
Design of a Deformable Spherical Robot

by

Nathaniel Justin Lee

Submitted to the

Department of Mechanical Engineering

in Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Mechanical Engineering

at the

Massachusetts Institute of Technology

February 2022

© 2022 Nathaniel Justin Lee. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and

electronic copies of this thesis document in whole or in part in any medium now known or

hereafter created.

Signature of Author:

 Department of Mechanical Engineering

 February 4, 2022

Certified by:

 David E. Hardt

 Ralph E. and Evelyn F. Cross Professor of Mechanical Engineering

 Thesis Supervisor

Accepted by:

 Kenneth Kamrin

 Associate Professor of Mechanical Engineering

 Undergraduate Officer

2

Design of a Deformable Spherical Robot

by

Nathaniel Lee

Submitted to the Department of Mechanical Engineering

on February 4, 2022 in Partial Fulfillment of the

Requirements for the Degree of

Bachelor of Science in Mechanical Engineering

ABSTRACT

The design of a uniquely actuated point-supported spherical robot is investigated to support the

claim that deformable spherical robots that are point-supported can increase the speed of the robot.

The spherical robot design investigated in this thesis has a unique actuation system because it uses

a low number of actuators with the goal of increasing average speed and reducing weight. The

most relevant design requirements for this robot were to follow a 40cm/s trajectory and weigh 10

kg or less. The overall design to meet these design requirements and others is discussed and is

further explained how the proposed robot functions.

A dynamic model was developed to determine a control system for the robot, and to verify the

design. The robot was modeled in Simulink using this control system to determine if the 40 cm/s

was feasible and to determine if the selected actuators meet the simulated torque and speed

requirements. The torque and speed requirements were higher than anticipated for some of the

selected actuators in the design presented in this work. When point-supported, the robot was able

to follow 40 cm/s circular trajectory in a Simulink model. The robot was also modeled without the

parts that make it point-supported, so that a comparison could be made between the two

configurations. The robot in the configuration that was not point-supported followed the trajectory

much more slowly, supporting the claim that point-supported deformable spherical robots can be

faster.

Thesis Supervisor: David E. Hardt

Tile: Ralph E. and Evelyn F. Cross Professor of Mechanical Engineering

3

Table of Contents
Abstract 2

Table of Contents 3

List of Figures 4

List of Tables 5

Chapter 1. Introduction 6

1.1 Motivation 6

Chapter 2. Overall Design 8

2.1 Design Requirements 8

2.2 Major Components 11

Chapter 3. Dynamics and Controls 14

3.1 System Dynamics 14

3.2 Control System 15

Chapter 4. Simulation and Experimental Results 17

4.1 Primitive Sphere and External Force Simulation 17

4.2 Pentagonal and Triangular Bumpers Simulation 17

4.3 Internal Arm Dynamics Simulation 21

4.4 Triangular Bumpers and Internal Arm Simulation 26

Chapter 5. Conclusion 29

Acknowledgements 30

Appendix 31

Prismatic Joint Selector Function 32

Circular Trajectory Generator Function 43

Bibliography 44

4

List of Figures

Figure 1: Overall design that shows rounded bumpers in green, black, red, and blue 8
Figure 2: Icosahedron frame made up of 20 base plates and 30 138-degree angle brackets 9
Figure 3: Prismatic joint with triangular rounded bumper 11
Figure 4: Connection between the base plates and a vertex base 12
Figure 5: Internal arm showing possible motion and labeled components 12

Figure 6: Free body diagram of simplified spherical model 14

Figure 7: Control diagram, where m is the total mass 16
Figure 8: Plot of circular trajectory of center of robot without the internal arm dynamics 19
Figure 9: The x, y, and Euclidean position error versus time for the circular trajectory without

the internal arm dynamics 19
Figure 10: The x and y components of position versus time of the commanded trajectory and the

actual robot trajectory without internal arm dynamics 20

Figure 11: Speed versus time plot for circular trajectory without internal arm dynamics 20

Figure 12: Plot of circular trajectory with internal arm dynamics 21
Figure 13: The x, y, and Euclidean position error versus time for the circular trajectory with

internal arm dynamics 22

Figure 14: The x and y components of position versus time of the commanded trajectory and the

actual robot trajectory with the internal arm dynamics and PID gains from Table 3 22

Figure 15: Speed versus time plot of circular trajectory with internal arm dynamics 23
Figure 16: Plot of circular trajectory with internal arm dynamics, using PID gains from Table 4

 24

Figure 17: The x, y, and Euclidean position error versus time for the circular trajectory with the

internal arm dynamics and the PID gains from Table 4 24

Figure 18: These plots show the x and y components of position versus time of the commanded

trajectory and the actual robot trajectory with the internal arm dynamics and PID gains from

Table 4 25
Figure 19: Speed versus time plot of circular trajectory with internal arm dynamics. 25

Figure 20: Plot of 10cm/s circular trajectory without pentagonal bumpers 26
Figure 21: The x, y, and Euclidean position error versus time for the circular trajectory without

pentagonal bumpers 27

Figure 22: These plots show the x and y components of position versus time of the 10 cm/s

commanded trajectory and the actual robot trajectory without the pentagonal bumpers 27
Figure 23: Speed versus time plot of circular trajectory with internal arm dynamics 28

5

List of Tables
Table 1: Design Requirements 8

Table 2: Pugh chart for design selection. 10
Table 3: Gains for PID controller used in simulation without the internal arm dynamics. 18
Table 4: PID gains for simulated robot with internal arm dynamics after re-tuning. 23
Table 5: List of parameters of the robot. 31
Table 6: List of parts with part numbers to reference 3D models used in the prismatic joint

model shown in Figure 4. 31
Table 7: List of parts with part numbers to reference 3D models used in the internal arm model

shown in Figure 4. 31

6

Chapter 1. Introduction

 Spherical robotics is a branch of robotics that takes advantage of spherical geometry to

navigate in an environment. The spherical geometry allows for movement in any direction

regardless of orientation, unlike a differential drive robot, for example, which must change its

orientation to move in a different direction.

There are several ways to actuate a spherical robot. In (Chase et al. 2012) three main

“principles used to propel a spherical robot” were reviewed: barycenter offset, conservation of

angular momentum, and shell transformation. Barycenter offset spherical robots move by shifting

their center of mass inside of a spherical shell resulting in the robot rolling in the desired

direction. Barycenter offset designs are the easiest to implement because of their simplicity in

design and control. The conservation of angular momentum principle uses control moment

gyroscopes to actuate the robot by taking advantage of the law of conservation of angular

momentum.

In shell transformation (the focus of this thesis) the spherical robot deforms its outer shell

to effectively roll (Chase et al. 2012). In (Nozaki et al. 2019) three main types of shell

transformation or shape changing spherical robots are defined: radial skeleton, edge skeleton, and

tensegrity. An edge skeleton spherical robot has several prismatic joints on the edges of a

polyhedron to deform and roll. Tensegrity robots use a combination of rods and cables to change

the positions of the polyhedron vertices that its geometry is modeled after. Lastly, radial skeleton

spherical robots use prismatic joints that point radially outwards from a polyhedron center (Nozaki

et al. 2019). The radial skeleton type of shell transformation spherical robot will be investigated

here.

There are two types of rolling forms in shape changing spherical robots: continuous and

discrete. Continuous or “free form locomotion”, proposed by (Nozaki et al. 2019), allows for a

smoother trajectory that does not rely on the contact area geometry. Discrete rolling follows a

trajectory that does depend on the contact area geometry of the overall polyhedron that the robot

is modeled after (Nozaki et al. 2019). Discrete rolling propels a spherical robot in a set number of

directions in steps instead of continuous rolling that can be achieved by barycenter offset and

conservation of angular momentum designs (Chase et al. 2012) (Nozaki et al. 2019).

The robot considered in this work is a discrete rolling radial skeleton spherical robot. This

robot has a unique geometry because it uses rounded bumpers to form a sphere so that the robot is

effectively point-supported. The point-supported aspect is important because it allows the robot to

move faster and follow a smoother trajectory than a polyhedron face supported robot. This work

also presents a novel method for actuating a point-supported discrete rolling radial skeleton

spherical robot.

1.1 Motivation

 The overall goal of this research is to design, simulate, and verify a point-supported radial

skeleton spherical robot. The motivation behind this research is to reduce the weight and increase

the speed of a traditional radial skeleton spherical robot design by minimizing the number of

7

actuators required, using a unique geometry, and taking advantage of the dynamics. Typically, in

radial skeleton spherical robots such as the Buckybot (Grande et al. 2011) and the Spiny Multipedal

Robot (Nozaki et al. 2018) not all of the prismatic joints are used at once to make a discrete roll,

so fewer motors could be used in a way to actuate the robot. Minimizing the required actuators in

conjunction with being point-supported can increase the speed of the robot compared to its

counterparts with actuators on all joints because a much more powerful actuator can be used for

propulsion so momentum can be gained more easily.

8

Chapter 2. Overall Design

The overall design shown in Figure 1 takes advantage of the dynamics and geometry by

using rounded bumpers on all faces and vertices of an icosahedron to emulate a sphere more than

traditional designs like the Buckybot (Grande et al. 2011) the Spiney Multipedal Robot (Nozaki et

al. 2018) and the Mochibot (Nozaki et al. 2019). The design presented in this work uses a powerful

internal linear actuator to propel the robot in the desired direction.

Figure 1: Overall design that shows rounded bumpers in green, black, red, and blue. The green

bumpers can move radially in and outward to propel the robot in the desired direction shown by

the bidirectional arrow.

2.1 Design Requirements

 The design requirements for this spherical robot are shown in the table below:

Design Requirement Goal

Average Speed 40 cm/s

Geometry Less than 60 cm Diameter

Mass 10 kg

Number of Actuators Use Less than 5 actuators

Table 1: Design Requirements

9

The average speed design requirement was determined from the Spiny Multipedal Robot

(Nozaki et al. 2018) which could move at an average speed of 28 cm/s. The size requirement makes

it possible for the robot to navigate in an indoor environment. A diameter of less than 70 cm also

simplifies assembly and transport. The 10 kg design requirement also allows for easy transport and

deployability.

 To meet the design requirements, three main designs were considered and compared with

the traditional design of having actuators on all joints. All the designs that were considered have

an icosahedron frame made up of triangular plates connected by 138-degree angle brackets as

shown in the figure below.

Figure 2: Icosahedron frame made up of 20 base plates and 30 138-degree angle brackets.

The traditional design in this case would be 20 lead screws each powered by its own

individual motor. The most complex design that was considered used several bevel gears inside of

the frame powered by a single motor with a series of electromagnetic clutches to transmit power

from a bevel gear to a lead screw on each face. Another design that was considered used an internal

robotic arm with a toothed clutch as an end effector to position itself to rotate lead screws on each

face. The final design that was considered also used an internal arm, but instead of a lead screw on

each face it used one lead screw on the internal arm that would push on spring-loaded passive

joints. A pugh chart was used to help determine the best design as shown in the table below.

10

Number of

Actuators

Complexity Difficulty interfacing

with each joint

Control

Difficulty

Totals

Weighting 3 2 2 3

Motor for

Each Joint
0 0 0 0 0

Bevel Gears

and Clutches

-1 -1 0 0 -5

Internal Arm

and Clutches

+1 +1 -1 -1 0

Internal Arm

and single

lead screw

+1 +1 -0.5 -0.5 2.5

Table 2: Pugh chart for design selection.

The design that was decided upon was the internal arm with a single lead screw design

because it is much simpler than the bevel gear design and does not have the difficulty of interfacing

the toothed clutches that the internal arm with clutches design has.

11

2.2 Major Components

The three major components of this design are the icosahedron frame, the internal arm, and

the passive spring-loaded prismatic joints with triangular bumpers. The spring loaded joints have

triangular rounded bumpers that form a 36 cm diameter sphere along with stationary pentagonal

bumpers as shown in Figure 1. The Buckybot (Grande et al. 2011) also has rounded faces so that

the robot does not fall on the actuated faces. In contrast, the design presented here has rounded

bumpers on all faces and vertices to gain more momentum than polyhedron face supported designs

because it does not have to stop in between steps. One of the prismatic joints is shown in Figure

3. The icosahedron frame determines two major aspects of the robot. It dictates the physical size

that the motors can be and the distance that the robot travels after a discrete roll. The base plates

that make up the icosahedron frame serve four purposes. The main purpose is to interface with the

138-degree angle brackets so that the entire icosahedron frame can be constructed.

Figure 3: Prismatic joint with triangular rounded bumper. Upper bidirectional arrow shows

linear motion of the joint and lower bidirectional arrow shows where the linear actuator pushes

on the joint. The hexagonal shaft allows linear motion through a hexagonal hole in the top plate

but restricts rotational motion. 3 Rubber bands (Not shown) will be used to spring load the joint.

Certain models in this figure were obtained from McMaster-Carr and Servocity. See part

numbers in the appendix.

 The second purpose of the base plates is to interface with the vertex bases mounted

on the vertices of the icosahedron frame shown in Figure 4 below. The base plates also have a hole

in the center to allow the linear actuator on the internal arm to push an individual prismatic joint.

The last role of the base plates is to connect to the prismatic joint top plates. The top plate shown

in Figure 3 serves three purposes. The top plates mount to the base plates, connect to the pentagonal

bumpers, and act as a linear bearing for the prismatic joint. The spring-loaded prismatic joints are

made up of the top plate, hexagonal shaft, base plate, and triangular bumper.

12

Figure 4: This figure shows the connection between the base plates and a vertex base.

 The internal actuating arm, shown in Figure 5, has 3 joints. Two are revolute joints and the

third is a prismatic joint. The prismatic joint is a lead screw system as discussed in section 2.1.

The function of the revolute joints is to position the prismatic joint of the internal arm radially

outward from the center of the icosahedron frame so that it can push on the spring-loaded prismatic

joints through the hole in the center of the triangular base plates. The revolute joint motors were

selected based on geometry so that they would fit in the vertex bases and inside the icosahedron

frame.

Figure 5: Internal arm showing possible motion and labeled components. The overdrive gearbox

has a 1:3.2 gear ratio to transmit power from the NEMA 23 Stepper motor to the lead screw. The

transmission gearbox has a 1:1 gear ratio. Bidirectional arrows show possible motion. Certain

models in this figure were obtained from McMaster-Carr, Pololu, and Servocity. See part

numbers in the appendix.

13

The motors were also sized based on the desired speed of the robot overall. When the robot

travels at 40 cm/s it takes approximately 0.5 seconds to roll from one pentagonal bumper on the

floor to another pentagonal bumper. The travel time from one pentagonal bumper to another is

important because with a pentagonal bumper on the floor there are five potential directions that

triangular bumpers can propel the robot. This means that 0.5 seconds is the time that the revolute

joint motors would have to align the internal arm with a prismatic joint. The maximum rotation

for the revolute joints are 180 degrees for the motor labeled “Brushed DC Gear Motor 1” in Figure

5 and 105.24 degrees for the motor labeled “Brushed DC Gear Motor 2” in Figure 5.

A trapezoidal velocity profile for the revolute joints was assumed with a total travel time

of 0.5 seconds for the maximum travel rotation of 180 degrees for motor 1 and 105.24 degrees for

motor 2. In the “trapveltraj” MATLAB function, the default profile sets the peak velocity at 1.5

times the average velocity. The average velocities of each motor for the maximum travel rotations

are 60 RPM (rotations per minute) for motor 1 and 35 RPM for motor 2. This corresponds to

maximum velocities of 90 RPM and 52.5 RPM respectively. The angular accelerations of these

velocity profiles are 56.5 rad/s^2 for motor 1 and 33.0 rad/s^2 for motor 2.

Using the angular accelerations and moments of inertia the torque required to accelerate

the mass of the internal arm can be found. The moment of inertia of the mass that motor 1 rotates

is approximately 25.1 kg cm^2 according to a Solidworks measurement. The moment of inertia

of the mass that motor 2 rotates is 31.1 kg cm^2 according to a Solidworks measurement. This

results in torque requirements of 0.142 Nm for motor 1 and 0.102 Nm for motor 2.

The motors that were selected for these joints both had a no-load speed of 100 RPM and a

stall torque of 2.84 Nm. The motor for the prismatic joint of the internal arm was sized based on

kinematic requirements for overall motion of the robot, which required the design of an overdrive

gearbox to transmit power from the motor to the lead screw while increasing speed. Each push or

extension of the joint was assumed to take 0.1 seconds to be significantly less than the time it takes

to roll from one pentagonal bumper to another. The travel distance of this prismatic joint is 7.5

cm.

Assuming a trapezoidal velocity profile for this prismatic joint the average velocity of the

joint would be 75 cm/s, and like the calculations for the revolute joints the maximum velocity

would be 1.5 times the average velocity. The maximum velocity of the internal arm prismatic joint

would be 112.5 cm/s. The lead screw of the internal arm prismatic joint has an 8mm lead.

Combining the maximum velocity of the prismatic joint and the 8mm lead results in the rotational

velocity of 8440 RPM. The maximum RPM of the NEMA 23 stepper motor that was selected for

this design is approximately 3900 RPM at 24 V half stepping with 4 A per phase. The McMaster-

Carr part number of this motor is included in the appendix. The overdrive gearbox has a gear ratio

of 1:3.2, so the maximum RPM of overdrive gearbox output to the lead screw is 12,480 RPM,

which is higher than the 8440 RPM requirement. The dynamics of the linear actuator of the internal

arm will be further discussed in section 3.1.

14

Chapter 3. Dynamics and Controls

3.1 System Dynamics

 This robot was modeled to estimate the force requirements for the linear actuator and

determine a method for controlling the robot. The robot is modeled as a 36 cm diameter sphere

with an external force acting radially inward on the surface of the sphere along the axis that a

prismatic joint would lie. Figure 6 shows a free body diagram of the simplified model.

Figure 6: Free body diagram of simplified spherical model. 𝐹⃗𝑏(𝑡) is the force versus time that a

prismatic joint would apply on the robot. Where 𝑚𝑔⃗ represents the weight of the robot and 𝑁⃗⃗⃗ is

the normal force that the floor applies on the robot. 𝜃𝑔 is the angle from the gravity vector to the

applied bumper force.

 This model makes the following simplifying assumptions: the bumper force is constant,

the angle from the bumper force to the vertical stays constant while the bumper force is applied,

the sphere slips on the surface while the bumper force is applied, the bumper force is small enough

so that there is no vertical motion, friction is small relative to the bumper force, and the sphere

rolls and does not slip when the bumper force is finished acting. Because this model has both a

change in momentum and a force versus time, the impulse momentum theorem can be used to

determine the necessary force to achieve the desired overall robot velocity. The estimate for the

internal arm linear actuator extension of 0.1 seconds can be used to estimate the amount of time

that the bumper force is applied. With the estimated time that the force is applied, the change in

momentum from rest to 40 cm/s, which will give the typical average force necessary for a nominal

speed of 40 cm/s. The following equations help to determine this range of average forces:

𝐹⃗𝑁𝑒𝑡(𝑡)∆𝑡 = 𝑚(𝑣⃗2 − 𝑣⃗1) (1)

15

||𝐹⃗⃗⃗⃗⃗⃗
𝑁𝑒𝑡(𝑡)|| = ||𝐹⃗𝑏(𝑡)|| ∙ sin(𝜃𝑔) (2)

||𝐹⃗𝑏(𝑡)|| ∙ sin (𝜃𝑔) ∙ ∆𝑡 = ||𝑚(𝑣⃗2 − 𝑣⃗1)|| (3)

||𝐹⃗𝑏(𝑡)|| =
||𝑚(𝑣⃗⃗2−𝑣⃗⃗1)||

sin (𝜃𝑔)∙∆𝑡
 (4)

Where 𝐹⃗𝑁𝑒𝑡(𝑡) is the net force on the sphere, ∆𝑡 is the amount of time that the bumper force

is applied, 𝑚 is the mass of the robot, 𝑣⃗1 is the velocity of the robot before the force is applied, 𝑣⃗2

is the velocity of the robot after the force is applied, 𝐹⃗𝑏(𝑡) is the force that a prismatic joint applies

on the rest of the robot when actuated, and 𝜃𝑔 is the angle between a prismatic joint axis and gravity.

The resulting bumper force is 66 N for accelerating to 40 cm/s from rest. The ranges of forces and

translational speeds of the lead screw are based on a linear approximation of the torque speed curve

of the selected stepper motor and the gear ratio of 1:3.2 of the overdrive gearbox. These ranges

correspond to a maximum speed of the linear actuator of approximately 1.6 m/s. Based on the

equation obtained from (vCalc 2016) a range of forces that the linear actuator can output is 27 N

at 1.6 m/s to 151 N at 0.32 m/s. This assumes a coefficient of friction of 0.2 in the calculation of

the input torque to lead screw force. The bumper force necessary to accelerate the robot from rest

falls within the linear actuator force range, so this simplified model supports the selected stepper

motor as sufficient to control the robot.

3.2 Control System

 The control system for the robot is shown in Figure 7. The input is a waypoint that the

robot is commanded to navigate to, and the outputs of the plant are the robot position, orientation,

and velocity. To simplify the simulation the output from the controller will be a selected bumper

to actuate, a force for the selected bumper to apply, and a duration of time to apply the force. The

feedback into the system will be the position, orientation, and velocity of the robot which would

be reported by an IMU (Inertial Measurement Unit) in a physical implementation, but for

simulation purposes a transform sensor Simulink block will be used to determine the translational

velocity.

16

Figure 7: Control diagram, where 𝑚 is the total mass.

 The control system uses a PID controller to control the position of the robot as it follows a

commanded trajectory. The prismatic joint selector shown in Figure 7 selects the bumper that

aligns best with the opposite direction of the desired impulse vector and aligns the internal arm

with it to push on the selected prismatic joint. The plant in the control diagram consists of the

dynamics of the bumpers and internal arm. The control system implementation in simulation will

be further discussed in chapter 4.

17

Chapter 4. Simulation and Experimental Results

4.1 Primitive Sphere and External Force Simulation

 The primary goals of these simulations are to verify the design and tune the PID controller.

The simulations discussed in this work were performed using Simulink. The first simulation that

was implemented utilized a primitive sphere model available in Simulink. This simulation was

used to verify the basic dynamics of the robot after one propulsion. This primitive sphere model

used a diameter of 36 cm and a mass of 10 kg. Rigid transforms were used to simulate the positions

of one of the triangular bumpers. An external force was added to the follower frame of the

triangular bumper transform, and it applied a constant force for a finite time to simplify the

simulation. To achieve a final velocity of 40.85 cm/s from rest a force of 90 N was applied for 0.1

seconds. This shows that the model developed in section 3.1 has limitations due to some of the

simplifying assumptions, but 90 N is in the range of forces that the linear actuator can apply.

4.2 Pentagonal and Triangular Bumpers Simulation

The next simulation used the models of the triangular and pentagonal bumpers as shown in

Figure 1. Rigid transformations from an unactuated 6 degree of freedom joint were made to

prismatic joints and triangular bumpers were added for each joint. Rigid transformations from the

6 degree of freedom joint were also made to the pentagonal bumper positions. This simulation

excluded the dynamics of the internal arm by making the internal arm mass zero. Additional mass

was added to the robot to compensate for the mass lost from the internal arm. The motion of the

internal arm was still implemented in this simulation to verify the timing between propulsions.

The main purpose of this simulation was to test the robot with modeled bumpers instead of an

external force on a sphere in section 4.1. The secondary purpose of this simulation was to compare

it to a simulation with the internal arm dynamics included. To select a prismatic joint to actuate, a

prismatic joint selector function was developed to take a desired impulse, robot velocity, and joint

positions as inputs and output revolute joint positions based on trapezoidal velocity profiles using

the “trapveltraj” MATLAB function to align with a selected prismatic joint that will apply a force

for 0.1 seconds. This prismatic joint selector function corresponds to the prismatic joint selector

block in the control diagram. The prismatic joint positions were determined from transform sensor

Simulink blocks. The transform sensor blocks measured the position vector from the center of the

robot to the prismatic joint positions in world frame coordinates. The positions of the revolute

joints were measured from the revolute joint Simulink blocks. The prismatic joint selector function

MATLAB implementation is included in the appendix. The prismatic joint selector function

follows this set of steps:

1. Determine the vectors from the center of the robot to the position of each prismatic joint in

fixed world frame coordinates. This step corresponds to the joint positions input to the

prismatic joint selector shown in Figure 7.

2. Determine the rotational velocity axis by finding the cross product of the vertical vector

and the robot velocity vector.

3. Calculate the potential travel time it would take to get to each prismatic joint by calculating

the triangular velocity profiles it would take to rotate to each prismatic joint of both

18

revolute joints. The revolute joints move concurrently while rotating to a prismatic joint,

so the revolute joint with the longer actuation time is the overall potential travel time.

4. Multiply the travel time by 2 to account for the variability in speed.

5. Use the travel times, radius of the robot, and velocity of the robot to find the angles that

the robot would rotate to after each potential travel time.

6. Determine rotation matrices from the angles that the robot would roll after the potential

travel times and the rotational velocity axis.

7. Multiply a rotation matrix by the corresponding bumper position to find the predicted

position of one bumper after its travel time. Repeat this for all bumpers

8. Determine the triangular bumpers that are eligible to push the robot by finding their angles

to the gravity vector.

9. Find the maximum absolute angle within a range of -180 to 180 degrees between the

horizontal components of each of the triangular bumper vectors eligible to push and the

desired impulse vector to determine the best suited bumper to push.

10. Determine the necessary force to push the triangular bumper to get the desired impulse

using equation 4.

11. Divide the maximum absolute angle between the horizontal components of the selected

triangular bumper vector

12. Calculate the velocity profiles for the revolute joints to move to the selected bumper and

send this command to the internal arm model. This step corresponds to the internal arm

velocity profiles output of the prismatic joint selector.

13. After the internal arm aligns with the selected bumper, output a constant force for 0.1

seconds to the selected prismatic joint. This step corresponds to bumper impulse output of

the prismatic joint selector block in Figure 7.

14. Repeat steps 1 through 13.

The prismatic joint blocks in Simulink can be actuated by providing a linear position, or an actuator

force. To simplify the simulation and ensure the limit on the force that could be applied, the

prismatic joint blocks were actuated with a force. The plant block in Figure 7 corresponds to the 6

degree of freedom joint, the prismatic joints for each triangular bumper model, the pentagonal

bumper models, and spatial contact between each bumper and the simulated flat surface. The plant

also includes the dynamics of the internal arm, but in this section the internal arm dynamics of the

plant is not implemented.

The PID block in Figure 7 was implemented using a discrete PID Simulink block. The PID

parameters were tuned using the Ziegler-Nichols method as a starting point (Ellis 2016), and final

gains are listed in table 3 below. The average speeds of the selected motors for the revolute joints

were too slow to achieve a reasonable trajectory. This required increasing the average speed of the

revolute joints to 5 times the average speed of the selected motors for these revolute joints. These

results show that there was an underestimation of the motor kinematics during motor sizing.

PID Gain Value

Proportional 2.52

Integral 0.868

Derivative 0.8641

Table 3: Gains for PID controller used in simulation without the internal arm dynamics.

19

A circular trajectory was traversed by the simulated robot to measure performance. The

trajectory was commanded with a circular trajectory generator function. The circular trajectory

generator function is included in the appendix. Plots of the trajectories of the center of the robot,

command and response plots, and position errors vs. time are shown in the figures below similar

to the plots in (Liu Y. et al 2008) and (Palacín J. et al. 2021).

Figure 8: Plot of circular trajectory of center of robot without the internal arm dynamics.

Figure 9: The x, y, and Euclidean position error versus time for the circular trajectory without

the internal arm dynamics. The maximum errors in x and y were 0.2678 meters and 0.2181

meters, respectively. The Euclidean error is the square root of the sum of the x error squared and

the y error squared. The maximum Euclidean error was 0.2951 meters.

20

Figure 10: These plots show the x and y components of position versus time of the commanded

trajectory and the actual robot trajectory without the internal arm dynamics.

Figure 11: Speed versus time plot for circular trajectory without internal arm dynamics. The

average speed of this data is 44.26 cm/s.

 Figure 8 shows a plot of both the commanded and actual trajectory of the center of the

robot. Figure 9 shows the x, y, and Euclidean position errors versus time. The maximum errors

are all less than the diameter of the robot. The command and response plot shown in Figure 10

depicts how well the robot followed the trajectory over time, and it shows very little lag between

the commanded and actual position. Figure 11 shows a plot of the speed of the robot versus time.

The plot of speed versus time shows that the speed is significantly variable due to the delay

21

between propulsions. This simulation confirmed that the rounded bumpers can propel the robot

over a circular commanded trajectory with error less than the diameter of the robot. This

simulation also showed that the robot is capable of a 40 cm/s speed while following a circular

trajectory when the internal arm dynamics are not included.

4.3 Internal Arm Dynamics Simulation

 The internal arm dynamics adds a complication to the system because it applies reaction

torque and force to the rest of the robot structure. The simulation described in this section simulates

the reaction torque and force by giving the internal arm mass in its Simulink model. The results of

this simulation were used to compare to the previous section to determine if the reaction torque

and force had any effect on the trajectory performance. The same PID gains in table 3 were used

to determine if the reaction torque and force influenced performance. The plots in Figures 12-15

below are the results of the simulated robot following a circular trajectory using the PID gains

from Table 3.

Figure 12: Plot of circular trajectory with internal arm dynamics, using PID gains from Table 3.

22

Figure 13: The x, y, and Euclidean position error versus time for the circular trajectory with the

internal arm dynamics and the PID gains from Table 3. The maximum errors in x and y were

0.6669 meters and 1.9345 meters, respectively. The maximum Euclidean error was 1.9380

meters.

Figure 14: These plots show the x and y components of position versus time of the commanded

trajectory and the actual robot trajectory with the internal arm dynamics and PID gains from

Table 3.

23

Figure 15: Speed versus time plot of circular trajectory with internal arm dynamics. The average

speed was 66.55 cm/s.

 These plots support the claim that the internal arm reaction torque and force make the

robot much less accurate under the same conditions and same PID gains because with the same

PID gains the maximum trajectory errors were much higher. The robot was tuned again to

account for the reaction torque and force because the reaction torque and force were not included

in the dynamics model. The following PID gains in Table 4 were used to achieve a smoother

trajectory.

PID Gain Value

Proportional 3.24

Integral 0.56

Derivative 0.6696

Table 4: PID gains for simulated robot with internal arm dynamics after re-tuning.

 The following plots in Figures 16-19 show the results of the re-tuning to account for the

dynamics of the internal arm.

24

Figure 16: Plot of circular trajectory with internal arm dynamics, using PID gains from Table 4.

Figure 17: The x, y, and Euclidean position error versus time for the circular trajectory with the

internal arm dynamics and the PID gains from Table 4. The maximum errors in x and y were

0.2020 meters and 0.3371 meters, respectively. The maximum Euclidean error was 0.3596

meters.

25

Figure 18: These plots show the x and y components of position versus time of the commanded

trajectory and the actual robot trajectory with the internal arm dynamics and PID gains from

Table 4.

Figure 19: Speed versus time plot of circular trajectory with internal arm dynamics. The average

speed was 44.62 cm/s.

 These plots show that the complete Simulink model of the robot including the dynamics

of the bumpers and internal arm can follow a circular trajectory with error still under the

diameter of the robot in simulation.

26

4.4 Triangular Bumpers and Internal Arm Simulation

 To assess the performance of the robot when it is not point-supported, the simulation

described in this section did not include the pentagonal bumpers. This simulation did implement

the internal arm dynamics. 3 cm diameter spheres were used as bumpers instead of the triangular

bumpers to keep the robot from rolling out of control after a discrete roll. The prismatic joint

selector function and Simulink model was slightly altered to simulate the robot without pentagonal

bumpers. The PID block was removed, and the velocity feedback was also removed because they

were not necessary for the control of the robot in this configuration. The main feedback was the

position of the robot and an input trajectory. The plots in Figures 20 through 23 below show the

results of this simulation.

Figure 20: Plot of 10cm/s circular trajectory without pentagonal bumpers. The discrete steps can

be seen in the zig-zag pattern of the trajectory.

27

Figure 21: The x, y, and Euclidean position error versus time for the circular trajectory without

pentagonal bumpers. The maximum errors in x and y were 0.5341 meters and 0.5270 meters,

respectively. The maximum Euclidean error was 0.6781 meters.

Figure 22: These plots show the x and y components of position versus time of the 10 cm/s

commanded trajectory and the actual robot trajectory without the pentagonal bumpers.

28

Figure 23: Speed versus time plot of circular trajectory with internal arm dynamics. The average

speed was 30.07 cm/s.

 These plots support the claim that being point-supported can increase the average speed

of a radial skeleton spherical robot because compared to the point-supported simulations with the

pentagonal bumpers, this simulated robot was only able to follow a 10 cm/s commanded

trajectory. The damping coefficients between the spherical bumpers and the floor were increased

to reduce the time it took for the robot to reduce its speed between propulsions. The static and

kinetic friction coefficients were also increased to simulate the robot in this configuration

because friction plays a larger role when the robot is not point-supported.

29

Chapter 5. Conclusion

 This thesis has investigated the hypothesis that a point-supported discrete rolling radial

skeleton spherical robot is capable of higher speeds than polyhedron face supported spherical

robots in simulation. Although the simulation of the design with both triangular bumpers,

pentagonal bumpers, and the internal arm dynamics showed that the high instability, and high

variability in speed makes the point-supported design difficult to control. The results in section

4.4 showed that the unique actuation design for the design presented in this work does not increase

the average speed of a radial skeleton spherical robot from the speed recorded by the Spiney

Multipedal Robot of 28 cm/s (Nozaki et al. 2018). The unique actuation can achieve higher speeds

when point-supported because it is easier to gain angular momentum with a rolling sphere

compared to a polyhedron. This shows that the reduced number of actuators had a significant

impact on the speed of the point-supported deformable spherical robot because higher forces could

be applied to joints due to the more powerful actuator, which resulted in a higher attainable average

velocity.

The performance of the robot declined when the internal arm dynamics was included in the

simulation with the PID gains in Table 3 because of the reaction torque and force applied by the

internal arm onto the rest of the robot. Although by re-tuning the PID gains, similar performance

to the simulation without internal arm dynamics was achieved. Simulation has merit for early

verification of dynamics and controls development, but it will not necessarily capture the exact

behavior of an actual robot. To further verify the simulations in this thesis the robot would need

to be developed and tested.

30

Acknowledgements

 Thank you to Professor David Hardt for his guidance and support throughout this

process.

31

Appendix

Robot Parameter Value

Mass 10 kg

Overall Diameter 36 cm

Triangular bumper Side Length 9.8 cm

Pentagonal Bumper Side Length 9 cm

Prismatic Joint Travel Distance 6 cm

Linear Actuator Travel Distance 8 cm

Overdrive Gearbox Gear Ratio 1:3.2

Transmission Gearbox Gear Ratio 1:1

Brushed DC Gear Motor No-Load Speed 100 RPM

Brushed DC Gear Motor Stall Torque 2.84 Nm

Stepper Motor Max Speed 3900 RPM

Stepper Motor Max Holding Torque 1.67 Nm

Table 5: List of parameters of the robot.

Part Quantity Distributer Part Number

M4 14mm Low-Profile Screw 20 McMaster-Carr 92855A847

M4 80mm Screw 60 McMaster-Carr 92095A173

8mm Rex Shaft 72mm 20 Servocity 2106-4008-0720

Table 6: List of parts with part numbers to reference 3D models used in the prismatic joint

model shown in Figure 4.

Part Quantity Distributer Part Number

Stepper Motor 1 McMaster-Carr 6627T54

10-32 1” Low-Profile Socket Head Screw 2 McMaster-Carr 92220A176

10-32 4” Pan Head Phillips Screw 1 McMaster-Carr 91772A850

10-32 5” Pan Head Phillips Screw 1 McMaster-Carr 90272A386

10-32 Locknut 2 McMaster-Carr 90633A411

M4 Low-Profile Socket Head Screw 4 McMaster-Carr 93070A107

M4 Spacer 4 McMaster-Carr 94669A006

M4 Locknut 4 McMaster-Carr 90576A103

M3 35 mm Screw 4 McMaster-Carr 92467A484

M3 Locknut 4 McMaster-Carr 90576A102

Aluminum Tube for Lead Screw Nut 1 Servocity 4101-1014-0300

120mm goRAIL Extrusion 1 Servocity 1109-0024-0120

32mm Bore Pillow Block Bearing 1 Servocity 1603-0032-0032

99:1 Gearmotor HP 12V with Encoder 2 Pololu 4847

Table 7: List of parts with part numbers to reference 3D models used in the internal arm model

shown in Figure 4.

32

Prismatic Joint Selector Function

function [prismatic_joint_forces, joint_20_position_output,

joint_21_position_output] = controller(time, bumper_positions,

robot_velocity, desired_impulse, joint_20_position_input,

joint_21_position_input)

 %joints 20 and 21 refer to the internal arm revolute joints

 %angles that the revolute joints of the internal arm must

move to to

 %align with each bumper.

 joint_20_angles = [-36, -108, -180,-252,-324,0,-36,-72,-108,-

144,-180,-216,-252,-288,-324,0,-72,-144,-216,-288];

 joint_21_angles = [52.62, 52.62, 52.62, 52.62, 52.62, -10.81,

10.81, -10.81, 10.81, -10.81, 10.81, -10.81, 10.81, -10.81,

10.81, -52.62, -52.62, -52.62, -52.62, -52.62];

 %set revolute joint velocities

 joint_20_position_output = joint_20_position_input;

 joint_21_position_output = joint_21_position_input;

 %joint_22_travel_time is the amount of time that the force is

applied

 %by a prismatic joint

 joint_22_travel_time = 0.1;

 %robot parameter

 overall_radius_of_robot = 0.18;

 %a threshold for robot velocity to know when to actuate

joints and when

 %to make certain calculations. In meters/sec

 min_robot_velocity = 0.05;

 %the maximum and minimum angles to gravity that a bumper can

be to be

 %considered to be actuated

 max_angle_to_gravity = 40;

33

 min_angle_to_gravity = 30;

 %initialize the prismatic joint forces with negative 1 newton

to keep

 %them in the closed position

 holding_force = 1;

 prismatic_joint_forces = -holding_force*ones(20, 1);

 %the peak rotational acceleration of both revolute joints in

deg/sec^2

 revolute_joints_acc = 51572;

 %the discrete sample time of this MATLAB function block

 sample_time = 0.001;

 %persistent variables

 %start_actuation_time is the time that the joints should

start moving

 persistent start_actuation_time;

 %stage_of_operation dictates if the function is determining a

bumper to actuate determining the

 %required force, moving the internal arm, or actuating a

bumper.

 persistent stage_of_operation;

 %force_output is the calculated force that a prismatic joint

will apply

 %from the input parameters

 persistent force_output;

 %this variable is the index of the bumper that will be

actuated

 persistent selected_bumper_to_actuate_index_persistent;

 %trajectories of each revolute joint

 persistent joint_20_trajectory;

 persistent joint_21_trajectory;

34

 %timing for each revolute joint travel

 persistent joint_20_time;

 persistent joint_21_time;

 %the angles from bumpers to gravity vector after each

potential

 %internal arm overall travel time

 persistent predicted_angles_to_gravity;

 persistent max_angle_between_impulse_and_bumper;

 %initialize the persistent variables

 if isempty(start_actuation_time)

 start_actuation_time = 0;

 end

 if isempty(stage_of_operation)

 stage_of_operation = 0;

 end

 if isempty(force_output)

 force_output = -5;

 end

 if isempty(selected_bumper_to_actuate_index_persistent)

 selected_bumper_to_actuate_index_persistent = 0;

 end

 if isempty(joint_20_trajectory)

 joint_20_trajectory = 0;

 end

 if isempty(joint_21_trajectory)

 joint_21_trajectory = 0;

 end

 if isempty(joint_20_time)

 joint_20_time = 0;

 end

35

 if isempty(joint_21_time)

 joint_21_time = 0;

 end

 if isempty(predicted_angles_to_gravity)

 predicted_angles_to_gravity = zeros(1, 20);

 end

 if isempty(max_angle_between_impulse_and_bumper)

 max_angle_between_impulse_and_bumper = 0;

 end

 %stage 1 selects a bumper to actuate

 if stage_of_operation == 0 && time > sample_time

 %rotational_velocity_axis is a unit vector that

represents the rotational

 %axis of the entire robot as it rolls

 if norm(robot_velocity) > min_robot_velocity

 rotational_velocity_axis = cross([0 0 1],

robot_velocity);

 rotational_velocity_axis =

rotational_velocity_axis/norm(rotational_velocity_axis);

 else

 rotational_velocity_axis = zeros(3, 1);

 end

 %these joints follow trapezoidal velocity profiles to

rotate to a bumper and

 %the travel time it takes to get to each bumper is

calculated based on the angular acceleration

 potential_joint_20_displacements = 180 - joint_20_angles

- joint_20_position_input;

 for i = 1:length(potential_joint_20_displacements)

 if potential_joint_20_displacements(i) > 180

 potential_joint_20_displacements(i) =

potential_joint_20_displacements(i) - 360;

 elseif potential_joint_20_displacements(i) < -180

36

 potential_joint_20_displacements(i) =

potential_joint_20_displacements(i) + 360;

 end

 end

 potential_joint_20_travel_times =

sqrt(abs(2*potential_joint_20_displacements)/revolute_joints_acc)

;

 potential_joint_21_displacements = -joint_21_angles -

joint_21_position_input;

 for i = 1:length(potential_joint_21_displacements)

 if potential_joint_21_displacements(i) > 180

 potential_joint_21_displacements(i) =

potential_joint_21_displacements(i) - 360;

 elseif potential_joint_21_displacements(i) < -180

 potential_joint_21_displacements(i) =

potential_joint_21_displacements(i) + 360;

 end

 end

 potential_joint_21_travel_times =

sqrt(abs(2*potential_joint_21_displacements)/revolute_joints_acc)

;

 %potential travel times finds the maximum travel time

between

 %both joints because they move at the same time so

whichever has

 %the highest travel time will be the overall travel time

of the

 %move to the next bumper

 %the coefficient of 2 ensures that the selected bumper

accounts for

 %the variability in velocity

 potential_travel_times =

max(potential_joint_20_travel_times ,

potential_joint_21_travel_times)*2;

37

 %using potential travel times, the angle that the robot

would roll

 %after each move to a bumper can be found

 if norm(robot_velocity) > min_robot_velocity

 potential_travel_angle_for_each_chosen_bumper =

(norm(robot_velocity) *

potential_travel_times)/overall_radius_of_robot;

 else

 potential_travel_angle_for_each_chosen_bumper =

zeros(1, 20);

 end

 %initialize predicted_bumper_positions

 %predicted_bumper_vectors are the bumper positions after

the

 %internal arm would move to the corresponding bumper

 predicted_bumper_positions = zeros(3, 20);

 for i = 1:20

 %The rotation matrix corresponding to the rotational

velocity

 %axis and the travel angle is found for each bumper

 TheoraticalRollRotationMatrix =

rotationVectorToMatrix(-

potential_travel_angle_for_each_chosen_bumper(i) *

rotational_velocity_axis);

 predicted_bumper_positions(:, i) =

TheoraticalRollRotationMatrix * bumper_positions(:, i);

 end

 %find the predicted angles to gravity

 predicted_angles_to_gravity = real(acosd(max(min([0 0 -

1]*

predicted_bumper_positions./vecnorm(predicted_bumper_positions) ,

1), -1)));

 predicted_angles_to_gravity_thresholds =

38

(predicted_angles_to_gravity <

max_angle_to_gravity).*(predicted_angles_to_gravity >

min_angle_to_gravity);

 %find the angles from the desired impulse vector to each

bumper vector

 %only using the horizontal components of the predicted

bumper vectors

 predicted_vectors_to_bumpers_with_zero_z = cat(1,

predicted_bumper_positions(1:2, :), zeros(1, 20));

 angles_between_x_axis_and_bumpers =

real(acosd(max(min((([1 0 0] *

predicted_vectors_to_bumpers_with_zero_z))./vecnorm(predicted_vec

tors_to_bumpers_with_zero_z), 1), -1))) .*

sign(predicted_vectors_to_bumpers_with_zero_z(2, :));

 angle_between_x_axis_and_desired_impulse =

real(acosd(max(min((dot([1 0 0],

desired_impulse))/norm(desired_impulse), 1), -

1)))*sign(desired_impulse(2));

 angles_between_bumpers_and_desired_impulse =

angles_between_x_axis_and_bumpers -

angle_between_x_axis_and_desired_impulse;

 for

i=1:length(angles_between_bumpers_and_desired_impulse)

 if angles_between_bumpers_and_desired_impulse(i) >

180

 angles_between_bumpers_and_desired_impulse(i) =

angles_between_bumpers_and_desired_impulse(i) - 360;

 elseif angles_between_bumpers_and_desired_impulse(i)

< -180

 angles_between_bumpers_and_desired_impulse(i) =

angles_between_bumpers_and_desired_impulse(i) + 360;

 end

 end

 %find the maximum angle and its index between the desired

impulse and horizontal

39

 %components of the bumper positions

 [max_angle_between_impulse_and_bumper,

selected_bumper_to_actuate_index_persistent] =

max(abs(angles_between_bumpers_and_desired_impulse).*predicted_an

gles_to_gravity_thresholds);

 %ensure that a bumper was actually selected and use a

threshold for

 %the maximum angle between impulse and the selected

bumper

 if selected_bumper_to_actuate_index_persistent > 0 &&

max_angle_between_impulse_and_bumper > 135

 stage_of_operation = 1;

 end

 %stage 1 sets the selected bumper, the force to be applied,

the

 %start_actuation time, and the joint trajectories

 elseif stage_of_operation == 1

 stage_of_operation = 2;

 start_actuation_time = time;

 force_output = min(

(abs(norm(desired_impulse))/joint_22_travel_time)/abs(sin(deg2rad

(predicted_angles_to_gravity(selected_bumper_to_actuate_index_per

sistent)))), 170);

 force_output = force_output *

(max_angle_between_impulse_and_bumper/180);

 joint_20_displacement = (180 -

joint_20_angles(selected_bumper_to_actuate_index_persistent)) -

joint_20_position_input;

 %ensure that the joint displacements are within [-180,

180]

 if joint_20_displacement > 180

 joint_20_displacement = joint_20_displacement - 360;

 elseif joint_20_displacement < -180

 joint_20_displacement = joint_20_displacement + 360;

 end

40

 %find the joint 20 travel time

 joint_20_travel_time =

sqrt(abs(2*joint_20_displacement)/revolute_joints_acc);

 %if the joint travel time is less than the sample time

then the

 %displacement is also small so the joint is already in

the

 %right position

 if joint_20_travel_time > sample_time

 [joint_20_trajectory, ~, ~, joint_20_time] =

trapveltraj([joint_20_position_input (joint_20_position_input +

joint_20_displacement)], floor(joint_20_travel_time/sample_time),

'Acceleration', revolute_joints_acc);

 else

 joint_20_trajectory = joint_20_position_input;

 end

 joint_21_displacement = (-

joint_21_angles(selected_bumper_to_actuate_index_persistent)) -

joint_21_position_input;

 %ensure that the joint displacements are within [-180,

180]

 if joint_21_displacement > 180

 joint_21_displacement = joint_21_displacement - 360;

 elseif joint_21_displacement < -180

 joint_21_displacement = joint_21_displacement + 360;

 end

 %find the joint 21 travel time

 joint_21_travel_time =

sqrt(abs(2*joint_21_displacement)/revolute_joints_acc);

 %if the joint travel time is less than the sample time

then the

 %displacement is also small so the joint is already in

the

41

 %right position

 if joint_21_travel_time > sample_time

 [joint_21_trajectory, ~, ~, joint_21_time] =

trapveltraj([joint_21_position_input (joint_21_position_input +

joint_21_displacement)], floor(joint_21_travel_time/sample_time),

'Acceleration', revolute_joints_acc);

 else

 joint_21_trajectory = joint_21_position_input;

 end

 %stage 2 corresponds to the movement of the revolute joints

of the

 %internal arm

 elseif stage_of_operation == 2

 [~,joint_20_trajectory_index] = (min(abs((time -

start_actuation_time) - joint_20_time)));

 if joint_20_trajectory_index < 1

 joint_20_trajectory_index = 1;

 elseif joint_20_trajectory_index >

length(joint_20_trajectory)

 joint_20_trajectory_index =

length(joint_20_trajectory);

 end

 [~,joint_21_trajectory_index] = (min(abs((time -

start_actuation_time) - joint_21_time)));

 if joint_21_trajectory_index < 1

 elseif joint_21_trajectory_index >

length(joint_21_trajectory)

 joint_21_trajectory_index =

length(joint_21_trajectory);

 end

 %when both movements have concluded move on to the next

stage

 if joint_20_trajectory_index ==

length(joint_20_trajectory) && joint_21_trajectory_index ==

length(joint_21_trajectory)

42

 stage_of_operation = 3;

 start_actuation_time = time;

 else

 %assign the joint position outputs to the trapezoidal

trajectories

 joint_20_position_output =

joint_20_trajectory(joint_20_trajectory_index);

 joint_21_position_output =

joint_21_trajectory(joint_21_trajectory_index);

 end

 %stage 3 corresponds to the movement of the selected

prismatic joint

 elseif stage_of_operation == 3

 %stage 3 outputs a constant force for the

joint_22_travel_time ,

 %and then closes by applying a negative force. It also

makes sure

 %that the bumper has actually closed using the bumper

positions

 joint_22_start_time = start_actuation_time;

 if (time - joint_22_start_time) < joint_22_travel_time &&

(time - joint_22_start_time) > 0

prismatic_joint_forces(selected_bumper_to_actuate_index_persisten

t) = force_output;

 elseif (time - joint_22_start_time) >=

joint_22_travel_time && (norm(bumper_positions(:,

selected_bumper_to_actuate_index_persistent)) >

overall_radius_of_robot-0.01)

prismatic_joint_forces(selected_bumper_to_actuate_index_persisten

t) = -holding_force;

 elseif (time - joint_22_start_time) >=

joint_22_travel_time && norm(bumper_positions(:,

selected_bumper_to_actuate_index_persistent)) <

overall_radius_of_robot

 stage_of_operation = 0;

43

 end

 end

end

Published with MATLAB® R2020a

Circular Trajectory Generator Function

function [waypoint, end_time] =

circular_trajectory_generator(time)

 %radius of circular trajectory

 radius = 1.5;

 %the speed that the robot should move at to follow the

trajectory

 desired_trajectory_speed = 0.1;

 %the time it takes to complete the trajectory at the desired

speed

 end_time = (2*pi*radius)/desired_trajectory_speed;

 %set the waypoint output position

 if (time < end_time)

 waypoint =

[(radius*cos(desired_trajectory_speed/radius*time) - radius)

(radius*sin(desired_trajectory_speed/radius*time)) 0];

 else

 waypoint = [0 0 0];

 end

end

Published with MATLAB® R2020a

https://www.mathworks.com/products/matlab
https://www.mathworks.com/products/matlab

44

Bibliography

Chase, R., Pandya, A. “A Review of Active Mechanical Driving Principles of Spherical

Robots.” Robotics, 22 Nov. 2012

https://www.researchgate.net/publication/277684319_A_Review_of_Active_Mechanical_Drivin

g_Principles_of_Spherical_Robots

Ellis G., “Control System Design Guide (Fourth Edition)”, Butterworth-Heinemann, 2 Sep.

2016

Grande, R. C., et al. “Buckybot: Preliminary Control and Mapping Algorithms for a Robot

Geometrically Based on a Truncated Icosahedron.” Johns Hopkins APL Technical

Digest, 2013.

Liu Y., et al., “Omni-directional mobile robot controller based on trajectory linearization.”

Robotics and Autonomous Systems, 31 May 2008,

https://www.sciencedirect.com/science/article/pii/S0921889007001431?casa_token=YW

Bd1kKKUQgAAAAA:fpknGaGI70OybVwSgRfSfIahUWQKR3E4tzFELLUf6V8-

RhQHo5hnaBhyqMSir6O26L9hvwlA

Leadscrew Torque (lift). vCalc. Mar 15, 2016.

https://www.vcalc.com/wiki/vCollections/Leadscrew+Torque+(lift)

Nozaki, H. et al. “Continuous Shape Changing Locomotion of 32-legged Spherical Robot.”

IEEE.7 Jan. 2019.

Nozaki, H. et al. “Shape changing locomotion by spiny multipedal robot/” IEEE. 26 Mar. 2018.

Palacín J. et al. “Evaluation of the Path-Tracking Accuracy of a Three-Wheeled Omnidirectional

Mobile Robot Designed as a Personal Assistant.” NCBI. Oct. 29 2021.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587751/

