbors in PPCSR.

Write operations
We begin by describing add_edge and showing how to implement it with parallel
PMA operations. add_edge(𝑢, 𝑣, 𝑤(𝑢, 𝑣)) sets the value of the edge (𝑢, 𝑣) = 𝑤(𝑢, 𝑣).
If the edge (𝑢, 𝑣) /∈ 𝐸, add_edge adds it to the graph with weight 𝑤(𝑢, 𝑣).

Theorem 4.11 add_edge(𝑢, 𝑣, 𝑤(𝑢, 𝑣)) has amortized 𝑂(log2(𝑚+ 𝑛)) work,
𝑂(log2(𝑚+ 𝑛)) worst-case span, and 𝑂(log(𝑚+ 𝑛)) amortized span.

Proof. The add_edge function updates the edge structure in PPCSR. First,
PPCSR performs a search to check if the edge already exists: if so, it updates the
edge’s weight. This takes 𝑂(log(deg(𝑢)) work and span by Lemma 4.4.

Otherwise, PPCSR needs to insert a new edge using insert. It performs a mod-
ified version of insert to handle moving sentinels (in slide_right and redis-
tribute). This modification takes 𝑂(1) work per edge because it checks if each cell
contains a sentinel and if so, modifies the pointer to that sentinel in the vertex ar-
ray. The insert function takes amortized work and worst-case span 𝑂(log2(𝑚+ 𝑛))
by Theorem 4.5 and amortized span 𝑂(log(𝑚+ 𝑛)) by Theorem 4.6.

The delete_edge procedure is just the inverse of add_edge and has amor-
tized 𝑂(log2(𝑚 + 𝑛)) work, 𝑂(log2(𝑚 + 𝑛)) worst-case span, and 𝑂(log(𝑚 + 𝑛))
amortized span.

Finally, PPCSR implements add_vertex with add_edge.
The add_vertex function adds a new vertex with index 𝑛 to a graph with 𝑛 vertices
and updates the edge structure with a sentinel.

Lemma 4.12 add_vertex has amortized 𝑂(log2(𝑚 + 𝑛)) work, 𝑂(log2(𝑚 + 𝑛))
worst-case span, and 𝑂(log(𝑚+ 𝑛)) amortized span.

Proof. The add_vertex function updates both the vertex and the edge structure
in PPCSR. First, add_vertex appends a new vertex to the end of the vertex array

75

in amortized 𝑂(1). If adding a new vertex triggers an 𝑂(𝑛) work copy, the copy has
𝑂(log 𝑛) span. PPCSR then inserts the sentinel in the same way we inserted an edge
using a call to add_edge.

The delete_vertex function can be implemented with amortized 𝑂(log2(𝑚+
𝑛)) work, 𝑂(log2(𝑚 + 𝑛)) worst-case span, and 𝑂(log(𝑚 + 𝑛)) amortized span by
keeping track of which vertices are deleted and rewriting the entire structure once
half of them have been deleted.

4.8 Empirical evaluation
This section empirically evaluates PPCSR and compares it with Aspen [128], a state-
of-the-art graph-streaming system, and Ligra [335]/Ligra+ [337], two static graph-
processing systems. The evaluation shows that PPCSR achieves fast updates and
queries and improves upon query speed compared to Aspen because it takes advantage
of locality in PMA the data structure.

This section evaluates all systems on algorithm speed and memory usage, and As-
pen and PPCSR on update throughput. We implemented four algorithms in PPCSR:
breadth-first search (BFS), single-source betweenness centrality (BC), PageRank
(PR), and connected components (CC).

Experimental setup. We implemented PPCSR as a c++ library parallelized using
Cilk Plus [191] and the Tapir [321,322] branch of the LLVM [234,235] compiler. We
compiled Aspen, Ligra, and Ligra+ with g++ version 7.5.

All experiments were run on a 48-core 2-way hyper-threaded Intel® Xeon® Plat-
inum 8275CL CPU @ 3.00GHz with 189GB of memory from AWS [10].

Types of graphs. We tested on both real social network graphs and synthetic
graphs. Social network graphs usually have a few very high-degree vertices while
the rest of the vertices have low degree according to a power-law distribution [27].
We used the LiveJournal (LJ) and Orkut social network graphs from the SNAP
dataset [241]. LiveJournal is a directed graph of the LiveJournal social network [69],
and Orkut is an undirected graph of the Orkut social network. We also generated
a random (rMAT) graph by sampling edges from an rMAT generator [93] with
𝑎 = 0.5; 𝑏 = 𝑐 = 0.1; 𝑑 = 0.3 to match the distribution from Aspen [128]. Finally,
we generated a random Erdős-Rényi (ER) graph [140] with 𝑛 = 10, 000, 000 and
𝑝 = 0.000005 which was then symmetrized.

We used symmetrized versions of all the graphs for a fair comparison with the pub-
licly available version of Aspen, which supports only unweighted undirected graphs.
To store undirected unweighted graphs in PPCSR, we store directed edges both ways
with weight 1. The sizes of all the graphs can be found in Table 4.1.

Since LiveJournal and Orkut are static graphs which may have been pre-processed
with vertex reordering [376], we randomly relabel the vertices in all the input graphs to
model the dynamic setting. Reordering is more difficult in streaming graphs because
a good ordering may change with the stream of edges [18].

System descriptions. PPCSR and Aspen differ significantly in their underlying

76

Name Vertices Edges Avg. Deg.

LiveJournal (LJ) 4, 847, 571 85, 702, 474 17.8
Orkut 3, 072, 627 234, 370, 166 76.2
rMAT 8, 388, 608 563, 816, 288 60.4
Erdős-Rényi (ER) 10, 000, 000 1, 000, 009, 436 100

Table 4.1: Sizes of (symmetrized) graphs used.

data structures and parallelization approaches. Aspen takes a purely functional ap-
proach with compressed trees, while PPCSR modifies a single parallel PMA with
locks directly. Aspen is a compressed tree with difference encoding [346], whereas
PPCSR is uncompressed. Aspen allows read-only operations (e.g. queries) during
writing transactions, and vice versa (i.e. it does not use locks). It requires that the
writer is sequentialized, however. In contrast, PPCSR supports concurrent readers
or writers but uses locks, which prevents concurrent reading and writing in the same
region of the data structure.

For simplicity, we implemented a locking scheme that grabs locks in a serial for-
ward pass in PPCSR rather than according to the priority-based scheme described
in Section 4.5. Since there is still an order to the locks, the forward-pass method is
also deadlock-free. Although this method is not logarithmic in the worst case, almost
all the operations only modify a small region of the PMA, so a thread usually only
has to grab a constant number of locks.

Ligra is a static graph processing system that uses CSR as its underlying graph
representation. Ligra+ adds data compression on top of the Ligra CSR representation.

Updates

We show that the batch insertions in PPCSR achieves up to 80 million edges per
second for batch insertions and report our findings in Figure 4-2 and Table 4.2.
To further optimize for large batches, PPCSR supports merging in a batch of edges.
PPCSR outperforms Aspen on batches of up to 1, 000, 000 edges, while Aspen is faster
on batch sizes of at least 10, 000, 000.

Setup. To generate our edges, we sample directed edges from the same rMAT gen-
erator that we used to generate the synthetic rMAT graph. To evaluate our insertion
and deletion throughput, we add batches of directed edges to the LJ and ER graph
in parallel (with potential duplicates). We report the average of 20 trials on small
batches and the average of 5 trials on large batches.

Discussion. PPCSR is 2 − 5x faster than Aspen on batch sizes up until 100, 000,
competitive with Aspen on batches of 1, 000, 000, but does not scale with larger
batch sizes as Aspen does. However, most highly dynamic graphs require much less
throughput for huge batches. For example, Twitter averages 5, 700 tweets per second,
and peaked at 140, 000 tweets per second [313].

Aspen implements batch insertions as a per-vertex merge, while PPCSR imple-
ments batch insertions as concurrent point insertions. For a batch size of 𝐵 edges

77

Insert Delete

LJ ER LJ ER

Batch Size PPCSR Aspen P/A PPCSR Aspen P/A PPCSR Aspen P/A PPCSR Aspen P/A
1.00E1 6.31E5 8.07E4 7.82 5.57E5 7.28E4 7.65 1.59E6 8.39E4 18.9 2.06E6 7.49E4 27.5
1.00E2 7.10E5 4.48E5 1.59 6.48E5 4.32E5 1.50 1.52E6 4.71E5 3.22 1.56E6 4.28E5 3.65
1.00E3 4.34E6 2.12E6 2.05 5.13E6 1.97E6 2.61 7.80E6 2.24E6 3.49 8.24E6 2.12E6 3.89
1.00E4 2.63E7 5.55E6 4.74 2.82E7 4.93E6 5.71 3.03E7 6.25E6 4.85 3.18E7 5.44E6 5.83
1.00E5 3.98E7 2.01E7 1.98 4.30E7 1.26E7 3.42 4.74E7 2.02E7 2.35 5.10E7 1.18E7 4.31
1.00E6 5.54E7 5.18E7 1.07 6.08E7 2.69E7 2.26 7.64E7 5.15E7 1.48 7.90E7 2.66E7 2.97
1.00E7 5.30E7 1.70E8 0.31 7.67E7 7.76E7 0.99 7.98E7 1.70E8 0.47 8.29E7 7.97E7 1.04
1.00E8 2.08E8 4.56E8 0.46 4.68E7 2.50E8 0.19 2.43E8 4.98E8 0.49 7.87E7 2.72E8 0.29

Table 4.2: Throughput for inserting and deleting edges with varying batch sizes in the LJ
and ER graphs in PPCSR and Aspen. P/A denotes the ratio of the respective throughputs
(PPCSR/Aspen).

and a PPCSR representation with |𝐸| edges, merging in the batch takes 𝑂(𝐵 + |𝐸|)
work. Since it is theoretically better to perform a merge when the batch size is very
large (𝐵 ≈ 𝑂(|𝐸|/ log2 |𝐸|)), PPCSR supports merging in very large batches. Since
insert and delete throughput in both systems were comparable, we illustrate only the
insert throughput in Figure 4-2.

In practice, memory bandwidth is the main bottleneck in insertions in PPCSR
because every insert requires a cache-inefficient binary search. Although theoretically
insertions into the ER graph should be slower than insertions into the LJ graph
because the ER graph is much bigger, in practice they are similar because the size of
the binary search each insertion requires is similar.

PPCSR supports insertions much faster than its worst-case theoretical bound of
𝑂(log2 |𝐸|) would suggest. The theoretical bound is given by an amortization of the
rebalances, but in practice the rebalances are extremely cache-efficient.

Query performance

We evaluate the performance of PPCSR, Aspen, Ligra, and Ligra+ on BFS, PR,
(single-source) BC, CC and report the exact runtimes in Table 4.3.

Algorithm setup. In order to run all algorithms using the same API as the other
systems, we implemented the EdgeMap / VertexSubset interface proposed by Ligra
in PPCSR. The VertexSubset in PPCSR has an additional optimization for the case
when the frontier is all the vertices, which improves PR and CC. We keep track of
whether the frontier is full and skip membership queries if it is.

For PR, we removed the early exit and damping from the Ligra implementation,
ported it into PPCSR, and verified the correctness of the translation into Aspen in
private communication. For BFS and BC, we ported the Ligra implementation into
PPCSR and ran the native Aspen implementations. For CC, we converted the Ligra
implementation into PPCSR and Aspen. For BFS and BC, we ran all systems starting
from the same vertex.

We implemented all kernels in PPCSR assuming undirected graphs to compare
with Aspen. For each graph kernel, we took the average of ten trials.

78

LJ Orkut rMAT ER
0

1

2

N
or
m
al
iz
ed

R
un

ni
ng

T
im

e

Ligra Ligra+ Aspen PPCSR

Figure 4-11: Time for all systems to calculate PR normalized to Ligra.

LJ Orkut rMAT ER
0

1

2

N
or
m
al
iz
ed

R
un

ni
ng

T
im

e

Ligra Ligra+ Aspen PPCSR

Figure 4-12: Time for all systems to calculate BFS normalized to Ligra.

PageRank. Figure 4-11 illustrates the relative speed on PR of all the systems. On
all the graphs we tested, PPCSR achieves between 1.2−2x speedup over Aspen on PR
because PPCSR supports fast ordered traversals. Furthermore, PPCSR is competitive
with Ligra and Ligra+ on PR (between 1 − 1.6x slower). PR is essentially a linear
scan through the PMA because it iterates through all vertices.

Breadth-first search. Figure 4-12 illustrates the relative speed on BFS of all the
systems. PPCSR is competitive (0.6−1.1x) with Aspen and is 1.1−1.6x slower than
Ligra on BFS. We hypothesize that Aspen may experience extra work overheads due
to compression. Furthermore, when the number of vertices in the BFS frontier is
large, processing the frontier requires an efficient ordered scan through PPCSR.

Betweenness centrality. Figure 4-13 illustrates the relative speed on BC of all
the systems. On BC, PPCSR is about 2x faster than Aspen, and competitive (about
1.3x) with Ligra. Since BC is more computationally- and memory-intensive than BFS,
it requires more passes through the structures. PPCSR and Ligra support efficient
ordered passes.

Connected components. Figure 4-14 illustrates the relative speed on CC of all
the systems. PPCSR exhibits about 2x speedup over Aspen and achieves similar
performance with Ligra on CC. Since CC starts with all vertices in the frontier, it
has more iterations with many vertices, which PPCSR can traverse efficiently.

79

LJ Orkut rMAT ER
0

1

2

3

N
or
m
al
iz
ed

R
un

ni
ng

T
im

e

Ligra Ligra+ Aspen PPCSR

Figure 4-13: Time for all systems to calculate BC normalized to Ligra.

LJ Orkut rMAT ER
0

1

2

3

N
or
m
al
iz
ed

R
un

ni
ng

T
im

e

Ligra Ligra+ Aspen PPCSR

Figure 4-14: Time for all systems to calculate CC normalized to Ligra.

BFS PR

PPCSR Ligra Ligra+ Aspen PPCSR Ligra Ligra+ Aspen
Graph 𝑇1 𝑇96 𝑇1 𝑇96 𝑇1 𝑇96 𝑇1 𝑇96 𝑇1 𝑇96 𝑇1 𝑇96 𝑇1 𝑇96 𝑇1 𝑇96

LJ 0.57 0.025 0.74 0.022 1.14 0.028 1.60 0.040 4.78 0.19 4.25 0.11 6.26 0.16 10.03 0.21
Orkut 0.53 0.021 0.65 0.019 0.94 0.022 1.55 0.033 7.31 0.20 8.14 0.20 8.61 0.23 15.73 0.32
rMAT 0.65 0.048 1.36 0.037 1.95 0.045 3.32 0.071 34.64 1.05 38.21 0.90 45.70 1.05 95.63 1.81
ER 1.26 0.054 1.11 0.033 1.59 0.038 2.01 0.048 76.49 1.68 70.56 1.79 85.55 2.19 155.34 3.36

BC CC

PPCSR Ligra Ligra+ Aspen PPCSR Ligra Ligra+ Aspen
Graph 𝑇1 𝑇96 𝑇1 𝑇96 𝑇1 𝑇96 𝑇1 𝑇96 𝑇1 𝑇96 𝑇1 𝑇96 𝑇1 𝑇96 𝑇1 𝑇96

LJ 2.59 0.09 2.26 0.07 3.54 0.09 7.72 0.17 2.65 0.07 1.97 0.06 3.12 0.10 5.60 0.13
Orkut 3.24 0.11 3.01 0.08 4.31 0.10 9.46 0.19 5.84 0.09 4.05 0.09 4.15 0.10 10.57 0.17
rMAT 7.58 0.25 7.36 0.18 12.01 0.25 25.88 0.48 11.93 0.41 14.10 0.32 18.20 0.38 45.08 0.86
ER 8.85 0.22 6.76 0.16 12.32 0.27 24.93 0.40 35.19 0.55 28.00 0.61 38.65 0.78 82.76 1.53

Table 4.3: Running times of PPCSR, Ligra, Ligra+, and Aspen on BFS, PR, BC, and CC.
𝑇1 denotes the time on one thread, and 𝑇96 denotes the time on all (96) threads

Memory usage

By design, PPCSR should use about 2× the space of an unoptimized CSR represen-
tation to store the empty spaces of the PMA. It can store the billion-edge ER graph
in about 16 GB.

PPCSR uses between 1.3−2.3x the space of Aspen, between 2−2.5x the space of

80

Name PPCSR Ligra Ligra+ Aspen

LJ 1.3 .34 (.66) .23 (.55) 0.66 (.98)
Orkut 4.4 .91 (1.78) .53 (1.4) 1.04 (1.91)
rMAT 8.79 2.13 (4.23) 1.51 (3.61) 3.93 (6.03)
ER 16.2 3.76 (7.49) 2.82 (6.55) 7.06 (9.16)

Table 4.4: Memory footprint (in GB) of the graphs on the different systems. PPCSR was
run with weights, and all other systems were run without weights. To compare weighted
and unweighted, we add the ideal 4× |𝐸| (each weight is 4 bytes) to all structures which do
not store weights, shown in parentheses.

Ligra, and 2.3−3.2x the space of Ligra+. We report the memory usage of all systems
in Table 4.4. One reason for the space difference is that Aspen and Ligra+ use data
compression techniques (e.g. delta compression), while PPCSR is uncompressed.

4.9 Conclusion
Dynamic sparse graphs appear in applications from social networks to network routing
and often see thousands of updates per second. This chapter introduced Parallel
Packed Compressed Sparse Row, a dynamic graph data structure which has parallel
operations with polylogarithmic span and allows for concurrent updates and queries.
In practice, PPCSR supports about 80 million updates per second while maintaining
fast queries and traversals and performs updates much faster than its worst-case
theoretical bounds would suggest. PPCSR is especially well-suited to graph traversals
scan through all of the edges (e.g. PageRank).

Locality-first strategy. PPCSR takes the first step in applying the locality-first
strategy to dynamic-graph processing via cache-friendly data structures. First, the
locality-first strategy involves understanding opportunities for locality in the problem.
There are opportunities for spatial locality via co-locating as much data as possible.
Therefore, the locality-first strategy exploits those opportunities with a single PMA
data structure to hold all of the data contiguously. This chapter shows that sur-
prisingly, concurrently updating a PMA is still fast because most of the operations
1) operate only on a small part of the data structure and 2) are cache-friendly and
therefore efficient. The results in this chapter demonstrate the improved query and
fast update performance due to optimizing for locality first.

81

82

Chapter 5

A Fill Estimation Algorithm for
Sparse Matrices and Tensors in
Blocked Formats

This chapter presents PHIL, a fill estimation algorithm that efficiently enable the
use of blocked formats, which apply the locality-first strategy by enhancing spatial
locality in sparse matrix and tensor computations. Sparse matrices and tensors from a
variety of formats exhibit natural blocked structure where the nonzeroes are grouped
together spatially. Blocked formats store the nonzeroes of sparse matrices and tensors
in nonempty blocks rather as individual elements to enable spatial-locality-based
optimizations such as vectorization. Each matrix has a unique blocked structure,
however, so the blocked format must fit the matrix structure to minimize overhead.
PHIL estimates the fill, a metric for block-size quality, with provable guarantees.
These theoretical guarantees translate into improved practical performance: PHIL
estimates the fill at least 2× faster than OSKI on small matrices and 40−50× faster
on large matrices. Additionally, PHIL always produces useful estimates of the fill
because of its accuracy guarantees. PHIL facilitates efficient usage of the locality-
first strategy by minimizing the overhead necessary for blocked storage formats.

This work was conducted in collaboration with Peter Ahrens and Nicholas Schiefer
[6]. This work also appears in Peter Ahrens’ [7] and my [388] S.M. theses. We would
like to thank Jiajia Li, Richard Vuduc, Charles E. Leiserson, Saman Amarasinghe,
and David Karger for the helpful discussions.

Abstract
Many sparse matrices and tensors from a variety of applications, such as finite element
methods and computational chemistry, have a natural aligned rectangular nonzero
block structure. Researchers have designed high-performance blocked sparse opera-
tions which can take advantage of this sparsity structure to reduce the complexity
of storing the locations of nonzeros. The performance of a blocked sparse operation
depends on how well the block size reflects the structure of nonzeros in the tensor.
Sparse tensor structure is generally unknown until runtime, so block size selection
must be efficient. The fill is a quantity which, for some block size, relates the number

83

of nonzero blocks to the number of nonzeros. Many performance models use the fill
to help choose a block size. However, the fill is expensive to compute exactly.

This chapter presents a sampling-based algorithm called PHIL to estimate the
fill of sparse matrices and tensors in any format. We provide theoretical guarantees
for sparse matrices and tensors, and experimental results for matrices. The existing
state-of-the-art fill estimation algorithm, which we will call OSKI, runs in time linear
in the number of elements in the tensor. The number of samples PHIL needs to
compute a fill estimate is unrelated to the number of nonzeros and depends only on
the order (number of dimensions) of the tensor, desired accuracy of the estimate,
desired probability of achieving this accuracy, and number of considered block sizes.
The empirical evaluation compares PHIL and OSKI on a suite of 42 matrices. On
most inputs, PHIL estimates the fill at least 2 times faster and often more than 20
times faster than OSKI. PHIL consistently produced accurate estimates — in all
cases that we tested PHIL was faster and/or more accurate than OSKI. Finally, the
evaluation shows that PHIL and OSKI produce comparable speedups in multicore
blocked sparse matrix-vector multiplication (SpMV) when the block size was chosen
using fill estimates in a model due to Vuduc et al.

5.1 Introduction
In the spring of 2017, Peter Ahrens came to me and Nicholas Schiefer with the “fill-
estimation problem” and an idea for a randomized sampling-based algorithm (which
we later named PHIL) for approximating a property of blocked sparse matrices called
the “fill”. Practitioners developed blocked sparse storage formats to exploit the nat-
ural blocked structure of some sparse matrices for performance optimizations. Im et
al. [189] introduced a quantity called the fill, or the ratio of introduced zeros to the
original number of nonzeros, to determine an optimal blocking for a given sparse ma-
trix. The fill measures how well each blocking captures the natural blocked structure
of a given sparse matrix. Vuduc et al. [372] then showed that choosing the correct ma-
trix blocking can speed up sparse matrix-vector multiplication, a common numerical
kernel, by more than a factor of 2 on matrices with blocked structure.

Since computing the fill exactly may take hundreds of times the cost of one sparse
matrix-vector multiplication, researchers developed heuristics for estimating the quan-
tity with reasonable accuracy. Vuduc et al. [369] proposed a randomized algorithm
for estimating the fill of a sparse matrix. We call this fill-estimation algorithm OSKI
since Vuduc et al. implemented the algorithm in the Optimized Sparse Kernel In-
terface (OSKI) [371]. OSKI approximates the fill much more quickly than exact
algorithms and demonstrates the potential for randomized algorithms in computing
the fill. Vuduc et al. [369] showed that OSKI empirically approximates the fill with
reasonable error but lacks theoretical guarantees about either its accuracy or runtime.

Peter, Nicholas, and I decided to work on the “fill-estimation problem” and ex-
plore the potential for a fill-estimation algorithm with provable guarantees about its
accuracy and runtime. We devised PHIL, a sampling-based fill-estimation algorithm
that requires a number of samples independent of the input size and has both accu-

84

Sparse

Dense

0 0.2 0.4 0.6 0.8 1

106

107

Density

M
em

or
y
us
ed

(B
yt
es
)

Figure 5-1: Size of a random sparse matrix 𝒜 with 𝑛 = 1000 and varying sparsity. For
comparison, the size of a dense representation is shown as well. We used a full 𝑛2 matrix as
the dense representation and Compressed Sparse Rows as the sparse matrix representation.
The x-axis represents the matrix density (i.e., 𝑘(𝒜) / 𝑛2), while the y-axis represents the
size of the matrix representation.

racy and runtime guarantees. We then showed empirically that PHIL estimates the
fill faster than OSKI and generated pathological inputs for OSKI where it does not
provide any useful estimate of the fill.

Sparse matrices
Sparse matrices allow performance engineers to write fast algorithms and efficient data
structures with complexity proportional to the number of nonzero entries. But sparse
matrices introduce substantial storage and computational overhead per element. In
contrast, dense formats have almost no computational overhead but may require
much more space in total than sparse formats because they must store zeros. That
is, the number 𝑘(𝒜) of nonzero entries in an 𝑚 × 𝑛 sparse matrix 𝒜 may be
much smaller than 𝑚× 𝑛. For example, Figure 5-1 compares the memory footprint
of a matrix stored in a common sparse matrix format (Compressed Sparse Rows)
and a matrix stored in a dense format, as a function of matrix density. Although
sparse storage formats require extra space, they still may have an advantage over
dense representations if the matrix has enough sparsity. Since sparse matrices have
far more zeros than nonzeros, algorithms for sparse matrices may admit substantial
performance improvements in performance over algorithms for dense matrices.

For example, sparse matrix-vector multiplication (SpMV) is one of the most heav-
ily used numerical kernels in scientific computing because of its performance compared
to dense implementations. Unfortunately, parallel implementations of SpMV are usu-
ally limited by memory bandwidth [82, 382]. Sparse matrix-vector multiplication on
purely sparse matrix formats that store nonzeros individually usually results in irreg-
ular memory traffic due to the locations of the nonzeros.

85

Blocked formats
Blocked matrices and tensors (multidimensional generalizations of matrices) often ap-
pear in scientific computing. Specifically, sparse matrices from finite element meth-
ods [369] and sparse tensors from quantum chemistry [87] both exhibit regular block
structure.

Since blocked structure varies across different sparse tensors, storage formats that
take advantage of natural blocked structure must choose “blocking schemes” according
to the structure of a tensor to avoid unnecessary overhead.

Definition 5.1 (Blocking scheme) Suppose that 𝒜 is a tensor of with 𝑅 dimen-
sions, or an 𝑅-tensor. Given a maximum block size 𝐵, a blocking scheme for 𝒜
is a vector b of 𝑅 block sizes (𝑏1, 𝑏2, . . . , 𝑏𝑅) such that for all 𝑖 = 1, 2, . . . 𝑅, 𝑏𝑖 ∈ N
and 1 ≤ 𝑏𝑖 ≤ 𝐵. A blocking scheme b = (𝑏1, 𝑏2, . . . , 𝑏𝑅) applied to a tensor 𝒜 tiles 𝒜
into blocks of size 𝑏1 × 𝑏2 × . . .× 𝑏𝑅.

For convenience, blocking schemes are sometimes called blockings.

Figure 5-2 shows an example of a blocking scheme b = (2, 3) on a sparse matrix.
If any entry 𝑏𝑖 does not divide the corresponding tensor dimension evenly, one can
pad the tensor to the nearest next multiple of 𝑏𝑖.

Researchers have developed blocked formats which store dense blocks of nonze-
ros instead of storing the nonzeros individually to take advantage of the natural
blocked structure of some blocked sparse matrices and tensors. Blocked formats
may also represent some zeros explicitly if they appear in nonempty blocks as shown
in Figure 5-2. Several storage formats and tensors reduce the complexity of storing
individual entries by taking advantage of structural patterns in the locations of nonze-
ros [26, 82, 211, 304, 399]. The exact representation of a tensor in a blocked format
depends on the selected blocking scheme.

Blocked storage formats are hybrid storage formats between fully sparse and dense
storage formats and therefore take advantage of both sparsity and dense subarrays
while reducing overhead. They simplify memory traffic and admit performance opti-
mizations such as vectorization [211].

Whether a blocking scheme captures the structure of a sparse tensor determines
the performance of a blocked sparse operation. Since zeros in the dense blocks must be
stored explicitly, an ideal blocking scheme would perform well on a given architecture
while minimizing the “filling in,” or explicit representation, of zeros. The quality
of a given blocking scheme depends on how well it captures the structure of the
sparse tensor. A blocking scheme that fails to capture the structural patterns of a
sparse matrix may introduce storage overhead because of introduced zeros without
yielding any performance benefits. Vuduc et al. [372] shows that choosing the correct
blocking can speed up sparse matrix-vector multiplication by more than a factor of 2
on matrices with blocked structure.

The fill in performance modeling
The benefits of blocked sparse formats raise a natural question: how do we choose an
optimal blocking scheme for a sparse matrix or tensor?

86

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Figure 5-2: On the left, a sparse matrix before blocking. On the right, the same sparse
matrix after blocking. The squares denote nonzero elements and circles are explicit zeros that
are introduced due to the storage format. In this example, the blocking scheme b = (2, 3)
and 𝑘b(𝒜) = 12. The number of nonzero elements 𝑘(𝒜) = 30, so the fill 𝑓b(𝒜) = (2× 3×
12)/30 = 2.4.

To measure how well a blocking scheme captures the structure of a sparse tensor,
Im et al. [189] introduced a quantity called the fill. Given a sparse tensor 𝒜 and
a blocking b, the fill 𝑓b(𝒜) is the ratio of introduced zeros to the original number
𝑘(𝒜) of nonzeros. Intuitively, a blocking scheme captures the structure of a sparse
tensor well when it introduces relatively few explicit zeros. Since the fill is directly
proportional to the number of filled-in zeros, it measures how well a blocking matches
the blocked structure of a sparse matrix. Figure 5-2 shows the fill of a sparse matrix
under blocking scheme b = (2, 3).

Researchers have developed “performance models” to determine the performance
of blocked sparse operations based on the structure of a sparse matrix 𝒜 and a
blocking scheme b. A performance model of a tensor 𝒜 under blocking scheme b
on a machine 𝑀 is a function 𝑃 : R → R that maps the fill 𝑓b(𝒜) to the expected
performance in FLOP/s of a blocked sparse operation on 𝒜 under b.

The fill appears in performance models for a wide variety of blocked sparse kernels.
Notably, it appears in several BCSR matrix-vector multiply performance prediction
models [84, 188–190, 369, 371, 372] and performance models for for sparse triangular
solve and sparse 𝒜𝑇𝒜x [369]. The number of nonzero blocks (proportional to the
fill) has been used in performance models for general blocked format sparse matrix-
vector multiply [98, 213, 382]. Finally, an estimate of the fill can easily be added as
an additional feature in feature-based machine learning approaches to sparse kernel
performance modeling [243].

Example: SPARSITY performance model for blocked SpMV
As an example, let us examine the SPARSITY performance model for blocked sparse
matrix-vector multiply due to Vuduc et al. [372]. We call the model SPARSITY be-
cause it appears in the SPARSITY library. There are more accurate performance
models which still depend on the fill, but we shall focus on computing the fill and not

87

performance modeling. It was later shown that, when the fill is known exactly, per-
formance of the resulting blocking scheme was optimal or within 5% of optimal [369].

The SPARSITY performance model 𝑃SPARSITY is an empirical model that is
computed once per machine type and then used many times for different tensors and
blocking schemes. It takes as input a profile of how a given machine 𝑀 performs on
dense blocks over all blockings, as well as an estimate of the fill 𝑓b(𝒜) of a matrix
𝒜 under blocking scheme b. Once per machine, we compute a profile of how the
machine performs for each blocking scheme. Let PERF(b) be the performance of
the machine (in FLOP/s) on a dense matrix stored with blocking scheme b. The
measure PERF(b) indicates how efficiently we can process nonzeros when nonzeros
are stored under b. The SPARSITY model estimates the expected performance of
a blocked SpMV (in FLOP/s) of 𝒜 under b, as PERF(b)/𝑓b(𝒜), then chooses a
blocking scheme that maximizes the estimated performance.

Computing the fill in practice
Computing the fill exactly over all blocking schemes often takes hundreds of times as
long as a single sparse matrix-vector multiplication. Since the structure of the sparse
tensor is generally not known before runtime, blocking scheme selection must occur
at runtime and must therefore be efficient. Thus, our problem is to quickly compute
an estimate of the fill over all blocking schemes with reasonable accuracy. Recently,
Langr, Šimeček, and Dytrych [232] attempted to parallelize exact computation of
the fill for matrices. They were only able to provide competitive results, however,
by computing a much smaller number of quantities. Since blocking scheme selection
remains a difficult problem for tensors as it is costly to compute the fill exactly,
developers have adopted empirical search techniques [345].

Although we limit the limited number of blockings in the case of sparse-matrix
vector multiplication, computing the fill exactly over all possible blockings is still too
costly. For dense blocks in matrices, let us focus on blocking schemes b = (𝑏1, 𝑏2)
that are small enough to fit 𝑏1 elements of the input vector, 𝑏2 elements of the output
vector, and at least one input matrix element in registers. In practice [369], this
requirement usually limits our attention to 𝑏1, 𝑏2 ≤ 12.

OSKI: a fill-estimation algorithm
Vuduc et al. [188, 369] introduced the OSKI algorithm, which is the first and (to
our knowledge) only existing algorithm that estimates the fill instead of computing
it exactly. OSKI is the first known algorithm to produce an empirically accurate
approximation of the fill over all blocking schemes in reasonable time.

Given a maximum block size 𝐵, OSKI uses randomization to compute the fill
over a subset of a sparse matrix. For each block row size 𝑏1 = 1, 2, . . . , 𝐵, OSKI
samples a fraction of block rows. For each sampled block row, OSKI computes the
fill exactly for all block column sizes 𝑏2 = 1, 2, . . . , 𝐵 simultaneously. OSKI does
this by iterating through coordinates (𝑖, 𝑗) of nonzeros in the block row and using a
perfect hash table for each block column size to record the number of unique block
column coordinates (⌈𝑗/𝑏2⌉) seen. The fraction of block rows evaluated is specified
by a parameter 𝜎 which is usually set to 0.02.

88

Property OSKI PHIL
Described for Sparse matrices Arbitrary sparse tensors
Implemented for Sparse matrices Sparse matrices
What it samples Block rows Nonzeros
Estimates fill over All blockings All blockings
Number of samples 𝜎(𝑚/𝐵) 𝐵2𝑅 ln(2𝐵𝑅/𝛿)/(2𝜀2)
Operations to process a sample 𝑂(𝜎 · 𝑘(𝒜)) (on average) (𝑅 + 1)(2𝐵)𝑅 +𝐵𝑅

Error guarantee None Within a factor of 𝜀

Figure 5-3: A comparison of OSKI and PHIL. OSKI requires the probability of sampling
a block row 𝜎 and a sparse 𝑚× 𝑛 matrix. PHIL computes an (𝜀, 𝛿)- approximation of the
fill of an 𝑅-tensor over all blockings with maximum block dimension 𝐵.

Although OSKI can estimate the fill of most matrices, it does not give predictable
results. Notably, OSKI randomly samples block rows but may fail on matrices where
the nonzeros are concentrated in a few rows because it may not evaluate those rows.
In our work, we show that it is vulnerable to special cases. To our knowledge, there
are no theoretical guarantees on the accuracy of OSKI, and no existing algorithm
which estimates the fill of arbitrary tensors beyond matrices.

Moreover, OSKI lacks runtime guarantees. It samples random block rows and
computes the fill based on all the nonzeros in those block rows. If OSKI samples
block rows with probability 𝜎, it evaluates 𝜎×𝑘(𝒜) nonzeros on average, where 𝑘(𝒜)
is the number of nonzeros in the matrix 𝒜. If most of the nonzeros were concentrated
in the selected block rows, however, OSKI’s runtime would be linear in the number
of nonzeros.

Approximation algorithms
PHIL does not guarantee to find the exact solution to the fill-estimation problem.
It achieves theoretical guarantees on its accuracy based on the parameters 𝜀 and 𝛿
where 𝜀 is a multiplicative error bound and 𝛿 is a failure probability. We call such an
algorithm an (𝜀, 𝛿)-approximation algorithm.

An (𝜀, 𝛿)-approximation algorithm guarantees concentration of an estimator around
the actual quantity 𝑥 we are trying to estimate.

Definition 5.2 Let 𝜀 > 0, 1 > 𝛿 > 0. An (𝜀, 𝛿)-approximation algorithm produces an
approximation 𝑥* to a quantity 𝑥 such that

(1− 𝜀)𝑥 ≤ 𝑥* ≤ (1 + 𝜀)𝑥

with probability 1− 𝛿.

Contributions

The main contribution in this chapter is PHIL, the first fill-estimation algorithm
with provable guarantees for sparse matrices and tensors. PHIL is a sampling-based,

89

(𝜀, 𝛿)-approximation algorithm that randomly chooses a subset of the nonzeros in a
tensor. PHIL uses prefix sums [61] to efficiently compute an estimate of the fill for
all blocking schemes around each chosen nonzero.
PHIL takes as input the following parameters:

• a sparse 𝑅-tensor 𝒜,

• the error bound 𝜀,

• the failure probability 𝛿,

• and the maximum block size 𝐵.

For an 𝑅-tensor (a tensor with 𝑅 dimensions), the maximum block volume is
therefore 𝐵𝑅.

Figure 5-3 summarizes the differences between PHIL and OSKI. We provide an
exact bound on the number of samples that PHIL requires that does not depend on
the number of nonzeros in the tensor. In contrast, OSKI runs in time linear in the
number of nonzeros and is described only for matrices in one sparse format (CSR). As
long as the tensor storage format allows fast (sublinear in the size of the input) access
to elements of the tensor, PHIL runs in time sublinear in the number of nonzeros.
Moreover, PHIL does not require a specific tensor storage format.

PHIL requires a number of samples and a total runtime independent of the size
of the input tensor. Given an 𝑅-tensor and a maximum block size 𝐵, PHIL only
needs 𝐵2𝑅 ln(2𝐵𝑅/𝛿)/(2𝜀2) samples to compute an (𝜀, 𝛿)-approximation. In addition
to the time taken to find the neighboring nonzeros, each sample (for all 𝐵𝑅 blocking
schemes) can be processed with (𝑅+1)(2𝐵)𝑅 integer additions and 𝐵𝑅 floating point
divisions and additions.

We experimentally evaluated the runtime, accuracy, and resulting SpMV times of
PHIL and OSKI on a large suite of sparse matrices. We demonstrated experimentally
that PHIL provides more accurate estimates than OSKI, while requiring only half the
time, and often outperforming OSKI by more than a factor of 20. PHIL consistently
provided accurate results even when OSKI produced results with a complete loss of
accuracy. In all cases we tested, PHIL was faster and/or more accurate than OSKI.
PHIL and OSKI produced fill estimates that resulted in almost identical sparse
matrix-vector multiplication times when we used the SPARSITY performance model
to select a blocking scheme.

Our contributions are as follows:

• PHIL, the first provably accurate fill-estimation algorithm for arbitrary sparse
tensors.

• A theorem proving that PHIL requires exactly 𝐵2𝑅 ln(2𝐵𝑅/𝛿)/(2𝜀2) samples
to compute an (𝜀, 𝛿)-approximation of the true fill of an 𝑅-tensor over all block
sizes given a maximum block dimension 𝐵.

• A scheme involving prefix sums that requires at most (𝑅 + 1)(2𝐵)𝑅 integer
additions to process each sample.

90

• An implementation of PHIL in C.

• An empirical evaluation of PHIL and OSKI on a large suite of sparse matrices
that shows PHIL estimated the fill over ten times faster than OSKI and yielded
almost identical SpMV speedups.

• The construction, theoretical analysis, and empirical evaluation of pathological
inputs for PHIL and OSKI.

• A parallel implementation of PHIL in Cilk [67], which demonstrates that PHIL
can be efficiently parallelized.

Map. The remainder of this chapter is organized as follows. Section 5.2 formalizes
the mathematical preliminaries used in PHIL. Section 5.3 describes how PHIL sam-
ples nonzeros to estimate the fill. Section 5.4 proves worst-case error bounds on the
fill estimate. Section 5.5 shows empirically that PHIL performs much better than
its worst-case error bound. Section 5.6 concludes with open problems and extensions
of PHIL.

5.2 Background
This section formalizes mathematical preliminaries required to understand PHIL.
Since PHIL operates on sparse tensors, it reviews tensor notation. This tensor no-
tation is required to represent the location of the nonzeroes that PHIL randomly
samples. Next, it reviews various sparse tensor storage formats. Although PHIL
does not require a specific storage format, this chapter describes PHIL in terms of
the common Blocked Compressed Sparse Rows (BCSR) for concreteness. Finally,
it formally defines the fill-estimation problem as the problem of computing an
(𝜀, 𝛿)-approximation of the fill.

Tensor notation
Tensors are multidimensional arrays over some field. Specifically, an 𝑅-tensor (tensor
of order or rank 𝑅) is an array with 𝑅 dimensions with elements from some field F
(usually the real or complex numbers). We denote tensors by capital script letters 𝒜
and vectors by lowercase boldface letters a.

We now define how to index coordinates and ranges of coordinates in tensors. Let
𝐼𝑟 be the size of the 𝑟th dimension of an 𝑅-tensor 𝒜 ∈ F𝐼1×𝐼2×···×𝐼𝑅 . A coordinate
i is a list of 𝑅 indices (𝑖1, 𝑖2, . . . , 𝑖𝑅) where 1 ≤ 𝑖𝑟 ≤ 𝐼𝑟. We denote the element
of 𝒜 addressed by coordinate i as 𝒜[𝑖1, 𝑖2, . . . , 𝑖𝑅]. For compactness of notation, we
sometimes specify a coordinate as an 𝑅-component vector i = (𝑖1, 𝑖2, . . . , 𝑖𝑅). We
represent the range of indices 𝑖, 𝑖 + 1, . . . , 𝑖′ with the syntax 𝑖 : 𝑖′. We represent a
range of coordinates as i : i′, meaning (𝑖1 : 𝑖

′
1)×· · ·× (𝑖𝑅 : 𝑖′𝑅). Subtensors are formed

when we fix a subset of coordinates. We also use “:” without bounds to indicate all
elements along a particular dimension.

91

For convenience, we occasionally redefine the starting coordinate of a tensor. For
example, the middle 𝑛/2 columns of a matrix 𝒜 ∈ F𝑛×𝑛 are written 𝒜[:, 𝑛/4 : 3𝑛/4].
Thus, 𝒜 ∈ FI:I′ is an (𝐼 ′1−𝐼1+1)×· · ·×(𝐼 ′𝑅−𝐼𝑅+1) tensor whose smallest coordinate
is I and largest coordinate is I′.

We denote the number of nonzero entries in a tensor 𝒜 as 𝑘(𝒜).
When we compare a vector to a scalar, our comparison is true if and only if the

comparison is true for each entry of the vector pointwise. For example, a blocking
scheme b ≤ 𝐵 if and only if for all 𝑖 = 1, 2, . . . , 𝑅, 𝑏𝑖 ≤ 𝐵.

Sparse tensor representations
Although we mention a few specific sparse formats, PHIL applies to any sparse
tensor format which admits iteration over nonzero coordinates. Since most sparse
formats store only the coordinates which correspond to nonzeros and the nonzero
values themselves, PHIL applies to many different sparse storage formats.

The simplest sparse matrix and tensor format is Coordinate (COO) [26]. In
this format, all coordinates which correspond to nonzeros are stored in an unordered
list. Entries are stored in sorted order of their coordinates. Figure 5-4 shows an
example of a matrix and its COO representation.

1 0 0 0 0 0
1 1 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 1
1 0 1 0 0 0
1 0 0 0 0 1

Dense Format Coordinate (COO)

(0, 0)
(1, 0)
(1, 1)
(1, 2)
(2, 5)
(3, 4)
(3, 5)
(4, 0)
(4, 2)
(5, 0)
(5, 5)

Figure 5-4: An example of a matrix (left) stored in coordinate (COO) format. COO stores
the nonzeros in sorted order of their coordinates.

Perhaps the most popular sparse matrix format is Compressed Sparse Rows
(CSR) [304]. In CSR format, the indices of nonzeros in each row are stored in sorted
order. Each row has an associated list of coordinates of nonzeros. The nonzeros are
stored in a single array with the same ordering as their coordinates. Figure 5-5 shows
the same matrix from Figure 5-4 in CSR format.

CSR extends to tensor formats in many ways [26], such as Compressed Sparse
Fibers (CSF) [220,344]. In CSF format, each coordinate i is stored in a tree struc-
ture where a node in level 𝑟 represents an index 𝑖𝑟 that corresponds to a set of

92

nonzeros. CSR is the matrix case of CSF.
Compressed Sparse Row (CSR)

Rows
Offsets

0 1 2
0 1 4 5 7 9

3 4 5

Columns 0 0 1 2 5 4 5 0 2 0 5
Figure 5-5: The same matrix from Figure 5-4 in CSR format. CSR stores a row array of
offsets and a separate list of column indices.

Performance engineers use blocked storage formats to store blocks of nearby
nonzeros together and therefore decrease the complexity of storing the coordinates
of individual nonzeros. Blocked storage formats can reduce the memory usage of
sparse operations by reducing the complexity of locating nonzeros. Programmers and
compilers can optimize linear algebra on small dense blocks using standard techniques
such as loop unrolling, register and cache blocking, and instruction-level parallelism.
The effectiveness of these optimizations depends heavily on the structure of the tensor
and the blocked storage format [211,283].

Proposed blocked storage formats are diverse, altering parameters such as the size
and alignment of blocks, or the storage format for locations of blocks and nonzeros
within blocks [211]. Some formats [304, 399] involve reordering to improve the block
structure of the tensor (in this case, blocks may not represent contiguous entries in
the original tensor).

Regular blocking
This chapter focuses on “regular blocking” for simplicity. In regular blocking, all
nonzero blocks are aligned rectangular blocks of equal size. Each block represents
contiguous entries in the original tensor. We formally define regular blocking in
Definition 5.3.

We used a blocked extension of CSR called Blocked Compressed Sparse Rows
(BCSR) [304] in our experiments. The locations of the nonzero blocks in BCSR
are recorded using CSR format. Figure 5-6 shows an example of the same matrix
from Figure 5-4 in BCSR format under different blocking schemes. The BCSR format
generalizes naturally to Blocked Compressed Sparse Fiber (BCSF) format [220,
345] for arbitrary tensors. In BCSR and BCSF, each block is stored in a dense format,
with zeros represented explicitly, and only blocks which contain nonzeros are stored.

Definition 5.3 (Regular blocking scheme) Let 𝒜 ∈ F𝐼1×𝐼2×···×𝐼𝑅 be an 𝑅-tensor.
A (regular) blocking scheme b of 𝒜 is a vector b = (𝑏1, 𝑏2, . . . , 𝑏𝑅) that partitions
𝒜 into 𝑅-dimensional aligned subtensors of equal size with 𝑏𝑟 entries along the 𝑟𝑡ℎ

dimension. Each component of b is a block size.

93

Figure 5-6: Examples of different blockings on the same matrix from Figure 5-4 and their
representation in blocked compressed sparse row (BCSR).

(a) Different blockings of the same matrix.

1 0 0 0 0 0
1 1 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 1
1 0 1 0 0 0
1 0 0 0 0 1

1 0 0 0 0 0
1 1 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 1
1 0 1 0 0 0
1 0 0 0 0 1

2 x 2 2 x 3

(b) BCSR representation of the matrix under a 2×2 blocking.

Rows
Offsets

0 1 2
0 2 3

Column
Indices

1 0
1 1

0

Blocks

1

0 0
1 0

0
1

2 0

0 0
1 0

0
1

0
0

0 0
0 1

1
0

1 2

(c) BCSR representation of the matrix under a 2×3 blocking.

Rows
Offsets

0 1 2
0 1 2

Column
Indices

1 0
1 1

0

Blocks
0 0
1 0

1
1

1 0
1 0

0
1

1
0

1 0
1 0

1
0

1 0 1

Each coordinate of 𝒜 has a corresponding block coordinate under blocking scheme
b. Specifically, a nonzero at coordinate i has block coordinate(︂⌈︂

𝑖1
𝑏1

⌉︂
,

⌈︂
𝑖2
𝑏2

⌉︂
, . . . ,

⌈︂
𝑖𝑅
𝑏𝑅

⌉︂)︂
.

Fill-estimation problem
Since the performance of blocked sparse tensor operations depends on the blocking
scheme and the structure of the tensor, our goal is to choose the blocking scheme
that achieves the best performance for our given tensor. Larger blocks generally

94

admit more opportunities for performance optimizations in blocked sparse formats
with dense blocks. If the blocks do not capture the structure of the tensor, however,
larger blocks hurt performance because they require computing over more explicitly
represented (filled-in) zeros.

At a high level, a “good” blocking scheme includes all of the nonzero entries of a
tensor in as few blocks as possible while minimizing the number of explicitly repre-
sented zeros.

Definition 5.4 Supposed we have an 𝑅-tensor 𝒜 and a regular blocking scheme b.
We define the number 𝑘b(𝒜) of blocks containing a nonzero under b.

Notice that 𝑘1(𝒜) = 𝑘(𝒜), since tiling 𝒜 into unit-size blocks will have exactly
one non-empty block for every nonzero.

Specifically, a “good” blocking scheme b for a tensor 𝒜 minimizes the number
𝑘b(𝒜) of nonempty blocks while also minimizing the number of introduced zeros.

We now formally define the fill as a metric which uses the number of nonzero
blocks to formally express this notion of blocking scheme quality:

Definition 5.5 (Fill [189]) The fill of an 𝑅-tensor 𝒜 with respect to a particular
blocking scheme b is the ratio

𝑓b(𝒜) =
𝑏1 × 𝑏2 × · · · × 𝑏𝑅 × 𝑘b(𝒜)

𝑘(𝒜)
.

That is, the fill is the ratio of the number of entries in nonempty blocks of 𝒜 under
b to the number 𝑘(𝒜) of nonzeros in 𝒜. Where it is clear which tensor we refer to,
we often write the fill as 𝑓b.

The fill 𝑓b(𝒜) is directly proportional to the number of nonzero blocks 𝑘b(𝒜).

Exact computation of the fill for many blocking schemes is costly in comparison
to the cost of a sparse matrix-vector multiplication. Instead of exactly computing the
fill, our problem is to compute an estimate of the fill.

Problem 5.6 (Fill estimation) Given an 𝑅-tensor 𝒜 and a maximum block size
𝐵, the fill-estimation problem is the problem of computing an (𝜀, 𝛿)-approximation
𝐹b(𝒜) to the true fill 𝑓b(𝒜) for all (square or rectangular) regular blocking schemes
b ≤ 𝐵.

Equivalently, we want to compute a random variable 𝐹b(𝒜) such that

Pr

[︂
max
b≤𝐵

|𝑓b − 𝐹b|
𝑓b

> 𝜀

]︂
≤ 𝛿 .

Since 𝑓b(𝒜) differs from 𝑘b(𝒜) by a multiplicative factor of 𝑏1𝑏2 · · · 𝑏𝑅/𝑘(𝒜) (which
can easily be computed in constant time), estimating the fill with respect to a blocking
scheme is equivalent to estimating the number of nonzero blocks under that blocking
scheme.

We will use these formal definitions of tensor notation and regular blocking to
exactly define our PHIL algorithm in Section 5.3. Moreover, we show that PHIL
solves the fill-estimation problem in Section 5.4.

95

5.3 PHIL

This section describes the PHIL algorithm for fill estimation and details its important
subroutines. At a high level, PHIL randomly samples nonzeros. First, this section
shows that PHIL’s random sampling results in an accurate estimate of the fill. Next, it
explains how PHIL efficiently estimates the fill over all block schemes for each sampled
nonzero with a function called Compute𝒳 that evaluates the entire neighborhood of
each sample. It concludes by explaining a key step in processing each sample: finding
all the nonzeros around a sample in time sublinear in the input size.

PHIL solves the fill-estimation problem by randomly sampling nonzero entries
and counting the number of nonzero entries around each sampled nonzero. Suppose
we want to estimate the fill of a sparse tensor 𝒜 given a maximum block size 𝐵.
PHIL repeatedly samples a coordinate i of a nonzero with replacement from 𝒜. For
each blocking scheme b ≤ 𝐵, it computes the number 𝑧b(𝒜, i) of nonzero entries in
the block that i appears in under the blocking scheme b. Next, we show how PHIL
uses 𝑧b(𝒜, i) to estimate the fill.

Unbiased estimation of the fill
PHIL computes an accurate estimate of the fill by counting the number of nonzeros
in each block for each sample. Let 𝒜 be a tensor and i be a randomly chosen nonzero
from 𝒜. We define 𝐹b, a quantity proportional to the average of the reciprocals
1/𝑧b(𝒜, i), and show that 𝐹b is an unbiased estimator for the fill 𝑓b (a random
variable with expectation equal to the fill). We give a concentration bound for 𝐹b

in Theorem 5.7 and formally prove it in Theorem 5.13.

Theorem 5.7 (Maximum number of samples) Suppose we want to estimate the
fill 𝑓b for all blocking schemes b ≤ 𝐵 where 𝐵 is the maximum block size. If PHIL
samples at least

𝑆 ≥ 𝑆0 =
𝐵2𝑅

2𝜀2
ln

(︂
2𝐵𝑅

𝛿

)︂
samples with replacement, then it produces a fill estimate 𝐹b over all blockings such
that

Pr

[︂
max
b≤𝐵

|𝑓b − 𝐹b|
𝑓b

≤ 𝜀

]︂
≥ 1− 𝛿 .

Notably, the number of samples PHIL requires to compute an (𝜀, 𝛿)-approximation
to the fill over all blocking schemes depends only on the maximum block size, desired
accuracy, and failure probability. The required number of samples 𝑆0 is independent
of the input size, which is a clear advantage on large tensors where performance
matters the most.

We describe how PHIL computes an unbiased estimator for the fill. First, we
introduce the concept of the head and tail of a block because we will use it in later
definitions.

Definition 5.8 (Head and tail of blocks) The head of a block is the unique co-
ordinate in the block with the lowest index along all dimensions. Let b be a regular

96

blocking scheme and i be the coordinate in a tensor 𝒜. We use ℎb(i) to denote the
head of i’s block under the blocking scheme b. Similarly, the tail 𝑡b(i) of a block is
the unique coordinate in the block containing i under b with the highest index along
all dimensions.

Next, we formally define the “fill component” of a nonempty block under some
blocking. The fill component of a block is the reciprocal of the number of nonzeros
in that block.

Definition 5.9 Suppose we want to estimate the fill of a tensor 𝒜 under a blocking
scheme b. Let i be the coordinate of a nonzero of 𝒜. The fill component is the
reciprocal of the number of nonzeros in the block of 𝒜 containing i under b.

Formally, the fill component 𝑥b(𝒜, i) with respect to a nonzero i of 𝒜 under a
blocking b as

𝑥b(𝒜, i) =
1

𝑧b(𝒜, i)
=

1

𝑘(𝒜[ℎb(i) : 𝑡b(i)])
,

where 𝑧b(𝒜, i) the number of nonzeros in the block of i under blocking scheme b.

The number of nonzeros in a block is not directly proportional to the fill. The
average of the fill component over all nonzeros, however, is exactly the number of
nonempty blocks, which is proportional to the fill. PHIL therefore estimates the fill
by averaging 𝑥b(𝒜, i) over 𝑆 coordinates i1, i2, . . . , i𝑆 sampled with replacement from
the set of coordinates of nonzeros in 𝒜.

We show in Definition 5.10 that the fill estimate 𝐹b is closely related to the average
of 𝑥b(𝒜, i) over all coordinates i. We explain in Theorem 5.11 how the fill estimate
𝐹b is an unbiased estimator of the fill.

Definition 5.10 (Fill estimate) For all b ≤ 𝐵:

𝐹b :=
𝑏1𝑏2 · · · 𝑏𝑅

𝑆

𝑆∑︁
𝑗=1

𝑥b(𝒜, i𝑗)

Theorem 5.11 (Unbiased estimator of the fill) For any blocking scheme b, the
random variable 𝐹b is an unbiased estimator for the fill: that is, E[𝐹b] = 𝑓b(𝒜).

Proof. By definition, the sum over all nonzeros i within a particular block of fill
components 𝑥b(𝒜, i) is 1 if the block is not empty. Thus, the sum of 𝑥b(𝒜, i) over all
nonzeros i in 𝒜 is equal to 𝑘b(𝒜), the number of blocks that contain nonzeros. Thus,
we may multiply the average of 𝑥b(𝒜, i) over i by 𝑏1𝑏2 · · · 𝑏𝑅 to obtain an estimator
of 𝑓b(𝒜, i), by Definition 5.5.

EstimateFill
The remainder of this section provides details about how PHIL computes a fill esti-
mate. Figure 5-7 shows the highest level of PHIL and abstracts away how to process
samples into a subroutine called Compute𝒳 . Figure 5-9 shows how to efficiently
process each sample to compute the fill over all blocking schemes. Since Compute𝒳
requires finding all nonzeros in a range, we conclude by explaining how to quickly
find nonzeros in a range.

97

EstimateFill(𝒜, 𝐵, 𝜀, 𝛿)
Require: 0 ≤ 𝛿 ≤ 1 , 𝜀 > 0 , 𝐵 ≥ 1

1 𝒴 ∈ R𝐵×···×𝐵

2 ℱ ∈ R𝐵×···×𝐵

3 𝑆 =
⌈︁
𝐵2𝑅

2𝜀2
ln
(︁

2𝐵𝑅

𝛿

)︁⌉︁
.

4 𝒴 = 0
5 for i ∈ sample of size 𝑆 with replacement from the nonzero coordinates of 𝒜
6 𝒴 = 𝒴 + Compute𝒳 (𝒜, 𝐵, i)
7 for b ∈ 𝐵 × · · · ×𝐵

8 ℱ [b] = 𝑏1𝑏2···𝑏𝑅𝒴[b]
𝑠

9 return ℱ
Ensure: (1− 𝜀)𝑓b(𝒜) ≤ ℱ [b] ≤ (1 + 𝜀)𝑓b(𝒜) with probability at least (1− 𝛿).

Figure 5-7: Pseudocode for the EstimateFill routine. Given a sparse tensor 𝒜 ∈
F𝐼1×𝐼2×···×𝐼𝑅 , i, and 𝐵, EstimateFill computes an approximation to 𝑓b(𝒜, i) for all block-
ing schemes b ≤ 𝐵.

Compute𝒳
PHIL estimates the fill efficiently over all blocking schemes using prefix sums in a
routine called Compute𝒳 . Let i be a nonzero that PHIL randomly sampled from
an 𝑅-tensor 𝒜. PHIL computes the number 𝑧b(𝒜, i) of nonzeros in each block that i
appears in for each blocking scheme b ≤ 𝐵. The first step of Compute𝒳 is to find
the coordinates of all nonzeros near i in a routine called NonzerosInRange. Once
we find the coordinates of all nonzeros near i, we use multidimensional prefix sums
(cumulative sums) to compute 𝑧b(𝒜, i) for all blocking schemes b ≤ 𝐵 in less than
(𝑅+ 1)(2𝐵)𝑅 integer additions. Note that we expect both 𝐵 and 𝑅 to be small, and
that the Compute𝒳 subroutine computes 𝐵𝑅 separate quantities simultaneously.

We now describe how PHIL efficiently computes the number of nonzeros in all
possible blockings around a sample i using prefix sums. A naive implementation of
computing 𝑥b(𝒜, i) for a sample coordinate i by might take time 𝐵𝑅 in an 𝑅-tensor
by looking up all the nonzeros in a block corresponding to i. In contrast, PHIL
reuses the computations of 𝑥b(𝒜, i) for the same i over different blocking schemes b.
Suppose PHIL samples a nonzero at coordinate i. After finding the locations of all
the nonzeros within a 2𝐵 radius of i, PHIL computes 𝑥b(𝒜, i) for all b ≤ 𝐵 at the
same time.

We describe the details of this routine in Figure 5-9 and provide an example
in Figure 5-9. We abstract the process of finding the nonzeros in a range of a tensor
into a subroutine NonzerosInRange and discuss potential efficient implementations
after Figure 5-9.

The main idea behind Compute𝒳 is to count the number of nonzeros in blocks
containing a sampled nonzero over all blocking schemes. Specifically, Compute𝒳
outputs a tensor 𝒵0 corresponding to the number of nonzeros of an 𝑅-tensor 𝒜 in
subtensors surrounding a sampled nonzero i = (𝑖1, 𝑖2, . . . , 𝑖𝑅). Each entry of the

98

tensor 𝒵0 has the number of nonzeros in a corresponding blocking. We take the
differences between relevant entries to find the number of nonzeros in all blockings
around a sample i. More formally, we construct an 𝑅-tensor 𝒵0 ∈ Ni−𝐵:i+𝐵−1 such
that for all coordinates j = (𝑗1, 𝑗1, . . . , 𝑗𝑅) within a 2𝐵 radius of i, 𝒵0[j] is equal to the
number of nonzeros in the subtensor 𝒜[i−𝐵 : j]. In one dimension, we can compute
𝑧b(𝒜, i) as 𝒵0[𝑡b(i)] − 𝒵0[ℎb(i) − 1]. In two dimensions, we can compute 𝑧b(𝒜, i) as
𝒵0[𝑡b(i)]−𝒵0[𝑡𝑏1(𝑖1), ℎ𝑏2(𝑖2)− 1]−𝒵0[ℎ𝑏1(𝑖1)− 1, 𝑡𝑏2(𝑖2)] + 𝒵0[ℎb(i)− 1].

We briefly describe how to use prefix sums to efficiently construct 𝒵0 over all
blocking schemes. We initialize 𝒵0[j] to 1 if 𝒜[j] ̸= 0 and 0 otherwise. Next, we take
a prefix sum along each dimension in turn. After the first prefix sum, 𝒵0[j] is the
number of nonzeros in 𝒜[𝑖1 −𝐵 : 𝑗1, 𝑗2, . . . , 𝑗𝑅]. After the 𝑟𝑡ℎ prefix sum, 𝒵0[j] is the
number of nonzeros in 𝒜[𝑖1−𝐵 : 𝑗1, . . . , 𝑖𝑟 −𝐵 : 𝑗𝑟, 𝑗𝑟+1, . . . , 𝑗𝑅]. After the 𝑅𝑡ℎ prefix
sum (one along each dimension), we have computed 𝒵0.

We find the number 𝑧b(𝒜, i) of nonzeros in each block using differences between
elements of 𝒵0. Let b = (𝑏1, 𝑏2, . . . , 𝑏𝑅) ≤ 𝐵 be a blocking scheme. For each value
of 𝑏1, we set 𝒵1[𝑗2, . . . , 𝑗𝑅] to the number of nonzeros in the subtensor 𝒜[ℎ𝑏1(𝑖1) :
𝑡𝑏1(𝑖1), 𝑖2−𝐵 : 𝑗2, . . . , 𝑖𝑅−𝐵 : 𝑗𝑅] as 𝒵0[𝑡𝑏1(𝑖1), 𝑗2, . . . , 𝑗𝑅]−𝒵0[ℎ𝑏1(𝑖1)− 1, 𝑗2, . . . , 𝑗𝑅].

We now show how to generalize Compute𝒳 to arbitrary dimensions. After com-
puting 𝒵1 for a particular value of 𝑏1, we take the difference between elements of 𝒵1

for each value of 𝑏2 to compute 𝒵2, where 𝒵2[𝑗3, . . . , 𝑗𝑅] is the number of nonzeros in
the subtensor 𝒜[ℎ𝑏1(𝑖1) : 𝑡𝑏1(𝑖1), ℎ𝑏2(𝑖2) : 𝑡𝑏2(𝑖2), 𝑖3 − 𝐵 : 𝑗3, . . . , 𝑖𝑅 − 𝐵 : 𝑗𝑅]. We do
a similar computation for all 𝑅 dimensions of the tensor until 𝒵𝑅 is just the scalar
𝑧b(𝒜, j).

We conclude by analyzing how many operations we need to process each sample.
PHIL takes prefix sums in each of the 𝑅 dimensions where each prefix sum takes at
most (2𝐵)𝑅 additions to compute, and we compute 𝑅 prefix sums. In the final loop,
𝒵𝑟 is of size (2𝐵)𝑅−𝑟. We must compute 𝒵𝑟 exactly 𝐵𝑟 times. Therefore, the block
difference computation incurs

∑︀𝑅
𝑟=1 2

−𝑟(2𝐵)𝑅 subtractions. Thus, Compute𝒳 uses
at most (𝑅 + 1)(2𝐵)𝑅 integer additions to compute 𝒵.

99

Compute𝒳 (𝒜, i, 𝐵)
Require: 𝒜[i] ̸= 0 , 𝐵 ≥ 1

1 𝒵0 ∈ Ni−𝐵:i+𝐵−1

2 𝒵0 = 0
3 for j ∈ NonzerosInRange(𝒜, i−𝐵, i+𝐵 − 1)
4 𝒵0[j] = 1
5 for 𝑟 ∈ 1 : 𝑅
6 for 𝑗 ∈ 𝑖𝑟 −𝐵 + 1 : 𝑖𝑟 +𝐵 − 1
7 𝒵0[:, . . . , :, 𝑗⏟ ⏞

𝑟

, :, . . . , :] = 𝒵0[:, . . . , :, 𝑗⏟ ⏞
𝑟

, :, . . . , :] + 𝒵0[:, . . . , : 𝑗 − 1⏟ ⏞
𝑟

, :, . . . , :]

8 for 𝑏1 ∈ 1 : 𝐵
9 𝒵1 = 𝒵0[𝑡𝑏1(𝑖1), :, . . . , :⏟ ⏞

𝑟−1

]−𝒵0[ℎ𝑏1(𝑖1)− 1, :, . . . , :⏟ ⏞
𝑟−1

]

10 for 𝑏2 ∈ 1 : 𝐵
11 𝒵2=𝒵1[𝑡𝑏2(𝑖2), :, . . . , :⏟ ⏞

𝑟−2

]−𝒵1[ℎ𝑏2(𝑖2)− 1, :, . . . , :⏟ ⏞
𝑟−2

]

12
...

13 for 𝑏𝑅 ∈ 1 : 𝐵
14 𝒵𝑅 = 𝒵𝑅−1[𝑡𝑏𝑅(𝑖𝑅)]−𝒵𝑅−1[ℎ𝑏𝑅(𝑖𝑅)− 1]
15 𝒳 [b] = 1

𝒵𝑅

Ensure: 𝒳 [b] = 𝑥b(𝒜, i)

Figure 5-8: Pseudocode for the Compute𝒳 routine. Given a sparse tensor 𝒜 ∈
F𝐼1×𝐼2×···×𝐼𝑅 , i, and 𝐵, the function computes 𝑥b(𝒜, i) for all blocking schemes b ≤ 𝐵.
Note that 𝒜 may be stored in a sparse format, whereas all other tensors are stored in a
dense format.

100

Figure 5-9: Here we visualize the execution of Compute𝒳 as it computes one element
of its output 𝑋. Specifically, we show how it computes 𝑥b(𝒜, i) = 𝒳 [b]. In this example,
our maximum block size is 𝐵 = 3 and our nonzero of interest is i = (7, 8). Continuing
our example in Figure 5-2, we will show computation of 𝒳 only for the blocking scheme
b = (2, 3). Our goal is to compute the reciprocal of the number of nonzero elements in i’s
block (depicted by the shaded region).

(a) First, Compute𝒳 uses NonzerosInRange to find the nonzeros within a box of size 2𝐵 around
i. Then, it creates a matrix of the same size as the box and fills it with 0 where there are zeros in
the original matrix and 1 where there are nonzeros.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 1 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 1 0
0 1 0 1 0 0
0 0 0 1 1 0

(b) Next, Compute𝒳 performs a prefix sum on the rows and then columns of the matrix. Notice
that element j of the matrix is now equal to the number of nonzero elements in the box extending
from the upper left of the matrix to element j.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 2 2 2 2 2
0 0 0 0 0 0
0 1 1 1 1 1
0 0 1 2 3 3
0 1 1 2 2 2
0 0 0 1 2 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 2 2 2 2 2
1 2 2 2 2 2
1 3 3 3 3 3
1 3 4 5 6 6
1 4 5 7 8 8
1 4 5 8 10 10

(c) Finally, Compute𝒳 computes the number of elements in the desired block by subtracting the
number of nonzeros in each medium sized box from the large box, and adding back in the small
box to avoid double-counting. Since all of these boxes begin in the upper left corner of our matrix,
the number of nonzeros in these boxes are given by the prefix sum results in their lower right
corners. The difference operation tells us that the shaded region contains 8−4−3+3 = 4 nonzeros.
Thus, 𝑥b(𝒜, i) = 1/4. At this point, it is easy to compute 𝑥b(𝒜, i) for different b by repeating the
difference operation with different blocks.

1 2 2 2 2 2
1 2 2 2 2 2
1 3 3 3 3 3
1 3 4 5 6 6
1 4 5 7 8 8
1 4 5 8 10 10

101

NonzerosInRange
Since𝒜may be stored in an arbitrary sparse format, we abstract the process of finding
the coordinates of nonzeros within a certain range into an algorithm called Nonze-
rosInRange. NonzerosInRange(𝒜, j, j′) returns a list of all i ∈ j : j′ such that
𝒜[i] ̸= 0.

The implementation of NonzerosInRange depends on the initial format of the
sparse matrix 𝒜. We discuss two implementations to show why this routine should
not be costly in theory or practice.

If 𝒜 is a matrix in CSR format (where coordinates of nonzeros in each row are
stored in sorted order of their column index), we do not need any preprocessing to
quickly query nonzeros. Specifically, using a binary search within each row yields
an 𝑂(𝐵 log2(𝐼2) + 𝐵2) time implementation, where the 𝐵2 term is the maximum
number of coordinates that may need to be returned. This search technique general-

izes to arbitrary tensors in CSF format, yielding an 𝑂

(︂
𝑅∑︀

𝑟=2

𝐵𝑟−1 log2(𝐼𝑟) +𝐵𝑅

)︂
time

implementation.
If 𝒜 is stored in any other format (e.g. COO), we can preprocess the tensor such

that we can query for nonzeros in a range in time independent of the input size. Before
we run EstimateFill, we block the entire 𝑅-tensor 𝒜 into blocks of size 𝐵𝑅 (i.e.
with blocking b = (𝐵,𝐵, . . . , 𝐵)) and store the blocks in a sparse format (without
explicit zeros). We store each block that contains at least one nonzero in a hash
table. Since PHIL only calls NonzerosInRange with ranges of size 2𝐵× · · ·× 2𝐵,
there are at most 3𝑅 blocks which might contain zeros in the target range. To find
all nonzeros in a range, we scan through these blocks to find nonzeros which are
actually in the target range, and return the relevant nonzeros. This implementation
of NonzerosInRange has a setup time of 𝑂(𝑘(𝒜)) and an individual query time
of 𝑂(3𝑅𝐵𝑅). After preprocessing, the time to complete query of NonzerosInRange
is independent of the size of the input.

5.4 Theoretical analysis
This section proves that PHIL produces an accurate estimate of the fill with a number
of samples independent of the input size. It first shows concentration bounds on the
accuracy of PHIL’s estimate using Hoeffding’s inequality [185]. The number 𝑆 of
samples required for an accurate estimate only depends on the desired accuracy and
probability of that accuracy. Notably, 𝑆 is constant with respect to the input size,
which is especially advantageous when 𝑆 ≪ 𝑘(𝒜). Finally, it proposes solutions in
case the number of required samples exceeds the number of nonzeros in a tensor,
which may occur if the tensor or matrix is small.

Concentration bounds on PHIL’s error
Theorem 5.12 (Hoeffding’s inequality) Let 𝑋1, 𝑋2, . . . , 𝑋𝑀 be 𝑀 independent
random variables bounded such that 0 ≤ 𝑋𝑗 ≤ 1. Let 𝑋 = 1

𝑀

∑︀𝑀
𝑗=1𝑋𝑗 be their mean.

102

Then for any 𝑡 ≥ 0,

Pr
[︀⃒⃒
𝑋 − E[𝑋]

⃒⃒
≥ 𝑡
]︀
≤ 2 exp(−2𝑀𝑡2) .

We can directly apply Hoeffding’s inequality to PHIL’s estimate to bound the
error given the number of samples. Given a sparse tensor 𝒜, a blocking scheme b,
and a tensor element i, the fill component 𝑥b(𝒜, i) is a random variable bounded be-
tween 0 and 1. Furthermore, since the samples i1, i2, . . . , i𝑆 are chosen independently
from among the nonzeros, the random variables 𝑥b(𝒜, i1), 𝑥b(𝒜, i2), . . . , 𝑥b(𝒜, i𝑆) are
independent. Therefore, we obtain our concentration bound from Theorem 5.12.

Theorem 5.13 (Restatement of Theorem 5.7) Suppose we want to estimate the
fill 𝑓b for all blocking schemes b ≤ 𝐵 where 𝐵 is the maximum block size. If PHIL
samples at least

𝑆 ≥ 𝑆0 =
𝐵2𝑅

2𝜀2
ln

(︂
2𝐵𝑅

𝛿

)︂
samples with replacement, then it produces a fill estimate 𝐹b over all blockings such
that

Pr

[︂
max
b≤𝐵

|𝑓b − 𝐹b|
𝑓b

≤ 𝜀

]︂
≥ 1− 𝛿 .

Proof. By Definition 5.10, 𝐹b = 𝑏1𝑏2 · · · 𝑏𝑅(1/𝑆)
∑︀𝑆

𝑗=1 𝑥b(𝒜, i𝑗). By Theorem 5.11,
E[𝐹b] = 𝑓b. Since each examined block contains at least 1 and at most 𝐵𝑅 nonze-
ros, 𝑥b(𝒜, i1), 𝑥b(𝒜, i2), . . . , 𝑥b(𝒜, i𝑆) are independent and bounded between 1/𝐵𝑅

and 1. Similarly, 𝑘𝑏(𝒜)/𝑘(𝒜) in Definition 5.5 is bounded to the same range. By
Theorem 5.12,

Pr

[︂ |𝑓b − 𝐹b|
𝑓b

≥ 𝜀

]︂
= Pr

[︂⃒⃒⃒⃒
𝐹b − E[𝐹b]

𝑏1𝑏2 · · · 𝑏𝑅

⃒⃒⃒⃒
≥ 𝜀

𝑓b
𝑏1𝑏2 · · · 𝑏𝑅

]︂
≤ 2 exp

(︃
−2𝑆

(︂
𝜀𝑘𝑏(𝒜)

𝑘(𝒜)

)︂2
)︃

≤ 2 exp

(︂−2𝑆𝜀2

𝐵2𝑅

)︂
,

since 𝐹b is 𝑏1𝑏2 · · · 𝑏𝑅 times an average of 𝑆 values, each of which is at least 1/𝐵𝑅.
By the union bound over the 𝐵𝑅 possible blocking schemes b,

Pr

[︂
max
b≤𝐵

|𝑓b − 𝐹b|
𝑓b

≥ 𝜀

]︂
≤ 2𝐵𝑅 exp

(︂−2𝑆𝜀2

𝐵2𝑅

)︂
.

Therefore, if 𝑆 ≥ 𝑆0 =
𝐵2𝑅

2𝜀2
ln
(︁

2𝐵𝑅

𝛿

)︁
,

Pr

[︂
max
b≤B

|𝑓b − 𝐹b|
𝑓b

≥ 𝜀

]︂
≤ 𝛿 .

The bound 𝑆 on the number of samples PHIL needs to compute an (𝜀, 𝛿)-approximation
to the true fill is dependent only on the maximum block size, the order of the input

103

tensor, and the desired approximation accuracy. Let 𝒜 be an 𝑅-tensor. PHIL re-
quires a number of samples that is only only dependent on 𝐵,𝑅, 𝜀, and 𝛿. If 𝜀 and
𝛿 are independent of the number 𝑘(𝒜) of nonzeros, the bound 𝑆 on the number
of samples is also constant with respect to 𝑘(𝒜). Sampling is therefore especially
advantageous when 𝑆 ≪ 𝑘(𝒜).

Obtaining a high probability bound with 𝛿 ≤ 1/𝑘(𝒜)𝑤 for some 𝑤 would indeed
require dependence on 𝑘(𝒜), albeit only logarithmically. In practice, however, a small
constant 𝛿 such as 0.01 suffices.

Sampling for high accuracy or small tensors
PHIL may require more samples than the number of nonzeros in a small or very
sparse tensor if one requests strong guarantees on its fill estimate. For example, a run
of PHIL on a matrix (𝑅 = 2) may set the parameters 𝐵 = 12, 𝜀 = 0.1 and 𝛿 = 0.01.
The number of required samples (10,645,998) may exceed the number of nonzeros in
smaller matrices.

We can avoid this issue by sampling without replacement. If we sample without
replacement, we can apply a variant of the Hoeffding-Serfling inequality [29] to obtain
a bound which scales with the number of nonzeros. This bound is more complicated to
describe, and requires the implementation to generate samples without replacement.
Furthermore, this bound would still require sampling a significant fraction of the
nonzeros.

Instead, we suggest that practitioners who need strong guarantees on small prob-
lems use an efficient exact algorithm or lower the maximum block size 𝐵. In our
example, 𝐵 = 4 needs only 103,308 samples. We show in Section 5.5 that PHIL
empirically provides far more accurate estimates than the worst-case guaranteed the-
oretical bound. In practice, for 𝐵 = 12, running PHIL with 𝜀 = 3 and 𝛿 = 0.01
(11,829 samples) results in a mean maximum relative error of at most 0.05 for all
cases we tested.

5.5 Experimental results
We tested PHIL and OSKI on a large suite of sparse matrices and found that PHIL
estimates the fill more accurately in much less time than OSKI for many of the
matrices in our test suite. There were no cases in PHIL was both less accurate and
slower than OSKI.

Since OSKI lacks theoretical guarantees on its accuracy, we generated a patholog-
ical input matrix where OSKI produces useless fill estimates whereas PHIL produces
accurate estimates. PHIL computes a provably accurate estimate of the fill for all
inputs. We also generate a worst-case input for PHIL and show in Figure 5-10 that
PHIL still produces a more accurate estimate than OSKI on this input.

We also found that when using optimized BCSR matrix-vector multiplication rou-
tines generated by the Tensor Algebra Compiler (TACO) [220] and the SPARSITY
performance model (described in Section 5.1), the estimates produced by PHIL yield

104

BCSR matrix-vector multiply performance comparable to the performance obtained
using estimates from OSKI.

We also chose a few matrices and ran PHIL and OSKI with multiple parameter
settings on those matrices. Different parameter settings correspond to different run-
times. For example, the runtime of PHIL increases as 𝜀 and 𝛿 decrease. Figure 5-10
shows that the return on (time) investment for PHIL is better than OSKI on four
matrices, including on synthetic matrices designed to bring out the worst in our PHIL
algorithm.

Pathological inputs for PHIL and OSKI
We describe two pathological cases we invented to induce worst-case behavior in
PHIL and OSKI, respectively. We generated these pathological matrices and call
them pathological_PHIL and pathological_OSKI, respectively. We will show
that pathological_PHIL is indeed a worst-case input for PHIL.

Definition 5.14 (Pathological PHIL matrices) Pathological PHIL matrices are
worst-case inputs for PHIL. These matrices have an equal number of completely full
blocks and blocks with only one nonzero.

We first try to provide some intuition about why pathological PHIL matrices
are the worst-case inputs for PHIL. At a high level, pathological PHIL matrices
maximize the variance of the PHIL estimator 𝐹b(𝒜). Let 𝒜 be a worst-case tensor
for a blocking scheme b. Assume for contradiction that there are nonzero blocks which
are not completely full and contain more than one nonzero. We can add nonzeros to
more than half full blocks and remove nonzeros from more than half empty blocks
to increase the variance of each of each fill component 𝑥b(𝒜, i). This reassignment
increases the variance of the PHIL estimator 𝐹b(𝒜), which increases the probability
that it will deviate farther from its mean. Thus, our worst case matrix has only
completely full blocks and blocks with only one nonzero.

We formalize this intuition that the variance of the fill estimate 𝐹b is maximized
if full blocks and blocks with only one nonzero occur in equal number by showing
that such matrices are maximally likely to cause a deviation between the true fill 𝑓B
and the PHIL estimator 𝐹b.

Theorem 5.15 Consider a matrix ℳ with an even number 𝑇 of nonzero blocks
under a particular blocking scheme b, such that precisely 𝑇/2 of the nonzero blocks
are completed filled with nonzeros and 𝑇/2 of the nonzero blocks contain only one
nonzero. Then for any 𝜀 > 0 and matrix ℳ′ with 𝑇 nonzero blocks under blocking
scheme b,

Pr [|𝑓b(ℳ′)− 𝐹b(ℳ′)|/𝑓b(ℳ′) > 𝜀]

≤ Pr [|𝑓b(ℳ)− 𝐹b(ℳ)|/𝑓b(ℳ) > 𝜀]

Proof. Given a matrix ℳ′ with 𝑇 nonzero blocks, exactly one of the following
statements must hold:

105

1. Every block in ℳ′ is either completely filled with nonzeros, or contains a single
nonzero.

2. There are some blocks 𝑆 that are not completely filled but contain more than
one nonzero.

For any matrix for which (2) holds, we may pick a block in 𝑆 and add a nonzero
to it (if it more than half full) or remove a nonzero from it (if it is more than half
empty). This increases the variance of each of each value 𝑥b(ℳ′, i), and therefore
also increases the variance of the PHIL estimator 𝐹b(ℳ′). Increasing the variance
increases the probability Pr [|𝑓b(ℳ′)− 𝐹b(ℳ′)|/𝑓b(ℳ′) > 𝜀]. By induction on the
number of applications of this procedure, there exists a matrix 𝒜 where every block
is either completely filled or contains a single nonzero such that 𝒜 has a higher failure
probability (i.e. is “more pathological”) than ℳ′.

Suppose that𝒜 has 𝑝𝑇 blocks filled completely with ℓ nonzeros and (1−𝑝)𝑇 blocks
containing a single nonzero, for some 0 ≤ 𝑝 ≤ 1. Therefore, every 𝑥b(𝒜, i) is either
1/ℓ or 1, in the case where i is in a completely filled block or a nearly-empty block,
respectively. The variance of the PHIL estimator 𝐹b(𝒜) is given by 𝑝(1−𝑝)/ℓ, which
is maximized when 𝑝 = 1/2. Thus, Pr [|𝑓b(𝒜)− 𝐹b(𝒜)|/𝑓b(𝒜) > 𝜀] is maximized
when 𝒜 is ℳ.

For our concrete test case, we create a 10, 000× 10, 000 matrix called
pathological_PHIL with 10, 000 full 12×12 blocks and 10, 000 sparse 12×12 blocks.
PHIL should perform poorly on this matrix.

We also devised an empirically pathological matrix called pathological_OSKI
to bring out the worst in the OSKI algorithm. Since OSKI samples rows with equal
probability, hiding many blocks which look different from the rest of the matrix in
a single row should cause OSKI to perform poorly. We tested PHIL and OSKI on
a pathological_OSKI matrix of size 100, 000 × 100, 000 where the first 6 rows are
dense, while all other rows have only a single nonzero in the first column.

Evaluation metrics
Since program autotuning algorithms typically run at runtime before execution of
the tuned operation, the speedups gained by autotuning must be weighed against
the execution time of the algorithm. Because we tested an example of autotuning
blocked SpMV, we normalize the time OSKI and PHIL take to estimate the fill by
the duration of an unblocked parallel CSR SpMV.

We use the SPARSITY performance model to select a blocking scheme. Since
the estimated performance is proportional to the fill, we judge the quality of a fill
estimate using the maximum relative error.

Definition 5.16 The maximum relative error of a fill estimate 𝑓 over all blockings
b ≤ 𝐵 is

max
b≤𝐵

|𝑓b − 𝐹b|
𝑓b

.

106

Note that a maximum relative error greater than 1 represents a complete loss of
accuracy, as a bogus algorithm that returns 0 for the estimated fill of all blocking
schemes would achieve a better maximum relative error.

Empirical study with fixed parameters
We tested PHIL and OSKI on almost all of the matrices with more than one million
nonzeros from the sparse matrix collection using the default recommended settings
of both algorithms. All but two are from the University of Florida Sparse Matrix
Collection (Suitesparse) [113]. These matrices were chosen to represent a variety of
application domains and block structures.

My S.M. thesis [388] contains all of the results from our comparison of PHIL and
OSKI with fixed parameters. The default parameters to PHIL are 𝜀 = 3 and 𝛿 = 0.01
when 𝐵 = 12, and they are 𝜀 = 0.25 and 𝛿 = 0.01 when 𝐵 = 4. The parameters to
OSKI are 𝜎 = 0.02 (the recommended setting) for all cases.

These extensive experiments show that for a fixed setting of parameters, the run-
time and relative error of our fill estimation algorithms varies substantially from
matrix to matrix (although the relative error of PHIL is consistently small).

We compare PHIL and OSKI with fixed settings in terms of runtime, mean
maximum relative error, and the resulting BCSR SpMV time. Figure 5-11 shows an
example of our with study with fixed parameters on our two synthetic matrices.

Our results show that in most cases, PHIL was more accurate and much faster
than OSKI. PHIL always produced results with a mean maximum relative error less
than .05, while in a few cases OSKI produced results with a mean maximum relative
error which was worse or much worse than 1. Finally, we test PHIL and OSKI on
the synthetic pathological matrices and report our findings in Figure 5-11.

Since PHIL uses a fixed number of samples, PHIL’s normalized runtime appears
higher for small matrices because PHIL takes longer relative to the parallel CSR
matrix-vector multiplication time on smaller matrices. On larger matrices (when
autotuning is most important), however, PHIL usually takes at most 10 matrix-
vector multiplies, outperforming OSKI by factors of 10 to 40.

Both the PHIL and OSKI estimates led to remarkably similar BCSR matrix-
vector multiplication times. It may be possible to improve the chosen blocking
schemes with a more complex performance model [84], but our focus is on estimating
the fill and not on modeling the performance of sparse kernels.

Accuracy return on time investment
Since running both algorithms under fixed settings is only one way to execute PHIL
and OSKI, we compared the algorithms using a range of parameters on a selection
of matrices in Figure 5-10. Figure 5-10 shows the mean maximum relative error as
a function of the runtime of the estimation algorithm on four different matrices.

We chose four matrices as a representative sample of inputs. We compared PHIL
and OSKI on the matrices ct20stif and gupta1 from Suitesparse because Vuduc
et al. [369] used them to measure OSKI. We also tested PHIL and OSKI on our
pathological inputs.

107

We found that PHIL provides better estimates of the fill than OSKI for any
amount of time invested. On these four matrices, PHIL is both more efficient and
more accurate than OSKI. On pathological_PHIL, PHIL performs better than
OSKI, but the performance difference is smaller than the difference between PHIL
and OSKI on ct20stif and gupta1. On pathological_OSKI, OSKI fails to estimate
the fill in any reasonable time.

Experimental setup
We now explain how we generated our empirical results. We implemented1 both PHIL
and OSKI for sparse matrices in CSR format in C, which can efficiently execute the
dense integer and floating point operations in Compute𝒳 (Figure 5-9). Finally, both
implementations run serially and use the mt19937 random number generator from the
C++ Standard Library.

We chose blocking schemes to maximize estimated performance of blocked SpMV
according to the SPARSITY performance model. To create the performance ma-
trix PERF for the SPARSITY performance model, we timed BCSR matrix-vector
multiplication performance for 100 trials on a 1000 × 1000 dense matrix. We used
TACO to generate parallel BCSR kernels for each blocking scheme, which we ran on
one socket with 12 threads.

We ran all of our experiments on a node with two sockets, each with a 12-core
Intel® Xeon™ Processor E5-2695 v3 “Ivy Bridge” at 2.4 GHz. Each core has 32 KB
of L1 cache and 256 KB of L2 cache. Each socket has 30 MB of shared L3 cache.

5.6 Conclusion
This chapter introduced PHIL, the first fill-estimation algorithm with provable guar-
antees. PHIL computes an (𝜀, 𝛿)-approximation to the fill and requires a number of
samples independent of the input size.

It also showed empirically that PHIL estimates the fill of a sparse matrix at
least 2 times faster than OSKI on most of our real-world inputs and provides use-
ful estimates of the fill even in pathological test cases. PHIL and OSKI produced
comparable speedups in blocked sparse matrix-vector multiply in most cases using
their recommended parameters. PHIL produced far more accurate estimates of the
fill than its worst-case accuracy guarantee.

Sampling techniques are useful in program autotuning since we can often sacrifice
some accuracy in the heuristics for a faster autotuner. As libraries for numerical

1Our serial code is available under the BSD 3-clause license at
https://github.com/peterahrens/FillEstimation/releases/tag/IPDPS2018.

108

https://github.com/peterahrens/FillEstimation/releases/tag/IPDPS2018 .

0
0.1
0.2
0.3
0.4
0.5

0 50 100 150 200 250 300
0

0.2
0.4
0.6
0.8
1

1.2
1.4

0 20 40 60 80 100 120 140 160
0

0.5
1

1.5
2

2.5
3

3.5
4

0 50 100 150 200 250 300 350 400
0

0.1
0.2
0.3
0.4
0.5

0 500 100
0

150
0

200
0

M
ea
n
M
ax
im

um
Re

la
tiv

e
Er
ro
r ct20stif

Phil
OSKI

gupta1 pathological_OSKI

Normalized Time to Estimate

pathological_PHIL

Figure 5-10: Mean maximum relative error (Definition 5.16) as a function of mean estima-
tion time (normalized to the mean time it takes to perform a parallel sparse matrix-vector
multiplication in CSR format using TACO [220]) for four matrices. Both axes use loga-
rithmic scale. All means are the average of 100 trials. The error bars reflect one standard
deviation above and below the mean. The blue solid line represents PHIL and the orange
dotted line represents OSKI. Each point is a separate setting for the parameters. ct20stif
is the stiffness matrix arising from the application of finite element methods to a structural
problem with some block structure. gupta1 is the matrix representation of a linear program-
ming problem, and has no obvious block structure. The pathological matrices are described
in more detail in [388]. Note that errors above 1 represent a complete loss of accuracy.

𝐵 = 12 𝐵 = 4

Matrix Information

Normalized
Time to
Estimate

Fill

Mean
Maximum
Relative
Error

Normalized
TACO SpMV

Time

Normalized
Time to
Estimate

Fill

Mean
Maximum
Relative
Error

Normalized
TACO SpMV

Time

Name NNZ (k) Size (m + n) PHIL OSKI PHIL OSKI PHIL OSKI PHIL OSKI PHIL OSKI PHIL OSKI

Domain: Synthetic
pathological_PHIL 72,356 23,989 695.7 177.4 0.046 0.383 1.0* 1.0* 2.769 90.79 0.092 0.037 1.0* 1.0*
pathological_OSKI 69,994 20,000 164.0 33.30 0.012 3.666 0.635 0.635 0.793 17.05 0.060 1.800 0.713 0.809

Figure 5-11: On the pathological synthetic matrices, we show the mean estimation time,
mean maximum relative error (Definition 5.16), and the resulting mean parallel sparse
matrix-vector multiply (SpMV) time in BCSR format with the optimal blocking scheme
according to the SPARSITY performance model. Times are normalized to the mean time
taken to perform one parallel sparse matrix-vector multiply (SpMV) on the unblocked CSR
matrix. All means are the average of 100 trials. All blocked and non-blocked matrix-
vector multiplies are performed using TACO. Highlighted cells show the better result be-
tween PHIL and OSKI. The left group of columns corresponds to a maximum block size
𝐵 = 12. The right group of columns corresponds to a maximum block size of 𝐵 = 4.
* Results with an asterisk are cases where a slowdown was observed when the performance
model was used with the given estimates. Since most autotuners will try both an unblocked
CSR format and the predicted best blocking scheme with BCSR format, they may choose
to use CSR if no speedup is observed and so these results are listed as 1.0.

computation evolve and autotuning moves from compile-time to run-time implemen-
tations, developers will need efficient heuristics [133]. PHIL’s empirical success sug-
gests broader potential for sampling techniques in the design of autotuned numerical
software. Faster sampling algorithms with provable guarantees will allow library de-
velopers to write software that can more accurately specialize to user data and provide
the best possible performance for their application and hardware.

109

Future work
Future work includes an optimized, vectorized implementation of PHIL and an ex-
tension to handle sparse tensors in multiple storage formats. Compute𝒳 should
benefit from instruction-level parallelism. One of our goals in the design of PHIL
was to express the fill-estimation problem as a dense set of operations that can be
computed efficiently.

We found that the blocked SpMV times due to blocking schemes chosen accord-
ing to the SPARSITY performance model were similar for both PHIL and OSKI.
Perhaps a more complex performance model [84] would lead to different choices of
blocking schemes and therefore different blocked SpMV performance.

Coarse fill estimation
Some blocked formats [82,399] store their blocks in a sparse format. These blocks are
usually much larger than the blocks we considered in this thesis, but we can extend
any algorithm (e.g. PHIL) for Problem 5.6 to estimate the fill of larger blocks by
limiting our attention to multiples of some base block size.

Problem 5.17 (Coarse fill estimation) Given a tensor 𝒜 ∈ F𝐼1×𝐼2×···×𝐼𝑅, a base
block size q, and a maximum multiplier 𝐵, compute an approximation 𝐹b(𝒜) accurate
to within a factor of 𝜀 for all b where 𝑏𝑟 = 𝑏′𝑟𝑞𝑟 and 1 ≤ b′ ≤ 𝐵 with probability 1−𝛿.

Let 𝒜′ ∈ F𝐼′1×𝐼′2×···×𝐼′𝑅 be a tensor. We first set 𝒜′[j] to the number of nonzeros in
block j of 𝒜 under the blocking scheme q. Notice that 𝑓b′(𝒜′) = 𝑓b(𝒜), so a solution
to Problem 5.6 on 𝒜′ is a solution to Problem 5.17 on 𝒜. Since 𝑘(𝒜′) ≤ 𝑘(𝒜),
I′ ≤ I, and we can construct 𝒜′ in 𝑂(𝑘(𝒜)) time, most algorithms (including PHIL)
that solve Problem 5.6 can solve Problem 5.17 with an addition of 𝑂(𝑘(𝒜)) to their
asymptotic running time.

Locality-first strategy. PHIL efficiently supports blocked formats, which apply
the locality-first strategy to sparse matrix and tensor operations. The first step
in the strategy is to understand locality in the problem. Sparse operations often
have low temporal locality, but there are opportunities for spatial locality. Blocked
formats enhance spatial locality by storing nonzeroes in nonempty blocks rather than
individually. These blocked formats trade off some task parallelism at the individual
nonzero level for other types of parallelism such as data-level parallelism such as
vectorization. PHIL estimates the fill, an important quantity in block size selection,
to efficiently enable blocked formats with minimal overhead and high performance.

110

Chapter 6

Write-Optimized Skip Lists

This chapter presents an write-optimized external-memory skip list that takes the first
step in the locality-first strategy by understanding and optimizing for spatial locality
in data structure design. The write-optimized skip list is a serial data structure that
takes the first step towards an efficient parallel write-optimized data structure by
optimizing for locality first. It achieves asymptotically optimal performance for all
operations in the DAM model by exploiting spatial locality.

This work was conducted in collaboration with Michael A. Bender, Martín Farach-
Colton, Rob Johnson, Simon Mauras, Tyler Mayer, and Cynthia Phillips [49].

Abstract
The skip list is an elegant dictionary data structure that is commonly deployed in
RAM. A skip list with 𝑁 elements supports searches, inserts, and deletes in 𝑂(log𝑁)
operations with high probability (w.h.p.) and range queries returning 𝐾 elements in
𝑂(log𝑁 +𝐾) operations w.h.p.

A seemingly natural way to generalize the skip list to external memory with block
size 𝐵 is to “promote” with probability 1/𝐵, rather than 1/2. However, there are
practical and theoretical obstacles to getting the skip list to retain its efficient per-
formance, space bounds, and high-probability guarantees.

This chapter gives an external-memory skip list that achieves write-optimized
bounds. That is, for 0 < 𝜀 < 1, range queries take 𝑂(log𝐵𝜀 𝑁 + 𝐾/𝐵) I/Os w.h.p.
and insertions and deletions take 𝑂((log𝐵𝜀 𝑁)/𝐵1−𝜀) amortized I/Os w.h.p.

The write-optimized skip list inherits the virtue of simplicity from RAM skip lists.
Moreover, it matches or beats the asymptotic bounds of prior write-optimized data
structures such as 𝐵𝜀 trees or LSM trees. These data structures are deployed in
high-performance databases and file systems.

The main technical challenge in proving the write-optimized bounds comes from
the fact that there are so few levels in the skip list, an aspect of the data structure that
is essential to getting strong external-memory bounds. This chapter uses extremal-
graph coloring to show that it is possible to decompose paths in the skip list into
uncorrelated groups, regardless of the insertion/deletion pattern. Thus, this chapter
achieves write-optimized bounds by averaging over these uncorrelated paths rather
than by averaging over uncorrelated levels, as in the standard skip list.

111

6.1 Introduction
The skip list [310] is an elegant randomized dictionary data structure built from
cascading linked lists of geometrically decreasing sizes.

A skip list with 𝑁 elements supports searches, inserts, and deletes in 𝑂(log𝑁)
operations with high probability1 (w.h.p.) and range queries returning 𝐾 elements
in 𝑂(log𝑁 +𝐾) operations w.h.p. [125, 219, 297]. Skip lists have found broad appli-
cation [12,21,23,149,164,180,199,291,332], and they are widely deployed in produc-
tion [223,301,330].

This chapter proposes a write-optimized skip list. The write-optimized skip
list is a randomized external-memory dictionary that offers asymptotically optimal
point-query and insertion performance in the external-memory model while inheriting
many of the practical and theoretical advantages of a traditional skip list.

By external-memory, we mean that the data structure resides on a large external
storage device, such as a disk or SSD. The external storage device is accessed via
I/Os that transfer blocks of size 𝐵 to a smaller cache (e.g. RAM) of size 𝑀 .

By write-optimized, we mean that the data structure has asymptotically better
insertion performance than a B-tree [34] and query performance at or near that of a B-
tree. In practice, the best write-optimized dictionaries match B-trees in terms of query
speed while performing insertions and deletions one or two orders-of-magnitude faster.
Over the past two decades, researchers have developed write-optimized dictionaries
for databases and file systems [20,46–48,75,76,81,165,166,201,244,288,324,325,392],
several of which have been shown to be asymptotically optimal [76, 392].

Skip list structure. A skip list consists of ℎ = 𝑂(log𝑁) lists {ℒ0,ℒ1, ..,ℒℎ}, called
levels, where the base level ℒ0 is a linked list of all items of the set, in sorted order.
Each item in level ℒ𝑖 also appears in (i.e., is promoted to) level ℒ𝑖+1 with probability
1/2. All elements that have been promoted to ℒ𝑖+1 are pivots with respect to ℒ𝑖

because they partition ℒ𝑖 into ranges for searches. An element promoted to level ℒ𝑖+1

has a pointer to its successor in level ℒ𝑖+1 as well as a pointer to its own occurrence
in level ℒ𝑖 (see Figure 6-1).

A query for element 𝑦 begins at the first node on level ℒℎ and ends on level ℒ0 at
the smallest element no greater than 𝑦. At level 𝑖, the search performs a sequential
scan until it finds the last element, 𝑒, that is less than or equal to 𝑦 in ℒ𝑖. At that
point, the search follows the pointer to 𝑒 in level ℒ𝑖−1 and resumes its sequential scan
from that point.

An insertion of element 𝑒 first performs coin tosses to compute the height ℎ𝑒 of 𝑒.
The insertion then searches for 𝑒 and inserts it into lists ℒ0, . . . ,ℒℎ𝑒 , with appropriate
pointer adjustments.

1An event 𝐸𝑛 on a problem of size 𝑛 occurs with high probability if Pr{𝐸𝑛} ≥ 1 − 1/𝑛𝑐 for
some constant 𝑐.

112

�1 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x10

x10

x9x7

x7

x7

x5x2

x2

�1

�1

�1

(a) RAM skip list.
−∞ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

−∞ x3 x7 x8

−∞ x7

(b) B-skip list.

Figure 6-1: An in-memory (RAM) skip list (a) and external-memory B-skip list (b). In
the B-skip list, the node size varies by a factor of 𝑂(log2𝑁). While the B-skip list achieves
asymptotically better bounds than the RAM skip list in expectation, they both achieve
the same high-probability bounds [39]. In contrast, the write-optimized skip list has better
bounds than the B-skip list both in expectation and w.h.p.

Inheriting the desirable properties of skip lists. Skip lists have desirable algo-
rithmic properties, which the write-optimized skip list inherits.

For example, it is an advantage to be built from a collection of linked lists.
Practitioners generally like to make concurrent lock-free dictionaries as lock-free
skip lists [149, 179, 309, 357, 364] because it is attractive to build on top of existing,
production-quality lock-free linked lists [260,271,349].

Moreover, skip lists are elegant and have an easy-to-understand randomized bal-
ancing mechanism. Finally, skip-lists are weight balanced [282] in a probabilistic
sense, which makes them useful as an algorithmic tool.

It is these desirable properties that makes us particularly excited to have another
optimal write-optimized data structure at our disposal, even though (a few) other
optimal structures already exist [46,75,76,81,392].

See Section 6.7 for speculation how a write-optimized skip list may make it easier to
implement concurrency and perhaps lock-freedom. Given that the community is only
now exploring how to make full-featured, scalable, acid-compliant, write-optimized
indexing structures, it is worth having many options in an implementer’s arsenal.

Adapting to external memory
We now articulate the subtleties in adapting skip lists to work in external memory. We
review the external-memory model, which is used to analyze disk-resident indexing
structures in databases and file systems.

External-memory model. The external-memory or disk-access model (DAM) [3]
consists of two levels of memory: a fast memory (RAM) of size 𝑀 and a slow arbi-
trarily large external memory, such as a disk. Block transfers, or I/Os, between disk
and RAM occur in blocks of size 𝐵. Performance is measured in terms of the number
of I/Os.

External-memory skip lists. Given the success of the skip list in internal memory,
it is natural to extend it to external memory. Indeed, such a data structure exists
and is called a B-skip list [1, 39, 51,86,104,161].

The straightforward way to extend the skip list to external memory is to promote
elements with probability 1/𝐵 rather than 1/2. At a given level, each promoted

113

element is stored in a contiguous chunk along with the run of nonpromoted elements
that follow it. These chunks define the nodes of the B-skip-list. Since disk blocks
have size 𝐵, each node consumes at least 𝐵 space, regardless of how many elements
it contains (see Figure 6-1).

This B-skip list retains the simplicity of the original RAM skip list but unfortu-
nately has optimal search performance only in expectation, not with high probabil-
ity [39]. Each node has an expected Θ(𝐵) elements, but w.h.p. there exist nodes with
as many as Θ(𝐵 log𝑁) elements and nodes with as few as Θ(𝐵/ log𝑁) elements.
Large nodes cause problems because we want searches to take 𝑂(log𝐵 𝑁) I/Os, but
performing a linear scan of a node of size Θ(𝐵 log𝑁) requires Θ(log𝑁) I/Os.

We can obtain high-probability bounds on the cost of searches by changing the
promotion probability to 1/

√
𝐵, rather than 1/𝐵 [39]. Even with this larger pro-

motion probability, there are only 𝑂(log√𝐵 𝑁) = 𝑂(log𝐵 𝑁) levels. Each node now
has

√
𝐵 elements in expectation, with the actual number of elements ranging from

Θ(
√
𝐵/ log𝑁) to Θ(

√
𝐵 log𝑁) w.h.p. No matter how big 𝐵 is relative to log𝑁 , this

version of the skip list has a search cost of 𝑂(log𝐵 𝑁).
However, now most nodes are mostly empty, so this version wastes space.

Write-optimized skip list
The write-optimized skip list uses the random and variable amount of extra space in
each node to store a buffer, similar to a B𝜀-tree [47,76]. By buffering elements within
nodes, we can move (or “flush”) inserted items down the skip list in batches. This
speeds up insertions on average, similar to buffer use in other write-optimized data
structures. However, unlike deterministic write-optimized structures, the number of
pivots in a node can vary by a factor of as much as 𝑂(log2𝑁), which changes the
effectiveness of the buffer substantially, and threatens the attainability of optimal
high-probability amortized insert bounds.

The main contribution of this chapter lies in the analysis. We show that the
write-optimized skip list has an asymptotically optimal search-insert tradeoff [76,392],
similar to the B𝜀-tree [76, 81, 201], the COLA [46], or the xdict [75]. These search-
insert bounds hold both in expectation and with high probability.

The write-optimized skip list has an additional technical complication at the leaves
to ensure good range-queries and space consumption. We promote with probability
1/𝐵1−𝜀 at the leaf level and 1/𝐵𝜀 at all other levels. We delay the promotion of
elements from buffers at the leaf level as a simple mechanism to guarantee that leaf
nodes remain Θ(𝐵) full.

Challenges in attaining high-probability bounds. A particularly troubling as-
pect of this data structure is that the ratio of a node’s buffer size to number of children
can vary by a factor of Θ(log2𝑁). For example, the root itself might be one of these
outlier nodes, an 𝑂(log𝑁) factor larger than average. In that case, the large number
of pivots (and low amortized per-child buffer size) would affect all insertions.

In data structures with depth 𝑂(log𝑁) such local variation would even out, both
on average and w.h.p. But, the write-optimized skip list has only 𝑂(log𝐵 𝑁) depth,
which is insufficient to overcome unlucky coin tosses. The surprising result is that

114

this buffered skip list meets the desired I/O goals.
To prove high-probability bounds, we need to find, for any workload, sets of

Ω(log𝐵𝜀) insert paths whose I/O complexity is uncorrelated. This appears to be
challenging for some workloads. For example, in a sequential-insert workload, any
insert path lies on the rightmost spine of the data structure. Furthermore, since all
insertions pass through the top level of the data structure, a large node at the top of
the skip list can affect the I/O performance of a substantial fraction of insertions.

Fortunately, we are operating in external memory: we can assume that the top few
levels of the data structure are cached. Traversing cached levels incurs no I/Os. We
show that the remaining levels of the tree offer enough disjoint root-to-leaf paths so
that we can prove the desired bounds for write optimization. Indeed, even if all insert
paths seem to follow the same root-to-leaf path (e.g., the rightmost spine), the insert
path changes structure sufficiently frequently that we can find disjoint root-to-leaf
paths.

This proof assumes an optimal paging algorithm. However, the performance
bounds in this chapter still hold in systems that use LRU, since LRU with constant
resource augmentation is constant competitive with the optimal paging algorithm.

For ease of presentation, we first give a proof of high-probability bounds that
applies when there are insertions, but no deletions. The proof relies on a coloring
argument of the insert paths.

Deletions destroy this first proof: paths that are independent at some point can be
moved together by deletions of intervening elements so that they become correlated.
We show, via an extremal graph-coloring argument, that there is always a good
partitioning of the paths into uncorrelated sets, no matter what the deletion pattern
is. This allows us to prove high-probability bounds under any mix of insertions and
deletions.

Contributions

This chapter proves the following theorem establishing the performance of write-
optimized skip lists.

Theorem 6.1 Consider an 𝑁-element write-optimized skip list running in exter-
nal memory. Let memory-hierarchy parameters 𝐵 and 𝑀 obey the “tall-cache”
assumption that 𝑀 = Ω(𝐵2 log4𝐵). Let the block size 𝐵 be large enough that
min{𝐵𝜀, 𝐵1−𝜀} ≥ log𝑁 .

A write-optimized skip list that performs insertions, deletions, and queries achieves
the following I/O bounds for tunable performance parameter 0 < 𝜀 < 1:

• Insertions and deletions take 𝑂
(︀
(log𝐵𝜀 𝑁)/(𝐵1−𝜀)

)︀
amortized I/Os in expecta-

tion and w.h.p.

• Range queries returning 𝐾 elements take 𝑂(log𝐵𝜀 𝑁+𝐾/𝐵) I/Os in expectation
and w.h.p. (Point queries are range queries with 𝐾 = 1.)

• The structure takes 𝑂(𝑁) space, in expectation and w.h.p.

115

The write-optimized skip list’s guarantees (like those of a regular skip list) are
based on an oblivious adversary. The oblivious adversary can issue arbitrary insert
and delete operations, but does not have access to the heights of the elements in the
structure (i.e., the random tosses).

Map. Section 6.2 explains how to build and use the write-optimized skip list. Sec-
tion 6.3 proves several structural properties of the write-optimized skip list. Section 6.4
proves performance bounds for point queries and range queries whp. It also proves
bounds on insertion and deletion in expectation. Section 6.5 proves amortized in-
sertions bounds w.h.p. and Section 6.6 adjusts the argument to include deletions
w.h.p. Section 6.7 concludes with some extensions and implementation issues.

6.2 Structure and operations of a write-optimized
skip list

This section explains how to build the write-optimized skip list. It also sets up
notation that will be used throughout the rest of the chapter.

Overall structure. The write-optimized skip list has pointer structure similar
to that of the B-skip list [39, 161]. It is composed of a sequence of hierarchical
levels ℒ0,ℒ1, . . . ,ℒℎ, where ℎ is the height of the data structure. We will show
ℎ = 𝑂(log𝐵𝜀 𝑁) w.h.p.

Each level consists of a linked list of nodes (which will have size Θ(𝐵) w.h.p.),
where each node is partially filled with pivots. Nodes at level 0 are leaves. Each
pivot element 𝑒 on level ℒ𝑖≥1 has a pointer to the child node containing its occurrence
on level ℒ𝑖−1. (We will see that sometimes there may temporarily be no node that
contains 𝑒 on level ℒ𝑖−1; in this case, the pointer points to the node that would contain
𝑒 based on the sort order.) The smallest pivot in a node is called its leader. Each
node at level 𝑖 contains a pointer to the next node at that level (see Figure 6-2).

Write-optimized skip list nodes are similar to nodes in a B𝜀-tree [47, 76] in that
each node also contains a buffer. All the elements in a node’s buffer are greater than
or equal to the node’s leader and smaller than the leader of the next node on that
level. Inserted items are stored in nodes’ buffers and are flushed in batches from
parents to children. Thus, all elements move towards ℒ0, where they remain (until
they are deleted).

Randomized balancing. Each element 𝑒 in the data structure has an integer height
ℎ𝑒 determined by a sequence of biased coin flips. Coin flips are implemented by
hashing 𝑒, meaning that even if an element is inserted, deleted, and reinserted, ℎ𝑒

does not change. To determine ℎ𝑒, flip a biased coin until the first tail and set ℎ𝑒 to
the length of the run of heads. For the first flip, the probability of heads is 1/𝐵1−𝜀,
and on subsequent flips the probability of heads is 1/𝐵𝜀. We say that an element 𝑒
has been promoted to level 𝑖 > 0 if ℎ𝑒 ≥ 𝑖.

The promotion probabilities are set such that each node on levels ℒ𝑖≥1 has Θ(𝐵𝜀)
pivot elements in expectation and each node on level ℒ0 has Θ(𝐵1−𝜀) elements in

116

Figure 6-2: Structure of a write-optimized B-skip list with block size 𝐵 = 6. We illustrate
the pointer structure of the skip list as well as the pivot and buffer structure of nodes. Each
node has size 𝑂(𝐵) w.h.p. Any extra space in the nodes is used as buffer space. The number
of children at any (internal nonroot) node varies by an 𝑂(log2𝑁) factor, meaning that the
contribution to the amortized I/O cost for insertions and deletions from that node also varies
by an 𝑂(log2𝑁) factor. This large variation is an obstacle for designing external-memory
skip lists with high-probability performance bounds.

expectation. The variable (random) amount of extra space in each node serves
as the buffer space in our insertion algorithm and enables us to achieve amortized
high-probability write-optimized update bounds, as discussed in Section 6.5 and Sec-
tion 6.6.

As with a regular skip list, to ensure that there is a root for the entire structure,
there is a special element −∞ that is defined to have the largest height of any element.

Insertions and deletions. When a new element is inserted, store it in the root’s
buffer. When an element 𝑒 is deleted, store a tombstone 𝑒 in the root’s buffer.

Buffer-flushing mechanism. When the buffer in node 𝐷 at level ℒ𝑖≥1 becomes
full (i.e., it overflows), perform a flush operation. During a flush, distribute the
elements in 𝐷’s buffer among the buffers of 𝐷’s children. This may require an I/O
per child to bring the children nodes into main memory.

Whenever any one child has 𝐵1−𝜀 delete messages destined for it, flush those delete
messages to the appropriate child immediately. (This extra rule for flushing deletes
helps us achieve the desired range-query bounds; see Theorem 6.9).

Pivots and leaders. When an element 𝑒 gets flushed out of the buffer of a node 𝐷
of height 𝑖 ≤ ℎ𝑒, 𝑒 becomes a pivot of 𝐷 in addition to being flushed to the buffer of
one of 𝐷’s children. This new pivot will point to the node to which 𝑒 is being flushed.
This means that 𝐷 now has two (or more) pivots that point to the same child.

If 𝑖 < ℎ𝑒, then split 𝐷 into two nodes 𝐷′ and 𝐷′′, making the current leader of 𝐷
the leader of 𝐷′ and 𝑒 the leader of 𝐷′′. Since 𝐷 may have multiple pivots pointing
to the same child, splitting 𝐷 may result in some of 𝐷’s children having more than
one parent.

Whenever a node 𝐷 that has multiple parents is split, update all of 𝐷’s parents to
point to the newly created nodes. Splitting a node 𝐷 will not change the size of any of
𝐷’s parents so that, unlike a B-tree, splitting can proceed in a purely top-to-bottom
fashion. This is because, whenever a node 𝐷 is split to create a new node 𝐷′′ with
leader 𝑒, element 𝑒 must already be a pivot in 𝐷’s parents.

117

When a delete message 𝑒 is flushed from a node, delete 𝑒 as a pivot of that node,
if it happens to be one. If 𝑒 is also the leader of that node, then merge that node
with its predecessor on that level. Thus, merges are the reverse of splits.

Leaves require special handling. Whenever there is a flush from a parent 𝐷 at level
1 to all of its leaves, rebalance all the leaves as follows: greedily choose the breaks
between leaves so that each leaf approximately fills a block and each leaf begins with
a pivot of 𝐷 (but not every pivot of 𝐷 begins a leaf).

Queries. To search for element 𝑒, traverse the root-to-leaf path to 𝑒, and retain
all these nodes in memory until the query is done. Our assumptions on the size
of memory imply that 𝑀 > 𝐵 log𝐵𝜀 𝑁 , so that a complete root-to-leaf path fits in
memory.

The leaf may or may not contain 𝑒 itself. Insertions and deletions of 𝑒 may reside
in buffers on the root-to-leaf path. Find the messages in the highest buffer that affects
𝑒: if it is an insert, then 𝑒 is present. If it is a delete, then 𝑒 is absent. The I/O
complexity is 𝑂(log𝐵𝜀 𝑁) w.h.p.

Each buffer could be checked on the way down, until the first message that affects
𝑒 is found. But the above method generalizes to richer queries. Consider finding the
successor of 𝑒. First, find the successor of 𝑒 in every root-to-leaf buffer and return the
min-value of these that is currently in the dictionary. A trivial way to do this is to
sort all the messages in all the buffers under consideration by (𝑓, 𝑖, 𝑡), where 𝑓 is the
key, 𝑖 is the height, and 𝑡 is the type (insertion or deletion), then to remove all but
the first occurrence of each key. This yields the current state of each key. Finally,
search for 𝑒’s successor by finding the smallest 𝑓 > 𝑒 and then scanning to the first
insertion.

There is one missing detail. If 𝑒 is the largest element in its leaf and is larger
than everything in the root-to-leaf buffers, then the successor of 𝑒 will reside in the
root-to-leaf path of the successor leaf. This does not increase the I/O complexity of
successor, which is 𝑂(log𝐵𝜀 𝑁).

A range query is implemented by repeated successor queries. Once the beginning
of the range is found, successive leaves contain Θ(𝐵) values in the range, and the
I/Os for fetching internal nodes is dominated by that of fetching leaves. Thus, a
𝐾-element range query takes 𝑂(𝐾/𝐵 + log𝐵𝜀 𝑁) I/Os.

Top-down splits and merges: another advantage of write-optimized skip
lists. Splits, merges, and promotions are performed in a top-to-bottom fashion. As we
describe briefly in Section 6.7, this artifact of using a randomized rebalancing scheme
may, in fact, turn out to be another hidden advantage of the write-optimized skip list
over other data structures.

In particular, it may make it easier to implement concurrent write-optimized skip
lists. There may be advantages both for lock-based implementations as well as lock-
free versions. See Section 6.7 for details.

118

6.3 Structural bounds
This section establishes structural properties of the write-optimized skip list, estab-
lishing both expected and high-probability bounds.

We assume throughout that min{𝐵𝜀, 𝐵1−𝜀} ≥ log𝑁 .

Local structure

Lemma 6.2 (Pivots in an internal node) An internal node has 𝐵𝜀 pivots in ex-
pectation and 𝑂(𝐵𝜀 log𝑁) = 𝑂(𝐵) pivots w.h.p.

Proof. By construction, we begin a new internal node when we see a promotion to
the next level. Therefore, the number of pivots in each internal node can be modeled
as the number 𝑋 of tails before the first heads in a sequence of independent coin flips
with a head probability of 𝐵−𝜀. The expectation of 𝑋 is 𝐵𝜀. The high probability
bounds follow from the Chernoff bounds.

The following lemma implies that accessing any node requires 𝑂(1) I/Os w.h.p.

Lemma 6.3 (Node size) For 0 < 𝜀 < 1, a node is comprised of 𝑂(1) blocks w.h.p.

Proof. For levels greater than 0, nodes contain pivots and Θ(𝐵) buffer space. By
Lemma 6.2, nodes have 𝑂(𝐵) pivots w.h.p., so the total size of an internal node is
𝑂(1) disk blocks.

By the same argument, even though the promotion probability at the leaves is
1/𝐵1−𝜀, every run of Θ(𝐵) elements at the leaf level has a promoted element w.h.p.
Thus, when packing elements at the leaf level into blocks, we can create a new leaf
every Θ(𝐵) blocks w.h.p. Hence, every node at level 0 consumes 𝑂(1) blocks w.h.p.

The following lemma bounds the number of neighbors—parents, children, succes-
sors and predecessors—of a node. This will help us bound the cost of performing
flushes, since flushes may have to access all of a node’s neighbors.

Lemma 6.4 (Neighbor bounds) Let 𝐷 be a node at height at least 1. The number
of parents of 𝐷 is 𝑂(1) w.h.p. The expected number of children of 𝐷 is 𝑂(𝐵𝜀). If the
height of 𝐷 is exactly 1, then 𝐷 has 𝑂(log𝑁) = 𝑂(𝐵𝜀) children w.h.p.

Proof. The bound on children breaks into two cases:

• If 𝐷 is at level 𝑖 > 1 then, by Lemma 6.2, its expected number of pivots is
𝑂(𝐵𝜀), and therefore so is the expected number of children.

• Nodes at level 1 are split whenever an element is promoted to level 2. Each
element in level 0 has a 1/𝐵 chance of being promoted to level 2. By Cher-
noff bounds, any run of Ω(𝐵 log𝑁) elements at level 0 has at least 1 element
promoted to level 2 w.h.p. Thus, w.h.p. no node at level 1 has more than
𝑂(𝐵 log𝑁) elements in its children. Since each child has Θ(𝐵) elements, nodes
at level 1 have 𝑂(log𝑁) = 𝑂(𝐵𝜀) children w.h.p.

119

The number of parents of 𝐷 is at most the number of messages in 𝐷’s buffer that
have height at least 2 larger than the height of 𝐷. Since 𝐷 has height at least 1,
the probability that any particular item in 𝐷’s buffer has height 2 greater than the
height of 𝐷 is at most 1/𝐵1+𝜀. Since 𝐷’s buffer contains 𝑂(𝐵) items, the expected
number of such elements in 𝐷’s buffer is 𝑂(1/𝐵𝜀). Thus, by the Chernoff bounds,
the number of such elements is 𝑂((log𝑁)/𝐵𝜀) w.h.p. Since log𝑁 < 𝐵𝜀, the number
of such elements, and hence the number of parents of 𝐷, is 𝑂(1).

Global structure

Theorem 6.5 (Linear space) A write-optimized skip list on 𝑁 elements uses
𝑂(𝑁/𝐵) blocks in expectation and w.h.p.

Proof. Each leaf holds Θ(𝐵) items by construction and from Lemma 6.3 consumes
𝑂(1) blocks w.h.p. Thus, the total space consumed by leaves is 𝑂(𝑁/𝐵) w.h.p.

The number of blocks at ℒ1 is also 𝑂(𝑁/𝐵) since it is not more than the number
of leaves.

For levels 2 and above, the space consumption follows the same analysis as the
𝐵-skip list.

The following two lemmas help us bound the I/O costs of queries and inserts.

Lemma 6.6 (Height upper bound) For constant 0 < 𝜀 < 1, the height of the
write-optimized skip list is 𝑂(log𝐵𝜀 𝑁) both in expectation and w.h.p.

Proof. The probability that any given element has height at least ℎ ≥ 1 is
1/𝐵1−𝜀+(ℎ−1)𝜀.

Let 𝑐 ≥ 2 be a constant. The probability that a given element has height at least
ℎ = 1 + 𝑐 log𝐵𝜀 𝑁 is at most

1

𝐵1+(ℎ−2)𝜀
≤ 1

𝐵𝜀(ℎ−1)
≤ 1

𝐵𝜀𝑐 log𝐵𝜀 𝑁
.

The probability that any given element has height at least 1+𝑐 log𝐵𝜀 𝑁 is at most
1/𝑁 𝑐. By the union bound, the probability that any of the 𝑁 elements has height at
least 1 + 𝑐 log𝐵𝜀 𝑁 , is at most 1/𝑁 𝑐−1.

Lemma 6.7 (Pivots on a search path) The total number of pivots at level 2 or
higher touched by any root-to-leaf search path in the data structure is 𝑂 (𝐵𝜀 log𝑁)
w.h.p.

Proof. Consider the search path “backwards.” That is, start from the element 𝑥𝑖 in
the leaf level, and consider the unique trajectory from 𝑥𝑖 back to the root following
pointers backwards. The search path is comprised of some number of horizontal
pointers (point to pivots on the same level) and 𝑂(log𝐵𝜀 𝑁) vertical pointers (from
Lemma 6.6).

We can model the length of this search path mathematically as the number of
coin flips until 𝑂(log𝐵𝜀 𝑁) heads have been seen with high probability. At levels 1
and above, the probability of a head is 1/𝐵𝜀. Using Chernoff bounds, one can prove
that 𝑂(𝐵𝜀 log𝑁) coin flips are enough to go back from level 1 to the root w.h.p.

120

6.4 Simple runtime bounds
This section gives high-probability bounds on the query performance. It also gives
expected bounds on the amortized cost of insertion and deletion.

The amortization in the insertion bound is similar to the analysis of flushes in
a B𝜀-tree [76]. One interesting difference is that, with B𝜀-trees, one must analyze
the cost of splitting separately from the cost of flushes, since splitting is a non-local
operation. In the write-optimized skip list, on the other hand, splitting and merging
is performed locally as part of flushing, so we can bound its cost as part of the analysis
of the flushing cost.

Query performance
Next, we show bounds for point queries with constant tunable performance parameter
𝜀.

Theorem 6.8 (Point queries) A point query has a worst case I/O complexity
𝑂(log𝐵𝜀 𝑁) w.h.p.

Proof. From Lemma 6.7, each search path contains 𝑂(𝐵𝜀 log𝑁) elements w.h.p.
Furthermore, the height of the tree is 𝑂(log𝐵𝜀 𝑁) w.h.p. (from Lemma 6.6). For
any search path, we must pay at most a single random I/O each time we descend a
level. However, elements of the same level are stored contiguously in blocks (nodes),
therefore we can make a linear scan over a level reading 𝑂(𝐵) elements per I/O.

Thus, the cost to read all elements in a particular search path is 𝑂(log𝐵𝜀 𝑁 +
(𝐵𝜀 log𝑁)/𝐵) = 𝑂(log𝐵𝜀 𝑁) w.h.p.

Theorem 6.9 (Range queries) The I/O complexity of range queries is
𝑂(log𝐵𝜀 𝑁 + 𝐾/𝐵) w.h.p. where 𝐾 is the number of elements in the requested
interval.

Proof. The cost for range queries can be analyzed using the search paths of the left
and right ends of the requested interval. The complexity of a range query is bounded
by the number of leaf nodes holding the elements in the range plus 𝑂(log𝐵𝜀 𝑁) (the
cost of a point query w.h.p.). Between the two search paths is a small write-optimized
skip list of the 𝐾 items returned by the range query. By Theorem 6.5, the total space
consumed by the nodes in this mini skip list is 𝑂(𝐾/𝐵) w.h.p.

Insert and delete bounds in expectation

Theorem 6.10 (Write-optimized updates) For 0 < 𝜀 < 1, the amortized cost
of inserting or deleting an element in the data structure is 𝑂((log𝐵𝜀 𝑁)/𝐵1−𝜀) in
expectation.

121

Proof. We first analyze the expected cost of a flush. A flush of a node 𝐷 must
access all the children and parents of 𝐷, in addition to writing any new nodes that
result from splitting or merging 𝐷. By Lemma 6.4, there are 𝑂(𝐵𝜀) parents and
children in expectation. If we do a merge, we may have to access 𝐷’s predecessor and
its parents, but this is 𝑂(1) additional nodes in expectation. Thus, the total number
of nodes accessed during a flush is 𝑂(𝐵𝜀) in expectation. From Lemma 6.3, each node
fits in 𝑂(1) blocks w.h.p., so the total number of I/Os required by a flush is 𝑂(𝐵𝜀)
in expectation.

We now analyze the expected amortized insertion/deletion cost. By Lemma 6.6,
each element (or tombstone) must be flushed 𝑂(log𝐵 𝑁) times w.h.p. Thus, the
total number of element flushes we must perform during any sequence of 𝑁 inser-
tions and deletions is 𝑂(𝑁 log𝐵 𝑁) with high probability. Each flush performs Θ(𝐵)
element-flushes with high probability. Thus, the total number of flushes performed
is 𝑂((𝑁 log𝐵 𝑁)/𝐵) with high probability. Since each flush costs 𝑂(𝐵𝜀) I/Os in ex-
pectation, the amortized insertion cost is 𝑂((log𝐵 𝑁)/𝐵1−𝜀) I/Os in expectation.

6.5 High probability insertion-only bounds
This section establishes expected and high-probability bounds on the amortized in-
sertion cost for a write optimized skip list that only handles insertions. We prove
these bounds for a skip list that also handles deletes in Section 6.6.

Unfortunately, Theorem 6.10 does not obviously generalize to give matching high
probability bounds on the amortized insertion cost. This is because, although there
are many node flushes, many are not independent, preventing us from applying Cher-
noff bounds. We may flush a node many times before it gets split or merged with one
of its siblings.

To overcome this problem, we partition the elements inserted into the skip list
into color classes, where all the elements of the same color follow (mostly) disjoint
flushing paths. As a result, all the flushes (and flushing costs) involving these elements
are independent. As long as the number of elements in a color class is large enough,
we can use Chernoff bounds on the total cost of all the flushes of all the elements in
that class.

The main challenge is that we are not guaranteed enough disjoint paths near the
root of the skip list.

We use caching to address this problem. Flushes between nodes in cache incur no
I/O, and hence can be ignored. As long as enough levels at the top of the skip list
are cached, we can find large classes of elements that all follow disjoint paths through
the uncached portion of the skip list.

Caching assumptions and structural bounds
Caching assumptions. Our high-probability bounds assume that the top Ω(1) lev-

els of this data structure (those closest to the root) are permanently pinned in cache.

122

An optimal cache-replacement policy will outperform these results, but an optimal
policy requires prescience, rendering it unimplementable. However, the LRU (least-
recently used) cache-replacement strategy is a 2-approximation to optimal, given a
cache of twice the size [342], implying that our bounds still hold asymptotically with
LRU. We account for the doubled memory in the asymptotics of our tall cache as-
sumption.

For the analysis of the skip list assuming only insertions, we need the cache size to
be Ω(𝐵2 log2𝐵); for the analysis with insertions and deletions, Ω(𝐵2 log4𝐵). There-
fore, we generalize the analysis to a cache of size 𝑀 = Ω(𝐵2𝑋).

Structural properties. We now establish preliminary lemmas about the cached
region (i.e., levels stored in cache).

We first give a lower bound on the number of levels that can be cached and the
size of the largest cached level.

Lemma 6.11 (Height of cached region) Suppose that internal memory has size
𝑀 = Ω(𝑋𝐵2) and let ℎ′ be the height of the lowest level with 𝑂(𝑋𝐵𝜀 log𝑁) nodes.
Then every node in level at least ℎ′ fits in memory w.h.p.

Proof. The number of nodes at level ℎ′ is 𝑂(𝑋𝐵𝜀 log𝑁). Each node requires Θ(𝐵)
space w.h.p. The amount of space for all nodes at height ℎ′ is order the following:

𝐵𝑋𝐵𝜀 log𝑁 ≤ 𝑋𝐵1+𝜀𝐵1−𝜀 = 𝑋𝐵2.

Thus, the size needed to store nodes of level ℎ′ is 𝑂(𝑋𝐵2) w.h.p. By Chernoff
bounds, the number of nodes in higher levels decreases exponentially. Once the
expected number of elements at a level is at most log𝑁 , w.h.p, that level consumes
at most one block. So the total number of nodes in all levels at or above ℎ′ is
𝑂(𝑋𝐵𝜀 log𝑁 + log𝐵𝜀 𝑁). Given the tall cache assumption that 𝑀 = Ω(𝑋𝐵2), there
is sufficient space to store all levels with height at least ℎ′.

Lemma 6.12 (Pivots in last level cached) With a cache of size Ω(𝐵2𝑋), the
lowest level that fits in cache has 𝜔(𝑋 log𝑁) pivots with separate children w.h.p.

Proof. Let ℎ be the height of the highest level that does not fit into internal memory.
(Since 𝑀 < 𝑁 , ℎ exists.) Then, from Lemma 6.11, the number of nodes at that level
is 𝜔(𝑋𝐵𝜀 log𝑁). This means that the number of pivots at level ℎ + 1 that have
separate children is 𝜔(𝑋𝐵𝜀 log𝑁).

The following theorem will help us argue the existence of independent paths
through the disk-resident region.

Theorem 6.13 (Cached element frequency) If 𝑀 = Ω(𝑋𝐵2), then, in any set
of Ω(𝑁/𝑋) contiguous distinct elements at least one element is promoted into a cached
level w.h.p.

123

Proof. Let 𝑝 be the probability that an element has been promoted to the cached
region. Using Lemma 6.12, 𝑝 ≥ (𝑐𝑋 log𝑁)/𝑁 with high probability for all constants
𝑐 > 0.

Now, let 𝑞 be the probability that no element is promoted to the cached region in
a group of Ω(𝑁/𝑋) elements.

𝑞 = (1− 𝑝)Ω(𝑁/𝑋) = exp

(︂
Ω

(︂
𝑁

𝑋

)︂
log(1− 𝑝)

)︂
≤ exp

(︂
−Ω

(︂
𝑝𝑁

𝑋

)︂)︂
≤ exp

(︂
−Ω

(︂
𝑐𝑁𝑋 log𝑁

𝑁𝑋

)︂)︂
=

1

Ω(𝑁 𝑐)
.

Thus, in any such such group of Ω(𝑁/𝑋) elements, w.h.p. at least one element is
promoted to a cached level.

Element coloring algorithm and analysis
We use the aforementioned bounds on the size of the cached region and the frequency
of cached elements to present an element coloring algorithm for insertion analysis.

We describe why normal Chernoff-bound analysis is insufficient and then use a
coloring argument on disjoint root-to-leaf paths in a skip list with a large enough
cache to establish the amortized cost of insert operations w.h.p.

The obstacle to using Chernoff bounds as above is that insertions that pass through
the same node of the skip list will have correlated flushing costs. However, flushes
between nodes in cache require no I/Os. Thus, if enough levels at the top of the tree
are cached, then many insertions will follow independent paths through the uncached
levels of the skip list enabling us to use Chernoff bounds to bound their overall cost.

The rank of an element is its position in the sorted list of all elements in the
data structure regardless of whether or not it has reached the leaves. That is, the 𝑖th
smallest element in the data structure has rank 𝑖, even if it is still making its way
through the internal nodes due to the buffer-flushing scheme described earlier.

The insertion paths of two elements 𝑎, 𝑏 are independent if they are node-disjoint
in the part of the skip list that is not cached in memory. The following lemma proves
the existence of a coloring of elements into such independence classes.

Lemma 6.14 There exists a coloring of elements inserted in the data structure such
that elements in the same color class experience disjoint root-to-leaf paths w.h.p.

Proof. The following algorithm colors elements such that after every operation, the
difference in rank between any two elements of the same color is at least 𝑁/2𝑋.

Coloring algorithm:

• Insert the first 𝑁/𝑋 elements with distinct colors, establishing the set of colors
𝐶.

124

• When a new element 𝑒 is inserted at rank 𝑘, let 𝐶𝐼 be the set of colors of the
elements at ranks [𝑘 − 𝑁/2𝑋, 𝑘 + 𝑁/2𝑋]. Assign 𝑒 the color in 𝐶 ∖ 𝐶𝐼 that
currently has the fewest elements.

If the difference in rank between two elements 𝑎 and 𝑏 (where 𝑎 < 𝑏) is Ω(𝑁/𝑋),
then there exists at least one element (greater than 𝑎 and at most 𝑏) between them
promoted into the cached region w.h.p. (from Theorem 6.13). This element will be a
leader at every level not cached in internal memory. The presence of such an element
is enough to isolate the insertion paths of 𝑎 and 𝑏.

Later insertions in the data structure do not affect this property, because the
difference in rank between two elements can only increase over time.

Now we prove, using the above coloring scheme, that the expected amortized cost
of insertions holds w.h.p. We use the union bound on the amortized insertion costs
for each color class as described in Theorem 6.15.

Theorem 6.15 The amortized insertion cost for Ω(log𝐵) elements with independent
insertion paths in the data structure is 𝑂((log𝐵𝜀 𝑁)/𝐵1−𝜀) w.h.p.

Proof. We show that the amortized cost of flushes is 𝑂((log𝐵𝜀 𝑁)/𝐵1−𝜀) w.h.p.
Recall from Lemma 6.4 that the amortized cost of flushes from level 1 to level 0
is 𝑂(1/𝐵1−𝜀) I/Os w.h.p. Thus, we need to bound the amortized cost of flushing
elements only to levels 1 and above.

As an element moves down the log𝐵𝜀 𝑁 levels, there is a flush at each level. Each
flush moves Θ(𝐵) elements down one level. The total number of I/Os for all these
flushes is the total number of pivots on the path, since each pivot has a child at the
next lower level which could receive elements in a flush. Lemma 6.7 shows that the
total number of pivots on levels 1 and above along any root-to-leaf search path of
length log𝐵𝜀 𝑁 is 𝑂(𝐵𝜀 log𝑁) w.h.p., not matching the expected bounds.

For the amortized analysis to hold w.h.p., we need Θ(𝐵𝜀 log𝐵𝜀 𝑁) pivots at levels
two and above per path when averaged over all paths. At a high level, when we only
consider one path there are not enough trials for us to avoid paying an additional
asymptotic cost.

By identifying Ω(log𝐵) disjoint paths through the above coloring scheme, we can
“concatenate” them. We model the total number of pivots at level 2 and above along
this grouped search path mathematically as the number of coin flips needed until
Ω(log𝑁) heads have been seen with high probability.

By Chernoff bounds, we need 𝑂(𝐵𝜀 log𝑁) coin flips in total for Ω(log𝐵)
heads. Therefore, the amortized number of pivots at level 2 or above per path is
𝑂((𝐵𝜀 log𝑁)/ log𝐵) = 𝑂(𝐵𝜀 log𝐵𝜀 𝑁) w.h.p.

Since we transfer 𝐵 elements with each I/O, the amortized cost of inserting an el-
ement along each of these disjoint paths is 𝑂((𝐵𝜀 log𝐵𝜀 𝑁)/𝐵) = 𝑂((log𝐵𝜀 𝑁)/𝐵1−𝜀).

Recall the “tall cache” assumption that the size of memory 𝑀 = Ω(𝑋𝐵2) for some
memory parameter 𝑋. We now show that 𝑋 = Ω(log2𝐵) is sufficient to achieve the
desired write-optimized bounds in an insert-only data structure.

125

Theorem 6.16 (Write-optimized insertions) If the size of memory 𝑀 =
Ω(𝑋𝐵2) = Ω(𝐵2 log2𝐵) in an insert-only skip list, the insertion cost per element
is 𝑂((log𝐵𝜀 𝑁)/𝐵1−𝜀) w.h.p.

Proof. After an insertion sequence, the elements have been divided into color
classes. Consider the following two cases for the color classes:

Case 1: A color class has at least log𝐵 elements in it. We can apply the
Chernoff bound analysis for concatenated paths from Theorem 6.15 and obtain
𝑂((log𝐵𝜀 𝑁)/𝐵1−𝜀) amortized insert cost per element w.h.p.

Case 2: A color class has fewer than log𝐵 elements in it. If 𝑋 = Ω(log2𝐵), there
are 𝑂(𝑁/𝑋) = 𝑂(𝑁/ log2𝐵) color classes by construction. Therefore, there are at
most 𝑂(𝑁/ log2𝐵) “bad” color classes for which we cannot apply Chernoff bounds to
acquire the same asymptotic bound w.h.p. as in Theorem 6.15. Furthermore, there
are strictly fewer than log𝐵 elements in each of these “bad” classes. Therefore, there
are at most 𝑂(𝑁/ log𝐵) “bad” elements. For a “bad” element we may have to pay the
naïve (single path analysis) cost of (log𝑁)/𝐵1−𝜀 (w.h.p.). However, the total cost
amortized for these elements is at most 𝑂((𝑁 log𝐵𝜀 𝑁)/𝐵1−𝜀) w.h.p.

Finally, we calculate the amortized insertion cost per element over 𝑁 inserts. That
is,

(︂
𝑂(𝑁)

log𝐵𝜀 𝑁

𝐵1−𝜀
+𝑂

(︂
𝑁

log𝐵

)︂
log𝑁

𝐵1−𝜀

)︂
/𝑁 = 𝑂

(︂
log𝐵𝜀 𝑁

𝐵1−𝜀

)︂
.

6.6 High probability bounds with insertions and
deletions

Since the previously described coloring scheme in Section 6.5 does not easily extend
to allow deletions, this section resolves the deletion issue with an additional coloring
argument. The previously described coloring scheme allows us to build groups of
Ω(log𝐵) independent paths. However, we cannot perform delete operations, because
the proofs do not allow the difference in rank between elements to decrease.

As the coloring algorithm is only a theoretical tool, we can assume that the ad-
versary has no knowledge of the chosen colors. Equivalently, we can assume that we
know all the requests from the beginning creating an “offline” coloring problem. We
show that this allows us to extend the w.h.p. update bounds to include deletes.

We begin by describing a modified coloring scheme based on building a conflict
graph of keys less than 𝑋 apart in rank. Next, we show that this analysis tech-
nique allows us to prove the desired write-optimized bounds for both insertions and
deletions.

Specifically, we describe a scheme to color Θ(𝑁) updates on a skip list of size 𝑁 .
We introduce an undirected graph 𝐺 = (𝑉,𝐸), with the set of vertices 𝑉 being the

126

keys in the skip list. An edge {𝑢, 𝑣} is added to 𝐸 if and only if at some point the
difference in rank between keys 𝑢 and 𝑣 is smaller than 𝑁/𝑋.

• When inserting an element at rank 𝑘, we add at most 2𝑁/𝑋 edges to the graph,
binding all the keys for which the difference in rank with 𝑘 is smaller than 𝑁/𝑋
not to be of the same color.

• When removing an element at rank 𝑘, we add at most 𝑁/𝑋 edges between the
key of rank 𝑘 + 𝑖−𝑁/𝑋 − 1 and key of rank 𝑘 + 𝑖 for 0 ≤ 𝑖 ≤ 𝑁/𝑋.

The total number of edges is therefore 𝑂(𝑁2/𝑋). We will use this information
with Lemma 6.17.

Recall from Theorem 6.13 that if 𝑀 = Ω(𝐵2𝑋), then at least one element is
promoted into the cached region in a block of 𝑁/𝑋 elements w.h.p.

Therefore, two elements with the same color will have at least one “splitting ele-
ment” between them that causes them to have disjoint paths outside of the cached
region.

At a high level, assume that we have a write-optimized skip list with some 𝑁
active elements. In the very beginning (startup stage), allow the data structure to
fill to some chosen constant size 𝐶min— all operations in this stage therefore have
constant cost. We set this as our first 𝑁 in the following analysis.

We build a conflict graph for some sequence of 𝑁 ′ operations such that even if all
𝑁 ′ operations are deletes, we still have Θ(𝑁) active elements in the data structure
for our amortized analysis. Thus, 𝑁 ′ is some constant fraction of 𝑁 , e.g., 𝑁/4. We
also stop the sequence if the size of the data structure falls below 𝐶min.

Coloring the conflict graph. The analysis of the update cost based on the conflict
graph is done in stages, or epochs, based on the length of the sequence of operations.
At the beginning of a sequence we have 𝑁 active elements. After 𝑁 ′ operations, we
have some 𝑁0 active elements such that 𝑁0 = Θ(𝑁). At the end of this epoch, we
set 𝑁0 as the new 𝑁 and repeat.

Lemma 6.17 Given an undirected graph 𝐺 = (𝑉,𝐸), let 𝜒(𝐺) be the smallest number
of colors needed to color the vertices (chromatic number). Then 𝜒(𝐺) = 𝑂(

√︀
|𝐸|).

Proof. Assume that we have fewer than
(︀
𝜒(𝐺)
2

)︀
edges. There must be two colors

that can be merged together, contradicting the fact that 𝜒(𝐺) is optimal. Therefore,
𝜒(𝐺) = 𝑂(

√︀
|𝐸|).

We can therefore color the keys using 𝑂(𝑁/
√
𝑋) colors.

Analysis using color classes. The analysis is similar to the proof of Theorem 6.16.
We use the grouping technique again with the coloring of the conflict graph and bound
the number of color classes with fewer than log𝐵 elements.

If a color class has at least log𝐵 elements, we can do the analysis using Chernoff
bounds within this color.

127

We can bound the number of elements for which the “grouped” analysis is not
feasible by 𝑂((𝑁 log𝐵)/

√
𝑋). For those elements, we can apply Chernoff bounds

naïvely for a total cost of 𝑂
(︁

𝑁 log𝐵√
𝑋

· log𝑁
𝐵1−𝜀

)︁
.

Since 𝑋 = Ω(log4𝐵), the amortized complexity for the “bad” elements is
𝑂((log𝐵𝜀 𝑁)/𝐵1−𝜀).

At the end of each epoch, start a new conflict graph from scratch. That is, start
with a vertex for each of the 𝑁 ′′ keys currently in the data structure and add edges
between each pair of keys whose ranks differ by at most𝑁/𝑋. Now repeat the analysis
process with 𝑁 = 𝑁 ′′. We thus obtain the following:

Theorem 6.18 (Write-optimized inserts/deletes) If the size of memory 𝑀 =
Ω(𝐵2 log4𝐵) in a skip list with inserts and deletes, then with high probability, the
amortized insertion and deletion cost per element is 𝑂((log𝐵𝜀 𝑁)/𝐵1−𝜀) w.h.p.

6.7 Conclusion
The write-optimized skip list achieves the asymptotically optimal I/O bounds of the
best write-optimized data structure while retaining the elegance and simplicity of
skip lists. The high probability bounds are established via extremal graph-coloring
arguments based on the elements’ root-to-leaf paths through the data structure.

We are hopeful that the skip list’s randomized rebalancing will have practical (as
well as theoretical) impact in the burgeoning area of write-optimization (e.g., as a
basis for full-featured production data structures). We briefly try to articulate why
we are so hopeful.

Regular skip lists have formed the basis for concurrent and lock-free production
dictionaries. Part of the reason why is that they have simpler implementations be-
cause they are built out of regular linked lists.

We believe that write-optimized skip lists will benefit from these advantages as
well. Consider, for example, the node-splitting mechanisms in write-optimized skip
lists versus a B-tree or B𝜀-tree. In a write-optimized skip list, node splits and merges
are triggered “on the way down,” i.e., as insert and delete messages make their way
deeper into the structure.

In contrast, in B-trees and B𝜀-trees, splits are triggered “on the way up,” once
inserts and deletes have reached the leaves. In a concurrent data structure based on
locks, it is important to grab locks according to a prespecified partial order in order to
avoid deadlock. Naïve “hand-over-hand” locking (grab and release locks as you walk
down the tree to avoid throttling concurrency) is insufficient to design concurrent
B-trees or B𝜀-trees. If an insert reaches a leaf and triggers some splits higher up
in the tree, the data structure no longer has the necessary locks higher up in the
tree. Industrial B-trees and B𝜀-trees generally deal with this concurrency issue by
implementing delayed splitting mechanisms.

For example, when we built TokuDB, we built a mechanism for delaying splits,
letting node sizes grow, and letting future inserts or deletes take care of the splits.

128

Clearly, this locking issue is solvable, but the coding seems simpler in a write-
optimized skip list.

Similarly, skip lists have been the data structure of choice for theoretically good,
in-production lock-free dictionaries. This is not only because they are built out of
separate linked lists, but also because of other structural properties (such as level
pointers along the entire level). Perhaps write-optimized skip lists will become the
easiest-to-implement lock-free write-optimized data structures.

Future research includes an implementation study to explore whether the theo-
retical advantages revealed in this chapter can lead to benefits for implementers and
users.

Locality-first strategy. The write-optimized skip list leverages the locality-first
strategy to exploit spatial locality in data structure design as a first step towards an ef-
ficient parallel data structure. Specifically, the skip list in this chapter achieves write-
optimized bounds. That is, for any 0 < 𝜀 < 1, range queries take 𝑂(log𝐵𝜀 𝑁 +𝐾/𝐵)
I/Os w.h.p. and insertions and deletions take 𝑂((log𝐵𝜀 𝑁)/𝐵1−𝜀) amortized I/Os
w.h.p. The write-optimized skip list asymptotically matches the search performance
of the classical B-tree while supporting faster insertions and deletions. It achieves
write-optimized update bounds by taking advantage of memory blocks to buffer ele-
ments. Furthermore, for reasons explained earlier in this section, the write-optimized
skip list may be a good candidate for parallelization because it is a pointer-based data
structure.

129

130

Chapter 7

Beyond Worst-Case Analysis of
Multicore Caching Strategies

This chapter mathematically grounds the locality-first strategy for the multicore
caching problem by showing that the Least-Recently-Used (LRU) algorithm is better
than all other online algorithms on inputs with locality of reference. As we shall see
in Chapter 8, a large class of “lazy” algorithms are equivalently arbitrarily far from
optimal under worst-case analysis. To go beyond worst-case analysis and compare
online algorithms directly, this chapter introduces cyclic analysis, a new measure for
beyond worst-case analysis for online algorithms. The cyclic analysis artifact takes the
first step beyond-worst-case analysis for multicore cache replacement and validates
the locality-first strategy by theoretically supporting the established superiority of
the Least-Recently-Used algorithm in practice [9].

This work was conducted in collaboration with Shahin Kamali [208,210].

Abstract
The divergence between multicore and single-core caching under worst-case analysis
motivates a more in-depth comparison of multicore caching algorithms via alternative
analysis measures. For example, Chapter 8 showed that the competitive ratio of a
large class of online algorithms, including Least-Recently-Used (LRU), grows with
the length of the input. Furthermore, even offline algorithms like Furthest-In-Future,
the optimal algorithm in single-core caching, cannot compete in the multicore setting.
These negative results arise from the increased power of the adversary to adapt to
multicore caching algorithms. Therefore, these results suggest the need for a direct
comparison of online algorithms to each other.

This chapter introduces cyclic analysis, a generalization of bijective analysis intro-
duced by Angelopoulos et al. [13]. Cyclic analysis captures the advantages of bijective
analysis while offering flexibility that makes it more useful for comparing algorithms
for a variety online problems. In particular, this chapter takes the first steps be-
yond worst-case analysis for analysis of multicore caching algorithms. This chapter
uses cyclic analysis to establish relationships between multicore caching algorithms,
including the advantage of LRU over all other multicore caching algorithms in the
presence of locality of reference.

131

7.1 Introduction
Despite the widespread use of multiple cores in a single machine, the theoretical
performance of even the most common cache eviction algorithms is not yet fully
understood when multiple cores simultaneously share a cache. Caching algorithms for
multicore architectures have been well-studied in practice, including dynamic cache-
partitioning heuristics [312, 350, 354] and operating system cache management [143,
311, 386]. There are very few theoretical guarantees, however, for performance of
these algorithms. Furthermore, most existing guarantees on online multicore caching
algorithms are negative [209,251], but resource augmentation may be helpful in some
cases [4, 5].

This chapter explores the multicore caching1 problem in which multiple cores
share a cache and request pages in an online manner. Upon serving a request, the
requested page should become available in the shared cache. If the page is already in
the cache, a hit takes place; otherwise, when the page is not in the cache, the core
that issues the request incurs a miss. In case of a miss, the requested page should be
fetched to the cache from a slow memory. Fetching a page causes a fetch delay in
serving the subsequent requests made by the core that incurs the miss. Such delay
is captured by the free-interleaving model of multicore caching [216,251]. Under this
model, when a core incurs a miss, it spends multiple cycles fetching the page from the
slow memory while other cores may continue serving their requests in the meantime.
Therefore, an algorithm’s eviction strategy not only defines the state of the cache
and the number of misses, but also the order in which requests are served. That is, a
caching algorithm implicitly defines a “schedule” of requests served at each timestep
through its previous eviction decisions.

Divergence between multicore and single-core caching. Previous work [209,
251] leveraged the scheduling aspect of multicore caching to demonstrate that guar-
antees on competitive ratio2 of algorithms in the single-core setting do not extend
to multicore caching. In particular, López-Ortiz and Salinger [251] focused on two
classical single-core caching algorithms, Least-Recently-Used (LRU) [342] and
Furthest-In-Future (FIF) [37], and showed these algorithms are unboundedly
worse than the optimal algorithm OPT in the free-interleaving model3. In the free-
interleaving model, FIF evicts the page furthest in the future in terms of the number
of requests. In the single-core setting, LRU is 𝑘-competitive (where 𝑘 is the size of the
cache) [342], and FIF is the optimal algorithm [37]. Chapter 8 further confirms the
intuition that multicore caching is much harder than single-core caching and showed
that all lazy algorithms are equivalently non-competitive against OPT. An online
caching algorithm is lazy [257] if it 1) evicts a page only if there is a miss 2) evicts no

1This problem is also called “paging” in the literature [251]. We use “multicore caching” because
it more accurately reflects the problem studied in this thesis.

2For a cost-minimization problem, an online algorithm has a competitive ratio of 𝑐 if its cost on
any input never exceeds 𝑐 times the cost of an optimal offline algorithm for the same input (up to
an additive constant).

3Both LRU and FIF evict pages only when the cache is full and there is a request to a page not
in the cache. In the multicore setting, ties can happen; both LRU and FIF break ties arbitrarily.

132

more pages than the misses at each timestep, 3) in any given timestep, does not evict
a page that incurred a hit in that timestep, and 4) evicts a page only if there is no
space left in the cache4. Lazy algorithms capture natural and practical properties of
online algorithms. Common caching strategies such as LRU and First-In-First-Out
(FIFO) are clearly lazy. Unfortunately, the competitive ratio of this huge class of
algorithms is bounded and grows with the length of the input.

At a high level, the divergence between performance of algorithms for multicore
and single-core caching stems from the power of the adversary to adapt to online al-
gorithms and to generate inputs that are particularly tailored to harm the “schedule”
of online algorithms. For these adversarial inputs, the implicit “scheduling” of lazy
algorithms causes periods of “high demand” in which the cache of the algorithm is
congested (cores request many different pages). Meanwhile, an optimal offline algo-
rithm avoids these high-demand periods by delaying cores in an “artificial” way. These
adversarial inputs highlight the inherent pessimistic nature of competitive analysis.

Beyond worst-case analysis. The highly-structured nature of the worst-case in-
puts suggests that competitive analysis might not be suitable for studying multi-
core caching algorithms and motivates the study of alternatives to competitive ratio.
There are two main reasons to go beyond competitive analysis for analysis of multicore
caching algorithms. First, competitive analysis is overly pessimistic and measures per-
formance on worst-case sequences that are unlikely to happen in practice. In contrast,
measures of typical performance are more holistic than worst-case analysis, which dis-
misses all other sequences. Second, competitive analysis does not help to separate
online algorithms for multicore caching because no practical algorithm can compete
with an optimal offline algorithm [209]. Therefore, other measures are required to
establish the advantage of one online algorithm over others. Many alternative mea-
sures have been proposed for single-core caching [38, 71, 73, 214, 224, 395–398]. For a
survey of measures of online algorithms, the reader may consult [72,136,222].

In particular, bijective analysis [14,16,17] is a natural measure that directly com-
pares online algorithms and has been used to capture the advantage of LRU over other
online single-core caching algorithms on inputs with “locality of reference” [14,16]. De-
spite these results, as we shall see, bijective analysis has restrictions when it comes
to multicore caching.

Contributions

This chapter takes the first steps beyond competitive analysis for multicore caching by
extending bijective analysis to a stronger measure named cyclic analysis and demon-
strating how to apply cyclic analysis to analyze multicore caching algorithms. The
pessimistic nature of competitive analysis demonstrates the need for alternative mea-
sures of online algorithms.

Cyclic analysis. This chapter introduces cyclic analysis, a measure that captures
the benefits of bijective analysis and offers additional flexibility. Cyclic analysis gen-

4Lazy algorithms are often called “demand paging” in the systems literature [318]. Algorithms
with properties 1-3 (but not necessarily 4) are called “honest” algorithms [251].

133

eralizes bijective analysis by directly comparing two online algorithms over all inputs.
Traditional bijective analysis compares algorithms by partitioning the universe of
inputs based on input length and drawing bijections between inputs in the same
partition [13, 14, 16, 135]. Cyclic analysis relaxes this requirement by allowing bijec-
tions between inputs of different lengths. This flexibility allows for alternative proof
methods for showing relationships between algorithms.

This chapter shows that all lazy [251, 257] algorithms are equivalent under cyclic
analysis, but the the strict advantage of any lazy algorithm over Flush-When-Full
(FWF) under cyclic analysis (FWF evicts all pages upon a miss on a full cache).
In the single-core setting, the advantage of lazy algorithms over FWF is strict and
trivial: for any sequence, the cost of LRU is no more than FWF. In the multicore
setting, however, such separation requires careful design and mapping with a bijection
on the entire universe of inputs (Theorem 7.8) under cyclic analysis.

Separation of LRU via cyclic analysis. The main contribution is to show the
strict advantage of a variant of LRU over all other lazy algorithms under cyclic
analysis combined with a measure of locality (Theorem 7.17). Although LRU is
equivalent to all other lazy algorithms without restriction on the inputs under cyclic
analysis, it performs strictly better in practice [340]. This is due to the locality of
reference that is present in real-world inputs [8, 103, 122]. In order to capture the
advantage of LRU, this chapter applies cyclic analysis on a universe that is restricted
to inputs with locality of reference [8] and show that LRU is strictly better than any
other lazy algorithm.

Map. The remainder of the chapter is organized as follows. Section 7.2 concretizes
the “scheduling” aspect of multicore caching and defines the cost model used in this
chapter. Section 7.3 introduces cyclic analysis and establishes some useful properties
of this measure. Section 7.4 applies cyclic analysis to establish the advantage of
lazy algorithms over non-lazy FWF. Section 7.5 shows the advantage of LRU over
all other lazy algorithms under cyclic analysis on inputs with locality of reference.
Section 7.6 reviews related models of multicore caching, and Section 7.7 includes a
few concluding remarks.

7.2 Preliminaries
This section presents necessary preliminaries to understand the later contributions
in this chapter. First, it reviews the free-interleaving model [216, 251] of multicore
caching and the cost model used in this chapter. The free-interleaving model is
inspired by real-world architectures and captures the essential aspects of the multi-
core caching problem. Next, it concretizes the difficulty in multicore caching due to
“scheduling” and defines the cost model used in this chapter to measure algorithm
cost.

134

Problem definition

Assume we are given a multicore processor with 𝑝 cores labeled 𝑃1, 𝑃2, . . . , 𝑃𝑝 and a
shared cache with 𝑘 pages (𝑘 ≫ 𝑝).

Input description. An input to the multicore paging problem is formed by 𝑝
online request sequencesℛ = (ℛ1, . . . ,ℛ𝑝). Each core 𝑃𝑖 must serve its corresponding
request sequence ℛ𝑖 = ⟨𝜎𝑖,1, . . . , 𝜎𝑖,𝑛𝑖

⟩ made up of 𝑛𝑖 page requests. For all 𝑖, we
assume 𝑛𝑖 ≫ 𝑘, 𝜏 . The total number of page requests is therefore 𝑛 =

∑︀
1≤𝑖≤𝑝 𝑛𝑖.

We assume that for all values of 𝑖, the length of the request sequence 𝑛𝑖 is arbi-
trarily larger than 𝑘. That is, we assume that 𝑘 ∈ Θ(1), which is consistent with the
common assumption that machine parameters like 𝑘 are constant compared to the
size of the input.

All requests 𝜎𝑖,𝑗 are drawn from a finite universe of possible pages 𝑈 . Throughout
this chapter and Chapter 7, we assume that request sequences for different cores may
share requests to the same page. In practice, cores may share their requests because
of races, or concurrent reads and writes to the same memory location.

Serving requests. Page requests arrive at discrete timesteps. The requests issued
by each core should be served in the same order that they appear and in an online
manner. More precisely, for all 𝑖, 𝑗 ≥ 1, core 𝑃𝑖 must serve request 𝜎𝑖,𝑗 before 𝜎𝑖,𝑗+1,
and 𝜎𝑖,𝑗+1 is not revealed before 𝜎𝑖,𝑗 is served. The multicore processor may serve at
most 𝑝 page requests in parallel (up to one request per core5). Each page request
must be served as soon as it arrives. To serve a request to some page 𝜎𝑖,𝑗 in sequence
ℛ𝑖, core 𝑃𝑖 either has a hit, when 𝜎𝑖,𝑗 is already in the cache, or incurs a fault when
𝜎𝑖,𝑗 is not present in the cache. In case of a fault, the requested page should be fetched
into the cache. The multicore caching problem is also parametrized by a fetch delay
𝜏 , or the (integer) number of timesteps it takes to fetch a page into the cache. During
these timesteps, 𝑃𝑖 cannot see any of its forthcoming requests, that is, 𝜎𝑖,𝑗+1 is not
revealed to 𝑃𝑖 before 𝜎𝑖,𝑗 is fully fetched. In case some other core 𝑃 * ̸= 𝑃𝑖 is already
fetching the page when the fault occurs, 𝑃𝑖 waits for less than 𝜏 timesteps until the
page is fully fetched to the cache. Given an algorithm 𝒜 and an input ℛ, the cost
𝒜(ℛ) is the number of faults algorithm 𝒜 incurs while serving input ℛ.

A multicore caching algorithm 𝒜 reads requests from request sequences in parallel
and is defined by its eviction decisions at each timestep. If a core faults while the
cache is full, 𝒜 must evict a page to make space for the requested page before fetching
it. We continue the convention [176, 251] that when a page is evicted, the cache cell
that previously held the evicted page is unused until the replacement page is fetched.
Finally, the processor serves requests from different request sequences in the same
timestep in some fixed order (e.g., by core index).

135

Timestep (𝑡) Cache before 𝑡 ℛ1, ℛ2 Status Schedule 𝑆ℛ,LRU[𝑡]

0 ⊥⊥⊥⊥ 𝑎1𝑎2𝑎1𝑎5 𝑃1 misses, starts fetching 𝑎1 (𝑎1, 𝑎3)
𝑎3𝑎4𝑎5𝑎2 𝑃2 misses, starts fetching 𝑎3

1 ⊥⊥⊥⊥ 𝑎1𝑎2𝑎1𝑎5 𝑃1 is fetching 𝑎1 (𝑎1, 𝑎3)
𝑎3𝑎4𝑎5𝑎2 𝑃2 is fetching 𝑎3

2 ⊥⊥⊥⊥ 𝑎1𝑎2𝑎1𝑎5 𝑃1 completes fetching 𝑎1 (𝑎1, 𝑎3)
𝑎3𝑎4𝑎5𝑎2 𝑃2 completes fetching 𝑎3

3 𝑎1𝑎3⊥⊥ 𝑎1𝑎2𝑎1𝑎5 𝑃1 misses, starts fetching 𝑎2 (𝑎2, 𝑎4)
𝑎3𝑎4𝑎5𝑎2 𝑃2 misses, starts fetching 𝑎4

4 𝑎1𝑎3⊥⊥ 𝑎1𝑎2𝑎1𝑎5 𝑃1 is fetching 𝑎2 (𝑎2, 𝑎4)
𝑎3𝑎4𝑎5𝑎2 𝑃2 is fetching 𝑎4

5 𝑎1𝑎3⊥⊥ 𝑎1𝑎2𝑎1𝑎5 𝑃1 completes fetching 𝑎2 (𝑎2, 𝑎4)
𝑎3𝑎4𝑎5𝑎2 𝑃2 completes fetching 𝑎4

6 𝑎1𝑎3𝑎2𝑎4 𝑎1𝑎2𝑎1𝑎5 𝑃1 has a hit for 𝑎1 (𝑎1, 𝑎5)
𝑎3𝑎4𝑎5𝑎2 𝑃2 misses, starts fetching 𝑎5

(𝑎3 is the least-recently-used page and evicted)
7 𝑎1⊥𝑎2𝑎4 𝑎1𝑎2𝑎1𝑎5 𝑃1 misses, waits for 𝑎5 (𝑎5, 𝑎5)

𝑎3𝑎4𝑎5𝑎2 𝑃2 is fetching 𝑎5
8 𝑎1⊥𝑎2𝑎4 𝑎1𝑎2𝑎1𝑎5 𝑃1 completes serving 𝑎5 (𝑎5, 𝑎5)

𝑎3𝑎4𝑎5𝑎2 𝑃2 completes fetching (and serving) 𝑎5
9 𝑎1𝑎5𝑎2𝑎4 𝑎1𝑎2𝑎1𝑎5 𝑃1 has completed ℛ1 (⊥, 𝑎2)

𝑎3𝑎4𝑎5𝑎2 𝑃2 has a hit for 𝑎2, completes ℛ2

Figure 7-1: Example of execution of LRU on the input ℛ = (ℛ1,ℛ2), with ℛ1 =
⟨𝑎1𝑎2𝑎1𝑎5⟩ and ℛ2 = ⟨𝑎3𝑎4𝑎5𝑎2⟩. The cache size is 𝑘 = 4 and the fetch delay is 𝜏 = 3.
We use ⊥ in the cache to denote an empty slot or slot reserved for a page currently being
fetched.
If a request incurs a miss, we repeat it in the schedule at most 𝜏 times (or however long
it takes to be fetched, if some other processor already requested it but it has not yet been
fetched). For example, in timestep 7, we wait two timesteps for 𝑎5 to be fetched for 𝑃1

because there were two more steps until 𝑎5 was brought to the cache by 𝑃2.
In the “Cache before 𝑡” column, we keep track of the state of the cache before each timestep.
The rightmost column is the schedule generated by LRU serving ℛ.
The schedules for the two cores 𝑃1 and 𝑃2 are defined respectively with
⟨𝑎1, 𝑎1, 𝑎1, 𝑎2, 𝑎2, 𝑎2, 𝑎1, 𝑎5, 𝑎5,⊥⟩ and ⟨𝑎3, 𝑎3, 𝑎3, 𝑎4, 𝑎4, 𝑎4, 𝑎5, 𝑎5, 𝑎5, 𝑎2⟩.

Scheduling in multicore caching

Multicore caching differs from single-core caching because of the scheduling compo-
nent as a result of the fetch delay. The fetch delay slows down cores at different
rates depending on the misses they experience, and requests with the same index on
different cores may be served at different times depending on previous evictions. In
other words, the eviction strategy implicitly defines a schedule, or an ordering in
which the requested pages are served by an algorithm. Given an input ℛ defined by
𝑝 sequences, the schedule of a caching algorithm can be represented with a copy of
ℛ in which some requests are repeated. These extra requests capture the timestep
at which the processor serves requests from that input sequence using the caching
algorithm. That is, a schedule has all the same requests as the corresponding input,
but repeats page requests upon a miss until the page has been fully fetched.

5In practice, a single instruction of a core may involve more than one page, but we assume that
each request is to one page in order to model RISC architectures with separate data and instruction
caches [251].

136

Figure 7-1 contains an example of serving an input with Least-Recently-Used
(LRU) [176,251,342] under free interleaving. The schedule produced by LRU in the
example input in Figure 7-1 is the underlined request at each timestep (a formal
definition of a schedule can be found in Section 7.5).

Cost model. We use the total time to measure algorithm performance and
denote the cost that an algorithm 𝒜 incurs on input ℛ with 𝒜(ℛ). The non-
competitiveness results from prior work in terms of the number of misses also hold
under the total time [209,251].

Definition 7.1 (Total time) The total time an algorithm 𝒜 takes to serve an input
ℛ is the sum of the timesteps it takes for all cores to serve their respective request
sequences. That is, the total time 𝒜(ℛ) =

∑︀
1≤𝑖≤𝑝

𝒜(ℛ𝑖) where 𝒜(ℛ𝑖) denotes the

timesteps 𝑃𝑖 took to serve ℛ𝑖 with algorithm 𝒜.

Total time combines aspects from both makespan and the number of misses, the
two cost measures in previous studies of multicore caching [216,251]. The makespan
is the maximum time it takes any core to complete its request sequence, and hence is
bounded above by total time. Specifically, the total time is monotonically increasing
with respect to both the number of misses and the makespan.

The total time is a more realistic measure of performance than the number of
misses because it determines performance in terms of the time that it takes to serve
the input. In contrast, the number of misses does not directly correspond with the
time to serve an input because a miss may take less than 𝜏 steps to fetch the page if it
is already in the process of being fetched by another core. The total time also captures
aspects of algorithm performance that are not addressed by makespan. In particular,
makespan does not capture the overall performance of all cores. For example, a
solution in which all cores complete at timestep 𝑡 has a better makespan than a
solution in which one core completes at timestep 𝑡+ 1 while the rest complete much
earlier, e.g. at timestep 𝑡/2. The second solution is preferred in practice (and also
under the total time) as most cores are freed up earlier.

7.3 Cyclic analysis for online problems
This section defines a new analysis measure called cyclic analysis inspired by bi-
jective analysis [13–16, 135] and explores alternative paths to showing relationships
between algorithms under Cyclic analysis extends the advantages of bijective analysis
to online problems with multiple input sequences.

Overview. Although traditional bijective analysis has been applied to compare
single-core caching algorithms, it requires modification to capture the notion of “input
length" in multicore caching. Since each request sequence in an input for multicore
caching may have a different length in terms of the number of requests, there are
multiple ways to define the length of an input. It is not clear which definition of
length is most natural or correct for multicore caching.

137

Furthermore, partitioning the input space based on the number of requests in
an input as in bijective analysis for single-core paging may be overly restrictive for
multicore caching, because the time it takes to serve inputs of the same length (in
terms of the number of requests) may differ depending on the algorithm. In multicore
caching, the time depends on the interleaving of the multiple request sequences. Cyclic
analysis addresses these issues by removing the restriction that bijections should be
drawn between inputs of the same length.

At a high level, in order to show a relationship between two algorithms 𝒜 and ℬ
under bijective analysis or cyclic analysis, one must define a mapping between inputs
and their costs under different algorithms. One way to model mappings between
inputs with different costs is with a input-cost graph. Given algorithms 𝒜 and ℬ,
an input-cost graph is an infinite directed graph where the nodes represent inputs
and there exists an edge from input ℛ1 to input ℛ2 if and only if 𝒜(ℛ1) ≤ ℬ(ℛ2).
In order to show the advantage of algorithm 𝒜 over ℬ, traditional bijective analysis
partitions the (infinite) graph of inputs into finite subgraphs, each formed by inputs
of the same length. Within each partition, the bijection relating 𝒜 to ℬ defines a set
of cycles such that each vertex is in exactly one cycle of finite length (cycles may have
length one, i.e. they may be self-loops). Cyclic analysis relaxes the requirement that
all subgraphs in the partition must be finite, but also requires that each node in each
induced subgraph must have an in-degree and out-degree of one. That is, each node
in the induced subgraph is part of a cycle.

Measure definition and discussion. Let ℐ denote the (infinite) set of all inputs,
and for an algorithm 𝒜 and input ℛ ∈ ℐ, let 𝒜(ℛ) denote the cost 𝒜 incurs while
serving ℛ. The notation in our discussions of cyclic analysis is inspired by [13].

Definition 7.2 (Cyclic analysis) We say that an online algorithm 𝒜 is no worse
than online algorithm ℬ under cyclic analysis if there exists a bijection 𝜋 : ℐ ↔ ℐ
satisfying 𝒜(ℛ) ≤ ℬ(𝜋(ℛ)) for each ℛ ∈ ℐ. We denote this by 𝒜 ⪯𝑐 ℬ. Otherwise
we denote the situation by 𝒜 �𝑐 ℬ. Similarly, we say that 𝒜 and ℬ are the same
according to cyclic analysis if 𝒜 ⪯𝑐 ℬ and ℬ ⪯𝑐 𝒜. This is denoted by 𝒜 ≡𝑐 ℬ.
Finally we say 𝒜 is better than ℬ according to cyclic analysis if 𝒜 ⪯𝑐 ℬ and ℬ �𝑐 𝒜.
We denote this by 𝒜 ≺𝑐 ℬ.

Bijective analysis is defined similarly, except that the input universe is partitioned
based on the length of inputs, and bijections need to be drawn between inputs inside
each partition. In contrast, cyclic analysis allows mapping arbitrary sequences to each
other. Bijective analysis and cyclic analysis have several benefits over competitive
analysis [16]. Specifically, they:

• capture overall performance. If 𝒜 ⪯𝑐 ℬ, every “bad” input for algorithm 𝒜
corresponds to another input for algorithm ℬ which is at least as bad. Hence,
the performance of algorithms is evaluated over all request sequences rather
than a single worst-case sequence.

• avoid comparing to an offline algorithm. Competitive analysis is inherently pes-
simistic as it compares online algorithms based on their worst-case performance

138

against a powerful adversary. This pessimism is especially pronounced in multi-
core caching where an offline algorithm can “artificially” miss on some pages in
order to schedule sequences in a way to minimize its total cost. This scheduling
power is a great advantage for OPT as shown in [251]. Instead, we use cyclic
analysis because it compares online algorithms directly without involving an
offline algorithm.

• can incorporate assumptions about the universe of inputs. Bijective and cyclic
analysis can also define relationships between algorithm performance on a subset
𝑆 ⊂ ℐ of inputs. For example, applying bijective analysis to a restricted universe
of inputs with locality of reference has been used to separate LRU from other
algorithms in the single-core setting [13, 16]. Since LRU exploits locality of
reference, analyzing inputs with locality may yield a better understanding of
the performance of algorithms. Most other measures such as competitive ratio
are unable to separate LRU from other lazy algorithms [13].

As mentioned above, bijective analysis, as defined for single-core caching [13, 16],
requires partitioning the universe of inputs ℐ into finite sets of inputs of the same
length. For multicore caching, however, this partitioning is not necessary nor well-
defined. In fact, for many online problems, the length of input is not necessarily
a measure of “difficulty”, as trivial request (e.g., repeating requests to a page) can
artificially increase the length. As such, there is no fundamental reason to draw
bijections between sequences of the same length.

For problems such as single-core caching and list update [16], where the input
is formed by a single sequence, the length of the input is simply the length of the
sequence. In multicore caching, however, the length of inputs is not well-defined as
multiple sequences are involved. Should the length be the sum of the number of
requests or a vector of lengths for each request sequence? To address these issues,
cyclic analysis generalizes the finite partitions of bijective analysis to the entire uni-
verse of inputs. This would give cyclic analysis a flexibility that makes it possible
to study other problems under this measure. We note that, the restrictive nature
of bijective analysis not only makes it hard to study algorithms under this measure,
but also can cause situations that many algorithms are not comparable at all. The
following example illustrates the restriction of bijective analysis when compared to
cyclic analysis:

Example. Consider two algorithms 𝒜 and ℬ for an online problem P (with a single
sequence as its input). Assume the costs of 𝒜 and ℬ are the same over all inputs,
except for four sequences. Among these four, suppose that two sequences 𝜎1 and 𝜎2

have the same length 𝑚 and we have 𝒜(𝜎1) = 10 and 𝒜(𝜎2) = 40 while ℬ(𝜎1) = 20
and ℬ(𝜎2) = 30. For inputs of length 𝑚, there is no way to define a bijection
that shows advantage of one algorithm over another. So, the two algorithms are
incomparable under bijective analysis. Next, assume for sequences 𝜎3 and 𝜎4 we have
𝒜(𝜎3) = 20,𝒜(𝜎4) = 30,ℬ(𝜎3) = 40, and ℬ(𝜎4) = 20. The following mappings shows
𝒜 ≺𝑐 ℬ: 𝜎1 → 𝜎1, 𝜎2 → 𝜎3, 𝜎3 → 𝜎4, and 𝜎4 → 𝜎2.

Bounding inputs with the same cost. In order for cyclic analysis to be a mean-

139

ingful measure, there must not be an infinite number of inputs that achieve the same
cost. To be more precise, for the universe of inputs ℐ and an algorithm 𝒜, let 𝒜(ℐ)
be the corresponding multiset of costs associated with inputs in ℐ.

Definition 7.3 (Bounded-shared-cost property) A cost measure for an online
problem satisfies the bounded-shared-cost property if and only if for any algorithm 𝒜
and for all unique costs 𝑚 ∈ 𝒜(ℐ), the set of inputs that achieve that cost is bounded.

If a cost measure does not satisfy the bounded-shared-cost property, it is possible
to prove contradicting results under cyclic analysis. That is, if there are infinitely
many inputs that achieve each cost, for any algorithms 𝒜,ℬ, it is possible to define
bijections such that 𝒜 ≺𝑐 ℬ and ℬ ≺𝑐 𝒜.

In the case of multicore caching, the total time and makespan cost models both
have the bounded-shared-cost property while the miss count and the closely related
miss rate do not. For example, the infinitely many sequences that only request some
page 𝛼 (e.g. 𝛼, 𝛼𝛼, 𝛼𝛼𝛼, . . .) all have cost one under miss count, but all have
different costs under total time and makespan.

The following lemma guarantees that cyclic analysis has the “to-be-expected” prop-
erty that if algorithm 𝒜 is better than ℬ, then ℬ is not better than 𝒜. In the case of
bijective analysis, this property easily follows from the fact that bijections are drawn
in finite sets (formed by inputs of the same length). Since the bijections in cyclic
analysis are defined in an infinite space, a more careful analysis is required.

Lemma 7.4 Given algorithms 𝒜,ℬ for a problem satisfying the bounded-shared-cost
property, it is not possible that 𝒜 ≺𝑐 ℬ and ℬ ≺𝑐 𝒜 at the same time.

Proof. If 𝒜 ≺𝑐 ℬ, by Definition 7.2, there must exist an input 𝜎 ∈ ℐ such that
𝒜(𝜎) < ℬ(𝜋(𝜎)). Let 𝜎 be the input with the smallest cost under 𝒜 that differs
between 𝒜,ℬ, and let ℐ𝒜(𝜎)

𝒜 , ℐ𝒜(𝜎)
ℬ ⊂ ℐ be the sequences that have cost at most 𝒜(𝜎)

in 𝒜(ℐ),ℬ(ℐ), respectively. By the bounded-shared-cost property, |ℐ𝒜(𝜎)
𝒜 | and |ℐ𝒜(𝜎)

ℬ |
are both bounded and |ℐ𝒜(𝜎)

𝒜 | > |ℐ𝒜(𝜎)
ℬ |. It is impossible to define another function 𝜑

such that ℬ ⪯𝑐 𝒜 because there are not enough inputs in ℐ𝒜(𝜎)
ℬ to map to all inputs in

ℐ𝒜(𝜎)
𝒜 such that the cost of each input under ℬ is at most the cost of the corresponding

input under 𝒜.
Similarly, if 𝒜 ≺𝑐 ℬ, then 𝒜 ̸≡𝑐 ℬ for problems with the bounded-shared-cost

property. Additionally, cyclic analysis has the transitive property: if 𝒜 ⪯𝑐 ℬ and
ℬ ⪯𝑐 𝒞, then 𝒜 ⪯𝑐 𝒞. The bounded-shared-cost property guarantees that each node
in the input-cost graph has infinite out-degree but finite in-degree because each input
has infinitely many inputs that cost more than it and finitely many inputs that cost
less than it.

Relation of surjectivity to cyclic analysis. In the remainder of the section we
will discuss the role of surjective mappings as an intermediate step before defining
a bijective mapping between infinite sets. In traditional bijective analysis, since the
input set is finite because of the length restriction, any surjective mapping must also

140

𝑋2 𝑌2 𝑋2 𝑌2

𝑥1,1 𝑦1

𝑥1,2

𝑥2,1 𝑦2

𝑥2,2

.

unzip
===⇒

𝑥1,1 𝑦1

𝑥1,2 𝑦2

𝑥2,1 𝑦3

𝑥2,2 𝑦4

.

Figure 7-2: Example of unzipping 𝑋2, 𝑌2 in a natural surjective mapping.

be bijective. In some problems, including multicore caching, it may be easier to define
a surjective mapping between the inputs. We will first show that a class of surjective
mappings can be converted into bijective mappings.

Suppose we have a surjective but not necessarily injective mapping between two
infinite sets 𝑓 : 𝑋 → 𝑌 . For all positive integers 𝑚 ∈ N, let 𝑋𝑚 ⊆ 𝑋, 𝑌𝑚 ⊆ 𝑌 be
subsets of the pre-image and image respectively such that exactly 𝑚 elements in 𝑋𝑚

map to one element in 𝑌𝑚. That is, given some 𝑚, 𝑥 ∈ 𝑋𝑚 implies that there are
𝑚−1 other elements 𝑥1, 𝑥2, . . . , 𝑥𝑚−1 ̸= 𝑥 such that for 𝑖 = 1, . . . ,𝑚−1, 𝑓(𝑥) = 𝑓(𝑥𝑖).
Each 𝑋𝑚, 𝑌𝑚 is an element of a partition of the pre-image and image, respectively.

Definition 7.5 (Natural surjective mapping) Given a surjective function 𝑓 :
𝑋 → 𝑌 , 𝑓 is natural if and only if for all 𝑚 ∈ N, the partitions 𝑋𝑚 and 𝑌𝑚

are either empty or infinite.

For example, the function 𝑓 : N→ N, 𝑓(𝑥) = ⌊𝑥/2⌋ is a natural surjective mapping
(assuming 0 ∈ N) because exactly two elements in the pre-image map to each element
in the image. In contrast, 𝑔 : Z → N, 𝑔(𝑥) = |𝑥| is not natural because there is only
one element in 𝑋1 and 𝑌1 at 𝑥 = 𝑦 = 0.

We introduce natural surjective (NS) analysis, a technique to compare algo-
rithms under cyclic analysis using an intermediate surjective but not injective map-
ping. The formalization is almost identical to Definition 7.2, but the function 𝜋 needs
only to be a natural surjective function. We use ⪯𝑠 to denote the relation between
two algorithms under NS analysis. In the rest of the chapter, we will refer to nat-
ural surjective functions and natural surjective analysis as surjective functions and
surjective analysis, respectively.

Lemma 7.6 (“Unzipping” equivalence) Let algorithms 𝒜,ℬ be algorithms for a
problem with the bounded-shared-cost property. If 𝒜 ⪯𝑠 ℬ under a natural surjective
mapping, then 𝒜 ≺𝑐 ℬ.

Proof. At a high level, we will describe how to convert a natural surjective function
𝑓 into a bijective mapping 𝑓𝑏 by “unzipping” any many-to-one mappings in each
partition. At a high level, the new mapping 𝑓𝑏 “remaps” elements in the preimage to
elements in the image.

Let 𝑋𝑚, 𝑌𝑚 be the pre-image and image of a non-empty mapping-based partition
for any fixed 𝑚 ∈ N. Suppose we order the elements in 𝑌𝑚 from lowest to highest and
let 𝑦𝑖 be the 𝑖-th largest element in 𝑌𝑚. The elements in any set 𝑌𝑚 can be ordered

141

because of the bounded-shared-cost property. Given an element 𝑦𝑚𝑖 ∈ 𝑌𝑚, let the
corresponding elements in the pre-image be 𝑥𝑖,𝑗 ∈ 𝑋𝑚 for 𝑗 = 1, 2, . . . ,𝑚 in some
order. Since 𝒜(𝑥𝑖,𝑗) ≤ ℬ(𝑦𝑚𝑖) for all 𝑖, 𝑗 (by the definition of surjective analysis), for
any 𝑖, 𝑗, 𝒜(𝑥𝑖,𝑗) ≤ ℬ(𝑦𝑚𝑧) for 𝑧 > 𝑖. Therefore, we define a new bijective mapping 𝑓𝑏
based on 𝑓 such that 𝑓𝑏(𝑥𝑖,𝑗) = 𝑦𝑚𝑚𝑖+𝑗−1. The new mapping 𝑓𝑏 satisfies the property
that for all 𝜎 ∈ ℐ, 𝒜(𝜎) ≤ ℬ(𝑓𝑏(𝜎)).

As shown in the example in Figure 7-2, we can convert a natural surjective map-
ping to a bijective one by “unzipping” the mapping and maintaining the relative order
of inputs.

The relationship between surjective analysis and cyclic analysis allows for different
paths to proving relationships between algorithms. In traditional bijective analysis,
we had to define a direct bijection between two algorithms because all surjections are
bijections in finite sets of the same size. Natural surjective analysis is a potentially
easier proof technique that is equivalent to cyclic analysis.

7.4 Cyclic analysis for multicore caching
It is straightforward to show that all lazy multicore caching algorithms are equivalent
under cyclic analysis. Therefore, to show a separation between two algorithms, this
section analyzes a variant of FWF that flushes (empties) the entire cache if it incurs
a miss when the cache is full. In what follows, this section shows the advantage of
lazy algorithms over FWF. While this result is not surprising, the techniques used
in the proofs in this section prepare the reader for the more complicated proof in the
next section.

Lemma 7.7 Assume 𝑝 = 2. Consider two lazy caching algorithms 𝒜 and ℬ which
have the same eviction policy starting at the same timestep 𝑡0 and have the same
cache contents at 𝑡0 except for one page 𝑥 that is present in the cache of 𝒜 and absent
in the cache of ℬ. If 𝒜 and ℬ incurred the same cost up until timestep 𝑡0, we have
𝒜 ≺𝑐 ℬ.

Proof. At a high level, we will define a surjective cyclic mapping on the input space
with cycles of length 2. For inputs where 𝑥 is never requested before being evicted,
𝒜 and ℬ perform similarly. We assume these inputs are mapped to themselves and
ignore them (the cycles associated with these inputs are self-loops). In the remainder
of the proof, we assume 𝑥 is requested for the first time at timestep 𝑡 ≥ 𝑡0 before
being evicted. At timestep 𝑡, 𝒜 has a hit on the request to 𝑥 while ℬ incurs a miss.
As a result, the schedule of the two algorithms (i.e., the order at which they serve
the requests) becomes different after serving 𝑥 and hence there is no guarantee that
𝒜 has less cost that ℬ.

We define a bijection 𝑏 in a way that the schedule of 𝒜 for any input ℛ is similar
to that of ℬ for serving 𝑏(ℛ). The bijection that we define creates cycles of length 2:
if ℛ′ = 𝑏(ℛ) then ℛ = 𝑏(ℛ′); we denote this by ℛ ↔ ℛ′.

Let 𝑃1 and 𝑃2 denote the two cores and let
{︁.. 𝜎1

.. 𝜎2
denote the continuation of

a sequence where 𝑃1 asks for sequence 𝜎1 and 𝑃2 asks for 𝜎2 from time 𝑡 onward.

142

We define the bijection based on two cases. In both cases, one of the cores, say 𝑃2,
has a request to page 𝑥 at time 𝑡 and hence 𝒜 and ℬ perform differently on the
continuation of the sequence. Assume the contents of the caches of 𝒜 and ℬ at time
𝑡 are respectively 𝐻 ∪ {𝑥} and 𝐻. Case 1: 𝑃1 requests a page 𝑞 /∈ 𝐻.

Recall that 𝑃2 asks for 𝑥 at time 𝑡, so the input can be written as ℛ =
{︁.. 𝑞𝜎
.. 𝑥𝜎′

for some 𝜎 and 𝜎′. We define ℛ′ =

{︂
.. 𝑥𝜏𝜎
.. 𝑞𝜎′ . To show the mapping ℛ ↔ ℛ′ is a

valid mapping we need to show 𝒜(ℛ) ≤ ℬ(ℛ′) and 𝒜(ℛ′) ≤ ℬ(ℛ). First, we show
𝒜(ℛ) ≤ ℬ(ℛ′). On input ℛ, 𝒜 has a miss on 𝑞 and a hit on 𝑥 at time 𝑡; so, 𝒜 starts
serving 𝜎 and 𝜎′ at timesteps 𝑡 + 𝜏 and 𝑡 + 1, respectively; it serves 𝜎 exactly 𝜏 − 1
timesteps later than 𝜎′. On input ℛ′, ℬ has a miss on both 𝑥 and 𝑞 at time 𝑡. It
incurs an additional 𝜏 − 1 hits on 𝑥 after fetching it. So, ℬ starts serving 𝜎 and 𝜎′ at
timesteps 𝑡 + 𝜏 + (𝜏 − 1) and 𝑡 + 𝜏 , respectively. In other words, it serves 𝜎 exactly
𝜏 − 1 timesteps later than 𝜎′. The content of the cache of 𝒜 and ℬ is the same for
serving 𝜎 and 𝜎′. We conclude that the number of misses (and hence total time) of ℬ
in serving 𝜎 and 𝜎′ in ℛ is the same as 𝒜 in ℛ′. For the first requests to 𝑞 and 𝑥 in
ℛ, 𝒜 incurs one miss (and total time 𝜏 +1) while ℬ incurs two misses (and total time
3𝜏 − 1) for the first requests to 𝑥𝜏 and 𝑞 in ℛ′. We conclude that 𝒜(ℛ) < ℬ(ℛ′). To
complete the proof in Case 1, we should show 𝒜(ℛ′) ≤ ℬ(ℛ). When 𝒜 serves ℛ′, it
incurs 𝜏 hits on 𝑥𝜏 and one miss on 𝑞; as such, it starts serving 𝜎 and 𝜎′ at the same
time 𝑡+𝜏 . On the other hand, when ℬ serves ℛ, it incurs a miss on both 𝑞 and 𝑥 and
starts serving 𝜎 and 𝜎′ at the same time 𝑡+ 𝜏 . So, the two algorithms incur the same
cost for serving 𝜎 and 𝜎′. Moreover, 𝒜 incurs one miss and 𝜏 hits (and total time 2𝜏)
for serving 𝑥𝜏 and 𝑞 while ℬ incurs two misses (and total time 2𝜏) for serving 𝑞 and
𝑥, so 𝒜(ℛ′) = ℬ(ℛ).

Case 2: 𝑃1 asks for a page 𝑎 ∈ 𝐻.
So, the input can be written as ℛ =

{︁.. 𝑎𝜎
.. 𝑥𝜎′ for some sequence of requests 𝜎 and

𝜎′. We define ℛ′ =
{︁.. 𝑥𝜎
.. 𝑎𝜏𝜎′ . To show the mapping ℛ ↔ ℛ′ is a valid mapping, we

first show 𝒜(ℛ) ≤ ℬ(ℛ′). 𝒜 starts serving both 𝜎 and 𝜎′ in ℛ at 𝑡 + 1 because 𝒜
has hits on both 𝑎 and 𝑥. On the other hand, ℬ has a miss on 𝑥 and a hit on 𝑎 when
serving all copies of 𝜏 . That means, it starts serving both 𝜎 and 𝜎′ in ℛ′ at the same
time 𝑡+ 𝜏 . The content of the cache of the two algorithms is also the same (𝑥 is now
in the cache of ℬ). So, 𝒜 and ℬ incur the same number of misses (and total time)
for both 𝜎 and 𝜎′. For the prefixes 𝑎 and 𝑥 in ℛ, 𝒜 incurs 0 misses (and total time
2); for the prefixes 𝑎𝜏 and 𝑥 in ℛ′, ℬ incurs 1 miss (and total time 2𝜏). We conclude
𝒜(ℛ) < ℬ(ℛ′). Next, we show 𝒜(ℛ′) ≤ ℬ(ℛ). 𝒜 has hits on all requests in 𝑎𝜏 and
𝑥 in ℛ′, i.e., it serves 𝜎 and 𝜎′ at timesteps 𝑡 + 1 and 𝑡 + 𝜏 , respectively. That is, it
serves 𝜎 exactly 𝜏 − 1 units later than 𝜎′. ℬ, on the other hand, has a hit at 𝑎 and a
miss at 𝑥 in ℛ, i.e. it serves 𝜎 and 𝜎′ at times 𝑡 + 1 and 𝑡 + 𝜏 , respectively. So, the
two algorithms incur the same cost for 𝜎 and 𝜎′. For the prefixes 𝑎𝜏 and 𝑥, 𝒜 incurs
0 misses and total time 𝜏 + 1. For the prefixes 𝑎 and 𝑥, ℬ incurs 1 miss and total
time 𝜏 + 1. We conclude that 𝒜(ℛ′) ≤ ℬ(ℛ).

We show the advantage any lazy algorithm 𝒜 over non-lazy FWF by comparing

143

their cache contents at each timestep.

Theorem 7.8 Any lazy algorithm 𝒜 is strictly better than FWF under cyclic anal-
ysis for 𝑝 = 2, that is, 𝒜 ≺𝑐 FWF.

Proof. Let FWF𝑖 be a variant of FWF which, instead of flushing the cache, evicts 𝑖
pages from the cache; these 𝑖 pages are selected according to 𝒜’s eviction policy. That
is, the algorithm evicts 𝑖 pages that 𝒜 evicts when its cache is full (as an example,
if 𝒜 is LRU, the algorithm evicts the 𝑖 least-recently-used pages). We will show
𝒜 ≺𝑐 FWF by transitivity of bijection. In particular, we show

𝒜 = FWF1 ≺𝑐 . . . ≺𝑐 FWF𝑘−1 ≺𝑐 FWF𝑘 = FWF.

Let FWF𝑡
𝑖 be an algorithm that applies FWF𝑖 for the first 𝑡 timesteps and

FWF𝑖+1 for timesteps after and including 𝑡 + 1. If we can show FWF𝑡+1
𝑖 ≺𝑐 FWF𝑡

𝑖

for all 𝑡, again by transitivity of bijection, we get FWF𝑖 ≺𝑐 FWF𝑖+1. We note that
FWF𝑡+1

𝑖 and FWF𝑡
𝑖 differ in serving at most one request at time 𝑡, and they have

the same eviction strategy for the remainder of the input. If the cores do not incur
a miss at time 𝑡, both algorithms perform similarly. For sequences for which there
is a miss at time 𝑡, there will be one less page in the cache of FWF𝑡

𝑖 compared to
FWF𝑡+1

𝑖 . Therefore, FWF𝑡+1
𝑖 ≺𝑐 FWF𝑡

𝑖 by Lemma 7.7.
As the bijection in the proofs illustrates, the main insight of cyclic analysis is

the direct comparison of algorithms by drawing mappings between inputs of different
lengths. In contrast to the single-core setting, inputs of the same length (in the
number of requests) in multicore caching may take different amounts of time. So we
define bijections based on the schedule (and therefore length in time) rather than the
number of requests.

7.5 Advantage of LRU with locality of reference
To demonstrate how to use cyclic analysis to separate algorithms, this section proves
the separation of LRU from all other lazy algorithms on inputs with locality of refer-
ence via cyclic analysis. Along the way, it demonstrates how to use surjective analysis
to establish relations between algorithms under cyclic analysis. In practice, LRU (and
its variants) are empirically better than all other known caching algorithms [340] be-
cause sequences often have temporal locality.

Preliminaries

First, this section formalizes the notion of a schedule from Section 7.2, which repre-
sents an algorithm’s eviction decisions by repeating requests in an input on a miss.
It will use the schedule to later define locality of reference. Throughout this section,
let 𝒜 be a caching algorithm and ℛ be an input.

144

Definition 7.9 (Schedule) The schedule 𝒮ℛ,𝒜 = {𝒮ℛ1,𝒜, . . . ,𝒮ℛ𝑝,𝒜} is another
input where each request sequence is defined as the implicit schedule that 𝒜 generated
while serving ℛ. That is, 𝒮ℛ𝑖,𝒜[𝑡] is the request that core 𝑃𝑖 serves at timestep 𝑡 under
𝒜. Also, 𝒮ℛ,𝒜 is the same as ℛ with each miss repeated at most 𝜏−1 times (as many
repetitions as it takes to resolve the given miss, which might be less than 𝜏 − 1 if the
page was already in the process of being fetched). We use 𝒮ℛ𝑖,𝒜[𝑡1, 𝑡2] (for all 𝑖) to
denote all requests (including repetitions due to misses) made by 𝑃𝑖 between timesteps
𝑡1 and 𝑡2 (inclusive).

We use the formal definition of schedule to discuss dividing up an input under 𝒜
based on its schedule up until some timestep.

Definition 7.10 (Schedule prefix and suffix) Let 𝑛ℛ,𝒜 be the time required for
𝒜 to serve ℛ. Given an integer timestep 𝑗 < 𝑛ℛ,𝒜, we define parts of the schedule
that will be served before, after, and during timestep 𝑗 + 1.

Informally, the schedule prefix 𝒮pre
𝑗,ℛ,𝒜 is all the requests served up to timestep 𝑗

with repetitions matching scheduling delay, the schedule at timestep 𝑗+1, 𝒮ℛ,𝒜[𝑗+1],
is all requests served at timestep 𝑗 +1, and the schedule suffix 𝒮suf

𝑗,ℛ,𝒜 is all requests
served after timestep 𝑗+1 with repetitions matching scheduling delay. Note that 𝒮pre

ℛ,𝒜

or 𝒮suf
ℛ,𝒜 may be empty. When the timestep 𝑗 and/or algorithm 𝒜 are clear from

context, we will drop them from the schedule notation.

Definition 7.11 (Request prefix and suffix) Let ℛ≤𝑗,𝒜 be all subsequences from
ℛ served up to timestep 𝑗, ℛ>𝑗,𝒜 be all subsequences from ℛ served after timestep 𝑗,
and 𝑟𝑗+1 be the requests at timestep 𝑗+1. For simplicity, we define the request prefix
as ℛpre = ℛ≤𝑗,𝒜 and request suffix as ℛsuf = ℛ>𝑗+1,𝒜 when 𝑗,𝒜 are understood from
context.

The request prefix and suffix formalizes the analysis technique from Section 7.4 of
defining mappings based on the continuation of the input after some timestep.

Using the LRU example in Figure 7-1 when 𝑗 = 4, ℛpre
1 = 𝑎1𝑎2, ℛpre

2 = 𝑎3𝑎4
because those are the pages that have been requested until timestep 4. Similarly,
ℛsuf

1 = 𝑎1𝑎5 and ℛsuf
2 = 𝑎5𝑎2 because those are the requests remaining after timestep

4. Additionally, 𝒮pre
ℛ1

= 𝑎1𝑎1𝑎1𝑎2 and 𝒮pre
ℛ2

= 𝑎3𝑎3𝑎3𝑎4. At timestep 4, both cores are
fetching, so the requests at that timestep 𝑟𝑗+1 = (𝑎2, 𝑎4). The suffix is the schedule
for timesteps after 4, so 𝒮suf

ℛ1
= 𝑎2𝑎1𝑎5𝑎5 and 𝒮suf

ℛ2
= 𝑎4𝑎5𝑎5𝑎5𝑎2.

Locality of reference and the Max-Model. We will restrict the space of all inputs
with the “Max-Model”, an experimentally-validated model of locality of reference
that limits the number of distinct pages in subsequences of an input with a concave
function [8].

We define a window of size 𝑤 in the multicore setting as 𝑝 runs of consecutive
requests of length 𝑤 (one for each core). The Max-Model for multicore caching is the
same as in single-core caching except that it considers windows over all cores.

In the Max-Model for multicore caching, an input ℛ is consistent with some
increasing concave function 𝑓 if the number of distinct pages in any window of size

145

𝑤 is at most 𝑓(𝑤), for any 𝑤 ∈ N [8]. That is, a function 𝑓 : N→ R+ is concave if
𝑓(1) = 𝑝, and ∀𝑛 ∈ N : 𝑓(𝑛+1)− 𝑓(𝑛) ≤ 𝑓(𝑛+2)− 𝑓(𝑛+1). In the Max-Model, we
also require that 𝑓 is surjective on the integers between 𝑝 and its maximum value.

It is easy to adapt cyclic analysis to the Max-Model by restricting to inputs
consistent with a concave function 𝑓 (denoted by ℐ𝑓). Let 𝒜 ⪯𝑓

𝑐 ℬ denote that 𝒜 is
no worse than ℬ on ℐ𝑓 under cyclic analysis. Similarly, let 𝒜 ⪯𝑓

𝑠 ℬ denote that 𝒜 is
no worse than ℬ on ℐ𝑓 under surjective analysis.

Advantage of LRU on inputs with locality

In the rest of the section, we will show that LRU is no worse than sequences with
locality under cyclic analysis by establishing a surjective mapping (Definition 7.5) and
converting it into a bijective mapping (Lemma 7.6). The main technical challenge
in the proof is that sequences with the same number of requests may have different
schedules and therefore may differ significantly in their cost, even if they only differ
in one request. We use cyclic analysis to avoid the restriction of comparing inputs of
the same length and instead define a function to relate inputs of the same cost.

Along the way, we demonstrate how to use surjective analysis as a proof technique
for comparing algorithms via cyclic analysis on the entire space of inputs as described
in Section 7.3. The construction of the surjective mapping is inspired by a similar
argument in the single-core setting by Angelopoulos and Schweitzer [16] which es-
tablishes a bijective mapping within finite partitions, but requires a more complex
mapping based on schedules.

We will show that for every algorithm 𝒜, LRU ⪯𝑓
𝑠 𝒜. An arbitrary algorithm 𝒜

may be very different from LRU. Therefore, instead of defining a direct bijection, we
will use intermediate algorithms ℬ1, . . . ,ℬℓ such that 𝒜 ≡ ℬ1 ⪰𝑓

𝑠 . . . ⪰𝑓
𝑠 ℬ𝑖 ⪰𝑓

𝑠 . . . ⪰𝑓
𝑠

ℬℓ ≡ LRU. The result follows from the transitivity of the “⪯𝑓
𝑠 ” relation. Intuitively,

we construct algorithms “closer” to LRU at each step in the series as we will explain
in Lemma 7.14. We formalize the notion of an algorithm 𝒜’s “closeness” to LRU in
terms of the evictions that it makes. An algorithm 𝒜 is LRU-like at timestep 𝑡 if
after serving all requests up to time 𝑡 − 1, it serves all requests at time 𝑡 as LRU
would.

Defining a surjective mapping between inputs. At a high level, the proof pro-
ceeds by defining a surjection between similar sequences with two pages swapped. We
define a “complement” of a sequence as a new sequence with certain pages swapped,
and show properties of complements of sequences with locality required for our main
proof.

Definition 7.12 (Complement [16]) Let 𝛽, 𝛿 denote two distinct pages in 𝑈 , the
universe of pages. Let ℛ𝑖[𝑗] denote the 𝑗-th request in the 𝑖th request sequence of an
input ℛ. The complement of ℛ𝑖[𝑗] with respect to 𝛽 and 𝛿, denoted by ℛ𝑖[𝑗]

(𝛽,𝛿)
,

is the function that replaces 𝛽 with 𝛿, and vice versa. Formally, ℛ𝑖[𝑗]
(𝛽,𝛿)

= 𝛿, if
ℛ𝑖[𝑗] = 𝛽; ℛ𝑖[𝑗]

(𝛽,𝛿)
= 𝛽, if ℛ𝑖[𝑗] = 𝛿; and ℛ𝑖[𝑗]

(𝛽,𝛿)
= ℛ𝑖(𝑗), otherwise.

146

ℛ
𝑡+ 𝜏 + 𝑎1

𝑡+ 𝜏𝑡

𝑃1

𝑃2

𝑡+ 𝜏 − 𝑏2 𝑡+ 𝜏 + 𝑎2

𝜋(ℛ)

𝑡+ 𝜏 + 𝑎1

𝑡+ 𝜏𝑡

𝑃1

𝑃2

𝑡+ 𝜏 − 𝑏2 𝑡+ 𝜏 + 𝑎2

Figure 7-3: An example of the mapping of an input ℛ under the algorithm ℬ to 𝜋(ℛ)
under with 𝜏 = 4. On the left, an input ℛ where 𝑎1 = 2, 𝑏2 = 2, 𝑎2 = 7. The green boxes
indicate hits on a page 𝜎 in ℬ’s cache but not in the algorithm 𝒜’s cache. On the right, we
show the corresponding 𝜋(ℛ). The red boxes denote misses on 𝜎.

We use ℛ𝑖[𝑗] when 𝛽, 𝛿 are clear from context. We denote each request sequence
ℛ𝑖 = 𝜎𝑖

1 . . . 𝜎
𝑖
𝑛𝑖
, where ℛ𝑖 has 𝑛𝑖 requests. For any sequence for a single core ℛ𝑖, ℛ𝑖 =

ℛ𝑖[1], . . . ,ℛ𝑖[𝑛𝑖]. For any multicore sequenceℛ,ℛ = {ℛ1, . . . ,ℛ𝑝}. For any sequence
ℛ𝑖, let ℛ𝑖[𝑗1, 𝑗2] denote the (contiguous) subsequence of requests 𝜎𝑖,𝑗1 , . . . , 𝜎𝑖,𝑗2 . Also,
we use ℛ𝛼 · ℛ𝛾 to denote the concatenation of two sequences ℛ𝛼,ℛ𝛾.

We now extend a lemma from [16] about sequences with locality that we will use
in our main theorem later. The lemma says that if a sequence . . . 𝛿 . . . 𝛽 . . . 𝛿 . . . 𝛽 . . .
exhibits locality of reference, then . . . 𝛿 . . . 𝛽 . . . 𝛽 . . . 𝛿 does as well.

Lemma 7.13 Let ℛ be a sequence of requests consistent with 𝑓 , 𝒜 be a caching
algorithm, and 𝑛ℛ,𝒜 be the time that it takes 𝒜 to serve ℛ. Let 𝑗 ≤ 𝑛ℛ,𝒜 be an
(integer) timestep such that 𝒮ℛ,𝒜[1, 𝑗] contains a request to 𝛽, and in addition, 𝛿 does
not appear in 𝒮pre

ℛ,𝒜 = 𝒮ℛ,𝒜[1, 𝑗] after the last request to 𝛽 in 𝒮pre
ℛ,𝒜.

Let ℛ′ = ℛpreℛsuf denote the sequence ℛ≤𝑗,𝒜ℛ>𝑗,𝒜, and suppose that ℛ′ is not
consistent with 𝑓 . Then ℛsuf contains a request to 𝛽; furthermore, no request to 𝛿 in
𝒮suf
ℛ,𝒜 (𝒮suf

ℛ,𝒜 = 𝒮ℛ,𝒜[𝑗 + 1, 𝑛ℛ,𝒜]) occurs earlier than the first request to 𝛽 in 𝒮suf
ℛ,𝒜.

The following lemma guarantees that for any algorithm 𝒜 which may make a non-
LRU-like eviction at the (𝑗+1)-th timestep of some ℛ ∈ ℐ𝑓 (but will make LRU-like
evictions for the rest of the timesteps after 𝑗 + 1), we can define an algorithm ℬ that
makes the same decisions as 𝒜 up until timestep 𝑗 of any sequence in ℐ𝑓 , makes an
LRU-like decision on the (𝑗+1)-th timestep, and is no worse than 𝒜 under surjective
analysis.

Lemma 7.14 Let ℐ𝑓 be all inputs consistent with 𝑓 and let 𝑗 be an integer. Suppose
𝒜 is an algorithm with the property that for every input ℛ ∈ ℐ𝑓 , 𝒜 is LRU-like on
timestep 𝑡+ 1, for all 𝑡 ≥ 𝑗 + 1. Then there exists an algorithm ℬ with the following
properties:

147

1. For every input ℛ ∈ ℐ𝑓 , ℬ makes the same decisions as 𝒜 on the first 𝑗
timesteps while serving ℛ (i.e., 𝒜 and ℬ make the same eviction decisions
for each miss in requests up to and including time 𝑡).

2. For every input ℛ ∈ ℐ𝑓 , ℬ is LRU-like on ℛ at timestep 𝑡.

3. ℬ ⪯𝑓
𝑠 𝒜.

Proof Sketch. The main insight in this proof is the comparison of inputs with
different numbers of page requests but the same cost under two different algorithms.
If an algorithm 𝒜 makes a non-LRU-like decision at some timestep, we construct a
surjection that maps it to a sequence with the same schedule under another algorithm
ℬ.

At a high level, we use a “sequence reordering” mapping inspired by Lemma 2
of [16]. Let ℬ be an algorithm that matches the evictions of 𝒜 until time 𝑡, when
it makes LRU-like evictions. Suppose at time 𝑡 that 𝒜 evicted a page 𝜎NLRU and ℬ
evicted a page 𝜎LRU. We construct ℬ to evict the same pages as 𝒜 on the remainder
of the sequence.

We construct a surjective mapping 𝜋 such that for any request sequence ℛ,
ℬ(ℛ) ≤ 𝒜(𝜋(ℛ)). There are two main cases based on the continuation of the in-
put after time 𝑡. At a high level, if an input has locality of reference, then there are
not many requests to different pages. Now, if possible, we swap 𝜎LRU, 𝜎NLRU in the
continuation of the input after time 𝑡 since these will result in the same cost in the
continuation.

Case 1: Swapping 𝜎LRU, 𝜎NLRU in the continuation maintains locality. In this
case, 𝒜(ℛ) = ℬ(𝜋(ℛ)) because the different decisions at time 𝑡 did not affect the
number of misses (and therefore the total time) while serving the rest of the input.
Swapping the pages where 𝒜, ℬ differ in the continuation of the mapped-to input
results in the same behavior.

Case 2: Swapping 𝜎LRU, 𝜎NLRU in the continuation does not maintain locality.
There are a few cases when swapping the two pages would disrupt locality.

• If there was a miss on another page before the first request to 𝜎NLRU in the
continuation after time 𝑡, both algorithms would incur the same cost since the
difference in decision does not affect the number of hits and misses in the rest
of the input. In this case, we set 𝜋(ℛ) = ℛ, and ℬ(ℛ) = 𝒜(𝜋(ℛ)).

• If there was not a miss before the first request to 𝜎NLRU after time 𝑡, ℬ hits on
the first request to 𝜎LRU in the continuation, and we remove requests in 𝜋(ℛ)
so that the schedule of ℬ serving ℛ matches the schedule of 𝒜 serving 𝜋(ℛ).
Since the schedules match, ℬ(ℛ) = 𝒜(𝜋(ℛ)).

• The above two cases cover the entire codomain, but not the domain. For the
remaining inputs, we can map them arbitrarily to inputs of higher cost such
that there are no more than two inputs in the domain mapped to any input in
the codomain. By construction, ℬ(ℛ) < 𝒜(𝜋(ℛ)). We present an example of

148

generating such a mapping from an input ℛ under algorithms 𝒜 and ℬ given
page 𝜎 in Figure 7-3.

Given any algorithm 𝒜, we repeatedly apply Lemma 7.14 to construct a new
algorithm ℬ which is LRU-like after some timestep 𝑡 and is no worse than 𝒜.

Let 𝑛ℛ,𝒜 be the time it takes to serve input ℛ with 𝒜, and let 𝐵𝑡 be the class of
algorithms that make LRU-like decisions on timesteps 𝑛ℛ − 𝑡 of every input ℛ ∈ ℐ𝑓 .

Lemma 7.15 For every algorithm 𝒜 there exists an algorithm ℬ𝑡 ∈ 𝐵𝑡 such that
ℬ𝑡 ⪯𝑠 𝒜, and for every input ℛ ∈ ℐ𝑓 , ℬ𝑡 makes the same decisions as 𝒜 during the
first 𝑛ℛ,𝒜 − 𝑡 timesteps while serving ℛ.

For every lazy algorithm 𝒜, Lemma 7.15 guarantees the existence of an algorithm
ℬ that makes LRU-like decisions on all timesteps for any input in ℐ𝑓 and is no worse
than 𝒜. The only algorithm with this property is exactly LRU.

Theorem 7.16 For any lazy caching algorithm 𝒜, LRU ⪯𝑓
𝑠 𝒜.

We have defined a surjection from LRU to any other algorithm through interme-
diate algorithms that are progressively “closer to LRU”. Therefore, we have shown
that LRU is the best lazy algorithm under cyclic analysis via surjective analysis and
therefore under cyclic analysis by combining Theorem 7.16 and Lemma 7.6.

Theorem 7.17 For any lazy caching algorithm 𝒜, LRU ≺𝑓
𝑐 𝒜.

This chapter takes the first steps beyond worst-case analysis for multicore caching
with the separation of LRU from all other lazy algorithms on inputs with locality via
cyclic analysis. The main insight in the proof is to compare inputs of different lengths
(in terms of the number of page requests) but the same schedule with a surjective
mapping and then to convert the mapping into a bijection. Although we used it the
case of multicore caching, cyclic analysis is a general analysis technique that may be
applied to other online problems.

7.6 Related multicore caching models
This chapter reviews alternative models for multicore caching in order to explain
why we use the free-interleaving model. Specifically, it discusses a class of models for
multicore caching called fixed interleaving and the schedule-explicit model introduced
by Hassidim [176]. At a high level, these models assume the order in which the
requests are served is decided by the adversary. In practice, however, the schedule
of an algorithm is implicitly defined through the eviction strategies [250,251], so the
free-interleaving model studied in this chapter is more practical.

Most of the existing work focuses on minimizing either the makespan of caching
strategies or on minimizing the number of misses. In the case of single-core caching,

149

minimizing the makespan and number of misses are equivalent as makespan is simply
𝜏 times the number of misses. For multicore caching, however, there is no such direct
relationship between makespan and number of misses. In this chapter, we introduce
the total time, a cost measure with benefits over both makespan and number of misses
while capturing aspects of each.

Feuerstein and Strejilevich de Loma [147,352] introduced multi-threaded caching
as the problem of determining an optimal schedule in terms of the optimal interleaved
request sequence from a set of individual request sequences from multiple cores. More
precisely, given 𝑝 request sequences ℛ1, . . . ,ℛ𝑝, they study miss and makespan mini-
mization for a “flattened” interleaving of all ℛ𝑖’s. Our work focuses on algorithms for
page replacement rather than ordering (scheduling) of the input sequences. As men-
tioned, in practice, the schedule of page requests is embedded in the page-replacement
algorithm.

Several previous works [31, 88,216] studied multicore caching in the
fixed-interleaving model (named by Katti and Ramachandran [216]). This model
assumes each core has full knowledge of its future request sequence where the offline
algorithm has knowledge of the interleaving of requests. The interleaving of requests
among cores is the same for all caching algorithms and potentially adversarial (for
competitive analysis). Katti and Ramachandran [216] gave lower bounds and a com-
petitive algorithm for fixed interleaving with cores that have full knowledge of their
individual request sequences. In practice, cores do not have any knowledge about
future requests, and do not necessarily serve requests at the same rate. Instead, they
serve requests at different rates depending on whether they need to fetch pages to the
cache.

Hassidim [176] introduced a model for multicore caching before free interleaving
which we call the schedule-explicit model that allows offline algorithms to define
an explicit schedule (ordering of requests) for the online algorithm. Given an explicit
schedule, the online algorithm serves an interleaved sequence in the same way that a
single-core algorithm does. The cost of the algorithm, measured in terms of makespan,
is then compared against the cost of an optimal offline algorithm (which potentially
serves the input using another schedule).

Both schedule-explicit and free-interleaving models include a fetch delay upon a
miss, but schedule-explicit gives offline algorithms more power by allowing them to
arbitrarily delay the start of sequences at no cost in terms of the number of misses
(Theorem 3.1 of [176]). While schedule-explicit provides useful insight about serving
multiple request sequences simultaneously, it leads to overly pessimistic results when
minimizing the number of misses as it gives offline algorithms an unfair advantage.

Finally, competitive analysis for distributed systems illustrates the difficulty of
multiple independent processes. For example, system nondeterminism in distributed
algorithms [22] addresses nondeterminism in the system as well as in the input. Fur-
thermore, a recent work [70] confirms the difficulty that online algorithms face in
“scheduling” multiple inputs in the distributed setting.

150

7.7 Conclusion
This chapter takes the first steps beyond worst-case analysis of multicore caching.
In Theorem 7.17, this chapter separated LRU from other algorithms on sequences
with locality of reference. More generally, it introduced cyclic analysis and demon-
strated its flexibility in the direct comparison of online algorithms. I expect cyclic
analysis to be useful in the study of other online problems, and leave such application
as future work.

I conclude by explaining why I am optimistic about multicore caching. Multicore
caching is an important problem in online algorithms and motivated by computer
architectures with hierarchical memory. Practitioners have extensively studied cache-
replacement policies for multiple cores. The need for theoretical understanding of
multicore caching will only grow as multicore architectures become more prevalent.

Locality-first strategy. The separation of LRU from all other online algorithms
in this chapter theoretically grounds the locality-first strategy because it shows that
cache-replacement algorithms that take advantage of locality perform better in shared
caches with parallelism. These results show that despite the concern that locality
and parallelism trade off with each other, algorithms that take advantage of locality
perform well even in the face of parallelism.

151

152

Chapter 8

Multicore Paging Algorithms Cannot
Be Competitive

This chapter sets the stage for the exploration of beyond-worst-case measures that
mathematically ground the locality-first strategy for the multicore-paging problem
in Chapter 7 by presenting lower bounds for the multicore cache-replacement problem.
The main result in this chapter is that all lazy algorithms, a large class of algorithms
that includes all currently known practical algorithms, are arbitrarily far from the
optimal algorithm in the worst case. In practice, algorithms that take advantage of
locality perform better, however, motivating the need to consider algorithm behavior
beyond the worst case.

This work was conducted in collaboration with Shahin Kamali [209].

Abstract
This chapter answers an open question about the existence of competitive multicore
paging algorithms in the negative. Specifically, it shows that all lazy algorithms, which
include all practical algorithms, cannot be competitive against the optimal offline
algorithm. These lower bounds demonstrate the limits of competitive analysis for
capturing real-world performance differences between cache-replacement algorithms.

8.1 Introduction
As detailed in Chapter 7, caching in multicore architectures has been well-studied in
practice, but our theoretical understanding lags behind. Unfortunately, most existing
theoretical guarantees on online multicore caching algorithms are negative [251] due
to the “scheduling” aspect of multicore caching.

Contributions

This chapter confirms the intuition that multicore caching is much harder than
single-core caching and show that all practical lazy algorithms are equivalently non-

153

competitive1 against OPT (Corollary 8.2). More precisely, we provide adversarial
inputs formed by a total of 𝑛 requests that show the competitive ratio of any lazy
algorithm is Ω(𝑛1/2/𝑘).

An online algorithm is lazy2 if it 1) evicts a page only if there is a fault 2) evicts
at most one page in case of a fault, 3) for all timesteps, does not evict a page that
incurred a hit in that timestep, and 4) evicts a page only if there is no space left in
the cache. Algorithms with properties 1-3 (but not necessarily 4) are called “honest”
algorithms [251]. Lazy algorithms capture natural properties of online algorithms.
For example, if there was a hit on a page 𝜎 at some timestep, a lazy algorithm does
not evict 𝜎 in that same timestep. Additionally, once the cache is full, a lazy algorithm
keeps it full. Common caching strategies such as LRU and First-In-First-Out (FIFO)
are clearly lazy.

Map. This chapter is organized as follows. It omits the multicore caching problem
definition since the preliminaries have been covered in Section 7.2. Section 8.2 presents
the main lower bound result, and Section 8.3 provides concluding remarks.

8.2 Non-competitiveness of lazy algorithms
This section shows that no lazy algorithm for multicore caching is competitive in
terms of the number of faults. It first shows that no algorithm is competitive for the
case of two cores in Theorem 8.1, then extends the argument to an arbitrary number
of cores in Corollary 8.2.

Theorem 8.1 When there are 𝑝 = 2 cores, the competitive ratio of any lazy algorithm
𝒜 is Ω(𝑛1/2/𝑘) in terms of the number of faults.

Proof Sketch. The adversary constructs an input formed by requesting pages
from two disjoint sets of 𝑘 “red” (r) and 𝑘 “blue” (b) pages over 𝜑 rounds (𝜑 ≈ √

𝑛/2).
The requests made by each core in each round forms an “easy phase" followed by a
“hard phase". Each phase is formed by exactly ℓ requests (ℓ ≈ √

𝑛).
Each phase has a color that is associated with the color of most requested pages in

that phase. Easy and hard phases of 𝑃1 are all respectively blue and red, while easy
and hard phases of 𝑃2 are all respectively red and blue. With the exception of the first
phase of 𝑃1 and the last phase of 𝑃2, any phase in each core gets a “partner" phase
of the same color in the other core. Specifically, the 𝑖th easy phase of 𝑃1 is partnered
with the (𝑖 − 1)th hard phase of 𝑃2, and the 𝑖th easy phase of 𝑃2 is partnered with
the 𝑖th hard phase of 𝑃1.

The adversary defines an input such that there exists an (honest but not lazy)
offline algorithm OFF that serves the requests in partner phases at the same time.

1 A multicore caching algorithm is not competitive if its competitive ratio depends on 𝑛, the
length of the input.

2We adopt the 𝑘-server definition of lazy algorithms [257]. Lazy algorithms are often called
“demand paging” in the systems literature [318]. Algorithms with properties 1-3 (but not necessarily
4) are called “honest” algorithms [251].

154

!
OFF

t1

Cache State

t1 t2t0

Input Sequence

t0
!

OFF

t2
!

OFF

ℓ ℓ ℓ ℓ ℓ

OFF
P1

P2

…

…
c c c c

c c
ℓ ℓ ℓℓ

!
P1

P2

c c c c c

c c c c c

…

…

c

c

Figure 8-1: An example of the alignment of 𝒜 and OFF described in Theorem 8.1 of two
cores. For each sequence, easy phases consist of cycles of requests to two distinct pages
(stripes of red and blue) followed by requests to a single page (light red and light blue),
while hard (dark red and dark blue) phases are adversarial and designed so 𝒜 faults on
every request.
Left: 𝒜 serving all cores in their easy and hard phases at the same time while OFF delays
𝑃2.
Right: Examples of the cache state with 𝑘 = 10 at each of the timesteps marked 𝑡0, 𝑡1, 𝑡2. At
𝑡0, the yellow cells represent empty cells. At 𝑡1 after the first red hard phase, 𝒜 also finishes
its first blue hard phase while OFF finishes the first blue easy phase. The light purple cells
are those that could either be red or blue. At timestep 𝑡2, 𝒜 has at least one of each color
page in its cache, whereas OFF might only have blue pages.

Figure 8-1 illustrates the alignment of the two cores in 𝒜 and OFF as well as the
cache state in selected timesteps.

Next, we formalize how the adversary makes requests in each phase. Every phase
has exactly ℓ page requests. Easy phases are formed by requests to only two pages.
The first phase of 𝑃1 differs from the rest of the easy phases because it does not have
a partner and requests two red pages in a loop. All later easy phases are defined
based on the decisions of 𝒜 during their partner hard phases. Let 𝑄𝑒,𝑖 be the 𝑖th
easy phase of color 𝑐 ∈ {𝑟, 𝑏} and let 𝑞𝑐𝑖 ≤ 𝑘 denote the number of requests to unique
pages made in 𝑄𝑒,𝑖’s corresponding hard phase 𝑄ℎ,𝑖. For all 𝑖, the adversary generates
𝑄𝑒,𝑖 by repeating requests to two pages of different colors followed by requests to one
page of the same color of the phrase. The initial two pages are arbitrarily selected
from the set of red/blue pages in the 𝒜’s cache just before the start of 𝑄𝑒,𝑖. At the
beginning of 𝑄𝑒,𝑖, the two red/blue pages are requested one after the other for the
first 𝑞𝑐𝑖 requests, while the remaining ℓ − 𝑞𝑐𝑖 requests are to the single page that has
color 𝑐. The two pages that form the requests of an easy phase are always in the
cache of 𝒜 at the beginning of the phase. Moreover, 𝒜 serves the easy phases of 𝑃1

at the same time as easy phases of 𝑃2 and incurs all hits for both cores (with the
exception of the cold misses in the first easy phase).

Hard phases are made by requesting the pages that are absent from 𝒜’s cache.

155

At the beginning of any hard phase, at least one page of each color is present in the
cache of 𝒜. Because there are 𝑘 pages of each color, the adversary generates the hard
phase of a given color by always asking for some absent page of that color and 𝒜
incurs a fault on every request of a hard phase. The inductive construction ensures
the 𝑖th request of the two cores are served at the same time. In particular, the hard
phases start at the same time and hence there will be congestion in the cache during
the hard phases. The number of faults by 𝒜 is at least equal to the total length of
hard phases. There are Θ(

√
𝑛) hard phases, each of length Θ(

√
𝑛), for a total cost of

𝒜(ℛ) = Θ(𝑛).
An offline algorithm OFF can schedule the input such that partner easy and hard

phases are served at the same time. This is done by “postponing" the first easy red
phase (the first phase of 𝑃2) by always evicting the page of the phase that is present
in the cache before fetching the other page of the phase. Meanwhile, OFF hits on all
requests in the first easy blue phase (the first phase of 𝑃1) except the first two cold
misses (it simply brings the two pages into the cache). After the first easy blue phase
ends, OFF serves the remainder of the first easy red phase together with its partner,
the first red hard phase, in a way that they end at the same time. This scheme also
applies for other phases, i.e., any phase starts and ends with its partner. To maintain
this alignment, OFF ensures there is a fault in the easy phase for each fault in the
hard phase. When a page is requested in the hard phase for the first time, OFF
keeps it in the cache until the end of the phase. Therefore, there is a fault in a hard
phase only when a page is requested for the first time during the phase. The first
𝑞𝑐𝑖 requests of the partner of the phase (an easy phase) are to two different pages of
different colors. Upon a fault in the hard phase, OFF evicts one of these pages. This
ensures the next request is a fault in the easy phase. In particular, in the very last
fault of the hard phase (after 𝑞𝑐𝑖 requests), OFF evicts the page that has color other
than 𝑐. Consequently, in the remainder of these two partnered phases, all requested
pages are in the cache and OFF hits on all of the remaining requests.

Analysis. The total number of faults by OFF in the two partner phases will be no
more than 2𝑘 (up to 𝑘 for each). There are 𝜑−1 = Θ(

√
𝑛) pairs of partner phases for

a total of Θ(𝑘
√
𝑛) faults. The first phase of 𝑃1 and the last phase of 𝑃2 have length

ℓ and OFF incurs no more than ℓ = Θ(
√
𝑛) faults in them. In conclusion, the total

number of faults in 𝒜 and OFF are respectively Θ(𝑛) and Θ(𝑘
√
𝑛), which gives a

competitive ratio of Ω(𝑛1/2/𝑘) for 𝒜.
For the case of arbitrary 𝑝 > 2, we can partition the cores into two disjoint groups,

assign to the two colors, and repeat the input from Theorem 8.1 across cores to get
the following corollary.

Corollary 8.2 For any number of cores, the competitive ratio of any lazy algorithm
𝒜 is Ω(𝑛1/2/𝑘).

156

8.3 Conclusion
This chapter showed that no lazy algorithm is competitive because the adversary has
the power to artificially delay sequences. The scheduling power of OPT in multicore
paging motivates the need for alternative measures of online algorithms such as the
one in Chapter 7.

Locality-first strategy. The lower bounds in this chapter inspire the further study
in Chapter 7 of inputs with locality of reference. These lower bounds show the
equivalence of a large class of online algorithms when considering the entire space
of inputs, but the proofs depend on a highly constructed input. In reality, access
patterns exhibit naturally-occurring locality, motivating the need for algorithms to
take advantage of that locality.

157

158

Chapter 9

Closing the Gap Between
Cache-Oblivious and Cache-Adaptive
Analysis

This chapter mathematically grounds the locality-first strategy via beyond-worst-case
analysis of cache-adaptive algorithms. Specifically, it closes the gap between cache-
oblivious and cache-adaptive analysis by showing how to make a smoothed analysis
of cache-adaptive algorithms via random reshuffling of memory fluctuations due to
parallelism. These results validate the locality-first strategy because cache-oblivious
algorithms take advantage of temporal locality asymptotically optimally in a fixed-size
cache. Therefore, optimizing algorithms for locality is a good strategy for adapting
to memory fluctuations.

This work was conducted in collaboration with Michael A. Bender, Rezaul A.
Chowdhury, Rathish Das, Rob Johnson, William Kuszmaul, Andrea Lincoln, Quan-
quan C. Liu, and Jayson Lynch [41].

Abstract
Cache-adaptive analysis was introduced to analyze the performance of an algorithm
when the cache (or internal memory) available to the algorithm dynamically changes
size. These memory-size fluctuations are, in fact, the common case in multicore
machines, where threads share cache and RAM. An algorithm is said to be efficiently
cache-adaptive if it achieves optimal utilization of the dynamically changing cache.

Cache-adaptive analysis was inspired by cache-oblivious analysis. Many (or even
most) optimal cache-oblivious algorithms have an (𝑎, 𝑏, 𝑐)-regular recursive structure.
Such (𝑎, 𝑏, 𝑐)-regular algorithms include longest common subsequence, all pairs short-
est paths, matrix multiplication, edit distance, Gaussian elimination paradigm, etc.
Bender et al. [43] showed that some of these optimal cache-oblivious algorithms re-
main optimal even when cache changes size dynamically, but that in general they
can be as much as logarithmic factor away from optimal. However, their analysis
depends on constructing a highly structured, worst-case memory profile, or sequences
of fluctuations in cache size. These worst-case profiles seem fragile, suggesting that
the logarithmic gap may be an artifact of an unrealistically powerful adversary.

159

This chapter closes the gap between cache-oblivious and cache-adaptive analysis
by showing how to make a smoothed analysis of cache-adaptive algorithms via random
reshuffling of memory fluctuations. Remarkably, it also shows the limits of several
natural forms of smoothing, including random perturbations of the cache size and
randomizing the algorithm’s starting time. Nonetheless, it shows that if one takes an
arbitrary profile and performs a random shuffle on “significant events” occur within
the profile, then the shuffled profile becomes optimally cache-adaptive in expectation,
even when the initial profile is adversarially constructed.

These results suggest that cache-obliviousness is a solid foundation for achieving
cache-adaptivity when the memory profile is not overly tailored to the algorithm
structure.

9.1 Introduction
On multi-threaded and multicore systems, the amount of cache available to any single
process constantly varies over time as other processes start, stop, and change their
demands for cache. On most multicore systems, each core has a private cache and the
entire system has a cache shared between cores. A program’s fraction of the private
cache of a core can change because of time-sharing, and its fraction of the shared
cache can change because multiple cores use it simultaneously [94,122,123].

Cache-size changes can be substantial. For example, threads in a shared cache
frequently exhibit a winner-take-all phenomenon, in which one process grows to mo-
nopolize the available cache [132]; researchers have suggested periodically flushing
the cache to counteract this effect [374]. With this policy, individual processes would
experience cache allocations that slowly grow to the maximum possible size, then
abruptly crash down to 0.

Furthermore, even small cache-size changes can have catastrophic effects on the
performance of algorithms that are not designed to handle them. When the size of
cache shrinks unexpectedly, an algorithm tuned for a fixed-size cache can thrash,
causing its performance to drop by orders of magnitude. (And if the cache grows, an
algorithm that assumes a fixed cache size can leave performance on the table.)

This is such an important problem that many systems provide mechanisms to
manually control the allocation of cache to different processes. For example, Intel’s
Cache Allocation Technology [281] allows the OS to limit each process’s share of
the shared processor cache. Linux’s cgroups mechanism [267] provides control over
each application’s use of RAM (which serves as a cache for disk). Although these
mechanisms can help avoid thrashing, they require manual tuning and can leave
cache underutilized. Furthermore, systems may be forced to always leave some cache
unused in order to be able to schedule new jobs as they arrive.

A more flexible approach is to solve this problem in the algorithms themselves. If
algorithms could gracefully handle changes in their cache allocation, then the system
could always fully utilize the cache. Whenever a new task arrives, the system could
reclaim some cache from the running tasks and give it to the new task, without
causing catastrophic slowdowns of the older tasks. When a task ends, its memory

160

could be distributed among the other tasks on the system. The OS could also freely
redistribute cache among tasks to prioritize important tasks.

Practitioners have proposed many algorithms that heuristically adapt to cache
fluctuations [80, 167, 272, 273, 295, 296, 400–402]. However, designing algorithms with
guarantees under cache fluctuations is challenging and most of these algorithms have
poor worst-case performance.

Theoretical approaches to adaptivity. Barve and Vitter [32, 33] initiated the
theoretical analysis of algorithms under cache fluctuations over twenty years ago
by generalizing the external-memory/disk-access machine (DAM) model [3] to allow
the cache size to change. They gave optimal algorithms under memory fluctuations
for sorting, FFT, matrix multiplication, LU decomposition, permutation, and buffer
trees. In their model, the cache can change size only periodically and algorithms
know the future size of the cache and adapt explicitly to these forecasts.

Writing programs and analyzing algorithms that explicitly adapt to changing
memory is complicated because the algorithm needs to pay attention to the changing
parameter of cache sizes. Moreover, it’s hard to have performance guarantees that
apply to all possible ways that memory can change size. Thus, most prior work by
practitioners is empirical without guarantees, and even the Barve and Vitter work
only has guarantees for a restricted class of memory profiles, which limits its gener-
ality.

More recently, Bender et al. [43,45] proposed using techniques from cache-oblivious
algorithms to solve the adaptivity problem. Since cache-oblivious algorithms are
oblivious to the size of the cache, it is compelling that the algorithms should work
well when the cache size changes dynamically. They defined the cache-adaptive model,
which is akin to the ideal-cache model [153,154] from cache-oblivious analysis, except
that the size of memory can change arbitrarily over time. They showed that many
cache-oblivious algorithms remain optimal even when the size of cache changes dy-
namically. However, they also showed that some important cache-oblivious algorithms
are not optimal in the cache-adaptive model.

Concretely, they define optimality in terms of how much progress an algorithm
makes under a given memory profile and they also show that only a restricted
class of memory profiles need to be considered. A memory profile 𝑚(𝑡) is a function
specifying the size of memory at each time 𝑡. Prior results show that, for cache-
oblivious algorithms, and up to a constant factor of resource augmentation, we need
only consider square profiles, i.e., memory profiles which can be decomposed into
a sequence of boxes (21,22, . . .), where a box of size 𝑥 means that memory remains
at size 𝑥 blocks for 𝑥 time steps. In its strongest form, cache adaptivity requires that
for an algorithm 𝒜, the total amount of progress that 𝒜 makes on a series of boxes
(21.22, . . .) should be within a constant factor of the total potential

∑︀
𝑖 𝜌(|2𝑖|) of

those boxes, where the potential 𝜌(|2𝑖|) of a box 2𝑖 is defined to be the maximum
number of operations that 𝒜 could possibly perform in 2𝑖, where the max is taken
over all possible places that 2𝑖 could occur in the execution of 𝒜.1

1Several variations on this definition have also been used [43, 45] when considering particular
problems (e.g., matrix multiplication). For (𝑎, 𝑏, 𝑐)-regular algorithms, which are the focus of this

161

Thus, Bender et al.’s results show that cache-obliviousness is a powerful technique
for achieving adaptivity without the burden of having to explicitly react to cache-size
changes. They define optimality in terms of worst-case, adversarial memory profiles,
which makes their optimality criteria very strong, but also tough to meet. It’s natural
to ask how algorithms perform under less adversarial profiles. This is important
because for a large class of cache-oblivious algorithms, there exists highly structured
and pernicious worst-case profiles on which the algorithms do not run optimally.

Cache-oblivious algorithms and (𝑎, 𝑏, 𝑐)-regularity. One of the fundamental in-
sights in the design of cache-oblivious algorithms is that, by using certain basic recur-
sive structures in the design of an algorithm, one can get optimal cache-obliviousness
for free. The algorithms with this recursive structure are known as (𝑎, 𝑏, 𝑐)-regular
algorithms. If an algorithm is (𝑎, 𝑏, 𝑐)-regular, its I/O-complexity satisfies a recur-
rence of the form 𝑇 (𝑁) = 𝑎𝑇 (𝑁/𝑏) + Θ(1 +𝑁 𝑐/𝐵), where 𝐵 is the block size of the
cache and Θ(1 +𝑁 𝑐/𝐵) represents the cost of scanning an array of size 𝑁 𝑐.

For the purposes of cache-adaptivity, the only interesting cases are when 𝑎 > 𝑏
and 𝑐 ≤ 1.2 When 𝑎 > 𝑏, an algorithm’s performance is sensitive to the size of the
cache, and so adaptivity becomes important.

If cache-oblivious algorithms were always cache-adaptive, then we could view
adaptivity as a solved problem. Unfortunately, this is not the case. Bender et al.
showed that, for 𝑎 > 𝑏, (𝑎, 𝑏, 𝑐)-regular algorithms are adaptive if and only if 𝑐 < 1.

The worst-case gap between obliviousness and adaptivity. When 𝑐 = 1, there
can be a logarithmic gap between an algorithm’s performance in the ideal cache and
cache-adaptive models.3

Although many classical cache-oblivious algorithms are (𝑎, 𝑏, 𝑐)-regular [100, 101,
153, 156, 298, 307, 359], many notable algorithms, including cache-oblivious dynamic
programming algorithms [100], naive matrix multiplication [153], sub-cubic matrix
multiplications (e.g., Strassen’s algorithm [351]), and Gaussian elimination [100], have
𝑎 > 𝑏 an 𝑐 = 1 and hence fall into this gap. These algorithms are kernels of many
other algorithms, including algorithms for solving linear equations in undirected and
directed Laplacian matrices (see e.g., [138, 228, 323]), APSP [326, 333, 406], triangle
counting [58], min-weight cycle [384], negative triangle detection and counting [384],
and the replacement paths problem [384]. As we shall see in Chapter 10, some algo-
rithms can be rewritten to reduce 𝑐, making them adaptive, but the transformation
is complex, introduces overhead, and doesn’t work for all algorithms.

The goal of this chapter is to show that this gap closes under less stringent notions
of optimality.

chapter, the used definitions are equivalent (and thus, as a convention, we use the most general
definition).

2When 𝑎 < 𝑏, the algorithm runs in linear time independent of the cache size, and hence is
trivially cache-adaptive. We are not aware of any cache-oblivious algorithms with 𝑐 > 1.

3(𝑎, 𝑏, 𝑐)-regular algorithms are cache-adaptive when 𝑎 < 𝑏 or 𝑐 < 1. When 𝑎 = 𝑏 and 𝑐 = 1, no
algorithm can be optimally cache-adaptive because such algorithms are already a Θ(log 𝑀

𝐵) factor
away from optimal in the DAM model [119]. This is why two-way merge sort, classic (i.e., not
cache-oblivious) FFT, etc. cannot be optimal DAM algorithms.

162

Beyond the worst-case gap. Previous analysis shows that in the worst case there is
a gap between the cache-adaptive and ideal-cache/cache-oblivious models. However,
the logarithmic gap may just be an artifact of an unrealistically powerful adversary.
The proof depends on exhibiting worst-case memory profiles that force the algorithm
to perform poorly. The worst-case profiles mimic the recursive structure of the algo-
rithm and maintain a tight synchronization between the algorithm’s execution and
the fluctuations in memory size. A concrete example of the worst-case profile for
matrix multiplication can be found in Appendix B.1.

The natural question to ask is: what happens to these bad examples when they
get tweaked in some way, so that they no longer track the program execution so
precisely? Is this gap robust to the inherent randomness that occurs in real systems?

Contributions

The main result in this chapter shows that, given any probability distribution Σ over
box-sizes, if each box has size chosen i.i.d. from the distribution Σ, (𝑎, 𝑏, 𝑐)-regular
algorithms achieve optimal performance in the cache-adaptive model, matching their
performance in the ideal cache model.

Theorem 9.11 Consider an (𝑎, 𝑏, 𝑐)-regular algorithm 𝒜, where 𝑎 > 𝑏 are constants
in N and 𝑐 = 1. Let Σ be a probability distribution over box sizes, and consider a
sequence of boxes (21,22,23, . . .) drawn independently from the distribution Σ. If all
boxes in Σ are sufficiently large in Ω(1), then 𝒜 is cache-adaptive in expectation on
the random sequences (21,22, . . .).

Proving this requires a number of new combinatorial ideas, an overview of which
appear in Section 9.3. Section 9.4 formally proves this positive result.

The proof begins by reinterpreting cache-adaptivity in expectation in terms of the
expected stopping time of a certain natural martingale. We then show a relationship
between the expected stopping time for a problem and the expected stopping times for
the child subproblems. A key obstacle, however, is that the linear scans performed
by the algorithm can cause the natural recurrence on stopping times to break. In
particular, the recurrence is able to relate the time to complete subproblems (including
scans) and the time to complete their parent problems (excluding scans); but is unable
to consider the parent problems in their entirety (including scans). We fill in this gap
by showing that the total effect of the scans at all levels of the recursion on the
expected stopping time is at most a constant factor. By analyzing the aggregate
effect of scans across all levels of the recursion, we get around the fact that certain
scans at specific levels can have far more impact on the expected stopping time than
others.

Robustness to weaker smoothings. We further show that drawing box-sizes
independently from one-another is necessary in the sense that several weaker forms
of smoothing fail to close the logarithmic gap between the ideal-cache and cache-
adaptive models. We show that worst-case profiles are robust to all of the following
perturbations: randomly tweaking the size of each box by a constant factor, randomly

163

shifting the start time of the algorithm, and randomly (or even adversarially) altering
the recursive structure of the profile. These results are proven in Section 9.5.

These smoothings substantially alter the overall structure of the profile, and elim-
inate any initial alignment between the program and the structure of the memory
profile. Nonetheless, the smoothed profiles remain worst-case in expectation. That
is, as long as some recursive structure is maintained within the profile, the algorithm
is very likely to gradually synchronize its execution to the profile in deleterious ways.
In this sense, even a small amount of global structure between the sizes of consecutive
boxes is enough to cause the logarithmic gap.

Map. This chapter is organized as follows. Section 9.2 gives the definitions and
conventions used in the rest of the chapter. Section 9.3 explains the intuition for the
proofs of the main theorems and sketch the combinatorial ideas behind the proofs.
Section 9.4 presents the main positive result. Section 9.5 provides worse-case profiles
based on three natural ways to smooth/perturb/randomize the fluctuations in cache
sizes. Section 9.6 gives an in-depth examination of previous work, and Section 9.7
gives concluding remarks.

9.2 Preliminaries
This section provides necessary preliminaries that will be used to prove the main re-
sults in later sections as well as in Chapter 10. Specifically, this section will introduce
the cache-adaptive model that accounts for memory fluctuations and demonstrate
how to analyze algorithms in the cache-adaptive model. Finally, it will define the
probabilistic measures used in the smoothed analysis in this chapter and define the
“No-catch-up lemma,” a primitive used throughout this section in the proofs.

Cache-adaptive analysis

The cache-adaptive model. The cache-adaptive (CA) model [43,45] extends the
classical disk access model (DAM) [3] to allow for the cache to change in size in each
time step. In the DAM, the machine has a two-level memory hierarchy consisting
of a fast cache (sometimes also referred to as memory or RAM) of size 𝑀 words
and a slow disk. Data is transferred between cache and disk in blocks of size 𝐵. An
algorithm’s running time is precisely the number of block transfers that it makes.
Similarly, each I/O is a unit of time in the CA model.

In the cache-adaptive model, the size of fast memory is a (nonconstant) function
𝑚(𝑡) giving the size of memory (in blocks) after the 𝑡th I/O. We use 𝑀(𝑡) = 𝐵 ·𝑚(𝑡)
to represent the size, in words, of memory at time 𝑡. We call 𝑚(𝑡) and 𝑀(𝑡) memory
profiles in blocks and words, respectively. Although the cache-adaptive model allows
the size of cache to change arbitrarily from one time-step to the next, prior work
showed that we need only consider square profiles [43]. Throughout this chapter,
we use the terms box and square interchangeably.

164

Definition 9.1 (Square Profile [43]) A memory profile 𝑀 or 𝑚 is a square pro-
file if there exist boundaries 0 = 𝑡0 < 𝑡1 < . . . such that for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1),
𝑚(𝑡) = 𝑡𝑖+1 − 𝑡𝑖. In other words, a square memory profile is a step function where
each step is exactly as long as it is tall. We will use the notation (21,22, . . .) to refer
to a profile in which the 𝑖-th square is size |2𝑖|.

For convenience, we assume that cache is cleared at the start of each square.
The paging results underlying cache-adaptivity [45] explain that this assumption is
w.l.o.g. For completeness, we show in Appendix B.7 that in proving either optimality
or non-optimality it suffices to consider only these profiles. With this assumption, an
algorithm gets to reference exactly 𝑋 distinct blocks in a square of size 𝑋. Any mem-
ory profile can be approximated with a square profile up to constant factors [43]. So,
notably, any random distribution of generically produced profiles has a corresponding
random distribution over square profiles that approximates it.

Recursive algorithms with (𝑎, 𝑏, 𝑐)-regular structure. This chapter and Chap-
ter 10 focus on algorithms with a common recursive structure.

Definition 9.2 Let 𝑎, 𝑏 ∈ N be constants, 𝑏 > 1 and 𝑐 ∈ [0, 1]. An (𝑎, 𝑏, 𝑐)-regular
algorithm is a recursive algorithm that, when run on a problem of size 𝑛 blocks
(equivalently 𝑁 = 𝑛𝐵 words), satisfies the following:

• On a problem of size 𝑛 blocks, the algorithm accesses Θ(𝑛) distinct blocks.

• Until the base case (when 𝑛 ∈ Θ(1)), each problem of size 𝑏 blocks recurses on
exactly 𝑎 subproblems of size 𝑛/𝑏.

• Within any non-base-case subproblem, the only computation besides the recur-
sion is a linear scan of size 𝑁 𝑐/𝐵. This linear scan is any sequence of 𝑁 𝑐

contiguous memory accesses satisfying the property that a cache of a sufficiently
large constant size can complete the sequence of accesses in time 𝑂(𝑁 𝑐/𝐵).
Parts of the scan may be performed before, between, and after recursive calls.

Remark 9.3 When referring to the size of a subproblem, box, scan, etc., we use
blocks, rather than machine words, as the default unit. We define (𝑎, 𝑏, 𝑐)-regular
algorithms to have a base case of size 𝑂(1) blocks. This differs slightly from previous
definitions [43,45] which recurse down to 𝑂(1) words.

Remark 9.4 The definition of linear scans ensures the following useful prop-
erty. Consider a linear scan of size 𝑁 𝑐/𝐵. Consider any sequence of squares
(21,22, . . . ,2𝑗), where each |2𝑖| is a sufficiently large constant, and where∑︀𝑗

𝑖=1 |2𝑖| = Ω(𝑁 𝑐/𝐵), for a sufficiently large constant in the Ω. Then the sequence
of squares can be used to complete the scan in its entirety.

The following theorem gives a particularly simple rule for when an (𝑎, 𝑏, 𝑐)-regular
algorithm is optimal.

165

Theorem 9.5 ((𝑎, 𝑏, 𝑐)-regular optimality [43], informal) Suppose 𝒜 is an
(𝑎, 𝑏, 𝑐)-regular algorithm that is optimal in the DAM model. Then 𝒜 is optimal in
the cache-adaptive model if 𝑐 < 1 or if 𝑏 > 𝑎 and 𝑎 ≥ 1. If 𝑐 = 1 and 𝑎 ≥ 𝑏, then 𝒜
is 𝑂(log𝑏𝑁) away from optimal on an input of size 𝑁 in the cache-adaptive model.
Optimality is defined as in [45], or equivalently as given by the notion of efficiently
cache adaptive, defined below.

Chapter goal: closing the logarithmic gap. The above theorem uses a very
structured memory profile in the case of 𝑐 = 1 and 𝑎 ≥ 𝑏 to tease out the worst
possible performance of (𝑎, 𝑏, 1)-regular algorithms. We explore the smoothing of
these profiles when 𝑎 > 𝑏 in this chapter. We leave the case of 𝑎 = 𝑏 for future work
because we prioritize the broader class of algorithms described by 𝑎 > 𝑏.

Progress bounds in the cache-adaptive model. When an (𝑎, 𝑏, 𝑐)-regular algo-
rithm 𝒜 is run on a square profile, the progress of a box is the number of base-case
subproblems performed (at least partly) within the box. Define the potential 𝜌(|2|)
of a box of size |2| to be the maximum possible progress that a size |2| box could ever
make starting at any memory access of any execution of 𝒜 on a problem of arbitrary
size.

Lemma 9.6 The potential of a box 2 for an (𝑎, 𝑏, 𝑐)-regular algorithm 𝒜 is 𝜌(|2|) =
Θ(|2|log𝑏 𝑎).

Proof. A square 2 can complete any subproblem 𝐴 whose size in blocks is suffi-
ciently small in Θ(|2|). This allows 2 to complete Ω(𝑎log𝑏 |2|) = Ω(|2|log𝑏 𝑎) base-case
subproblems, which proves that 𝜌(|2|) ≥ Ω(|2|log𝑏 𝑎).

On the other hand, a square 2 is unable to complete in full any subproblem 𝐴
whose size in blocks is sufficiently large in Θ(|2|). It follows that 2 can complete
base cases from at most two such subproblems 𝐴 (the one that 𝒜 begins 2 in and
the one that 𝒜 ends 2 in). This limits the number of base cases completed to
𝜌(|2|) ≤ 𝑂(|2|log𝑏 𝑎).

Intuitively, the potential of a box 2 is essentially the same as the number of
base-case recursive leaves in a problem of size |2|.
Optimality in the cache-adaptive model. The progress of each square is upper
bounded by its potential. An execution of the algorithm 𝒜 on a problem of size 𝑛
blocks and on a square profile 𝑀 is efficiently cache-adaptive if the sequence of
squares (21,22, . . . ,2𝑗) used by the algorithm (with the final square rounded down
in size to be only the portion of the square actually used) satisfies

𝑗∑︁
𝑖=1

𝜌(|2𝑖|) ≤ 𝑂(𝑛log𝑏 𝑎). (9.1)

The right-hand side of the expression represents the total amount of progress that
must be made by any (𝑎, 𝑏, 𝑐)-regular algorithm on a problem of size 𝑛 in order to
complete. In summary, an execution is efficiently cache-adaptive on the profile if every

166

square in the profile makes progress asymptotically equal to its maximum possible
potential.

An algorithm 𝒜 (rather than just a single execution) is efficiently cache-
adaptive (or cache-adaptive for short) if every execution of 𝒜 is efficiently cache-
adaptive on every infinite square-profile consisting of squares that are all of sizes
sufficiently large in 𝑂(1).

By Lemma 9.6, Inequality 9.1 can be written as
∑︀𝑗

𝑖=1 |2𝑖|log𝑏 𝑎 ≤ 𝑂(𝑛log𝑏 𝑎). Since
all squares 2𝑖 completed by the algorithm are of size 𝑂(𝑛), an equivalent requirement
is

𝑗∑︁
𝑖=1

min(𝑛, |2𝑖|)log𝑏 𝑎 ≤ 𝑂(𝑛log𝑏 𝑎). (9.2)

This requirement has the advantage that the size of the final square 2𝑗 cannot affect
the veracity of the condition. Consequently, when using this version of the condition,
we may feel free to not round down the size of the final square 2𝑗 in the profile 𝑀 .

The definition of efficiently cache-adaptive is easily adapted to use an arbitrary
progress function and an arbitrary algorithm 𝒜 that need not be (𝑎, 𝑏, 𝑐)-regular.4

Beyond-worst-case cache-adaptive analysis

Cache-adaptivity over distributions of profiles. We now define what it means
for an algorithm to be cache-adaptive in expectation over a distribution of memory
profiles. This definition underlies the smoothed and average-case analyses in this
chapter.

Definition 9.7 (Efficiently cache-adaptive in expectation) Let ℳ be a distri-
bution over (infinite) square memory profiles. Let 𝑀 be a square-profile (21,22, . . .)
drawn from the distribution ℳ, and define 𝒮𝑛 to be the number of squares in the
profile required by an (𝑎, 𝑏, 𝑐)-regular 𝒜 to complete on any problem of size 𝑛. We say
that 𝒜 is (efficiently) cache-adaptive in expectation on ℳ if for all problem
sizes 𝑛,

E

[︃
𝒮𝑛∑︁
𝑖=1

min(𝑛, |2𝑖|)log𝑏 𝑎
]︃
= 𝑂(𝑛log𝑏 𝑎).

The bulk of this chapter is devoted to investigating which memory-profile distri-
butions cause (𝑎, 𝑏, 1)-regular algorithms to be cache-adaptive in expectation [45].

A useful lemma. We conclude the section by presenting a useful lemma, known as
the No-catchup Lemma, that is implicitly present in [45]. The lemma will be used

4There is an alternative progress function based on operations. Consider the progress function
in which each square makes progress equal to the number of memory accesses it completes. This
generalizes our definition to non(𝑎, 𝑏, 𝑐)-regular algorithms and, for many natural (𝑎, 𝑏, 𝑐)-regular
algorithms, this yields the same definition of cache-adaptivity as the above progress definition.
However, the memory-access-based definition of progress can differ from our definition if some large
scans are very non-homogeneous, i.e. if they contain portions in which a single small box can
complete a large number of memory accesses. We use the sub-problem-based definition so that our
results can apply to all (𝑎, 𝑏, 𝑐)-regular algorithms.

167

as a primitive throughout the chapter, and for completeness, a full proof is given in
Appendix B.5. Intuitively, the No-catchup Lemma states that delaying the start time
of an algorithm can never help it finish earlier than it would have without the start
time delay.

Lemma 9.8 Let 𝜎 = (𝑟1, 𝑟2, 𝑟3, . . .) be a sequence of memory references, and let
𝑆 = (21,22, . . .2𝑘) be a sequence of squares. Suppose that if 21 starts at 𝑟𝑖, then
2𝑘 finishes at 𝑟𝑗. Then, for all 𝑖′ < 𝑖, if 21 starts at 𝑟𝑖′, then for some 𝑗′ ≤ 𝑗, 2𝑘

finishes at 𝑟𝑗′.

9.3 Technical overview
This section overviews the main results in this chapter and sketches their proofs.
Specifically, it outlines the main smoothing result as well as other negative results
from different types of shuffling.

Cache-adaptivity on randomly shuffled profiles

The main technical result of the chapter is that random shuffling of adversarially
constructed box-profiles makes (𝑎, 𝑏, 𝑐)-regular algorithms where 𝑎 > 𝑏 and 𝑐 = 1
cache-adaptive in expectation. We use box profiles because previous work [45] showed
that only considering box profiles is sufficient for determining cache-adaptivity on all
valid profiles in the CA model (for details, see Appendix B.7). In Section 9.4 we prove
the following:

Theorem 9.9 (Informal) Consider an (𝑎, 𝑏, 𝑐)-regular algorithm 𝒜, where 𝑎 > 𝑏
(𝑏 > 1) are constants in N and 𝑐 = 1. Let Σ be a probability distribution over box sizes,
and consider a sequence of boxes (21,22,23, . . .) with sizes drawn independently from
the distribution. Then 𝒜 is cache-adaptive (in expectation) on the random sequence
of boxes (21,22,23, . . .).

For simplicity, we discuss here the case where the block size 𝐵 = 1, and 𝒜 has the
same values of 𝑎, 𝑏, 𝑐 as the not-in-place naïve matrix-multiplication algorithm5, with
𝑎 = 8 and 𝑏 = 4 and 𝑐 = 1. Moreover, we assume that all box sizes and problem sizes
are powers of 4. Additionally, we consider a simplified model of caching: any box of
size 𝑠 that begins in a subproblem of size 𝑠 or smaller completes to the end of the
problem of size 𝑠 containing it (and goes no further); and any box of size 𝑠 that begins
in the scan of a problem of size greater than 𝑠 continues either for the rest of the scan
or for 𝑠 accesses in the scan, whichever is shorter. As a final simplification, we assume
that each scan in each problem of some size 𝑠 consists of exactly 𝑠 memory accesses.
In fact, we show in Section 9.4 that these simplifications may be made without loss
of generality for arbitrary (𝑎, 𝑏, 𝑐)-regular algorithms.

Let 2 denote a single box drawn from the distribution Σ. The proof of Theorem
9.9 begins by applying the Martingale Optional Stopping Theorem to combinatorially

5A full algorithm description can be found in Appendix B.2.

168

reinterpret what it means for 𝒜 to be cache-adaptive in expectation on the random
sequence (21,22, . . .). In particular, if 𝑓(𝑛) is the expected number of boxes needed
for 𝒜 to complete a problem of size 𝑛, then cache-adaptivity-in-expectation reduces
to:

𝑓(𝑛) ≤ 𝑂(8log4 𝑛)

𝑚𝑛

=
𝑂(𝑛log4 8)

𝑚𝑛

=
𝑂(𝑛3/2)

𝑚𝑛

, (9.3)

where 𝑚𝑛 = E
[︀
min(𝑛, |2|)3/2

]︀
is the average 𝑛-bounded potential of a box.

At the heart of the proof of Theorem 9.9 is a somewhat unintuitive combinatorial
argument for expressing 𝑓(𝑛), the expected number of boxes needed to complete a
problem of size 𝑛, in terms of 𝑓(𝑛/4).

Lemma 9.10 (Stated for the simplified assumptions) Define 𝑝 = Pr[|2| ≥
𝑛] · 𝑓(𝑛/4). Then, the expected number of squares to complete the subproblems in
a problem of size 𝑛 is exactly

∑︀8
𝑖=1(1 − 𝑝)𝑖−1𝑓(𝑛/4), and the expected number of

additional squares needed to complete the final scan is (1−Θ(𝑝)) · Θ(𝑛)
E[min(|2|,𝑛)] .

Proof Sketch. When executing a problem of size 𝑛, the first subproblem requires
𝑓(𝑛/4) boxes to complete, on average. Define 𝑞 to be the probability the boxes
used to complete the first subproblem include a box of size 𝑛 or larger. Then with
probability 𝑞, no additional boxes are required6 to complete the rest of the problem
of size 𝑛. We will show that 𝑞 = 𝑝 later in this proof. Otherwise, an average of
𝑓(𝑛/4) additional boxes are needed to complete the next subproblem of size 𝑛/4.
Again, with probability 𝑞, one of these boxes completes the rest of the problem in its
entirety. Similarly, the probability that the 𝑖-th subproblem is completed by a large
box from a previous subproblem is (1 − 𝑞)𝑖−1. Thus the expected number of boxes
needed to complete all 8 subproblems is

8∑︁
𝑖=1

(1− 𝑞)𝑖−1𝑓(𝑛/4). (9.4)

Remarkably, the probability 𝑞 can also be expressed in terms of 𝑓(𝑛/4). Define
𝑆 to be the random variable for the number of boxes used to complete the first
subproblem of size 𝑛/4; define ℓ ≤ 𝑂(𝑛3/2) to be an upper bound for 𝑆; and define 𝑋
to be the random variable for the number of the boxes in the subsequence 21, . . . ,2𝑆

that are of size 𝑛 or greater. The expectation of 𝑋 can be expressed as

E [𝑋] =
ℓ∑︁

𝑖=1

Pr[𝑆 ≥ 𝑖] · Pr[|2𝑖| ≥ 𝑛 | 𝑆 ≥ 𝑖].

Since |2𝑖| is independent of |21|, . . . , |2𝑖−1|, we have that Pr[|2𝑖| ≥ 𝑛 | 𝑆 ≥ 𝑖] =

6This is due to the aforementioned simplified caching model.

169

Pr[|2𝑖| ≥ 𝑛]. Thus

E [𝑋] = Pr[|2| ≥ 𝑛] ·
ℓ∑︁

𝑖=1

Pr[𝑆 ≥ 𝑖] = Pr[|2| ≥ 𝑛] · E[𝑆] = Pr[|2| ≥ 𝑛] · 𝑓(𝑛/4).

Notice, however, that at most one of the boxes 21, . . . ,2𝑆 can have size 𝑛 or
larger (since such a box will immediately complete the subproblem). Thus 𝑋 is an
indicator variable, meaning that 𝑞 = Pr[𝑋 ≥ 1] = E[𝑋] = Pr[|2| ≥ 𝑛] · 𝑓(𝑛/4) = 𝑝.
So 𝑞 = 𝑝, as promised. Expanding Equation 9.4, we get that the expected number of
boxes needed to complete the 8 subproblems is, as desired, at most

8∑︁
𝑖=1

(︁
1− Pr[|2| ≥ 𝑛] · 𝑓(𝑛/4)

)︁𝑖−1

𝑓(𝑛/4) (9.5)

Next we consider the boxes needed to complete the final scan. Suppose the scan
were to be run on its own. Let 𝐾 denote the number of boxes needed to complete it,
and let 2′

1, . . . ,2
′
𝐾 denote those squares.

Rather than consider E[𝐾] directly, we instead consider E[𝐾] · E[min(|2|, 𝑛)].
Through a combinatorial reinterpretation, we have

𝐸[𝐾] · E[min(|2|, 𝑛)] = E[min(|2|, 𝑛)] ·
ℓ∑︁

𝑖=1

Pr[𝐾 ≥ 𝑖]

=
ℓ∑︁

𝑖=1

Pr[𝐾 ≥ 𝑖] · E[min(|2′
𝑖|, 𝑛) | 𝐾 ≥ 𝑖] = E

[︃
𝐾∑︁
𝑖=1

min(|2′
𝑖|, 𝑛)

]︃
.

The quantity in the final expectation has the remarkable property that it is deter-
ministically between 𝑛 and 2𝑛 − 1. Thus the same can be said for its expectation,
implying that E[𝐾] · E[min(|2|, 𝑛)] = Θ(𝑛).

Recall that 𝐾 is the expected number of boxes to complete the scan on its own.
In our problem, the scan is at the end of a problem, and thus with probability
1− (1− 𝑝)8 = Θ(𝑝), the scan is completed by a large box from one of the preceding
subproblems. Hence the expected number of additional boxes to complete the scan
is (1−Θ(𝑝)) · Θ(𝑛)

E[min(|2|,𝑛)] .

Lemma 9.10 suggests a natural inductive approach to proving Theorem 9.9.
Rather than explicitly showing that 𝑓(𝑛) ≤ 𝑂(𝑛3/2)

𝑚𝑛
, one could instead prove the

result by induction, arguing for each 𝑛 that

𝑓(𝑛)

𝑓(𝑛/4)
≤ 𝑛3/2/𝑚𝑛

(𝑛/4)3/2/𝑚𝑛/4

= 8 · 𝑚𝑛/4

𝑚𝑛

. (9.6)

One can construct example box-size distributions Σ showing that the Equa-
tion (9.6) does not always hold, however. In particular, the scan at the end of a
subproblem of size 𝑛 can make 𝑓(𝑛) sufficiently larger than 𝑓(𝑛/4) that Equation (9.6)

170

is violated. To get around this problem, one could attempt to instead prove that

𝑓 ′(𝑛)

𝑓(𝑛/4)
≤ 8 · 𝑚𝑛/4

𝑚𝑛

, (9.7)

where 𝑓 ′(𝑛) is the expected number of boxes needed to complete a problem of size 𝑛,
without performing the final scan at the end. Unlike Equation (9.6), Equation (9.7)
does not inductively imply a bound of the form 𝑓(𝑛) ≤ 𝑂(𝑛3/2)

𝑚𝑛
, which is necessary for

cache-adaptivity in expectation. If one additionally proves that∏︁
4𝑘≤𝑛

𝑓(4𝑘)

𝑓 ′(4𝑘)
≤ 𝑂(1), (9.8)

then Equation (9.8) could be used to “fill in the holes in the induction” in order to
complete a proof of cache-adaptivity. Equation (9.8) is somewhat unintuitive in the
sense that individual terms in the product can actually be as large as 1 + Ω(1). The
inequality states that, even though the scans in an individual subproblem size could
have a significant impact on 𝑓(𝑛), the aggregate effect over all sizes is no more than
constant.

To make this semi-inductive proof structure feasible, one additional insight is
necessary. Rather than proving Equation (9.7) for all values 𝑛, one can instead
restrict oneself only to values 𝑛 such that

𝑓(𝑛) ≥ 𝐶 · 𝑛
3/2

𝑚𝑛

, (9.9)

where 𝐶 is an arbitrarily large constant of our choice. In particular, if 𝑛0 is the
largest power of 4 less than our problem-size such that 𝑓(𝑛0) < 𝐶 · 𝑛3/2

𝑚𝑛
, then we

can use cache-adaptivity within problems of size 𝑛0 as a base case, and then prove
Equation (9.7) only for problem-sizes between 𝑛0 and 𝑛. Similarly, we can restrict
the product in Equation (9.8) to ignore problem sizes of size smaller than 𝑛0.

When Equation (9.9) holds, Equation (9.7) can be interpreted as a negative feed-
back loop, saying that as we look at problem sizes 𝑛 = 1, 4, 16, . . ., whenever 𝑓(𝑛)
becomes large enough to be on the cusp of violating cache-adaptivity, there exists
downward pressure (in the form of Equation (9.7)) that prevents it from continuing
to grow in an unmitigated fashion.

The full proof of Theorem 9.9 takes precisely the structure outlined above. At its
core are the combinatorial arguments used in Lemma 9.10, which allow us to recast
𝑓(𝑛) and 𝑓 ′(𝑛) in terms of 𝑓(𝑛/4) and 𝑓 ′(𝑛/4). When applied in the correct manner,
these arguments can be used to show Equation (9.7) (assuming Equation (9.9)) with
only a few additional ideas. The proof of Equation (9.8) ends up being somewhat
more sophisticated, using combinatorial ideas from Lemma 9.10 in order to expand
each of the terms 𝑓(4𝑘)/𝑓 ′(4𝑘), and then relying on a series of subtle cancellation
arguments in order to bound the end product by a constant.

171

Robustness of worst-case profiles

Section 9.5 considers three natural forms of smoothing on worst-case profiles. Remark-
ably, the worst-case nature of the profiles persists in all three cases. The canonical
worst-case profile is highly structured, giving the algorithm a larger cache precisely
when the algorithm does not need it. It is tempting to conclude that bad profiles
must remain closely synchronized with the progression of the algorithm. By exploit-
ing self-symmetry within worst-case profiles as well as the power of the No-catchup
Lemma, the results in Section 9.5 establish that this is not the case. The No-Catchup
Lemma, in particular, allows us to capture the idea of an algorithm resynchronizing
with a profile, even after the profile has been perturbed.

We begin Section 9.5 by defining a canonical (𝑎, 𝑏, 𝑐)-regular algorithm 𝒜𝑛 on
problems of size 𝑛, and a corresponding worst-case profile 𝑀𝑎,𝑏. The profile 𝑀𝑎,𝑏

completes each scan of size 𝑘 in 𝒜 in a single box of size 𝑘, thereby ensuring that
every box makes its minimum possible progress. The profile 𝑀𝑎,𝑏 is the limit profile
of the sequence of profiles 𝑀𝑎,𝑏(𝑛) for 𝑛 = 1, 𝑏, 𝑏2, . . ., constructed recursively by
defining 𝑀𝑎,𝑏(𝑛) by concatenating together 𝑎 copies of 𝑀𝑎,𝑏(𝑛/𝑏) and then placing a
box of size 𝑛 at the end. The algorithm 𝒜𝑛 requires the entirety of the profile 𝑀𝑎,𝑏(𝑛)
to complete. One can check inductively that 𝑀𝑎,𝑏(𝑛) has total potential 𝑛log𝑏 𝑎 · log 𝑛,
thereby making 𝑀𝑎,𝑏 a worst-case profile.

We present examples of smoothing a worst-case profile in Figure B-1.

Box-size perturbations. Consider any probability distribution 𝒫 over [0, 𝑡] for
𝑡 ≤ √

𝑛 such that for 𝑋 drawn at random from 𝒫 , E[𝑋] = Θ(𝑡). Let 𝑋1, 𝑋2, . . . be
drawn iid from 𝒫 and define ℳ to be the distribution over box profiles obtained by
replacing each box 2𝑖 in ℳ with a box of size |2𝑖| · 𝑋𝑖. In Section 9.5.1, we show
that the highly perturbed box profiles in ℳ still remain worst-case in expectation.

The proof takes two parts. We begin by defining 𝑇 to be the smallest power of
𝑏 greater than 𝑡, and considering the profile 𝑇 · 𝑀𝑎,𝑏 obtained by multiplying each
box’s size by 𝑇 . Exploiting self-symmetry in the definition of 𝑀𝑎,𝑏, we are able to
reinterpret 𝑇 ·𝑀𝑎,𝑏 as the profile 𝑀𝑎,𝑏 in which all boxes of size smaller than 𝑇 have
been removed. Recall that 𝑀𝑎,𝑏(𝑛) denotes the prefix of 𝑀𝑎,𝑏 on which 𝒜𝑛 completes.
Using the fact that 𝑇 ≤ √

𝑛, we prove that the boxes of size smaller than 𝑇 contain
at most a constant fraction of the potential in the prefix 𝑀𝑎,𝑏(𝑛). On the other hand,
by iterative applications of the No-Catchup Lemma, the removal of the boxes cannot
facilitate 𝒜 to finish earlier in the profile. Combining these facts, we establish that
𝑇 ·𝑀𝑎,𝑏 remains worst-case.

To obtain an element of ℳ from 𝑇 ·𝑀𝑎,𝑏, one simply multiplies the size of each
box 2𝑖 in 𝑇 ·𝑀𝑎,𝑏 by 𝑋𝑖/𝑇 , where 𝑇 is drawn from the distribution 𝒫 . Using that
E[𝑋𝑖/𝑇] = Θ(1) and that 𝑛log𝑏 𝑎 is a convex function, Jensen’s inequality tells us that
the expected potential of the new box of size |2𝑖|·𝑋𝑖

𝑇
is at least a constant fraction of

the original potential. Since the perturbations preserve the expected potentials of the
boxes in 𝑇 · 𝑀𝑎,𝑏 up to a constant factor, we can prove that the resulting profile is
worst-case in expectation by demonstrating that the perturbations do not result in
𝒜𝑛 finishing earlier in 𝑇 ·𝑀𝑎,𝑏 then it would have otherwise. Since each perturbation
can only reduce the size of a box in 𝑇 ·𝑀𝑎,𝑏, this can be shown by iterative applications

172

of the No-Catchup Lemma.

Start-time perturbations. Section 9.5.2 analyzes what happens if the memory
profile 𝑀𝑎,𝑏(𝑛) is cyclic-shifted by a random amount. This corresponds to executing
𝒜𝑎,𝑏(𝑛) starting at a random start-time in the cyclic version of 𝑀𝑎,𝑏(𝑛). Again, the
resulting distribution of profiles remains worst-case in expectation.

The key insight in the proof is that 𝑀𝑎,𝑏(𝑛) can be expressed as the concatenation
of two profiles 𝐴 = (21, . . . ,2𝑥) and 𝐵 = (2′

1, . . . ,2
′
𝑦) such that

𝑥∑︁
𝑖=1

|2𝑖| ≥ Ω

(︃
𝑦∑︁

𝑖=1

|2′
𝑖|
)︃
, (9.10)

𝑥∑︁
𝑖=1

|2𝑖|log𝑏 𝑎 ≤ 𝑂

(︃
𝑦∑︁

𝑖=1

|2′
𝑖|log𝑏 𝑎

)︃
. (9.11)

Equation (9.10) establishes that with at least constant probability, a random se-
lected start-time in the profile 𝑀𝑎,𝑏(𝑛) falls in the prefix 𝐴. By a slight variant on
the No-Catchup Lemma, if 𝒜 is executed starting at that random start-time, it is
guaranteed to use all of the boxes in the suffix 𝐵. By Equation (9.11), however, these
boxes contain a constant fraction of the potential from the original worst-case profile
𝑀𝑎,𝑏(𝑛). Thus, with constant probability the algorithm 𝒜 runs at a random start-
time that results in a profile that is still worst-case. This ensures that the randomly
shifted profile will be worst-case in expectation.

Box-order perturbations. The bad profile, 𝑀𝑎,𝑏, is constructed recursively by
making 𝑎 copies of 𝑀𝑎,𝑏(𝑛/𝑏) followed by a box of size 𝑛. The box comes at the
end, intuitively, because all (𝑎, 𝑏, 1)-regular algorithms with upfront scans in each
subproblem can converted to an equivalent (𝑎, 𝑏, 1)-regular algorithm, where the scans
in all subproblems are at the end, preceded by a single linear scan7.

Section 9.5.3 considers a relaxation of the construction of𝑀𝑎,𝑏. When constructing
𝑀𝑎,𝑏(𝑛) recursively, rather than always placing a box of size 𝑛 after the final instance
of 𝑀𝑎,𝑏(𝑛/𝑏), we instead allow ourselves to place the box of size 𝑛 after any of the
𝑎 recursive instances of 𝑀𝑎,𝑏(𝑛/𝑏) (each of which may no longer be identical to the
others due to the non-determinedness of the new recursive construction).

Although at first glance moving the largest box in the profile seems to closely
resemble the random shuffling considered in Section 9.4, we prove that the resulting
distribution over box profiles again remains worst-case in expectation. In fact, we
can prove a stronger statement: for memory profile 𝑀 drawn from the resulting
distribution ℳ of box profiles, 𝑀 is a worst-case profile with probability one.

To prove this, we begin by constructing what we call a universal worst-case
profile 𝑈𝑎,𝑏. The prefixes 𝑈𝑎,𝑏(𝑛) of the profile 𝑈𝑎,𝑏 are recursively constructed in
the same manner as 𝑀𝑎,𝑏, except with the following twist: rather than concatenating
together 𝑎 copies of 𝑈𝑎,𝑏(𝑛/𝑏) with a single box of size 𝑛 at the end, we instead
concatenate together 𝑎 copies of 𝑈𝑎,𝑏(𝑛/𝑏) with a box of size 𝑛 at the end of each

7The details can be found in Lemma B.3 in Appendix B.6.

173

copy. Exploiting self-symmetry in the construction of 𝑀𝑎,𝑏, we show that 𝑈𝑎,𝑏 is also
a worst-case profile.

Each box profile in the distribution ℳ can be obtained from 𝑈𝑎,𝑏 by removing
a 𝑎−1

𝑎
fraction of the boxes from 𝑈𝑎,𝑏. By iterative applications of the No-Catchup

Lemma, such removals cannot facilitate the algorithm 𝒜𝑎,𝑏 to finish earlier in the
profile than it would have otherwise. On the other hand, because an 1

𝑎
-fraction of the

boxes of each size remain after the removals, the total potential in each prefix 𝑈𝑎,𝑏(𝑛)
of 𝑈𝑎,𝑏 is affected only by a constant factor by the removals. Thus all box profiles
from the distribution ℳ is guaranteed to still be worst-case.

9.4 Cache-adaptivity of randomly shuffled profiles
Consider an (𝑎, 𝑏, 𝑐)-regular algorithm, where 𝑎 > 𝑏 are constants in N and 0 < 𝑐 ≤ 1.
Let Σ be a probability distribution over box sizes, and consider a sequence of boxes
(21,22,23, . . .) with sizes drawn independently from the distribution Σ. (Note that
each |2𝑖| is a random variable.) This section proves that for any such algorithm,
and for any distribution of box sizes Σ, the algorithm will be cache-adaptive (in
expectation) on the random sequence of boxes (21,22, . . .).

Theorem 9.11 Consider an (𝑎, 𝑏, 𝑐)-regular algorithm 𝒜, where 𝑎 > 𝑏 are constants
in N and 𝑐 = 1. Let Σ be a probability distribution over box sizes, and consider a
sequence of boxes (21,22,23, . . .) drawn independently from the distribution Σ. If all
boxes in Σ are sufficiently large in Ω(1), then 𝒜 is cache-adaptive in expectation on
the random sequences (21,22, . . .).

Remark 9.12 Theorem 9.11 does not hold in the case of 𝑎 = 𝑏. Consider, for
example, the case of 𝑎 = 𝑏 = 2 and 𝑐 = 1 (e.g., mergesort) with block size 𝐵 = 1.
Moreover, suppose each scan in each problem of size 𝑠 occurs at the end of the problem,
and consists of exactly 𝑠 distinct block accesses, one after another. Finally, suppose
Σ contains only one box-size

√
𝑛.

Then the potential of a box is 𝑂(
√
𝑛), since each subproblem of size Θ(

√
𝑛) con-

tains Θ(
√
𝑛) recursive leaves. In order for cache-adaptivity to be achieved, it follows

that 𝒮𝑛 (which is deterministically determined since there is only one box-size) must
be 𝑂(

√
𝑛), that way 𝒮𝑛 · Θ(

√
𝑛) will be within a constant factor of the total progress

𝑛 to be made for the full problem. However, every scan of size 𝑠 ≥ 2
√
𝑛 requires

Ω(𝑠/
√
𝑛) boxes devoted entirely to that scan in order to be completed. Since the sum

of the sizes of the scans at each level of recursion is 𝑛, it follows that the sum of the
sizes of all scans of size at least 2

√
𝑛 is Θ(𝑛 log 𝑛). Hence the total number of boxes

required is at least

𝒮𝑛 ≥ Ω(𝑛 log 𝑛) · 1√
𝑛
= Ω(

√
𝑛 log 𝑛),

meaning the algorithm is not cache-adaptive in expectation.

Before continuing, we introduce some notation. Throughout the section, let 2

denote a single box whose size is drawn from the distribution Σ. As a convention,

174

we will use 𝒮𝑛 to denote the index of the final box 2𝒮𝑛 required for the algorithm
to complete on an input of size 𝑛 (in blocks). (If different inputs to problems of size
𝑛 require different numbers of boxes, then we define 𝒮𝑛 to be the maximum over
all possible inputs.) The quantity 𝒮𝑛 is sometimes also referred to as the stopping
time.

For each problem-size 𝑛, define the work function 𝑊𝑛 = 𝑛log𝑏 𝑎, the number of
base-case recursive leaves in a problem of size 𝑛. We define the 𝑛-bounded potential
𝑚𝑛(𝑠) of a box of size 𝑠 to be min(𝑊𝑛,𝑊𝑠), corresponding (up to a constant factor)
with the size of the largest subproblem that the box can complete within a problem
of size 𝑛. We will also sometimes use 𝑚𝑛 to denote E[𝑚𝑛(|2|)].

With this notation, cache-adaptivity in expectation reduces to the statement

E

[︃
𝒮𝑛∑︁
𝑖=1

𝑚𝑛(|2𝑖|)
]︃
≤ 𝑂(𝑊𝑛).

The remainder of the section is devoted to proving Theorem 9.11. Next, this
section reduces the proof of Theorem 9.11 to a simpler, more specialized version of
the theorem. This section concludes by proving the specialized version of the theorem.

A simplified problem

In this section, we present a series of simplifications to the problem of proving Theo-
rem 9.11. Each simplification builds on the previous ones.

Recall that the algorithm 𝒜 is cache-adaptive in expectation if, for all problem
sizes 𝑛,

E

[︃
𝒮𝑛∑︁
𝑖=1

𝑚𝑛(|2𝑖|)
]︃
≤ 𝑂(𝑊𝑛). (9.12)

We begin with a lemma that provides a simpler formulation of the quantity on
the left side of Equation (9.12).

Lemma 9.13 For any box-size distribution Σ, and any (𝑎, 𝑏, 𝑐)-regular algorithm 𝒜,

E

[︃
𝒮𝑛∑︁
𝑖=1

𝑚𝑛(|2𝑖|)
]︃
= E[𝒮𝑛] ·𝑚𝑛.

The lemma follows immediately from a specialized variant of the Martingale Op-
tional Stopping Theorem [381]. We include the proofs of Lemma 9.13 and Theo-
rem 9.14 in Appendix B.4.

Theorem 9.14 (Martingale Optional Stopping Theorem [381]) Let
𝑋1, 𝑋2, . . . be iid random variables, and let 𝛾 be a function such that 𝛾(𝑋𝑖)
has finite mean 𝜇. Consider an arbitrary process that runs in steps, and at each step
𝑖 is given the value of 𝑋𝑖. Suppose that the process terminates after no more than 𝐶

175

steps for some value 𝐶. Let 𝑆 be the random variable denoting the number of steps
that the process runs. Then,

E

[︃
𝑆∑︁

𝑖=1

𝛾(𝑋𝑖)

]︃
= E[𝑆] · 𝜇.

This brings us to our first simplification:

Simplification 9.15 To prove cache-adaptivity on a problem of size 𝑛, it suffices to
show that

E[𝒮𝑛] ≤ 𝑂

(︂
𝑊𝑛

𝑚𝑛

)︂
.

Our second simplification, which is a consequence of Lemma B.3 in Appendix B.6,
has to do with the structure of scans within subproblems:

Simplification 9.16 We may restrict ourselves to (𝑎, 𝑏, 𝑐)-regular algorithms in
which scans occur exclusively at the end of subproblems (rather than before or between
recursions), with the exception of the largest subproblem, which may also perform scan
work at the beginning of the algorithm.

We will refer to the scan work at the beginning of the algorithm, due to the
largest problem, as the upfront scan. As a convention, when we refer to the scan
in a given subproblem, we will by default always be referring to the scan at the end
of the subproblem, and not including the upfront scan, even if the subproblem we are
discussing is the full problem on which the algorithm is running.

The next observation has to do with what we call the hard-stopping rule, which
can be applied to any (𝑎, 𝑏, 𝑐)-regular algorithm 𝒜 satisfying the property from Sim-
plification 9.16 (that scans appear at the ends of subproblems, with the exception of
an upfront scan). Let 𝑞 ∈ 𝑂(1) be the smallest positive power of 𝑏 (depending on
the(𝑎, 𝑏, 𝑐)-regular algorithm 𝒜) such that any subproblem of any size 𝑠 (ignoring any
upfront scan) accesses at most 𝑞 · 𝑠 distinct blocks, such that the scan at the end of
any subproblem of any size 𝑠 can be completed by any sequence of boxes (with sizes
sufficiently large in Ω(1)) whose sizes sum to at least 𝑞 · 𝑠, and such that the upfront
scan in any problem of any size 𝑛 can also be completed by any such sequence of
boxes. Notice that this implies that any box of size 𝑞𝑠 or larger can complete any
subproblem of size 𝑠 (ignoring the upfront scan). The hard-stopping rule is a mod-
ification to the manner in which the algorithm 𝒜 is executed on a problem of size
𝑛:

• The upfront scan is simulated as being of length exactly 𝑞 ·𝑛. The upfront scan
is complete after 𝑙 boxes for the smallest 𝑙 such that

∑︀𝑙
𝑖=1 |2𝑖| ≥ 𝑞 ·𝑛. The 𝑙-th

box is not allowed to continue past the upfront scan (i.e., the box is not allowed
to perform any additional memory accesses after the scan), and the (𝑙 + 1)-th
box begins immediately after the upfront scan.

176

• Once the upfront scan is complete, whenever a box of some size 𝑡 is generated
within a subproblem of size 𝑡

𝑞
or smaller, the box continues to the end of the

largest subproblem of size 𝑡
𝑞
or smaller that contains the box. The box stops

at the end of that subproblem (i.e., the next subproblem begins using the next
box).

• Finally, scans at the end of subproblems of each size 𝑠 are simulated to always
be of length 𝑞 · 𝑠. In particular, if the scan is not completed by some box of
size 𝑞𝑠 or larger (possibly generated within the scan), then the scan requires
a sequence of boxes whose sizes sum to 𝑞 · 𝑠 or larger in order for the scan to
complete. The final of these boxes stops at the end of the scan, and the next
box generated then starts at the beginning of whatever follows the scan.

As permitted by Theorem 9.11, we will assume that boxes have sizes large enough
in Ω(1) that whenever their sizes sum to 𝑞 ·𝑠, they can complete any scan in a problem
of size 𝑠 (or an upfront scan in a problem of size 𝑠). We will also assume, in general,
that every box in the distribution Σ has size large enough to complete any base-case
problem while following the hard-stopping rule. (That is, if the largest size a base-
case problem can be is 𝑛0, then every box has size at least 𝑞 ·𝑛0.). Thus every time a
box is drawn, its behavior is guaranteed to be covered by one of the cases described
above. Note that these assumptions on box sizes, which we will call the base-box-
size assumption, is permitted by the statement of Theorem 9.11, which allows us
to require box sizes be at least arbitrarily large constants.

The hard-stopping rule has a number of appealing properties. The number of
squares needed to complete a given algorithm on a problem of size 𝑛 becomes a
function of 𝑛 only (and is unaffected by the algorithm input). Moreover, boxes always
either complete some subproblem in its entirety, or finish in the same scan in which
they began.

Note that the hard-stopping rule, in general, only inhibits the work completed in a
box. In particular, any box of size 𝑠 is always capable of completing any subproblem
of size 𝑠/𝑞 or smaller, and any sequence of boxes (with sizes sufficiently large in Ω(1))
whose sizes sum to 𝑞 · 𝑠 or larger are always capable to completing a scan of size 𝑠.
Thus the hard-stopping rule is a modification of the execution of the algorithm such
that boxes are sometimes asked to complete before they would normally need to.

Intuitively, when an execution follows the hard-stopping rule, the number of boxes
for the algorithm to complete cannot decrease. This can be formalized by repeated
applications of the No-Catchup Lemma (Lemma B.2). In particular, each time that
a box terminates early, rather than continuing, the No-Catchup Lemma tells us that
the number of additional boxes needed to complete the problem (without following
the hard-stopping rule) cannot decrease.

We use 𝒮ℎ
𝑛 as the random variable denoting the number of boxes needed to com-

plete a problem of size 𝑛, given that the execution is following the hard-stopping rule.
The key observation is that 𝒮ℎ

𝑛 ≥ 𝒮𝑛. This brings us to our fifth simplification:

Simplification 9.17 In order to prove that E[𝒮𝑛] ≤ 𝑂(𝑊𝑛/𝑚𝑛), it suffices to prove
that E[𝒮ℎ

𝑛] ≤ 𝑂(𝑊𝑛/𝑚𝑛), while making the base-box-size assumption.

177

In our next simplification, we exploit the hard-stopping rule in order to remove
upfront scans from the problem. In particular, consider an (𝑎, 𝑏, 𝑐)-regular algorithm
𝒜 on a problem of size 𝑛 with scans only at the ends of subproblems, and one upfront
scan at the beginning of the full problem. (Moreover, suppose 𝒜 satisfies the base-
box-size assumption when executed with the hard-stopping rule.) When bounding
E[𝒮𝑛], we may assume without loss of generality that, in 𝒜, the final scan at the end
of the full problem contains as a suffix a copy of the upfront scan (since appending
the upfront scan to the final scan can only increase E[𝒮𝑛]). Moreover, rather then
bounding E[𝒮𝑛], Simplification 9.17 allows us to instead focus on bounding E[𝒮ℎ

𝑛] for
𝒜. Let ℬ be the same algorithm except with the scan at the front of 𝒜 removed.
(Notice that the value 𝑞 used for ℬ when following the hard-stopping rule will be
the same as the value used for 𝒜.) Any sequence of boxes which would complete 𝐵
while following the hard-stopping rule would also complete the scan at the upfront
of 𝒜. (Indeed, even the boxes that complete the final scan in ℬ suffice to complete
the upfront scan of 𝒜.) Thus if 𝒮ℎ

𝑛 denotes the number of boxes to complete ℬ while
following the hard-stopping rule, then the expected number of boxes to complete the
upfront scan in 𝒜 (while following the hard-stopping rule) is at most E[𝒮ℎ

𝑛]. The
expected total number of boxes to complete 𝒜 (while following the hard stopping
rule) is therefore at most 2E[𝒮ℎ

𝑛]. This brings us to our next simplification, which
extends Simplification 9.17:

Simplification 9.18 In order to prove that E[𝒮𝑛] ≤ 𝑂(𝑊𝑛/𝑚𝑛) (i.e., prove Theorem
9.11), it suffices to consider only algorithms in which all scans (including those in the
largest subproblem) occur exclusively at the end of their respective subproblems, and
to then prove that E[𝒮ℎ

𝑛] ≤ 𝑂(𝑊𝑛/𝑚𝑛), while making the base-box-size assumption.

Our next simplification is that we may restrict ourselves to problem sizes 𝑛 which
are powers of 𝑏. In particular, for any algorithm 𝒜 run on a problem of size 𝑛 that is
not a power of 𝑏, we can define 𝑟 < 𝑏 such that 𝑛 · 𝑟 is a power of 𝑏, and then define ℬ
to be the same algorithm except with the problem size of ℬ formally defined to be 𝑟
times the corresponding problem size in 𝒜.8 The value of 𝒮ℎ

𝑛 for 𝒜 is the same as the
values of 𝒮ℎ

𝑛𝑟 for ℬ, and the values of 𝑚𝑛 and 𝑊𝑛 for 𝒜 are within a constant factor
of the values of 𝑚𝑛𝑟, and 𝑊𝑛𝑟 for ℬ. Thus if we prove that E[𝒮ℎ

𝑛𝑟] ≤ 𝑂(𝑊𝑛𝑟/𝑚𝑛𝑟) for
ℬ, then we will have proven that E[𝒮ℎ

𝑛] ≤ 𝑂(𝑊𝑛/𝑚𝑛) for 𝒜.

Simplification 9.19 We may further assume without loss of generality that all prob-
lem sizes are powers of 𝑏.

It will be convenient for the value 𝑞 used in the hard-stopping rule to always be
𝑞 = 1. Next we show that this may be assumed without loss of generality. Consider
an (𝑎, 𝑏, 𝑐)-regular algorithm 𝒜, with scans only at the ends of subproblems, which

8Note that ℬ’s base case for recursion happens on problems 𝑟 times as large as in 𝒜. This is
acceptable since 𝑟 ≤ 𝑂(1). Also note that if a distribution Σ of box-sizes for 𝒜 satisfies the base-
box-size assumption, then so will the same distribution for ℬ, since the base-case problems in both
algorithms use the same block-access patterns.

178

is executed on a problem of size 𝑛 using the hard-stopping rule with some value
𝑞 = 𝑡 and using some sequence of box-sizes (𝑆1, 𝑆2, . . .) satisfying the base-box-size
assumption.

Then consider an (𝑎, 𝑏, 𝑐)-regular algorithm 𝒜′ which is executed on a problem
of size 𝑛𝑡 using the hard-stopping rule with 𝑞 = 1, and with base-case problem-size
one. (Note that because 𝑞 is always a power of 𝑏, multiplying 𝑛 by 𝑞 does not change
whether 𝑛 is a power of 𝑏.) The key insight is that, due to the hard-stopping rule, a
given box will interact with problems of size 𝑠 in the execution of 𝒜, in precisely the
same way that the same box interacts with problems of size 𝑠 · 𝑡 in the the execution
of 𝒜′. Hence the number of boxes used to complete the second execution will be
precisely equal to the number used to complete the first.

Now let Σ be a distribution of box sizes satisfying the base-box-size assumption
for 𝒜. Suppose that 𝒮ℎ

𝑛𝑡 ≤ 𝑂(𝑊𝑛𝑡/𝑚𝑛𝑡) for algorithm 𝒜′ on distribution Σ. Since
𝑡 ∈ 𝑂(1), and since 𝒮ℎ

𝑛𝑡 for 𝒜′ equals 𝒮ℎ
𝑛 for 𝒜, it follows that 𝒮ℎ

𝑛 ≤ 𝑂(𝑊𝑛/𝑚𝑛) for
algorithm 𝒜 on distribution Σ. Hence we have the following simplification:

Simplification 9.20 We may further assume without loss of generality that 𝑞 = 1.
Additionally, we may assume that the base-case problem size is 1.

For the rest of the section, since 𝑞 = 1, we will adapt the convention of saying
that the size of a scan is simply the same as the size of the subproblem it is in (i.e.,
the size of a scan in a subproblem of size 𝑙 is simply 𝑙).

Simplifications 9.19 and 9.20 combine to give us one final simplification: that
without loss of generality, all box sizes are powers of 𝑏. In particular, since the
problem sizes are powers of 𝑏, and since 𝑞 = 1, the hard-stopping rule does not
distinguish between boxes of different sizes in the range [𝑏𝑟, 𝑏𝑟+1). Rounding each box
size down to the nearest power of 𝑏 changes 𝑚𝑛 by at most a constant factor and does
not change E[𝒮ℎ

𝑛] or 𝑊𝑛. Thus we get our final simplification:

Simplification 9.21 We may further assume without loss of generality that all box
sizes are powers of 𝑏.

In light of Simplifications 9.20 and 9.21, the hard-stopping rule has a very simple
interpretation: any box of size 𝑠 which is started in a problem of size 𝑠 or smaller
continues to the end of whatever problem of size 𝑠 it’s in; and a box of size 𝑠 started
in the scan of size 𝑙 > 𝑠 finishes within the same scan, and completes the scan if and
only if the sum of the sizes of the boxes started within the scan sum to 𝑙 or greater.

Combining these simplifications, we get that in order to prove Theorem 9.11, it
suffices to prove the following specialized version:

Theorem 9.22 Let 𝑎 > 𝑏 be constants in N and consider 𝑐 ∈ [0, 1]. Consider an
(𝑎, 𝑏, 𝑐)-regular algorithm 𝒜, in which all scans occur exclusively at the ends of sub-
problems, and suppose 𝒜 is executed with the hard-stopping rule using 𝑞 = 1. Then
for any problem size 𝑛 that is a power of 𝑏, and for any box-size distribution Σ in
which all boxes have sizes that are powers of 𝑏,

E[𝒮ℎ
𝑛] ≤ 𝑂(𝑊𝑛/𝑚𝑛).

179

The remainder of the section is devoted to proving Theorem 9.22.

Proof of Theorem 9.22

We begin by introducing some additional notation. Let 𝑓(𝑛) denote E[𝒮ℎ
𝑛], the ex-

pected number of boxes needed to complete a problem of size 𝑛 (while following the
hard-stopping rule). Note that 𝑓(𝑛) is well defined since the number of boxes needed
to complete a problem while following the hard-stopping rule is a function of 𝑛 only.
In order to prove cache-adaptivity for problems of size 𝑛, we wish to prove that

𝑓(𝑛) ≤ 𝑂(𝑊𝑛/𝑚𝑛). (9.13)

(Recall that 𝑊𝑛 is the work function, satisfying 𝑊𝑛 = 𝑛log𝑏 𝑎, and 𝑚𝑛 is the expec-
tation of the 𝑛-bounded potential function, satisfying 𝑚𝑛 = E[min(𝑊𝑛,𝑊|2|)], where
2 is a box of size drawn from the distribution Σ.)

Intuitively, Equation (9.13) says that the typical progress of a box is𝑚𝑛, allowing
for roughly 𝑊𝑛/𝑚𝑛 boxes to complete the problem, on average. Formally, we say that
the typical progress of a box is given by

𝜑(𝑛) = 𝑊𝑛/𝑓(𝑛),

the amount of work in a problem of size 𝑛 divided by the average number of boxes
needed. In order to prove cache-adaptivity in expectation, we therefore wish to show
that

𝜑(𝑛) ≥ Ω(𝑚𝑛),

for all problem sizes 𝑛.
A natural approach might be to prove this by induction on 𝑛. (Recall that the

eligible problem sizes 𝑛 are the powers of 𝑏.) In particular, it would suffice to prove
the relationship

𝜑(𝑛)

𝜑(𝑛/𝑏)
≥ 𝑚𝑛

𝑚𝑛/𝑏

. (9.14)

Unfortunately, Equation (9.14) does not always hold, as shown in the following
example.

Example 9.23 Suppose that the box sizes |2| take some value 𝑙 deterministically.
Then the expected number of boxes 𝑓(𝑙) to complete a problem of size 𝑙 will be one.
But the expected number of boxes 𝑓(𝑏 · 𝑙) to complete a problem of size 𝑏 · 𝑙 will be
𝑎+ 𝑏. In particular, 𝑎 boxes are used to solve the 𝑎 subproblems, and 𝑏 boxes are used
for the scan. This means that 𝜑(𝑙 · 𝑏)/𝜑(𝑙) will be

𝜑(𝑙 · 𝑏)
𝜑(𝑙)

=
𝑊𝑙𝑏/𝑓(𝑙𝑏)

𝑊𝑙/𝑓(𝑙)
=

𝑊𝑙𝑏

𝑊𝑙

· 𝑓(𝑙)

𝑓(𝑙𝑏)
= 𝑎 · 1

𝑎+ 𝑏
< 1.

Note that in the final inequality we use the useful fact that 𝑊𝑙𝑏

𝑊𝑙
= (𝑙𝑏)log𝑏 𝑎

𝑙log𝑏 𝑎 = 𝑎.

180

On the other hand, 𝑚𝑙 and 𝑚𝑙𝑏 will both be 𝑊𝑙 (since all boxes are size 𝑙), meaning
that 𝑚𝑙𝑏

𝑚𝑙
= 1, and thereby violating Equation (9.14). The reason for the violation is

intuitively that the long scan in the problem of size 𝑏 · 𝑙 causes the typical progress of
a box to shrink (when compared to a problem of size 𝑏), while the average bounded
potential is left unchanged.

The next lemma shows that Example 9.23 is extremal in the sense that one will
always have 𝜑(𝑙·𝑏)

𝜑(𝑙)
≥ 𝑎

𝑎+𝑏
.

Lemma 9.24 For all problem sizes 𝑙, 𝑓(𝑙·𝑏)
𝑓(𝑙)

≤ 𝑎+ 𝑏. Consequently, 𝜑(𝑙·𝑏)
𝜑(𝑙)

= 𝑊𝑙𝑏/𝑓(𝑙𝑏)
𝑊𝑙/𝑓(𝑙)

≥
𝑎

𝑎+𝑏
.

Proof. Note that the expected number of boxes needed to complete 𝑎 subproblems
of size 𝑙 is at most 𝑎 · 𝑓(𝑙). Moreover, a scan of size 𝑏 · 𝑙 can require at most 𝑏 times as
many boxes to complete (in expectation) as does a scan of size 𝑙. Since a subproblem
of size 𝑙 contains a scan of size 𝑙, it follows that a scan of size 𝑏·𝑙 requires at most 𝑏·𝑓(𝑙)
boxes to complete (in expectation).9 In total, we get that 𝑓(𝑙 · 𝑏) ≤ 𝑎𝑓(𝑙) + 𝑏𝑓(𝑙), as
desired.

To resolve the issue in Example 9.23, one can separate the analysis of each scan
from the analysis of the subproblems preceding the scan. Define 𝑓 ′(𝑛) to be the
expected number of boxes needed to complete 𝑎 problems of size 𝑛/𝑏 one after another.
(i.e., 𝑓 ′(𝑛) is the expected number of boxes to complete a problem of size 𝑛, while
ignoring the final scan.) Similarly, define 𝜑′(𝑛) = 𝑊𝑛/𝑓

′(𝑛). Rather than proving
Equation (9.14), which Example 9.23 proves false, one could instead attempt to show
that

𝜑′(𝑛)

𝜑(𝑛/𝑏)
≥ 𝑚𝑛

𝑚𝑛/𝑏

. (9.15)

Then, rather than individually considering 𝜑(𝑛)/𝜑′(𝑛) for each problem size 𝑛,
one could instead bound the total impact of scans across all problem sizes on the
typical progress function, proving that∏︁

𝑏𝑡≤𝑛

𝜑(𝑏𝑡)/𝜑′(𝑏𝑡) ≥ Ω(1). (9.16)

In particular, the goal would be to prove that, although the scans at any particular
level of recursion can bring down the typical progress of a box by as much as a constant
factor, in aggregate the scans across all levels of recursion bring the typical progress
of a box down by no more than a constant factor.

Combined, Equation (9.15) and Equation (9.16) would suffice for proving cache
adaptivity in expectation. (In particular, when combined, they imply that 𝜑(𝑛) ≥
Ω(𝑚𝑛). The approach we take differs from this in one additional important way.
Rather than proving Equation (9.15) for all 𝑛 (that are powers of 𝑏), we instead

9Here we are implicitly using the fact that for any sequence of boxes, the hard-stopping rule
allows to complete a problem of size 𝑙, the hard-stopping rule would have also allowed them to
complete a single scan of size 𝑙.

181

restrict ourselves to values of 𝑛 for which 𝜑(𝑛/𝑏) is on the cusp of being too small for
cache adaptivity (meaning 𝜑(𝑛/𝑏)/𝑚𝑛/𝑏 is a sufficiently small constant). For these
values, Equation (9.15) can be viewed as a sort of negative feedback loop, showing
that whenever 𝜑(𝑛)/𝑚𝑛 starts to become small, there is upward pressure so that
𝜑′(𝑛 · 𝑏)/𝑚𝑛·𝑏 does not become even smaller. Formally, we will prove the following
propositions, the proofs of which we will present in the coming subsections.

Proposition 9.25 Consider a problem size 𝑙 > 𝑏, and suppose 𝑙/𝑏 satisfies 𝜑(𝑙/𝑏) <
𝑚𝑙/𝑏

4𝑎
. Then,

𝜑′(𝑙)

𝜑(𝑙/𝑏)
≥ 𝑚𝑙

𝑚𝑙/𝑏

.

Proposition 9.26 Consider the largest problem size 𝑙 ≤ 𝑛 for which 𝜑(𝑙) ≥ 𝑚𝑙

4𝑎
.

Then, ∏︁
𝑙<𝑏𝑡≤𝑛

𝜑(𝑏𝑡)/𝜑′(𝑏𝑡) ≥ Ω(1).

In fact, we will not need Proposition 9.26 in its full strength. Rather, we will use
the nearly equivalent fact that∏︁

𝑏·𝑙<𝑏𝑡≤𝑛

𝜑(𝑏𝑡)/𝜑′(𝑏𝑡) ≥ Ω(1),

which is implied by Proposition 9.26 and the observation that 𝜑(𝑏 · 𝑙)/𝜑′(𝑏 · 𝑙) ≤ 1.
Assuming the propositions, Theorem 9.22 can be proven as follows.
Proof. Suppose we wish to prove cache adaptivity on problems of size 𝑛. Consider
the largest subproblem size 𝑙 for which 𝜑(𝑙) ≥ 𝑚𝑙

4𝑎
. (Note that 𝑙 = 1 necessarily satisfies

this property since 𝜑(1) = 𝑊1/𝑓(1) = 1 and 𝑚1

4𝑎
= 1

4𝑎
.) If 𝑙 = 𝑛, then 𝜑(𝑛) ≥ Ω(𝑚𝑛),

which proves cache adaptivity. On the other hand, if 𝑙 < 𝑛, then we can express 𝜑(𝑛)
as

𝜑(𝑛) = 𝜑(𝑏 · 𝑙) ·
∏︁

𝑏·𝑙<𝑏𝑡≤𝑛

𝜑′(𝑏𝑡)

𝜑(𝑏𝑡−1)
· 𝜑(𝑏

𝑡)

𝜑′(𝑏𝑡)
.

By Proposition 9.25 (which holds for all problem sizes greater than 𝑏 · 𝑙) and Propo-
sition 9.26, this becomes

𝜑(𝑛) ≥ Ω

⎛⎝𝜑(𝑏 · 𝑙) ·
∏︁

𝑏·𝑙<𝑏𝑡≤𝑛

𝑚𝑏𝑡

𝑚𝑏𝑡−1

⎞⎠
= Ω

(︂
𝜑(𝑏 · 𝑙) · 𝑚𝑛

𝑚𝑏·𝑙

)︂
.

Recall that our goal is to establish that the typical progress 𝜑(𝑛) is at least Ω(𝑚𝑛),
the average 𝑛-bounded potential of a box. To complete the proof, it therefore suffices

182

Name Symbol Expansion
work function 𝑊𝑛 𝑛log𝑎 𝑏

𝑛-bounded potential 𝑚𝑛 E[min(𝑊𝑛,𝑊|2|)]
expected stopping time 𝑓(𝑛) –
expected stopping time ignoring final scan 𝑓 ′(𝑛) –
typical progress 𝜑(𝑛) 𝑊𝑛/𝑓(𝑛)
typical progress ignoring final scan 𝜑′(𝑛) 𝑊𝑛/𝑓

′(𝑛)

Figure 9-1: A reference table of the functions used to analyze cache-adaptivity in expec-
tation.

to show that 𝜑(𝑏 · 𝑙) ≥ Ω(𝑚𝑏𝑙). Recall that, by the definition of 𝑙, 𝜑(𝑙) = 𝑊𝑙

𝑓(𝑙)
≥ 𝑚𝑙

4𝑎
,

meaning that 𝑓(𝑙) ≤ 4𝑎 · 𝑊𝑙/𝑚𝑙. Since 𝑊𝑏𝑙 = 𝑎 · 𝑊𝑙, and since 𝑚𝑏𝑙 ≤ 𝑎 · 𝑚𝑙 (in
particular, min(𝑊|2|,𝑊𝑙) ≤ 𝑎 · min(𝑊|2|,𝑊𝑏𝑙)), it follows that 𝑓(𝑙) ≤ 4𝑎 · 𝑊𝑙𝑏/𝑚𝑙𝑏.
By Lemma 9.24, we then get that 𝑓(𝑙 · 𝑏) ≤ (𝑎 + 𝑏) · 4𝑎 ·𝑊𝑏𝑙/𝑚𝑏𝑙, and thus 𝜑(𝑏𝑙) ≥

𝑚𝑏𝑙

4𝑎·(𝑎+𝑏)
≥ Ω(𝑚𝑏𝑙), as desired.

The remainder of the section is devoted to proving Propositions 9.25 and 9.26.
For reference by the reader, Figure 9-1 gives a table of the functions defined in this
section that continue to be used in the proofs of the propositions.

Proof of Proposition 9.25

We begin by comparing the average 𝑙-bounded potential 𝑚𝑙 to the average 𝑙/𝑏-
bounded potential 𝑚𝑙/𝑏, assuming 𝜑(𝑙/𝑏) <

𝑚𝑙/𝑏

4𝑎
.

Lemma 9.27 Suppose 𝑙/𝑏 satisfies 𝜑(𝑙/𝑏) <
𝑚𝑙/𝑏

4𝑎
. Then,

𝑚𝑙

𝑚𝑙/𝑏

< 1 +
Pr[|2| ≥ 𝑙] · 𝑓(𝑙/𝑏)

4
.

Proof. The only box sizes 𝑠 for which the 𝑙-bounded potential differs from the 𝑙/𝑏-
bounded potential are the sizes 𝑠 ≥ 𝑙. In particular,

𝑚𝑙 −𝑚𝑙/𝑏 = Pr[|2| ≥ 𝑙] · (𝑊𝑙 −𝑊𝑙/𝑏) ≤ Pr[|2| ≥ 𝑙] ·𝑊𝑙.

Hence

𝑚𝑙 −𝑚𝑙/𝑏

𝑚𝑙/𝑏

≤ Pr[|2| ≥ 𝑙] ·𝑊𝑙

𝑚𝑙/𝑏

.

183

Because 𝜑(𝑙/𝑏) = 𝑊𝑙/𝑏/𝑓(𝑙/𝑏) <
𝑚𝑙/𝑏

4𝑎
, it follows that

𝑚𝑙 −𝑚𝑙/𝑏

𝑚𝑙/𝑏

<
Pr[|2| ≥ 𝑙] ·𝑊𝑙

4𝑎𝑊𝑙/𝑏/𝑓(𝑙/𝑏)

=
Pr[|2| ≥ 𝑙] · 𝑎𝑊𝑙/𝑏

4𝑎𝑊𝑙/𝑏/𝑓(𝑙/𝑏)

=
Pr[|2| ≥ 𝑙] · 𝑓(𝑙/𝑏)

4
.

Adding one to both sides,

𝑚𝑙

𝑚𝑙/𝑏

< 1 +
Pr[|2| ≥ 𝑙] · 𝑓(𝑙/𝑏)

4
.

Next we compare the typical progress 𝜑′(𝑙) of a box in a problem of size 𝑙 (ignoring
the scan) to the typical progress 𝜑(𝑙/𝑏) of a box in a problem of size 𝑙/𝑏. Note that

𝜑′(𝑙)/𝜑(𝑙/𝑏) =
𝑊𝑙/𝑓

′(𝑙)

𝑊𝑙/𝑏/𝑓(𝑙/𝑏)

=
𝑎𝑓(𝑙/𝑏)

𝑓 ′(𝑙)
.

Thus in order to prove a lower bound for 𝜑′(𝑙)/𝜑(𝑙/𝑏) (i.e., to show that the typical
progress has increased between problem sizes), it suffices to compare 𝑓(𝑙/𝑏) and 𝑓 ′(𝑙).

Lemma 9.28 Consider any problem size 𝑙 ≥ 𝑏. Then,

𝑓 ′(𝑙) ≤ 𝑎 · 𝑓(𝑙/𝑏) · (1− 𝑓(𝑙/𝑏) · Pr[|2| ≥ 𝑙]/2).

Recall that 𝑓 ′(𝑙) is the expected number of boxes needed to complete 𝑎 consecutive
problems of size 𝑙/𝑏, while 𝑓(𝑙/𝑏) is the expected number of boxes needed to complete
a single such problem.

Proof. Consider what happens when the algorithm 𝒜 is run on a problem of size
𝑙/𝑏 (while following the hard-stopping rule as in Theorem 9.22). Define 𝑝 to be
the probability that a box of size 𝑙 or greater is generated during the problem. By
the Martingale Optional Stopping Theorem (Theorem 9.14), the expected number of
such boxes generated is 𝑓(𝑙/𝑏) · Pr[|2| ≥ 𝑙]. (In this application of Theorem 9.14,
the variables 𝑋𝑖 are defined to be 𝑋𝑖 = |2𝑖|, and 𝛾(𝑋𝑖) is the indicator variable
I(|2𝑖| ≥ 𝑙).) Note that no more than one such box can be generated, however, since
any box of size 𝑙 or greater will complete the problem of size 𝑙/𝑏. Thus the probability

184

𝑝 of such a box being generated is equal to the expected number of such boxes, and

𝑝 = 𝑓(𝑙/𝑏) · Pr[|2| ≥ 𝑙].

With this in mind, we consider 𝑓 ′(𝑙), the expected number of boxes needed to
complete 𝑎 problems of size 𝑙/𝑏. The first of the 𝑎 subproblems will require 𝑓(𝑙/𝑏)
boxes to complete, in expectation. With probability 𝑝, one of these boxes will be of
size at least 𝑙, and will thus complete the entire computation. Otherwise, the second of
the 𝑎 subproblems will then require 𝑓(𝑙/𝑏) boxes to complete, in expectation. Again,
with probability 𝑝, one of these boxes will be of size at least 𝑙, and thus complete the
entire computation. Continuing like this, the probability that the 𝑖-th subproblem
is handled by a large box from a previous subproblem is 1 − (1 − 𝑝)𝑖−1, and thus
the expected number of additional boxes needed to handle the 𝑖-th subproblem is
(1− 𝑝)𝑖−1 · 𝑓(𝑙/𝑏). Summing over the subproblems,

𝑓 ′(𝑙) =
𝑎∑︁

𝑖=1

(1− 𝑝)𝑖−1 · 𝑓(𝑙/𝑏)

≤ 𝑓(𝑙/𝑏) +
𝑎∑︁

𝑖=2

(1− 𝑝)𝑖−1 · 𝑓(𝑙/𝑏)

≤ 𝑎 · 𝑓(𝑙/𝑏) · (1− 𝑝/2).

Expanding 𝑝,

𝑓 ′(𝑙) ≤ 𝑎 · 𝑓(𝑙/𝑏) · (1− 𝑓(𝑙/𝑏) · Pr[|2| ≥ 𝑙]/2),

as desired.
Combining Lemmas 9.27 and 9.28, we can now complete the proof of Proposition

9.25.
Proof. Recall that 𝜑′(𝑙)

𝜑(𝑙/𝑏)
expands to

𝜑′(𝑙)

𝜑(𝑙/𝑏)
=

𝑎𝑓(𝑙/𝑏)

𝑓 ′(𝑙)
.

By Lemma 9.28, it follows that

𝜑′(𝑙)

𝜑(𝑙/𝑏)
≥ 1

(1− 𝑓(𝑙/𝑏) · Pr[|2| ≥ 𝑙]/2)
≥ 1 + 𝑓(𝑙/𝑏) · Pr[|2| ≥ 𝑙]/2.

Comparing this to Lemma 9.27, we see that

𝜑′(𝑙)

𝜑(𝑙/𝑏)
≥ 𝑚𝑙

𝑚𝑙/𝑏

,

as desired.

185

Proof of Proposition 9.26

Proposition 9.26 is essentially about bounding the impact of scans on typical pro-
gresses. We begin by considering the number of boxes needed to perform a scan.

Define 𝑄(𝑏𝑡) to be the expected number of boxes needed to run a scan of size 𝑏𝑡

on its own (while following the hard-stopping rule). A box of a given size 𝑠 could
potentially make progress as much as min(𝑏𝑡, 𝑠) through the scan. Thus one might
intuitively expect 𝑄(𝑏𝑡) to be roughly 𝑏𝑡

E[min(𝑏𝑡,|2|)] . The following lemma proves this
up to a constant factor.

Lemma 9.29
𝑏𝑡

E[min(𝑏𝑡, |2|)] ≤ 𝑄(𝑏𝑡) <
2𝑏𝑡

E[min(𝑏𝑡, |2|)] .

Proof. Consider the sequence of box sizes 𝐴1, 𝐴2, . . . , 𝐴𝑆 needed to complete the
scan. (Here 𝑆 is a random variable.) For the box 𝐴𝑆 to complete the scan, the
progress across the entire sequence must be

𝑆∑︁
𝑖=1

min(𝑏𝑡, |𝐴𝑖|) ≥ 𝑏𝑡.

Moreover, since each box 𝐴𝑖 except the final box 𝐴𝑆 makes progress exactly |𝐴𝑖| =
min(𝑏𝑡, |𝐴𝑖|) in the scan,

𝑆∑︁
𝑖=1

min(𝑏𝑡, |𝐴𝑖|) ≤ 𝑏𝑡 +min(𝑏𝑡, |𝐴𝑆|) < 2𝑏𝑡.

Since the quantity
∑︀𝑠

𝑖=1min(𝑏𝑡, |𝐴𝑖|) is deterministically between 𝑏𝑡 and 2𝑏𝑡 − 1,
its expectation must also be between 𝑏𝑡 and 2𝑏𝑡 − 1, satisfying

𝑏𝑡 ≤ E
[︃

𝑆∑︁
𝑖=1

min(𝑏𝑡, |𝐴𝑖|)
]︃
< 2𝑏𝑡.

On the other hand, the Martingale Optional Stopping Theorem (Theorem 9.14) tells
us that

E

[︃
𝑆∑︁

𝑖=1

min(𝑏𝑡, |𝐴𝑖|)
]︃
= E[𝑆] · E[min(𝑏𝑡, |2|)] = 𝑄(𝑏𝑡) · E[min(𝑏𝑡, |2|)].

Hence,
𝑏𝑡

E[min(𝑏𝑡, |2|)] ≤ 𝑄(𝑏𝑡) <
2𝑏𝑡

E[min(𝑏𝑡, |2|)] ,

as desired.
We now complete the proof of Proposition 9.26.

186

Proof. In order to prove that∏︁
𝑙<𝑏𝑡≤𝑛

𝜑(𝑏𝑡)/𝜑′(𝑏𝑡) ≥ Ω(1),

it suffices to prove that ∏︁
𝑙<𝑏𝑡≤𝑛

𝑓(𝑏𝑡)/𝑓 ′(𝑏𝑡) ≤ 𝑂(1), (9.17)

since 𝜑(𝑏𝑡)/𝜑′(𝑏𝑡) = 𝑓 ′(𝑏𝑡)/𝑓(𝑏𝑡). We can restate Equation (9.17) as∏︁
𝑙<𝑏𝑡≤𝑛

(︂
1 +

𝑓(𝑏𝑡)− 𝑓 ′(𝑏𝑡)

𝑓 ′(𝑏𝑡)

)︂
≤ 𝑂(1).

Consider the scan at the end of a problem of size 𝑏𝑡. Let 𝑝 the probability that
a box of size at least 𝑏𝑡 is generated during one of the 𝑎 subproblems of size 𝑏𝑡−1.
Then with probability 𝑝, the box generated during the 𝑎 subproblems will complete
the scan. On the other hand, with probability (1−𝑝), the scan will require additional
boxes. It follows by Lemma 9.29 that

𝑓(𝑏𝑡)− 𝑓 ′(𝑏𝑡) = (1− 𝑝) ·𝑄(𝑏𝑡) < (1− 𝑝) · 2𝑏𝑡

E[min(𝑏𝑡, |2|)] .

To prove the proposition, it therefore suffices to show that∏︁
𝑙<𝑏𝑡≤𝑛

(︂
1 + (1− 𝑝) · 2𝑏𝑡

E[min(𝑏𝑡, |2|)] · 𝑓 ′(𝑏𝑡)

)︂
≤ 𝑂(1).

Equivalently, we wish to prove that∑︁
𝑙<𝑏𝑡≤𝑛

ln

(︂
1 + (1− 𝑝) · 2𝑏𝑡

E[min(𝑏𝑡, |2|)] · 𝑓 ′(𝑏𝑡)

)︂
≤ 𝑂(1).

Since ln(1 + 𝑥) ≤ 𝑥 for all 𝑥 ≥ 0, we may instead prove that∑︁
𝑙<𝑏𝑡≤𝑛

(︂
(1− 𝑝) · 2𝑏𝑡

E[min(𝑏𝑡, |2|)] · 𝑓 ′(𝑏𝑡)

)︂
≤ 𝑂(1). (9.18)

Let use take a moment to solve for 𝑝. Recall that within a problem of size 𝑏𝑡, 𝑝
is the probability that a box of size at least 𝑏𝑡 is generated during any one of the 𝑎
subproblems of size 𝑏𝑡−1. By the Martingale Optional Stopping Theorem (Theorem
9.14), the expected number of such boxes generated is given by Pr[|2| ≥ 𝑏𝑡] · 𝑓 ′(𝑏𝑡).
Moreover, at most one such box can be generated (since it will then complete the
problem of size 𝑏𝑡). Hence the number of such boxes is an indicator variable, and the
probability 𝑝 of such a box being generated is also Pr[|2| ≥ 𝑏𝑡] · 𝑓 ′(𝑏𝑡). Expanding 𝑝
in Equation (9.18), the sum we wish to bound becomes

187

∑︁
𝑙<𝑏𝑡≤𝑛

(︂
(1− Pr[|2| ≥ 𝑏𝑡] · 𝑓 ′(𝑏𝑡))

2𝑏𝑡

E[min(𝑏𝑡, |2|)] · 𝑓 ′(𝑏𝑡)

)︂
=
∑︁

𝑙<𝑏𝑡≤𝑛

(︂
2𝑏𝑡

E[min(𝑏𝑡, |2|)] · 𝑓 ′(𝑏𝑡)
− 2𝑏𝑡 · Pr[|2| ≥ 𝑏𝑡]

E[min(𝑏𝑡, |2|)]

)︂
.

Next we focus on 𝑓 ′(𝑏𝑡). By the fact that 𝑏𝑡 > 𝑙 and by the definition of 𝑙 in the
statement of the proposition, we know that 𝜑(𝑏𝑡) ≤ 𝑚𝑏𝑡

4𝑎
. Expanding 𝜑(𝑏𝑡), this means

that 𝑊𝑏𝑡/𝑓(𝑏
𝑡) ≤ 𝑚𝑏𝑡

4𝑎
, and thus that

𝑓(𝑏𝑡) ≥ 4𝑎 ·𝑊𝑏𝑡

𝑚𝑏𝑡
=

4𝑎𝑡+1

𝑚𝑏𝑡
. (9.19)

In order to transform this into a statement about 𝑓 ′(𝑏𝑡), notice that 𝑓 ′(𝑏𝑡) ≥ 𝑓(𝑏𝑡)/2.
In particular, 𝑓 ′(𝑏𝑡) counts the number of boxes needed to complete 𝑎 subproblems
of size 𝑏𝑡−1. This includes 𝑎 scans of size 𝑏𝑡−1. The expected number of boxes needed
to complete these scans alone is at least the number of boxes needed to complete a
scan of size 𝑎 ·𝑏𝑡−1 > 𝑏𝑡. Since the hard-stopping rule guarantees that any sequence of
boxes which completes the 𝑎 subproblems could have also completed the 𝑎 scans alone
(without the additional portions of the subproblems), it follows that 𝑎 subproblems
of size 𝑏𝑡−1 require, in expectation, at least as many boxes as a scan of length 𝑏𝑡,
meaning that 𝑓 ′(𝑏𝑡) ≥ 𝑓(𝑏𝑡)− 𝑓 ′(𝑏𝑡), and thus that 𝑓 ′(𝑏𝑡) ≥ 𝑓(𝑏𝑡)/2. Combining this
with Equation (9.19), we get that

𝑓 ′(𝑏𝑡) ≥ 2𝑎𝑡+1

𝑚𝑏𝑡
.

Plugging this into our sum, it suffices to prove the bound∑︁
𝑙<𝑏𝑡≤𝑛

(︂
𝑏𝑡 ·𝑚𝑏𝑡

E[min(𝑏𝑡, |2|)] · 𝑎𝑡+1
− 2𝑏𝑡 · Pr[|2| ≥ 𝑏𝑡]

E[min(𝑏𝑡, |2|)]

)︂
≤ 𝑂(1).

Define 𝑟𝑏𝑢 = Pr[|2| = 𝑏𝑢] to be the probability of a box taking size 𝑏𝑢. Our sum

188

expands to

∑︁
𝑙<𝑏𝑡≤𝑛

(︃
𝑏𝑡 ·
(︀∑︀

𝑢<𝑡 𝑟𝑏𝑢𝑊𝑏𝑢 + Pr[|2| ≥ 𝑏𝑡] ·𝑊𝑏𝑡
)︀

E[min(𝑏𝑡, |2|)] · 𝑎𝑡+1
− 2𝑏𝑡 · Pr[|2| ≥ 𝑏𝑡]

E[min(𝑏𝑡, |2|)]

)︃

=
∑︁

𝑙<𝑏𝑡≤𝑛

(︃
𝑏𝑡 ·
(︀∑︀

𝑢<𝑡 𝑟𝑏𝑢𝑎
𝑢 + Pr[|2| ≥ 𝑏𝑡] · 𝑎𝑡

)︀
E[min(𝑏𝑡, |2|)] · 𝑎𝑡+1

− 2𝑏𝑡 · Pr[|2| ≥ 𝑏𝑡]

E[min(𝑏𝑡, |2|)]

)︃

=
∑︁

𝑙<𝑏𝑡≤𝑛

(︂
𝑏𝑡 ·∑︀𝑢<𝑡 𝑟𝑏𝑢𝑎

𝑢

E[min(𝑏𝑡, |2|)] · 𝑎𝑡+1
+

𝑏𝑡 · Pr[|2| ≥ 𝑏𝑡]

E[min(𝑏𝑡, |2|)] · 𝑎 − 2𝑏𝑡 · Pr[|2| ≥ 𝑏𝑡]

E[min(𝑏𝑡, |2|)]

)︂
.

Using half of the third sum to dominate the second sum, this is at most∑︁
𝑙<𝑏𝑡≤𝑛

(︂
𝑏𝑡 ·∑︀𝑢<𝑡 𝑟𝑏𝑢𝑎

𝑢

E[min(𝑏𝑡, |2|)] · 𝑎𝑡+1
− 𝑏𝑡 · Pr[|2| ≥ 𝑏𝑡]

E[min(𝑏𝑡, |2|)]

)︂
. (9.20)

Focusing on the positive summands,∑︁
𝑙<𝑏𝑡≤𝑛

𝑏𝑡 ·∑︀𝑢<𝑡 𝑟𝑏𝑢𝑎
𝑢

E[min(𝑏𝑡, |2|)] · 𝑎𝑡+1

=
∑︁
𝑏𝑢<𝑛

∑︁
𝑏𝑢,𝑙<𝑏𝑡≤𝑛

𝑏𝑡 · 𝑟𝑏𝑢𝑎𝑢
E[min(𝑏𝑡, |2|)] · 𝑎𝑡+1

=
∑︁
𝑏𝑢≤𝑙

∑︁
𝑙<𝑏𝑡≤𝑛

𝑏𝑡 · 𝑟𝑏𝑢𝑎𝑢
E[min(𝑏𝑡, |2|)] · 𝑎𝑡+1

+
∑︁

𝑙<𝑏𝑢≤𝑛

∑︁
𝑏𝑢<𝑏𝑡≤𝑛

𝑏𝑡 · 𝑟𝑏𝑢𝑎𝑢
E[min(𝑏𝑡, |2|)] · 𝑎𝑡+1

≤
∑︁
𝑏𝑢≤𝑙

∑︁
𝑙<𝑏𝑡≤𝑛

𝑏𝑡 · 𝑟𝑏𝑢𝑎𝑢
E[min(𝑏𝑡, |2|)] · 𝑎𝑡+1

+
∑︁

𝑙<𝑏𝑢≤𝑛

∑︁
𝑏𝑢<𝑏𝑡≤𝑛

𝑏𝑡 · 𝑟𝑏𝑢𝑎𝑢
E[min(𝑏𝑢, |2|)] · 𝑎𝑡+1

=
∑︁
𝑏𝑢≤𝑙

∑︁
𝑙<𝑏𝑡≤𝑛

𝑏𝑡 · 𝑟𝑏𝑢𝑎𝑢
E[min(𝑏𝑡, |2|)] · 𝑎𝑡+1

+
∑︁

𝑙<𝑏𝑢≤𝑛

𝑏𝑢 · 𝑟𝑏𝑢𝑎𝑢
E[min(𝑏𝑢, |2|)] · 𝑎𝑢+1

·
∑︁

𝑏𝑢<𝑏𝑡≤𝑛

(𝑏/𝑎)𝑡−𝑢

<
∑︁
𝑏𝑢≤𝑙

∑︁
𝑙<𝑏𝑡≤𝑛

𝑏𝑡 · 𝑟𝑏𝑢𝑎𝑢
E[min(𝑏𝑡, |2|)] · 𝑎𝑡+1

+
∑︁

𝑙<𝑏𝑢≤𝑛

𝑏𝑢 · 𝑟𝑏𝑢𝑎𝑢
E[min(𝑏𝑢, |2|)] · 𝑎𝑢+1

·
∑︁
𝑠≥0

((𝑎− 1)/𝑎)𝑠

=
∑︁
𝑏𝑢≤𝑙

∑︁
𝑙<𝑏𝑡≤𝑛

𝑏𝑡 · 𝑟𝑏𝑢𝑎𝑢
E[min(𝑏𝑡, |2|)] · 𝑎𝑡+1

+
∑︁

𝑙<𝑏𝑢≤𝑛

𝑏𝑢 · 𝑟𝑏𝑢𝑎𝑢
E[min(𝑏𝑢, |2|)] · 𝑎𝑢+1

· 𝑎

=
∑︁
𝑏𝑢≤𝑙

∑︁
𝑙<𝑏𝑡≤𝑛

𝑏𝑡 · 𝑟𝑏𝑢𝑎𝑢
E[min(𝑏𝑡, |2|)] · 𝑎𝑡+1

+
∑︁

𝑙<𝑏𝑢≤𝑛

𝑏𝑢 · 𝑟𝑏𝑢
E[min(𝑏𝑢, |2|)] .

Adding back in the negative terms from Equation (9.20), we get that Equa-

189

tion (9.20) is at most∑︁
𝑏𝑢≤𝑙

∑︁
𝑙<𝑏𝑡≤𝑛

𝑏𝑡 · 𝑟𝑏𝑢𝑎𝑢
E[min(𝑏𝑡, |2|)] · 𝑎𝑡+1

+
∑︁

𝑙<𝑏𝑢≤𝑛

𝑏𝑢 · 𝑟𝑏𝑢
E[min(𝑏𝑢, |2|)] −

∑︁
𝑙<𝑏𝑡≤𝑛

𝑏𝑡 · Pr[|2| ≥ 𝑏𝑡]

E[min(𝑏𝑡, |2|)] .

Since Pr[|2| ≥ 𝑏𝑡] ≥ 𝑟𝑏𝑡 , the third sum dominates the second sum, and thus we are
left with at most ∑︁

𝑏𝑢≤𝑙

∑︁
𝑙<𝑏𝑡≤𝑛

𝑏𝑡 · 𝑟𝑏𝑢𝑎𝑢
E[min(𝑏𝑡, |2|)] · 𝑎𝑡+1

.

Since 𝑢 < 𝑡, we have 𝑟𝑏𝑢𝑏
𝑢 ≤ E[min(𝑏𝑡, |2|)], and thus our expression is at most∑︁

𝑏𝑢≤𝑙

∑︁
𝑙<𝑏𝑡≤𝑛

𝑏𝑡−𝑢 · 𝑎𝑢
𝑎𝑡+1

≤
∑︁
𝑏𝑢≤𝑙

1

𝑎
·
(︂
𝑏

𝑎

)︂−𝑢

·
∑︁
𝑙<𝑏𝑡

(︂
𝑏

𝑎

)︂𝑡

.

If we define 𝑘 such that 𝑙 = 𝑏𝑘, then the sum can be rewritten as

∑︁
𝑢≤𝑘

1

𝑎
·
(︂
𝑏

𝑎

)︂𝑘−𝑢

·
∑︁
𝑡>0

(︂
𝑏

𝑎

)︂𝑡

<
∑︁
𝑢≤𝑘

1

𝑎
·
(︂
𝑏

𝑎

)︂𝑘−𝑢

·
∑︁
𝑡≥0

(︂
𝑎− 1

𝑎

)︂𝑡

=
∑︁
𝑢≤𝑘

1

𝑎
·
(︂
𝑏

𝑎

)︂𝑘−𝑢

· 𝑎

=
∑︁
𝑢≤𝑘

(︂
𝑏

𝑎

)︂𝑘−𝑢

= 𝑂(1),

which completes the proof.

9.5 Robustness of worst-case profiles
This section considers three ways to smooth worst-case profiles: box-size perturba-
tions, start-time perturbations, and box-order perturbations. In all three cases the
smoothed profiles will remain examples of profiles on which any (𝑎, 𝑏, 1)-regular algo-
rithm (where 𝑎 > 𝑏), 𝒜𝑎,𝑏, is not adaptive. We show that the canonical worst-case
profiles are robust to these perturbations and not brittle, by exploiting self-symmetry
within worst-case profiles and the power of the No-catchup Lemma. This is surpris-
ing because the canonical worst-case profile seems fragile—it gives 𝒜𝑎,𝑏 memory only
when the algorithm can’t use it, and gives as much memory as possible at those times.

190

Throughout the section, we examine a specific (𝑎, 𝑏, 𝑐)-regular algorithm with
constants 𝑎, 𝑏 ∈ N satisfying 𝑎 > 𝑏 and 𝑐 = 1. We define the canonical (𝑎, 𝑏, 1)-
regular algorithm 𝒜𝑎,𝑏(𝑛) on problem-sizes 𝑛 that are powers of 𝑏 as follows: If
𝑛 > 1, then the algorithm 𝒜𝑎,𝑏(𝑛) first recursively performs 𝑎 subproblems of size
𝑛/𝑏. Then (regardless of whether 𝑛 > 1), the algorithm 𝒜𝑎,𝑏(𝑛) accesses each of the
blocks 1, 2, . . . , 𝑛, one after another.

For 𝑛 a power of 𝑏, the canonical worst-case profile 𝑀𝑎,𝑏(𝑛) is the profile
constructed so that each scan in the algorithm 𝒜𝑎,𝑏 will be covered by a box exactly
the size of that scan (i.e., the number of block-accesses in the scan). In particular,
𝑀𝑎,𝑏(𝑛) consists of a single box of size 1 when 𝑛 = 1, and otherwise recursively
consists of 𝑎 instances of 𝑀𝑎,𝑏(𝑛/𝑏) followed by a box of size 𝑛. We define 𝑀𝑎,𝑏 to be
the infinite profile containing 𝑀𝑎,𝑏(𝑛) as a prefix for each 𝑛 that is a power of 𝑏.

We say that a box profile 𝑀 is worst-case for the algorithm 𝒜𝑎,𝑏(𝑛) if the se-
quence of boxes used to complete 𝒜𝑎,𝑏(𝑛), 𝑀 = 21, . . . ,2𝑘, satisfies

𝑘∑︁
𝑖=1

min(𝑛, |2𝑖|)log𝑏 𝑎 ≥ Ω(log 𝑛) · 𝑛log𝑏 𝑎.

In particular, such a profile 𝑀 ensures that the algorithm 𝒜 is at least an Ω(log 𝑛)
factor off from cache-adaptive, which by the results of [43] make 𝑀 a worst-case
profile (up to a constant factor). Similarly, we say that a probability distribution ℳ
on box profiles is worst-case (in expectation) for the algorithm 𝒜𝑎,𝑏(𝑛) if for 𝑀
randomly selected from ℳ, the sequence of boxes (21, . . . ,2𝑘) used to complete 𝑀
(note that now 𝑘 is a random variable) satisfies

E

[︃
𝑘∑︁

𝑖=1

min(𝑛, |2𝑖|log𝑏 𝑎)
]︃
= Ω(log 𝑛) · 𝑛log𝑏 𝑎.

When all the box-sizes considered are trivially of size 𝑛 or smaller, as will often
be the case in this section, we omit the minimum in the above sum.

Bender et al. [43] showed that 𝑀𝑎,𝑏 is a worst-case profile for 𝒜𝑎,𝑏(𝑛) for all 𝑛.
Notice, in particular, that an execution of 𝒜𝑎,𝑏(𝑛) on 𝑀𝑎,𝑏 will use exactly the boxes
in the prefix 𝑀𝑎,𝑏(𝑛) of 𝑀𝑎,𝑏, with each scan using a box of precisely the same size
as the scan; and by induction on 𝑛, the sum of |2|log𝑏 𝑎 over the boxes in 𝑀𝑎,𝑏(𝑛) is
log𝑏 𝑛 · 𝑛log𝑏 𝑎.

In this section, we consider the robustness of the worst-case memory profile 𝑀𝑎,𝑏

to three types of smoothing:

• Box-size perturbations: In Section 9.5.1 we consider what happens if each
box in 𝑀𝑎,𝑏 has its size randomly perturbed (i.e., multiplied by a value in [0, 1]
drawn from a distribution 𝒫 that has constant expectation). We show that the
resulting distribution ℳ remains worst-case in expectation.

• Start-time perturbations: In Section 9.5.2, we consider what happens if
the memory profile 𝑀𝑎,𝑏(𝑛) is cyclic-shifted by a random quantity. Shifting the

191

memory profile is equivalent to executing algorithm𝒜𝑎,𝑏(𝑛) starting at a random
start-time in the cyclic version of 𝑀𝑎,𝑏(𝑛). Again, the resulting distribution of
profiles remains worst-case in expectation.

• Box-order perturbations: In Section 9.5.3, we consider a relaxation of the
construction of 𝑀𝑎,𝑏(𝑛) in which rather than always placing a box of size 𝑛 after
the final instance of 𝑀𝑎,𝑏(𝑛/𝑏), we instead allow ourselves to place the box of
size 𝑛 after any of the 𝑎 recursive instances of 𝑀𝑎,𝑏(𝑛/𝑏). We prove that the
resulting distribution over box sizes again remains worst-case in expectation.
In fact, for a box profile 𝑀 drawn from the distribution at random, we find
that 𝑀 remains worst-case with probability one. This is a large contrast to
random shuffling considered in Section 9.4, where the random shuffle causes the
algorithms to be adaptive in expectation.

9.5.1 Box-size perturbations

In this section, we consider the distribution over box profiles generated by randomly
perturbing the sizes of boxes within the profile 𝑀𝑎,𝑏 and show that algorithm 𝒜𝑎,𝑏 is
not cache-adaptive on the modified profile (for all problem sizes 𝑛).

Theorem 9.30 Let 𝑛 be the size of an input to the algorithm 𝒜𝑎,𝑏, 𝑡 ∈ [1,
√
𝑛] be

an arbitrary value, and let 𝒫 be a probability distribution on [0, 𝑡]. Suppose that the
expected value of a random variable drawn from 𝒫 is at least Ω(𝑡).

Let 𝑋1, 𝑋2, . . . be iid random variables drawn from 𝒫. Let 𝑀 ′
𝑎,𝑏 be constructed by

replacing each box 2𝑖 in 𝑀𝑎,𝑏 with a box of size 𝑋𝑖 · |2𝑖|. Then 𝑀 ′
𝑎,𝑏 is worst-case for

𝒜𝑎,𝑏(𝑛) in expectation.

Time

m(t)

Time

m(t)

Figure 9-2: An example of randomly perturbing box sizes. The top profile is 𝑀𝑎,𝑏 when
𝑎 = 3 and 𝑏 = 2. The bottom profile is an example of a random multiplication of the box
sizes in 𝑀𝑎,𝑏.

We begin by presenting two lemmas about algorithm performance on modified
box sizes.

Lemma 9.31 Let 𝑀 = (21,22, . . .) be an arbitrary box profile. Suppose that when
𝒜𝑎,𝑏(𝑛) is executed on 𝑀 , it completes at box 2𝑘. Now define 𝑀 ′ = (2′

1,2
′
2, . . .)

192

to be a box profile such that |2′
𝑖| ≤ |2𝑖| for all 𝑖. (For convenience, we will even

allow |2′
𝑖| = 0.) Then when 𝒜𝑎,𝑏(𝑛) is executed on 𝑀 ′, it completes at some box 2′

𝑘′

satisfying 𝑘′ ≥ 𝑘.

Proof. This follows by repeated applications of the No-catchup Lemma (Lemma
B.2). Suppose that 𝑀 and 𝑀 ′ differ only in their 𝑖-th box, with |2′

𝑖| < |2𝑖|. Then
the first (𝑖−1) boxes of each of 𝑀 and 𝑀 ′ will finish at the same point within 𝒜𝑎,𝑏(𝑛)
(i.e., will finish after the same block access). The 𝑖-th box of 𝑀 ′ will then finish at
the same point or earlier within 𝒜𝑎,𝑏(𝑛) than does the 𝑖-th box of 𝑀 . By the No-
catchup Lemma, it follows that the 𝑘-th box of 𝑀 ′ will also finish at the same point
within 𝒜𝑎,𝑏(𝑛) or earlier than does the 𝑘-th box of 𝑀 . Since 𝒜𝑎,𝑏(𝑛) requires 𝑘 boxes
to complete on profile 𝑀 , 𝒜𝑎,𝑏(𝑛) will also require at least 𝑘 boxes to complete on
profile 𝑀 ′.

The above reasoning assumes that 𝑀 and 𝑀 ′ differ in only a single box. By 𝑘
repeated applications of the argument, we may instead allow 𝑀 and 𝑀 ′ to differ in
all of their first 𝑘 boxes. This implies the full lemma.

Lemma 9.32 Let 𝛼 ·𝑀𝑎,𝑏 denote the memory profile obtained by multiplying the size
of each box in 𝑀𝑎,𝑏 by 𝛼. If 𝛼 ≤ √

𝑛 is a power of 𝑏, then 𝛼 ·𝑀𝑎,𝑏 is still a worst-case
profile for 𝒜𝑎,𝑏(𝑛).

Proof. The proof of the lemma takes advantage of the self-symmetry implicitly
present within 𝑀𝑎,𝑏. In particular, notice that 𝛼 ·𝑀𝑎,𝑏 can be obtained from 𝑀𝑎,𝑏 by
removing every box in 𝑀𝑎,𝑏 of size smaller than 𝛼.

Define 𝑀 ′
𝑎,𝑏(𝑛) to be the profile obtained by removing every box from 𝑀𝑎,𝑏(𝑛) of

size smaller than 𝛼. By Lemma 9.31, the algorithm 𝒜𝑎,𝑏(𝑛) will require (at least) all
of the boxes in 𝑀 ′

𝑎,𝑏(𝑛) to complete, since it requires all of the boxes in 𝑀𝑎,𝑏(𝑛) to
complete.

Since 𝛼 ·𝑀𝑎,𝑏 contains 𝑀 ′
𝑎,𝑏(𝑛) as a prefix, in order to prove that 𝛼 ·𝑀𝑎,𝑏 is a worst-

case profile, it suffices to show that the sum of |2|log𝑏 𝑎 over the boxes in 𝑀 ′
𝑎,𝑏(𝑛) is

Ω(log 𝑛 · 𝑛log𝑏 𝑎). That is, if 𝑀 ′
𝑎,𝑏(𝑛) = (21, . . . ,2𝑘), then we wish to show that

𝑘∑︁
𝑖=1

|2𝑖|log𝑏 𝑎 = Ω(log 𝑛 · 𝑛log𝑏 𝑎).

Notice that for each box-size 𝑛/𝑏𝑗 such that 𝑏𝑗 ≤ √
𝑛, the profile 𝑀 ′

𝑎,𝑏(𝑛) contains
𝑎𝑗 instances of a box of size 𝑛/𝑏𝑗. (In particular, the recursive construction of 𝑀𝑎,𝑏

193

includes 𝑎𝑗 subproblems of size 𝑛/𝑏𝑗.) Thus

𝑘∑︁
𝑖=1

|2𝑖|log𝑏 𝑎

≥
𝑏𝑗=

√
𝑛∑︁

𝑏𝑗=1

𝑎𝑗 ·
(︁ 𝑛
𝑏𝑗

)︁log𝑏 𝑎
=

𝑏𝑗=
√
𝑛∑︁

𝑏𝑗=1

𝑎𝑗 · 𝑛
log𝑏 𝑎

𝑎𝑗

= Θ(log 𝑛) · 𝑛log𝑏 𝑎,

as desired.
Combining Lemmas 9.31 and 9.32, we can now complete the proof of Theorem

9.30.
Proof. Let 𝑇 be the smallest power of 𝑏 greater than 𝑡. By Lemma 9.32, the box
profile 𝑇 ·𝑀𝑎,𝑏 is worst-case for 𝒜𝑎,𝑏(𝑛).

Suppose that 𝒜𝑎,𝑏(𝑛) uses 𝑘 boxes to complete on 𝑇 ·𝑀𝑎,𝑏. Since 𝑇 ·𝑀𝑎,𝑏 has the
property that its 𝑖-th box is of size at least as large as the 𝑖-th box of 𝑀 ′

𝑎,𝑏, Lemma
9.31 tells us that 𝒜𝑎,𝑏 also requires at least 𝑘 boxes to complete on 𝑀 ′

𝑎,𝑏.10 Since
𝑇 ·𝑀𝑎,𝑏 is a worst-case profile, in order to complete the proof, it therefore suffices to
show that

E

[︃
𝑘∑︁

𝑖=1

(𝑋𝑖 · |2𝑖|)log𝑏 𝑎
]︃
≥ Ω

(︃
𝑘∑︁

𝑖=1

(𝑇 · |2𝑖|)log𝑏 𝑎
)︃
.

By linearity of expectation, it suffices to prove that E[𝑋 log𝑏 𝑎
𝑖] ≥ 𝑇 log𝑏 𝑎. Since the

function 𝑓(𝑥) = 𝑥log𝑏 𝑎 is convex (because 𝑎 > 𝑏), Jensen’s inequality tells us that

E[𝑋 log𝑏 𝑎
𝑖] ≥ E[𝑋𝑖]

log𝑏 𝑎 ≥ Ω(𝑇 log𝑏 𝑎),

as desired.

9.5.2 Start-time perturbations

In this section, we consider another natural form of smoothing, in which the algo-
rithm 𝒜𝑎,𝑏(𝑛) begins at a random start-time within a cyclic version of the profile
𝑀𝑎,𝑏(𝑛). Random start times simulate jobs starting at arbitrary times while a system
is running.

Define the profile 𝑀∘
𝑎,𝑏(𝑛) = 𝑀𝑎,𝑏(𝑛) ∘ 𝑀𝑎,𝑏(𝑛) ∘ 𝑀𝑎,𝑏(𝑛) ∘ · · · to be the infinite

profile consisting of duplicates of the profile 𝑀𝑎,𝑏(𝑛). We will use (21,22, . . .) to
denote the boxes in 𝑀∘

𝑎,𝑏(𝑛).

10Note that if a box in 𝑀𝑎,𝑏 has its size multiplied by zero, resulting in an empty box in 𝑀 ′
𝑎,𝑏, we

still consider that box when talking about the 𝑖-th box of 𝑀 ′
𝑎,𝑏.

194

Time

m(t)

Random time point

t=r

Figure 9-3: An example of picking a random start time with the 𝑀∘
𝑎,𝑏 profile where 𝑎 = 3

and 𝑏 = 2. If we start the algorithm at time 𝑡 = 𝑟 instead of 𝑡 = 0 we have created a cyclic
shift.

We will now generate truncated profiles simulating random start times by remov-
ing boxes from the beginning of 𝑀∘

𝑎,𝑏(𝑛). Let 𝑘 be the number of boxes in 𝑀𝑎,𝑏(𝑛) and
𝑡 =

∑︀𝑘
𝑖=1 |2𝑖| denote the sum of the sizes of the boxes in 𝑀𝑎,𝑏(𝑛). Define a distribu-

tion ℳ over infinite profiles such that 𝑀 ∈ ℳ is constructed as follows: first select
a random 𝑟 ∈ {0, 1, . . . , 𝑡− 1}; then identify the first box 2𝑗 such that

∑︀𝑗
𝑖=1 |2𝑖| ≥ 𝑟;

finally, construct 𝑀 by removing each of the boxes 21, . . . ,2𝑗−1, and replacing the
box 2𝑗 with a box of size

(︁∑︀𝑗
𝑖=1 |2𝑖|

)︁
− 𝑟.

The purpose of this section is to prove the following theorem:

Theorem 9.33 Suppose 𝑛 > 1 is a power of 𝑏. The distribution ℳ, in which a ran-
dom start-time is selected within the cyclic profile 𝑀∘

𝑎,𝑏(𝑛), is worst-case in expectation
for 𝒜𝑎,𝑏(𝑛).

Proof. Recall that the profile 𝑀𝑎,𝑏(𝑛) can be expressed as 𝑎 copies of the profile
𝑀𝑎,𝑏(𝑛/𝑏), along with a box of size 𝑛. Let 𝐴 denote the prefix of 𝑀𝑎,𝑏(𝑛) consisting
of the first 𝑎 − 1 copies of the profile 𝑀𝑎,𝑏(𝑛/𝑏), and let 𝐵 denote the final copy of
the profile 𝑀𝑎,𝑏(𝑛/𝑏) along with the box of size 𝑛.

Let (21, . . . ,2𝑥) denote the boxes in 𝐴 and (2′
1, . . . ,2

′
𝑦) denote the boxes in 𝐵.

We claim that
𝑥∑︁

𝑖=1

|2𝑖| ≥ Ω

(︃
𝑦∑︁

𝑖=1

|2′
𝑖|
)︃
, (9.21)

and that
𝑥∑︁

𝑖=1

|2𝑖|log𝑏 𝑎 ≤ 𝑂

(︃
𝑦∑︁

𝑖=1

|2′
𝑖|log𝑏 𝑎

)︃
. (9.22)

Before proving Equation (9.21) and Equation (9.22), we first use them to com-
plete the proof of the theorem. When constructing a random profile 𝑀 in ℳ, Equa-
tion (9.21) tells us that with probability Ω(1), 𝑟 will satisfy 𝑟 ≤∑︀𝑥

𝑖=1 |2𝑖|. When this
occurs, the profile 𝑀 can be obtained from the profile 𝑀∘

𝑎,𝑏(𝑛) by eliminating and
shrinking boxes in the subsequence (21, . . . ,2𝑥) and not modifying any other boxes.
If we identify each of the boxes 2𝑥+1,2𝑥+2, . . . in 𝑀∘

𝑎,𝑏(𝑛) with their counterparts in
𝑀 , then by Lemma 9.31, when 𝒜𝑎,𝑏(𝑛) is executed on 𝑀 it will still use all of the

195

boxes 2𝑥+1, . . . ,2𝑥+𝑦. Recall that 𝑀𝑎,𝑏(𝑛) has the property that

𝑥+𝑦∑︁
𝑖=1

|2𝑖|log𝑏 𝑎 = log 𝑛 · 𝑛log𝑏 𝑎.

By Equation (9.22), it follows that

𝑥+𝑦∑︁
𝑖=𝑥+1

|2𝑖|log𝑏 𝑎 ≥ Ω
(︀
log 𝑛 · 𝑛log𝑏 𝑎

)︀
. (9.23)

Thus when we condition on 𝑟 ≤ ∑︀𝑥
𝑖=1 |2𝑖|, the box-profile 𝑀 is guaranteed to be

worst-case. Since this occurs with probability Ω(1), it follows that ℳ is worst-case
in expectation.

It remains to prove Equation (9.21) and Equation (9.22). Since 𝐴 consists of 𝑎−1
copies of 𝑀𝑎,𝑏(𝑛/𝑏) and 𝐵 contains a single copy of 𝑀𝑎,𝑏(𝑛/𝑏) followed by a box of
size 𝑛, it follows that

𝑛+
𝑥∑︁

𝑖=1

|2𝑖| ≥
(︃

𝑦∑︁
𝑖=1

|2′
𝑖|
)︃
, (9.24)

and that
𝑥∑︁

𝑖=1

|2𝑖|log𝑏 𝑎 ≤ (𝑎− 1) ·
𝑦∑︁

𝑖=1

|2′
𝑖|log𝑏 𝑎. (9.25)

Since 𝑎 ≥ 2, Equation (9.25) implies Equation (9.22), as desired. Since the box
sequence 𝐴 = (21, . . . ,2𝑥) contains an instance of 𝑀𝑎,𝑏(𝑛/𝑏), it must contain at least
one box of size 𝑛/𝑏. Thus

(𝑏+ 1) ·
𝑥∑︁

𝑖=1

|2𝑖| ≥ 𝑛+
𝑥∑︁

𝑖=1

|2𝑖|.

Combining this with Equation (9.24), we get Equation (9.21), as desired.

9.5.3 Box-order perturbations

In this section, we consider smoothing via shuffling positions of boxes within the
profile 𝑀𝑎,𝑏. In particular, for 𝑛 a power of 𝑏, we define 𝒯𝑎,𝑏(𝑛) to be the set of profiles
constructed as follows: When 𝑛 = 1, 𝒯𝑎,𝑏(𝑛) contains a single profile consisting of a
box of size one. When 𝑛 > 1, 𝒯𝑎,𝑏(𝑛) consists of all profiles 𝑀 that can be constructed
by selecting sub-profiles 𝑋1, . . . , 𝑋𝑎 ∈ 𝒯𝑎,𝑏(𝑛/𝑏), inserting a box of size 𝑛 after one of
the profiles 𝑋𝑖, and then concatenating the sub-profiles together. That is,

𝑀 = 𝑋1 ∘𝑋2 ∘ · · · ∘𝑋𝑖 ∘2 ∘𝑋𝑖+1 ∘ · · · ∘𝑋𝑎,

for some 𝑖 ∈ {1, . . . , 𝑎}, and where 2 is a box of size 𝑛. We depict an example of a
re-ordered profile, 𝑀 , in Figure 9-4.

196

Time

m(t)

Time

m(t)

Figure 9-4: An example of re-ordering an 𝑀𝑎,𝑏 profile. In this case 𝑎 = 3 and 𝑏 = 2. The
top profile is 𝑀𝑎,𝑏, the bottom profile is 𝑀 .

The profiles 𝑀 in the set 𝒯𝑎,𝑏(𝑛) can be thought of as relaxations of the profile
𝑀𝑎,𝑏(𝑛). In particular, they are the profiles obtained by allowing the recursive con-
struction of 𝑀𝑎,𝑏(𝑛) to, at each step in the recursion, place a scan after an arbitrary
subprofile rather than always after the final subprofile.

We define the set 𝒯𝑎,𝑏 of infinite box-profiles to contain all profiles 𝑀 that for all
𝑛 (that are powers of 𝑏) contain as a prefix an element of 𝒯𝑎,𝑏(𝑛).

The main purpose of this section is to prove that all profiles𝑀 ∈ 𝒯𝑎,𝑏 are worst-case
profiles for the algorithm 𝒜𝑎,𝑏. That, is, the recursive construction of the worst-case
profile 𝑀𝑎,𝑏 is robust to random shuffling of large boxes within the recursive structure.

Theorem 9.34 All profiles 𝑀 ∈ 𝒯𝑎,𝑏 are worst-case profiles for the algorithm 𝒜𝑎,𝑏.

Proof. For 𝑛 a power of 𝑏, define the Universal Worst-Case Profile 𝑈𝑎,𝑏(𝑛) as
follows. When 𝑛 = 1, 𝑈𝑎,𝑏(𝑛) consists of a single box of size 1 repeated 𝑎 times.
When 𝑛 > 1, we construct 𝑈𝑎,𝑏(𝑛) by concatenating together 𝑎 copies of 𝑈𝑎,𝑏(𝑛/𝑏),
and inserting a box of size 𝑛 after each of them. That is,

𝑈𝑎,𝑏(𝑛) = (𝑈𝑎,𝑏(𝑛/𝑏) ·2)𝑎 ,

where 2 is a box of size 𝑛, and the multiplication operator is defined to perform
concatenation.

Define the infinite-box profile 𝑈𝑎,𝑏 to be the unique infinite-box profile that con-
tains each 𝑈𝑎,𝑏(𝑛) as a prefix. We claim that 𝑈𝑎,𝑏 is a worst-case profile for 𝒜𝑎,𝑏.
In fact, a stronger statement is true: The profile 𝑈𝑎,𝑏(𝑛) is the same as the profile
𝑀𝑎,𝑏(𝑛 · 𝑏), except without the final box of size 𝑛 · 𝑏 that appears at the end of the
latter. This statement follows immediately by induction on log𝑏 𝑛. It follows that
𝑈𝑎,𝑏 = 𝑀𝑎,𝑏, and that 𝑈𝑎,𝑏 is a worst-case profile.

We now demonstrate how to construct each profile 𝑀 ∈ 𝒯𝑎,𝑏(𝑛) by removing boxes
from 𝑈𝑎,𝑏(𝑛). In particular, we claim that each profile 𝑀 ∈ 𝒯𝑎,𝑏(𝑛) can be obtained
from the universal worst-case profile 𝑈𝑎,𝑏(𝑛) by removing exactly an 𝑎−1

𝑎
fraction of

the boxes in each size-class from 𝑈𝑎,𝑏(𝑛). When 𝑛 = 1, this is immediate, since 𝑈𝑎,𝑏(𝑛)
consists of 𝑎 boxes of size one, and the only profile in 𝒯𝑎,𝑏(1) consists of a single box
of size one. When 𝑛 > 1 is a power of 𝑏, the claim follows by induction, using as an

197

inductive hypothesis that 𝑈𝑎,𝑏(𝑛/𝑏) can be transformed into any element of 𝒯𝑎,𝑏(𝑛/𝑏)
by removing a 𝑎−1

𝑎
fraction of the boxes in each size-class. Recall, in particular, that

each profile 𝑀 ∈ 𝒯𝑎,𝑏(𝑛) is obtained by selecting 𝑎 profiles 𝑋1, . . . , 𝑋𝑎 ∈ 𝒯𝑎,𝑏(𝑛/𝑏),
and concatenating them together with a single box of size 𝑛 after one of them. The
universal profile 𝑈𝑎,𝑏(𝑛), on the other hand, is obtained by pasting together 𝑎 copies
of 𝑈𝑎,𝑏(𝑛/𝑏) with a box of size 𝑛 after each of them. By removing all but of one of
the boxes of size 𝑛 from 𝑈𝑎,𝑏(𝑛) (which corresponds with removing a 𝑎−1

𝑎
fraction of

the boxes of size 𝑛), and then applying the inductive hypothesis to each of the copies
of 𝑈𝑎,𝑏(𝑛/𝑏) in order to transform it into 𝑋𝑖, it follows that each 𝑀 ∈ 𝒯𝑎,𝑏(𝑛) can be
constructed by removing from 𝑈𝑎,𝑏(𝑛) some choice of 𝑎−1

𝑎
fraction of the boxes in each

size-class.
Since 𝑈𝑎,𝑏(𝑛) is a prefix of 𝑀𝑎,𝑏(𝑛 · 𝑏), when 𝒜𝑎,𝑏(𝑛 · 𝑏) is executed on profile 𝑈𝑎,𝑏,

it must use all the boxes in 𝑈𝑎,𝑏(𝑛). For each box-size 𝑠, let 𝑡𝑠 denote the number of
boxes of size 𝑠 in 𝑈𝑎,𝑏(𝑛). By the claim in the preceding paragraph, and by Lemma
9.31, when 𝒜𝑎,𝑏(𝑛 · 𝑏) is executed on any element 𝑀 ∈ 𝒯𝑎,𝑏, it must use at least 𝑡𝑠/𝑎
boxes of each size 𝑠. If (2′

1,2
′
2, . . .) denotes the profile 𝑀 , and 𝑘 is the number of

boxes that 𝒜𝑎,𝑏(𝑛 · 𝑏) uses when executed on 𝑀 , it follows that

𝑘∑︁
𝑖=1

|2′
𝑖|log𝑏 𝑎 =

∑︁
𝑠

𝑡𝑠
𝑎
· 𝑠log𝑏 𝑎 ≥ Ω

(︃∑︁
𝑠

𝑡𝑠 · 𝑠log𝑏 𝑎
)︃
. (9.26)

Since 𝑈𝑎,𝑏(𝑛) is the same as 𝑀𝑎,𝑏(𝑛 ·𝑏), except with the final box of size 𝑛 removed,
|2|log𝑏 𝑎 over the boxes in 𝑈𝑎,𝑏(𝑛) is Ω(log 𝑛 · 𝑛log𝑏 𝑎). Thus the right-hand side of
Equation (9.26) is Ω(log 𝑛 ·𝑛log𝑏 𝑎). It follows that the profile 𝑀 ∈ 𝒯𝑎,𝑏 is a worst-case
profile, as desired.

9.6 Related work
This section reviews related work in the area of modeling real-world performance of
algorithms under memory fluctuations. In order to apply our algorithms to real-world
systems, it is important to find the right model in which the theoretical efficiency of
our algorithms closely matches their practical efficiency.

The disk access model (DAM) was formulated [3, 186] to account for multi-
level memory hierarchies (present in real systems) where the size of memory available
for computation and the speed of computation differs in each level. The DAM [3]
models a 2-level memory hierarchy with a large (infinite sized) but slow disk, and
a small (bounded by 𝑀) but fast cache. The drawback of DAM is that efficient
algorithms developed in this model require knowledge of cache size. The ideal-cache
model [153,307] was proposed to counteract this drawback by building an automatic
paging algorithm into the model and providing no knowledge of the cache size to
algorithms. Thus, cache-oblivious algorithms [116, 225] are independent of the
memory parameter and can be applied to complex multi-level architectures where the
size of each memory-level is unknown. There exists a plethora of previous work on the
performance analysis and implementations of cache-oblivious algorithms (on single-

198

core and multicore machines) [46,50,63,78,99,102,106,152,153,230,393,394]. Among
other limits [40,77], one critical limit of the cache-oblivious model is that it does not
account for changing cache-size. In fact, as we shall see in Chapter 10, preliminary
experimental studies have shown that two cache-oblivious algorithms (with the same
I/O-complexity) might in fact perform vastly differently under a changing cache.

Changing cache size can stem from a variety of reasons. For example, shared
caches in a multicore environment may allocate different portions of the cache to dif-
ferent processes at any time (and this allocation could be independent of the memory
needed by each process). There has been substantial work on paging in shared-
cache environments. For example, Peserico formulated alternative models for page
replacement [302] provided a fluctuating cache. However, Peserico’s page-replacement
model differs from the cache-adaptive model because in his model, the cache-size
changes at specific locations in the page-request sequence as opposed to being tem-
porally related to each individual I/O. Other page replacement policies have applied
to multicore shared-cache environments [216] where several processes share the same
cache [32,176,194,250,251,398] leading to situations where page sizes can vary [251]
and where an application can adjust the cache size itself [194,398].

Theoretical [32,33] and empirical studies [295,401,402] have been done in the past
to study partial aspects of adaptivity to memory fluctuations [80, 167, 272, 273, 296,
400, 402]. Barve and Vitter [32, 33] were the first to generalize the DAM model to
account for changing cache size. In their model, they provide optimal algorithms for
sorting, matrix multiplication, LU decomposition, FFT, and permutation but stops
just short of a generalized technique for finding algorithms that are optimal under
memory fluctuations [32, 33]. In their model, the cache is guaranteed to stay at size
𝑀 for 𝑀/𝐵 I/Os. In this way, their model is very similar to our notion of square
profiles.

The cache-adaptive model [45] introduced the notion of a memory profile. The
memory profile provides the cache size at each time step (defined as an I/O-operation),
and at each time step the cache can increase by 1 block or decrease by an arbitrary
amount. Bender et al. [43] went on to show that any optimal (in the DAM) (𝑎, 𝑏, 𝑐)-
regular algorithm where 𝑎 > 𝑏 and 𝑐 < 1 is cache-adaptive or optimal under this
model. However, disappointingly, they showed that (𝑎, 𝑏, 𝑐)-regular algorithms where
𝑐 = 1 can be up to a log-factor away from optimal [43]. This leads to the the question
of whether non-adaptive (𝑎, 𝑏, 𝑐)-regular algorithms can be turned into cache-adaptive
algorithms via some procedure. Chapter 10 takes the first step in this direction by
introducing a scan-hiding procedure for turning certain non-adaptive (𝑎, 𝑏, 𝑐)-regular
algorithms into cache-adaptive ones. Although scan-hiding takes polynomial time, it
introduces too much overhead and also does not apply to all (𝑎, 𝑏, 𝑐)-regular algorithms
where 𝑎 > 𝑏 and 𝑐 = 1.

This chapter takes another important step in this direction by showing that
(𝑎, 𝑏, 𝑐)-regular algorithms where 𝑎 > 𝑏 and 𝑐 = 1 are cache-adaptive in expecta-
tion. Whereas previous work analyzed all algorithms in the worst-case, we believe
that this is, in fact, unnecessary and does not accurately depict real-world architec-
tures. We introduce the notion of average-case cache-adaptivity in what we hope to
be a more accurate picture of shared-cache multicore systems.

199

9.7 Conclusion
This chapter presents the first beyond-worst-case analysis of (𝑎, 𝑏, 𝑐)-regular cache-
adaptive algorithms. The main positive result in this chapter gives hope for cache-
adaptivity: even though the worst-case profile from previous work [43, 45] is robust
under random perturbations and shuffling, many (𝑎, 𝑏, 𝑐)-regular algorithms become
cache-adaptive in expectation on profiles generated from any distribution. Notably, to
our knowledge, all currently known sub-cubic matrix multiplication algorithms (such
as Strassen’s [351], Vassilevska Williams’ [383], Coppersmith-Winograd’s [107], and
Le Gall’s [158]) were a logarithmic factor away from adaptive under worst-case anal-
ysis, but are adaptive in expectation on random profiles via smoothed analysis. Our
results provide guidance for analyzing cache-adaptive algorithms on profiles beyond
the adversarially constructed worst-case profile.

Cache fluctuations are a fact of life on modern hardware, but many open questions
remain. In this chapter, we randomized memory profiles for deterministic (𝑎, 𝑏, 𝑐)-
regular algorithms. Could randomized algorithms also overcome worst-case profiles
and result in cache-adaptivity? On the empirical side, which patterns of memory fluc-
tuations occur in the real world? Further exploration of beyond-worst-case analysis
may help model practical memory patterns more accurately.

Locality-first strategy. The smoothed analysis in this chapter theoretically grounds
the locality-first strategy by closing the gap between cache-oblivious and cache-
adaptive algorithms. This chapter shows that cache-oblivious algorithms that achieve
optimal use of locality in a fixed-size cache also are optimal when the available cache
size fluctuates in shared memory when the fluctuations are not highly tailored to the
algorithm. These results validate the real-world benefits of the locality-first strategy
of focusing on locality for overall performance even in the face of parallelism.

200

Chapter 10

Cache-Adaptive Exploration:
Experimental Results and
Scan-Hiding for Adaptivity

This chapter presents “scan-hiding,” a technique for converting non-cache-adaptive
algorithms to cache-adaptive ones by applying the locality-first strategy to enhance
temporal locality. This chapter demonstrates how to create algorithms that adapt to
cache fluctuations in the worst case via algorithmic transformations. It also includes
an experimental investigation of cache-adaptive algorithms that suggests that the
empirical advantage of cache-adaptive algorithms extends to more practical situations
than just the worst case. These results support the locality-first strategy for algorithm
development both theoretically and practically.

This work was conducted in collaboration with Andrea Lincoln, Jayson Lynch, and
Quanquan C. Liu [246]. We would like to thank Michael Bender and Rob Johnson
for their writing input and technical comments. Thanks to Rishab Nithyanand for
contributions to the experimental section. We would like to thank Rezaul Chowdhury,
Rathish Das, and Erik D. Demaine for helpful discussions.

Abstract
Despite the increasing popularity of shared-cache systems, the theoretical behavior of
most algorithms in the face of memory fluctuations is not yet well understood. There
is a gap between our knowledge about how algorithms perform in a fixed-size (static)
cache versus a dynamic cache where the amount of memory available to a program
fluctuates.

Cache-adaptive analysis is a method of analyzing how well algorithms use a dy-
namic cache. Bender et al. showed that optimal cache-adaptivity does not follow from
cache-optimality in a static cache. Specifically, they proved that some cache-optimal
algorithms in a static cache are suboptimal when subject to certain memory pro-
files (patterns of memory fluctuations). For example, the canonical cache-oblivious
divide-and-conquer formulation of Strassen’s algorithm for matrix multiplication is
suboptimal in the cache-adaptive model because it does a linear scan to add subma-
trices together.

201

This chapter introduces “scan-hiding,” the first technique for converting a class of
non-cache-adaptive algorithms with linear scans to optimally cache-adaptive variants.
It provides a concrete example of scan-hiding on Strassen’s algorithm, a subcubic algo-
rithm for matrix multiplication that involves linear scans at each level of its recursive
structure. All currently known subcubic algorithms for matrix multiplication include
linear scans, however, so our technique applies to a large class of algorithms.

This chapter also experimentally evaluates different algorithms in the face of mem-
ory fluctuations to explore how theoretical analysis of cache-adaptivity manifests in
practice. These findings suggest that memory fluctuations affect algorithms with the
same theoretical cache performance in a static cache differently. For example, the
optimally cache-adaptive naive matrix multiplication algorithm achieved fewer rela-
tive faults than the non-adaptive variant in the face of changing memory size. These
experiments suggest that the performance advantage of cache-adaptive algorithms ex-
tends to more practical situations beyond the carefully-crafted memory specifications
in proofs of worst-case behavior.

10.1 Introduction
As detailed in Chapter 9, the amount of memory available to a single process in
a shared cache may vary dynamically over time as multiple processors compete for
space. These memory fluctuations have an effect on both theoretical and practi-
cal performance. Significant effort has been devoted to practical algorithms adapt
to changing memory size in a shared cache, but these algorithms are susceptible
to worst-case fluctuations. Theoretical guarantees on cache-adaptive algorithms
that handle memory fluctuations gracefully analyze algorithm performance in the
worst case and show that optimal cache-adaptivity does not necessarily follow from
optimality in a fixed-size cache [43,45].

Specifically, Bender et al. [43] gave a framework for designing and analyzing cache-
adaptive algorithms in the worst case. Specifically, they completely characterize when
a linear-space-complexity Master-method-style or mutually recursive linear-space-
complexity Akra-Bazzi-style algorithm is optimal in the cache-adaptive model. For
example, the in-place recursive naive1 cache-oblivious matrix multiplication algorithm
is optimally cache-adaptive, while the naive cache-oblivious matrix multiplication that
does the additions upfront (and not in-place) is not optimally cache-adaptive. They
provide a toolkit for the analysis and design of cache-oblivious algorithms in certain
recursive forms and show how to determine if an algorithm in a certain recursive form
is optimally cache-adaptive and if not, to determine how far it is from optimal.

The main contribution of Bender et al.’s study of cache-adaptive analysis [43]
is an algorithmic toolkit for recursive algorithms in specific forms. At a high level,
cache-oblivious algorithms that have long (𝜔(1) block transfers) scans2 (such as the

1This chapter uses “naive” matrix multiplication to refer to the 𝑂(𝑛3) work algorithm for matrix
multiplication.

2That is, the recurrence for their cache complexity has the form 𝑇 (𝑛) = 𝑎𝑇 (𝑛/𝑏)+Ω(𝑛/𝐵) where
𝐵 is the cache line size in words.

202

not-in-place 𝑛3 matrix multiplication algorithm) in addition to their recursive calls
are not immediately cache-adaptive. However, there exists an in-place, optimally
cache-adaptive version of naive matrix multiplication.

Although these results take important steps in cache-adaptive analysis, open ques-
tions remain regarding the limits of this theoretical framework. Is there a way to
transform other algorithms that do 𝜔(𝑛/𝐵) block transfers at each recursive call
(where 𝐵 is the cache line size in words), such as Strassen’s algorithm [351], into op-
timally cache-adaptive algorithms? Furthermore, Bender et al. [45] gave a worst-case
analysis in which the non-adaptive naive matrix multiplication is a Θ(lg𝑁) factor off
from optimal. Does the predicted slow down manifest in reality?

Contributions

This chapter takes the first steps towards answering these questions in two ways.
First, it introduces a new technique called scan-hiding for making a certain

class of non-cache-adaptive (𝑎, 𝑏, 𝑐)-regular algorithms adaptive. As a case study, this
chapter uses scan-hiding to construct a cache-adaptive version of Strassen’s algorithm
for matrix multiplication. Strassen’s algorithm involves linear scans in its recurrence,
which makes the algorithm as described non-adaptive via a theorem from Bender et
al. [43]. Scan-hiding is the first method in the cache-adaptive setting to transform
non-adaptive algorithms into adaptive algorithms.

Next, this chapter empirically evaluates the performance of various algorithms for
matrix multiplication and sorting when subject to memory fluctuations and finds that
algorithms that are “more adaptive” (i.e. closer to optimal cache-adaptivity) are more
robust under memory changes. Moreover, the tested algorithms exhibit performance
differences even when memory sizes do not change adversarially.

Map. This chapter is organized as follows. It omits preliminaries about cache-
adaptive algorithms and analysis because they have been covered in Section 9.2. Sec-
tion 10.2 presents the general scan-hiding technique for converting a class of non-
adaptive but “scan-hideable” algorithms into adaptive ones. To concretize the scan-
hiding technique, Sections 10.3 and 10.4 apply the technique to Strassen’s subcubic
matrix multiplication algorithm as a case study. Section 10.3 describes the Strassen
algorithm and shows it is non-adaptive. Section 10.4 applies scan-hiding to Strassen’s
algorithm and shows the resulting algorithm is adaptive. Section 10.5 empirically
evaluates several algorithms subjected to memory fluctuations.Finally, Section 10.6
provides concluding remarks.

10.2 Generalized scan-hiding
This section presents a generalized framework for converting non-adaptive algorithms
into adaptive algorithms via “scan-hiding.” It will briefly sketch the scan-hiding pro-
cedure. Section 10.4 concretizes the technique using Strassen’s algorithm as a case
study. Next, this section identifies a class of “scan-hideable algorithms” that the tech-
nique applies to. Finally, it shows that applying the scan-hiding technique generates

203

an optimally progressing cache-adaptive algorithm as defined in Chapter 9. This
generalized scan-hiding procedure can be applied to Master-method-style recursive
algorithms that contain “independent” linear scans in each level of the recursion.

At a high level, scan-hiding breaks up long (up to linear) scans at each level of
a recursive algorithm and distributes the pieces evenly throughout the algorithm’s
“recursion tree.” An algorithm’s recursion tree is the tree created from a recursive
algorithm 𝒜 such that each node of the tree contains all subproblems defined by that
node.

First, we will specify the class of “scan-hideable” algorithms that scan-hiding ap-
plies to.

Definition 10.1 (Scan-hideable algorithms) Let 𝒜 be an (𝑎, 𝑏, 𝑐)-regular algo-
rithm with input size 𝑛𝑐. If 𝒜 is non-adaptive, it is scan-hideable if it has the
following characteristics:

• 𝒜 has a runtime that can be computed as a function that follows the Master
Theorem style equations of the form 𝑇 (𝑛) = 𝑎𝑇 (𝑛/𝑏) + 𝑂(𝑛𝑐) in the DAM
model where log𝑏(𝑎) > 𝑐 for some constants 𝑎 > 0, 𝑏 ≥ 1, and 𝑐 ≥ 1.

• In terms of I/Os, the base case of 𝒜 is 𝑇 (𝑀) = 𝑀
𝐵

where 𝑀 is the cache size.

• At each level of the recursion tree, a linear scan is performed with a more “work-
consuming” subproblem. Let the work of 𝒜 be the amount of computation in
words performed in a square profile of size 𝑚 by 𝑚 by some subproblem of 𝒜.
A subprocess is more work-consuming if it uses more work in a square profile
of size 𝑚 by 𝑚. For example, a naive matrix multiplication subproblem is more
work-consuming than a scan since it uses (𝑚𝐵)log2 3 work as opposed to a scan
which uses 𝑚𝐵 work.

• Each of the more work-consuming subproblems in each node of the recursion
tree only depends on the the results of the scans performed in the subtrees to the
left of the path from the current node to the root.

• Each node’s scans depend on the result of the subprocesses of the ancestors
(including the parent) of the current node in 𝒜’s recursion tree.

Next, we will show that even if a scan-hideable algorithm has an upfront scan
that cannot be hidden, it can still become cache-adaptive. The scan-hiding technique
involves hiding all scans “inside” the recursive structure in subcalls. If an algorithm
(e.g. Strassen) requires an initial linear scan for even the first subcall, it cannot hide
the first scan in recursive subcalls.

Therefore, we show that an algorithm 𝒜 is optimally progressing even if 𝒜 has
an initial scan of length 𝑂(𝑛𝑐). We will be using 𝒜scan_hiding as the name for the
algorithm using this scan-hiding technique.

Lemma 10.2 Let 𝒜 be a scan-hideable (𝑎, 𝑏, 𝑐)-regular algorithm and 𝒜scan_hiding be
the resulting algorithm after applying scan-hiding to 𝒜. Additionally, let us assign

204

potential in integer units to accesses, much as we do for work. If the following are
true:

• The optimal 𝒜 algorithm in the DAM model (i.e. ignoring wasted time due
to scans) takes total work 𝑛lg𝑏(𝑎) and respects the progress bound 𝜌(𝑚(𝑡)) =
𝑑0(𝑚(𝑡)𝐵)log𝑏(𝑎)/𝑐 where 𝑑0 is a constant greater than 0. Let 𝑚 be a profile that
starts at time step 0 and ends at time step 𝑇 where the optimal 𝒜 algorithm
completes.

• 𝒜scan_hiding is an algorithm which computes the solution to the problem that 𝒜
solves and has total work 𝑑1𝑛

lg𝑏(𝑎) and has total potential 𝑑2𝑛lg𝑏(𝑎) and completes
𝑐3(𝑚𝐵)log𝑏(𝑎)/𝑐 work and potential in any 𝑚 by 𝑚 square profile where 𝑑1, 𝑑2 and
𝑑3 are all constants greater than 0 and where 𝑚𝐵 < 𝑛𝑐.

• Finally, 𝒜scan_hiding must also have the property that if the total work plus po-
tential completed is (𝑑1+𝑑2)𝑛

lg𝑏(𝑎), 𝒜scan_hiding is guaranteed to have finished its
last access.

Then 𝒜scan_hiding is cache-adaptive.

Proof. Let𝑚′(𝑡) be the inner square profile of𝑚(𝑡). When 𝑛𝒞 < 𝑚′(𝑡)𝐵 the entirety
of 𝒜 completes and 𝒜scan_hiding will complete given a constant factor expansion.

The optimal 𝒜 algorithm in the worst case makes a constant factor 𝑑4 ≥ 1 less
progress on the inner profile for some constant 𝑑4.

With time augmentation 1
𝑑3·𝑑4 , 𝒜scan_hiding completes as much progress on this

square as 𝐴 did in the associated part of the profile, so over the entire profile
𝒜scan_hiding completes at least 𝑛lg𝑏(𝑎) work and potential. With time augmentation
𝑑1·𝑑2
𝑑3·𝑑4 , 𝒜scan_hiding completes at least (𝑑1 + 𝑑2)𝑛

lg𝑏(𝑎) work and potential.
Thus 𝒜scan_hiding must have completed.
Finally, we prove that algorithm 𝒜scan_hiding is optimally progressing. Specifically,

we show that any scan-hideable algorithm 𝒜 can be converted into an optimally-
progressing version 𝒜scan_hiding via scan-hiding.

Theorem 10.3 Let 𝒜 be a scan-hideable algorithm with running time of the form
𝑇 (𝑛) = 𝑎𝑇 (𝑛/𝑏)+𝑂(𝑛𝑐) and 𝒜scan_hiding be the version of 𝒜 with scan-hiding applied.
𝒜scan_hiding is optimally progressing with progress bound 𝜌(𝑚(𝑡)) = (𝑚(𝑡)𝐵)

log𝑏(𝑎)

𝒞 . To
manage all the pointers we also require 𝑚(𝑡) ≥ log𝑏 𝑛 for all 𝑡.

Proof. For this proof, we charge all writeouts to read-ins; therefore, we do not
specifically argue the cache-adaptivity of the writeouts of 𝒜scan_hiding. We will proceed
with a potential argument.

Since the total amount of required amount of work by 𝒜 is 𝑂
(︀
𝑛log𝑏(𝑎)

)︀
, an opti-

mally progressing version of 𝒜 performs Ω
(︁
(𝑚𝐵)

log𝑏(𝑎)

𝑐

)︁
work for each inner square

with side length 𝑚 in the inner square profile of the usable profile.
We first show that the amount of total potential during upfront scan does not

exceed 𝑂
(︀
𝑛log𝑏 𝑎

)︀
. Then, by Lemma 10.2, we know that 𝒜scan_hiding is still optimally

205

progressing. We assign 𝑂(𝑛log𝑏(𝑎)−𝑐) potential to each of the 𝑂(𝑛𝑐) scans; thus for each
scan we complete Ω

(︀
𝑛log𝑏(𝑎)−𝑐𝑚𝐵

)︀
= Ω

(︁
(𝑚𝐵)

log𝑏(𝑎)

𝑐

)︁
progress, as long as 𝑚 < 𝑛𝑐.

Scan-hiding intersperses the scans with the more work-consuming processes asso-
ciated with the other parts of the algorithm 𝒜, resulting in Ω

(︁
(𝑚𝐵)

log𝑏 𝑎

𝑐

)︁
work to

be done at each level of the recursion in any 𝑚 by 𝑚 square where at least half of the
cache misses are used to perform this work.

Let us consider a recursive call solving a subproblem of size 𝑠. The scan in this
subproblem has length at most 𝑂(𝑠+log𝑏(𝑛)) with an additive 𝑂(log𝑏 𝑛) if the pointers
are passed around naively. The condition that 𝑚(𝑡) ≥ log𝑏 𝑛 allows for naive splits
of the sizes of scans to be acceptable by making the additive factor log𝑏(𝑛) at most a
factor of 2 of the size of the solved problem.

Thus, algorithm 𝒜 is optimally progressing.
Since scan-hiding amortizes the work of part of scan against each leaf node of

the recursion tree, each leaf node must be sufficiently large to hide part of a scan.
Therefore, these analyses assume that 𝑚(𝑡) ≥ log𝑏 𝑛. Given a specific problem, one
can usually find a way to split the scans such that this requirement is unnecessary.
General scan-hiding uses this minimum cache size to make passing pointers to scans
easy and inexpensive, however.

As an immediate consequence of Theorem 10.3 above, we get the following corol-
lary.

Corollary 10.4 Given a scan-hideable algorithm 𝒜 with running time of the form
𝑇 (𝑁) = 𝑎𝑇 (𝑁/𝑏) + 𝑂(𝑁), 𝒜scan_hiding is cache-adaptive. If a node’s subprocesses
depend on the scans of the nodes in the left subtree, then we also require 𝑚(𝑡) ≥ log 𝑛.

Scan-hiding directly broadens Theorem 7.3 in [43] to show cache-adaptivity for a
specific subclass of Master-method-style problems when log𝑏(𝑎) > 𝑐.

10.3 Strassen’s algorithm
This section provides necessary background to understand the Strassen scan-hiding
case study in Section 10.4. First, it motivates the study of Strassen’s algorithm for
matrix multiplication in this chapter with a discussion of practical usage of Strassen’s
algorithm. Next, it reviews the details of Strassen’s algorithm and show that a
straightforward implementation with linear scans is not optimally progressing.

Practical usage of Strassen’s algorithm. Currently the most efficient matrix
multiplication algorithms in practice for very large matrices use the Strassen algo-
rithm [160, 200]. For example, the GNU Multi-Precision Library uses Strassen to
perform matrix multiplication for decimal digits in the range 10, 000 to 40, 000, and
the Java uses its Strassen implementation for above 74, 000 decimal digits.

Algorithm definition. Algorithm 10.5 provides the equations and pseudocode for
Strassen’s matrix multiplication algorithm. Recall that the recurrence for the runtime
for Strassen’s algorithm for multiplying two 𝑛×𝑛 matrices is 𝑇 (𝑛) = 7𝑇 (𝑛/2)+𝑂(𝑛2)
(in the RAM model).

206

Algorithm 10.5 Strassen(X, Y, Z):
Let 𝑋, 𝑌 be input matrices and 𝑍 be the output matrix. We define the matrix
quadrants as follows for 𝑋 (quadrants for 𝑌 and 𝑍 are defined in the same way):

𝑋 =

[︂
𝑋1,1 𝑋1,2

𝑋2,1 𝑋2,2

]︂
.

Strassen’s algorithm recursively computes 7 intermediate matrix products with 10
linear scans:

𝑆1 = (𝑋1,1 +𝑋2,2) · (𝑌1,1 + 𝑌2,2)

𝑆2 = (𝑋2,1 +𝑋2,2) · 𝑌1,1

𝑆3 = 𝑋1,1 · (𝑌1,2 − 𝑌2,2)

𝑆4 = 𝑋2,2 · (𝑌2,1 − 𝑌1,1)

𝑆5 = (𝑋1,1 +𝑋1,2) · 𝑌2,2

𝑆6 = (𝑋2,1 −𝑋1,1) · (𝑌1,1 + 𝑌1,2)

𝑆7 = (𝑋1,2 −𝑋2,2) · (𝑌2,1 + 𝑌2,2) .

The quadrants of the resulting 𝑍 matrix can be computed in terms of 𝑆1, . . . , 𝑆7 as
follows:

𝑍1,1 = 𝑆1 + 𝑆4 − 𝑆5 + 𝑆7

𝑍1,2 = 𝑆3 + 𝑆5

𝑍2,1 = 𝑆2 + 𝑆4

𝑍2,2 = 𝑆1 − 𝑆2 + 𝑆3 + 𝑆6 .

NaiveStrassen is not optimally progressing. We will show that a straightfor-
ward implementation of Strassen’s algorithm, called NaiveStrassen, is not optimally
progressing and therefore not cache-adaptive.

Definition 10.6 NaiveStrassen computes the 10 matrix sums needed to produce the
input for its 7 recursive calls, makes its 7 recursive calls each of which return an
associated output matrix, then does the necessary 8 matrix sums to produce its output.
This algorithm results in a recurrence of the form 𝑇 (𝑛) = 7𝑇 (𝑛/2) + 𝑂(𝑛2), or in
terms of its input size 𝑁 = 𝑛2 we have the recurrence 𝑇 (𝑁) = 7𝑇 (𝑁/4) +𝑂(𝑁).

Lemma 10.7 NaiveStrassen is not optimally progressing with respect to the progress
bound P𝒫(𝑀) = 𝑀 lg(7)/2, even if ∀𝑡,𝑀(𝑡) > 𝐵 lg(𝑛).

Proof. By Theorem 7.3 from [43], if an algorithm with linear space complexity has
a recurrence of the form 𝑇 (𝑁) = 𝑎𝑇 (𝑁/𝑏) + 𝑂(𝑁 𝑐) with a tall cache assumption

207

that 𝑀(𝑡) > lg(𝑛)𝐵 then the algorithm is a lg(𝑁/(𝐵 lg(𝑛))) factor3 away from being
optimally progressing [43].

10.4 Scan-hiding and Strassen’s algorithm
This section concretizes the scan-hiding technique using Strassen’s algorithm as a case
study. First, this section defines the AdaptiveStrassen algorithm that applies scan-
hiding to Strassen’s algorithm. Appendix B.8 contains omitted pseudocode for the
algorithm and its subroutines. Finally, this section shows that the AdaptiveStrassen
algorithm is cache adaptive.

AdaptiveStrassen definition
Figure 10-1 illustrates a small example of computing the upper right 2 × 2 result
submatrix of a 4× 4 Strassen call.

Figure 10-2 shows a part of the recursion tree of AdaptiveStrassen, a modi-
fied version of Strassen via scan-hiding. At a high level, the multiplications in the
leaves are spread evenly around additions, or broken-up scans. This even mix is
what “homogenizes” the program, allowing for all squares in a memory profile to
make within a constant factor of optimal progress. AdaptiveStrassen first sets up
the pre- and post-scans as input and output to the entire algorithm. It then com-
pletes the remaining work of the algorithm in recursive calls. We provide pseudocode
for AdaptiveStrassen in Figure B-6, which calls AdaptiveStrassenRecurse (Fig-
ure B-7) for its recursive subcalls. Each leaf of AdaptiveStrassenRecurse takes the
scans it must compute as well as the elements it must multiply. Additionally, we
define a subroutine ReturnSplitScans(scans,𝐵) that takes an array of pointers to
scans as input and splits the scans into even portions, but of size no shorter than 𝐵.
When the total size of scans is < 7𝐵, some children will be handed empty lists.

3This is only a constant if the full input size fits in 𝑂(𝐵 lg(𝑛)) words, which is a very small input
size.

208

Figure 10-1: Computing the upper right (2 × 2) output matrix of a 4 × 4 Strassen call.
Before we can compute result submatrix, we have to compute 𝑃1 and 𝑃2. Before computing
𝑃1 and 𝑃2, however, we have to compute 𝑇12 and 𝑇21 which are sums of input submatrices.
We will discuss how and when these are pre-computed given that 𝑃1 and 𝑃2 are the first
two recursive calls made.

209

× =
X11 X12

X21 X22

Y11 Y12

Y21 Y22

P1 + P2

T11 = X11

T12 = Y12 − Y22

T21 = X11 +X12

T22 = Y22

P1 = T11T12

P2 = T21T22

× = P1T11 T12 T21 T22 P2× =

Seven Mulitplications for P1 (dashed squares). Interspersed are additions (solid lines).

In the intial scan T11 and T12 will be pre-computed.

The matricies T21 and T22 must be computed before the mulitplication of P1 finishes.

X12

X × Y = Z

T11 × T12 = P1 T21 × T22 = P2

Larger Depiction Larger Depiction

T21 T21T22 T22 P2X11 X12 Y22

Figure 10-2: The pre-computation scan of size 𝑂(𝑛2) would in this case pre-compute
𝑇11 and 𝑇21. Then, all multiplications can be done. Assume that the smallest size of
subproblem (3 small boxes) fit in memory. Then we show how the (dotted line boxes not
filled in) multiplications needed for 𝑃1 can be inter-spersed with the (complete line and
colored in) additions or scans needed to pre-compute 𝑇21 and 𝑇22. Note that 𝑇21 and 𝑇22

will be done computing before we try to compute the multiplication of 𝑃2. Thus, we can
repeat the process of multiplies interspersed with pre-computation during the multiplication
for 𝑃2. The additions or scans during 𝑃2 will be for the inputs to the next multiplication,
𝑃3 (not listed here). The multiplications in 𝑃2 are computed based on the pre-computed
matrices 𝑇21 and 𝑇22 (dotted line boxes filled in).

210

AdaptiveStrassen is optimally progressing
Although Section 10.2 showed that AdaptiveStrassen is optimally progressing with
the general scan-hiding framework, the following proofs provide details of how scan-
hiding generates optimally progressing algorithms.

We first describe an assignment of work such that the total work done over the
execution is 𝑂(𝑛𝑙𝑜𝑔2(7)) and that on any 𝑚(𝑡)×𝑚(𝑡) block of execution, Ω((𝑚𝐵)lg(7)/2)
work is done. An optimal algorithm OPT for Strassen has Θ(𝑛lg(7)) accesses and has
a progress function of 𝜌(𝑚(𝑡)) = (𝑚(𝑡)𝐵)lg(7)/2.

We show adaptivity via a potential argument. At a high level, we assign “extra”
work to each square of the square profile in which AdaptiveStrassen is not performing
within a constant factor of OPT. The initial scans in AdaptiveStrassen may not
be optimally progressing, but we describe an assignment of work and potential such
that the overall algorithm is optimally progressing.

For example, suppose at time 𝑡1 of an algorithm 𝒜 can perform 𝑤1 work on a
square of size 𝑚1 and at time 𝑡2, 𝒜 can perform 𝑤2 work on a square of size 𝑚1 where
𝑤1 < 𝑤2, then we can assign 𝑤2 − 𝑤1 potential to 𝒜 at 𝑡1.

If an 𝒜 performs within a constant factor of OPT in terms of amount of work and
potential, then it is cache-adaptive. Throughout most of the algorithm, we assign one
unit of progress to each memory access an algorithm makes. We reassign progress
in our potential argument and show that AdaptiveStrassen makes steady progress
throughout its execution. Specifically, we assigned progress to the initial and end
scans because they are “harder” and are not optimally progressing. We will refer to
our reassigned progress as work.

Lemma 10.8 Let the input matrices to an instance of Strassen have size 𝑛 × 𝑛. If
the following are true:

• The optimal Strassen algorithm takes time 𝑛lg(7) in the RAM model.

• The optimal Strassen algorithm respects the progress function 𝜌𝒫(�𝑚(𝑡)) =

𝑐0 (𝑚(𝑡))lg(7)/2 where 𝑐0 is a constant such that 𝑐0 > 0. Let 𝑀(𝑡) be a pro-
file that starts at time step 0 and ends at time step 𝑇 when the optimal Strassen
algorithm completes.

• 𝒜 is an algorithm which computes matrix multiplication and has total work
𝑐1𝑛

lg(7), total potential 𝑐2𝑛lg(7), and completes 𝑐3(𝑚(𝑡)𝐵)lg(7)/2 work+potential
in any 𝑚(𝑡)×𝑚(𝑡) square of a profile where 𝑐1, 𝑐2 and 𝑐3 are all constants such
that 𝑐1, 𝑐2, 𝑐3 > 0 and where 𝑚𝐵 < 𝑛2.

• If the total progress plus potential completed is (𝑐1 + 𝑐2)𝑛
lg(7) during 𝒜’s execu-

tion, 𝒜 is guaranteed to have finished its last access.

Then 𝒜 is cache adaptive.

Proof. Let work be progress plus potential.

211

Let 𝑀 be a profile and 𝑀 ′ be the inner square profile of 𝑀 such that for all 𝑡,
𝑚(𝑡)𝐵 < 𝑛2. If 𝑚(𝑡)𝐵 ≥ 𝑛2, the entire problem can fit into cache and 𝒜 will complete
given a constant factor expansion.

The optimal Strassen algorithm makes at most a constant factor 𝑐4 > 0 less
progress on the inner profile 𝑀 ′ than it did on the original profile 𝑀 .

𝒜 makes at least as much progress on each square of 𝑀 with time augmentation
1/(𝑐3 · 𝑐4) as OPT does in the non-augmented corresponding square. Therefore, 𝐴
completes at least 𝑛lg(7) work and potential over the entire profile. 𝐴 completes at
least (𝑐1 + 𝑐2)𝑛

lg(7) work and potential with time augmentation (𝑐1 · 𝑐2)/(𝑐3 · 𝑐4).
Thus 𝒜 must have completed.
We show the recursive part of AdaptiveStrassen,

called AdaptiveStrassenRecurse, is optimally progressing when 𝑚(𝑡) > lg(𝑛).
This is not a surprise given that, if 𝑁 is the initial input size, it has a recurrence of
the form 𝑇 (𝑛) = 7𝑇 (𝑛/2) +𝑂(min{lg(𝑁), 𝑛2}).
Lemma 10.9 AdaptiveStrassenRecurse is optimally progressing if

1. ∀𝑡, 𝑚(𝑡) > lg(𝑛) and

2. AdaptiveStrassenRecurse is aware of the size of the cache line size 𝐵 with
respect to the progress bound 𝜌(𝑚(𝑡)) = (𝑚(𝑡)𝐵)lg(7)/2.

Proof. We will show that in any square of size 𝑚(𝑡) × 𝑚(𝑡),
AdaptiveStrassenRecurse does Ω((𝑚𝐵)lg(7)/2) work, as long as 𝑚𝐵 < 𝑛2.

We will assign work to the multiplications at the leaves of the recursion. That
is, we count each multiplication operation as making progress in terms of work. The
total number of such multiplications is 𝑂(𝑛lg(7)).

We will show that AdaptiveStrassenRecurse incurs only a constant factor more
misses than classic Strassen. Suppose that we reached a level of the recursion where
the side length of the matrices 𝑥 <

√︀
𝑚𝐵/10, i.e. the problem at this level of the

recursion fits in memory.
The length of the list of scans is min (lg(𝑛), 𝑥/𝐵) words. Therefore, reading in

the list incurs at most min (lg(𝑛)/𝐵, 𝑥/𝐵2) cache misses.

The total size of 𝑃 [𝑠][𝑖], the additional scans that each leaf needs to do, for all
𝑠 ∈ {𝑥1 = 0, 𝑥2 = 1, 𝑦1 = 2, 𝑦2 = 3, 𝑧1 = 4, 𝑧2 = 5} for 𝑖 < lg(𝑥) is < 5𝑥2, so all of
these smaller scans require no extra cache misses. Additionally, the multiplications
only require reading in the size of the problem once the problem fits in cache.

We will now show tht the cache misses due to extra scans passed down to each
elaf from interleaved scans is at most the size of the cache. The total number of cache
misses from scans is bounded by the size of the scans assigned to each child node.
Additionally, AdaptiveStrassenRecurse may incur one cache miss from each of the
levels of 𝑃 . That is, the number of faults due to interleaving scans is at most

lg(𝑛) + (1/𝐵)

lg(𝑛)−lg(𝑥)∑︁
𝑖=0

𝑥24𝑖/(7𝑖) < 4/3𝑥2/𝐵 + lg(𝑛).

212

Therefore, the number of cache misses incurred by a problem of size 𝑥 is at most
(4/3 + 5)𝑥2/𝐵 + lg(𝑛) when 𝑥 <

√︀
𝑚𝐵/10. A full call to AdaptiveStrassenRecurse

(𝑥, 𝑙𝑒𝑣𝑒𝑙) does 𝑥lg(7) work.
Suppose we reached an 𝑚(𝑡) × 𝑚(𝑡) square in which at least half of the square

requires cache misses for AdaptiveStrassenRecurse. We can compute at least 1
call to AdaptiveStrassenRecurse (𝑥, 𝑙𝑒𝑣𝑒𝑙, 𝑖𝑛𝑝𝑢𝑡, 𝑠𝑐𝑎𝑛𝑠) where (𝑚𝐵 − lg(𝑛))/(6 ×
2 × 2) < 𝑥 < (𝑚𝐵 − lg(𝑛))/(6 × 2) in that square. Thus, if 𝑚𝐵 > 4 lg(𝑛)𝐵
then AdaptiveStrassenRecurse completes at least (𝑚𝐵)lg(7)/2/24 = Ω((𝑚𝐵)lg(7)/2)
work.

Note that every 𝑚(𝑡)×𝑚(𝑡) square in the profile must either be at least half scans
or at least half calls to AdaptiveStrassenRecurse. Therefore,
AdaptiveStrassenRecurse is optimally progressing in every square.

Next, we show that the linear scans at the beginning and end of AdaptiveStrassen
do not preclude adaptivity via a potential argument.

Lemma 10.10 Let 𝑀 be a square profile. For all 𝑡, AdaptiveStrassen completes
at least Ω((𝑚(𝑡)𝐵)lg(7)/2−1𝑚(𝑡)𝐵) work plus potential on each 𝑚(𝑡)×𝑚(𝑡) square.

Furthermore, if AdaptiveStrassen completed all the work plus potential as per an
intial assignment of work and potential, then it must have completed its last access.

Proof. First we will consider the time that initial scans and end scans take, or the
work in AdaptiveStrassen excluding the work of AdaptiveStrassenRecurse.

Since the pre and post-scans require allocatin sextra space, we first compute how
long these allocations take. The size of the array 𝑃 of scans is

lg(𝑛)∑︁
𝑖=0

lg(𝑛)−𝑖∑︁
𝑗=0

𝑛2

4𝑖4𝑗
<

lg(𝑛)∑︁
𝑖=0

4𝑛2

3 · 4𝑖 <
16𝑛2

9
.

Therefore, the allocation must do a scan of length 16/9𝑛2. We start with a pre-
scan of length

∑︀lg(𝑛)
𝑖=0 𝑛2/(4𝑖) < 4/3𝑛2 and end with a post-scan of the same length.

We will assign progress to these scans such that the total potential is 𝑂(𝑛lg(7)).
We assign 𝑛lg(7)−2 potential to each operation of the pre and post-scans. The total
potential assigned to the scans is 𝑛2𝑛lg(7)−2 = 𝑂(𝑛lg(7)). Thus, in an𝑚(𝑡)×𝑚(𝑡) square
we complete Ω(𝑛lg(7)−2𝑚(𝑡)𝐵) progress. Note that 𝑛lg(7)−2𝑚𝐵 = Ω((𝑚𝐵)lg(7)/2−1𝑚𝐵)
as long as 𝑚𝐵 < 𝑛2. If 𝑚𝐵 > 𝑛2, AdaptiveStrassen could just have completed all
of its work in one square with augmentation.

Finally we want to show that scan-hiding does not introduce asymptotic compu-
tational overhead.

Lemma 10.11 AdaptiveStrassen takes 𝑂(𝑛lg(7)) time in the word-RAM model.

Proof. The running time for the pre and post-scans is 𝑂(𝑛2).
Let 𝑁 be the initial input size. The recurrence for the runtime of

AdaptiveStrassenRecurse is 𝑇 (𝑛) = 7𝑇 (𝑛/2) + min(lg(𝑁), 𝑛2). Therefore, 𝑇 (𝑛) =
7𝑇 (𝑛/2) +𝑂(𝑛2) = 𝑂(𝑛lg(7)).

213

10.5 Experimental study
This section empirically compares the performance of different algorithms under
randomized memory fluctuations and finds that cache-adaptive (or nearly cache-
adaptive) algorithms incur fewer faults with random memory fluctuations than al-
gorithms that are farther from optimally progressing, lending empirical support to
the cache-adaptive model. First, this section compares algorithms for cubic matrix
multiplication. It then compares various external-memory sorting algorithms.

Each point on the graphs in Figures 10-3 and 10-4 represents the ratio of the
average number of faults (or runtime) during the changing memory profile to the
average number of faults (or runtime) without the modified adversarial profile.

System. We ran experiments on a node with and tested their behavior on a node
with a two core Intel® Xeon™ CPU E5-2666 v3 at 2.90GHz. Each core has 32KB of
L1 cache and 256 KB of L2 cache. Each socket has 25 Megabytes (MB) of shared L3
cache.

Naive matrix multiplication
We compare the faults and runtime of MM-Scan and MM-Inplace as described in [43]
in the face of memory fluctuations. MM-Inplace is the in-place divide-and-conquer
naive multiplication algorithm, while MM-Scan is not in place and does a scan at the
end of each recursive call. MM-Inplace is cache adaptive while MM-Scan is not. The
worst-case profile as described by Bender et al. [45] took too long to complete on any
reasonably large input size for MM-Scan.

We measured the faults and runtime of both algorithms under a fixed cache size
and under a modified version of the adversarial memory profile for naive matrix
multiplication. Figure 10-3 shows the runtime and faults of both algorithms under a
changing cache normalized against the runtime and faults of both algorithms under
a fixed cache, respectively.

Figure 10-3 shows that the relative number of faults that MM-Scan incurs during
the random profile is higher than the corresponding relative number of faults due to
MM-Inplace on a random profile drawn from the same distribution. As Bender et
al. [43] shows, MM-Scan is a Θ(lg𝑁) factor from optimally progressing on a worst-case
profile while MM-Inplace is optimally progressing on all profiles.

The relative faults incurred by MM-Scan grows at a non-constant rate with respect
to the problem size. In contrast, the performance of MM-Inplace decays gracefully
with respect to the problem size. The large measured difference between MM-Scan
and MM-Inplace may be due to the overhead of repopulating the cache after a flush
incurred by MM-Scan.

Sorting
We compared the cache performance of different sorting algorithms from the standard
template library following STL for XXL datasets (STXXL) [120] with three different
sorting algorithms in Figure 10-4. In order to measure performance with memory
changes, we first chose an initial memory size M and ran each algorithm while chang-

214

1

10

100

5 6 7 8 9 10 1

10

100

100
0

5 6 7 8 9 10 0.1

1

10

100

5 6 7 8 9 10 0.1

1

10

100

5 6 7 8 9 10

N
or
m
al
iz
ed

Ra
tio

Matrix Dimension (2x)

Faults (p=1/N)

MM-IN
MM-SCAN

Times (p=1/N) Faults (p=10e-8) Times (p=10e-8)

Figure 10-3: An empirical comparison of faults and runtime of MM-Scan and MM-Inplace
under memory fluctuations. Each plot shows the normalized faults or runtime under a
randomized version of the worst-case profile.
The first two plots show the faults and runtime during a random profile where the memory
drops with probability 𝑝 = 1/𝑁 at the beginning of each recursive call.
Similarly, in the last two plots, we drop the memory with probability 𝑝 = 5 × 10−8 at the
beginning of each recursive call. Recall that the theoretical worst-case profile drops the
memory at the beginning of each recursive call.

ing the memory size in the range [100𝑀𝐵, 2M] every second. We used Linux cgroups
to control the memory available to each algorithm.

The three sorting algorithms from STXXL are as follows.

1. std::sort from the C++ standard library (libstdc++), which implements intro-
spective sort (introsort), a hybrid sorting algorithm which uses quick sort until
a maximum recursion depth, at which point it switches to heap sort [245,278].

2. stxxl::sort from STXXL. The library implements an asynchronous variant on
standard 𝑘-way merge sort as described in [121].

3. Cache-oblivious funnel sort implemented in [287].

The sorting algorithms have different structures, so we measured the performance
of each algorithm on profiles independent of algorithm structure. The performance of
the “more adaptive” sorting algorithms is therefore not a result of friendlier profiles
but because the profiles are independent of the algorithm structure. In practice,
profiles are often not tied to algorithm structure (e.g. fluctuations based on other
parallel computations), so it is meaningful to compare the algorithms over randomized
profiles.

Sorting algorithms that have better cache-adaptive guarantees incurred relatively
fewer faults during a random profile. Specifically, std::sort incurred relatively more
faults than both funnel sort and stxxl::sort, Funnel sort and stxxl::sort are
closer to adaptivity than std::sort, so they incur fewer faults when the size of mem-
ory changes. A possible contributing factor to the difference between the observed
adaptivity of the experiments is that funnel sort at stxxl::sort are engineered for
external-memory computations, while std::sort is not.

215

1

10

100

1

10

100

1

10

100

0.01

0.1

1

10

1 2 3 4 5 6 7 8 9 10
0.1

1

10

1 2 3 4 5 6 7 8 9 10
0.01

0.1

1

10

1 2 3 4 5 6 7 8 9 10

Fa
ul
ts
Ra

tio

M = 2000

STD
Funnel
STXXL

M = 4000 M = 10000

Ti
m
es

Ra
tio

Input Size (in GB)

Figure 10-4: Each point on the plot represents the ratio of the faults incurred during a
random profile to the faults incurred on the same input with a fixed, unchanging profile. In
the third and fourth plots, we show the faults incurred during different sorting algorithms on
changing memory profiles. Each of these two plots represents a different starting memory M
in Megabytes. The random profile changes the memory to anywhere in the range [100,M]
Megabytes each second. We normalize the faults incurred during the random profile on a
certain input against the faults incurred when the available memory is fixed at 𝑀 at the
beginning of execution.

10.6 Conclusion
This chapter presents scan-hiding, the first constructive method for converting non-
adaptive recursive divide-and-conquer algorithms with scans into adaptive recursive
algorithms through a new scan-hiding technique. For example, Strassen’s algorithm
for matrix multiplication is not immediately adaptive because of the scan at the
beginning and end of each recursive call. Our construction applies to Strassen,
Coppersmith-Winograd, Vassilevska Williams and Legall’s (𝑜(𝑛3)) matrix multipli-
cation algorithms [107,158,351,383]. Scan-hiding applies to all matrix multiplication
algorithms which achieve their bound by bounding the matrix multiplication tensor,
which include all currently known subcubic matrix multiplication algorithms.

Furthermore, the experiments in this chapter suggest that the cache-adaptive
model captures real-world performance trends. The adaptive naive matrix multiply
performed significantly better even under variants of the theoretical worst-case profile.
These results suggest that performance differences due to cache adaptivity are not

216

restricted to a theoretical, pathological case.
This chapter and prior work raise both theoretical and experimental questions.

For example, scan-hiding applies to many recursive algorithms but may not work
for others with a superlinear step in the beginning. One example is cache-oblivious
3SUM which begins by constructing a size 𝑛 lg 𝑛 data-structure in 𝑠𝑜𝑟𝑡(𝑛) lg 𝑛 time
and in each recursive step scans through 𝑛′𝑀/ lg𝑀 elements where 𝑛′ is the size
of the problem in the recursion [28]. Additionally, algorithms that start with long
scans do not immediately admit cache-adaptive algorithms. Notably, Karstadt and
Schwartz [215] gave an algorithm for matrix multiplication that saves a constant
factor of 5/6 but starts with a scan of length 𝑂(𝑛2 lg(𝑛)). Is there a variant of scan-
hiding for even longer scans? Are there techniques to port other algorithms and data
structures to the cache-adaptive model?

Scan-hiding is the first instance of a general transformation on algorithms to gener-
ate adaptive algorithms. Our findings suggest that other classes of algorithms that are
not initially adaptive may become adaptive through techniques such as scan-hiding.
Future research includes building a full framework for cache-adaptive algorithmic
transformations.

Prior work gave constructions of worst-case profiles and showed that non-adaptive
algorithms are not optimal on such profiles. Measuring natural memory fluctuations
on real systems may give us insight into the real-world performance impact of cache-
adaptivity.

Locality-first strategy. This chapter introduced scan-hiding, an application of
the locality-first strategy to cache-adaptive algorithms that converts non-adaptive to
adaptive algorithms by improving temporal locality. Specifically, scan-hiding spreads
out long scans into the leaves of an algorithm’s recursion tree, circumventing the
worst-case memory profile of high-memory periods during scans. These results val-
idate the locality-first strategy of improving locality first as a method of creating
efficient algorithms even in the presence of parallelism.

We conclude by explaining why we are optimistic about cache adaptivity. Classi-
cal external memory and cache-oblivious algorithms are well-studied and motivated
by modern computer architectures with hierarchical memory. Practitioners have em-
pirically studied performance in the face of memory fluctuations for years and have
developed heuristics and experimentally fast algorithms for major operations such
as database sorts and joins. However, the need for theoretical guarantees of cache
adaptivity will only grow with the rise of multicore architectures and shared-memory
programs.

217

218

Chapter 11

Work-Efficient Parallel Algorithms for
Accurate Floating-Point Prefix Sums

This chapter presents CAST_BLK and PAIR_BLK, two fast-and-accurate algorithms for
parallel prefix sums that apply the locality-first strategy to take advantage of spatial
locality for performance. The prefix-sums problem exhibits minimal temporal locality,
so the focus is on spatial locality. Since the input is laid out as an array, spatial
locality is relatively easy to achieve, so the focus of this chapter is not explicitly
about locality. As we shall see, in practice, fast prefix sums algorithms optimize for
locality first by trading off some parallelism to take advantage of spatial locality. The
new algorithms presented in this section achieve comparable or better performance
than the state-of-the-art prefix-sums implementation with much higher accuracy.

This work was conducted in collaboration with Sean Fraser and Charles E. Leis-
erson [151]. Thanks Guy Blelloch of Carnegie Mellon, Julian Shun of MIT, and Yan
Gu of UC Riverside for providing technical benchmarks used in this work. Additional
thanks to Alexandros-Stavros Iliopoulos of MIT for helpful discussions and feedback.
The MIT Supercloud provided an invaluable environment for our experiments.

Abstract
Existing work-efficient parallel algorithms for floating-point prefix sums exhibit ei-
ther good performance or good numerical accuracy, but not both. Consequently,
prefix-sum algorithms cannot easily be used in scientific-computing applications that
require both high performance and accuracy. We have designed and implemented
two new algorithms, called CAST_BLK and PAIR_BLK, whose accuracy is significantly
higher than that of the high-performing prefix-sum algorithm from the Problem Based
Benchmark Suite, while running with comparable performance on modern multicore
machines. Specifically, the root mean squared error of the PBBS code on a large array
of uniformly distributed 64-bit floating-point numbers is 8 times higher than that of
CAST_BLK and 5.8 times higher than that of PAIR_BLK. These two codes employ the
PBBS three-stage strategy for performance, but they are designed to achieve high
accuracy, both theoretically and in practice. A vectorization enhancement to these
two scalar codes trades off a small amount of accuracy to match or outperform the
PBBS code while still maintaining lower error.

219

11.1 Introduction
The prefix sum (also known as scan [61]) is a fundamental algorithmic building
block for parallel computing, and consequently, it is often targeted for efficient imple-
mentation [61, 187]. This chapter studies floating-point prefix sums, which underlie
applications in scientific computing including summed-area table generation [178] and
the fast multipole method [118]. For many floating-point calculations, numerical ac-
curacy is as important, or often more important, than absolute performance. In the
summed-area table problem, for example, practitioners sacrifice performance for ac-
curacy [405]. Although floating-point prefix sums require both accuracy and high
performance [182], traditional summation methods are usually optimized for per-
formance. At the other extreme, compensated-summation algorithms significantly
reduce round-off error by accounting for its propagation, but they tend to be unrea-
sonably computationally expensive [59, 183, 202]. This chapter presents algorithms
for computing prefix sums of floating-point values that offer both accuracy and per-
formance.

The prefix-sums operation computes the “running sum” of an array of 𝑛 num-
bers.

Definition 11.1 (Prefix-sums operation) The prefix-sums operation takes an ar-
ray 𝑥 = [𝑥0, 𝑥1, . . . , 𝑥𝑛−1] of 𝑛 elements and returns the “running sum”
𝑦 = [𝑦0, 𝑦1, . . . , 𝑦𝑛−1] , where

𝑦𝑘 =

{︃
𝑥0 if 𝑘 = 0,
𝑥𝑘 + 𝑦𝑘−1 if 𝑘 ≥ 1 .

(11.1)

Although our codes handle arbitrary 𝑛, to simplify our analysis, we shall generally
assume that 𝑛 is an exact power of 2.

Three fundamental prefix-sum algorithms, illustrated in Figure 11-1, have ap-
peared in the literature. The naive FWD_SCAN algorithm directly implements the
recursion in (12.1) and is illustrated in Figure 11-1(a). Although FWD_SCAN is se-
rial and has low accuracy, it runs fast in practice, because it performs only 𝑛 − 1
floating-point additions, the minimum possible, and it takes advantage of architec-
tural features, such as prefetching [365]. In contrast, the canonical pairwise prefix
sum, shown in Figure 11-1(b), which we will call PAIR_SCAN, is parallelizable and
achieves better accuracy, but it requires 2𝑛 − lg 𝑛 − 2 additions, a constant-factor
more overhead [61]. Moreover, its structure matches modern architectural features
less well. Finally, the Kogge-Stone algorithm [221], shown in Figure 11-1(c), which
we will call KS_SCAN (also described by Hillis and Steele [184]), achieves even higher
accuracy than pairwise ordering requiring 𝑛 lg 𝑛− 𝑛+ 1 = Θ(𝑛 lg 𝑛) additions.

Prefix sums are so ubiquitous that they have been included as primitives in some
languages such as C++ [109], and more recently have been considered as a primitive
for GPU computations in CUDA [174]. The fastest prefix sum on a CPU for large
inputs is implemented in the Problem-Based Benchmark Suite (PBBS) Library [336].
The scan in PBBS, which we will call FWD_BLK due to its structure, achieves good per-

220

+

+

+

+

+

+

+

+ + + +

+

+

+

+

+++

+ + + + + + +

+ + + + + +

+ + + +

(a) (b) (c)
x0 x1 x2 x3 x4 x5 x6 x7

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5 x6 x7

y0 y1 y2 y3 y4 y5 y6 y7

x0 x1 x2 x3 x4 x5 x6 x7

y0 y1 y2 y3 y4 y5 y6 y7

Figure 11-1: The canonical prefix-sum algorithms: (a) FWD_SCAN, (b) PAIR_SCAN, and
(c) KS_SCAN. Each circle with a plus sign represents an addition operation taking as inputs
two values below and outputting their sum above.

formance but was not optimized for accuracy. The performance of the compensated-
summation algorithm, which we call COMP_SCAN, is sufficiently slow that it is rarely
used in practice, even though it has great accuracy (although COMP_SCAN is a use-
ful benchmark for accuracy). This chapter introduces prefix-sum algorithms with
comparable performance to FWD_BLK but with significantly better accuracy, although
generally not attaining the levels of COMP_SCAN.

Analysis strategy
We shall analyze prefix-sum algorithms using the work-span model [108, Chap-
ter 27] for performance and the “sum-depth” which provides a useful proxy for accu-
racy. The work is the total time to execute the entire algorithm on a given input on
one processor. We say that a parallel algorithm is (asymptotically) work-efficient
if its work is within a constant factor of the work of the best serial algorithm for the
problem. The span1 is the longest serial chain of dependencies in the computation
(or the runtime on an ideal computer with no scheduling overhead and an infinite
number of processors). The parallelism of an algorithm on a given input is the work
divided by the span. Given a summation algorithm (e.g. reduction, prefix sum), the
sum-depth is the longest chain of additions along any path from the inputs to the
output(s). The worst-case backward error bound of a sum calculation is proportional
to its sum-depth [59,150,182].

We can compare the three algorithms in terms of work, span, parallelism, and
sum-depth in a task-parallel model, such as that which Cilk [191] provides. We
generally analyze work, span, and parallelism asymptotically, because constant factors
in these measures are often dominated by machine overheads. We express the sum-
depth exactly, however, because accuracy is not influenced by machine performance.
FWD_SCAN requires Θ(𝑛) work, Θ(𝑛) span, Θ(1) parallelism, and 𝑛 − 1 sum-depth.

1Sometimes called critical-path length or computational depth.

221

PAIR_SCAN can be implemented by a divide-and-conquer strategy involvingΘ(𝑛) work,
Θ(lg 𝑛) span, Θ(𝑛/ lg 𝑛) parallelism, and 2 lg 𝑛− 2 sum-depth (assuming, as we have
mentioned, that 𝑛 is an exact power of 2). Thus, it is work-efficient, as it is within
a factor of 2 of the best-possible implementation. KS_SCAN requires Θ(𝑛 lg 𝑛) work,
Θ(𝑙𝑔2𝑛) span, Θ(𝑛/ lg 𝑛) parallelism, and lg 𝑛 sum-depth. The reason that the span
of KS_SCAN is Θ(lg2 𝑛) rather than Θ(lg 𝑛) is that its implementation involves Θ(lg 𝑛)
nested parallel loops over 𝑛 iterations, and in the Cilk model, each parallel loop has
span Θ(lg 𝑛), resulting in a total span of Θ(lg2 𝑛). The PAIR_SCAN algorithm strikes a
good balance: it is work-efficient (as opposed to KS_SCAN) and achieves low sum-depth
(as opposed to FWD_SCAN).

When it comes to engineering a good parallel algorithm for prefix sum, constants
matter. The parallel PAIR_SCAN algorithm, which has much better sum-depth (and
hence accuracy) than FWD_SCAN, performs only double the number of floating-point
additions and it can perform many of those operations in parallel. But a naive imple-
mentation of PAIR_SCAN is slower than FWD_SCAN in practice, because there are many
other considerations, such as coping with limited memory bandwidth and processor-
pipeline overheads. The PBBS implementation of FWD_BLK manages to overcome the
performance limitations of the serial FWD_SCAN algorithm, and its sum-depth is a bit
better than FWD_SCAN’s, but it was not designed to minimize numerical round-off,
making it unsuitable for use in numerical codes that require high accuracy.

Contributions

The main contributions in this chapter are two new algorithm implementations
for floating-point prefix sum, called CAST_BLK and PAIR_BLK. These two algorithms
achieve performance by adopting PBBS’s three-stage blocked strategy, but within the
stages, they are designed to be much more accurate, both in theory and in practice.
Both CAST_BLK and PAIR_BLK are theoretically work-efficient and have small sum-
depth. In practice, they both run fast on a modern multicore computer and exhibit
high accuracy, achieving a good balance between the two concerns.

Figure 11-2 summarizes the accuracy and performance of the two algorithms. As
shown in the figure, CAST_BLK and PAIR_BLK dominate FWD_BLK on medium-sized
inputs. On large inputs (Figure 11-2(c)), FWD_BLK exhibits the best performance, but
CAST_BLK and PAIR_BLK perform competitively and are much more accurate.

To be specific, our contributions are as follows:

• The design and Cilk [191] implementation of two low-sum-depth, high-
performance algorithms for prefix sums, called CAST_BLK and PAIR_BLK.

• An experimental study of CAST_BLK and PAIR_BLK and five other prefix-sum
algorithms that demonstrates that high performance and numerical accuracy
can be achieved simultaneously.

• A vectorization enhancement to CAST_BLK, called CAST_BLK_SIMD, and a corre-
sponding vectorization enhancement to PAIR_BLK, called PAIR_BLK_SIMD, which

222

Figure 11-2: A comparison of the numerical accuracy and performance of PAIR_BLK and
CAST_BLK with five other prefix-sum algorithm implementations. All algorithms were run on
three different input sizes of 64-bit floating-point values (doubles) uniformly distributed on
the interval [0, 1] using the multicore computer described in Section 12.6. The horizontal axis
in each graph shows the ratio of the running time of each algorithm to the naive FWD_SCAN
algorithm (right is better). The vertical axis shows the reciprocal root mean square relative
error of the output (up is better).

trades off a small amount of accuracy for improvements in performance, espe-
cially for small input sizes.

Map. The rest of the chapter is organized as follows. Section 11.2 provides a taxon-
omy of building blocks for prefix sum algorithms that we will use to exactly specify
the more complicated optimized prefix sums in this chapter. Section 11.3 describes
and analyzes CAST_BLK and PAIR_BLK. Section 11.4 presents an experimental evalua-
tion of prefix-sum algorithms. Section 11.5 describes how to further optimize the two
prefix-sum algorithms with vectorization. Finally, Section 11.6 provides concluding
remarks.

11.2 Characterizing prefix-sum algorithms
This section defines building blocks for prefix sums in order to organize and specify
more complicated algorithms in later sections. The building blocks are composed of
the summation kernel (either a scan or reduce) and the ordering that it follows. As
described in Section 11.1, scan computations can have forward, pairwise, or Kogge-
Stone orderings. Reductions can also have a forward or pairwise ordering.

We will use S and R to denote scans and reductions, respectively, and prepend
them with f, p, or k for forward, pairwise, or Kogge-Stone, respectively, to specify an
ordering. For example, the naive forward scan FWD_SCAN is exactly the building block
fS.

Prefix sums in stages
More complex blocked algorithms such as FWD_BLK may compose these primitives se-
quentially in stages by dividing the input into blocks and running kernels on each

223

block in parallel. A blocked scan may run a different summation algorithm in each
stage, or even a broadcast (denoted by C). Blocking coarsens parallel implementations
by processing the blocks in parallel but doing the work of each block in serial. Fur-
thermore, blocking decreases the sum-depth by decreasing the length of the longest
chain of additions.

We use the building blocks to specify stages of algorithms by listing the primitive
in each stage. For example, FWD_BLK divides the input into blocks and executes in
three stages. In the first stage, it runs a forward reduce on each block. In the second
stage, it runs FWD_SCAN on the results of the first stage. In the third stage, it runs
FWD_SCAN to propagate the results of the the second stage to each block. Therefore,
FWD_BLK is exactly specified with the building blocks fRfSfS.

11.3 Low sum-depth prefix sums
This section describes CAST_BLK and PAIR_BLK, two new blocked prefix-sum algo-
rithms optimized for low sum-depth as well as for performance. We illustrate the
difference between CAST_BLK and PAIR_BLK in Figure 11-3, specify them according
to the building blocks in Section 11.2 and summarize the theoretical bounds on all
discussed algorithms in Table 11.1.

Reducing sum-depth via broadcast

The first algorithm, which we will call CAST_BLK, reduces the sum-depth by replacing
one of the summation stages in FWD_BLK with a broadcast. Specifically, it replaces the
reduction in stage 1 and the forward scan in stage 2 with the PAIR_SCAN subroutine.
In order to compute the prefix sum, CAST_BLK only needs to broadcast the end of
each block to every entry in the next block. In our implementation of CAST_BLK, we
replace stage 1 recursively with a second level of blocking and run CAST_BLK again,
which reduces the sum-depth and does not affect the asymptotic work and span.

Analysis. CAST_BLK is work-efficient and achieves lower span and sum-depth than
FWD_BLK. Given block sizes 𝐵,𝐵′ for the first and second level of blocking (respec-
tively), CAST_BLK has Θ(lg 𝑛) span and 2 lg 𝑛 − 4 sum-depth. We omit the proofs
of the theoretical bounds for space, but they are all generated by aggregating the
bounds on the building blocks from Table 11.1.

Pairwise summation

The next algorithm, which we will call PAIR_BLK, replaces the forward summation
subroutines in FWD_BLK with low sum-depth prefix sums. PAIR_BLK also divides the
input into blocks of size 𝐵 and proceeds in stages. Specifically, it runs a pairwise
reduction in the first stage and PAIR_SCAN in the second stage. The last stage runs
CAST_BLK on blocks of size 𝐵′ < 𝐵.

The PAIR_BLK algorithm can be parallelized block-wise in the same way as
FWD_BLK.

224

Table 11.1: Prefix-sum algorithms, their descriptions according to the taxonomy in Sec-
tion 11.2, and their theoretical work, span, and sum-depth on inputs of size 𝑛 ≥ 4. For
blocked algorithms, we denote the block size at the first level of blocking with 𝐵, where
𝐵,𝑛/𝐵 ≥ 4.

Algorithm Description Source Work Span Parallelism Sum-Depth

FWD_SCAN fS [182] Θ(𝑛) Θ(𝑛) Θ(1) 𝑛− 1
PAIR_SCANpS [61] Θ(𝑛) Θ(lg 𝑛) Θ(𝑛/ lg 𝑛) 2 lg 𝑛− 2
KS_SCAN kS [221] Θ(𝑛 lg 𝑛)Θ(lg2 𝑛) Θ(𝑛/ lg 𝑛) lg 𝑛
FWD_BLK fRfSfS [336] Θ(𝑛) Θ(𝐵 + 𝑛/𝐵)Θ(𝐵 + 𝑛/𝐵)2𝐵 + 𝑛/𝐵 + 1

CAST_BLK (pSpSC)pSC [this work]Θ(𝑛) Θ(lg 𝑛) Θ(𝑛/ lg 𝑛) 2 lg 𝑛− 4
PAIR_BLK pRpS(pSpSC)[this work]Θ(𝑛) Θ(lg 𝑛) Θ(𝑛/ lg 𝑛) 2 lg 𝑛+ lg𝐵 − 5

1

FWD_SCAN

+ + +

FWD_SCAN

(a) FWD_BLK
forward reduce

PAIR_SCAN

+ + +

CAST_BLK

(c) PAIR_BLK
pairwise reduce

(b) CAST_BLK

PAIR_SCAN

broadcast

CAST_BLK

2

3

Figure 11-3: Blocked prefix-sum algorithms in stages.

Analysis. PAIR_BLK is work-efficient and achieves lower sum-depth than FWD_BLK.
Given a first-level block size 𝐵, PAIR_BLK has Θ(lg 𝑛) span and 2 lg 𝑛 + lg𝐵 − 5
sum-depth.

11.4 Evaluation
This section presents an experimental evaluation of prefix sum algorithms on a CPU
in terms of both performance and accuracy. As we will see, CAST_BLK and PAIR_BLK
achieve competitive performance with FWD_BLK but are up to an order of magnitude
more accurate.

Experimental setup
We used a general-purpose multicore from MIT Supercloud [274] with 20 physical
cores (with 2-way hyperthreading) and 2 Intel Xeon Gold 6248 @ 2.50GHz processors.

225

Figure 11-4: A comparison of the performance of PAIR_BLK and CAST_BLK with five other
prefix-sum algorithms implementations on uniformly distributed doubles on the interval
[0, 1]. On this plot, up is better.

We implemented all algorithms in C++ using Cilk [191] for fork-join parallelism.
We used the Tapir/LLVM [321,322] branch of the LLVM [234,235] compiler (version
8) with the -O3 and -march=native flags.

Our data set consists of IEEE754 double-precision2 64-bit floats randomly gener-
ated with the Mersenne Twister 19937 generator [261].

For the blocked algorithms, we set 𝐵 = 1024 to match FWD_BLK for the fairest
comparison and set 𝐵′ = 16, although different block sizes may result in lower sum-
depths or better performance in practice.

Performance
Figure 11-4 shows the speedup3 obtained for the different algorithms over serial
FWD_SCAN. For small inputs, PAIR_BLK, CAST_BLK, and FWD_BLK exhibit similar per-
formance. Since FWD_BLK is optimized for larger inputs4 where memory bandwidth is
the bottleneck, it performs up to 1.4× better than PAIR_BLK and CAST_BLK.

As shown in Figure 11-4, the speedup for all parallel prefix sum algorithms is
relatively small compared to the number of physical cores. This limited scalability
is due to the memory bandwidth because the actual computation involved in a scan
(one addition per element) is small compared to the cost of data movement. There-
fore, prefix sum algorithms are often memory-bound on CPUs and can experience
performance variability due to data transfer on large inputs.

2The results are the same for single-precision floats given no overflow.
3We measured runtime as the median of 7 trials.
4In these experiments, about 4 million doubles fit in cache.

226

Accuracy
We measured the numerical error of the prefix sum algorithms on doubles under distri-
butions from Higham’s methodology [182]. Specifically, we drew numbers according
to Unif(0, 1) (the uniform distribution between 0 and 1), Exp(1) (the exponential
distribution with 𝜆 = 1), and Norm(0, 1) (the standard normal distribution).

Since worst-case floating-point rounding error bounds tend to be pessimistic, we
follow the methodology described by Higham [182]. We experimentally evaluate the
accuracy of summations as follows:

• We use higher-precision floating point values5 [290] as a reference point to com-
pare relative error.

• We draw random inputs from uniform, exponential and normal distributions.

• We use the compensated summation algorithm6 COMP_SCAN [202] as an accuracy
benchmark.

• We quantify error as the root mean square relative error.

In floating-point arithmetic, the summation ordering determines the computed
sum. For all 𝑘 = 0, 1, . . . , 𝑛 − 1, let 𝑆𝑘 be the real value of the scan at index 𝑘
(𝑆𝑘 =

∑︀𝑘
𝑖=0 𝑥𝑖), and let 𝑆𝑘 be the computed sum. The relative error of 𝑆𝑘 is

defined as 𝐸𝑘 = 𝑆𝑘 − 𝑆𝑘. Given 𝑛 summation results 𝑆0, . . . , 𝑆𝑛−1 and real values
𝑆0, . . . , 𝑆𝑛−1, the root mean square relative error is as follows:

RMSE =

(︃
1

𝑛

𝑛−1∑︁
𝑘=0

𝐸2
𝑘

)︃1/2

.

We measure error on the different distributions as the RMSE. The machine epsilon
(𝜀 = 2.22 × 10−16 for doubles) is an upper bound on the relative error of any single
summation due to rounding [183].

Discussion
As shown in Figure 11-5, both the CAST_BLK and PAIR_BLK algorithm exhibit up to
10× more error than compensated summation. Although the compensated summa-
tion algorithm has the highest accuracy, it is at about 20× slower than CAST_BLK and
PAIR_BLK.

Overall, CAST_BLK and PAIR_BLK are much more accurate than forward
summation-based algorithms such as FWD_BLK and FWD_SCAN. The CAST_BLK algorithm
achieves up to 8× less error than FWD_BLK and up to 103× less error than FWD_SCAN
on large inputs. Similarly, PAIR_BLK achieves up to 5.8× less error than FWD_BLK and
up to 76× less error than FWD_SCAN. Therefore, CAST_BLK and PAIR_BLK attain much
better accuracy with comparable performance to FWD_BLK.

5We used 100-digit precision floating-point values via Boost.
6Compensated summation is sometimes called Kahan summation.

227

Figure 11-5: A comparison of the numerical error of PAIR_BLK and CAST_BLK with five
other prefix-sum algorithms. On this plot, down is better.

228

11.5 Vectorizing prefix sums
This section describes a vectorized forward scan algorithm called SCAN_SIMD. We
evaluate SCAN_SIMD as a subroutine in blocked scan algorithms and show that it
strictly improves FWD_BLK. In pairwise blocked algorithms, vectorization trades off
accuracy for improved performance.

The vectorized prefix-sum subroutine SCAN_SIMD divides the input array into
chunks of size vector width 𝑉 (e.g. 256 bits in Intel AVX2 [236]), performs a vectorized
version of KS_SCAN on each chunk, and processes the chunks serially from left to right.
Although KS_SCAN is not work-efficient, it is well-suited to SIMD operations because
it has high data-level parallelism. Figure 11-6 contains an example of SCAN_SIMD on
one vector. In general, given a vector width 𝑉 , SCAN_SIMD requires 2 log 𝑉 +4 vector
operations to compute a scan on one block, while the scalar FWD_SCAN requires 3𝑉
scalar operations [150].

0 0 0 0

1 2 3 4
+

prev_offset = 0
1

1 2 3 4
=

1 2 3 4

0 1 2 3
+

1 3 5 7
= 1

1 3 5 7

0 0 1 3
+

1 3 6 10
= 2

next_offset

2 3

Figure 11-6: An example of SCAN_SIMD on one vector (𝑉 = 4). A solid arrow means a
vector shift by the number next to it, additions are vector adds, and a dotted arrow denotes
use of an output at a previous step as input to the next step.

Evaluation
We implemented SCAN_SIMD with Intel Intrinsics [192] and use it as a subroutine in
FWD_BLK, CAST_BLK, and PAIR_BLK. We call the resulting algorithms FWD_BLK_SIMD,
CAST_BLK_SIMD, and PAIR_BLK_SIMD, respectively. All experiments were run on the
same setup from Section 12.6.

As shown in Figure 11-7, SCAN_SIMD and FWD_BLK_SIMD strictly dominate their
scalar counterparts FWD_SCAN and FWD_BLK in both performance and accuracy because
SCAN_SIMD improves the throughput and lowers the sum-depth over FWD_SCAN. Specif-
ically, SCAN_SIMD is up to 2.2× faster and up to 2.5× more accurate than FWD_SCAN.
Furthermore, FWD_BLK_SIMD is up to 2× faster when inputs fit in cache and compa-
rable on larger inputs while achieving 2× less error than FWD_BLK.

Algorithm description
Vectorizing scans in CAST_BLK and PAIR_BLK trades off accuracy for performance.
CAST_BLK_SIMD and PAIR_BLK_SIMD are up to 2× faster than FWD_BLK when inputs fit

229

Figure 11-7: A comparison of the performance and error between FWD_SCAN, CAST_BLK,
PAIR_BLK, and FWD_BLK and their vectorized counterparts.

in the cache, and they are competitive with FWD_BLK when the inputs are large. Fi-
nally, CAST_BLK_SIMD and PAIR_BLK_SIMD are about 10× and about 2×more accurate
than FWD_BLK, respectively.

11.6 Conclusion
In scientific computing, floating-point prefix sums require both high accuracy and
performance. This chapter introduced two new algorithms, CAST_BLK and PAIR_BLK,
which achieve competitive performance and much better accuracy than the state-
of-the-art CPU parallel scan. Furthermore, we showed that augmenting parallel-
prefix sums with vectorization improves performance. Since many applications are
implemented on CPUs, a faster and more accurate prefix-sum library for general-
purpose multicores has the potential to speed up a wide variety of programs while
providing numerical precision. We conclude with an avenue for future research and a
brief discussion of the role of GPUs in computing scans.

230

A standard practice for enhancing the precision of dot products and other compu-
tations that involve summing a large number of floating-point values is to maintain
the internal sums with extended precision. The two fast-and-accurate algorithms we
have studied, CAST_BLK and PAIR_BLK, would seem to fare differently if intermediate
values can be kept with extended precision. The CAST_BLK algorithm would require
the extended precision values resulting from the first stage to be maintained until they
can be used in the third stage, whereas the PAIR_BLK algorithm would require only
the intermediate stage to manage extended precision. Consequently, for situations
where extended precision is available, we believe that PAIR_BLK would likely show a
performance advantage over CAST_BLK, but we leave this study to future research.

What role might GPUs play in fast-and-accurate scans? After all, GPUs provide
considerably more floating-point capability than does a typical CPU. Unfortunately,
for general-purpose computations, transferring data from a multicore to an attached
GPU accelerator is so slow that a computation such as a floating-point scan cannot
avail itself of the faster computational capability. GPUs can effectively perform scans
within a GPU computation (for example, NVIDIA provides such a library [174]).
But since they are unsuitable for performing scans as a subroutine within a general-
purpose program, multicores need their own fast-and-accurate parallel algorithms,
such as CAST_BLK and PAIR_BLK.

Locality-first strategy. The fast-and-accurate parallel prefix sums algorithms in
this chapter employ the locality-first strategy for prefix sums to take advantage of
spatial locality. The blocking techniques for in CAST_BLK and PAIR_BLK exploit spatial
locality by processing the input in chunks rather than at the granularity of individual
elements. Although blocking trades off with parallelism, there is ample parallelism in
the problem so taking advantage of locality improves overall performance.

231

232

Chapter 12

Multidimensional Included and
Excluded Sums

This chapter applies the locality-first strategy to create the bidirectional box-sum
(BDBS) algorithm and box-complement algorithms, two efficient algorithms for the
“included-sums” and “excluded-sums” problems, by reducing the work while main-
taining spatial locality. The first step in the locality-first is to understand locality
in the problem: there is not much temporal locality in these problems, but there is
spatial locality. Since spatial locality is relatively easy to achieve in these problems,
locality is not the main focus of the chapter, but the algorithms in this chapter take
advantage of spatial locality by storing and operating on contiguous data. Addition-
ally, the algorithms in this chapter improve overall asymptotic efficiency by reducing
the work required to solve the problems.

This work was conducted in collaboration with Sean Fraser and Charles E. Leis-
erson [389,390].

Abstract
This chapter presents algorithms for the included-sums and excluded-sums prob-
lems used by scientific computing applications such as the fast multipole method.
These problems are defined in terms of a 𝑑-dimensional array of 𝑁 elements and a
binary associative operator ⊕ on the elements. The included-sum problem requires
that the elements within overlapping boxes cornered at each element within the array
be reduced using ⊕. The excluded-sum problem reduces the elements outside each
box. The weak versions of these problems assume that the operator ⊕ has an in-
verse ⊖, whereas the strong versions do not require this assumption. In addition to
studying existing algorithms to solve these problems, this chapter introduces three
new algorithms.

The bidirectional box-sum (BDBS) algorithm solves the strong included-sums
problem in Θ(𝑑𝑁) time, asymptotically beating the classical summed-area table
(SAT) algorithm, which runs in Θ(2𝑑𝑁) and which only solves the weak version of
the problem. Empirically, the BDBS algorithm outperforms the SAT algorithm in
higher dimensions by up to 17.1×.

The box-complement algorithm can solve the strong excluded-sums problem

233

Xn1 k1

k2

n2

(x1, x2)

(a) (b)

Figure 12-1: An illustration of included and excluded sums in 2 dimensions on an 𝑛1 ×𝑛2

matrix using a (𝑘1, 𝑘2)-box. (a) For a coordinate (𝑥1, 𝑥2) of the matrix, the included-sums
problem requires all the points in the 𝑘1 × 𝑘2 box cornered at (𝑥1, 𝑥2), shown as a grey
rectangle, to be reduced using a binary associative operator ⊕. The included-sums problem
requires that this reduction be performed at every coordinate of the matrix, not just at a
single coordinate as is shown in the figure. (b) A similar illustration for excluded sums,
which reduces the points outside the box.

in Θ(𝑑𝑁) time, asymptotically beating the state-of-the-art corners algorithm by
Demaine et al., which runs in Ω(2𝑑𝑁) time. In 3 dimensions the box-complement
algorithm empirically outperforms the corners algorithm by about 1.4× given similar
amounts of space.

The weak excluded-sums problem can be solved in Θ(𝑑𝑁) time by the bidirec-
tional box-sum complement (BDBSC) algorithm, which is a trivial extension of
the BDBS algorithm. Given an operator inverse ⊖, BDBSC can beat box-complement
by up to a factor of 4.

12.1 Introduction
Many scientific computing applications require reducing many (potentially overlap-
ping) regions of a tensor, or multidimensional array, to a single value for each region
quickly and accurately. For example, the integral-image problem (or summed-area
table) [74, 110] preprocesses an image to answer queries for the sum of elements in
arbitrary rectangular subregions of a matrix in constant time. The integral image
has applications in real-time image processing and filtering [178]. The fast multi-
pole method (FMM) is a widely used numerical approximation for the calculation
of long-ranged forces in various 𝑁 -particle simulations [36, 170]. The essence of the
FMM is a reduction of a neighboring subregion’s elements, excluding elements too
close, using a multipole expansion to allow for fewer pairwise calculations [105, 111].
Specifically, the multipole-to-local expansion in the FMM adds relevant expansions
outside some close neighborhood but inside some larger bounding region for each el-
ement [36,356]. High-dimensional applications include the FMM for particle simula-
tions in 3D space [96,171] and direct summation problems in higher dimensions [259].

234

These problems give rise to the excluded-sums problem [118], which underlies
applications that require reducing regions of a tensor to a single value using a binary
associative operator. For example, the excluded-sums problem corresponds to the
translation of the local expansion coefficients within each box in the FMM [170].
The problems are called “sums” for ease of presentation, but the general problem
statements (and therefore algorithms to solve the problems) apply to any context
involving a monoid (𝑆,⊕, 𝑒), where 𝑆 is a set of values, ⊕ is a binary associative
operator defined on 𝑆, and 𝑒 ∈ 𝑆 is the identity for ⊕.

Although the excluded-sums problem is particularly challenging and meaningful
for multidimensional tensors, let us start by considering the problem in only 2 dimen-
sions. And, to understand the excluded-sums problem, it helps to understand the
included-sums problem as well. Figure 12-1 illustrates included and excluded sums
in 2 dimensions, and Figure 12-2 provides examples using ordinary addition as the
⊕ operator. We have an 𝑛1 × 𝑛2 matrix 𝒜 of elements over a monoid (𝑆,⊕, 𝑒). We
also are given a “box size” k = (𝑘1, 𝑘2) such that 𝑘1 ≤ 𝑛1 and 𝑘2 ≤ 𝑛2. The included
sum at a coordinate (𝑥1, 𝑥2), as shown in Figure 12-1(a), involves reducing — ac-
cumulating using ⊕ — all the elements of 𝒜 inside the k-box cornered at (𝑥1, 𝑥2),
that is,

𝑥1+𝑘1−1⨁︁
𝑦1=𝑥1

𝑥2+𝑘2−1⨁︁
𝑦2=𝑥2

𝒜[𝑦1, 𝑦2] ,

where if a coordinate goes out of range, we assume that its value is the identity 𝑒.
The included-sums problem computes the included sum for all coordinates of 𝒜,
which can be straightforwardly accomplished with four nested loops in Θ(𝑛1𝑛2𝑘1𝑘2)
time. Similarly, the excluded sum at a coordinate, as shown in Figure 12-1(b),
reduces all the elements of 𝒜 outside the k-box cornered at (𝑥1, 𝑥2). The excluded-
sums problem computes the excluded sum for all coordinates of 𝒜, which can be
straightforwardly accomplished in Θ(𝑛1𝑛2(𝑛1−𝑘1)(𝑛2−𝑘2)) time. We shall see much
better algorithms for both problems.

Excluded sums and operator inverse
One way to solve the excluded-sums problem is to solve the included-sums problem
and then use the inverse ⊖ of the ⊕ operator to “subtract” out the results from
the reduction of the entire tensor. This approach fails for operators without an
inverse, however, such as the maximum operator max. As another example, the FMM
involves solving the excluded-sums problem over a domain of functions which cannot
be “subtracted,” because the functions exhibit singularities [118]. Even for simpler
domains, using the inverse (if it exists) may have unintended consequences. For
example, subtracting finite-precision floating-point values can suffer from catastrophic
cancellation [118,405] and high round-off error [182]. Some contexts may permit the
use of an inverse, but others may not.

Consequently, we refine the included- and excluded-sums problems into weak
and strong versions. The weak version requires an operator inverse, while the strong
version does not. Any algorithm for the included-sums problem trivially solves the
weak excluded-sums problem, and any algorithm for the strong excluded-sums prob-

235

lem trivially solves the weak excluded-sums problem. This chapter presents efficient
algorithms for both the weak and strong excluded-sums problems.

Summed-area table for weak excluded sums
The summed-area table (SAT) algorithm uses the classical summed-area table
method [74, 110, 360] to solve the weak included-sums problem on a 𝑑-dimensional
tensor 𝒜 having 𝑁 elements in 𝑂(2𝑑𝑁) time. This algorithm precomputes prefix
sums along each dimension of 𝒜 and uses inclusion-exclusion to “add” and “subtract”
prefixes to find the included sum for arbitrary boxes. The SAT algorithm cannot
be used to solve the strong included-sums problem, however, because it requires an
operator inverse. The summed-area table algorithm can easily be extended to an
algorithm for weak excluded-sums by totaling the entire tensor and subtracting the
solution to weak included sums. We will call this algorithm the SAT complement
(SATC) algorithm.⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠
1 3 6 2 5
3 9 1 1 2
5 1 5 3 2
4 3 2 0 9
6 2 1 7 8

(a)

⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠
16 19 10 10 7
18 16 10 8 4
13 11 10 14 11
15 8 10 24 17
8 3 8 15 8

(b)

⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠
75 72 81 81 84
73 75 81 83 87
78 80 81 77 80
76 83 81 67 74
83 78 83 76 83

(c)

Figure 12-2: Examples of the included- and excluded-sums problems on an input matrix
in 2 dimensions with box size (3, 3) using the max operator. (a) The input matrix. The
square shows the box cornered at (3, 3). (b) The solution for the included-sums problem
with the + operator. The highlighted square contains the included sum for the box in (a).
The included-sums problem requires computing the included sum for every element in the
input matrix. (c) A similar example for excluded sums. The highlighted square contains
the excluded sum for the box in (a).

Corners algorithm for strong excluded sums
The naive algorithm for strong excluded sums that just sums up the area of interest
for each element runs in 𝑂(𝑁2) time in the worst case, because it wastes work by
recomputing reductions for overlapping regions. To avoid recomputing sums, Demaine
et al. [118] introduced an algorithm that solve the strong excluded-sums problem in
arbitrary dimensions, which we will call the corners algorithm.

At a high level, the corners algorithm partitions the excluded region for each box
into 2𝑑 disjoint regions that each share a distinct vertex of the box, while collectively
filling the entire tensor, excluding the box. The algorithm heavily depends on prefix
and suffix sums to compute the reduction of elements in each of the disjoint regions.

Since the original article that proposed the corners algorithm does not include a
formal analysis of its runtime or space usage in arbitrary dimensions, we present one

236

Figure 12-3: Space and time per element of the corners and box-complement algorithms
in 3 dimensions. We use Corners(c) and Corners Spine to denote variants of the corners
algorithm with extra space. We set the number of elements 𝑁 = 681472 = 883 and the box
lengths 𝑘1 = 𝑘2 = 𝑘3 = 4 (for 𝐾 = 64).

Algorithm Source Time Space Included or Excluded? Strong or Weak?
Naive included sum [This work] Θ(𝐾𝑁) Θ(𝑁) Included Strong
Naive included sum complement [This work] Θ(𝐾𝑁) Θ(𝑁) Excluded Weak
Naive excluded sums [This work] Θ(𝑁2) Θ(𝑁) Excluded Strong
Summed-area table (SAT) [110,360] Θ(2𝑑𝑁) Θ(𝑁) Included Weak
Summed-area table
complement (SATC) [110,360] Θ(2𝑑𝑁) Θ(𝑁) Excluded Weak

Corners(c) [118] Θ((𝑑+ 1/𝑐)2𝑑𝑁) Θ(𝑐𝑁) Excluded Strong
Corners Spine(c) [118] Θ((2𝑐 + 2𝑑(𝑑− 𝑐) + 2𝑑)𝑁) Θ(𝑐𝑁) Excluded Strong
Bidirectional box sum (BDBS) [This work] Θ(𝑑𝑁) Θ(𝑁) Included Strong
Bidirectional box sum
complement (BDBSC) [This work] Θ(𝑑𝑁) Θ(𝑁) Excluded Weak

Box-complement [This work] Θ(𝑑𝑁) Θ(𝑁) Excluded Strong

Table 12.1: A summary of all algorithms for excluded sums in this chapter. All algorithms
take as input a 𝑑-dimensional tensor of 𝑁 elements. We include the runtime, space usage,
whether an algorithm solves the included- or excluded-sums problem, and whether it solves
the strong or weak version of the problem. We use 𝐾 to denote the volume of the box (in
the runtime of the naive algorithm). The corners algorithm takes a parameter 𝑐 of extra
space that it uses to improve its runtime.

in Appendix C.1. Given a 𝑑-dimensional tensor of 𝑁 elements, the corners algorithm
takes Ω(2𝑑𝑁) time to compute the excluded sum in the best case because there are
2𝑑 corners and each one requires Ω(𝑁) time to add its contribution to each excluded
box. As we’ll see, the bound is tight: given Θ(𝑑𝑁) space, the corners algorithm takes
Θ(2𝑑𝑁) time. With Θ(𝑁) space, the corners algorithm takes Θ(𝑑2𝑑𝑁) time.

237

Figure 12-4: Time per element of algorithms for excluded sums in arbitrary dimen-
sions. The number of elements 𝑁 of the tensor in each dimension was in the range
[2097152, 134217728] (selected to be a exact power of the number of dimensions). For each
number of dimensions 𝑑, we set the box volume 𝐾 = 8𝑑.

Contributions

This chapter presents algorithms for included and strong excluded sums in arbitrary
dimensions that improve the runtime from exponential to linear in the number of
dimensions. For strong included sums, we introduce the bidirectional box-sum
(BDBS) algorithm that uses prefix and suffix sums to compute the included sum effi-
ciently. The BDBS algorithm can be easily extended into an algorithm for weak ex-
cluded sums, which we will call the bidirectional box-sum complement (BDBSC)
algorithm. For strong excluded sums, the main insight in this chapter is the formu-
lation of the excluded sums in terms of the “box complement” on which the box-
complement algorithm is based. Table 12.1 summarizes all algorithms considered
in this chapter.

Figure 12-3 illustrates the performance and space usage of the box-complement
algorithm and variants of the 3D corners algorithm. Since the paper that introduced
the corners algorithm stopped short of a general construction in higher dimensions, the
3D case is the highest dimensionality for which we have implementations of the box-
complement and corners algorithm. The 3D case is of interest because applications
such as the FMM often present in three dimensions [96, 171]. We find that the box-
complement algorithm outperforms the corners algorithm by about 1.4× when given
similar amounts of space, though the corners algorithm with twice the space as box-
complement is 2× faster. The box-complement algorithm uses a fixed (constant)
factor of extra space, while the corners algorithm can use a variable amount of space.
We found that the performance of the corners algorithm depends heavily on its space

238

usage. We use Corners(c) to denote the implementation of the corners algorithm
that uses a factor of 𝑐 in space to store leaves in the computation tree and gather
the results into the output. Furthermore, we also explored a variant of the corners
algorithm in Appendix C.1, called Corners Spine, which uses extra space to store
the spine of the computation tree and asymptotically reduce the runtime.

Figure 12-4 demonstrates how algorithms for weak excluded sums scale with di-
mension. We omit the corners algorithm because the original paper stopped short
of a construction of how to find the corners in higher dimensions. We also omit an
evaluation of included-sums algorithms because the relative performance of all algo-
rithms would be the same. The naive and summed-area table perform well in lower
dimensions but exhibit crossover points (at 3 and 6 dimensions, respectively) because
their runtimes grow exponentially with dimension. In contrast, the BDBS and box-
complement algorithms scale linearly in the number of dimensions and outperform
the summed-area table method by at least 1.3× after 6 dimensions. The BDBS algo-
rithm demonstrates the advantage of solving the weak problem, if you can, because it
is always faster than the box-complement algorithm, which doesn’t exploit an opera-
tor inverse. Both algorithms introduced in this chapter outperform existing methods
in higher dimensions, however.

To be specific, our contributions are as follows:

• the bidirectional box-sum (BDBS) algorithm for strong included sums;

• the bidirectional box-sum complement (BDBSC) algorithm for weak excluded
sums;

• the box-complement algorithm for strong excluded sums;

• theorems showing that, for a 𝑑-dimensional tensor of size 𝑁 , these algorithms
all run in Θ(𝑑𝑁) time and Θ(𝑁) space;

• implementations of these algorithms in C++; and

• empirical evaluations showing that the box-complement algorithm outperforms
the corners algorithm in 3D given similar space and that both the BDBSC
algorithm and box-complement algorithm outperform the SATC algorithm in
higher dimensions.

Map. The rest of this chapter is organized as follows. Section 12.2 provides necessary
preliminaries and notation to understand the algorithms and proofs. Section 12.3
presents an efficient algorithm to solve the included-sums problem, which will be used
as a key subroutine in the box-complement algorithm. Section 12.4 formulates the
excluded sum as the “box-complement,” and Section 12.5 describes and analyzes the
resulting box-complement algorithm. Section 12.6 presents an empirical evaluation of
algorithms for excluded sums. Finally, we provide concluding remarks in Section 12.7.

239

12.2 Preliminaries
This section reviews tensor preliminaries used to describe algorithms in later sections.
It also formalizes the included- and excluded-sums problems in terms of tensor nota-
tion. Finally, it describes the prefix- and suffix-sums primitive underlying the main
algorithms in this chapter.

Tensor preliminaries
We first introduce the coordinate and tensor notation we use to explain our algorithms
and why they work. At a high level, tensors are 𝑑-dimensional arrays of elements over
some monoid (𝑆,⊕, 𝑒). In this chapter, tensors are represented by capital script letters
(e.g., 𝒜) and vectors are represented by lowercase boldface letters (e.g., a).

We shall use the following terminology. A 𝑑-dimensional coordinate domain 𝑈
is the cross product 𝑈 = 𝑈1 × 𝑈2 × . . . × 𝑈𝑑, where 𝑈𝑖 = {1, 2, . . . , 𝑛𝑖} for 𝑛𝑖 ≥ 1.
The size of 𝑈 is 𝑛1𝑛2 · · ·𝑛𝑑. Given a coordinate domain 𝑈 and a monoid (𝑆,⊕, 𝑒)
as defined in Section 12.1, a tensor 𝒜 can be viewed for our purposes as a mapping
𝒜 :𝑈 → 𝑆. That is, a tensor maps a coordinate x ∈ 𝑈 to an element 𝒜[x] ∈ 𝑆. The
size of a tensor is the size of its coordinate domain. We omit the coordinate domain
𝑈 and monoid (𝑆,⊕, 𝑒) when they are clear from context.

We use Python-like colon notation 𝑥 :𝑥′, where 𝑥 ≤ 𝑥′, to denote the half-open
interval [𝑥, 𝑥′) of coordinates along a particular dimension. If 𝑥 :𝑥′ would extend
outside of [1, 𝑛], where 𝑛 is the maximum coordinate, it denotes only the coordinates
actually in the interval, that is, the interval max{1, 𝑥} : min{𝑛+ 1, 𝑥′}. If the lower
bound is missing, as in :𝑥′, we interpret the interval as 1 :𝑥′, and similarly, if the
upper bound is missing, as in 𝑥 : , it denotes the interval [𝑥, 𝑛]. If both bounds are
missing, as in : , we interpret the interval as the whole coordinate range [1, 𝑛].

We can use colon notation when indexing a tensor 𝒜 to define subtensors, or
boxes. For example, 𝒜[3 : 5, 4 : 6] denotes the elements of 𝒜 at coordinates
(3, 4), (3, 5), (4, 4), (4, 5). For full generality, a box 𝐵 cornered at coordinates
x = (𝑥1, 𝑥2, . . . , 𝑥𝑑) and x′ = (𝑥′

1, 𝑥
′
2, . . . , 𝑥

′
𝑑), where 𝑥𝑖 < 𝑥′

𝑖 for all 𝑖 = 1, 2, . . . , 𝑑, is
the box (𝑥1 :𝑥

′
1, 𝑥2 :𝑥

′
2, . . . , 𝑥𝑑 :𝑥

′
𝑑). Given a box size k = (𝑘1, . . . , 𝑘𝑑), a k-box cor-

nered at coordinate x is the box cornered at x and x′ = (𝑥1+𝑘1, 𝑥2+𝑘2, . . . , 𝑥𝑑+𝑘𝑑).
A (tensor) row is a box with a single value in each coordinate position in
the colon notation, except for one position, which includes that entire dimen-
sion. For example, if x = (𝑥1, 𝑥2, . . . , 𝑥𝑑) is a coordinate of a tensor 𝒜, then
𝒜[𝑥1, 𝑥2, . . . , 𝑥𝑖−1, : , 𝑥𝑖+1, 𝑥𝑖+2, . . . , 𝑥𝑑] denotes a row along dimension 𝑖.

The colon notation can be combined with the reduction operator ⊕ to indicate
the reduction of all elements in a subtensor:⨁︁

𝒜[𝑥1 :𝑥
′
1, 𝑥2 :𝑥

′
2, . . . , 𝑥𝑑 :𝑥

′
𝑑]

=
⨁︁

𝑦1∈[𝑥1,𝑥′
1)

⨁︁
𝑦2∈[𝑥2,𝑥′

2)

· · ·
⨁︁

𝑦𝑑∈[𝑥𝑑,𝑥
′
𝑑)

𝒜[𝑦1, 𝑦2, . . . , 𝑦𝑑] .

240

Problem definitions
We can now formalize the included- and excluded-sums problems from Section 12.1.

Definition 12.1 (Included and Excluded Sums) An algorithm for the
included-sums problem takes as input a 𝑑-dimensional tensor 𝒜 :𝑈 → 𝑆
with size 𝑁 and a box size k = (𝑘1, 𝑘2, . . . , 𝑘𝑑). It produces a new tensor 𝒜′ :𝑈 → 𝑆
such that every output element 𝒜′[x] holds the reduction under ⊕ of elements within
the k-box of 𝒜 cornered at x. An algorithm for the excluded-sums problem is
defined similarly, except that the reduction is of elements outside the k-box cornered
at x.

In other words, an included-sums algorithm computes, for all x = (𝑥1, 𝑥2, . . . , 𝑥𝑑) ∈ 𝑈 ,
the value 𝒜′[x] =

⨁︀𝒜[𝑥1 :𝑥1 + 𝑘1, 𝑥2 :𝑥2 + 𝑘2, . . . , 𝑥𝑑 :𝑥𝑑 + 𝑘𝑑]. It’s messier to write
the output of an excluded-sums problem using colon notation, but fortunately, our
proofs do not rely on it.

As noted in Section 12.1, there are weak and strong versions of both problems
which allow and do not allow an operator inverse, respectively.

Prefix and suffix sums
The prefix-sums operation [61] takes an array a = (𝑎1, 𝑎2, . . . , 𝑎𝑛) of 𝑛 elements
and returns the “running sum” b = (𝑏1, 𝑏2, . . . , 𝑏𝑛) , where

𝑏𝑘 =

{︃
𝑎1 if 𝑘 = 1,
𝑎𝑘 ⊕ 𝑏𝑘−1 if 𝑘 > 1 .

(12.1)

Let Prefix denote the algorithm that directly implements the recursion in
Equation 12.1. Given an array a and indices start ≤ end , the function
Prefix(a, start , end) computes the prefix sum in the range [start , end] of a in
𝑂(end − start) time. Similarly, the suffix-sums operation is the reverse of
the prefix sum and computes the sum right-to-left rather than left-to-right. Let
Suffix(a, start , end) be the corresponding algorithm for suffix sums.

12.3 Included Sums
This section presents the bidirectional box-sum algorithm (BDBS) algorithm
to compute the included sum along an arbitrary dimension, which is used as a main
subroutine in the box-complement algorithm for excluded sums. As a warm-up, we
will first describe how to solve the included-sums problem in one dimension and
extend the technique to higher dimensions. We include the one-dimensional case for
clarity, but the main focus of this chapter is the multidimensional case.

We will sketch the subroutines for higher dimensions in this section. Appendix C.2
includes all the pseudocode and omitted proofs for BDBS in 1D. This section sketches
the key subroutines in higher dimensions and omits their formalization because they
straightforwardly extend the computation from 1 dimension.

241

k

Suffix

Prefix

k

Figure 12-5: An illustration of the computation in the bidirectional box-sum algorithm.
The arrows represent prefix and suffix sums in runs of size 𝑘, and the shaded region represents
the prefix and suffix components of the region of size 𝑘 outlined by the dotted lines.

2 5 3 1 6 3 9 0

2 7 10 11 6 9 18 18

11 9 4 1 18 12 9 0

1 2 3 4 5 6 7Position

A

As

Ap

11 15 13 19 18 12 9 0A′

8

Figure 12-6: An example of computing the 1D included sum using the bidirectional box-
sum algorithm, where 𝑁 = 8 and 𝑘 = 4. The input array is 𝐴, the 𝑘-wise prefix and suffix
sums are stored in 𝐴𝑝 and 𝐴𝑠, respectively, and the output is in 𝐴′.

Included sums in 1D
Before investigating the included sums in higher dimensions, let us first turn our
attention to the 1D case for ease of understanding. This section presents an algorithm
BDBS-1D which takes as input a list 𝐴 of length 𝑁 and a (scalar) box size1 𝑘 and
outputs a list 𝐴′ of corresponding included sums. At a high level, the BDBS-1D
algorithm generates two intermediate lists 𝐴𝑝 and 𝐴𝑠, each of length 𝑁 , and performs
𝑁/𝑘 prefix and suffix sums of length 𝑘 on each intermediate list. By construction, for
𝑥 = 1, 2, . . . , 𝑁 , we have 𝐴𝑝[𝑥] = 𝐴[𝑘⌊𝑥/𝑘⌋ :𝑥+ 1], and 𝐴𝑠[𝑥] = 𝐴[𝑥 : 𝑘⌈(𝑥+ 1)/𝑘⌉].

Finally, BDBS-1D uses 𝐴𝑝 and 𝐴𝑠 to compute the included sum of size 𝑘 for each
coordinate in one pass. Figure 12-5 illustrates the ranged prefix and suffix sums in
BDBS-1D, and Figure 12-6 presents a concrete example of the computation.

1For simplicity in the algorithm descriptions and pseudocode, we assume that 𝑛𝑖 mod 𝑘𝑖 = 0 for
all dimensions 𝑖 = 1, 2, . . . , 𝑑. In implementations, the input can either be padded with the identity
to make this assumption hold, or it can add in extra code to deal with unaligned boxes.

242

BDBS-1D solves the included-sums problem on an array of size 𝑁 in Θ(𝑁) time
and Θ(𝑁) space. First, it uses two temporary arrays to compute the prefix and suffix
as illustrated in Figure 12-5 in Θ(𝑁) time. It then makes one more pass through the
data to compute the included sum, requiring Θ(𝑁) time. Figure C-3 in Appendix C.2
contains the full pseudocode for BDBS-1D.

Generalizing to arbitrary dimensions
The main focus of this work is multidimensional included and excluded sums. Com-
puting the included sum along an arbitrary dimension is almost exactly the same as
computing it along 1 dimension in terms of the underlying ranged prefix and suf-
fix sums. We sketch an algorithm BDBS that generalizes BDBS-1D to arbitrary
dimensions.

Let 𝒜 be a 𝑑-dimensional tensor with 𝑁 elements and let k be a box size. The
BDBS algorithm computes the included sum along dimensions 𝑖 = 1, 2, . . . , 𝑑 in
turn. After performing the included-sum computation along dimensions 1, 2, . . . , 𝑖,
every coordinate in the output 𝒜𝑖 contains the included sum in each dimension up to
𝑖:

𝒜𝑖[𝑥1, 𝑥2, . . . , 𝑥𝑑] =⨁︁
𝒜[𝑥1 : 𝑥1 + 𝑘2, . . . , 𝑥𝑖 : 𝑥𝑖 + 𝑘𝑖⏟ ⏞

𝑖

, 𝑥𝑖+2, . . . , 𝑥𝑑⏟ ⏞
𝑑− 𝑖

].

Overall, BDBS computes the full included sum of a tensor with 𝑁 elements in
Θ(𝑑𝑁) time and Θ(𝑁) space by performing the included sum along each dimension
in turn.

Although we cannot directly use BDBS to solve the strong excluded-sums prob-
lem, the next sections demonstrate how to use the BDBS technique as a key subrou-
tine in the box-complement algorithm for strong excluded sums.

12.4 Excluded sums and the box complement
The main insight in this section is the formulation of the excluded sum as the recursive
“box complement”. This section shows how to partition the excluded region into 2𝑑
non-overlapping parts in 𝑑 dimensions. This decomposition of the excluded region
underlies the box-complement for strong excluded sums in the next section.

First, let’s see how the formulation of the “box complement” relates to the excluded
sum. At a high level, given a box 𝐵, a coordinate x is in the “𝑖-complement” of 𝐵
if and only if x is “out of range” in some dimension 𝑗 ≤ 𝑖, and “in the range” for all
dimensions greater than 𝑖.

Definition 12.2 (Box complement) Given a 𝑑-dimensional coordinate domain 𝑈
and a dimension 𝑖 ∈ {1, 2, . . . , 𝑑}, the i-complement of a box 𝐵 cornered at coordi-

243

nates x = (𝑥1, . . . , 𝑥𝑑) and x′ = (𝑥′
1, . . . , 𝑥

′
𝑑) is the set

𝐶𝑖(𝐵) = {(𝑦1, . . . , 𝑦𝑑) ∈ 𝑈 : there exists 𝑗 ∈ [1, 𝑖]

such that 𝑦𝑗 /∈ [𝑥𝑗, 𝑥
′
𝑗), and for all 𝑚 ∈ [𝑖+ 1, 𝑑],

𝑦𝑚 ∈ [𝑥𝑚, 𝑥
′
𝑚)}.

Given a box 𝐵, the reduction of all elements at coordinates in 𝐶𝑑(𝐵) is exactly
the excluded sum with respect to 𝐵. The box complement recursively partitions an
excluded region into disjoint sets of coordinates.

Theorem 12.3 (Recursive box-complement) Let 𝐵 be a box cornered at coor-
dinates x = (𝑥1, . . . , 𝑥𝑑) and x′ = (𝑥′

1, . . . , 𝑥
′
𝑑) in some coordinate domain 𝑈 . The

𝑖-complement of 𝐵 can be expressed recursively in terms of the (𝑖− 1)-complement of
𝐵 as follows:

𝐶𝑖(𝐵) = (: , . . . , : , :𝑥𝑖⏟ ⏞
𝑖

, 𝑥𝑖+1 :𝑥
′
𝑖+1, . . . , 𝑥𝑑 :𝑥

′
𝑑⏟ ⏞

𝑑−𝑖

)∪

(: , . . . , :⏟ ⏞
𝑖−1

, 𝑥′
𝑖 : , 𝑥𝑖+1 :𝑥

′
𝑖+1, . . . , 𝑥𝑑 :𝑥

′
𝑑⏟ ⏞

𝑑−𝑖

) ∪ 𝐶𝑖−1(𝐵),

where 𝐶0(𝐵) = ∅.

Proof. For simplicity of notation, let RHS𝑖(𝐵) be the right-hand side of the equation
in the statement of Theorem 12.3. Let y = (𝑦1, . . . , 𝑦𝑑) be a coordinate. In order to
show the equality, we will show that y ∈ 𝐶𝑖(𝐵) if and only if y ∈ RHS𝑖(𝐵).
Forward direction: y ∈ 𝐶𝑖(𝐵) → y ∈ RHS𝑖(𝐵).
We proceed by case analysis when y ∈ 𝐶𝑖(𝐵). Let 𝑗 ≤ 𝑖 be the highest dimension at
which y is “out of range,” or where 𝑦𝑗 < 𝑥𝑗 or 𝑦𝑗 ≥ 𝑥′

𝑗.

Case 1: 𝑗 = 𝑖.
Definition 12.2 and 𝑗 = 𝑖 imply that either 𝑦𝑖 < 𝑥𝑖 or 𝑦𝑖 ≥ 𝑥′

𝑖, and 𝑥𝑚 ≤ 𝑦𝑚 ≤ 𝑥′
𝑚

for all 𝑚 > 𝑖. By definition, 𝑦𝑖 < 𝑥𝑖 implies y ∈
(︀
: , . . . , : , :𝑥𝑖, 𝑥𝑖+1 :𝑥

′
𝑖+1, . . . , 𝑥𝑑 :𝑥

′
𝑑

)︀
.

Similarly, 𝑦𝑖 ≥ 𝑥′
𝑖 implies y ∈

(︀
: , . . . , : , 𝑥′

𝑖 : , 𝑥𝑖+1 :𝑥
′
𝑖+1, . . . , 𝑥𝑑 :𝑥

′
𝑑

)︀
. These are exactly

the first two terms in RHS𝑖(𝐵).

Case 2: 𝑗 < 𝑖.
Definition 12.2 and 𝑗 < 𝑖 imply that y ∈ 𝐶𝑖−1(𝐵).

Backward direction: y ∈ RHS𝑖(𝐵) → y ∈ 𝐶𝑖(𝐵).
We again proceed by case analysis.

Case 1: y ∈
(︀
: , . . . , : , :𝑥𝑖, 𝑥𝑖+1 :𝑥

′
𝑖+1, . . . , 𝑥𝑑 :𝑥

′
𝑑

)︀
or

y ∈
(︀
: , . . . , : , 𝑥′

𝑖 : , 𝑥𝑖+1 :𝑥
′
𝑖+1, . . . , 𝑥𝑑 :𝑥

′
𝑑

)︀
.

Definition 12.2 implies y ∈ 𝐶𝑖(𝐵) because there exists some 𝑗 ≤ 𝑖 (in this case, 𝑗 = 𝑖)
such that 𝑦𝑗 < 𝑥𝑗 and 𝑥𝑚 ≤ 𝑦𝑚 < 𝑥′

𝑚 for all 𝑚 > 𝑖.

Case 2: y ∈ 𝐶𝑖−1(𝐵).
Definition 12.2 implies that there exists 𝑗 in the range 1 ≤ 𝑗 ≤ 𝑖−1 such that 𝑦𝑗 < 𝑥𝑗

244

(i) Prefix along
each row

(ii)
BDBS
along
each

column

fffffff
X

(a)

(i) Suffix along
each row

fffffff
X ffffff

f (ii)
BDBS
along
each

column

(b)

fffffff
X ffffff

ffffff

fffffff

Prefix

(c)

Suffixfffffff
X ffffff

ffffff

fffffff

ffffff

fffffff

fffff

(d)

Figure 12-7: Steps for computing the excluded sum in 2 dimensions with included sums
on prefix and suffix sums. The steps are labeled in the order they are computed. The
1-complement (a) prefix and (b) suffix steps perform a prefix and suffix along dimension
1 and an included sum along dimension 2. The numbers in (a),(b) represent the order of
subroutines in those steps. The 2-complement (c) prefix and (d) suffix steps perform a
prefix and suffix sum on the reduced array, denoted by the blue rectangle, from step (a).
The red box denotes the excluded region, and solid lines with arrows denote prefix or suffix
sums along a row or column. The long dashed line represents the included sum along each
column.

or 𝑦𝑗 ≥ 𝑥′
𝑗 and that for all 𝑚 ≥ 𝑖, we have 𝑥𝑚 ≤ 𝑦𝑚 < 𝑥′

𝑚. Therefore, y ∈ 𝐶𝑖−1(𝐵)
implies y ∈ 𝐶𝑖(𝐵) since there exists some 𝑗 ≤ 𝑖 (in this case, 𝑗 < 𝑖) where 𝑦𝑗 < 𝑥𝑗 or
𝑦𝑗 ≥ 𝑥′

𝑗 and 𝑥𝑚 ≤ 𝑦𝑚 < 𝑥′
𝑚 for all 𝑚 > 1.

Therefore, 𝐶𝑖(𝐵) can be recursively expressed as RHS𝑖(𝐵).
In general, unrolling the recursion in Theorem 12.3 yields 2𝑑 disjoint partitions

that exactly comprise the excluded sum with respect to a box.

Corollary 12.4 (Excluded-sum components) The excluded sum can be repre-
sented as the union of 2𝑑 disjoint sets of coordinates as follows:

𝐶𝑑(𝐵) =
𝑑⋃︁

𝑖=1

⎛⎜⎝(: , . . . , :⏟ ⏞
𝑖−1

, :𝑥𝑖, 𝑥𝑖+1 :𝑥
′
𝑖+1, . . . , 𝑥𝑑 :𝑥

′
𝑑⏟ ⏞

𝑑−𝑖

)

∪ (: , . . . , :⏟ ⏞
𝑖−1

, 𝑥𝑖 + 𝑘𝑖 : , 𝑥𝑖+1 :𝑥
′
𝑖+1, . . . , 𝑥𝑑 :𝑥

′
𝑑⏟ ⏞

𝑑−𝑖

)

⎞⎟⎠ .

We use the box-complement formulation in the next section to efficiently compute
the excluded sums on a tensor by reducing in disjoint regions of the tensor.

12.5 Box-complement algorithm
This section describes and analyzes the box-complement algorithm for strong excluded
sums, which efficiently implements the dimension reduction in Section 12.4. The box-
complement algorithm relies heavily on prefix, suffix, and included sums as described
in Sections 12.2 and 12.3.

245

Full Prefix / Suffix
Dimensions:

Included Sum
Dimensions:

3

2
1 1

2

1

2, 3

1, 2

3

3

1
2

3

1, 2, 3

None
(a) (b) (c)

Figure 12-8: An example of the recursive box-complement in 3 dimensions with dimen-
sions labeled 1, 2, 3. The subfigures (a), (b), and (c) illustrate the 1-, 2-, and 3-complement,
respectively. The blue region represents the coordinates inside the box, and the regions out-
lined by dotted lines represent the partitions defined by Corollary 12.4. For each partition,
the face against the edge of the tensor is highlighted in green.

Given a 𝑑-dimensional tensor 𝒜 of size 𝑁 and a box size k, the box-complement
algorithm solves the excluded-sums problem with respect to k for coordinates in 𝒜
in Θ(𝑑𝑁) time and Θ(𝑁) space. Appendix C.3 contains all omitted pseudocode and
proofs for the serial box-complement algorithm.

Algorithm sketch
At a high level, the box-complement algorithm proceeds by dimension reduction.
That is, the algorithm takes 𝑑 dimension-reduction steps, where each step adds two
of the components from Corollary 12.4 to each element in the output tensor. In
the 𝑖th dimension-reduction step, the box-complement algorithm computes the 𝑖-
complement of 𝐵 (Definition 12.2) for all coordinates in the tensor by performing
a prefix and suffix sum along the 𝑖th dimension and then performing the BDBS
technique along the remaining 𝑑 − 𝑖 dimensions. After the 𝑖th dimension-reduction
step, the box-complement algorithm operates on a tensor of 𝑑−𝑖 dimensions because 𝑖
dimensions have been reduced so far via prefix sums. Figure 12-7 presents an example
of the dimension reduction in 2 dimensions, and Figure 12-8 illustrates the recursive
box-complement in 3 dimensions.

246

Box-Complement(𝒜,k)

1 // Input: Tensor 𝒜 with 𝑑-dimensions, box size k
// Output: Tensor 𝒜′ with size and dimensions
// matching 𝒜 containing the excluded sum.

2 init 𝒜′ with the same size as 𝒜
3 𝒜𝑝 = 𝒜;𝒜𝑠 = 𝒜
4 // Current dimension-reduction step
5 for i = 1 to d
6 // Saved from previous dimension-reduction step.
7 𝒜𝑝 = 𝒜 reduced up to dimension 𝑖− 1
8 𝒜𝑠 = 𝒜𝑝 // Save input to suffix step
9 // PREFIX STEP

// Reduced up to 𝑖 dimensions.
10 Prefix-Along-Dim along dimension i on 𝒜𝑝.
11 𝒜 = 𝒜𝑝 // Save for next round
12 // Do included sum on dimensions [𝑖+ 1, 𝑑].
13 for j = i + 1 to d
14 // 𝒜𝑝 reduced up to 𝑖 dimensions
15 BDBS-Along-Dim on dimension 𝑗 in 𝒜𝑝

16 // Add into result
17 Add-Contribution from 𝒜𝑝 into 𝒜′

18
19 // SUFFIX STEP

// Do suffix sum along dimension 𝑖
20 Suffix-Along-Dim along dimension 𝑖 in 𝒜𝑠

21 // Do included sum on dimensions [𝑖+ 1, 𝑑]
22 for j = i + 1 to d
23 // 𝒜𝑠 reduced up to 𝑖 dimensions
24 BDBS-Along-Dim on dimension 𝑗 in 𝒜𝑠

25 // Add into result
26 Add-Contribution from 𝒜𝑠 into 𝒜′

27 return 𝒜′

Figure 12-9: Pseudocode for the box-complement algorithm. For ease of presentation, we
omit the exact parameters to the subroutines and describe their function in the algorithm.
The pseudocode with parameters can be found in Figure C-6.

247

Prefix and suffix sums
In the 𝑖th dimension reduction step, the box-complement algorithm uses prefix and
suffix sums along the 𝑖th dimension to reduce the elements “out of range” along the
𝑖th dimension in the 𝑖-complement. That is, given a tensor 𝒜 of size 𝑁 = 𝑛1 ·𝑛2 · · ·𝑛𝑑

and a number 𝑖 < 𝑑 of dimensions reduced so far, we define a subroutine Prefix-
Along-Dim(𝒜, 𝑖) that fixes the first 𝑖 dimensions at 𝑛1, . . . , 𝑛𝑖 (respectively), and
then computes the prefix sum along dimension 𝑖 + 1 for all remaining rows in di-
mensions 𝑖 + 2, . . . , 𝑑. The pseudocode for Prefix-Along-Dim(𝒜, 𝑖) can be found
in Figure C-4 in Appendix C.3, and the proof that it incurs 𝑂

(︁∏︀𝑑
𝑗=𝑖+1 𝑛𝑗

)︁
time can

be found in Appendix C.3.
The subroutine Prefix-Along-Dim computes the reduction of elements “out of

range” along dimension 𝑖. That is, after Prefix-Along-Dim(𝒜, 𝑖), for each coordi-
nate 𝑥𝑖+1 = 1, 2, . . . , 𝑛𝑖+1 along dimension 𝑖+ 1, every coordinate in the (dimension-
reduced) output 𝒜′ contains the prefix up to that coordinate in dimension 𝑖+ 1:

𝒜′[𝑛1, . . . , 𝑛𝑖⏟ ⏞
𝑖

, 𝑥𝑖+1, 𝑥𝑖+2, . . . , 𝑥𝑑⏟ ⏞
𝑑− 𝑖− 1

] =

⨁︁
𝒜[𝑛1, . . . , 𝑛𝑖⏟ ⏞

𝑖

, :𝑥𝑖+1 + 1, 𝑥𝑖+2, . . . , 𝑥𝑑⏟ ⏞
𝑑− 𝑖− 1

].

Since the similar subroutine Suffix-Along-Dim has almost exactly the same
analysis and structure, we omit its discussion.

Included sums
In the 𝑖th dimension reduction step, the box-complement algorithm uses the BDBS
technique along the 𝑖th dimension to reduce the elements “in range” along the
𝑖th dimension in the 𝑖-complement. That is, given a tensor 𝒜 of size 𝑁 =
𝑛1 ·𝑛2 · · ·𝑛𝑑 and a number 𝑖 < 𝑑 of dimensions reduced so far, we define a subroutine
BDBS-Along-Dim.

BDBS-Along-Dim computes the included sum for each row along a specified
dimension after dimension reduction. Let 𝒜 be a 𝑑-dimensional tensor, k be a box
size, 𝑖 be the number of reduced dimensions so far, and 𝑗 be the dimension to compute
the included sum along such that 𝑗 > 𝑖. BDBS-Along-Dim(𝒜,k, 𝑖, 𝑗) computes the
included sum along the 𝑗th dimension for all rows (𝑛1, . . . , 𝑛𝑖, : , . . . , :). That is,
for each coordinate x = (𝑛1, . . . , 𝑛𝑖, 𝑥𝑖+1, . . . , 𝑥𝑑), the output tensor 𝒜′ contains the
included sum along dimension 𝑗:

𝒜′[x] =
⨁︁

𝒜[𝑛1, . . . , 𝑛𝑖⏟ ⏞
𝑖

, 𝑥𝑖+1, . . . , 𝑥𝑗⏟ ⏞
𝑗 − 𝑖

, 𝑥𝑗+1 :𝑥𝑗+1 + 𝑘𝑗+1, 𝑥𝑗+2, . . . , 𝑥𝑑⏟ ⏞
𝑑− 𝑗 − 1

].

BDBS-Along-Dim(𝒜,k, 𝑖, 𝑗) takes Θ
(︁∏︀𝑑

ℓ=𝑖+1 𝑛ℓ

)︁
time because it iterates over(︁∏︀𝑑

ℓ=𝑖+1 𝑛ℓ

)︁
/𝑛𝑗+1 rows and runs in Θ(𝑛𝑗+1) time per row. It takes Θ(𝑁) space using

248

the same technique as BDBS-1D.

Adding in the contribution
Each dimension-reduction step must add its respective contribution to each element
in the output. Given an input tensor 𝒜 and output tensor 𝒜′, both of size 𝑁 , the
function Add-Contribution takesΘ(𝑁) time to add in the contribution with a pass
through the tensors. The full pseudocode can be found in Figure C-5 in Appendix C.3.

Putting it all together
Finally, we will see how to use the previously defined subroutines to describe and
analyze the box-complement algorithm for excluded sums. Figure 12-9 presents pseu-
docode for the box-complement algorithm. Each dimension-reduction step has a
corresponding prefix and suffix step to add in the two components in the recursive
box-complement. Given an input tensor 𝒜 of size 𝑁 , the box-complement algorithm
takes Θ(𝑁) space because all of its subroutines use at most a constant number of
temporaries of size 𝑁 , as seen in Figure 12-9.

Given a tensor 𝒜 as input, the box-complement algorithm solves the excluded-
sums problem by computing the recursive box-complement components from Corol-
lary 12.4. By construction, for dimension 𝑖 ∈ [1, 𝑑], the prefix-sum part of the
𝑖th dimension-reduction step outputs a tensor 𝒜𝑝 such that for all coordinates
x = (𝑥1, . . . , 𝑥𝑑), we have

𝒜𝑝[𝑥1, . . . , 𝑥𝑑] =
⨁︁

𝒜[: , . . . , :⏟ ⏞
𝑖

, :𝑥𝑖+1,

𝑥𝑖+2 :𝑥𝑖+2 + 𝑘𝑖+2, . . . , 𝑥𝑑 :𝑥𝑑 + 𝑘𝑑⏟ ⏞
𝑑− 𝑖− 1

].

Similarly, the suffix-sum step constructs a tensor 𝒜𝑠 such that for all x,

𝒜𝑠[𝑥1, . . . , 𝑥𝑑] =
⨁︁

𝒜[: , . . . , :⏟ ⏞
𝑖

, 𝑥𝑖+1 + 𝑘𝑖+1 : ,

𝑥𝑖+2 :𝑥𝑖+2 + 𝑘𝑖+2, . . . , 𝑥𝑑 :𝑥𝑑 + 𝑘𝑑⏟ ⏞
𝑑− 𝑖− 1

].

We can now analyze the performance of the box-complement algorithm.

Theorem 12.5 (Time of box-complement) Given a 𝑑-dimensional tensor 𝒜 of
size 𝑁 = 𝑛1 · 𝑛2 · . . . · 𝑛𝑑, Box-Complement solves the excluded-sums problem in
Θ(𝑑𝑁) time.

Proof. We analyze the prefix step (since the suffix step is symmetric, it has the
same running time). Let 𝑖 ∈ {1, . . . , 𝑑} denote a dimension.

The 𝑖th dimension reduction step in Box-Complement involves 1 prefix step
and (𝑑 − 𝑖) included sum calls, which each have 𝑂

(︁∏︀𝑑
𝑗=𝑖 𝑛𝑗

)︁
time. Furthermore,

249

adding in the contribution at each dimension-reduction step takes Θ(𝑁) time. The

total time over 𝑑 steps is therefore Θ

(︃
𝑑∑︀

𝑖=1

(︃
(𝑑− 𝑖+ 1)

𝑑∏︀
𝑗=𝑖

𝑛𝑗 +𝑁

)︃)︃
. Adding in the

contribution is clearly Θ(𝑑𝑁) in total.
Next, we bound the runtime of the prefix and included sums. In each dimension-

reduction step, reducing the number of dimensions of interest exponentially decreases
the size of the considered tensor. That is, dimension reduction exponentially reduces
the size of the input:

∏︀𝑑
𝑗=𝑖 𝑛𝑗 ≤ 𝑁/2𝑖−1. The total time required to compute the

box-complement components is therefore
𝑑∑︁

𝑖=1

(𝑑− 𝑖+ 1)
𝑑∏︁

𝑗=𝑖

𝑛𝑗 ≤
𝑑∑︁

𝑖=1

(𝑑− 𝑖+ 1)
𝑁

2𝑖−1

≤ 2(𝑑+ 2−𝑑 − 1)𝑁 = Θ(𝑑𝑁).

Therefore, the total time of Box-Complement is Θ(𝑑𝑁).

12.6 Experimental evaluation
This section presents an empirical evaluation of strong and weak excluded-sums algo-
rithms. In 3 dimensions, we compare strong excluded-sums algorithms: specifically,
we evaluate the box-complement algorithm and variants of the corners algorithm
and find that the box-complement outperforms the corners algorithm given similar
space. Furthermore, we compare weak excluded-sums algorithms in higher dimen-
sions. Lastly, to simulate a more expensive operator than numeric addition when
reducing, we compare the box-complement algorithm and variants of the corners al-
gorithm using an artificial slowdown.

Experimental setup. We implemented all algorithms in C++. We used the Tapir/L-
LVM [322] branch of the LLVM [234, 235] compiler (version 9) with the -O3 and
-march=native and -flto flags.

All experiments were run on a 8-core 2-way hyper-threaded Intel Xeon CPU E5-
2666 v3 @ 2.90GHz with 30GB of memory from AWS [10]. For each test, we took
the median of 3 trials.

To gather empirical data about space usage, we interposed malloc and free. The
theoretical space usage of the different algorithms can be found in Table 12.1.

Strong excluded sums in 3D
Figure 12-3 summarizes the results of our evaluation of the box-complement and
corners algorithm in 3 dimensions with a box length of 𝑘1 = 𝑘2 = 𝑘3 = 4 (for a
total box volume of 𝐾 = 64) and number of elements 𝑁 = 681472. We tested
with varying 𝑁 but found that the time and space per element were flat (full results
in Appendix C.4). We found that the box-complement algorithm outperforms the
corners algorithm by about 1.4× when given similar amounts of space, though the
corners algorithm with 2× the space as the box-complement algorithm was 2× faster.

250

We explored two different methods of using extra space in the corners algorithm
based on the computation tree of prefixes and suffixes: (1) storing the spine of the
computation tree to asymptotically reduce the running time, and (2) storing the leaves
of the computation tree to reduce passes through the output. Although storing the
leaves does not asymptotically affect the behavior of the corners algorithm, we found
that reducing the number of passes through the output has significant effects on
empirical performance. Storing the spine did not improve performance, because the
runtime is dominated by the number of passes through the output.

Excluded sums with different operators
Most of our experiments used numeric addition for the ⊕ operator. Because some
applications, such as FMM, involve much more costly ⊕ operators, we studied how
the excluded-sum algorithms scale with the cost of ⊕. To do so, we added a tun-
able slowdown to the invocation of ⊕ in the algorithms. Specifically, they call an
unoptimized implementation of the standard recursive Fibonacci computation. By
varying the argument to the Fibonacci function, we can simulate ⊕ operators that
take different amounts of time.

Figure 12-10: The scalability of excluded-sum algorithms as a function of the cost of
operator ⊕ on a 3D domain of 𝑁 = 4096 elements. The horizontal axis is the time in
nanoseconds to execute ⊕. The vertical axis represents the time per element of the given
algorithm divided by the time for ⊕. We inflated the time of ⊕ using increasingly large
arguments to the standard recursive implementation of a Fibonacci computation.

Figure 12-10 summarizes our findings. We ran the algorithms on a 3D domain of
𝑁 = 4096 elements. (Although this domain may seem small, Appendix C.4 shows
that the results are relatively insensitive to domain size.) For inexpensive⊕ operators,
the box-complement algorithm is the second fastest, but as the cost of ⊕ increases,
the box-complement algorithm dominates. The reason for this outcome is that box-

251

complement performs approximately 12 ⊕ operations per element in 3D, whereas the
most efficient corners algorithm performs about 22 ⊕ operations. As ⊕ becomes more
costly, the time spent executing ⊕ dominates the other bookkeeping overhead.

Weak excluded sums in higher dimensions
Figure 12-4 presents the results of our evaluation of weak excluded-sum algorithms
in higher dimensions. For all dimensions 𝑖 = 1, 2, . . . , 𝑑, we set the box length 𝑘𝑖 = 8
and chose a number of elements 𝑁 to be a perfect power of dimension 𝑖. Table 12.1
presents the asymptotic runtime of the different excluded-sum algorithms.

The weak naive algorithm for excluded sums with nested loops outperforms all of
the other algorithms up to 2 dimensions because its runtime is dependent on the box
volume, which is low in smaller dimensions. Since its runtime grows exponentially
with the box length, however, we limited it to 5 dimensions.

The summed-area table algorithm outperforms the BDBS and box-complement
algorithms up to 6 dimensions, but its runtime scales exponentially in the number of
dimensions.

Finally, the BDBS and box-complement algorithms scale linearly in the number
of dimensions and outperform both naive and summed-area table methods in higher
dimensions. Specifically, the box-complement algorithm outperforms the summed-
area table algorithm by between 1.3× and 4× after 6 dimensions. The BDBS al-
gorithm demonstrates an advantage to having an inverse: it outperforms the box-
complement algorithm by 1.1× to 4×. Therefore, the BDBS algorithm dominates
the box-complement algorithm for weak excluded sums.

12.7 Conclusion
This chapter introduced the box-complement algorithm for the excluded-sums prob-
lem, which improves the running time of the state-of-the-art corners algorithm from
Ω(2𝑑𝑁) to Θ(𝑑𝑁) time. The space usage of the box-complement algorithm is in-
dependent of the number of dimensions, while the corners algorithm may use space
dependent on the number of dimensions to achieve its running-time lower bound.

The three new algorithms from this chapter parallelize straightforwardly. In the
work/span model [108], all three algorithms are work-efficient, achieving Θ(𝑑𝑁) work.
The BDBS and BDBSC algorithms achieve Θ(𝑑 log𝑁) span, and the box-complement
algorithm achieves Θ(𝑑2 log𝑁) span.

Locality-first strategy. The BDBS and box-complement algorithms in this chapter
apply the locality-first strategy by first understanding opportunities for locality in the
problem, taking advantage of that locality, and then improving the overall efficiency
of algorithms for the included-sums and excluded-sums problems. Since the overall
work complexity of both are algorithms is Θ(𝑑𝑁) for a 𝑑-dimensional tensor of size
𝑁 , there is not much opportunity for temporal locality, or speedups in 𝑀 , because
the work is close to the input size. Therefore, the focus of this work is on finding
faster algorithms for the problems.

252

Chapter 13

Conclusion

This chapter provides concluding remarks and a discussion of the applicability of the
locality-first strategy. Section 13.1 summarizes the main artifacts in this thesis in
the context of the broader locality-first strategy. Section 13.2 takes a step back from
the principal artifacts to discuss the wider applicability of the locality-first strategy
for multicore optimization. It describes the breadth of the strategy by identifying
other instances of the strategy in the literature. It then discusses how to apply the
locality-first strategy depending on the problem.

13.1 Thesis summary
This thesis contends that algorithm developers and performance engineers should use
a locality-first strategy as a roadmap to create theoretically and practically efficient
parallel algorithms for multicores. To demonstrate the potential of optimizing for
locality first, this thesis studies a variety of problems that exhibit different types of
locality and parallelism. The principal artifacts demonstrate how to use locality-first
algorithm engineering to solve large problems on just a single multicore.

Although multicores have become widely accessible in the past decade and are
now available on-demand with just a credit card, their full potential has not yet been
realized due to the difficulty of writing efficient codes that take advantage of the
underlying hardware. Specifically, the main features of shared-memory multicores
are 1) the multiple cores for parallelism and 2) the memory system for locality. Many
large problems from applications such as social networks and scientific computing can
be solved on a single general-purpose shared-memory multicore by taking advantage
of these hardware features.

Enhancing locality by changing the data layout
Chapters 3-6 enhance spatial locality by changing the underlying data layout before
introducing parallelism.

Chapters 3-5 apply the locality-first strategy to problems with low temporal and
spatial locality and demonstrate that optimizing for locality, even at the cost of some
parallelism, can improve overall performance because there is ample parallelism in

253

the common case. To do so, they introduce algorithms and data structures that ap-
ply the locality-first strategy by first taking advantage of spatial locality in sparse
problems and then parallelizing the computations. Specifically, Chapters 3 and 4 in-
troduce cache-friendly data structures for sparse graph problems that improve upon
the state of the art by exploiting spatial locality without sacrificing parallelism. Fur-
thermore, Chapter 5 introduces an efficient algorithm for estimating the fill, which is a
crucial step in tailoring blocked representations to the patterns of locality in individual
tensors without incurring too much overhead. These artifacts apply the locality-first
strategy to algorithm and data structure design to enhance spatial locality first for
problems with low spatial and temporal locality.

Furthermore, Chapter 6 takes the first step towards an efficient parallel data struc-
ture via the locality-first strategy by presenting a serial cache-optimized skip list data
structure. By exploiting locality first, a future parallel version of the cache-friendly
skip list can achieve closer to peak performance. These artifacts apply the locality-first
strategy to a variety of problems to improve theoretical and practical performance by
focusing on spatial locality as a first step before parallelism.

Exploiting locality without changing the data layout
Chapters 7-12 take advantage of locality by changing algorithm access patterns.

Chapters 7-10 mathematically ground the locality-first strategy by demonstrating
that algorithms that are designed to fully exploit temporal locality perform well de-
spite potential disruptions to cache-friendly access patterns due to parallelism. They
provide support for the locality-first strategy via beyond-worst-case analysis of al-
gorithms in shared memory. Chapters 7 and 8 study cache-replacement algorithms
in shared memory and provide theoretical evidence for the established superiority of
Least-Recently-Used in practice. Furthermore, Chapters 9 and 10 study algorithms in
shared-memory and mathematically close the gap between cache-oblivious and cache-
adaptive algorithms, validating the cache-friendliness of the divide-and-conquer algo-
rithm design pattern in shared memory. These artifacts address a potential concern
with the locality-first strategy that locality and parallelism trade off by demonstrat-
ing that algorithms that take advantage of locality are mathematically good even in
shared memory.

Chapters 11 and 12 apply the locality-first strategy to demonstrate how to un-
derstand and exploit locality in problems with spatial locality but not much tempo-
ral locality. They first understand locality in the prefix-sums, included-sums, and
excluded-sums problems by realizing that there is easily-available spatial locality and
a lack of temporal locality. Therefore, these artifacts optimize for other measures,
such as accuracy and total work.

The artifacts developed in this thesis provide mathematical and practical frame-
works for creating and analyzing fast parallel algorithms for shared-memory multi-
cores. For example, Chapters 3 and 4 introduce frameworks for efficiently processing
dynamic graphs based on locality-optimized data structures. Additionally, Chapter 7
introduces a mathematical framework called cyclic analysis for beyond-worst-case
analysis of general online algorithms.

254

13.2 Applicability of the locality-first strategy
This section demonstrates the general applicability of the locality-first strategy. First,
it provides examples from the literature outside of the artifacts in this thesis that
illustrate the potential for locality-first algorithm design in the theory and practice of
parallel algorithms. Finally, it describes guidelines for using the locality-first strategy
based on the type of locality that a problem exhibits.

Other examples of locality-first from the literature
Applications of the locality-first strategy appear throughout the literature in the
context of developing efficient parallel codes for multicores. I highlight a few examples:

• Past work showed that when optimizing loops for locality and parallelism si-
multaneously, performance engineers should optimize first for locality and then
introduce parallelism while maintaining memory access order [217].

• The Ligra+ graph-processing framework demonstrates that improving spatial
locality via compression can overcome traditional tradeoffs between paralleliza-
tion and cache-friendliness [337]. This work shows that compression improves
overall performance of graph computations with parallelization despite initially
posing challenges to parallelization due to serialization during the decompres-
sion phase.

• The improved performance of the parallel Greedy graph-coloring algorithm
compared to the other parallel ordering heuristics stems from improved spatial
locality from processing vertices in order [204].

• Attempts to reduce contention by disrupting spatial locality in parallel breadth-
first search yielded overall slower performance, demonstrating the importance
of maintaining locality even at the cost of some parallel scalability [239,319].

• The Quilter algorithm for high-throughput image alignment in connectomics
achieves speedup by first exploiting temporal locality by caching previously-used
data before parallelization [203,206,377].

I also point out a few examples of the importance of optimizing for locality outside
of direct parallel algorithm design. These examples differ from the previous ones
because they focus on theoretical algorithm and data structure design.

• Graveyard hashing, a variant of linear probing, avoids primary clustering in hash
tables while maintaining cache-friendliness [53]. These results suggest that in
many important applications such as hash tables, data representations should
favor locality despite traditional tradeoffs.

• Traditionally, graph algorithms have resisted significant speedups in the DAM
model due to a lack of spatial and temporal locality [119]. The negative triangle
problem illustrates the potential to circumvent these issues via the locality-first

255

approach in this domain [292]. By viewing the data as an array and the problem
as a repeated scan of lists, past work [292] was able to break through the barrier
of speedups just in 𝐵 and achieve speedup in terms of 𝑀 .

Guidelines for using the locality-first strategy
The first step in the locality-first strategy is to understand the types of locality present
in a problem. As shown in Figure 1-1, there are four main quadrants depending on
whether a problem exhibits spatial and/or temporal locality. Once a performance en-
gineer has identified which quadrant their problem falls into, they may apply different
techniques depending on the type of problem they have.

The first quadrant contains problems with low spatial and low temporal locality,
such as sparse problems. Since there is not much temporal locality in this case, it is
important to lay out the data in a cache-friendly way to take full advantage of spatial
locality. This thesis illustrates how to design parallel cache-friendly data structures
and representations for a variety of sparse problems in Chapters 3-5.

The second quadrant contains problems with high spatial and low temporal lo-
cality, such as the prefix-sums problem. In these situations, the data is already laid
out in a cache-friendly way, so classical techniques such as blocking capture the avail-
able spatial locality. Therefore, as discussed in Chapters 11, optimizations may focus
exclusively on parallelization or on measures beyond runtime such as accuracy.

The third quadrant contains problems with low spatial and high temporal local-
ity, such as satisfiability solvers [162]. Although this thesis does not address these
problems explicitly in the artifacts, previous work on optimizing these applications
has demonstrated the potential for a locality-first approach by developing local search
algorithms for improved temporal locality [159].

Finally, the fourth quadrant contains problems with high spatial and high tem-
poral locality, such as dense matrix multiplication. Since the data is already laid out
in a cache-friendly way for spatial locality, optimizing for this case involves taking
advantage of temporal locality. For example, Chapters 7 and 9 theoretically ground
classical techniques for exploiting temporal locality such as Least-Recently-Used and
divide-and-conquer in the presence of parallelism.

In summary, this thesis has shown that a locality-first strategy for algorithm
design can overcome tradeoffs between cache-friendliness and parallelism and create
theoretically and practically efficient multicore algorithms. As discussed in Chapter 1,
optimizing algorithms for locality and parallelism individually is challenging, and
even more challenging when the two are combined because they trade off with each
other. The locality-first strategy is a principled method for creating efficient multicore
algorithms that can scale to ever-growing problems.

256

Appendix A

Packed Compressed Sparse Row

This appendix presents Packed Compressed Sparse Row (PCSR), a serial dynamic
graph storage format that optimizes for locality-first by storing data contiguously
using a Packed Memory Array (PMA) data structure. PCSR is the first step towards
the more complex parallel dynamic graph storage formats in Chapters 3 and 4. It op-
timizes for spatial locality by storing data contiguously while still supporting efficient
updates.

This work was conducted in collaboration with Brian Wheatman [378]. We would
like to thank Julian Shun for helpful comments.

Abstract

Perhaps the most popular sparse graph storage format is Compressed Sparse Row
(CSR). CSR excels at storing graphs compactly with minimal overhead, allowing
for fast traversals, lookups, and basic graph computations such as PageRank. Since
elements in CSR format are packed together, additions and deletions often require
time linear in the size of the graph.

This appendix introduces a new dynamic sparse graph representation called
Packed Compressed Sparse Row (PCSR), based on an array-based dynamic data
structure called the Packed Memory Array. PCSR is similar to CSR, but leaves
spaces between elements, allowing for asymptotically faster insertions and deletions
in exchange for a constant factor slowdown in traversals and a constant factor increase
in space overhead.

The contributions of this chapter are twofold. First, it describes PCSR and review
the theoretical guarantees for update, insert, and search for PCSR. We also imple-
mented PCSR as well as other basic graph storage formats and report our findings
on a variety of benchmarks. This chapter shows that PCSR supports inserts orders
of magnitude faster than CSR and is only a factor of two slower on graph traversals.
These results suggest that PCSR is a lightweight dynamic graph representation that
supports fast inserts and competitive searches.

The remainder of this appendix is organized as follows. Section A.1 reviews fun-
damental graph storage formats. Section A.2 introduces Packed Compressed Sparse

257

Adjacency
Matrix AL BAL CSR PCSR

(amortized)

Storage cost /
scanning whole graph 𝑂(𝑛2/𝐵) 𝑂(𝑛+𝑚) 𝑂((𝑚+ 𝑛)/𝐵) 𝑂((𝑚+ 𝑛)/𝐵) 𝑂((𝑚+ 𝑛)/𝐵)

Add new edge 𝑂(1) 𝑂(1) 𝑂(1) 𝑂((𝑚+ 𝑛)/𝐵) 𝑂(lg2(𝑚+ 𝑛)/𝐵)

Update or delete edge
from vertex 𝑣

𝑂(1) 𝑂(𝑑𝑒𝑔(𝑣)) 𝑂(𝑑𝑒𝑔(𝑣)/𝐵) 𝑂((𝑚+ 𝑛)/𝐵) 𝑂(lg2(𝑚+ 𝑛)/𝐵)

Add node 𝑂(𝑛2/𝐵) 𝑂(1) 𝑂(1) 𝑂(1)* 𝑂(lg2(𝑚+ 𝑛)/𝐵)

Finding all neighbors
of a vertex v 𝑂(𝑛/𝐵) 𝑂(𝑑𝑒𝑔(𝑣)) 𝑂(𝑑𝑒𝑔(𝑣)/𝐵) 𝑂(𝑑𝑒𝑔(𝑣)/𝐵) 𝑂(𝑑𝑒𝑔(𝑣)/𝐵)

Finding if w is
a neighbor of v 𝑂(1) 𝑂(𝑑𝑒𝑔(𝑣)) 𝑂(𝑑𝑒𝑔(𝑣)/𝐵) 𝑂(lg𝐵(𝑑𝑒𝑔(𝑣)) 𝑂(lg𝐵(𝑑𝑒𝑔(𝑣)))

Sparse matrix-vector
multiplication 𝑂(𝑛2/𝐵) 𝑂(𝑛/𝐵 +𝑚+ 𝑛) 𝑂((𝑚+ 𝑛)/𝐵) 𝑂((𝑚+ 𝑛)/𝐵) 𝑂((𝑚+ 𝑛)/𝐵)

Table A.1: Cache behavior of various sparse graph and matrix operations. 𝑛 = |𝑉 |,
𝑚 = |𝐸|. The table lists various graph representations and the algorithmic runtime of
common graph operations in the external memory model by Aggarwal and Vitter, [3]
where 𝐵 is the cache line (or disk block) size. The RAM model (without cache analysis)
is the special case where 𝐵 or lg(𝐵) is 1. We analyze PCSR in the right-most column.

*
We use a C++ vector for our implementation of CSR, so we do not need to rebuild the vertex
list every time we add a vertex.

Row. Section A.3 empirically evaluates PCSR and the formats introduced in Sec-
tion A.1.

A.1 Graph storage formats
This section describe the following graph storage formats: adjacency matrix, adja-
cency list, blocked adjacency list, and CSR. We detail their respective space/time
tradeoffs in Table A.1. For a graph 𝐺 = (𝑉,𝐸), we denote the number of nodes by
𝑛 = |𝑉 | and number of edges by 𝑚 = |𝐸|.

Adjacency matrix
An adjacency matrix is the most basic graph storage format. It stores an 𝑛 × 𝑛
matrix for a graph of 𝑛 nodes. The entry at [𝑢, 𝑣] corresponds to the value of the edge
(𝑢, 𝑣) (or has 0 if the edge does not exist). It excels in storing dense graphs because
it does not store any pointers and therefore minimizes overhead if the graph is almost
fully connected.

The adjacency matrix wastes space when the graph is sparse because it requires
𝑛2 space. Furthermore, adding nodes requires rebuilding the entire data structure.
Finally, sparse graph traversals on adjacency matrices require iterating over the entire
matrix of size 𝑛2. Since the number of edges is 𝑚 ≪ 𝑛2 for many sparse graphs, a
graph traversal using an adjacency matrix is not work efficient.

258

Adjacency list
Another common sparse graph storage format is the adjacency list (AL). Adjacency
lists keep an array of nodes where each entry stores a pointer to a linked list of edges.
The pointer at index 𝑢 in the node list points to a linked list where each element 𝑣
in the linked list is an outgoing edge (𝑢, 𝑣).

Adjacency lists support fast inserts but have high space overhead and slow searches
because the edges are unsorted. Adjacency lists also exhibit poor cache behavior
because they lack locality. A variant of adjacency lists called blocked adjacency lists
(BAL) uses blocks to store edges. Blocked adjacency lists exhibit faster traversals
because of improved locality but require extra space for extremely sparse graphs.
Blandford, Blelloch, and Kash [60] introduced a dynamic graph data structure based
on BAL with many constant-factor improvements but stop short of giving theoretical
guarantees. For simplicity, we compare PCSR with standard adjacency lists of various
block sizes.

Figure A-1 shows an example of a graph stored in adjacency list format.
Vertex IDs Edges (dest, val)

0

…

1

2

3

(4, 6) (1, 4) NIL

(0, 1) (3, 1) (9, 4) NIL

NIL

NIL(8, 5)

Figure A-1: An example of a graph stored in an adjacency list. Each entry in the nodes
array points to a linked list of edges. The vertex ID in the nodes array implicitly stores the
source. For weighted graphs, we store a tuple of destination vertex and edge value for each
edge.

Compressed Sparse Row
Compressed sparse row (CSR) is a popular format for storing sparse graphs and
matrices. It efficiently packs all the entries together in arrays, allowing for quick
traversals of the data structure.

CSR uses three arrays to store a sparse graph: a node array, an edge array, and
a values array1. Each entry in the node array contains the starting index in the edge
array where the edges from that node are stored in sorted order by destination. The
edge array stores the destination vertices of each edge. CSR stores a graph 𝐺 = (𝑉,𝐸)
in size 𝑂(|𝑉 | + |𝐸|), but needs to be rebuilt upon any changes. Figure A-2 contains
an example of a graph stored in CSR format.

1The values array is not needed in the unweighted case.

259

Inserting an edge into a graph in CSR format takes time linear in the size of
the graph in the worst case. To insert an edge (𝑢, 𝑣) into a graph in CSR format,
we first must search all edges with source vertex 𝑢 to find the edge with the smallest
destination larger than 𝑣. Then we insert (𝑢, 𝑣) into the edge list and slide all elements
after it over by one. We then increment the elements in the node array for all vertices
greater than 𝑢 by one. The entire edge array may need to be resized and copied into
a larger block of memory if there are too many elements in the structure.

Figure A-2: An example of an unweighted graph stored in compressed sparse row. The
values stored in the edges array represent the destination. The vertex ID in the offset array
implicitly stores the source. For weighted graphs, there is an additional values array.

Pinar and Heath [304] introduced a variant of CSR called Blocked Compressed
Sparse Row (BCSR), where the locations of nonzero blocks are stored in CSR format.
This chapter focuses on unblocked CSR for simplicity.

A.2 Packed Compressed Sparse Row
This section introduces Packed Compressed Sparse Row, a graph storage format based
on the Packed Memory Array data structure. It first reviews the structure and theo-
retical properties of the packed memory array (PMA) [52]. The PMA maintains edges
in sorted order and leaves space between elements to support fast inserts and deletes.
Next, it shows how to use a PMA as a graph storage format in PCSR. Finally, it
describes how to implement graph operations in PCSR.

Packed Memory Array
The PMA stores 𝑁 items in an ordered list of size 𝑂(𝑁) and supports inserts and
deletes in 𝑂(lg2(𝑁)).

At a high level, the PMA avoids changing the entire data structure after each
insert or delete by maintaining spaces between elements and rebalancing when there
are too many or too few elements in a range. It maintains spaces of size 𝑂(1) between
groups of elements of size 𝑂(1) to enable easy insertions and deletions. The PMA
maintains these spaces by rebalancing the structure and redistributing the elements
whenever a section of the data structure becomes too sparse or too dense. Specifically,
if the size of the data structure at some time 𝑡 is 𝑛𝑡, the PMA keeps an implicit tree
with 𝑛𝑡/ lg(𝑛𝑡) leaves of the data structure where each leaf has lg(𝑛𝑡) slots. The
density of a node is determined by the number of elements in it divided by the total
number of slots in the node. If the density is too low or too high, the PMA rebalances

260

the elements across a child or parent, respectively. If the entire array becomes too
dense or too sparse, we resize the entire data structure.

Figure A-3 shows an example of the implicit binary tree on the PMA intervals.
If an interval becomes too dense, we walk up the tree and redistribute when we find
an interval that is appropriately dense.

Figure A-3: An example of the implicit binary tree on the PMA intervals. If we insert
a new element in a leaf and the corresponding interval becomes too dense (shown in light
grey), we walk up the tree until we find an interval with a density in the allowed range
(shown in dark grey). In the worst case, we walk up to the root and do a rebalance of the
entire PMA. This figure is from [117].

PCSR structure
PCSR uses the same vertex and edge lists as CSR but uses a PMA instead of an array
for the edge list. Adding both edges and nodes to the graph requires updates to both
the vertex and edge lists. We use a c++ vector with doubling and halving for the node
list. Each element in the node list stores start and end pointers into the edge list for
its range. Each nonempty entry in the edge list contains the destination vertex and
the edge value. Each node’s range in the edge list has a corresponding sentinel entry
in the edge list which points back to the source in the node list for updating the node
pointers.

We present an example of a graph stored in PCSR format in Figure A-4.
The size of the node list is 𝑂(𝑛) since it stores two pointers for each node. The

size of the edge PMA is 𝑂(𝑛+𝑚) since it stores an entry for each edge and node. The
size of an PMA is 𝑂(𝑁) where 𝑁 is the number of elements in the PMA. Therefore,
the total space usage of PCSR is 𝑂(𝑛+𝑚), the same as standard CSR.

Operations

Adding a node. We add nodes by extending the length of the node array by one
with a pointer to the end of the edge structure. We then add the sentinel edge into
the edge structure.

Adding an element to the end of the node structure is 𝑂(1) and adding an element
to the edge structure is 𝑂(lg2(𝑛+𝑚)), so the overall time is 𝑂(lg2(𝑛+𝑚)).

261

Figure A-4: An example of a graph stored in PCSR. S denotes the sentinels. The ranges
(start, end) in the vertex array denote the start and end of the corresponding edges in the
edge array.

Adding an edge. Adding an edge first requires finding the node in the node array,
then requires a binary search on the relevant section of the edge array to insert the
edge in sorted order indexed by its destination. If a rebalance is triggered, we check
every moved edge to see if it is a sentinel. If so, we update the node array with its
new location.

Finding the location in the node structure is 𝑂(1), binary searching the relevant
section of the edge array is 𝑂(lg(𝑑𝑒𝑔(𝑣))), and inserting is 𝑂(lg2(𝑛 +𝑚)), giving us
𝑂(lg2(𝑛+𝑚)) for the overall time.

Removing an edge. Removing an edge is symmetric to adding an edge. We find the
edge with binary search and then remove it from the PMA and rebalance if necessary.
Therefore, the runtime is the same as adding an edge: (𝑂(lg2(𝑛+𝑚))).

Removing a node. First, we set the start and end pointers into the edge array to
null. We can also keep track of the number of removed nodes and rebuild the entire
structure when the number of non-removed nodes equals the number of removed
nodes. Nodes can only be removed after all of their edges have been removed2. We
need to both mark the node in the node structure and remove the sentinels from the
edge structure. This takes time 𝑂(lg2(𝑛+𝑚)).

To maintain the node list with 𝑂(𝑛) entries we can simply rebuild the structure
every time the number of removed nodes exceeds half the number of nodes before
node deletions.

We have not implemented removing edges and nodes, but their asymptotic per-
formance is symmetric to adding edges and nodes.

A.3 Results
We evaluated PCSR against CSR, adjacency list (AL), and blocked adjacency lists
(BAL). We do not compare to the adjacency matrix due to its inability to scale to
large graphs. We will evaluate the structures on their performance and their space
usage. We focus on the sparse case since the adjacency matrix outperforms all other

2It would be possible to implement a faster bulk edge removal by deleting all the edges at once
and not doing rebalances until the end.

262

100 101 102 103

103

104

105

Total Edges (100,000s)

M
em

or
y
us
ed

(K
B
)

AL BAL: 8
BAL: 32 BAL: 128
PCSR CSR

CSR ideal

Figure A-5: Size per 100,000 edges of each data structure with 100,000 nodes and a variable
number of edges. The x-axis represents the number of edges, while the y-axis represents the
size per 100,000 elements.

graph representations if the graph is dense. We randomly generated variable numbers
of edges in a graph with a constant number of nodes for our tests.

System. We ran our experiments on an AWS instance with 18 cores, with hyper-
threading, and 2.9GHz clock speed. The machine had 64GB of RAM, 32K of L1
cache, 256K of L2 cache, and 25600K of L3 cache. Programs were written in c++
and compiled with GCC 4.8.5 with -O3. All programs were run sequentially.

Memory footprint
We measured the memory footprint of each data structure for a fixed number of nodes
and variable number of edges. Figure A-5 shows the relative growth of the memory
footprint of each graph representation.

The BALs use much more size than necessary when the average degree is small
because most of the space in the blocks is empty.

The c++ vector for the edge list in CSR doubled the speed of inserts since our
implementation of CSR (on average) only needs to copy half of the elements and not
all of them on each insert. Therefore, we also compare to the ideal CSR size without
extra space.

We found that there is about a factor of 2 between the size of an ideal CSR
(without extra padding) and the worst AL and that PCSR only has a space overhead
of between 20% and 30%.

Inserts
We benchmarked the time to insert unique edges on all of the data structures. We
generated edges uniformly at random without replacement. Figure A-6 shows the
time to insert 100, 000 edges with a fixed number of nodes and a variable number of
edges. AL-based representations supported fast inserts, while CSR was the slowest.

263

100 101 102 103

10−2

10−1

100

101

Average Degree

T
im

e
(s
ec
on

ds
)

AL PCSR
BAL: 8 CSR

Figure A-6: Time to insert 100,000 edges with a fixed number of nodes. We used 100,000
nodes and added a variable number of edges.

CSR starts about 3 orders of magnitude slower than all other representations and
also scales much worse. Therefore, we are unable to run it for large numbers of
edges. We find that in practice that PCSR is about 3-4 times slower than AL based
representations.

Updates
We benchmarked update operations on all of the data structures. We generated edges
uniformly at random with replacement. Figure A-6 shows the time to insert edges
that potentially exist in the edge list with a fixed number of nodes. The difference
between update and insert is that update requires a search beforehand to check if the
edge is already in the structure. We again show the time for updating (or inserting)
100, 000 edges.

PCSR outperformed all other structures when the average degree grew to rea-
sonable sizes, as expected from Table A.1. Once again, CSR is several orders of
magnitude worse and is too slow to complete on reasonable input sizes. Additionally,
the AL-based representations take linear time to search and take much longer than
the 𝑂(lg2(𝑛)) search time of PCSR. While the high search cost in AL-based represen-
tations can be somewhat offset by increasing the size of the block, larger block sizes
increase the size of the AL and slow insertions.

Sparse matrix-vector multiplication
Figure A-8a shows the time to perform a sparse matrix-vector multiplication using
the different structures with 100,000 nodes and a variable number of edges.

Although the asymptotic complexity for SpMV is the same for all of the structures,
the AL-based structures can suffer from poor cache behavior. Increasing the block
size in BALs can improve cache performance. PCSR avoids the problem of cache
locality because it stores all of its edges in a single array. SpMV takes longer in AL
than PCSR because the PCSR has better cache behavior. SpMV in PCSR is within

264

100 101 102 103

10−2

10−1

100

101

Average Degree

T
im

e
(s
ec
on

ds
)

AL BAL: 32 PCSR
BAL: 8 BAL: 128 CSR

Figure A-7: Time to insert or update 100,000 edges with a fixed number of nodes. We
used 100,000 nodes and added a variable number of edges.

a factor of 2 and often within 20% of SpMV in CSR.

PageRank and BFS
Figure A-8b shows the time to perform an iteration of PageRank using the different
structures with 100,000 nodes and a variable number of edges.

Figure A-8c shows the time to compute the distance to each node from a randomly
chosen source node using each of the different structures with 100,000 nodes and a
variable number of edges.

The time to perform a BFS and an iteration of PageRank scales with the number
of edges in the graph in all representations.

265

100 101 102 103

10−3

10−2

10−1

100

Average Degree

Sp
M
V

ti
m
e
(s
)

AL
BAL: 8
BAL: 32
BAL: 128
PCSR
CSR

(a) Sparse matrix-vector multiplication.

100 101 102 103

10−3

10−2

10−1

100

Average Degree

P
ag

eR
an

k
ti
m
e
(s
)

AL BAL: 32 PCSR
BAL: 8 BAL: 128 CSR

(b) PageRank.

101 102 103

10−2

10−1

100

Average Degree

B
F
S
ti
m
e
(s
)

AL BAL: 32 PCSR
BAL: 8 BAL: 128 CSR

(c) BFS.

Figure A-8: Time with 100,000 nodes and a variable number of edges. The x-axis repre-
sents the number of edges, while the y-axis represents the time

Real-world graphs
We also tested on three social network graphs of varying sizes from the Stanford Large
Network Dataset Collection and report our results in Table A.2. They were Slashdot,
with 77,360 nodes and 905,468 edges, Pokec with 1,632,803 nodes and 30,622,564
edges, and LiveJournal with 4,847,571 nodes and 68,993,773 edges.

For adding and updating edges, we added 1, 000 random edges chosen without
replacement with the same distribution as the edges in the original graph.

We found that PCSR was about a factor of 2 slower than CSR on graph compu-
tations but had much faster updates. The AL-based representations had similar size
to PCSR and were between 2 to 10 times slower on graph computations but about 4
times faster in adding edges.

266

Graph Format AL BAL 8 BAL 32 BAL 128 CSR
Slashdot
Size 0.88 0.82 1.47 4.71 0.41
SpMV 10.87 1.29 1.45 1.32 0.39
BFS 8.86 1.20 1.42 1.17 0.47
PageRank 13.38 1.64 1.85 1.72 0.36
Adding edges 0.25 0.25 0.25 0.25 525.00
Updating edges 10.50 1.25 1.00 0.75 508.75
Pokec
Size 0.93 0.71 0.98 2.75 0.45
SpMV 15.95 2.43 1.21 1.17 0.51
BFS 7.25 1.64 1.02 1.00 0.48
PageRank 11.77 3.04 1.78 1.72 0.54
Adding edges 0.25 0.50 0.25 0.25 31628.50
Updating edges 9.17 2.50 0.83 0.67 21005.83
Livejournal
Size 1.05 0.87 1.36 4.00 0.49
SpMV 20.40 2.77 2.20 2.10 0.59
BFS 9.55 2.30 1.34 1.40 0.53
PageRank 16.20 5.36 2.40 2.73 0.54
Adding edges 0.25 0.25 0.25 0.50 70787.00
Updating edges 13.17 4.00 1.50 1.17 46835.00

Table A.2: Real-world graphs. We tested on Slashdot, pokec, and Livejournal. All times
are normalized against PCSR.

267

268

Appendix B

Cache Adaptivity

269

B.1 What bad memory profiles look like
We begin by explaining how an (𝑎, 𝑏, 𝑐)-regular algorithm can fail to be adaptive in
the worst case, and why there is reason to hope that the worst cases are brittle.

MM-Scan: a canonical non-adaptive algorithm. Consider a divide-and-conquer
matrix-multiplication algorithm MM-Scan that computes eight subresults and then
merges them together using a linear scan (see pseudocode in Appendix B.2). MM-Scan
is an (8, 4, 1)-regular cache-oblivious algorithm and its recurrence relation is 𝑇 (𝑁) =
8𝑇 (𝑁/4) + Θ(𝑁/𝐵). Its I/O complexity is 𝑂(𝑁3/2/

√
𝑀𝐵), which is optimal for

an algorithm that performs all the elementary multiplications of a naïve nested-loop
matrix multiply [153,154].

However, since MM-Scan has 𝑐 = 1 in its recurrence, it is not adaptive: there
are bad memory profiles that cause it to run slowly despite giving MM-Scan ample
aggregate resources1. This section gives intuition for what these bad profiles look
like.

A worst-case profile for MM-Scan. Here’s how to make a bad profile for
MM-Scan [43]. The intuition is to give the algorithm lots of memory when it can-
not benefit from it, i.e., when it is doing scans, and give it a paucity of memory when
it could most use it, i.e., during subproblems.

Concretely, during a scan of size 𝑁 , which takes 𝑁/𝐵 I/Os, set the memory to
the fixed size 𝑁/𝐵. Repeat recursively. Thus, a bad profile for MM-Scan on a problem
of size 𝑁 consists of eight recursive bad profiles for 𝑁/4 followed by a “square” of
size 𝑁/𝐵 I/Os by 𝑁/𝐵 blocks of cache; see Figure B-1.2 This recursion continues
down to squares of size Θ(𝐵) blocks3. MM-Scan’s I/O cost with this worst-case profile
is exactly the same as if the memory stayed constant at its smallest possible value.
MM-Scan can perform exactly one multiply of Θ(

√
𝑁 ×

√
𝑁) matrices on this profile.

MM-Inplace, on the other hand, can perform Ω(log 𝑁
𝐵
) multiplies on this profile [43].

This proves that MM-Scan is not optimal in the cache-adaptive model.
This worst-case profile exactly tracks the execution of MM-Scan. From the per-

spective of the algorithm, the memory profile does the wrong thing at every time step;
whenever MM-Scan cannot use more memory, it gets the maximum amount possible,
and whenever it can use more memory, that memory gets taken away. This bad ex-
ample for matrix multiplication generalizes to any (𝑎, 𝑏, 1)-regular algorithm. When
𝑐 < 1, this construction is ineffective—the scans are simply too small to waste a
significant amount of resources.

The MM-Scan example reveals a fascinating combinatorial aspect of divide-and-
1There is an alternate form of the algorithm, MM-Inplace, that immediately adds the results of

elementary multiplications into the output matrix as they are computed. Since it needs no linear
scan to merge results from sub-problems, it is an (8, 4, 0)-regular algorithm. Consequently, its I/O
complexity in the DAM model is also 𝑂(𝑁3/2/

√
𝑀𝐵), but it is optimally cache-adaptive.

2In the cache-adaptive model, it’s enough to analyze cache-oblivious algorithms only on square
profiles, defined as follows [43]. Whenever the RAM size changes to have the capacity for 𝑥 blocks,
it stays constant 𝑥 I/Os before it can change again. Chapter 9 focuses exclusively on cache-oblivious
algorithms, so we use square profiles throughout.

3We stop at Θ(𝐵) blocks due to the tall-cache requirement of MM-Scan [153].

270

Figure B-1: A bad profile for MM-SCAN as defined recursively.

conquer algorithms. At some points of the execution, the I/O performance is sensitive
to the size of memory and sometimes it is almost entirely insensitive. These changes
in memory sensitivity make cache-adaptive analysis nontrivial.

271

B.2 Pseudocode for MM-Scan

MM-Scan(𝑛,𝐴,𝐵)

1 if 𝑁 = 1
2 return 𝐴×𝐵
3 else
4 𝑋𝑇𝐿 = MM-Scan(𝑛/2, 𝐴𝑇𝐿, 𝐵𝑇𝐿)
5 𝑋𝑇𝑅 = MM-Scan(𝑛/2, 𝐴𝑇𝐿, 𝐵𝑇𝑅)
6 𝑋𝐵𝐿 = MM-Scan(𝑛/2, 𝐴𝐵𝐿, 𝐵𝑇𝐿)
7 𝑋𝐵𝑅 = MM-Scan(𝑛/2, 𝐴𝐵𝐿, 𝐵𝑇𝑅)
8 𝑌𝑇𝐿 = MM-Scan(𝑛/2, 𝐴𝑇𝑅, 𝐵𝐵𝐿)
9 𝑌𝑇𝑅 = MM-Scan(𝑛/2, 𝐴𝑇𝑅, 𝐵𝐵𝑅)
10 𝑌𝐵𝐿 = MM-Scan(𝑛/2, 𝐴𝐵𝑅, 𝐵𝐵𝐿)
11 𝑌𝐵𝑅 = MM-Scan(𝑛/2, 𝐴𝐵𝑅, 𝐵𝐵𝑅)
12 𝐶 = 𝑋 + 𝑌 ◁ Linear scan
13 return 𝐶

Figure B-2: Cache-oblivious matrix multiply of two 𝑛× 𝑛 matrices (each of size 𝑁 = 𝑛2)
with Θ(1 + 𝑁/𝐵) linear scan [153]. In this pseudocode, 𝐴𝐵𝑅 refers to the Bottom Right
quadrant of a matrix, 𝐴𝑇𝐿 the Top Left, etc.

272

B.3 Additional figures

Time

S
ize

of
m

em
ory

Time

Original

S
ize

of
m

em
ory

Time

S
ize

of
m

em
ory

Time

S
ize

of
m

em
ory

t = 0 t = 0

Profile

Box-Size

Perturbation

Start Time

Perturbation

Box-Order

Perturbation

Figure B-3: Four box profiles providing an example of the three smoothing transformations
explored in Section 9.5. The first profile is an example of an original profile. The next three
profiles represent respectively: box-size Perturbations, start time perturbations and, box-
order perturbations of the Original Profile.

273

B.4 Proof of Theorem 9.14 and Lemma 9.13
Theorem 9.14 (Martingale Optional Stopping Theorem [381]) Let
𝑋1, 𝑋2, . . . be iid random variables, and let 𝛾 be a function such that 𝛾(𝑋𝑖)
has finite mean 𝜇. Consider an arbitrary process that runs in steps, and at each step
𝑖 is given the value of 𝑋𝑖. Suppose that the process terminates after no more than 𝐶
steps for some value 𝐶. Let 𝑆 be the random variable denoting the number of steps
that the process runs. Then,

E

[︃
𝑆∑︁

𝑖=1

𝛾(𝑋𝑖)

]︃
= E[𝑆] · 𝜇.

Proof. Expanding E[
∑︀𝑆

𝑖=1 𝛾(𝑋𝑖)] gives

E

[︃
𝑆∑︁

𝑖=1

𝛾(𝑋𝑖)

]︃
=

𝐶∑︁
𝑖=1

Pr[𝑆 ≥ 𝑖] · E[𝛾(𝑋𝑖) | 𝑆 ≥ 𝑖].

The key observation is that E[𝛾(𝑋𝑖) | 𝑆 ≥ 𝑖] = 𝜇, since the decision of whether 𝑆 ≥ 𝑖
is a function only of 𝑋1, . . . , 𝑋𝑖−1, and is therefore independent of 𝑋𝑖. Thus

E

[︃
𝑆∑︁

𝑖=1

𝛾(𝑋𝑖)

]︃
= 𝜇 ·

𝐶∑︁
𝑖=1

Pr[𝑆 ≥ 𝑖] = 𝜇 · E[𝑆].

Lemma B.1 For any box-size distribution Σ, and any (𝑎, 𝑏, 𝑐)-regular algorithm 𝒜,

E

[︃
𝒮𝑛∑︁
𝑖=1

𝑚𝑛(|2𝑖|)
]︃
= E[𝒮𝑛] ·𝑚𝑛.

Proof. Consider the random process that selects boxes 21, . . . ,2𝒮𝑛 , each of size
independently drawn from a distribution Σ, until the algorithm 𝒜 is able to use the
box to complete on any problem of size 𝑛. Then since 𝒮𝑛 is bounded above by a
function of 𝑛 (i.e., 𝒮𝑛 ≤ 𝑂(𝑛log𝑏 𝑎)), Theorem 9.14 tells us that

E

[︃
𝒮𝑛∑︁
𝑖=1

𝑚𝑛(|2𝑖|)
]︃
= E[𝒮𝑛] ·𝑚𝑛.

274

B.5 Proof of the No-catch-up Lemma
Lemma B.2 Let 𝜎 = (𝑟1, 𝑟2, 𝑟3, . . .) be a sequence of memory references, and let
𝑆 = (21,22, . . .2𝑘) be a sequence of squares. Suppose that if 21 starts at 𝑟𝑖, then
2𝑘 finishes at 𝑟𝑗. Then, for all 𝑖′ < 𝑖, if 21 starts at 𝑟𝑖′, then for some 𝑗′ ≤ 𝑗, 2𝑘

finishes at 𝑟𝑗′.

Proof. We prove this via induction on 𝑘, the number of squares in the sequence.
We first prove the base case of 𝑘 = 1.

In the base case when 𝑘 = 1, if 𝒜 starts 21 at access 𝑟𝑖 and finishes 21 at access
𝑟𝑗, then the number of distinct blocks in the sequence 𝑟𝑖, . . . , 𝑟𝑗+1 is |21| + 1. If 𝒜
instead starts 21 on access 𝑟𝑖′ for some 𝑖′ < 𝑖, then the number of distinct blocks in
the sequence 𝑟𝑖′ , . . . , 𝑟𝑖, . . . , 𝑟𝑗+1 will also be at least |21| + 1. Thus, 21 cannot now
finish at any 𝑟𝑗′ satisfying 𝑗′ ≥ 𝑗 + 1.

For our inductive step, we assume that the lemma holds for all 𝑘 ≤ 𝑙. We now
prove the lemma holds for 𝑘 = 𝑙 + 1. Given 21, . . . ,2𝑙 and a starting point 𝑟𝑖, let 𝑟𝑞
be the access at which 2𝑙 finishes when 𝒜 starts 21 at access 𝑟𝑖. By our inductive
hypothesis, if 𝒜 starts 21 at access 𝑟𝑖′ where 𝑖′ < 𝑖, then 𝒜 must finish 2𝑙 at access 𝑟𝑞′
where 𝑞′ ≤ 𝑞. Applying our proof of the base case (when 𝑘 = 1), the memory access
𝑟𝑗 at which 2𝑙+1 will finish if it starts at 𝑟𝑞+1, must come at or after the memory
access 𝑟𝑗′ at which 2𝑙+1 will finish if it starts at 𝑟𝑞′+1. This completes the proof of
the theorem.

275

B.6 Standardizing (𝑎, 𝑏, 𝑐 = 1)-regular algorithms
Lemma B.3 Let 𝒜 be an (𝑎, 𝑏, 𝑐 = 1)-regular algorithm, where 𝑏 < 𝑎 ∈ 𝑂(1). Then
there is an (𝑎, 𝑏, 𝑐 = 1)-regular algorithm 𝒜′ which has the same access pattern as
𝒜 but which can be written as (1) a single scan consisting of at most 𝑂(𝑛) block
accesses followed by (2) an (𝑎, 𝑏, 𝑐 = 1)-regular algorithm ℬ in which in which each
subproblem has its scan entirely at the end of the subproblem (rather than between or
before sub-calls to smaller subproblems).

The proof of Lemma B.3 uses a variant of the scan-hiding technique from Chapter 10.
Proof. For each subproblem in 𝒜, we break the scan into 𝑎+1 scan pieces, where
the first scan piece is the portion of the scan that occurs before any recursion, the
second scan piece is the portion of the scan that occurs between the first and second
recursive subcall, and so on.

Consider an execution of 𝒜 on an input of size 𝑛. Call a non-base-case subproblem
𝑆 in 𝒜 a prefix subproblem if 𝑆 is either the entire problem of size 𝑛, or is the
subproblem resulting from the first recursive call of another prefix subproblem. Call
a scan piece a prefix scan piece if it appears at the beginning of a prefix subproblem,
before any recursive calls are made within the prefix subproblem.

Notice that in the execution of 𝒜, the prefix scan pieces are performed before any
other part of the computation. We define 𝒜′ to begin by performing the prefix scan
pieces together as a single large scan. For each subproblem size, there can be at most
one prefix subproblem of that size. Thus the sum of the sizes of the prefix scan pieces
is at most

𝑂

(︃
log𝑏 𝑛∑︁
𝑖=1

𝑏𝑖

)︃
≤ 𝑂(𝑛).

Moreover, since there are only 𝑂(log 𝑛) such pieces, their concatenation will still
satisfy the property that a sufficiently large cache of constant size can complete them
in 𝑂(𝑛) accesses.

The algorithm 𝒜′ must then perform the portions of 𝒜 that are not prefix scan
pieces. Next we reinterpret these portions as an (𝑎, 𝑏, 𝑐)-regular algorithm ℬ in which
scans occur only at the ends of subproblems. In a subproblem 𝑆 of 𝒜, we call a scan
piece unassigned if it is not a prefix scan piece and occurs before the final recursive
subcall in the subproblem.

For each unassigned scan piece in 𝒜, we “assign ownership” for the scan piece to
whichever subproblem finishes the latest out of the subproblems that finish before
the scan piece. (Note that such a subproblem will exist because the scan-piece is
not a prefix scan piece.) We then define ℬ to be the algorithm with the same access
pattern as 𝒜 (without the prefix scan pieces), except that in the execution of ℬ
each subproblem (including base-case subproblems) includes any later scan pieces to
which the subproblem has been assigned ownership. (Note, in particular, that each
subproblem in 𝒜 appears immediately before all scan-pieces to which it has been
assigned ownership, with no other memory accesses in-between.)

Let us consider the sum of the sizes of the scan-pieces assigned to any given

276

subproblem 𝑆 of some size 𝑚. Note that any subproblem 𝑆 ′ of size greater than 𝑏 ·𝑚
cannot assign ownership of any of its scan pieces to 𝑆; in particular, the subproblem
of size 𝑏·𝑚 containing 𝑆 must complete before any scan pieces in any such subproblem
𝑆 ′ can occur, thereby preventing the scan pieces from being assigned to 𝑆. Moreover,
for each sub-problem-size 𝑘 ≤ 𝑏 · 𝑚 there can be at most one subproblem of size 𝑘
that assigns ownership of any of its scan pieces to 𝑆. Thus the total combined size of
the scan pieces assigned to 𝑆 can be at most

𝑂

⎛⎝log𝑏(𝑏·𝑚)∑︁
𝑖=1

𝑏𝑖

⎞⎠ ≤ 𝑂(𝑚).

This ensures that the scans in each subproblem of size 𝑚 in ℬ access 𝑂(𝑚) distinct
blocks, and more importantly, can be completed by a constant-size cache in time
𝑂(𝑚), meaning that algorithm ℬ is, in fact, an (𝑎, 𝑏, 𝑐)-regular algorithm. Since all
of the scans in ℬ occur only at the ends of subproblems, the proof is complete.

277

B.7 Triangle profiles
Previous work showed that only considering square profiles is sufficient [45] for deter-
mining cache-adaptivity of an algorithm. In this section, we show the same result but
with right triangles. A triangle profile can be described as a square profile where the
cache is cleared between each square, hence producing a “triangular” profile composed
of many adjacent right triangles.

Throughout this section, we use 𝒜 to refer to some particular (𝑎, 𝑏, 𝑐)-regular
algorithm where 𝑎, 𝑏 ∈ N and 𝑎, 𝑏, 𝑐 are constants. Recall Lemma 9.6 relating potential
to (𝑎, 𝑏, 𝑐)-regular algorithms; since the algorithm 𝒜 in question is (𝑎, 𝑏, 𝑐)-regular, we
let 𝜌(|�𝑖 |) = Θ(|�𝑖 |log𝑏 𝑎). Finally, we let 𝑊𝑛 = Θ(𝑛log𝑏 𝑎) be the total amount of
progress 𝒜 must make on a problem of size 𝑛 in order to complete. Throughout this
section, we treat both𝑊𝑛 and 𝜌(|�𝑖 |) as fixed polynomials in 𝑛 and |�𝑖 |, respectively,
provided constants 𝑎, 𝑏, and 𝑐.

Figure B-4: A triangle contained in a box and a triangle containing a box. The box is
shaded in light gray.

Intuitively, we show that triangle profiles are sufficient in proving the optimality
(or non-optimality) of algorithms by noting that a box of 𝑋 cache lines that lasts
for 𝑋 time steps fits under a triangle that starts with 0 cache lines, ends at 2𝑋
cache lines, and lasts for 2𝑋 time steps4. This logic accounts for the outer triangle
in Fig. B-4. We also note that a triangle of height and width 𝑋 fits inside a box of
size 𝑋, accounting for the inner triangle in Fig. B-4. This intuition tells us that any
square profile can be upper and lower bounded by a triangle profile up to a factor of
2 (or 1/2).

We now formalize this intuition. First, take a square profile and consider two
related triangular profiles, the lower triangular profile and the upper triangular profile.

Definition B.4 A triangle, , of size 𝑋 lasts for 𝑋 IOs and on the 𝑖𝑡ℎ IO the size
of the cache is 𝑖 cache lines.

The size of a triangle is represented as | | = 𝑋.

Definition B.5 A triangular profile, 𝑀(𝑡), is formed by a sequence of 𝑘 triangles
1 ∘ 2 ∘ . . . ∘ 𝑘 of sizes 1 = 𝑋1.

Definition B.6 Given a square profile 𝑀(𝑡) = 21 ∘ . . . ∘2𝑘 we will define the lower
and upper triangular profiles.

4Recall that time steps are counted in terms of block read-ins from disk to cache.

278

The lower triangular profile of 𝑀(𝑡) is 𝑀𝐿𝑇 (𝑡) where 1 ∘ 2 ∘ . . . ∘ 𝑘 and | 𝑖| =
|2𝑖|.

The upper triangular profile of 𝑀(𝑡) is 𝑀𝑈𝑇 (𝑡) where ′
1 ∘ ′

2 ∘ . . . ∘ ′
𝑘 and

| ′
𝑖| = 2|2𝑖|.

We give an example of an upper and lower triangular profile in Figure B-5. We
will similarly need to bound a triangular profile by square profiles.

Definition B.7 Given a triangular profile 𝑇 (𝑡) 1 ∘ 2 ∘ . . . ∘ 𝑘 we will define the
lower square profile.

The upper square profile of 𝑇 (𝑡) is 𝑇𝑈𝑆(𝑡) where 21 ∘22 ∘ . . . ∘2𝑘 and |2𝑖| = | 𝑖|.
The lower square profile of 𝑇 (𝑡) is 𝑇𝐿𝑆(𝑡) where 2′

1∘2′
2∘. . .∘2′

𝑘 and |2′
𝑖| = | 𝑖|/2.

M(t)

MLT (t)

MUT (t)

Time

Time

Time

Figure B-5: An example of a lower triangular profile and an upper triangular profile. The
boxes from the profile 𝑀(𝑡) are presented with dashed lines on the corresponding upper and
lower triangular profiles.

Definition B.8 Let 𝜌() be the maximum possible progress that 𝒜 can make on a
triangle of size | |.

Lemma B.9 Consider | 1| = 𝑥, | 2| = 2𝑥 and |21| = 𝑥.
Then the progress for our :

𝜌(1) = Θ
(︀
𝑥log𝑏(𝑎)

)︀
(B.1)

𝜌(2) = Θ
(︀
𝑥log𝑏(𝑎)

)︀
(B.2)

𝜌(21) = Θ
(︀
𝑥log𝑏(𝑎)

)︀
(B.3)

279

Proof. Note that we can solve a problem of size 𝑥 using 1. Thus, we can make
𝑥log𝑏(𝑎) progress. By Lemma 9.6 we have that 𝜌(21) = Θ

(︀
𝑥log𝑏(𝑎)

)︀
. A triangle of size

𝑥 fits inside a square of size 𝑥 and by memory monotonicity we have that 𝜌(1) =
𝑂
(︀
𝑥log𝑏(𝑎)

)︀
. Thus, 𝜌(1) = 𝜃

(︀
𝑥log𝑏(𝑎)

)︀
.

By this we have that 𝜌(2) = 𝜃
(︀
(2𝑥)log𝑏(𝑎)

)︀
. Simplified 𝜌(2) = 𝜃

(︀
𝑥log𝑏(𝑎)

)︀
.

Corollary B.10 Let 𝑀(𝑡) be a square profile. Then the progress for our (𝑎, 𝑏, 𝑐)-
regular algorithm is:

𝜌(𝑀𝐿𝑇 (𝑡)) = Θ (𝜌(𝑀(𝑡))))

and
𝜌(𝑀𝑈𝑇 (𝑡)) = Θ (𝜌(𝑀(𝑡))) .

Proof. 𝜌(𝑀(𝑡)) is the sum of the progress in the squares that make up the profile.
𝜌(𝑀𝑈𝑇 (𝑡)) and 𝜌(𝑀𝐿𝑇 (𝑡)) are the sums of the progress in the triangles that make
up the profile. For any particular square, |2𝑖| = 𝑥, in 𝑀(𝑡) there is a one to one
correspondence with a triangle | 𝑖| = 𝑥 in profile 𝑀𝐿𝑇 (𝑡) and a triangle | ′

𝑖| = 2𝑥
in profile 𝑀𝑈𝑇 (𝑡). By Lemma B.9 these all have the same progress up to constant
factors. Thus, the sum of the progress of the boxes and triangles that make up these
profiles will be within constant factors of each other.

Lemma B.11 If 𝒜 completes on 𝑀(𝑡) then it completes on 𝑀𝑈𝑇 (𝑡).
If 𝒜 doesn’t complete on 𝑀(𝑡) then it also doesn’t complete on 𝑀𝐿𝑇 (𝑡).

Proof. For the first statement: We prove this by induction. Let 𝒜 be the
sequence of accesses 𝑎1, 𝑎2, . . . , 𝑎𝑦. Let 𝑀(𝑡) = 21 ∘ . . . ∘ 2𝑘. Let 𝑀𝑈𝑇 (𝑡) where

′
1 ∘ ′

2 ∘ . . . ∘ ′
𝑘 and | ′

𝑖| = 2|2𝑖|.
Assume 𝒜 would complete access 𝑎𝑗 by the end of 2𝑖 and 𝒜 would complete access

𝑎ℓ by the end of ′
𝑖. Further assume 𝑖 ≤ ℓ. Let 𝑎𝑗′ be the access that 𝒜 finishes by

the end of 2𝑖+1. Let 𝑎ℓ′ be the access that 𝒜 finishes by the end of ′
𝑖+1. 2𝑖+1 starts

with at most |2𝑖+1| cache lines in memory and can bring in at most |2𝑖+1| new cache
lines. ′

𝑖+1 starts with zero cache lines in memory, and can bring in 2|2𝑖+1| cache
lines into memory. If 𝑗′ > ℓ′ then during 2𝑖+1 𝒜 completes more accesses in 𝑥 cache
misses with at most 𝑥 cache lines in memory at the start. However, ′

𝑖+1 can do any
computation over 2𝑥 IOs, thus 𝒜 run on ′

𝑖+1 can compute everything that 𝒜 run on
2𝑖+1 computes. This is a contradiction. Thus, if 𝑗 ≤ ℓ then 𝑗′ ≤ ℓ′.

Base case: Before the start of the first boxes 𝑗 = ℓ = 0. Thus, by the end of 21 if
𝒜 reaches 𝑎𝑗 and 𝒜 gets to access 𝑎ℓ by the end of ′

1 then 𝑗 ≤ ℓ.
For the second statement: Proof by contradiction, if 𝒜 completes on 𝑀𝐿𝑇 (𝑡)

then by memory monotonicity it must also complete on 𝑀(𝑡). However, by assump-
tion it does not, thus 𝒜 does not complete on 𝑀𝐿𝑇 (𝑡).

Lemma B.12 If 𝒜 is adaptive on square profile 𝑀(𝑡) then it is adaptive on 𝑀𝑈𝑇 (𝑡)
as well.

280

Proof. If 𝒜 completes on 𝑀(𝑡) then it completes on 𝑀𝑈𝑇 (𝑡) and 𝜌(𝑀𝑈𝑇 (𝑡)) =
Θ(𝜌(𝑀(𝑡))).

Thus, if 𝒜 is adaptive on 𝑀(𝑡) it continues to be non-adaptive.

Lemma B.13 If 𝒜 is adaptive on triangular profile 𝑀𝐿𝑇 (𝑡) then it is adaptive on
𝑀(𝑡) as well.

Proof. If 𝒜 completes on 𝑀𝐿𝑇 (𝑡) then it completes on 𝑀(𝑡) and 𝜌(𝑀(𝑡)) =
Θ(𝜌(𝑀𝐿𝑇 (𝑡))).

Thus, if 𝒜 is adaptive on 𝑀𝐿𝑇 (𝑡) it continues to be non-adaptive.
The following theorem will allow us to use triangular profiles when proving non-

adaptivity and non-adaptivity in expectation.

Theorem B.14 Let 2𝑛 be a box of size 𝑛.
If 𝒜 is non-adaptive on triangular profile 𝑇 (𝑡) then it is also non-adaptive on the

square profile 𝑇𝐿𝑆(𝑡).

Proof. If 𝒜 is non adaptive on 𝑇 (𝑡) then

𝜌 (𝑇 (𝑡)) = 𝜔 (𝑊) .

Furthermore, 𝑇 (𝑡) is the upper triangular profile of 𝑇𝐿𝑆(𝑡) and thus

𝜌 (𝑇𝐿𝑆(𝑡)) = 𝜔 (𝑊) .

Let us define 𝑖 and 𝑗 such that 𝒜 completes on the 𝑖𝑡ℎ triangle of 𝑇 (𝑡) and 𝒜
completes on the 𝑗𝑡ℎ square of 𝑇𝐿𝑆(𝑡). Then, because 𝑇 (𝑡) is the upper triangular
profile of 𝑇𝐿𝑆(𝑡) we can use Lemma B.11 to say that the finishing point of 𝒜 is later
in 𝑇𝐿𝑆(𝑡) than in 𝑇 (𝑡). So, we have that 𝑗 ≥ 𝑖.

When 𝒜 completes it makes 𝑊𝑛 progress, but the available potential progress in
the boxes of 𝑇𝐿𝑆(𝑡) that it uses will be 𝜔 (𝑊𝑛). The algorithm will continue to be
non-adaptive on this related profile.

A distribution over triangular profiles can be connected to a distribution over
square profiles by converting each triangular profile into 𝑀𝐿𝑇 (𝑡), a square profile.

The following theorem will allow us to use triangular profiles when proving results
about algorithms being adaptive in expectation.

Theorem B.15 Let 𝐷 be a distribution over triangular profiles 𝑇 (𝑡).
If 𝒜 is adaptive in expectation over a distributions 𝐷 𝒜 is adaptive over a dis-

tribution 𝐷′, where 𝐷′ is formed by taking every triangular profile 𝑇 (𝑡) ∈ 𝐷 and
replacing it with 𝑇𝑈𝑆(𝑡).

Proof. Note that the lower triangular profile of 𝑇𝑈𝑆(𝑡) is 𝑇 (𝑡). So, we can apply
Theorem B.14 to 𝑇 (𝑡) and 𝑇𝑈𝑆(𝑡). Every adaptive profile 𝑇 (𝑡) corresponds to an
adaptive 𝑇𝑈𝑆(𝑡). Additionally, every non-adaptive profile 𝑇 (𝑡) corresponds to an
non-adaptive 𝑇𝑈𝑆(𝑡). However, in addition to this, the optimal progress over every
profile 𝑇 (𝑡) and 𝑇𝑈𝑆(𝑡) are the same up to constant factors. Thus, given an algorithm
run on 𝑇 (𝑡) and the same algorithm run on 𝑇𝑈𝑆(𝑡) the contribution to the expected
optimal progress is within constant factors.

281

B.8 Pseudocode for AdaptiveStrassen

AdaptiveStrassen(𝑝𝑋, 𝑝𝑌, 𝑝𝑍, 𝑛)

1 // We define the global variables
2 start_n = 𝑛
3 numLeaves = 0
4 // We use the length of a cache line, as mentioned.
5 𝐵 = length of a cache line
6 // We initialize the sum arrays for input and outputs.
7 // We need a place to store are pre-computed and post-computed scans.
8 for 𝑠 ∈ {𝑥1 = 0, 𝑥2 = 1, 𝑦1 = 2, 𝑦2 = 3, 𝑧1 = 4, 𝑧2 = 5}
9 Set 𝑃 [𝑠] = pointer array of length lg(𝑛) + 1
10 for 𝑖 ∈ [0, lg(𝑛)]
11 𝑃 [𝑠][𝑖] = pointer array of length 𝑖+ 1
12 for 𝑗 ∈ [0, 𝑖− 1]
13 𝑃 [𝑠][𝑖][𝑗] =matrix of size 2𝑗 by 2𝑗

14 Set 𝐼𝑠𝐴𝑐𝑡𝑖𝑣𝑒 = is a pointer array of length lg(𝑛)
15 Set 𝐼𝑠𝑃𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒 = is a pointer array of length lg(𝑛)
16 for 𝑖 ∈ [0, lg(𝑛)]
17 𝐼𝑠𝐴𝑐𝑡𝑖𝑣𝑒[𝑖] = [𝑃 [𝑥1][𝑖], 𝑃 [𝑦1][𝑖], 𝑃 [𝑧1][𝑖]]
18 𝐼𝑠𝑃𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒[𝑖] = [𝑃 [𝑥2][𝑖], 𝑃 [𝑦2][𝑖], 𝑃 [𝑧2][𝑖]]
19 // Now initialize 𝑃 [𝑥1][lg(𝑛)] and 𝑃 [𝑦1][lg(𝑛)]

20 // to be the input matrices for the spines
21 DoPrecurseSpine(IsActive)
22 // We will let the input and scans be represented by pointers for two places
23 // to read and one to write.
24 // Next, we will give the length of the input.
25 // Finally, we will also for convenience use a last entry to mark ×,+,−, 𝑐𝑜𝑝𝑦
26 input = [𝑃 [𝑥1][lg(𝑛)], 𝑃 [𝑦1][lg(𝑛)], 𝑃 [𝑧1][lg(𝑛)], 𝑛,×]
27 scans = []
28 // Make the recursive call to Strassen where we hide scans
29 AdaptiveStrassenRecurse(𝑛, lg(𝑛), 𝑖𝑛𝑝𝑢𝑡, 𝑠𝑐𝑎𝑛𝑠)
30 // Output from multiplications need to be summed together
31 DoPostProcessSpine(IsActive, IsPrecompute)

Figure B-6: Pseudocode for the top-level AdaptiveStrassen routine.

282

AdaptiveStrassenRecurse(𝑛, 𝑙𝑒𝑣𝑒𝑙, 𝑖𝑛𝑝𝑢𝑡, 𝑠𝑐𝑎𝑛𝑠)
1 if 𝑛 > 1
2 AdaptiveStrassenRecurseSplit(𝑛, 𝑙𝑒𝑣𝑒𝑙, 𝑖𝑛𝑝𝑢𝑡, 𝑠𝑐𝑎𝑛𝑠)
3 elseif 𝑛 ≤ 1
4 // Do the multiplication you were asked to do
5 𝑖𝑛𝑝𝑢𝑡[0] * 𝑖𝑛𝑝𝑢𝑡[1] = 𝑖𝑛𝑝𝑢𝑡[2]
6 // Do the additions you were asked to do by your parent
7 for scan in scans
8 // Read all the information about your scan out
9 in1 = 𝑠𝑐𝑎𝑛[0]
10 in2 = 𝑠𝑐𝑎𝑛[1]
11 out = 𝑠𝑐𝑎𝑛[2]
12 length = 𝑠𝑐𝑎𝑛[3]
13 op = 𝑠𝑐𝑎𝑛[4]
14 for 𝑖 ∈ [0, 𝑙𝑒𝑛𝑔𝑡ℎ− 1]
15 // Do the requested operation to the input and write to output
16 𝑜𝑢𝑡[𝑖] = 𝑜𝑝(𝑖𝑛1[𝑖], 𝑖𝑛2[𝑖])

Figure B-7: Pseudocode for the top-level AdaptiveStrassenRecurse routine.

283

AdaptiveStrassenRecurseSplit(𝑛, 𝑙𝑒𝑣𝑒𝑙, 𝑖𝑛𝑝𝑢𝑡, 𝑠𝑐𝑎𝑛𝑠)
1 // Now we want to split the scan into seven parts

// Specifically come up with 7 lists each having about 1/7 of the
// total scan work

2 Let 𝑐ℎ𝑖𝑙𝑑𝑆𝑐𝑎𝑛 = ReturnSplitScans(scans, 𝐵)
3 // Also each child needs to do the scans for its sibling

// These scans represent additions needed to produce matrices for the input
// to Strassen.

4 𝑜𝑢𝑡𝑋 = 𝐼𝑠𝑃𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒[𝑙𝑒𝑣𝑒𝑙 − 1][0]
5 𝑜𝑢𝑡𝑌 = 𝐼𝑠𝑃𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒[𝑙𝑒𝑣𝑒𝑙 − 1][1]
6 𝑜𝑢𝑡𝑍 = 𝐼𝑠𝑃𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒[𝑙𝑒𝑣𝑒𝑙 − 1][2]
7 𝑖𝑛𝑋 = 𝑖𝑛𝑝𝑢𝑡[0]
8 𝑖𝑛𝑌 = 𝑖𝑛𝑝𝑢𝑡[1]
9 𝑖𝑛𝑍 = 𝑖𝑛𝑝𝑢𝑡[2]
10 // Each input has to copy or add matrices
11 preScan(inX, inY, outX, outY, n)
12 // We also need the child nodes to write the outputs of the previous

// multiplications to the output for the parent multiplication
// following Strassen’s equation.

13 postScan(childScan, inZ, outZ)
14 // Here we have 7 calls to do the recursive tasks
15 for 𝑖 ∈ [0, 6]
16 // Make the call to each child
17 ℓ = 𝑙𝑒𝑣𝑒𝑙 − 1
18 𝑠𝑖 = 𝑐ℎ𝑖𝑙𝑑𝑆𝑐𝑎𝑛[𝑖]
19 𝑖𝑛𝐶ℎ𝑖𝑙𝑑 = [𝑜𝑢𝑡𝑋, 𝑜𝑢𝑡𝑌, 𝑜𝑢𝑡𝑍,×]
20 AdaptiveStrassenRecurse(n/2, ℓ, inChild, 𝑠𝑖)
21 // Switch the active and preComputation pointers so my sibling
22 // can use the information
23 𝑎𝑐𝑡𝑖𝑣𝑒 = 𝐼𝑠𝐴𝑐𝑡𝑖𝑣𝑒[𝑙𝑒𝑣𝑒𝑙]
24 𝐼𝑠𝐴𝑐𝑡𝑖𝑣𝑒[𝑙𝑒𝑣𝑒𝑙] = 𝐼𝑠𝑃𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒[𝑙𝑒𝑣𝑒𝑙]
25 𝐼𝑠𝑃𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒[𝑙𝑒𝑣𝑒𝑙] = 𝐼𝑠𝐴𝑐𝑡𝑖𝑣𝑒[𝑙𝑒𝑣𝑒𝑙]

Figure B-8: Pseudocode for the strassenAdaptiveRecursiveSplit subroutine.

284

preScan(inX, inY, outX, outY, n)
1 // Now we want to split the input scan into seven parts.
2 childScan[0].𝑎𝑝𝑝𝑒𝑛𝑑([𝑖𝑛𝑋[0], 𝑖𝑛𝑋[3𝑛/4], 𝑜𝑢𝑡𝑋,+])
3 childScan[0].𝑎𝑝𝑝𝑒𝑛𝑑([𝑖𝑛𝑌 [0], 𝑖𝑛𝑌 [3𝑛/4], 𝑜𝑢𝑡𝑌,+])
4 childScan[1].𝑎𝑝𝑝𝑒𝑛𝑑([𝑖𝑛𝑋[2𝑛/4], 𝑖𝑛𝑋[3𝑛/4], 𝑜𝑢𝑡𝑋,+])
5 childScan[1].𝑎𝑝𝑝𝑒𝑛𝑑([𝑖𝑛𝑌 [0], 𝑖𝑛𝑌 [0], 𝑜𝑢𝑡𝑌, 𝑐𝑜𝑝𝑦])
6 childScan[2].𝑎𝑝𝑝𝑒𝑛𝑑([𝑖𝑛𝑋[3𝑛/4], 𝑖𝑛𝑋[3𝑛/4], 𝑜𝑢𝑡𝑋, 𝑐𝑜𝑝𝑦])
7 childScan[2].𝑎𝑝𝑝𝑒𝑛𝑑([𝑖𝑛𝑌 [2𝑛/4], 𝑖𝑛𝑌 [0], 𝑜𝑢𝑡𝑌,−])
8 childScan[3].𝑎𝑝𝑝𝑒𝑛𝑑([𝑖𝑛𝑋[0], 𝑖𝑛𝑋[1𝑛/4], 𝑜𝑢𝑡𝑋,+])
9 childScan[3].𝑎𝑝𝑝𝑒𝑛𝑑([𝑖𝑛𝑌 [3𝑛/4], 𝑖𝑛𝑌 [3𝑛/4], 𝑜𝑢𝑡𝑌, 𝑐𝑜𝑝𝑦])
10 childScan[4].𝑎𝑝𝑝𝑒𝑛𝑑([𝑖𝑛𝑋[3𝑛/4], 𝑖𝑛𝑋[0], 𝑜𝑢𝑡𝑋,−])
11 childScan[4].𝑎𝑝𝑝𝑒𝑛𝑑([𝑖𝑛𝑌 [0], 𝑖𝑛𝑌 [2𝑛/4], 𝑜𝑢𝑡𝑌,+])
12 childScan[5].𝑎𝑝𝑝𝑒𝑛𝑑([𝑖𝑛𝑋[1𝑛/4], 𝑖𝑛𝑋[3𝑛/4], 𝑜𝑢𝑡𝑋,−])
13 childScan[5].𝑎𝑝𝑝𝑒𝑛𝑑([𝑖𝑛𝑌 [2𝑛/4], 𝑖𝑛𝑌 [3𝑛/4], 𝑜𝑢𝑡𝑌,+])

Figure B-9: Pseudocode for the preScan subroutine.

postScan(inZ, outZ)
1 childScan[1].𝑎𝑝𝑝𝑒𝑛𝑑([𝑜𝑢𝑡𝑍, 𝑖𝑛𝑍[0], 𝑖𝑛𝑍[0],+])
2 childScan[1].𝑎𝑝𝑝𝑒𝑛𝑑([𝑜𝑢𝑡𝑍, 𝑖𝑛𝑍[3], 𝑖𝑛𝑍[3],+])
3 childScan[2].𝑎𝑝𝑝𝑒𝑛𝑑([𝑜𝑢𝑡𝑍, 𝑖𝑛𝑍[3], 𝑖𝑛𝑍[3], 1])
4 childScan[3].𝑎𝑝𝑝𝑒𝑛𝑑([𝑜𝑢𝑡𝑍, 𝑖𝑛𝑍[1], 𝑖𝑛𝑍[1],+])
5 childScan[3].𝑎𝑝𝑝𝑒𝑛𝑑([𝑜𝑢𝑡𝑍, 𝑖𝑛𝑍[3], 𝑖𝑛𝑍[3],+])
6 childScan[4].𝑎𝑝𝑝𝑒𝑛𝑑([𝑜𝑢𝑡𝑍, 𝑖𝑛𝑍[0], 𝑖𝑛𝑍[0],+])
7 childScan[4].𝑎𝑝𝑝𝑒𝑛𝑑([𝑜𝑢𝑡𝑍, 𝑖𝑛𝑍[2], 𝑖𝑛𝑍[2],+])
8 childScan[5].𝑎𝑝𝑝𝑒𝑛𝑑([𝑜𝑢𝑡𝑍, 𝑖𝑛𝑍[0], 𝑖𝑛𝑍[0],−])
9 childScan[5].𝑎𝑝𝑝𝑒𝑛𝑑([𝑜𝑢𝑡𝑍, 𝑖𝑛𝑍[1], 𝑖𝑛𝑍[1],+])
10 childScan[6].𝑎𝑝𝑝𝑒𝑛𝑑([𝑜𝑢𝑡𝑍, 𝑖𝑛𝑍[3], 𝑖𝑛𝑍[3],+])
11 childScan[7].𝑎𝑝𝑝𝑒𝑛𝑑([𝑜𝑢𝑡𝑍, 𝑖𝑛𝑍[0], 𝑖𝑛𝑍[0],+])

Figure B-10: Pseudocode for the postScan subroutine.

285

286

Appendix C

Included and Excluded Sums

C.1 Analysis of corners algorithm
This section presents an analysis of the time and space usage of the corners algo-
rithm [118] for the excluded-sums problem. The original article that proposed the
corners algorithm did not include an analysis of its performance. As we will see, the
runtime of the corners algorithm is a function of the space it is allowed.

Algorithm description. Given a 𝑑-dimensional tensor 𝒜 of size 𝑁 and a box 𝐵, the
corners algorithm partitions the excluded region 𝐶𝑑(𝐵) into 2𝑑 disjoint regions corre-
sponding to the corners of the box. Each excluded sum is the sum of the reductions of
each of the corresponding 2𝑑 regions. The corners algorithm computes the reduction
of each partition with a combination of prefix and suffix sums over the entire tensor
and saves work by reusing prefixes and suffixes in overlapping regions. Figure C-1
illustrates an example of the corners algorithm.

We can represent each length-𝑑 combination of prefixes and suffixes as a length-𝑑
binary string where a 0 or 1 in the 𝑖-th position corresponds to a prefix or suffix (resp.)
at depth 𝑖. As illustrated in Figure C-2, the corners algorithm defines a computation
tree where each node represents a combination of prefixes and suffixes, and each edge
from depth 𝑖 − 1 to 𝑖 represents a full prefix or suffix along dimension 𝑖. The total
height of this computation tree is 𝑑, so there are 2𝑑 leaves.

Analysis. The most naive implementation of the corners algorithm that computes
every root-to-leaf path without reusing computation between paths takes Θ(𝑁) space,
but Θ(𝑑𝑁) time per leaf, for total time Θ(𝑑2𝑑𝑁). We will see how to use extra space
to reuse computation between paths and reduce the total time.

Theorem C.1 (Time / space tradeoff) Given a multiplicative space allowance 𝑐
such that 1 ≤ 𝑐 ≤ 𝑑, the corners algorithm solves the excluded-sums problem in
Θ((2𝑐 + 2𝑑(𝑑− 𝑐) + 2𝑑)𝑁) time if it is allowed Θ(𝑐𝑁) space.

Proof. The corners algorithm must traverse the entire computation tree in order to
compute all of the leaves. If it follows a depth-first traversal of the tree, one possible
use of the extra Θ(𝑐𝑁) allowed space is to keep the intermediate combination of

287

PP

(1,1)

(x1, x2)

PS

SSSP

k1

k2

n1

n2

Figure C-1: An example of the corners algorithm in 2 dimensions on an 𝑛1×𝑛2 matrix using
a (𝑘1, 𝑘2)-box cornered at (𝑥1, 𝑥2). The grey regions represent excluded regions computed
via prefix and suffix sums, and the black boxes correspond to the corner of each region with
the relevant contribution. The labels 𝑃𝑃, 𝑃𝑆, 𝑆𝑃, 𝑆𝑆 represent the combination of prefixes
and suffixes corresponding to each vertex.

P (0) S (1)

PP
(00)

PS
(01)

SP
(10)

SS
(11)…

height = d

PP…P
(00…0)

SS…S
(11…1)

…

Figure C-2: The dependency tree of computations in the corners algorithm. P and S
represent full-tensor prefix and suffix sums, respectively. Each leaf is a string of length 𝑑
that denotes a series of prefix and suffix sums along the entire tensor.

prefix and suffices at the first 𝑐 internal nodes along the current root-to-leaf path in
the traversal. We will analyze this scheme in terms of 1) the amount of time that
each leaf requires independently, and 2) the total shared work between leaves. The
total time of the algorithm is the sum of these two components.
Independent work: For each leaf, if the first 𝑐 prefixes and suffixes have been
computed along its root-to-leaf path, there are an additional (𝑑− 𝑐) prefix and suffix
computations required to compute that leaf. Therefore, each leaf takes Θ((𝑑− 𝑐)𝑁)
additional time outside of the shared computation, for a total of Θ(2𝑑(𝑑− 𝑐)𝑁) time.
Shared work: The remaining time of the algorithm is the amount of time it takes
to compute the higher levels of the tree up to depth 𝑐 given a 𝑐 factor in space. Given
a node 𝑣 at depth 𝑐 with position 𝑖 such that 1 ≤ 𝑖 < 𝑐, the amount of time it takes

288

to compute the intermediate sums along the root-to-leaf path to 𝑣 depends on the
difference in the bit representation between 𝑖 and 𝑖 − 1. Specifically, if 𝑖 and 𝑖 − 1
differ in 𝑏 bits, it takes 𝑏𝑁 additional time to store the intermediate sums for node 𝑖
at depth 𝑐. In general, the number of nodes that differ in 𝑏 ∈ {1, 2, . . . , 𝑐} positions
at depth 𝑐 is 2𝑐−𝑏. Therefore, the total time of computing the intermediate sums is

𝑁
𝑐∑︁

𝑏=1

𝑏2𝑐−𝑏 ≈ 2𝑐+1𝑁 = Θ(2𝑐𝑁).

Putting it together: Each leaf also requires Θ(𝑁) time to add in the contribution.

Therefore, the total time is Θ

⎛⎝ 2𝑐𝑁⏟ ⏞
shared

+ 2𝑑(𝑑− 𝑐)𝑁⏟ ⏞
independent

+ 2𝑑𝑁⏟ ⏞
contribution

⎞⎠.

The time of the corners algorithm is lower bounded by Ω(2𝑑𝑁) and minimized
when 𝑐 = Θ(𝑑). Given Θ(𝑁) space, the corners algorithm solves the excluded-sums
problem in 𝑂(2𝑑𝑑𝑁) time. Given Θ(𝑑𝑁) space, the corners algorithm solves the
excluded-sums problem in 𝑂(2𝑑𝑁) time.

289

C.2 Pseudocode and proofs for BDBS-1D

BDBS-1D(𝐴,𝑁, 𝑘)

1 // Input: List 𝐴 of size 𝑁 and
// included-sum length 𝑘.
// Output: List 𝐴′ of size 𝑁 where each
// entry 𝐴′[𝑖] = 𝐴[𝑖 : 𝑖+ 𝑘] for 𝑖 = 1, 2, . . . 𝑁 .

2 allocate A′ with 𝑁 slots
3 𝐴𝑝 = 𝐴;𝐴𝑠 = 𝐴
4 for i = 1 to N /k
5 // 𝑘-wise prefix sum along 𝐴𝑝

6 Prefix(𝐴𝑝, (𝑖− 1)𝑘 + 1, 𝑖𝑘)
7 // 𝑘-wise suffix sum along 𝐴𝑠

8 Suffix(𝐴𝑠, (𝑖− 1)𝑘 + 1, 𝑖𝑘)
9 for i = 1 to N // Combine into result
10 if i mod 𝑘 = 0
11 𝐴′[i] = 𝐴𝑠[i]
12 else
13 𝐴′[i] = 𝐴𝑠[i]⊕ 𝐴𝑝[i + k − 1]
14 return 𝐴′

Figure C-3: Pseudocode for the 1D included sum.

Lemma C.2 (Correctness in 1D) BDBS-1D solves the included sums problem in
1 dimension.

Proof. Consider a list 𝐴 with 𝑁 elements and box length 𝑘. We will show that
for each 𝑥 = 1, 2, . . . , 𝑁 , the output 𝐴′[𝑥] contains the desired sum. For 𝑥 mod 𝑘 =
1, this holds by construction. For all other 𝑥, the previously defined prefix and
suffix sum give the desired result. Recall that 𝐴′[𝑥] = 𝐴𝑝[𝑥+ 𝑘 − 1] + 𝐴𝑠[𝑥], 𝐴𝑠[𝑥] =
𝐴[𝑥 : ⌈(𝑥+ 1)/𝑘⌉ · 𝑘], and 𝐴𝑝[𝑥+ 𝑘 − 1] = 𝐴[⌊(𝑥+ 𝑘 − 1)/𝑘⌋ · 𝑘 : 𝑥+ 𝑘]. Also note
that for all 𝑥 mod 𝑘 ̸= 1, ⌊(𝑥+ 𝑘 − 1)/𝑘⌋ = ⌈(𝑥+ 1)/𝑘⌉.

Therefore,

𝐴′[𝑥] = 𝐴𝑝[𝑥+ 𝑘 − 1] + 𝐴𝑠[𝑥]

= 𝐴

[︂
𝑥 :

⌈︂
𝑥+ 1

𝑘

⌉︂
· 𝑘
]︂
+ 𝐴

[︂⌊︂
𝑥+ 𝑘 − 1

𝑘

⌋︂
· 𝑘 : 𝑥+ 𝑘

]︂
= 𝐴[𝑥 : 𝑥+ 𝑘]

which is exactly the desired sum.

Lemma C.3 (Time and space in 1D) Given an input array 𝐴 of size 𝑁 and box
length 𝑘, BDBS-1D takes Θ(𝑁) time and Θ(𝑁) space.

290

Proof. The total time of the prefix and suffix sums is 𝑂(𝑁), and the loop that
aggregates the result into 𝐴′ has 𝑁 iterations of 𝑂(1) time each. Therefore, the total
time of BDBS-1D is Θ(𝑁). Furthermore, BDBS-1D uses two temporary arrays of
size 𝑁 each for the prefix and suffix, for total space Θ(𝑁).

291

C.3 Pseudocode and proofs for box-complement

Prefix-Along-Dim(𝒜, i)

1 // Input: Tensor 𝒜 (𝑑 dimensions, side lengths (𝑛1, . . . , 𝑛𝑑), dimension 𝑖 to
// do the prefix sum along.
// Output: Modify 𝒜 to do the prefix sum along dimension 𝑖+ 1,
// fixing dimensions up to 𝑖.

2 // Iterate through coordinates by varying coordinates in dimensions 𝑖+ 2, . . . , 𝑑
// while fixing the first 𝑖 dimensions.
// Blanks mean they are not iterated over in the outer loop

3 for {x = (𝑥1, . . . , 𝑥𝑑) ∈ (𝑛1, . . . , 𝑛𝑖⏟ ⏞
𝑖

,_, :, . . . , :⏟ ⏞
𝑑− 𝑖− 1

)}

4 // Prefix sum along row
// (can be replaced with a parallel prefix)

5 for ℓ = 2 to ni+1

6 𝒜[𝑛1, . . . , 𝑛𝑖⏟ ⏞
𝑖

, ℓ, 𝑥𝑖+2, . . . , 𝑥𝑑⏟ ⏞
𝑑− 𝑖− 1

] ⊕= 𝒜[𝑛1, . . . , 𝑛𝑖⏟ ⏞
𝑖

, ℓ− 1, 𝑥𝑖+2, . . . , 𝑥𝑑⏟ ⏞
𝑑− 𝑖− 1

]

Figure C-4: Prefix sum along all rows along a dimension with initial dimensions fixed.

The suffix sum along a dimension is almost exactly the same, so we omit it.

Lemma C.4 (Time of prefix sum) Prefix-Along-Dim(𝒜, 𝑖) takes
𝑂
(︁∏︀𝑑

𝑗=𝑖+1 𝑛𝑗

)︁
time.

Proof. The outer loop over dimensions 𝑖 + 2, . . . , 𝑑 has max
(︁
1,
∏︀𝑑

𝑗=𝑖+2 𝑛𝑗

)︁
itera-

tions, each with Θ(𝑛𝑖+1) work for the inner prefix sum. Therefore, the total time is
𝑂
(︁∏︀𝑑

𝑗=𝑖+1 𝑛𝑗

)︁
.

Add-Contribution(𝒜,ℬ, i , offset)
1 // Input: Input tensor 𝒜, output tensor ℬ, fixing dimensions up to 𝑖.

// Output: For all coords in ℬ, add the relevant contribution from 𝒜.
2 for {(𝑥1, . . . , 𝑥𝑑) ∈ (:, . . . , :)}
3 if 𝑥𝑖+1 + offset ≤ 𝑛𝑖+1

4 ℬ[𝑥1, . . . , 𝑥𝑑] = 𝒜[𝑛1, . . . , 𝑛𝑖⏟ ⏞
𝑖

, 𝑥𝑖+1 + offset , 𝑥𝑖+2, . . . , 𝑥𝑑⏟ ⏞
𝑑− 𝑖

]

Figure C-5: Adding in the contribution.

Lemma C.5 (Adding contribution) Add-Contribution takes Θ(𝑁) time.

292

1 // Input: Tensor 𝒜 of 𝑑 dimensions and side lengths
// (𝑛1, . . . , 𝑛𝑑) output tensor ℬ, side lengths of the
// excluded box k = (𝑘1, . . . , 𝑘𝑑), 𝑘𝑖 ≤ 𝑛𝑖 for all
// 𝑖 = 1, 2, . . . , 𝑑.
// Output: Tensor ℬ with size and dimensions
// matching 𝒜 containing the excluded sum.

2 𝒜′ = 𝒜,𝒜𝑝 = 𝒜,𝒜𝑠 = 𝒜 // Prefix and suffix temp
3 for i = 1 to d // Current dimension-reduction step
4 // PREFIX STEP

// At this point, 𝒜𝑝 should hold prefixes up to
// dimension 𝑖− 1.

5 𝒜′ = 𝒜𝑝

6 // Save the input to the suffix step
7 𝒜𝑠 = 𝒜𝑝

8 // Do prefix sum along dimension 𝑖
9 Prefix-Along-Dim(𝒜′, i − 1)
10 // Save prefix up to dimension 𝑖 in 𝒜𝑝

11 𝒜𝑝 = 𝒜′

12 // Do included sum on dimensions [𝑖+ 1, 𝑑]
13 for j = i + 1 to d
14 BDBS-Along-Dim(𝒜′, i − 1, j ,k)
15 // Add into result
16 Add-Contribution(𝒜′,ℬ, i ,−1)
17 // SUFFIX STEP

// Start with the prefix up until dimension
// 𝑖− 1

18 𝒜′ = 𝒜𝑠

19 // Do suffix sum along dimension 𝑖
20 Suffix-Along-Dim(𝒜′, i − 1)
21 // Do included sum on dimensions [𝑖+ 1, 𝑑]
22 for j = i + 1 to d
23 BDBS-Along-Dim(𝒜′, i − 1, j ,k)
24 // Add into result
25 Add-Contribution(𝒜′,ℬ, i − 1, 𝑘𝑖)

Figure C-6: Pseudocode for the box-complement algorithm with parameters filled in. For
the 𝑖th dimension-reduction step, the copy of temporaries only needs to copy the last 𝑑−𝑖+1
dimensions due to the dimension reduction.

293

C.4 Additional experimental data
The data in this appendix was generated with the experimental setup described in Sec-
tion 12.6.

Figure C-7: Time per element of algorithms for strong excluded sums in 3D.

294

Figure C-8: Space per element of algorithms for strong excluded sums in 3D.

Figure C-9: Space and time per element of the corners and box-complement algorithms
in 3 dimensions, with an artificial slowdown added to each numeric addition (or ⊕) that
dominates the runtime.

295

296

Bibliography

[1] Ittai Abraham, James Aspnes, and Jian Yuan. Skip B-trees. In OPODIS, pages
366–380, 2006. 113

[2] Umut A. Acar, Daniel Anderson, Guy E. Blelloch, and Laxman Dhulipala.
Parallel batch-dynamic graph connectivity. In SPAA, page 381–392, 2019. 57

[3] Alok Aggarwal and Jeffrey S. Vitter. The input/output complexity of sorting
and related problems. Communications of the ACM, 31(9):1116–1127, Septem-
ber 1988. 19, 65, 113, 161, 164, 198, 258

[4] Kunal Agrawal, Michael A. Bender, Rathish Das, William Kuszmaul, Enoch
Peserico, and Michele Scquizzato. Green paging and parallel paging. In SPAA,
page 493–495, 2020. 132

[5] Kunal Agrawal, Michael A. Bender, Rathish Das, William Kuszmaul, Enoch
Peserico, and Michele Scquizzato. Tight bounds for parallel paging and green
paging. In SODA, 2021. 132

[6] Peter Ahrens, Helen Xu, and Nicholas Schiefer Schiefer. A fill estimation algo-
rithm for sparse matrices and tensors in blocked formats. In IPDPS, 2018. 15,
83

[7] Peter J. Ahrens. A Parallel Fill Estimation Algorithm for Sparse Matrices and
Tensors in Blocked Formats. Master’s thesis, Department of Electrical Engi-
neering and Computer Science, Massachusetts Institute of Technology, 2019.
83

[8] Susanne Albers, Lene M. Favrholdt, and Oliver Giel. On paging with locality
of reference. In STOC, pages 258–267, 2002. 29, 134, 145, 146

[9] Susanne Albers, Lene M. Favrholdt, and Oliver Giel. On paging with locality of
reference. Journal of Computer and System Sciences, 70(2005):145–175, 2005.
131

[10] Amazon. Amazon web services. https://aws.amazon.com/, 2020. 18, 48, 76,
250

297

https://aws.amazon.com/

[11] Khaled Ammar, Frank McSherry, Semih Salihoglu, and Manas Joglekar. Dis-
tributed evaluation of subgraph queries using worst-case optimal low-memory
dataflows. VLDB, 11(6):691–704, 2018. 57

[12] Aris Anagnostopoulos, Michael T. Goodrich, and Roberto Tamassia. Persistent
authenticated dictionaries and their applications. In ISC, pages 379–393, 2001.
112

[13] Spyros Angelopoulos, Reza Dorrigiv, and Alejandro López-Ortiz. On the sep-
aration and equivalence of paging strategies. In SODA, pages 229–237, 2007.
131, 134, 137, 138, 139

[14] Spyros Angelopoulos, Reza Dorrigiv, and Alejandro López-Ortiz. List update
with locality of reference. In LATIN, pages 399–410, 2008. 133, 134, 137

[15] Spyros Angelopoulos, Marc P. Renault, and Pascal Schweitzer. Stochastic dom-
inance and the bijective ratio of online algorithms. Algorithmica, 82(5):1101–
1135, 2020. 137

[16] Spyros Angelopoulos and Pascal Schweitzer. Paging and list update under
bijective analysis. In SODA, pages 1136–1145, 2009. 133, 134, 137, 138, 139,
146, 147, 148

[17] Spyros Angelopoulos and Pascal Schweitzer. Paging and list update under
bijective analysis. Journal of the ACM, 60(2):1–18, 2013. 133

[18] Junya Arai, Hiroaki Shiokawa, Takeshi Yamamuro, Makoto Onizuka, and
Sotetsu Iwamura. Rabbit order: Just-in-time parallel reordering for fast graph
analysis. In IPDPS, pages 22–31, 2016. 49, 76

[19] Lars Arge. External memory geometric data structures. Summer School on
Massive Data Sets, 2002. 20

[20] Lars Arge. The buffer tree: A technique for designing batched external data
structures. Algorithmica, 37(1):1–24, 2003. 112

[21] Lars Arge, David Eppstein, and Michael T. Goodrich. Skip-webs: Efficient
distributed data structures for multi-dimensional data sets. In PODC, pages
69–76, 2005. 112

[22] James Aspnes. Competitive analysis of distributed algorithms. In Online Al-
gorithms, pages 118–146. Springer, 1998. 150

[23] James Aspnes and Gauri Shah. Skip graphs. ACM Transactions on Algorithms,
3(4):37, 2007. 112

[24] Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay Hoeflinger, Yuan Lin,
Federico Massaioli, Xavier Teruel, Priya Unnikrishnan, and Guansong Zhang.
The design of openmp tasks. IEEE Transactions on Parallel and Distributed
Systems, 20(3):404–418, 2008. 20

298

[25] Ariful Azad, Georgios A. Pavlopoulos, Christos A. Ouzounis, Nikos C. Kyrpides,
and Aydın Buluç. HipMCL: A high-performance parallel implementation of the
markov clustering algorithm for large-scale networks. Nucleic Acids Research,
46(6):e33, 2018. 49

[26] Brett W. Bader and Tamara G. Kolda. Efficient MATLAB computations with
sparse and factored tensors. SIAM Journal on Scientific Computing, 30(1):205–
231, January 2008. 86, 92

[27] Albert-László Barabási and Réka Albert. Emergence of scaling in random net-
works. Science, 286(5439):509–512, 1999. 49, 76

[28] Ilya Baran, Erik D. Demaine, and Mihai Pǎtraşcu. Subquadratic algorithms
for 3SUM. Algorithmica, 50(4):584–596, 2008. 217

[29] Rémi Bardenet and Odalric-Ambrym Maillard. Concentration inequalities for
sampling without replacement. Bernoulli, 21(3):1361–1385, August 2015. 104

[30] Rajkishore Barik, Zoran Budimlic, Vincent Cavè, Sanjay Chatterjee, Yi Guo,
David Peixotto, Raghavan Raman, Jun Shirako, Sağnak Taşırlar, Yonghong
Yan, Yisheng Zhao, and Vivek Sarkar. The Habanero multicore software re-
search project. In Proceedings of the 24th ACM SIGPLAN Conference Com-
panion on Object Oriented Programming Systems Languages and Applications,
page 735–736, 2009. 20

[31] Rakesh D. Barve, Edward F. Grove, and Jeffrey Scott Vitter. Application-
controlled paging for a shared cache. SIAM Journal on Computing, 29(4):1290–
1303, 2000. 150

[32] Rakesh D. Barve and Jeffrey S. Vitter. External memory algorithms with dy-
namically changing memory allocations. Technical report, Duke University,
1998. 161, 199

[33] Rakesh D. Barve and Jeffrey S. Vitter. A theoretical framework for memory-
adaptive algorithms. In FOCS, pages 273–284, 1999. 161, 199

[34] Rudolf Bayer and Edward M. McCreight. Organization and maintenance of
large ordered indexes. Acta Informatica, 1(3):173–189, 1972. 20, 112

[35] Scott Beamer, Krste Asanović, and David Patterson. The GAP benchmark
suite. arXiv preprint arXiv:1508.03619, 2015. 49

[36] Rick Beatson and Leslie Greengard. A short course on fast multipole methods.
Wavelets, Multilevel Methods and Elliptic PDEs, pages 1–37, 1997. 234

[37] Laszlo A. Belady. A study of replacement algorithms for a virtual-storage com-
puter. IBM Systems Journal, 5(2):78–101, 1966. 132

299

[38] Shai Ben-David and Allan Borodin. A new measure for the study of on-line
algorithms. Algorithmica, 11(1):73–91, 1994. 133

[39] Michael A. Bender, Jonathan W. Berry, Rob Johnson, Thomas M. Kroeger,
Samuel McCauley, Cynthia A. Phillips, Bertrand Simon, Shikha Singh, and
David Zage. Anti-persistence on persistent storage: History-independent sparse
tables and dictionaries. In PODS, pages 289–302, 2016. 113, 114, 116

[40] Michael A. Bender, Gerth Stølting Brodal, Rolf Fagerberg, Dongdong Ge, Simai
He, Haodong Hu, John Iacono, and Alejandro López-Ortiz. The cost of cache-
oblivious searching. Algorithmica, 61(2):463–505, 2011. 199

[41] Michael A. Bender, Rezaul A. Chowdhury, Rathish Das, Rob Johnson, William
Kuszmaul, Andrea Lincoln, Quanquan C. Liu, Jayson Lynch, and Helen Xu.
Closing the gap between cache-oblivious and cache-adaptive analysis. In SPAA,
page 63–73, 2020. 15, 30, 159

[42] Michael A Bender, Alex Conway, Martín Farach-Colton, William Jannen,
Yizheng Jiao, Rob Johnson, Eric Knorr, Sara McAllister, Nirjhar Mukherjee,
Prashant Pandey, Donald E. Porter, Jun Yuan, and Yang Zhan. Small refine-
ments to the DAM can have big consequences for data-structure design. In
SPAA, pages 265–274, 2019. 20, 46

[43] Michael A. Bender, Erik D. Demaine, Roozbeh Ebrahimi, Jeremy T. Fineman,
Rob Johnson, Andrea Lincoln, Jayson Lynch, and Samuel McCauley. Cache-
adaptive analysis. In SPAA, pages 135–144, 2016. 30, 159, 161, 164, 165, 166,
191, 199, 200, 202, 203, 206, 207, 208, 214, 270

[44] Michael A. Bender, Erik D. Demaine, and Martín Farach-Colton. Cache-
oblivious B-trees. In FOCS, pages 399–409, 2000. 26, 36, 39, 59, 60, 63, 65,
69

[45] Michael A. Bender, Roozbeh Ebrahimi, Jeremy T. Fineman, Golnaz Ghasemies-
feh, Rob Johnson, and Samuel McCauley. Cache-adaptive algorithms. In SODA,
pages 958–971, 2014. 30, 161, 164, 165, 166, 167, 168, 199, 200, 202, 203, 214,
278

[46] Michael A. Bender, Martín Farach-Colton, Jeremy T. Fineman, Yonatan R.
Fogel, Bradley C. Kuszmaul, and Jelani Nelson. Cache-oblivious streaming
B-trees. In SPAA, pages 81–92, 2007. 112, 113, 114, 199

[47] Michael A. Bender, Martín Farach-Colton, William Jannen, Rob Johnson,
Bradley C. Kuszmaul, Donald E. Porter, Jun Yuan, and Yang Zhan. An in-
troduction to B𝜀-trees and write-optimization. :login; magazine, 40(5):22–28,
October 2015. 112, 114, 116

[48] Michael A. Bender, Martín Farach-Colton, Rob Johnson, Russell Kraner,
Bradley C. Kuszmaul, Dzejla Medjedovic, Pablo Montes, Pradeep Shetty,

300

Richard P. Spillane, and Erez Zadok. Don’t thrash: How to cache your hash
on flash. Proceedings of the VLDB Endowment, 5(11):1627–1637, 2012. 112

[49] Michael A. Bender, Martín Farach-Colton, Rob Johnson, Simon Mauras, Tyler
Mayer, Cynthia A Phillips, and Helen Xu. Write-optimized skip lists. In PODS,
pages 69–78, 2017. 15, 111

[50] Michael A. Bender, Martín Farach-Colton, and Bradley C. Kuszmaul. Cache-
oblivious string B-trees. In PODS, pages 233–242, 2006. 199

[51] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Bradley C. Kusz-
maul. Concurrent cache-oblivious B-trees. In SPAA, pages 228–237, 2005. 61,
113

[52] Michael A. Bender and Haodong Hu. An adaptive packed-memory array. ACM
Transactions on Database Systems, 32(4):26, 2007. 65, 260

[53] Michael A. Bender, Bradley C. Kuszmaul, and William Kuszmaul. Linear prob-
ing revisited: Tombstones mark the demise of primary clustering. In FOCS,
2021. 255

[54] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Grossman.
CoreDet: A compiler and runtime system for deterministic multithreaded exe-
cution. In ASPLOS, page 53–64, 2010. 21

[55] Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. Grace: Safe
multithreaded programming for c/c++. In OOPSLA, page 81–96, 2009. 21

[56] Jonathan W. Berry, Matthew Oster, Cynthia A. Phillips, Steven Plimpton,
and Timothy M. Shead. Maintaining connected components for infinite graph
streams. In BIGMINE, pages 95–102, 2013. 51, 58

[57] Maciej Besta, Marc Fischer, Vasiliki Kalavri, Michael Kapralov, and Torsten
Hoefler. Practice of streaming processing of dynamic graphs: Concepts, models,
and systems. IEEE Transactions on Parallel and Distributed Systems, Novem-
ber 2021. 56, 57

[58] Andreas Björklund, Rasmus Pagh, Virginia Vassilevska Williams, and Uri
Zwick. Listing triangles. In ICALP, pages 223–234, 2014. 162

[59] Pierre Blanchard, Nicholas J. Higham, and Theo Mary. A class of fast
and accurate summation algorithms. SIAM Journal on Scientific Computing,
42(3):A1541–A1557, 2020. 220, 221

[60] Daniel K. Blandford, Guy E. Blelloch, and Ian A. Kash. An experimental
analysis of a compact graph representation. In ALENEX, 2004. 259

[61] Guy E. Blelloch. Prefix sums and their applications. Technical Report CMU-
CS-90-190, School of Computer Science, Carnegie Mellon University, November
1990. 31, 66, 74, 90, 220, 225, 241

301

[62] Guy E. Blelloch. Programming parallel algorithms. Communications of the
ACM, 39(3):85–97, 1996. 21

[63] Guy E. Blelloch, Rezaul A. Chowdhury, Phillip B. Gibbons, Vijaya Ramachan-
dran, Shimin Chen, and Michael Kozuch. Provably good multicore cache per-
formance for divide-and-conquer algorithms. In SODA, pages 501–510, 2008.
199

[64] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun.
Internally deterministic parallel algorithms can be fast. In PPoPP, pages 181–
192, 2012. 21

[65] Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri. Low depth
cache-oblivious algorithms. In Proceedings of the twenty-second annual ACM
symposium on Parallelism in algorithms and architectures, pages 189–199, 2010.
21

[66] Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. Parallelism in random-
ized incremental algorithms. Journal of the ACM, 67(5):1–27, 2020. 21

[67] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded
runtime system. Journal of Parallel and Distributed Computing, 37(1):55–69,
1996. 21, 91

[68] Robert L. Bocchino, Vikram S. Adve, Sarita V. Adve, and Marc Snir. Parallel
programming must be deterministic by default. In HotPar, page 4, 2009. 21

[69] Paolo Boldi and Sebastiano Vigna. The webgraph framework i: compression
techniques. In WWW, pages 595–602, 2004. 49, 76

[70] Joan Boyar, Faith Ellen, and Kim S. Larsen. Randomized distributed online
algorithms against adaptive offline adversaries. Information Processing Letters,
161:105973, 2020. 150

[71] Joan Boyar, Lene M. Favrholdt, and Kim S. Larsen. The relative worst order
ratio applied to paging. In SODA, pages 718–727, 2005. 133

[72] Joan Boyar, Lene M. Favrholdt, and Kim S. Larsen. Relative worst-order anal-
ysis: A survey. In Adventures Between Lower Bounds and Higher Altitudes,
pages 216–230. Springer, 2018. 133

[73] Joan Boyar, Kim S. Larsen, and Morten N. Nielsen. The accommodating func-
tion: A generalization of the competitive ratio. SIAM Journal on Computing,
31(1):233–258, 2001. 133

[74] Derek Bradley and Gerhard Roth. Adaptive thresholding using the integral
image. Journal of Graphics Tools, 12(2):13–21, 2007. 234, 236

302

[75] Gerth Stølting Brodal, Erik D. Demaine, Jeremy T. Fineman, John Iacono,
Stefan Langerman, and J. Ian Munro. Cache-oblivious dynamic dictionaries
with update/query tradeoffs. In SODA, pages 1448–1456, 2010. 112, 113, 114

[76] Gerth Stølting Brodal and Rolf Fagerberg. Lower bounds for external memory
dictionaries. In SODA, pages 546–554, 2003. 20, 112, 113, 114, 116, 121

[77] Gerth Stølting Brodal and Rolf Fagerberg. On the limits of cache-obliviousness.
In STOC, pages 307–315, 2003. 199

[78] Gerth Stølting Brodal, Rolf Fagerberg, and Kristoffer Vinther. Engineering a
cache-oblivious sorting algorithm. ACM Journal of Experimental Algorithmics,
12:1–23, 2008. 199

[79] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Di-
mov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li,
Mark Marchukov, Dimitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat
Venkataramani. TAO: Facebook’s distributed data store for the social graph.
In USENIX ATC, pages 49–60, 2013. 57

[80] Kurt P. Brown, Michael J. Carey, and Miron Livny. Managing memory to meet
multiclass workload response time goals. In VLDB, pages 328–341, 1993. 161,
199

[81] Adam L. Buchsbaum, Michael Goldwasser, Suresh Venkatasubramanian, and
Jeffery R. Westbrook. On external memory graph traversal. In SODA, pages
859–860, 2000. 112, 113, 114

[82] Aydin Buluç, Jeremy T. Fineman, Matteo Frigo, John R. Gilbert, and
Charles E. Leiserson. Parallel sparse matrix-vector and matrix-transpose-vector
multiplication using compressed sparse blocks. In SPAA, pages 233–244, 2009.
85, 86, 110

[83] Federico Busato, Oded Green, Nicola Bombieri, and David A. Bader. Hornet:
An efficient data structure for dynamic sparse graphs and matrices on GPUs.
In HPEC, pages 1–7, 2018. 34, 57, 60

[84] Alfredo Buttari, Victor Eijkhout, Julien Langou, and Salvatore Filippone. Per-
formance optimization and modeling of blocked sparse kernels. International
Journal of High Performance Computing Applications, 21(4):467–484, Novem-
ber 2007. 87, 107, 110

[85] Zhuhua Cai, Dionysios Logothetis, and Georgos Siganos. Facilitating real-time
graph mining. In CloudDB, pages 1–8. ACM, 2012. 57

[86] Paul Callahan, Michael T. Goodrich, and Kumar Ramaiyer. Topology B-trees
and their applications. In WADS, pages 381–392, 1995. 113

303

[87] Justus A. Calvin, Cannada A. Lewis, and Edward F. Valeev. Scalable task-
based algorithm for multiplication of block-rank-sparse matrices. In IA3, pages
1–8, 2015. 25, 86

[88] Pei Cao, Edward W. Felten, and Kai Li. Application-controlled file caching
policies. In USTC, 1994. 150

[89] George C. Caragea, Fuat Keceli, Alexandros Tzannes, and Uzi Vishkin. General-
purpose vs. GPU: Comparison of many-cores on irregular workloads. In HotPar,
2010. 19

[90] Carlos Carvalho. The gap between processor and memory speeds. In ICCA,
pages 27–34, 2002. 13

[91] Cascade lake. Available at https://www.intel.com/content/www/us/en/
products/platforms/details/cascade-lake.html. 18

[92] Salvatore Catanese, Pasquale De Meo, Emilio Ferrara, Giacomo Fiumara, and
Alessandro Provetti. Extraction and analysis of facebook friendship relations.
In Computational Social Networks: Mining and Visualization, pages 291–324.
Springer, 2012. 51

[93] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-MAT: A re-
cursive model for graph mining. In SDM, pages 442–446, 2004. 49, 76

[94] Jichuan Chang and Gurindar S. Sohi. Cooperative caching for chip multipro-
cessors. SIGARCH Computure Architecture News, 34(2):264–276, May 2006.
30, 160

[95] Rong Chen, Jiaxin Shi, Yanzhe Chen, Binyu Zang, Haibing Guan, and Haibo
Chen. Powerlyra: Differentiated graph computation and partitioning on skewed
graphs. ACM Transactions on Parallel Computing, 5(3):1–39, 2019. 26, 34

[96] Hongwei Cheng, William Y. Crutchfield, Zydrunas Gimbutas, Leslie F. Green-
gard, J. Frank Ethridge, Jingfang Huang, Vladimir Rokhlin, Norman Yarvin,
and Junsheng Zhao. A wideband fast multipole method for the Helmholtz equa-
tion in three dimensions. Journal of Computational Physics, 216(1):300–325,
2006. 234, 238

[97] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming
Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. Kineograph:
taking the pulse of a fast-changing and connected world. In EuroSys, pages
85–98, 2012. 57

[98] Jee W. Choi, Amik Singh, and Richard W. Vuduc. Model-driven autotuning of
sparse matrix-vector multiply on GPUs. ACM SIGPLAN Notices, 45(5):115,
May 2010. 87

304

https://www.intel.com/content/www/us/en/products/platforms/details/cascade-lake.html
https://www.intel.com/content/www/us/en/products/platforms/details/cascade-lake.html

[99] Rezaul A. Chowdhury, Hai-Son Le, and Vijaya Ramachandran. Cache-oblivious
dynamic programming for bioinformatics. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics, 7(3):495–510, 2010. 199

[100] Rezaul A. Chowdhury and Vijaya Ramachandran. Cache-oblivious dynamic
programming. In SODA, pages 591–600, 2006. 162

[101] Rezaul A. Chowdhury and Vijaya Ramachandran. The cache-oblivious Gaus-
sian elimination paradigm: theoretical framework, parallelization and experi-
mental evaluation. Theory of Computing Systems, 47(4):878–919, 2010. 162

[102] Rezaul A. Chowdhury, Muhibur Rasheed, Donald Keidel, Maysam Moussalem,
Arthur Olson, Michel Sanner, and Chandrajit Bajaj. Protein-protein docking
with F2Dock 2.0 and GB-Rerank. PLoS One, 8(3):e51307, 2013. 199

[103] Marek Chrobak and John Noga. LRU is better than FIFO. Algorithmica,
23(2):180–185, 1999. 134

[104] Valentina Ciriani, Paolo Ferragina, Fabrizio Luccio, and S. Muthukrishnan.
Static optimality theorem for external memory string access. In FOCS, pages
219–227, 2002. 113

[105] Ronald Coifman, Vladimir Rokhlin, and Stephen Wandzura. The fast multipole
method for the wave equation: A pedestrian prescription. IEEE Antennas and
Propagation Magazine, 35(3):7–12, 1993. 234

[106] Richard Cole and Vijaya Ramachandran. Efficient resource oblivious algorithms
for multicores with false sharing. In IPDPS, pages 201–214, 2012. 199

[107] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic
progressions. Journal of Symbolic Computation, 9(3):251–280, 1990. 200, 216

[108] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, 3rd edition, 2009. 21, 25, 36, 39,
41, 49, 60, 221, 252

[109] cppreference. std::inclusive_scan. Available at https://en.cppreference.
com/w/cpp/algorithm/inclusive_scan, 2020. 220

[110] Franklin C. Crow. Summed-area tables for texture mapping. In SIGGRAPH,
pages 207–212, 1984. 234, 236, 237

[111] Eric Darve. The fast multipole method: numerical implementation. Journal of
Computational Physics, 160(1):195–240, 2000. 234

[112] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex Brooks,
Nikoli Dryden, Marc Snir, and Keshav Pingali. Gluon: A communication-
optimizing substrate for distributed heterogeneous graph analytics. In PLDI,
pages 752–768, 2018. 56

305

https://en.cppreference.com/w/cpp/algorithm/inclusive_scan
https://en.cppreference.com/w/cpp/algorithm/inclusive_scan

[113] Timothy A. Davis and Yifan Hu. The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software, 38(1):1–25, November
2011. 107

[114] Dean De Leo and Peter Boncz. Fast concurrent reads and updates with PMAs.
In GRADES-NDA, 2019. 61

[115] Jeff Dean. Software engineering advice from building large-scale dis-
tributed systems. Available at http://static.googleusercontent.com/
external_content/untrusted_dlcp/research.google.com/en/us/people/
jeff/stanford-295-talk.pdf, 2009. 18, 24

[116] Erik D. Demaine. Cache-oblivious algorithms and data structures. Lecture
Notes from the EEF Summer School on Massive Data Sets, 8(4):1–249, 2002.
198

[117] Erik D. Demaine. Lecture 8: Ordered files and cache-oblivious priority queues
(MIT 6.851), March 2012. 261

[118] Erik. D. Demaine, Martin. L. Demaine, Alan Edelman, Charles E. Leiserson,
and Per-Olof Persson. Building blocks and excluded sums. SIAM News, 38(4):1–
5, 2005. 31, 220, 235, 236, 237, 287

[119] Erik D. Demaine, Andrea Lincoln, Quanquan C. Liu, Jayson Lynch, and Vir-
ginia Vassilevska Williams. Fine-grained I/O complexity via reductions: New
lower bounds, faster algorithms, and a time hierarchy. In ITCS, pages 34:1–
34:23, 2018. 162, 255

[120] Roman Dementiev, Lutz Kettner, and Peter Sanders. STXXL: Standard tem-
plate library for XXL data sets. Software: Practice and Experience, 38(6):589–
637, 2008. 214

[121] Roman Dementiev and Peter Sanders. Asynchronous parallel disk sorting. In
SPAA, pages 138–148, 2003. 215

[122] Peter J. Denning. The working set model for program behavior. Communica-
tions of the ACM, 11(5):323–333, 1968. 30, 134, 160

[123] Peter J. Denning. Working sets past and present. IEEE Transactions on Soft-
ware Engineering, 6(1):64–84, 1980. 30, 160

[124] Peter J. Denning. The locality principle. Communications of the ACM,
48(7):19–24, July 2005. 13

[125] Luc Devroye. A limit theory for random skip lists. The Annals of Applied
Probability, 2(3):597–609, August 1992. 112

[126] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. Julienne: A framework
for parallel graph algorithms using work-efficient bucketing. In SPAA, pages
293–304, 2017. 37, 62

306

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/people/jeff/stanford-295-talk.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/people/jeff/stanford-295-talk.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/people/jeff/stanford-295-talk.pdf

[127] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. Theoretically efficient
parallel graph algorithms can be fast and scalable. In SPAA, pages 393–404,
2018. 37, 62

[128] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. Low-latency graph
streaming using compressed purely-functional trees. In PLDI, pages 918–934,
2019. 14, 26, 33, 34, 35, 36, 37, 45, 46, 48, 49, 53, 56, 57, 59, 60, 61, 62, 76

[129] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. Theoretically efficient
parallel graph algorithms can be fast and scalable. ACM Transactions on Par-
allel Computing, 8(1):1–70, 2021. 21

[130] Laxman Dhulipala, David Durfee, Janardhan Kulkarni, Richard Peng, Saurabh
Sawlani, and Xiaorui Sun. Parallel batch-dynamic graphs: Algorithms and
lower bounds. In SODA, pages 1300–1319, 2020. 57

[131] Laxman Dhulipala, Quanquan C. Liu, Julian Shun, and Shangdi Yu. Parallel
batch-dynamic k-clique counting. In APOCS, pages 129–143, 2021. 57, 58

[132] Dave Dice, Virendra J. Marathe, and Nir Shavit. Brief announcement: Persis-
tent unfairness arising from cache residency imbalance. In SPAA, pages 82–83,
2014. 160

[133] Jack J. Dongarra and Victor Eijkhout. Self-adapting numerical software for next
generation applications. International Journal of High Performance Computing
Applications, 17(2):125–131, May 2003. 109

[134] Jack J. Dongarra and Danny C. Sorensen. A portable environment for develop-
ing parallel FORTRAN programs. Parallel Computing, 5(1-2):175–186, 1987.
20

[135] Reza Dorrigiv. Alternative Measures for the Analysis of Online Algorithms. PhD
thesis, Cheriton School of Computer Science, University of Waterloo, 2010. 134,
137

[136] Reza Dorrigiv and Alejandro López-Ortiz. A survey of performance measures
for on-line algorithms. SIGACT News, 36:67–81, 2005. 133

[137] Ayush Dubey, Greg D. Hill, Robert Escriva, and Emin Gün Sirer. Weaver: A
high-performance, transactional graph database based on refinable timestamps.
VLDB, 9(11):852–863, 2016. 57

[138] David Durfee, John Peebles, Richard Peng, and Anup B. Rao. Determinant-
preserving sparsification of SDDM matrices with applications to counting and
sampling spanning trees. In FOCS, pages 926–937, 2017. 162

[139] David Ediger, Robert McColl, Jason Riedy, and David A. Bader. Stinger: High
performance data structure for streaming graphs. In HPEC, pages 1–5, 2012.
34, 35, 56, 57, 60

307

[140] Paul Erdös and Alfréd Rényi. On random graphs I. Publicationes Mathematicae
Debrecen, 6:290–297, 1959. 76

[141] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law
relationships of the internet topology. ACM SIGCOMM Computer Communi-
cation Review, 29(4):251–262, 1999. 25, 26, 34

[142] Paul Feautrier. Automatic parallelization in the polytope model. In The Data
Parallel Programming Model, pages 79–103. Springer, 1996. 18

[143] Alexandra Fedorova, Margo I. Seltzer, and Michael D. Smith. Cache-fair thread
scheduling for multicore processors. Technical Report TR-17-06, Harvard Uni-
versity, 2006. 132

[144] Guoyao Feng, Xiao Meng, and Khaled Ammar. DISTINGER: A distributed
graph data structure for massive dynamic graph processing. In BigData, pages
1814–1822, 2015. 34, 57, 60

[145] Mingdong Feng and Charles E. Leiserson. Efficient detection of determinacy
races in Cilk programs. In SPAA, page 1–11, 1997. 21

[146] Paolo Ferragina and Fabrizio Luccio. Batch dynamic algorithms for two graph
problems. In PARLE, pages 713–724, 1994. 57

[147] Esteban Feuerstein and Alejandro Strejilevich de Loma. On-line multi-threaded
paging. Algorithmica, 32(1):36–60, January 2002. 150

[148] Michael J. Flynn. Some computer organizations and their effectiveness. IEEE
Transactions on Computers, C-21(9):948–960, 1972. 24

[149] Mikhail Fomitchev and Eric Ruppert. Lock-free linked lists and skip lists. In
PODC, pages 50–59, 2004. 112, 113

[150] Sean Fraser. Computing Included and Excluded Sums Using Parallel Prefix.
Master’s thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 2020. 221, 229

[151] Sean Fraser, Helen Xu, and Charles E. Leiserson. Work-efficient parallel algo-
rithms for accurate floating-point prefix sums. In HPEC, pages 1–7, 2020. 16,
219

[152] Matteo Frigo and Steven G Johnson. The design and implementation of
FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005. 199

[153] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms. In FOCS, pages 285–298, 1999. 30, 161, 162, 198,
199, 270, 272

308

[154] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms. ACM Transactions on Algorithms, 8(1):1–22, jan
2012. 30, 161, 270

[155] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation
of the Cilk-5 multithreaded language. SIGPLAN Notices, 33(5):212–223, May
1998. 20, 22, 23, 24

[156] Matteo Frigo and Volker Strumpen. Cache-oblivious stencil computations. In
ICS, pages 361–366, 2005. 162

[157] Zhisong Fu, Michael Personick, and Bryan Thompson. Mapgraph: A high
level api for fast development of high performance graph analytics on gpus. In
GRADES, pages 1–6, 2014. 34

[158] François Le Gall. Powers of tensors and fast matrix multiplication. In ISSAC,
pages 296–303, 2014. 200, 216

[159] Ian P. Gent and Toby Walsh. Towards an understanding of hill-climbing pro-
cedures for sat. In AAAI, pages 28–33, 1993. 256

[160] GMP FFT multiplication. Available at https://gmplib.org/manual/FFT-
Multiplication.html. Accessed: 2018-02-01. 206

[161] Daniel Golovin. The B-skip-list: A simpler uniquely represented alternative to
B-trees. arXiv preprint arXiv:1005.0662, 2010. 113, 116

[162] Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Satisfia-
bility solvers. Foundations of Artificial Intelligence, 3:89–134, 2008. 256

[163] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos
Guestrin. Powergraph: Distributed graph-parallel computation on natural
graphs. In OSDI, pages 17–30, 2012. 56

[164] Michael T. Goodrich and Roberto Tamassia. Efficient authenticated dictionaries
with skip lists and commutative hashing, Aug. 2007. US Patent 7,257,711. 112

[165] Goetz Graefe. Write-optimized B-trees. In Proceedings of the VLDB Endow-
ment, volume 30, pages 672–683, 2004. 112

[166] Goetz Graefe. B-tree indexes for high update rates. SIGMOD Record, 35(1):39–
44, March 2006. 112

[167] Goetz Graefe. A new memory-adaptive external merge sort. Private communi-
cation, July 2013. 161, 199

[168] Oded Green and David A. Bader. cuSTINGER: Supporting dynamic graph
algorithms for GPUs. In HPEC, pages 1–6, 2016. 34, 57, 60

309

https://gmplib.org/manual/FFT-Multiplication.html
https://gmplib.org/manual/FFT-Multiplication.html

[169] Oded Green, Robert McColl, and David A. Bader. A fast algorithm for stream-
ing betweenness centrality. In PASSAT/SocialCom, pages 11–20, 2012. 58

[170] Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle simula-
tions. Journal of Computational Physics, 73(2):325–348, 1987. 234, 235

[171] Nail A. Gumerov and Ramani Duraiswami. Fast Multipole Methods for the
Helmholtz Equation in Three Dimensions. Elsevier, 2005. 234, 238

[172] Mark Harris. How to access global memory efficiently in CUDA C/C++ kernels.
NVIDIA Developer Blog, January 2013. 19

[173] Mark Harris. Using shared memory in CUDA C/C++. NVIDIA Developer
Blog, January 2013. 19

[174] Mark Harris, Shubhabrata Sengupta, and John Owens. Parallel prefix sum
(scan) with CUDA. GPU Gems, 39(39):851–876, Aug. 2007. 220, 231

[175] William Hasenplaugh, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson.
Ordering heuristics for parallel graph coloring. In SPAA, page 166–177, 2014.
21

[176] Avinatan Hassidim. Cache replacement policies for multicore processors. In
ICS, pages 501–509, 2010. 135, 137, 149, 150, 199

[177] Yuxiong He, Charles E. Leiserson, and William M. Leiserson. The Cilkview
scalability analyzer. In SPAA, page 145–156, 2010. 21

[178] Justin Hensley, Thorsten Scheuermann, Greg Coombe, Montek Singh, and
Anselmo Lastra. Fast summed-area table generation and its applications. Com-
puter Graphics Forum, 24(3):547–555, September 2005. 31, 220, 234

[179] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. A provably
correct scalable concurrent skip list. In OPODIS, 2006. 113

[180] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. A simple opti-
mistic skiplist algorithm. SIROCCO, pages 124–138, 2007. 112

[181] Maurice Herlihy, Nir Shavit, Victor Luchangco, and Michael Spear. The Art of
Multiprocessor Programming. Morgan Kaufmann, 2nd edition, 2020. 22

[182] Nicholas J. Higham. The accuracy of floating point summation. SIAM Journal
on Scientific Computing, 14(4):783–799, 1993. 31, 220, 221, 225, 227, 235

[183] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
2nd edition, 2002. 220, 227

[184] W. Daniel Hillis and Guy L. Steele, Jr. Data parallel algorithms. Communica-
tions of the ACM, 29(12):1170–1183, December 1986. 220

310

[185] Wassily Hoeffding. Probability inequalities for sums of bounded random vari-
ables. Journal of the American Statistical Association, 58(301):13–30, March
1963. 102

[186] Jia-Wei Hong and H. T. Kung. I/O complexity: The red-blue pebble game. In
STOC, pages 326–333, 1981. 198

[187] Daniel Horn. Stream reduction operations for GPGPU applications. GPU
Gems, 2, January 2005. 31, 220

[188] Eun-Jin Im. Optimizing the Performance of Sparse Matrix-Vector Multiplica-
tion. PhD thesis, EECS Department, University of California, Berkeley, June
2000. 87, 88

[189] Eun-Jin Im and Katherine Yelick. Optimizing sparse matrix computations for
register reuse in SPARSITY. In ICCS, pages 127–136, 2001. 84, 87, 95

[190] Eun-Jin Im, Katherine Yelick, and Richard Vuduc. SPARSITY: Optimization
framework for sparse matrix kernels. International Journal of High Performance
Computing Applications, 18(1):135–158, February 2004. 87

[191] Intel Corporation. Intel Cilk Plus Language Specification, 2010. Document
Number: 324396-001US. Available at http://software.intel.com/sites/
products/cilk-plus/cilk_plus_language_specification.pdf. 37, 48, 62,
76, 221, 222, 226

[192] Intel Corporation. Intel Intrinsics Guide. Available at https://software.
intel.com/sites/landingpage/IntrinsicsGuide/, 2020. 229

[193] Internet live stats. Available at https://www.internetlivestats.com/one-
second/#tweets-band. Accessed: 2021-02-01. 51

[194] Sandy Irani. Page replacement with multi-size pages and applications to web
caching. In STOC, pages 701–710, 1997. 199

[195] Sandy Irani. Competitive analysis of paging. In Online Algorithms: The State
of the Art, pages 52–73. Springer Berlin Heidelberg, 1998. 29

[196] Alon Itai, Alan G. Konheim, and Michael Rodeh. A sparse table implementation
of priority queues. In ICALP, pages 417–431, 1981. 26, 36, 39, 59, 60, 63

[197] Anand Iyer, Li Erran Li, and Ion Stoica. Celliq: Real-time cellular network
analytics at scale. In NSDI, pages 309–322, 2015. 57

[198] Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Stoica. Time-
evolving graph processing at scale. In GRADES, pages 1–6, 2016. 57

[199] Riko Jacob, Andrea Richa, Christian Scheideler, Stefan Schmid, and Hanjo
Täubig. A distributed polylogarithmic time algorithm for self-stabilizing skip
graphs. In PODC, pages 131–140, 2009. 112

311

http://software.intel.com/sites/products/cilk-plus/cilk_plus_language_specification.pdf
http://software.intel.com/sites/products/cilk-plus/cilk_plus_language_specification.pdf
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://www.internetlivestats.com/one-second/#tweets-band
https://www.internetlivestats.com/one-second/#tweets-band

[200] JAVA BigInteger Class. Available at https://raw.githubusercontent.com/
tbuktu/bigint/master/src/main/java/java/math/BigInteger.java. Ac-
cessed: 2018-02-01. 206

[201] Chris Jermaine, Anindya Datta, and Edward Omiecinski. A novel index sup-
porting high volume data warehouse insertion. Proceedings of the VLDB En-
dowment, pages 235–246, 1999. 112, 114

[202] William Kahan. Further remarks on reducing truncation errors. Communica-
tions of the ACM, 8(1):40,48, 1965. 220, 227

[203] Tim Kaler. Programming Technologies for Engineering Quality Multicore Soft-
ware. PhD thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 2020. 20, 21, 255

[204] Tim Kaler, William Hasenplaugh, Tao B. Schardl, and Charles E. Leiserson.
Executing dynamic data-graph computations deterministically using chromatic
scheduling. ACM Transactions on Parallel Computing, 3(1), July 2016. 21, 255

[205] Tim Kaler, Brian Wheatman, and Sarah Wooders. High-throughput image
alignment for connectomics using frugal snap judgments: Poster. In PPOPP,
page 433–434, 2019.

[206] Tim Kaler, Brian Wheatman, and Sarah Wooders. High-throughput image
alignment for connectomics using frugal snap judgments. In HPEC, pages 1–9,
2020. 255

[207] Shahin Kamali and Alejandro López-Ortiz. A survey of algorithms and models
for list update. In Space-Efficient Data Structures, Streams, and Algorithms:
Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday, pages
251–266. Springer Berlin Heidelberg, 2013. 29

[208] Shahin Kamali and Helen Xu. Beyond worst-case analysis of multicore caching
strategies. arXiv preprint arXiv:2011.02046, 2020. 131

[209] Shahin Kamali and Helen Xu. Multicore paging algorithms cannot be compet-
itive. In SPAA, page 547–549, 2020. 15, 29, 132, 133, 137, 153

[210] Shahin Kamali and Helen Xu. Beyond worst-case analysis of multicore caching
strategies. In APOCS, pages 1–15, 2021. 15, 29, 131

[211] Vasileios Karakasis, Georgios Goumas, and Nectarios Koziris. A comparative
study of blocking storage methods for sparse matrices on multicore architec-
tures. In CSE, pages 247–256, 2009. 86, 93

[212] Vasileios Karakasis, Georgios Goumas, and Nectarios Koziris. Exploring the
effect of block shapes on the performance of sparse kernels. In IPDPS, pages
1–8, May 2009. 27

312

https://raw.githubusercontent.com/tbuktu/bigint/master/src/main/java/java/math/BigInteger.java
https://raw.githubusercontent.com/tbuktu/bigint/master/src/main/java/java/math/BigInteger.java

[213] Vasileios Karakasis, Georgios Goumas, and Nectarios Koziris. Perfomance mod-
els for blocked sparse matrix-vector multiplication kernels. In ICPP, pages
356–364, 2009. 87

[214] Anna R. Karlin, Steven J. Phillips, and Prabhakar Raghavan. Markov paging.
In FOCS, pages 208–217, 1992. 133

[215] Elaye Karstadt and Oded Schwartz. Matrix multiplication, a little faster. In
SPAA, pages 101–110, 2017. 217

[216] Anil Kumar Katti and Vijaya Ramachandran. Competitive cache replacement
strategies for shared cache environments. In IPDPS, pages 215–226, 2012. 132,
134, 137, 150, 199

[217] Ken Kennedy and Kathryn S. McKinley. Optimizing for parallelism and data
locality. In SC, pages 323–334, 1992. 255

[218] Anurag Khandelwal, Zongheng Yang, Evan Ye, Rachit Agarwal, and Ion Stoica.
Zipg: A memory-efficient graph store for interactive queries. In SIGMOD, pages
1149–1164, 2017. 57

[219] Peter Kirschenhofer and Helmut Prodinger. The path length of random skip
lists. Acta Informatica, 31(8):775–792, 1994. 112

[220] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Ama-
rasinghe. The tensor algebra compiler. Proceedings of the ACM on Programming
Languages, 1(OOPSLA):77:1–77:29, October 2017. 92, 93, 104, 109

[221] Peter M. Kogge and Harold S. Stone. A parallel algorithm for the efficient
solution of a general class of recurrence equations. IEEE Transactions on Com-
puters, 100(8):786–793, 1973. 220, 225

[222] Dennis Komm. An Introduction to Online Computation. Springer, 2016. 133

[223] Guy Korland, Nir Shavit, and Pascal Felber. Noninvasive concurrency with
Java STM. In MULTIPROG, 2010. 112

[224] Elias Koutsoupias and Christos H. Papadimitriou. Beyond competitive analysis.
SIAM Journal on Computing, 30(1):300–317, 2000. 133

[225] Piyush Kumar. Cache oblivious algorithms. In Algorithms for Memory Hierar-
chies, pages 193–212. Springer Verlag, 2003. 198

[226] Pradeep Kumar and H. Howie Huang. G-store: High-performance graph store
for trillion-edge processing. In SC, pages 830–841, 2016. 57

[227] Pradeep Kumar and H. Howie Huang. GraphOne: A data store for real-time
analytics on evolving graphs. In FAST, pages 249–263, 2019. 57

313

[228] Rasmus Kyng and Sushant Sachdeva. Approximate Gaussian elimination for
Laplacians: Fast, sparse, and simple. In FOCS, pages 573–582, 2016. 162

[229] Aapo Kyrola, Guy E Blelloch, and Carlos Guestrin. GraphChi: Large-scale
graph computation on just a PC. In OSDI, pages 31–46, 2012. 34, 56, 60

[230] Richard E. Ladner, Ray Fortna, and Bao-hoang Nguyen. A comparison of cache
aware and cache oblivious static search trees using program instrumentation.
Experimental Algorithmics, pages 78–92, 2002. 199

[231] Monica S. Lam and Martin C. Rinard. Coarse-grain parallel programming in
Jade. In PPoPP, pages 94–105, 1991. 20

[232] Daniel Langr, Ivan Šimeček, and Tomáš Dytrych. Block iterators for sparse
matrices. In FedCSIS, pages 695–704, October 2016. 88

[233] Samuel Larsen and Saman Amarasinghe. Exploiting superword level parallelism
with multimedia instruction sets. In PLDI, page 145–156, 2000. 18

[234] Chris Lattner. LLVM: An Infrastructure for Multi-Stage Optimization. Mas-
ter’s thesis, Computer Science Department, University of Illinois at Urbana-
Champaign, December 2002. 48, 76, 226, 250

[235] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In CGO, pages 75–86, 2004. 48, 76, 226,
250

[236] Quoc-Thai V Le. How Intel Advanced Vector Extensions 2 im-
proves performance on server applications. Available at https:
//software.intel.com/content/www/us/en/develop/ articles/how-intel-
avx2-improves-performance-on-server-applications.html?language=en,
2014. 229

[237] Doug Lea. A Java fork/join framework. In JAVA, pages 36–43, 2000. 20

[238] Edward A. Lee. The problem with threads. Computer, 39(5):33–42, 2006. 21

[239] Charles E. Leiserson and Tao B. Schardl. A work-efficient parallel breadth-first
search algorithm (or how to cope with the nondeterminism of reducers). In
SPAA, SPAA ’10, page 303–314, 2010. 21, 255

[240] Dean De Leo and Peter A. Boncz. Teseo and the analysis of structural dynamic
graphs. VLDB, 14(6):1053–1066, 2021. 40

[241] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network
dataset collection. Available at http://snap.stanford.edu/data, June 2014.
49, 76

314

https://software.intel.com/content/www/us/en/develop/
https://software.intel.com/content/www/us/en/develop/
articles/how-intel-avx2-improves-performance-on-server-applications.html?language=en
articles/how-intel-avx2-improves-performance-on-server-applications.html?language=en
http://snap.stanford.edu/data

[242] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney.
Community structure in large networks: Natural cluster sizes and the absence
of large well-defined clusters. Internet Mathematics, 6(1):29–123, 2009.

[243] Jiajia Li, Guangming Tan, Mingyu Chen, and Ninghui Sun. SMAT: An input
adaptive auto-tuner for sparse matrix-vector multiplication. ACM SIGPLAN
Notices, 48(6):117–126, June 2013. 87

[244] Yinan Li, Bingsheng He, Qiong Luo, and Ke Yi. Tree indexing on flash disks.
In ICDE, pages 1303–1306, 2009. 112

[245] libstdc++: stl_algo.h source file. Available at https://gcc.gnu.org/
onlinedocs/libstdc++/libstdc++-html-USERS-4.4/a01347.html. Accessed:
2018-02-13. 215

[246] Andrea Lincoln, Quanquan C. Liu, Jayson Lynch, and Helen Xu. Cache-
adaptive exploration: Experimental results and scan-hiding for adaptivity. In
SPAA, pages 213–222, 2018. 15, 31, 201

[247] Hang Liu and H. Howie Huang. Enterprise: breadth-first graph traversal on
GPUs. In SC, pages 1–12, 2015. 34

[248] Jun Liu, Yuanrui Zhang, Ohyoung Jang, Wei Ding, and Mahmut Kandemir. A
compiler framework for extracting superword level parallelism. In PLDI, page
347–358, 2012. 18

[249] Quanquan C. Liu. Scalable and Efficient Graph Algorithms and Analysis Tech-
niques for Modern Machines. PhD thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, 2021. 21, 25

[250] Alejandro López-Ortiz and Alejandro Salinger. Minimizing cache usage in pag-
ing. In WAOA, pages 145–158, 2012. 149, 199

[251] Alejandro López-Ortiz and Alejandro Salinger. Paging for multi-core shared
caches. In ITCS, pages 113–127, 2012. 29, 132, 133, 134, 135, 136, 137, 139,
149, 153, 154, 199

[252] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and Joseph Hellerstein. GraphLab: A new framework for parallel machine
learning. In UAI, pages 340–349, 2010. 56

[253] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and Jonathan W.
Berry. Challenges in parallel graph processing. Parallel Processing Letters,
17(01):5–20, 2007. 57

[254] Peter Macko, Virendra J. Marathe, Daniel W. Margo, and Margo I. Seltzer.
LLAMA: Efficient graph analytics using large multiversioned arrays. In ICDE,
pages 363–374, 2015. 34, 56, 57, 60

315

https://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.4/a01347.html
https://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.4/a01347.html

[255] Devavret Makkar, David A. Bader, and Oded Green. Exact and parallel triangle
counting in dynamic graphs. In HiPC, pages 2–12, 2017. 34, 58

[256] Grzegorz Malewicz, Matthew H. Austern, Aart J.C. Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for large-scale
graph processing. In SIGMOD, pages 135–146, 2010. 56

[257] Mark S. Manasse, Lyle A. McGeoch, and Daniel D. Sleator. Competitive algo-
rithms for server problems. Journal of Algorithms, 11(2):208–230, 1990. 132,
134, 154

[258] MySQL 5.7 Reference Manual. Chapter 14: The InnoDB storage engine.
Available at https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-
engine.html. Accessed: 2021-11-24. 20

[259] William B. March and George Biros. Far-field compression for fast kernel sum-
mation methods in high dimensions. Applied and Computational Harmonic
Analysis, 43(1):39–75, 2017. 234

[260] Paul A. Martin. Method and apparatus for implementing a lock-free skip list
that supports concurrent accesses, December 2007. US Patent 7,308,448. 113

[261] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random number generator. ACM
Transactions on Modeling and Computer Simulation, 8(1):3–30, January 1998.
226

[262] Alexander Matveev, Yaron Meirovitch, Hayk Saribekyan, Wiktor Jakubiuk,
Tim Kaler, Gergely Odor, David Budden, Aleksandar Zlateski, and Nir Shavit.
A multicore path to connectomics-on-demand. In PPoPP, page 267–281, 2017.

[263] Robert McColl, Oded Green, and David A. Bader. A new parallel algorithm
for connected components in dynamic graphs. In HiPC, pages 246–255, 2013.
34, 58

[264] Robert Campbell McColl, David Ediger, Jason Poovey, Dan Campbell, and
David A. Bader. A performance evaluation of open source graph databases. In
PPAA, pages 11–18, 2014. 57

[265] Robert Ryan McCune, Tim Weninger, and Greg Madey. Thinking like a ver-
tex: A survey of vertex-centric frameworks for large-scale distributed graph
processing. ACM Computing Surveys, 48(2):1–39, 2015. 56

[266] Amanda McPherson. A conversation with Chris Mason on BTRfs. Available
at https://www.linuxfoundation.org/blog/a-conversation-with-chris-
mason-on-btrfs/, 2009. Accessed: 2021-11-24. 20

[267] Paul Menage. cgroups. Available at https://www.kernel.org/doc/
Documentation/cgroup-v1/cgroups.txt. 160

316

https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://www.linuxfoundation.org/blog/a-conversation-with-chris-mason-on-btrfs/
https://www.linuxfoundation.org/blog/a-conversation-with-chris-mason-on-btrfs/
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

[268] Charith Mendis and Saman Amarasinghe. Goslp: Globally optimized super-
word level parallelism framework. Proceedings of the ACM on Programming
Languages, 2(OOPSLA), oct 2018. 18

[269] Robert Meusel, Oliver Lehmberg, Christian Bizer, and Sebastiano Vigna. Web
data commons - hyperlink graphs. Available at http://webdatacommons.org/
hyperlinkgraph/, 2021.

[270] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. The
graph structure in the web – analyzed on different aggregation levels. The
Journal of Web Science, 1(1):33–47, 2015.

[271] Maged M. Michael. High performance dynamic lock-free hash tables and list-
based sets. In SPAA, pages 73–82, 2002. 113

[272] Richard T. Mills. Dynamic Adaptation to CPU and Memory Load in Scientific
Applications. PhD thesis, Department of Computer Science, The College of
William and Mary, 2004. 161, 199

[273] Richard T. Mills, Andreas Stathopoulos, and Dimitrios S. Nikolopoulos. Adapt-
ing to memory pressure from within scientific applications on multiprogrammed
COWs. In IPDPS, pages 71–80, 2004. 161, 199

[274] MIT Supercloud. Available at https://supercloud.mit.edu/, 2020. 225

[275] mkfs.btrfs manual page. Available at https://btrfs.wiki.kernel.org/index.
php/Manpage/mkfs.btrfs. Accessed: 2021-11-24. 20

[276] Anurag Mukkara, Nathan Beckmann, Maleen Abeydeera, Xiaosong Ma, and
Daniel Sanchez. Exploiting locality in graph analytics through hardware-
accelerated traversal scheduling. In MICRO, pages 1–14, 2018. 25

[277] Derek G. Murray, Frank McSherry, Michael Isard, Rebecca Isaacs, Paul
Barham, and Martin Abadi. Incremental, iterative data processing with timely
dataflow. Communications of the ACM, 59(10):75–83, 2016. 57

[278] David R. Musser. Introspective sorting and selection algorithms. Journal of
Software: Practice and Experience, 27(8):983–993, August 1997. 215

[279] Mark E.J. Newman. Power laws, Pareto distributions and Zipf’s law. Contem-
porary Physics, 46(5):323–351, 2005. 25, 26, 34

[280] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight infras-
tructure for graph analytics. In SOSP, pages 456–471, 2013. 56

[281] Khang T. Nguyen. Introduction to Cache Allocation Technology in the In-
tel®Xeon®processor E5 v4 family. Available at https://software.intel.
com/en-us/articles/introduction-to-cache-allocation-technology. 160

317

http://webdatacommons.org/hyperlinkgraph/
http://webdatacommons.org/hyperlinkgraph/
https://supercloud.mit.edu/
https://btrfs.wiki.kernel.org/index.php/Manpage/mkfs.btrfs
https://btrfs.wiki.kernel.org/index.php/Manpage/mkfs.btrfs
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology

[282] Jürg Nievergelt and Edward M. Reingold. Binary search trees of bounded
balance. SIAM Journal on Computing, 2(1):33–43, 1973. 113

[283] Rajesh Nishtala, Richard W. Vuduc, James W. Demmel, and Katherine A.
Yelick. When cache blocking of sparse matrix vector multiply works and why.
Applicable Algebra in Engineering, Communication and Computing, 18(3):297–
311, May 2007. 93

[284] Diego Novillo. OpenMP and automatic parallelization in gcc. Proceedings of
the GCC Developers Summit, 2006. 18

[285] Krzysztof Nowicki and Krzysztof Onak. Dynamic graph algorithms with batch
updates in the massively parallel computation model. In SODA, pages 2939–
2958, 2021. 57

[286] Charlene O’Hanlon. A conversation with John Hennessy and David Patterson:
They wrote the book on computing. Queue, 4(10):14–22, December 2006. 20

[287] Jesper Holm Olsen and Søren Christian Skov. Cache-Oblivious Algorithms
in Practice. Master’s thesis, Department of Computer Science, University of
Copenhagen, 2002. 215

[288] Patrick O’Neil, Edward Cheng, Dieter Gawlic, and Elizabeth O’Neil. The log-
structured merge-tree (LSM-tree). Acta Informatica, 33(4):351–385, 1996. 112

[289] Oracle. Setting up your data warehouse system. Available at
https://docs.oracle.com/cd/B28359_01/server.111/b28314/tdpdw_
system.htm#TDPDW003. Accessed: 2021-11-24. 20

[290] Boost Organization. Boost C++ libraries: Multiprecision. Available at
https://www.boost.org/doc/libs/1_66_0/libs/multiprecision/doc/html/
boost_multiprecision/tut/floats/cpp_bin_float.html, 2020. 227

[291] Rotem Oshman and Nir Shavit. The SkipTrie: Low-depth concurrent search
without rebalancing. In PODC, pages 23–32, 2013. 112

[292] Rasmus Pagh and Francesco Silvestri. The input/output complexity of triangle
enumeration. In PODS, page 224–233, 2014. 256

[293] Sreepathi Pai and Keshav Pingali. A compiler for throughput optimization of
graph algorithms on GPUs. In OOPSLA, pages 1–19, 2016. 34, 56

[294] Prashant Pandey, Brian Wheatman, Helen Xu, and Aydı n Buluç. Terrace:
A hierarchical graph container for skewed dynamic graphs. In SIGMOD, page
1372–1385, 2021. 14, 26, 33

[295] HweeHwa Pang, Michael J. Carey, and Miron Livny. Memory-adaptive external
sorting. In VLDB, pages 618–629, 1993. 30, 161, 199

318

https://docs.oracle.com/cd/B28359_01/server.111/b28314/tdpdw_system.htm#TDPDW003
https://docs.oracle.com/cd/B28359_01/server.111/b28314/tdpdw_system.htm#TDPDW003
https://www.boost.org/doc/libs/1_66_0/libs/multiprecision/doc/html/boost_multiprecision/tut/floats/cpp_bin_float.html
https://www.boost.org/doc/libs/1_66_0/libs/multiprecision/doc/html/boost_multiprecision/tut/floats/cpp_bin_float.html

[296] HweeHwa Pang, Michael J. Carey, and Miron Livny. Partially preemptible hash
joins. In COMAD, pages 59–68, 1993. 30, 161, 199

[297] Thomas Papadakis, J. Ian Munro, and Patricio V. Poblete. Analysis of the
expected search cost in skip lists. In SWAT, pages 160–172, 1990. 112

[298] Joon-Sang Park, Michael Penner, and Viktor K. Prasanna. Optimizing graph
algorithms for improved cache performance. IEEE Transactions on Parallel and
Distributed Systems, 15(9):769–782, 2004. 162

[299] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly
Keeton, Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. A case
for intelligent RAM. IEEE Micro, 17(2):34–44, 1997. 13

[300] John Paul. Teradata 13 vs Teradata 14. Available at http://teradata-
thoughts.blogspot.com/2013/10/teradata-13-vs-teradata-14_20.html,
2013. Accessed: 2021-11-24. 20

[301] Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, and David
Holmes. Java Concurrency in Practice. Pearson Education, 2006. 112

[302] Enoch Peserico. Paging with dynamic memory capacity. arXiv preprint
arXiv:1304.6007, 2013. 199

[303] Filip Piekniewski. Robustness of power laws in degree distributions for spiking
neural networks. In IJCNN, pages 2541–2546, 2009. 26

[304] Ali Pinar and Michael T. Heath. Improving performance of sparse matrix-vector
multiplication. In SC, pages 30–es, November 1999. 86, 92, 93, 260

[305] Keshav Pingali. Locality of reference and parallel processing. In Encyclopedia
of Parallel Computing, pages 1051–1056. Springer US, 2011. 13

[306] Vijayan Prabhakaran, Ming Wu, Xuetian Weng, Frank McSherry, Lidong Zhou,
and Maya Haradasan. Managing large graphs on multi-cores with graph aware-
ness. In USENIX ATC, pages 41–52, 2012. 57

[307] Harald Prokop. Cache-Oblivious Algorithms. Master’s thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Tech-
nology, June 1999. 162, 198

[308] Dimitrios Prountzos, Roman Manevich, and Keshav Pingali. Synthesizing par-
allel graph programs via automated planning. In PLDI, pages 533–544, 2015.
56

[309] William Pugh. Concurrent maintenance of lists. Technical Report CS-TR-
2222.1, Deptartment of Computer Science, University of Maryland, College
Park, 1990. 113

319

http://teradata-thoughts.blogspot.com/2013/10/teradata-13-vs-teradata-14_20.html
http://teradata-thoughts.blogspot.com/2013/10/teradata-13-vs-teradata-14_20.html

[310] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Com-
munications of the ACM, 33(6):668–676, 1990. 112

[311] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely, and Joel
Emer. Adaptive insertion policies for high performance caching. In ISCA, pages
381–391, 2007. 132

[312] Moinuddin K. Qureshi and Yale N. Patt. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared caches.
In MICRO, pages 423–432, 2006. 132

[313] @raffi. New tweets per second record, and how!, August 2013. Avail-
able at https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-
per-second-record-and-how.html. 51, 77

[314] Sanguthevar Rajasekaran, Lance Fiondella, Mohamed Ahmed, and Reda A.
Ammar. Multicore Computing: Algorithms, Architectures, and Applications.
CRC Press, 2013. 18

[315] Tim Roughgarden. Beyond worst-case analysis. Communications of the ACM,
62(3):88–96, 2019. 28

[316] Radu Rugina and Martin Rinard. Automatic parallelization of divide and con-
quer algorithms. ACM SIGPLAN Notices, 34(8):72–83, 1999. 18

[317] Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2nd edition,
2003. 73

[318] Jerome H. Saltzer. A simple linear model of demand paging performance. Com-
munications of the ACM, 17(4):181–186, 1974. 133, 154

[319] Tao B. Schardl. Performance Engineering of Multicore Software: Developing
a Science of Fast Code for the Post-Moore Era. PhD thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Tech-
nology, 2016. 20, 21, 23, 255

[320] Tao B. Schardl, Bradley C. Kuszmaul, I-Ting Angelina Lee, William M. Leiser-
son, and Charles E. Leiserson. The Cilkprof scalability profiler. In SPAA, page
89–100, 2015. 21, 23

[321] Tao B. Schardl, William S. Moses, and Charles E. Leiserson. Tapir: Embedding
fork-join parallelism into LLVM’s intermediate representation. ACM SIGPLAN
Notices, 52(8):249–265, 2017. 76, 226

[322] Tao B. Schardl, William S. Moses, and Charles E. Leiserson. Tapir: Embedding
recursive fork-join parallelism into LLVM’s intermediate representation. ACM
Transactions on Parallel Computing, 6(4):1–33, 2019. 20, 48, 76, 226, 250

320

https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html

[323] Aaron Schild, Satish Rao, and Nikhil Srivastava. Localization of electrical flows.
In SODA, pages 1577–1584, 2018. 162

[324] Russell Sears, Mark Callaghan, and Eric A. Brewer. Rose: Compressed, log-
structured replication. VLDB, 1(1):526–537, 2008. 112

[325] Russell Sears and Raghu Ramakrishnan. bLSM: A general purpose log struc-
tured merge tree. In SIGMOD, pages 217–228, 2012. 112

[326] Raimund Seidel. On the all-pairs-shortest-path problem in unweighted undi-
rected graphs. Journal of Computer and System Sciences, 51(3):400–403, 1995.
162

[327] Dipanjan Sengupta and Shuaiwen Leon Song. Evograph: On-the-fly efficient
mining of evolving graphs on GPU. In SC, pages 97–119, 2017. 57

[328] Dipanjan Sengupta, Narayanan Sundaram, Xia Zhu, Theodore L. Willke, Jef-
frey Young, Matthew Wolf, and Karsten Schwan. Graphin: An online high
performance incremental graph processing framework. In EuroPar, pages 319–
333, 2016. 57

[329] Mo Sha, Yuchen Li, Bingsheng He, and Kian-Lee Tan. Accelerating dynamic
graph analytics on gpus. VLDB, 11(1):107–120, 2017. 57

[330] Nikita Shamgunov. The MemSQL in-memory database system. In IMDM,
2014. 112

[331] Bin Shao, Haixun Wang, and Yatao Li. Trinity: A distributed graph engine on
a memory cloud. In SIGMOD, pages 505–516, 2013. 57

[332] Nir Shavit and Itay Lotan. Skiplist-based concurrent priority queues. In IPDPS,
pages 263–268, 2000. 112

[333] Avi Shoshan and Uri Zwick. All pairs shortest paths in undirected graphs with
integer weights. In FOCS, pages 605–614, 1999. 162

[334] Julian Shun. Shared-Memory Parallelism Can Be Simple, Fast, and Scalable.
Association for Computing Machinery and Morgan & Claypool, 2017. 20, 21,
22, 25

[335] Julian Shun and Guy E. Blelloch. Ligra: A lightweight graph processing frame-
work for shared memory. In PPoPP, pages 135–146, 2013. 26, 33, 36, 37, 45,
47, 48, 49, 56, 60, 62, 76

[336] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Aapo
Kyrola, Harsha Vardhan Simhadri, and Kanat Tangwongsan. Brief announce-
ment: The Problem Based Benchmark Suite. In SPAA, page 68–70, 2012. 220,
225

321

[337] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. Smaller and faster:
Parallel processing of compressed graphs with Ligra+. In DCC, pages 403–412,
2015. 37, 62, 76, 255

[338] Julian Shun, Farbod Roosta-Khorasani, Kimon Fountoulakis, and Michael W
Mahoney. Parallel local graph clustering. VLDB, 9(12):1041–1052, 2016. 37,
62

[339] Julian Shun and Kanat Tangwongsan. Multicore triangle computations without
tuning. In ICDE, pages 149–160, 2015. 21

[340] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System
Concepts Essentials. John Wiley & Sons, Inc., 2014. 134, 144

[341] Natcha Simsiri, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu.
Work-efficient parallel union-find with applications to incremental graph con-
nectivity. In EuroPar, pages 561–573, 2016. 58

[342] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update
and paging rules. Communications of the ACM, 28(2):202–208, 1985. 15, 29,
123, 132, 137

[343] Alan Jay Smith. Cache memories. ACM Computing Surveys, 14(3):473–530,
September 1982. 24

[344] Shaden Smith and George Karypis. Tensor-matrix products with a compressed
sparse tensor. In IA3, pages 1–7, 2015. 92

[345] Shaden Smith, Niranjay Ravindran, Nicholas D. Sidiropoulos, and George
Karypis. SPLATT: Efficient and parallel sparse tensor-matrix multiplication.
In IPDPS, pages 61–70, May 2015. 88, 93

[346] Steven W. Smith. The Scientist and Engineer’s Guide to Digital Signal Pro-
cessing. California Technical Publishing, USA, 1997. 77

[347] Snapchat. Snap kit sdk 1.4, Jan 2020. Available at https://kit.snapchat.
com/news/snap-kit-sdk-1-4. 51

[348] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms:
Why the simplex algorithm usually takes polynomial time. Journal of the ACM,
51(3):385–463, 2004. 30

[349] Guy L. Steele Jr., Alexander T. Garthwaite, Paul A. Martin, Nir Shavit, Mark S.
Moir, and David L. Detlefs. Lock-free implementation of concurrent shared
object with dynamic node allocation and distinguishing pointer value, Novem-
ber 30 2004. US Patent 6,826,757. 113

[350] Harold S. Stone, John Turek, and Joel L. Wolf. Optimal partitioning of cache
memory. IEEE Transactions on Computers, 41(9):1054–1068, 1992. 132

322

https://kit.snapchat.com/news/snap-kit-sdk-1-4
https://kit.snapchat.com/news/snap-kit-sdk-1-4

[351] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13(4):354–356, August 1969. 162, 200, 203, 216

[352] Alejandro Strejilevich de Loma. New results on fair multi threaded paging.
Electronic Journal of SADIO, 1(1):21–36, 1998. 150

[353] Jaspal Subhlok, James M. Stichnoth, and Thomas O’Hallaron, David
R.and Gross. Exploiting task and data parallelism on a multicomputer. In
PPoPP, pages 13–22, 1993. 20

[354] G Edward Suh, Larry Rudolph, and Srinivas Devadas. Dynamic partitioning of
shared cache memory. The Journal of Supercomputing, 28(1):7–26, 2004. 132

[355] Xian-He Sun and Lionel M. Ni. Scalable problems and memory-bounded
speedup. Journal of Parallel and Distributed Computing, 19(1):27–37, 1993.
22

[356] Xiaobai Sun and Nikos P. Pitsianis. A matrix version of the fast multipole
method. SIAM Review, 43(2):289–300, 2001. 234

[357] Håkan Sundell and Philippas Tsigas. Scalable and lock-free concurrent dictio-
naries. In SAC, pages 1438–1445, 2004. 113

[358] Toyotaro Suzumura, Shunsuke Nishii, and Masaru Ganse. Towards large-scale
graph stream processing platform. In WWW, pages 1321–1326, 2014. 57

[359] Yuan Tang, Rezaul A. Chowdhury, Bradley C. Kuszmaul, Chi-Keung Luk, and
Charles E. Leiserson. The pochoir stencil compiler. In SPAA, pages 117–128,
2011. 162

[360] Ernesto Tapia. A note on the computation of high-dimensional integral images.
Pattern Recognition Letters, 32(2):197–201, 2011. 236, 237

[361] William F. Tinney and John W. Walker. Direct solutions of sparse network
equations by optimally ordered triangular factorization. Proceedings of the
IEEE, 55(11):1801–1809, 1967. 25, 35, 60, 73

[362] Josep Torrellas, Monica S. Lam, and John L. Hennessy. False sharing and
spatial locality in multiprocessor caches. IEEE Transactions on Computers,
43(6):651–663, 1994. 22

[363] Thomas Tseng, Laxman Dhulipala, and Guy E. Blelloch. Batch-parallel euler
tour trees. In ALENEX, pages 92–106, 2019. 57

[364] John D. Valois. Lock-free linked lists using compare-and-swap. In PODC, pages
214–222, 1995. 113

[365] Steven P. Vanderwiel and David J. Lilja. Data prefetch mechanisms. ACM
Computing Surveys, 32(2):174–199, 2000. 220

323

[366] Hans Vandierendonck, Sean Rul, and Koen De Bosschere. The Paralax in-
frastructure: Automatic parallelization with a helping hand. In PACT, pages
389–399, 2010. 18

[367] Jeffrey S. Vitter. External memory algorithms and data structures: Dealing
with massive data. ACM Computing Surveys, 33(2):209–271, June 2001. 20

[368] Keval Vora, Rajiv Gupta, and Guoqing Xu. Kickstarter: Fast and accurate
computations on streaming graphs via trimmed approximations. ACM SIGOPS
Operating Systems Review, 51(2):237–251, 2017. 57

[369] Richard W. Vuduc. Automatic Performance Tuning of Sparse Matrix Kernels.
PhD thesis, EECS Department, University of California, Berkeley, January
2004. 25, 84, 86, 87, 88, 107

[370] Richard W. Vuduc, Aparna Chandramowlishwaran, Jee Choi, Murat Guney,
and Aashay Shringarpure. On the limits of GPU acceleration. In HotPar.
USENIX Association, 2010.

[371] Richard W. Vuduc, James W. Demmel, and Katherine A. Yelick. OSKI: A
library of automatically tuned sparse matrix kernels. Journal of Physics: Con-
ference Series, 16:521–530, January 2005. 15, 27, 84, 87

[372] Richard W. Vuduc, James W. Demmel, Katherine A. Yelick, Shoaib Kamil,
Rajesh Nishtala, and Benjamin Lee. Performance optimizations and bounds for
sparse matrix-vector multiply. In SC, pages 1–35, 2002. 27, 84, 86, 87

[373] Richard W. Vuduc and Hyun-Jin Moon. Fast sparse matrix-vector multipli-
cation by exploiting variable block structure. In HPCC, pages 807–816, 2005.
27

[374] Jue Wang, Xiangyu Dong, Yuan Xie, and Norman P. Jouppi. Endurance-
aware cache line management for non-volatile caches. ACM Transactions on
Architecture and Code Optimization, 11(1):1–25, 2014. 160

[375] Kai Wang, Guoqing Xu, Zhendong Su, and Yu David Liu. GraphQ: Graph query
processing with abstraction refinement—scalable and programmable analytics
over very large graphs on a single PC. In USENIX ATC, pages 387–401, 2015.
56

[376] Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. Speedup graph processing
by graph ordering. In SIGMOD, pages 1813–1828, 2016. 49, 76

[377] Brian Wheatman. Image Alignment and Dynamic Graph Analytics: Two Case
Studies of How Managing Data Movement Can Make (Parallel) Code Run Fast.
Master’s thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 2019. 255

324

[378] Brian Wheatman and Helen Xu. Packed Compressed Sparse Row: A dynamic
graph representation. In HPEC, 2018. 26, 40, 59, 60, 61, 64, 72, 257

[379] Brian Wheatman and Helen Xu. A parallel Packed Memory Array to store
dynamic graphs. In ALENEX, pages 31–45, 2021. 14, 22, 24, 26, 27, 40, 59

[380] GCC Wiki. Automatic parallelization in GCC. Available at https://
gcc.gnu.org/wiki/AutoParInGCC#:~:text=Automatic%20parallelization%
20distributes%20sequential%20code,constructs%20using%20the%20gomp%
20library, May 2012. 18

[381] David Williams. Probability with Martingales. Cambridge University Press,
1991. 175, 274

[382] Samuel Williams, Leonid Oliker, Richard W. Vuduc, John Shalf, Katherine A.
Yelick, and James S. Demmel. Optimization of sparse matrix–vector multipli-
cation on emerging multicore platforms. Parallel Computing, 35(3):178–194,
March 2009. 85, 87

[383] Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-
Winograd. In STOC, pages 887–898, 2012. 200, 216

[384] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences be-
tween path, matrix and triangle problems. In FOCS, pages 645–654, 2010.
162

[385] Martin Winter, Rhaleb Zayer, and Markus Steinberger. Autonomous, indepen-
dent management of dynamic graphs on GPUs. In HPEC, pages 1–7, 2017.
57

[386] Yuejian Xie and Gabriel H. Loh. PIPP: Promotion/insertion pseudo-
partitioning of multi-core shared caches. In ACM SIGARCH Computer Ar-
chitecture News, volume 37, pages 174–183, 2009. 132

[387] Wenpu Xing and Ali Ghorbani. Weighted pagerank algorithm. In Commu-
nication Networks and Services Research, 2004. Proceedings. Second Annual
Conference on, pages 305–314. IEEE, 2004. 37

[388] Helen Xu. Fill Estimation for Blocked Sparse Matrices and Tensors. Mas-
ter’s thesis, Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, 2018. 83, 107, 109

[389] Helen Xu, Sean Fraser, and Charles E. Leiserson. Multidimensional included
and excluded sums. In ACDA, 2021. 16, 233

[390] Helen Xu, Sean Fraser, and Charles E. Leiserson. Multidimensional included
and excluded sums. arXiv preprint arXiv:2106.00124, 2021. 233

325

https://gcc.gnu.org/wiki/AutoParInGCC#:~:text=Automatic%20parallelization%20distributes%20sequential%20code,constructs%20using%20the%20gomp%20library
https://gcc.gnu.org/wiki/AutoParInGCC#:~:text=Automatic%20parallelization%20distributes%20sequential%20code,constructs%20using%20the%20gomp%20library
https://gcc.gnu.org/wiki/AutoParInGCC#:~:text=Automatic%20parallelization%20distributes%20sequential%20code,constructs%20using%20the%20gomp%20library
https://gcc.gnu.org/wiki/AutoParInGCC#:~:text=Automatic%20parallelization%20distributes%20sequential%20code,constructs%20using%20the%20gomp%20library

[391] Da Yan, Yingyi Bu, Yuanyuan Tian, and Amol Deshpande. Big graph analytics
platforms. Foundations and Trends in Databases, 7(1-2):1–195, 2017. 56

[392] Ke Yi. Dynamic indexability and the optimality of B-trees. Journal of the
ACM, 59(4):21:1–21:19, August 2012. 112, 113, 114

[393] Sung-Eui Yoon, Peter Lindstrom, Valerio Pascucci, and Dinesh Manocha.
Cache-oblivious mesh layouts. ACM Transactions on Graphic, 24(3):886–893,
2005. 199

[394] Kamen Yotov, Tom Roeder, Keshav Pingali, John Gunnels, and Fred Gus-
tavson. An experimental comparison of cache-oblivious and cache-conscious
programs. In SPAA, pages 93–104, 2007. 199

[395] Neal E. Young. The k-server dual and loose competitiveness for paging. Algo-
rithmica, 11(6):525–541, June 1994. 133

[396] Neal E. Young. Bounding the diffuse adversary. In SODA, pages 420–425, 1998.
133

[397] Neal E. Young. On-line paging against adversarially biased random inputs.
Journal of Algorithms, 37(1):218–235, 2000. 133

[398] Neal E. Young. Online file caching. Algorithmica, 33(3):371–383, 2002. 133,
199

[399] A. N. Yzelman. Generalised vectorisation for sparse matrix-vector multiplica-
tion. In IA3, pages 6:1–6:8, 2015. 86, 93, 110

[400] Hansjörg Zeller and Jim Gray. An adaptive hash join algorithm for multiuser
environments. In VLDB, pages 186–197, 1990. 161, 199

[401] Weiye Zhang and Per-Äke Larson. A memory-adaptive sort (MASORT) for
database systems. In CASCON, 1996. 161, 199

[402] Weiye Zhang and Per-Äke Larson. Dynamic memory adjustment for external
mergesort. In VLDB, pages 376–385, 1997. 161, 199

[403] Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman Amarasinghe,
and Matei Zaharia. Making caches work for graph analytics. In BigData, pages
293–302, 2017. 34

[404] Xiaowei Zhu, Wentao Han, and Wenguang Chen. GridGraph: Large-scale
graph processing on a single machine using 2-level hierarchical partitioning.
In USENIX ATC, pages 375–386, 2015. 34

[405] Gernot Ziegler. Summed area ripmaps. GPU Technology Confer-
ence (talk). Available at https://on-demand.gputechconf.com/gtc/2012/
presentations/S0096-Summed-Area-Ripmaps.pdf, 2012. 220, 235

326

https://on-demand.gputechconf.com/gtc/2012/presentations/S0096-Summed-Area-Ripmaps.pdf
https://on-demand.gputechconf.com/gtc/2012/presentations/S0096-Summed-Area-Ripmaps.pdf

[406] Uri Zwick. All pairs shortest paths in weighted directed graphs-exact and almost
exact algorithms. In FOCS, pages 310–319, 1998. 162

327

	Introduction
	The Locality-First Strategy
	Creating efficient multicore algorithms
	The locality-first strategy for general multicore algorithm engineering
	Enhancing locality by changing the data layout
	Exploiting locality without changing the data layout

	Terrace: A Hierarchical Graph Container for Skewed Dynamic Graphs
	Introduction
	Preliminaries
	Hierarchical data structure design
	Data structure choices
	Implementation of Terrace
	Evaluation
	Related work
	Conclusion

	A Parallel Packed Memory Array to Store Dynamic Graphs
	Introduction
	Packed Memory Array
	PMA modifications
	Intra-operation parallelism
	Inter-operation parallelism
	Parallel Packed Compressed Sparse Row
	Parallel graph operations
	Empirical evaluation
	Conclusion

	A Fill Estimation Algorithm for Sparse Matrices and Tensors in Blocked Formats
	Introduction
	Background
	PHIL
	Theoretical analysis
	Experimental results
	Conclusion

	Write-Optimized Skip Lists
	Introduction
	Structure and operations of a write-optimized skip list
	Structural bounds
	Simple runtime bounds
	High probability insertion-only bounds
	High probability bounds with insertions and deletions
	Conclusion

	Beyond Worst-Case Analysis of Multicore Caching Strategies
	Introduction
	Preliminaries
	Cyclic analysis for online problems
	Cyclic analysis for multicore caching
	Advantage of LRU with locality of reference
	Related multicore caching models
	Conclusion

	Multicore Paging Algorithms Cannot Be Competitive
	Introduction
	Non-competitiveness of lazy algorithms
	Conclusion

	Closing the Gap Between Cache-Oblivious and Cache-Adaptive Analysis
	Introduction
	Preliminaries
	Technical overview
	Cache-adaptivity of randomly shuffled profiles
	Robustness of worst-case profiles
	Box-size perturbations
	Start-time perturbations
	Box-order perturbations

	Related work
	Conclusion

	Cache-Adaptive Exploration: Experimental Results and Scan-Hiding for Adaptivity
	Introduction
	Generalized scan-hiding
	Strassen's algorithm
	Scan-hiding and Strassen's algorithm
	Experimental study
	Conclusion

	Work-Efficient Parallel Algorithms for Accurate Floating-Point Prefix Sums
	Introduction
	Characterizing prefix-sum algorithms
	Low sum-depth prefix sums
	Evaluation
	Vectorizing prefix sums
	Conclusion

	Multidimensional Included and Excluded Sums
	Introduction
	Preliminaries
	Included Sums
	Excluded sums and the box complement
	Box-complement algorithm
	Experimental evaluation
	Conclusion

	Conclusion
	Thesis summary
	Applicability of the locality-first strategy

	Packed Compressed Sparse Row
	Graph storage formats
	Packed Compressed Sparse Row
	Results

	Cache Adaptivity
	What bad memory profiles look like
	Pseudocode for MM-Scan
	Additional figures
	Proof of Theorem 9.14 and Lemma 9.13
	Proof of the No-catch-up Lemma
	Standardizing (a,b,c=1)-regular algorithms
	Triangle profiles
	Pseudocode for AdaptiveStrassen

	Included and Excluded Sums
	Analysis of corners algorithm
	Pseudocode and proofs for BDBS-1D
	Pseudocode and proofs for box-complement
	Additional experimental data

	Bibliography

