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Abstract

Adoption of machine learning models in healthcare requires end users’ trust in the sys-
tem. Models that provide additional supportive evidence for their predictions promise
to facilitate adoption. We define consistent evidence to be both compatible and suffi-
cient with respect to model predictions. We propose measures of model inconsistency
and regularizers that promote more consistent evidence. We demonstrate our ideas
in the context of edema severity grading from chest radiographs. We demonstrate
empirically that consistent models provide competitive performance while supporting
interpretation.
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Chapter 1

Introduction

Input Unregularized Regularized
Prediction: ŷ = 0
Evidence:
• I(1) : NULL
• I(2) : septal lines, in-
terstitial abnormality
• I(3) : NULL

Inconsistent

Prediction: ŷ = 0
Evidence:
• I(1) : NULL
• I(2) : NULL
• I(3) : NULL

Consistent

Prediction: ŷ = 2
Evidence:
• I(1) : hilar congestion
• I(2) : NULL
• I(3) : NULL

Inconsistent

Prediction: ŷ = 2
Evidence:
• I(1) : hilar congestion
• I(2) : interstitial ab-
normality
• I(3) : NULL
Consistent

1
Figure 1-1: Our model provides prediction of disease stage 𝑦 and supporting evidence.
We use ℐ(𝑐) to denote the set of evidence labels detected in the image that directly
support disease stage 𝑐. We show examples of inconsistent evidence highlighted in
red produced by the baseline model (left column). Our proposed regularizer corrects
these mistakes so that predicted evidence label becomes compatible (top right) and
sufficient (bottom right).

Identifying radiological findings and inferring disease stages from medical images

is common in clinical practice. Many models make predictions without explaining

the conclusion. In contrast, human experts often provide specific explanation based

on prior knowledge of human physiology to support their image-based diagnosis. We

aim to build models that are transparent in the reasoning process, at an appropriate

level of understanding consumable by end users, e.g., clinicians. What additional
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information should a machine learning model provide to gain the trust of its end

users? We propose a solution motivated by an example of how radiologists themselves

operate.

Radiological findings are concepts determined as useful by radiologists. Findings

include image features, pathological states, and observations about the underlying

physiology [12]. The radiologists aggregate the findings to provide an overall inter-

pretation of the image. They support the eventual diagnosis by providing an account

of the identified findings based on prior knowledge of relationships between findings

and the patient’s physiological state. We propose and demonstrate an approach that

re-capitulates the reasoning process of domain experts. In addition to primary pre-

dictions, the model provides supporting evidence, i.e., findings, deemed useful by the

end users.

It is critical that predictions and supporting evidence are consistent with each

other. In practice, radiologists cannot draw their conclusions based on incompatible

evidence, nor could they support their conclusions with insufficient evidence. Sim-

ilarly, end users will question the credibility of a model when its predictions and

accompanying evidence are incompatible or insufficient.

In this thesis, we build explainable models that supplement their predictions with

consistent supporting evidence, illustrated in Figure 1-1. We define measures of in-

consistency between the model’s primary output and its supporting evidence and

propose simple regularizers that encourage the classifier to be more consistent. We

demonstrate that we can train consistent models without loss in performance in the

context of pathology grading from a chest radiograph. We show our method is fairly

flexible and agnostic to how predicted task label and evidence labels are computed.

In Chapter 2, we discuss previous work on interpretable machine learning as well

as methodologies that represent and enforce logical statements. In Chapter 3, we

formulate the consistent evidence problem, motivated by the edema severity grading

application. In addition, we discuss our approach to measure and enforce model

consistency via regularization. We compare our approach to semantic loss, a previous

method that enforce logical constraints. In Chapter 4, we conduct experiments that

16



demonstrate the effectiveness of our proposed method. We show that our method is

more flexible than semantic loss and can be integrated with an alternative method

that computes predictions and evidence. Finally in Chapter 5, we conclude with a

summary of our contributions, interpretations of our findings, and their implications

for practical use and future work.
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Chapter 2

Related Work

2.1 Interpretable Machine Learning

While model interpretability is an important topic in machine learning, few methods

take the end users’ needs into account. For example, some method localize image

regions important for a prediction [24, 30], but fail to express what properties of the

image region are associated with the model output. Others aim to use a simpler model

[4] or to approximate the behavior of a complex model with a simpler one [23]. While

effective for handling low dimensional tabular data where the covariates are physically

meaningful attributes, such methods are less useful for extremely high dimensional

imaging data. Our work provides clinically meaningful supporting evidence useful to

end users of the system, rather than support the developers’ understanding of how

the model reaches its decision.

Another approach is to train a classifier whose predictions rely on higher-level

concepts. Unsupervised methods can make for a more interpretable model for general

purpose tasks but cannot take advantage of strong domain knowledge ubiquitous in

healthcare [1]. Alternatively, concept bottleneck models that learn concepts with

supervision have been applied to arthritis grading [18], retinal disease classification

[7], and other applications [3, 21]. This strategy relies on the appropriate choice of

the concepts to maintain good performance.

Alternatively, some prior methods focus on learning a mapping to the product

19



space of the task label and supporting evidence [6, 14], with application to text clas-

sification [28, 29]. In contrast, we learn a structured output where known relationships

between predictions and evidence are enforced. We inject domain specific knowledge

and require our model to provide supporting evidence that is clinically feasible under

a specific prediction.

For exposition, we assume predictions and evidence are separate outputs of the

model. Our proposed method is independent of how the task label and evidence labels

are computed, and applies equally to models which make predictions via an evidence

bottleneck and to models which outputs predictions and evidence jointly.

A recently demonstrated unsupervised strategy that requires a forward model

that relates supporting evidence to a subset of the input features is also relevant

[22]. This method can be difficult to implement in our radiograph grading task as it

assumes knowledge of an accurate forward model, from supporting evidence to a high

dimensional image, which is infeasible for most medical imaging problems.

2.2 Logical Constraints

There are multiple ways to represent symbolic constraints. For example, trees have

been used to express subsumption relationships between attributes, e.g., hierarchical

annotation of medical images [9]. Hierarchical multi-label learning aims to enforce

such constraints [2, 11, 25, 27]. Unfortunately, trees are overly restrictive and cannot

express consistency constraints that are important in our application.

Alternatively, boolean statements can be quite expressive in representing logical

constraints. Logical constraints on model outputs can be enforced by replacing logical

operators with their subdifferentiable fuzzy t-norms [8, 19] or through the use of

specialized loss functions [26]. Our approach to representing and enforcing logical

constraints is easier to interpret, simpler to implement, and more flexible.
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Chapter 3

Classification with Consistent

Evidence

In this chapter, we define consistency of evidence and introduce measures of incon-

sistency. We provide an example application to ground our definitions. We construct

novel loss functions that encourage consistency and discuss optimization that arises

when training classifiers with consistent supporting evidence.

Let 𝑥, 𝑦, and 𝑧 = (𝑧1, . . . , 𝑧𝐾) be random variables representing an image, a 𝐶-

class task label, and 𝐾 binary evidence labels. Let 𝒟𝑡 be a data set that includes

pairs (𝑥, 𝑦) and (𝑥, 𝑧𝑘) for 𝑘 = 1, . . . , 𝐾. In this work, we do not assume full tuples

(𝑥, 𝑦, 𝑧1, . . . , 𝑧𝐾) are available. Learning joint predictors from available sub-tuples is

an interesting direction that is outside the scope of this thesis. Moreover, we allow

the same image 𝑥 to be included as part of several different pairs in the data set 𝒟𝑡.

We use the training data set 𝒟𝑡 to build probabilistic classifiers 𝑝(𝑦 | 𝑥; 𝜃) and

𝑝(𝑧𝑘 | 𝑥; 𝜃) for 𝑘 = 1, . . . , 𝐾. The maximum a posteriori (MAP) estimates of the task

label 𝑦 and evidence labels 𝑧 are obtained via

𝑦 = argmax
𝑐∈[𝐶]

𝑝(𝑦 = 𝑐 | 𝑥; 𝜃), (3.1)

𝑧𝑘 = argmax
𝑎∈{−1,+1}

𝑝(𝑧𝑘 = 𝑎 | 𝑥; 𝜃), 𝑘 = 1, . . . , 𝐾. (3.2)
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We use 𝑦(𝑥) to express dependence of the predicted label 𝑦 on the input image 𝑥.

3.1 Consistent Evidence

We assume that domain experts provide domain specific knowledge in the form of

logical constraints between the task label 𝑦 and the evidence labels 𝑧. We identify

two major logical constraints that are important in our application, specifically that

supporting evidence should be compatible and sufficient with the task label.

Let ℐ1 : [𝐶] → 𝒫([𝐾]) be the indexing function for evidence that is incompatible

with a particular value of task label, where we use 𝒫(·) to denote the power set.

Specifically, if evidence labels {𝑧𝑖1 , . . . , 𝑧𝑖𝑀} are incompatible with task label 𝑦 = 𝑐,

then ℐ1(𝑐) = {𝑖1, . . . , 𝑖𝑀}. Let ℐ2 : [𝐶] → 𝒫([𝐾]) be the indexing function for

evidence that directly supports a particular value of task label. We assume that ℐ1

and ℐ2 are provided by domain experts.

Definition 1. (Consistent Evidence) The task label 𝑦 ∈ [𝐶] and the evidence label

vector 𝑧 = (𝑧1, . . . , 𝑧𝐾) ∈ {−1,+1}𝐾 are consistent if

∀𝑘 ∈ ℐ1(𝑦) : 𝑧𝑘 = −1, (3.3)

∃𝑘 ∈ ℐ2(𝑦) : 𝑧𝑘 = +1. (3.4)

The first criterion specifies that no evidence is incompatible with the task label 𝑦.

The second criterion specifies that there should be at least one direct evidence label

present that supports the task label 𝑦.

In reality, perfectly consistent evidence may not be necessary or possible. For

example, domain experts often specify constraints with a notion of uncertainty, e.g.,

ℐ1(𝑦) is incompatible with 𝑦 most of the time except for occasional corner cases.

In addition, certain direct evidence might be so rare that it becomes impossible to

include it in ℐ2(𝑦). Therefore, it is perfectly sensible that there is no direct evidence

present in some cases, if we have not included the corresponding evidence label in the

construction. This motivates us to consider these constraints in probabilistic terms.
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Definition 1 is a specification over the values that random variables can take.

The same definition applies to the true data distribution {𝑦, 𝑧} and to the predicted

distribution {𝑦, 𝑧}. In practice, we construct training data {𝑦, 𝑧} to be perfectly

consistent and demonstrate a training method that encourages the model outputs

{𝑦, 𝑧} to be consistent as well.

Note that we are not restricted to predicting the findings in ∪𝑐∈[𝐶]ℐ2(𝑐). If some

findings provide useful information but are not directly supportive, they can still be

included in the set of evidence labels.

3.2 Edema Severity Grading Application

This section illustrates the construction of indexing functions ℐ1 and ℐ2 for the pul-

monary edema grading task that motivated our work.

Pulmonary edema is defined as an abnormal accumulation of fluid in the lungs.

Higher hydrostatic pressure in the vasculature causes more severe symptoms. Typ-

ically, radiologists grade the severity of edema based on findings that are typical of

the most severe stage of pulmonary edema [12].

We use a categorization that identifies four edema severity levels, in order of

increasing severity: no edema (0), mild edema (1), moderate edema (2), and severe

edema (3) [20, 15]. The edema severity grading task involves assigning a severity level

𝑦 ∈ {0, 1, 2, 3} to a test image. In this task, there are 4 classes, i.e., 𝐶 = 4.

Severity 𝑦 Findings ℐ2(𝑦)

0 (none) -

1 (mild)
vascular congestion
hilar congestion
peribronchial cuffing

2 (moderate) septal lines
interstitial abnormality

3 (severe) air bronchograms
parenchymal opacity

Figure 3-1: Findings that directly support a particular severity level.
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Severity 𝑦 Evidence 𝑧

1 peribronchial cuffing

2
vascular congestion
septal lines
interstitial abnormality

(a) Examples of consistent evidence.

Severity 𝑦 Evidence 𝑧

1 hilar congestion
septal lines

2
vascular congestion
interstitial abnormality
air bronchograms

1 –

3 septal lines

(b) Examples of inconsistent evidence.
First two examples are incompatible. The
latter two examples are insufficient.

Figure 3-2: Examples of consistent and inconsistent evidence.

In our work, we identify 𝐾 = 7 supporting evidence labels deemed useful by

clinicians, as shown in Table 3-1. They are canonical radiological manifestation of

the underlying pathology. End users expect presence of these findings to be indicative

of a specific edema severity level.

As an example, radiologists grade an image as moderate edema if they observe

septal lines (short parallel lines at the periphery of the lung) or interstitial abnormality

(excess fluids in the supporting tissue within the lung). Note that presence of evidence

from a lower value of edema severity is not inconsistent. For example, radiologists may

at the same time observe presence of vascular congestion (enlargement of pulmonary

veins) and septal lines in a moderate edema case.

In the severity grading task, we consider an evidence label as incompatible if its

presence directly supports a higher level severity level. Thus define

ℐ1(𝑐) =
⋃︁
𝑐′>𝑐

ℐ2(𝑐
′). (3.5)

As an example, a model that grades an image as moderate edema should not use air

bronchograms (opacification of alveoli) as supporting evidence.

We consider evidence as insufficient when no direct evidence for edema severity

grading is present. As an example, a model which grades an image as severe edema
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cannot rely on septal lines only to support its prediction.

Tables 3-2a and 3-2b illustrate further examples of consistent and inconsistent

evidence, respectively.

3.3 Measuring Inconsistency

We quantify the inconsistency probabilistically based on Definition 1. First, we define

a measure of incompatibility as the probability that there is an incompatible evidence

label

P

⎡⎣ ⋃︁
𝑘∈ℐ1(𝑦)

{𝑧𝑘 = +1}

⎤⎦ . (3.6)

To facilitate computation, we upper bound this probability using union bound by

ℛ+
1 (𝑦, 𝑧) =

∑︁
𝑘∈ℐ1(𝑦)

P [𝑧𝑘 = +1] . (3.7)

We provide an estimate of incompatibility over data set 𝒟 by taking expectation over

its empirical distribution

ℛ+
1 (𝒟) = E(𝑦,𝑧)∼𝒟

⎡⎣ ∑︁
𝑘∈ℐ1(𝑦)

1 [𝑧𝑘 = +1]

⎤⎦ , (3.8)

where we have replaced P [𝑧𝑘 = +1] with 1 [𝑧𝑘 = +1] since 𝑧𝑘 is binary valued. In-

tuitively, ℛ+
1 (𝒟) is the average count of evidence labels incompatible with the task

label.

Equation 3.8 depends on the size of ℐ1(𝑦), implying that the amount of incom-

patibility is dependent on the sample point. We can eliminate the dependency on the

size of ℐ1(𝑦) by defining

ℛ1(𝒟) = E(𝑦,𝑧)∼𝒟 [ℛ1(𝑦, 𝑧)] where ℛ1(𝑦, 𝑧) = max
𝑘∈ℐ1(𝑦)

1 [𝑧𝑘 = +1] (3.9)
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In our application, we care more about existence of incompatible evidence over the

degree to which there is incompatible evidence. For this reason, we prefer Equation 3.9

as a measure of incompatible evidence.

Similarly, we define a measure of insufficiency as the probability that there is no

sufficient evidence

P

⎡⎣ ⋂︁
𝑘∈ℐ2(𝑦)

{𝑧𝑘 = −1}

⎤⎦ , (3.10)

which leads to an upper bound

ℛ2(𝑦, 𝑧) = min
𝑘∈ℐ2(𝑦)

P [𝑧𝑘 = −1] (3.11)

and its empirical estimate

ℛ2(𝒟) = E(𝑦,𝑧)∼𝒟

[︂
min

𝑘∈ℐ2(𝑦)
[1− 1 [𝑧𝑘 = +1]]

]︂
(3.12)

= 1− E(𝑦,𝑧)∼𝒟

[︂
max

𝑘∈ℐ2(𝑦)
1 [𝑧𝑘 = +1]

]︂
. (3.13)

Note that ℛ2(𝒟) is the average count of absence of direct evidence.

Now we can provide an upper bound on probability of inconsistent evidence

ℛ(𝑦, 𝑧) = ℛ1(𝑦, 𝑧) +ℛ2(𝑦, 𝑧) and its empirical estimate ℛ(𝒟) = ℛ1(𝒟) +ℛ2(𝒟).

3.4 Consistency Regularization

Models trained naively to predict labels 𝑦 and 𝑧 jointly are not guaranteed to be

consistent. Here, we provide regularizers that encourage supporting evidence to be

more consistent.

Observe that Equations 3.7 and 3.11 are upper bounds on the true probability of

model being inconsistent. We can simply use these upper bounds, or modification

thereof, as regularizers. We opt to use cross entropy to create regularizers consistent

with the classification framework.
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To penalize incompatibility, we define

ℛ+

1 (𝜃) = −E𝑥∼𝒟

⎡⎣ ∑︁
𝑘∈ℐ1(𝑦(𝑥))

ln 𝑝(𝑧𝑘 = −1 | 𝑥; 𝜃)

⎤⎦ . (3.14)

Intuitively, ℛ+

1 (𝜃) penalizes evidence probability that is incompatible with the pre-

dicted task label. Including ℛ+

1 (𝜃) in the loss function is equivalent to supplying

pseudo negative samples for evidence obtained from the predicted task label 𝑦.

Instead of penalizing incompatibility with respect to MAP estimate of the task

label 𝑦(𝑥), we can penalize incompatibility for each value of task label weighted by

the posterior probability, i.e.,

ℛ+
1 (𝜃) = −E𝑥∼𝒟

⎡⎣∑︁
𝑐∈[𝐶]

∑︁
𝑘∈ℐ1(𝑐)

𝑝(𝑦 = 𝑐 | 𝑥; 𝜃) ln 𝑝(𝑧𝑘 = −1 | 𝑥; 𝜃)

⎤⎦ . (3.15)

In contrast to Equation 3.14 where gradients cannot flow through 𝑦(𝑥) due to the

argmax operator, Equation 3.15 provides a softer regularizer that affects the predic-

tions of both the task and the evidence labels.

Similar to Equation 3.9, we can penalize incompatibility agnostic to the size of

ℐ1(𝑦) by defining

ℛ1(𝜃) = −E𝑥∼𝒟

[︂
ln

[︂
1− max

𝑘∈ℐ1(𝑦(𝑥))
𝑝(𝑧𝑘 = +1 | 𝑥; 𝜃)

]︂]︂
, (3.16)

ℛ1(𝜃) = −E𝑥∼𝒟

⎡⎣∑︁
𝑐∈[𝐶]

𝑝(𝑦 = 𝑐 | 𝑥; 𝜃) ln
[︂
1− max

𝑘∈ℐ1(𝑐)
𝑝(𝑧𝑘 = +1 | 𝑥; 𝜃)

]︂⎤⎦ . (3.17)

Intuitively, ℛ1(𝜃) is equivalent to supplying pseudo negative samples for evidence

that is predicted to be the most incompatible with the predicted task label 𝑦.

Similarly, we define

ℛ2(𝜃) = −E𝑥∼𝒟

[︂
ln max

𝑘∈ℐ2(𝑦(𝑥))
𝑝(𝑧𝑘 = +1 | 𝑥; 𝜃))

]︂
. (3.18)

Intuitively, ℛ2(𝜃) encourages presence of some evidence to the support predicted task
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label. Including ℛ2(𝜃) in the loss function is equivalent to supplying pseudo positive

samples obtained from the predicted task label 𝑦.

Similar to Equation 3.17, we can penalize insufficiency using posterior probability

as weights,

ℛ2(𝜃) = −E𝑥∼𝒟

⎡⎣∑︁
𝑐∈[𝐶]

𝑝(𝑦 = 𝑐 | 𝑥; 𝜃) ln max
𝑘∈ℐ2(𝑐)

𝑝(𝑧𝑘 = +1 | 𝑥; 𝜃)

⎤⎦ . (3.19)

In the main text, we focus on regularizers ℛ1(𝜃) and ℛ2(𝜃). We supply additional

results based on other proposed regularizers in Appendix A.3.

3.5 Optimization

There are different approaches to train the classifiers to predict task label 𝑦 and

evidence labels 𝑧1, · · · , 𝑧𝐾 . In our experiments, we apply deep multitask learning

for joint predictions of 𝑦, 𝑧1, · · · , 𝑧𝐾 . In particular, we parameterize 𝑝(𝑦 | 𝑥; 𝜃) and

𝑝(𝑧𝑘 | 𝑥; 𝜃) for 𝑘 = 1, . . . , 𝐾 with neural network 𝑓(𝑥; 𝜃) and assume function 𝑓

outputs logits over 𝐾 + 1 marginals.

Given a classification loss function 𝐿(·, ·), the objective is the empirical risk,

ℒ(𝜃) = E(𝑥,𝑦)∼𝒟𝑡 [𝐿(𝑦, 𝑓(𝑥; 𝜃))] +
1

𝐾

𝐾∑︁
𝑘=1

E(𝑥,𝑧𝑘)∼𝒟𝑡 [𝐿(𝑧𝑘, 𝑓(𝑥; 𝜃))] . (3.20)

We add consistency regularization to multitask classification loss, which yields a

regularized empirical risk minimization problem

min
𝜃

ℒ(𝜃) + 𝜔1ℛ1(𝜃) + 𝜔2ℛ2(𝜃), (3.21)

where 𝜔1, 𝜔2 ∈ R+ are coefficients that control the degree of regularization.
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3.6 Connection with Semantic Loss

In this section, we show that our proposed soft regularizer upper bounds the average

semantic loss [26] for the consistent evidence constraints.

As briefly mentioned in Chapter 2, semantic loss function is an alternative method

to enforce logical constraints over neural network outputs [26]. Given consistency

constraints 𝛼 over variables (𝑦, 𝑧) detailed in Definition 1 and marginal probabilities

of network’s output, the semantic loss is

𝐿𝛼(𝑥, 𝜃) = − ln 𝑝(𝛼 | 𝑥; 𝜃), (3.22)

where the probability that the constraints are satisfied is defined as

𝑝(𝛼 | 𝑥; 𝜃) =
∑︁

(𝑦,𝑧)|=𝛼

[︃ ∏︁
𝑐∈[𝐶]

𝑝(𝑦 = 𝑐 | 𝑥; 𝜃)[𝑦=𝑐] ·

∏︁
𝑘∈[𝐾]

∏︁
𝑎∈{−1,+1}

𝑝(𝑧𝑘 = 𝑎 | 𝑥; 𝜃)[𝑧𝑘=𝑎]

]︃
. (3.23)

Here, we use (𝑦, 𝑧) |= 𝛼 to denote all instantiations (𝑦, 𝑧) that satisfy the constraints

𝛼. We use a natural generalization of the original formulation of the semantic loss

function to account for variable 𝑦 taking non-binary values.

Semantic loss is invariant to how the constraints are specified because Equa-

tion 3.23 is a sum over probabilities of all satisfying instantiations over the truth

table of 𝛼. Table A.1 provides an example of a truth table of 𝛼 for the edema severity

grading task. By looking at the truth table, we can simplify the expression consider-

ably,

𝑝(𝛼 | 𝑥; 𝜃) =
∑︁
𝑐∈[𝐶]

⎡⎣𝑝(𝑦 = 𝑐 | 𝑥; 𝜃)
∏︁

𝑘∈ℐ1(𝑐)

𝑝(𝑧𝑘 = −1 | 𝑥; 𝜃)

⎡⎣1− ∏︁
𝑘∈ℐ2(𝑐)

𝑝(𝑧𝑘 = −1 | 𝑥; 𝜃)

⎤⎦⎤⎦ .

(3.24)

The term involving ℐ1 measures incompatibility while the term involving ℐ2 measures
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insufficiency of the network’s output probabilities.

We demonstrate that soft consistency regularizer in Equation 3.15 and 3.19 for a

single input image 𝑥

ℛ+
(𝑥, 𝜃) = −

∑︁
𝑐∈[𝐶]

𝑝(𝑦 = 𝑐 | 𝑥; 𝜃) ln

⎡⎣ ∏︁
𝑘∈ℐ1(𝑐)

𝑝(𝑧𝑘 = −1 | 𝑥; 𝜃) max
𝑘∈ℐ2(𝑐)

𝑝(𝑧𝑘 = +1 | 𝑥; 𝜃)

⎤⎦
(3.25)

upper bounds the semantic loss

ℛ+
(𝑥, 𝜃) ≥ −

∑︁
𝑐∈[𝐶]

𝑝(𝑦 = 𝑐 | 𝑥; 𝜃) ln

⎡⎣ ∏︁
𝑘∈ℐ1(𝑐)

𝑝(𝑧𝑘 = −1 | 𝑥; 𝜃)

⎡⎣1− ∏︁
𝑘∈ℐ2(𝑐)

𝑝(𝑧𝑘 = −1 | 𝑥; 𝜃)

⎤⎦⎤⎦
(3.26)

≥ 𝐿𝛼(𝑥, 𝜃). (3.27)

The first inequality follows from the fact that max𝑖 𝑝𝑖 ≤ 1−∏︀
𝑖(1−𝑝𝑖) for (𝑝1, · · · , 𝑝𝑛)

satisfying 0 ≤ 𝑝𝑖 ≤ 1. The second inequality is implied by Jensen’s inequality.

Considering this connection, we expect the two approaches to behave similarly

in enforcing consistency constraints. However, there are crucial differences between

them. In its original form, semantic loss weighs the two constraints equally, whereas

our proposed regularizers can prioritize one constraints over the other by tuning the

corresponding coefficients.
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Chapter 4

Experiments and Results

4.1 Implementation Details

We use residual networks to parameterize our probabilistic classifiers [13]. The net-

work is modified to output a (𝐶 +𝐾)-dimensional vector representing the posterior

marginal probabilities for 𝑦, 𝑧1, . . . , 𝑧𝐾 .

We use weighted cross entropy loss as 𝐿(·, ·) to handle class imbalances. We

employ the Adam optimizer with a constant learning rate of 2 · 10−4 with mini-batch

size of 32 for stochastic optimization of network parameters [17]. Each gradient

update involves random sampling of a label (task or evidence), assembling a mini-

batch of data corresponding to the sampled label, computing the objective function,

and updating parameters with backpropagated gradients. This approach enables us

to learn even if some labels are missing for some images.

We normalize images to zero mean and unit variance and resize them to 224x224

pixels. We apply random image augmentations to images, e.g., crop, horizontal flip,

brightness and contrast variations, to alleviate model overfitting.

We implement Equation 3.16, Equation 3.17, Equation 3.18, and Equation 3.19

by substituting the max operator with a soft maximum operator, i.e., LSE𝑖∈[𝑛](𝑥𝑖) =

log
∑︀

𝑖 exp(𝑥𝑖). This way, we enforce sufficiency of evidence by upscaling probabilities

of direct evidence that are larger to begin with.

To make fair comparison with the semantic loss function, we use the one-hot
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representation for the task label 𝑦 via the softmax function, instead of enforcing the

exactly-one representation with an additional constraint [26].

We use exactly the same network architecture, data augmentation, and optimiza-

tion parameters to isolate the impact of the proposed regularization on consistency

and performance.

We compute mean and standard deviation statistics for inconsistency and test

prediction from 3 runs with different random seed.

4.2 Data

We use a subset of 238,086 frontal-view chest X-ray from the MIMIC-CXR data

set [16]. We split the data set into training (217,016), validation (10,445), and test

(10,625) sets randomly. The performance of predicted evidence is computed over this

test set. There is no patient overlap between training, validation and test sets.

Edema severity labels are extracted from associated reports by searching for key-

words that are indicative of a specific disease stage. The 7,802 labeled image/report

pairs are split into training (6,656), validation (648), and test (498) set. The test set

was corrected for keyword matching errors by an expert radiologist, as detailed in

prior work [5]. We use 𝒟̂ to denote this test set that includes images and predicted

labels (𝑥, 𝑦, 𝑧). All subsequent evaluations of model consistency and performance is

computed using 𝒟̂.

4.3 Experiments

Model Inconsistency

We examine model inconsistency overall and over partitions of data with respect to

values of predicted label 𝑦. The sum of model inconsistency over the partitions gives

the quantities ℛ1(𝒟̂) in Equation 3.9 and ℛ2(𝒟̂) in Equation 3.13.

Figure 4-1 reports model inconsistency over partitions of 𝑦 for a model that is

trained without consistency regularization, i.e., 𝜔1 = 𝜔2 = 0. We observe that ℛ1(𝒟̂)
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Figure 4-1: Model inconsistency across different values of 𝑦 evaluated on the test set 𝒟̂
for a naively trained model, i.e., 𝜔1 = 𝜔2 = 0. The majority of inconsistent evidence
comes from incompatible evidence associated with small values of the predicted task
label 𝑦. Roughly, one out of four image will yield incompatible evidence.

is typically larger than ℛ2(𝒟̂) due to the fact that compatibility is an intrinsically

harder constraint than sufficiency for our task. We also observe a downward trend in

values of ℛ1(𝒟̂) with increasing values for 𝑦. This is reasonable as there are many

ways to create conflicting evidence for a small value of 𝑦, while there is no way to

provide conflicting evidence when 𝑦 = 3.

Consistency Regularization

To demonstrate that the proposed regularization promotes model consistency, we vary

values of 𝜔1, 𝜔2 in the objective function and train multiple models. We select the

most accurate model on the validation set and compute inconsistency on the test set

𝒟̂.

Figure 4-2 demonstrates the effects of regularization on model consistency. We

observe that the regularizers ℛ1(𝜃) and ℛ2(𝜃) are effective in reducing the respective

intended model inconsistency, indicated by a reduction of ℛ1(𝒟̂) in Figure 4-2a and

ℛ2(𝒟̂) in Figure 4-2b respectively. Additionally, we observe that penalizing ℛ1(𝒟̂)

inadvertently makes ℛ2(𝒟̂) larger and vice versa. This makes intuitive sense, since

a model that is more likely to predict absence of evidence will be (i) less likely to
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(a) Vary 𝜔1, fix 𝜔2 = 0 (b) Fix 𝜔1 = 0, vary 𝜔2 (c) Vary 𝜔1 = 𝜔2 together

Figure 4-2: The effect of varying strength of regularizations during training on model
consistency. Here ℛ1,ℛ2 is short hand for ℛ1(𝒟̂),ℛ2(𝒟̂), respectively. The proposed
regularizers ℛ1(𝜃),ℛ2(𝜃) encourage the model to provide more compatible evidence
(left) or more sufficient evidence (middle), respectively. The application of regular-
izers at the same time encourages the model to provide more consistent evidence
(right).

provide incompatible evidence and (ii) less likely to provide some direct evidence. We

observe that we can reduce both types of inconsistency by regularizing with both loss

terms, as shown in Figure 4-2c.

It important to note that even though ℛ2(𝒟̂) is relatively small in models trained

with 𝜔1 = 0, regularizing with ℛ2(𝒟̂) is necessary as we want to avoid situations in

Figure 4-2a where ℛ2(𝒟̂) becomes intolerably large.

Interpretability

Figure 4-3 illustrates how a consistent model (trained with 𝜔1 = 𝜔2 = 8) provides

supporting evidence for randomly sampled test images. We provide correctly and

incorrectly classified test images for each severity level. We observe that the regular-

ized model provides consistent evidence in all 8 examples, even in cases where model

prediction of task label is not correct.

How does providing consistent supporting evidence build trust in the model? We

note that supporting findings are already described in radiological reports and can

be easily mined for training and verified in an image. When the supporting evidence

is clearly correct, it builds additional trust in the predicted task label. When the

consistent but wrong evidence is presented, it is easy to see in the image and helps

the end users understand why the main task label is wrong. Our method avoids

confusions that arise from model providing inconsistent evidence.
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Figure 4-3: Correctly and incorrectly classified test images with supporting evidence
given by a consistent model (𝜔1 = 𝜔2 = 8.). We use ℐ(𝑐) to denote the set of evidence
labels detected in the image that directly support disease stage 𝑐.

Crucially, evidence labels should not only be consistent, but also correct. To this

point, we reported performance of evidence detection in Section 4.3. Our proposed

regularizers offers a complementary tool to help end users understand why the model

erred. Our method can be integrated with technologies, e.g., RCNN, GradCAM

[10, 24], that provide localization, i.e., confirmation that the model is focusing on the

correct regions in the image.

Performance-Consistency Tradeoff

Next, we show that we can achieve good model consistency without compromising

predictive performance. We vary 𝜔1, 𝜔2 together in the objective function and train

multiple models. We select for the most accurate model on the validation set for

subsequent evaluations.

Figure 4-4 demonstrates that we can ensure satisfactory model consistency. At the
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Figure 4-4: The effect of regularization on model inconsistency (left 2) and perfor-
mance of predicting task label 𝑦 (middle 2) and evidence labels 𝑧 (right 2). Here
ℛ1,ℛ2 is short hand for ℛ1(𝒟̂),ℛ2(𝒟̂), respectively. When regularizing for both
ℛ1,ℛ2, e.g., down the diagonals of the matrix, we notice dramatic decrease in model
inconsistency and competitive performance for the regularized model.

same time, the regularized model achieves similar performance on the severity grading

task as well as the evidence prediction tasks. The improvement in performance can

be attributed empirically to fact that heavily regularized models over-fit less.

From additional results on other types of regularizers in Appendix A.3, we do

observe a significant drop in the average performance of the model for predicting

evidence when the strength of regularization is high. The drop in predicted evidence

performance is tolerable if we consider that the model rarely provides inconsistent

supporting evidence. Consistency versus predictive performance is a trade-off only if

we want extremely consistent models.

Figure 4-4 reinforces previous observation that penalizing ℛ1(𝒟̂) makes ℛ2(𝒟̂)

higher and vice versa, when 𝜔𝑖 that is held constant is different from 0, for 𝑖 = 1, 2.

Figure 4-2 shows the first column, the first row, and the diagonal slices of the grid

in left two sub-figures in Figure 4-4. We refer the reader to Table A.2 for detailed

statistics of inconsistency and performance along the diagonal slice of the grid.

Comparison with Semantic Loss

We show that semantic loss is effective in promoting model consistency but inflexible.

We vary the weight 𝜔 of the following regularized problem

min
𝜃

ℒ(𝜃) + 𝜔E𝑥∼𝒟 [𝐿𝛼(𝑥, 𝜃)] . (4.1)

We select the most accurate model on the validation set for subsequent evaluations.
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Figure 4-5: The effect of varying strength of regularizations using semantic loss during
training on model consistency. Here ℛ1,ℛ2 is short hand for ℛ1(𝒟̂),ℛ2(𝒟̂), respec-
tively. It is not possible to keep both ℛ1(𝒟̂) and ℛ2(𝒟̂) down to small values at the
same time.

Figure 4-5 demonstrates effect of semantic loss on model consistency. It is not

possible to keep both incompatibility and insufficiency down to small values at the

same time. This makes sense as the terms corresponding to the two constraints are

equally weighted in Equation 3.24. Semantic loss lacks the flexibility to enforce mul-

tiple constraints with differing relevance. In contrast, our method is flexible because

we take into account each constraint separately.

When using semantic loss, we notice that performance on the severity grading

task is compromised in Table A.8. In contrast, our method does not suffer from

performance loss.

Bottleneck Architecture

Finally, we demonstrate that the concept bottleneck network [18] has similar behavior

under consistency regularization, when compared with networks that predict (𝑦, 𝑧)

jointly. For fair comparison with previous experiments, we train the bottleneck net-

work with the same objective function given in Equation 3.21. This optimization

problem corresponds to the joint bottleneck approach [18]. We vary 𝜔1, 𝜔2 together

in the objective function and train multiple models. We select for the most accurate

model on the validation set for subsequent evaluations.
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Figure 4-6: The effect of regularization on model inconsistency and performance of
predicting task label 𝑦 and evidence label 𝑧, where the models predict 𝑦 via the 𝑧
bottleneck. * stands for baseline model that is trained to predict task label 𝑦. We
compute average numbers with ± 2 standard deviations over random seeds. We
observe similar pattern in inconsistency and performance when compared to that of
models that predict (𝑦, 𝑧) jointly.

Figure 4-6 demonstrates that concept bottleneck is amenable to consistency reg-

ularization. We observe that we can achieve good model consistency and maintain

predictive performance on all tasks. Under consistency regularization, the bottleneck

network behaves similarly to models that predict (𝑦, 𝑧) jointly. We refer the reader to

Table A.3 for detailed statistics of inconsistency and performance along the diagonal

slice of the grid.
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Chapter 5

Conclusions

In this thesis, we argued for supplementing model predictions with supporting ev-

idence that is deemed useful by the end users. We defined a notion of consistent

evidence via incorporating domain specific constraints. Then, we proposed ways

to measure and enforce such constraints during model training. We evaluated our

method on the pulmonary edema severity grading task, which provides a ground-

ing for our consistent evidence framework. We demonstrated that consistent models

remain competitive on the severity grading task as well as evidence prediction tasks.

Motivated by the edema severity grading task, we identified incompatible and

insufficient evidence as a source of confusion for end users. Our definition of consis-

tent evidence is represented as logical constraints, which can then be integrated into

optimization. Other tasks in healthcare can benefit from representing the desired

requirements as logical constraints and enforcing these constraints with established

methodologies. Our work serves as a stepping stone for extending this approach to

other applications.

We found that there exists a set of models with varying degree of consistency and

similar predictive performance, under moderate consistency regularization. This find-

ing is in contrast with the impression that consistency and performance may force a

trade-off. Practically, we can always enforce consistency for the sake of interpretation

without worrying too much that doing so may hurt classification performance.

Initially, we found it cumbersome to select the weights to the regularizers, since
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the regularizers scale differently. One must adjust these weights accordingly to ensure

that the two types of inconsistencies be approximately equal. To address this issue,

we came up with regularizers that involve taking maximums for the compatibility

and sufficiency constraints. The regularizers take values in the same interval, and

therefore it is easier to strike a balance between them. To make hyperparameter

search easier, we encourage the usage of regularizers that scale similarly.

Our proposed consistency regularization is agnostic to the choice of how (𝑦, 𝑧) are

predicted from the input image 𝑥. In particular, we found that models which predict

(𝑦, 𝑧) jointly as outputs and models which predict 𝑦 via a bottleneck of evidence 𝑧

behave similarly under consistency regularization. This finding is surprising, since

the choice of evidence 𝑧 as bottleneck variables limits the amount of information that

can be used to classify 𝑦. This is not a concern for models that predict (𝑦, 𝑧) jointly.

Empirically, models that predict (𝑦, 𝑧) jointly offer slightly better performance [18].

In contrast, our experiments do not exhibit such discrepancy in performance, likely

because of how our data set is generated. Specifically, we determine 𝑧 from clinical

texts and compute 𝑦 as a deterministic function of 𝑧. To conclude, our method is

fairly generic and can be applied regardless of how (𝑦, 𝑧) are computed, subject to

certain condition on the data set.

We found that our proposed regularizers are more flexible than semantic loss.

In particular, users can tune the relative importance of logical constraints for our

proposed regularizers while this is not possible for semantic loss. For future work, we

are motivated to generalize semantic loss to account for the relative importance of

the logical constraints. In addition, we showed that one of our proposed regularizers

upper bounds semantic loss for the consistency constraints. These loss functions have

similar formulation, and therefore it is unsurprising that both are capable of enforcing

consistency. It will be interesting to understand how these loss functions are different.

Our work does not provide a robust strategy to compare different methods effec-

tively. Conceptually, end users specify a fixed inconsistency budget and will want to

use a model with the best performance under budget constraint. To determine the

best approach, we want to be able to compare the performance of models trained using
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different regularizers that have exhausted a fixed inconsistency budget. In practice,

we select models based on accuracy instead of consistency, making such comparison

difficult. One strategy is to pre-specify the inconsistency budget and consider the con-

sistency constraints as constraints of the optimization problem. One can then solve

the constrained optimization problem via Lagrangian relaxation. This represents a

promising future direction of research.
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Appendix A

Appendix

A.1 Truth Table for Consistency Constraints

# Rows 𝑦 𝑧1 𝑧2 𝑧3 𝑧4 𝑧5 𝑧6 𝑧7 𝑝(𝛼 | 𝑥; 𝜃) over partitions w.r.t. 𝑦

1 0 -1 -1 -1 -1 -1 -1 -1 𝑝(𝑦 = 0)
∏︀𝐾

𝑘=1 𝑝(𝑧𝑘 = −1)

7 1

-1 -1 1

-1 -1 -1 -1 𝑝(𝑦 = 1)
[︀
1−∏︀3

𝑘=1 𝑝(𝑧𝑘 = −1)
]︀∏︀7

𝑘=4 𝑝(𝑧𝑘 = −1)

-1 1 -1
1 -1 -1
-1 1 1
1 1 -1
1 -1 1
1 1 1

24 2
-1 1

-1 -1 𝑝(𝑦 = 2)
[︀
1−∏︀5

𝑘=4 𝑝(𝑧𝑘 = −1)
]︀∏︀7

𝑘=6 𝑝(𝑧𝑘 = −1)1 -1
1 1

96 3
-1 1

𝑝(𝑦 = 3)
[︀
1−∏︀7

𝑘=6 𝑝(𝑧𝑘 = −1)
]︀

1 -1
1 1

Table A.1: A list of satisfying instantiations in truth table of consistency constraints 𝛼 for the
edema severity grading task. For brevity, we do not specify values that 𝑧1, · · · , 𝑧3 take for the 𝑦 = 2
partition. This means 𝑧1, · · · , 𝑧3 are unconstrained, and there are 23 possible instantiations for any
given row within the 𝑦 = 2 partition. Similarly, there are 25 possible instantiations for any given
row within the 𝑦 = 3 partition.

43



A.2 Corresponding Table for Figure 4-4 and 4-6

𝜔1, 𝜔2 * 0.0,0.0 2.0,2.0 4.0,4.0 6.0,6.0 8.0,8.0

ℛ1(𝒟̂) - 0.249± 0.049 0.171± 0.067 0.189± 0.055 0.151± 0.196 0.108± 0.192
ℛ2(𝒟̂) - 0.061± 0.033 0.062± 0.037 0.034± 0.026 0.090± 0.125 0.075± 0.103

acc (𝑦) 0.514± 0.107 0.511± 0.043 0.510± 0.028 0.500± 0.078 0.502± 0.007 0.515± 0.013
auc (𝑦) 0.841± 0.018 0.845± 0.042 0.850± 0.013 0.847± 0.021 0.849± 0.025 0.845± 0.017

acc (vascular congestion) - 0.786± 0.028 0.780± 0.036 0.776± 0.063 0.780± 0.024 0.779± 0.005
acc (hilar congestion) - 0.766± 0.047 0.790± 0.035 0.769± 0.070 0.788± 0.054 0.791± 0.046
acc (peribronchial cuffing) - 0.813± 0.029 0.815± 0.029 0.814± 0.048 0.807± 0.130 0.831± 0.045
acc (septal lines) - 0.846± 0.079 0.875± 0.092 0.817± 0.047 0.847± 0.109 0.852± 0.132
acc (interstitial abnormality) - 0.655± 0.009 0.649± 0.026 0.642± 0.013 0.658± 0.017 0.636± 0.041
acc (air bronchograms) - 0.872± 0.017 0.863± 0.109 0.874± 0.010 0.866± 0.052 0.899± 0.031
acc (parenchymal opacity) - 0.720± 0.019 0.745± 0.065 0.747± 0.014 0.755± 0.019 0.770± 0.031

acc (z) - 0.779 0.788 0.777 0.786 0.794

Table A.2: The effect of regularization on model inconsistency and performance of
predicting task label 𝑦 and evidence label 𝑧, where the models predict (𝑦, 𝑧) jointly. *
stands for baseline model that is trained to predict task label 𝑦. We compute average
numbers with ± 2 standard deviations over random seeds. We notice dramatic de-
crease in model inconsistency and competitive performance for the regularized model.

𝜔1, 𝜔2 * 0.0,0.0 2.0,2.0 4.0,4.0 6.0,6.0 8.0,8.0

ℛ1(𝒟̂) - 0.229± 0.056 0.178± 0.078 0.100± 0.040 0.107± 0.047 0.100± 0.036
ℛ2(𝒟̂) - 0.086± 0.062 0.052± 0.064 0.084± 0.073 0.055± 0.071 0.098± 0.050

acc (𝑦) 0.514± 0.107 0.500± 0.084 0.516± 0.051 0.507± 0.036 0.519± 0.042 0.512± 0.055
auc (𝑦) 0.841± 0.018 0.829± 0.045 0.845± 0.039 0.836± 0.044 0.842± 0.032 0.855± 0.023

acc (vascular congestion) - 0.785± 0.025 0.792± 0.023 0.774± 0.012 0.776± 0.042 0.793± 0.031
acc (hilar congestion) - 0.798± 0.039 0.806± 0.074 0.801± 0.013 0.793± 0.084 0.776± 0.028
acc (peribronchial cuffing) - 0.815± 0.051 0.832± 0.011 0.819± 0.011 0.811± 0.051 0.826± 0.038
acc (septal lines) - 0.857± 0.004 0.856± 0.061 0.861± 0.073 0.838± 0.122 0.830± 0.084
acc (interstitial abnormality) - 0.644± 0.012 0.641± 0.029 0.646± 0.016 0.647± 0.011 0.640± 0.024
acc (air bronchograms) - 0.869± 0.026 0.869± 0.070 0.892± 0.024 0.880± 0.091 0.884± 0.020
acc (parenchymal opacity) - 0.731± 0.013 0.751± 0.031 0.764± 0.008 0.745± 0.058 0.759± 0.028

acc (z) - 0.785 0.792 0.794 0.784 0.787

Table A.3: The effect of regularization on model inconsistency and performance of
predicting task label 𝑦 and evidence label 𝑧, where the models predict 𝑦 via the 𝑧
bottleneck. * stands for baseline model that is trained to predict task label 𝑦. We
compute average numbers with ± 2 standard deviations over random seeds. We
observe similar pattern in inconsistency and performance when compared to that of
models that predict (𝑦, 𝑧) jointly.
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A.3 Comparing Different Regularizers

We show model inconsistency and performance in subsequent sub-sections where the

model is trained using the following list of regularizers

1. ℛ+

1 (𝜃),ℛ2(𝜃) (ℛ sum, hard)

2. ℛ+
1 (𝜃),ℛ2(𝜃) (ℛ sum, soft)

3. ℛ1(𝜃),ℛ2(𝜃) (ℛ max, hard)

4. ℛ1(𝜃),ℛ2(𝜃) (ℛ max, soft)

5. 𝐿𝛼(𝑥, 𝜃) (semantic loss)

We found that using the regularizer for compatibility that is agnostic to the size

of ℐ1(𝑦), i.e., ℛ1(𝜃) and ℛ1(𝜃) is beneficial for parameter tuning. The coefficients

𝜔1, 𝜔2 can be set on the same scale to achieve a similar level of model compatibility

and sufficiency.

When using hard regularizers, i.e., ℛ+

1 (𝜃),ℛ1(𝜃),ℛ2(𝜃), we observe a drop in the

average performance of the model for predicting evidence. This effect is less obvious

for soft regularizers.

It is difficult to compare models trained using different regularizers. Ideally, we

want to compare model performance at a fixed inconsistency budget. Since we select

models using performance metrics, it is almost impossible to select the correct weights

𝜔1, 𝜔2 to ensure a fixed inconsistency.
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ℛ+
1 (𝜃),ℛ2(𝜃) (ℛ sum, hard)

(a) Vary 𝜔1, fix 𝜔2 = 0 (b) Fix 𝜔1 = 0, vary 𝜔2 (c) Vary 𝜔1 = 𝜔2 together

Figure A-1: The effect of varying strength of regularization using ℛ+

1 (𝜃),ℛ2(𝜃) during
training on model consistency.

Figure A-2: The effect of varying strength of regularization using ℛ+

1 (𝜃),ℛ2(𝜃) on
model inconsistency (left 2) and performance of predicting task label 𝑦 (middle 2)
and evidence labels 𝑧 (right 2).

𝜔1, 𝜔2 * 0.0,0.0 3.0,3.0 10.0,6.0 30.0,10.0

ℛ1(𝒟̂) - 0.265± 0.074 0.201± 0.038 0.194± 0.175 0.050± 0.015
ℛ2(𝒟̂) - 0.049± 0.026 0.019± 0.026 0.059± 0.036 0.029± 0.055

acc (𝑦) 0.514± 0.107 0.518± 0.053 0.500± 0.040 0.503± 0.040 0.494± 0.053
auc (𝑦) 0.841± 0.018 0.848± 0.034 0.837± 0.028 0.866± 0.011 0.846± 0.022

acc (vascular congestion) - 0.781± 0.028 0.791± 0.007 0.780± 0.030 0.749± 0.058
acc (hilar congestion) - 0.752± 0.064 0.773± 0.067 0.777± 0.027 0.703± 0.063
acc (peribronchial cuffing) - 0.815± 0.013 0.795± 0.076 0.815± 0.045 0.805± 0.004
acc (septal lines) - 0.846± 0.083 0.785± 0.083 0.851± 0.084 0.826± 0.009
acc (interstitial abnormality) - 0.637± 0.004 0.663± 0.039 0.628± 0.014 0.607± 0.010
acc (air bronchograms) - 0.862± 0.083 0.860± 0.029 0.891± 0.031 0.827± 0.115
acc (parenchymal opacity) - 0.714± 0.041 0.745± 0.048 0.757± 0.025 0.732± 0.033

acc (z) - 0.772 0.773 0.786 0.750

Table A.4: The effect of regularization using ℛ+

1 (𝜃),ℛ2(𝜃) on model inconsistency
and performance of predicting task label 𝑦 and evidence label 𝑧. * stands for baseline
model that is trained to predict task label 𝑦. We compute average numbers with ±
2 standard deviations over random seeds.
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ℛ+
1 (𝜃),ℛ2(𝜃) (ℛ sum, soft)

(a) Vary 𝜔1, fix 𝜔2 = 0 (b) Fix 𝜔1 = 0, vary 𝜔2 (c) Vary 𝜔1 = 𝜔2 together

Figure A-3: The effect of varying strength of regularization using ℛ+
1 (𝜃),ℛ2(𝜃) during

training on model consistency.

Figure A-4: The effect of varying strength of regularization using ℛ+
1 (𝜃),ℛ2(𝜃) on

model inconsistency (left 2) and performance of predicting task label 𝑦 (middle 2)
and evidence labels 𝑧 (right 2).

𝜔1, 𝜔2 * 0.0,0.0 3.0,3.0 10.0,6.0 30.0,10.0

ℛ1(𝒟̂) - 0.354± 0.165 0.284± 0.163 0.241± 0.187 0.081± 0.086
ℛ2(𝒟̂) - 0.056± 0.047 0.032± 0.045 0.018± 0.033 0.076± 0.061

acc (𝑦) 0.514± 0.107 0.509± 0.049 0.512± 0.021 0.507± 0.048 0.538± 0.049
auc (𝑦) 0.841± 0.018 0.840± 0.016 0.847± 0.013 0.840± 0.028 0.862± 0.012

acc (vascular congestion) - 0.783± 0.056 0.784± 0.046 0.796± 0.018 0.782± 0.030
acc (hilar congestion) - 0.775± 0.066 0.761± 0.092 0.802± 0.017 0.826± 0.024
acc (peribronchial cuffing) - 0.769± 0.130 0.795± 0.074 0.818± 0.037 0.843± 0.026
acc (septal lines) - 0.820± 0.155 0.895± 0.035 0.872± 0.082 0.898± 0.034
acc (interstitial abnormality) - 0.648± 0.029 0.632± 0.049 0.661± 0.011 0.650± 0.041
acc (air bronchograms) - 0.846± 0.105 0.894± 0.054 0.891± 0.022 0.910± 0.028
acc (parenchymal opacity) - 0.714± 0.060 0.747± 0.055 0.765± 0.026 0.777± 0.007

acc (z) - 0.765 0.787 0.801 0.812

Table A.5: The effect of regularization using ℛ+
1 (𝜃),ℛ2(𝜃) on model inconsistency

and performance of predicting task label 𝑦 and evidence label 𝑧. * stands for baseline
model that is trained to predict task label 𝑦. We compute average numbers with ±
2 standard deviations over random seeds.
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ℛ1(𝜃),ℛ2(𝜃) (ℛ max, hard)

(a) Vary 𝜔1, fix 𝜔2 = 0 (b) Fix 𝜔1 = 0, vary 𝜔2 (c) Vary 𝜔1 = 𝜔2 together

Figure A-5: The effect of varying strength of regularization using ℛ1(𝜃),ℛ2(𝜃) during
training on model consistency.

Figure A-6: The effect of varying strength of regularization using ℛ1(𝜃),ℛ2(𝜃) on
model inconsistency (left 2) and performance of predicting task label 𝑦 (middle 2)
and evidence labels 𝑧 (right 2).

𝜔1, 𝜔2 * 0.0,0.0 2.0,2.0 4.0,4.0 6.0,6.0

ℛ1(𝒟̂) - 0.294± 0.088 0.170± 0.082 0.161± 0.111 0.029± 0.048
ℛ2(𝒟̂) - 0.066± 0.080 0.050± 0.056 0.050± 0.057 0.053± 0.047

acc (𝑦) 0.514± 0.107 0.506± 0.007 0.544± 0.050 0.511± 0.020 0.504± 0.049
auc (𝑦) 0.841± 0.018 0.845± 0.006 0.860± 0.016 0.855± 0.021 0.852± 0.015

acc (vascular congestion) - 0.775± 0.047 0.774± 0.042 0.786± 0.008 0.772± 0.010
acc (hilar congestion) - 0.755± 0.104 0.798± 0.039 0.808± 0.011 0.667± 0.102
acc (peribronchial cuffing) - 0.803± 0.040 0.802± 0.013 0.820± 0.018 0.805± 0.074
acc (septal lines) - 0.844± 0.043 0.792± 0.061 0.779± 0.050 0.700± 0.064
acc (interstitial abnormality) - 0.647± 0.018 0.652± 0.022 0.637± 0.050 0.621± 0.006
acc (air bronchograms) - 0.892± 0.048 0.845± 0.039 0.872± 0.044 0.829± 0.026
acc (parenchymal opacity) - 0.718± 0.040 0.737± 0.009 0.745± 0.031 0.746± 0.013

acc (z) - 0.776 0.771 0.778 0.734

Table A.6: The effect of regularization using ℛ1(𝜃),ℛ2(𝜃) on model inconsistency
and performance of predicting task label 𝑦 and evidence label 𝑧. * stands for baseline
model that is trained to predict task label 𝑦. We compute average numbers with ±
2 standard deviations over random seeds.
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ℛ1(𝜃),ℛ2(𝜃) (ℛ max, soft)

(a) Vary 𝜔1, fix 𝜔2 = 0 (b) Fix 𝜔1 = 0, vary 𝜔2 (c) Vary 𝜔1 = 𝜔2 together

Figure A-7: The effect of varying strength of regularization using ℛ1(𝜃),ℛ2(𝜃) during
training on model consistency.

Figure A-8: The effect of varying strength of regularization using ℛ1(𝜃),ℛ2(𝜃) on
model inconsistency (left 2) and performance of predicting task label 𝑦 (middle 2)
and evidence labels 𝑧 (right 2).

𝜔1, 𝜔2 * 0.0,0.0 2.0,2.0 4.0,4.0 6.0,6.0 8.0,8.0

ℛ1(𝒟̂) - 0.249± 0.049 0.171± 0.067 0.189± 0.055 0.151± 0.196 0.108± 0.192
ℛ2(𝒟̂) - 0.061± 0.033 0.062± 0.037 0.034± 0.026 0.090± 0.125 0.075± 0.103

acc (𝑦) 0.514± 0.107 0.511± 0.043 0.510± 0.028 0.500± 0.078 0.502± 0.007 0.515± 0.013
auc (𝑦) 0.841± 0.018 0.845± 0.042 0.850± 0.013 0.847± 0.021 0.849± 0.025 0.845± 0.017

acc (vascular congestion) - 0.786± 0.028 0.780± 0.036 0.776± 0.063 0.780± 0.024 0.779± 0.005
acc (hilar congestion) - 0.766± 0.047 0.790± 0.035 0.769± 0.070 0.788± 0.054 0.791± 0.046
acc (peribronchial cuffing) - 0.813± 0.029 0.815± 0.029 0.814± 0.048 0.807± 0.130 0.831± 0.045
acc (septal lines) - 0.846± 0.079 0.875± 0.092 0.817± 0.047 0.847± 0.109 0.852± 0.132
acc (interstitial abnormality) - 0.655± 0.009 0.649± 0.026 0.642± 0.013 0.658± 0.017 0.636± 0.041
acc (air bronchograms) - 0.872± 0.017 0.863± 0.109 0.874± 0.010 0.866± 0.052 0.899± 0.031
acc (parenchymal opacity) - 0.720± 0.019 0.745± 0.065 0.747± 0.014 0.755± 0.019 0.770± 0.031

acc (z) - 0.779 0.788 0.777 0.786 0.794

Table A.7: The effect of regularization using ℛ1(𝜃),ℛ2(𝜃) on model inconsistency
and performance of predicting task label 𝑦 and evidence label 𝑧. * stands for baseline
model that is trained to predict task label 𝑦. We compute average numbers with ±
2 standard deviations over random seeds.
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𝐿𝛼(𝑥, 𝜃) (semantic loss)

(a) Vary 𝜔1, fix 𝜔2 = 0 (b) Fix 𝜔1 = 0, vary 𝜔2 (c) Vary 𝜔1 = 𝜔2 together

Figure A-9: The effect of varying strength of regularization using 𝐿𝛼(𝑥, 𝜃) during
training on model consistency.

𝜔1, 𝜔2 * 0.0,0.0 0.1,0.1 0.2,0.2 0.3,0.3 0.6,0.6 1.0,1.0

ℛ1(𝒟̂) - 0.233± 0.123 0.240± 0.090 0.203± 0.113 0.144± 0.085 0.070± 0.051 0.064± 0.089
ℛ2(𝒟̂) - 0.058± 0.059 0.057± 0.056 0.053± 0.057 0.079± 0.051 0.080± 0.078 0.100± 0.095

acc (𝑦) 0.514± 0.107 0.501± 0.040 0.513± 0.035 0.502± 0.042 0.503± 0.059 0.503± 0.030 0.474± 0.066
auc (𝑦) 0.841± 0.018 0.838± 0.006 0.829± 0.029 0.831± 0.010 0.829± 0.042 0.811± 0.033 0.798± 0.032

acc (vascular congestion) - 0.794± 0.015 0.768± 0.044 0.797± 0.004 0.770± 0.045 0.768± 0.051 0.767± 0.034
acc (hilar congestion) - 0.778± 0.036 0.773± 0.039 0.814± 0.058 0.808± 0.019 0.787± 0.074 0.797± 0.041
acc (peribronchial cuffing) - 0.819± 0.017 0.795± 0.030 0.817± 0.013 0.843± 0.036 0.813± 0.073 0.848± 0.006
acc (septal lines) - 0.865± 0.075 0.851± 0.115 0.824± 0.107 0.859± 0.077 0.884± 0.076 0.872± 0.069
acc (interstitial abnormality) - 0.651± 0.012 0.644± 0.054 0.649± 0.009 0.635± 0.016 0.651± 0.023 0.660± 0.023
acc (air bronchograms) - 0.884± 0.049 0.863± 0.004 0.870± 0.053 0.862± 0.073 0.887± 0.046 0.894± 0.037
acc (parenchymal opacity) - 0.729± 0.024 0.729± 0.063 0.725± 0.032 0.726± 0.037 0.759± 0.037 0.763± 0.051

acc (z) - 0.789 0.775 0.785 0.786 0.793 0.800

Table A.8: The effect of regularization using 𝐿𝛼(𝑥, 𝜃) on model inconsistency and
performance of predicting task label 𝑦 and evidence label 𝑧. * stands for baseline
model that is trained to predict task label 𝑦. We compute average numbers with ±
2 standard deviations over random seeds.
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