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ABSTRACT 

 

The design of a uniquely actuated point-supported spherical robot is investigated to support the 

claim that deformable spherical robots that are point-supported can increase the speed of the robot. 

The spherical robot design investigated in this thesis has a unique actuation system because it uses 

a low number of actuators with the goal of increasing average speed and reducing weight. The 

most relevant design requirements for this robot were to follow a 40cm/s trajectory and weigh 10 

kg or less. The overall design to meet these design requirements and others is discussed and is 

further explained how the proposed robot functions.  

 

A dynamic model was developed to determine a control system for the robot, and to verify the 

design. The robot was modeled in Simulink using this control system to determine if the 40 cm/s 

was feasible and to determine if the selected actuators meet the simulated torque and speed 

requirements. The torque and speed requirements were higher than anticipated for some of the 

selected actuators in the design presented in this work. When point-supported, the robot was able 

to follow 40 cm/s circular trajectory in a Simulink model. The robot was also modeled without the 

parts that make it point-supported, so that a comparison could be made between the two 

configurations. The robot in the configuration that was not point-supported followed the trajectory 

much more slowly, supporting the claim that point-supported deformable spherical robots can be 

faster. 
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Chapter 1. Introduction  
 

 Spherical robotics is a branch of robotics that takes advantage of spherical geometry to 

navigate in an environment. The spherical geometry allows for movement in any direction 

regardless of orientation, unlike a differential drive robot, for example, which must change its 

orientation to move in a different direction.  

 

There are several ways to actuate a spherical robot. In (Chase et al. 2012) three main 

“principles used to propel a spherical robot” were reviewed: barycenter offset, conservation of 

angular momentum, and shell transformation. Barycenter offset spherical robots move by shifting 

their center of mass inside of a spherical shell resulting in the robot rolling in the desired 

direction.  Barycenter offset designs are the easiest to implement because of their simplicity in 

design and control. The conservation of angular momentum principle uses control moment 

gyroscopes to actuate the robot by taking advantage of the law of conservation of angular 

momentum.  

 

In shell transformation (the focus of this thesis) the spherical robot deforms its outer shell 

to effectively roll (Chase et al. 2012). In (Nozaki et al. 2019) three main types of shell 

transformation or shape changing spherical robots are defined: radial skeleton, edge skeleton, and 

tensegrity. An edge skeleton spherical robot has several prismatic joints on the edges of a 

polyhedron to deform and roll. Tensegrity robots use a combination of rods and cables to change 

the positions of the polyhedron vertices that its geometry is modeled after. Lastly, radial skeleton 

spherical robots use prismatic joints that point radially outwards from a polyhedron center (Nozaki 

et al. 2019). The radial skeleton type of shell transformation spherical robot will be investigated 

here. 

 

There are two types of rolling forms in shape changing spherical robots: continuous and 

discrete. Continuous or “free form locomotion”, proposed by (Nozaki et al. 2019), allows for a 

smoother trajectory that does not rely on the contact area geometry. Discrete rolling follows a 

trajectory that does depend on the contact area geometry of the overall polyhedron that the robot 

is modeled after (Nozaki et al. 2019). Discrete rolling propels a spherical robot in a set number of 

directions in steps instead of continuous rolling that can be achieved by barycenter offset and 

conservation of angular momentum designs (Chase et al. 2012) (Nozaki et al. 2019).  

 

The robot considered in this work is a discrete rolling radial skeleton spherical robot. This 

robot has a unique geometry because it uses rounded bumpers to form a sphere so that the robot is 

effectively point-supported. The point-supported aspect is important because it allows the robot to 

move faster and follow a smoother trajectory than a polyhedron face supported robot. This work 

also presents a novel method for actuating a point-supported discrete rolling radial skeleton 

spherical robot.  

 

1.1 Motivation 
 

 The overall goal of this research is to design, simulate, and verify a point-supported radial 

skeleton spherical robot. The motivation behind this research is to reduce the weight and increase 

the speed of a traditional radial skeleton spherical robot design by minimizing the number of 
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actuators required, using a unique geometry, and taking advantage of the dynamics. Typically, in 

radial skeleton spherical robots such as the Buckybot (Grande et al. 2011) and the Spiny Multipedal 

Robot (Nozaki et al. 2018) not all of the prismatic joints are used at once to make a discrete roll, 

so fewer motors could be used in a way to actuate the robot. Minimizing the required actuators in 

conjunction with being point-supported can increase the speed of the robot compared to its 

counterparts with actuators on all joints because a much more powerful actuator can be used for 

propulsion so momentum can be gained more easily. 
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Chapter 2. Overall Design 
 

The overall design shown in Figure 1 takes advantage of the dynamics and geometry by 

using rounded bumpers on all faces and vertices of an icosahedron to emulate a sphere more than  

traditional designs like the Buckybot (Grande et al. 2011) the Spiney Multipedal Robot (Nozaki et 

al. 2018) and the Mochibot (Nozaki et al. 2019). The design presented in this work uses a powerful 

internal linear actuator to propel the robot in the desired direction. 

 

 
Figure 1: Overall design that shows rounded bumpers in green, black, red, and blue. The green 

bumpers can move radially in and outward to propel the robot in the desired direction shown by 

the bidirectional arrow. 

 

2.1 Design Requirements 
 

 The design requirements for this spherical robot are shown in the table below: 

 

Design Requirement Goal 

Average Speed 40 cm/s 

Geometry Less than 60 cm Diameter 

Mass 10 kg 

Number of Actuators Use Less than 5 actuators 

Table 1: Design Requirements 
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The average speed design requirement was determined from the Spiny Multipedal Robot 

(Nozaki et al. 2018) which could move at an average speed of 28 cm/s. The size requirement makes 

it possible for the robot to navigate in an indoor environment. A diameter of less than 70 cm also 

simplifies assembly and transport. The 10 kg design requirement also allows for easy transport and 

deployability.  

 

 To meet the design requirements, three main designs were considered and compared with 

the traditional design of having actuators on all joints. All the designs that were considered have 

an icosahedron frame made up of triangular plates connected by 138-degree angle brackets as 

shown in the figure below. 

 

 

 
Figure 2: Icosahedron frame made up of 20 base plates and 30 138-degree angle brackets. 

 

The traditional design in this case would be 20 lead screws each powered by its own 

individual motor. The most complex design that was considered used several bevel gears inside of 

the frame powered by a single motor with a series of electromagnetic clutches to transmit power 

from a bevel gear to a lead screw on each face. Another design that was considered used an internal 

robotic arm with a toothed clutch as an end effector to position itself to rotate lead screws on each 

face. The final design that was considered also used an internal arm, but instead of a lead screw on 

each face it used one lead screw on the internal arm that would push on spring-loaded passive 

joints. A pugh chart was used to help determine the best design as shown in the table below. 
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Number of 

Actuators 

Complexity Difficulty interfacing 

with each joint 

Control 

Difficulty 

Totals 

Weighting 3 2 2 3  

Motor for 

Each Joint 
0 0 0 0 0 

 

Bevel Gears 

and Clutches 

-1 -1 0 0 -5 

 

Internal Arm 

and Clutches 

+1 +1 -1 -1 0 

 

Internal Arm 

and single 

lead screw 

+1 +1 -0.5 -0.5 2.5 

Table 2: Pugh chart for design selection. 

 

The design that was decided upon was the internal arm with a single lead screw design 

because it is much simpler than the bevel gear design and does not have the difficulty of interfacing 

the toothed clutches that the internal arm with clutches design has. 
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2.2 Major Components 
 

The three major components of this design are the icosahedron frame, the internal arm, and 

the passive spring-loaded prismatic joints with triangular bumpers. The spring loaded joints have 

triangular rounded bumpers that form a 36 cm diameter sphere along with stationary pentagonal 

bumpers as shown in Figure 1. The Buckybot (Grande et al. 2011) also has rounded faces so that 

the robot does not fall on the actuated faces. In contrast, the design presented here has rounded 

bumpers on all faces and vertices to gain more momentum than polyhedron face supported designs 

because it does not have to stop in between steps. One of the prismatic joints is shown in Figure 

3. The icosahedron frame determines two major aspects of the robot. It dictates the physical size 

that the motors can be and the distance that the robot travels after a discrete roll. The base plates 

that make up the icosahedron frame serve four purposes. The main purpose is to interface with the 

138-degree angle brackets so that the entire icosahedron frame can be constructed. 

 

 
Figure 3: Prismatic joint with triangular rounded bumper. Upper bidirectional arrow shows  

linear motion of the joint and lower bidirectional arrow shows where the linear actuator pushes 

on the joint. The hexagonal shaft allows linear motion through a hexagonal hole in the top plate 

but restricts rotational motion. 3 Rubber bands (Not shown) will be used to spring load the joint. 

Certain models in this figure were obtained from McMaster-Carr and Servocity. See part 

numbers in the appendix. 

 

 The second purpose of the base plates is to interface with the vertex bases mounted 

on the vertices of the icosahedron frame shown in Figure 4 below. The base plates also have a hole 

in the center to allow the linear actuator on the internal arm to push an individual prismatic joint. 

The last role of the base plates is to connect to the prismatic joint top plates. The top plate shown 

in Figure 3 serves three purposes. The top plates mount to the base plates, connect to the pentagonal 

bumpers, and act as a linear bearing for the prismatic joint. The spring-loaded prismatic joints are 

made up of the top plate, hexagonal shaft, base plate, and triangular bumper. 
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Figure 4: This figure shows the connection between the base plates and a vertex base. 

 

 The internal actuating arm, shown in Figure 5, has 3 joints. Two are revolute joints and the 

third is a prismatic joint. The prismatic joint is a lead screw system as discussed in section 2.1. 

The function of the revolute joints is to position the prismatic joint of the internal arm radially 

outward from the center of the icosahedron frame so that it can push on the spring-loaded prismatic 

joints through the hole in the center of the triangular base plates. The revolute joint motors were 

selected based on geometry so that they would fit in the vertex bases and inside the icosahedron 

frame. 

 

 
Figure 5: Internal arm showing possible motion and labeled components. The overdrive gearbox 

has a 1:3.2 gear ratio to transmit power from the NEMA 23 Stepper motor to the lead screw. The 

transmission gearbox has a 1:1 gear ratio. Bidirectional arrows show possible motion. Certain 

models in this figure were obtained from McMaster-Carr, Pololu, and Servocity. See part 

numbers in the appendix.  
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The motors were also sized based on the desired speed of the robot overall. When the robot 

travels at 40 cm/s it takes approximately 0.5 seconds to roll from one pentagonal bumper on the 

floor to another pentagonal bumper. The travel time from one pentagonal bumper to another is 

important because with a pentagonal bumper on the floor there are five potential directions that 

triangular bumpers can propel the robot. This means that 0.5 seconds is the time that the revolute 

joint motors would have to align the internal arm with a prismatic joint. The maximum rotation 

for the revolute joints are 180 degrees for the motor labeled “Brushed DC Gear Motor 1” in Figure 

5 and 105.24 degrees for the motor labeled “Brushed DC Gear Motor 2” in Figure 5.  

 

A trapezoidal velocity profile for the revolute joints was assumed with a total travel time 

of 0.5 seconds for the maximum travel rotation of 180 degrees for motor 1 and 105.24 degrees for 

motor 2.  In the “trapveltraj” MATLAB function, the default profile sets the peak velocity at 1.5 

times the average velocity. The average velocities of each motor for the maximum travel rotations 

are 60 RPM (rotations per minute) for motor 1 and 35 RPM for motor 2. This corresponds to 

maximum velocities of 90 RPM and 52.5 RPM respectively. The angular accelerations of these 

velocity profiles are 56.5 rad/s^2 for motor 1 and 33.0 rad/s^2 for motor 2.  

 

Using the angular accelerations and moments of inertia the torque required to accelerate 

the mass of the internal arm can be found. The moment of inertia of the mass that motor 1 rotates 

is approximately 25.1 kg cm^2 according to a Solidworks measurement.  The moment of inertia 

of the mass that motor 2 rotates is 31.1 kg cm^2 according to a Solidworks measurement.  This 

results in torque requirements of 0.142 Nm for motor 1 and 0.102 Nm for motor 2.  

 

The motors that were selected for these joints both had a no-load speed of 100 RPM and a 

stall torque of 2.84 Nm. The motor for the prismatic joint of the internal arm was sized based on 

kinematic requirements for overall motion of the robot, which required the design of an overdrive 

gearbox to transmit power from the motor to the lead screw while increasing speed. Each push or 

extension of the joint was assumed to take 0.1 seconds to be significantly less than the time it takes 

to roll from one pentagonal bumper to another. The travel distance of this prismatic joint is 7.5 

cm.  

 

Assuming a trapezoidal velocity profile for this prismatic joint the average velocity of the 

joint would be 75 cm/s, and like the calculations for the revolute joints the maximum velocity 

would be 1.5 times the average velocity. The maximum velocity of the internal arm prismatic joint 

would be 112.5 cm/s. The lead screw of the internal arm prismatic joint has an 8mm lead. 

Combining the maximum velocity of the prismatic joint and the 8mm lead results in the rotational 

velocity of 8440 RPM. The maximum RPM of the NEMA 23 stepper motor that was selected for 

this design is approximately 3900 RPM at 24 V half stepping with 4 A per phase. The McMaster-

Carr part number of this motor is included in the appendix. The overdrive gearbox has a gear ratio 

of 1:3.2, so the maximum RPM of overdrive gearbox output to the lead screw is 12,480 RPM, 

which is higher than the 8440 RPM requirement. The dynamics of the linear actuator of the internal 

arm will be further discussed in section 3.1. 
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Chapter 3. Dynamics and Controls 
 

3.1 System Dynamics 
 

 This robot was modeled to estimate the force requirements for the linear actuator and 

determine a method for controlling the robot. The robot is modeled as a 36 cm diameter sphere 

with an external force acting radially inward on the surface of the sphere along the axis that a 

prismatic joint would lie. Figure 6 shows a free body diagram of the simplified model. 

 

 
Figure 6: Free body diagram of simplified spherical model. 𝐹⃗𝑏(𝑡) is the force versus time that a 

prismatic joint would apply on the robot. Where 𝑚𝑔⃗ represents the weight of the robot and 𝑁⃗⃗⃗ is 

the normal force that the floor applies on the robot. 𝜃𝑔 is the angle from the gravity vector to the 

applied bumper force. 

 

 This model makes the following simplifying assumptions: the bumper force is constant, 

the angle from the bumper force to the vertical stays constant while the bumper force is applied, 

the sphere slips on the surface while the bumper force is applied, the bumper force is small enough 

so that there is no vertical motion, friction is small relative to the bumper force, and the sphere 

rolls and does not slip when the bumper force is finished acting. Because this model has both a 

change in momentum and a force versus time, the impulse momentum theorem can be used to 

determine the necessary force to achieve the desired overall robot velocity. The estimate for the 

internal arm linear actuator extension of 0.1 seconds can be used to estimate the amount of time 

that the bumper force is applied. With the estimated time that the force is applied, the change in 

momentum from rest to 40 cm/s, which will give the typical average force necessary for a nominal 

speed of 40 cm/s. The following equations help to determine this range of average forces:  

 

𝐹⃗𝑁𝑒𝑡(𝑡)∆𝑡 = 𝑚(𝑣⃗2 − 𝑣⃗1)     (1)   
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||𝐹⃗⃗⃗⃗⃗⃗
𝑁𝑒𝑡(𝑡)|| =  ||𝐹⃗𝑏(𝑡)|| ∙ sin(𝜃𝑔)                                             (2) 

 

 

||𝐹⃗𝑏(𝑡)|| ∙ sin (𝜃𝑔) ∙ ∆𝑡 = ||𝑚(𝑣⃗2 − 𝑣⃗1)||                     (3) 

 

 

||𝐹⃗𝑏(𝑡)|| =
||𝑚(𝑣⃗⃗2−𝑣⃗⃗1)||

sin (𝜃𝑔)∙∆𝑡
             (4) 

 

Where 𝐹⃗𝑁𝑒𝑡(𝑡) is the net force on the sphere, ∆𝑡 is the amount of time that the bumper force 

is applied, 𝑚 is the mass of the robot, 𝑣⃗1 is the velocity of the robot before the force is applied, 𝑣⃗2 

is the velocity of the robot after the force is applied, 𝐹⃗𝑏(𝑡) is the force that a prismatic joint applies 

on the rest of the robot when actuated, and 𝜃𝑔 is the angle between a prismatic joint axis and gravity. 

The resulting bumper force is 66 N for accelerating to 40 cm/s from rest. The ranges of forces and 

translational speeds of the lead screw are based on a linear approximation of the torque speed curve 

of the selected stepper motor and the gear ratio of 1:3.2 of the overdrive gearbox. These ranges 

correspond to a maximum speed of the linear actuator of approximately 1.6 m/s. Based on the 

equation obtained from (vCalc 2016) a range of forces that the linear actuator can output is 27 N 

at 1.6 m/s to 151 N at 0.32 m/s. This assumes a coefficient of friction of 0.2 in the calculation of 

the input torque to lead screw force. The bumper force necessary to accelerate the robot from rest 

falls within the linear actuator force range, so this simplified model supports the selected stepper 

motor as sufficient to control the robot. 

 

3.2 Control System 
 

 The control system for the robot is shown in Figure 7. The input is a waypoint that the 

robot is commanded to navigate to, and the outputs of the plant are the robot position, orientation, 

and velocity. To simplify the simulation the output from the controller will be a selected bumper 

to actuate, a force for the selected bumper to apply, and a duration of time to apply the force. The 

feedback into the system will be the position, orientation, and velocity of the robot which would 

be reported by an IMU (Inertial Measurement Unit) in a physical implementation, but for 

simulation purposes a transform sensor Simulink block will be used to determine the translational 

velocity. 
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Figure 7: Control diagram, where 𝑚 is the total mass. 

  

 The control system uses a PID controller to control the position of the robot as it follows a 

commanded trajectory. The prismatic joint selector shown in Figure 7 selects the bumper that 

aligns best with the opposite direction of the desired impulse vector and aligns the internal arm 

with it to push on the selected prismatic joint. The plant in the control diagram consists of the 

dynamics of the bumpers and internal arm. The control system implementation in simulation will 

be further discussed in chapter 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 

 

Chapter 4. Simulation and Experimental Results 
 

4.1 Primitive Sphere and External Force Simulation 
 

 The primary goals of these simulations are to verify the design and tune the PID controller. 

The simulations discussed in this work were performed using Simulink. The first simulation that 

was implemented utilized a primitive sphere model available in Simulink. This simulation was 

used to verify the basic dynamics of the robot after one propulsion. This primitive sphere model 

used a diameter of 36 cm and a mass of 10 kg. Rigid transforms were used to simulate the positions 

of one of the triangular bumpers. An external force was added to the follower frame of the 

triangular bumper transform, and it applied a constant force for a finite time to simplify the 

simulation. To achieve a final velocity of 40.85 cm/s from rest a force of 90 N was applied for 0.1 

seconds. This shows that the model developed in section 3.1 has limitations due to some of the 

simplifying assumptions, but 90 N is in the range of forces that the linear actuator can apply. 

 

4.2 Pentagonal and Triangular Bumpers Simulation 
 

The next simulation used the models of the triangular and pentagonal bumpers as shown in 

Figure 1. Rigid transformations from an unactuated 6 degree of freedom joint were made to 

prismatic joints and triangular bumpers were added for each joint. Rigid transformations from the 

6 degree of freedom joint were also made to the pentagonal bumper positions. This simulation 

excluded the dynamics of the internal arm by making the internal arm mass zero. Additional mass 

was added to the robot to compensate for the mass lost from the internal arm. The motion of the 

internal arm was still implemented in this simulation to verify the timing between propulsions. 

The main purpose of this simulation was to test the robot with modeled bumpers instead of an 

external force on a sphere in section 4.1. The secondary purpose of this simulation was to compare 

it to a simulation with the internal arm dynamics included. To select a prismatic joint to actuate, a 

prismatic joint selector function was developed to take a desired impulse, robot velocity, and joint 

positions as inputs and output revolute joint positions based on trapezoidal velocity profiles using 

the “trapveltraj” MATLAB function to align with a selected prismatic joint that will apply a force 

for 0.1 seconds. This prismatic joint selector function corresponds to the prismatic joint selector 

block in the control diagram. The prismatic joint positions were determined from transform sensor 

Simulink blocks. The transform sensor blocks measured the position vector from the center of the 

robot to the prismatic joint positions in world frame coordinates. The positions of the revolute 

joints were measured from the revolute joint Simulink blocks. The prismatic joint selector function 

MATLAB implementation is included in the appendix. The prismatic joint selector function 

follows this set of steps:  

 

1. Determine the vectors from the center of the robot to the position of each prismatic joint in 

fixed world frame coordinates. This step corresponds to the joint positions input to the 

prismatic joint selector shown in Figure 7. 

2. Determine the rotational velocity axis by finding the cross product of the vertical vector 

and the robot velocity vector. 

3. Calculate the potential travel time it would take to get to each prismatic joint by calculating 

the triangular velocity profiles it would take to rotate to each prismatic joint of both 
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revolute joints. The revolute joints move concurrently while rotating to a prismatic joint, 

so the revolute joint with the longer actuation time is the overall potential travel time.  

4. Multiply the travel time by 2 to account for the variability in speed.  

5. Use the travel times, radius of the robot, and velocity of the robot to find the angles that 

the robot would rotate to after each potential travel time. 

6. Determine rotation matrices from the angles that the robot would roll after the potential 

travel times and the rotational velocity axis.  

7. Multiply a rotation matrix by the corresponding bumper position to find the predicted 

position of one bumper after its travel time. Repeat this for all bumpers 

8. Determine the triangular bumpers that are eligible to push the robot by finding their angles 

to the gravity vector. 

9. Find the maximum absolute angle within a range of -180 to 180 degrees between the 

horizontal components of each of the triangular bumper vectors eligible to push and the 

desired impulse vector to determine the best suited bumper to push.  

10. Determine the necessary force to push the triangular bumper to get the desired impulse 

using equation 4.  

11. Divide the maximum absolute angle between the horizontal components of the selected 

triangular bumper vector 

12. Calculate the velocity profiles for the revolute joints to move to the selected bumper and 

send this command to the internal arm model. This step corresponds to the internal arm 

velocity profiles output of the prismatic joint selector. 

13. After the internal arm aligns with the selected bumper, output a constant force for 0.1 

seconds to the selected prismatic joint. This step corresponds to bumper impulse output of 

the prismatic joint selector block in Figure 7. 

14. Repeat steps 1 through 13. 

 

The prismatic joint blocks in Simulink can be actuated by providing a linear position, or an actuator 

force. To simplify the simulation and ensure the limit on the force that could be applied, the 

prismatic joint blocks were actuated with a force. The plant block in Figure 7 corresponds to the 6 

degree of freedom joint, the prismatic joints for each triangular bumper model, the pentagonal 

bumper models, and spatial contact between each bumper and the simulated flat surface. The plant 

also includes the dynamics of the internal arm, but in this section the internal arm dynamics of the 

plant is not implemented.  

 

The PID block in Figure 7 was implemented using a discrete PID Simulink block. The PID 

parameters were tuned using the Ziegler-Nichols method as a starting point (Ellis 2016), and final 

gains are listed in table 3 below. The average speeds of the selected motors for the revolute joints 

were too slow to achieve a reasonable trajectory. This required increasing the average speed of the 

revolute joints to 5 times the average speed of the selected motors for these revolute joints. These 

results show that there was an underestimation of the motor kinematics during motor sizing. 

 

PID Gain Value 

Proportional 2.52 

Integral 0.868 

Derivative 0.8641 

Table 3: Gains for PID controller used in simulation without the internal arm dynamics. 
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A circular trajectory was traversed by the simulated robot to measure performance. The 

trajectory was commanded with a circular trajectory generator function. The circular trajectory 

generator function is included in the appendix. Plots of the trajectories of the center of the robot, 

command and response plots, and position errors vs. time are shown in the figures below similar 

to the plots in (Liu Y. et al 2008) and (Palacín J. et al. 2021). 

 

 
Figure 8: Plot of circular trajectory of center of robot without the internal arm dynamics. 

 

 
Figure 9: The x, y, and Euclidean position error versus time for the circular trajectory without 

the internal arm dynamics. The maximum errors in x and y were 0.2678 meters and 0.2181 

meters, respectively. The Euclidean error is the square root of the sum of the x error squared and 

the y error squared. The maximum Euclidean error was 0.2951 meters. 
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Figure 10: These plots show the x and y components of position versus time of the commanded 

trajectory and the actual robot trajectory without the internal arm dynamics. 

 
Figure 11: Speed versus time plot for circular trajectory without internal arm dynamics. The 

average speed of this data is 44.26 cm/s. 

  

  Figure 8 shows a plot of both the commanded and actual trajectory of the center of the 

robot. Figure 9 shows the x, y, and Euclidean position errors versus time. The maximum errors 

are all less than the diameter of the robot. The command and response plot shown in Figure 10 

depicts how well the robot followed the trajectory over time, and it shows very little lag between 

the commanded and actual position. Figure 11 shows a plot of the speed of the robot versus time. 

The plot of speed versus time shows that the speed is significantly variable due to the delay 
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between propulsions. This simulation confirmed that the rounded bumpers can propel the robot 

over a circular commanded trajectory with error less than the diameter of the robot. This 

simulation also showed that the robot is capable of a 40 cm/s speed while following a circular 

trajectory when the internal arm dynamics are not included. 

 

4.3 Internal Arm Dynamics Simulation 
 

 The internal arm dynamics adds a complication to the system because it applies reaction 

torque and force to the rest of the robot structure. The simulation described in this section simulates 

the reaction torque and force by giving the internal arm mass in its Simulink model. The results of 

this simulation were used to compare to the previous section to determine if the reaction torque 

and force had any effect on the trajectory performance. The same PID gains in table 3 were used 

to determine if the reaction torque and force influenced performance. The plots in Figures 12-15 

below are the results of the simulated robot following a circular trajectory using the PID gains 

from Table 3. 

 

 
Figure 12: Plot of circular trajectory with internal arm dynamics, using PID gains from Table 3. 
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Figure 13: The x, y, and Euclidean position error versus time for the circular trajectory with the 

internal arm dynamics and the PID gains from Table 3. The maximum errors in x and y were 

0.6669 meters and 1.9345 meters, respectively. The maximum Euclidean error was 1.9380 

meters. 

 

 
Figure 14: These plots show the x and y components of position versus time of the commanded 

trajectory and the actual robot trajectory with the internal arm dynamics and PID gains from 

Table 3. 
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Figure 15: Speed versus time plot of circular trajectory with internal arm dynamics. The average 

speed was 66.55 cm/s. 

 

 These plots support the claim that the internal arm reaction torque and force make the 

robot much less accurate under the same conditions and same PID gains because with the same 

PID gains the maximum trajectory errors were much higher. The robot was tuned again to 

account for the reaction torque and force because the reaction torque and force were not included 

in the dynamics model. The following PID gains in Table 4 were used to achieve a smoother 

trajectory. 

 
PID Gain Value 

Proportional 3.24 

Integral 0.56 

Derivative 0.6696 

Table 4: PID gains for simulated robot with internal arm dynamics after re-tuning. 
 
 The following plots in Figures 16-19 show the results of the re-tuning to account for the 

dynamics of the internal arm. 
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Figure 16: Plot of circular trajectory with internal arm dynamics, using PID gains from Table 4. 

 

 
Figure 17: The x, y, and Euclidean position error versus time for the circular trajectory with the 

internal arm dynamics and the PID gains from Table 4. The maximum errors in x and y were 

0.2020 meters and 0.3371 meters, respectively. The maximum Euclidean error was 0.3596 

meters. 
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Figure 18: These plots show the x and y components of position versus time of the commanded 

trajectory and the actual robot trajectory with the internal arm dynamics and PID gains from 

Table 4. 

 

 
Figure 19: Speed versus time plot of circular trajectory with internal arm dynamics. The average 

speed was 44.62 cm/s. 

 

 These plots show that the complete Simulink model of the robot including the dynamics 

of the bumpers and internal arm can follow a circular trajectory with error still under the 

diameter of the robot in simulation.  
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4.4 Triangular Bumpers and Internal Arm Simulation 
 

 To assess the performance of the robot when it is not point-supported, the simulation 

described in this section did not include the pentagonal bumpers. This simulation did implement 

the internal arm dynamics. 3 cm diameter spheres were used as bumpers instead of the triangular 

bumpers to keep the robot from rolling out of control after a discrete roll. The prismatic joint 

selector function and Simulink model was slightly altered to simulate the robot without pentagonal 

bumpers. The PID block was removed, and the velocity feedback was also removed because they 

were not necessary for the control of the robot in this configuration. The main feedback was the 

position of the robot and an input trajectory. The plots in Figures 20 through 23 below show the 

results of this simulation.  

 

 
Figure 20: Plot of 10cm/s circular trajectory without pentagonal bumpers. The discrete steps can 

be seen in the zig-zag pattern of the trajectory. 
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Figure 21: The x, y, and Euclidean position error versus time for the circular trajectory without 

pentagonal bumpers. The maximum errors in x and y were 0.5341 meters and 0.5270 meters, 

respectively. The maximum Euclidean error was 0.6781 meters. 

 

 
Figure 22: These plots show the x and y components of position versus time of the 10 cm/s 

commanded trajectory and the actual robot trajectory without the pentagonal bumpers. 
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Figure 23: Speed versus time plot of circular trajectory with internal arm dynamics. The average 

speed was 30.07 cm/s. 

 

 These plots support the claim that being point-supported can increase the average speed 

of a radial skeleton spherical robot because compared to the point-supported simulations with the 

pentagonal bumpers, this simulated robot was only able to follow a 10 cm/s commanded 

trajectory. The damping coefficients between the spherical bumpers and the floor were increased 

to reduce the time it took for the robot to reduce its speed between propulsions. The static and 

kinetic friction coefficients were also increased to simulate the robot in this configuration 

because friction plays a larger role when the robot is not point-supported. 
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Chapter 5. Conclusion 
 

 This thesis has investigated the hypothesis that a point-supported discrete rolling radial 

skeleton spherical robot is capable of higher speeds than polyhedron face supported spherical 

robots in simulation. Although the simulation of the design with both triangular bumpers, 

pentagonal bumpers, and the internal arm dynamics showed that the high instability, and high 

variability in speed makes the point-supported design difficult to control.  The results in section 

4.4 showed that the unique actuation design for the design presented in this work does not increase 

the average speed of a radial skeleton spherical robot from the speed recorded by the Spiney 

Multipedal Robot of 28 cm/s (Nozaki et al. 2018). The unique actuation can achieve higher speeds 

when point-supported because it is easier to gain angular momentum with a rolling sphere 

compared to a polyhedron. This shows that the reduced number of actuators had a significant 

impact on the speed of the point-supported deformable spherical robot because higher forces could 

be applied to joints due to the more powerful actuator, which resulted in a higher attainable average 

velocity. 

 

The performance of the robot declined when the internal arm dynamics was included in the 

simulation with the PID gains in Table 3 because of the reaction torque and force applied by the 

internal arm onto the rest of the robot. Although by re-tuning the PID gains, similar performance 

to the simulation without internal arm dynamics was achieved. Simulation has merit for early 

verification of dynamics and controls development, but it will not necessarily capture the exact 

behavior of an actual robot.  To further verify the simulations in this thesis the robot would need 

to be developed and tested.  
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Appendix 

 
Robot Parameter Value 

Mass 10 kg 

Overall Diameter 36 cm 

Triangular bumper Side Length 9.8 cm 

Pentagonal Bumper Side Length 9 cm 

Prismatic Joint Travel Distance 6 cm 

Linear Actuator Travel Distance 8 cm 

Overdrive Gearbox Gear Ratio 1:3.2 

Transmission Gearbox Gear Ratio 1:1 

Brushed DC Gear Motor No-Load Speed 100 RPM 

Brushed DC Gear Motor Stall Torque 2.84 Nm 

Stepper Motor Max Speed 3900 RPM 

Stepper Motor Max Holding Torque 1.67 Nm 

Table 5: List of parameters of the robot. 

 

 

Part Quantity Distributer Part Number 

M4 14mm Low-Profile Screw 20 McMaster-Carr 92855A847 

M4 80mm Screw 60 McMaster-Carr 92095A173 

8mm Rex Shaft 72mm  20 Servocity 2106-4008-0720 

Table 6: List of parts with part numbers to reference 3D models used in the prismatic joint 

model shown in Figure 4. 

 
Part Quantity Distributer Part Number 

Stepper Motor 1 McMaster-Carr 6627T54 

10-32 1” Low-Profile Socket Head Screw 2 McMaster-Carr 92220A176 

10-32 4” Pan Head Phillips Screw 1 McMaster-Carr 91772A850 

10-32 5” Pan Head Phillips Screw 1 McMaster-Carr 90272A386 

10-32 Locknut 2 McMaster-Carr 90633A411 

M4  Low-Profile Socket Head Screw 4 McMaster-Carr 93070A107 

M4 Spacer 4 McMaster-Carr 94669A006 

M4 Locknut 4 McMaster-Carr 90576A103 

M3 35 mm Screw 4 McMaster-Carr 92467A484 

M3 Locknut 4 McMaster-Carr 90576A102 

Aluminum Tube for Lead Screw Nut 1 Servocity 4101-1014-0300 

120mm goRAIL Extrusion 1 Servocity 1109-0024-0120 

32mm Bore Pillow Block Bearing 1 Servocity 1603-0032-0032 

99:1 Gearmotor HP 12V with Encoder 2 Pololu 4847 

Table 7: List of parts with part numbers to reference 3D models used in the internal arm model 

shown in Figure 4. 
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Prismatic Joint Selector Function 
 

function [prismatic_joint_forces, joint_20_position_output, 

joint_21_position_output] = controller(time, bumper_positions, 

robot_velocity, desired_impulse, joint_20_position_input, 

joint_21_position_input) 

    %joints 20 and 21 refer to the internal arm revolute joints 

 

    %angles that the revolute joints of the internal arm must 

move to to 

    %align with each bumper. 

    joint_20_angles = [-36, -108, -180,-252,-324,0,-36,-72,-108,-

144,-180,-216,-252,-288,-324,0,-72,-144,-216,-288]; 

    joint_21_angles = [52.62, 52.62, 52.62, 52.62, 52.62, -10.81, 

10.81, -10.81, 10.81, -10.81, 10.81, -10.81, 10.81, -10.81, 

10.81, -52.62, -52.62, -52.62, -52.62, -52.62]; 

 

    %set revolute joint velocities 

    joint_20_position_output = joint_20_position_input; 

    joint_21_position_output = joint_21_position_input; 

 

    %joint_22_travel_time is the amount of time that the force is 

applied 

    %by a prismatic joint 

    joint_22_travel_time = 0.1; 

 

    %robot parameter 

    overall_radius_of_robot = 0.18; 

 

    %a threshold for robot velocity to know when to actuate 

joints and when 

    %to make certain calculations. In meters/sec 

    min_robot_velocity = 0.05; 

 

    %the maximum and minimum angles to gravity that a bumper can 

be to be 

    %considered to be actuated 

    max_angle_to_gravity = 40; 
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    min_angle_to_gravity = 30; 

 

    %initialize the prismatic joint forces with negative 1 newton 

to keep 

    %them in the closed position 

    holding_force = 1; 

    prismatic_joint_forces = -holding_force*ones(20, 1); 

 

    %the peak rotational acceleration of both revolute joints in 

deg/sec^2 

    revolute_joints_acc = 51572; 

 

    %the discrete sample time of this MATLAB function block 

    sample_time = 0.001; 

 

    %persistent variables 

 

    %start_actuation_time is the time that the joints should 

start moving 

    persistent start_actuation_time; 

 

    %stage_of_operation dictates if the function is determining a 

bumper to actuate determining the 

    %required force, moving the internal arm, or actuating a 

bumper. 

    persistent stage_of_operation; 

 

    %force_output is the calculated force that a prismatic joint 

will apply 

    %from the input parameters 

    persistent force_output; 

 

    %this variable is the index of the bumper that will be 

actuated 

    persistent selected_bumper_to_actuate_index_persistent; 

 

    %trajectories of each revolute joint 

    persistent joint_20_trajectory; 

    persistent joint_21_trajectory; 
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    %timing for each revolute joint travel 

    persistent joint_20_time; 

    persistent joint_21_time; 

 

    %the angles from bumpers to gravity vector after each 

potential 

    %internal arm overall travel time 

    persistent predicted_angles_to_gravity; 

    persistent max_angle_between_impulse_and_bumper; 

 

    %initialize the persistent variables 

    if isempty(start_actuation_time) 

        start_actuation_time = 0; 

    end 

 

    if isempty(stage_of_operation) 

        stage_of_operation = 0; 

    end 

 

    if isempty(force_output) 

        force_output = -5; 

    end 

 

    if isempty(selected_bumper_to_actuate_index_persistent) 

        selected_bumper_to_actuate_index_persistent = 0; 

    end 

 

    if isempty(joint_20_trajectory) 

        joint_20_trajectory = 0; 

    end 

 

    if isempty(joint_21_trajectory) 

        joint_21_trajectory = 0; 

    end 

 

    if isempty(joint_20_time) 

        joint_20_time = 0; 

    end 
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    if isempty(joint_21_time) 

        joint_21_time = 0; 

    end 

 

    if isempty(predicted_angles_to_gravity) 

        predicted_angles_to_gravity = zeros(1, 20); 

    end 

 

    if isempty(max_angle_between_impulse_and_bumper) 

        max_angle_between_impulse_and_bumper = 0; 

    end 

 

    %stage 1 selects a bumper to actuate 

    if stage_of_operation == 0 && time > sample_time 

        %rotational_velocity_axis is a unit vector that 

represents the rotational 

        %axis of the entire robot as it rolls 

        if norm(robot_velocity) > min_robot_velocity 

            rotational_velocity_axis = cross([0 0 1], 

robot_velocity); 

            rotational_velocity_axis = 

rotational_velocity_axis/norm(rotational_velocity_axis); 

        else 

            rotational_velocity_axis = zeros(3, 1); 

        end 

 

        %these joints follow trapezoidal velocity profiles to 

rotate to a bumper and 

        %the travel time it takes to get to each bumper is 

calculated based on the angular acceleration 

        potential_joint_20_displacements = 180 - joint_20_angles 

- joint_20_position_input; 

 

        for i = 1:length(potential_joint_20_displacements) 

            if potential_joint_20_displacements(i) > 180 

                potential_joint_20_displacements(i) = 

potential_joint_20_displacements(i) - 360; 

            elseif potential_joint_20_displacements(i) < -180 
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                potential_joint_20_displacements(i) = 

potential_joint_20_displacements(i) + 360; 

            end 

        end 

 

        potential_joint_20_travel_times = 

sqrt(abs(2*potential_joint_20_displacements)/revolute_joints_acc)

; 

 

        potential_joint_21_displacements = -joint_21_angles - 

joint_21_position_input; 

 

        for i = 1:length(potential_joint_21_displacements) 

            if potential_joint_21_displacements(i) > 180 

                potential_joint_21_displacements(i) = 

potential_joint_21_displacements(i) - 360; 

            elseif potential_joint_21_displacements(i) < -180 

                potential_joint_21_displacements(i) = 

potential_joint_21_displacements(i) + 360; 

            end 

        end 

 

        potential_joint_21_travel_times = 

sqrt(abs(2*potential_joint_21_displacements)/revolute_joints_acc)

; 

 

        %potential travel times finds the maximum travel time 

between 

        %both joints because they move at the same time so 

whichever has 

        %the highest travel time will be the overall travel time 

of the 

        %move to the next bumper 

        %the coefficient of 2 ensures that the selected bumper 

accounts for 

        %the variability in velocity 

        potential_travel_times = 

max(potential_joint_20_travel_times , 

potential_joint_21_travel_times)*2; 
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        %using potential travel times, the angle that the robot 

would roll 

        %after each move to a bumper can be found 

 

        if norm(robot_velocity) > min_robot_velocity 

            potential_travel_angle_for_each_chosen_bumper = 

(norm(robot_velocity) * 

potential_travel_times)/overall_radius_of_robot; 

        else 

            potential_travel_angle_for_each_chosen_bumper = 

zeros(1, 20); 

        end 

 

        %initialize predicted_bumper_positions 

        %predicted_bumper_vectors are the bumper positions after 

the 

        %internal arm would move to the corresponding bumper 

        predicted_bumper_positions = zeros(3, 20); 

 

        for i = 1:20 

            %The rotation matrix corresponding to the rotational 

velocity 

            %axis and the travel angle is found for each bumper 

            TheoraticalRollRotationMatrix = 

rotationVectorToMatrix(-

potential_travel_angle_for_each_chosen_bumper(i) * 

rotational_velocity_axis); 

 

            predicted_bumper_positions(:, i) = 

TheoraticalRollRotationMatrix * bumper_positions(:, i); 

        end 

 

        %find the predicted angles to gravity 

        predicted_angles_to_gravity = real(acosd(max( min([0 0 -

1]* 

predicted_bumper_positions./vecnorm(predicted_bumper_positions) , 

1), -1))); 

        predicted_angles_to_gravity_thresholds = 
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(predicted_angles_to_gravity < 

max_angle_to_gravity).*(predicted_angles_to_gravity > 

min_angle_to_gravity); 

 

        %find the angles from the desired impulse vector to each 

bumper vector 

        %only using the horizontal components of the predicted 

bumper vectors 

        predicted_vectors_to_bumpers_with_zero_z = cat(1, 

predicted_bumper_positions(1:2, :), zeros(1, 20)); 

 

        angles_between_x_axis_and_bumpers = 

real(acosd(max(min((([1 0 0] * 

predicted_vectors_to_bumpers_with_zero_z))./vecnorm(predicted_vec

tors_to_bumpers_with_zero_z), 1), -1))) .* 

sign(predicted_vectors_to_bumpers_with_zero_z(2, :)); 

        angle_between_x_axis_and_desired_impulse = 

real(acosd(max(min((dot([1 0 0], 

desired_impulse))/norm(desired_impulse), 1), -

1)))*sign(desired_impulse(2)); 

        angles_between_bumpers_and_desired_impulse = 

angles_between_x_axis_and_bumpers - 

angle_between_x_axis_and_desired_impulse; 

 

        for 

i=1:length(angles_between_bumpers_and_desired_impulse) 

            if angles_between_bumpers_and_desired_impulse(i) > 

180 

                angles_between_bumpers_and_desired_impulse(i) = 

angles_between_bumpers_and_desired_impulse(i) - 360; 

            elseif angles_between_bumpers_and_desired_impulse(i) 

< -180 

                angles_between_bumpers_and_desired_impulse(i) = 

angles_between_bumpers_and_desired_impulse(i) + 360; 

            end 

        end 

 

        %find the maximum angle and its index between the desired 

impulse and horizontal 
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        %components of the bumper positions 

        [max_angle_between_impulse_and_bumper, 

selected_bumper_to_actuate_index_persistent] =  

max(abs(angles_between_bumpers_and_desired_impulse).*predicted_an

gles_to_gravity_thresholds); 

 

        %ensure that a bumper was actually selected and use a 

threshold for 

        %the maximum angle between impulse and the selected 

bumper 

        if selected_bumper_to_actuate_index_persistent > 0 && 

max_angle_between_impulse_and_bumper > 135 

            stage_of_operation = 1; 

        end 

    %stage 1 sets the selected bumper, the force to be applied, 

the 

    %start_actuation time, and the joint trajectories 

    elseif stage_of_operation == 1 

        stage_of_operation = 2; 

        start_actuation_time = time; 

 

        force_output = min( 

(abs(norm(desired_impulse))/joint_22_travel_time)/abs(sin(deg2rad

(predicted_angles_to_gravity(selected_bumper_to_actuate_index_per

sistent)))), 170); 

        force_output = force_output * 

(max_angle_between_impulse_and_bumper/180); 

 

        joint_20_displacement = (180 - 

joint_20_angles(selected_bumper_to_actuate_index_persistent)) - 

joint_20_position_input; 

 

        %ensure that the joint displacements are within [-180, 

180] 

        if joint_20_displacement > 180 

            joint_20_displacement = joint_20_displacement - 360; 

        elseif joint_20_displacement < -180 

            joint_20_displacement = joint_20_displacement + 360; 

        end 
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        %find the joint 20 travel time 

        joint_20_travel_time = 

sqrt(abs(2*joint_20_displacement)/revolute_joints_acc); 

 

        %if the joint travel time is less than the sample time 

then the 

        %displacement is also small so the joint is already in 

the 

        %right position 

        if joint_20_travel_time > sample_time 

            [joint_20_trajectory, ~, ~, joint_20_time] = 

trapveltraj([joint_20_position_input (joint_20_position_input + 

joint_20_displacement)], floor(joint_20_travel_time/sample_time), 

'Acceleration', revolute_joints_acc); 

        else 

            joint_20_trajectory = joint_20_position_input; 

        end 

 

        joint_21_displacement = ( -

joint_21_angles(selected_bumper_to_actuate_index_persistent)) - 

joint_21_position_input; 

 

        %ensure that the joint displacements are within [-180, 

180] 

        if joint_21_displacement > 180 

            joint_21_displacement = joint_21_displacement - 360; 

        elseif joint_21_displacement < -180 

            joint_21_displacement = joint_21_displacement + 360; 

        end 

 

        %find the joint 21 travel time 

        joint_21_travel_time = 

sqrt(abs(2*joint_21_displacement)/revolute_joints_acc); 

 

        %if the joint travel time is less than the sample time 

then the 

        %displacement is also small so the joint is already in 

the 
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        %right position 

        if joint_21_travel_time > sample_time 

            [joint_21_trajectory, ~, ~, joint_21_time] = 

trapveltraj([joint_21_position_input (joint_21_position_input + 

joint_21_displacement)], floor(joint_21_travel_time/sample_time), 

'Acceleration', revolute_joints_acc); 

        else 

            joint_21_trajectory = joint_21_position_input; 

        end 

    %stage 2 corresponds to the movement of the revolute joints 

of the 

    %internal arm 

    elseif stage_of_operation == 2 

        [~,joint_20_trajectory_index] = (min(abs((time - 

start_actuation_time) - joint_20_time))); 

 

        if joint_20_trajectory_index < 1 

            joint_20_trajectory_index = 1; 

        elseif joint_20_trajectory_index > 

length(joint_20_trajectory) 

            joint_20_trajectory_index = 

length(joint_20_trajectory); 

        end 

 

        [~,joint_21_trajectory_index] = (min(abs((time - 

start_actuation_time) - joint_21_time))); 

 

        if joint_21_trajectory_index < 1 

        elseif joint_21_trajectory_index > 

length(joint_21_trajectory) 

            joint_21_trajectory_index = 

length(joint_21_trajectory); 

        end 

 

        %when both movements have concluded move on to the next 

stage 

        if joint_20_trajectory_index == 

length(joint_20_trajectory) && joint_21_trajectory_index == 

length(joint_21_trajectory) 



42 

 

            stage_of_operation = 3; 

            start_actuation_time = time; 

        else 

            %assign the joint position outputs to the trapezoidal 

trajectories 

            joint_20_position_output = 

joint_20_trajectory(joint_20_trajectory_index); 

            joint_21_position_output = 

joint_21_trajectory(joint_21_trajectory_index); 

        end 

 

    %stage 3 corresponds to the movement of the selected 

prismatic joint 

    elseif stage_of_operation == 3 

        %stage 3 outputs a constant force for the 

joint_22_travel_time , 

        %and then closes by applying a negative force. It also 

makes sure 

        %that the bumper has actually closed using the bumper 

positions 

        joint_22_start_time = start_actuation_time; 

 

        if (time - joint_22_start_time) < joint_22_travel_time && 

(time - joint_22_start_time) > 0 

            

prismatic_joint_forces(selected_bumper_to_actuate_index_persisten

t) = force_output; 

        elseif (time - joint_22_start_time) >= 

joint_22_travel_time && (norm(bumper_positions(:, 

selected_bumper_to_actuate_index_persistent)) > 

overall_radius_of_robot-0.01) 

            

prismatic_joint_forces(selected_bumper_to_actuate_index_persisten

t) = -holding_force; 

        elseif (time - joint_22_start_time) >= 

joint_22_travel_time && norm(bumper_positions(:, 

selected_bumper_to_actuate_index_persistent)) < 

overall_radius_of_robot 

            stage_of_operation = 0; 
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        end 

    end 

end 

Published with MATLAB® R2020a 
 

Circular Trajectory Generator Function 
 

function [waypoint, end_time] = 

circular_trajectory_generator(time) 

    %radius of circular trajectory 

    radius = 1.5; 

 

    %the speed that the robot should move at to follow the 

trajectory 

    desired_trajectory_speed = 0.1; 

 

    %the time it takes to complete the trajectory at the desired 

speed 

    end_time = (2*pi*radius)/desired_trajectory_speed; 

 

    %set the waypoint output position 

    if (time < end_time) 

        waypoint = 

[(radius*cos(desired_trajectory_speed/radius*time) - radius) 

(radius*sin(desired_trajectory_speed/radius*time)) 0]; 

    else 

        waypoint = [0 0 0]; 

    end 

 

end 

Published with MATLAB® R2020a 
 

 

 

 

 

https://www.mathworks.com/products/matlab
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