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Abstract

In this thesis, we study sequential multi-armed bandit and reinforcement learning in the

federated setting, where a group of agents collaborates to improve their collective reward

by communicating over a network.

We first study the multi-armed bandit problem in a decentralized environment. We

study federated bandit learning under several real-world environmental constraints, such

as differentially private communication, heavy-tailed perturbations, and the presence of

adversarial corruptions. For each of these constraints, we present algorithms with near-

optimal regret guarantees and maintain competitive experimental performance on real-

world networks. We characterize the asymptotic and minimax rates for these problems via

network-dependent lower bounds as well. These algorithms provide substantial improve-

ments over existing work in a variety of real-world and synthetic network topologies.

Next, we study the contextual bandit problem in a federated learning setting with dif-

ferential privacy. In this setting, we propose algorithms that match the optimal rate (up to

polylogarithmic terms) with only a logarithmic communication budget. We extend our ap-

proach to heterogeneous federated learning via a kernel-based approach, and also provide

a no-regret algorithm for private Gaussian process bandit optimization.

Finally, we study reinforcement learning in both the multi-agent and federated setting

with linear function approximation. We propose variants of least-squares value iteration

algorithms that are provably no-regret with only a constant communication budget.

We believe that the future of machine learning entails large-scale cooperation between

various data-driven entities, and this work will be beneficial to the development of reliable,

scalable, and secure decision-making systems.

Thesis Supervisor: Alex P. Pentland

Title: Toshiba Professor of Media Arts and Sciences
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Foreword

This thesis is divided into three parts with a total of 10 chapters, each of which can be read

independently of the others. This introduces some redundancy within the text at the cost

of readability. The first chapter serves as an introduction to the thesis and its contribu-

tions, followed by a brief survey of related background. Chapters 2-5 are concerned with

federated multi-armed bandits, Chapters 6-8 are about contextual bandits, and Chapters 9

and 10 discuss problems in reinforcement learning.

Notation. We denote vectors by lowercase solid letters, i.e., x, matrices by uppercase

solid letters X, and sets by calligraphic letters, i.e., X . We denote the ellipsoid norm of a

vector x as ‖x‖S =
√

x>Sx for some matrix S. We denote the interval a, ..., b for b ≥ a by

[a, b] and simply as [b] when a = 1. We denote the γth
power of graph G as Gγ (Gγ has edge

(i, j) if the shortest distance between i and j in G is ≤ γ). Nγ(v) denotes the set of nodes in

G at a distance of at most γ (including itself) from node v ∈ G. The norm ‖·‖ denotes the

`2(L2) norm unless otherwise specified via a subscript.
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Chapter 1

Introduction

An increasingly popular machine learning paradigm is that of federated learning, where a

collection of learning agents (e.g., cellphone devices) collaborate to learn a stronger ma-

chine learning model without sharing any of their raw data (Kairouz et al., 2019). The need

for federated learning is obvious from a practical perspective: many applications involve

data that is distributed, i.e., spread across many entities, where it is infeasible to share data

(due to privacy or computational concerns), and an approach that allows learning a joint

model from on all the data sources combined is a great improvement over the alternative

of having individual models for each distributed dataset.

As expected, federated learning has seen a tremendous increase in adoption, from ap-

plications in Google’s mobile keyboard (Pichai, 2019) to several services in Apple’s iOS

(Briggs et al., 2021) and medical imaging as well (Rieke et al., 2020). Beyond these, appli-

cations have also been proposed or described in a variety of domains including financial

risk prediction for reinsurance (Wang et al., 2020b), electronic health records analysis (Vaid

et al., 2020), smart manufacturing (Savazzi et al., 2021) and pharmaceuticals discovery as

well (Chen et al., 2020a).

The default purpose of federated learning is that of optimization, i.e., given a set of data

points distributed across several entities, the general objective is to find an optimal predic-

tion function that fits this data, e.g., learning a neural network. While it goes without say-

ing that this setting has immense practical utility, many intellingent systems are designed

for decision-making under uncertainty, e.g., in clinical trials (Sui et al., 2017) or in online

recommender systems (Mary et al., 2015). Furthermore, it is well-established that data dis-
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tributions are non-statitionary, i.e., they evolve over time. Even in standard applications,

this would require retraining the model on the incoming new data frequently (Ditzler et al.,

2015).

These reasons motivate us to study sequential decision-making in the federated setting.

Compared to the task of optimization, sequential decision-making under uncertainty has

the challenge that the agent is required to take actions in an environment as well. This is

often at odds with the objective of optimization, since it requires the agent to “explore” the

environment carefully to understand the best actions, and exploration will inevitably lead

to larger (albeit temporary) suboptimality (Bubeck et al., 2009). On the flipside, it is not

possible to derive provably efficient algorithms for decision-making without making pre-

cise assumptions about the nature of the environment (Lattimore & Szepesvári, 2020). This

is in contrast to the problems in optimization, where recent research is largely focused on

problems that do not satisfy the nice assumptions made in decision-making environments.

An aspect of particular importance in this thesis is that of privacy in federated decision-

making. Increasingly, machine learning and federated learning systems are being trained

with fine-grained data sources collected from people at scale, and recent research has demon-

strated that it is possible to recover this sensitive information at the individual level from

the trained models (Dwork et al., 2017). This becomes a greater challenge in the federated

setting, where we specifically desire not to reveal any sensitive information in the process

of learning machine learning models. While the paradigm of privacy in federated learn-

ing may seem to be in its infancy, there is a rich history of academic research on sharing

statistics securely that lies at its foundations, from early work in cryptography (Rivest et al.,

1978; Yao, 1982) and database systems (Agrawal & Srikant, 2000). Over the past decade the

fair use and protection of individual data has become a matter of global concern (Tankard,

2016; Albrecht, 2016; Goddard, 2017), and is an important aspect in algorithm design in this

work as well.

Given this background and motivation, we now discuss the precise contributions in this

thesis.
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1.1 Summary of Contributions

As discussed, the broader focus of this thesis is to study problems in sequential decision-

making under uncertainty in the federated setting. We consider two forms of federated

learning, namely, the more popular distributed setting (where a collection of agents com-

municate via a server) and the more pragmatic decentralized setting, where agents must

communicate directly via peer-to-peer messages over a communication network G1
. The

thesis is divided into three parts based on the complexity of the decision-making environ-

ment considered.

1.1.1 Multi-Armed Bandits

The first part concerns the study of multi-armed bandit problems in decentralized fed-

erated environments. Specifically, we study a group of M agents communicating via a

network G by passing messages that persist for γ rounds. The objective of the agents is

to collectively minimize the cumulative group regret in a K−armed bandit environment.

Chapter 2 introduces this problem setting, and presents a basic algorithm FedUCB1 which

obtains a cumulative regret of O (χ̄(Gγ) · K · log(T))2
. FedUCB1 a relatively straightfor-

ward algorithm that is present primarily for conceptual exposition, and the analysis of

demonstrates the basic technical arguments used to prove regret guarantees. Chapter 2

also presents two categories of lower bounds on the networked federated bandit problem.

First we present two instance-dependent asymptotic guarantees, where we demon-

strate that any multi-agent policy must incur Ω(K · log(T)) regret over T rounds in the

limit T → ∞, and furthermore, if the (multi-agent) policy satisfies certain consistency con-

straints (which, e.g., are satisfied by FedUCB1) then it must incur an asymptotic regret of at

least Ω
(
α(Gγ+1 · K · log(T)

)
. We demonstrate that even in sparse networks, the regret ob-

tained by FedUCB1 is within constant factors of the lower bound. Our asymptotic bounds

build on the analysis for single-agent bandits that is folklore in the bandit community (Bur-

netas & Katehakis, 1996; Lattimore & Szepesvári, 2020) but include several novel aspects

specific to the federated setting.

1
In the subsequent chapter we provide more detail about both of these communication environments and

highlight their practical merits, however, from a technical point of view, it is well-established that analyzing

decentralized algorithms is more challenging.

2χ̄(Gγ) denotes the clique-covering number and α(Gγ) denotes the indpendence number of the γ power

graph of G, please see Chapter 2 for more details.
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Next, we present two minimax-optimal instance-independent guarantees: we show a

Ω
(√

KM(T + d̄(Gγ))

)
rate for arbitrary multi-agent policies (where d̄(G) denotes the av-

erage degree in G), and a Ω
(√

α?(Gγ) · KMT
)

rate for policies that once again satisfy

certain consistency properties, where α?(G) denotes Turán’s lower bound on the indepen-

dence number of G (Turán, 1941). Both these guarantees, while building on existing tech-

niques for demonstrating lower bounds for multi-armed bandits, introduce new arguments

and constructions for the federated setting to characterize multi-agent policies. These lower

bounds form the scaffolding for deriving lower bounds in subsequent chapters as “plug-in”

bounds for special environments, see e.g., Chapter 3.

Chapter 3 studies the federated multi-armed bandit under differentially-private com-

munication. We present a variant of the aforementioned FedUCB1 algorithm that is modi-

fied to ensure that communication between agents respects (ε, δ)-differential privacy with

respect to each agents’ personal reward sequence. We propose a variant of the previously

discussed FedUCB1 algorithm that satisfies the constraints set by differential privacy with

only a constant increase of O(M
ε ) in the group regret. From a technical perspective, our

analysis relies on bounding the confidence intervals of a sum of Laplace distributions (since

we use the Laplace mechanism to ensure privacy), with the key contribution being the selec-

tion of the variable per-message privacy threshold that provides an overall (ε, δ) guarantee

by the advanced composition theorem (Kairouz et al., 2015).

Furthermore, this algorithm provides a glimpse into the communication-privacy synergy

we see more broadly in differentially-private bandit algorithms (this is discussed in more

detail in Chapter 6). We see that in contrast to the standard setting of Chapter 2, the differ-

ential privacy constraint requires agents to communicate only in O
( T

ε

)
rounds. While we

do not provide a rigorous proof of the minimax regret in this setting, we conjecture that the

constantO
(M

ε

)
can perhaps be improved to no less Ω

(
dmax(Gγ)

ε

)
by an informal argument

concerning the single-agent regret in the private setting.

In the subsequent Chapter 4, we discuss federated multi-armed bandits with heavy-

tailed losses. In contrast to Chapters 2 and 3 where we assume arms provide sub-Gaussian

rewards, in this section we consider rewards drawn from (1 + ε)−heavy tailed distribu-

tions, i.e., distributions with finite moments of order at most (1 + ε). We present an exten-

sion of FedUCB1 which utilizes a robust mean estimator to obtain the optimal rate (in terms

of ∆, the minimum arm separation).
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We take the opportunity in this chapter to discuss how the leading term in the regret

of FedUCB1 can be improved from the clique covering number χ̄(Gγ) to the domination

number ψ(Gγ) ≤ χ̄(Gγ) if agents communicate via messages of size O(K log(MTK)) bits,

instead of the default O(log(MTK)) bits of communication utilized by FedUCB1. The key

technical argument is to improve the diffusion of information within the network G by al-

lowing weakly-connected agents to directly leverage the estimators of the well-connected

agents in G (whereas, in FedUCB1, each agent simply constructs their own estimator). Fur-

thermore, we demonstrate that if we relax the individual consistency property of FedUCB1,

i.e., we allow agents to directly mimic other agents regardless of their own reward se-

quence, then we can achieve the ψ(Gγ) rate even with O(log(MTK)) bits per message.

Note that while we discuss these extensions within the heavy-tailed context for continuity

(and as this is the order in which they are published), these extensions are applicable to

the sub-Gaussian setting as well. We close the chapter by establishing asymptotic lower

bounds for the heavy-tailed federated bandit problem.

Chapter 5 discusses the federated bandit problem under adversarial corruptions in

communication. Specifically, we consider two models of adversarial perturbations: the

first is Huber contamination (Huber, 1965), where an adversary can corrupt an ε-fraction of

all rewards at random, so as to replace the original reward distribution (say, P) with the

contaminated mixture distribution (1− ε) · P + ε ·Q, where Q can be any arbitrary distri-

bution (Q can potentially be heavy-tailed and unique for each arm), where ε ≤ 1
2 is known

to the agents in advance. We show that a simple extension of the FedUCB1 with robust

estimation suffices to provide a no-regret algorithm for small ε.

While robustness to arbitrary contamination is an appealing objective, the proposed

algorithm requires knowledge of ε (or an upper bound thereof). Indeed, one cannot di-

rectly extend known single-agent techniques for model selection such as corraling of ban-

dits (Agarwal et al., 2017) to recover a guarantee without knowledge of ε due to delays

in communication and the lack of shared randomness in a decentralized setting. There-

fore, to handle unknown adversarial perturbations, we consider an alternative bounded

perturbation model where an adversary can arbitrarily corrupt any individual message

passed between two agents by a maximum amount ε ≤ 1. Under this corruption model

we present an algorithm CHARM (Cooperative Hybrid Arm Elimination) that provides a

regret of O
(

ψ(Gγ) · K · log2(T) + MTKε
)

, i.e., linear in the total amount of corruption,
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which is no-regret as long as ε = O(T−α) for some α > 0. The analysis of CHARM intro-

duces several new technical components: in contrast to traditional robust arm-elimination

approaches, we are faced with a decentralized collection of agents that each have their

own arm indices, and face delays in communication. To handle these issues, we exploit

the nature of corruption by using a hybrid approach, where each agent switches between

a federated arm elimination and UCB exploration using only personal observations. This

approach mitigates the effect caused by delayed message-passing through the network and

provides us with an efficient algorithm.

1.1.2 Contextual Bandits

In Part II we switch gears to consider contextual decision-making problems, i.e., bandit

problems where the reward from an arm is a function of a time-varying context description.

In Chapter 6 we study the d−dimensional linear contextual bandit in the federated setting

with differential privacy and present an algorithm titled FedLinUCB for this problem. In

contrast to the prior chapters, here we discuss both the distributed and decentralized com-

munication protocols separately, as the algorithms for both settings differ. We demonstrate

that FedLinUCB obtains a regret of Õ
((

d +
√

d3/2

ε

)√
MT

)
3

in the distributed setting, i.e.,

when agents communicate via a server, and a regret of Õ
((

d +
√

d3/2

ε

)√
χ̄(Gγ) ·MT

)
in the decentralized peer-to-peer setting, with only Õ(M log(MT)) bits of communication

between agents.

The analysis of FedLinUCB relies on several novel arguments. To achieve the required

regret rate within the communication budget, the agents rely on a data-dependent commu-

nication protocol that adapts to the exploration done by any agent. This communication

protocol breaks the martingale structure usually present in single-agent contextual bandit

algorithms, and hence a more sophisticated reasoning is required to bound the confidence

widths of the ridge regressor. Further, in the decentralized setting, the absence of a central

server requires the agents to broadcast their messages to the entire network instead, which

again requires a delicate clique-wise analysis of the error terms.

In this chapter, we demonstrate the synergy between communication and privacy briefly

remarked in Chapter 3 in more detail. We show that if any agent sends n total messages, it

3
The Õ(·) notation ignores constants and polylogarithmic factors.
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must add a noise term of O(log(n)) variance to its messages in order to preserve privacy,

which in turn increases the regret by the same factor. Therefore, we see that by communi-

cating in fewer rounds, agents can, in fact, decrease their overall regret increase due to dif-

ferential privacy. However, communicating in fewer rounds will lead to underexploration

in the primary bandit policy, hence there is a delicate balance between communication and

exploration that needs to be maintained.

Now, in many optimization problems such as Bayesian optimization, one would like

to define a high-dimensional kernel on the data in case it is not linearly-separable. It is

well-known that several widely utilized kernels such as the squared-exponential (RBF)

kernel are in fact infinite-dimensional. Using the approach presented in Chapter 6 would

be inapplicable in this case, as one would be required to add vast amounts of noise to

ensure privacy. This brings us to the topic of Chapter 7, where we study differentially-

private Bayesian optimization in the bandit setting via Gaussian processes. We propose

an algorithm for differentially-private (single-agent) Gaussian process bandit optimization

in infinite-dimensional Hilbert spaces titled approximate GP-UCB that achieves no-regret

learning while maintaining differential privacy.

The approach utilizes the quadrature Fourier approximation (Mutny & Krause, 2018) of

certain stationary kernels that allows us to project infinite-dimensional Hilbert spaces into

a finite, approximating Hilbert space. Given this approximate representation, we apply a

variation of the tree-based mechanism for differential privacy that perturbs the approxi-

mate statistics in order to ensure privacy. We show that our algorithm satisfies (ε, δ)-DP

while obtaining Õ(
√

TγT/ε)4
pseudoregret. This bound matches (up to logarithmic fac-

tors) the lower bound for isotropic kernels (Scarlett et al., 2017), and admits an identical

dependence on ε as linear bandits (Shariff & Sheffet, 2018). Thirdly, inspired by the recent

interest in locally differentially private (LDP) methods (Bebensee, 2019), we present an al-

gorithm that achieves (ε, δ)−LDP with Õ(T3/4
√

γT/ε) pseudoregret. We conjecture that the

constraints from LDP necessitate the O(T1/4) departure from typical near-optimal regret.

After the quick detour into single-agent private algorithms, we return to studying the

federated bandit problem in Chapter 8. In this chapter we study the federated decision-

making problem in the heterogeneous setting, i.e., when each agent faces a unique bandit

environment, but it is assumed that these environments are related to one another (in order

4γT is the maximum information gain, see Definition 7.1.
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to make learning possible). We study this problem in the kernelized bandit setting (similar

to Chapter 7), i.e., we assume that the mean reward function lies in a reproducing kernel

Hilbert space (RKHS) endowed with a kernel K. Here, we introduce heterogeneity in a

parameteric manner by assuming an “agent similarity kernel” Kz such that the rewards are

drawn from functions that live in a composite space of the contextual kernel Kx and the

agent similarity kernel, i.e., K = Kx � Kz.

In this kernelized bandit setting, a relevant single-agent baseline is the single-agent

IGP-UCB (Chowdhury & Gopalan, 2017) algorithm, which, for example, obtains a regret of

Õ(
√

MT(B
√

γx
MT +γx

MT)) when run for a total of MT rounds, where γx
MT is the information

gain after MT rounds, the structural complexity of the RKHS specified by Kx, as defined in

the previous chapter (Definition 7.1). We propose an algorithm FedUCB-Kernel, that obtains

a regret of

Õ
(√

MT · χ̄(Gd)
(

B
√

γx
MTγz + γx

MTγz

))
.

Here, γz determines the similarity between functions fv via the network kernel Kz. We

can further see that information gain via the contextsX ⊂ Rn
typically grows asO((log T)n)

for popularly employed kernels such as the squared-exponential kernel, and the network

similarity 1 ≤ γz ≤ M grows as the decision problems faced by the agents progressively

become dissimilar, matching the isolated case when γz = M. We additionally present

lower bounds for the decentralized problem that scale in terms of the network statistics

of G similar to the multi-armed case. While the above analysis assumes a known Kz, in

many cases, Kz is unknown and requires estimation. For this case, we provide an alter-

native algorithm (without regret guarantees) via kernel mean embeddings (Christmann &

Steinwart, 2010). Against state-of-the-art methods on a variety of real-world and synthetic

multi-agent networks, our algorithm exhibits superior performance.

1.1.3 Reinforcement Learning

In a natural progression, we arrive at reinforcement learning problems, a more general

decision-making setting, where an agent must navigate a state space in addition to the

action space present in the bandit case.

In Chapter 9, we propose decentralized algorithms for federated reinforcement learning

that are provably efficient with limited communication. We consider specifically the low-
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rank MDP, i.e., a Markov decision process that can be described (up to constant factors) by

a d−dimensional linear representation. We discuss the federated problem of learning low-

rank MDPs and provide several characterizations of heterogeneity or “non i.i.d.-ness” that

correspond to real-world federated environments. We then present a federated algorithm

for solving low-rank MDPs with M agents that obtains competitive performance with a

bounded communication budget. We propose two modes of communication that perform

better in different regimes, however, both can be parameterized to obtain the optimal rate.

Existing regret bounds for single-agent episodic RL in this low-rank or linear MDP set-

ting scale as Õ(H2
√

d3T) for T episodes of length H each, leading to a cumulative regret

of Õ(MH2
√

d3T) if M agents operate in isolation. Similarly, an agent running for MT

episodes will consequently obtain Õ(H2
√

d3MT) regret. In comparison, we provide an al-

gorithm built on least-squares value iteration (LSVI) titled FedLSVI, which obtains a group

regret of Õ((d + k)H2
√
(d + Γ)MT), where Γ is a measure of heterogeneity between dif-

ferent MDPs, and k� M is the size of the ambient space used to model this heterogeneity.

When the MDPs are homogenous, our rate matches the centralized single-agent regret. We

introduce several new aspects in the analysis of linear MDPs: first, we analyse stochastic

communication and function approximation in the federated setting, presenting a novel

concentration argument to bound the per-step estimation error. Next, we analyse each

communication protocol with varying message sizes and associated regret bounds. For

both approaches we provide rigorous analyses of regret and a lower bound on the group

regret for learning federated MDPs as well.

Until now, all federated environments considered are independent, i.e., the behavior of

one agent in its environment does not influence the environment of another agent. This

assumption of independence is somewhat characteristic across federated learning includ-

ing problems outside of decision-making, such as distributed optimization. An interest-

ing problem therefore would be to study federated decision-making in non-independent

environments, which is the subject of the final Chapter 10. The general setting of multi-

ple agents interacting in the same reinforcement learning environment (also known as a

Markov game) is a decades-old problem in game theory, going back to the work of Shap-

ley (1953). We consider a limited formulation of the general framework of Markov games,

where agents collectively take actions to maximize the global good, a setting known as

cooperative Markov games.
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For this problem, we present a characterization of cooperative Markov games based on

a graphical influence model, where a known (connected, undirected) graph G determines

the structure of influence (i.e., an edge (i, j) exists in G if agents i and j influence each other).

We extend the single-agent low-rank environment of Chapter 9 to multi-player MDPs and

provide a set of weak assumptions, titled clique-dominance, that are sufficient to reduce the

effective size of the joint state-action space from O((|S||A|)M) to o(dM), where d is the

dimensionality of the approximating function class, and S and A are the state and action

spaces respectively of each agent.

Next, we generalize the cooperative multi-agent reinforcement learning objective from

maximizing total reward to a broader class of Pareto-optimal policies, and characterize con-

ditions in which this class of policies can be efficiently recovered by the method of scalariza-

tion (Knowles, 2006) by minimizing Bayes regret. Thirdly, we introduce MG-LSVI (Markov

Game Least Squares Value Iteration), a decentralized vector-valued optimistic value itera-

tion algorithm that even under partial observability conditions, obtains a cumulative Bayes

regret of Õ(χ̄(G)H2
√

d3T) over T episodes, where χ̄(G) denotes the clique covering num-

ber of G. MG-LSVI runs in polynomial time and only requires a communication budget of

o(Md2 log T) rounds per agent in the worst case, which can be much smaller for sparse G.

This ensures that MG-LSVI is scalable to very large environments and adapts to the sparsity

of influence as well. Furthermore, in contrast to the existing work in cooperative MARL

that converges to the global optimal policy (i.e., maximizing total reward), MG-LSVI can,

under mild conditions, recover any subset of policies in the Pareto frontier, additionally

enabling adaptive load-balancing (Schaerf et al., 1994). Moreover, a direct corollary of our

analysis also provides the first no-regret algorithm for multi-objective RL (Mossalam et al.,

2016) with function approximation.

We now present a brief survey of the relevant background and topics discussed in this

thesis.

1.2 Background

1.2.1 Online Learning and Multi-Armed Bandits

The central algorithmic framework in this thesis is the broad setting of online learning and

multi-armed bandits (Thompson, 1933; Bush & Mosteller, 1953). The most basic version
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of this problem proceeds in rounds t = 1, 2, ..., T, where, in each round t, an agent must

select an action xt from a decision set Dt with the objective of maximizing some (stochastic)

reward rt. The problem was first introduced in the context of understanding the worst-

case outcomes of running blind medical trials by Thompson (1933), and later, the name

“bandit” was coined by Bush & Mosteller (1953) while studying learning patterns in mice.

The name “bandit” evolved from the gambling slot machine, called the one-armed bandit,

as they were desgined to gradually siphon cash from their unwitting participants.

While the bandit problem at first seems astonishingly straightforward, it provides deep

insights into the central dilemma of exploration and exploitation that is inherent in almost

every sequential decision-making problem with uncertainty. Applications of bandit prob-

lems are numerous: for example, bandit algorithms are typically used in online advertis-

ing (Tewari & Murphy, 2017) and personal content recommendation (Li et al., 2010) as em-

ployed on online platforms such as Netflix. A bandit algorithm is present in Monte-Carlo

Tree Search (MCTS, Kocsis & Szepesvári (2006)), which played an important role in Deep-

Mind’s AlphaGo (Silver et al., 2016), widely considered one of the crowning achievements

of artificial intelligence research in the 21st century (Granter et al., 2017). Furthermore,

the widely prevalent paradigm of reinforcement learning Sutton & Barto (2018) derives its

foundations from the humble multi-armed bandit as well. Below we present the multi-

armed bandit problem in its most abstract form.

(Abstract) Multi-Armed Bandit Problem

For round t ∈ [T]:

1. Agent selects arm at ∈ Dt.

2. Agent incurs reward rt.

Now, to provide any meaningful algorithm, we place constraints on the decision-making

environment, which leads us to a plethora of frameworks including, for instance, the finite-

armed stochastic bandit (Auer et al., 2002a), linear bandits (Li et al., 2010), contextual linear

bandits (Abbasi-Yadkori et al., 2011), kernelized contextual bandits (Valko et al., 2013) and

Gaussian processes (Srinivas et al., 2009). The algorithms mentioned previously typically

assume the reward generation process to be stochastic, i.e., the reward rt at any instant is

generated from a function f (typically, f is a function of the selected action xt) followed by a
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stochastic perturbation εt, i.e., rt = f (xt) + εt, where εt is determined by randomness from

the environment, and is typically assumed to be i.i.d. in each round. When the reward

generation process is nonstochastic, i.e., the rewards for any action are determined by an

adversary in advance, the regime is popularly known as the adversarial bandit (Auer et al.,

1995).

Before we delve into algorithm design for each of these environments, we must establish

a suitable performance metric. While it is evident that the agent selects actions to maximize

the cumulative reward ∑T
t=1 rt, we find it easier to analyse algorithms from the perspective

of regret, i.e., comparing the performance of the agent relative to the best possible outcome.

Definition 1.1 (Pseudoregret, Bubeck et al. (2012)). For a bandit problem over T rounds,

let x?t = arg maxx∈Dt
E[rt(x)] denote the optimal action (in expectation) at round t. The

pseudoregret for any agent executing a sequence x1, ..., xT of actions is then given as,

RT =
T

∑
t=1

E [rt(x?t )− rt(xt)] .

The expectation is taken over both the randomness of the environment as well as the agents’

policy. An algorithm is typically called no-regret if limT→∞
RT
T = 0.

This formulation of regret is prevalent for stochastic multi-armed bandits, whereas, it is

alternatively described in terms of losses incurred in the adversarial setting, where `t(xt)

is the loss incurred at any round t (usually, the losses and rewards are measured simi-

larly, with one merely being an affine transformation of the other). The primary objective

behind algorithm design is to typically recover no-regret algorithms, however, one can al-

ternatively consider the problem of pure exploration or best-arm identification (Audibert et al.,

2010), wherein we only wish to identify the best possible action to take within a decision

set. In this case, it is typical to seek PAC (Probably Approximately Correct, Valiant (1984))

guarantees on the sample complexity of the algorithm, i.e., a high probability guarantee on

the number of rounds required to identify the optimal action, as presented below.
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Definition 1.2 ((ε, δ)-PAC algorithm, Mannor & Tsitsiklis (2004); Even-Dar et al.

(2006)). For a bandit problem let x? = arg maxx∈D E[rt(x)] denote the optimal action

(in expectation) for a decision set D ∈ D, and µ?
D = E[rt(x?)] denote the optimal reward.

Then, an algorithmA is (ε, δ)−PAC over the space D if for anyD ∈ D, it outputs an action

xA ∈ D such that

P (E[r(xA)] > µ?
D − ε) ≥ 1− δ.

The expectation is taken over both the randomness of the environment as well as the agents’

policy. The sample complexity of an algorithm is given by the minimum number of rounds

T it requires to obtain an (ε, δ)−PAC guarantee.

In this thesis, we focus primarily on regret minimization, however, we present a brief

discussion on the interplay between decentralized multi-agent regret minimization and

distributed best-arm idenfitication towards the end as well. For regret minimization, the

philosophy behind algorithm design for adversarial bandits has largely been different from

that employed for stochastic bandits. For the latter, the analysis typically relies on develop-

ing estimators from noisy feedback, and delicately adjusting confidence intervals to pro-

vide high probability bounds on the regret. For the former, the majority of analyses con-

sider convex problems, where the essence of algorithm design is to leverage convexity con-

straints to restrict the decision space available to the algorithm efficiently, and ensure fast

convergence to the optimal policy via carefully constructed regularized objective functions

for gradient-based optimization.

For stochastic bandits, a popular class of algorithms, dubbed Upper Confidence Bound

(UCB) methods, is based on the optimism under uncertainty heuristic that explicitly en-

courages exploration by penalizing an action in accordance with how many times it has

been explored previously. The algorithm was first introduce for multi-armed stochastic

bandits in Auer et al. (2002a). The problem setting considered is the K−armed stochastic

bandit, where the decision set Dt is a fixed set of K arms, and pulling an arm k ∈ [K] pro-

vides a random reward with mean µk, such that the optimal arm k? = arg maxk∈[K] µk.

The algorithm introduced by Auer et al. (2002a), called UCB1 obtains a pseudoregret of

O(∑k 6=k?
log T

∆k
+ ∆k), where ∆k = µk? − µk refers to the suboptimality of arm k. When the

rewards are Bernoulli distributed, this algorithm matches (up to constants) the rate lower
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bound of O(∑k 6=k?
log T

∆k
) for the K−armed bandit presented in the early work of Burnetas

& Katehakis (1996). For arbitrary reward distributions, however, UCB1 is suboptimal, and

asymptotically-optimal rates have been achieved by the KL-UCB algorithm of Garivier &

Cappé (2011). Numerous subsequent improvements and variants of this underlying de-

sign philosophy have been proposed for different bandit problem settings, including the

LinUCB (Li et al., 2010) and OFUL (Abbasi-Yadkori et al., 2011) algorithms for linear con-

textual bandits, where the decision setDt is typically assumed to be a subset of Rd
for some

d > 1, and the reward for any arm xt is given as 𝜃>xt + εt, where 𝜃 ∈ Rd
is an unknown (but

fixed) vector. Our contributions use a similar linear contextual formulation owing to its ver-

satility and ubiquity, but additionally consider the kernel setting, where the function f has

a bounded “small” norm in some RKHSH. Algorithms based on similar upper-confidence

bound strategies have been proposed for both Bayesian (GP-UCB, Srinivas et al. (2009);

Chowdhury & Gopalan (2017)) as well as frequentist formulations (KernelUCB, Valko et al.

(2013)) and are relevant to our own algorithm development.

Another (and perhaps the first) approach to the bandit problem is that of Thompson

Sampling, introduced by Thompson (1933), that takes a Bayesian perspective on the prob-

lem. Thompson (or posterior) sampling maintains a probability distribution over the pa-

rameterized bandit environment, and at each round, we draw a sample parameter from

the posterior distribution of the environment (this is computed using the observed rewards

from each arm and a prior distribution over the rewards), and then selects the action that

with the largest posterior predicted reward. While the Thompson sampling algorithm had

its roots as a heuristic policy from the early work of Thompson (1933), it has recently been

shown to exhibit powerful performance in practice Chapelle & Li (2011). This led to a recent

surge in developing a theoretical understanding of its performance, and a series of seminal

work (Agrawal & Goyal, 2012, 2013) established no-regret guarantees for the algorithm. An

alternative Bayes regret perspective was provided in the work of Russo & Van Roy (2014)

that provided a confidence-bound based reduction of frequentist regret (employed typi-

cally in the analysis of UCB algorithms) to the Bayes regret of Thompson sampling. This

technique has subsequently been applied to develop Bayes regret bounds for a variety of

different settings (Kandasamy et al., 2018; Dubey & Pentland, 2019). Russo & Van Roy

(2014) use their prior analysis of Thompson sampling to develop Information-directed sam-

pling, an alternative algorithm that selects actions that minimize a ratio between per-round
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incurred regret and the information gain, i.e., the mutual information between the optimal

action in any given round and the subsequent observation.

1.2.2 Cooperative and Multi-Agent Decision-Making

Cooperative multi-agent decision-making is a central problem in artificial intelligence, typ-

ically involving a collection of agents interacting in an environment, and communicating

among themselves to improve collective performance. Note that this is in contrast to the

typical parallelized learning setting, where a single agent (typically termed the server) del-

egates computation to a group of agents (typically term clients) to accelerate learning. In

the latter problem, client agents typically do not interact with an environment, nor do they

have any individual utility function. In contrast, each agent in the cooperative setting exe-

cutes their own (possibly unique) policy in their (possibly unique) environments.

For instance, cooperative decision-making problems are common in federated training

of consumer digital products, e.g., to train their mobile keyboard, Google (Hard et al., 2018)

uses a cooperative framework, where each device optimizes predictions for their individ-

ual user while leveraging shared knowledge via infrequent communications. Increasingly,

this paradigm is gaining prominence in medicine (Sheller et al., 2020; Brisimi et al., 2018)

to facilitate large-scale collaboration without sharing explicit health records. There is ad-

ditionally a wealth of literature on cooperative learning of policies in robotics (Landgren

et al., 2016a,b) as well as sensor control (Nikfar & Vinck, 2017).

The standard cooperative framework involves a group V of M agents, each interacting

with a multi-agent environment and communicating with other agents either via synchro-

nization orchestrated by a single server (termed distributed communication) or via peer-to-

peer messages, i.e., the agents are arranged in a network G = (V , E) where E denotes a

communication network, i.e., agents (i, j) communicate if the edge (i, j) ∈ E (termed de-

centralized communication). See Figure 2-1 for a visual comparison. Each communication

protocol presents its own challenges, however, from a technical perspective, the peer-to-

peer protocol is notoriously more difficult to analyse compared to the distributed one, as

message-passing usually also creates delays in information flow throughout the network.

In this thesis, we will consider both protocols and demonstrate the similarities and dif-

ferences in each. Our primary focus in this setting is on online learning problems (i.e.,

multi-armed bandits and reinforcement learning) and we now present a brief summary of
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Figure 1-1: A visual representation of the two protocols present in cooperative decision-

making for a group of M agents. The dsitributed setting (left) involves periodic commu-

nication with a server, which typically requires O(M) messages be shared each round. In

contrast, the decentralized setting (right) involves peer-to-peer communication, and can po-

tentially require O(M2) messages be shared per round in the worst case.

existing algorithms for these respective domains. To understand the regret guarantees, we

first provide some graph notation.

Definition 1.3 (Clique covering number). A clique covering C of a graph G is a partition

of all its vertices into sets C ∈ C such that the sub-graph formed by each C is a clique, i.e.,

all vertices in C are connected to each other in G. The smallest number of cliques into which

the nodes of G can be partitioned into is called the clique covering number χ(Ḡ).

Definition 1.4 (Independence number). An independent set of a graph G = (V , E) is

a set of vertices V ′ ⊆ V such that no two vertices in V ′ are connected. A maximal inde-

pendent set V? is the largest independent set of G, and the corresponding size denotes the

independence number α(G) = |V?|.

1.2.3 Multi-Agent Multi-Armed Bandits

Decentralized cooperative estimation has been explored for sub-Gaussian stochastic ban-

dits using a running consensus protocol in (Landgren et al., 2016a,b; Martínez-Rubio et al.,

2019) and for adversarial bandits Cesa-Bianchi et al. (2019b); Bar-On & Mansour (2019)

using a message-passing protocol. Localized decision-making for sub-Gaussian rewards

has also been explored in the work of (Landgren et al., 2018), and a fully-centralized al-
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gorithm in (Shahrampour et al., 2017), where all agents select the same action via voting.

The stochastic bandit with multiple pulls (Xia et al.; Anantharam et al., 1987) can be seen

to equivalent to the cooperative multi-armed bandit on a complete graph G with a central-

ized actor (since information flows through the network instantaneously). For contextual

bandits, similar algorithms have been derived that alternatively utilize message-passing

algorithms (Dubey & Pentland, 2020c) or server-synchronization (Wang et al., 2019a). In

the competitive multi-agent bandit setting, where agents must avoid collisions, algorithms

have been proposed for distributed (Liu & Zhao, 2010b,c; Hillel et al., 2013) and limited-

communication (Bistritz & Leshem, 2018) settings. Differentially-private algorithms have

also been proposed (Dubey & Pentland, 2020d). Contrasted to cooperative settings, there is

extensive research in competitive settings, where multiple agents compete for arms (Bistritz

& Leshem, 2018; Bubeck et al., 2019; Liu & Zhao, 2010b,c,a). For strategic experimenta-

tion, Brânzei & Peres (2019) provide an interesting perspective on the contrast in explo-

ration strategies between cooperative and competitive agents.

Fundamentally, in the decentralized communication setting, a majority of regret bounds

(including those presented in this thesis) for both stochastic and adversarial bandits depend

on the independence number α(G) of the communication network (Dubey & Pentland,

2020c,a; Cesa-Bianchi et al., 2019a,b). Interestingly, these bounds can only be obtained when

the agents share additional summary statistics, and not just raw observations. In the case

when only observations are shared (and not statistics based on individual histories), the

regret obtained is a function of the clique number χ(Ḡ) instead. Since for any graph G,

we have that α(G) ≤ χ(Ḡ), it is evident that sharing more information is never worse.

Indeed, a matching lower bound on the regret has also been shown in the work of Kolla

et al. (2018), establishing the optimality of the independence number α(G) for networked

communication settings.

For distributed settings, the significant challenge is to provide optimal speed-up in as

little communication as possible. However, the theoretical limits of communication vary

based on the problem setting considered and the type of guarantee required. For instance,

in the problem of distributed pure exploration, one can get away with fewer rounds of com-

munication as the objective is to obtain an (ε, δ)−PAC guarantee, and any agent can indi-

vidually suffer large regret in the process (e.g., as shown in the work of Hillel et al. (2013)).

In contrast, the more relevant setting for cooperative multi-agent setting in modern ap-
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plications is that of regret minimization, where the utility of any agent cannot be enitrely

sacrificed to limit communication. However, in this case as well, we will demonstrate that

it is indeed possible to obtain similar guarantees (Dubey & Pentland, 2020b) albeit with

slightly higher communication costs.

Aclosely-related problem is the single-agent social network bandit, where a user is picked

at random every trial, and the algorithm must infer its contextual mean reward (Cesa-

Bianchi et al., 2013; Li et al., 2016; Gentile et al., 2014, 2017), while assuming an underlying

clustering over the users. This problem setting, while relevant, crucially differs from the

cooperative learning, since (a) this is a single-agent setting (only one action is taken every

round), and (b) there are no delays or heterogeneity introduced via communication.

1.2.4 Cooperative Multi-Agent Reinforcement Learning

Cooperative multi-agent reinforcement learning has a very large body of related work, be-

ginning from classical algorithms in the fully-cooperative setting (Boutilier, 1996), i.e., when

all agents share identical reward functions. This setting has been explored as multi-agent

MDPs in the AI community (Lauer & Riedmiller, 2000; Boutilier, 1996) and as team Markov

games in the control community (Yoshikawa, 1978; Wang & Sandholm, 2003). In this thesis,

we primarily consider the more general heterogeneous reward setting, where each agent may

have unique reward functions, which corresponds to the team average games studied pre-

viously (Kar et al., 2013; Zhang et al., 2018b,a). While some of the prior work does indeed

provide tractable algorithms that are decentralized and convergent, none consider regret

guarantees, owing to the nascent state of research in reinforcement learning with function

approximation.

From a theoretical standpoint, we stress that from a fully-observable regret minimiza-

tion perspective, only environments with sparse communication constraints are interest-

ing as it has been noted abundantly in prior work (e.g., as studied in Szepesvári & Littman

(1999)) that a centralized server controlling each agent in realtime can converge to the opti-

mal joint policy. In this thesis, however, we study a more general form of regret in order to

discover multiple policies on the Pareto frontier, instead of the single policy that maximizes

team-average reward. We refer the reader to the illuminating paper by Zhang et al. (2019)

for a detailed survey of relevant work.

Closely related to multi-agent RL, parallel reinforcement learning is a very relevant
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practical setting in large-scale and distributed systems, studied first in Kretchmar (2002).

The key dstinction between a typical multi-agent MDP environment and a parallel MDP

is that within parallel MDPs, agents have isolated state and action spaces along with iso-

lated reward functions (the reward is only a function of the agent’s own state and action),

whereas the multi-agent MDP (or cooperative Markov game) involves a joint state and ac-

tion space and joint reward. The parallel setting can thus be considered as an analog of

the distributed bandit environment. In this setting, a variant of the SARSA was presented

for parallel RL in Grounds & Kudenko (2005), that provides an efficient algorithm but with

no regret guarantees. Modern deep-learning based approaches (with no regret guarantees)

have been studied recently as well (e.g., Clemente et al. (2017); Espeholt et al. (2018); Horgan

et al. (2018); Nair et al. (2015)). In a decentralized variant of parallel reinforcement learning,

there has been recent interest from applications (Yu et al., 2020b; Zhuo et al., 2019).

While our focus in this thesis will be limited to approaches motivated by statistical ma-

chine learning in order to ensure performance and privacy guarantees, we acknowledge

that the broader literature in cooperative multi-agent reinforcement learning includes a va-

riety of perspectives, and we refer the reader to the extensive surveys provided in Busoniu

et al. (2008); Hernandez-Leal et al. (2019) for more details.

1.2.5 Differential Privacy

While the computer science community has approached the problem of privacy-preserving

systems from a variety of computational and statistical approaches, this thesis utilizes differ-

ential privacy, a cryptographically-secure privacy framework introduced by Dwork (2011);

Dwork & Roth (2014) that requires the behavior of an algorithm to fluctuate only slightly

(in probability) with any change in its inputs.
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Definition 1.5 ((ε, δ)−Differential Privacy, Dwork & Roth (2014)). An algorithm

trained over inputs from set X and producing outputs in the set Y is (ε, δ)−differentially

private if for any two datasets X, X′ ⊂ X that differ in only one entry and any S ⊂ Y ,

P(A(X) ∈ S) ≤ eε ·P(A(X′) ∈ S) + δ.

When δ 6= 0, the algorithm is termed (ε, δ)−approximately differentially private, and

if the algorithm satisfies the above with δ = 0, it is termed ε−pure differentially private.

While the above model of differential privacy is crucial in ensuring privacy through

plausible deniability introduced by randomization, it relies on trust in a centralized au-

thority. Particularly, if a dataset X is comprised of individual rows belonging to distinct

users, the users must trust the centralized data aggregating entity that subsequently pro-

duces the decision-making algorithm A. In order to eliminate this requirement of trust, an

alternate model entitled local differential privacy (LDP) was introduced in the work of Ka-

siviswanathan et al. (2011), and further popularized by the work of Duchi et al. (2013).

Definition 1.6 ((ε, δ)−Local Differential Privacy, Bebensee (2019)). An algorithm

trained over inputs from set X and producing outputs in the set Y is (ε, δ)−differentially

private if for any two elements x, x′ ∈ X and any output y ∈ Y ,

P(A(x) = y) ≤ eε ·P(A(x′) = y) + δ.

When δ 6= 0, the algorithm is termed (ε, δ)−approximate locally differentially private,

and if the algorithm satisfies the above with δ = 0, it is termed ε−pure locally differen-

tially private.

Note that local DP is a much stronger guarantee than DP, as it applies to any pair of

input points within a dataset, and not to neighboring datasets as is the case with differential

privacy. In this thesis, we will discuss both variants of privacy, and their adaptations to

different online learning problems. We now present a brief summary of related work at the

intersection of differential privacy and online learning.
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Differential Privacy in Online Learning

A technique to maintain differential privacy for the continual release of statistics was intro-

duced in Chan et al. (2010); Dwork & Smith (2010), known as the tree-based algorithm that

privatizes the partial sums of n entries by adding at most log n noisy terms. This method

has been used to preserve privacy across several online learning problems, including con-

vex optimization (Jain et al., 2012; Iyengar et al., 2019), online data analysis (Hardt & Roth-

blum, 2010), collaborative filtering (Calandrino et al., 2011) and data aggregation (Chan

et al., 2012). In the single-agent bandit setting, differential privacy using tree-based algo-

rithms have been explored in the multi-armed case (Thakurta & Smith, 2013; Mishra &

Thakurta, 2015; Tossou & Dimitrakakis, 2016) and the contextual case (Shariff & Sheffet,

2018).

For the multi-agent multi-armed stochastic bandit problem, differentially private algo-

rithms have been devised for the centralized (Tossou & Dimitrakakis, 2015b) and decentral-

ized (Dubey & Pentland, 2020d,b) settings. In the competitive multi-agent stochastic bandit

case, Tossou and Dimitrakakis (Tossou & Dimitrakakis, 2015b) provide a UCB-based algo-

rithm based on Time-Division Fair Sharing (TDFS). Empirically, the advantages of privacy-

preserving contextual bandits has been demonstrated in the work of Malekzadeh et al.

(2019), and Hannun et al. (2019) consider a centralized multi-agent contextual bandit algo-

rithm that use secure multi-party computations to provide privacy guarantees (both works

do not have any regret guarantees). See Basu et al. (2020) for a summary of regret bounds

for private multi-armed bandits. For Gaussian process bandits and Bayesian Optimisation

(BO), Kusner et al. (2015) consider the problem of releasing GP parameters after optimization

under differential privacy constraints, by analysing the sensitivity of the final parameters.

This thesis, in general, handles a more challenging setting, where parameters must be pri-

vate throughout the optimisation process. An application of DP to the Gaussian process

regression was studied in the work of Smith et al. (2016), however, with no regret guar-

antees. In this thesis, we will extend no-regret private estimation to the Gaussian process

problem as well (Dubey, 2021).

In the case of reinforcement learning, the first differentially-private algorithms were

presented in the work of Wang & Hegde (2019), that utilize functional perturbations to

develop a Q−learning algorithm with privacy guarantees. A heuristic approach based on
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the Laplace mechanism with bit flipping was presented in Ono & Takahashi (2020) for dis-

tributed reinforcement learning (i.e., parallel MDPs) with strong empirical performance.

The first joint differentially private algorithm with regret and PAC guarantees for tabular

MDPs was presented in Vietri et al. (2020a), and a local differentially-private variant in the

same setting was introduced in Garcelon et al. (2020). This thesis provides differentially-

private algorithms for MDPs with general function approximation, which generalizes the

existing literature to a much stronger class of models.

1.2.6 Robustness

Machine learning at scale is brittly susceptible to a variety of adversarial behavior, includ-

ing model misspecification (Ghosh et al., 2017; Foster et al., 2020; Lattimore et al., 2020),

adversarial perturbations (Moosavi-Dezfooli et al., 2017; Gupta et al., 2019), heavy-tailed

data distributions (Dubey & Pentland, 2019), communication failures (Gündüz et al., 2019)

and byzantine or contaminated agents (Blanchard et al., 2017; Yin et al., 2018; Dubey &

Pentland, 2020d).

In this thesis, we study some of these problems in the context of sequential decision-

making and bandit learning. Primarily, we will study the design of algorithms robust

to three kinds of adversarial behavior, namely (a) heavy-tailed data, (b) adversarial cor-

ruptions contamination and (c) unobserved confounding and heterogeneity. We will now

briefly provide some relevant background and related literature.

Heavy-Tailed Bandits and Online Learning

Bubeck et al. (2013) first discuss the problem of stochastic bandits with heavy-tailed re-

ward distributions, and propose the Robust-UCB algorithm that uses robust mean esti-

mators to obtain logarithmic regret. Vakili et al. (2013) introduce DSEE, an algorithm that

sequences phases of exploration and exploitation to obtain sublinear regret. Thompson

Sampling (Thompson, 1933) has been analysed for exponential family bandits (that include

Pareto and Weibull heavy-tailed distributions) in the work of Korda et al. (2013), however,

these distributions have “lighter” tails owing to the existence of higher order moments.

In our own prior work (Dubey & Pentland, 2019), we provide an algorithm for Thomp-

son Sampling for α-stable densities (Borak et al., 2005), at family of heavy-tailed densities

typically with infinite variance. Yu et al. (2018) provide a purely exploratory algorithm
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for best-arm identification for ε-heavy tailed rewards. For the linear bandit, Shao et al.

(2018); Medina & Yang (2016) provide nearly-optimal algorithms under heavy tails. Best

arm selection has also been explored with heavy-tailed reward distributions in the bandit

setting Agrawal et al. (2020). No-regret variants of the UCRL2 (Jaksch et al., 2010) and Q-

learning (Watkins & Dayan, 1992) for tabular MDPs was introduced recently in the work

of Zhuang & Sui (2021).

Most algorithms for heavy-tailed decision-making in the multi-armed bandit and MDP

setting rely on the usage of robust mean estimators to construct tight confidence intervals

for reward estimation, and such robust estimators typically require excessive communica-

tion in the multi-agent setting, as the (near) optimal truncated or median-of-means esti-

mators (Lugosi & Mendelson, 2019) require access to each data sample. This leads us to

the question of whether efficient algorithms for robust mean estimation can be developed

for streaming applications, in order to allow for tighter controls on communication costs.

Among other questions (such as the interaction of heavy-tailed statistics with differential

privacy), this demonstrates the technical challenges encountered in robust estimation in

the multi-agent setting.

Sequential Decision-Making with (Adversarial) Corruptions

Robust estimation with adversarial corruptions has a rich history in the bandit literature.

We remark that this setting typically lies as an intermediate setting between stochastic and

adversarial observations, e.g., when some fraction of observations are corrupted by an ad-

versary. A large majority of related work in this setting capitalizes on providing best of

both worlds guarantees, i.e., algorithms that provide optimal rates in both the stochastic

and adversarial observation models, e.g., the work of Bubeck & Slivkins (2012); Seldin &

Slivkins (2014); Auer & Chiang (2016); Seldin & Lugosi (2017) provided several algorithms

with near-optimal guarantees for both settings in single-agent environments. However, the

work of Zimmert & Seldin (2020) demonstrated that the Tsallis-INF algorithm, i.e., mirror

descent with Tsallis-entropy regularization provided the optimal best of both worlds guar-

antees for both stochastic and adversarial bandits, in addition to the stochastically constrained

adversarial environment, which can be thought of as a stochastic environment corrupted

by adversarial perturbations. An alternative arm-elimination perspective was provided

for similarly constrained environments in the work of Lykouris et al. (2018). In addition
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to stochastically-constrained adversarial environments, a very relevant setting for multi-

agent algorithm design is robustness to communication failure or byzantine communica-

tion. This setting is more closely linked to Huber contamination (Huber, 1965), which has

been discussed in single-agent best-arm identification in the work of Altschuler et al. (2019).
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Part I

Multi-Armed Bandits
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Chapter 2

Introduction to Federated

Multi-Armed Bandits

2.1 Introduction

In this chapter we will examine the most fundamental version of stochastic decision-making:

the multi-armed bandit, introduced first by Thompson (1933), in a multi-agent federated

setting. Building on the problem setting for multi-armed bandits introduced in Chapter 1,

we present a federated variant involving M agents below.

(Abstract) Federated Multi-Armed Bandit Problem

For round t ∈ [T] and agent m ∈ [M]:

1. Environment provides decision set Dm(t).

2. Agent m selects arm am(t) ∈ Dm(t).

3. Agent incurs reward rm,t.

4. Optionally communicate with other agents.

The typical federated multi-armed setting assumes that the rewards obtained by any

agent m from any arm k are drawn from a distribution Dk with mean µk, which is also

known as homogenous federated learning, as the arm rewards do not change across agents,

and depend only on the agent’s individual action (and not the group action). In Chapter 6,

we discuss the heterogeneous setting, where reward distributions can vary across agents.
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The objective for any agent m, is to pull arms am(1), ..., am(T) over T rounds of the game,

such that it obtains the largest cumulative reward ∑T
t=1 rm,t. For arm k ∈ [K], rewards

come from a distribution . The largest expected reward is denoted by µ∗ = maxk∈[K] µk,

and the corresponding arm(s) is denoted as the optimal arm(s) k∗. In Chapters 2-5, we will

focus exclusively on the i.i.d. setting, that is, for each arm k, rewards are independently

and identically drawn from a fixed distribution Dk. We assume (unless stated otherwise),

throughout Chapters 2-5 that the rewards are drawn from 1-sub-Gaussian distributions.

2.1.1 Single-Agent Regret

We measure performance by Regret, which, at any round T, compares the obtained (ex-

pected) reward against the best mean reward in hindsight.

R(T) = µ∗T −E[
T

∑
t=1

r(t)] = Tµ∗ −
T

∑
t=1

µat

This expectation is taken both over the environment and the algorithm’s randomness. When

the environment obeys simple constraints such as σ sub-Gaussianity, one can provide a

uniform guarantee on the reward obtained for any specific sequence of actions a1, ..., aT for

any instantiation of the corresponding random variables. For any fixed sequence of actions

a1, ..., aT selected by an algorithm, given that we have that rt ∼ µat , we can bound the in-

stance regret. Consider the instance regret as the realized difference between the rewards

from the best arm at each round and the actual reward rt as R̂(T). Then, we have that

E[R̂(T)] = R(T) and that with probability at least 1− 1
T ,

R̂(T) ≤ R(T) +
∣∣∣R(T)− R̂(T)

∣∣∣ ≤ R(T) +O
(

σ
√

T log (KT)
)

.

Here the expectation is taken only with respect to the environment. The last inequality

follows trivially from a Hoeffding bound, and can also be derived in settings where re-

wards are not drawn i.i.d. from the arms (e.g., in contextual bandits), using a martingale

approach. This suggests that a bound on the expected regret (also known as pseudoregret)

can provide a high probability bound on the realized regret, making the pseudoregret a more

appealing measure. Chapters 2-5 consider the following class of bandit problems E for a

finite, countable set of actions A, such that |A| = K. E is considered to be unstructured, i.e.
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the rewards from each arm are independent of the others.

Definition 2.1 (Unstructured Bandit Problem). A class of bandit problems E is unstructured if

its action space A is finite, and there exists a set of distributions Pa∀ a ∈ A such that

E = {𝜈 = (Pa : a ∈ A) : Pa ∈ Pa∀a ∈ A}.

Lower Bounds. One can derive the immediate bound of R(T) ≥ ∑k:∆k>0 ∆k from the fact

that any agent must pull each arm once. A stronger bound on the regret has been provided

by Lai & Robbins (1985), and generalized subsequently by Burnetas & Katehakis (1996),

that holds for a class of “consistent” policies, i.e., policies that exhibit “uniform” behavior

across all stochastic bandit problems.

Definition 2.2 (Consistent Bandit Policy). Let π be any bandit policy, which is consistent if,

for any suboptimal arm k ∈ [K], k 6= k∗, horizon T > 0, one has E[nk(T)] = o(Ta) for any a > 0,

where nk(T) denotes the number of times π pulls arm k until round T.

For the class of bandit policies defined above, we have the following lower bound.

Theorem 2.1 (Burnetas & Katehakis (1996)). Let B be a class of unstructured bandits and π be

a consistent policy over B. Then, for all ν = (Pi)
k
i=1 ∈ B such that µi = EX∼Pi [X] < µ∗, we have

lim inf
T→∞

R(T)
ln(T)

≥ ∑
k:∆k>0

∆k

dinf(Pi, µ∗,Mi)
, where,

dinf(P, µ∗,M) = inf
P′∈M

{
DKL(P, P′) : µ(P′) > µ∗

}
.

We refer the reader to Burnetas & Katehakis (1996) for a complete proof of this theorem.

2.1.2 Communication Protocols and Group Regret

The standard federated framework involves a group V of M agents, each interacting with

a multi-agent environment and communicating with other agents either via synchroniza-

tion orchestrated by a single server (termed distributed communication) or via peer-to-peer

messages, i.e., the agents are arranged in a network G = (V , E) where E denotes a commu-

nication network, i.e., agents (i, j) communicate if the edge (i, j) ∈ E (termed decentralized

communication). See Figure 2-1 for a visual comparison. Each communication protocol
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Table 2.1: Quantity (with notation) for any graph G.

Average degree (d̄) Maximum degree (dmax) Degree of i (di) Independence number (α)

Message life (γ) Minimum degree (dmin) Neighborhood of i (Ni) Domination number (ψ)

k-power of G (Gk) Diameter (d?) Ni ∪ {i} (N+
i ) Clique covering number (χ̄)

presents its own challenges, however, from a technical perspective, the peer-to-peer proto-

col is more difficult to analyse compared to the distributed one, as message-passing usually

also creates delays in information flow throughout the network.

Message-Passing. Let G = (V , E) be a connected, undirected graph encoding the commu-

nication network, where E contains an edge (i, j) if agents i and j can communicate directly

via messages with each other. After each round t, each agent j broadcasts a message qj(t)

to all their neighbors. Each message is forwarded at most γ times through G, after which it

is discarded. For any value of γ > 1, the protocol is called message-passing (Linial, 1992), but

for γ = 1 it is called instantaneous reward sharing, as this setting has no delays in commu-

nication. Part I considers the general message-passing setting with γ > 1, and we remark

that algorithms for the peer-to-peer setting are by design, applicable in the distributed set-

ting (one can simply set any individual agent as the server, and consider G to be the star

graph with that agent at the center). We now provide some graph notation in Table 2.1 and

provide additional relevant terminology.

Definition 2.3 (Clique covering number). A clique cover C of any graph G = (V , E) is a parti-

tion of V into subgraphs C ∈ C such that each subgraph C is fully connected, i.e., a clique. The size

of the smallest possible covering C? is known as the clique covering number χ̄(G).

Definition 2.4 (Independence number). The independence number α(G) of G = (V , E) is

the size of the largest subset of Vα ⊆ V such that no two vertices in Vα are connected.

Definition 2.5 (Domination number). The domination number ψ(G) of G = (V , E) is the

size of the smallest subset Vψ ⊆ V s. t. each vertex not in Vψ is adjacent to at least one agent in Vψ.

Group Regret. The performance measure we consider is a straightforward extension of

the single-agent idea of pseudo regret called group regret, which is the regret (in expectation)

incurred by the group V by pulling suboptimal arms. The group regret is given by

R(T) = TMµ∗ −
T

∑
t=1

M

∑
m=1

µam(t) =
M

∑
i=1

∑
k:∆k>0

∆k ·E
[
ni

k(t)
]

.
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Figure 2-1: A visual representation of the two protocols present in cooperative decision-making for

a group of M agents. The dsitributed setting (left) involves periodic communication with a server,

which typically requires O(M) messages be shared each round. In contrast, the decentralized set-

ting (right) involves peer-to-peer communication, and can potentially require O(M2) messages be

shared per round in the worst case.

Here ni
k(t) is the number of times agent i pulls the suboptimal arm k up to (and includ-

ing) round t. We now present lower bounds on the group regret in two different settings,

based on moderate assumptions about the algorithms and the communication protocol.

These results are quite general and are inherently independent of the exact setting, and

hence will be used in the later chapters to provide the basic framework to contruct hard

bandit instances in different settings.

2.2 FedUCB1

In this section we present the most basic algorithm of this part, titled FedUCB1. As the name

suggests, this approach extends the fundamental UCB1 algorithm of Auer et al. (2002a)

to the federated setting. We will consider the decentralized communication protocol and

provide regret bounds as well.

The protocol proceeds as follows. Each agent 1 ≤ v ≤ M maintains a set of observations

Sv,k(t) for each arm k, where an observation is of the form (t, m, rm,k(t)) where t denotes the

round in which this arm was pulled by agent m, and rm,k(t) denotes the reward obtained

by agent m for pulling arm k. At the start of each round, the agent selects an arm based on

the set of observations {Sv,k(t)}K
k:∆k>0 and an exploration policy, and then creates a message

qv(t) to send to its neighbors via the message-passing protocol.

It then sends all fresh messages it has to its neighbors, where a message is denoted fresh
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if it was originally sent at any time ≥ t− γ to agent v, along with its message own qv(t).

It then collates the messages it has received from other agents, and discards all stale mes-

sages (i.e., messages that originated more than γ rounds prior), updates its observation sets

Sv,k(t) and the next round begins henceforth. The agent v creates the following message

qm(t) to send to its neighbors.

qm(t) = 〈v, t, γ, rv(t), av(t)〉

The exploration strategy for each agent is straightforward. At the start of the new round,

each agent m computes an upper confidence bound for each arm k ∈ [K] using the latest

information from its neighborhood Nm(Gγ), as follows.

Qm,k(t) =
∑i∈Sv,k(t) ri

|Sv,k(t)|
+

√
2 log(t)
|Sv,k(t)|

.

Here, the first term simply represents the average of all observations in Sv,k(t) and is rem-

iniscent of the typical UCB in single-agent bandit algorithms. The agent then selects the

action k with the largest Qm,k(t). For the first K rounds, each agent pulls arms 1 to K. The

algorithm denoted as FedUCB1, and obtains the following regret.

Theorem 2.2 (Regret of FedUCB1). If all agents m ∈ [M] each run FedUCB1 with the messaging

protocol described in Algorithm 1, then the group regret incurred after T trials obeys,

R(T) ≤ ∑
k:∆k>0

χ̄(Gγ)

(
8 log(T)

∆k

)
+

(
∑

k:∆k>0
∆k

)
(Mγ + 2) .

Here, χ̄ is the clique covering number.

Proof. The key element of this proof is bounding the collective behavior of all agents as a

function of the largest clique in 𝐶 it is part of. At a high level, we will analyse each clique

of agents in Gγ separately. Now, let a clique covering of Gγ be given by 𝐶. We first bound

the regret in each clique C within the clique covering 𝐶 of Gγ. This is done by noticing

that the upper confidence bound for any arm at a selected t deviates by a constant amount

between agents based on the number of times each agent has pulled an arm. By bounding

this deviation, we obtain a relationship between the confidence bound of each arm for each

agent within the clique C. Next, we bound the probability of pulling a suboptimal arm

52



within the clique C using the previous result. Summing over the clique cover 𝐶 delivers

the final form of the result. We begin by decomposing the group regret.

R(T) =
M

∑
m=1

Rm(T) ≤ ∑
C∈𝐶

∑
m∈C

K

∑
k:∆k>0

∆kE[nm,k(T)] (2.1)

= ∑
C∈𝐶

K

∑
k:∆k>0

∆k

(
∑

m∈C

T

∑
t=1

P (am(t) = k)

)
(2.2)

Consider the cumulative regret RC(T) within the clique C. For some time Tk
C , assume that

each agent has pulled arm k for ηk
m trials, where ηk

C = ∑m∈C ηk
m. Then,

RC(T) ≤
K

∑
k:∆k>0

∆k

ηk
C + ∑

m∈C

T

∑
t=Tk

C

P
(

am(t) = k, NCk (t) ≥ ηk
C

) . (2.3)

Here NC,k(t) denotes the number of times arm k has been pulled by any agent in C. We now

examine the probability of agent m ∈ C pulling arm k. Note that an arm is pulled when

one of three events occurs:

Event (A): µ̂m,∗(t− 1) ≤ µ∗ −
(

2 log(t)
|Sm,∗(t)|

) 1
2

.

Event (B): µ̂m,k(t− 1) ≥ µk +

(
2 log(t)
|Sm,k(t)|

) 1
2

.

Event (C): µ∗ ≤ µk + 2
(

2 log(t)
|Sm,k(t)|

) 1
2

.

Now, let us examine the occurence of event (C):

∆k ≤ 2
(

2 log(t)
|Sm,k(t)|

) 1
2

=⇒ |Sm,k(t)| ≤ 2 log(t)
(

2
∆k

)2

Now, we present a lemma that bounds the effective delays for any agent within the network.

Lemma 2.1. For graph G and agent m, consider a subgraph Gγ(m) that includes all agents that

have a shortest path of length at most γ from agent m, along with the corresponding paths. Let

Sm,k(t) denote the set of all reward samples (across all agents) possessed by agent m for arm k at

time t, and Ñm,k(t) denote the total number of times arm k has been pulled until time t across all
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agents in Gγ(m). Then, we have, for all k ∈ [K], m ∈ [M],

Ñm,k(t) ≥ |Sm,k(t)| ≥ max
{

0, Ñm,k(t) + (|Gγ(m)| − 1)(1− γ)
}

.

Proof. Let Sm,k(t) denote the set of all reward samples possessed by agent m for arm k at

time t. Similarly, let Pm,k(t) denote the set of reward samples obtained by agent m for its

own pulls of arm k until time t. We know, then that Pm,k(t) = Pm,k(t− 1) if arm k was pulled

at time t, and Pm,k(t) = Pm,k(t− 1) ∪ {Xm,t} otherwise. Additionally, any message from an

agent m′ ∈ G takes d(m, m′)− 1 iterations to reach agent m. Therefore:

Sm,k(t) = Pm,k(t) ∪

 ⋃
m′∈G\{m}

Pm,k
(
t− d(m′, m) + 1

) .

Note that Pm,k(t) and Pk′
m′(t

′) are disjoint for all m 6= m′, k, k′, t, t′. Let n(S) denote the

cardinality of S . Then,

n (Sm,k(t)) = n (Pm,k(t)) +

{
∑

m′∈G\{m}
n
(

Pm,k
(
t− d(m′, m) + 1

))}
.

Now, in the iterations t − d(m, m′) + 1 to t, agent m′ can pull arm k at most d(m, m′) − 1

times and at least 0 times. Therefore,

Ñm,k(t) ≥ n (Sm,k(t)) ≥ max

0, Ñm,k(t)− ∑
m′∈Gγ(m)\{m}

(d(m, m′)− 1)


≥ max

{
0, Ñm,k(t) + |Gγ(m)|(1− γ)

}

We know that for the subgraph C, Lemma 2.1 holds for each m ∈ C with delay γ. Hence,

Nm,k(t) ≥ NC,k(t)− (|C| − 1)(1− γ) for all t. Therefore, if we set

ηk
C =

⌈
2 log(t)

(
2

∆k

)2

+ (|C| − 1)(γ− 1)

⌉
,

we know that event (C) will not occur. Additionally, using the union bound over Nm,∗(t)
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and Nm,k(t), and Assumption 4.1, we have:

P(Event (A) or (B) occurs) ≤ 2
t

∑
s=1

1
s4 ≤

2
t3 .

Combining all probabilities, and inserting in Equation (4.4), we have,

RC(T) ≤
K

∑
k:∆k>0

∆k

ηk
C + ∑

m∈C

T

∑
t=Tk

C

P
(

am(t) = k, NCk (t) ≥ ηk
C

)
≤

K

∑
k:∆k>0

∆k

(⌈
2 log(t)

(
2

∆k

)2

+ (|C| − 1)(γ− 1)

⌉
+ ∑

m∈C

T

∑
t=1

2
t3

)

≤
K

∑
k:∆k>0

∆k

(⌈
2 log(t)

(
2

∆k

)2

+ (|C| − 1)(γ− 1)

⌉
+ 4|C|

)

≤
K

∑
k:∆k>0

∆k

(
2 log(t)

(
2

∆k

)2

+ (|C| − 1)(γ− 1) + 1 + 4|C|
)

.

We can now substitute this result in the total regret.

R(T) ≤ ∑
C∈𝐶

RC(T)

≤ ∑
C∈𝐶

K

∑
k:∆k>0

∆k

(
2 log(t)

(
2

∆k

)2

+ (|C| − 1)(γ− 1) + 1 + 4|C|
)

=
K

∑
k:∆k>0

2χ (Ḡγ)

∆k
log T + (3M + γ (M− 1))

(
K

∑
k:∆k>0

∆k

)
.

Remark 2.1. Observe that the leading term in the bound depends on the clique covering

number χ̄(Gγ) of the power graph Gγ. In comparison to the regret lower bound presented

earlier, we see that the algorithm obtains regret within a constant factor of this lower bound,

even when the graph Gγ is the worst-case connected graph, i.e., a line graph. We have that

when G is a line graph, α(Gγ+1) =
M

γ+1 and the corresponding clique covering number is

χ̄(Gγ) =
M
γ . We therefore have that for line graphs,

lim inf
T→∞

UB(R(T))
LB(R(T))

≤ χ̄(Gγ)

α(Gγ+1)
≤ 1 +

1
γ
≤ 2.

Similar bounds can be derived for circular graphs and regular graphs.
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2.3 Asymptotic Lower Bounds

We now present lower bounds on cooperative decision-making. All full proofs are pre-

sented in the appendix for brevity. We consider M agents communicating over graph G,

with diameter(G) = γ∗ � M. We first make some (mild) assumptions on the communica-

tion protocol.

Assumption 2.1 (Communication Protocol). The communication protocol considered follows:

1. Any agent m is capable of sending a message 𝑞m(t) to any other agent m′ ∈ [M], which is

earliest received at time t + min(0, d(m, m′)− 1).

2. 𝑞m(t) is a function only of the history of agent m, i.e., for any deterministic and differentiable

set of functions 𝐹t = ( fi,t)i∈[L], fi,t : R2t → R with Jacobian 𝐽t,

𝑞m(t) = 𝐹t(am(1), rm(1), ..., am(t), rm(t)),

Furthermore 𝐹t satisfies |det (𝐽t) | = Λ(m, t), where Λ is a function only of m and t.

This assumption ensures that (a) information can flow between any two agents, and

(b) that given the agent’s history, the messages are not stochastic and are independent of

any prior knowledge of the bandit problem. Under these assumptions we present a lower

bound on the regret in the general, networked communication setting.

Theorem 2.3 (General Federated Lower Bound). For any consistent cooperative multi-agent

policy Π = (Πt)t∈[T] on M agents that satisfies Assumption 2.1 the following is true.

lim inf
T→∞

RG(T)
log(T)

≥ ∑
k:∆k>0

∆k

Dinf
k

.

Here, Dinf
k = infν′∈Mk {DKL(ν, ν′) : µ(ν′) > µ∗}.

The proof of this result is presented in Section 2.6. This result generalizes that obtained

by Anantharam et al. (1987) for a centralized agent with multiple pulls to the case where

rewards are obtained after finite delays. Note, however, that Theorem 2.3 does not guaran-

tee an overhead from delayed communication, since it includes protocols that allow infor-

mation to flow completely through the (connected) network G, albeit at a delay (which is

independent of T). Indeed, in this chapter, we will demonstrate an algorithm that matches
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this rate exactly while satisfying Assumption 2.1. Making stronger assumptions about the

algorithm, however, can lead to a stronger network-dependent lower bound, presented next.

We first provide some additional shorthand notation.

Histories. Let H(t) denote the interaction history of all agents until round t, i.e., H(t) =

{(am(τ), rm,τ : 1 ≤ m ≤ M, 1 ≤ τ ≤ t}. Let Hm(t), for any 1 ≤ m ≤ M denote the history

of only agent m and its neighbors in Gγ interactions. Further, let Hm(t) denote the history

of all agents n 6∈ Nm(Gγ). Formally,

H(t) = {(am(τ), rm,τ : 1 ≤ m ≤ M, 1 ≤ τ ≤ t},

Hm(t) = {(an(τ), rn,τ : n ∈ N+
m (Gγ), 1 ≤ τ ≤ t},

Hm(t) = {(an(τ), rn,τ : n 6∈ N+
m (Gγ), 1 ≤ τ ≤ t}.

Definition 2.6 (Non-Altruistic and Individually Consistent (NAIC) Policy, Kolla et al. (2018)).

A policy belonging to agent m is called individually consistent if, for any sub-optmal arm k, re-

gardless of the policy of the agents in Nm(Gγ), E[nm,k(t)|Hm(t)] = o(ta)∀a > 0, ∀Hm(t).

A policy followed by a user m is said to be non-altruistic if there exists constants a1, a2 de-

pending on the horizon T such that the following holds. For any T and suboptimal arm k, then the

number of times the policy plays arm k after having obtained a1 log(T) samples from it is no more

than a2, regardless of all other agents.

Remark 2.2. NAIC policies essentially satisfy the intuitive idea that they will not sacrifice

their reward in order to reduce cumulative regret: non-altruism prevents an agent from

pulling an arm more than O(log(T)) times in order to allow other (poorly-connected)

agents to explore more. Individual consistency, on the other hand, ensures that the in-

dividual policies are consistent (Definition 2.2), in contrast to the result from Theorem 2.3,

which only requires group consistency. Kolla et al. (2018) demonstrate that several collabo-

rative policies are in fact NAIC, such as UCB1 and Thompson Sampling. The algorithms

we present include algorithms that require certain agents to mimic other agents. This ap-

proach, while obtaining better regret, violates tha individual consistency property.

Theorem 2.4 (NAIC Federated Lower Bound). For any consistent cooperative multi-agent

NAIC policy Π = (Πt)t∈[T] on M with 1 ≤ γ < d?(G) agents that satisfies Assumption 2.1
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the following is true.

lim inf
T→∞

RG(T)
log(T)

≥ α(Gγ+1) · ∑
k:∆k>0

∆k

Dinf
k

.

Here, Dinf
k = infν′∈Mk {DKL(ν, ν′) : µ(ν′) > µ∗}.

Proof. The complete proof for γ = 1 can be found in Appendix B of Kolla et al. (2018). To

extend this to the case when γ > 1 we can follow a similar structure. Consider the maximal

independent set S of the graph Gγ+1 for any γ < d?(G). Gγ+1 has an edge (u, v) either if

two agents are γ−neighbors or if N+
u (Gγ) ∩ N+

v (Gγ) 6= φ. This implies that for any two

agents (u, v) in S, N+
u (Gγ) ∩N+

v (Gγ) = φ. Therefore, we can analyse the regret incurred

by each of these agents in S in isolation. We have by Lemma 4 of Kolla et al. (2018) that for

any individually consistent agent v ∈ S, arm 1 ≤ k ≤ K,

lim inf
T→∞

E[nv,k(t)|Hv(t)]
log(T)

≥ 1
Dinf

k
.

Let Nv,k(t) denote the cumulative arm pulls for arm k within N+
v (Gγ). We therefore have,

lim inf
T→∞

E[nk(t)]
log(T)

= lim inf
T→∞

E[∑v∈S Nv,k(t)]
log(T)

≥ ∑
v∈S

lim inf
T→∞

E[nv,k(t)|Hv(t)]
log(T)

≥
α(Gγ+1)

Dinf
k

.

The first inequality follows from the fact that Nv,k(t) ≥ nv,k(t).

Remark 2.3. The above lower bound suggests that for NAIC policies one can expect an

asymptotic regret that is much larger than that for a general policy (Theorem 2.3). For in-

stance, when we consider a circular topology with M nodes, one can obtain that α(Gγ+1) ≥

b M
γ+2c, suggesting an Ω(M log(T)) regret bound. We will see that several introduced poli-

cies that are in fact NAIC obtain regret within a constant factor of this lower bound. How-

ever, for non-NAIC policies, one can obtain smaller rates as well, albeit at the expense of

consistency, i.e., some agents will actively “explore for other agents”.

2.4 Minimax Lower Bounds

To supplement the previous problem-dependent results, we present a lower bound to charac-

terize the minimax optimal rates for the federated multi-armed bandit problem. We present

first an assumption on multi-agent policies.
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Assumption 2.2 (Agnostic decentralized policies). A set of N policies π1, ..., πN are termed

agnostic decentralized policies, if for every pair (i, j) of agents that communicate in G and each

t ∈ [T], πi(t) is independent of {πj(τ)}
t−d(i,j)
τ=1 conditioned on the rewards {(Aj(τ), rj(τ))}

t−d(i,j)
τ=1 .

Theorem 2.5 (Minimax Rate). For any multi-agent algorithm A, there exists a K−armed envi-

ronment over N agents with ∆k ≤ 1 such that,

R(T;A) > 0.027
√

KN(T + d̃(G)).

Furthermore, if A is an agnostic decentralized policy, there exists a K − armed environment over

N agents with ∆k ≤ 1 for any connected graph G and γ ≥ 1 such that

R(T;A) > 0.019
√

α?(Gγ)KNT.

Where d̃(G) denotes the average delay incurred by any message across the network G, and α?(Gγ) =

N
1+dγ

is Turan’s lower bound (Turán, 1941) on α(Gγ).

Proof. Let A be a deterministic (multi-agent) algorithm, and let the empirical distribution

of arm pulls across all agents be given by p(i)(t) =
(

p(i)1 (t), ..., p(i)K (t)
)

, where pk(t) =
nk

i (T)
T .

Consider the random variable J(i)t drawn according to p(i)(t) and Pi denote the law of Jt

when drawn from arm k having parameter
1+ε

2 (and other arms with parameter
1−ε

2 ). We

have,

Pk

(
J(i)t = j

)
= Ek

[
nk

i (T)
T

]
.

Since on pulling any arm k′ 6= k, we obtain regret ε, we therefore have for the group regret,

Ek

[
T

∑
t=1

(
M · rk(t)−∑

i∈V
rAi(t)

)]
= ε · T ·∑

i∈V
Pk

(
J(i)t = k′

)
= ε · T ·∑

i∈V

(
1− ∑

k′ 6=k
Pk

(
J(i)t = k′

))
.

By Pinsker’s inequality and averaging over all k ∈ [K], we have for any i ∈ V ,

1
K

K

∑
k=1

Pk

(
J(i)t = k

)
6

1
K
+

1
K

K

∑
k=1

√
1
2

DKL(P0, Pk).
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We now bound the R.H.S. using the chain rule for KL-divergence. Since we assume that

A is deterministic, we have that the rewards obtained by the agent i until time t from its

neighborhood alone determine uniquely the empirical distribution of plays. Here, the anal-

ysis diverges from that of the single-agent bandit as a richer set of observations is available

to each agent. Denote the set of rewards observed by agent i at instant τ be given byOi(τ).

First, observe that since each reward is i.i.d., we have for any k,

DKL(P0(Oi(τ)), Pk(Oi(τ))) = |Oi(τ)| ·DKL

(
1− ε

2
,

1 + ε

2

)

For k = 0 the above divergence is 0. When we consider the standard single-agent setting,

|Oi(τ)| = 1, recovering the usual bound. Now, by the chain rule, we have that, at round t

for any agent i, and arm k ∈ [K],

DKL(P0(t), Pk(t)) = DKL(P0(1), Pk(1)) +
t

∑
τ=2
|Oi(τ)|DKL

(
1− ε

2
,

1 + ε

2

)

= DKL

(
1− ε

2
,

1 + ε

2

)
E0

[
∑
j∈V

nk
j (t− d(i, j))

]
.

Replacing this result in the earlier equation, we have by the concavity of DKL divergence:

1
K

K

∑
k=1

Pk

(
J(i)t = k

)
6

1
K
+

1
K

K

∑
k=1

√
1
2

DKL(P0, Pk)

6
1
K
+

1
K

K

∑
k=1

√√√√DKL

(
1− ε

2
,

1 + ε

2

)
E0

[
∑
j∈V

nk
j (T − d(i, j))

]

6
1
K
+

√√√√√
TM−∑d?(G)

j=1 d=j(i) · j
K

 ·DKL

(
1− ε

2
,

1 + ε

2

)
.

Now, observe that the KL divergence between Bernoulli bandits can be bounded as

DKL(p, q) ≤ (p− q)2

q(1− q)
.

Substituting we get,

1
K

K

∑
k=1

Pk

(
J(i)t = k

)
6

1
K
+

√√√√4ε2(MT −∑d?(G)
j=1 d=j(i) · j)

(1− ε2)K
.
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Replacing this in the regret and using ε 6 1/2, we get that,

Ek

[
T

∑
t=1

(
M · rk(t)−∑

i∈V
rAi(t)

)]

> ε · T ·∑
i∈V

1− 1
K
−

√√√√4ε2(MT −∑d?(G)
j=1 d=j(i) · j)

(1− ε2)K


> ε · T ·∑

i∈V

1
2
− 4ε

√
(MT −∑d?(G)

j=1 d=j(i) · j)
3K


=

ε ·MT
2
− 4ε2MT√

K

(
∑

i,j∈V
T − d(i, j)

)1/2

Setting ε = c ·
√

K
M(T−∑

d?(G)
j=1 d̄=j·j)

where c is a constant to be tuned later, we have,

Ek

[
T

∑
τ=1

(
M · rk,t −∑

i∈V
rAi(t),t

)]
>
(

c
2
− 4c2
√

3

)
·

√√√√ KM2T2

M(T −∑d?(G)
j=1 d̄=j · j)

> 0.027

√√√√KM(T +
d?(G)

∑
j=1

d̄=j · j).

This proves the first part of the theorem. Now, when the policies are decentralized and

agnostic, the chain rule step can be factored as follows.

DKL(P0(t), Pk(t)) = DKL(P0(1), Pk(1)) +
t

∑
τ=2
|Oi(τ)|DKL

(
1− ε

2
,

1 + ε

2

)

= DKL

(
1− ε

2
,

1 + ε

2

)
E0

 ∑
j∈N+

γ (G)

nk
j (t− d(i, j))

 .

Note that here instead of taking the cumulative sum over all V we select only those agents

that are within the γ−neighborhood of i in G, since conditioned on these observations the

rewards of the agents are independent of all other rewards (by Assumption), and hence

the higher-order KL divergence terms are 0. Replacing this in the analysis gives us the
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following decomposition (after similar steps as the first part):

Ek

[
T

∑
t=1

(
Mrk(t)−∑

i∈V
rAi(t)

)]
>

MTε

2
− 4ε2T√

3K
·∑

i∈V

 ∑
j:N+

γ (i)

T − d(i, j)

1/2

>
MTε

2
− 4ε2M1/2T√

3K
·

∑
i∈V

∑
j:N+

γ (i)

T − d(i, j)

1/2

Setting ε = c ·
√

MK
∑i∈V ∑j:N+

γ (i) T−d(i,j) where c is a constant to be tuned later, we have,

Ek

[
T

∑
t=1

(
M · rk(t)−∑

i∈V
rAi(t)

)]
>
(

c
2
− 4c2
√

3

)
·
√

M3T2

∑i∈V ∑j∈N+
i (Gγ)

T − d(i, j)

>
(

c
2
− 4c2
√

3

)
·

√
M3T

∑i∈V 1 + di(Gγ)

>
3
4

(
c
2
− 4c2
√

3

)√
α?(Gγ)MT

> 0.019
√

α?(Gγ)MT.

The constants in both settings are obtained by optimizing c over R. Extending this to ran-

dom (instead of deterministic) algorithms is straightforward via Fubini’s theorem, see The-

orem 2.6 of Bubeck (2010).

In the forthcoming chapters, we will discuss algorithms that build on this basic model,

and study a variety of different constrained environments. We now present a brief sum-

mary of relevant work in this problem area.

2.5 Related Work and Discussion

Prior work in Multi-Agent Multi-Armed Bandits. The federated setup considered here is

part of a broader literature on cooperative decision-making for the stochastic multi-armed

bandit, which has recently seen a lot of research interest. Decentralized cooperative esti-

mation has been explored for sub-Gaussian stochastic bandits using a running consensus

protocol in Landgren et al. (2016a,b); Martínez-Rubio et al. (2019) and for adversarial ban-

dits Cesa-Bianchi et al. (2019b); Bar-On & Mansour (2019) using a message-passing proto-

col.
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Localized decision-making for sub-Gaussian rewards has also been explored in the

work of Landgren et al. (2018), and a fully-centralized algorithm in Shahrampour et al.

(2017), where all agents select the same action via voting.The stochastic bandit with multi-

ple pulls Xia et al.; Anantharam et al. (1987) is equivalent to the cooperative multi-armed

bandit on a complete G with a centralized actor (since there are no delays and all agents

have the same information ∀t ∈ [T]).

Contrasted to cooperative settings, there is extensive research in competitive settings,

where multiple agents compete for arms Bistritz & Leshem (2018); Bubeck et al. (2019);

Liu & Zhao (2010b,c,a). For strategic experimentation, Brânzei & Peres (2019) provide an

interesting comparison of exploration in cooperative and competitive agents.

A closely-related problem setting is the single-agent social network bandit, where a user

is picked at random every trial, and the algorithm must infer its contextual mean reward Cesa-

Bianchi et al. (2013); Li et al. (2016); Gentile et al. (2014, 2017), while assuming an underly-

ing clustering over the users. This problem setting, while relevant, crucially differs from the

one considered herein, since (a) this is a single-agent setting (only one action is taken every

round), and (b) there are no delays in the rewards obtained. While a multi-agent variant has

been considered Korda et al. (2016), this work also assumes no delays in communication.
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2.6 Omitted Proofs

2.6.1 Proof of Theorem 2.3

The lower bound proceeds in a manner similar to the lower bound achieved in the single-

agent case (Lattimore & Szepesvári, 2020). We first state a few intermediary results.

Theorem 2.6 (Carathéodory’s Extension Theorem). Let (Ω1,F1) , ..., (Ωn,Fn) be measurable

spaces and µ̄ : F1 × ...×Fn → [0, 1] be a function such that (a) µ̄ (Ω1 × ...×Ωn) = 1, and (b)

µ̄
(
∪∞

k:∆k>0Ak

)
= ∑∞

k:∆k>0 µ̄(Ak) for all sequences of disjoint sets with Ak ∈ F1 × ...× Fn. Let

Ω = Ω1 × ...×Ωn and F = σ(F1 × ...×Fn). Then there exists a unique probability measure µ

on (Ω,F ) such that µ agrees with µ̄ on F1 × ...×Fn.

Theorem 2.7 (Multiagent Divergence Decomposition). Let E = ∏k∈[K]Mk be a structured

family of K-armed bandit problems and ν = (νk)k∈[K], ν′ = (ν′k)k∈[K] ∈ E be two bandit problem

instances. Then, for any decentralized policy Πt = (πm,t)m∈[M],t∈[T] that uses a communication

protocol satisfying Assumptions 2.1, the following is true.

EνΠ

[
log

dPνΠ

dPν′Π
(A1,1, X1,1, ..., am(t), XM,T)

]
=

K

∑
k:∆k>0

EνΠ [Nk(T)]DKL(νAk , ν′Ak
).

Here, PνΠ and Pν′Π denote the product measures arising from the interaction of ν and ν′ with Π,

and Nk(T) denotes the total number of pulls of arm k across all M agents at time T.

Proof. Consider an agent m, and let the γ-neighborhood of this agent be given by Nγ(m),

such that N = |Nγ(m)|. At any instant t, let the agents actions be denoted by am(t), and

the associated outcome variable be Xm,t. We denote the set of action-reward pairs for the

agent at time t as Hm
t = (Am,1, Xm,1, ..., am(t), Xm,t).

At any instant t, the agent also receives messages from neighboring agents, delayed by

their distance in the graph G. By our third assumption we can write each message Zm,m′(t)

sent fom agent m to agent m′ at time t as the following, for some deterministic, bijective

differentiable function(s) ( fi)i∈[L] where L is the length of the message.

Zm,m′(t) = fi (Am,1, Xm,1, ..., am(t), Xm,t)

For each t ∈ [T], let Ωt = ([K]×R)Mt ⊂ R2Mt
and Ft = B(ΩT). As is the case with

single-agent bandits, we can define coordinate projections that govern each of the random
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variables Am
t , Xm

t ∀t, m by creating an ordering of all elements of Ht.

am(t) (a1,1, x1,1, ..., am(t), xM,T) = am(t)

Xm,t (a1,1, x1,1, ..., am(t), xM,T) = xm,t

By our assumption on the nature of messages, we can express the density of any message

zm,m′(t) as the following. Let 𝐹 = ( fi)i∈[L].

p(zm,m′(t)) = p(𝐹−1 (zm,m′(t)) |det (𝐽(zm,m′(t))|

= p(𝐹−1 (𝐹 (am,1, xm,1, ..., am(t), xm,t))) |det (𝐽(zm,m′(t))|

= p(am,1, xm,1, ..., am(t), xm,t) |det (𝐽(zm,m′(t))|

= p(am,1, xm,1, ..., am(t), xm,t)Λ(m, m′, t)

This primarily implies that each message is completely specified by the corresponding in-

puts. With this probability space (ΩT,FT) we can then define a decentralized policy as

a sequence (Πt)T
t=1, where Πt = (πm,t)m∈[M] is a probability kernel from (Ωt−1,Ft−1) to

([K]M, 2[K]
M
).

We now require a valid measure that connects Π = (Πt)T
t=1 and ν = (νk)k∈[K] ∈ E . The

measure we will define will be similar to that of the canonical bandit model, however, we

have a few key differences. First, we must note that individual elements πm,t of Πt factorize

differently based on G. Additionally, conditioned on Hm
t , Xm,t follows the law νam(t), i.e. it

only depends on the corresponding arm pulled by the agent m. Therefore the conditions

on the measure can be listed as follows.

1. The conditional distribution of Am
t given ∪m∈[M] (Hm

t ) is

πm,t

(
·|
(

Hm
t−1 ∪m′∈Nγ(m)

(
Hm′

t−d(m,m′)−1

)))
almost surely. This condition is justified by the fact that each individual policy for an

agent m can only be dependent on information in the γ-neighborhood of the agent,

and that information takes d(m, m′) steps to reach agent m from any other agent m′.

2. The conditional distribution of Xm,t given

⋃
m∈[M] (Hm

t ) is νAm,t almost surely.

Let λ be a σ-finite measure on (R,B(R)) for which νk is absolutely continuous with respect
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to λ for all k ∈ [K]. Let pk =
dνk
dλ be the Radon-Nikodym derivative of νk with respect to λ,

and ρ be the counting measure over B(R), We can define the density pνΠ : Ω → R with

respect to the product measure (ρ×R)MT
as the following.

pνΠ (a1,1, x1,1, ..., am(t), xM,T) =

∏
m∈[M]

πm,T (am(t)|a1,1, x1,1, ..., aM,T−1, xM,T−1) p (a1,1, x1,1, ..., aM,T−1, xM,T−1) νam(t)(xm,T)

=

 ∏
m∈[M]

∏
t∈[T]

πm,t

am(t)|
⋃

m′∈Nγ(m)∪{m}

{
am′,1, xm′,1, ...am′,t−d(m,m′), xm′,t−d(m,m′)

}×
(

∏
m′∈[M]

∏
t∈[T]

νam(t)(xm,t)

)
×

 ∏
m∈[M]

∏
m′∈Nγ(m)

∏
t∈[T−d(m,m′)]

Λ(m, m′, t)


It can be easily shown that pνΠ is a valid density, and satisfies the two properties listed

earlier. By Theorem 2.6, we know that such a distribution exists. Let the corresponding

measure be denoted by PνΠ. We now prove a version of the canonical divergence decom-

position in the presence of additional observations.

In addition to ν, let ν′ = (ν′k)k∈[K] ∈ E be the reward distributions associated with a

separate k-armed bandit problem, and Pν′π denote the joint measure for ν′ under the same

policy π. Assume that DKL(νk, ν′k) < ∞, for all k ∈ [K]. We then have,

log
dPνΠ

dPν′Π
(a1,1, x1,1, ..., am(t), xM,T) = ∑

m∈[M]
∑

t∈[T]
log

(
νam(t)(xm,t)

ν′am(t)
(xm,t)

)

This follows from the chain rule of Radon-Nikodym derivatives and the fact that (a) the

policy terms cancel out by the definitions of pνΠ and pν′Π, and (b) communication terms

Λ cancel out since they are independent of ν. Taking expectations and replacing HT =⋃
m∈[M] (Hm

T ), we have,

EνΠ

[
log

dPνΠ

dPν′Π
(HT)

]
= ∑

m∈[M]
∑

t∈[T]
Eνπ

[
log

(
νam(t)(Xm,t)

ν′Am,t
(Xm,t)

)]
. (2.4)

Additionally, we also know that, for all t ∈ [T], m ∈ [M],

EνΠ

[
log

(
νam(t)(Xm,t)

ν′Am,t
(Xm,t)

)]
= EνΠ

[
EνΠ

[
log

(
νam(t)(Xm,t)

ν′Am,t
(Xm,t)

)] ∣∣∣∣∣am(t)

]
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= EνΠ

[
DKL(νam(t), ν′am(t))

]
.

Replacing the above identity in Equation (2.4), we have,

EνΠ

[
log

dPνπ

dPν′π
(HT)

]
= ∑

m∈[M]
∑

t∈[T]
EνΠ

[
DKL(νam(t), ν′am(t))

]
=

K

∑
k:∆k>0

∑
m∈[M]

∑
t∈[T]

EνΠ [1 {Am,t = k}]DKL(νAk , ν′Ak
)

=
K

∑
k:∆k>0

EνΠ [Nk(T)]DKL(νk, ν′k).

Theorem 2.8 (Bretagnolle-Huber Inequality). Let P and Q be probability measures on the same

measurable set (Ω,F ) and let A be an arbitrary event. Then,

PP(A) + PQ(Ac) ≥ 1
2

exp (−DKL(P, Q)) .

Here Ac denotes the complement event.

We are now ready to prove Theorem 2.3.

Proof. This proof follows the standard approach for single-agent consistent bandit algo-

rithms. Consider any suboptimal arm i and let δ > 0 be arbitrary. Consider ν′ = (ν′k)k∈[K] ∈

E such that DKL(νk, ν′k) ≤ Dinf
i + δ, and µ(ν′i ) > µ∗, which exists by the definition of Dinf

i .

By Theorems 2.8 and 2.7 we have the following for any event A.

PνΠ(A) + Pν′Π(Ac) ≥ 1
2

exp
(
−EνΠ[Ni(T)](Dinf

i + δ)
)

Let RG = RG(T, ν, Π) be the regret obtained by Π on ν and R′G = RG(T, ν′, Π) be the regret

obtained by Π on ν′. By choosing A = {Ni(T) > T/2}, we have,

RG + R′G ≥
T
2
(
PνΠ(A)∆i + Pν′Π(Ac)(µ′i − µ∗)

)
≥ T

2
min{∆i, µ′i − µ∗} (PνΠ(A) + Pν′Π(Ac))

≥ T
4

min{∆i, µ′i − µ∗} exp
(
−EνΠ[Ni(T)](Dinf

i + δ)
)
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Rearranging and taking limit inferior, we have,

lim inf
T→∞

EνΠ[Ni(T)]
ln(T)

≥ 1
Dinf

i + δ
lim inf

T→∞

ln
(

T min{∆i ,µ′i−µ∗}
RG+R′G

)
ln(T)

≥ 1
Dinf

i + δ

(
1− lim sup

T→∞

ln
(

RG + R′G
)

ln(T)

)

Using the fact that Π is consistent, we have for some constant a > 0 and constant Ca,

≥ 1
Dinf

i + δ

(
1− lim sup

T→∞

a log(T) + ln(Ca)

ln(T)

)
.

Since a > 0 is arbitrary, taking the limit as δ goes to zero, we have, for any suboptimal arm

i,

lim inf
T→∞

EνΠ[Ni(T)]
ln(T)

≥ 1
Dinf

i
.

Plugging this into the definition of regret and rearranging gets us the final result.
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Chapter 3

Differentially-Private Federated

Multi-Armed Bandits

In this chapter we discuss privacy-preserving approaches to federated learning of multi-

armed stochastic bandits. The algorithm presented herein is an upper confidence bound

strategy that utilizes pure differential privacy achieved by the Laplace mechanism (Dwork

& Roth, 2014), however, analogous algorithms can be developed for the approximate differ-

ential privacy regime by utilizing the Gaussian mechanism instead, with an albeit simpler

analysis of sub-Gaussian confidence intervals. We begin by first providing an overview of

the precise ε-differential privacy guarantee considered.

3.1 Differential Privacy in Federated Multi-Armed Bandits

The standard stting in centralized privacy-preserving decision-making systems involves

an agent that interacts with a new user at every round t, and must ensure that the pol-

icy π(t) is differentially private with respect to the rewards obtained from the previous

t− 1 users (Tossou & Dimitrakakis, 2016; Mishra & Thakurta, 2015). In the federated set-

ting, each agent is assumed to interact with a new user each round, and we require that

each agents policy is differentially-private with respect to all previous M · (t− 1) rewards.

However, observe that for any agent, its policy is a function of its own decision history and

only the messages it receives from other agents. By making the messages ε-DP with respect

to the reward sequence an agent observes, we can therefore, ensure that any policy using

these messages is also ε-DP with respect to the rewards obtained by other agents (by the
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post-processing property of DP, Proposition 2.1 of Dwork & Roth (2014)). We use this to

define differential privacy in the decentralized bandit context.

Definition 3.1 (ε-DP message protocol). For any agent m, a message qm(t) composed of L inde-

pendent functions ( fi)i∈[L] at time t is ε-differentially private with respect to its personal reward his-

tory if for all histories Hm(t) and H′m(t) that differ in at most one sample, we have ∀Si ⊆ Range( fi):∣∣∣∣∣log

(
L

∏
i=1

P ( fi ∈ Si|Hm(t))
P ( fi ∈ Si|H′m(t))

)∣∣∣∣∣ ≤ ε.

This requirement can be satisfied by individually ensuring that each of the L outputs

in a message are (ε/L)−DP, but we adopt this definition to allow for tunable thresholds

for each parameter. Note that there are several advantages to this definition. First, we see

that unlike centralized or single-agent bandit algorithms that inject noise as a part of the

central algorithm itself, our definition requires each message to individually preserve an

irreducible level of privacy regardless of the recipient agents’ algorithm. While federated

systems are typically designed to have a (trusted) server to route communication between

agents (Kairouz et al., 2019), our protocol does not assume any trusted entity in the network.

We additionally can see that this design evidently manifests a privacy-communication

frontier: communicating often will require a larger privacy budget (by composition). For

instance, if an agent communicates n = O(log T) messages, where message each is ensur-

ing ε−DP, the cumulative privacy budget εT = O(ε · log T) by basic composition, but each

message can be allowed a different privacy threshold in order to improve performance. In

our algorithm, we will observe precisely this phenomenon, whereby each agent maintains

ε−DP by allocating different privacy budgets to each outgoing message. We now briefly

review the Laplace mechanism, our central technical tool to maintain privacy.

The Laplace Mechanism

One of the central techniques to introduce differential privacy for functions with range

within Rd
is the Laplace mechanism (Section 3.3 of Dwork & Roth (2014)). For any domain

D and function f : D → R, we can define the `1 sensitivity of f for two neighboring datasets

D, D′ ∈ D (i.e., datasets that differ only in one entry) as follows.

s1( f ) = max
D,D′∈D

| f (D)− f (D′)| (3.1)
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The Laplace mechanism operates by adding zero-mean Laplace noise to the output of f

with a scale that is governed by the level of privacy required and s1( f ), as follows.

Lemma 3.1 (Theorem 4 of Dwork & Roth (2014)). For any real function f computed on data

D, releasing f (D) + X where X is drawn from a Laplace distribution with scale parameter β is
β

s1( f ) -differentially private with respect to D.

The Laplace mechanism is the underlying approach that we utilize in guaranteeing pri-

vacy in the multi-agent setting. We will now describe our message-passing protocol, which

uses this mechanism to guarantee differential privacy between any pair of agents.

3.2 Differentially-Private Message-Passing

Algorithms for privacy in multi-armed bandits and online learning involve using a binary

tree mechanism to compute the running sum of rewards for any arm (Mishra & Thakurta,

2015; Tossou & Dimitrakakis, 2016). The fundamental intuition behind this strategy is to

reduce the effective sensitivity of maintaining a rolling sum. As an example, consider

privately maintaining the sum of a series of real numbers x1, ..., xT, xi ∈ [0, 1]. Naively

computing the sum st = ∑t
τ=1 xτ at any instant t has the drawback that the sensitivity

of st is o(1), and hence, to ensure that each element of the sequence s1, ..., sT obeys ε−DP,

one must release st by adding Laplace noise with scale O(1), making the entire sequence

ε ·T−DP, weakening the privacy budget significantly. Alternatively, one can utilize the tree-

based mechanism for maintaining private partial sums, introduced in Chan et al. (2010)

and Dwork & Smith (2010). This mechanism involves maintaining a binary tree of indi-

vidual rewards, where each node in the tree stores a privatized partial sum of its children.

Since inserting and accessing elements in a balanced binary tree with T elements requires

accessing at most O(log T) elements. This effectively reduces the overall privacy budget

required to O(ε · log T), greatly reducing the error from the noise. Tossou & Dimitrakakis

(2016) utilize this mechanism to provide a bandit algorithm titled DP-UCB that maintains

one tree for each of K arms. If an arm has been pulled n times at round t, one requires

introducing Laplace noise with sensitivity
ln n

ε to achieve ε-differential privacy. As a conse-

quence, the algorithm obtains regret inversely proportional to privacy level.
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Theorem 3.1 (Theorem 3.2, Tossou & Dimitrakakis (2016)). DP-UCB obtains regret

R(T) = O
(

K

∑
k>1

log(T) ·max
{

1
ε

log
(

log(T)
ε

)
,

1
∆k

}
+

K

∑
k>1

∆k.

)
.

While the above bound is presented in a rather coarse manner and can be tuned to

improve the constants, the primary takeaway is that there is a substantial privacy cost for

“easy” arms, i.e., when ∆k is large. Furthermore, while this approach is feasible in the

single-agent case, in the distributed setting, we will have to maintain M separate binary

trees (one for each agent), which would create an overhead of a factor of M in the regret.

3.2.1 Communication Mechanism

To mitigate this overhead we propose a distributed interval mechanism, which extends the

basic tree-based mechanism to the distributed setting, and avoids a multiplicative factor

by carefully selecting an update schedule. Under this mechanism, the mean of an arm is

updated only (approximately) T/ε times, which makes it possible to add Laplacian noise

that is of a lower scale (due to the communication-privacy frontier discussed earlier). We

demonstrate that using a message-passing algorithm that is inspired by the interval mecha-

nism, we obtain a group regret that has a much smaller than the regularO(M) overhead on

the number of agents, and is additive instead. Recall that in the message-passing protocol

described in Chapter 2, agent m creates the message qm(t) in any communicating round

t ∈ [T]. We define qm(t) as follows.

qm(t) = 〈m, t, γ, 𝜇̃m(t), nm(t)〉 (3.2)

Here, 𝜇̃m(t) = (µ̃m,k(t))k∈[K] is a vector of arm-wise reward means, where µ̃m,k(t) = µ̂m,k(t)+

ξm,k(t) denotes a noisy version of the mean reward µm,k(t) obtained from arm k by agent

m only until time t, and ξm,k(t) is a random noise sample drawn from an appropriately

chosen Laplace distribution. Similarly, nm(t) = (nm,k(t))k∈[K] is a vector of the number of

times each arm k ∈ [K] has been pulled by the agent m. Note that since the identity of the

arm pulled is not assumed to be private (we assume that only the reward obtained by the

environment is considered private, the alternative setting is discussed in Chapter 6). At any

time t, the agent interacts with the environment, and updates the sum of its own rewards
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with the reward obtained from the bandit algorithm for the arm pulled. Then, for a set of

n rounds T = {t0, ..., tn} selected according to Definition 3.2 (presented below), broadcasts

message qm(t) following the communication protocol.

Definition 3.2 (Broadcast Round Schedule). The set of communicating rounds T = {t0, ..., tn}

are given as follows for any fixed value of ε ∈ (0, 1), parameter v ∈ (1, 1.5) with t0 = 0, and ti as

ti = inf
x∈N

{
x ≥ ti−1 + 1 :

x

∑
ti−1+1

1√
iv
≥ 1

ε
√

xv

}
.

The intuition for such an update protocol can be understood as follows: we select the

next round as the smallest interval that ensures an approximate O( 1
ε ) gap between suc-

cessive communication rounds, such that the overall communication is regulated. This can

also be verified by the fact that maxi∈[T] ti+1− it ≤ d 1
ε e. The remainder of the form is chosen

to ensure a convergent series. After the broadcast, each agent collates messages received

from neighboring agents, and updates its copies of the (privatized) mean rewards 𝜇ν→m(t)

and arm pull counts nν→m(t) for each agent ν ∈ N+
m (Gγ). It then discards stale messages

(with life parameter l = 0), and returns the updated group means for all arms for the bandit

algorithm to use. We describe the complete message-passing protocol in Algorithm 1.

3.2.2 Privacy Guarantees

To ensure privacy we utilize the Laplace mechanism as described in the earlier sections. The

noise ξm,k(t) added to the transmitted mean µ̃m,k(t) is a randomly drawn from a Laplace

distribution with scale nm,k(t)v/2−1
for a fixed parameter v ∈ (1, 1.5) that can be tuned with

prior knowledge. Adding this noise provides us the following privacy guarantee for qm(t).

Lemma 3.2 (Privacy of Outgoing Messages). For fixed v ∈ (1, 1.5), each outgoing message

qm(t) is nm,k(t)−v/2-differentially private w.r.t. the reward sequence of arm k ∈ [K].

Proof. This follows directly from the fact that the only element that is dependent on the re-

ward sequence of arm k is its noisy mean µ̃m,k(t), which is nm,k(t)−v/2
- differentially private

since we add noise of scale nm,k(t)v/2−1
and that the sensitivity of µ̂m,k(t) is nm,k(t)−1

.

Subsequently applying a k-fold adaptive composition argument provides us the final

privacy guarantee. Note that our final guarantee provides a pure and approximate DP bound,
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although our careful selection of message-level privacy constraints provides a much stronger

approximate DP guarantee.

Lemma 3.3 (Privacy Guarantee). After t trials, agent m ∈ [M] is (ε′, δ)-differentially private

with respect to the reward sequence of any arm observed by any other agent ν ∈ N+
m (Gγ) commu-

nicating via Algorithm 1 with parameter v ∈ (1, 1.5), where, for ε ∈ (0, 1], δ ∈ (0, 1], ε′ satisfies

ε′ ≤ min
(

ε
(t− d(m, m′))1−v/2

1− v/2
, 2εζ(v) +

√
2εζ(v) ln(1/δ)

)
.

Proof. We can see that for any arm k, the estimate µ̂m
k (t) is composed of the sum of rewards

from all other agents inNγ(m). However, with respect to the reward sequence of any single

agent m′ ∈ Nγ(m), this term only depends on the differential privacy of the outgoing

messages qm′ obtained by agent m until time t − d(m, m′) (since it takes at least d(m, m′)

trials for a message from m′ to reach m). Now, we present a lemma that will assist us in

bounding the final value of ε′.

Lemma 3.4. Each output message by any agent at time t′ is (ε′, δ′)− DP, where

ε′ ≤ min

ε
t′

∑
τ=1

1√
τv

, ε
t′

∑
τ=1

exp
(

1√
τv

)
− 1

√
τv

+

√√√√ε
t′

∑
τ=1

2 log(1/δ′)

τv

 .

We can replace the summations in the first term with an integral to get the term ε (t
′)1−v/2

1−v/2 .

The second term can be bound similarly by first using the fact that ex ≤ 1+ 2x for x ∈ [0, 1]

and then integrating. Finally, applying a k-fold composition theorem (Dwork et al., 2010)

with t′ = t− d(m, m′) gives us the result.

Remark 3.1 (Privacy Guarantee). It is important to note that if all agents follow the protocol

in Algorithm 1, then the privacy guarantee is sufficient, regardless of the algorithm any

agent individually uses to make decisions. This is true since for any agent, the the complete

sequence of messages it receives from any other agent is differentially private with respect

to the origin’s reward sequence for any arm and at any instant of the problem. In this

setting, one can additionally assume (as is common in federated learning scenarios) that a

trusted server exists. In the trusted server setting, it is easy to see that the problem reduces

to that of single-agent private decision-making, as the server need only insert one Laplace

noise sample to ensure privacy for all agents (after agents communicate 𝜇, n to the server).
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3.3 UCB Exploration and Regret Guarantees

The exploration strategy for each agent is straightforward. At the start of the new round,

each agent m computes an upper confidence bound for each arm k ∈ [K] using the latest

information from its neighborhood Nm(Gγ), as follows.

Qm,k(t) =
∑ν nν→m,k(t) · µν→m,k(t) + nm,k(t) · µ̂m,k(t)

∑ν nν→m,k(t) + nm,k(t)
+

√
2 log(t)

∑ν nν→m,k(t) + nm,k(t)
(3.3)

The summation ∑ν is taken over the neighborhood Nm(Gγ). The agent then selects the

action k with the largest Qm,k(t). For the first K rounds, each agent pulls arms 1 to K. The

algorithm denoted as FedUCB1 is described in Algorithm 2, with the following regret.

Theorem 3.2 (Regret of FedUCB1). If all agents m ∈ [M] each run FedUCB1 with the messaging

protocol described in Algorithm 1, then the group regret incurred after T trials obeys,

R(T) ≤ ∑
k:∆k>0

χ̄(Gγ)

(
8 log(T)

∆k

)
+

(
∑

k:∆k>0
∆k

)(
(Mγ + 2) + M

(
1
ε
+ ζ(1.5)

))
.

Here, χ̄ is the clique covering number, and ζ is the Riemann zeta function.

Proof. The proof approach is to partition the entire graph G into subgraphs that are indi-

vidually analysed, and the analysis for each subgraph largely follows the analysis structure

of UCB1 (Auer et al., 2002a), with several new arguments that handle the noise introduced

by private messages and delays in communication. Let a maximal clique covering of Gγ be

given by C. We begin by decomposing the group regret along the clique covering C.

R(T) =
M

∑
m=1

Rm(T) = ∑
C∈C

∑
m∈C

∑
k:∆k>0

∆k ·E[nm,k(T)] (3.4)

= ∑
C∈C

K

∑
k=1

∆k ·
(

∑
m∈C

T

∑
t=1

P (am(t) = k)

)
. (3.5)

Consider now the cumulative regret RC(T) within the clique C ∈ C. For some round Tk
C ,

assume that each agent has pulled arm k for ηk
m trials, where ηk

C = ∑m∈C ηk
m. Then,

RC(T) ≤
K

∑
k=1

∆k

ηk
C + ∑

m∈C

T

∑
t=Tk

C

P
(

Am,t = k, NCk (t) ≥ ηk
C

) . (3.6)
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Here NCk (t) denotes the number of times arm k has been pulled by any agent in C. We now

examine the probability of agent m ∈ C pulling arm k. First note that the empirical mean of

any arm can be given by the latest messages accumulated by agent m until that time. This

can be given by the following, for any arm k ∈ [K].

µ̂m,k(t− 1) = ∑
m′∈N+

m (Gγ)

(
∑ν∈N+

m (Gγ) ∑t−1
τ=1 rν(τ) · 1{aν(τ) = k}

nk
m′(t− d(m, m′))

+ Yk
m′

)

Here, Yk
m′ ∼ L

(
nk

m′(t− d(m, m′))v/2−1)
. For convenience, let’s denote the noise-free mean

µ̂m
k (t− 1)− ∑m′∈N (m) Yk

m′ as Zm
k (t− 1), and Nm

k (t) = nk
m(t) + ∑m′∈N (m) nk

m′(t− d(m, m′)).

Note that an arm is pulled when one of three events occurs:

Event (A): Zm
k (t− 1) ≤ µ∗ − σ

√
2 ln t

Nm
∗ (t)

− ∑
m′∈N (m)

Y∗m′

Event (B): Zm
k (t− 1) ≥ µk + σ

√
2 ln t

Nm
k (t)

+ ∑
m′∈N (m)

Yk
m′

Event (C): µ∗ ≤ µk + 2σ

√
2 ln t

Nm
k (t)

We will first analyse events (A) and (B). We know from Dwork & Roth (2014) that for any

N random variables Yi ∼ L(bi),

Pr

(∣∣∣∣∣∑i
Yi

∣∣∣∣∣ ≥ ln
(

1
ω

)√
8 ∑

i
b2

i

)
≤ ω (3.7)

For some ω ∈ (0, 1), let hk,m(t) = ln
( 1

ω

)√
8 ∑m′(nk

m′(t− d(m, m′))v−2
. Let us examine the

probability of event (A) occuring.

Pr(B) = Pr

(
Zm

k (t− 1) ≥ µk + σ

√
2 ln t

Nm
k (t)

+ ∑
m′∈N (m)

Yk
m′

)
(3.8)

= Pr(µ̂m
k (t− 1)− Zm

k (t− 1) ≥ hk,m(t) & Zm
k (t− 1) ≥ µk + σ

√
2 ln t

Nm
k (t)

− hk,m(t))

(3.9)

≤ Pr (µ̂m
k (t− 1)− Zm

k (t− 1) ≥ hk,m(t)) + Pr

(
Zm

k (t− 1) ≥ µk + σ

√
2 ln t

Nm
k (t)

− hk,m(t)

)
(3.10)
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≤ ω + Pr

(
Zm

k (t− 1) ≥ µk + σ

√
2 ln t

Nm
k (t)

− hk,m(t)

)
(3.11)

≤ ω + exp

−2Nm
k (t)

(
σ

√
2 ln t

Nm
k (t)

− hk,m(t)

)2
 (3.12)

= t−3.5 + exp

−2Nm
k (t)

(
σ

√
2 ln t

Nm
k (t)

− 3.5 ln t
√

8 ∑
m′
(nk

m′(t− d(m, m′))v−2

)2

(3.13)

≤ t−3.5 + exp

−2Nm
k (t)

(
σ

√
2 ln t

Nm
k (t)

− 3.5 ln t
√

8M
(

ε−1 − γ
)v/2−1

)2
 (3.14)

≤ 2t−3.5
(3.15)

Here, we use Hoeffding’s Inequality in Equation (3.12), and the fact that v ∈ (1, 1.5) in

Equation (3.14) and that nk
m(t) ≥ ε−1

, and choose ∑m′ nk
m′(t− d(m, m′)) such that

exp

−2Nm
k (t)

(
σ

√
2 ln t

Nm
k (t)

− 3.5 ln t
√

8M
(

ε−1 − γ
)v/2−1

)2
 ≤ t−3.5.

We see that as long as NCk (t) ≥
(ε−1−γ)v/2−1(2

√
2σ−
√

3.5)√
24M ln t

+ |C|
ε , this is true, following the fact

that γ < 1/ε. We can repeat the same process for the event (A). Finally, let us analyse event

(C). For (C) to be true, we must have the following to be true.

Nm
k (t) <

8σ2 ln t
∆2

k
. (3.16)

Since Nm
k (t) ≥ NCk −Mγ, we see that this event does not happen for any agent m ∈ C if we

set

ηCk =

⌈
max

{
8σ2 ln T

∆2
k

+ Mγ,
(ε−1 − γ)v/2−1(2

√
2σ−

√
3.5)√

24M ln t
+
|C|
ε

}⌉
.

Next, we should notice that the second term decreases as t increases. We therefore, can

decompose the regret of the entire clique as follows.

RC(T) ≤
K

∑
k=1

∆k

ηk
C +
|C|
ε

+ ∑
m∈C

T

∑
t=Tk

C

P
(

Am,t = k, NCk (t) ≥ ηk
C

) (3.17)
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≤ ∑
k:∆k>0

∆k

(
8σ2 ln T

∆2
k

+ Mγ + 2 +
|C|
ε

+ ∑
m∈C

T

∑
t=1

4t−1.5

)
(3.18)

≤ ∑
k:∆k>0

∆k

(
8σ2 ln T

∆2
k

+ Mγ + 2 +
|C|
ε

+ ∑
m∈C

T

∑
t=1

4t−1.5

)
(3.19)

≤ ∑
k:∆k>0

∆k

(
8σ2 ln T

∆2
k

+ Mγ + 2 + |C|
(

1
ε
+ ζ(1.5)

))
(3.20)

Summing over all cliques C ∈ C, we get

RG(T) ≤ ∑
C∈Cγ

∑
k:∆k>0

∆k

(
8σ2 ln T

∆2
k

+ Mγ + 2 + |C|
(

1
ε
+ ζ(1.5)

))
. (3.21)

Choosing C to be the minimal clique partition of Gγ,we obtain the final form of the bound.

We now present a few remarks regarding the presented algorithm and analysis.

3.4 Discussion

The obtained regret has two components - the dependence on the communication graph

G and the privacy budget ε. Since the additional regret due to privacy is additive (and

independent of the network G), we discuss the two dependencies separately, starting with

the network dependence first.

As discussed earlier, the constant in the leading log(T) term scales as χ̄(Gγ), similar to

the non-private case. In Chapter 4 we will see that this leading constant can be improved to

α(Gγ), i.e., the independence number of the power graph, using more sophisticated tech-

niques that either involve more communication or mimicking other agents. We remark that

similar algorithms can also be derived in the differentially-private setting without many

changes to the privacy analysis.

We now come to the dependence on the privacy budget ε. Observe that the additional

regret due to private message-passing is a fixed term of
M
ε + M · ζ(1.5). We remark that

the second term is an artifact of our analysis: the varying privacy budget per message is

combined by an advanced composition theorem (Dwork et al., 2010) to provide the final

privacy guarantee, which leads to an additional suboptimality. This term can potentially

be improved at some cost to the leading term in the regret, by reducing the number of
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Figure 3-1: Experimental comparisons on random graphs. Each figure is constructed by averaging

over 100 trials.

outgoing messages further.

Next, we conjecture that the first term of
M
ε can be reduced only to

maxv∈V dγ(v)
ε , where

maxv∈V dγ(v) denotes the maximum degree of any agent in Gγ. While we cannot prove

this rigorously, we provide some intuition. Consider any arbitrary agent v with degree d.

If this agent utilizes observations from all of their neighbors, the confidence bound will

inevitably be stretched by an amount
d
ε by the fact that additional observations are private.

One way that this can potentially be avoided is to allow a majority of (perhaps poorly

connected agents) mimic the most well-connected agents. Even if all agents mimic only one

“best-connected” agent v?, we will incur an additional regret of
dγ(v?)

ε , suggesting that the

conjectured rate cannot be improved on its dependence on G. We conjecture that this is the

optimal constant for any algorithm that utilizes all of its communication, since diregarding

messages will lead to an increase in the leading log(T) term.

Coming to the dependence on ε, the following claim from Shariff & Sheffet (2018) re-

garding single-agent lower bounds in the joint differentially-private setting can provide

some insight.

Claim 3.1 (Claim 14 of Shariff & Sheffet (2018), Private Regret Lower Bound). The expected

regret of any ε−DP algorithm for the MAB is Ω(K log(T)/ε). Combined with the standard (non-

private) bound of Ω(∑k:∆k>0 log(T)/∆k), we have that the minimum single-agent regret obeys

R(T) = Ω(max{K log(T)/ε, ∑k:∆k>0 log(T)/∆k}).

The above claim clearly suggests that even with a time-varying privacy budget, one

must incur a regret that scales as
1
ε for T observations. Given that the federated setting

involves multiple agents, the conjectured bound follows.

We now describe experimental comparisons.
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3.5 Experiments

For our experimental setup, we consider rewards drawn from randomly initialized Bernoulli

distributions, with K = 5 as our default operating environment. We initialize the connec-

tivity graph G as a sample from a random Erdos-Renyi (Bollobás & Riordan, 2003) family

with edge probability p = 0.1, and set the communication parameter γ = d?(G)/2. We

describe the experiments and associated benchmark algorithms individually.

We compare the group regret R(T) of M = 200 agents over 100 randomly initial-

ized trials of the above setup. The benchmark algorithms we compare with are (a) single-

agent UCB1 (Auer et al., 2002a) running individually on each agent, and (b) DP-UCB-INT

of (Tossou & Dimitrakakis, 2016) running individually on each agent, under the exact setup

for ε and δ as described in (Tossou & Dimitrakakis, 2016). We choose this benchmark as it is

the state-of-the-art in the single-agent stochastic bandit case. The results of this experiment

are plotted in Figure 4-1(a). We observe that the performance of our algorithm is signifi-

cantly better than both private benchmarks, however, it incurs higher regret (as expected)

than the non-private version.

Testing the effect of γ. To understand the effect of γ on the obtained regret, we repeated

the same experiment (M = 200, 100 trials of randomly generated Erdos-Renyi graphs with

p = 0.1) with our two algorithms and compared their obtained group regret at T = 1000

trials. We observe a sharp decline as γ increases from 1 to d?(G), and matches the opti-

mal group regret at γ = d?(G), as hypothesized by our regret bound. The results of this

experiment are summarized in Figure 4-1(c).

3.6 Omitted Proofs

3.6.1 Proof of Lemma 3.4

Proof. Consider the set of communicating rounds in Definition 3.2 be given by T(ε) for

any value of ε, i.e., T(ε)[: t] = { 1
ε , 2

ε , 3
ε , ..., t} and consider for any agent m and arm k the

shorthand p(t) = nm,k(t). Now, observe that by a k−fold adaptive composition (Dwork

& Roth, 2014), we have that the algorithm is ε′, δ′-DP for any δ′ ∈ (0, 1] such that for any
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agent

ε′ ≤ min{B1, B2}, where, B1 = ∑
τ∈T(ε)[:p(t)]

1√
τv
≤ ∑

τ∈T(ε)[:t]

1√
τv
≤ ε

t

∑
τ=1

1√
τv

, and

B2 = ∑
τ∈T(ε)[:p(t)]

exp
(

1√
τv

)
− 1

√
τv

+

√√√√ ∑
τ∈T(ε)[:p(t)]

2 log(1/δ′)

τv

≤ ε
t

∑
τ=1

exp
(

1√
τv

)
− 1

√
τv

+

√√√√ε
t

∑
τ=1

2 log(1/δ′)

τv .

This concludes the proof.

81



3.7 Algorithm Pseudocode

Algorithm 1 Private FedUCB Message-Passing Protocol

1: Input: Agent m ∈ [M], Iteration t ∈ [T], series W = (w0, w1, ...wT), such that W(i) = wi,

series counter im
k for each k ∈ [K]; im

k = w0 if t = 0 ∀k, set of existing messages Qm(t − 1),
Qm(t) = φ if t = 0, privacy constant v ∈ (1, 1.5), existing reward sums sm,k(t) ∀k ∈ [K] such

that sm,k(0) = 0∀k.

2: Obtain Xm,t, Am,t from bandit algorithm.

3: Set sm,k(t) = sm,k(t− 1) + Xm,t for k = Am,t.

4: Set nm
k (t) = nm

k (t− 1) + 1 for k = Am,t.

5: for Arm k in [K] do
6: if nm

k (t) = W(im
k ) then

7: Set v̂k
m(t) = sm,k(t)/nm

k (t) + L(n
m
k (t)

v/2−1).
8: Set im

k = im
k + 1.

9: else
10: Set v̂k

m(t) = vk
m(t− 1).

11: end if
12: end for
13: Set qm(t) = 〈m, t, v̂m(t),𝑛m(t)〉.
14: Set Qm(t) = Qm(t− 1) ∪ {qm(t)}.
15: for Each neighbor m′ in N1(m) do
16: SendMessages(m, m′, Qm(t)).
17: end for
18: for Each neighbor m′ in N1(m) do
19: Q′ =ReceiveMessages(m′, m)
20: Qm(t) = Qm(t) ∪Q′.
21: end for
22: Set Nm

k (t) = nm
k (t), µ̂m

k (t) = sm,k(t) ∀k ∈ [K].
23: for q′ = 〈m′, t′, x′1, ..., x′K, a′1, ..., a′K〉 ∈ Qm(t) do
24: if IsLatestMessage(q′) then
25: for Arm k ∈ [K] do
26: Set Nm

k (t) = Nm
k (t) + a′k.

27: Set µ̂m
k (t) = µ̂m

k (t) + a′k · x
′
k.

28: end for
29: end if
30: end for
31: for Arm k ∈ [K] do
32: µ̂m

k (t) = µ̂m
k (t)/Nm

k (t).
33: end for
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Algorithm 2 Private FedUCB

1: Input: Agent m ∈ [M], trial t ∈ [T], arms k ∈ [K], mean µ̂m
k (t) and count nm

k (t) estimates

for each arm k ∈ [K], from Algorithm 1.

2: if t ≤ Kd1/εe then
3: Am,t = t mod K.

4: else
5: for Arm k ∈ [K] do
6: UCB

m
k (t) =

√
2 ln t

Nm
k (t) .

7: end for
8: Am,t = arg maxk∈[K]

{
µ̂m

k (t) + UCB
(m)
k (t)

}
.

9: end if
10: Xm,t = Pull(Am,t).
11: return Am,t, Xm,t.
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Chapter 4

Federated Multi-Armed Bandits with

Heavy-Tailed Rewards

Prior work on the cooperative or federated bandit learning has largely been on reward dis-

tributions that are sub-Gaussian (Landgren et al., 2016a,b). While this is certainly applicable

in several domains, increasing evidence suggests that assumptions of sub-Gaussianity may

not hold for numerous applications specific to federated decision-making, in problems such

as distributed load estimation of internet traffic (Hernandez-Campos et al., 2004; Crov-

ella et al., 1998), multi-agent modeling of supply chain networks (Thadakamaila et al.,

2004), modeling information cascades in economic multi-agent models (De Vany et al.,

1999; Konovalov, 2010) and, among others, numerous problems in distributed modeling

for social science (Barabasi, 2005; Eom & Jo, 2015). In this chapter, we therefore consider

reward distributions that admit heavier tails, made precise as follows.

Definition 4.1 (Heavy-Tailed Random Variables). A random variable X is light-tailed if it ad-

mits a finite moment generating function, i.e. there exists u0 > 0 such that ∀|u| ≤ u0,

MX(u) , E[exp(uX)] < ∞.

Otherwise X is heavy-tailed. We define a random variable X to be ε-heavy tailed if all moments of

X of order > 1 + ε are infinite, i.e., E[|X|1+α] = ∞ for all α > ε.

Extending robust estimation to the cooperative case is not straightforward. Robust es-

timators do not naturally lend themselves to consensus-based algorithms (Landgren et al.,
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2016a,b) that have been widely utilized in cooperative decision-making, since require send-

ing messages that are at least O(log T) bits per round, which is infeasible in practice. We

demonstrate that using a message-passing protocol with robust estimators allow for near-

optimal rates for the problem. Specifically, we first present an algorithm that extends the

message-passing upper-confidence bound approach from Chapter 2 to handle heavy-tailed

reward distributions with the help of robust mean estimators. This algorithm handles the

combined issue of delayed observations and heavy-tailed noise simultaneously, and ad-

ditionally we present a new online algorithm to update the robust (trimmed) mean with

varying confidence levels that reduces the runtime complexity in timeO(log T) per episode

(improving from O(T) time complexity).

4.1 Problem Setup and Univariate Robust Estimation

Recall that in the decentralized federated protocol, agents m ∈ M communicate via mes-

sages qv(t) = 〈v, t, Av,t, Xv,t〉. This message is first sent to its neighbors in G, and it is

subsequently forwarded by any agent that receives it until time t + γ, after which it is dis-

carded. 0 ≤ γ ≤ diameter(G) is therefore the communication density, where lower values

of γ imply less communication in the network. Let Qv(t) denote the set of incoming mes-

sages received by agent v at instant t. During any trial, the agent first pulls an arm, and

creates the message qv(t). It then processes all messages in Qv(t), and updates its beliefs

as per any bandit algorithm. Finally, it discards all messages older than t− γ and forwards

all remaining messages inQv(t)∪ {qv(t)} to all its neighbors in G. Now, before presenting

the algorithms, we briefly discuss our setup for univariate robust mean estimation.

4.1.1 Univariate Robust Estimation

. It has long been known that traditional “sub-Gaussian” error rates are unachievable for

heavy-tailed distributions where ε < 1, i.e., distributions with infinite variance (Lugosi &

Mendelson, 2019). Furthermore, Devroye et al. (2016) demonstrate that even when the vari-

ance is finite, it is impossible to construct a single estimator that is sub-Gaussian for any

non-trivial range of confidence parameters δ, i.e., we require a different estimator for each

confidence level δ. This result especially is an issue for bandit algorithms, as we require ad-

justing our confidence level after each new trial in order to effectively balance exploration
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and exploitation. Later in this chapter we will demonstrate that we can avoid O(T) up-

dates by carefully selecting a confidence level schedule, reducing the rate of updating to

O(log T). We now present an overview of the estimators we use and the error rates they

achieve.

The simplest univariate robust estimator is the trimmed mean, that rejects outlying sam-

ples based on an upper bound on the largest finite moment.

Definition 4.2 (Trimmed Mean). Consider n copies X1, ..., Xn of a heavy-tailed random variable

X such that E[X] = µ, E[|X|1+ε] ≤ u for some ε ∈ (0, 1]. The online trimmed mean, for some

δ ∈ (0, 1) is defined as

µ̂O =
1
n

n

∑
τ=1

Xτ · 1
{
|Xτ| ≤

(
u · τ

log(1/δ)

) 1
1+ε

}
.

This estimator is known to achieve near-sub-Gaussian rates when the variance exists.

Lemma 4.1 (Trimmed Mean Error, Bubeck et al. (2013)). Consider n copies X1, ..., Xn of a heavy-

tailed random variable X such that E[X] = µ, E[|X|1+ε] ≤ u for some ε ∈ (0, 1]. The online

trimmed mean satisfies, with probability at least 1− δ,

|µ̂O − µ| ≤ 4(u)
1

1+ε

(
log(1/δ)

n

) ε
1+ε

.

Another estimator we will utilize is the median-of-means estimator.

Lemma 4.2 (Median-of-Means Estimator). Let X1, ..., Xn be copies of a heavy-tailed random vari-

able X such that E[X] = µ and E[|X−µ|1+ε] ≤ v for some ε ∈ (0, 1]. Let k =
⌊
8 log(e1/8/δ) ∧ n/2

⌋
and N = bn/kc. Let the group-wise means be given by the following.

µ̂1 =
1
N

N

∑
i=1

Xi, ..., µ̂k =
1
N

kN

∑
i=(k−1)N+1

Xi.

Let µ̂M denote the median of µ̂1, ..., µ̂k. Then with probability at least 1− δ,

|µ̂M − µ| ≤ (12v)
1

1+ε

(
16 log(e1/8/δ)

n

) ε
1+ε

.

Alternative robust mean estimators exist, such as Catoni’s estimator (Catoni, 2012). In

the analysis, we assume that a mean estimator exists that achieves the following rate.
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Assumption 4.1 (Estimator Rate Assumption). Let S = {X1, ..., Xn} be n samples of an ε-

heavy tailed random variable, where ε ∈ (0, 1], and E[X] = µ. For positive constants c, ρ suppose

that there exists a robust estimator µ̂(S , δ) such that, with probability at least 1− δ,

|µ̂(S , δ)− µ| ≤ 2ρ
1

1+ε

(
c log(1/δ)

n

) ε
1+ε

.

4.1.2 Online Estimation of the Trimmed Mean

The next sections can potentially work with any robust mean estimator, however, we select

the trimmed mean due to its simplicity and fast time complexity of O(T) per round, and

demonstrate now that it can be improved to O(log T) per round.

The trimmed mean estimator requires selecting a sample Xi at time t only if |Xi| ≤

(2ui log(t))1/(1+ε)
(Definition 4.2). This implies that the ith

reward sample an agent has will

be selected at the smallest time t such that (|Xi|1+ε/(i)) ≤ 2u log(t). When T is known, we

can utilize a binary search tree to make an update to the robust mean O(log(t)) instead of

O(t) at time t. We outline this procedure in Algorithm 6. We assume that for any t, a new set

of observations Ot is available, which it incorporates into the robust mean with O(log(t))

per sample (instead of typically recomputing the mean for each t). The complexity stems

from the binary search, assuming the dictionary lookup is O(1).

When T is unknown, one can simply run a “doubling” routine with T = 1, 2, 4, 8, ...,

reconstructing the binary tree every time T is doubled. Observe that the doubling at any

time t will take O(t) steps to reconstruct the tree, which leads to an amortized per-round

cost of O(log2(T)) instead.

4.2 Fully-Decentralized Algorithm

In this section we present our first algorithm, a basic extension of the algorithm discussed

in Chapter 2 to heavy tailed rewards. Recall that in the fully-decentralized setting, each

agent acts independently, i.e., there is no centralized controller that dictates actions. In

this setting, each agent v maintains a set Sv,k(t) of rewards obtained from arm k, which it

updates at each trial from its own pulls and incoming messages. Any agent v only selects

observations that originate within its local γ-neighborhood N+
v (Gγ), and does not utilize

observations from agents outside this neighborhood. It then computes the robust mean of
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Sv,k(t) via the estimator µ̂(Sv,k(t), δ). Using Assumption 4.1, it then estimates a UCB for

each arm mean, and selects the arm with the largest UCB (Algorithm 3). At any instant,

the Q−values (UCB) computed by the agent can be written, for any arm k as (following

Assumption 4.1):

Qv,k(t) = µ̂

(
Sv,k(t),

1
t2

)
+ 2ρ

1
1+ε

(
2c log(t)
|Sv,k(t)|

) ε
1+ε

. (4.1)

The challenges in bounding the regret of this algorithm are to account for the varying in-

formation present across the network (due to delays in communication), along with the

robust estimation of the mean reward from each arm. We present the regret bound below.

Theorem 4.1. There exists an absolute constant C > 0 independent of T, K, M, γ and G such that

the group regret for Algorithm 3 when run with parameter γ and mean estimator µ̂(n, δ) satisfies:

R(T) ≤ C · χ̄ (Gγ)

(
∑

k:∆k>0

1
2∆1/ε

k

)
log T + (3 + γ) ·M ·

(
∑

k:∆k>0
∆k

)
.

Here χ̄(·) refers to the clique covering number.

Proof. Let a clique covering of Gγ be given by 𝐶γ. We first bound the regret in each clique

C within the clique covering 𝐶γ of Gγ. This is done by noticing that the upper confidence

bound for any arm at a selected t deviates by a constant amount between agents based on

the number of times each agent has pulled an arm. By bounding this deviation, we obtain

a relationship between the confidence bound of each arm for each agent within the clique

C. Next, we bound the probability of pulling a suboptimal arm within the clique C using

the previous result. Summing over the clique cover𝐶γ delivers the final form of the result.

We begin by decomposing the group regret.

R(T) =
M

∑
m=1

Rm(T) ≤ ∑
C∈𝐶γ

∑
m∈C

K

∑
k=1

∆kE[nm,k(T)] (4.2)

= ∑
C∈𝐶γ

K

∑
k=1

∆k

(
∑

m∈C

T

∑
t=1

P (am(t) = k)

)
(4.3)
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Consider the cumulative regret RC(T) within the clique C. For some time Tk
C , assume that

each agent has pulled arm k for ηk
m trials, where ηk

C = ∑m∈C ηk
m. Then,

RC(T) ≤
K

∑
k=1

∆k

ηk
C + ∑

m∈C

T

∑
t=Tk

C

P
(

am(t) = k, NCk (t) ≥ ηk
C

) . (4.4)

Here NC,k(t) denotes the number of times arm k has been pulled by any agent in C. We now

examine the probability of agent m ∈ C pulling arm k. Note that an arm is pulled when

one of three events occurs:

Event (A): µ̂m,∗(t− 1) ≤ µ∗ − v
1

1+ε

(
2c log(t)
|Sm,∗(t)|

) ε
1+ε

(4.5)

Event (B): µ̂m,k(t− 1) ≥ µk + v
1

1+ε

(
2c log(t)
|Sm,k(t)|

) ε
1+ε

(4.6)

Event (C): µ∗ ≤ µk + 2v
1

1+ε

(
2c log(t)
|Sm,k(t)|

) ε
1+ε

(4.7)

Now, let us examine the occurence of event (C):

∆k ≤ 2v
1

1+ε

(
2c log(t)
|Sm,k(t)|

) ε
1+ε

(4.8)

=⇒ |Sm,k(t)| ≤ 2cv
1
ε log(t)

(
2

∆k

)1+ 1
ε

(4.9)

We know that for the subgraph C, Lemma 2.1 holds for each m ∈ C with delay γ. Hence,

Nm,k(t) ≥ NC,k(t)− (|C| − 1)(1− γ) for all t. Therefore, if we set

ηk
C =

⌈
2cv

1
ε log(t)

(
2

∆k

)1+ 1
ε

+ (|C| − 1)(γ− 1)

⌉
,

we know that event (C) will not occur. Additionally, using the union bound over Nm,∗(t)

and Nm,k(t), and Assumption 4.1, we have:

P(Event (A) or (B) occurs) ≤ 2
t

∑
s=1

1
s4 ≤

2
t3 . (4.10)
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Combining all probabilities, and inserting in Equation (4.4), we have,

RC(T) ≤
K

∑
k=1

∆k

ηk
C + ∑

m∈C

T

∑
t=Tk

C

P
(

am(t) = k, NCk (t) ≥ ηk
C

) (4.11)

≤
K

∑
k=1

∆k

(⌈
2cv

1
ε log(t)

(
2

∆k

)1+ 1
ε

+ (|C| − 1)(γ− 1)

⌉
+ ∑

m∈C

T

∑
t=1

2
t3

)
(4.12)

≤
K

∑
k=1

∆k

(⌈
2cv

1
ε log(t)

(
2

∆k

)1+ 1
ε

+ (|C| − 1)(γ− 1)

⌉
+ 4|C|

)
(4.13)

≤
K

∑
k=1

∆k

(
2cv

1
ε log(t)

(
2

∆k

)1+ 1
ε

+ (|C| − 1)(γ− 1) + 1 + 4|C|
)

. (4.14)

We can now substitute this result in the total regret.

R(T) ≤ ∑
C∈𝐶

RC(T) (4.15)

≤ ∑
C∈𝐶

K

∑
k=1

∆k

(
2cv

1
ε log(t)

(
2

∆k

)1+ 1
ε

+ (|C| − 1)(γ− 1) + 1 + 4|C|
)

(4.16)

=
K

∑
k=1

4cv
1
ε χ (Ḡγ)

(2∆k)1/ε
log T + (3M + γ (M− 1))

(
K

∑
k=1

∆k

)
. (4.17)

Remark 4.1 (Regret Bound). The leading term in the previous bound depends on χ̄(Gγ), the

clique covering number of the power graph, and arises from the partitioning of the graph

that omits “beyond-clique” edges, i.e., edges that are not present in the clique cover. This

term can be loose when the graph is sparse, e.g., for a linear graph G, χ̄(Gγ) = O(M/γ).

Note that the bound is still tight for the extreme cases of communication, e.g., when γ = 0,

i.e., no communication, χ̄(Gγ) = M, recovering the independent learning bound. When

γ = diam(G), χ̄(Gγ) = 1, recovering the optimal rate (see Section 2.6).

Observe that this approach requires sending messages qm(t) which are of lengthO(1). We

can improve the χ̄(Gγ) leading term to a smaller quantity known as the domination number

ψ(Gγ) of the power graph by allowing for larger messages to be sent, i.e., messages that

are O(K) in size. We first augment the earlier message qm(t) as follows.

qm(t) = 〈m, t, am(t), xm(t), 𝜇̂m(t), nm(t)〉 . (4.18)
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Here, 𝜇̂m(t) = (µ̂m,k)k∈[K] are the robust mean estimates used by agent m to make deci-

sions at time t, and nm(t) = (|Sm,k(t)|)k∈[K] is the vector containing the number of reward

samples possessed by agent m until time t. The algorithm FedUCB1 is then modified as

follows. Each agent m also maintains a set Wm of the most recent (tv, 𝜇̂v(tv), nv(tv)) for

each v ∈ N+
m (Gγ), which they update with the latest message received from agent v. At

any instant, the agent chooses, for each arm k, the corresponding µ̂v∗,k(tv∗) and |Sv∗,k(tv∗)|

inWm with the largest |Sv∗,k(tv∗)| to construct its upper confidence bound, as follows.

Qm,k(t) = µ̂

(
Sv∗,k(tv∗),

1
t2
v∗

)
+ 2ρ

1
1+ε

(
2c log(tv∗)

|Sv∗,k(tv∗)|

) ε
1+ε

, where v∗ = arg min
v∈Wm

|Sv,k(tv)|.

(4.19)

Since weakly connected agents in the network will not have many additional observations

to produce tight confidence intervals compared to the better connected agents in G, by

allowing agents to communicate all of their estimates in each message, it is possible for

weakly-connected agents to leverage the estimators from strongly-connected ones. We call

this algorithm FedUCB1-Best (Algorithm 4), and present the regret bound below.

Theorem 4.2. There exists an absolute constant C > 0 independent of T, K, M, γ and G such

that the group regret for FedUCB1-Best when run with parameter γ and mean estimator µ̂(n, δ)

satisfies:

R(T) ≤ C · ψ(Gγ) ·
(

∑
k:∆k>0

∆−1/ε
k

)
log(T) + (ψ(Gγ) (γ + 2) + M)

(
∑

k:∆k>0
∆k

)
.

Here ψ(·) denotes the domination number.

Proof. Consider the maximal dominating set of Gγ given by V ′. We can decompose the

group regret based on V ′ as follows.

R(T) = ∑
m∈V′

Rm(T) + ∑
m∈V\V′

Rm(T) (4.20)

≤ ∑
m∈V′

Rm(T) + ∑
m′∈N+

m (Gγ)

Rm′(T)

 (4.21)
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Now, for any agent m, consider the total regret for all agents in N+
m (Gγ) ∪ {m}.

Rm(T) + ∑
m′∈N+

m (Gγ)

Rm′(T) = ∑
k:∆k>0

∆k

 ∑
m′∈N+

m (Gγ)

T

∑
t=1

P (am′(t) = k)

 (4.22)

For any set of constants ηm′
k > 0, k ∈ [K], m′ ∈ N+

m (Gγ), and ñk(t) = ∑v∈N+
m (Gγ)

nv,k(t), βk =

∑m′∈N+
m (Gγ)

ηm
k ,

≤ ∑
k:∆k>0

∆k

βk + ∑
m′∈N+

m (Gγ)

T

∑
t=1

P (am′(t) = k, ñk(t) > βk)


(4.23)

For any arm k ∈ [K], at any trial t, any agent v ∈ N+
m (Gγ) chooses the confidence bound

based on the pair µ̂m∗,k(t), nm∗,k(t), where nm∗,k(t) = maxu∈N+
v (Gγ)

|Su,k(t− d(m, u))|, and

µ̂m∗,k(t) is the corresponding robust mean. Now, we know that m′ is in the γ-neighborhood

of m, therefore,

nm∗,k(tm∗) = max
u∈N+

m (Gγ)
|Su,k(t− d(m, u))| ≥ |Su,m(t− d(m, u))|

= ñk(t− d(m, u)) ≥ ñk(t)− d(m, u) ≥ ñk(t)− γ.

Now, any agent v ∈ N+
m (Gγ) pulls a suboptimal arm k when one of three events occurs.

Event (A): µ̂m∗,∗(t− 1) ≤ µ∗ − v
1

1+ε

(
2c log(tm∗)

|Sm∗,∗(tm∗)|

) ε
1+ε

(4.24)

Event (B): µ̂m∗,k(t− 1) ≥ µk + v
1

1+ε

(
2c log(tm∗)

|Sm∗,k(tm∗)|

) ε
1+ε

(4.25)

Event (C): µ∗ ≤ µk + 2v
1

1+ε

(
2c log(tm∗)

|Sm∗,k(tm∗)|

) ε
1+ε

(4.26)

Now, let us examine the occurence of event (C):

∆k ≤ 2v
1

1+ε

(
2c log(tm∗)

|Sm∗,k(tm∗)|

) ε
1+ε

(4.27)

=⇒ nm∗,k(tm∗) ≤ cv
1
ε log(t)

(
2

∆k

)1+ 1
ε

(4.28)
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Therefore, by setting βk =

⌈
cv

1
ε log(T)

(
2

∆k

)1+ 1
ε
+ γ

⌉
, Event (C) will not occur for any

agent m′ ∈ N+
m (Gγ). Additionally, using the union bound over nm∗,∗(t) and nm∗,k(t), and

Assumption 4.1, we have:

P(Event (A) or (B) occurs) ≤ 2
t

∑
s=γ+1

1
(s− γ)4 ≤

2
(t− γ)3 .

Replacing this in the total regret for m′ ∈ N+
m (Gγ) ∪ {m}, we have,

Rm(T) + ∑
m′∈N+

m (Gγ)

Rm′(T)

≤ ∑
k:∆k>0

∆k

βk + ∑
m′∈N+

m (Gγ)

T

∑
t=1

P (am′(t) = k, ñk(t) > βk)


≤ ∑

k:∆k>0
∆k

⌈cv
1
ε log(T)

(
2

∆k

)1+ 1
ε

+ γ

⌉
+ ∑

m′∈N+
m (Gγ)

T+γ

∑
t=γ+1

2
(t− γ)3


≤ ∑

k:∆k>0
∆k

(
cv

1
ε log(T)

(
2

∆k

)1+ 1
ε

+ γ + 2 + |N+
m (Gγ)|

)

Summing over all agents m ∈ V ′, we have,

R(T) ≤ ψ(Gγ)

(
∑

k:∆k>0
∆−1/ε

k

)(
2cv

1
ε

)
log(T) + (ψ(Gγ) (γ + 2) + M)

(
∑

k:∆k>0
∆k

)
.

Contrasted to the regret bound of O(
√
|V|α(G)TK ln K) obtained by Cesa-Bianchi et al.

(2019b) for the nonstochastic case (where communication is also O(K) per agent), our al-

gorithm obtains lower group regret in the stochastic case. Additionally, this implies a

O(log(M)) improvement over the previous state-of-the-art bound for the stochastic case

(Martínez-Rubio et al., 2019).

4.3 Partially-Decentralized Algorithm

We now demonstrate that the improvedO
(

ψ(Gγ) ·∑k:∆k>0
log(T)

∆1/ε
k

)
can be achieved in fact

with messages of length O(1) instead of O(K) by modifying the exploration strategy for
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poorly-connected agents in the network. In settings where the number of arms is pro-

hibitively large, i.e., K = Ω(M), this alternate algorithm can provide competitive perfor-

mance. The algorithm, dubbed CentUCB1, is a version of the “follow-the-leader” strategy.

Here, the agents are partitioned into “leaders” and “followers”. The leader agents follow

the same procedure identically to Algorithm 3, and the follower agents simply copy the

most recent action they have observed of their associated leader. We select the leaders

as the members of the smallest dominating set V ′ ⊆ V of Gγ. For each follower agent

v ∈ V \ V ′ we assign a leader l(v) to it such that (a) there is an edge between v and

l(v) in Gγ, and (b) l(v) has maximum degree in V ′ ∩ N+
v (Gγ), i.e. l(v) ∈ V ′ such that

l(v) = arg maxv′∈V′∩N+
v (Gγ)

deg(v). Algorithm 5 describes this algorithm particularly from

its differences with FedUCB1. We present the associated regret bound.

Theorem 4.3. There exists an absolute constant C > 0 independent of T, K, M, γ and G such that

the group regret for CentUCB1 when run with parameter γ and mean estimator µ̂(n, δ) satisfies:

R(T) ≤ C · ψ(Gγ)

(
∑

k:∆k>0
∆−1/ε

k

)
log(T) + (ψ(Gγ) + 1) (M + 1)

(
∑

k:∆k>0
∆k

)

Here ψ(·) denotes the domination number.

Proof. We begin by decomposing the group regret into leader and follower nodes, grouped

according to their position in G and the minimal dominating set.

R(T) = ∑
m∈G

Rm(T) (4.29)

= ∑
m∈V′

Rm(T) + ∑
f∈Nm(Gγ)

R f (T)

 (4.30)

=
T

∑
t=1

∑
k:∆k>0

∑
m∈V′

∆k

P {am(t) = k}+ ∑
f∈Nm(Gγ)

P
{

a f (t) = k
} . (4.31)

For constants ηm
k , η

f
k > 0, m ∈ V ′, f ∈ Nm(Gγ), let Uk

m be the event when ηm
k +∑ f∈Nm(Gγ) η

f
k ≤

Nm
k (t) + ∑ f∈Nm(Gγ) N f

k (t). Then we have,

R(T) = ∑
k:∆k>0

∑
m∈V′

∆k

(
ηm

k + ∑
f∈Nm(Gγ)

η
f
k +

T

∑
t=1

P {am(t) = k; Um
k }
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+ ∑
f∈Nm(Gγ)

T

∑
t=1

P
{

a f (t) = k; Um
k
} )

. (4.32)

We know that a f (t) = am(t− d( f , m)). Let βm
k = ηm

k + ∑ f∈Nm(Gγ) η
f
k for brevity. Therefore,

R(T) = ∑
k:∆k>0

∑
m∈V′

∆k

(
βm

k +
T

∑
t=1

P {am(t) = k; Um
k }+

T−d(m, f )

∑
t=1

P {am(t) = k; Um
k }
)

+ ∑
m∈V′

∑
f∈Nm(Gγ)

d(m, f ) (4.33)

=⇒ R(T) ≤ ∑
k:∆k>0

∑
m∈V′

∆k

(
βm

k + (|Nm(Gγ)|+ 1)

(
T

∑
t=1

P {am(t) = k; Um
k }
))

. (4.34)

We see that a suboptimal arm is pulled when one of three events occurs.

Event (A): µ̂m,∗(t− 1) ≤ µ∗ − v
1

1+ε

(
2c log(t)
|Sm,∗(t)|

) ε
1+ε

(4.35)

Event (B): µ̂m,k(t− 1) ≥ µk + v
1

1+ε

(
2c log(t)
|Sm,k(t)|

) ε
1+ε

(4.36)

Event (C): µ∗ ≤ µk + 2v
1

1+ε

(
2c log(t)
|Sm,k(t)|

) ε
1+ε

(4.37)

Now, let us examine the occurence of event (C):

∆k ≤ 2v
1

1+ε

(
2c log(t)
|Sm,k(t)|

) ε
1+ε

(4.38)

=⇒ |Sm,k(t)| ≤ cv
1
ε log(t)

(
2

∆k

)1+ 1
ε

(4.39)

Since agent m can communicate only with its neighborhoodNγ(m), andNm(Gγ) ⊆ Nγ(m).

Therefore ∑ f∈Nm(Gγ)∪{m} Nk
f (t) ≤ ∑ f∈Nγ(m)∪{m} Nk

f (t), and since each message from a neigh-

bor f takes time d(m, f ) − 1 time to reach agent m, we have that ∑ f∈Nm(Gγ)∪{m} Nk
f (t) −

∑ f∈Nγ(m)∪{m}(d( f , m) − 1) ≤ |Sm,k(t)|. Using this in the previous equation and the fact

that d(m, f ) ≤ γ, we have

=⇒ ∑
f∈Nm(Gγ)∪{m}

Nk
f (t) ≤ cv

1
ε log(t)

(
2

∆k

)1+ 1
ε

+ γ(|Nγ(m)|+ 1) (4.40)

96



Therefore, we know that if βm
k ≥

⌈
cv

1
ε log(T)

(
2

∆k

)1+ 1
ε
+ γ(|Nγ(m)|+ 1)

⌉
then Event (C)

does not occur. Additionally, using the union bound over nm,∗(t) and nm,k(t), and Assump-

tion 4.1, we have:

P(Event (A) or (B) occurs) ≤ 2
t

∑
s=1

1
s4 ≤

2
t3 . (4.41)

Combining all probabilities, and inserting in the individual regret, we have,

R(T) ≤ ∑
k:∆k>0

∑
m∈V′

∆k

(
βm

k + (|Nm(Gγ)|+ 1)

(
T

∑
t=1

P {am(t) = k; Um
k }
))

(4.42)

≤ ∑
k:∆k>0

∑
m∈V′

∆k

(⌈
cv

1
ε log(T)

(
2

∆k

)1+ 1
ε

+ γ(|Nγ(m)|+ 1)

⌉
+ (|Nm(Gγ)|+ 1)

(
T

∑
t=1

2
t3

))
(4.43)

≤ ∑
k:∆k>0

∑
m∈V′

∆k

(
cv

1
ε log(T)

(
2

∆k

)1+ 1
ε

+ γ(|Nγ(m)|+ 1) + (|Nm(Gγ)|+ 2)

)
(4.44)

Since |V ′| ≤ ψ(Gγ), where α(·) denotes the domination number, we have,

≤ ∑
k:∆k>0

(
21+1/ε∆−1/ε

k cv1/εψ(Gγ) log(T) + ∑
m∈V′

∆k(γ(|Nγ(m)|+ 1) + (|Nm(Gγ)|+ 2))

)
(4.45)

≤
(

∑
k:∆k>0

∆−1/ε
k

)(
21+1/εcv1/εψ(Gγ)

)
log(T) + (ψ(Gγ)Mγ + M + ψ(Gγ))

(
∑

k:∆k>0
∆k

)
(4.46)

Since ψ(G) ≤ χ̄(G) for any graph G, the centralized version of the FedUCB1 algorithm

obtains regret strictly no worse compared to the decentralized version. A few additional

remarks can be made, inspired by Bar-On & Mansour (2019).

Remark 4.2. The average regret from Algorithm 5 is O((ψ(Gγ)/M)K log(T)), i.e. opti-

mal when γ = diam(G). When γ =
√

K, Algorithm 5 can obtain a per-agent regret of

O(∆−1/ε
∗
√

K log(T)). This can be shown by noticing that when G is connected, ψ(Gγ) ≤

Gψ(Gγ) ≤ d2M/(γ + 2)e. Also note that we need only

√
K leaders at most to obtain this
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regret. When γ = diam(G), then, any arbitrarily chosen leader can deliver optimal regret,

regardless of its position in G.

4.4 Experiments
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Figure 4-1: Experimental benchmarks, where each experiment is averaged over 100 trials. Figures

(A) and (B) compare performance on samples of random graphs; (C) and (D) compare performance

on two classes of real-world networks, and (E) and (F) are ablations.

Our primary contributions are in leveraging cooperation to accelerate overall decision-

making, and the most interesting aspects of this study pertain to how graph structures,

scalability, heavy tails and decentralized vs. centralized estimation affect the group regret.

Reward Distributions. We conduct experiments using α-stable densities (Lévy, 1925),

that admit finite moments only of order < α ≤ 2, and we consider α-stable densities where

α ≥ 1. The α-stable family includes several widely used distributions, such as Gaussian

(α = 2, only light-tailed density), Lévy (α = 0.5) and Cauchy (α=1).

Graph Partitioning. For Algorithm 5, we require computing the minimal dominating

set of Gγ. We use the approximate algorithm presented in (Lucas, 2014) that uses the

QUBO (Glover & Kochenberger, 2018) solver.

Experiment 1: Random Graphs. We set K = 5, α = 1.9 for the standard α-stable

density, and sample arm means randomly from the interval [0, 1] for each arm every ex-

periment. We then construct random graphs on 200 agents from the Erdos-Renyi (ER)

(p = 0.7) and Barabasi-Albert (BA) (m = 5) random graph families, and compare all
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three of our algorithms (using the trimmed mean estimator, with γ = diam(G)/2) with

the Consensus-UCB and single-agent Robust-UCB(Bubeck et al., 2013) algorithms. We

compare the group regret R(T) vs. T, averaged over 100 random graphs and bandit in-

stances. The results for Erdos-Renyi graphs (Figure (4-1A)) and Barabasi-Albert graphs

(Figure (4-1B)) demonstrate that while our algorithms outperform the baselines (in the or-

der dictated by regret bounds), the gain is larger for the former. We attribute this to con-

nectivity, i.e., since Barabasi-Albert graphs have “hubs”, the clique number χ̄(G) for these

graphs is larger.

Experiment 2: Real-World Networks. We select the p2p-Gnutella04 (Figure 4-1C) and

ego-Facebook (Figure 4-1D) network structures from the SNAP repository (Leskovec & Sosič,

2016) to experiment with in the real-world setting. For both experiments, we sample sub-

graphs of 500 nodes, and use these subgraphs. A common misconception is to compare

our distributed multi-agent problem with the social network clustering problem (Gentile et al.,

2014; Li et al., 2016), which is more scalable since it is single-agent (i.e., one action chosen

per trial). These networks are chosen because they represent two diverse situations coop-

erative decision-making can be applicable in – social networks and peer-to-peer commu-

nication networks. In both cases, we observe a similar trend. The gains are larger in the

p2p-Gnutella case since ego-Facebook is dense (with fewer nodes), hence Consensus-UCB

performs better as well.

Experiment 3: Effect of γ and α. As ablation experiments, we investigate the effect of

communication density γ (Figure 4-1E) and tail parameter α (Figure 4-1F) on the group

regret. For both experiments, we construct random graphs on 200 agents from the Erdos-

Renyi (p = 0.7) family. We compare the group regret at T = 10000 trials as a function of γ,

and α, respectively. First, we observe that communication density has a significant effect

on all but the FedUCB1-Best algorithm. Next, we see that Consensus-UCB progressively

gets worse as the tail gets heavier (i.e, α→ 1+).

4.5 Lower Bound and Discussion

For the specific case of (1 + ε)-heavy tailed rewards, we present an extension of the lower

bounds from Chapter 2 to the modified environment.

Corollary 4.1 (Lower Bound on Heavy-Tailed Cooperative Regret). For any ∆ ∈ (0, 1/4),
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there exist K ≥ 2 distributions ν1, ..., νK satisfying EX∼νk [|X|1+ε] ≤ u, and EX∼ν∗ [X]−EX∼νk [X] =

∆∀k ∈ K, such that any consistent decentralized policy Πt = (πm,t)m∈[M],t∈[T] that satisfies As-

sumption 2.1 obtains group regret of Ω(K∆−1/ε log(T)). Furthermore, if the decentralized policy

is NAIC (Definition 2.6) then it must obtain group regret of Ω(Kα(Gγ+1) · ∆−1/ε log(T))

Proof. Consider ν1(x) =
(
1− α1+ε

)
δ(x)+ α1+εδ(x− 1/α), where α = (2∆)

1
ε , δ(x−γ) is the

Dirac distribution at γ, and let ∀ k ∈ [2, K], νk(x) =
(
1− α1+ε + ∆α

)
δ(x)+

(
α1+ε − ∆α

)
δ(x−

1/α). We can see that

EX∼νi [|X|
1+ε] = 1 ∀i ∈ [K] and EX∼ν1 [X]−EX∼νi [X] = ∆ ∀i ∈ [2, K].

Hence, νi satisfy the constraints stated in the Theorem. Now, we can see that ν1 corresponds

to a scaled Bernoulli distribution with parameter α1+ε
, and similarly, νi, i ∈ [2, K] corre-

spond to a scaled Bernoulli distribution with parameter α1+ε−∆α. Since an algorithm oper-

ating on ν1, ..., νK will exhibit identical behavior on reward distributionsB(α1+ε), ...,B(α1+ε−

∆α), we can note the following for Bernoulli distributions for two Bernoulli distributions

with arm parameter µk optimal parameter µ∗.

Dinf
k = µk log

(
µk

µ∗

)
+ (1− µ) log

(
1− µk

1− µ∗

)
= DKL(µk, µ∗) (4.47)

Therefore we can apply Theorem 2.3 directly to obtain the following lower bound on the

number of pulls of any suboptimal arm.

E[Nk(T)] ≥
(

1
DKL(νk, ν∗)

)
ln T (4.48)

(a)
=

(
1

DKL(B(α1+ε − ∆α),B(α1+ε))

)
ln T (4.49)

(b)
≥
(

αε−1 − α2ε

∆2

)
ln T (4.50)

=

(
21− 1

ε

∆1+ 1
ε

)
ln T. (4.51)

Here, (a) is obtained by the equivalence of ν1, ..., νK to Bernoulli distributions, and (b) is

obtained by the inequality DKL(B(θ2),B(θ1)) ≤ (θ1−θ2)
2

θ1(1−θ1)
. We now decompose the regret.

R(T) =
K

∑
k=2

∆kE[Nk(T)] (4.52)
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≥
K

∑
k=2

(
21− 1

ε

∆
1
ε

)
ln T. (4.53)

The second part follows from an identical analysis applied directly to Theorem 2.4 for NAIC

policies.

Discussion. In this chapter, we presented a treatment of federated bandit estimation under

heavy tails. We provided the first asymptotic lower bound on cooperative estimation that

holds for arbitrary graphs G and a wide variety of communication protocols. We present

the first robust cooperative estimation algorithms that can all provide optimal regret, even

without knowledge of G. However, our work leaves several open questions in robust multi-

agent decision-making.

First, we note that our best algorithm provides a group regret of O(Gψ(Gγ)K ln T),

which is similar to the results obtained in the non-stochastic case Cesa-Bianchi et al. (2019b);

Martínez-Rubio et al. (2019). The Gψ(Gγ) overhead can be attributed to the fact that infor-

mation does not flow completely through the network (cf. Assumption 2.1a). This leads us

to believe that tighter lower bounds can be obtained by taking this aspect of the commu-

nication protocol into account. Moreover, in realistic settings, messages incur stochasticity,

i.e. they can be dropped at random, or propagate with varying delay γ. This line of work

has been studied in the single-agent setting Pike-Burke et al. (2017); Vernade et al. (2018),

however the problem becomes more challenging when multiple agents interact simultane-

ously. The extension of our setting to the contextual case is not trivial. Robust single-agent

estimation for linear bandits is a difficult problem from both the algorithmic and computa-

tional point of view, since statistically optimal multivariate estimators require exponential

time to compute Lugosi & Mendelson (2019). Furthermore, delay creates a

√
γ scaling of

the regret Neu et al. (2010), which is amplified in the multi-agent setting. Addressing such

scenarios is an interesting next step in this line of research.
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4.6 Algorithm Pseudocode

Algorithm 3 FedUCB1

1: Input: Arms k ∈ [K], parameters ε, c, ρ, estimator µ̂(n, δ)
2: Sv

k ← φ ∀k ∈ [K], Qv(t)← φ, ∀v ∈ V.

3: for each iteration t ∈ [T] do
4: for each agent v ∈ V do
5: if t ≤ K then
6: am(t)← t.
7: else
8: for Arm k ∈ [K] do
9: µ̂

(v)
k ← µ̂(Sv

k , 1/t2).

10: UCB
(v)
k (t)← ρ

1
1+ε

(
2c log(t)
|Sv

k |

) ε
1+ε

.

11: end for
12: Av,t ← arg maxk∈[K]

{
µ̂
(v)
k (t) + UCB

(v)
k (t)

}
.

13: end if
14: Xv,t ← Pull(Av,t).
15: Sv

Av,t
← Sv

Av,t
∪ {Xv,t}

16: Qv(t)← Qv(t) ∪ {〈v, t, Av,t, Xv,t〉}.
17: for each neighbor v′ in N1(v) do
18: SendMessages(v, v′,Qv(t)).
19: end for
20: end for
21: for each agent v ∈ V do
22: Qv(t + 1)← φ.

23: for each neighbor v′ in N1(v) do
24: Q′ ←ReceiveMessages(v′, v)
25: Qv(t + 1)← Qv(t + 1) ∪Q′.
26: end for
27: for 〈v′, t′, a′, x′〉 ∈ Qv(t + 1) do
28: if v′ ∈ Clique(v, Gγ) then
29: Sv

a′ ← Sv
a′ ∪ {x

′}.
30: end if
31: end for
32: end for
33: end for
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Algorithm 4 FedUCB1-Best

1: Input: K, ε, µ̂R(n, δ), c, v.

2: Set Sm,k = φ ∀k ∈ [K], Qm(t) = φ ∀m ∈ [M]

3: Set Wm = 1|Nγ(m)|×2K ∀m ∈ [M].
4: for For each iteration t ∈ [T] do
5: for For each agent m ∈ [M] do
6: if t ≤ K then
7: am(t) = t.
8: else
9: for Arm k ∈ [K] do

10: µ̂
(m)
k (t) = µ̂R(Sm,k, 2 log(t)).

11: end for
12: Wm =

(
µ̂
(m)
k (t), |Sm,k|

)
k∈[K]

.

13: for Arm k ∈ [K] do
14: m∗ = arg maxm{sm

k : (µm,k, sm
k ) ∈W}.

15: µ̂m,∗
k , |Sm,∗

k | = Wm∗ ,k

16: UCB
(m)
k (t) = v

1
1+ε

(
2c log(t)
|Sm,∗

k |

) ε
1+ε

.

17: end for
18: am(t) = arg maxk∈[K]

{
µ̂m,∗

k (t) + UCB
(m)
k (t)

}
.

19: end if
20: am(t)rm,t = Pull(am(t)).
21: Sm

am(t) = Sm
am(t) ∪ {am(t)rm,t}

22: Qm(t) = PruneDeadMessages(Qm(t)).
23: qm(t) =

〈
m, t, γ, am(t), am(t)rm,t, ˆ̄(m)(t), Nm(t)

〉
24: Qm(t) = Qm(t) ∪ {qm(t)}.
25: Set l = l − 1 ∀〈m′, t′, l, a′, x′, d′, n′〉 in Qm(t).
26: for Each neighbor m′ in N1(m) do
27: SendMessages(m, m′, Qm(t)).
28: end for
29: end for
30: for For each agent m ∈ [M] do
31: Qm(t + 1) = φ.

32: for Each neighbor m′ in N1(m) do
33: Q′ =ReceiveMessages(m′, m)
34: Qm(t + 1) = Qm(t + 1) ∪Q′.
35: end for
36: for 〈m′, t′, l′, a′, x′, d′, n′〉 ∈ Qm(t + 1) do
37: Sm

a′ = Sm
a′ ∪ {x

′}.
38: Wm′ = (d′, n′)
39: end for
40: end for
41: end for
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Algorithm 5 CentUCB1

1: Input: Same as Algorithm 3.

2: Set Sv
k ← φ ∀k ∈ [K], Qv(t)← φ, A∗v ← 1, for all v ∈ V.

3: for each iteration t ∈ [T] do
4: for each agent v ∈ V do
5: if t ≤ K then
6: Av,t ← t.
7: else if v ∈ V′ or t ≤ d(v, l(v)) then
8: Run lines 8-12 of Algorithm 3.

9: else
10: Av,t ← A∗v .

11: end if
12: Run lines 14-19 of Algorithm 3.

13: end for
14: for each agent v ∈ V do
15: Run lines 22-26 of Algorithm 3.

16: for 〈v′, t′, a′, x′〉 ∈ Qv(t + 1) do
17: Sv

a′ ← Sv
a′ ∪ {x

′}.
18: end for
19: A∗v =ChooseLastAction(∪kSv

k (t + 1)).
20: end for
21: end for

Algorithm 6 Online Trimmed Mean Estimator

1: Input: u, T.

2: Create dictionary D of size T, where D(t) = φ ∀t ∈ [T].
3: Create BST B with entries ((2u log(t))1/(1+ε))t∈[T].

4: ŜO ← 0, n← 0
5: for t ∈ [T] do
6: Ot ← Observations(t).
7: for xt ∈ Ot do
8: n← n + 1
9: it ← max

(
t, Search(B, (|xt|1+ε/n))

)
.

10: D(it)← D(it) ∪ {xt}.
11: end for
12: for x ∈ D(t) do
13: ŜO ← ŜO + x.

14: end for
15: µ̂O(t)← ŜO/n.

16: end for
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Chapter 5

Handling Byzantine and Adversarial

Corruptions

In prior treatment of the cooperative multi-armed bandit, adversarial loss functions have

also been considered (Cesa-Bianchi et al., 2019b). However, in this line of work, the moti-

vation is very different from that of federated learning systems: it is assumed that each of

the multiple agents interact with identical adversarial bandit instances, and the objective is

to effectively distribute arms between agents to achieve the optimal rate. For example, con-

sider the adversarial (nonstochastic) multi-armed bandit, e.g., the setup discussed in Auer

et al. (2002b). In the single-agent setting, the environment (or adversary) selects a sequence

of T vector losses `1, ..., `T, `τ ∈ [0, 1]K, τ ∈ [T]. The agent, at each round τ, selects an action

a(τ) ∈ [K] and observes the corresponding loss element in `τ.

When considering the multi-agent variant of this problem, prior research assumes that

the sequence of losses `1, ..., `T are identical for all players, and the central advantage of

the multi-agent setup is to explore M ≤ K arms simultaneously, albeit with delays in

communication (Cesa-Bianchi et al., 2019b,a). This setting appears to be inapplicable in

modern federated learning systems: it is unlikely that the assumption of identical adver-

sarial instances in large-scale decentralized systems. Furthermore, the strong robustness

guarantees that arrive with nonstochastic algorithms come at a price: guarantees for non-

stochastic bandit algorithms are significantly weaker, whereas one can obtain logarithmic

regret for stochastic algorithms. Nevertheless, it is unlikely that application domains obey

nice stochastic properties typically assumed in Chapters 2-4. Non-stochastic corruptions
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in federated bandit systems can arise from a variety of circumstances, including byzantine

agents, imperfect communication, and inherent non-stochasticity of the environment itself.

Therefore, in this chapter we discuss federated multi-armed bandits with corruption.

We focus on two types of corruption - Huber contamination, where a constant, small frac-

tion of rewards are drawn from arbitrary corruption distributions, and another, more chal-

lenging setting, where rewards can arbitrarily be corrupted from the default stochastic as-

sumption. For both settings, we provide novel algorithms that provide competitive perfor-

mance, without knowledge of the corruption levels in either setting.

5.1 Huber Contamination

In this section, we examine the federated bandit problem when there exist byzantine agents,

that, at any trial, instead of reporting the true rewards, provide a random sample from an

alternate (but fixed) distribution, with some probability ε. Once a message is created, how-

ever, we assume that it is received correctly by all subsequent agents, and any corruption

occurs only at the source (see Remark 5.1). Specifically, for any agent m and arm k, the

random reward xm,k(t) is drawn from the mixture distribution (1− ε) · Pk + ε · Q, where

Pk is the reward distribution for arm k and Q is an arbitrary unknown contamination dis-

tribution. The general problem of estimating statistics of a distribution P1 from samples of

a mixture distribution of the form (1− ε) · P1 + ε · P2 for ε < 1/2 is a classic contamination

model in robust statistics, known as Huber’s ε-contamination model (Huber, 2011).

Remark 5.1 (Modeling Assumption). One might consider the setting where in addition to

messages being corrupted at the source, it is possible for a message to be corrupted by any

intermediary byzantine agent with the same probability ε. From a technical perspective,

this setting is not very different than the first setting, since the probability of any incoming

message being corrupted becomes at most γε (by the union bound and that d(m, m′) ≤ γ

for any pair of agents m, m′ that can communicate), and the remainder of the analysis is

identical henceforth. Therefore, we simply consider the first setting.

Problem Setting and Messaging Protocol. We consider for any agent m, the message

qm(t) = 〈m, t, am(t), x̂m(t)〉 created at time t ∈ [T]. For byzantine agents, x̂m(t) = xm(t)

i.i.d. with probability 1− ε, and a random sample from an unknown (but fixed) distribu-

tion Q with probability ε. For non-byzantine agents, x̂m(t) = xm(t) with probability 1. In
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the univariate setting, a popular approach to robustly estimate the mean in the presence of

outliers is to utilize a trimmed estimator of the mean that is robust to outlying samples, that

works as long as ε is small. We utilize the trimmed estimator to design our algorithm as

well, defined as follows.

Definition 5.1 (Robust Trimmed Estimator). Consider a set of 2N samples X1, Y2, ..., XN , YN

of a mixture distribution (1− ε) · P + ε · Q for some ε ∈ [0, 1/2). Let X∗1 ,≤ X∗2 ≤ ... ≤ X∗N

denote a non-decreasing arrangement of X1, ..., XN . For some confidence level δ ∈ (0, 1), let α =

max(ε, ln(1/δ)
N ), and letZ be the shortest interval containing N

(
1− 2α−

√
2α ln(4/δ)

N − ln(4/δ)
N

)
points of {Y∗1 , ..., Y∗N}. The trimmed estimator µ̂R({X1, Y2, ..., XN , YN}, δ) is defined as

µ̂R =
1

∑N
i 1 {Xi ∈ Z}

N

∑
i=1

Xi1 {Xi ∈ Z} . (5.1)

We now present a confidence interval for this quartile-based trimmed mean estimator.

Theorem 5.1 (Confidence Interval, Prasad et al. (2019)). Let δ ∈ (0, 1). Then for any distribu-

tion P with mean µ and finite variance σ2, we have, with probability at least 1− δ,

|µ̂R − µ| ≤ σε +

√
σ ln(1/δ)

N
.

We first describe an algorithm for the federated bandit when the likelihood of contam-

ination ε is known in advance. While this indeed appears to be an impractical scenario,

it will be the basis of the final algorithm that operates without knowledge of ε, only as-

suming that ε ∈ [0, 1/2). Notice that ε ≥ 1/2 is a highly unusual pathological case, as in

that case it is impossible to distinguish the “contaminating” distribution Q from the “true”

distribution P (Prasad et al., 2019).

We consider a harder problem: we assume that all agents are byzantine, i.e., each reward

sample is drawn from the aforementioned mixture distribution. While this primarily aids

in the simplicity of the algorithm and analysis, it provides a worst-case algorithm, instead

of assuming a certain fraction of agents are byzantine. From the perspective of any agent, if

all M agents are byzantine, then it can expect to obtain approximately O(TMε) corrupted

messages. If however, only a fraction f < 1 of agents are byzantine, then it can expect to

obtain approximately O(TM f ε) corrupted messages, which would imply that (in expec-

tation), all M agents are byzantine with ε′ = f ε. This information can be incorporated at
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runtime as well, and hence we proceed with the conservative assumption.

The algorithm itself, dubbed RobustFedUCB(ε) (Algorithm 7), is an extension of FedUCB,

where instead of the sub-Gaussian confidence intervals utilized for the basic setting, we

utilize the confidence intervals obtained from the robust estimator described earlier. It re-

quires the value of ε to be known in advance, and the regret analysis is identical to that of

Theorem 4.1, except we utilize the confidence intervals from Theorem 5.1.

Theorem 5.2. There exists an absolute constant C > 0 independent of T, K, M, γ and G such that

the group regret for RobustFedUCB(ε) when run with parameter γ satisfies, for all ε < ∆2
k/4,

R(T) ≤ C · χ̄ (Gγ) ·
(

∑
k:∆k>0

∆k

(∆k − 2ε)2

)
log(T) + M · (3 + γχ (Gγ))

(
∑

k:∆k>0
∆k

)
.

Here, χ̄(·) refers to the minimum clique number.

Proof. The proof is identical to that of Theorem 4.1 with the modification that the confidence

intervals utilized are derived from Theorem 5.1.

Remark 5.2 (Deviation from Optimal Rates). When comparing the group regret bound to

the optimal rate achievable in the single-agent case, there is an additive constant that arises

from the delay in the network. Identical to the FedUCB1, this additive constant reduces to

the constant corresponding to MT individual trials of the UCB algorithm when informa-

tion flows instantly throughout the network, i.e. G is connected. Additionally, we observe

identical dependencies on other graph parameters in the leading term as well, except for

the modified denominator (∆k − 2ε)2
. This term arises from the inescapable bias that the

mixture distribution Q introduces into estimation, and (Prasad et al., 2019) show that the

optimal asymptotic bias of O(ε) and unimprovable in general. Corresponding to this re-

sult, we present a multi-agent bandit lower bound that achieves a similar dependence.

Theorem 5.3 (Lower Bound for Uniform Huber Contamination). For any ∆ ∈ (0, 1/4), there

exist K ≥ 2 distributions ν1, ..., νK satisfying EX∼ν∗ [X] − EX∼νk [X] = ∆∀k ∈ K such that the

following holds: Consider any consistent decentralized policy Πt = (πm,t)m∈[M],t∈[T] that uses a

communication protocol satisfying Assumptions 2.1, on a bandit problem with reward distributions

ν1, ..., νK such that an adversary can corrupt any message with at most ε−Huber contamination.
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Then, the policy satisfies,

lim inf
T→∞

R(T)
log(T)

≥
K

∑
k=2

3
∆(1− 2ε)2 =

K

∑
k=2

3∆
(∆− 2ε)2 + 4ε · ∆(1− ∆)

.

Furthermore, if the policy satisfies NAIC (Definition 2.6), then,

lim inf
T→∞

R(T)
log(T)

≥ α(Gγ+1) ·
K

∑
k=2

3
∆(1− 2ε)2 = α(Gγ+1) ·

K

∑
k=2

3∆
(∆− 2ε)2 + 4ε · ∆(1− ∆)

.

Proof. The proof follows in the standard construction outlined in Chapter 2, but we create

a different hard instance that makes it difficult to identify the optimal arm by corrupting

its reward. By Theorem 2.3, we obtain the following lower bound on the number of pulls

of any suboptimal arm over the entire group of agents.

lim inf
T→∞

E[nk(T)]
log(T)

≥ 1
DKL(νk, ν∗)

. (5.2)

Consider the problem where P? = B( 1+∆
2 ) for some ∆ ∈ (0, 1) and Pk = B( 1

2 )∀k 6= ?. Now,

given the true reward distributions P1, ..., PK, the adversary sets the arm reward distribu-

tions as follows. All suboptimal arms are left unperturbed. The reward distribution for the

optimal arm is corrupted as ν?(1− ε)P? + ε · Q2, where Q2 = B( 1−∆
2 ). We therefore have

that νk ∼ B( 1
2 ), and ν? ∼ B((1− ε) · 1+∆

2 + ε · 1−∆
2 ). Therefore, we have,

DKL(νk, ν?) = DKL

(
B
(

1
2

)
,B
(
(1− ε) · 1 + ∆

2
+ (ε) · 1− ∆

2

))
≤ ∆2(1− 2ε)2

3
. (5.3)

The inequality follows from the fact that DKL(θ1, θ2) ≤ (θ1−θ2)
2

θ1(1−θ1)
. Replacing this result in the

regret, we obtain that

lim inf
T→∞

R(T)
log(T)

=
K

∑
k:∆k>0

∆kE[nk(T)] ≥
K

∑
k:∆k>0

3
∆(1− 2ε)2 =

K

∑
k:∆k>0

3∆
(∆− 2ε)2 + 4ε · ∆(1− ∆)

.

(5.4)

The second bound follows from the same analysis applied to Theorem 2.4.

Remark 5.3. We see that regret becomes progressively worse as ε → 1
2 , consistent with

intuition. A rewrite of the bound allows the comparison with the regret obtained by Ro-
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bustFedUCB, where we see an additional O(ε∆(1− ∆)) factor in the denominator. We be-

lieve that the lower bound is tight, and using alternative exploration strategies such as

arm elimination can potentially eliminate this from the upper bound, as UCB relies on the

concentration of the robust estimator, which can lead to excessive exploration.

Remark 5.4 (Improving Network Dependence). It can be seen that by using a similar leader-

follower approach as described in Section 4.3 or utilizing O(K)−sized messages with a

FedUCB1-Best strategy with the alternate trimmed estimator will provide regretO(ψ(Gγ) ·

∑k:∆k>0
∆k ·log(T)
(∆k−2ε)2 + Mγ ·∑k:∆k>0 ∆k). We omit these proofs as they are straightforward com-

binations of the above approach with the analysis from Chapter 4.

5.2 Finite-Budgeted Adversarial Corruption in Communication

In this section, we assume that any reward when transmitted can be corrupted a maximum

value of ε, i.e., maxt,n |rn(t)− r̃n(t)| ≤ ε where r̃n(t) denotes the transmitted reward. Fur-

thermore, we assume that the corruptions can be adaptive, i.e., can depend on the prior ac-

tions and rewards of each agent. This model includes natural settings, where messages can

be corrupted during transmission, as well as byzantine communication (Dubey & Pentland,

2020d). If ε were known, we could then extend algorithms for misspecified bandits (Ghosh

et al., 2017) to create a robust estimator and a subsequent UCB1-like algorithm that obtains

a regret of O(χ̄(Gγ)K(
log T

∆ ) + TNKε). However, this approach has two issues. First, ε

is typically not known, and the dependence on Gγ can be improved as well. We present

an arm-elimination algorithm called CHARM (Adversarial Corruptions) that provides better

guarantees on regret, without knowledge of ε in Algorithm 8.

The central motif in CHARM’s design is to eliminate bad arms by an epoch-based explo-

ration, an idea that has been successful in the past for adversarially-corrupted stochastic

bandits (Lykouris et al., 2018; Gupta et al., 2019). The challenge, however, in a message-

passing decentralized setting is two-fold. First, agents have different amounts of informa-

tion based on their position in the network, and hence badly positioned agents in G may be

exploring for much larger periods. Secondly, communication between agents is delayed,

and hence any agent naively incorporating stale observations may incur a heavy bias from

delays. To ameliorate the first issue, we partition the group of agents into two sets - explor-

ing agents (I) and imitating agents (V \ I). The idea is to only allow well-positioned agents
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in I to direct the exploration strategy for their neighboring agents, and the rest simply

imitate their exploration strategy. We select I as a minimal dominating set of Gγ, hence

|I| = ψ(Gγ). Furthermore, since V \ I is a vertex cover, this ensures that each imitating

agent is connected (at distance at most γ) to at least one agent in I . Next, observe that

there are two sources of delay: first, any imitating agent must wait at most γ trials to ob-

serve the latest action from its corresponding exploring agent, and second, each exploring

agent must wait an additional γ trials for the feedback from all of its imitating agents. We

propose that each exploring agent run UCB1 for 2γ rounds after each epoch of arm elimina-

tion, using only local pulls. This prevents a large bias due to these delays, at a small cost of

O(log log T) suboptimal pulls.

Theorem 5.4 (CHARM Regret). Algorithm 8 obtains, with probability at least 1− δ, cumulative

group regret of

R(T) = O
(

KTNγε + ψ(Gγ) ∑
k:∆k>0

log T
∆k

log
(

Kψ(Gγ) log T
δ

)
+ N∆k +

N log(Nγ log T)
∆k

)
.

Proof. We decompose the regret based on the independent set cover and epoch. Let I ⊆ V

be an independent set of Gγ and Mi be the number of epochs run for the subgraph covered

by agent i. Observe that the total regret can be written as,

R(T) = ∑
i∈I

 K

∑
k=1

T

∑
t=1

∆k ·

P(Ai(t) = k) + ∑
j∈N (i)

P(Aj(t) = k)

 . (5.5)

First, observe that Aj(t) = Ai(t− d(i, j)) for all j ∈ N (i) and all t ∈ [d(i, j), T]. Rearranging

the above, we have,

R(T) 6 ∑
i∈I

 K

∑
k=1

∆k ·

 T

∑
t=1

P(Ai(t) = k) + ∑
j∈Nγ(i)

(
T−d(i,j)

∑
t=1

P(Ai(t) = k) + d(i, j)

)
(5.6)

6 ∑
i∈I

(
K

∑
k=1

∆k · |N+
i (Gγ)| ·

(
T−γ

∑
t=1

P(Ai(t) = k) + γ

))
(5.7)

= ∑
i∈I

(
|N+

i (Gγ)|
K

∑
k=1

∆k

(
T−γ

∑
t=1

P(Ai(t) = k)

))
+ Nγ

K

∑
k=1

∆k. (5.8)

(5.9)
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Now, observe that we run two algorithms in tandem for each independent set in Gγ. Let

us split the total number of rounds of the game into epochs that run arm elimination and

the intermittent periods of running UCB1. We denote the cumulative regret in the ith
inde-

pendent set from rounds γ to T as Ri(T), and analyse it separately.

Ri(T) 6 |N+
i (Gγ)|

K

∑
k=1

(
∆k

(
∑

t≤T−γ:t∈Mi

P(Ai(t) = k) + ∑
t≤T−γ:t 6∈Mi

P(Ai(t) = k)

))
.

(5.10)

HereMi denotes the rounds in which arm elimination is played in the independent set i.

Since each UCB1 period after each epoch is of length 2γ, we have at most 2γMi rounds of

isolated UCB1. We analyse the second term in the bound first. By the standard analysis of the

UCB1 algorithm (Auer & Ortner, 2007), we have that the leader agent incurs O(K log T/∆)

regret. We therefore have,

|N+
i (Gγ)|

K

∑
k=1

(
∆k

(
∑

t 6∈Mi

P(Ai(t) = k)

))
6 |N+

i (Gγ)| ·
K

∑
k=1

((
1 +

π2

3

)
∆k +

4 log(2γMi)

∆k

)
.

Now, we analyse the first term in the regret bound. By Theorem 5.5, we have that with prob-

ability at least 1− δ simultaneously for each independent group corresponding to agent

i ∈ I ,

K

∑
k=1

(
∆k

(
∑

m∈Mi

E
[
ni

k(m)
]))

6 O
(

γε · KT|N+
i (Gγ)|+ ∑

k:∆k>0

log T
∆k

log
(

Kα(Gγ)

δ
log T

))
.

Summing over each leader agent, we have that with probability at least 1− δ,

∑
i∈I

K

∑
k=1

(
∆k

(
∑

m∈Mi

E
[
ni

k(m)
]))

6 O
(

γε · KTN + ∑
k:∆k>0

log T
∆k

log
(

Kα(Gγ)

δ
log T

))
.

Next, observe that for all i, |Mi| ≤ log(MT) by Lemma 5.1. Replacing this result in the

UCB1 regret for each leader, and summing over all i ∈ I , we have,

R(T) = O
(

γε · KTN + ∑
k:∆k>0

α(Gγ)
log T

∆k
log
(

Kα(Gγ) log T
δ

)
+ N∆k +

N log(Nγ log T)
∆k

)
.
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Lemma 5.1. For any leader i, let Li(m) denote the length of the mth epoch of arm elimination. Then,

we have that Li
m satisfies,

22m−2λ ≤ Li(m) ≤ K22m−2λ.

Furthermore, the number of arm elimination epochs for agent i satisfies Mi ≤ log2(T − 2γ).

Proof. For any leader i, let k̂ be the optimal arm under ri(m), therefore ri
?(m)− ri

k̂
(m) ≤ 0

and therefore ∆m
k̂
= 2−m

, and therefore Li
m+1 ≥ nm+1

k̂
= λ(∆m

k̂
)−2 ≥ 22mλ. Next, observe

that ∆m
k ≥ 2−m

for each arm k, and therefore nm+1
k ≤ 22mλ, giving the upper bound.

For the second part, observe that ∑Mi
m=1 Li

m ≤ T − 2γMi ≤ T − 2γ, and that Li
m ≥

22m−2λ
|N+

i (Gγ)|
. Summing over m ∈ [Mi] and taking the logarithm provides us with the result.

Lemma 5.2. Denote E to be the event for which,

∀m, i, k,
∣∣∣ri

k(m)− µk

∣∣∣ ≤ 2γε +
∆i

k(m− 1)
16

∧
∑

t∈Mi(m)
j∈N+

i (Gγ)

X j
k(t + d(i, j)) ≤ 2ni

k(m)


Then, we have that P(E) ≥ 1− δ.

Proof. Recall that at each step in the epoch, the leader agent picks an arm k with probability

pi
k(m) =

ni
k(m)

Li(m)
, and let X j

k(t) denote whether agent j picks arm k at time t. Let Cj→i(t) =

r̃j→i(t)− rj(t) denote the corruption in the transmitted reward from agent j when it reaches

agent i, andMi(m) = [Ti
m−1 + 1, ..., Ti

m] denote the Li(m) steps in the mth
epoch for the arm

elimination algorithm run by the leader i. We then have,

ri
k(m) =

1
ni

k(m)

 ∑
t∈Mi(m)

j∈N+
i (Gγ)

X j
k(t + d(i, j)) ·

(
rj(t + d(i, j)) + Cj→i(t + d(i, j))

)


For simplicity, let

Ai
k(m) = ∑

t∈Mi(m)
j∈N+

i (Gγ)

X j
k(t+ d(i, j)) · rj(t+ d(i, j)), Bi

k(m) = ∑
t∈Mi(m)

j∈N+
i (Gγ)

X j
k(t+ d(i, j)) ·Cj→i(t+ d(i, j)).

We can bound the first summation by a multiplicative version of the Chernoff-Hoeffding
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bound (?) as each rj is bounded within [0, 1] and Xi
k is a random variable in {0, 1} with

mean pi
k(m)Li(m)µk ≤ ni

k(m). We obtain that with probability at least 1− β/2,

∣∣∣∣∣Ai
k(m)

ni
k(m)

− µi

∣∣∣∣∣ ≤
√√√√3 log( 4

β )

ni
k(m)

.

To bound the second term, we must construct a filtration that ensures that the corruption

is measurable. For the setN+
i (Gγ), consider an order σ of the N agents, such that σ[1] = i,

followed by the agents at distance 1 from i, then the agents at distance 2, and so on un-

til distance γ, and next consider the ordering {r̃τ}
|N+

i (Gγ)|t
τ=1 of the rewards generated by all

agents withinMi(m) where r̃τ is the reward obtained by agent j = (σ(τ) mod |N+
i (Gγ)|)

during the round b τ
|N+

i (Gγ)|
c + d(i, j), and similarly consider an identical ordering of the

pulled arms {X̃τ}
|N+

i (Gγ)|t
τ=1 . Now consider the filtration {Ft}

T|N+
i (Gγ)|

t=1 generated by the two

stochastic processes of r̃ and X̃. Clearly, the corruption Cσ(j)→i(t) is deterministic condi-

tioned on Ft−1. Moreover, we have that the pulled arm satisfies, for all τ ∈ [|N+
i (Gγ)|t]

that E[X̃τ|Fτ−1] = pi
k(m). Furthermore, since the corruption in each round is bounded

and deterministic, we have that the sequence Zτ = (X̃τ − pi
k(m)) · C̃τ (where C̃τ is the

corresponding ordering of corruptions) is a martingale difference sequence with respect to

{Fτ}T
τ=1. Now, consider the slice of [|N+

i (Gγ)|t] that is present within Bi
k(m), and let the

corresponding indices be given by the set M̃i(m). Using the fact that the observed rewards

are bounded, we have that,

∑
τ∈M̃i(m)

E[Z2
τ|Fτ−1] ≤ ∑

τ∈M̃i(m)

|C̃τ| ·V(Zτ) ≤ pi
k(m) · ∑

τ∈M̃i(m)

C̃τ ≤ γCLi(m).

We then have by Freedman’s inequality that with probability at least 1− β
4 ,

Bi
k(m)

ni
k(m)

≤
pi

k(m)

ni
k(m)

 ∑
τ∈M̃i(m)

C̃τ +
γCLi(m) + log(4/β)

ni
k(m)

 ≤ 2γε +

√
log(4/β)

16ni
k(m)

.

The last inequality follows from the fact that ni
k(m) ≥ λ ≥ 16 ln(4/β). With the same

probability, we can derive a bound for the other tail. Now, observe that since each Xi
k is a

random variable with mean pi
k, we have by the multiplicative Chernoff-Hoeffding bound

(Lemma ??) that the probability that the sum of Li(m) i.i.d. bernoulli trials with mean pi
k(m)
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is greater than 2pi
k(m) · Li(m) = 2ni

k(m) is at most 2 exp(−ni
k(m)/3) ≤ 2 exp(−λ/3) ≤ β.

To conclude the proof, we apply each of the above bounds with β = δ
2Kα(Gγ) log T to each

epoch and arm. Observe that β ≥ 4 exp
(
− λ

16

)
. Now, since log(4/β) = λ/(32)2

we have

that,

P

∣∣∣ri
k(m)− µk

∣∣∣ ≥ 2γε +
∆i

k(m− 1)
16

∧
∑

t∈Mi(m)
j∈N+

i (Gγ)

X j
k(t + d(i, j)) ≥ 2ni

k(m)

 ≤ δ

2Kα(Gγ) log T
.

The proof concludes by a union bound over all epochs, arms and agents in I .

Lemma 5.3. If the event E (Lemma 5.2) occurs then for each i ∈ I , m ∈ Mi,

−2γε− ∆i
?(m− 1)

8
≤ ri

?(m)− µ? ≤ 2γε.

Proof. Observe that ri
?(m) ≥ ri

k?(m)− 1
16 ∆i

k?(m− 1). This fact coupled with the fact that E

holds provides the lower bound. The upper bound is obtained by observing that,

ri
?(m) ≤ max

i

{
µi + 2γε +

∆i
k(m− 1)

16
−

∆i
k(m− 1)

16

}
≤ µ? + 2γε.

Lemma 5.4. If the event E (Lemma 5.2) occurs then for each i ∈ I , m ∈ Mi,

∆i
k(m) ≥ ∆k

2
− 6γε

m

∑
n=1

8n−m − 3
4

2−m.

Proof. We first bound ∆i
k(m) ≤ 2(∆k + 2−m + 2γε ·∑m

n=1 8n−m) under E by induction. Ob-

serve that when m = 1 we have that trivially ∆i
k(1) ≤ 1 ≤ 2 · 2−1

. Now, if the bound holds

for epoch m− 1 for any agent, we have by Lemma 5.3,

ri
?(m)− ri

k(m) = ri
?(m)− µ? + µ? − µk + µk − ri

k(m) ≤ 4γε + ∆k +
∆i

k(m− 1)
16

.
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Replacing the induction hypothesis in the upper bound, we have,

ri
?(m)− ri

k(m) ≤ 4γε + ∆k +
1
8

(
∆k + 2−(m−1) + 2γε ·

m−1

∑
n=1

8n−m+1

)

≤ 2(∆k + 2−m + 2γε ·
m

∑
n=1

8n−m).

Now, we bound the gaps as,

∆i
k(m) ≥ ri

?(m)− ri
k(m) ≥ ∆k − 4γε−

(
∆i

k?(m− 1)
8

−
∆i

k(m− 1)
16

)
.

The last inequality follows from Lemma 5.3 and the event E . Replacing the bound from

induction we obtain,

∆i
k(m) ≥ ∆k − 4γε−

(
6γε

8

m

∑
n=1

2n−m +
3
8

2−(m−1) +
∆k

8

)

≥ ∆k

2
− 6γε

m

∑
n=1

8n−m − 3
4

2−m.

Theorem 5.5. The cumulative regret for all agents within each independent set corresponding to

leader i ∈ I satisfy simultaneously, with probability at least 1− δ,

Mi

∑
m=1

K

∑
k=1

∆kE[ni
k(m)] = O

(
log
(

Kα(Gγ)

δ
log(T)

)
log(T)

(
K

∑
k=1

1
∆k

)
+ γε · KT · |N+

i (Gγ)|
)

.

Proof. We bound the regret in each epoch m ∈ Mi for each arm k 6= k? based on three cases.

Case 1. 0 ≤ ∆k ≤ 4/2m
: We have that ni

k(m) ≤ λ22(m−1)
since ∆i

k(m− 1) ≥ 2m−1
, and

hence,

∆kE[ni
k(m)] ≤ 4λ

∆2
k
· ∆k = 4λ · 1

∆k
.

Case 2. ∆k > 4/2m
and γε ∑m

n=1 8n−m ≤ ∆k/64: We have by Lemma 5.4,

∆i
k(m) ≥ ∆k

2
− 6γε

m

∑
n=1

8n−m − 3
4

2−m ≥ ∆k

(
1
2
− 3

32
− 3

8

)
=

∆k

32
.
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Therefore, we have that ni
k(m) ≤ 1024λ

∆2
k

, and hence the regret is,

∆kE[ni
k(m)] ≤ 1024λ

∆2
k
· ∆k = 1024λ · 1

∆k
.

Case 3. ∆k > 4/2m
and γε ∑m

n=1 8n−m > ∆k/64: This implies that ∆k ≤ 64γε ·∑m
n=1 8n−m

.

Therefore,

∆kE[ni
k(m)] ≤ 64λγε

(
m

∑
n=1

8n−m

)
· 22(m−1)

≤ 64λγε

(
8m+1

7

)
· 22(m−1)

23m

≤ 512
7

γε · Li(m).

Here the last inequality follows from Lemma 5.1. Putting it together and summing over all

epochs and arms, we have with probability at least 1− δ simultaneously for each i ∈ I ,

Mi

∑
m=1

K

∑
k=1

∆kE[ni
k(m)] ≤ 10242 log

(
8Kα(Gγ)

δ
log(T)

)
log(T)

(
K

∑
k=1

1
∆k

)
+ 74γε · KT · |N+

i (Gγ)|.

Remark 5.5 (Regret Optimality). Theorem 5.4 demonstrates a trade-off between communi-

cation density and the adversarial error, as seen by the first two terms in the regret bound.

The first term (KTNγε) is a bound on the cumulative error introduced due to message-

passing, which is increasing in γ, whereas the second term denotes the logarithmic regret

due to exploration, where ψ(Gγ) decreases as γ increases: for γ = d?(G), ψ(Gγ) = 1,

matching the lower bound in Dubey & Pentland (2020a). This too, is expected, as fewer

exploring agents are needed with a higher communication budget. Furthermore, we con-

jecture that the first term is optimal (in terms of T, up to graphical constants): a linear lower

bound has been demonstrated for the single-agent setting in Lykouris et al. (2018).

Remark 5.6 (Computational complexity). While the dominating set problem is known

to be NP-complete (Karp, 1972), the problem admits a polynomial-time approximation

scheme (PTAS) (Crescenzi et al., 1995) for certain graphs, for which our bounds hold ex-
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actly. However, CHARM can work on any dominating set of size n, and suffer regret of

Õ(KTNγε + n ∑k>1
log T

∆k
)1

.

1
The Õ notation ignores absolute constants and log log(·) factors in T.
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5.3 Algorithm Pseudocode

Algorithm 7 Robust-FedUCB(ε)

1: Input: Agent m, arms k ∈ [K], mean estimator µ̂R(n, δ)
2: Set Sm

k = φ ∀k ∈ [K], Qm(t) = φ.

3: for For t ∈ [T] do
4: if t ≤ K then
5: am(t) = t.
6: else
7: for Arm k ∈ [K] do
8: µ̂

(m)
k = µ̂R(Sm

k , 1/t2).

9: UCB
(m)
k (t) = σ

√
ε +

√
σ ln(1/δ)
|Sm

k (t)|
.

10: end for
11: am(t) = arg maxk∈[K]

{
µ̂
(m)
k (t) + UCB

(m)
k (t)

}
.

12: end if
13: xm(t) = Pull(am(t)).
14: Sm

Am,t
= Sm

Am,t
∪ {xm(t)}

15: Qm(t) = PruneDeadMessages(Qm(t)).
16: Qm(t) = Qm(t) ∪ {〈m, t, γ, am(t), xm(t)〉}.
17: Set l = l − 1 ∀〈m′, t′, a′, x′〉 in Qm(t).
18: for Each neighbor m′ in N1(m) do
19: SendMessages(m, m′, Qm(t)).
20: end for
21: Qm(t + 1) = φ.

22: for Each neighbor m′ in N1(m) do
23: Q′ =ReceiveMessages(m′, m)
24: Qm(t + 1) = Qm(t + 1) ∪Q′.
25: end for
26: for 〈m′, t′, a′, x′〉 ∈ Qm(t + 1) do
27: Sm

a′ = Sm
a′ ∪ {x′}.

28: end for
29: end for
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Algorithm 8 CHARM: Cooperative Hybrid Arm Elimination

Parameters. Confidence δ ∈ (0, 1), horizon T, graph G with exploration set I ⊆ V .

Initialize Ti(0) = K∀i ∈ Iλ = 1024 log
(

8Kα(Gγ)
δ log2 T

)
and ∆i

k(0) = 1, ∀ k ∈ [K] and i ∈ I .

for each subgraph N+
i (Gγ) where i ∈ I do

for t = 1, ..., K, each agent j ∈ N+
i (Gγ) do

Play arm K and get reward rj(t).
end for
for epoch mi = 1, 2, ..., do

Set ni
k(m) = λ(∆i

k(m− 1))−2∀k ∈ [K].
Ni(m) = ∑k ni

k(m) and Ti(m) = Ti(m− 1) + Ni(m) + 2γ.

for agent j ∈ N+
i (Gγ) do

for t = Ti(mi − 1) to s = Ti(mi − 1) + 2γ do
if j 6= i then

if t ≤ K + d(i, j) then
Pull random arm.

else
Pull Aj(t) = Ai(t− d(i, j)) and get reward rj(t).

end if
else

Pull Aj(t) = UCB1(t)
end if

end for
for t = Ti(mi − 1) + 2γ to Ti(mi) do

if j 6= i then
Pull Aj(t) = Ai(t− d(i, j)) and get reward rj(t).

else
Pull an arm Ai(t) = k ∈ [K] with probability ni

k(m)/nk(m).
end if

end for
end for

end for
end for
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Part II

Contextual Bandits
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Chapter 6

Differentially-Private Federated

Contextual Bandits

6.1 Introduction

The previous part was concerned primarily with stochastic multi-armed bandits and vari-

ous communication and environmental constraints. In this part we examine bandit prob-

lems with contexts, e.g., linear contextual bandits and Gaussian process bandits. The funda-

mental difference between the contextual and non-contextual bandit settings is that contex-

tual bandit problems have time-varying decision sets (which can potentially depend on the

history of the agent as well), in contrast to the previous part, where the set of arms is fixed.

This poses additional challenges in the federated setting, where more information about

the decision sets and sophisticated estimators are required to obtain good performance.

Specifically, the contextual bandit problem is a very interesting candidate for private

methods, since in most application areas such as online recommender systems or medicine,

the involved contexts and rewards both typically contain sensitive user information (see,

e.g., Malekzadeh et al. (2019) for more details on applications). There is an increasing

body of work on online learning and multi-armed bandits in cooperative settings (Dubey

& Pentland, 2020c; Landgren et al., 2016a; Martínez-Rubio et al., 2019), and private single-

agent learning (Shariff & Sheffet, 2018; Malekzadeh et al., 2019), but methods for private

federated bandit learning are still elusive, despite their immediate applicability.

In this chapter, we study the federated contextual bandit problem under constraints
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Table 6.1: Comparison of communication complexity and regret speed-up for FedLinUCB.

Algorithm Threshold S Communication Regret Speed-up

FedLinUCB
(Distributed)

∞ 0 1

O(1) O(M
√

dT log(MT)) O(
√

M)

O
(

T
dM2 log(MT)

)
O(dM log(MT)) O

(√
M

log(MT)

)
O
(

T log(MT)
dM2

)
O(dM3) O

( √
M

log(MT)

)
FedLinUCB

(Decentralized)

c > 1 O
(

d2M( log(MT)
log(c) )

)
O
(√

M
c

)
O (log(MT)) O(d3M3) o(1)

of differential privacy. We consider both multi-agent paradigms of distributed and decen-

tralized learning separately, in contrast to the earlier chapters. We provide a rigorous for-

mulation of (ε, δ)-differential privacy in the federated contextual bandit, and present two

variants of FedLinUCB, a no-regret algorithm that ensures that each agent is private with

respect to the data from all other agents, and provides a tunable parametric control over

the communication budget.

We demonstrate that FedLinUCB obtains a group regret of Õ
((√

d3/2

ε + d
)√

MT
)

1

when run on a distributed setting over M agents and T rounds, where ε denotes the pri-

vacy budget. Our approach relies on a new self-normalized inequality that holds simulta-

neously for all agents even when the communication protocol is data-dependent, as it is in

our case. Furthermore, this rate is achieved with onlyO(dM log2(MT) log(K)) bits of com-

munication, and can be tuned based on the threshold parameter to even a constant value

with some degradation in regret.

For the decentralized peer-to-peer communication setting, we demonstrate that FedLin-

UCB obtains a group pseudoregret of Õ
((√

d3/2

ε + d
)√

χ̄(Gγ) ·MT
)

where, as in the

earlier chapters χ̄(Gγ) denotes the minimal clique covering number of the γ power graph

of G, where γ specifies how long messages persist in the network. In contrast to the pre-

vious analyses, the analysis for FedLinUCB follows a different structure, where we use a

decentralized “broadcast” mechanism to bound the regret.

1
The Õ(·) ignores polylogarithmic factors and constants.
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We assume: (a) bounded action set: ∀i, t, ‖xi(t)‖ ≤ L, (b) bounded mean reward: ∀x, 〈𝜃?, x〉 ≤
1, (c) bounded target parameter: ‖𝜃?‖ ≤ S, (d) sub-Gaussian rewards: ∀i, t, ηi(t) is σ-sub-

Gaussian, (e) ∀i, t Di(t) is compact and finite, (f) bounded reward: ∀i, t, |yi(t)| ≤ B.
3

Figure 6-1: The assumptions on the environment in this chapter.

6.2 Problem Setup

Federated Contextual Bandit. This is an extension of the linear contextual bandit (Li et al.,

2010; Abbasi-Yadkori et al., 2011) involving a set of M agents. At every trial t ∈ [T], each

agent i ∈ [M] is presented with a decision set Di(t) ⊂ Rd
from which it selects an action

xi(t) ∈ Rd
. It then obtains a reward yi(t) = xi(t)>𝜃? + ηi(t) where 𝜃? ∈ Rd

is an unknown

(but fixed) parameter and ηi(t) is a noise parameter sampled i.i.d. every trial for every

agent. The objective of the agents is to minimize the cumulative group pseudoregret:2

R(T) =
M

∑
i=1

T

∑
t=1
〈x?i (t)− xi(t),𝜃?〉,

Where x?i (t) = arg maxx∈Di(t)
〈x,𝜃?〉 is the optimal action. In the single-agent setting, the

best regret bound obtained scales as Õ(d
√

T) obtained by the upper confidence bound

(UCB) linear algorithm LinUCB (Abbasi-Yadkori et al., 2011; Li et al., 2010; Auer et al.,

2002a). In the non-private distributed contextual bandit setting, a group pseudoregret of

Õ(d
√

MT) has been achieved (Wang et al., 2019a, 2020c), which matches the regret ob-

tained for a single LinUCB agent pulling MT arms. We will demonstrate that the baseline

of a single-agent pulling MT arms does provide a lower bound on the regret for the dis-

tributed setting.

Differential Privacy. The contextual bandit problem involves two sets of variables

that any agent must private to the other participating agents – the available decision sets

(Di(t))t∈[T] and observed rewards (yi(t))t∈[T]. The adversary model assumed here is to

prevent any two colluding agents j and k to obtain non-private information about any spe-

cific element in agent i’s history. That is, we assume that each agent is a trusted entity that

interacts with a new user at each instant t. Therefore, the context set (Di(t)) and outcome

(yi,t) are sensitive variables that the user trusts only with the agent i. Hence, we wish to

2
The pseudoregret is an expectation (over the randomness of ηi(t)) of the stochastic quantity regret, and is

more amenable to high-probability bounds. However, a bound over the pseudoregret can also bound the regret

with high probability, e.g., by a Hoeffding concentration (see, e.g., (Valko et al., 2013)).
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keep (Di(t))t∈[T] private. However, the agent only stores the chosen actions (xi(t))t∈[T]

(and not all of Di(t)), and hence making our technique differentially private with respect

to ((xi(t), yi(t)))t∈[T] will suffice. We first denote two sequences Si = ((xi(t), yi(t)))t∈[T]

and S′i =
(
(x′i,t, y′i,t)

)
t∈[T]

as t−neighbors if for each t′ 6= t, (xi(t), yi(t)) = (x′i,t, y′i,t). We can

now provide the formal definition for federated differential privacy:

Definition 6.1 (Federated Differential Privacy). In a federated learning setting with M ≥ 2

agents, a randomized multiagent contextual bandit algorithm A = (Ai)
M
i=1 is (ε, δ, M)-federated

differentially private under continual multi-agent observation if for any i, j s.t. i 6= j, any t and set

of sequences Si = (Sk)
M
k=1 and S′i = (Sk)

M
k=1,k 6=i ∪ S′i such that Si and S′i are t-neighboring, and

any subset of actions Sj ⊂ Dj,1 ×Dj,2 × ...×Dj,T of actions, it holds that:

P
(

Aj (Si) ∈ Sj
)
≤ eε ·P

(
Aj
(
S′i
)
∈ Sj

)
+ δ.

Our notion of federated differential privacy is formalizing the standard intuition that

“the action chosen by any agent must be sufficiently impervious (in probability) to any

single (x, y) pair from any other agent”. Here, we essentially lift the definition of joint

differential privacy (Shariff & Sheffet, 2018) from the individual (x, y) level to the entire

history (xt, yt)t for each participating agent. Note that our definition in its current form

does not require each algorithm to be private with respect to its own history, but only the

histories belonging to other agents, i.e., each agent can be trusted with its own data. This

setting can also be understood as requiring all outgoing communication from any agent to

be locally differentially private (Yang et al., 2020a) to the personal history (xt, yt)t. We can

alternatively relax this assumption and assume that the agent cannot be trusted with its

own history, in which case the notion of joint or local DP at the individual level (i.e., (xt, yt))

must be considered, as done in Yang et al. (2020a).

The same guarantee can be obtained if each agent Ai is (ε, δ)-differentially private with

respect to any other agent j’s observations, for all j. A composition argument (Dwork,

2011)
4

over all M agents would provide (
√

2M log(1/δ′)ε+ Mε(eε− 1), Mδ+ δ′)-differential

privacy with respect to the overall sequence. To keep the notation simple we adopt the

4
Under the stronger assumption that each agent interacts with a completely different set of individuals,

we do not need to invoke the composition theorem (as x1,t, x2,t, ..., xM,t are independent for each t). However,

in the case that one individual could potentially interact simultaneously with all agents, this is not true (e.g.,

when for some t, Di(t) = Dj,t ∀i, j) and we must invoke the k-fold composition Theorem (Dwork & Smith,

2010) to ensure privacy.
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(ε, δ, M) format.

6.3 Federated LinUCB with Differential Privacy

In this section, we introduce our algorithm for federated learning with differential privacy.

For the remainder of this section, for exposition, we consider the single-agent setting and

drop an additional index subscript we use in the actual algorithm (e.g., we refer to the

action at time t as xt and not xi(t) for agent i). We build on the celebrated LinUCB algo-

rithm, an application of the optimism heuristic to the linear bandit case (Li et al., 2010;

Abbasi-Yadkori et al., 2011), designed for the single-agent problem. The central idea of the

algorithm is, at every round t, to construct a confidence set Et that contains 𝜃? with high

probability, followed by computing an upper confidence bound on the reward of each ac-

tion within the decision set Dt, and finally selecting the action with the largest UCB, i.e.,

xt = arg maxx∈Dt
(max𝜃∈Et〈x,𝜃〉). The confidence set is an ellipsoid centered on the regu-

larized linear regression estimate (for X<t =
[
x>1 x>2 ... x>t−1

]>
and y<t = [y1 y2 ... yt−1]

>
):

Et :=
{
𝜃 ∈ Rd : ‖𝜃− 𝜃̂t‖Vt ≤ βt

}
,

where 𝜃̂t := arg min
𝜃∈Rd

[
‖X<t𝜃− y<t‖2

2 + ‖𝜃‖2
Ht

]
.

The regression solution can be given by 𝜃t := (Gt + Ht)−1x><ty<t, where Gt = x><tx<t is

the Gram matrix of actions, Ht is a (time-varying) regularizer, and βt is an appropriately

chosen exploration parameter. Typically in non-private settings, the regularizer is constant,

i.e., Ht = λI ∀t, λ > 0 (Abbasi-Yadkori et al., 2011; Li et al., 2010), however, in our case,

we will carefully select Ht to introduce privacy, using a strategy similar to Shariff & Sheffet

(2018). Given Vt = Gt + Ht, let UCBt(x;𝜃) = 〈𝜃, x〉+ βt‖x‖V−1
t

.

In the federated setting, since there are M learners that have distinct actions, the com-

munication protocol is a key component of algorithm design: communication often creates

heterogeneity between agents, e.g., for any two agents, their estimators (𝜃̂t) at any instant

are certainly distinct, and the algorithm must provide a control over this heterogeneity, to

bound the group regret. We additionally require that communication between agents is

(ε, δ)-private, making the problem more challenging.
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6.3.1 Distributed Environment with a Server

We first consider the distributed communciation environment where there exists a con-

troller that coordinates communication between different agents, as is typical in large-scale

distributed learning. We consider a set of M agents that each are interacting with the con-

textual bandit, and periodically communicate with the controller, that synchronizes them

with other agents. We present the algorithm FedLinUCB-Dist in Algorithm 9.

Overview

Algorithm 9 works as follows. Consider an agent i, and assume that synchronization had

last taken place at instant t′. At any instant t > t′, the agent has two sets of parameters -

(A) the first being all observations up to instant t′ for all M agents and (B) the second being

its own observations from instant t′ to t. Since (A) includes samples from other agents,

these are privatized, and represented as the Gram matrix S(t′ + 1) = ∑i∈[M] Ûi(t′ + 1) and

reward vector st′+1 = ∑i∈[M] ûi,t′+1. Algorithm 9 privatizes its own observations as well

(for simplicity in the analysis) and hence S, s are identical for all agents at all times.

Moreover, since the group parameters are noisy variants of the original parameters, i.e.,

Ûi(t) = Gi(t) + Hi(t) and ûi(t) = ui(t) + hi(t) (where Hi(t) and hi(t) are perturbations),

we can rewrite S(t), s(t) as (for any instant t > t′),

S(t) = ∑
i∈[M]

(
t′

∑
τ=1

xi(τ)xi(τ)
> + Hi(t′)

)
, s(t) = ∑

i∈[M]

(
t′

∑
τ=1

yi(τ)xi(τ) + hi(t′)

)
. (6.1)

When we combine the group parameters with the local (unsynchronized) parameters, we

obtain the final form of the parameters for any agent i as follows (for any instant t > t′):

Vi(t) =
t−1

∑
τ=t′

xi(τ)xi(τ)
> + S(t), ũi(t) =

t−1

∑
τ=t′

yi(τ)xi(τ) + s(t) (6.2)

Then, with a suitable sequence (βi(t))T
t=1, the agent selects the action following the linear

UCB objective:

xi(t) = arg max
x∈Di(t)

(
〈𝜃i,t, x〉+ βi(t)‖x‖Vi(t)−1

)
where 𝜃i,t = Vi(t)−1ũi(t). (6.3)

The central idea of the algorithm is to therefore carefully perturb the Gram matrices Vi(t)
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and the reward vector ui(t) with random noise (Hi(t), hi(t)) based on the sensitivity of

these elements. First, each agent updates its local (unsynchronized) estimates. These are

used to construct the UCB in a manner identical to the standard OFUL algorithm (Abbasi-

Yadkori et al., 2011). If, for any agent i a threshold condition is met, then the agents syn-

chronize their observations via the server. We describe this synchronization condition in

Section 6.3.1 after providing an overview of the perturbation mechanism next.

Changing Regularizers and Exploration Sequence

The perturbations Hi(t), hi(t) are designed keeping the privacy setting in mind. In our

paper, we defer this to the subsequent section in a subroutine known as Privatizer, and

concentrate on the performance guarantees first. The Privatizer subroutine provides suit-

able perturbations based on the privacy budget (ε and δ). In this paper, we assume these

budgets to be identical for all agents (however, the algorithm and analysis hold for unique

privacy budgets as well, as long as a lower bound on the budgets is known). In turn, the

quantities ε and δ affect the algorithm (and regret) via the quantities ρmin, ρmax, and κ which

can be understood as spectral bounds on Hi(t), hi(t).

Definition 6.2 (Sparsely-accurate ρmin, ρmax and κ). Consider a subsequence 𝜎̄ of [T] = 1, ..., T

of size n. The bounds 0 ≤ ρmin ≤ ρmax and κ are (α/2nM, 𝜎̄)-accurate for (Hi(t))i∈[M],t∈𝜎̄ and

(hi(t))i∈[M],t∈𝜎̄, if, for each round t ∈ 𝜎̄, with probability at least 1− α/2M,

∥∥∥∥∥ M

∑
i=1

Hi(t)

∥∥∥∥∥ ≤ ρmax,

∥∥∥∥∥∥
(

M

∑
i=1

Hi(t)

)−1
∥∥∥∥∥∥ ≤ 1

ρmin
,

∥∥∥∥∥ M

∑
i=1

hi(t)

∥∥∥∥∥
(∑i Hi(t))−1

≤ κ.

The motivation for obtaining accurate bounds ρmin, ρmax and κ stems from the fact that

in the non-private case, the quantities that determine regret are not stochastic conditioned

on the obtained sequence (xt, yt)t∈[T], whereas the addition of stochastic regularizers in the

private case requires us to have control over their spectra to achieve any meaningful regret.

To form the UCB, recall that we additionally require a suitable exploration sequence βi(t)

for each agent, which is defined as follows.

Definition 6.3 (Accurate (βi(t))i∈[M],t∈[T]). A sequence (βi(t))i∈[M],t∈[T] is (α, M, T)-accurate

for (Hi(t))i∈[M],t∈[T] and (hi(t))i∈[M],t∈[T], if it satisfies ‖𝜃̃i(t)−𝜃?‖Vi(t) ≤ βi(t) with probability

at least 1− α for all rounds t = 1, ..., T and agents i = 1, ..., M simultaneously.
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Theorem 6.1. Consider an instance of the problem where synchronization occurs exactly n times

on instances 𝜎̄, up to and including T trials, and ρmin, ρmax and κ are (α/2nM)-accurate. Then,

for Algorithm 9, the sequence (βi(t))i∈[M],t∈[T] is (α, M, T)-accurate where:

βi(t) := σ

√
2 log

(
2t
α

)
+ d log

(
det(Vi(t))

Mρmin

)
+ S

√
Mρmax + κ.

Proof. Let Xi,<t denote the set of all observations available to the agent (including pri-

vate communication from other agents). Furthermore, let the noise-free Gram matrix of

all observations as Gi(t) = ∑t
τ=1 xi(τ)xi(τ)

> + ∑ts
τ=1 ∑M

j=1,j 6=i xj(τ)xj(τ)
>

(where ts is the

last synchronization iteration). We also have that Vi(t) = Gi(t) + ∑M
j=1 Hj(t), and for

any t between synchronization rounds ts and ts+1, Hj(t) = Hj,ts for all j. By definition,

𝜃̃i(t) = Vi(t)−1ũi(t), ũi(t) = ui(t) + ∑j∈[M] hj(t) and ui(t) = X>i,<ty<t. Therefore, we have,

𝜃? − 𝜃̃i(t) = 𝜃? −Vi(t)−1

X>i,<ty<t + ∑
j∈[M]

hj(t)


= 𝜃? −Vi(t)−1

X>i,<tXi,<t𝜃? + X>i,<t𝜂<t + ∑
j∈[M]

hj(t)


= 𝜃? −Vi(t)−1

Vi(t)𝜃? − ∑
j∈[M]

Hj(t)𝜃? + X>i,<t𝜂<t + ∑
j∈[M]

hj(t)


= Vi(t)−1

 ∑
j∈[M]

Hj(t)𝜃? − X>i,<t𝜂<t − ∑
j∈[M]

hj(t)

 .

Multiplying both sides by Vi(t)1/2
gives

Vi(t)1/2 (𝜃? − 𝜃̃i(t)
)
= Vi(t)−1/2

 ∑
j∈[M]

Hj(t)𝜃? − X>i,<t𝜂<t − ∑
j∈[M]

hj(t)


=⇒

∥∥𝜃? − 𝜃̃i(t)
∥∥

Vi(t)
=

∥∥∥∥∥∥ ∑
j∈[M]

Hj(t)𝜃? − X>i,<t𝜂<t − ∑
j∈[M]

hj(t)

∥∥∥∥∥∥
Vi(t)−1

(Applying ‖·‖)

≤

∥∥∥∥∥∥ ∑
j∈[M]

Hj(t)𝜃?

∥∥∥∥∥∥
Vi(t)−1

+
∥∥∥X>i,<t𝜂<t

∥∥∥
Vi(t)−1

+

∥∥∥∥∥∥ ∑
j∈[M]

hj(t)

∥∥∥∥∥∥
Vi(t)−1

(Triangle inequality)
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Making the substitution Ht = ∑j∈[M] Hj(t),

≤ ‖Ht𝜃?‖H−1
t
+
∥∥∥X>i,<t𝜂<t

∥∥∥
Vi(t)−1

+
∥∥hj(t)

∥∥
H−1

t

(Since Vi(t) < ∑j∈[M] Hj(t))

≤ ‖𝜃?‖Ht
+
∥∥∥X>i,<t𝜂<t

∥∥∥
(Gi(t)+MρminI)−1

+ ∑
j∈[M]

∥∥hj(t)
∥∥

H−1
t

.

(Since ∀i ∈ [M], Vi(t) < Gi(t) + MρminI)

Now, note that since we only require at most Mn different noise matrices, we only need

the noise sequences H by a union bound over all TM rounds (T rounds per agent), we

can say that simultaneously for all i ∈ [M], t ∈ [T], with probability at least 1 − α/2,

‖𝜃?‖Ht ≤
√
‖Ht‖‖𝜃?‖ ≤ S

√
ρmax and ‖∑j∈[M] hj(t)‖H−1

t
≤ κ. At this point, to control

the remaining term, one might consider directly applying the self-normalized martingale

bound (Theorem 1 of Abbasi-Yadkori et al. (2011)), however, this cannot be done as the

data-dependent communication breaks the martingale structure of the sequence x1, ..., xt

(the observations depend on when the last synchronization has taken place). To remedy

this issue, we control the worst-case deviation over all possible synchronization points

1 ≤ ts ≤ t, and then apply a union bound. Conditioned on a fixed synchronization round

ts, the martingale structure is preserved, and therefore we can apply Theorem 1 of Abbasi-

Yadkori et al. (2011). Therefore, we can say that conditioned on synchronization being done

on round 1 ≤ ts ≤ t, with probability at least 1− α/2t simultaneously for all 1 ≤ t ≤ T

and agents i,

∥∥∥X>i,<t𝜂<t

∥∥∥
(Gi(t)+MρminI)−1

≤ σ

√
2 log

2t
α
+ log

det (Gi(t) + MρminI)
det (MρminI)

≤ σ

√
2 log

2t
α
+ d log

(
ρmax

ρmin
+

tL2

dρmin

)
.

The last step follows from (a) noting that ∀i ∈ [M], Gi(t) + MρmaxI < Vi(t) < Gi(t) +

MρminI =⇒ det(Gi(t) + MρmaxI) ≥ det(Vi(t)) ≥ det(Gi(t) + MρminI), and (b) the trace-

determinant inequality. Next, we have by a union bound over all 1 ≤ ts ≤ t that with
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probability at least 1− α/2,

max
1≤ts≤t

∥∥∥X>i,<t𝜂<t

∥∥∥
(Gi(t)+MρminI)−1

≤ σ

√
2 log

2t
α
+ d log

(
ρmax

ρmin
+

tL2

dρmin

)
.

Putting it all together, we have that all βi(t) are bounded by β̄t, given by,

β̄t := σ

√
2 log

2t
α
+ d log

(
ρmax

ρmin
+

tL2

dρmin

)
+ S
√

ρmax + κ.

The key point here is that for the desired levels of privacy (ε, δ) and synchronization

rounds (n), we can calculate appropriate ρmin, ρmax and κ, which in turn provide us a UCB

algorithm with guarantees. We now present the synchronization condition and communi-

cation complexity as a function of ρmin, ρmax and κ.

Synchronization and Communication Complexity

The synchronization event is triggered by the server if, for any agent i, the log-determinant

of the local Gram matrix exceeds the synchronized Gram matrix (Si(t)) by an amount D/∆ti

(where ∆ti is the time since the last synchronization), then it sends a signal to the controller,

that synchronizes all agents with their latest action/reward pairs. Specifically, synchroniza-

tion occurs whenever the following condition is met.

log

(
det

(
Vi(t) + xi(t)xi(t)> + M(ρmax − ρmin)I

)
det (Si(t))

)
≥ D

∆ti
.

The synchronization is done using a privatized version of the Gram matrix and rewards, car-

ried out by the subroutine Privatizer (Section 6.5, Alg. 11). This synchronization ensures

that the heterogeneity between the agents is controlled, allowing us to control the overall

regret and limit communication as well.

Proposition 6.1 (Communication Complexity). If Algorithm 9 is run with threshold D, then

total rounds of communication n obeys,

n ≤ 2

√(
dT
D

)
· log

(
ρmax

ρmin
+

TL2

dρmin

)
+ 4.
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This statement is proved in Section 6.9.1.

6.3.2 Decentralized Peer-to-Peer Environment

In this environment, we assume that the collection of agents communicate by directly send-

ing messages to each other, identical to the multi-armed bandit setting. The communication

network is denoted by an undirected (connected) graph G = (V , E), where, edge eij ∈ E

if agents i and j can communicate directly. The protocol operates as follows: every trial,

each agent interacts with their respective bandit, and obtains a reward. At any trial t, after

receiving the reward, each agent v sends the message mv(t) to all its neighbors in G. This

message is forwarded from agent to agent γ times (taking one trial of the bandit problem

each between forwards), after which it is dropped. This communication protocol, based on

the time-to-live (delay) parameter γ ≤ d?(G) is a common technique to control communi-

cation complexity, known as the local protocol (Fraigniaud, 2016; Linial, 1992; Suomela,

2013). Each agent v ∈ V therefore also receives messages mv′(t − d(v, v′)) from all the

agents v′ such that d(v, v′) ≤ γ, i.e., from all agents in N+
v (Gγ).

There are several differences from the distributed setting: first, since agents receive

messages from different other agents based on their position in G, they generally have

heterogenous information throughout, as there is no global synchronization via a server.

Second, information does not flow instantaneously through G, and messages can take up

to γ rounds to be communicated, due to delays incurred, similar to the multi-armed ban-

dit case. This requires (mainly technical) changes to the distributed algorithm in order to

control the regret. To account for these changes in the environment, we describe a different

algorithm FedLinUCB-Network as follows, and the pseudocode is presented in Algorithm 10.

Subsampling. The first key algorithmic change from the earlier variant is the idea of sub-

sampling, inspired by Weinberger & Ordentlich (2002). We consider T rounds of the bandit

problem as γ interleaved bandit problems, each of length
T
γ . We call each of these inter-

leaved problems as “phases”. Each agent i maintains γ total estimators 𝜃̄i,g, g = 1, ..., γ

(one for each phase), and uses each estimator in a round-robin fashion, i.e., at t = 1 each

agent uses 𝜃̄i,1, and at t = 2, each agent uses 𝜃̄i,2, and so on.

Broadcast-based Synchronization. The synchronization process is different from the dis-
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tributed case as there is no server to assist. The estimators (and their associated Vi,g, ũi,g) are

updated in a manner similar to Algorithm 9: if the log det of the gth
Gram matrix exceeds

a threshold D/(∆i,g + 1), then the agent broadcasts a request to synchronize. Each agent j

within the γ-clique of i that receives this request broadcasts its personal observations within

Vj,g, ũj,g to all agents. The message broadcast by any agent v during synchronization for

phase g is therefore,

mv,g(t) =
〈

v, t, g, Ûg
i (t), ûg

i (t)
〉

.

Where, similar to the distributed case, Ûg
i (t), ûg

i (t) denote the (privatized) personal Gram

and bias for phase g until round t. In contrast to the multi-armed setting, the contextual

setting requires us to broadcast the covariance of the actions as well (Ûg
i (t)), and hence

each message is log(MTγ) + (d2 + d) log(BL) = O(d2 log(MTγ)) bits long. Therefore,

each Vi,g, ũi,g is updated with action/reward pairs from only the trials they were employed

in (across all agents). This ensures that if a signal to synchronize the gth
set of parameters

has been broadcast by an agent i, all agents within the γ-clique of i will have synchronized

their gth
parameters by the next 2 rounds they will be used again (i.e., 2γ trials later).

6.4 Regret Guarantees

6.4.1 Distributed Group Regret

Theorem 6.2 (Distributed Group Regret). Assuming Theorem 6.1 holds, and synchronization

occurs in at least n = Ω
(

d log
(

ρmax
ρmin

+ TL2

dρmin

))
rounds, Algorithm 9 obtains the following group

pseudoregret with probability at least 1− α:

R(T) = O
(

σ
√

MT

(
d log

(
ρmax

ρmin
+

TL2

dρmin

)
+

√
log

2
α
+
√

d · κ
))

.

Proof. Consider a hypothetical agent that takes the following actions sequentially,

x1(1), x2(1), . . . , x1(2), x2(2), . . . , xM−1(T), xM(T).

Let𝑊i,t = MρminI+∑M
j=1 ∑t−1

u=1 xj(u)xj(u)>+∑i−1
j=1 xj(t)xj(t)> be the Gram matrix formed

until the hypothetical agent reaches xi(t). We state a result to bound the above potential.
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Lemma 6.1 (Elliptical Potential, Lemma 3 of Abbasi-Yadkori et al. (2011)). Let x1, x2, ..., xn ∈

Rd be vectors such that ‖x‖2 ≤ L. Then, for any positive definite matrix U0 ∈ Rd×d, define

Ut := Ut−1 + xtx>t for all t. Then, for any ν > 1,

n

∑
t=1
‖xt‖2

U−1
t−1
≤ 2d logν

(
tr(U0) + nL2

d det1/d(U0)

)
.

By Lemma 6.1, we have that

T

∑
t=1

M

∑
i=1
‖xi(t)‖2

𝑊−1
i,t
≤ 2d log

(
1 +

TL2

dρmin

)
.

Now, in the original setting, let T1, T2, ..., Tp−1 be the trials at which synchronization occurs.

After any round Tk of synchronization, consider the cumulative Gram matrices of all obser-

vations obtained until that round as Vk, k = 1, ..., p− 1, regularized by MρminI, i.e., Vk =

∑i∈[M] ∑Tk
t=1 xi(t)xi(t)>+ MρminI. Finally, let Vp denote the (regularized) Gram matrix with

all trials at time T, and V0 = MρminI. Therefore, we have that det(V0) = (Mρmin)d
, and

that det(Vp) ≤
(

tr(Vp)
d

)d
≤
(

Mρmax +
MTL2

d

)d
. Therefore, for any ν > 1,

logν

(
det(Vp)

det(V0)

)
≤ d logν

(
ρmax

ρmin
+

TL2

dρmin

)
.

Let R =
⌈

d logν

(
ρmax
ρmin

+ TL2

dρmin

)⌉
. It follows that in all but R periods between synchroniza-

tion 1 ≤ det(Vk)
det(Vk−1)

≤ ν. We consider the event E to be the period k when the above holds.

Now, for any Tk−1 ≤ t ≤ Tk, consider the immediate pseudoregret for any agent i. We now

present a standard lemma to bound the per-round regret by the upper confidence bound.

Lemma 6.2. The instantaneous pseudoregret ri,t obtained by any agent i at any instant t obeys the

following:

ri,t ≤ 2β̄T ‖xi(t)‖Vi(t)−1 .

By the above lemma, we have

ri,t ≤ 2β̄T‖xi,t‖Vi(t)−1

≤ 2β̄T‖xi,t‖(Gi(t)+MρminI)−1 (Vi(t) < Gi(t) + MρminI)
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≤ 2β̄T‖xi,t‖𝑊−1
i,t
·

√
det(𝑊i,t)

det(Gi(t) + MρminI)

≤ 2β̄T‖xi,t‖𝑊−1
i,t
·

√
det(Vk)

det(Gi(t) + MρminI)
(Vk <𝑊i,t)

≤ 2β̄T‖xi,t‖𝑊−1
i,t
·

√
det(Vk)

det(Vk−1)
(Gi(t) + MρminI < Vk−1)

≤ 2νβ̄T‖xi,t‖𝑊−1
i,t

. (Event E holds)

Now, we can sum up the immediate pseudoregret over all such periods where E holds to

obtain the total regret for these periods. With probability at least 1− α,

Regret(T, E) =
M

∑
i=1

∑
t∈[T]:E is true

ri,t ≤

√√√√MT

(
M

∑
i=1

∑
t∈[T]:E is true

r2
i,t

)

≤ 2νβ̄T

√√√√MT

(
M

∑
i=1

∑
t∈[T]:E is true

‖xi,t‖𝑊−1
i,t

)
≤ 2νβ̄T

√√√√MT

(
M

∑
i=1

∑
t∈[T]
‖xi,t‖𝑊−1

i,t

)

≤ 2νβ̄T

√
2MTd logν

(
1 +

TL2

dρmin

)
.

Now let us consider the periods in which E does not hold. In any such period between

synchronization of length tk = Tk − Tk−1, we have, for any agent i, the regret accumulated

given by:

Regret([Tk−1, Tk]) =
Tk

∑
t=Tk−1

M

∑
i=1

ri,t ≤ 2νβ̄T

 M

∑
i=1

√√√√tk

Tk

∑
t=Tk−1

‖xi(t)‖2
Vi(t)−1


≤ 2νβ̄T

(
M

∑
i=1

√
tk logν

(
det(Vi,t+tk)

det(Vi(t))

))

≤ 2νβ̄T

(
M

∑
i=1

√
tk logν

(
det(Gi,t+tk + MρmaxI)
det(Gi(t) + MρminI)

))
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By Algorithm 9, we know that for all agents, tk logν

(det(Gi,t+tk
+MρmaxI)

det(Gi(t)+MρminI)

)
≤ D (since there

would be a synchronization round otherwise), therefore

Regret([Tk−1, Tk]) ≤ 2νβ̄T M
√

D.

Now, note that of the total p periods between synchronizations, only at most R periods will

not have event E be true. Therefore, the total regret over all these periods can be bound as,

Regret(T, Ē) ≤ R · 2νβ̄T M
√

D ≤ 2νβ̄T M
√

D
(

d logν

(
ρmax

ρmin
+

TL2

dρmin

)
+ 1
)

.

Adding it all up together gives us,

R(T) = Regret(T, E) + Regret(T, Ē)

≤ 2νβ̄T

[√
2MTd logν

(
ρmax

ρmin
+

TL2

dρmin

)
+ M
√

D
(

d logν

(
ρmax

ρmin
+

TL2

dρmin

)
+ 1
)]

Setting D = 2Td
(

logν

(
ρmax
ρmin

+ TL2

dρmin

)
+ 1
)−1

and using shorthand Φ = log
(

ρmax
ρmin

+ TL2

dρmin

)
,

we have:

R(T) ≤ 4νβ̄T
√

2MTdΦ + 1 ≤ 4ν

(
σ

√
2 log

2
α
+ dΦ + S

√
ρmax + κ

)
√

2MTdΦ.

Optimizing over ν gives us the final result. Asymptotically, we have (setting ν = e), with

probability at least 1− α,

R(T) = O
(

σ
√

MT

(
d log

(
ρmax

ρmin
+

TL2

dρmin

)
+

√
log

2
α
+
√

d · κ
))

.

This regret bound is obtained by setting D = 2Td (log (ρmax/ρmin + TL2/dρmin) + 1)−1
,

which therefore ensures O(M log T) rounds of total communication (by Proposition 9.3).

However, the remarks next clarify a more sophisticated relationship between communica-

tion, privacy and regret.

Remark 6.1 (Communication Complexity and Regret). Theorem 6.2 assumes that the num-

ber of rounds of communication is essentially O(M log T). This rate (and corresponding
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D) is chosen to provide a balance between privacy and utility, and in fact, can be altered

depending on the application. By Theorem 6.2, a simple substitution suggests that if we

allow O(MT) rounds of communication (i.e., synchronize every round), the regret can be

improved by a factor of O(
√

log(T)), to match the single-agent Õ(d
√

MT) up to the term

κ
√

d. Similarly, we can select D such that with O(M1.5d3) rounds of communication (i.e.,

independent of T), we incur cumulative regret of O((d + κ
√

d) log2(MT)
√

MT). We will

demonstrate subsequently in Section 6.5 that the term κ arises from the noise added to pre-

serve privacy, and is 0 when the algorithm is not private, hence all our bounds will match

the Ω(
√

dMT) lower bound for a single-agent pulling M arms serially (up to a factor

√
d).

Theorem 6.2 demonstrates the relationship between communication complexity (i.e.,

number of synchronization rounds) and the regret bound for a fixed privacy budget, via

the dependence on the bounds ρmin, ρmax and κ. We now present similar results (for a fixed

privacy budget) on group regret for the decentralized setting, which is more involved, as

the delays and lack of a centralized controller make it difficult to control the heterogeneity

of information between agents. Subsequently, in the next section, we will present results

on the privacy guarantees of our algorithms.

6.4.2 Decentralized Group Regret

Theorem 6.3 (Decentralized Group Regret). Assuming Theorem 6.1 holds, and the number of

synchronization rounds are at least

n = Ω
(

d(χ̄(Gγ) · γ)
1 + L2 log

(
ρmax

ρmin
+

TL2

dρmin

))
,

FedLinUCB-Network obtains the following group pseudoregret with probability at least 1− α:

R(T) = O

(
σ
√

M(χ̄(Gγ) · γ)T
(

d log
(

ρmax

ρmin
+

TL2

dρmin

)
+

√
log
(

2χ̄(Gγ)

α

)
+ κ
√

d

))
.

The proof can be found in Section 6.9.3.

Remark 6.2 (Decentralized Group Regret). Decentralized FedLinUCB obtains an identical

dependence on the privacy bounds ρmin, ρmax and κ and horizon T as Algorithm 9, since

the underlying bandit subroutines are identical for both. The key difference is in additional

the leading factor of

√
χ̄(Gγ) · γ, which arises from the delayed spread of information: if
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G is dense, e.g., complete, then γ = 1 and χ̄(Gγ) = 1, since there is only one clique of G.

In the worst case, if G is a line graph, then χ̄(Gγ) = M/γ, giving an additional factor of M

(i.e., it is as good as each agent acting individually). In more practical scenarios, we expect

G to be hierarchical, and expect a delay overhead of O(1) and not as a function of M.

Remark 6.3 (Comparison with Multi-Armed Bound). The regret of FedLinUCB-Network in

comparison with the multi-armed case introduces an additional factor of γ in the lead-

ing term. Observe that while we believe that this is in fact an artefact of our proof tech-

nique, where we use only O(M log(T)) messaging rounds (instead of communicating ev-

ery round, as in the bandit case), however, we remark that the bandit result, e.g., in Theo-

rem 2.2, also incurs a γ factor in the problem independent version of the bound.

6.4.3 Lower Bounds

In this section, we discuss lower bounds for the federated contextual bandit problem. We

first provide a minimax result from Basu et al. (2020) for the single-agent multi-armed ban-

dit under joint differential privacy.

Theorem 6.4 (Theorem 2 of Basu et al. (2020)). For any ε ∈ (0, 1/2] and horizon T ≥ K, any

single-agent policy that is ε− joint DP at all instances for a K−armed bandit must incur regret

R(T) = Ω

(√
(K− 1)T

2ε(e2ε − 1)

)
.

Using this result we present our lower bound for the distributed setting.

Theorem 6.5. Let π be a multi-agent bandit policy over M agents that satisfies (ε, δ, M)−federated

differential privacy. We have that for any number of trials T, there exists a d−dimensional bandit

problem with d ≥ 2 such that,

R(T) = Ω

(√
dMT

ε(e2ε − 1)

)
.

Proof. We consider a reduction from linear to K-armed stochastic bandits. Consider the

set of all possible policies for a T round bandit for any individual agent be contained in

the set Πs, and let the set of all possible policies for any single-agent MT round bandit be

contained in the set ΠM. For any set of M policies π1, ..., πM such that πm ∈ Πs∀m ∈ [M],
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we have that the group pseudoregret:

R(T; π1, ..., πM) =
M

∑
m=1

Rm(T; πm)

Where any agent m is faced with the sequence of decision sets Dm = Dm(1), ...,Dm(T).

Now, consider the following environment where any agent m is provided the following

sequence of decision sets D̃m = D′m(1), ...,D′m(MT) where D′m(i) = Dm(d i
Me), and for

each policy π ∈ Πs, consider the policy π̃ such that π̃(t) = π(d i
Me) for each 1 ≤ t ≤ MT,

and denote the compound policy space Π̃ = {π̃|π ∈ Π}. We can therefore see that the

following holds for each π ∈ Π (with corresponding π̃ ∈ Π̃):

(Regret of π in Dm)(T) ≥
1
M

(Regret of π̃ in D̃m)(MT)

≥ inf
π̃∈Π̃

1
M

(Regret of π̃ in D̃m)(MT)

≥ inf
π̃∈ΠM

1
M

(Regret of π̃ in D̃m)(MT)

= Ω

(√
(K− 1)T

2Mε(e2ε − 1)

)
.

The last line follows from Theorem 6.4 and holds since each agent is (ε, δ)-JDP if they obey

(ε, δ, M)−federated DP. Summing over all agents, setting K = d and using the fact that

d− 1 ≥ d/2 for all d ≥ 2 gives us the result.

Discussion. The above bound approaches the upper bound for small ε, but is not tight for

large ε. However, our upper bound (Corollary 6.1) is only valid for ε ≤ 1 which demon-

strates that the performance of our algorithm is near-optimal (up to

√
d factors). Note that,

for non-private settings, we can directly apply the network-dependent bound of Theo-

rem 2.4 into this setting via a similar linear bandits to multi-armed reduction by setting

∆k =
√

Kα(Gγ+1) log(T)
MT to obtain the rate of

√
α(Gγ+1)MT, which once again, for sparse G is

within constant factors of our bound. Determining optimal network-dependent rates for

the private setting, however, is an open problem for future work.
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6.5 Privacy Guarantees

We now discuss the privacy guarantees for both algorithms. Here we present results for the

distributed algorithm, but our results hold (almost identically) for the decentralized case

as well (see appendix). Note that each agent interacts with data from other agents only via

the cumulative parameters S(t) and s(t). These, in turn, depend on 𝑍i,t = Ui(t) + Hi(t)

and 𝑧i,t = ūi(t) + hi(t) for each agent i, on the instances t that synchronization occurs.

Proposition 6.2 (see Dwork (2011); Shariff & Sheffet (2018)). Consider n ≤ T synchronization

rounds occuring on trials 𝜎̄ ⊆ [T]. If the sequence (𝑍i,t, 𝑧i,t)t∈𝜎̄ is (ε, δ)-differentially private

with respect to (xi(t), yi(t))t∈[T], for each agent i ∈ [M], then all agents are (ε, δ, M)-federated

differentially private.

Tree-Based Mechanism. Let x1, x2, ...xT be a (matrix-valued) sequence of length T, and

si = ∑i
t=1 xt be the incremental sum of the sequence that must be released privately. The

tree-based mechanism (Dwork & Smith, 2010) for differential privacy involves a trusted

entity maintaining a binary tree T (of depth m = 1+ dlog2 Te), where the leaf nodes contain

the sequence items xi, and each parent node maintains the (matrix) sum of its children. Let

ni be the value stored at any node in the tree. The mechanism achieves privacy by adding a

noise hi to each node, and releasing ni + hi whenever a node is queried. Now, to calculate st

for some t ∈ [T], the procedure is to traverse the tree T up to the leaf node corresponding

to xt, and summing up the values at each node on the traversal path. The advantage is that

we only access at most m nodes, and add m = O(log T) noise (instead of O(T)).

The implementation of the private release of (Ui(t), ūi(t)) is done by the ubiquitous

tree-based mechanism for partial sums. We aggregate both into a single matrix 𝑀i,t ∈

R(d+1)×(d+1)
, by first concatenating: 𝐴i,t := [xi,1:t, yi,1:t] ∈ Rt×(d+1)

, and then computing

𝑀i,t = 𝐴>i,t𝐴i,t. Furthermore, the update is straightforward:

𝑀i,t+1 =𝑀i,t +
[
xi(t)> yi(t)

]> [
xi(t)> yi(t)

]
.

Recall that in our implementation, we only communicate in synchronization rounds

(and not every round). Assume that two successive rounds of synchronization occur at time

t′ and t. Then, at instant t, each agent i inserts ∑t
τ=t′ [xi(τ)

> yi(τ)]
>[xi(τ)

> yi(τ)] into T , and

computes (Ui(t), ūi(t)) by summing up the entire path up to instant t via the tree mecha-
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nism. Therefore, the tree mechanism accesses at most m = 1+ dlog2 ne nodes (where n total

rounds of communication occur until instant T), and hence noise that ensures each node

guarantees (ε/
√

8m ln(2/δ), δ/2m)-privacy is sufficient to make the outgoing sequence

(ε, δ)-private. This is different from the setting in the joint DP single-agent bandit (Shariff &

Sheffet, 2018), where observations are inserted every round, and not only for synchroniza-

tion rounds. To make the partial sums private, a noise matrix is also added to each node in

T . We utilize additive Gaussian noise: at each node, we sample 𝑁 ∈ R(d+1)×(d+1)
, where

each 𝑁i,j ∼ N (0, σ2
N), and σ2

N = 16m(L2 + 1)2 log(2/δ)2/ε2
, and symmetrize it (see step 6

of Algorithm 11). The total noise Hi(t) is the sum of at most m such terms, hence the vari-

ance of each element in Hi(t) is ≤ mσ2
N . We can bound the operator norm of the top-left

(d × d)-submatrix of each noise term. Therefore, to guarantee (ε, δ, M)-federated DP, we

require that with probability at least 1− α/nM:

‖Hi(t)‖op ≤ Λ =

√
32m(L2 + 1)

ε
· log

(
4
δ

)(
4
√

d + 2 log
(

2nM
α

))
.

Remark 6.4 (Privacy Guarantee). The procedure outlined above guarantees that each of

the n outgoing messages (Ui(t), ūi(t)) (where t is a synchronization round) for any agent

i is (ε, δ)-differentially private. This analysis considers the L2-sensitivity with respect to a

single differing observation, i.e., (x, y) and not the entire message itself, i.e., the complete

sequence (xi(τ), yi(τ))
t
τ=t′ (where t′ and t are successive synchronization rounds), which

may potentially have O(t) sensitivity and warrants a detailed analysis. While our analy-

sis is sufficient for the user-level adversary model, there may be settings where privacy is

required at the message-level as well, which we leave as future work.

However, as noted by (Shariff & Sheffet, 2018), this Hi(t) would not always be PSD.

To ensure that it is always PSD, we can shift each Hi(t) by 2ΛI, giving a bound on ρmax.

Similarly, we can obtain bounds on ρmin and κ:

Proposition 6.3. Fix α > 0. If each agent i samples noise parameters Hi(t) and hi(t) using

the tree-based Gaussian mechanism mentioned above for all n trials of 𝜎̄ in which communication

occurs, then the following ρmin, ρmax and κ are (α/2nM, 𝜎̄)-accurate bounds:

ρmin = Λ, ρmax = 3Λ, κ ≤

√
m(L2 + 1)

ε
√

2

(√
d + 2 log

(
2nM

α

))
.
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Proof. The proof follows directly from Shariff and Sheffet (Shariff & Sheffet, 2018), Propo-

sition 11 but we take the cumulative sum across all agents.

Remark 6.5 (Strategyproof Analysis). The mechanism presented above assumes the worst-

case communication, i.e., synchronization occurs every round, therefore at most T partial

sums will be released, m = 1 + dlog Te. This is not true for general settings, where infre-

quent communication would typically require m = O(log log T), for instance, when we

only synchronize O(M log T) times. However, if any agent is byzantine and requests a

synchronization every trial, m must be 1+ dlog Te to ensure privacy. In case the protocol is

fixed in advance (i.e., synchronization occurs on a pre-determined set 𝜎̄ of n rounds), then

we can set m = 1 + dlog ne to achieve the best utility at the desired privacy budget.

Remark 6.6 (Decentralized Protocol). FedLinUCB-Network requires the following bounds

for ρmin, ρmax and κ, with m = 1 + dlog(T/γ)e.

ρmin = Λd, ρmax = 3Λd, κ ≤

√
m(L2 + 1)

ε
√

2

(√
d + 2 log

(
2nMγ

α

))
, where

Λd =

√
32m(L2 + 1)

ε
· log

(
4
δ

)(
4
√

d + 2 log
(

2nMγ

α

))
.

An additional term of log(γ) appears in Λ and κ, since we need to now maintain γ partial

sums with at most T/γ elements. Unsurprisingly, there is no dependence on the network

G, as privatization is done at the source itself.

Discussion. In the decentralized version of the algorithm, each agent maintains γ sets

of parameters that are used in a round-robin manner. Note that this implies that each pa-

rameter set is used at most T/γ times per agent. This implies that in the worst case, each

agent will communicate at most T/γ partial sums related to this parameter set, hence need-

ing at most 1 + dlog(T/γ)e separate nodes of the tree-based mechanism for the particular

set of parameters, which leads to the additional log γ in the bounds as well. Next, when

determining κ, each agent will not require M-accurate bounds, since it communicates with

only |C| other agents. However, in the worst case, a centrally-positioned node belongs to a

small clique but can still communicate with all other M− 1 nodes (i.e., they can still obtain

the partial sums broadcasted), and hence we maintain the factor M to ensure privacy.
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Figure 6-2: A comparison of distributed FedLinUCB on 3 different axes. Fig. (A) describes the vari-

ation in asymptotic per-agent regret for varying privacy budget ε (where δ = 0.1); (B) describes

the effect of n in private (solid) vs. non-private (dashed) settings; (C) describes the effect of d in

per-agent regret in the private setting (n = O(M log T), ε = 1, δ = 0.1). Experiments averaged over

100 runs.

Corollary 6.1 ((ε, δ)-dependent Regret). FedLinUCB with the Privatizer subroutine in Alg. 11

run with privacy parameters (ε, δ), obtains a group regret of Õ
((√

d3/2

ε + d
)√

MT
)

in the

distributed setting and Õ
((√

d3/2

ε + d
)√

(χ̄(Gγ) · γ)MT
)

regret in the decentralized setting.

Proof. Follows directly by substituting the values of ρmin, ρmax and κ into the respective

regret bounds.

6.6 Experiments

In the experiments we focus on the distributed environment for simplicity, and on the vari-

ation of the regret with communication complexity and privacy budget. For all experi-

ments, we assume L = S = 1. For any d, we randomly fix 𝜃? ∈ Bd(1). Each Di(t) is

generated as follows: we randomly sample K ≤ d2
actions x, such that for K − 1 actions

0.5 ≤ 〈x,𝜃?〉 ≤ 0.6 and for the optimal x∗, 0.7 ≤ 〈x∗,𝜃?〉 ≤ 0.8 such that ∆ ≥ 0.1 al-

ways. yi(t) is sampled from Ber(〈xi(t),𝜃?〉) such that E[yi(t)] = 〈xi(t),𝜃?〉 and |yi(t)| ≤ 1.

Results are in Fig. 6-2, and experiments are averaged on 100 trials.

Experiment 1: Privacy Budget. In this setting, we set n = O(M log T), d = 10 (to

balance communication and performance), and plot the average per-agent regret after T =

107
trials for varying M and ε, while keeping δ = 0.1. Figure 6-2A describes the results,

competitive even at large privacy budget.

Experiment 2: Communication. We examine the regret curves for M = 100 agents

on n = O(M1.5),O(M log T),O(MT) communication for both private (ε = 1) and non-

private settings. We observe a tradeoff as highlighted in Remark 6.1.
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Figure 6-3: An experimental comparison of distributed FedLinUCB-Dist on varying the minimum

gap between arms ∆, for various values of the privacy budget ρmin.

Experiment 3: Dependence on d. As an ablation, we provide the average per-agent

regret curves for M = 100 by varying the dimensionality d. We observe essentially a

quadratic dependence.

Experiment 4: Varying ∆. Finally, we conduct ablations with variations in ∆. Figure 6-

3 summarizes the results when run on M = 10 agents for different privacy budgets and

arm gaps. As expected, the overall regret decreases as the gap increases, and the algorithm

becomes less sensitive to privacy budget altogether.

6.7 Related Work

Multi-Agent and Distributed Bandits. Bandit learning in multi-agent distributed set-

tings has received attention from several academic communities. Channel selection in dis-

tributed radio networks consider the (context-free) multi-armed bandit with collisions (Liu

& Zhao, 2010a,b,c) and cooperative estimation over a network with delays (Landgren et al.,

2016a,b, 2018). For the contextual case, recent work has considered non-private estimation

in networks with delays (Dubey & Pentland, 2020a,c; Wang et al., 2019a; Korda et al., 2016).

A closely-related problem is that of bandits with side information (Cesa-Bianchi et al., 2013;

Buccapatnam et al., 2014), where the single learner obtains multiple observations every

round, similar to the multi-agent communicative setting. Our work builds on the remark-

able work of Abbasi-Yadkori et al. (2011), which in turn improves the LinUCB algorithm

introduced in Li et al. (2010).

Differential Privacy. Our work utilizes differential privacy, a cryptographically-secure pri-

vacy framework introduced by Dwork (2011); Dwork & Roth (2014) that requires the be-
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havior of an algorithm to fluctuate only slightly (in probability) with any change in its

inputs. A technique to maintain differential privacy for the continual release of statistics

was introduced in Chan et al. (2010); Dwork & Smith (2010), known as the tree-based al-

gorithm that privatizes the partial sums of n entries by adding at most log n noisy terms.

This method has been used to preserve privacy across several online learning problems,

including convex optimization (Jain et al., 2012; Iyengar et al., 2019), online data analy-

sis (Hardt & Rothblum, 2010), collaborative filtering (Calandrino et al., 2011) and data ag-

gregation (Chan et al., 2012). In the single-agent bandit setting, differential privacy using

tree-based algorithms have been explored in the multi-armed case (Thakurta & Smith, 2013;

Mishra & Thakurta, 2015; Tossou & Dimitrakakis, 2016) and the contextual case (Shariff &

Sheffet, 2018). In particular, our work builds on the setting from Shariff & Sheffet (2018), ex-

tending their single-agent results to the federated multi-agent setting. For the multi-agent

multi-armed (i.e., context-free) bandit problem, differentially private algorithms have been

devised for the distributed (Tossou & Dimitrakakis, 2015b) and decentralized (Dubey &

Pentland, 2020d) settings. Empirically, the advantages of privacy-preserving contextual

bandits has been demonstrated in the work of Malekzadeh et al.(Malekzadeh et al., 2019),

and Hannun et al.(Hannun et al., 2019) consider a centralized multi-agent contextual ban-

dit algorithm that use secure multi-party computations to provide privacy guarantees (both

works do not have any regret guarantees). To the best of our knowledge, this paper is the

first to investigate differential privacy for contextual bandits in the federated learning set-

ting, in both distributed and decentralized environments.

6.8 Discussion

From a technical perspective, we make improvements along several fronts – while there

has been prior work on multi-agent private linear bandits (Hannun et al., 2019; Malekzadeh

et al., 2019) our work is the first to provide rigorous guarantees on private linear bandits

in the multi-agent setting. Our work additionally provides the first algorithm with regret

guarantees for contextual bandits in decentralized networks, extending the work of many

on multi-armed bandits (Martínez-Rubio et al., 2019; Landgren et al., 2016a,b; Dubey &

Pentland, 2020d,a). Specifically, we introduce an analysis of multi-agent contextual ban-

dit algorithms when communication is data-dependent, which can be applicable in many
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scenarios beyond our bandit setting.

There are several unresolved questions in this line of work, as highlighted by our algo-

rithm itself. In the decentralized case, our algorithm obtains a communication overhead

of O(
√

χ̄(Gγ) · γ), which we comment is an artefact of our proof technique and can po-

tentially be improved to smaller quantities such as the independence number of the power

graph α(Gγ) by more communication budgets, as suggested by our results in the multi-

armed setting. Establishing the optimal rates for this problem and examining asynchronous

methods are valuable lines of future inquiry.
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6.9 Full Proofs

6.9.1 Proof of Proposition 9.3

We denote the number of (common) bandit trials between two rounds of communication

as an epoch. Let n′ =
√

DT
d log(ρmax/ρmin+TL2/(dρmin))

+ 1. There can be at most dT/n′e rounds

of communication such that they occur after an epoch of length n′. On the other hand, if

there is any round of communication succeeding an epoch (that begins, say at time t) of

length < n′, then for that epoch, log det(Si(t+n′))
det(Si(t))

> D
n′ . Let the communication occur at a set

of rounds t′1, ..., t′n. Now, since:

n−1

∑
i=1

log
det

(
Si(t′i+1)

)
det (Si(ti))

= log
det (Si(T))
det (Si(0))

≤ d · log
(

ρmax

ρmin
+

TL2

dρmin

)
,

We have that the total number of communication rounds succeeding epochs of length less

than n′ is upper bounded by log det(Si,T)
det(Si,0)

≤ d log(ρmax/ρmin + TL2/(dρmin)) · (n′/D). Com-

bining both the results together, we have the total rounds of communication as:

n ≤ dT/n′e+ dd log(ρmax/ρmin + TL2/(dρmin)) · (n′/D)e

≤ T/n′ + d log(ρmax/ρmin + TL2/(dρmin)) · (n′/D) + 2.

Replacing n′ from earlier gives us the final result.

6.9.2 Proof of Lemma 6.2

At every round, each agent i selects an “optimistic” action xi(t) such that,

(xi(t), 𝜃̄i,t) = arg max
(x,𝜃)∈Di(t)×Ei,t

〈x,𝜃〉 .

Let x?i (t) be the optimal action at time t for agent i, i.e., x?i (t) = arg maxx∈Di(t) 〈x,𝜃?〉. We

can then decompose the immediate pseudoregret ri,t for agent i as the following.

ri,t = 〈x?i (t),𝜃?〉 − 〈xi(t),𝜃?〉

≤ 〈xi(t), 𝜃̄i,t〉 − 〈xi(t),𝜃?〉 (Since (xi(t), 𝜃̄i,t) is optimistic)

= 〈xi(t), 𝜃̄i,t − 𝜃?〉
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=
〈

Vi(t)−1/2xi(t), Vi(t)1/2 (𝜃̄i,t − 𝜃?)
〉

(Vi(t) < 0)

≤ ‖xi(t)‖Vi(t)−1 ‖𝜃̄i,t − 𝜃?‖Vi(t)
(Cauchy-Schwarz)

≤ ‖xi(t)‖Vi(t)−1

(∥∥𝜃̄i,t − 𝜃̃i,t
∥∥

Vi(t)
+
∥∥𝜃̃i,t − 𝜃?

∥∥
Vi(t)

)
(Triangle inequality)

≤ 2βt,i ‖xi(t)‖Vi(t)−1 (Since 𝜃̄i,t,𝜃? ∈ Ei,t)

≤ 2β̄T ‖xi(t)‖Vi(t)−1 . (By Proposition 6.1)

6.9.3 Proof of Theorem 6.3

The proof for this setting is similar to the distributed variant. We can first partition the

power graph Gγ of the communication network G into a clique cover C = ∪iCi. The overall

regret can then be decomposed as the following.

R(T) =
M

∑
i=1

T

∑
t=1

ri,t

= ∑
C∈C

∑
i∈C

T

∑
t=1

ri,t

= ∑
C∈C

RegretC(T).

Here, RegretC(T) denotes the cumulative pseudoregret of all agents within the clique C.

It is clear that since there is no communication between agents in different cliques, their

behavior is independent and we can analyse each clique separately. Now, consider τ se-

quences given by s1, ..., sτ, where si = (i, i + τ, i + 2τ, ..., i + (dT/τe − 1)τ). For any clique

C we can furthermore decompose the regret as follows.

RegretC(T) = ∑
i∈C

T

∑
t=1

ri,t

= ∑
i∈C

τ

∑
j=1

∑
t∈sj

ri,t

=
γ

∑
j=1

RegretC,j(T).

Here RegretC,j(T)denotes the cumulative pseudoregret of the jth
subsequence. We will now

bound each of these regret terms individually, with an identical argument as the distributed

case. This can be done since the behavior of the algorithm in each of these subsequences

149



is independent: each sequence sj corresponds to a different Gram matrix and least-squares

estimate, and is equivalent to each agent running γ parallel bandit algorithms. We now

bound each of the regret terms RegretC,j(T) via an identical argument as the distributed

case. Let 𝜎̄j be the subsequence of [T] containing every jth
index, i.e., 𝜎̄j = j, j + γ, j +

2γ, ..., j + dT/γ− 1eγ. For any clique C, and index j we compare the pulls of each agent

within C to the pulls taken by an agent pulling arms in a round-robin manner (xi,j)i∈C,j∈𝜎̄j .

This corresponds to a total of |C|T/γ pulls.

Now, it is crucial to see that according to Algorithm 10, if a signal to synchronize has

been sent by any agent i ∈ C at any time t (belonging to subsequence j), then the jth
pa-

rameter set Vi(t)(j)
is used first at time t (by each agent in C), then at time t + γ (at which

time each agent in C broadcasts their parameters, since by this time each other agent will

have received the signal to synchronize, as they are at most distance γ apart), and next at

time t + 2γ, upon which they will be fully synchronized. Now, if we denote the rounds

nC,j ⊂ 𝜎̄j as the rounds in which each agent broadcasted their jth
parameter sets, then

for any τ ∈ nC,j, all agents in C have identical jth
parameter sets at instant τ + 1, and for

each instant τ − 1, all agents in C will obey the synchronization threshold for the jth
set of

parameters, (log-det condition).

Now, we denote by 𝑊
(j,C)
i,t the Gram matrix obtained by the hypothetical round-robin

agent for subsequence j in clique C. By Lemma 6.1, we have that

∑
t∈𝜎̄j

∑
i∈C
‖xi(t)‖2

(𝑊
(j,C)
i,t )−1

≤ 2d log
(

1 +
TL2

γdρmin

)
.

After any round Tk of synchronization, consider the cumulative Gram matrices of all ob-

servations obtained until that round as V(j,C)
k , k = 1, ..., nj,C − 1, regularized by |C|ρminI,

i.e., V(j,C)
k = ∑i∈C ∑t∈𝜎̄j :t<Tk

xi(t)xi(t)> + |C|ρminI. Finally, let Vp denote the (regularized)

jth
Gram matrix with all trials from agents within C at time T, and V(j,C)

0 = |C|ρminI.

Therefore, we have that det(V(j,C)
0 ) = (|C|ρmin)d

, and that det(Vnj,C) ≤
(

tr(V(j,C)
nj,C )

d

)d

≤

(|C|ρmax + |C|TL2/(γd))d
. Therefore, for any ν > 1,

logν

det(V(j,C)
nj,C )

det(V(j,C)
0 )

 ≤ d logν

(
ρmax

ρmin
+

TL2

γdρmin

)
.
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Let R =
⌈

d logν

(
ρmax
ρmin

+ TL2

γdρmin

)⌉
. It follows that in all but R periods between synchroniza-

tion,

1 ≤
det(V(j,C)

k )

det(V(j,C)
k−1 )

≤ ν.

We consider the event E to be the period k when Equation Vi(t)(j,C) < Gi(t)(j,C) + |C|ρminI

holds. Now, for any Tk−1 ≤ t ≤ Tk, consider the immediate pseudoregret for any agent i.

By Lemma 6.2, we have for any agent i ∈ C and t ∈ 𝜎̄j:

ri,t ≤ 2β̄T‖xi,t‖(Vi(t)(j,C))−1

≤ 2β̄T‖xi,t‖(Gi(t)(j,C)+|C|ρminI)−1 (Vi(t)(j,C) < Gi(t)(j,C) + |C|ρminI)

≤ 2β̄T‖xi,t‖(𝑊 (j,C)
i,t )−1 ·

√√√√ det(𝑊 (j,C)
i,t )

det(Gi(t)(j,C) + |C|ρminI)

≤ 2β̄T‖xi,t‖(𝑊 (j,C)
i,t )−1 ·

√√√√ det(V(j,C)
k )

det(Gi(t)(j,C) + |C|ρminI)
(V(j,C)

k <𝑊
(j,C)
i,t )

≤ 2β̄T‖xi,t‖(𝑊 (j,C)
i,t )−1 ·

√√√√det(V(j,C)
k )

det(V(j,C)
k−1 )

(Gi(t)(j,C) + |C|ρminI < V(j,C)
k−1 )

≤ 2νβ̄T‖xi,t‖(𝑊 (j,C)
i,t )−1 . (Event E holds)

Now, we can sum up the immediate pseudoregret over all such periods where E holds to

obtain the total regret for these periods. With probability at least 1− α,

RegretC,j(T, E) = ∑
i∈C

∑
t∈𝜎̄j :E is true

ri,t

≤

√√√√√ |C|T
γ

∑
i∈C

∑
t∈𝜎̄j :E is true

r2
i,t



≤ 2νβ̄T

√√√√√ |C|T
γ

∑
i∈C

∑
t∈𝜎̄j :E is true

‖xi(t)‖(𝑊 (j,C)
i,t )−1


≤ 2νβ̄T

√√√√ |C|T
γ

(
∑
i∈C

∑
t∈𝜎̄j

‖xi(t)‖(𝑊 (j,C)
i,t )−1

)
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≤ 2νβ̄T

√
2
|C|T

γ
d logν

(
1 +

TL2

γdρmin

)
.

Now let us consider the periods in which E does not hold for any subsample j. In any such

period between synchronization of length tk = Tk − Tk−1, we have, for any agent i, the

regret accumulated given by:

RegretC,j([Tk−1, Tk]) =
Tk

∑
t=Tk−1

∑
i∈C

ri,t

≤ 2νβ̄T

∑
i∈C

√√√√tk

Tk

∑
t=Tk−1

‖xi(t)‖2
(Vi(t)(j))−1


≤ 2νβ̄T

∑
i∈C

√√√√√tk logν

det(Vj
i,t+tk

)

det(Vj
i,t)




≤ 2νβ̄T

∑
i∈C

√√√√√tk logν

det(Gj
i,t+tk

+ |C|ρmaxI)

det(Gj
i,t + |C|ρminI)




By Algorithm 9, we know that for all agents, tk logν

(det(Gi,t+tk
+MρmaxI)

det(Gi(t)+MρminI)

)
≤ D (since there

would be a synchronization round otherwise), therefore

≤ 2νβ̄T|C|
√

D.

Now, note that of the total p periods between synchronizations, only at most R periods will

not have event E be true. Therefore, the total regret over all these periods can be bound as,

RegretC,j(T, Ē) ≤ R · 2νβ̄T|C|
√

D

≤ 2νβ̄T|C|
√

D
(

d logν

(
ρmax

ρmin
+

TL2

dρmin

)
+ 1
)

.

In a manner identical to the distributed case, we can obtain the total pseudoregret within

a clique C for subsampling index j by choosing an appropriate value of D. Note that since

the broadcast between agents happens at an additional delay of 1 trial, the value D must
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be scaled by a factor of 1 + supx∈Di(t)
‖x‖2

2 to bound the additional term in the determinant

(by the matrix-determinant lemma), giving us the extra 1+ L2
term from the proof. Finally,

summing up the above over all C ∈ C and j ∈ [γ] and noting that |C| ≤ M∀C ∈ C, and

that |C| = χ̄(Gγ) gives us the final result.
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6.10 Algorithm Pseudocode

Algorithm 9 FedLinUCB-Dist(D, M, T, ρmin, ρmax)

1: Initialization: ∀i, set Si(1)←𝑀ρminI, si(1)← 0, Q̂i(0)← 0, Ui(1)← 0, ūi(1)← 0.

2: for For each iteration t ∈ [T] do
3: for For each agent i ∈ [M] do
4: Set Vi(t)← Si(t) + Ui(t), ũi(t)← si(t) + ūi(t).
5: Receive Di(t) from environment.

6: Compute regressor 𝜃̄i(t)← Vi(t)−1ũi(t).
7: Compute βi(t) following Proposition 6.1.

8: Select xi(t)← arg maxx∈Di(t)
〈x, 𝜃̄i(t)〉+ βi(t)‖x‖Vi(t)−1 .

9: Obtain yi(t) from environment.

10: Update Ui(t + 1)← Ui(t) + xi(t)xi(t)>, ui(t + 1)← ui(t) + xi(t)yi(t).
11: Update Q̂i(t)← Q̂i(t− 1) + [xi(t)> yi(t)]>[xi(t)> yi(t)]
12: if log det

(
Vi(t) + xi(t)xi(t)> + M(ρmax − ρmin)I

)
− log det (Si(t)) ≥ D/∆ti then

13: Synchronize← True.

14: end if
15: if Synchronize then
16: [∀Agents] Agent sends Q̂i(t)→ Privatizer and gets Ûi(t+ 1), ûi(t+ 1)← Privatizer.

17: [∀ Agents] Agent communicates Ûi(t + 1), ûi(t + 1) to controller.

18: [Controller] Compute S(t + 1)← ∑M
i=1 Ûi(t + 1), s(t + 1)← ∑M

i=1 ûi(t + 1).
19: [Controller] Communicate S(t + 1), si(t + 1) back to agent.

20: [∀ Agents] Si(t + 1)← S(t + 1), si(t + 1)← s(t + 1).
21: [∀ Agents] Q̂i(t + 1)← 0.

22: else
23: Si(t + 1)← Si(t), si(t + 1)← si(t), ∆ti ← ∆ti + 1.

24: ∆ti ← 0, Ui(t + 1)← 0, ūi,t+1 ← 0.

25: end if
26: end for
27: end for
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Algorithm 10 FedLinUCB-Network(D, M, T, ρmin, ρmax, G, γ)

1: Initialization: ∀i, ∀g ∈ [γ], set Sg
i,1 ← 0, sg

i,1 ← 0, Hg
i,0 ← 0, hg

i,0 ← 0, Ug
i,1 ← 0, ūg

i,1 ← 0.

2: for each iteration t ∈ [T] do
3: for each agent i ∈ [M] do
4: Set subsampling index g← t mod γ.

5: Run lines 4-13 of Algorithm 1 with Sg
i,t, sg

i,t, Ug
i,t, ūg

i,t, Vg
i,t, ũg

i,t, Hg
i,t, hg

i,t

6: if log
(

det(Vi(t)g+xg
i,t(x

g
i,t)
>+M(ρmax−ρmin)I)

det(Sg
i,t)

)
≥ D

(∆ti,g+1)(1+L2)
then

7: Request To Synchronize(i, g)← True.

8: end if
9: if Request To Synchronize(i, g) then

10: Broadcast Message Synchronize(i, g, t) from agent i at time t to all neighbors.

11: end if
12: for message m received at time t by agent i do
13: if m = Synchronize(i′, g′, t′) then
14: if i′ belongs to the same clique as i and t′ ≥ t− γ then
15: Agent sends Q̂(g′)

i,t → Privatizer and gets Û(g′)
i,t+1, û(g′)

i,t+1 ← Privatizer.

16: Agent broadcasts Û(g′)
i,t+1, û(g′)

i,t+1 to all neighbors.

17: end if
18: if m = Û(g′)

i′ ,t′+1, û(g′)
i′ ,t′+1 then

19: if i′ belongs to the same clique as i and t′ ≥ t− γ then
20: Agent updates S(g′)

i,t+1, S(g′)
i,t+1 with Û(g′)

i′ ,t′+1, û(g′)
i′ ,t′+1.

21: end if
22: end if
23: end if
24: end for
25: end for
26: end for

Algorithm 11 Privatizer(ε, δ, M, T) for any agent i
1: Initialization:
2: If communication rounds n are fixed a priori, set m← 1 + dlog ne, else m← 1 + dlog Te.
3: Create binary tree T of depth m.

4: for node n in T do
5: Sample noise𝑁 ∈ R(d+1)×(d+1)

, where𝑁ij ∼ N
(
0, 16m(L2 + 1)2 log(2/δ)2/ε2)

.

6: Store𝑁 = (𝑁 +𝑁>)/
√

2 at node n.

7: end for
8: Runtime:
9: for each communication round t ≤ n do

10: Receive Q̂i(t) from agent, and insert it into T (see (Jain et al., 2012), Alg. 5).

11: Compute𝑀i,t+1 using the least nodes of T (see (Jain et al., 2012), Alg. 5).

12: Set Ûi(t + 1) = Ui(t + 1) + Hi(t) as top-left d× d submatrix of𝑀i,t+1.

13: Set ûi(t + 1) = ui(t + 1) + hi(t) as first d entries of last column of𝑀i,t+1.

14: Return Ûi(t + 1), ûi(t + 1) to agent.

15: end for
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Chapter 7

Private Gaussian Process Bandit

Optimization

7.1 Introduction

In this chapter, we discuss differentially private algorithms for Gaussian Process (GP) ban-

dit optimization (Srinivas et al., 2009). GP bandit optimization is a sequential decision

problem that has a variety of human-centered applications, e.g., clinical drug trials (Costa-

bal et al., 2019; Park et al., 2013; Peterson et al., 2017), personalized shopping recommen-

dations (Rohde et al., 2018; Zhou et al., 2019), news feed ranking (Agarwal et al., 2018;

Letham & Bakshy, 2019; Vanchinathan et al., 2014). It is increasingly becoming desirable

that algorithms interacting with such data maintain the privacy of the individuals whose

information is used (Cummings & Desai, 2018).

Similar to the contextual bandit, GP bandit optimization involves learning a function f

via repeated interaction in rounds. At any round t = 1, 2, ..., the learner is presented with

a decision set Dt ⊂ Rd
from which it must select an action xt and obtain a random reward

yt = f (xt) + ξt, where ξt is sampled i.i.d. from the environment. The algorithm selects

actions in order to minimize regret R(T) = ∑t[ f (x?t )− f (xt)], where x?t = maxx∈Dt f (x).

Unlike prior chapters, we will only be considering the single-agent setting in this chapter,

and we remark that the results obtained herein can be extended to the federated setting

following similar techniques as Chapter 6.

This problem he problem is more challenging for general Gaussian Process optimiza-
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tion. Most application settings assume that the target function f lies in a (potentially)

infinite-dimensional reproducing kernel Hilbert space (RKHS), and the standard techniques

for introducing privacy are inapplicable due to the curse of dimensionality (Liu & Guillas,

2017; Meeds & Welling, 2014): the posterior mean and variance for these methods require

storing the sample path (xt, yt)t, and are Ω(t) to evaluate. Moreover, as the learnt function

itself is dependent on the sample path (containing sensitive data), privatized release of the

function is also a challenge (Smith et al., 2016). In this chapter, we propose algorithms that

guarantee differential privacy with respect to continual observation during optimization,

and also the private release of learnt parameters.

The contributions in this chapter can be listed as follows. First, we propose a generic

framework (and regret bound) for GP bandits that utilizes a finite-dimensional ε−uniform

approximation of infinte-dimensional kernels and integrates random perturbations to the

GP posterior, allowing for various no-regret private GP algorithms based on the kernel

approximation method and privacy guarantee required.

Next, In the joint differentially private (JDP) setting (Definition 7.6), we propose a novel

GP-UCB algorithm (Algorithm 12) for stationary kernels admitting a decomposable Fourier

transform (Assumption 7.1) that satisfies (ε, δ)-JDP while obtaining Õ(
√

TγT/ε)1
pseu-

doregret. This bound matches (up to logarithmic factors) the lower bound for isotropic ker-

nels (Scarlett et al., 2017), and admits an identical dependence on ε as linear bandits (Shar-

iff & Sheffet, 2018). Thirdly, inspired by the recent interest in locally differentially private

(LDP) methods (Bebensee, 2019), we present an algorithm that achieves (ε, δ)−LDP with

Õ(T3/4
√

γT/ε) pseudoregret. We conjecture that the constraints from LDP necessitate the

O(T1/4) departure from typical near-optimal regret (Remark 7.7).

Our approach can be coarsely summarized with two steps - we first project f from

its (infinite-dimesional) RKHS into a finite-dimensional approximating RKHS, following

which, we directly perturb the posterior mean and variance of the resulting GP (in the

approximating space) to ensure privacy without the curse of dimensionality, which allows

us to provide a no-regret solution. Our approach additionally avoids the parameter release

problem (Smith et al., 2016; Kusner et al., 2015) since we do not explicitly store the sample

path for prediction, and rely instead on cumulative sums (Remark 7.1).

Organization. We first discuss crucial related work and introduce necessary notation

1γT is the maximum information gain, see Definition 7.1.
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and preliminaries, subsequent to which we introduce our general framework for GP-UCB

using noisy approximate features. We discuss quadrature Fourier features and present our

algorithm and its associated regret bounds. Next, we discuss the two models of privacy

studied, and present privacy mechanisms followed by experimental comparisons.

7.2 Related Work

Gaussian Process Bandits. Gaussian Processes (Williams & Rasmussen, 2006) have been

widely used for the bandit optimization of unknown functions in an RKHS. The seminal

work of Srinivas et al. (2010) introduced the nonparameteric GP-UCB algorithm, that intro-

duced contextual-bandit style confidence bounds for optimisation in infinite-dimensional

RKHSes. A variant of the expected improvement decision rule (Močkus, 1975) was proposed

via the GP-EI algorithm (Snoek et al., 2012). By a stronger martingale analysis, Chowdhury

& Gopalan (2017) achieve the IGP-UCB algorithm, that improves GP-UCB regret by a factor

ofO(ln3/2 T). For a family of isotropic squared-exponential d-dimensional kernels, Scarlett

et al. (2017) establish lower bounds on the achievable regret of Ω(
√

T(log T)d+2), which

matches (ignoring polylogarithmic factors) the Õ(
√

T) rate achieved by IGP-UCB and GP-

UCB. Our work relies on the research in approximate methods for kernel approximation,

which has seen a lot of recent interest. The seminal work of Rahimi & Recht (2008) proposed

random Fourier features (RFF) by a Monte-Carlo approximation of the Fourier basis, with

additional work establishing finite-sample convergence rates (Avron et al., 2017). We pro-

pose a noisy variant of the more efficient quadrature Fourier features (QFF) (Munkhoeva

et al., 2018) that have been previously employed in GP optimization with success (Mutny

& Krause, 2018). An alternative approach based on sampling fewer points from the algo-

rithm’s history based on matrix sketching has been proposed in Calandriello et al. (2019).

Differentially-Private Bandit Learning. Differentially private (DP) methods for ban-

dit optimisation have received significant attention recently. For the multi-armed bandit

case, UCB and Thompson sampling algorithms have been proposed for pure-DP (Mishra

& Thakurta, 2015), with subsequent improvements (Tossou & Dimitrakakis, 2015a). For the

contextual linear bandit, Shariff & Sheffet (2018) introduce an algorithm that utilizes ma-

trix perturbations that our work effectively generalizes to infinite-dimensional stationary

GPs. Note that this algorithm is inapplicable for general GPs as it assumes that the features
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are finite-dimensional. See Basu et al. (2020) for a summary of regret bounds for private

multi-armed bandits. For Gaussian process bandits and Bayesian Optimisation (BO), Kus-

ner et al. (2015) consider the problem of releasing GP parameters after optimization under

differential privacy constraints, by analysing the sensitivity of the final parameters. Our

work handles a more challenging setting, where parameters must be private throughout the

optimisation process. An application of DP to the Gaussian process regression problem

was studied in the work of Smith et al. (2016), however with no regret guarantees.

7.3 Preliminaries

Gaussian Process Bandit Optimization. We consider the problem of sequential reward

maximization under a fixed but unknown reward function f : D → R over a (potentially

infinite) set of actions (arms) D ⊂ Rd
. The problem proceeds in rounds t = 1, 2, ..., T

where, in each round, the objective is to select an action xt ∈ Dt and obtain a reward

yt = f (xt) + ξt such that the cumulative reward ∑t∈[T] yt is maximized depending on the

history (xτ, yτ)τ<t, and ξt is sampled from a zero-mean sub-Gaussian distribution with

parameter λ. Gaussian Process (GP) modeling proposes to use a Gaussian likelihood model

for observations and a GP prior for the uncertainty over f . A Gaussian Process (GP) overD,

denoted by GP(µ(·), k(·, ·)) is a collection of random variables ( f (x))x∈D such that every

finite subset of variables ( f (xτ))t
τ=1 is jointly Gaussian with mean E[ f (xτ)] = µ(xτ) and

covariance E[( f (xτ)− µ(xτ))( f (xτ′)− µ(xτ′))] = k(xτ, xτ′), τ, τ′ ∈ [t] where k(·, ·) is the

kernel function associated with the reproducing kernel Hilbert space (RKHS) Hk(D) in

which we assume f has norm at most B, i.e., ‖ f ‖k ≤ B. We use an initial prior distribution

GP(0, ρ2k(·, ·)) for some ρ > 0. Consequently it is also assumed that the noise samples ξt

are drawn from N (0, λρ2)2
. We then obtain that the observed samples yt = (yτ)τ<t and

f (x) are jointly Gaussian given Xt = (xτ)τ<t, f (x)

yt

 ∼ N
0,

ρ2k(x, x) ρ2kt(x)>

ρ2kt(x) ρ2(Kt + λI)

 .

Where Kt = (k(xτ, xτ′))
t,t
τ,τ′ is the matrix of kernel evaluations at time t, and kt(x) =

[k(x1, x), ..., k(xt, x)]> is the vector of kernel evaluations of any input x. Conditioned on

2
The algorithm only requires ξt to be λ-sub-Gaussian, i.e., the agnostic setting (Srinivas et al., 2010).
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(xτ, yτ)τ<t, the posterior mean and variance of f is given as,

µt(x) = kt(x)>(Kt + λI)−1yt, (7.1)

σ2
t (x) =

(
k(x, x)− kt(x)>(Kt + λI)−1kt(x)

)
. (7.2)

The kernel k(·, ·) additionally admits a representation in terms of its feature space Φ such

that k(x, x′) = Φ(x)>Φ(x), where Φ : Rd → Rm
is the feature embedding. This provides

an alternative representation of the posterior mean and variance,

µt(x) = (St + λI)−1Φ(X)>yt, (7.3)

σ2
t (x) = ρ2Φ(x)>(St + λI)−1Φ(x), for (7.4)

St = Φ(Xt)
>Φ(Xt), Φ(Xt) = [Φ(x1)

>, ..., Φ(xt−1)
>]>. (7.5)

Φ can potentially be infinite-dimensional (e.g., for squared-exponential k), and hence this

representation is not applicable to many popular kernel families. The regret achieved by

existing algorithms depends on the maximum information gain, a quantity that depends on

the covariance structure of the feature space.

Definition 7.1 (Information Gain Srinivas et al. (2010)). For yt = f (xt) + ξt, let A ⊂ X be a

finite subset such that |A| = T. Let yA = fA + 𝜀A where fA = ( f (𝑥i))𝑥i∈A and 𝜀A ∼ N (0, ρ2).

The information gain is γT , maxA⊂X :|A|=T H(yA)− H(yA| f ), where H(·) is the entropy of a

random variable. For linear k, γT = O(d log T). For RBF k, γT = O((log T)d+1). For Matérn k

with ν > 1, γT = O(T
d(d+1)

2ν+d(d+1) (log T)).

Differential Privacy (DP). Following the standard definition of DP, within the continual

observation setting of sequential decision-making, this would imply that the algorithm be

private with respect to all values (xτ, yτ)T
τ=1 at each t ∈ [T]. However, as demonstrated in

Shariff & Sheffet (2018), any algorithm DP with respect to (xt, yt) at the instance t provably

incurs Ω(T) regret. Therefore we adopt the notion of joint differential privacy, which does

not require privacy with respect to the inputs (xt, yt) at each instant t ∈ [T] (Section 7.5.1).

We additionally consider the stronger notion of local DP, which additionally requires that

the algorithm cannot access (xτ, yτ)τ<t directly (Section 7.5.2).

In comparison to the federated privacy definition of Chapter 6, this definition of dif-

ferential privacy is different: the previous setting required outgoing messages to be private,
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whereas in this setting, we require that the algorithm obey either joint or local differential

privacy with respect to the personal observations at all times. We make these definitions

more precise in Sections 7.5.1 and 7.5.2.

7.4 Noisy Proximal Features & GP-UCB

The primary challenge in creating differentially-private algorithms for bandit estimation in

arbitrary RKHSes is the curse of dimensionality - the two central quantities µt and σ2
t both

require the point-wise kernel evaluations (kt(x)) and the kernel Gram matrix (Kt) at all

times, potentially requiring O(
√

t) noise in order to preserve privacy. In this paper, we

tackle this hurdle by optimizing f under a surrogate RKHS Fm that of finite dimension m

instead of the original (potentially infinite-dimensional) RKHSHk. To ensure a reasonable

bound on the regret, we require that Fm approximatesHk closely, as formalized below.

Definition 7.2 (Uniform Approximation). Let k : D×D → R be a stationary kernel with asso-

ciated RKHSHk, and Φ : D → Rm. Then Φ ε-uniformly approximates k iff supx,x′∈D |k(x, x′)−

Φ(x)>Φ(x)| ≤ ε. The corresponding approximating space defined by Φ is given by

Fm(Φ) ,
{

f (·) = 𝜃>Φ(·)|𝜃 ∈ Rm
}

.

Therefore, if Fm (resp. Φ) can approximate Hk without many features, one can devise

an approximate Gaussian process algorithm directly using Φ.

Gt = Φ(Xt)
>Φ(Xt) + λI, ut = G−1

t Φ(Xt)
>yt.

These parameters allow us to obtain the posterior mean µt(x) = u>t Φ(x) and variance

σ2
t (x) = ρ2‖Φ(x)‖2

G−1
t

. However, these parameters are obviously not differentially private

with respect to the sequences (Xt, yt). Similar to the previous chapter, an efficient way to

achieve privacy is to ensure that at each instant t, (Gt, ut) are differentially-private with

respect to the sequence (xτ, yτ)τ<t, which can be achieved by carefully perturbing (Gt, ut)

with random noise (Ht, ht) to create differentially-private parameters. While the exact form

of Ht, ht will be specified by the nature of privacy (see Section 7.5), we can represent a

variety of noise models by spectral bounds, summarized by the following abstraction.
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Definition 7.3 (Spectral Bounds on Noise). For a sequence of perturbations (Ht)T
t=1 and (ht)T

t=1,

the bounds 0 < λmin ≤ λmax are (ζ/2T)−accurate if with probability at least 1− ζ/2T, for each

t in [T]:

‖Ht‖ ≤ λmax, ‖H−1
t ‖ ≤ 1/λmin, ‖ht‖H−1

t
≤ κ.

Let us use the shorthand Gt = St + λI, where St = Φ(Xt)>Φ(Xt). The perturbed St

and ut are given as S̃t = St + Ht, ũt = ut + ht for any sequence (Ht, ht).

7.4.1 GP-UCB with Noisy Proximal Features

Our algorithm is built on the GP-UCB algorithm (Srinivas et al., 2010) that constructs a con-

fidence ellipsoid around the posterior µ̃t such that the function f lies within the confidence

ellipsoid with high probability. The key observation, is that we do not need to optimize for

f directly. Given an ε-uniformly approximating feature Φ (resp. Fm), then the following

result guarantees the existence of a function close to f in Fm.

Lemma 7.1 (Existence of Proximal Space (Lemma 4 of Mutny & Krause (2018))). Let k be

a kernel defining the RKHS Hk and f ∈ Hk, such that the spectral characteristic function is

bounded by B. Assuming that the defining points of f come from the set D, let Fm be an ap-

proximating space with a mapping Φ such that this mapping is an ε-approximation to the kernel k.

Then there exists µ̂ ∈ Fm (with corresponding feature 𝜃 such that µ̂(x) = 〈𝜃, Φ(x)〉), such that

supx∈D |µ̂(x)− f (x)| ≤ Bε.

Hence we know that there exists a fixed point µ̂ ∈ Fm such that supx∈D |µ̂(x)− f (x)| ≤

Bε. This implies that the regret incurred at any instant t when optimizing for f is at most

Bε larger than the regret obtained when optimizing for µ̂. We therefore optimize directly

in the surrogate space Fm to learn µ̂. GP-UCB with noisy approximate features selects, for

a sequence (υt)T
t=1, the action xt ∈ Dt determined as:

xt = arg max
x∈Dt

µ̃t(x) + υ1/2
t · σ̃t(x).

The sequence (υt)T
t=1 is chosen such that µ̃t(x) is close to µ̂(x) with high probability. To

accomplish this, we present the central result as follows.

163



Theorem 7.1 (υt concentration). Let λmin, λmax and κ be (ζ/2T) -accurate and regularizers

Ht < 0 ∀t ∈ [T] are PSD. Let µ̂ be a function in the RKHS Fm that ε-approximates f ∈ Hk

(Lemma 7.1). Then, with probability at least 1− ζ/2, for any x ∈ D we have for each t ∈ [T]

simultaneously,

|µ̂(x)− µ̃t(x)| ≤ σ̃t(x)

(
B

√
λmax

ρ2 + 1 +
tBε

ρ
√

λmin
+

κ

ρ
+

√√√√log det

(
S̃t + λI

λ + λmin

)
+ 2 ln

2
ζ

)
.

The sequence (υ1/2
t )T

t=1 is chosen as the multiplicative factor of σ̃t(x), i.e., |µ̂(x)− µ̃t(x)| ≤ υ
1/2
t σ̃t(x).

Proof. We wish to bound µ̂(x)− µ̃t(x) =
〈
𝜃− 𝜃t, Φ(x)

〉
. First, we bound this inner product

by a suitable matrix norm:

〈
𝜃− 𝜃t, Φ(x)

〉
≤
∥∥∥𝜃− 𝜃t

∥∥∥
Vt
‖Φ(x)‖V−1

t

=
σ̃t(x)

ρ2

∥∥∥𝜃− 𝜃t

∥∥∥
Vt

=
σ̃t(x)

ρ2

∥∥∥𝜃−V−1
t Φ(Xt)

>yt −V−1
t ht

∥∥∥
Vt

≤ σ̃t(x)
ρ2

(∥∥∥𝜃−V−1
t Φ(Xt)

>yt

∥∥∥
Vt

+ ‖ht‖V−1
t

)
.

Now, let zt = (〈𝜃, φ(xτ)〉+ ξτ)τ<=t. By Lemma 7.1, we know that for each |zi
t − yi

t| ≤ Bε,

and therefore ‖zt − yt‖2 ≤ Bε
√

t. Using this fact:

〈
𝜃− 𝜃t, Φ(x)

〉
≤ σ̃t(x)

ρ2


∥∥∥𝜃−V−1

t Φ(Xt)
>zt

∥∥∥
Vt︸ ︷︷ ︸

A

+
∥∥∥Φ(Xt)

> (zt − yt)
∥∥∥

V−1
t︸ ︷︷ ︸

B

+ ‖ht‖V−1
t︸ ︷︷ ︸

C

 .

Controlling A : Note that zt = Φ(Xt)𝜃 + 𝜉t, and therefore Φ(Xt)>zt = Φ(Xt)>Φ(Xt)𝜃 +

Φ(Xt)>𝜉t = Vt𝜃− (Ht + λI) 𝜃+ Φ(Xt)>𝜉t. Replacing this in A ,

∥∥∥𝜃−V−1
t Φ(Xt)

>zt

∥∥∥
Vt

=
∥∥∥𝜃−V−1

t

(
Vt𝜃− (Ht + λI) 𝜃+ Φ(Xt)

>𝜉t

)∥∥∥
Vt

=
∥∥∥(Ht + λI) 𝜃+ Φ(Xt)

>𝜉t

∥∥∥
V−1

t

≤
∥∥∥(Ht + λI) 𝜃

∥∥∥
V−1

t

+
∥∥∥Φ(Xt)

>𝜉t

∥∥∥
V−1

t
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≤
∥∥∥(Ht + λI) 𝜃

∥∥∥
(Ht+λI)−1 +

∥∥∥Φ(Xt)
>𝜉t

∥∥∥
V−1

t

(Vt < Ht + λI)

≤
∥∥∥𝜃∥∥∥

Ht+λI
+
∥∥∥Φ(Xt)

>𝜉t

∥∥∥
V−1

t

(Vt < Ht + λI)

≤ ‖𝜃‖2

√
λmax + ρ2 +

∥∥∥Φ(Xt)
>𝜉t

∥∥∥
V−1

t

(Ht 4 λmaxI, union bound ∀t ∈ [T] w. p. 1− ζ/2)

≤ B
√
(λmax + ρ2) +

∥∥∥Φ(Xt)
>𝜉t

∥∥∥
V−1

t

(Lemma 7.10)

≤ B
√
(λmax + ρ2) +

∥∥∥Φ(Xt)
>𝜉t

∥∥∥
(St+(λ+λmin)I)

−1 (Ht < λminI)

To bound the second term on the RHS, we use the “self-normalized bound for vector-valued

martingales” of Abbasi-Yadkori et al.(Abbasi-Yadkori et al., 2011) (Theorem 1), which gives

us that with probability 1− ε/2 for all t ∈ [T] simultaneously,

∥∥∥Φ(Xt)
>𝜉t

∥∥∥
(St+(λ+λmin)I)

−1 ≤ ρ

√
2 log

2
ζ
+ log

det (St + λ + λminI)
det (λ + λminI)

.

Controlling B :

‖Φ(Xt)
>(zt − yt)‖V−1

t
≤
∥∥∥Φ(Xt)

> (zt − yt)
∥∥∥

H−1
t

(Vt < Ht)

≤ ‖Φ(Xt)>(zt − yt)‖2√
λmin

(Ht < λminI)

≤ ‖Φ(Xt)‖2 ‖zt − yt‖2√
λmin

(Cauchy-Schwarz)

≤ tBε√
λmin

. (‖Φ(x)‖2 ≤ 1 and definition of zt)

Controlling C : We can see that ‖ht‖V−1
t
≤ ‖ht‖H−1

t
and with probability 1− ζ/2 (from the

control of A ), for all rounds this is bounded by κ.

Combining all three, we obtain that with probability at least 1− ζ/2, for any x ∈ D,

and simultaneously for all t ∈ [T]:

µ̂(x)− µ̃t(x) ≤ σ̃t(x)

B
ρ

√
(λmax + ρ2) +

√√√√
2 log

2
ζ
+ log

det
(

S̃t + λminI
)

det ((λ + λmin)I)
+

tBε

ρ
√

λmin
+

κ

ρ


︸ ︷︷ ︸

υ1/2
t

.
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The complete algorithm is summarized in Algorithm 12, and prooof is presented in the

appendix. Note that we describe the algorithm abstractly for any ε-uniformly approximat-

ing feature Φ with dimensionality m, and Theorem 7.1 (and the regret bound) hold for any

such feature approximation that also satisfies supx∈D‖Φ(x)‖ ≤ 1. The algorithm is de-

scribed in two separate entities, the Server and the Privatizer, where the privatizer entity

has access to the raw rewards and contexts, and the server only obtains privatized versions

of the statistics. We now present specific Φ such that we obtain an efficient algorithm.

Remark 7.1 (Parameter Release). µ̃ can be determined entirely only with the parameters

S̃t, ũt (Equation 7.3). If the noise variables Ht, ht are constructed such that the resulting

parameters satisfy privacy constraints (see next section), these parameters are by design

differentially private and hence µ̃ can be released without using the sample path (xt, yt)t≤T.

7.4.2 Noisy Quadrature Fourier Features

Bochners’ theorem (Bochner, 1933) states that there exists an integral form for stationary k,

where the integrand is a product of identical features of the inputs:

k(x− y) =
∫

Ω

sin(𝜔>x)

cos(𝜔>x)

>sin(𝜔>y)

cos(𝜔>y)

 p(𝜔).

When the above integral is approximated by a Monte-Carlo average, we obtain the pow-

erful Random Fourier Features (RFF, (Rahimi & Recht, 2008)) approximation. Random

Fourier features, while approximating a variety of kernels, are not efficient since εRFF =

O(m−1/2), requiring prohibitively many features m for our purpose. We consider Quadra-

ture Fourier Features (QFF, Dao et al. (2017)), a stronger approximation that is motivated by

numerical integration, and allows ε to decay exponentially in m. To define QFF, we require

that the kernel be Fourier decomposable.

Assumption 7.1 (Decomposability of k). Let k be a stationary kernel defined on Rd ×Rd and

k(x, y) ≤ 1 ∀ x, y ∈ Rd with a Fourier transform that decomposes product-wise3, i.e.,

p(𝜔) = πd
j=1 pj(𝜔j).

3
This is satisfied for commonly-used kernels, e.g., squared exponential. Matérn kernels are decomposable

when d = 1. For d > 1, Mutny & Krause (2018) present a modified Matérn kernel that can be used a surrogate.
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Definition 7.4 (Quadrature Fourier Features). Let D = [0, 1]d, and x, y ∈ D. Fix m = (m̄)d

for some m̄ > 1, and let p(𝜔) = exp
(
−∑d

i=1
ω2

i ν2
i

2

)
be the Fourier transform of k. The QFF

features Φ(x) is defined as:

Φ(x)i =


√

Πd
j=1

1/νiQ(ωi,j) cos(𝜔>i x) if i ≤ m
2√

Πd
j=1

1/νiQ(ωm−i,j) sin(𝜔>m−ix) o.w.

Where Q(ωi,j) =
2m−1/2m!

√
π

νjm2 Hm−1(ωi,j)
and Ht is the tth Hermite polynomial, and hence Φ is of dimension-

ality 2m. The set (𝜔i)
m
i=1 is the Cartesian product of {ω̄j}m̄

j=1, where each element ω̄i ∈ R and is a

zero of the ith Hermite polynomial. See Hildebrand (1987) for details.

Theorem 7.2 (QFF Error (Mutny & Krause, 2018)). Let Φ(·), m and m̄ be as defined above,

D = [0, 1]d and ν = mini νi. Then,

sup
x,y∈D

|k(x, y)−Φ(x)>Φ(y)| ≤ d2d−1
√

π

2
1

m̄m̄

( e
4ν2

)m̄
.

Remark 7.2. Theorem 7.2 implies that the error ε decays exponentially in m when m > ν−2
.

Mutny & Krause (2018) evaluate this phase transition in detail, where a break is observed

in simulations. For any known kernel k however, we can simply select m > ν−2
to en-

sure decay. Moreover, for additive kernels, it can be demonstrated that the dependence is

exponential in the effective dimension, which can be much less than d.

By adding appropriate (Ht, ht) to maintain privacy, we obtain noisy quadrature Fourier

features (NQFF).

Definition 7.5 (Noisy Quadrature Fourier Features (NQFF)). Let Φ : Rd → Rm be an

ε−approximation QFF to the stationary kernel k, and (Ht, ht)T
t=1 be a sequence of perturbations.

Then, at any instant t, we can define the noisy QFF as Φ̃(Xt) =

Φ(Xt) 0

0 Γt

, where Γ>t Γt = Ht

can eb obtained by the eigendecomposition of Ht.

7.4.3 Regret Analysis

We first present the regret bound for GP-UCB with generic ε-uniformly approximating fea-

tures Φ with dimensionality m. Note that this bound is applicable to any approximation

technique that satisfies supx∈D‖Φ(x)‖ ≤ 1, and suitable λmin, λmax and κ.
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Theorem 7.3 (Regret Bound). Let k be a stationary kernel with the associated RKHSHk, and Fm

be an RKHS with feature Φ(·) of dimensionality m, that ε-uniformly approximates every f ∈ Hk

when ‖ f ‖ ≤ B. Furthermore, assume λmin, λmax and κ such that they are (ζ/2T) -accurate and

all regularizers Ht < 0 ∀t ∈ [T] are PSD. Then for (υt)T
t=1 chosen by Theorem 7.1, GP-UCB with

noisy proximal features obtains the following cumulative regret with probability at least 1− ζ:

R(T) ≤ 2
√

TυTγT +
2T3√υTε

3ρ
+ 2TBε.

Where γT is the maximum information gain (Definition 7.1).

Sketch. The first key observation is to bound the per-round regret from f with the per-

round regret from optimizing µ̂. Next, we utilize standard techniques from the analysis of

GP-UCB to bound the regret in terms of υt and σ̃t (using Theorem 7.1 twice), and finally

provide a bound on σ̃t in terms of the true information gain γT. Summing over all rounds

and manipulating proves the result.

Proof. We first bound the instantaneous regret rt at any instant t.

rt = f (x∗)− f (xt)

≤ µ̂(x∗)− µ̂(xt) + 2Bε (Lemma 7.1)

≤ υtσ̃t(x∗) + µ̃t(x∗)− µ̂(xt) + 2Bε (Theorem 7.1 (∀t ∈ [T] w.p. ≥ 1− ε/2))

≤ υtσ̃t(xt) + µ̃t(xt)− µ̂(xt) + 2Bε (Algorithm)

≤ 2υtσ̃t(xt) + 2Bε (Theorem 7.1 (∀t ∈ [T] w.p. ≥ 1− ε/2))

≤ 2υtσt(xt) + 2Bε +
2t2υt

√
ε

ρ
. (Lemma 7.11)

Now, we can sum over all rounds t ∈ [T] to obtain the overall regret:

R(T) =
T

∑
t=1

rt ≤ 2
T

∑
t=1

(
υtσt(xt) + Bε +

t2υt
√

ε

ρ

)

≤ 2υT

(
T

∑
t=1

σt(xt) +
√

ε
T

∑
t=1

t2

ρ

)
+ 2TBε

≤ 2υT

(
T

∑
t=1

σt(xt)

)
+ υT

T3√ε

3ρ
+ 2TBε
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≤ 2υT


√√√√T

(
T

∑
t=1

σ2
t (xt)

)
+

T3√ε

3ρ

+ 2TBε

≤ 2υT

(√
T log (I + (λ + λmin)−1KT) +

T3√ε

3ρ

)
+ 2TBε

(Lemma 5.4 of Srinivas et al.(Srinivas et al., 2010))

≤ 2υT

(√
TγT +

T3√ε

3ρ

)
+ 2TBε

(Lemma 5.4 of Srinivas et al.(Srinivas et al., 2010))

Consider the substitutions λ = λmax + ρ2
and λ = λ + λmin. Then we have,

= 2

(
B
ρ

√
λ +

√
2 log

2
ζ
+ log

det (ST + λI)
det (λI)

+
TBε

ρ
√

λmin
+

κ

ρ

)(√
TγT +

T3√ε

3ρ

)
+ 2TBε.

Further simplifying and substituting T̃ =
(√

TγT + T3√ε
3ρ

)
for brevity,

= 2

(
B
ρ

√
λ +

√
2 log

2
ζ
+ log

det (Φ(XT)>Φ(XT) + λI)
det (λI)

+
TBε

ρ
√

λmin
+

κ

ρ

)
· T̃

+ 2TBε.

By the Hadamard inequality,

≤ 2

(
B
ρ

√
λ +

√
2 log

2
ζ
+ log det

(
diag(Φ(XT)>Φ(XT))

λ + λmin
+ I
)
+

TBε

ρ
√

λmin
+

κ

ρ

)
· T̃

+ 2TBε

≤ 2

(
B

√
(

λmax

ρ2 + 1) +

√
2 log

2
ζ
+ m log(1 +

T
ρ + λmin

) +
TBε

ρ
√

λmin
+

κ

ρ

)
· T̃

+ 2TBε. (7.6)

By replacing υT in the result, and manipulating terms, we can conclude that if we have
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Φ such that ε = O(exp(−m)) and m = O(polylog(T)), then we can obtain sublinear regret.

Using the properties of QFF from earlier, we can obtain a specific bound as follows.

Corollary 7.1. Fix m = 2(6 log T)d and let k be any kernel that obeys Assumption 7.1. Algo-

rithm 12 run with m-dimensional NQFF and noise Ht, ht that are ζ/2T-accurate with constants

λmax, λmin and κ obtains with probability at least 1− ζ, cumulative pseudoregret:

R(T) = O
(√

TγT

(
B
√

λmax

ρ
+

√
log

1
ζ
+ (log T6)d+1 +

κ

ρ

))
.

Proof. From Theorem 7.2, when m̄ = 6 log T, and ν2 < m we have that for any x, y ∈

D, sup
x,y∈D

|k(x, y) − Φ(x)>Φ(y)| ≤ C1
T6 = ε for some constant C1. Replacing this in Equa-

tion 7.6 we see that the terms dependent on ε are o(1), giving us the final result.

Remark 7.3 (Selection of m). Note that the analysis presents a bound in terms of the in-

formation gain of the true kernel k, and hence requires m = 2(log T6)d
features. However,

an alternate technique will be to bound the information gain of k̃, which can subsequently

be bound with a term of O(
√

m log T). In this case, setting m = 2(log T3)d
suffices for no-

regret learning, however the obtained regret is (coarsely) O(
√

T(log T)d+1), which can be

loose if γT = o((log T)d+1) (e.g., when k is low-rank).

Remark 7.4 (Feasibility of Kernel Approximations). The current framework requires ε =

o(T−4)with m = O(polylog(T)) to obtain a no-regret algorithm. Random Fourier Features,

while capable of approximating a variety of stationary kernels, decay with ε = O(m−1/2)

which makes them infeasible. For finiteHk, the results manifestly hold with ε = 0.

Remark 7.5 (Unknown T). When T is unknown, we can use a doubling scheme to calculate

m and ε. To calculate ε, we assume T = 1 for the first round, then assume T = 2 for the

next, and then assume T = 4 for the next 2 rounds, T = 8 for the next 4 rounds and so on,

and set ε = O(t−5), for instance, within each “period” of length t between doubling of T

to calculate m. We see that the regret is at most Õ(
√

t) for this period. Since there are at

most O(log T) such periods, and t ≤ T, the total regret is O((log T)
√

T).
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7.5 GP-UCB with Differential Privacy

We now present the mechanism to ensure Algorithm 12 is differentially private. Proceed-

ing with the standard definition of differential privacy for the streaming setting, however,

is infeasible (i.e., leading to linear regret, see Claim 13 of Shariff & Sheffet (2018)). We there-

fore work with a modified notion of privacy that is the standard for sequential decision-

making (Shariff & Sheffet, 2018; Vietri et al., 2020b).

Definition 7.6 (Joint Differential Privacy (JDP)). Let S = (Di, yi)
T
i=1 and S′ = (D′i , y′i)

T
i=1 be

two sequences such that (Di, yi) = (D′i , y′i) for all i 6= t, and S−t ⊆ D1 × ...×Dt−1 ×Dt+1 ×

...×DT denote a sequence of actions except the tth. An algorithm A is (ε, δ)-JDP under continual

observation if for any t ∈ [T], S, S′, it holds that P(A(S) ∈ S−t) ≤ eεP(A(S′) ∈ S−t) + δ.

The only change in the JDP setting (compared to standard DP) is that the algorithm is

allowed to be non-private at time t with respect to Dt (i.e., the active decision set). This

is crucial as standard DP would imply that for any two actions x, x′ ∈ Dt, P(at = x) ≈

P(at = x′) and the algorithm would incur linear regret.

7.5.1 Approximate GP-UCB with JDP

Our approach involves perturbing (St, ut) by noise (Ht, ht) to ensure JDP, and it is summa-

rized in Algorithm 13. Observe that the estimates (S̃t, ũt) are noisy cumulative sums of St =

∑t−1
τ=1 Φ(xτ)Φ(xτ)>, ut = ∑t−1

τ=1 yτ · Φ(xτ). This additive structure naturally suggests that

we utilize a matrix variant of the tree-based mechanism (Dwork & Smith, 2010; Shariff &

Sheffet, 2018) to maintain (S̃t, ũt). We consider the matrix Nt = [Φ(Xt), yt]
> [Φ(Xt), yt] ∈

Rm+1×m+1
and compute this matrix via the tree-based mechanism. The advantage of main-

taining Nt is that Nt+1 = Nt + [Φ(xt), yt]>[Φ(xt), yt] and the top m×m submatrix of Nt

is St and the first m entries of the last column of Nt is ut, giving us the required estimates.

Tree-Based Mechanism. The tree-based mechanism (Dwork & Smith, 2010) estimates the

rolling sum of any series n1, n2, ... via a binary tree. Let Pm+1 be a probability distribution

over Rm+1×m+1
. A trusted entity (in our case, the Privatizer), maintains a binary tree

T whose tth
leaf node stores nt = [Φ(xt) yt]>[Φ(xt) yt] + (1/

√
2) (𝜐t>+ 𝜐t), where 𝜐t is

a sample from Pm+1. Each parent node stores the sum of its children. Now, to compute

(S̃t, ũt) we traverse T to the tth
leaf node, and sum the values at each node. Since the path
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length traversed is 1 + dlog2 Te, we can rewrite S̃t = St + Ht where Ht is the sum of at

most n = 1 + dlog2 Te samples from Pm+1. We now describe selecting Pm+1 to provide a

JDP guarantee.

Lemma 7.2 (JDP). Let Pm+1 be a composition of (m + 1)2 zero-mean normal variables with vari-

ance σ2
ε,δ. If σε,δ > 16n(1 + B2 + 2ρ2 log(8T/δ)) ln(10/δ)2/ε2, then Algorithm 12 with Priva-

tizer following Algorithm 13 is (ε, δ)−jointly differentially private.

Proof. First note that since yt is sub-Gaussian with mean at most B (since ‖ f ‖k ≤ B), we

have from Lemma 7.7, that with probability at least 1− δ/4, for each (yτ)τ∈[T] simultane-

ously,

|yt|2 ≤ B2 + 2ρ2 log
8T
δ

.

The overall sensitivity ∆ of each datum is then given by ‖Φ(xt)‖2 + |yt|2, therefore ∆2 ≤

1 + B2 + 2ρ2 log 8T
δ with probability at least 1− δ/4. Note now that we have the sum of at

most n = 1 + dlog Te noise variables. Therefore, to ensure (ε, δ)−joint DP, we must ensure

each noise variable preserves (ε/
√

8n ln(2/δ), δ/2) privacy (based on zero-Concentrated

DP (Bun & Steinke, 2016)).

If σ2
ε,δ > 16n(1 + B2 + 2ρ2 log 8T

δ )2 ln( 10
δ )

2
then we have by Lemma 7.8 that each noise

term preserves (ε/
√

8n ln(2/δ), δ/2)-DP, proving the result.

Recall that our regret bound (Corollary 7.1) scales with the parameters λmin, λmax and

κ. It remains to provide these quantities under the selected Pm+1 such that they are accu-

rate (Definition 7.3), and provide final regret bounds based on the properties of Pm+1. As

remarked in Shariff & Sheffet (2018), we must shift the noise matrix to ensure that all noise

samples Ht are PSD.

Lemma 7.3 (Accurate Spectrum under JDP). For any ζ > 0, when Pm+1 is selected according

to Lemma 7.2 and Ht, ht are constructed according to Algorithm 13, the following λmin, λmax and

κ are (ζ/2T)−accurate:

λmin = Λ, λmax = 3Λ, κ = σε,δ

√
n
Λ

(
√

m +

√
2 ln

2T
ζ

)
.

Here Λ = σε,δ
√

2n(4
√

m + 2 ln(2T/ζ)).
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Proof. Follows from Proposition 11 from Shariff & Sheffet (2018) with our noise model.

Corollary 7.2 ((ε, δ)-JDP Regret Bound). Fix m = 2(6 log T)d and let k be any kernel that obeys

Assumption 7.1. Algorithm 12 run with m-dimensional NQFF and noise such that it maintains

(ε, δ)−JDP obtains with probability at least 1− ζ, cumulative pseudoregret:

R(T) = O
(√

TγT

(
log(T)

d+2
4

(
1
ε

log
1
δ

log
1
ζ

) 1
2

+ log(T)
d+1

2

))
.

The proof for Corollary 7.2 follows directly by substituting the results from Lemma 7.3

into Corollary 7.1.

Remark 7.6 (Dependence on m). Since the factors λmin, λmax and κ admit a dependence of

O(
√

m) on the dimensionality of Φ, we require m = o(
√

T) features to guarantee no-regret

learning under our approach. This constraint is complementary to the constraint on m from

kernel approximation (Remark 7.4), and mandates that even when the approximation k̃ has

small γT (i.e., γT = o(polylog(T)), we require small m.

7.5.2 Approximate GP-UCB with LDP

In many settings, the existence of a trusted entity (e.g., Privatizer) is not possible. For

instance, consider the task of a centralized server learning a bandit algorithm in the case

when each user t does not wish (Dt, yt) to be sent to the server at all (even to select xt).

We can select xt, however, by sending the algorithm’s (privatized) parameters to each user

individually and collecting updated parameters after xt has been played by the user t. Here,

we employ an alternative definition of privacy known as local differential privacy (LDP).

Definition 7.7 (Local Differential Privacy (LDP)). A mechanism g : X → Z is (ε, δ)-locally

differentially private (Bebensee, 2019) (LDP) if for any x, x′ ∈ X , P(g(x) ∈ Z) ≤ eεP(g(x′) ∈

Z) + δ. For any sequence (Dt, yt)T
t=1, an algorithm A protects locally joint differentially privacy

(LDP) if for any t, A is locally differentially private with respect to each (Dτ, yτ) simultaneously

where τ 6= t.

This definition combines joint differential privacy (operating globally) with local differ-

ential privacy (operating individually). It is a stronger privacy guarantee than JDP, since it

requires A to be private to each user simultaneously.
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Lemma 7.4 (LDP implies JDP). Any (ε, δ)−LDP algorithm A protects (ε, δ)-JDP ∀t ∈ [T].

Proof (Sketch). For any t ∈ [T], any two t-neighboring sequences S and S′ only differ in

the tth
entries (Dt, yt) and (D′t, y′t). Since A is (ε, δ)−locally JDP, P(at′(Dt, yt)) ∈ St′) ≤

eεP(at′(D′t, y′t)) ∈ St′) + δ for all t′ 6= t, from which the result follows. The complete proof

is provided in Section 7.8.2

Since a trusted entity does not exist, learning is done by sending the parameters directly

to the users (ref. clients). We outline a server-client protocol and associated algorithm for

(ε, δ)-LDP Gaussian Process bandit optimization in Algorithm 14. This algorithm requires

noise added individually to (Φ(xt), yt) (instead of (St, ut)). We achieve this by perturbing

St and ut separately with Nt ∈ Rm×m
where Nt(i, j) ∼ N (0, σ2

X) for i ≥ j and Nt(i, j) =

Nt(j, i) otherwise and nt ∈ Rm
is such that nt(i) ∼ N (0, σ2

u). The variances σ2
X and σ2

u are

chosen to ensure (ε/2, δ/2) respectively, securing (ε, δ)-LDP.

Lemma 7.5 (Noise for LDP). Algorithm 14 is (ε, δ)−locally JDP whenever,

σ2
X ≥

8
ε2 ln

5
2δ

, σ2
u ≥

8
ε2

(
B2 + 2 ln

8m
β

)
ln

5
δ

.

Proof. We first note that the L2−sensitivity of each element within Φ(xt)>Φ(xt) is 1 by the

fact that ‖Φ(x)‖ ≤ 1. Next, note that the L2− sensitivity of each element of ytΦ(xt) is with

probability at least 1− δ/4 at most B + ρ
√

2 log 8m
β (yt is Gaussian with mean at most B).

Now, by the Gaussian mechanism for local DP (Dwork & Roth, 2014), we have that for

σ2
x ≥

8 ln(2.5/δ)
ε2 and σu ≥

8(B2+2 log 8m
β ) ln(5/δ)

ε , both Φ(xt)>Φ(xt) + Nt and ytΦ(xt) + nt are

(ε/2, δ/2)−locally DP.

It remains to bound the spectral parameters (λmin, λmax and κ) in order to obtain regret

bounds.

Lemma 7.6. (Spectrum for LDP) For any ζ > 0, fix Λ =
√

T(4
√

m + 2 ln(2T/ζ)). When

Pm+1 is selected according to Lemma 7.5 and Ht, ht are constructed according to Algorithm 14, the

following are (ζ/2T)−accurate:

λmin = σxΛ, λmax = 3σxΛ and,κ = σu
√

mTΛ−1.
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Proof (Sketch). The proof is identical to Lemma 7.3 except critically that in this case, Ht (resp.

ht) is the sum of t matrices Nt (resp. nt), with total variance tσ2
X (resp. tσ2

u). Therefore, we

can bound ‖Ht‖2 ≤ σX
√

T(4
√

m+ 2 ln(2T/ζ)) and ‖ht‖2 ≤ σu
√

mT, which gives the result

identical to Lemma 7.3.

Corollary 7.3 ((ε, δ)−LDP Regret Bound). Fix m = (6 log T)d and let k be any kernel that

obeys Assumption 7.1. Algorithm 12 run with NQFF and noise Ht, ht that maintains (ε, δ)−LDP

obtains with probability at least 1− ζ, cumulative pseudoregret:

R(T) = O
(

T
3
4 log(T)

d+2
4

√
γT

ε
ln

1
δ

ln
1
ζ

)
.

The proof for Corollary 7.3 follows directly by substituting the results from Lemma 7.6

into Corollary 7.1.

Remark 7.7 (JDP vs. Locally JDP Regret). Our algorithm for the locally JDP setting obtains

Õ(T3/4) regret in contrast to the JDP regret, which is close to the minimax optimal rate of

Ω̃(
√

T) for squared-exponential and Matérn kernels (Scarlett et al., 2017). It is evident that

this suboptimality is introduced by the Õ(T) noise added via Ht. However, we conjecture

that in the absence of any known structure between the chosen actions x1, ..., xt−1, it is im-

possible to add correlated noise samples (i.e., such that the overall variance is o(T)) while

maintaing local DP, as typically the environment selects Dt independently of Dt−1.

7.6 Experiments

We conduct experiments primarily around the noisy Quadrature features for GP optimiza-

tion, and consider the Joint DP setting. For more experimental results on the approxima-

tion guarantees of QFF, please refer to the appendix and experimental section of Mutny &

Krause (2018), that analyse the efficiency of quadrature features in approximating station-

ary kernels.

We conduct experiments with input dimensionality d = 2 and selecting the squared-

exponential kernel with variance 1, i.e., k(x, y) = exp(−‖x − y‖2
2/2) for simplicity. This

choice was made as we essentially wish to demonstrate that the algorithms are private in

practice for toy experiments, as larger dimensionalities (d > 5) are rarely seen in prac-
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(a) Ablation for the privacy budget ε. (b) Ablations for the failure probability δ.

Figure 7-1: Experimental comparisons for GP-UCB with privacy.

tice (Mutny & Krause, 2018) and would require additive assumptions for efficient infer-

ence (Munkhoeva et al., 2018).

Experimental Setup. We construct f by randomly sampling a set of points I from Bd(2)

such that |I| = 4 and randomly generate 𝛼 from the unit L1 ball Bd(1) (therefore, we as-

sume B = 1). For any input point x, f (x) can then be denoted as f (x) = ∑|I|i=1 αik(xi, x),

where x1, ..., x|I| belong to I . We consider D to be a random sample of size n drawn from

Bd(2) (n may be variable, but is specified prior to each experiment). We draw Dt such that

at least 1 sample x fromDt satisfies f (x) ≥ 0.8 and the others satisfy f (x) ≤ 0.6, ensuring a

suboptimality gap of at least 0.2 (this is implemented somewhat crudely by iterative sam-

pling). At each round t, the agent is presented with a random Dt and it obtains a reward

yt drawn from the distribution Ber( f (x)) and hence |ξt| ≤ 1 and E[yt] = f (x). Addition-

ally, we see that the variance ρ2 = f (x)(1− f (x)) for this case, but that is bounded from

above by 1/4. For simplicity, we restrict ourselves to Bernoulli rewards. This model, while

ensuring sub-Gaussianity, also ensures that the rewards are bounded, and hence removes

an additional logarithmic factor from the sensitivity analysis for the JDP setting. This can

be observed by directly applying L2-sensitivity to the JDP noise (Lemma 7.2), and ignoring

the probabilistic argument.

Effect of ε. We first examine the effect of adjusting the privacy level ε. We fix n = 25,

δ = 0.1 and set T = 1024 (similar to Mutny & Krause (2018)). We run 20 trials and compare

the performance at ε = 0.1, 0.5, 1, 10 (averaged over 20 trials). The regret scales as predicted

with decreasing ε (Figure 7-1a).
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Algorithm camel styb mw
Non-Private 519 885 901

ε = 10 775 1667 1558

ε = 1 1029 2680 2883

ε = 0.1 3324 4493 5002

Table 7.1: Cumulative regret at T = 10K averaged over 10 trials on functions from Mutny & Krause

(2018) for a δ = 0.01.

Effect of δ. Next, we examine the effect of adjusting the privacy failure probability δ.

We fix n = 25, ε = 1 and set T = 1024 (similar to Mutny & Krause (2018)). We run 20 trials

and compare the performance at δ = 0.01, 0.1, 0.5, 0.99 (averaged over 20 trials). The regret

increases with decreasing δ, summarized in Figure 7-1b.

Additional Benchmarks. In addition to the environment proposed earlier, we additionally

evaluate the JDP algorithm on previous benchmark environments. We consider the func-

tional environments for the Camelback (camel), Stybtang-20 (styb) and Michalewicz-10

(mw) benchmarks from (Mutny & Krause, 2018). We observe a consistent increase in regret

as the privacy budget (ε) is reduced (Table 7.1). While the bound predicts a ε−
1
2 deteriora-

tion, we observe a larger effect, which suggests that stronger analyses can close the gap.

7.7 Discussion and Concluding Remarks

In this paper, we presented the first no-regret algorithmic framework for differentially-

private Gaussian Process bandit optimization for a class of stationary kernels in both the

joint DP and local DP settings, extending the literature on private bandit estimation beyond

multi-armed (Mishra & Thakurta, 2015) and linear (Shariff & Sheffet, 2018) problems. We

rigorously analyse the proposed algorithms and demonstrate their provable efficiency in

terms of regret, computation and privacy. Our work additionally introduces several new

avenues for further research - while the dependence of the achieved pseudoregret on T

is near-optimal in the JDP setting, the LDP setting introduces an additional O(T1/4) which

we conjecture is necessary owing to the nested estimation problems involved (Remark 7.7).

Additionally, developing lower bounds on private GP regret and efficient kernel approxi-

mations for non-stationary kernels are valuable pursuits of inquiry.
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7.8 Omitted Proofs

7.8.1 Intermediate Results

Lemma 7.7 (Chernoff with Maximum Mean Bound). Let X be any σ-sub-Gaussian random

variable with mean µ ≤ µ∗ for some constant µ∗. Then, with probability at least 1− β,

|X| ≤ µ∗ + σ

√
2 ln

(
2
β

)
.

Proof. X is sub-Gaussian with variance, therefore by a Chernoff bound,

P (X− µ > t) ≤ exp
(
− t2

2σ2

)
=⇒ P (X > t + µ) ≤ exp

(
− t2

2σ2

)

Subsitituing t′ = t + µ,

=⇒ P
(
X > t′

)
≤ exp

(
− (t′ − µ)2

2σ2

)
=⇒ X ≤ µ + σ

√
2 ln

(
1
β

)
. (With probability at least 1− β)

The same can be derived for the other tail. By combining both statements with a union

bound we get the result.

Lemma 7.8 (DP with probabilistic L2 sensitivity). Let f : R|X | → Rm be an arbitrary d-

dimensional real-valued function with L2−sensitivity ∆ with probability at least 1− β′, and ε ∈

(0, 1) be arbitrary. For c2 > 2 ln(1.25/β), the Gaussian Mechanism with parameter σ ≥ c∆/ε is

(ε, β + β′)−differentially private.

Proof. Denote two adjacent samples inX as x, x′. We release y = f (x) + η and y′ = f (x′) +

η, where η is sampled from the corresponding Gaussian. Let ∆2( f ) denote the sensitivity

of f . For any arbitrary subset S of Rm
,

P(y ∈ S) = P(y ∈ S; ∆2( f ) is ∆) + P(y ∈ S; ∆2( f ) is not ∆)

= P(y ∈ S| ∆2( f ) is ∆)P(∆2( f ) is ∆) + β′P(y ∈ S| ∆2( f ) is not ∆)

≤ P(y ∈ S| ∆2( f ) is ∆)P(∆2( f ) is ∆) + β′
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≤ eε
[
P(y′ ∈ S| ∆2( f ) is ∆) + β

]
P(∆2( f ) is ∆) + β′

= eεP(y′ ∈ S| ∆2( f ) is ∆)P(∆2( f ) is ∆) + βP(∆2( f ) is ∆) + β′

≤ eεP(y′ ∈ S; ∆2( f ) is ∆) + β + β′

≤ eεP(y′ ∈ S) + β + β′.

The second inequality is obtained by the Gaussian Mechanism (Theorem A.1 of Dwork and

Roth (Dwork & Roth, 2014)).

Lemma 7.9 (Existence of Proximal Space (Lemma 4 of (Mutny & Krause, 2018))). Let k

be a kernel defining Hk and f ∈ Hk, its RKHS, such that the spectral characteristic function is

bounded by B. Assuming that the defining points of f come from the set D, let Fm be an approx-

imating space with a mapping Φ such that this mapping is an ε-approximation to the kernel k.

Then there exists µ̂ ∈ Fm (with corresponding feature 𝜃 such that µ̂(x) = 〈𝜃, Φ(x)〉), such that

supx∈D |µ̂(x)− f (x)| ≤ Bε.

Assuming the spectral characteristic function for f is given by 𝛼(ω) = ∑j∈I αj exp(iω>xj),

then µ̂(x) = ∑j∈I αjΦ(x)>Φ(xj) and the corresponding 𝜃 = ∑j∈I αjφ(xj) for the index set I

defining f .

Lemma 7.10 (Norm Bound for Proximal Function). Let µ̂ ∈ Fm denote the ε-approximation of

f given by Lemma 7.9 and 𝜃 denote the corresponding feature representation. Then ‖𝜃‖2 ≤ B.

Proof. Recall that by the Representer Theorem, 𝜃 = ∑i∈I αiΦ(xi) for some (possibly infi-

nite) index set I ⊆ D. Then, we can write ‖𝜃‖2
2 =

〈
𝜃,𝜃

〉
Fm

= ∑i,j∈I2 αiαj
(
Φ(xi)

>Φ(xj)
)
.

Then, we can utilize the property that 𝜃 is van ε-approximation of µt ∈ Hk:

‖𝜃‖2
2 = ∑

i,j∈I2

αiαj

(
Φ(xi)

>Φ(xj)
)
≤ ∑

i,j∈I2

αiαj (‖Φ(x)‖ ≤ 1)

≤ max
ω
|𝛼(ω)|2 (Lemma 4 of (Mutny & Krause, 2018))

≤ B2.

Taking the square root gives us the final form.

Lemma 7.11 (Variance Approximation). Let σt(x) = kt(x)>(Kt +(λ+λmin)I)−1kt(x)where

the quantities in kt and Kt are determined by k via Equation 7.1. Then for all t and x ∈ D, we have
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that,

σ̃t(x) ≤ σt(x) +
2t2√ε

ρ
.

Proof. First note that σ̃t(x) = ρ‖Φ(x)‖V−1
t
≤ ρ‖Φ(x)‖(Gt+(λ+λmin)I)−1 = 1− k̃t(x)>(K̃t +

(λ + λmin)I)−1k̃t(x). Now, we will bound the second quantity on the RHS by σ2
t (x).

σ̃t(x) ≤ σt(x) + kt(x)>(Kt + (λ + λmin)I)−1kt(x)− k̃t(x)>(K̃t + (λ + λmin)I)−1k̃t(x).

Following identically the steps in Proposition 1 (by approximating the difference in terms

of the Frobenius norm of K̃t − Kt in terms of ε) of Mutny et al.(Mutny & Krause, 2018)

(appendix), we obtain the remainder of the proof.

7.8.2 Proof of Lemma 7.4

Note that the output of the algorithm at any instant t is merely xt, and the input data at

any instant t is (xτ, yτ)τ<t. Therefore, we need to bound the ratio of probabilities for any

two t-neighboring sequences S and S′, for all τ 6= t and subset S−t = S1×S2× ...×St−1×

St+1× ...×ST ⊂ D1×D2× ...×Dt−1×Dt+1× ...×DT. Consider the actions taken under

S as x1, ..., xt−1, xt+1, ..., xT and under S′ as x′1, ..., x′t−1, x′t+1, ..., x′T. Then, we have,

P(x1, ..., xt−1, xt+1, ..., xT ∈ S−t)

P(x′1, ..., x′t−1, x′t+1, ..., x′T ∈ S−t)
=

∏T
τ=1,τ 6=t P(xτ ∈ Sτ|(xi, yi)

τ
i=1 ∈ S<t)

∏T
τ=1,τ 6=t P(x′τ ∈ Sτ|(x′i, y′i)

τ
i=1 ∈ S<t)

Since S and S′ only differ in Dt and for identical subsequences up to instant t, A is not

stochastic. Therefore,

=
∏τ>t P(xτ ∈ Sτ|(xi, yi)

τ
i=1 ∈ S<τ)

∏τ>t P(x′τ ∈ Sτ|(x′i, y′i)
τ
i=1 ∈ S<τ)

=
P(xt+1 ∈ St+1|(xi, yi)

t+1
i=1 ∈ S<t+1)

P(x′t+1 ∈ St+1|(x′i, y′i)
t+1
i=1 ∈ S<t+1)

≤ eε + δ

Here, the last inequality follows from the fact that S and S′ differ only in Dt and that A is

(ε, δ)−LDP for all t.
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7.9 Algorithm Pseudocode

Algorithm 12 Approximate GP-UCB

Input: m, Φ that ε-uniformly approximates k.

Privatizer Initialize: S1 = 0, u1 = 0.

for round t = 1, 2, ..., T do
Server:

Receive Dt from environment.

Receive S̃t = St + Ht, ũt = ut + ht ←Privatizer.

Set Vt ← S̃t + λI,𝜃t ← V−1
t ũt.

Compute υt based on Theorem 7.1.

Select xt ← arg maxx∈Dt
〈𝜃t, Φ(x)〉+ υt‖Φ(x)‖V−1

t
.

Play arm xt and obtain yt.

Send (Φ(xt), yt)→Privatizer.

Privatizer:

Sending parameters:

Obtain Ht, ht based on Section 7.5.

Send S̃t = St + Ht, ũt = ut + ht →Server

Updating parameters:

Receive xt, yt ←Server.

Securely update St+1 ← St + Φ(x)Φ(x)> (Sec. 7.5).

Securely update ut+1 ← ut + yiΦ(x) (Section 7.5).

end for

Algorithm 13 Privatizer under JDP

Initialize: Binary tree T .

for round t = 1, 2, ..., T do
Sending parameters:

Obtain S̃t, ũt by traversing T to node t.
Send S̃t, ũt →Server.

Updating parameters:

Receive xt, yt ←Server.

Insert [Φ(xt), yt]>[Φ(xt), yt] into T .

Update noise values n on the inserted path T .

end for
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Algorithm 14 GP-UCB with LDP

Server:

Initialize: S1 = 0, u1 = 0.

for round t = 1, 2, ..., T do
Send S̃t, ũt →Client(t).
Receive updated S̃t+1, ũt+1 ←Client(t).

end for
Client(t):

Initialize σ2
X and σ2

u according to Lemma 7.5.

Receive Dt from environment.

Receive S̃t, ũt ←Server.

Set Vt ← S̃t + λI,𝜃t ← V−1
t ũt.

Compute υt based on Theorem 7.1.

Select xt ← arg maxx∈Dt
〈𝜃t, Φ(x)〉+ υt‖Φ(x)‖V−1

t
.

Play arm xt and obtain yt.

Sample Nt, nt using σ2
X, σ2

u .

Send S̃t+1 → St + Φ(xt)Φ(xt)> + Nt →Server.

Send ũt+1 → ut + ytΦ(xt) + nt →Server.
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Chapter 8

Kernel Methods for Federated

Decision-Making

8.1 Introduction

Up to this point, we have studied federated decision-making problems that are homoge-

neous, i.e., all agents are interacting with identical decision-making environments. We now

consider the heterogeneous federated learning setting (Ghosh et al., 2019; Yu et al., 2020a),

which, in a decision-making context, implies that each agent is present in a potentially

unique environment that is “similar” to the environments of other agents
1
.

Moreover, the assumption of homogeneity does not hold for most decentralized decision-

making problems in practice (Boldrini et al., 2018). For instance, in a decentralized supply

chain network (Thadakamaila et al., 2004), agents interact with similar but non-identical

decision problems, since loads are generally distributed non-uniformly. In this setting,

naïvely incorporating observations from neighboring agents may not be beneficial, and

federated algorithms must be carefully designed to efficiently leverage network feedback.

A related problem is the online social network clustering of bandits, where, at every

trial, a randomly selected agent interacts with the bandit (Cesa-Bianchi et al., 2013; Gentile

et al., 2014, 2017; Li et al., 2016, 2019). In this formulation, a fixed (but unknown) clus-

tering over the agents is assumed, where agents within a cluster have identical context

functions. While the assumptions of linearity and clustering are feasible in the context

1
This requirement of “similarity” is somewhat intuitive, as we cannot expect to be able to transfer informa-

tion from entirely different bandit instances.
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of social networks (Al Mamunur Rashid et al., 2006), these assumptions may not hold for

general multi-agent environments, such as geographically-distributed computational clus-

ters (Cano et al., 2016). In the case when each agent has its own unique decision problem,

the clustering approach leads to a worst-case O(M) multiplicative increase in the group

regret. Moreover, the social network clustering problem is single-agent, since at any trial, only

one agent interacts with the bandit. Multi-agent settings have been considered for social

network clustering (Korda et al., 2016), but without delayed feedback.

In this chapter, we assume, in contrast to the previous chapters, that each agent v ∈ V

interacts with a separate bandit function fv, where all functions fv, v ∈ V have small norm

in a known reproducing kernel Hilbert space (RKHS) H (Schölkopf & Smola, 2005) speci-

fied by a fixed kernel Kx. This is a more general setting compared to the existing clustering

or identical (i.e., homogeneous) settings in the earlier chapters, and allows us to propose a

technique to measure the similarity between the functions fv via an agent-based similarity

kernel, which can be learnt online when it is unknown. Under this formulation, we present

FedUCB-Kernel, an algorithm for the multi-agent contextual bandit problem on networks.

FedUCB-Kernel uses a “network” kernel Kz, to measure similarity between agent reward

functions f1, ..., fV . When Kz is known (such as, e.g., in cases when agents correspond to

users in a social network), we can use Kz to construct a product kernel K = Kz � Kx, and

use K (instead of Kx) to construct upper confidence bounds.

We consider the case when the decision sets presented to any agent can be infinite or

continuum action spaces, and ∀ v ∈ V , ‖ fv‖H ≤ B for some known constant B. In this ker-

nelized bandit setting, a relevant single-agent baseline is the single-agent IGP-UCB (Chowd-

hury & Gopalan, 2017) algorithm, which, for example, obtains a regret of Õ(
√

MT(B
√

γx
MT +

γx
MT)) when run for a total of MT rounds, where γx

MT is the information gain after MT

rounds, the structural complexity of the RKHS specified by Kx, as defined in the previous

chapter (Definition 7.1). We demonstrate that FedUCB-Kernel obtains a regret of

Õ
(√

MT · χ̄(Gd)
(

B
√

γx
MTγz + γx

MTγz

))
.

Here, γz determines the similarity between functions fv via the network kernel Kz, and

χ̄(Gd)
2

is a term accounting for the delayed propagation of information in the network

2
In contrast to prior chapters, we use the notation d to refer to the message life parameter instead of γ to

avoid confusion with the information gain.
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G3
. This bound is achieved by utilizing graph partitions to control the deviation in the

confidence bound for each agent. We can further see that information gain via the con-

texts X ⊂ Rn
typically grows as O((log T)n) for popularly employed kernels such as the

squared-exponential kernel, and the network similarity 1 ≤ γz ≤ M grows as the decision

problems faced by the agents progressively become dissimilar.

In comparison to prior bounds derived in Chapter 6 for the decentralized case, we see

that this bound indeed is better by a factor of

√
d. We achieve this rate by assuming commu-

nication occurs every round and hence we do not require a time-dependent communication

protocol. Furthermore, we demonstrate that this constant can be improved to the indepen-

dence number α(Gd) if the agents follow a leader-follower strategy in the homogeneous

setting, extending the results from Chapter 6 to the RKHS setting.

Our bound is reminiscent of single-agent bounds with additional contexts (Deshmukh

et al., 2017; Krause & Ong, 2011), which rely on a known Kz. However, in many cases,

Kz is (unknown) and requires estimation. For this case, we provide an alternative algo-

rithm (without regret guarantees) via kernel mean embeddings (Christmann & Steinwart,

2010). Against state-of-the-art methods on a variety of real-world and synthetic multi-

agent networks, our algorithm exhibits superior performance. Moreover, we present a vari-

ant, FedUCB-Eager, of our algorithm (without regret bounds) that comfortably outperforms

FedUCB-Kernel and other benchmarks. This extends the current literature of federated ban-

dit estimation from the stochastic multi-armed problem (Landgren et al., 2018; Martínez-

Rubio et al., 2019; Landgren et al., 2016a) to a more general class of functions, and provides

a technique to determine task similarity over arbitrary federated settings.

8.2 Preliminaries

Problem Setup. We consider a multi-agent setting of M agents sitting on the vertices of a

network represented by an undirected and connected graph G = (V , E)4
. We assume that

agents each solve unique instances of kernelised contextual bandit problems. At each step

t = 1, 2, ... each agent v ∈ V obtains, at time t, a decision set Dv,t ⊆ X ⊂ Rn
, where X is a

compact subset of Rn
. In this chapter, unlike previous chapters, we assume Dv,t to even be

3χ̄(Gd) denotes the minimum clique number of the dth
power of graph G, i.e., Gd has an edge (i, j) if there

is a path of length at most d between i and j in G.

4
Our results and algorithm can be trivially extended to directed or disconnected case, by considering each

connected subgraph individually, and considering statistics of the directed graph instead.
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an infinite set or a continuum of actions, however, we discuss the case when it is a finite set

of contexts x(1)v,t , x(2)v,t , ... later on, for which tighter regret bounds can be obtained. At each

trial t, each agent selects an action xv,t ∈ Dv,t, and receives a reward yv,t = fv (xv,t) + εv,t.

Where fv : X̃ → R is a fixed (but unknown) function, and εv,t is additive noise such that

the noise sequence {εv,t}∞
t=1,v∈V is conditionally R-sub-Gaussian.

Single-Agent Kernelized UCB. Our approach builds on the existing research for upper

confidence bounds for bandit kernel learning, a line of research that has seen a lot of in-

terest (Srinivas et al., 2009; Krause & Ong, 2011; Chowdhury & Gopalan, 2017; Valko et al.,

2013). The central idea across all these approaches is to construct an upper confidence

bound (UCB) envelope for the true function f (·) using an estimate f̂t, and then chooses an

action xt ∈ Dt that maximizes this upper confidence bound, i.e., for some estimate f̂t of f ,

xt = arg max
x∈Dt

[
f̂t (x) +

√
βtσt−1 (x)

]
.

Here, βt is an appropriately chosen “exploration” parameter, and σt−1 can be thought of

as the “variance” in the estimate f̂t. Existing UCB-based approaches aim to construct a

sequence (βt)t to ensure a near-optimal tradeoff between exploration and exploitation.

The natural choice for f̂t is the solution to the kernelised ridge regression. Given λ ≥

0 and X<t = (xi, yi)
t
i=1,

f̂t = arg min
f∈H

1
t ∑
(x,y)∈X<t

( f (x)− y))2 + λ‖ f ‖2
H. (8.1)

The solution to the above problem (8.1) can be written as the following (Valko et al., 2013)

(for 𝜅t(x) = (K (x, xi))
t
i=1 , yt = (yi)

t
i=1 and Kt = (K(xi, xj))i,j∈[t]):

f̂t(x) = 𝜅t(x)> (Kt + λI)−1 yt.

For any particular choice of the sequence (βt)t, various algorithms can be obtained, with

different regret guarantees. We now present the regret bounds obtained by various algo-

rithms based on the maximum information gain (Definition 7.1).

Remark 8.1 (UCB Regret for Single-Agent Algorithms). Let δ ∈ (0, 1]. For continuum-

armed Dt, choosing βt = 2B + 300γx
t−1 log3(t/δ) guarantees with probability at least 1− δ
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a regret of

Õ
(√

T
(

B
√

γx
T + γx

T log3/2(T)
))

.

This result was demonstrated in the seminal work of (Srinivas et al., 2009) (GP-UCB). In

the work of Chowdhury & Gopalan (2017), this bound was improved to

Õ
(√

T
(

B
√

γx
T + γx

T

))
.

The key element of the approach was a new self-normalized martingale inequality for

infinite-dimensional spaces with the choice of βt = B + R
√

2
(
γx

t−1 + 1 + log
( 1

δ

))
. A fre-

quentist regret bound of Õ(
√

d̃T) was provided via the Sup-KernelUCB algorithm of Valko

et al. (2013) (for finite-armed Dt), where d̃ is the effective dimension of Kx, a measure of

the intrinsic dimensionality of the RKHSH. d̃ is related to γx
as γx ≥ Ω(d̃ ln ln T). Further

work has focused on improving bounds for various families of kernels, e.g., see Janz et al.

(2020); Scarlett et al. (2017).

The primary goal in the federated learning setting is to provide each agent with stronger

estimators that leverage observations from neighboring agents. A suitable baseline, there-

fore, in this setting, would be that of a centralized agent pulling MT arms in a round-robin

manner. Indeed, in the next section we present a lower bound for federated kernelized ban-

dits for certain kernel families. More generally, however, existing single-agent algorithms

propose a regret bound of Õ(γx
MT

√
MT) in this setting, and this is the comparative regret

bound we wish to match. We do not focus on stronger controls for specific kernels or of the

information gain γx
, and for that we refer the reader to references in Remark 8.1.

8.3 Lower Bounds for Kernelized Federated Bandits

We now present lower bounds for the kernelized bandit in homogeneous federated set-

tings, for both squared-exponential and Matérn kernels.

Theorem 8.1. Fix B > 0. Then, for any 1−sub-Gaussian bandit environment with T rounds, every

M agent federated algorithm A interacting with any function f ∈ F (B) endowed with kernel Kx

must incur expected regret after T rounds such that

R(T;A) = Ω
(

log
(

B2M(T − d̃(G))
) n

2

√
M(T + d̃(G))

)
, if Kx is sq-exp,
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R(T;A) = Ω
(

B
n

2ν+n (MT)
n+ν
n+2ν

)
, if Kx is Matérn with parameter ν.

Furthermore, if A is a decentralized agnostic policy, then we have,

R(T;A) = Ω
(

log
(
α?(Gγ)MTB2) n

2
√

α?(Gγ)MT
)

, if Kx is sq-exp,

R(T;A) = Ω
(

B
n

2ν+n (α?(Gγ)MT)
n+ν

n+2ν

)
, if Kx is Matérn with parameter ν.

Where d̃(G) denotes the average delay incurred by any message across the network G, and α?(Gγ) =

N
1+dγ

is Turan’s lower bound (Turán, 1941) on α(Gγ).

Proof. The proof follows the argument in Scarlett et al. (2017) almost exactly except for the

network argument presented in Theorem 2.5. Scarlett et al. (2017) present a construction

of K functions f1, ..., fK to uniformly approximate the unknown function f , i.e., E[ f ] =

∑K
k=1 fk. In summary, for any gap ε, they select K functions whose RKHS norm is bounded

by B, with peak values 2ε such that the ε−optimal points for each function are disjoint.

This proof can be found in Lemma 2 of Scarlett et al. (2017). Under this construction, the

pseudoregret for GP bandit optimization can be reduced to a K armed bandit (see Theo-

rem 2 of Scarlett et al. (2017)). Observe that by Theorem 2.5, for any arbitrary multi-agent

networked policy, we have that the expected regret for a ε−different policy over K arms is

bounded as,

Ek

[
T

∑
t=1

(
M · rk(t)−∑

i∈V
rAi(t)

)]
≥ εMT

0.5− 4ε

√
M(T − d̃(G))

K


From the above we have that if the horizon T satisfies,

T ≤ K
256Mε2 + d̃(G),

Then the cumulative regret is at least
εMT

4 . Otherwise stated, the equivalent control on ε is

as follows.

ε ≤
√

K
256M(T − d̃(G))

.

What we want is to select ε and K such that it is at least as large as the above constraint.
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However, we have that ε is a function of K and vice versa. Now, for the squared exponential

kernel, we have from Equation (23) of Scarlett et al. (2017) that the number of viable arms

for a squared-exponential kernel over n dimensions is K = Θ
(

log
( B

ε

)n/2
)

. Therefore,

using the analysis directly from Scarlett et al. (2017) (Equations 78-83), we can determine

that the appropriate ε = Θ
(

1
256M(T−d̃(G))

log
(

B2 M(T−d̃(G))
256

)n/2
)

. Replacing this value of ε

and K provides us the bound.

Similarly, for Matérn kernels, we select K = Θ
(( B

ε

)n/ν
)

and repeat the analysis. The

second part follows identically for decentralized agnostic policies, starting from the regret

decomposition in Theorem 2.5.

8.4 Cooperative Kernelized Bandits

Network Contexts. Recall that for any agent v, the rewards yv are generated following

yv,t = fv(xv,t) + εv,t. To provide a relationship between different fv, we assume that the

functions fv, v ∈ V are parameteric functionals of some function F : X × Z → R for a

known network context space Z such that ∀ v ∈ V , ∃ zv ∈ Z such that ∀x ∈ X ,

fv(x) = F(x, zv).

Kernel Assumptions. We denote the space X × Z as X̃ , and the overall input (x, z) as x̃.

Furthermore, we assume that the function F has a small norm in the reproducing kernel

Hilbert space (RKHS, Schölkopf & Smola (2005))HK associated with a PSD kernel K : X̃ ×

X̃ → R. HK is completely specified by the kernel K(·, ·), and via an inner product 〈·, ·〉K
following the reproducing property. As is typical with the kernelized bandit literature, we

assume a known bound on the RKHS norm of F, i.e. ‖F‖K ≤ B, and we assume that the

kernel has finite variance, i.e. K(x̃, x̃) ≤ 1, ∀ x̃ ∈ X̃ 5
.

Finally, we must impose constraints on the interaction of the inputs x and z via two

kernels Kx(·, ·) and Kz(·, ·). We assume that K is a composition of two separate positive-

semidefinite kernels, Kz and Kx such that Kz : Z ×Z → R, i.e., operating on the network

contexts, and Kx : X ×X → R operates on the action contexts. Our regret bounds assume

5
These are typically made assumptions in the contextual bandit literature, and avoid scaling of the regret

bounds. In the linear case, the first assumption corresponds to having a bound on the norm of the context

vectors (Chowdhury & Gopalan, 2017), and the second is to ensure the methods are scale-free (Agrawal &

Goyal, 2012).
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that the overall kernel K is formed via the Hadamard product of Kx and Kz:

K
(
(z, x), (z′, x′)

)
= Kx(x, x′)Kz(z, z′).

Remark 8.2 (Kernel Compositions). For the development in the paper, we restrict ourselves

to the Hadamard composition, however, it is important to note that this is not a limitation

of our technique, and other compositions can be explored. See Section 8.10 for details on

the sum (Kz ⊕ Kx), and Kronecker (Kz ⊗ Kx) compositions.

Remark 8.3 (Independent vs. Pooled Modeling). When Dv,t are countably finite, an alter-

nate formulation is the “independent” assumption (Li et al., 2010), where a separate model

is considered for each “arm”. We assume the “pooled” environment (Abbasi-Yadkori et al.,

2011), (i.e., where all “arms” are modeled together), however it is easy to extend results to

the former setting, by assuming arm-dependent network contexts (see Section 8.10).

The network kernel, Kz, determines how “similar” agent functions fv are. For example,

if all agents solve the same bandit problem, i.e., fv = f ∀v ∈ V , then the appropriate choice

for this is to set Z = {1}, and zv = 1 for all v ∈ V , and hence, K = Kx. Alternatively,

in many internet applications, users (which may correspond to agents) are arranged in an

online social network (say, Gnet), and zv can be a network embedding of user v in Gnet.

Typically, however, Z can be defined more generally with a corresponding positive semi-

definite (PSD) kernel Kz.

8.4.1 Peer-to-Peer Communication

In this chapter as well, we will be operating in the decentralized setting (see Chapter 2 for

a detailed description of the protocol), where agents communicate via peer-to-peer mes-

sages. We remark that our results can easily be extended to the distributed setting without

significant changes to the algorithm. The protocol assumes that pulling a bandit arm and

communication occur sequentially within each trial t, i.e., first, each agent v ∈ V pulls

an arm x̃v,t and receives a reward yv,t from the respective bandit environment. The agent

then sends the message 𝑚v,t = 〈t, v, x̃v,t, yv,t〉 to its neighbors in G. This message is for-

warded from agent to agent d times (taking one trial of the bandit problem each between

forwards), after which it is dropped. The time-to-live (delay) parameter d is a common tech-
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nique to control communication complexity in this setting. Each agent v ∈ V therefore also

receives messages𝑚v′,t−d(v,v′) from all the nodes v′ such that d(v, v′) ≤ d.

8.4.2 The FedUCB-Kernel Algorithm

In this section we present the primary algorithm, FedUCB-Kernel. The central ideas in the

development of the algorithm are (a) to leverage the similarity of the agent kernels (as

specified by Kz) and (b) to control the variance estimates σ2
v,t−1 between agents by delayed

diffusion of rewards.

Using an Augmented Kernel. For each agent v ∈ V we construct an upper confidence

bound (UCB) envelope for the true function fv(·) = F(·, zv) over the space X̃ . This is done

by using the composition kernel K instead of the action kernel Kx, which allows us to take

the network context zv into account. The agent then chooses an action that maximizes the

upper confidence bound, following the typical approach in UCB-based algorithms. For any

v ∈ V , x ∈ Dv,t, the UCB can be given by,

xv,t = arg max
x∈Dv,t

[
F̂v,t (zv, x) +

√
βv,tσv,t−1 (zv, x)

]
.

Here F̂v,t(·, zv) is the agent’s estimate for fv at time t, and the second term denotes the

exploration bonus. Using xv,t, the agent can construct the aggregate optimal context x̃v,t =

(zv, xv,t). F̂v,t is obtained by solving:

F̂v,t = arg min
f∈HK

 ∑
(x̃,y)∈X̃v,t

( f (x̃)− y)2

+ λ‖ f ‖2
HK

. (8.2)

Here, X̃v,t = (x̃i, yi)
nv(t)
i=1 denotes the nv(t) total action-reward pairs available at time t. Note

that this comprises not just personal observations, but additional observations available

via the messages received until that time. The solution to the above problem (8.2) is given

as:

F̂v,t(x̃) = 𝜅v,t(x̃)> (Kv,t + λI)−1 yv,t.

Here, 𝜅v,t(x̃) = (K (x̃, x̃i))
nv(t)
i=1 denotes the vector of kernel values between the input vector

x and all previously stored data by agent v, and similarly yv,t = (yv,i)
nv(t)
i=1 denotes the
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vector of rewards. The matrix Kv,t denotes the nv(t)× nv(t) matrix of kernel evaluations of

every pair of samples x̃i, x̃j ∈ X̃v,t possessed by agent v. To construct the sequence (βv,t)t,

following result motivates the upper confidence bound.

Lemma 8.1. Let X̃ ⊂ Rn, and F : X̃ → R be a member of the RKHS of real-valued functions

on X̃ with kernel K, and RKHS norm bounded by B. Then, with probability at least 1 − δ, the

following holds for all x̃ ∈ X̃ , and simultaneously for all t ≥ 1, v ∈ V :

∣∣∣F(x̃)− F̂v,t(x̃)
∣∣∣ ≤ σ2

v,t−1(x̃)

(
B + R

√
ln

det (λI + Kv,t)

δ2 + 2 log(M)

)
.

The proof for this confidence bound can be derived by a union bound over all M agents

of the kernelized self-normalized concentration inequality from Chowdhury & Gopalan

(2017) (Theorem 1). This result holds simultaneously for all t ≥ 1, and hence prevents the

second logarithmic term, in contrast to Srinivas et al. (2009) for continuum-armedDv,t. We

denote the “variance” proxy for the UCB as

σ2
v,t−1(x̃) = K (x̃, x̃)− 𝜅v,t(x̃)> (Kv,t + λI)−1 𝜅v,t(x̃).

Controlling Drift via Clique Partitions. The fundamental idea in controlling regret is to

bound the per-round regret incurred by any agent by the UCB “variance” term σ2
v,t−1(x̃v,t),

and the algorithm attempts to bound ∑v∈V σ2
v,t−1(x̃v,t) by a quantity smaller than O(

√
M)

(i.e., improve over non-cooperative behavior). Our approach is to obtain this rate by parti-

tioning G into g subgraphs G′1, ..., G′g, and ensuring that the variance terms are similar for

each agent within a subgraph for all t. Our partitioning solution is a conservative one: let

C be a clique covering of the d-power of G. For any clique C ∈ C, we restrict each agent

v ∈ C to only accept observations from agents that belong to C as well. This ensures that at

any t, any agent v ∈ C has an upper bound on σ2
v,t−1 that depends only on C. Therefore we

can control the group regret within each clique C, leading to a factor of

√
χ̄(Gd) (instead of

M) in the regret, where χ̄(·) is the clique number.

Remark 8.4 (Computational complexity). As outlined in Valko et al. (2013), it is possible

to perform an O(1) update of the Gram matrix, via the Schur decomposition (l. 30-34,

Algorithm 15). This update can also be applied when Kz is unknown and approximated

online, see Section 8.4.3.
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Algorithm 15 presents the FedUCB-Kernel algorithm with a tunable exploration param-

eter η, which can be different from the parameter βv,t used in the analysis, as is typical in

this setting (Gentile et al., 2014; Chowdhury & Gopalan, 2017). We now present a regret

bound for this algorithm.

Theorem 8.2 (Group Regret under Delayed Communication). Let C be a minimal clique cov-

ering of Gd. When Dv,t is continuum-armed, Algorithm 15 incurs a per-agent average regret that

satisfies, with probability at least 1− δ,

R(T) = O
(√

χ̄(Gd) ·
T
M

(
R · γ̂T +

√
γ̂T

(
B + R

√
2 log

Mλ

δ

)))
.

Here γ̂T = maxC∈𝐶
[
log det

( 1
λ KC,T + I

)]
is the overall information gain, and for any clique

C ∈ C, the matrix KC,T is the Gram matrix formed by actions from all agents within C until time

T, i.e. (x̃v,t)v∈C,t∈[T].

The proof has been deferred to Section 8.9.2 for brevity. Note that the proof technique

used in this result differs from the prior approaches in Chapters 6 and 7 as we introduce an

additional parameter space Z corresponding to the network contexts, despite the leading

terms in the bound being similar.

We first discuss the leading factors in the bound. Compared to single-agent bounds, a

coarse approximation of our rate reveals an additional factor of O
(√

χ̄(Gd)
)

. This factor

arises from the delayed spread of information, and is equal to the minimum clique num-

ber of the d power graph of the communication network. When G is d-complete (i.e., Gd is

complete), χ̄(Gd) = 1, providing us the best rate. An example topology when this condi-

tion is realized include d/2-star graphs (one node at the center, and ‘spikes’ of d/2 nodes).

Conversely, since we assume G is connected, in the worst-case graph, χ̄(Gd) = dV/de. in

which case the regret bound is equivalent to that obtained when all agents run in isolation.

This is achieved, for example, in a line graph. Now, we formalize the idea of heterogeneity

among agents.

Definition 8.1 (Heterogeneity). In a multi-agent setting with M agents and context vector space

Z with kernel Kz, let Kz be the matrix of pairwise interactions, i.e., Kz = (K(zv, zv′))v,v′∈V . Then,

the corresponding heterogeneity γz for this setting is defined as γz = rank(Kz).

For the composition considered in our paper, we can derive a regret bound in terms of
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γx
MT, i.e., the information gain from MT actions x across agents and heterogeneity γz.

Corollary 8.1. When K = Kz � Kx, Algorithm 15 incurs the following per-agent average regret,

with probability at least 1− δ,

R(T) = Õ
(

γz · γMT ·

√
χ̄(Gd) ·

T
M
· log

(
Mλ

δ

))
.

Remark 8.5. The regret bound displays a smooth interaction between the network struc-

ture, communication delays and agent similarity
6
. Corollary 8.1 implies that the communi-

cation effectively acts as a “mask” on the underlying performance, which is controlled by

the proximity of the network contexts. For instance, when network contexts are identical

(homogeneous), γz = 1, and then the network structure entirely determines the regret (via

χ̄(Gd)). Conversely, if Kz is full-rank, then γz = M, and agents cannot leverage coopera-

tion. In this case, no improvement can be obtained regardless of the density of G.

Examples. We now provide a few examples to illustrate the problem setting. Consider

the case when Kx and Kz are both linear. In this case, the algorithm can be understood

as a weighted variant of the linear UCB algorithm: for an observation xv,t from an agent

v to v′, the “weighted” observation is given by (z>v zv′) · x>v,txv,t, and hence the “weight”

is (z>v zv′). In an ideal implementation, the vectors z ∈ Sn−1(1), i.e., the unit sphere in n

dimensions, such that z>z = 1, ensuring that personal observations are given a weight of

1. Alternatively, when both Kz and Kx are RBF kernels, we observe an additive effect, i.e.,

K = exp
(
− ‖zv−zv′‖2

2σ2
z
− ‖xv−xv′‖2

2σ2
x

)
= exp

(
− ‖x̂v−x̂v′‖2

2

)
, where x̂ =

 x/σx

zv/σz

. Note that the

additional factor incurred in comparison to single-agent learning is γz = O(n log(M)) for

sq-exp Kz, and for any action or network kernel, the regret can be obtained via Remark 8.1.

8.4.3 Approximating Network Contexts

The previous analysis assumes the availability of the underlying network context vectors zv

for each agent (or at least oracle access to the kernel Kz), however, for many applications,

this information is not available, and must be estimated from the contexts themselves. Our

6
We demonstrate this smooth relationship for the product kernel, i.e. K = Kz � Kx, however, alternate

relationships are worth exploring. For more details and results on some forms of kernel compositions, see

Section 8.10.
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approach is based on kernel mean embeddings (Blanchard et al., 2011; Christmann & Stein-

wart, 2010; Deshmukh et al., 2017).

Consider the network context space Z to be the RKHS HKx , and we assume that the

contexts xv,t for each agent are drawn from an underlying probability density Pv. The idea

is to use zv as a representation of Pv, so that we can (with an appropriate metric), use Kz as

a measure of “similarity” of the context distributions. For this, we look towards kernel mean

embeddings of the distributions Pv in the RKHSHKx . This implies that the augmented con-

text x̃v,t at any time t for any agent v ∈ V is (Ψ(Pv), xv,t), where Ψ(Pv) = Ex∼Pv [φx(x)] =

Ex∼Pv [Kx(·, x)] is the kernel mean embedding of Pv in HKx . Using this, we can define the

kernel Kz as follows.

Kz (Ψ(Pv), Ψ(Pv′)) = exp
(
−‖Ψ(Pv)−Ψ(Pv′)‖2

2σ2
z

)
.

Here the variance σz can be tuned via experimentation. We can estimate this kernel from

the available context via the empirical mean kernel embedding. Note, however, that in order

to ensure that the estimator is unbiased, for each round t, each agent v must sample the

empirical mean from i.i.d. samples (and not samples that depend on the bandit policy).

Therefore, we compute the empirical mean embedding Ψ̂t(Pv) =
1
t ∑t

i=1 Kx

(
·, x′v,i

)
, where

x′v,i is a random sample from Dv,i. Assuming that the decision sets Dv,i are composed of

samples drawn i.i.d. from the spacePv, this is an unbiased estimator of the true embedding.

Now, we can calculate the empirical kernel approximation K̂z,t(·, ·) at time t:

K̂z,t(Pv,Pv′) = exp

(
−MMDH(Ψ̂t(Pv), Ψ̂t(Pv′))

2σ2
z

)
,

The empirical maximum mean discrepancy (MMD) (Gretton et al., 2012) is the measure

employed to measure the divergence of the embeddings inHKx , and is given by:

MMD
2
H(Ψ̂t(Pv), Ψ̂t(Pv′)) =

t,t

∑
τ,τ′

[
Kx(x′v,τ, x′v,τ′) + Kx(x′v′,τ, x′v′,τ′)− 2Kx(x′v,τ, x′v′,τ′)

]
.

Our next result describes how the approximation (constructed from t samples each) K̂t =

K̂z,t � Kx deviates from the true kernel K = Kz � Kx under this model.

Lemma 8.2. For an RKHS H, assume that ‖ f ‖∞ ≤ d for all f ∈ H with ‖ f ‖H ≤ 1. Then, the
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following is true with probability at least 1− δ for all x, x′ ∈ X̃ :

∣∣∣∣∣log

(
K̂z,t (x, x′)
Kz (x, x′)

)∣∣∣∣∣ ≤ 1
σ2

z

(
sup
P∈PX

Rt(H,P) + 2d

√
1
2t

log
1
δ

)
.

HereRt(H,Pv) denotes the t-sample Rademacher average (Bartlett & Mendelson, 2002) ofH under

Pv ∈ PX .

We prove this in Section 8.9.4. Lemma 8.2 implies the consistency of the empirical Kernel

estimator, i.e., for any v, v′ ∈ V , K̂z,t → Kz with probability 1 as t→ ∞. To obtain Kz we can

employ any other PSD kernel KP on X besides Kx as well.

Remark 8.6 (Regret of Simultaneous Estimation). At any instant, the empirical heterogene-

ity is locally controlled, i.e., for a clique cover C of Gd, γz ≤ maxC∈C |C|2. This follows

directly from Theorem 2 of Krause & Ong (2011) and the fact that for any agent in a clique

C, the empirical kernel approximation only takes 1/2 (|C| · (|C| − 1)) distinct values at any

instant. This implies that sparse network settings can easily be shown to benefit from co-

operation (i.e., when |C| = O(M1/4)), but future work can address stronger controls on the

group regret.

8.5 Extensions

Homogeneous Setting. In the homogeneous federated setting, the network contexts for all

agents are identical, and hence each agent is solving the same contextual bandit problem,

a generalization of the setting in Part I and Chapter 6 to the RKHS setting. When the deci-

sion set is fixed (i.e. Dv,t = D ⊂ X for all v, t, Cesa-Bianchi et al. (2019b)) we can derive a

variant of FedUCB-Kernel that provides near-optimal performance. The central idea of the

algorithm is for centrally-positioned agents to essentially follow Algorithm 15, however,

the agents that are positioned peripherally in G mimic the actions (obtained after the ap-

propriate delay) of these centrally positioned agents (Algorithm 17). We partition the set

of agents G into “central” and “peripheral” agents such that each peripheral agent is con-

nected to at least one central agent in Gd. This algorithm is defined as DistUCB-Kernel as

this algorithm is not decentralized. It just remains to define the partition.

We set the “central” agents VC of G as the maximal weighted independent set of Gd

(where, for any node v ∈ V , the weight wv = Nd(v)), and set the complement VP = V \ VC
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as the “peripheral” set. Each peripheral agent p is assigned the central agent it is connected

to (denoted as cent(p)), and in case any peripheral agent is connected to more than one

central agent, we assign it to the central agent with maximum degree in Gd. The set of

peripheral agents assigned to a central agent c is denoted by π(c). We can then make the

following claim about regret incurred in this setting.

Theorem 8.3. IfDv,t is continuum-armed, DistUCB-Kernel incurs a per-agent average regret that

satisfies, with probability at least 1− δ,

R(T) = Õ
(

γz · γMT ·

√
α(Gd) ·

T
M
· log

(
Mλ

δ

))
.

Here, α(Gd) refers to the independence number of Gd.

The proof is presented in Section 8.9.5. The central concept utilized in this case is to

partition the network in a manner that allows for a group of agents to make identical

(albeit delayed) decisions. The regret analysis uses the property that the vertex cover of

the elements of VC spans Gd, and one can bound the regret by bounding the regret in-

curred by each “central” agent, since for any “peripheral” agent v, the regret incurred is

only a constant larger than the correponding regret incurred by the “central” agent, i.e.,

Rv(T) ≤ Õ(
√

d) +R
cent(v)(T). Note that the proof of this case involves a more delicate

analysis compared to the analysis present in Chapter 4 for the partially-decentralized algo-

rithm, as we have to bound the change in the variance of the Gaussian process due to the

delays, whereas in the earlier analysis, we only had to bound the change in arm pulls.

Remark 8.7. In addition to the tighter average per-agent regret (since α(Gd) ≤ χ̄(Gd)), we

can make a stronger claim about the individual regret for any agent as well. Both these regret

bounds match the rates mentioned for the context-free case in (Cesa-Bianchi et al., 2019b;

Bar-On & Mansour, 2019). Moreover, when d = 1, then the bound on the group regret

matches the lower bound shown in the nonstochastic case (Cesa-Bianchi et al., 2019a).

In comparison to the lower bound presented in Theorem 8.1, we see that up to polylog-

arithmic factors, we match the obtained rate in T and M for both squared-exponential and

Matérn kernels. Comparing the network term, we see that while it is known that Turan’s

bound is not tight, we believe that the suboptimality is in the upper bound, where future

work can improve the rates by a more careful federated exploration strategy.
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Figure 8-1: An experimental comparison of FedUCB-Kernel and its variants with benchmark tech-

niques for contextual bandits. Each experiment is averaged over 100 trials. The top row denotes the

linear kernel, and the bottom row denotes the RBF kernel.

Eager Estimation. In addition to the algorithms mentioned above, we also consider a (po-

tentially stronger) variant of FedUCB-Kernel that does not take delays into account at all,

and simply updates its observation set as soon as it obtains any new information (from any

communicating agent). Consequently, for any arbitrary G and d, this can lead to significant

drift in the Gram matrices for any pair of agents, making this algorithm (dubbed FedUCB-

Eager) significantly more challenging to analyze. We defer the analysis therefore to future

work and present empirical evaluations of this variant in this paper. This algorithm can be

understood as Algorithm 15 run with all observations (i.e., lines 20-22 in Algorithm 15 are

ignored), and we present the complete pseudocode in Algorithm 16.

8.6 Experiments

The central aspect we wish to experimentally understand is the behavior of the algorithm

with respect to network structures and delay in federated learning (alternatively, a detailed

experimental comparison of single-agent KernelUCB under Gaussian noise can be found

in (Srinivas et al., 2009; Krause & Ong, 2011)), and hence our experimental benchmark setup

focuses on these aspects as well. We conduct two major lines of experimentation, the first

on synthetically generated random networks, and the second on real-world networks sub-

sampled from the SNAP network datasets (Leskovec & Sosič, 2016).

Comparison Environments. We compare in two benchmark setups. In order to compare

performance with linear methods, our first setup assumes Kx is the linear kernel, and Kz is
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a clustering of the agents given by the independent sets of the dth
power of the underlying

connectivity graph G (Kz not known to the algorithms a priori, and d = diameter(G)/2).

This is done to motivate the central application scenario where the network connectivity

and task similarity are correlated. The second setup is where Kx and Kz are both randomly

initialized Gaussian kernels (where Kz is again unknown to our method). We run both

setups on graphs of M = 200 nodes, Dv,t is a set of 8 randomly generated contexts for all

v ∈ V , t ∈ T and dimensionality d = 10 forX andZ (for setup 2). For the kernel estimation

task, we set σz = 1, and we set λ = 1.

Network Structures. We run experiments on two network structures - (a) synthetic, ran-

domly generated networks and (b) real-world networks. For the synthetic networks, we

generate random connected Erdos-Renyi networks (Erdős & Rényi, 1960) of size M = 200

with p = 0.7. For the synthetic networks, we subsample M nodes and their corresponding

edges (for M = 200) from the ego-Facebook, musae-Twitch, and as-Skitter networks, in

order to represent a diverse set of networks found in social networks, peer-to-peer distri-

bution and autonomous systems.

Benchmark Methods. In the linear setting, we compare against single-agent LinUCB (Li

et al., 2010) (where every agent runs LinUCB independently), OFUL (Abbasi-Yadkori et al.,

2011) and FedUCB-Kernel and FedUCB-Eager. In the kernel setting, we compare against

single-agent KernelUCB (Valko et al., 2013), IGP-UCB (Chowdhury & Gopalan, 2017). Ad-

ditionally, an important benchmark we compare against is Naive Cooperation, where agents

run IGP-UCB (kernel) and LinUCB (linear) but include observations from neighbors as

their own (without reweighting).

Results Summary. Figure 8-1 describes the regret achieved on each of the 4 benchmark

networks for both linear and RBF (Gaussian) settings. Each plot is obtained after averag-

ing the results for 100 trials, where the bandit contexts were refreshed every trial. We first

highlight the general trend observed. Since the baseline techniques do not utilize coop-

eration at all, we expect them to provide a per-agent regret that scales linearly, instead of

the O(1/
√

M) dependence for our algorithms, which is obtained in our results as well.

Among our algorithms, we see that FedUCB-Kernel and DistUCB-Kernel perform similarly

for the Erdos-Renyi outperforms Naive Cooperation in both the linear and kernel settings,
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which can be attributed to the fact that naive cooperation does not take agent similarities

into account. We observe that FedUCB-Eager consistently outperforms other algorithms,

across all benchmark tasks.

Our motivation for this algorithm stems from work in the delayed feedback regime for

the stochastic (context-free) bandit (Joulani et al., 2013), which suggests that incorporating

observations as soon as they are available can provide optimal regret. While it is challeng-

ing to derive a provably optimal algorithm in the contextual setting (and more challenging

in the multi-agent case), we simply extended the “as soon as” heuristic in FedUCB-Eager.

The observed empirical regret suggests to us that FedUCB-Eager obtains O(
√

T
M (d + α(Gd))

regret, lower than the other variants of FedUCB-Kernel. The other variations between differ-

ent graph families can be attributed to the difference in connectivity (instead of the kernel

approximation).

8.7 Discussion and Related Work

This paper is inspired by and draws from concepts in several (often disparate) subfields

within the literature. We discuss our contributions with respect to these areas sequentially.

Cooperative Multi-Agent Learning. Cooperative bandit learning with delays has main-

tained the setting that all agents solve the same bandit problem (i.e., fully cooperative),

which our work generalizes as a first step. In the nonstochastic (multi-armed) case (without

delays), this problem was first studied in the work of Awerbuch & Kleinberg (2008), where

they proposed an algorithm with a per-agent regret bound of O(
√
(1 + KM−1) ln T), which

matches (up to logarithmic factors) our version of the bound in the same setting (with con-

texts). In the multi-armed case, (Landgren et al., 2016a,b, 2018; Martínez-Rubio et al., 2019)

provide algorithms whose regret scales as a function of the graph Laplacian of G, using a

consensus protocol (Bracha & Toueg, 1985). Our algorithms are based on a message-passing

framework (i.e., Local), which maintains the same communication complexity, while pro-

viding significantly better regret guarantees. Moreover, we can express the consensus pro-

tocol as an instance (albeit restricted) of our algorithm, when Kx(i, j) = µi1{i = j}, µi ∈ R

is a scaled simplex, and Kz(i, j) = Ad(i,j)
ij is the power of the graph Laplacian. Algo-
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rithms for the nonstochastic non-contextual case with delays have been developed in (Cesa-

Bianchi et al., 2019b; Bar-On & Mansour, 2019), that propose algorithms with per-agent

average regret scaling as Õ(
√

α(Gd)TM−1) and individual regret (for agent v ∈ V) scal-

ing as Õ(
√
(1 + K|π(cent(v))|−1)T), which match the regret achieved by DistUCB-Kernel

in the fully cooperative contextual setting. A minimax regret bound for the nonstochastic

context-free of O(
√
(d + K)T) is also provided in (Cesa-Bianchi et al., 2019b), improving

on the work of Neu et al. (2010), which our work improves up to smaller network factors

(

√
χ̄(Gd)). When we compare our regret bounds with the algorithm-agnostic delayed feed-

back regret bounds provided by (Joulani et al., 2013) for the single-agent case, we observe

the same relationship.

Leveraging Social Contexts. There has been extensive research in leveraging social side-

observations across the bandit literature. Cesa-Bianchi et al. (2013) provide an algorithm

called GoB.Lin that assumes an outer-product relationship between information flow in the

network (via the graph Laplacian) and context information. This is exactly an instance of

our framework, where the kernel K(xi, xj) is described by 𝜑̃(xi)A−1
⊗ 𝜑̃(xj) (in their notation),

extended to the (kernel) multi-agent case with delayed feedback. In their setting, our regret

bounds match exactly those of GoB.Lin. The clustering formulation can also be seen as a

variant of the kernel framework, where Kz(zv, zv′) = 1 if agents belong to the same cluster,

and 0 otherwise. The clustering is not known a priori, however, and the work of (Gentile

et al., 2014, 2017; Li & Zhang, 2018) provides algorithms with tight regret guarantees for

this case (our kernel embedding technique is similar in this regard). Again, we highlight

that while multi-agent decision-making has been studied in the social network case (with

non-identical contexts) (Korda et al., 2016; Wang et al., 2020c), none, to our knowledge,

consider general graph communication with delays.

Kernel Methods for Bandit Optimization. A theoretical treatment of kernelised bandit

learning was first explored in the work of Valko et al. (2013), which was built on the Lin-

UCB (Li et al., 2010) and SupLinUCB (Chu et al., 2011), that were in turn inspired by the

early work of Auer et al. (2002a). Our work is an improvement on the single-agent al-

gorithms provided by Valko et al. (2013) owing to the martingale inequality presented

in (Chowdhury & Gopalan, 2017), who use their result to construct improved versions

201



single-agent Gaussian Process bandit algorithms (Krause & Ong, 2011; Srinivas et al., 2009).

Our work also improves on the multi-task framework introduced by (Deshmukh et al.,

2017) to the multi-agent setting with delays, along with a stronger regret bound, and an

approximation guarantee for the kernel mean embedding approach to estimate task similar-

ity. Recent results (Calandriello et al., 2019; Janz et al., 2020) on bandit optimization for

certain kernel families can certainly be used to construct algorithmic variants with stronger

guarantees on the context kernel Kx.

8.8 Conclusion

In this paper we presented FedUCB-Kernel, an kernelized algorithm for decentralized, multi-

agent federated contextual bandits and proved regret bounds of Õ(
√

χ̄(Gd)T/M) on the

average pseudo-regret, and supported our theoretical developments with experimental

performance. However, there are several aspects of the kernelised federated bandit prob-

lem that are left as open problems. An interesting first direction is to establish suitable

lower bounds on the group regret in federated decision-making with delays. An Ω(
√

MT)

lower bound (Bubeck et al., 2012) can be derived for a single-agent playing MT trials se-

quentially, however each of the v ∈ V agents can greatly reduce their uncertainty at every

trial when cooperating, hence understanding the limits of cooperation is an interesting en-

deavor. Next, we presented a variant FedUCB-Eager of our algorithm that does not attempt

to control the drift between the agent Gram matrices, that outperforms our main algorithm.

Additionally, we presented matching lower bound for the homogeneous setting as well.

We conjecture that a regret guarantee of the order Õ(
√
(d + α(Gd))T/M) exists for this al-

gorithm in the linear case, and proving this under suitable assumptions is an interesting

future direction as well. Finally, extending this line of research into the Bayesian case is

also worth exploring.

8.9 Full Proofs

8.9.1 Intermediate Lemmas

Theorem 8.4 (Theorem 2 of (Chowdhury & Gopalan, 2017)). Let D ⊂ Rn, and f : D → R

be a member of the RKHS of real-valued functions on D with kernel K, and RKHS norm bounded
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by B. Then, with probability at least 1− δ, the following holds for all x ∈ D, and t ≥ 1:

∣∣∣ f (x)− f̂t(x)
∣∣∣ ≤ st(x)

B + R

√
2 ln

√
det ((1 + η)It + Kt)

δ



Corollary 8.2. Let X̃ ⊂ Rn, and F : X̃ → R be a member of the RKHS of real-valued functions

on X̃ with kernel K, and RKHS norm bounded by B. Then, with probability at least 1 − δ, the

following holds for all x̃ ∈ X̃ , and simultaneously for all t ≥ 1, v ∈ V :

∆v,t(x̃) ≤ σ2
v,t−1(x̃)

(
B + R

√
ln

det (λI + Kv,t)

δ2 + 2 log(M)

)
.

Proof. This follows from Theorem 8.4 with probability δ/V for each agent v ∈ V , and re-

placing λ = 1 + η.‘

Theorem 8.5 (Theorem 2.1 of (ZI), Characterization of Schur Decomposition). Let A be a

Hermitian matrix given by

A =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 , then, A33−A32A−1
22 A23 ≥ A33− (A31, A32)

A11 A12

A21 A22

−1A13

A23

 .

The central observation in the regret bound is the control of the “variance” terms in each

clique directly in terms of the corresponding clique Gram matrix. We describe this result

in the following lemma.

Lemma 8.3 (Per-Clique Variance Bound). Let C be a clique in Gd and the clique Gram matrix

KC,T be given by:

KC,T =


K(x̃1,1, x̃1,1) ... K(x̃1,1, x̃|C|,T)

... . . . ...

K(x̃|C|,T, x̃1,1) . . . K(x̃|C|,T, x̃|C|,T)

 .
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Then, for any T ≥ d,

T

∑
t=d

∑
v∈C

σ2
v,t−1(x̃v,t) ≤ d|C|B + max(1,

1
λ
) log det

(
1
λ

KC,T + I
)

.

Proof. Consider a hypothetical agent that pulls arms in a round-robin fashion for all agents

in C, i.e., let the agents within the clique C be indexed (without loss of generality) as 1, 2, ..., |C|,

and the agent pulls arms x̃1,1, x̃2,1, ..., x̃1,2, x̃2,2, ..., x̃|C|−1,T, x̃|C|,T. Therefore, the agent will pull

a total of |C|T arms. At any time t ∈ [|C|T], let the corresponding KernelUCB parameters

for this agent be given by:

KC,t =


K(x̃1,1, x̃1,1) ... K(x̃1,1, x̃t mod |C|,bt/|C|c)

.

.

.

.
.
.

.

.

.

K(x̃t mod |C|,t, x̃1,1) . . . K(x̃t mod |C|,bt/|C|c, x̃t mod |C|,bt/|C|c),


𝜅C,t(x) =

[
K(x, x̃1,1), . . . , K(x, x̃t mod |C|,bt/|C|c)

]
.

Consider the variance functional for any agent v ∈ C at time t ∈ στ:

σ2
v,t−1(x̃v,t) = K (x̃v,t, x̃v,t)− 𝜅v,t(x̃v,t)

> (Kv,t + λI)−1 𝜅v,t(x̃v,t)

Let τ be the instance at which the round-robin agent pulls arm x̃v,t−d. By Theorem 8.5, we

have for t ≥ d,

≤ K (x̃v,t, x̃v,t)− 𝜅C,τ(x̃v,t−d)
> (KC,τ + λI)−1 𝜅C,τ(x̃v,t−d).

Therefore,

σ2
v,t−1(x̃v,t) ≤ K (x̃v,t, x̃v,t)

− K (x̃v,t−d, x̃v,t−d) + K (x̃v,t−d, x̃v,t−d)− 𝜅C,τ(x̃v,t−d)
> (KC,τ + λI)−1 𝜅C,τ(x̃v,t−d).

Let σ2
C,τ = K (x̃v,t−d, x̃v,t−d)−𝜅C,τ(x̃v,t−d)

> (KC,τ + λI)−1 𝜅C,τ(x̃v,t−d). Summing up over all
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v ∈ C and t ≥ d:

T

∑
t=d

∑
v∈C

σ2
v,t−1(x̃v,t) =

T

∑
t′=T−d

∑
v∈C

K (x̃v,t′ , x̃v,t′) +
|C|(T−d)

∑
τ=1

σ2
C,τ ≤ d|C|B + log

(
|C|T

∏
τ=1

(1 + σ2
C,τ)

)
.

Here the inequality follows since the kernel K is bounded by B and σ2
C,τ ≤ log(1 + σ2

C,τ).

Lemma 7 of (Deshmukh et al., 2017) provides the following relationship for sequential pulls

x̃v,t, t ∈ [T] and their associated variance terms σ2
v,t−1(x̃v,t) :

∏
t∈[T]

(1 + σ2
v,t−1(x̃v,t)) =

det(KC,T + λI)
λ|C|T+1

= det(
1
λ

KC,T + λI).

This result is obtained using the determinant identity of the Schur decomposition provided

by (ZI). Applying this result to KC,T and variance terms σ2
C,τ gives us the final result (since

the round-robin agent pulls arms sequentially).

8.9.2 Proof of Theorem 8.2

Consider the group pseudoregret at any instant T.

R(T) = ∑
v∈G

(
T

∑
t=1

rv,t

)

Let us examine the individual regret rv,t of agent v ∈ V at time t. From Theorem 8.1

and FedUCB-Kernel, we know that, for each agent v ∈ V , βv,tσv,t−1(x̃v,t) + f̂v,t (x̃v,t) ≥

βv,tσv,t−1(x̃∗v,t)+ f̂v,t
(
x̃∗v,t
)

, fv(x̃∗v,t) ≤ βv,tσv,t−1(x̃∗v,t)+ f̂v,t
(
x̃∗v,t
)

and f̂v(x̃v,t) ≤ βv,tσv,t−1(x̃v,t)+

fv (x̃v,t). Therefore for all t ≥ 1 with probability at least 1− δ,

rv,t = fv(x̃∗v,t)− fv(x̃v,t)

≤ βv,tσv,t−1(x̃v,t) + f̂v,t (x̃v,t)− fv(x̃v,t)

≤ 2βv,tσv,t−1(x̃v,t).

Therefore, for agent v, we have (since βv,t > βv,t−1 (Auer et al., 2002a)),

T

∑
t=1

rv,t ≤ 2βv,T

T

∑
t=1

σv,t−1(x̃v,t) ≤ 2d
√

Bβv,d + 2βv,T

T

∑
t=d

σv,t−1(x̃v,t)
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The second inequality follows from the fact that for all t ≤ d, βv,t ≤ βv,d and that for all

v, t, σv,t−1(x̃v,t) ≤
√

B. We can now sum up the second term for the entire group of agents.

Setting β∗T = maxv∈V βv,T, we get,

T

∑
t=d

∑
v∈V

rv,t ≤ 2β∗T

(
T

∑
t=d

∑
v∈V

σv,t−1 (x̃v,t)

)

≤ 2β∗T

√√√√M(T − d)

(
T

∑
t=d

∑
v∈V

σ2
v,t−1 (x̃v,t)

)

≤ 2β∗T

√√√√M(T − d) ∑
C∈Cd

(
T

∑
t=d

∑
v∈C

σ2
v,t−1 (x̃v,t)

)
(a)
≤ 2β∗T

√
M(T − d) ∑

C∈Cd

(
d|C|B + max(1,

1
λ
) log

(
det(KC,T + λI)

λ|C|T+1

))

≤ 2β∗T

√
M(T − d) · χ̄(Gd) ·max(1,

1
λ
)

(
dBV + max

C∈C
(log det(KC,T + λI))

)
≤ β∗T · O

(√
χ̄(Gd) ·MT · γ̂T

)
.

Here, (a) follows from Lemma 8.3. Now, from the definition of βv,T (Lemma 8.1), we know

that, for all v ∈ V (where v belongs to clique C),

βv,T = B + R
√

λ−1

√
log (det (Kv,T + λI)) + log

2M
δ

≤ B + R
√

λ−1

√
log (det (KC,T + λI)) + log

2M
δ

≤ B + R
√

λ−1

√
γ̂T + log

2Mλ

δ

∴ β∗T = B + R
√

λ−1

√
γ̂T + log

2Mλ

δ

= O
(

B + R

√
γ̂T + log

2Mλ

δ

)
.

Using this result in the earlier derivation, and then averaging over the number of agents

M gives us the final result.

8.9.3 Proof of Corollary 8.1

The proof follows directly from the following result being applied to Theorem 1.
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Lemma 8.4. Let γz = rk (Kz), where Kz = (Kz(zv, zv′))v,v′∈V . When K = Kz � Kx, γ̂T =

2γz (γx
T + log(T)). When K = Kz ⊕ Kx, γ̂T = 2 (γz log(T) + γx

T) .

Proof. We first note that γ̂T ≤ log det
( 1

λ KT + I
)
, where KT = (K(x̃v,t, x̃v′,t′))v,v′∈V ,t,t′∈[T].

Furthermore, note that (a) rk(Kz
T) = rk(Kz), where Kz

T = (Kz(zv,t, zv′,t′))v,v′∈V ,t,t′∈[T], since

Kz
T is composed entirely by tiling T2

copies of Kz. Now, to prove the first part, we simply

use Theorem 2 of (Krause & Ong, 2011) on log det
( 1

λ KT + I
)
. For the second part, we apply

Theorem 3 of (Krause & Ong, 2011).

8.9.4 Proof of Lemma 8.2

We first state a concentration result for the kernel mean embedding obtained by Smola et al.

(2007).

Lemma 8.5 (Smola et al. (2007)). For an RKHS H, assume that ‖ f ‖∞ ≤ d for all f ∈ H with

‖ f ‖H ≤ 1. Then, the following is true with probability at least 1− δ for any Pv ∈ PX :

‖Ψ(Pv)− Ψ̂T(Pv)‖ ≤ 2RT(H,PX ) + d

√
1
T

log(1/δ).

We now begin the proof for Lemma 2 by analysing the absolute log-ratio of the esti-

mated kernel and true kernel at any time instant T. Consider two samples xi, xj ∈ X̃ at any

instant t. The ratio of the approximated and true kernel can be given by,

∣∣∣∣∣log

(
K̂t(xi, xj)

K(xi, xj)

)∣∣∣∣∣ = 1
2σ2

∣∣∣‖Ψ(Pi)−Ψ(Pj)‖ − ‖Ψ̂T(Pi)− Ψ̂T(Pj)‖
∣∣∣

≤ 1
2σ2

∥∥∥Ψ(Pi)− Ψ̂T(Pi)−Ψ(Pj) + Ψ̂T(Pj)
∥∥∥

≤ 1
2σ2

(∥∥∥Ψ(Pi)− Ψ̂T(Pi)
∥∥∥+ ∥∥∥Ψ(Pj)− Ψ̂T(Pj)

∥∥∥) .

Here, the first inequality is obtained via the reverse triangle inequality, and the second is

obtained by Cauchy-Schwarz. Applying Lemma 8.5 with probability δ/2 on each term in

the RHS, and replacing the Rademacher average for a specific P with the sup completes the

proof.
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8.9.5 Proof of Theorem 8.3

We begin with a few observations. Let the independent set used be given by V∗ ⊂ V . For

any agent v ∈ V \ V∗, let c(v) denote the corresponding “center” agent that v will mimic.

Then, we first notice that for any t ≥ d(v, c(v)), xv,t = xc(v),t−d(v,c(v)). We will continue with

the notation used in the proof for Theorem 1.

Lemma 8.6. Let v ∈ V∗ be a “center” agent, and Nd(v) denote its gamma neighborhood (including

itself). Without loss of generality, consider an ordering 1, 2, ..., |Nd(v)| over the agents in Nd(v).

Now, we define the neigborhood Gram matrix Kv,T as:

Kv,T =


K(x̃1,1, x̃1,1) ... K(x̃1,1, x̃|Nd(v)|,T)

... . . . ...

K(x̃|Nd(v)|,T, x̃1,1) . . . K(x̃|Nd(v)|,T, x̃|Nd(v)|,T)

 .

Assume all agents V follow DistUCB-Kernel. Then, for any agent v ∈ V∗ and for any T ≥ d,

T

∑
t=d

∑
v′∈Nd(v)

σ2
v,t−1(x̃v′,t) ≤ Bd|Nd(v)|+ max(1,

1
λ
) log det

(
1
λ

KC,T + I
)

.

Proof. The proof is obtained in a manner similar to Lemma 8.3, with the trivial modification

that each agent v ∈ V∗ considers observations from its entire neighborhood Nd(v) and not

just its parent clique.

Now, consider the group pseudoregret at any instant T.

R(T) = ∑
v∈G

(
T

∑
t=1

rv,t

)

Let us examine the individual regret rv,t of agent v ∈ V at time t. From Theorem 8.1

and FedUCB-Kernel, we know that, for each agent v ∈ V , βv,tσv,t−1(x̃v,t) + f̂v,t (x̃v,t) ≥

βv,tσv,t−1(x̃∗v,t)+ f̂v,t
(
x̃∗v,t
)

, fv(x̃∗v,t) ≤ βv,tσv,t−1(x̃∗v,t)+ f̂v,t
(
x̃∗v,t
)

and f̂v(x̃v,t) ≤ βv,tσv,t−1(x̃v,t)+

fv (x̃v,t). Therefore for all t ≥ 1 with probability at least 1− δ,

rv,t = fv(x̃∗v,t)− fv(x̃v,t)

≤ βv,tσv,t−1(x̃v,t) + f̂v,t (x̃v,t)− fv(x̃v,t)
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≤ 2βv,tσv,t−1(x̃v,t).

Therefore, for agent v, we have (since βv,t > βv,t−1),

T

∑
t=1

rv,t ≤ 2βv,T

T

∑
t=1

σv,t−1(x̃v,t) ≤ 2d
√

Bβv,d + 2βv,T

T

∑
t=d

σv,t−1(x̃v,t)

The second inequality follows from the fact that for all t ≤ d, βv,t ≤ βv,d and that for all

v, t, σv,t−1(x̃v,t) ≤
√

B. We can now sum up the second term for the entire group of agents.

Setting β∗T = maxv∈V βv,T, we get,

T

∑
t=d

∑
v∈V

rv,t ≤ 2β∗T

(
T

∑
t=d

∑
v∈V

σv,t−1 (x̃v,t)

)

≤ 2β∗T

√√√√M(T − d)

(
T

∑
t=d

∑
v∈V

σ2
v,t−1 (x̃v,t)

)

≤ 2β∗T

√√√√M(T − d) ∑
v∈V∗

(
T

∑
t=d

∑
v′∈Nd(v)

σ2
v′,t−1 (x̃v,t)

)
(a)
≤ 2β∗T

√
M(T − d) ∑

v∈V∗

(
Bd|Nd(v)|+ max(1,

1
λ
) log

(
det(Kv,T + λI)

λ|C|T+1

))

≤ 2β∗T

√
M(T − d) · α(Gd) ·max(1,

1
λ
)

(
dBV + max

v∈V∗

(
log det(

1
λ

Kv,T + λI)
))

≤ β∗T · O
(√

α(Gd) ·MT · γ̂D
T

)
.

Note the alternate information gain quantity γ̂D
T = maxv∈V∗ log det( 1

λ Kv,T + λI). Here, (a)

follows from Lemma 8.6. Now, from the definition of βv,T (Lemma 8.1), we know that, for

all v ∈ V∗,

βv,T = B + R
√

λ−1

√
log (det (Kv,T + λI)) + log

2M
δ

≤ B + R
√

λ−1

√
log (det (Kv,T + λI)) + log

2M
δ

≤ B + R
√

λ−1

√
γ̂D

T + log
2Mλ

δ

∴ β∗T = B + R
√

λ−1

√
γ̂D

T + log
2Mλ

δ
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= O
(

B + R

√
γ̂D

T + log
2Mλ

δ

)
.

The above bound on βv,T holds even for agents not in V∗ since they simply mimic one agent

withinV∗, each for whom the above bound holds. Finally, applying the identical arguments

as Lemma 8.4, we can bound γ̂D
T in terms of γz and γx

MT. Dividing by the number of agents

M gives us the final result.

8.10 Alternative Models

8.10.1 “Independent” vs “Pooled” Settings

While we consider the pooled setting (Abbasi-Yadkori et al., 2011), we can easily extend

our algorithm to the independent case (i.e., one bandit algorithm for each arm), by running

K different bandit algorithms in tandem (one for each arm), as specified in (Deshmukh

et al., 2017). In order to leverage observations between arms, we must specify an additional

kernel Karm and arm contexts for each arm. The overall kernel can then be given by,

K̃(x̃1, x̃2) = Karm(𝑡1, 𝑡2)Kz(z1, z2)Kx(x1, x2)

Here, x̃ = (x, z, 𝑡) is the augmented context that now contains both the task-based similarity

context and the network-based similarity context in addition to the typical context vector

x. Alternatively, one can consider a joint kernel (where the arms and network contexts are

intertwined), as follows.

K̃(x̃1, x̃2) = K
arm, network

((𝑡1z1), (𝑡2, z2))Kx(x1, x2)

These modifications will only increase the regret at most by a factor of

√
K · rank(Karm) for

all algorithms presented in this paper, by simply considering the latter case and following

a similar analysis as the previous theorems.

8.10.2 Alternative Compositions

In this paper, we explore composition kernels of the Hadamard form, i.e., K̃ = Kz � Kx.

However, alternate formulations may be considered as well, first of which is the additive
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kernel, i.e., K̃ = Kz ⊕ Kx. For this case, we can rely on the following rank decomposi-

tion (Horn & Johnson, 2012):

rank(Kz ⊕Kx) ≤ rank(Kz) + rank(Kx).

Alternatively, when one considers the Kronecker product, i.e., K̃ = Kz ⊗ Kx, we can use

the following result from Schake (2004)(KRON 16) to bound the rank of the overall Gram

matrix:

rank(Kz ⊗Kx) = rank(Kz)rank(Kx).

We omit these two compositions, however, as we found the Hadamard composition to

work best in practice.
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8.11 Algorithm Pseudocode

Algorithm 15 FedUCB-Kernel

1: Input: Graph Gd with clique cover 𝐶d, kernels Kx(·, ·), Kz(·, ·), λ, explore param. η, buffers

𝐵v = φ.

2: for For each iteration t ∈ [T] do
3: for For each agent v ∈ V do
4: if t = 1 then
5: xv,t ←Random(Dv,t).
6: else
7: xv,t ← arg max

x∈Dv,t

(
f̂v,t(zv, x) + η√

λ
σv,t−1(zv, x)

)
.

8: end if
9: x̃v,t ← (zv, xv,t), yv,t ←Pull(x̃v,t).

10: if t = 1 then
11: (Kv,t)−1 ← 1/K(x̃v,t, x̃v,t) + λ.

12: yv ← [yv,0].
13: 𝜅v = (K(·, x̃v,t)).
14: else
15: 𝐵v ← 𝐵v ∪ (x̃v,t, yv,t).
16: end if
17: 𝑚v,t ← 〈t, v, x̃v,t, yv,t〉.
18: SendMessage(𝑚v,t).
19: for 〈t′, v′, x̃′, y′〉 in RecvMessages(v, t) do
20: if v′ ∈ Clique(v, Cd) then
21: 𝐵v ← 𝐵v ∪ (x̃′, y′).
22: end if
23: end for
24: for (x̃′, y′) ∈ 𝐵v do
25: yv ← [yv, y′].
26: 𝜅v = (𝜅v, K(·, x̃′)).
27: K22 ←

(
K(x̃′, x̃′) + λ− (𝜅v)>(Kv,t)−1𝜅v

)−1
.

28: K11 ←
(
(Kv,t)−1 + K22(Kv,t)−1𝜅v(𝜅v)>(Kv,t)−1)

.

29: K12 ← −K22(Kv,t)−1𝜅τ
v .

30: K21 ← −K22(𝜅v)>(Kv,t)−1
.

31: (Kv,t)−1 ← [K11, K12; K21, K22].
32: end for
33: 𝐵v = φ.

34: f̂v,t+1 ← (𝜅v)
> (Kv,t)−1yv.

35: sv,ρ+1 ←
√

K(·, ·)− (𝜅v)
> (Kv,t)−1𝜅v.

36: end for
37: end for
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Algorithm 16 FedUCB-Eager

1: Input: Graph Gd with clique cover 𝐶d, kernels Kx(·, ·), Kz(·, ·), λ, explore param. η, buffers

𝐵v = φ.

2: for For each iteration t ∈ [T] do
3: for For each agent v ∈ V do
4: if t = 1 then
5: xv,t ←Random(Dv,t).
6: else
7: xv,t ← arg max

x∈Dv,t

(
f̂v,t(zv, x) + η√

λ
σv,t−1(zv, x)

)
.

8: end if
9: x̃v,t ← (zv, xv,t), yv,t ←Pull(x̃v,t).

10: if t = 1 then
11: (Kv,t)−1 ← 1/K(x̃v,t, x̃v,t) + λ.

12: yv ← [yv,0].
13: 𝜅v = (K(·, x̃v,t)).
14: else
15: 𝐵v ← 𝐵v ∪ (x̃v,t, yv,t).
16: end if
17: 𝑚v,t ← 〈t, v, x̃v,t, yv,t〉.
18: SendMessage(𝑚v,t).
19: for 〈t′, v′, x̃′, y′〉 in RecvMessages(v, t) do
20: 𝐵v ← 𝐵v ∪ (x̃′, y′).
21: end for
22: for (x̃′, y′) ∈ 𝐵v do
23: yv ← [yv, y′].
24: 𝜅v = (𝜅v, K(·, x̃′)).
25: K22 ←

(
K(x̃′, x̃′) + λ− (𝜅v)>(Kv,t)−1𝜅v

)−1
.

26: K11 ←
(
(Kv,t)−1 + K22(Kv,t)−1𝜅v(𝜅v)>(Kv,t)−1)

.

27: K12 ← −K22(Kv,t)−1𝜅v.

28: K21 ← −K22(𝜅v)>(Kv,t)−1
.

29: (Kv,t)−1 ← [K11, K12; K21, K22].
30: end for
31: 𝐵v = φ.

32: f̂v,t+1 ← (𝜅v)
> (Kv,t)−1yv.

33: σv,t+1 ←
√

K(·, ·)− (𝜅v)
> (Kv,t)−1𝜅v.

34: end for
35: end for
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Algorithm 17 DistUCB-Kernel

1: Input: Graph Gd with clique cover 𝐶, kernels Kx(·, ·), Kz(·, ·), λ, η, buffer𝐵v = φ∀v ∈ V .

2: for For each iteration t ∈ [T] do
3: for For each agent v ∈ V do
4: if v ∈ VC then
5: x̃v,t, yv,t ← Run lines 4-18 from Algorithm 15.

6: else
7: if t ≤ d(v, cent(v)) then
8: x̃v,t, yv,t ←KernelUCB (Valko et al., 2013) or IGP-UCB (Chowdhury & Gopalan, 2017).

9: else
10: x̃v,t, yv,t ← PullLastStoredArm(cent(v)).
11: end if
12: end if
13: 𝑚v,t ← 〈t, v, x̃v,t, yv,t〉.
14: SendMessage(𝑚v,t).
15: if v ∈ VC then
16: for 〈t′, v′, x̃′, y′〉 in RecvMessages(v, t) do
17: 𝐵v ← 𝐵v ∪ (x̃′, y′).
18: end for
19: Run lines 22-33 in Algorithm 15.

20: else
21: UpdateLastStoredArm(cent(v)).
22: end if
23: end for
24: end for
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Part III

Reinforcement Learning
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Chapter 9

Federated Reinforcement Learning

with Function Approximation

While the earlier chapters focused on federated decision-making in the bandit setting,

many decision-making applications, e.g., in distributed robotics, are better formulated us-

ing Markov Decision Processes (MDPs), motivating us to study federated reinforcement

learning. Recent research in the statistical learning community has focused on cooperative

multi-agent decision-making algorithms with provable guarantees (Zhang et al., 2018b;

Wai et al., 2018; Zhang et al., 2018a). However, prior work focuses on algorithms that,

while are decentralized, provide guarantees on convergence (e.g., Zhang et al. (2018b)) but

no finite-sample guarantees for regret, in contrast to efficient algorithms with function ap-

proximation proposed for single-agent RL (e.g., Jin et al. (2018, 2020); Yang et al. (2020b)).

Moreover, optimization in the decentralized multi-agent setting is also known to be non-

convergent without strong assumptions (Tan, 1993). Given its immediate widespread ap-

plicability in federated settings such as the internet of things and distributed robotics, regret

minimization in federated reinforcement learning is an important real-world problem.

This chapter addresses reinforcement learning in the independent federated setting, i.e.,

when agents interact with isolated MDPs, and communicate among each other to improve

convergence. The “isolation” here refers to the fact that the reward and transition function

for any agent is independent of the state and action of other agents, similar to the federated

bandit. In Chapter 10, we will consider the alternative, where a group of agents are placed

in the same environment, and hence must be modeled together. From a technical perspec-

217



tive, there are several challenges beyond the federated bandit setting that arise in federated

reinforcement learning. For instance, in contrast to the contextual and multi-armed bandit,

where the size of each message is O(K) (where K denotes the number of “arms”), rein-

forcement learning involves maintaining an O(K)−sized statistic for each state transition,

requiring O(K|S|2)−sized messages (where S denotes the state space) to naively extend

bandit algorithms to RL. This requirement on communication is prohibitively expensive

for real-world applications, where the state space S can be extremely large. Furthermore,

most existing work on federated reinforcement learning either provides no performance

guarantees (Zhuo et al., 2019; Yu et al., 2020b) or provide guarantees only in the tabular

setting with homogeneous environments (Agarwal et al., 2021).

In this chapter, we propose decentralized algorithms for federated reinforcement learn-

ing that are provably efficient with limited communication. We consider specifically the

low-rank MDP, i.e., a Markov decision process that can be described (up to constant factors)

by a d−dimensional linear representation. We discuss the federated problem of learning

low-rank MDPs and provide several characterizations of heterogeneity or “non i.i.d.-ness”

that correspond to real-world federated environments. We then present a federated al-

gorithm for solving low-rank MDPs with M agents that obtains competitive performance

with bounded O(M3) total rounds of communication.

Existing regret bounds for single-agent episodic RL in this low-rank or linear MDP set-

ting scale as Õ(H2
√

d3T) for T episodes of length H each
1
, leading to a cumulative regret

of Õ(MH2
√

d3T) if M agents operate in isolation. Similarly, an agent running for MT

episodes will consequently obtain Õ(H2
√

d3MT) regret. In comparison, we provide an al-

gorithm built on least-squares value iteration (LSVI) titled FedLSVI, which obtains a group

regret of Õ((d+ k)H2
√
(d + Γ)MT), where Γ is a measure of heterogeneity between differ-

ent MDPs, and k is the size of the ambient space used to model this heterogeneity. When the

MDPs are homogenous, our rate matches the centralized single-agent regret. We introduces

several new aspects in the analysis of linear MDPs: first, we analyse stochastic communica-

tion and function approximation in the federated setting, presenting a novel concentration

argument to bound the per-step estimation error. Next, we present two modes of communi-

cation, each with varying message sizes and associated regret bounds. For both approaches

1
The Õ notation ignores logarithmic factors and failure probability, and d is the dimensionality of the am-

bient feature space. See, e.g., Yang et al. (2020b) and Jin et al. (2018) for the precise bounds.
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we provide rigorous analyses of regret and a lower bound on the group regret for learning

federated MDPs as well.

9.1 Federated Markov Decision Processes

Parallel MDPs (Sucar, 2007; Kretchmar, 2002) are a set of discrete time Markov decision pro-

cesses that are executed in parallel, where a different agent interacts with the MDP in iso-

lation. We consider a generalization of the parallel setting, which we call federated MDPs,

in which each agent interacts with a potentially unique MDP and agents can occassion-

ally communicate via a synchronization server
2
. Each agent interacts with their respective

MDPs, each with identical (but disjoint) action and state spaces, but possibly unique reward

functions and transition probabilities.

We denote the group of agents as M where the MDP for any agent m ∈ M is given

by MDP(S ,A, H, Pm, rm). Here the state and action spaces are given by S and A respec-

tively (which are assumed to be common across all agents), and the reward functions rm =

{rm,h}h∈[H], rm,h : S × A → [0, 1]3, and transition probabilities Pm = {Pm,h}h∈[H] , Pm,h :

S × A → S , i.e., Pm,h(x′|x, a) denotes the probability of the agent moving to state x′ if at

step h it selects action a from state x. We assume that S is measurable with possibly infinite

elements, and that A is finite with some size A. For any agent m, the policy πm is a set of

H functions πm = {πm,h}m∈[M], πm,h : S → A such that ∑a∈A πm,h(a|x) = 1 ∀ x ∈ S and

πm,h(a|x) is the probability of agent m taking action a from state x at step h.

The problem proceeds as follows. At every episode t = 1, 2, ..., each agent m ∈ M

fixes a policy πt
m = {πt

m,h}h∈[H], and starts in an initial state xt
m,1 picked arbitrarily by the

environment. For each step h ∈ [H] of the episode, each agent observes its state xt
m,h, selects

an action at
m,h ∼ πt

m,h(·|xt
m,h), obtains a reward rm,h(xt

m,h, at
m,h), and transitions to state xt

m,h+1

sampled according to Pm,h(·|xt
m,h, at

m,h). The episode terminates at step H + 1 where agents

receive 0 reward. After termination, the agents can communicate among themselves via a

server, if required. The performance of any policy π in the mth
MDP is measured by the

2
We leave the peer-to-peer communication setting as future work.

3
We consider rm,h to be deterministic and bounded for simplicity. Our results can easily be extended to

random rewards with sub-Gaussian densities.
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value function Vπ
m,h(x) : S → R, defined ∀ x ∈ S , h ∈ [H], m ∈ M as,

Vπ
m,h(x) , Eπ

[
H

∑
i=h

rm,i(xi, ai)
∣∣∣ xm,h = x

]
.

The expectation is taken with respect to the random trajectory followed by the agent in

the mth
MDP under policy π. A related function Qπ

m,h : S × A → R determines the total

expected reward from any action-state pair at step h for the mth
MDP for any state x ∈ S

and action a ∈ A:

Qπ
m,h(x, a) , Eπ

[
H

∑
i=h

rm,i(xi, ai)
∣∣∣ (xm,h, am,h) = (x, a)

]
.

Let π?
m denote the optimal policy for the mth

MDP, i.e., the policy that gives the maximum

value, V?
m,h(x) = supπ Vπ

m,h(x), for all x ∈ S , h ∈ [H]. We can see that with the current set

of assumptions, the optimal policy for each agent is possibly unique. For T episodes, the

cumulative group regret (in expectation), is defined as,

R(T) ,
T

∑
t=1

[
∑

m∈M

[
V?

m,1(xt
m,1)−Vπm,t

m,1 (xt
m,1)

]]
.

9.2 Least-Squares Value Iteration

Least-squares value iteration is a popular approach that recovers the optimal policy by

finding the optimal value function (Sutton & Barto, 2018), and can be shown to converge to

the optimal value function with probability 1 (Bellman & Kalaba, 1965). For any agent m,

value iteration proceeds by obtaining the optimal Q-values {Q?
m,h}h∈[H],m∈M by recursively

applying the Bellman equation. Specifically, each agent m ∈ M constructs a sequence of

action-value functions {Qm,h}h∈[H] as, for each x ∈ S , a ∈ A, m ∈ M,

Qm,h(x, a)← rm,h(x, a) + Ph[Vm,h+1](x, a), Vm,h+1(x, a)← max
b∈A

[Qm,h+1(x, b)] .

Where Ph[V(x, a)] = Ez∼Ph(·|x,a) [V(z)]. Asymptotic convergence of the value iteration al-

gorithm has been studied extensively in the optimal control and dynamic programming

community (Williams & Baird, 1993). Further, it is known that value iteration reaches the

optimal policy within a finite number of steps even if the value function itself has not con-
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verged (Bertsekas, 1987). It has been seen in practice that value iteration finds the optimal

policy in a small number of steps, making it an appealing algorithm to analyse.

To obtain finite-sample regret guarantees (insted of asymptotic convergence), a recent

line of work investigates value iteration in the parametric setting, i.e., when the MDP can

be represented “approximately” by some function class F , e.g., linear (Jin et al., 2020; He

et al., 2021). We follow a similar approach with a key modification: we construct estimates

using multi-agent historical data. For any function class F , assume that any agent m ∈

[M] has observed k transition tuples {xτ
h , aτ

h , xτ
h+1}τ∈[k] for any step h ∈ [H]. Then, the

agent estimates the optimal Q-value for any step by solving the following regularized least-

squares regression:

Q̂t
m,h ← arg min

f∈F

{
∑

τ∈[k]

[
rh(xτ

h , aτ
h) + Vt

m,h+1(xτ
h+1)− f (xτ

h , aτ
h)
]2

+ ‖ f ‖2

}
. (9.1)

Here, the targets yτ
h = rh(xτ

h , aτ
h) + Vt

m,h+1(xτ
h+1) denote the empirical value from specific

transitions possessed by the agent, and ‖ f ‖ denotes an appropriate regularization term

based on the capacity of f and the class F . To foster exploration, an additional bonus

σt
m,h : S × A → R term is added, inspired by the principle of optimism in the face of

uncertainty, giving the final Q-value for any state-action (x, a) ∈ S ×A as,

Qt
m,h(x, a) = min

{
Q̂t

m,h(x, a) + βt
m,h · σt

m,h(x, a), H − h + 1
}

, (9.2)

Since the policy is greedy with respect to the above Q−values, the value function is given

as, for any state x ∈ S ,

Vt
m,h(x) = max

a∈A
Qt

m,h(x, a). (9.3)

Here {βt
m,h}t∈[T],m∈M is a sequence selected appropriately to ensure that the estimated Q

values bound the optimal Q values with high probability, similar to the exploration bonuses

derived for bandit algorithms. For episode t, we denote 𝜋t = {πt
m}m∈M as the (joint)

greedy policy with respect to the Q-values {Qt
m,h}h∈[H] for each agent. While this describes

the algorithm abstractly for any general function class F , we first describe the homogeneous

federated setting, where we assume F to be linear in d dimensions, called the linear MDP

(Jin et al. (2020), also see Bradtke & Barto (1996) and Melo & Ribeiro (2007)).

Definition 9.1 (Linear MDP). An MDP(S ,A, H, P, r) is a linear MDP with feature map 𝜑 :
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S ×A → Rd, if for any h ∈ [H], there exist d unknown (signed) measures 𝜇h = (µ1
h, ..., µd

h) over

S and an unknown vector 𝜃h ∈ Rd such that for any (x, a) ∈ S ×A,

Ph(·|x, a) = 〈𝜑(x, a),𝜇h(·)〉, rh(x, a) = 〈𝜑(x, a),𝜃h〉

We assume without loss of generality, ‖𝜑(x, a)‖ 6 1 and max {‖𝜇h(S)‖, ‖𝜃h‖} 6
√

d.

We now present the algorithm FedLSVI in various environments.

9.3 FedLSVI in Homogeneous Federated Environments

As a warm up, we first describe FedLSVI in the homogenous setting, i.e., when the transition

functions Pm,h and reward functions rm,h are identical for all agents and can be given by

Ph and rh respectively for any episode h ∈ [H]. Corresponding to Eq. 9.1, we assume F

to be the class of linear functions in d dimensions over a known feature map 𝜑, i.e., f (·) =

w>𝜑(·), w ∈ Rd
, and set the ridge norm ‖w‖2

2 as the regularizer. Furthermore, we fix a

threshold constant S that determines the amount of communication between the agents.

In a nutshell, the algorithm operates by each agent executing a local linear least-squares

value iteration and then synchronizing observations between other agents if the threshold

condition is met every episode. Specifically, for each t ∈ [T], each agent m ∈ M obtains a

sequence of value functions {Qt
m,h}h∈[H] by iteratively performing linear least-squares ridge

regression from the multi-agent history available from the previous t − 1 episodes. Note

that any transition at some step h can be described as (n, x, a, z) where n denotes the agent

identity, x denotes the initial state, a denotes the action taken by the agent and z denotes

the new state the agent has transitioned to. During synchronization, it is assumed that a

mechanism exists that allows all agents to share their personal transitions upto that round

with all other agents. Now, if we assume that at any round t, the previous synchronization

round occured after episode kt, then, the set of transitions available to agent m ∈ M for

any step h before episode t can be given by,

Um
h (t) =

{
∪
(
n, xτ

n,h, aτ
n,h, xτ

n,h+1
)

n∈M,τ∈[kt]

}⋃{
∪
(
m, xτ

m,h, aτ
m,h, xτ

m,h+1
)t−1

τ=kt+1

}
.

For exposition denote Ψ as an ordering of Um
h (t), and U = |Um

h (t)|. We have that Um
h is a set

of U elements, where each element is a set of the form (n, x, a, z) as described earlier. Each
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agent m first sets Qt
m,H+1 to be 0d, and for h = H, ..., 1, iteratively solves H regressions:

Q̂t
m,h ← arg min

w

 ∑
(n,x,a,z)∈Um

h (t)

[
rh(x, a) + Vt

m,h+1(z)−w>𝜑(x, a)
]2

+ λ‖w‖2
2

 . (9.4)

Here λ > 0 is a regularizer. Next, Qt
m,h and Vt

m,h are obtained via Equations 9.2 and 9.3,

that can be defined completely after introducing some additional notation. The solution to

Equation 9.8 can be given as Qt
m,h(x, a) = 𝜑(x, a)>ŵt

m,h, where,

ŵt
m,h =

(
Λt

m,h
)−1 ut

m,h, Λt
m,h = ∑

τ∈Ψ
𝜑(xτ, aτ)𝜑(xτ, aτ)

> + λId, and ut
m,h = ∑

τ∈Ψ
yτ𝜑(xτ, aτ).

(9.5)

The solution presented above corresponds to the ridge regression solution computed over

the covariates 𝜑 and targets y. Here, we denote the targets as yτ = ym,h(xτ, aτ, zτ) =

rh(xτ, aτ) + Vt
m,h+1(zτ). To obtain the confidence bonus, we first present the key lemma

bounding the deviation of these predicted Q value from the optimal one. We first make the

following substitution. For any (x, a) ∈ S ×A,

σt
m,h(x, a) = ‖𝜑(x, a)‖(Λt

m,h)
−1 =

(
𝜑(x, a)>(Λt

m,h)
−1𝜑(x, a)

) 1
2

. (9.6)

Lemma 9.1. There exists an absolute constant cβ such that when βt
m,h = cβ · dH

√
log(dMHT/δ′)

for any policy π, for each x ∈ S , a ∈ A we have for all m ∈ M, t ∈ [T], h ∈ [H] simultaneously,

with probability at least 1− δ′/2 that,

∣∣〈𝜑(x, a), ŵt
m,h −wπ

h 〉
∣∣ 6 Ph(Vt

m,h+1 −Vπ
m,h+1)(x, a) + cβ · σt

m,h(x, a) · dH ·

√
log
(

dMTH
δ′

)
.

Observe that if we set the Q−values of the greedy policy as, for some βt
m,h = cβ ·

dH
√

log(dMHT/δ′) where cβ > 0 is an absolute constant,

Qt
m,h ← 〈𝜑(x, a), ŵt

m,h〉︸ ︷︷ ︸
Q̂t

m,h

+ cβ · σt
m,h(x, a) · dH ·

√
log
(

dMTH
δ′

)
︸ ︷︷ ︸

confidence bonus

,

we have that the estimated Q−values upper bound the corresponding Q− values for any

policy π, including the optimal policy, up to the factor Ph(Vt
m,h+1−Vπ

m,h+1)(x, a) which we

223



Table 9.1: Comparison of communication complexity and regret (homogeneous).

Algorithm Threshold S Communication Cost Regret Speed-up

FedLSVI
(Dense)

∞ 0 1

O(1) O(H2M|S|2|A|
√

dT log(MT)) O(
√

M)

O
(

T
dM2 log(MT)

)
O(dH2M|S|2|A| log(MT)) O

(√
M

log(MT)

)
O
(

T log(MT)
dM2

)
O(dH2M3|S|2|A|) O

( √
M

log(MT)

)
FedLSVI
(Rare)

c > 1 O
(

d2H2M( log(MT)
log(c) )

)
O
(√

M
c

)
O (log(MT)) O(d3H2M3) o(1)

show to be small later on. The strength of this result lies within the fact that this holds

simultaneously for all agents and arbitrary communication protocols, which is a generaliza-

tion of prior results, e.g., in Jin et al. (2020) to the federated setting. This is non-trivial,

as in contrast to the single-agent setting, where the error term can directly be bound by

a self-normalizing concentration argument, our terms are more complex: the error and

communication protocol are not necessarily independent, causing the cumulative error to

lose its martingale structure. We adopt a “worst-case communication” approach, which

considers the maximum deviation under any arbitrary communication protocol and can

then bound the worst-case deviation with only a constant

√
2 increase in the bound. The

complete proof can be found in Section 9.8.

The corresponding exploration bonus (βt
m,h · σt

m,h) is similar to that of Gaussian process

(GP) optimization (Srinivas et al., 2009) and linear bandit (Abbasi-Yadkori et al., 2011) algo-

rithms, and it can be interpreted as the posterior variance of a Gaussian process regression.

The motivation for adding the confidence term is similar to that in the bandit and GP case,

to adequately overestimate the uncertainty in the ridge regression solution.

Once cβ is fixed, the algorithm is straightforward. Given a set of transitions, each agent

computes the above least-squares value iteration, and executes the greedy policy with re-

spect to the obtained Qt
m,h. The only element left to discuss is the synchronization of transi-

tions. Observe that each transition is of the form (n, x, a, z), and if t episodes pass between

successive synchronizations, one will require O(4t) bits per agent to communicate each
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transition, leading to an overall complexity of O(4MT) communication regardless of the

schedule used to communicate. Alternatively, if S and A are countably finite such that

|S|2|A| � T, we can simply store the visitation “counts”, providing a total communica-

tion complexity ofO(n ·M|S2||A|), if we have n rounds of communication. We denote this

as the first communication protocol, dubbed Dense.

This requirement of explicitly communicating transitions is necessary because of Equa-

tion 9.8. Observe that one requires, for each transition, the target state z in order to compute

the value function during a policy update. We can get away by communicating sufficient

statistics instead of communicating transitions, if we restrict the policy updates to only in

communicating rounds. This will reduce the communication complexity to O(nd2H) per

message, which will typically be much smaller than |S|2|A|, at a cost to the regret. We

denote this protocol as Rare. We first analyse Dense.

9.3.1 Dense Communication

In this protocol, each agent maintains two sets of parameters. The first is St
m,h which refers

to the parameters that have been updated with the other agents via the synchronization,

and the second is δSt
m,h, which refers to the parameters that are not synchronized. Now,

in each step of any episode t, after computing Q−values (Eq. 9.2), each agent executes

the greedy policy with respect to the Q−values, i.e., at
m,h = arg maxa∈A Qt

m,h(xt
m,h, a), and

updates the unsyncrhonized parameters δSt
m,h. If any agent’s new unsynchronized param-

eters satisfy the determinant condition with threshold S, i.e., if

log
det

(
St

m,h + δSt
m,h + λId

)
det

(
St

m,h + λId

) >
S

(t− kt)
, (9.7)

the agent signals a synchronization with the server, and messages are exchanged. Here kt

denotes the episode after which the previous round of synchronization took place (step 19

of Algorithm 18). The algorithm is summarized in Algorithm 18. The next result bounds

communication complexity as a function of S.

Lemma 9.2 (Communication Complexity). If Algorithm 18 is run with threshold S, then the

total number of episodes with communication n 6 2H
√

d(T/S) log(MT) + 4H. The total com-

munication complexity under Dense is therefore O(H2M|S|2|A|
√

d(T/S) log(MT)) bits.
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The above result demonstrates that when S = o(T), it is possible to ensure that the

agents communicate only in a constant number of episodes, regardless of T. We now

present the regret guarantee for the homogenous setting.

Theorem 9.1 (Homogenous Regret with Dense Communication). Algorithm 18 when run on

M agents with communication threshold S, βt
m,h = O(H

√
d log(tMH)) and λ = 1 obtains the

following cumulative regret after T episodes, with probability at least 1− α,

R(T) = Õ
(

dH2
(

dM
√

S +
√

dMT
)√

log
(

1
α

))
.

The proof is presented in Section 9.8.

Remark 9.1. Theorem 9.1 claims that appropriately chosen β and λ ensures sublinear group

regret. Similar to the single-agent analysis in linear (Jin et al., 2020) and kernel (Yang et al.,

2020b) function approximation settings, our analysis admits a dependence on the (linear)

function class via the `∞−covering number, which we simplify in Theorem 9.1 by selecting

appropriate values of the parameters. Generally, the regret scales as

O
(

H2
(

M
√

S +
√

MT logN∞(ε?)

)√
log
(

1
α

))
,

where N∞(ε) is the ε-covering number of the set of linear value functions under the `∞

norm, and ε? = O(dH/T). We elaborate on this connection in the full proof.

Remark 9.2 (Multi-Agent Analysis). The aspect central to the multi-agent analysis is the

dependence on the communication parameter S. If the agents communicate every round,

i.e., S = O(1), we observe that the cumulative regret is Õ(d 3
2 H2
√

MT), matching the cen-

tralized setting. With no communication, the agents simply operate independently and the

regret incurred is Õ(M
√

T), matching the group regret incurred by isolated agents. Fur-

thermore, with S = O(T log(MT)/dM2)we observe that with a total ofO(dHM3) episodes

with communication, we recover a group regret ofO(d 3
2 H2
√

MT(log MT)), which matches

the optimal rate (in terms of T). This dependence is shown in Table 9.1.
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9.3.2 Rare Communication

The Rare communication protocol has two key differences from the Dense protocol: first,

each agent only uses the synchronized transition functions to compute the policies, i.e., it

does not use the personal transitions observed after any communication round until they

have been synchronized with all other agents. Next, the earlier Dense setting communi-

cated a vector of size O(H|S|2|A|), where each element (h, x, a, z) denoted the number of

times the agent transitioned from state x to state z by taking action a in step h. Instead,

in this setting, the agents will communicate the sufficient statistics required for the least-

squares value iteration, and the server computes the common policy.

Formally, we have that during each synchronization round, the server constructs a se-

quence of value functions {Qt
h}h∈[H] by iteratively performing linear least-squares ridge re-

gression from the synchronized multi-agent history available from the previous t− 1 episodes.

Now, if we assume that synchronization occurs after episode t, then, the cumulative set of

transitions available can be given by,

Uh(t) =
{
∪
(
n, xτ

n,h, aτ
n,h, xτ

n,h+1
)

n∈M,τ∈[t]

}
.

Let us denote the set of personal observations for any agent m until time t as Zm,h(t), i.e.,

Zm,h(t) =
{
∪
(
m, xτ

m,h, aτ
m,h, xτ

n,h+1
)

τ∈[t−1]

}
.

Denote Ψ as an ordering of Uh(t), and U = |Uh(t)| as before. The server first sets Qt
m,H+1

to be 0d, and for h = H, ..., 1, iteratively solves H regressions, similar to the previous case

in a decentralized manner:

Q̂t
m,h ← arg min

w

{
∑

(n,x,a,z)∈Uh(t)

[
rh(x, a) + Vt

m,h+1(z)−w>𝜑(x, a)
]2

+ λ‖w‖2
2

}
. (9.8)

We handle the computation of regressions separately for h = H and otherwise.

Case h = H. When h = H, the solution can be given as,

ŵt
H =

(
Λt

H
)−1 ut

H, where
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Λt
H = ∑

τ∈Ψ
𝜑(xτ, aτ)𝜑(xτ, aτ)

> + λId, and ut
H = ∑

τ∈Ψ
rH(xτ, aτ)𝜑(xτ, aτ).

This can be further decomposed as follows.

Λt
H = ∑

m∈M

(
Λt

m,H
)
+ λId and ut

H = ∑
m∈M

ut
m,H, where

Λt
m,H = ∑

(x,a,z)∈Zm,H(t)
𝜑(x, a)𝜑(x, a)>, ut

m,H = ∑
(x,a,z)∈Zm,H(t)

rH(x, a)𝜑(x, a).

Therefore, if each agent simply communicates their corresponding Λt
m,H and ut

m,H then the

server can compute Λt
H and ut

H and relay it back to each agent with only O(d2 + d) bits of

total communication per agent. This will allow each agent to compute the final Q−values

following Equation 9.2 and then compute the value functions following Equation 9.3.

Case h < H. When synchronization is taking place, the agents begin with h = H fol-

lowing the above protocol. Next, we synchronize for h = H − 1 and progressively go

to h = 1. Now, for h = H − 1, the agents compute the value functions Vt
H(z) for each

(x, a, z) ∈ Zm,H(t) using Equation 9.3. Observe that in this case, the global parameter for

ut
H−1 is given by,

ut
H−1 = ∑

m∈M
(ut

m,H−1 + vt
m,H−1), where vt

m,H−1 = ∑
(x,a,z)∈Zm,H−1(t)

Vt
H(z)𝜑(x, a).

Note that the second term is absent when h = H since the value function is by convention

assumed to be 0 at h = H + 1. However, vt
m,H−1 can easily be computed in a decentralized

manner by each agent without any communication, and ut
m,H−1 and Λt

m,H−1 can be com-

puted as done for h = H. Once these quantities are computed, the server can once again

aggregate them and transmit Λt
H−1 and ut

H−1 back to the agents with a total communication

complexity of O(d2 + 2d) bits per agent. One can repeat this process for h = H − 1, ..., 1.

The total communication complexity, therefore, per round, is O(2d2HM).

While the remainder of the algorithm remains the same (i.e., computing Q−values and

executing the greedy policy with respect to the Q−values, the question still remains on

when to synchronize. Similar to the Dense case, the synchronization criterion has a tunable

parameter S, but the criterion itself is different. As earlier, each agent m maintains two

sets of parameters. The first is Λt
h obtained during the last synchronization round kt, and

the second is δSt
m,h = ∑t−1

tau=kt+1𝜑(xh
m,τ, ah

m,τ)𝜑(xh
m,τ, ah

m,τ)
>

, which refers to the “variance”
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that is not synchronized. Now, in each step of any episode t, after the agent executes the

greedy policy with respect to the Q−values, i.e., at
m,h = arg maxa∈A Qt

h(xt
m,h, a), it updates

the unsyncrhonized parameters δSt
m,h with the observed transition. If any agent’s new

unsynchronized parameters satisfy the determinant condition with threshold S, i.e., if

det
(

Λt
h + δSt

m,h

)
det

(
Λt

h
) > S, (9.9)

the agent signals a synchronization with the server, and messages are exchanged. The al-

gorithm is summarized in Algorithm 19. This communication threshold, compared to the

prior one, omits the (t− kt) term in the denominator. This can be understood as the agents

must have more communication rounds in order to keep their policy updated, as the agents

only update policies during synchronization rounds. The next result bounds communica-

tion complexity as a function of S for the Rare protocol.

Lemma 9.3 (Complexity of Rare communication). If Algorithm 19 is run with threshold S,

then the total number of episodes with communication n 6 2H(logS(1 + MT
d ) + 1). The total

communication complexity under Rare is therefore O(d2MH(logS(1 +
MT

d )) bits.

Proof. Let the number of communication rounds triggered by step h be given by nh. Ob-

serve that communication occurs whenever log det
(

Λt
h + δSt

m,h

)
− log det

(
Λt

h
)
> S. Since

log det(ΛT
H) 6 d log(1 + (MT)/d) (since ‖𝜑(x, a)‖2 6 1), and log det(Λt

h) > dλ = d

(by regularization), we have that nh log(S) 6 log(1 + MT
d ). Since communication can be

triggered by any of the h steps satisfying the criterion, we have by summing over h that

n · log(S) = log(S) ·∑h nh 6 H log(1 + MT
d ). The next part is obtained by multiplying the

total O(d2M) bits sent per communication round.

Remark 9.3 (Dense vs. Rare Protocols). The Rare protocol exhibits a worse dependence

on the communication threshold S compared with the Dense protocol, primarily as the

Rare protocol does not allow agents to update their policies without synchronization. A

detailed comparison of the communication-regret tradeoff is summarized in Table 9.1.

We now present the regret obtained by FedLSVI under the Rare protocol.

Theorem 9.2 (Homogenous Regret with Rare Communication). Algorithm 19 when run on

M agents with communication threshold S, βt
m,h = O(H

√
d log(tMH)) and λ = 1 obtains the
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following cumulative regret after T episodes, with probability at least 1− α,

R(T) = Õ
(

d3/2H2

√
SMT log

(
1
α

))
.

This is proved in Section 9.9. We now present a lower bound for the homogeneous fed-

erated MDP.

9.4 Lower Bounds for Federated MDPs

In this section we discuss lower bounds for the problem before moving to the heterogeneous

environments. We can trivially bound the performance of non-communicating agents us-

ing a single-agent bound for tabular MDPs.

Lemma 9.4. There exists a federated linear MDP instance such that any set of M agents suffer

Ω(
√

dH3MT) regret.

Proof. We consider a tabular environment T with state and action spaces S ,A such that

𝜑(x, a) = 𝑒(x,a), i.e., the standard basis in d−dimensions. Therefore, by the single-agent

analysis in Domingues et al. (2021), we have that the regret RT suffered by any agent in T

over MT episodes is Ω(
√
|S||A|H3T) = Ω(

√
dH3MT). We will now demonstrate that any

federated reinforcement learning policy must incur at least the expected regret incurred

by a single agent running for MT episodes. Note that while the high-level approach to

the problem appears conceptually similar to the lower bound for federated bandits (Theo-

rem 6.5), the approach involves a different set of arguments.

We consider the set of all possible single-agent episodic policies for T episodes over the

declared environment as Π. Now, observe that the set of all possible multi-agent policies

over M agents can be given as Π̃ = (Π)M
(we can form an arbitrary multi-agent policy

only by the product of individual single-agent policies). Therefore, any policy 𝜋 ∈ Π̃ can

be written as𝜋 = π1× · · ·×πM, where πm ∈ Π. Observe that by the above decomposition,

the group regret for any 𝜋 follows.

RT (T;𝜋) >
M

∑
m=1

Rm(T; πm).

Where Rm denotes the regret incurred by the mth
agent in T . We set all possible feder-
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ated policies considered in the networked setting as Π̃ f ⊆ Π̃. Consider now the set of all

possible single-agent episodic policies for MT episodes ΠM. We can see that Π ⊂ ΠM.

We now consider M modified single-agent environments T̃1, . . . , T̃M as follows. Recall

that T is constructed by the environment arbitrarily sampling an initial state xt
m,1 for each

of the m agents and t ≤ T episodes. Since the transitions in each MDP are independent

of the others, we can consider the T to be composed of M independent MDPs running

in parallel. We select T̃m to be the environment constructed by repeating the initial state

xt
m,1 for M episodes for each t ∈ [T] with the state space S , action space A and transition

probabilites {Ph}H
h=1, same as T for any individual agent.

Now, for any policy π ∈ Π, consider the compounded policy π̃ ∈ ΠM such that π̃t
h(x) =

π
d t

M e
h (x) for each h ∈ H, x ∈ S , i.e., the policy is created by repeating the policy at any

episode t for M episodes. Then, we have that for any agent m

Rm(T; πm) =
1
M

RT̃m
(MT; π̃m).

The above holds by the design of the environment T̃m and the policy π̃m. We can now

bound the regret for any multi-agent policy 𝜋 ∈ Π̃ f as follows.

RT (T;𝜋) > inf
𝜋∈Π̃ f

RT (T;𝜋) > inf
𝜋∈Π̃

RT (T;𝜋)

>
M

∑
m=1

inf
πm∈Π

Rm(T; πm) =
1
M

M

∑
m=1

inf
π̃m∈ΠM

RT̃m
(T; π̃m)

>
1
M

M

∑
m=1

√
dH3MT = Ω

(√
dH3MT

)
.

9.5 Heterogeneous Federated MDPs

Now that we have established lower bounds for the homogeneous federated bandit prob-

lem, we move on to two approaches for handling heterogeneity in federated reinforcement

learning. For simplicity, we will only present the analysis under the Dense communication

protocol, as the techniques used will apply to the Rare protocol as well. Note that even for

heterogeneous settings, our algorithms require assumptions on the nature of heterogeneity
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in order to benefit from cooperative estimation.

9.5.1 Robustness to “Small” Heterogeneity

The first heterogeneous setting we consider is when the deviations between MDPs are

much smaller than the horizon T, which allows Algorithm 18 to be no-regret as long as

an upper bound on the heterogeneity is known.

Assumption 9.1 (“Small” deviations). For any ξ = o(T−α) < 1, α > 0, a federated MDP

setting demonstrates “small deviations” if for any m, m′ ∈ M, the corresponding linear MDPs

defined in Definition 9.1 obey the following for all (x, a) ∈ S ×A:

DTV(Pm,h(·|x, a), Pm′,h(·|x, a)) 6 ξ, and |(rm,h − rm′,h)(x, a)| 6 ξ.

Under this assumption, when an upper bound on ξ is known, we do not have to modify

Algorithm 18 as the confidence intervals employed by FedLSVI are robust to small devia-

tions. We formalize this with the following regret bound.

Theorem 9.3. Algorithm 18 when run on M agents with parameter S in the small deviation setting

(Assumption 9.1), with βt
m,h = O(H

√
d log(tMH) + ξ

√
dMT) and λ = 1 obtains the following

cumulative regret after T episodes, with probability at least 1− α,

R(T) = Õ
(

dH2
(

dM
√

S +
√

dMT
)(√

log
(

1
α

)
+ 2ξ
√

dMT

))
.

The proof is presented in Section 9.10.

Remark 9.4 (Comparison with Misspecification). While this demonstrates that FedLSVI is

robust to small deviations in the different MDPs, the analysis can be extended to the case

when the MDPs are “approximately” linear, as done in Jin et al. (2020) (Theorem 3.2). A key

distinction in the above result and the standard bound in the misspecification setting is that

in the general misspecified linear MDP there are two aspects to the anlaysis - the first being

the (adversarial) error introduced from the linear approximation, and the second being the

error introduced by executing a policy following the misspecified linear approximation. In

our case, the second term does not exist as the policy is valid within each agents’ own MDP,

but the misspecification error still remains.
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9.5.2 Parametric Approach for Large Heterogeneity

For the large heterogeneity case, in order to transfer knowledge from a different agents’

MDP, we assume that each agent m ∈ M possesses an additional contextual description

𝜅(m) ∈ Rk
for some k > 0 that describes the heterogeneity linearly.

Definition 9.2 (Heterogenous Linear MDP). A heterogeneous federated MDP(S ,A, H, P, R)

is a set of linear MDPs with two feature maps 𝜑 : S × A → Rd and 𝜅 : M → Rk, if for any

h ∈ [H], there exist d unknown (signed) measures 𝜇h = (µ1
h, ..., µd

h) over S , an unknown vector

𝜃h ∈ Rd, k unknown (signed) measures 𝜈h = (ν1
h , ..., νk

h) over S and an unknown vector 𝛼h ∈ Rk

such that for any (x, a) ∈ S ×A, m ∈ M and target state z ∈ Z

Pm,h(z|x, a) =

𝜑(x, a)

𝜅(m)

> 𝜇h(z)

𝜈h(z)

 , rm,h(x, a) =

𝜑(x, a)

𝜅(m)

> 𝜃h

𝛼h

 .

We denote the combined features via the shorthand:

𝜑(m, x, a) =
[
𝜑(x, a)>,𝜅(m)>

]>
, 𝜇̃h(z) =

[
𝜇h(z)>,𝜈h(z)>

]>
,𝜃h =

[
𝜃>h ,𝛼>h

]>
.

We assume, that ‖𝜑(m, x, a)‖ 6 1 ∀ (m, x, a) ∈ M× S × A, max {‖𝜇h(S)‖, ‖𝜃h‖} 6
√

d,

and max {‖𝜈h(S)‖, ‖𝛼h‖} 6
√

k.

Remark 9.5 (Parametric Modeling of Heterogeneity). A similar heterogeneous model pre-

sented for multi-armed bandits has been presented in Chapter 8. Definition 9.2 encap-

sulates a general parametric approach to model the heterogeneity between agent MDPs

by assuming additional contextual information. Such an approach has been extensively

employed in the contextual bandit literature (Krause & Ong, 2011; Deshmukh et al., 2017;

Dubey & Pentland, 2020c). Note, however, that we utilize a linear model to account for

differences between agents. For example, for any two agents m, n ∈ M, we have that,

|rm,h(x, a)− rn,h(x, a)| = 𝛼>h (𝜅(m)− 𝜅(n)) 6 2‖𝛼h‖2 6 2
√

k.

This allows us to model larger deviations between agents (by selecting k > d) by incorpo-

rating additional contextual information, in contrast to the earlier setting where we assume

the maximum deviation to be small, i.e., ε = o(T−α) for no-regret learning. Similarly, we
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have for the transition functions,

DTV(Pm,h(·|x, a), Pm,h(·|x, a)) =
∣∣∣∣∫z∈S

Pm,h(z|x, a)−Pn,h(z|x, a)dz
∣∣∣∣

=

∣∣∣∣∫z∈S
𝜈h(z)> (𝜅(m)− 𝜅(n)) dz

∣∣∣∣
=

∣∣∣∣∣
(∫

z∈S
𝜈h(z)dz

)>
(𝜅(m)− 𝜅(n))

∣∣∣∣∣
6 2‖𝜈h(S)‖2 6 2

√
k.

Again, the parameteric setup eventually implies a similar bound on the transition func-

tions, but allows for greater flexibility.

Concretely, we assume that for each MDP, the discrepancies between both the transition

and reward functions can be explained as a linear function of the underlying agent-specific

contexts, i.e., 𝜅, which is independent of the state and action pair (x, a)4
. In contrast to

the homogeneous setting, here, each agent predicts an agent-specific Q and value function.

Specifically, for each t ∈ [T], each agent m ∈ M obtains a sequence of value functions

{Qt
m,h}h∈[H] by iteratively performing linear least-squares ridge regression from the multi-

agent history available from the previous t− 1 episodes, but in contrast to the homogenous

case, it now learns a Q−function overM×S ×A and value function overM×A. Each

agent m first sets Qt
m,H+1 to be a zero function, and for any h ∈ [H], solves the regression

problem in Rd+k
to obtain Q−values.

Q̂t
m,h ← arg min

w∈Rd+k

 ∑
(n,x,a,z)∈Um

h (t)

[
rn,h(x, a) + Vt

m,h+1(n, x′)−w>𝜑(n, x, a)
]2

+ λ‖w‖2
2

 .

(9.10)

Here, λ > 0 is a regularizer, and n ∈ M denotes the agent whose Q function the agent m is

estimating, and Vt
m,h+1(n, x) = maxa∈A Q(n, x, a), where the Q values are given by, for any

n, x, a ∈ M×S ×A,

Q(n, x, a) = Q̂t
m,h(n, x, a)︸ ︷︷ ︸

“agent-specific” regressor

+ βt
m,h ·

(
𝜑(n, x, a)>

(
Λ̃

t
m,h

)−1
𝜑(n, x, a)

)1/2

︸ ︷︷ ︸
confidence bonus

.

4
Intricate models can be assumed that exploit interdependence in a sophisticated manner (see, e.g., Chap-

ter 8), however, we leave that for future work.
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The regressed Q−values Q̂t
m,h can be computed by the least-squares solution described as

follows. Let Ψ be an ordering of Um
h (t) (the set of all transitions available to any agent m),

and U = |Um
h (t)|. The regression involves the covariates 𝜑(n, x, a), which, in contrast to

the previous setting, are in fact functions of both the state-action space via 𝜑(x, a) and the

agent context via 𝜅(n). The targets are, for any τ ∈ Ψ, yτ = ym,h(nτ, xτ, aτ, zτ), where,

yτ = ym,h(nτ, xτ, aτ, zτ) = rnτ ,h(xτ, aτ) + Vt
m,h+1(nτ, zτ).

The above equation essentially has two terms for any transition (nτ, xτ, aτ, zτ) available to

agent m - the first is the reward that the nth
τ agent obtains in step h by selecting action aτ in

state xτ, and the second is the agent-specific value function, i.e., the value function that the

agent m predicts corresponding to the nth
τ MDP for state z at step h+ 1. This step essentially

introduces the heterogeneous modeling aspect: any agent (m), at all times will estimate the

value for all other agents based on their respective MDPs in order to leverage the federated

data. As in the homogeneous case, the ridge regression solution is given by,

Q̂t
m,h(n, x, a) = 𝜑(n, x, a)>w̃t

m,h s.t. wt
m,h =

(
Λ̃

t
m,h

)−1
ũt

m,h, where, (9.11)

Λ̃
t
m,h = ∑

τ∈Ψ
𝜑(nτ, xτ, aτ)𝜑(nτ, xτ, aτ)

> + λId+k, and ũt
m,h = ∑

τ∈Ψ
yτ𝜑(nτ, xτ, aτ). (9.12)

At any episode t and step h, each agent m then follows the greedy policy with respect to

Q(m, xt
m,h). The remainder of the algorithm is identical to Algorithm 18, and is presented

in Algorithm 20. To present the regret bound, we first define coefficient of heterogeneity Γ,

and then present the regret bound in terms of this coefficient.

Definition 9.3 (Coefficient of Heterogeneity). In a heterogeneous federated MDP (Definition 9.2),

let K ∈ RM×M be a symmetric positive-semidefinite matrix such that

K =


𝜅(1)>𝜅(1) . . . 𝜅(M)>𝜅(1)

... . . . ...

𝜅(1)>𝜅(M) . . . 𝜅(M)>𝜅(M)

 .

The coefficient of heterogeneity is defined as Γ = rank(K) 6 min{M, k}.

Remark 9.6 (Coefficient of Heterogeneity). The coefficient of heterogeneity Γ encapsulates

the difference in the respective MDPs for each agent. For example, to model the homoge-
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neous case, one can simply set 𝜅(1) = · · · = 𝜅(M) which provides us that Γ = 1. In the

worst case, since K is a Gram matrix of M elements in Rk
, we have that Γ = rank(K) =

rank(∑M
m=1 𝜅(m)𝜅(m)>) 6 k. This design, therefore, is useful only when the differences

between the respective MDPs are in fact explainable by k � M unique features. To make

this remark more precise, consider the lower bound for the single-agent linear MDP.

We have that for any algorithm, there exists an MDP such that the algorithm incurs

Ω(
√
|S||A|H3T) regret. If we therefore consider modeling this by a linear MDP in d + k

dimensions we have the bound Ω(
√
(d + k)H3MT) by Lemma 9.4, making the parametric

model vacuous when k > M since we are better off by modeling each MDP separately in

d−dimensions in this case.

Theorem 9.4. Algorithm 20 when run on M agents with parameter S in the heterogeneous setting

(Definition 9.2), with βt = O(H
√
(d + k) log(tMH)) and λ = 1 obtains the following cumula-

tive regret after T episodes, with probability at least 1− α,

R(T) = Õ
(
(d + k)H2

(
M(d + Γ)

√
S +

√
(d + Γ)MT

)√
log
(

1
α

))
.

This is proved in Section 9.11

Remark 9.7 (Optimality Discussion). Heterogeneous FedLSVI regret is bounded by the sim-

ilarity in the agents’ MDPs. In the case when the agents’ have identical MDPs, Γ = 1, which

implies that the heterogenous variant has a worse regret by a factor of (1 + k
d )
√

1 + 1
d ,

which arises from the fact that we use a model that lies in Rd+k
. Indeed, we can see that

by Lemma 9.4 we can construct an MDP setting such that any federated algorithm incurs

Ω
(√
∗d + k)H3MT

)
regret. Nevertheless, this suboptimality is indeed an artifact of our

regret analysis, particularly introduced by the covering number of linear functions in Rd+k
,

and future work can address modifications to ensure tightness. Alternatively, in the worst

case, Γ = k, which matches the linear federated MDP in d + k dimensions, which en-

sures that no suboptimality has been introduced by the heterogeneous analysis. Under

this model however, one can only observe improvements when k = o(
√

M) suffices for

modeling the heterogeneity within the federated MDP.
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9.6 Related Work and Discussion

Our work builds on the body of recent work in (single-agent) reinforcement learning with

function approximation. Classical work in this line of research, e.g., Bradtke & Barto (1996);

Melo & Ribeiro (2007) provide algorithms, however, with no polynomial-time sample effi-

ciency guarantees. In the presence of a simulator Yang & Wang (2020) provide a sample-

efficient algorithm under linear function approximation. For the linear MDP assumption

studied in this paper, our algorithms build on the seminal work of Jin et al. (2020), that

present an efficient (i.e., no-regret) algorithm. This research was further extended to ker-

nel and neural function approximation in the recent work of Yang et al. (2020b); Wang

et al. (2020a). Other approaches in this approximation setting are either computationally

intractable (Krishnamurthy et al., 2016; Dann et al., 2018; Dong et al., 2020) or require strong

assumptions on the transition model (Wen & Van Roy, 2017).

Parallel reinforcement learning is a very relevant practical setting for reinforcement

learning in large-scale and distributed systems, studied first in (Kretchmar, 2002). A vari-

ant of the SARSA was presented for parallel RL in Grounds & Kudenko (2005), that pro-

vides an efficient algorithm but with no regret guarantees. Modern deep-learning based

approaches (with no regret guarantees) have been studied recently as well (e.g., Clemente

et al. (2017); Espeholt et al. (2018); Horgan et al. (2018); Nair et al. (2015)). In the federated

setting, which corresponds to a decentralized variant of parallel reinforcement learning,

there has been recent interested from application domains as well (Yu et al., 2020b; Zhuo

et al., 2019).
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9.7 Proof of Lemma 9.3

Denote an epoch as the number of episodes between two rounds of communication. Let

q =
√

ST
d log(1+T/d) + 1. There can be at most dT/qe rounds of communication such that they

occur after an epoch of length q. On the other hand, if there is any round of communica-

tion succeeding an epoch (that begins, say at time t) of length < n′, then for that epoch,

log
det(St

m,h+δSt
m,h+λId)

det(St
m,h+λId)

> S
q . Let the communication occur at a set of episodes t′1, ..., t′n. Now,

since:

n−1

∑
i=1

log
det

(
Sti+1

m,h

)
det

(
Sti

m,h

) = log
det

(
ΛT

h
)

det
(
Λ0

h
) 6 d log(1 + T/(d)),

We have that the total number of communication rounds succeeding epochs of length less

than n′ is upper bounded by log
det(ΛT

h )
det(Λ0

h)
6 d log(1 + T/(d)) · (q/S). Combining both the

results together, we have the total rounds of communication as:

n 6 dT/qe+ dd log(1 + T/(d)) · (q/S)e (9.13)

6 T/q + d log(1 + T/(d)) · (q/S) + 2 (9.14)

Replacing q from earlier and summing over h ∈ [H] (as communication may be triggered

by any of the steps satisfying the condition) gives us the final result.

9.8 Proof of Theorem 9.1

We first present our primary concentration result to bound the error in the least-squares

value iteration.

Lemma 9.5. Under the setting of Therorem 9.1, let cβ be the constant defining β, and St
m,h and Λk

t

be defined as follows.

St
m,h =

M

∑
n=1

kt

∑
τ=1

𝜑(xτ
n,h, aτ

n,h)
[
Vt

m,h+1(xτ
n,h+1)− (PhVt

m,h+1)(xτ
n,h, aτ

n,h)
]

+
t−1

∑
τ=kt+1

𝜑(xτ
m,h, aτ

m,h)
[
Vt

m,h+1(xτ
m,h+1)− (PhVt

m,h+1)(xτ
m,h, aτ

m,h)
]

,
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Λt
m,h =

M

∑
n=1

kt

∑
τ=1

𝜑(xτ
n,h, aτ

n,h)𝜑(xτ
n,h, aτ

n,h)
> +

t−1

∑
τ=kt+1

𝜑(xτ
m,h, aτ

m,h)𝜑(xτ
m,h, aτ

m,h)
> + λId.

Where V ∈ V and Nε denotes the ε−covering of the value function space V . Then, there exists an

absolute constant cβ independent of M, T, H, d, such that, with probability at least 1− δ′/2 for all

m ∈ M, t ∈ [T], h ∈ [H] simultaneously,

∥∥St
m,h
∥∥
(Λt

m,h)
−1 6 cβ · dH

√
2 log

(
dMTH

δ′

)
.

Proof. The proof is done in two steps. The first step is to bound the deviations in S for any

fixed function V by a martingale concentration. The second step is to bound the resulting

concentration over all functions V by a covering argument. Finally, we select appropriate

constants to provide the form of the result required.

Step 1. Note that for any agent m, the function Vt
m,h+1 depends on the historical data from

all M agents from the first kt episodes, and the personal historical data for the first (t− 1)

episodes, and depends on

Um
h (t) =

(
∪n∈[M],τ∈[kt]{(xτ

n,h, aτ
n,h, xτ

n,h+1)}
)⋃ (

∪τ∈[kt+1,t−1{(xτ
m,h, aτ

m,h, xτ
m,h+1)}

)
.

To bound the term we will construct an appropriate filtration to use a self-normalized

concentration defined on elements of Um
h (t). We highlight that in the multi-agent case with

stochastic communication, it is not straightforward to provide a uniform martingale con-

centration that holds for all t ∈ [T] simultaneously (as is done in the single-agent case), as

the stochasticity in the environment dictates when communication will take place, and sub-

sequently the quantity considered within self-normalization will depend on this communi-

cation itself. To circumvent this issue, we will first fix kt 6 t and obtain a filtration for a fixed

kt. Then, we will take a union bound over all kt ∈ [t] to provide the final self-normalized

bound. We first fix kt and define the following mappings where i ∈ [M(t− 1)] , l ∈ [t− 1],

and n ∈ [M].

µ(i) =
⌈

i
M

⌉
, ν(i) = i(mod M), and, η(l, n) = l · (M + 1) + n− 1.
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Now, for a fixed kt, consider the stochastic processes {x̃τ}∞
τ=1 and {𝜑̃τ}∞

τ=1, where,

𝜑̃i = 𝜑(xν(i)
µ(i),h+1)⊗ 1d {(µ(i) = m) ∨ (ν(i) 6 kt)}

Here ⊗ denotes the Hadamard product, and 1d is the indicator function in Rd
. Consider

now the filtration {Fτ}∞
τ=0, where F0 is empty, and Fτ = σ

({⋃
(x̃i, 𝜑̃i)

}
i6τ

)
, where σ(·)

denotes the corresponding σ−algebra formed by the set.

At any instant t for any agent m, the function Vt
m,h+1 and features 𝜑(xt

m,h, at
m,h) depend

only on historical data from all other agents [M] \ {m} up to the last episode of synchro-

nization kt 6 t− 1 and depend on the personal data up to episode t− 1. Hence, both are

Vt
m,h+1 and 𝜑(xt

m,h, at
m,h) are measurable with respect to

σ

({
kt⋃

l=1

M⋃
n=1

(x̃η(l,n), 𝜑̃η(l,n))

}⋃{
t−1⋃

l=kt+1

(x̃η(l,m), 𝜑̃η(l,m))

})
.

This is a subset of Fη(t,m). Therefore Vt
m,h+1 is Fη(t,m)−measurable for fixed kt. Now, con-

sider Um
h (τ), the set of features available to agent m at episode τ 6 t. We therefore have

that, for any value function V,

M(t−1)

∑
τ=1

𝜑m,h(τ) {V(x̃τ)−E[V(x̃τ)|Fτ−1]}

=
M(t−1)

∑
τ=1

[
𝜑(xν(i)

µ(i),h+1)⊗ 1d {(µ(i) = m) ∨ (ν(i) 6 kt)}
]
{V(x̃τ)−E [V(x̃τ)|Fτ−1]}

= ∑
(xτ ,aτ ,x′τ)∈Um

h (t)
𝜑(xτ, aτ)

{
V(x′τ)−E[V(x′τ)|Fτ−1]

}
.

Now, when V = Vt
m,h+1, we have from the above,

M(t−1)

∑
τ=1

𝜑τ

{
Vt

h,m+1(x̃τ)−E[Vt
h,m+1(x̃τ)|Fτ−1]

}
= ∑

(nτ ,xτ ,aτ ,x′τ)∈Um
h (t)

𝜑(xτ, aτ)
{

Vt
m,h+1(x′τ)−E[Vt

m,h+1(x′τ)|Fτ−1]
}
= St

m,h.

Furthermore, consider Λ̃
t
m,h = λId + ∑M(t−1)

τ=1 𝜑τ𝜑
>
τ and let 1(t) denote the shorthand for
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1d {µ(i) = m ∨ ν(i) 6 kt}. For the second term, we have,

Λ̃
t
m,h = λId +

M(t−1)

∑
τ=1

𝜑τ𝜑
>
τ

=λId +
M(t−1)

∑
τ=1

[
𝜑(xν(i)

µ(i),h+1)⊗ 1(t)
] [
𝜑(xν(i)

µ(i),h+1)⊗ 1(t)
]>

=λId + ∑
(nτ ,xτ ,aτ ,x′τ)∈Um

h (t)
𝜑(xτ, aτ)𝜑(xτ, aτ)

> = Λt
m,h.

Next, we bound

∥∥∥∑M(t−1)
τ=1 𝜑m,h(τ)

{
Vt

h,m+1(x̃τ)−E[Vt
h,m+1(x̃τ)|Fτ−1]

}∥∥∥
(Λ̃

t
m,h)

−1
over all kt ∈

[t]. We proceed following a self-normalized martingale bound and a covering argument,

as done in Yang et al. (2020b).

Applying Lemma 9.20 to

∥∥∥∑M(t−1)
τ=1 𝜑m,h(τ)

{
Vt

h,m+1(x̃τ)−E[Vt
h,m+1(x̃τ)|Fτ−1]

}∥∥∥
(Λ̃

t
m,h)

−1

under the filtration {Fτ}∞
τ=0 described earlier, we have that with probability at least 1− δ′,

∥∥St
m,h
∥∥2
(Λt

m,h)
−1 =

∥∥∥∥∥M(t−1)

∑
τ=1

𝜑τ

{
Vt

h,m+1(x̃τ)−E[Vt
h,m+1(x̃τ)|Fτ−1]

}∥∥∥∥∥
2

(Λ̃
t
m,h)

−1

6 sup
V∈V

∥∥∥∥∥M(t−1)

∑
τ=1

𝜑τ {V(x̃τ)−E[V(x̃τ)|Fτ−1]}
∥∥∥∥∥

2

(Λ̃
t
m,h)

−1

6 4H2 · log
det

(
Λ̃

t
m,h

)
det (λId)

+ 8H2 log(|Nε|/δ′) + 8M2t2ε2/λ.

Where Nε is an ε−covering of V . Therefore, we have that, with probability at least 1− δ′,

for any fixed kt 6 t,

∥∥St
m,h
∥∥
(Λt

m,h)
−1 6 2H

√√√√√log

det
(

Λ̃
t
m,h

)
det (λId)

+ 2 log
(
|Nε|

δ

)
+

2M2t2ε2

H2λ
.

Taking a union bound over all kt ∈ [t], m ∈ M, t ∈ [T], h ∈ [H] and replacing δ′ =

δ/(MHT2) gives us that with probability at least 1− δ′/2 for all m ∈ M, t ∈ [T], h ∈ [H]

simultaneously,

∥∥St
m,h
∥∥
(Λt

m,h)
−1 6 2H

√√√√√log

det
(

Λ̃
t
m,h

)
det (λId)

+ log
(

MHT2 · |Nε|
δ′

)
+

2M2t2ε2

H2λ
.
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6 2H

√√√√log

(
det

(
Λt

h
)

det (λId)

)
+ 2 log

(
MHT2|Nε|

δ′

)
+

2t2ε2

H2λ

≤ 2H

√
d log

t + λ

λ
+ 4 log(MHT) + 2 log

(
|Nε|

δ′

)
+

2t2ε2

H2λ

(AM > GM; determinant-trace inequality)

Step 2. Here Nε is an ε−covering of the function class VUCB for any h ∈ [H], m ∈ [M] or

t ∈ [T] under the distance function dist(V, V ′) = supx∈S |V(x) − V ′(x)|. To bound this

quantity by the appropriate covering number, we first observe that for any V ∈ VUCB, we

have that the policy weights are bounded as 2H
√

dMT/λ (Lemma 9.22). Therefore, by

Lemma 9.23 we have for any constant B such that βt
m,h 6 B,

log |Nε| 6 d log

(
1 + 8H

√
dMT
λε2

)
+ d2 log

(
1 +

8d1/2B2

λε2

)
.

Recall that we select the hyperparameters λ = 1 and β = O(dH
√

log(TMH)), and to

balance the terms in β̄t
h we select ε = ε? = dH/T. Finally, we obtain that for some absolute

constant cβ, by replacing the above values,

log |Nε| 6 d log

(
1 + 8

√
MT3

d

)
+ d2 log

(
1 + 8cβd1/2T2 log(TMH)

)
.

Therefore, for some absolute constant C′ independent of M, T, H, d and cβ, we have,

log |Nε| 6 C′d2 log (CdT log(TMH)) .

Replacing this result in the result from Step 1, we have that with probability at least 1− δ′/2

for all m ∈ M, t ∈ [T], h ∈ [H] simultaneously,

∥∥St
m,h
∥∥
(Λt

m,h)
−1

6 2H

√
(d + 2) log

t + λ

λ
+ 2 log

(
1
α

)
+ C′d2 log

(
cβdT log(TMH)

)
+ 2 + 4 log(TMH).

This implies that there exists an absolute constant C independent of M, T, H, d and cβ, such
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that, with probability at least 1− δ′/2 for all m ∈ M, t ∈ [T], h ∈ [H] simultaneously,

∥∥St
m,h
∥∥
(Λt

m,h)
−1 6 C · dH

√
2 log

(
(cβ + 2)dMTH

δ′

)
.

Now, following the procedure in Lemma B.4 of Jin et al. (2020), we can select cβ such that

we have,

∥∥St
m,h
∥∥
(Λt

m,h)
−1 6 cβ · dH

√
2 log

(
dMTH

δ′

)
.

This finishes the proof.

Next, we present the key result for cooperative value iteration, which demonstrates that

for any agent the estimated Q−values have bounded error for any policy π.

Lemma 9.6. There exists an absolute constant cβ such that for βt
m,h = cβ · dH

√
log(2dMHT/δ′)

for any policy π, such that for each x ∈ S , a ∈ A we have for all m ∈ M, t ∈ [T], h ∈ [H]

simultaneously, with probability at least 1− δ′/2,

∣∣〈𝜑(x, a), wt
m,h −wπ

h 〉
∣∣

6 Ph(Vt
m,h+1 −Vπ

m,h+1)(x, a) + cβ · dH · ‖𝜑(z)‖(Λt
m,h)

−1 ·

√
2 log

(
dMTH

δ′

)
.

Proof. By the Bellman equation and the assumption of the linear MDP (Definition 9.1), we

have that for any policy 𝜋, there exist weights wπ
h such that, for all z ∈ Z ,

〈𝜑(z), wπ
h 〉 = rh(z) + PhVπ

h+1(z).

The set of all observations available to any agent at instant t is given by Um
h (t) for step h,

with the cardinality of this set being Uh
m(t). For convenience, let us assume an ordering

τ = 1, ..., Uh
m(t) over this set and use the shorthand Um = Uh

m(t). Therefore, we have, for

any m ∈ M,

wt
m,h −wπ

h = (Λt
m,h)

−1
Um

∑
τ=1

[
𝜑τ[(rh + Vt

m,h+1)(xτ)]
]
−wπ

h

= (Λt
m,h)

−1

{
−λwπ

h +
Um

∑
τ=1

[
𝜑τ[Vt

m,h+1(x′τ)−PhVπ
m,h+1(xτ, aτ)]

]}
.
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=⇒ wt
m,h −wπ

h = −λ(Λt
m,h)

−1wπ
h︸ ︷︷ ︸

v1

+ (Λt
m,h)

−1

{
Um

∑
τ=1

[
𝜑τ[Vt

m,h+1(x′τ)−PhVt
m,h+1(zτ)]

]}
︸ ︷︷ ︸

v2

+ (Λt
m,h)

−1

{
Um

∑
τ=1

[
𝜑τ[PhVt

m,h+1 −PhVπ
m,h+1)(zτ)]

]}
︸ ︷︷ ︸

v3

.

Now, we know that for any z ∈ Z for any policy π,

|〈𝜑(z), v1〉| 6 λ
∣∣∣〈𝜑(z), Λt

m,h)
−1wπ

h 〉
∣∣∣ 6 λ · ‖wπ

h ‖‖𝜑(z)‖(Λt
m,h)

−1 6 2Hλ
√

d‖𝜑(z)‖(Λt
m,h)

−1

Here the last inequality follows from Lemma 9.21. For the next term, we have by Lemma 9.5

that there exists an absolute constant C independent of M, T, H, d and cβ, such that, with

probability at least 1− δ′/2 for all m ∈ M, t ∈ [T], h ∈ [H] simultaneously,

|〈𝜑(z), v2〉| 6 ‖𝜑(z)‖(Λt
m,h)

−1 · cβ · dH ·

√
2 log

(
dMTH

δ′

)
.

We can bound the last term as follows. We make the substitution ∆V = (Vt
m,h+1 − Vπ

m,h+1)

for brevity.

|〈𝜑(z), v3〉| =
〈
𝜑(z), (Λt

m,h)
−1

{
Um

∑
τ=1

[
𝜑τ[PhVt

m,h+1 −PhVπ
m,h+1)(zτ)]

]}〉

=

〈
𝜑(z), (Λt

m,h)
−1

Um

∑
τ=1

[
𝜑τ𝜑

>
τ

∫
∆(V)(x′)d𝜇h(x′)

]〉

=

〈
𝜑(z),

∫
∆(V)(x′)d𝜇h(x′)

〉
− λ

〈
𝜑(z), (Λt

m,h)
−1
∫

∆(V)(x′)d𝜇h(x′)
〉

= Ph(Vt
m,h+1 −Vπ

m,h+1)(x, a)− λ

〈
𝜑(z), (Λt

m,h)
−1
∫

∆(V)(x′)d𝜇h(x′)
〉

= Ph(Vt
m,h+1 −Vπ

m,h+1)(x, a) + 2H
√

dλ‖𝜑(z)‖(Λt
m,h)

−1 .

Putting it all together, we have that since 〈𝜑(z), wt
m,h −wπ

h 〉 = 〈𝜑(z), v1 + v2 + v3〉, there

exists an absolute constant C independent of M, T, H, d and cβ, such that, with probability

at least 1− δ′/2 for all m ∈ M, t ∈ [T], h ∈ [H] simultaneously,

∣∣〈𝜑(x, a), wt
m,h −wπ

h 〉
∣∣ 6 Ph(Vt

m,h+1 −Vπ
m,h+1)(x, a)
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+ ‖𝜑(z)‖(Λt
m,h)

−1

(
C · dH ·

√
2 log

(
(cβ + 2)

dMTH
δ′

)
+ 2H

√
dλ + 2Hλ

√
d

)

Since λ 6 1 and since C is independent of cβ, we can select cβ such that we have the fol-

lowing for any (x, a) ∈ S ×Awith probability 1− δ′/2 simultaneously for all h ∈ [H], m ∈

M, t ∈ [T],

∣∣〈𝜑(x, a), wt
m,h −wπ

h 〉
∣∣

6 Ph(Vt
m,h+1 −Vπ

m,h+1)(x, a) + cβ · dH · ‖𝜑(z)‖(Λt
m,h)

−1 ·

√
2 log

(
dMTH

δ′

)
.

Lemma 9.7 (UCB in the Homogenous Setting). With probability at least 1− δ′/2, we have that

for all (x, a, h, t, m) ∈ S ×A× [H]× [T]×M, Qt
m,h(x, a) > Q?

m,h(x, a).

Proof. The proof is done by induction, identical to the proof in Lemma B.5 of Jin et al. (2020),

and we urge the reader to refer to the aforementioned source.

Lemma 9.8 (Recursive Relation in Homogenous Settings). Let δt
m,h = Vt

m,h(xt
m,h)−Vπt

m,h(xt
m,h),

and ξt
m,h+1 = E

[
δt

m,h|xt
m,h, at

m,h

]
− δt

m,h. Then, with probability at least 1− α, for all (t, m, h) ∈

[T]×M× [H] simultaneously,

δt
m,h 6 δt

m,h+1 + ξt
m,h+1 + 2

∥∥𝜑(xt
m,h, at

m,h)
∥∥
(Λt

m,h)
−1 · cβ · dH ·

√
2 log

(
dMTH

α

)
.

Proof. By Lemma 9.6, we have that for any (x, a, h, m, t) ∈ S × A × [H] ×M× [T] with

probability at least 1− α/2,

Qt
m,h(x, a)−Qπt

m,h(x, a) 6 Ph(Vt
m,h+1 −Vπt

m,h)(x, a)

+ 2 ‖𝜑(x, a)‖(Λt
m,h)

−1 · cβ · dH ·

√
2 log

(
dMTH

α

)
.

Replacing the definition of δt
m,h and Vπt

m,h finishes the proof.

Lemma 9.9. For ξt
m,h as defined in Lemma 9.8 and any δ ∈ (0, 1), we have with probability at least

245



1− δ/2,

T

∑
t=1

M

∑
m=1

H

∑
h=1

ξt
m,h 6

√
2H3MT log

(
2
α

)
.

Proof. We demonstrate that the overall sums can be written as bounded martingale dif-

ference sequences with respect to an appropriately chosen filtration. For any (t, m, h) ∈

[T]× [M]× [H], we define the σ-algebra Ft,m,h as,

Ft,m,h = σ
({(

xτ
l,i, aτ

l,i
)}

(τ,l,i)∈[t−1]×[M]×[H]
∪
{(

xt
l,i, at

l,i
)}

(i,l)∈[h]×[m−1] ∪
{(

xt
m,i, at

m,i
)}

i∈[h]

)
Where we denote the σ−algebra generated by a finite set by σ(·). For any t ∈ [T], m ∈

[M], h ∈ [H], we can define the timestamp index τ(t, m, h) as τ(t, m, h) = (t− 1) · HM +

h(m − 1) + (h − 1). We see that this ordering ensures that the σ−algebras from earlier

form a filtration. We can see that for any agent m ∈ [M], Qt
m,h and Vt

m,h are both obtained

based on the trajectories of the first (t− 1) episodes, and are both measurable with respect

to Ft,1,1 (which is a subset of Ft,m,h for all h ∈ [H] and m ∈ [M]). Moreover, note that

at
m,h ∼ πm,t(·|xt

m,h) and xt
m,h+1 ∼ Pm,h(·|xt

m,h, at
m,h). Therefore,

EPm,h [ξ
t
m,h|Ft,m,h] = 0.

where we set F1,0,0 with the empty set. We define the martingale {Ut,m,h}(t,h,m)∈[T]×[M]×[H]

indexed by τ(t, m, h) defined earlier, as follows. For any (t, m, h) ∈ [T] × [M] × [H], we

define

Ut,m,h =

{
∑

(a,b,c)
ξa

b,c : τ(a, b, c) 6 τ(t, m, h)

}
,

Additionally, we have that

UT,M,H =
T

∑
t=1

M

∑
m=1

H

∑
h=1

ξt
m,h.

Now, we have that for each m ∈ M, Vt
m,h, Qt

m,h, Vπm,t
m,h , Qπm,t

m,h take values in [0, H]. Therefore,

wh have that ξt
m,h 6 2H for all (t, m, h) ∈ [T] × [M] × [H]. This allows us to apply the

Azuma-Hoeffding inequality (Azuma, 1967) to UT,M,H. We therefore obtain that for all
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τ > 0,

P

(
T

∑
t=1

M

∑
m=1

H

∑
h=1

ξt
m,h > τ

)
6 exp

(
−τ2

2H3MT

)
.

Setting the RHS as α/2, we obtain that with probability at least 1− α/2,

T

∑
t=1

M

∑
m=1

H

∑
h=1

ξt
m,h 6

√
2H3MT log

(
2
α

)
.

Lemma 9.10 (Variance control via Dense communication). Let Algorithm 18 be run for any

T > 0 and M > 1, with S as the communication control factor. Then, the following holds for the

cumulative variance.

M

∑
m=1

T

∑
t=1

∥∥𝜑(zt
m,h)

∥∥
(Λt

m,h)
−1 6 2 log

(
det

(
ΛT

h
)

det (λId)

)(
M

log 2

)√
S + 2

√√√√2MT log

(
det

(
ΛT

h
)

det (λId)

)
.

Proof. Consider the following mappings νM, νT : [MT]→ [M]× [T].

νM(τ) = τ(mod M), and νT =
⌈ τ

M

⌉
.

Now, consider Λ̄
τ
h = λId + ∑τ

u=1𝜑
(

zνT(u)
νM(u),h

)
𝜑
(

zνT(u)
νM(u),h

)>
for τ > 0 and Λ̄

0
h = λId. Fur-

thermore, assume that global synchronizations occur at round 𝜎 = (σ1, ..., σn) where there

are a total of n− 1 rounds of synchronization and σi ∈ [T]∀ i ∈ [N − 1] and σn = T, i.e.,

the final round. Let Rh =

⌈
log
(

det(Λ̄
T
h )

det(λId)

)⌉
. It follows that there exist at most Rh periods

between synchronization (i.e., intervals σk−1 to σk for k ∈ [N]) in which the following does

not hold true:

1 6
det(Λ̄σk

h )

det(Λ̄k−1
h )

6 2. (9.15)

Let us denote the event when Equation (9.15) does holds for an interval σk−1 to σk as E.

Now, for any t ∈ [σk−1, σk], we have, for any m ∈ [M],

∥∥𝜑(zt
m,h)

∥∥
(Λt

m,h)
−1 6

∥∥𝜑(zt
m,h)

∥∥
(Λ̄t

h)
−1

√√√√ det
(

Λ̄
t
h

)
det

(
Λt

m,h
) 6

∥∥𝜑(zt
m,h)

∥∥
(Λ̄t

h)
−1

√
det

(
Λ̄

σk
h
)

det
(
Λ̄

σk−1
h

)
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6 2
∥∥𝜑(zt

m,h)
∥∥
(Λ̄t

h)
−1 .

Here, the first inequality follows from the fact that Λt
m,h 4 Λ̄

t
h, the second inequality fol-

lows from the fact that Λt
m,h 4 Λ̄

σk
h =⇒ det(Λt

m,h) 6 det(Λ̄σk
h ), and Λt

m,h < Λ̄
σk−1
h =⇒

det(Λt
m,h) > det(Λ̄σk−1

h ); and the final inequality follows from the fact that event E holds.

Now, we can consider the partial sums only in the intervals for which event E holds. For

any t ∈ [T], consider σ(t) = maxi∈[N]{σi|σi 6 t} denote the last round of synchronization

prior to episode t. Then,

T

∑
t:E is true

M

∑
m=1

∥∥𝜑(zt
m,h)

∥∥
(Λt

m,h)
−1 6

√√√√MT
M

∑
m=1

T

∑
t:E is true

∥∥∥𝜑(zt
m,h)

∥∥∥2

(Λt
m,h)

−1

6 2

√√√√MT
M

∑
m=1

T

∑
t:E is true

∥∥∥𝜑(zt
m,h)

∥∥∥2

(Λ̄t
h)
−1

6 2

√√√√MT
M

∑
m=1

T

∑
t=1

∥∥∥𝜑(zt
m,h)

∥∥∥2

(Λ̄t
h)
−1

= 2

√√√√MT
M

∑
m=1

T

∑
τ=1

∥∥∥𝜑(zνT(τ)
νM(τ),h)

∥∥∥2

(Λ̄t
h)
−1

= 2

√√√√MT log

(
det

(
ΛT

h
)

det (λId)

)
.

Here, the first inequality is Cauchy-Schwarz, the second inequality follows from the fact

that event E holds, and the final equality follows from Lemma 10.12. Now, we sum up the

cumulative sum for episodes when E does not hold. Consider an interval σk−1 to σk for

k ∈ [N] of length ∆k = σk − σk−1 in which E does not hold. We have that,

M

∑
m=1

σk

∑
t=σk−1

∥∥𝜑(zt
m,h)

∥∥
(Λt

m,h)
−1 6

M

∑
m=1

√√√√∆k,h

σk

∑
t=σk−1

∥∥∥𝜑(zt
m,h)

∥∥∥2

(Λt
m,h)

−1

6
M

∑
m=1

√√√√∆k,h · logω

(
det(Λσk

m,h)

det(Λσk−1
m,h )

)
6

M

∑
m=1

√√√√∆k,h · logω

(
det(Λ̄σk

h )

det(Λ̄σk−1
h )

)
6 M

√
S.

The last inequality follows from the synchronization criterion. Now, note that there are at

most Rh periods in which event E does not hold, and hence the total sum in this period can

be bound as,

T

∑
(t:E is not true)

M

∑
m=1

∥∥𝜑(zt
m,h)

∥∥
(Λt

m,h)
−1 6 Rh M

√
S 6

(
log

(
det

(
ΛT

h
)

det (λId)

)
+ 1

)
M
√

S.
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Therefore, we can bound the total variance as,

M

∑
m=1

T

∑
t=1

∥∥𝜑(zt
m,h)

∥∥
(Λt

m,h)
−1 6

(
log

(
det

(
ΛT

h
)

det (λId)

)
+ 1

)
M
√

S + 2

√√√√MT log

(
det

(
ΛT

h
)

det (λId)

)

6 2 log

(
det

(
ΛT

h
)

det (λId)

)(
M

log 2

)√
S + 2

√√√√2MT log

(
det

(
ΛT

h
)

det (λId)

)
.

We are now ready to prove Theorem 9.1. We have by the definition of group regret:

R(T) =
M

∑
m=1

T

∑
t=1

V?
m,1(xt

m,1)−Vπt
m,1(xt

m,1) 6
M

∑
m=1

T

∑
t=1

δt
m,1

6
M

∑
m=1

T

∑
t=1

H

∑
h=1

ξt
m,h + 2cβ · dH ·

√
2 log

(
dMTH

α

)( T

∑
t=1

M

∑
m=1

H

∑
h=1
‖𝜑(x, a)‖(Λt

m,h)
−1

)
.

Where the last inequality holds with probability at least 1− α/2, via Lemmas 9.7 and 9.8.

Next, we can bound the first term via Lemma 9.9. We have with probability at least 1− α,

for some absolute constant cβ,

R(T) 6

√
2H3MT log

(
2
α

)
+ 2cβ · dH ·

√
2 log

(
dMTH

α

)( T

∑
t=1

M

∑
m=1

H

∑
h=1
‖𝜑(x, a)‖(Λt

m,h)
−1

)
.

Finally, to bound the summation, we use Lemma 9.10. We have that,

T

∑
t=1

M

∑
m=1

H

∑
h=1
‖𝜑(x, a)‖(Λt

m,h)
−1

6 2
H

∑
h=1

log

(
det

(
ΛT

h
)

det (λId)

)(
M

log 2

)√
S + 2

√√√√2MT log

(
det

(
ΛT

h
)

det (λId)

)
6 2H log(dMT)M

√
S + 2

√
2dMT log(MT).

Where the last inequality is an application of the determinant-trace inequality and using

the fact that ‖𝜑(·)‖2 6 1. Replacing this result, we have that with probability at least 1− α,

R(T) 6

√
2H3MT log

(
2
α

)

249



+ 2cβdH2

√
2 log

(
dMTH

α

)(
2 log(dMT)M

√
S + 2

√
2dMT log(MT)

)
.

Simplifying the above finishes the proof.

9.9 Proof of Theorem 9.2

By the same arguments as Theorem 9.1, we have with probability at least 1− α, for some

absolute constant cβ,

R(T) 6

√
2H3MT log

(
2
α

)
+ 2cβ · dH ·

√
2 log

(
dMTH

α

)( T

∑
t=1

M

∑
m=1

H

∑
h=1
‖𝜑(x, a)‖(Λt

m,h)
−1

)
.

We bound the term

(
∑T

t=1 ∑M
m=1 ‖𝜑(x, a)‖(Λt

m,h)
−1

)
for each h ∈ [H] via Lemma 12 of Abbasi-

Yadkori et al. (2011). Assume that the penultimate synchronization round was given by kT

and let

Λ̂h =
M

∑
m=1

kT

∑
t=1
𝜑(xt

m,h, at
m,h)𝜑(xt

m,h, at
m,h)

>,
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∑
m=1

T

∑
t=1
𝜑(xt

m,h, at
m,h)𝜑(xt

m,h, at
m,h)

>

for each h ∈ [H]. We have for any h,

T

∑
t=1

M

∑
m=1
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−1 6

√
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)

6

√
det(Λh)

det(Λ̂h)
·
(

T

∑
t=1

M

∑
m=1
‖𝜑(x, a)‖(Λ̂h)−1

)

≤
√

S ·
(

T

∑
t=1

M

∑
m=1
‖𝜑(x, a)‖(Λ̂h)−1

)

= O
(√

SMT log
(

MT
d

))
.

Where the last inequality is an application of the determinant-trace inequality and using

the fact that ‖𝜑(·)‖2 6 1. Replacing this result, we have that with probability at least 1− α,
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there exists an independent constant C such that

R(T) 6

√
2H3MT log

(
2
α

)
+ 2C · cβdH2

√
2 log

(
dMTH

α

)(√
SMT log

(
MT

d

))
.

Simplifying the above finishes the proof.

9.10 Proof of Theorem 9.3

The proof for this algorithm largely follows the structure of Theorem 9.1 with several key

modifications to handle the differences between MDPs as a case of model misspecification.

First, we must bound the difference in the projected Q−values for any pair of MDPs under

the small heterogeneity condition.

Lemma 9.11. Under the small heterogeneity condition (Assumption 9.1), for any policy 𝜋 over

S ×A, let the corresponding weights at step h for two MDPs m, m′ ∈ M be given by wπ
m,h, wπ

m′,h

respectively, i.e., Qπ
m,h(x, a) = 〈𝜑(x, a), wπ

m,h〉 and Qπ
m′,h(x, a) = 〈𝜑(x, a), wπ

m′,h〉. Then, we have

for any x, a ∈ S ×A,

∣∣〈𝜑(x, a), wπ
m,h −wπ

m′,h〉
∣∣ 6 2Hξ.

Proof. The proof follows from the fact that for any h ∈ [H],

∣∣〈𝜑(x, a), wπ
m,h −wπ

m′,h〉
∣∣

=
∣∣Qπ

m,h(x, a)−Qπ
m′,h(x, a)

∣∣
6 |rm,h(x, a)− rm′,h(x, a)|+

∣∣Pm,hVπ
m,h+1(x, a)−Pm′,hVπ

m′,h+1(x, a)
∣∣

6 |rm,h(x, a)− rm′,h(x, a)|+ sup
x′∈S
|Vπ

m,h+1(x′)−Vπ
m′,h+1(x′)| · ‖(Pm,h −Pm′,h)(x, a)‖TV

6 |rm,h(x, a)− rm′,h(x, a)|+ H · ‖(Pm,h −Pm′,h)(x, a)‖TV

6 2Hξ.

Here the last inequality follows from Assumption 9.1.

Now, we reproduce a general result bounding bias introduced by the potentially adver-

sarial noise due to misspecification.
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Lemma 9.12. Let {ετ}t
τ=1 be a sequence such that |ετ| 6 B. We have, for any (h, t, m) ∈ [H]×

[T]×M, and 𝜑 ∈ Rd,

|𝜑>(Λt
m,h)

−1
Um

h (t)

∑
τ=1

𝜑τετ| 6 B
√

dMt‖𝜑‖(Λt
m,h)

−1 .

Proof. Recall that at any instant the collective set of observations possessed by an agent is

given by Um
h (t) with size Um

h (t) 6 Mt. We have that,

|𝜑>(Λt
m,h)

−1
Um

h (t)

∑
τ=1

𝜑τετ| 6 B · |𝜑>(Λt
m,h)

−1
Um

h (t)

∑
τ=1

𝜑τ|

6 B ·

√√√√√
Um

h (t)

∑
τ=1

𝜑>(Λt
m,h)

−1𝜑

 ·
Um

h (t)

∑
τ=1

𝜑>τ (Λ
t
m,h)

−1𝜑τ


6 B
√

dMt‖𝜑‖(Λt
m,h)

−1 .

Now we present the primary concentration result for the small heterogeneity setting.

Lemma 9.13. There exists an absolute constant cβ such that for βt
m,h = cβ · dH(

√
log(2dMHT/δ′)+

ξ
√

dMT) for any policy π, there exists a constant cβ such that for each x ∈ S , a ∈ A we have for

all m ∈ M, t ∈ [T], h ∈ [H] simultaneously, with probability at least 1− δ′/2,

∣∣〈𝜑(x, a), wt
m,h −wπ

m,h〉
∣∣ 6

Pm,h(Vt
m,h+1 −Vπ

m,h+1)(x, a) + cβ · dH · ‖𝜑(z)‖(Λt
m,h)

−1

(√
2 log

(
dMTH

δ′

)
+ 2ξ
√

dMT

)
.

Proof. By the Bellman equation and the assumption of the linear MDP (Definition 9.1), we

have that for any policy 𝜋, there exist weights wπ
m,h such that, for all z ∈ Z ,

〈𝜑(z), wπ
m,h〉 = rm,h(z) + Pm,hVπ

h+1(z).

Recall that the set of all observations available to any agent at instant t is given by Um
h (t)

for step h, with the cardinality of this set being Uh
m(t). For convenience, let us assume an
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ordering τ = 1, ..., Uh
m(t) over this set and use the shorthand Um = Uh

m(t). Therefore, we

have, for any m ∈ M,

wt
m,h −wπ

m,h

= (Λt
m,h)

−1
Um

∑
τ=1

[
𝜑τ[(rh + Vt

m,h+1)(xτ)]
]
−wπ

m,h

= (Λt
m,h)

−1

{
−λwπ

h +
Um

∑
τ=1

[
𝜑τ[Vt

m,h+1(x′τ)−Pmτ ,hVπ
m,h+1(xτ, aτ)]

]}
.

=⇒ wt
m,h −wπ

m,h

= −λ(Λt
m,h)

−1wπ
m,h︸ ︷︷ ︸

v1

+ (Λt
m,h)

−1

{
Um

∑
τ=1

[
𝜑τ[Vt

m,h+1(x′τ)−Pm,hVt
m,h+1(zτ)]

]}
︸ ︷︷ ︸

v2

+ (Λt
m,h)

−1

{
Um

∑
τ=1

[
𝜑τ[Pm,hVt

m,h+1 −Pm,hVπ
m,h+1)(zτ)]

]}
︸ ︷︷ ︸

v3

+ (Λt
m,h)

−1

{
Um

∑
τ=1

[
𝜑τ[Pm,hVt

m,h+1 −Pmτ ,hVt
m,h+1)(zτ)]

]}
︸ ︷︷ ︸

v4

+ (Λt
m,h)

−1

{
Um

∑
τ=1

[
𝜑τ[Pm,hVπ

m,h+1 −Pmτ ,hVπ
m,h+1)(zτ)]

]}
︸ ︷︷ ︸

v5

.

Now, we know that for any z ∈ Z for any policy π,

|〈𝜑(z), v1〉| 6 λ
∣∣∣〈𝜑(z), Λt

m,h)
−1wπ

h 〉
∣∣∣ 6 λ · ‖wπ

h ‖‖𝜑(z)‖(Λt
m,h)

−1 6 2Hλ
√

d‖𝜑(z)‖(Λt
m,h)

−1

Here the last inequality follows from Lemma 9.21. For the second term, we have by Lemma 9.5

that there exists an absolute constant C independent of M, T, H, d and cβ, such that, with

probability at least 1− δ′/2 for all m ∈ M, t ∈ [T], h ∈ [H] simultaneously,

|〈𝜑(z), v2〉| 6 ‖𝜑(z)‖(Λt
m,h)

−1 · cβ · dH ·

√
2 log

(
dMTH

δ′

)
.
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Let us make the substitution ∆V = (Vt
m,h+1 −Vπ

m,h+1). For the third term, note that,

|〈𝜑(z), v3〉|

=

〈
𝜑(z), (Λt

m,h)
−1

{
Um

∑
τ=1

[
𝜑τ[PhVt

m,h+1 −PhVπ
m,h+1)(zτ)]

]}〉

=

〈
𝜑(z), (Λt

m,h)
−1

Um

∑
τ=1

[
𝜑τ𝜑

>
τ

∫
∆V(x′)d𝜇h(x′)

]〉

=

〈
𝜑(z),

∫
∆V(x′)d𝜇h(x′)

〉
− λ

〈
𝜑(z), (Λt

m,h)
−1
∫

∆V(x′)d𝜇h(x′)
〉

= Ph(Vt
m,h+1 −Vπ

m,h+1)(x, a)− λ

〈
𝜑(z), (Λt

m,h)
−1
∫

∆V(x′)d𝜇h(x′)
〉

= Ph(Vt
m,h+1 −Vπ

m,h+1)(x, a) + 2H
√

dλ‖𝜑(z)‖(Λt
m,h)

−1

For the remaining terms, we have that both [Pm,hVπ
m,h+1−Pmτ ,hVπ

m,h+1)(zτ)] and [Pm,hVt
m,h+1−

Pmτ ,hVt
m,h+1)(zτ)] are bounded by Hξ (from Assumption 9.1 and the fact that the value func-

tions are always smaller than H). This gives us, by Lemma 9.12,

|〈𝜑(z), v4 + v5〉| 6 2Hξ
√

dMt‖𝜑(z)‖(Λt
m,h)

−1

Putting it all together, we have that since 〈𝜑(z), wt
m,h −wπ

m,h〉 = 〈𝜑(z), v1 + v2 + v3 + v4 +

v5〉, there exists an absolute constant C independent of M, T, H, d and cβ, such that, with

probability at least 1− δ′/2 for all m ∈ M, t ∈ [T], h ∈ [H] simultaneously,

∣∣〈𝜑(x, a), wt
m,h −wπ

m,h〉
∣∣ 6 Pm,h(Vt

m,h+1 −Vπ
m,h+1)(x, a)+

‖𝜑(z)‖(Λt
m,h)

−1

(
C · dH ·

√
2 log

(
(cβ + 2)

dMTH
δ′

)
+ 2H

√
dλ + 2Hλ

√
d + 2Hξ

√
dMT

)

Since λ 6 1 and since C is independent of cβ, we can select cβ such that we have the fol-

lowing for any (x, a) ∈ S ×Awith probability 1− δ′/2 simultaneously for all h ∈ [H], m ∈

M, t ∈ [T],

∣∣〈𝜑(x, a), wt
m,h −wπ

m,h〉
∣∣ 6
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Pm,h(Vt
m,h+1 −Vπ

m,h+1)(x, a) + cβ · dH · ‖𝜑(z)‖(Λt
m,h)

−1

(√
2 log

(
dMTH

δ′

)
+ 2ξ
√

dMT

)
.

We now present an analogous recursive relationship in the small heterogeneity setting.

Lemma 9.14 (Recursive Relation in Small Heterogeneous Settings). Let δt
m,h = Vt

m,h(xt
m,h)−

Vπt
m,h(xt

m,h), and ξt
m,h+1 = E

[
δt

m,h|xt
m,h, at

m,h

]
− δt

m,h. Then, with probability at least 1− α, for all

(t, m, h) ∈ [T]×M× [H] simultaneously,

δt
m,h 6 δt

m,h+1 + ξt
m,h+1 + cβ · dH · ‖𝜑(x, a)‖(Λt

m,h)
−1

(√
2 log

(
dMTH

δ′

)
+ 2ξ
√

dMT

)
.

Proof. By Lemma 9.13, we have that for any (x, a, h, m, t) ∈ S × A× [H]×M× [T] with

probability at least 1− α/2,

Qt
m,h(x, a)−Qπt

m,h(x, a) =
∣∣〈𝜑(x, a), wt

m,h −wπ
m,h〉

∣∣ 6
Pm,h(Vt

m,h+1−Vπ
m,h+1)(x, a)+ cβ · dH · ‖𝜑(x, a)‖(Λt

m,h)
−1

(√
2 log

(
dMTH

δ′

)
+ 2ξ
√

dMT

)
.

Replacing the definition of δt
m,h and Vπt

m,h finishes the proof.

We are now ready to prove Theorem 9.3. We have by the definition of group regret:

R(T) (9.16)

=
M

∑
m=1

T

∑
t=1

V?
m,1(xt

m,1)−Vπt
m,1(xt

m,1) 6
M

∑
m=1

T

∑
t=1

δt
m,1 (9.17)

6
M

∑
m=1

T

∑
t=1

H

∑
h=1

ξt
m,h + 4cβ · dH ·

(√
log
(

dMTH
α

)
+ ξ
√

dMT

)(
T

∑
t=1

M

∑
m=1

H

∑
h=1
‖𝜑(x, a)‖(Λt

m,h)
−1

)
.

(9.18)

Where the last inequality holds with probability at least 1 − α/2, via Lemma 9.14 and

Lemma 9.7. Next, we can bound the first term via Lemma 9.9. We have with probabil-

ity at least 1− α, for some absolute constant cβ,

R(T) 6

√
2H3MT log

(
2
α

)
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+ 4cβ · dH ·
(√

log
(

dMTH
α

)
+ ξ
√

dMT

)(
T

∑
t=1

M

∑
m=1

H

∑
h=1
‖𝜑(x, a)‖(Λt

m,h)
−1

)
.

Finally, to bound the summation, we use Lemma 9.10. We have that,

T

∑
t=1

M

∑
m=1

H

∑
h=1
‖𝜑(x, a)‖(Λt

m,h)
−1

6 2
H

∑
h=1

log

(
det

(
ΛT

h
)

det (λId)

)(
M

log 2

)√
S + 2

√√√√2MT log

(
det

(
ΛT

h
)

det (λId)

)
6 2H log(dMT)M

√
S + 2

√
2dMT log(MT).

Where the last inequality is an application of the determinant-trace inequality and using

the fact that ‖𝜑(·)‖2 6 1. Replacing this result, we have that with probability at least 1− α,

R(T) 6

√
2H3MT log

(
2
α

)

+ 4cβ · dH2 ·
(√

log
(

dMTH
α

)
+ ξ
√

dMT

)(
2 log(dMT)M

√
S + 2

√
2dMT log(MT)

)

=⇒ R(T) = Õ
(

d3/2H2
(

M
√

S +
√

MT
)(√

log
(

1
α

)
+ 2ξ
√

dMT

))
.

9.11 Proof for Theorem 9.4

The proof for this section is follows the strucutre of Theorem 9.1, however since we use

the modified feature, the analysis differs in several key places. First we introduce the basic

result which relates the variance with the coefficient of heterogeneity.

Lemma 9.15 (Variance Decomposition). Under the heterogeneous federated MDP assumption

(Definition 9.2) and coefficient of heterogeneity defined in Definition 9.3, we have that,

max
h∈[H]

log det
(

Λ̃
T
h

)
6 (d + λ + Γ) log(MT).
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Proof. We know, from the form of Λ̃
T
h that,

log det
(

Λ̃
T
h

)
= log det

(
(Φ̃

T
h )
>(Φ̃

T
h

)
+ λId+k) = log det

(
(Φ̃

T
h )(Φ̃

T
h )
> + λIMT

)
.

Here, Φ̃
T
h ∈ RMT×(d+k)

is the matrix of all features 𝜑(x, a, m) for step h until episode

T. Now, observe that the matrix (Φ̃
T
h )(Φ̃

T
h )
>

can be rewritten as the sum of two ma-

trices (Φ̃
T
h )(Φ̃

T
h )
> = (ΦT

h )(Φ
T
h )
> + K̃T

h , where [K̃T
h ]i,j = 𝜈(mi)

>𝜈(mj), K̃T
h ∈ RMT×MT

,

i.e., the corresponding dot-product contribution from the agent-specific features between

any pair of transitions, and (ΦT
h )(Φ

T
h )
>

refers to the regular (agent-agnostic) features, i.e.,

[(ΦT
h )(Φ

T
h )
>]i,j = 𝜑>i 𝜑j. Now, from Theorem IV of Madiman (2008), we have that,

log det
(
(Φ̃

T
h )(Φ̃

T
h )
> + λIMT

)
6 log det

(
(ΦT

h )(Φ
T
h )
> + λIMT

)
+ log det

(
K̃T

h + λIMT

)
= log det

(
(ΦT

h )
>(ΦT

h ) + λId

)
+ log det

(
K̃T

h + λIMT

)
6 d log(MT) + log det

(
K̃T

h + λIMT

)
6 d log(MT) + λ log(MT) + rank(K̃T

h ) · log(MT)

= (d + λ) log(MT) + rank(Kκ
h) log(MT).

The second inequality follows from ‖𝜑(·)‖ 6 1 and then applying an AM-GM inequality

followed by the determinant-trace inequality (as is common in bandit analyses). The final

equality follows by the fact that since K̃T
h is T × T tiles of Kκ

h followed by permutations,

which implies that rank(K̃T
h ) = rank(Kκ

h). Taking the maximum over all h ∈ [H] and gives

us the result.

Next, we present a variant of the previous concentration result to bound the least-

squares value iteration error (analog of Lemma 9.5).

Lemma 9.16. Under the setting of Theorem 9.4, let c′β be the constant defining β, and S̃t
m,h and Λ̃

k
t

be defined as follows.

S̃t
m,h =

M

∑
n=1

kt

∑
τ=1

𝜑(n, xτ
n,h, aτ

n,h)
[
Vt

m,h+1(n, xτ
n,h+1)− (Pm,hVt

m,h+1)(n, xτ
n,h, aτ

n,h)
]

+
t−1

∑
τ=kt+1

𝜑(n, xτ
m,h, aτ

m,h)
[
Vt

m,h+1(m, xτ
m,h+1)− (Pm,hVt

m,h+1)(m, xτ
m,h, aτ

m,h)
]

,
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Λ̃
t
m,h =

M

∑
n=1

kt

∑
τ=1

𝜑(n, xτ
n,h, aτ

n,h)𝜑(n, xτ
n,h, aτ

n,h)
> +

t−1

∑
τ=kt+1

𝜑(n, xτ
m,h, aτ

m,h)𝜑(n, xτ
m,h, aτ

m,h)
> + λId+k.

Where V ∈ V and Nε denotes the ε−covering of the value function space V . Then, there exists an

absolute constant C independent of M, T, H, d and c′β, such that, with probability at least 1− δ′/2

for all m ∈ M, t ∈ [T], h ∈ [H] simultaneously,

∥∥∥S̃t
m,h

∥∥∥
(Λ̃

t
m,h)

−1
6 C · (d + k)H

√√√√2 log

(
(c′β + 2)(d + k)MTH

δ′

)
.

Proof. The proof is identical to that of Lemma 9.5, except that we utilize the combined fea-

tures of dimensionality (d + k), which requires us to select an alternative constant c′β in the

bound.

Lemma 9.17. There exists a constant c′β such that for βt
m,h = c′β · dH

√
log(2(d + k)MHT/δ′)

for any policy π, there exists a constant cβ such that for each x ∈ S , a ∈ A we have for all m ∈

M, t ∈ [T], h ∈ [H] simultaneously, with probability at least 1− δ′/2,

∣∣∣〈𝜑(n, x, a), wt
m,h −wπ

m,h〉
∣∣∣ 6 Pm,h(Vt

m,h+1 −Vπ
m,h+1)(n, x, a)

+ cβ · (d + k)H · ‖𝜑(n, z)‖
(Λ̃

t
m,h)

−1 ·

√
2 log

(
(d + k)MTH

δ′

)
.

Proof. The proof for this is identical to Lemma 9.6, however we modify the application of

Lemma 9.5 with Lemma 9.16 instead.

Lemma 9.18 (UCB in the Heterogeneous Setting). With probability at least 1− δ′/2, we have

that for all (x, a, h, t, m) ∈ S ×A× [H]× [T]×M, Qt
m,h(x, a) > Q?

m,h(x, a).

Proof. The proof is done by induction, identical to the proof in Lemma B.5 of Jin et al. (2020),

and we urge the reader to refer to the aforementioned source.

Lemma 9.19. Let δt
m,h = Vt

m,h(xt
m,h) − Vπt

m,h(xt
m,h), and ξt

m,h+1 = E
[
δt

m,h|xt
m,h, at

m,h

]
− δt

m,h.

Then, with probability at least 1− α, for all (t, m, h) ∈ [T]×M× [H] simultaneously,

δt
m,h 6 δt

m,h+1 + ξt
m,h+1 + 2

∥∥∥𝜑(m, xt
m,h, at

m,h)
∥∥∥
(Λ̃

t
m,h)

−1
· c′β · (d + k)H ·

√
2 log

(
(d + k)MTH

α

)
.
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Proof. By Lemma 9.17, we have that for any (x, a, h, m, t) ∈ S × A× [H]×M× [T] with

probability at least 1− α/2,

Qt
m,h(x, a)−Qπt

m,h(x, a) 6 Pm,h(Vt
m,h+1 −Vπt

m,h)(x, a)

+ 2
∥∥∥𝜑(x, a)

∥∥∥
(Λ̃

t
m,h)

−1
· c′β · (d + k)H ·

√
2 log

(
(d + k)MTH

α

)
.

Replacing the definition of δt
m,h and Vπt

m,h finishes the proof.

We are now ready to prove Theorem 9.4. We have by the definition of group regret:

R(T) =
M

∑
m=1

T

∑
t=1

V?
m,1(xt

m,1)−Vπt
m,1(xt

m,1) 6
M

∑
m=1

T

∑
t=1

δt
m,1

6
M,T,H

∑
m,t,h

ξt
m,h + 2c′β · (d + k)H ·

√
2 log

(
(d + k)MTH

α

)( T

∑
t=1

M

∑
m=1

H

∑
h=1

∥∥∥𝜑(m, x, a)
∥∥∥
(Λ̃

t
m,h)

−1

)
.

Where the last inequality holds with probability at least 1 − α/2, via Lemma 9.19 and

Lemma 9.18. Next, we can bound the first term via Lemma 9.9. We have with probabil-

ity at least 1− α, for some absolute constant c′β,

R(T) 6

√
2H3MT log

(
2
α

)

+ 2c′β · (d + k)H ·

√
2 log

(
(d + k)MTH

α

)( T

∑
t=1

M

∑
m=1

H

∑
h=1

∥∥∥𝜑(m, x, a)
∥∥∥
(Λ̃

t
m,h)

−1

)
.

Finally, to bound the summation, we use Lemma 9.10. We have that,

T

∑
t=1

M

∑
m=1

H

∑
h=1

∥∥∥𝜑(x, a)
∥∥∥
(Λ̃

t
m,h)

−1

6 2
H

∑
h=1

log

det
(

Λ̃
T
h

)
det (λId)

( M
log 2

)√
S + 2

√√√√√2MT log

det
(

Λ̃
T
h

)
det (λId)




6 2H(d + Γ) log(MT)M
√

S + 2H
√

2(d + Γ)MT log(MT).

Where the last inequality is an application of the variance decomposition (Lemma 9.15) and

using the fact that ‖𝜑(·)‖2 6 1. Replacing this result, we have that with probability at least
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1− α,

R(T) 6

√
2H3MT log

(
2
α

)

+ 8c′β · (d + k)H2 ·

√
log
(

dMTH
α

)(
log(MT)M(d + Γ)

√
S +

√
(d + Γ)MT log(MT)

)
.

=⇒ R(T) = Õ
(
(d + k)H2

(
M(d + Γ)

√
S +

√
(d + Γ)MT

)√
log
(

1
α

))
.

9.12 Omitted Results

Lemma 9.20 (Lemma E.2 of Yang et al. (2020b), Lemma D.4 of Jin et al. (2018)). Let {xτ}∞
τ=1

and {𝜑τ}∞
τ=1 be an S-valued and an H-valued stochastic process adapted to filtration {Fτ}∞

τ=0

respectively, where we assume that ‖𝜑τ‖2 ≤ 1 for all τ ≥ 1. Besides, for any t ≥ 1, define

Λt : H → H as Λt = λId + ∑t
τ=1𝜑τ𝜑

>
τ with λ > 1. Then, for any δ > 0 with probability at

least 1− δ, we have,

sup
V∈V

∥∥∥∥∥ t

∑
τ=1

𝜑τ {V(xτ)−E[V(xτ)|Fτ−1]}
∥∥∥∥∥

2

Λ−1
t

≤ 4H2 · log
det (Λt)

det (λId)
+ 4H2t(λ− 1) + 8H2 log

(
|Nε|)

δ

)
+

8t2ε2

λ
.

Lemma 9.21 (Bound on Weights of Homogenous Value Functions, Lemma B.1 of Jin et al.

(2020)). Under the linear MDP Assumption (Definition 9.1), for any fixed policy π, let
{

wπ
h

}
h∈[H]

be the weights such that Qπ
h (x, a) = 〈𝜑(x, a), wπ

h 〉 for all (x, a, h) ∈ S ×A× [H] and m ∈ M.

Then, we have,

‖wπ
h ‖2 ≤ 2H

√
d.

Lemma 9.22 (Bound on Weights of FedLSVI Policy for MDPs). At any t ∈ [T] for any m ∈ M

and all h ∈ [H], we have that the weights wt
m,h of Algorithm 18 satisfy,

‖wt
m,h‖2 ≤ 2H

√
dMt/λ.
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Proof. For any vector v ∈ Rd|‖v‖ = 1,

∣∣∣v>𝜃t
m,h

∣∣∣ =
∣∣∣∣∣∣v> (Λt

m,h
)−1

Um
h (t)

∑
τ=1

[
𝜑(xτ, aτ)

[
r(xτ, aτ) + max

a
Qm,h+1(x′τ, a)

]]∣∣∣∣∣∣
≤ 2H ·

∣∣∣∣∣∣v> (Λt
m,h
)−1

Um
h (t)

∑
τ=1

𝜑(xτ, aτ)

∣∣∣∣∣∣
≤ 2H ·

√√√√√
∣∣∣∣∣∣
Um

h (t)

∑
τ=1
‖v‖2

(Λt
m,h)

−1‖𝜑(xτ, aτ)‖2
(Λt

m,h)
−1

∣∣∣∣∣∣
≤ 2H‖v‖

√
dUm

h (t)/λ ≤ 2H
√

dMt/λ.

The penultimate inequality follows from Lemma 10.12 and the final inequality follows from

the fact that Um
h (t) ≤ Mt. The remainder of the proof follows from the fact that for any

vector w, ‖w‖ = maxv:‖v‖=1 |v>w|.

Lemma 9.23 (Covering Number for UCB-style value functions, Lemma D.6 of Jin et al.

(2020)). Let V denote a class of functions mapping from S to R with the following parameteric

form

V(·) = min
{

max
a∈A

[
w>𝜑(·, a) + β

√
𝜑(·, a)>Λ−1𝜑(·, a)

]
, H
}

,

where the parameters (w, β, Λ) are such that ‖w‖ ≤ L, β ∈ (0, B], ‖𝜑(x, a)‖ ≤ 1 ∀(x, a) ∈

S × A, and the minimum eigenvalue of Λ satisfies λmin(Λ) ≥ λ. Let Nε be the ε−covering

number of V with respect to the distance dist(V, V ′) = supx∈S |V(x)−V ′(x)|. Then,

logNε ≤ d log (1 + 4L/ε) + d2 log
(

1 + 8d1/2B2/(λε2)
)

.
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9.13 Algorithm Pseudocode

Algorithm 18 FedLSVI with Dense Communication

1: Input: T,𝜑, H, S, sequence βh = {(βt
m,h)m,t}.

2: Initialize: St
m,h, δSt

m,h = 0,Um
h ,Wm

h = ∅.

3: for episode t = 1, 2, ..., T do
4: for agent m ∈ M do
5: Receive initial state xt

m,1.

6: Set Vt
m,H+1(·)← 0.

7: for step h = H, ..., 1 do
8: Compute Λt

m,h ← St
m,h + δSt

m,h.

9: Compute Q̂t
m,h and σt

m,h (Eqns. 9.5 and 9.6).

10: Compute Qt
m,h(·, ·) (Eqn. 9.2)

11: Set Vt
m,h(·)← maxa∈A Qt

m,h(·, a).
12: end for
13: for step h = 1, ..., H do
14: Take action at

m,h ← arg maxa∈A Qt
m,h(xt

m,h, a).
15: Observe rt

m,h, xt
m,h+1.

16: Update δSt
m,h ← δSt

m,h +𝜑(z
t
m,h)𝜑(z

t
m,h)

>
.

17: UpdateWm
h ←W

m
h ∪ (m, x, a, x′).

18: if log
det(St

m,h+δSt
m,h+λI)

det
(

St
m,h+λI

) > S
∆tm,h

then

19: Synchronize← True.

20: end if
21: end for
22: end for
23: if Synchronize then
24: for step h = H, ..., 1 do
25: [∀ Agents] SendWh

m →Server.

26: [Server] AggregateWh → ∪m∈MWm
h .

27: [Server] CommunicateWh
to each agent.

28: [∀ Agents] Set δSt
h ← 0,Wm

h ← ∅.

29: [∀ Agents] Set St
h ← St

h + ∑z∈Wh 𝜑(z)𝜑(z)>.

30: [∀ Agents] Set Um
h ← U

m
h ∪W

m
h

31: end for
32: end if
33: end for
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Algorithm 19 FedLSVI with Rare Communication

1: Input: T,𝜑, H, S, sequence βh = {(βt
m,h)m,t}.

2: Initialize: St
m,h, δSt

m,h = 0.

3: for episode t = 1, 2, ..., T do
4: for agent m ∈ M do
5: Receive initial state xt

m,1.

6: for step h = 1, ..., H do
7: Take action at

m,h ← arg maxa∈A Qt
m,h(xt

m,h, a).
8: Observe rt

m,h, xt
m,h+1.

9: Update δSt
m,h ← δSt

m,h +𝜑(z
t
m,h)𝜑(z

t
m,h)

>
.

10: if det(St
m,h+δSt

m,h+λI)

det
(

St
m,h+λI

) > S then

11: Synchronize← True.

12: end if
13: end for
14: end for
15: if Synchronize then
16: [∀ Agents] Set Vt

m,H+1(·)← 0.

17: for step h = H, ..., 1 do
18: [∀ Agents] Compute ut

m,h and vt
m,h.

19: [∀ Agents] Send δSt
m,h, ut

m,h, vt
m,h →Server.

20: [Server] Aggregate δSt
h = ∑m δSt

m,h, ut
h = ∑m[ut

m,h + vt
m,h].

21: [Server] Communicate δSt
h, ut

h to each agent.

22: [∀ Agents] Set δSt
h ← 0.

23: [∀ Agents] Set St
h ← St

h + δSt
h.

24: [∀ Agents] Set ut
m,h ← ut

h.

25: [∀ Agents] Compute Λt
m,h ← St

m,h + δSt
m,h.

26: [∀ Agents] Compute Q̂t
m,h and σt

m,h (Eqns. 9.5 and 9.6).

27: [∀ Agents] Compute Qt
m,h(·, ·) (Eqn. 9.2)

28: [∀ Agents] Set Vt
m,h(·)← maxa∈A Qt

m,h(·, a).
29: end for
30: end if
31: end for
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Algorithm 20 FedLSVI for Large Heterogeneity

Input: T,𝜑, H, S, sequence βh = {(βt
m,h)m,t}.

Initialize: St
m,h, δSt

m,h = 0,Um
h ,Wm

h = ∅.

for episode t = 1, 2, ..., T do
for agent m ∈ M do

Receive initial state xt
m,1.

Set Vt
m,H+1(·)← 0.

for step h = H, ..., 1 do
Compute Λ̃

t
m,h ← St

m,h + δSt
m,h.

Compute Q̂t
m,h and σt

m,h (Eqn. 9.10).

Compute Qt
m,h(·, ·, ·) (Eqn. ??)

Set Vt
m,h(·)← maxa∈A Qt

m,h(·, a).
end for
for step h = 1, ..., H do

Take action at
m,h ← arg maxa∈A Qt

m,h(m, xt
m,h, a).

Observe rt
m,h, xt

m,h+1.

Update δSt
m,h ← δSt

m,h +𝜑(m, zt
m,h)𝜑(m, zt

m,h)
>

.

UpdateWm
h ←Wm

h ∪ (m, x, a, x′).

if log
det(St

m,h+δSt
m,h+λI)

det(St
m,h+λI)

> S
∆tm,h

then
Synchronize← True.

end if
end for

end for
if Synchronize then

for step h = H, ..., 1 do
[∀ Agents] SendWh

m →Server.

[Server] AggregateWh → ∪m∈MWm
h .

[Server] CommunicateWh
to each agent.

[∀ Agents] Set δΛt
h ← 0,Wm

h ← ∅.

[∀ Agents] Set Λt
h ← Λt

h + ∑(n,x,a)∈Wh 𝜑(n, x, a)𝜑(n, x, a)>.

[∀ Agents] Set Um
h ← Um

h ∪Wm
h

end for
end if

end for
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Chapter 10

Provably Efficient Algorithms for

Cooperative Low-Rank Markov

Games

A fundamental characteristic of federated environments is that they are independent, i.e., the

rewards obtained by an agent are independent of the actions and transitions of the other

agents in the federated environment. In this chapter, we discuss the problem of multi-agent

reinforcement learning in multi-agent MDPs, where, in contrast to previous settings, all

agents are assumed to exist in the same environment, e.g., in applications such as distributed

robotics (Ding et al., 2020), power grid management (Yu et al., 2014), traffic control (Bazzan,

2009) and team games (Zhao et al., 2019). In this setting, a group of M agents, each with

their own state and action spaces, interact simultaneously to maximize their cumulative

rewards. The foundational challenge in these multi-agent environments (also known as

multi-agent MDPs (Boutilier, 1996) or cooperative Markov games (Shapley, 1953)) is that

despite having small individual state and action spaces, the joint state-action space grows

exponentially in M, introducing a curse of dimensionality that makes standard approaches

intractable. Furthermore, designing a globally optimal policy is difficult in practice owing

to communication and computational constraints.

In single-agent tabular reinforcement learning (RL), algorithms exist (such as the one

discussed in the previous chapter) that provably incur a regret over T episodes that scales
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as Õ(H
√
|S||A|T)1

, where S and A are the state and action spaces, respectively, and H

denotes the length of each episode. Such settings normally are agnostic to the low-rank

structure present in many environments, and recent work (Jin et al., 2020; Wang et al., 2020a;

Yang et al., 2020b) has explored a low-rank linear formulation of MDPs, where the transition

kernels and reward functions are assumed to be linear functions of a known d−dimensional

feature of the state and action. Under this assumption, algorithms have been proposed that

provably incur a regret of Õ(H2
√

d3T), and when d3 � |S||A|, this low-rank structure can

be exploited effectively in many environments. Concurrently, the multi-agent RL litera-

ture has focused on establishing local dependence structures (Qu & Li, 2019; Qu et al., 2020),

where the dynamics are assumed to be a function of only a subset of agents, effectively

reducing the dependence on M from exponential to polynomial, providing localized algo-

rithms with provable asymptotic convergence. This complements the approaches based on

factored MDPs (Guestrin et al., 2002, 2001; Roth et al., 2007), where the rewards incurred by

any agent is decomposed into a sum of several latent reward functions.

In this chapter, we unify these two perspectives of low-rank function approximation

and local dependence structures to present a scalable, provably efficient approach to coop-

erative multi-agent reinforcement learning. Specifically, we seek to answer the following

open question - can we design tractable, scalable and provably efficient cooperative multi-agent

reinforcement learning algorithms with function approximation?

The above question has three aspects that introduce different technical challenges. First,

we consider tractablility: as mentioned earlier, in a cooperative multi-agent setting with

many agents, the joint state-action space increases exponentially, where designing a tractable

policy requires careful localization assumptions (Qu et al., 2020) that are non-trivial to ex-

tend to general function approximation settings. Next, we have the issue of scalability:

MARL algorithms require communication, which is expensive for large M and rich en-

vironments (i.e., large S andA). Finally, we desire efficiency with respect to both algorithm

runtime as well as sample complexity, and seek bounds that scale in terms of the complexity

of the approximating function class, and not the overall A and S .

Contributions. We answer the former question affirmatively under mild environmental

conditions. First, we present a characterization of cooperative Markov games based on a

graphical influence model, where a known (connected, undirected) graph G determines the

1
The Õ notation ignores polylogarithmic factors.
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structure of influence (i.e., an edge (i, j) exists in G if agents i and j influence each other).

We extend the single-agent low-rank environment to multi-player MDPs and provide a set

of weak assumptions, titled clique-dominance, that are sufficient to reduce the effective size

of the joint state-action space from O((|S||A|)M) to o(dM), where d is the dimensionality

of the approximating function class.

Next, we generalize the cooperative multi-agent reinforcement learning objective from

maximizing total reward to a broader class of Pareto-optimal policies, and characterize con-

ditions in which this class of policies can be efficiently recovered by the method of scalariza-

tion (Knowles, 2006) by minimizing Bayes regret. Thirdly, we introduce MG-LSVI (Markov

Game Least Squares Value Iteration), a decentralized vector-valued optimistic value itera-

tion algorithm that even under partial observability conditions, obtains a cumulative Bayes

regret of Õ(χ̄(G)H2
√

d3T) over T episodes, where χ̄(G) denotes the clique covering num-

ber of G. MG-LSVI runs in polynomial time and only requires a communication budget of

o(Md2 log T) rounds per agent in the worst case, which can be much smaller for sparse G.

This ensures that MG-LSVI is scalable to very large environments and adapts to the sparsity

of influence as well. Furthermore, in contrast to the existing work in cooperative MARL

that converges to the global optimal policy (i.e., maximizing total reward), MG-LSVI can,

under mild conditions, recover any subset of policies in the Pareto frontier, additionally

enabling adaptive load-balancing (Schaerf et al., 1994). Moreover, a direct corollary of our

analysis also provides the first no-regret algorithm for multi-objective RL (Mossalam et al.,

2016) with function approximation.

Related Work. It is difficult to summarize the rich literature on cooperative multi-agent

reinforcement learning, being examined by various perspectives from the AI (Lauer & Ried-

miller, 2000; Boutilier, 1996), control (Yoshikawa, 1978; Wang & Sandholm, 2003) and sta-

tistical learning communities (Xie et al., 2020). While there has been extensive recent work

on provably efficient algorithms for competitive multiplayer RL (Xie et al., 2020; Zhao et al.,

2021; Shah et al., 2020), our work is placed in the cooperative MARL setting, with the ob-

jective being to efficiently find globally optimal policies, where recent work has focused on

locality assumptions in order to reduce the policy search space (Qu & Li, 2019; Qu et al.,

2020). However, the more general heterogeneous reward setting considered in our work,

where each agent may have unique rewards, corresponds to the team average games stud-

ied previously (Kar et al., 2013; Zhang et al., 2018b,a). While some of these approaches do
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provide tractable algorithms that are decentralized and convergent, none provide finite-

time regret guarantees, and moreover, focus only on maximizing the team average reward.

In this chapter, however, we study a more general form of regret in order to recover a set of

policies on the Pareto frontier. For a detailed overview of algorithms in cooperative MARL,

we refer the readers to the illuminating survey by Zhang et al. (2019). Our work builds on

the increasingly relevant line of work in (single-agent) reinforcement learning with func-

tion approximation (Wang et al., 2020a; Yang et al., 2020b; Yang & Wang, 2020; Jin et al.,

2020), however, our environment suffers from several additional challenges not present

in single-agent settings, such as communication costs, scalability issues and decentralized

multi-agent planning, which are the key contributions in this chapter.

Organization. Section 10.2 presents assumptions about the Markov game considered.

Section 10.3 presents our performance objective and recovery guarantees. Section 10.4

presents our algorithm and associated regret upper and lower bounds, followed by a brief

discussion and experimental results.

10.2 Preliminaries

Cooperative Markov Games. We consider the simultaneous-move Markov game (Xie

et al., 2020), which is an extension of an MDP to multiple agents, and is also known as

a multi-agent MDP (Boutilier, 1996). A Markov game (MG) can be formally described as

MG(S ,M,A, H, P, R), where the set of agentsM is finite and countable with size M, the

state and action spaces are factorized as S = S1×S2× . . . SM andA = A1×A2× . . .AM,

where Sν andAν denote the individual state and action space for agent ν respectively. The

transition matrix P = {Ph}h∈[H], Ph : S × A × S → [0, 1] determines how the joint state

evolves given an existing joint state-action, and the reward function R = {rh}H
h=1, rh =

{rν,h}n
ν=1, rν,h : S × A → R denotes the reward obtained by each agent ν in the MG. We

further denote, for any subsetZ ⊆M of agents, the marginal transition probability for the

subset as PZ = {PZh }H
h=1 such that PZh : S × A × (∏i∈Z Si) → [0, 1]. Next, we consider

a graphical model of influence in order to remove the exponential dependence on M (a

generalization of prior work, e.g., Qu & Li (2019); Qu et al. (2020)), as summarized below.

Assumption 10.1 (Local Influence). Let G = (M, E) denote an undirected network of influence

between agents inM, i.e., E contains an edge (i, j) if the reward of agent i is a function of agent
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Figure 10-1: Example clique covering for (A) Typical graph with 11 nodes. (B) Circular graph with

6 nodes (worst case). (C) Fully-connected (complete) graph with 5 nodes (best case).

j (and vice-versa), and let N+(ν) denote, for any agent ν its neighborhood in G (including itself).

Alternatively, this implies that the reward for any agent ν obeys rν,h = rν,h(𝑥̃ν, 𝑎̃ν) where 𝑥̃ν =

{xj}j∈N+(ν) and 𝑎̃ν = {xj}j∈N+(ν) denote the joint local state-action for agent ν.

Remark 10.1 (Feasibility of Local Influence). Networked influence assumptions similar to

Assumption 10.1 have been explored extensively in the literature (Gu et al., 2020; Qu & Li,

2019; Qu et al., 2020; Guestrin et al., 2001), and is commonly present in many real-world

environments such as supply-chain networks (Thadakamaila et al., 2004) and social net-

works (Barabasi, 2005). However, in contrast to prior work, which assume the individual

reward functions to be functions only of the local state and action, we consider a broader

model where even local rewards are functions of the neighborhood.

Despite the above assumption, we are not quite yet equipped with a feasible learning

model. This is evident as Assumption 10.1 in the worst case still leads to an exponen-

tial dependence on M, and combinatorial state-action spaces have been known to be in-

tractable (Blondel & Tsitsiklis, 1999; Papadimitriou & Tsitsiklis, 1987). As a consequence,

recent work has suggested additional conditions bounding the strength of interactions be-

tween agents to develop efficient policies (Qu & Li, 2019; Qu et al., 2020). We now describe

an assumption to characterize dynamics in a similar vein.

Definition 10.1 (Clique covering number). A k-clique cover C = {C1, ..., Ck} of any graph G

is a partition of G into k non-overlapping subgraphs such that each subgraph Ci, i ∈ [k] is strongly

connected. The clique covering number θ(G) is the size of the smallest clique covering C? of G.

Assumption 10.2 (Clique-Dominant Dynamics). For the network G defined in Assumption 10.1

let C = ∪l∈[k]Cl be a known k-clique cover. For any subgraph V ⊆ G and joint state-action pair

(x, a), let xV = {∪i∈V xi} and aV = {∪i∈V ai} denote the joint state and action of all agents in V,
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and x̄V , āV denote the joint state and action of all agents not in V. We assume that for each C ∈ C

and h ∈ [H] there exists an unknown kernel P̃C
h : (∏i∈C Si)× (∏i∈CAi)× (∏i∈C Si) → [0, 1],

unknown functions {r̃ν,h}C
ν=1 and a known nondecreasing function ε(·) : [1, M]→ [0, 1] such that

for any joint state-action (x, a) = ({xC, x̄C}, {aC, āC}), we have for any ν ∈ C, that,

|rν,h(x, a)− r̃ν,h(xC, aC)| ≤ ε(k) and
∥∥∥PC

h (·|x, a)− P̃C
h (·|xC, aC)

∥∥∥
TV
≤ ε(k).

Remark 10.2 (Feasibility of Clique-Dominance). Assumption 10.2 assumes that if any group

of agents C is strongly-connected (i.e., all influence each other), their joint information suf-

fices to “approximately” explain the individual reward and joint marginal transition dy-

namics up to a factor ε for all agents in C. Naturally, for a smaller clique-covering, a lower

approximation error ε can be expected. In fact, the minimal clique covering C? can incur

zero error for certain G (see Figure 10-1). Similar assumptions for local regularity have been

made in prior work: Qu & Li (2019) introduce the (c, ρ)−exponential decay property that

assumes a decay in the dependence of any agent on its neighborhood. Compared to the

(c, ρ)−decay, our assumptions are both weaker and stronger in some aspects. First, we do

not require any knowledge of pairwise interactions, and make assumptions at the subgraph

level, and second, we do not require an exponential decay: simply an upper bound on the

error suffices. Consequently, our guarantee only utilizes local neighborhoods (i.e., agents

at distance 1), whereas (c, ρ)−exponential decay utilizes all interactions. In this regard, we

remark that our clique-dominance assumption can incorporate further neighbors by parti-

tioning the κ−power of G and introducing state-action communication between agents (as

any agent can only observe its neighbors, hence information about distant neighbors must

be communicated), which we omit for simplicity.

Remark 10.3 (Complexity of clique covering). Assumption 10.2 requires a clique covering

of G, which is NP-hard (Karp, 1972), however, for special cases, can be found in polyno-

mial time (e.g., triangle-free graphs (Molloy, 2019) and perfect graphs (Grötschel et al.,

1988)). Cerioli et al. (2008) provide a polynomial-time algorithm that gives a 1.25 approxi-

mation of the minimal clique covering, therefore, we can replace C? with an approximate

covering Ĉ such that |Ĉ| ≤ 1.25|C?| for any G in our approach.

Setting. The game proceeds as follows. In each episode t ∈ [T] each agent ν fixes a

policy 𝜋ν(t) = {πh
ν(t)}H

h=1 in a (joint) initial state x1(t) = {x1
ν(t)}n

ν=1 picked arbitrarily
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by the environment. For each step h ∈ [H] of the episode, each agent observes the local

state 𝑥̃h
ν(t), selects an individual action ah

ν(t) ∼ πh
ν(·|𝑥̃h

ν(t)) (collectively the joint action

ah(t) = {ah
ν(t)}n

ν=1), and obtains a reward rh
ν(𝑥̃

h
ν(t), 𝑎̃h

ν(t)) (collectively the joint reward

rh(xh(t), ah(t)) = {rh
ν(𝑥̃

h
ν(t), 𝑎̃h

ν(t))}n
ν=1). All agents transition subsequently to a new joint

state xh+1(t) = {xh+1
ν }n

ν=1 sampled according to Ph(·|xh(t), ah(t)). The episode terminates

at step H + 1 where all agents receive no reward. The agents can then (optionally) commu-

nicate by sharing messages to neighbors in G after each episode.

Let 𝜋 = {𝜋ν}n
ν=1 denote a joint policy for all M agents. We can define the vector-valued

value function over all joint states x ∈ S for a policy 𝜋 and step h as,

V𝜋
h (x) , E𝜋

[
H

∑
i=h

ri(xi, ai)
∣∣∣ xh = x

]
.

Analogously, we define the vector-valued Q-function for a policy 𝜋 and any x ∈ S , a ∈

A, h ∈ [H],

Q𝜋
h (x, a) , rh(x, a) + E𝜋

[
H

∑
i=h+1

ri(xi, ai)
∣∣∣ xh = x, ah = a

]
.

At this point, we remark that Markov games are capable of modeling a variety of multi-

agent decision processes, and are an instance of stochastic games (Shapley, 1953), which

are closely related to the general framework for repeated games (Myerson, 1982). Repeated

games are in turn generalizations of partially observable MDPs (POMDPs, Åström (1965)),

and involve a variety of distinct challenges in competitive environments, most notably the

conflict between individually optimal behavior and global objectives. While cooperative

MARL has traditionally focused on recovering policies that maximize the team average re-

ward, we now present a more general global performance objective.

10.3 Cooperative Behavior Beyond Team-Average Rewards

Cooperative MARL focuses primarily on global objectives, most commonly that of team-

average reward. While this objective is indeed valid in many environments, we aim to re-

cover the richer class of Pareto-optimal objectives (Buchanan, 1962) which essentially are the

policies that cannot improve any individual agent’s reward without decreasing the reward

of the other agents. Formally,
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Definition 10.2 (Pareto optimality, Paria et al. (2020)). A policy 𝜋 Pareto-dominates another

policy 𝜋′ if and only if V𝜋
1 (x) � V𝜋′

1 (x)∀ x ∈ S . A policy is Pareto-optimal if it is not Pareto-

dominated by any other policy. We denote the set of all policies by Π, and the set of Pareto-optimal

policies by Π?.

It is evident that joint policies that maximize any agent’s individual reward as well

as the average reward are all elements of Π?
. More broadly, the motivation to consider

recovering the Pareto frontier is indeed derived from applications, e.g., in multi-agent EV

charging protocols (Marinescu et al., 2014), smart grids (Chiu et al., 2019), and workflow

optimization (Wang et al., 2019b).

Random Scalarizations. To recover Π?
, our approach is to utilize the method of random

scalarizations (Knowles, 2006). The key idea in the method of scalarization is to observe

that if the Pareto frontier Π?
is convex, then there is a bijective mapping of each policy

in Π?
to the optimal policy of a scalarized MDP. Consider a scalarization function s𝜐(x) =

𝜐>x : RM → R parameterized by 𝜐 belonging to the set Υ ⊆ ∆M
(unit simplex in M

dimensions). We then have the scalarized value function V𝜋
𝜐,h(x) : S → R and Q−function

Q𝜋
𝜐,h : S ×A → R for some joint policy 𝜋 as

V𝜋
𝜐,h(x) , s𝜐(V𝜋

h (x)) = 𝜐>V𝜋
h (x) , and Q𝜋

𝜐,h(x, a) , s𝜐(Q𝜋
h (x, a)) = 𝜐>Q𝜋

h (x, a). (10.1)

Since both A = ∏iAi and H are finite, there exists an optimal multi-agent policy for any

fixed scalarization𝜐, which gives the value V?
𝜐,h = sup𝜋∈Π V𝜋

𝜐,h(x) for all x ∈ S and h ∈ [H].

This policy coincides with the optimal policy for an MDP over the joint spaceS ×A, defined

as follows.

Proposition 10.1. For the scalarized value function given in Equation 10.1, the Bellman optimality

conditions are given as, for all h ∈ [H], x ∈ S , a ∈ A,𝜐 ∈ Υ,

Q?
𝜐,h(x, a) = s𝜐rh(x, a) + PhV?

𝜐,h(x, a), V?
𝜐,h(x) = max

a∈A
Q?

𝜐,h(x, a), and V?
𝜐,H+1(x) = 0.

Proof. We prove the above result by reducing the scalarized MMDP to an equivalent MDP.

Observe that for any fixed 𝜐 ∈ Υ, the (vector-valued) rewards can be scalarized to a scalar

reward. For any step h ∈ [H], for any fixed 𝜐 ∈ Υ, consider the MDP with state space

S = S1 × ... × SM, action space A = A1 × ... × AM and reward function r′h such that
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for all (x, a) ∈ S × A, r′h(x, a) = 𝜐>rh(x, a). Therefore r′h(x, a) ∈ [0, 1] (since rh lies on

the M−dimensional simplex). Therefore, if the group of agents cooperate to optimize the

scalarized reward (for any fixed scalarization parameter), the optimal (joint) policy coin-

cides with the optimal policy for the aforementioned MDP defined over the joint state and

action spaces. The optimal policy for the scalarized MDP is given by the greedy policy with

respect to the following parameters:

Q?
𝜐,h(x, a) = r′h(x, a) + PhV?

𝜐,h(x, a), V?
𝜐,h(x) = max

a∈A
Q?

𝜐,h(x, a), and V?
𝜐,H+1(x) = 0.

Replacing the reward function with the Sreward in terms of 𝜐 provides us the result.

The optimal policy for any fixed 𝜐 is given by the greedy policy with respect to the

Bellman-optimal scalarized Q−values. We denote this (unique) optimal policy by π?
𝜐. The

next result claims that by “projecting” a cooperative Markov game to an MDP via scalar-

ization, one can recover a policy on the Pareto frontier. Indeed, when the set Π?
is convex,

then the set of policies Π?
Υ = {𝜋?

𝜐|𝜐 ∈ ∆M} spans Π?
, and one can recover Π?

by simply

learning Π?
Υ.

Theorem 10.1. For any Markov game with finiteA and H, Π?
Υ ⊆ Π?. If Π? is convex, Π?

Υ = Π?.

Proof. First, we prove the forward direction, i.e., that Π?
Υ ⊆ Π?

. The proof proceeds by

contradiction. Assume that 𝜋?
𝜐 does not lie in the Pareto frontier, then there exists a policy

𝜋′ ∈ Π such that V𝜋′
1 (x) � V𝜋?

𝜐
1 (x) for all x ∈ S and 𝜋 6= 𝜋?

𝜐. Consider the final step H.

Then, for any state x ∈ S , we have that if V𝜋′
H (x) � V𝜋?

𝜐
H (x), then,

rH(x,𝜋′(x)) � rH(x,𝜋?
𝜐(x)) =⇒ s𝜐rH(x,𝜋′(x)) ≥ s𝜐rH(x,𝜋?

𝜐(x)).

However, this is only true with equality if 𝜋′(x) = 𝜋?
𝜐(x) for all x ∈ S , as for any x ∈ S ,

𝜋?
𝜐,H(x) = arg max[s𝜐rH(x, a)] ≥ s𝜐rH(x, a′) for any other a′ ∈ A. Therefore, we have

that 𝜋′H(x) = 𝜋?
𝜐,H(x) for each x ∈ S , and that V𝜋′

H (x) = V𝜋?
𝜐

H (x). This implies that

PHV𝜋′
H (x, a) = PHV𝜋?

𝜐
H (x, a) for all x ∈ S and a ∈ A. Now, if V𝜋′

H−1(x) � V𝜋?
𝜐

H−1(x),

then we have that,

rH−1(x,𝜋′H−1(x)) + Ex′∼PH(·|x,𝜋′H−1(x))

[
V𝜋′

H (x′)
]

� rH−1(x,𝜋?
𝜐(x)) + PHV𝜋?

𝜐
H (x,𝜋?

𝜐(x))
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=⇒ rH−1(x,𝜋′H−1(x)) + Ex′∼PH(·|x,𝜋′H−1(x))

[
V𝜋?

𝜐
H (x′)

]
� rH−1(x,𝜋?

𝜐(x)) + PHV𝜋?
𝜐

H (x,𝜋?
𝜐(x))

=⇒ s𝜐

(
rH−1(x,𝜋′H−1(x)) + Ex′∼PH(·|x,𝜋′H−1(x))

[
V𝜋?

𝜐
H (x′)

])
≥ s𝜐

(
rH−1(x,𝜋?

𝜐(x)) + PHV𝜋?
𝜐

H (x,𝜋?
𝜐(x))

)
=⇒ s𝜐rH−1(x,𝜋′H−1(x)) + Ex′∼PH(·|x,𝜋′H−1(x))

[
V𝜋?

𝜐
H (x′)

]
≥ s𝜐rH−1(x,𝜋?

𝜐(x)) + PHV𝜋?
𝜐

H (x,𝜋?
𝜐(x)).

This is true only if 𝜋′H−1(x) = 𝜋?
𝜐,H(x) for each x ∈ S , as 𝜋?

𝜐,H is the greedy policy with

respect to s𝜐rH−1(x, a) + PHV
𝜋?
𝜐,H

H (x, a). Continuing this argument inductively for h =

H − 2, H − 3, ..., 1 we obtain that V𝜋′
1 (x) � V𝜋?

𝜐
1 (x) for each x ∈ S only if 𝜋′ = 𝜋?

𝜐. This is

a contradiction as we assumed that 𝜋′ 6= 𝜋?
𝜐, and hence 𝜋?

𝜐 lies in Π?
.

We now prove the other direction for convex Π?
, i.e., that if Π?

is convex, then Π? ⊆ Π?
Υ

for Υ = ∆M
. This proof proceeds by contradiction as well. Let us assume that there exists

a policy 𝜋 in Π?
that is not present in Π?

Υ. Therefore, there does not exist any 𝜐 ∈ ∆M

such that 𝜋 maximizes the value function of the scalarized MDP. Alternatively stated, for

each 𝜐 ∈ Υ, there exists another policy 𝜋?
𝜐 ∈ Π?

Υ such that 𝜋?
𝜐 6= 𝜋 and it maximizes

the scalarized value function V?
𝜐,1. Now, observe that since 𝜋 ∈ Π?

, it must be that for

all 𝜋′ ∈ Π, V𝜋
1 � V𝜋′

1 . Additionally, since Π?
is convex and the scalarization function

𝜐>(·) is linear, each scalarization function s𝜐(·) for 𝜐 ∈ ∆M
is convex over Π?

. Therefore,

each policy that maximizes the scalarized value function corresponding to any 𝜐 is a global

optimum in Π?
.

Now, consider the scalarization𝜐? where [𝜐?]i =
[V𝜋

1 ]i
‖V𝜋

1 ‖1
∈ ∆M

. Now, by our assumption,

there must exist an alternative policy𝜋′ 6= 𝜋 in Π?
Υ, such that (by the convexity of scalariza-

tion), 𝜐>? (V𝜋′
1 −V𝜋

1 ) ≥ 0. This implies that [V𝜋
1 ]

2
i ≤ [V𝜋′

1 ]i[V𝜋
1 ]i =⇒ [V𝜋′

1 ]i ≥ [V𝜋
1 ]i =⇒

V𝜋′
1 � V𝜋

1 . This is a contradiction as 𝜋 is Pareto-optimal, and hence 𝜋 ∈ Π?
Υ.

Remark 10.4 (Limits of Scalarization). Using scalarizations to recover Π?
suffers from the

drawback that convexity assumptions on the scalarization function limit algorithms to only

recover policies within the convex regions of Π?
(Vamplew et al., 2008), which is exact when

Π?
is convex. Subsequently, our algorithm is limited in this sense as it relies on convex

scalarizations, however, we leave the extension to non-convex regions as future work, and
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assume Π?
to be convex for simplicity.

Bayes Regret. Now, since we are in fact considering the recovery of a set of policies, it is

unclear how regular regret in value approximation can provide a meaningful performance

guarantee. Generally, algorithms for cooperative multi-agent RL consider maximizing the

cumulative reward of all agents (Littman, 1994). Furthermore, in the fully-observable sce-

nario (i.e., all agent observe the complete (x, a)), the problem reduces to that of an MDP

with fixed value and reward functions (given as the sum of individual value and rewards).

Indeed by considering the scalarization 𝜐′ = 1
M · 1M we can observe that by Proposi-

tion 10.1, the optimal policy 𝜋?
𝜐′ corresponds to the optimal policy for the MDP defined

over S ×A with rewards given by the average of the rewards obtained by all agents. It is

therefore straightforward to recover a no-regret policy using a single-agent algorithm (by

making a linear MDP assumption over the joint state and action space S ×A, as in Jin et al.

(2020)). Moreover, as mentioned earlier, in many applications, we may require learning

policies that prioritize an agent over others. Hence, we consider a general notion of Bayes

regret. Our objective is to approximate Π?
by learning a set of T policies Π̂T that minimize

the Bayes regret, given by,

RB(T) , E
𝜐∼pΥ

[
max
x∈S

[
V?
𝜐,1(x)− max

𝜋∈Π̂T

V𝜋
𝜐,1(x)

]]
. (10.2)

Here pΥ is a distribution over Υ that characterizes the nature of policies we wish to recover.

For example, if we set pΥ as the uniform distribution over ∆M
then we can expect the poli-

cies recovered to prioritize all agents equally
2
. The advantage of minimizing Bayes regret

can be understood as follows. For any 𝜐 ∈ Υ, if 𝜋?
𝜐 ∈ Π̂T, then the regret incurred is 0.

Hence, by collecting policies that minimize Bayes regret, we are effectively searching for

policies that span dense regions of Π?
(assuming convexity, see Remark 10.4). Consider

now the cumulative regret:

RC(T) , ∑
t∈[T]

E
𝜐t∼pΥ

[
max
x∈S

[
V?
𝜐t,1(x)−V𝜋t

𝜐t,1(x)
]]

. (10.3)

Where 𝜐1, ...,𝜐T ∼ pΥ are sampled i.i.d. from pΥ, and 𝜋t refers to the joint policy at episode

2
One may consider minimizing the regret for a fixed scalarization𝜐′ = EpΥ

𝜐, however, that will also recover

only one policy in Π?
, whereas we desire to capture regions of Π?

.
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t. Under suitable conditions on s and Υ, we can bound the two quantities.

Proposition 10.2. For s that is Lipschitz and bounded Υ, we have that RB(T) ≤ 1
TRC(T) + o(1).

We minimize the regret RC(T), as any no-regret algorithm for RC bounds RB.

10.4 An Efficient Algorithm with Linear Function Approximation

We now present our algorithm MG-LSVI (Multiagent Optimistic Value Iteration) that pro-

vides a polynomial sample complexity for environments with low-rank structure.

Assumption 10.3 (Clique-dominant Linear Markov Game). Let C be a clique covering of G,

and for any clique C ∈ C, let SC = ∏ν∈C Sν and AC = ∏ν∈CAν denote the joint state and

action space of agents within C. A Markov Game MG(S ,M,A, H, P, R) is a clique-dominant

linear Markov game if (a) it is clique-dominant (i.e., obeys Assumption 10.2), and (b) for every C ∈

C, h ∈ [H], for a set of |C|+ 1 features {𝜑ν}ν∈C,𝜑v : SC ×AC → Rd and 𝜓C : SC ×AC → Rd,

there exist d unknown measures 𝜇h,C(·) = {µ1
C,h(·), ..., µd

C,h(·)} over SC and an unknown vector

𝜃h,C ∈ Rd such that ∀(x, a) ∈ SC ×AC and ν ∈ C,

P̃C
h (·|x, a) = 〈𝜓C(x, a),𝜇h,C(·)〉 , and r̃ν,h(x, a) = 〈𝜑ν(x, a),𝜃h,C〉 .

We denote the overall clique feature vector as ΦC(·) ∈ Rd×|C|, where, for any x ∈ SC, a ∈

AC, ΦC(x, a) = [[𝜑1(x, a),𝜓C(x, a)]>, ..., [𝜑|C|(x, a),𝜓C(x, a)]>]>, and the overall approximate

clique reward r̃C
h (x, a) = [r̃1,h(x, a), ..., r̃|C|,h(x, a)]>. Under this representation, we have that for

any x ∈ SC, a ∈ AC, h ∈ [H],

r̃C
h (x, a) = ΦC(x, a)>

𝜃h,C

0d

 , and, 1|C| · P̃C
h (·|x, a) = ΦC(x, a)>

 0d

𝜇h,C(·)

 .

We assume, without loss of generality, that for each C ∈ C that ‖ΦC(x, a)‖ ≤
√
|C| ∀ (x, a) ∈

SC ×AC, ‖𝜃h,C‖ ≤
√

d and ‖𝜇h,C(SC)‖ ≤
√

d.

Essentially, this assumption requires that once we are provided a clique covering, and

the Markov game obeys the clique-dominance property (Assumption 10.2), the approximate

rewards r̃ν,h are linear functions of a known feature vector 𝜑C evaluated on the joint state-

action of the agents within its clique. Additionally, it assumes that the approximate marginal
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transition probabilities P̃C
h are linear functions of a known feature 𝜓C. This, in fact, is a

straightforward extension of the single-agent linear MDP parameterization (see Assump-

tion A in Jin et al. (2020), developed from early work in Bradtke & Barto (1996); Melo &

Ribeiro (2007)) to clique-dominant Markov games, as discussed below.

Remark 10.5 (Multi-agent modeling assumptions). In contrast to the typical linear MDP

assumption, here we model the rewards and dynamics for each clique of agents separately,

each with d linear dimensions each. In the single-agent setting, identical assumptions on

the reward and transition kernels will lead to a model with complexity d, whereas in our

formulation we have a complexity of 2d, implying that our fomulation incurs an overhead

of 2
√

2 in the regret if applied to the single-agent setting, compared to the model presented

in Jin et al. (2020). Furthermore, observe that in the fully-cooperative setting (where agents

share the reward function), i.e., r1,h = ... = rM,h∀h ∈ [H], we have that assuming, for all

agents that 𝜑1 = 𝜑2 = ... = 𝜑M satisfies the modeling requirement.

10.4.1 Algorithm Design

The first step in our approach is to compute a k-clique covering C of the influence graph

G. Recall that by Remark 10.3 that this can be done in polynomial time with a 1.25 ap-

proximation of C?. Since the game is clique-dominant (Assumption 10.2), we can learn k

decentralized policies 𝜋1, ...,𝜋k, one corresponding to each clique of agents in C without in-

curring too much approximation error. Now, to motivate the design, we first observe that

Assumption 10.3 implies that for each clique C ∈ C, there exist a set of weights such that

the scalarized Q−values for any parameter 𝜐C are almost linear projections of the overall

clique features ΦC(·), where the total error is no larger than 2Hε(k).

Lemma 10.1 (Almost linear weights in Markov Games). Under Assumption 10.3 for graph G

with k cliques ordered from 1, ..., k, we have, for any fixed decentralized policy 𝜋 = {𝜋1, ...,𝜋k} and

𝜐 = {𝜐1, ...,𝜐k} ∈ Υ, there exist weights {w𝜋τ

𝜐,h}
H,k
h=1,τ=1 such that

∣∣∣∣∣Q𝜋
𝜐,h(x, a)−

k

∑
τ=1

𝜐>τ Φτ(xτ, aτ)
>w𝜋τ

𝜐,h

∣∣∣∣∣ ≤ 2Hε(k) ∀(x, a, h),

where ‖w𝜋τ

𝜐,h‖2 ≤ 2H
√

d, ∀ τ ∈ [k].

This result is proved in Section 10.8.2. Armed with this observation, we design a policy
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using vector-valued linear least-squares regression, as the optimal policy is only at most 2Hε

away from the best least-squares fit. In a nutshell, our approach can be summed up in two

steps: (a) first, we approximate the Pareto frontier Π?
with the set of policies Π?

Υ recov-

erable by scalarization (see Remark 10.4), (b) next, we empirically approximate Π?
Υ with

a collection of T policies (one for each episode), such that the Bayes Regret is minimized

(Proposition 10.2). In each episode t ∈ [T], we sample a scalarization parameter 𝜐t ∼ pΥ,

and run k vector-valued decentralized linear least-squares regressions to approximate the

optimal policy 𝜋?
𝜐t

with k policies 𝜋1(t), ....,𝜋k(t) such that the resulting Q−values overes-

timate Q?
𝜐t,h with high probability. Then, each agent in clique τ selects the corresponding

greedy action with respect to 𝜋τ(t). This approach is carried out via vector-valued value

iteration with optimism, as described below.

We describe the policy for any clique C ∈ C of size nC. For any scalarization 𝜐(t) ∈ RM
,

the nC values corresponding to agents in C is denoted by𝜐t
C. Now, consider the MDP M̃DPC

formed by scalarizing the Markov game corresponding to the approximate rewards r̃C
h and

transition dynamics P̃C
h with the parameter 𝜐C,t (i.e., the reward function in M̃DPC is given

by (𝜐t
C)
>rC

h , transition by P̃h and state-action spaces as SC and AC respectively). For each

clique C, we will use value iteration to recover the optimal policy for this M̃DPC (let us call

it 𝜋̃?
C(t)). The algorithm is a distributed variant of least-squares value iteration with UCB

exploration. Following Proposition 10.1, the key idea is to make sure that each agent in C

acts according to the joint policy that is aiming to mimic 𝜋̃?
C(t). Therefore, we must ensure

that the local estimate for the joint policy obtained by any agent must be identical, such that

the joint action is in accordance with 𝜋̃?
C(t). To achieve this we will obtain the approximated

(scalar) Q−values for 𝜋̃?
C(t) by recursively applying the Bellman equation and solving the

resulting equations via a vector-valued regression. Since the policy variables are designed

to be identical each agent in C, we describe the procedure for an arbitrary agent in C.

For any episode t, let us assume that the last round of synchronization between agents

in C occured at time st
C. Each agent within the clique C obtains an identical sequence of value

functions {Qt
h,C}h∈[H] by iteratively performing linear least-squares ridge regression from

the history available from the previous st
C episodes by first learning a vector Q−function

Q̂t
h,C over RnC , which is scalarized by (𝜐t

C) to obtain the Q−values as Qt
h,C = (𝜐t

C)
>Q̂t

h,C.

Each agent m first sets Q̂t
h+1,C to be a zero vector in RnC , and for any h ∈ [H], solves the

following sequence of regressions to obtain Q−values. For each h = H, ..., 1, for each agent
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computes,

Vt
h+1,C(x)← arg max

a∈A

[
(𝜐t

C)
>
(
(Qt

h+1,C)
>ΦC(x, a)

)]
∀ x ∈ SC,

Q̂t
h,C ← arg min

w∈Rd

 ∑
τ∈[st

C ]

∥∥∥yτ
h,C −ΦC(xτ

h,C, aτ
h,C)

>w
∥∥∥2

2
+ λ‖w‖2

2

 ,

Qt
h,C(x, a)← (𝜐t

C)
>ΦC(x, a)>Q̂t

h,C + βt
h,C ·

∥∥∥ΦC(x, a)>(Λt
h,C)

−1ΦC(x, a)
∥∥∥

2
.

Where the last equation holds for any (x, a) ∈ (SC ×AC) and the targets are defined as

yτ
h,C = rC

h (x
τ
h,C, aτ

h,C) + 1nC ·Vt
h+1,C(x

τ
h+1,C),

where 1nC denotes the all-ones vector in RnC , βt
h,C is selected such that with high prob-

ability the estimated Q-values overestimate the require Q−values, and Λt
h,C is described

subsequently. Once all of these quantities are computed, each agent ν ∈ C selects the

action ah
ν(t) =

[
arg maxa∈AC

Qt
h,C(x

t
h,C, a)

]
ν

for each h ∈ [H]. Hence, the joint clique ac-

tion at
h,C = {ah

ν(t)}
nC
ν=1 = arg maxa∈AC

Qh
C(x

t
h,C, a). Observe that while the computation of

the policy is decentralized, the policies executed for all agents ν ∈ C coincide at all times

by the modeling assumption and the periodic synchronizations between agents. We now

present the closed form of Q̂t
h,C. Consider the contraction zτ

h,C = (xτ
h,C, aτ

h,C) and the map

Φt
h,C : Rd → RtnC such that for any 𝜃 ∈ Rd

,

Φt
h,C𝜃 ,

[
(ΦC(z1

h,C)
>𝜃)>, ..., (Φ(zt

h,C)
>𝜃)>

]>
.

Now, consider Λt
h,C = (Φ

st
C

h,C)
>(Φ

st
C

h,C) + λId ∈ Rd×d
, and Ut

h,C = ∑
st

C
τ=1 ΦC(zτ

h,C)y
τ
h,C. Then,

we have by a multi-task concentration (see Appendix B of Chowdhury & Gopalan (2020)),

Q̂t
h,C(x, a) = ΦC(x, a)>(Λt

h,C)
−1Ut

h,C.

The algorithm is presented in Algorithm 21. The algorithm is essentially learning k multi-

agent policies by solving a vector-valued regression, one for each clique in the covering C,

such that the group of agents in each clique can learn the approximate clique-based MG

(ref. Assumption 10.2). Since these approximate games themselves are bounded close to

the true Markov game (by clique-dominance), this ensures that the agents incur low regret.
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We next present an analysis of communication cost.

Communication. Note that within a clique, the common state xC is visible to all agents

(Assumption 10.1), and hence the agents only require communication of rewards within

a clique. To limit rounds in which communication occurs, we consider a synchronization

criterion that is triggered whenever any agent in the clique explores a sufficiently novel

part of the environment. Specifically, whenever det(Λt
h,C) ≥ S · det(Λst

C
h,C), for any h ∈ [H]

where S is a fixed constant determined in advance, the agents synchronize their rewards

within their correponding clique C. The synchronization can be done in O(M) messages

by designating one agent per clique as the Server to aggregate messages.

Lemma 10.2 (Communication complexity). Let the clique covering number be χ̄(G) and let

nmax ≤ M denote the size of the largest clique of G. If we set S > 1, then the total number of

communication episodes γ ≤ dH · χ̄(G) · logS

(
1 + Tnmax

d )
)
+ χ̄(G) · H. When S ≤ 1, γ = T.

This result is proven in Section 10.8.3.

10.4.2 Regret Analysis

Theorem 10.2. Algorithm 21 when run on a game with M agents satisfying Assumptions 10.1,

10.2, 10.3 with error ε?, approximate clique covering Ĉ, communication threshold S,

βt
h,C = O(H

√
d log(MTH) + ε?

√
dT) ∀ C ∈ Ĉ,

obtains, with probability at least 1− α, regret:

RC(T) = Õ
(

χ̄(G) · d 3
2 H2 ·

√
nmax · S

(√
T log

(
1
α

)
+ 2T · ε?

))
.

Where χ̄(G) denotes the clique covering number of G, and nmax is the size of the largest clique in Ĉ.

The key technical challenges in the proof include deriving a martingale concentration

result for multi-objective value iteration, a novel covering argument for vector-valued func-

tions, and analysing the cost of rarely-switching policy updates for linear MDPs, all which

may be of independent interest.

Proof. We first present a vector-valued concentration result which essentially extends the
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martingale analysis from the previous chapter (Lemmas 9.5 and 9.16) to a vector ridge re-

gression problem.

Lemma 10.3. Select any clique C in a clique covering Ĉ such that |C| = M. For any m ∈ [M], h ∈

[H] and t ∈ [T], let kt denote the episode after which the last local synchronization has taken place,

and St
h,C and Λt

h,C be defined as follows.

St
h,C =

kt

∑
τ=1

ΦC(xτ
h,C, aτ

h,C)
[
vt
𝜐,h+1(x

τ
h+1,C)− (P̃C

h vt
𝜐,h+1)(x

τ
h,C, aτ

h,C)
]

,

Λt
h,C = λId + (Φkt

h,C)
>(Φkt

h,C).

Where vt
𝜐,h+1(x) = 1M ·Vt

𝜐,h+1(x) ∀ x ∈ SC, 1M denotes the all-ones vector in RM, and Cβ is the

constant such that βt
h,C = Cβ · dH

√
log(TMH). Then, there exists a constant B such that with

probability at least 1− δ,

sup
𝜐C∈ΥC

∥∥St
h,C
∥∥
(Λt

h,C)
−1 ≤ B · dH

√
2 log

(
(Cβ + 2)dMTH

δ′

)
.

Proof. The proof is done in two steps. The first step is to bound the deviations in S for any

fixed function V by a martingale concentration. The second step is to bound the resulting

concentration over all functions V by a covering argument. Finally, we select appropriate

constants to provide the form of the result required.

Step 1. Recall that St
h,C = ∑kt

τ=1 ΦC(zτ
h,C)[V

t
𝜐,h+1(x

τ
h+1,C) − (P̃C

h Vt
𝜐,h+1)(z

τ
h,C)], where

vt
𝜐,h+1 is the vector with each entry being Vt

𝜐,h+1. We have that

Vt
𝜐,h+1(x

τ
h+1,C)− (P̃C

h Vt
𝜐,h+1)(z

τ
h,C) = vt

𝜐,h+1 − P̃C
h vt

𝜐,h+1.

Consider the following distance metric distΥC ,

distΥC(v, v′) = sup
x∈SC ,𝜐∈ΥC

∥∥v(x)− v(x′)
∥∥

1 .

Let VΥC be the family of all vector-valued UCB value functions that can be produced by

the algorithm on clique C, and now let Nε be an ε−covering of VΥC under distΥC , i.e., for

every v ∈ VΥ, there exists v′ ∈ Nε such that distΥC(v, v′) ≤ ε. Now, here again, we adopt a

similar strategy as the independent case. To bound the RHS, we decompose St
h,C in terms
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of the covering described earlier. We know that since Nε is an ε−covering of VΥC , there

exists a v′ ∈ Nε and ∆ = vt
𝜐,h+1 − v′ such that,

St
h,C =

kt

∑
τ=1

ΦC(zτ
h,C)

[
v′(xτ

h+1,C)− P̃C
h v′(zτ

h,C)
]
+

kt

∑
τ=1

ΦC(zτ
h,C)

[
∆(xτ

h+1,C)− P̃C
h ∆(zτ

h,C)
]

.

Now, observe that by the definition of the covering, we have that ‖∆‖1 ≤ ε. Therefore, we

have that ‖∆(x)‖(Λt
h,C)

−1 ≤ ε/
√

λ, and

∥∥∥P̃C
h ∆(z)

∥∥∥
(Λt

h,C)
−1
≤ ε/

√
λ for all z ∈ Z , x ∈ S , h ∈

[H]. Therefore, since ‖ΦC(z)‖2 ≤
√

M,

∥∥St
h,C
∥∥2
(Λt

h,C)
−1 ≤ 2

∥∥∥∥∥ kt

∑
τ=1

ΦC(zτ
h,C)

[
v′(xτ

h+1,C)− P̃C
h v′(zτ

h,C)
]∥∥∥∥∥

(Λt
h,C)

−1

+

∥∥∥∥∥ kt

∑
τ=1

Φτ
C𝜀̄τ

∥∥∥∥∥
(Λt

h,C)
−1

+
8Mt2ε2

λ
.

Here 𝜀̄τ denotes the maximum misspecification incurred from observing P̃h
C instead of the

true Ph. By a standard argument from misspecified bandits (see, e.g., (Ghosh et al., 2017)),

using the fact that ΦC has maximum norm

√
M and the misspecification is bounded by

2ε(k), we can bound the second term by ε(k) ·
√

dtM log
(

det(Λt
h,C)

λId

)
. To bound the first

term on the RHS, we consider the substitution 𝜀t
τ,h = v′(xτ

h+1,C)− P̃C
h v′(zτ

h). To bound the

first term on the RHS, we consider the filtration {Fτ}∞
τ=0 where F0 is empty, and Fτ =

σ
({⋃ (

xi
h+1, ΦC(zi

h)
)}

i≤τ

)
, and σ denotes the σ−algebra generated by a finite set. Then,

we have that, ∥∥∥∥∥ kt

∑
τ=1

ΦC(zτ
h,C)

[
v′(xτ

h+1,C)− P̃C
h v′(zτ

h,C)
]∥∥∥∥∥

(Λt
h,C)

−1

=

∥∥∥∥∥ kt

∑
τ=1

ΦC(zτ
h,C)

[
v′(xτ

h+1,C)−E
[
v′(xτ

h+1,C)|Fτ−1
]]∥∥∥∥∥

(Λt
h,C)

−1

=

∥∥∥∥∥ kt

∑
τ=1

ΦC(zτ
h,C)𝜀

t
τ,h

∥∥∥∥∥
(Λt

h,C)
−1

.

Note that for each 𝜀t
τ,h, each entry is bounded by 2H, and therefore we have that the vector
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𝜀t
τ,h is H−sub-Gaussian. Then, applying Lemma 10.13, we have that,

∥∥∥∥∥ kt

∑
τ=1

ΦC(zτ
h,C)𝜀

t
τ,h

∥∥∥∥∥
(Λt

h,C)
−1

≤ H2 log

(
det

(
Λt

h
)

det (λId) δ2

)
≤ H2 log

 det
(

Λ̄
t
h

)
det (λId) δ2

 .

Replacing this result for each v ∈ Nε, we have by a union bound over each t ∈ [T], h ∈ [H],

we have with probability at least 1− δ, simultaneously for each t ∈ [T], h ∈ [H],

sup
𝜐t∈Υ,v∈VΥ

∥∥St
h,C
∥∥
(Λt

h,C)
−1 ≤ 2H

√√√√√log

det
(

Λ̄
t
h

)
det (λId)

+ log
(

HT|Nε|
δ

)
+

2Mt2ε2

H2λ

≤ 2H

√
d log

(
Mt + λ

λ

)
+ log

(
|Nε|

δ

)
+ log(HT) +

2Mt2ε2

H2λ
.

The last step follows once again by first noticing that ‖ΦC(·)‖ ≤
√

M and then applying

an AM-GM inequality, and then using the determinant-trace inequality.

Step 2. Here Nε is an ε−covering of the function class VΥC for any h ∈ [H], m ∈ [M] or

t ∈ [T] under the distance function distΥC(v, v′) = supx∈S ,𝜐∈Υ ‖v(x)− v(x′)‖1. To bound

this quantity by the appropriate covering number, we first observe that for any V ∈ VΥC ,

we have that the policy weights are bounded as 2HM
√

dT/λ (Lemma 10.11). Therefore,

by Lemma 10.9 we have for any constant B such that βt
h ≤ B,

log (Nε) ≤ d · log

(
1 +

8HM3

ε

√
dT
λ

)
+ d2 log

(
1 +

8Md1/2B2

λε2

)
.

Recall that we select the hyperparameters λ = 1 and β = O(dH
√

log(TMH), and to bal-

ance the terms in β̄t
h,C we select ε = ε? = dH/

√
MT2

. Finally, we obtain that for some

absolute constant Cβ, by replacing the above values,

log (Nε) ≤ d · log
(

1 +
8M7/2T3/2

d1/2

)
+ d2 log

(
1 + 8Cβd1/2MT2 log(TMH)

)
.

Therefore, for some absolute constant C′ independent of M, T, H, d and Cβ, we have,

log |Nε| ≤ C′d2 log
(
Cβ · dMT log(TMH)

)
.

Replacing this result in the result from Step 1, we have that with probability at least 1− δ′/2
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for all t ∈ [T], h ∈ [H] simultaneously,

∥∥St
h,C
∥∥2
(Λt

h,C)
−1 ≤ 2H

(
(d + 2 + ε(k)dMT) log

MT + λ

λ
+ 2 log

(
1
δ′

)

+ C′d2 log
(
Cβ · dMT log(TMH)

)
+ 2 + 4 log(TH)

)
.

This implies that there exists an absolute constant B independent of M, T, H, d and Cβ, such

that, with probability at least 1− δ′/2 for all t ∈ [T], h ∈ [H],𝜐C ∈ ΥC simultaneously,

∥∥St
h,C
∥∥
(Λt

h)
−1 ≤ B · (dH + ε(k)H

√
dMT)

√
2 log

(
(Cβ + 2)dMTH

δ′

)
.

Next, we present the key result for cooperative value iteration, which demonstrates that

for any agent the estimated Q−values have bounded error for any policy π.

Lemma 10.4. Fix a clique C ∈ Ĉ such that |C| = M. For each C, there exists an absolute con-

stant cβ such that for βt
h,C = cβ · (dH + ε(k) ·

√
dtM)

√
log(2dMHt/δ′) for any policy π, there

exists a constant C′β such that for each x ∈ S , a ∈ A we have for all m ∈ C, t ∈ [T], h ∈ [H]

simultaneously, with probability at least 1− δ′/2,

∣∣∣〈ΦC(xC, aC), wt
𝜐C ,h −wπ

𝜐C ,h〉
∣∣∣ ≤ Ph(Vt

m,h+1 −Vπ
m,h+1)(x, a) + 4Hε(k)

+ C′β · dH · ‖ΦC(zC)‖(Λt
h,C)

−1 ·

√
2 log

(
dMTH

δ′

)
.

Proof. By the Bellman equation and Assumptions 10.1, 10.2, 10.3, we have that for any

policy 𝜋, and 𝜐C ∈ ΥC, there exist weights wπ
𝜐C ,h such that, for all z = {zC, z̄C} ∈ Z =

S ×A,

𝜐>C ΦC(zC)
>wπ

𝜐C ,h = 𝜐>C r̃C
h (zC) + P̃C

h Vπ
𝜐C ,h+1(z) = 𝜐>C

(
r̃C

h (z) + 1M · P̃C
h Vπ

𝜐C ,h+1(z)
)

.

We have,

wt
𝜐C ,h −wπ

𝜐C ,h

284



= (Λt
h,C)

−1
kt

∑
τ=1

[
ΦC(xτ

h,C, aτ
h,C)[rh(xτ

h,C, aτ
h,C) + 1M ·Vt

𝜐C ,h+1(xτ)]
]
−wπ

𝜐C ,h

wt
𝜐C ,h −wπ

𝜐C ,h = −λ(Λt
h,C)

−1wπ
𝜐C ,h

+ (Λt
h,C)

−1

{
kt

∑
τ=1

[
ΦC(xτ

h,C, aτ
h,C)[1M · (Vt

𝜐C ,h+1(x
′
τ)− P̃C

h Vπ
𝜐C ,h+1(x

τ
h,C, aτ

h,C))]
]}

.

wt
𝜐C ,h −wπ

𝜐C ,h = −λ(Λt
h,C)

−1wπ
𝜐C ,h︸ ︷︷ ︸

v1

+ (Λt
h,C)

−1

{
kt

∑
τ=1

[
ΦC(xτ

h,C, aτ
h,C)[1M · (Vt

𝜐C ,h+1(x
′
τ)− P̃C

h Vt
𝜐C ,h+1(x

τ
h,C, aτ

h,C))]
]}

︸ ︷︷ ︸
v2

+ (Λt
h,C)

−1

{
kt

∑
τ=1

[
ΦC(xτ

h,C, aτ
h,C)[1M · (P̃C

h Vt
𝜐C ,h+1 − P̃C

h Vπ
𝜐C ,h+1)(x

τ
h,C, aτ

h,C)]
]}

︸ ︷︷ ︸
v3

+

+ (Λt
h,C)

−1

{
kt

∑
τ=1

[
ΦC(xτ

h,C, aτ
h,C)[1M · (PhVt

𝜐C ,h+1 − P̃C
h Vt

𝜐C ,h+1)(x
τ
h,C, aτ

h,C)]
]}

︸ ︷︷ ︸
v4

+ (Λt
h,C)

−1

{
kt

∑
τ=1

[
ΦC(xτ

h,C, aτ
h,C)[r[C](xh(t), ah(t))− r̃C(xt

h,C, at
h,C)]

]}
︸ ︷︷ ︸

v5

.

Now, we know that for any z ∈ Z for any policy π,

‖〈ΦC(z), v1〉‖2 ≤ λ‖〈ΦC(z), (Λt
h,C)

−1wπ
𝜐C ,h〉‖2

≤ λ · ‖wπ
𝜐C ,h‖‖ΦC(z)‖(Λt

h,C)
−1 ≤ 2HMλ

√
d · ‖ΦC(z)‖(Λt

h,C)
−1

Here the last inequality follows from Lemma 10.10. For the second term, we have by

Lemma 10.3 that there exists an absolute constant Cβ, independent of M, T, H, d such that,

with probability at least 1− δ′/2 for all t ∈ [T], h ∈ [H],𝜐C ∈ ΥC simultaneously,

‖〈ΦC(z), v2〉‖2 ≤ ‖ΦC(z)‖(Λt
h,C)

−1 · Cβ · dH ·

√
2 log

(
dMTH

δ′

)
.
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To bound the third term we make the substitution ∆V = (Vt
𝜐C ,h+1−Vπ

𝜐C ,h+1) for brevity. We

can bound it as follows.

〈ΦC(x, a), v3〉

=

〈
ΦC(z), (Λt

h)
−1

{
kt

∑
τ=1

ΦC(xτ
h,C, aτ

h,C)[1M · (PhVt
𝜐C ,h+1 −PhVπ

𝜐C ,h+1)(x
τ
h,C, aτ

h,C)]

}〉

=

〈
ΦC(z), (Λt

h)
−1

{
kt

∑
τ=1

ΦC(xτ
h,C, aτ

h,C)ΦC(xτ
h,C, aτ

h,C)
>
∫

∆V(x′)d𝜇h(x′)

}〉

=

〈
ΦC(z), (Λt

h)
−1

{
kt

∑
τ=1

ΦC(xτ
h,C, aτ

h,C)ΦC(xτ
h,C, aτ

h,C)
>
∫

∆V(x′)d𝜇h(x′)

}〉

=

〈
ΦC(z),

∫
∆V(x′)d𝜇h(x′)

〉
− λ

〈
ΦC(z), (Λt

h)
−1
∫

∆V(x′)d𝜇h(x′)
〉

=
∫

∆V(x′)
〈
ΦC(z),𝜇h(x′)

〉
− λ

〈
ΦC(z), (Λt

h)
−1
∫

∆V(x′)d𝜇h(x′)
〉

= 1M ·
(

P̃C
h ∆V(x, a)

)
− λ

〈
ΦC(z), (Λt

h)
−1
∫

∆V(x′)d𝜇h(x′)
〉

≤ 1M ·
(

P̃C
h ∆V(x, a) + 2H

√
dλ‖ΦC(x, a)‖(Λt

h,C)
−1

)
.

For the last two terms, we can bound them by a similar argument of misspecification as

Lemma 10.3. We can bound both terms by 1M ·
(

ε(k) · H
√

dMT‖ΦC(x, a)‖(Λt
h,C)

−1

)
. Putting

it all together, we have that since 〈ΦC(x, a), wt
𝜐C ,h − wπ

𝜐C ,h〉 = 〈ΦC(x, a), v1 + v2 + v3 +

v4 + v5〉, there exists an absolute constant Cβ independent of M, T, H, d, such that, with

probability at least 1− δ′/2 for all t ∈ [T], h ∈ [H],𝜐C ∈ ΥC simultaneously,

∣∣∣〈𝜐>C ΦC(x, a), wt
𝜐C ,h −wπ

𝜐C ,h〉
∣∣∣ ≤ 𝜐>C 1M ·

(
Ph(Vt

𝜐C ,h+1 −Vπ
𝜐C ,h+1)(x, a)

)
+ 4Hε(k)

+ ‖ΦC(x, a)‖(Λt
h,C)

−1

(
2H
√

dλ + Cβ · dH ·

√
2 log

(
dMTH

δ′

)
+ 2HMλ

√
d + 2Hε(k)

√
dMT

)
Since λ ≤ 1 and ‖𝜐C‖2 ≤ 1, there exists a constant C′β that we have the following for any

(x, a) ∈ S ×A with probability 1− δ′/2 simultaneously for all h ∈ [H],𝜐C ∈ ΥC, t ∈ [T],

∣∣∣〈𝜐>C ΦC(x, a), wt
𝜐C ,h −wπ

𝜐C ,h〉
∣∣∣ ≤ Ph(Vt

𝜐C ,h+1 −Vπ
𝜐C ,h+1)(x, a) + 4Hε(k)
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+ C′β ·
(

dH + ε(k)H
√

dMT
)
· ‖Φ(z)‖(Λt

h,C)
−1 ·

√
2 log

(
dMTH

δ′

)
.

Lemma 10.5 (UCB in the Multiagent Setting). For each C ∈ Ĉ, with probability at least 1− δ′/2,

we have that for all (xC, aC, h, t,𝜐C) ∈ SC ×AC × [H]× [T]× ΥC,

Qt
υ,h(xC, aC) ≥ Q?

υ,h(xC, aC)− 4H(H + 1− h)ε(k).

Proof. We prove this result by induction. First, for the last step H, note that the statement

holds as Qt
𝜐C ,H(xC, aC) ≥ Q?

𝜐C ,H(xC, aC)− 4Hε(k) for all 𝜐C. Recall that the value function

at step H + 1 is zero. Therefore, by Lemma 10.4, we have that, for any 𝜐C ∈ ΥC,

∣∣∣〈𝜐>C ΦC(xC, aC), wt
𝜐C ,H〉 −Q?

𝜐C ,H(xC, aC)
∣∣∣

≤ C′β ·
(

dH + ε(k)H
√

dMT
)
· ‖ΦC(zC)‖(Λt

h,C)
−1 ·

√
2 log

(
dMTH

δ′

)
+ 4Hε(k).

We have Q?
𝜐C ,H(xC, aC) ≤ 〈𝜐>C ΦC(xC, aC), wt

𝜐C ,H〉+C′β ·
(

dH + ε(k)H
√

dMT
)
· ‖Φ(z)‖(Λt

h,C)
−1 ·√

2 log
(

dMTH
δ′

)
= Qt

𝜐C ,H(xC, aC). Now, for the inductive case, we have by Lemma 10.4 for

any h ∈ [H],𝜐C ∈ ΥC,

∣∣∣〈𝜐>C ΦC(xC, aC), wt
𝜐C ,h −w?

𝜐C ,h〉 −
(

PhV?
𝜐C ,h+1(xC, aC)−PhVt

𝜐C ,h+1(xC, aC)
)∣∣∣

≤ C′β ·
(

dH + ε(k)H
√

dMT
)
· ‖Φ(z)‖(Λt

h,C)
−1 ·

√
2 log

(
dMTH

δ′

)
.

By the inductive assumption we have Qt
𝜐C ,h+1(xC, aC) ≥ Q?

𝜐C ,h+1(xC, aC) implying

PhV?
𝜐C ,h+1(xC, aC)−PhVt

𝜐C ,h+1(xC, aC) ≥ 0.

Substituting the appropriate Q value formulations we have,

Q?
𝜐C ,h ≤ 〈𝜐>C ΦC(xC, aC), wt

𝜐C ,h〉+ 4Hε(k)

+ C′β ·
(

dH + ε(k)H
√

dMT
)
· ‖Φ(z)‖(Λt

h,C)
−1 ·

√
2 log

(
dMTH

δ′

)
= Qt

𝜐C ,h(xC, aC).
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Lemma 10.6 (Recursive Relation in Multiagent MDP Settings). Fix a clique C ∈ Ĉ of size M.

For any 𝜐C ∈ ΥC, let δt
𝜐C ,h = Vt

𝜐C ,h(x
t
h,C) − Vπt

𝜐C ,h(x
t
h,C), and 𝜉t

𝜐C ,h+1 = E
[
δt
𝜐C ,h|xt

h,C, at
h,C

]
−

δt
𝜐C ,h. Then, with probability at least 1− α, for all (t, h) ∈ [T]× [H] simultaneously,

δt
𝜐C ,h ≤ δt

𝜐C ,h+1 + 𝜉
t
𝜐C ,h+1 + 4Hε(k)

+ 2
∥∥ΦC(xt

h,C, at
h,C)
∥∥
(Λt

h,C)
−1 · C′β ·

(
dH + ε(k)H

√
dMT

)
·

√
2 log

(
dMTH

α

)
.

Proof. By Lemma 10.4, we have that for any (xC, aC, h,𝜐C, t) ∈ SC ×AC × [H]× ΥC × [T]

with probability at least 1− α/2,

Qt
𝜐C ,h(xC, aC)−Qπt

𝜐C ,h(xC, aC) ≤ Ph(Vt
𝜐C ,h+1 −Vπt

𝜐C ,h)(xC, aC) + 4Hε(k)

+ 2 ‖ΦC(xC, aC)‖(Λt
h,C)

−1 · Cβ ·
(

dH + ε(k)H
√

dMT
)
·

√
2 log

(
dMTH

α

)
.

Replacing the definition of δt
𝜐C ,h and Vπt

𝜐C ,h finishes the proof.

Lemma 10.7. For each clique C ∈ Ĉ and each 𝜉t
𝜐C ,h as defined earlier and any δ ∈ (0, 1), we have

that with probability at least 1− δ/2,

T

∑
t=1

H

∑
h=1

∑
C∈Ĉ

𝜉t
𝜐C ,h ≤

√
2H3T|Ĉ| log

(
2
α

)
.

Proof. Observe that following the reasoning in Theorem 3.1 of Jin et al. (2020), we can see

that {𝜉t
𝜐C ,h}h,t,C is a martingale difference sequence (computation within each clique at any

instant is independent of the current state of other cliques). Furthermore, since |𝜉t
𝜐C ,h| ≤ H

regardless of 𝜐C, which allows us to apply Azuma-Hoeffding inequality. We have, for any

t > 0,

P

(
T

∑
t=1

H

∑
h=1

∑
C∈Ĉ

𝜉t
𝜐C ,h > t

)
≤ exp

(
− t2

2T|Ĉ|H2

)
.
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Rearranging provides us the final result.

We are now ready to prove Theorem 10.2. We have by the definition of cumulative

regret:

RC(T) =
T

∑
t=1

E𝜐t∼Υ

[
max
xt

1∈S

[
V?
𝜐t,1(x

t
1)−Vπt

𝜐t,1(x
t
1)
]]

= E𝜐t∼Υ

[
T

∑
t=1

max
xt

1∈S

[
V?
𝜐t,1(x

t
1)−Vπt

𝜐t,1(x
t
1)
]]

.

Our analysis focuses only on the term inside the expectation, which we will bound via

terms that are independent of 𝜐1, ...,𝜐T, bounding RC. We bound the cumulative regret

incurred by each clique, summing over which gives us the cumulative regret.

T

∑
t=1

max
xt

1∈S

[
V?
𝜐t,1(x

t
1)−Vπt

𝜐t,1(x
t
1)
]
≤ ∑

C∈Ĉ

(
T

∑
t=1

max
xC∈SC

[
V?
𝜐t,C ,1(xC)−Vπt,C

𝜐t,C ,1(xC)
])

.

We can bound the clique-wise regret for any C ∈ Ĉ of size M as follows.

T

∑
t=1

max
xC∈SC

[
V?
𝜐t,C ,1(xC)−Vπt,C

𝜐t,C ,1(xC)
]
≤

T

∑
t=1

max
xC∈SC

δt
𝜐t,C ,1 + 4HTε(k) ≤

T,H

∑
t,h
𝜉t
𝜐t,C ,h

+ 2C′β ·
(

dH + ε(k)H
√

dMT
)
·

√
2 log

(
dMTH

α

)(T,H

∑
t,h

∥∥ΦC(xt
h,C, at

h,C)
∥∥
(Λt

h,C)
−1

)
+ 4Hε(k).

Where the last inequality holds with probability at least 1 − α/2, via Lemma 10.6 and

Lemma 10.5. To bound the second summation, we can use the technique in Theorem 4

of Abbasi-Yadkori et al. (2011). Assume that the last time synchronization of rewards oc-

cured was at instant kT. We therefore have, by Lemma 12 of Abbasi-Yadkori et al. (2011),

for any h ∈ [H]

T

∑
t=1

∥∥ΦC(xt
h,C, at

h,C)
∥∥
(Λt

h,C)
−1 ≤

det(Λ̄t
h,C)

det(Λt
h,C)

T

∑
t=1

∥∥ΦC(xt
h,C, at

h,C)
∥∥
(Λ̄t

h,C)
−1

≤
√

S
T

∑
t=1

∥∥ΦC(xt
h,C, at

h,C)
∥∥
(Λ̄t

h,C)
−1

Here Λ̄
t
h,C = ∑T

t=1 ΦC(xt
h,C, at

h,C)ΦC(xt
h,C, at

h,C)
>

and the last inequality follows from the

algorithms’ synchronization condition. Replacing this result, we have that,

T

∑
t=1

H

∑
h=1

∥∥ΦC(xt
h,C, at

h,C)
∥∥
(Λt

h,C)
−1 ≤ 2

H

∑
h=1

(
√

S
T

∑
t=1

∥∥ΦC(xt
h,C, at

h,C)
∥∥
(Λ̄t

h,C)
−1

)
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≤ 2H

√
ST · d log

MT + λ

λ
.

Where the last inequality is an application of Lemma 10.12 and using the fact that ‖ΦC(·)‖2 ≤
√

M. Replacing this result, we have that with probability at least 1− α/2, by a union bound

over all cliques in Ĉ,

∑
C∈Ĉ

(
T

∑
t=1

max
xC∈SC

[
V?
𝜐t,C ,1(xC)−Vπt,C

𝜐t,C ,1(xC)
])
≤

T,H,Ĉ

∑
t,h,C

𝜉t
𝜐t,C ,h

+ 2C′β · H2
(

d + ε(k)
√

dMT
)
·

√√√√2ST log

(
dMTH|Ĉ|

α

)
· d log(MT) + 4HT|Ĉ|ε(k).

We can bound the second term via Lemma 10.7. Taking expectation of the RHS over𝜐1, ...,𝜐T

gives us the final result (the Õ notation hides polylogarithmic factors).

Remark 10.6 (Regret Bound). Theorem 10.2 claims in conjunction with Proposition 10.2 that

MG-LSVI obtains Bayes regret of Õ(χ̄(G) ·
√

T) even with limited communication. Note

that for complete G, χ̄(G) = 1 and the dependence on T matches that of MDP algorithms

exactly (e.g., Jin et al. (2020)), demonstrating that our analysis is tight. Additionally, we see

that this algorithm can easily be applied to an MDP by simply selecting pΥ to be a point

mass at the appropriate 𝜐, with no increase in regret. Thirdly, we see that MultOVI can

be simulated on a single agent with M objectives, where S = 1 and G is complete, which

provides, to the best of our knowledge, the first no-regret algorithm for multi-objective

reinforcement learning (Mossalam et al., 2016).

10.5 Lower Bound

The central observation in this setting is that under the clique-dominance assumption (As-

sumption 10.2), it is impossible to obtain regret that avoids the χ̄(G) factor. Rather than

provide a formal proof, we can provide a straightforward outline to obtain the guarantee.

For any influence graph G, we can construct a minimal clique covering C? and we can con-

struct a unique Markov game for each clique in C?. For any clique C we construct a Markov

game MGC such that the reward functions for each agent in C are identical functions of the

clique state-action (let us call it rc
h for any agent c and step h), i.e., rc

h = rC
h ∀c ∈ C) and the
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marginal transition probability is only a function of the clique state-action as well. Now,

observe that under this criterion, the scalarized reward is independent of the parameter

𝜐 and is always rC
h and hence one can find the regret in Π?

Υ for the MG by simply choos-

ing an arbitrary value of 𝜐 and solving the scalarized MDP. Since we are considering the

tabular setting, for any clique C, we can set dC = |SC| × |AC|. Note that for any MDP we

have that the regret obeys Ω(H2
√
|S||A|T), which gives us the regret within a clique as

Ω(H2√dCT). Summing over the clique cover we obtain the lower bound for RC, i.e., the

total regret in the Markov game is Ω(χ̄(G)H
√

dT).

This demonstrates that the χ̄(G) term is unavoidable in general. Further, the utilization

of “Bernstein-type” confidence bonuses can shave an additional factor of

√
H in our re-

gret (see discussion in Jin et al. (2020)). Regarding the dependence on communication, we

conjecture that our bound is almost-optimal, as similar lower bounds exist for distributed

exploration in multi-armed bandits (Hillel et al., 2013).

10.6 Experiments

We run experiments on a cooperative multi-agent RL grid-world environment, GridExplore

described as follows. In the first game, GridExplore, the agents are randomly placed in a

grid of blank cells. Agents explore the grid by observing cells which are denoted as ‘ex-

plored’. Each agent obtains a reward for the number of cells they have explored. Each agent

has the following actions {L, R, U, D, LU, LD, RU, RD} and there are a total of M = 8

agents. The visibility of other agents is examined under 3 settings: (a) each agent can see

all others (full), (b) each agent can only observe a random half of agents (partial), and (c)

each agent can only observe their actions (self). The board is of size 10x10 and pΥ is the

uniform distribution over ∆M. The game runs in episodes of length 200 and T = 5× 106
.

For each agent c in clique C, the feature 𝜑c is given as the combined action of all visible

agents (of dimensionality 8n′) and 𝜓C is the joint state of all agents in C (of dimensionality

100n′) where n′ = 1 in the self setting, n′ = bM/2c+ 1 in the partial setting, n′ = M in the

full setting. For our algorithm, we select ε = 0.5× 10−6
.

We present the average reward (over all agents) over the last 1000 episodes for 100

repeated trials in the table below. As baselines we consider a group of M individual Q-

learning on the agents personal state space Q-ind, M individual DQN agents using a custom
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CNN with 3 hidden layers: 2 convolutional layers with filter size 4 and 32 filters each, and

1 fully-connected layer of dimensionality 256; and the LSVI-UCB algorithm proposed by Jin

et al. (2020) on the same input space as ours.

Baseline Full Partial Self

Q-ind 20.885± 2.833 16.294± 4.239 13.202± 4.887
DQN 35.932± 3.094 27.587± 5.059 18.478± 2.093
LSVI-ind 17.439± 2.192 9.847± 4.292 7.340± 3.778
MG-LSVI 31.294± 3.776 22.119± 5.882 15.395± 3.098

Table 10.1: Results on GridExplore environment.

We observe that our algorithm comfortably outperforms the individual baselines Q-ind

and LSVI in all three settings, however, DQN outperforms our algorithm, presumably owing

to better feature representations learnt from the deep neural networks. Future work may

consider approaches to combine deep neural network based approaches with the multi-

agent UCB algorithm as ours.

10.7 Discussion

Remark 10.7 (Modeling influence and unknown dynamics). For arbitrary influence graphs

G, the misspecification ε incurred by using a k-clique covering C of G (Assumption 10.2) can

be unknown in general, and may be unique for each C. In this setting, we conjecture that a

corraling-type algorithm (Pacchiano et al., 2020; Agarwal et al., 2017) that adaptively selects

the best clique covering C can provide regret close to our algorithm without knowing the

misspecification ε(k).

Remark 10.8 (Communication complexity). We can control the communication budget by

adjusting the threshold parameter S. Note that when S = 1, communication will occur

each round, as the threshold will be satisfied trivially by the rank-1 update to the Gram

matrix. If the horizon T is known in advance, one can set S = (1 + nmaxT/d)1/D
for some

independent constant D > 1, to ensure that the total rounds of communication is a fixed

constant χ̄(G)(dD + 1)H, which provides us a group regret of Õ(χ̄(G) ·M 1
2D · T 1

2+
1

2D ). A

balance can be obtained by setting S = C′ for some absolute constant C′, leading to a total

O(χ̄(G) · log(nmaxT)) rounds with Õ(χ̄(G)
√

T) regret.

Conclusion. We presented the first (to the best of our knowledge) no-regret algorithm
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for partially-observable cooperative Markov games, with competitive experimental perfor-

mance (experiments deferred to Appendix for brevity). We generalize several concepts in

the cooperative MARL literature, and we believe our results will be important for further

work in cooperative MARL.

10.8 Omitted Proofs

10.8.1 Proof of Proposition 10.2

Recall that Υ is a bounded subset of RM
. Now, we have that since s𝜐(·) = 𝜐>(·), we have

that s𝜐 is Lipschitz with constant M with respect to the `1−norm, i.e., for any y ∈ RM
,

|s𝜐(y)− s𝜐′(y)| ≤ n‖𝜐 − 𝜐′‖1.

Now, consider the Wasserstein distance conditioned on the historyH between the sampling

distribution pΥ on Υ and the empirical distribution p̂Υ corresponding to {𝜐t}T
t=1,

W1(pΥ, p̂Υ) = inf
q

{
Eq‖X−Y‖1, q(X) = pΥ, q(Y) = p̂Υ

}
,

where q is a joint distribution on the RVs X, Y with marginal distributions equal to pΥ and

p̂Υ. We therefore have for some randomly drawn samples𝜐1,𝜐2, ...,𝜐T and for any arbitrary

sequence of (joint) policies Π̂T = {𝜋1, ...,𝜋T}, for any state x ∈ S ,

1
T

T

∑
t=1

max
x∈S

[
V𝜋t
𝜐t,1(x)−E𝜐∈Υ

[
max
𝜋∈Π̂T

V𝜋
𝜐,1(x)

]]

≤ 1
T

T

∑
t=1

max
x∈S

[
V𝜋t
𝜐t,1(x)−E𝜐∈Υ

[
max
𝜋∈Π̂T

V𝜋
𝜐,1(x)

]]

≤ Eq(X,Y)

[
max
x∈S

[
max
𝜋∈Π̂T

V𝜋
X,1(x)− max

𝜋∈Π̂T

V𝜋
Y,1(x)

]]
≤ n ·Eq(X,Y) [‖X−Y‖1] .

Taking an expectation with respect toH = {𝜐1, ..,𝜐T}, we have,

RB(T)−
1
T
RC(T)
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= E𝜐∈Υ

[
max
x∈S

[
V?
𝜐,1(x)− max

𝜋∈Π̂T

V𝜋
𝜐,1(x)

]]
−EH

[
1
T

T

∑
t=1

max
x∈S

[
V?
𝜐t,1(x)−V𝜋t

𝜐t,1(x)
]]

= EH

[
1
T

T

∑
t=1

max
x∈S

[
V?
𝜐t,1(x)− max

𝜋∈Π̂T

V𝜋
𝜐t,1(x)

]]
−EH

[
1
T

T

∑
t=1

max
x∈S

[
V?
𝜐t,1(x)−V𝜋t

𝜐t,1(x)
]]

≤ EH

[
1
T

T

∑
t=1

max
x∈S

[
V𝜋t
𝜐t,1(x)−E𝜐∈Υ

[
max
𝜋∈Π̂T

V𝜋
𝜐,1(x)

]]]
≤ n ·Eq(X,Y) [‖X−Y‖1] .

The penultimate inequality follows from max being a contraction mapping in bounded

domains, and the final inequality follows from the previous analysis. To complete the proof,

we first take an infimum over q and observe that the subsequent RHS converges at a rate

of Õ(T− 1
n ) under mild regulatory conditions, as shown by Canas & Rosasco (2012).

10.8.2 Proof of Lemma 10.1

Follows from Lemma 10.10.

10.8.3 Proof of Lemma 10.2

Let the total rounds of communication triggered by the threshold condition in any step

h ∈ [H] in any clique C of size M be given by nh(C). Then, we have, by the communication

criterion,

Snh(C) <
det

(
Λt

h,C
)

det (λId)
≤ (1 + MT/d)d.

Where the last inequality follows from Lemma 10.12 and the fact that ‖Φ‖ ≤ √nmax ≤
√

M. This gives us that nh(C) ≤ d logS (1 + nmaxT/d)) + 1. Furthermore, by noticing that

γ ≤ ∑C∈Ĉ ∑H
h=1 nh(C), and that |Ĉ| ≤ 1.25 · χ̄(G), we have the final result.

10.8.4 Additional Lemmas

Lemma 10.8 (Covering Number of the Euclidean Ball). For any ε > 0, the ε−covering number

of the Euclidean ball in Rd with radius R > 0 is less than (1 + 2R/ε)d.

Lemma 10.9 (Covering number for Markov game UCB-style functions). Let V denote a class
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of functions mapping from S to R with the following parameteric form

v𝜐(·) = 1M ·min
{

max
a∈A

[
〈𝜐, v(·, a)〉+ β

∥∥∥ΦC(·, a)>Λ−1ΦC(·, a)
∥∥∥] , H

}
, and

v(·, a) = w>ΦC(·, a).

where the parameters (w, β, Λ) are such that w ∈ Rd, ‖w‖2 ≤ L, β ∈ (0, B], ‖ΦC(x, a)‖ ≤
√

M ∀(x, a) ∈ S × A, and the minimum eigenvalue of Λ satisfies λmin(Λ) ≥ λ. Let Nε be the

ε−covering number of V with respect to the distance dist(v, v′) = supx∈S ,𝜐∈Υ |v𝜐(x)− v′𝜐(x)|.

Then,

log (Nε) ≤ d · log
(

1 +
4LM2

ε

)
+ d2 log

(
1 +

8Md1/2B2

λε2

)
.

Proof. We have that for two matrices A1 = β2Λ−1
1 , A2 = β2Λ−1

2 and weight matrices

w1, w2 ∈ Rd
,

sup
𝜐∈Υ,x∈S

∣∣v𝜐(x)− v′𝜐(x)
∣∣
1 = M · sup

x∈S ,𝜐∈Υ

∣∣∣𝜐>v(x)− 𝜐>v′(x)
∣∣∣ ≤ M · sup

x∈S

∣∣v(x)− v′(x)
∣∣
1

≤ M · sup
x,a

∣∣∣[w>1 ΦC(·, a) +
∥∥∥ΦC(·, a)>A1ΦC(·, a)

∥∥∥
2

]
−
[
w>2 ΦC(·, a) +

∥∥∥ΦC(·, a)>A2ΦC(·, a)
∥∥∥

2

]∣∣∣
1

≤ M · sup
x,a

∣∣∣(w1 −w2)
>ΦC(·, a) +

∥∥∥ΦC(·, a)>A1ΦC(·, a)
∥∥∥

2
−
∥∥∥ΦC(·, a)>A2ΦC(·, a)

∥∥∥
2

∣∣∣
1

≤ M · sup
x,a

∣∣∣(w1 −w2)
>ΦC(·, a)

∣∣∣
1
+ M · sup

x,a

∣∣∣∥∥∥ΦC(·, a)>A1ΦC(·, a)
∥∥∥

2
−
∥∥∥ΦC(·, a)>A2ΦC(·, a)

∥∥∥
2

∣∣∣
≤ M · sup

x,a

∣∣∣(w1 −w2)
>ΦC(·, a)

∣∣∣
1
+ M · sup

x,a

∥∥∥ΦC(·, a)> (A1 −A2)ΦC(·, a)
∥∥∥

2

≤ M3/2 · sup
Φ:‖Φ‖≤

√
M

[∥∥∥(w1 −w2)
>Φ

∥∥∥
2

]
+ M · sup

Φ:‖Φ‖≤
√

M

∥∥∥Φ> (A1 −A2)Φ
∥∥∥

2

≤ M2 · ‖w1 −w2‖2 + M2 ‖A1 −A2‖2

≤ M2 · ‖w1 −w2‖2 + M2 ‖A1 −A2‖F

Now, let Cw be an ε/(2M2) cover of

{
w ∈ Rd

∣∣ ‖w‖2 ≤ L
}

with respect to the Frobenius-

norm, and CA be an ε2/4 cover of

{
A ∈ Rd×d|‖A‖F ≤ (M2d)1/2B2λ−1}

with respect to the

Frobenius norm. By Lemma 10.8 we have,

|Cw| ≤ (1 + 4LM2/ε)d, |CA| ≤ (1 + 8(M2d)1/2B2/(λε2))d2
.

Therefore, we can select, for any v𝜐(·), corresponding weight w ∈ Cw, and matrix A ∈ CA.
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Therefore, Nε ≤ |CA| · |Cw|. This gives us,

log (Nε) ≤ d · log
(

1 +
4LM2

ε

)
+ d2 log

(
1 +

8Md1/2B2

λε2

)
.

Lemma 10.10 (Linearity of weights in Markov game). In a game with M agents satisfying

Assumptions 10.1, 10.2, 10.3, for any policy π, clique C ∈ Ĉ of size M, and 𝜐C ∈ ΥC, there

exists weights {wπ
𝜐C ,h}h∈[H] such that |Qπ

𝜐C ,h(xC, aC)− 𝜐>C ΦC(xC, aC)
>wπ

𝜐C ,h| ≤ 2Hε(k) for all

(xC, aC, h) ∈ SC ×AC × [H], where ‖wπ
𝜐C ,h‖2 ≤ 2H

√
d.

Proof. By the Bellman equation and Proposition 10.1, we have that for any MDP corre-

sponding to the scalarization parameter 𝜐C ∈ ΥC and any policy 𝜋, state x ∈ SC, joint

action a ∈ AC,

Qπ
𝜐C ,h(xC, aC) ≤ 𝜐>C r̃C

h (xC, aC) + P̃C
h Vπ

𝜐C ,h+1(xC, aC) + 2Hε(k)

≤ 𝜐>C
(

r̃C
h (xC, aC) + 1M · P̃C

h Vπ
𝜐C ,h+1(xC, aC)

)
+ 2Hε(k)

≤ 𝜐>C

ΦC(xC, aC)
>

𝜃h

0d

+
∫

Vπ
𝜐C ,h+1(x

′
C)ΦC(xC, aC)

>

 0d

d𝜇h(x′C)

 dx′C

+ 2Hε(k)

≤ 𝜐>C ΦC(xC, aC)
>wπ

𝜐C ,h + 2Hε(k).

The first inequality follows from Assumption 10.2. Here wπ
𝜐C ,h =

 𝜃h∫
Vπ
𝜐C ,h+1(x

′
C)d𝜇(x

′
C)dx′C

.

Therefore, since ‖𝜃h‖ ≤
√

d and ‖
∫

Vπ
𝜐C ,h+1(x

′
C)d𝜇(x

′
C)‖ ≤ H

√
d, the result follows.

Lemma 10.11 (Bound on Weights). For any C ∈ Ĉ, |C| = M, t ∈ [T], h ∈ [H],𝜐 ∈ Υ, the

weights wt
𝜐C ,h satisfy

‖wt
𝜐C ,h‖2 ≤ 2HM

√
dt/λ.

Proof. For any vector v ∈ Rd|‖v‖ = 1,

∣∣∣v>wt
𝜐,h

∣∣∣ = ∣∣∣∣∣v> (Λt
h
)−1

(
kt

∑
τ=1

[
ΦC(xτ

h,C, aτ
h,C)

[
rh(xτ

h,C, aτ
h,C) + max

a∈A
Q𝜐,h+1(x′τ, a)

]])∣∣∣∣∣
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≤

√√√√kt ·
kt

∑
τ=1

(
v>
(
Λt

h
)−1

[
ΦC(xτ

h,C, aτ
h,C)

[
rh(xτ

h,C, aτ
h,C) + max

a∈A
Q𝜐,h+1(x′τ, a)

]])2

≤ HM

√√√√kt ·
kt

∑
τ=1

∥∥∥v>
(
Λt

h
)−1

ΦC(xτ
h,C, aτ

h,C)
∥∥∥2

2

≤ 2HM

√√√√kt ·
kt

∑
τ=1
‖v‖2

(Λt
h,C)

−1‖ΦC(xτ
h,C, aτ

h,C)‖2
(Λt

h,C)
−1

≤ 2HM‖v‖
√

dkt/λ ≤ 2HM
√

dt/λ.

The penultimate inequality follows from Lemma 10.12 and the final inequality follows from

the fact that kt ≤ t. The remainder of the proof follows from the fact that for any vector

w, ‖w‖ = maxv:‖v‖=1 |v>w|.

Lemma 10.12 (Lemma 3 of Abbasi-Yadkori et al. (2011)). Let 𝑥1, ...,𝑥n ∈ Rd be vectors such

that ‖𝑥‖2 ≤ L. Then, for any positive definite matrix 𝑈0 ∈ Rd×d, define 𝑈t := 𝑈t−1 + 𝑥t𝑥
>
t for

all t. Then, for any ν > 1,

n

∑
t=1
‖𝑥t‖2

𝑈−1
t−1
≤ 2d logν

(
tr(𝑈0) + nL2

d det1/d(𝑈0)

)
.

10.8.5 Multi-Task Concentration Bound

Consider a vector-valued kernel Γ that is continuous relative to the operator norm on

L(RM), the space of bounded linear operators from RM
to itself (for some M > 0). Then the

RKHSHΓ(XM) associated with the kernel Γ is a subspace of the space of continuous func-

tions from XM
to RM

, and hence, Γ is a Mercer kernel. Let µ be a measure on the (compact)

set XM
. Since Γ is a Mercer kernel on X and supX∈XM‖Γ(X, X)‖ < ∞, the RKHS HΓ(XM)

is a subspace of L2(XM, µ; RM), the Banach space of measurable functions g : XM → RM

such that

∫
XM‖g(X)‖2dµ(X) < ∞, with norm ‖g‖L2 =

(∫
XM‖g(X)‖2dµ(X).

)1/2
. Since

Γ(X, X) ∈ L(RM) is a compact operator, by the Mercer theorem

We can therefore define a feature map Φ : XM → L(RM, `2) of the multi-agent kernel
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Γ by

Φ(X)>y =
(√

ν1ψ1(x1)
>y,
√

ν2ψ2(x2)
>y, ...,

√
νMψM(xM)>y

)
, ∀X ∈ XM, y ∈ Rm.

We then obtain F(X) = Φ(X)>𝜃? and Γ(X, X′) = Φ(X)>Φ(X′) ∀ X, X′ ∈ XM
.

Define St = ∑t
τ=1 Φ(Xτ)>ετ, where ε1, ..., εt are the noise vectors in RM

. Now consider

Ft−1, the σ-algebra generated by the random variables {Xτ, ετ}t−1
τ=1 and Xt. We can see that

St isFt-measurable, and additionally, E[St|Ft−1] = St−1. Therefore, {St}t>1 is a martingale

with outputs in `2
space. Following Chowdhury & Gopalan (2020), consider now the map

ΦXt : `2 → RMt
:

ΦXt𝜃 =

[(
Φ(X1)

>𝜃
)>

,
(

Φ(X1)
>𝜃
)>

, ...,
(

Φ(Xt)
>𝜃
)>]>

, ∀ 𝜃 ∈ `2.

Additionally, denote Vt := Φ>Xt
ΦXt be a map from `2

to itself, with I being the identity

operator in `2
.

Lemma 10.13 (Lemma 3 of Chowdhury & Gopalan (2020)). Let the noise vectors {𝜀t}t>1 be

σ-sub-Gaussian. Then, for any η > 0 and δ ∈ (0, 1], with probability at least 1− δ, the following

holds uniformly over all t > 1:

‖St‖(Vt+ηI)−1 6 σ
√

2 log(1/δ) + log det(I + η−1Vt).

Alternatively stated, we have again that with probability at least 1− δ, the following holds uniformly

over all t > 1:

‖E t‖2

((Kt+ηI)−1+I)
−1 6 2σ2 log

[√
det(I(1 + η) + Kt)

δ

]
.

10.9 Algorithm Pseudocode
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Algorithm 21 MG-LSVI: Decentralized Learning in Low-Rank Cooperative Markov Games

1: Input: T, Φ, H, S, sequence βh = {(βt
h)t}.

2: Initialize: ΛC
h (t) = λId, δΛt

h,C = 0,U h
ν ,Wh

ν = ∅ for each ν ∈ G, clique cover Ĉ of G.

3: for episode t = 1, 2, ..., T do
4: Sample 𝜐t ∼ pΥ using public randomness.

5: for clique C ∈ Ĉ do
6: for agent ν ∈ C do
7: Set Vt

h+1,C(·)← 0.

8: for step h = H, ..., 1 do
9: Compute Qt

h,C(·, ·) using vector-valued least-squares regression on U h
ν .

10: Set Vt
h+1,C(·)← maxa∈AC Qt

h,C(·, a).
11: end for
12: for step h = 1, ..., H do
13: Each agent observes partial state xh

v(t) creating clique state xh
C(t) = ∪v∈Cxh

v(t).
14: Take action ah

ν(t)← [arg maxa∈AC
Qt

h,C(x
h
C(t), a)]ν.

15: Observe rh
ν(t), 𝑥̃h+1

ν .

16: Update δΛt
h,C ← δΛh

C(t− 1) + ΦC(zh
C(t))ΦC(zh

C(t))
>

.

17: UpdateWh
ν ←Wh

ν ∪ (ν, xh
ν(t), rh

ν(t)).

18: if log
det(Λt

h,C+δΛt
h,C+λI)

det(Λt
h,C+λI)

> S then
19: Synchronize← True.

20: end if
21: end for
22: end for
23: if Synchronize then
24: Assign arbitrary agent in C as the Server Agent.

25: for step h = H, ..., 1 do
26: [∀ Agents] SendWh

ν →Server Agent.

27: [Server Agent] AggregateWh ← ∪ν∈CWh
ν .

28: [Server Agent] CommunicateWh
to each agent.

29: [∀ Agents] Set δΛh
C(t + 1)← 0,Wh

ν ← ∅.

30: [∀ Agents] Set Λh
C(t + 1)← Λt

h,C + ∑(x,a)∈Wh ΦC(x, a)ΦC(x, a)>.

31: [∀ Agents] Set U h
ν ← U h

ν ∪Wh

32: end for
33: end if
34: end for
35: end for
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Chapter 11

Concluding Remarks

This thesis discusses problems in sequential decision-making and online learning applied

to the constraints and environments prevalent in the emerging paradigm of federated learn-

ing. While the federated setting itself is in its infancy with an initial focus primarily on

enabling large-scale optimization of neural networks (Li et al., 2018, 2020; Konečnỳ et al.,

2016; Yu et al., 2020b), federated decision-making will inevitably increase in relevance given

the growing applications of active artificial intelligence.

While we considered the fundamental tradeoffs in decentralized and federated decision-

making and the pursuit of optimality for such problems, there are numerous challenges that

are yet to be explored within this problem domain. We will conclude by briefly summariz-

ing these directions.

11.1 Computational Complexity

One of the most essential and relevant characterizations of an algorithm is its computational

complexity, a topic that has largely been in the background of discussion within this thesis.

For online learning and bandit problems, it is well-known (Lattimore & Szepesvári, 2020)

that the computational complexity of most no-regret algorithms is heavily dependent on

the space of actions (i.e., the decision set) for the agent. For most practical problems (e.g.,

in recommender systems), this space is typically finite (and often countable), i.e., a list of

elements, or a subset of Rd
, in which case searching for the optimal action for many UCB-

like or Thompson Sampling algorithms is relatively straightforward and can be achieved

in polynomial time (see, e.g., Mutny & Krause (2018) for a discussion).
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However, in some cases, the function approximation aspect of the problem itself can

be expensive, e.g., when the unknown bandit function or RL reward function has a small

norm within a reproducing kernel Hilbert space (Chowdhury & Gopalan, 2017), where ap-

proaches typically require the inversion of matrices of size t× t (at the tth
round) in infinite-

dimensional kernels (due to the kernel trick). This inversion can indeed be replaced by an

online rank-1 matrix update, reducing the complexity to O(1) per round, but this comes

at an immense cost to communication: it requires storing O(t2)-sized statistics which are

prohibitively large to communicate in the federated setting. Interestingly, this dilemma can

be solved by the “projection” approach outlined in Chapter 7, by projecting the infinite-

dimensional “approximate” Hilbert space. While the discussion in Chapter 7 is focused on

how this projection enables us to ensure differential privacy guarantees, this step enables

us to side-step both computational and communication issues, indeed, this approach only

requires a constant O(d2) communication and computational complexity (where d is the

dimensionality of the approximating space). This hints towards a broader synergy between

differential privacy and computational efficiency: if our algorithm requires operations on

smaller statistics, then we can expect that (a) computational and communication require-

ments will be lower, and that (b) better guarantees for differential privacy can be achieved

with smaller amounts of noise.

The projection approach, despite its merits, falls short in its generalizability. The algo-

rithm presented in Chapter 7 only works for kernel functions obeying a certain symmetry,

and additionally, performs poorly if the approximating dimensionality is low. Future work

can alternatively consider some kind of private sampling approach to select a subset of in-

teractions (or trajectories in RL) at random in order to reduce computational complexity.

Alternatively, if it is known that the decision problem admits a certain sparsity structure,

one can develop efficient approaches that can be provably efficient, e.g., as considered for

single-agent bandits in Jamieson et al. (2015). We expect to see a similar synergy between

computation and privacy in this regard as well.

Finally, we discuss the computational issues arising from the network structures present

in decentralized decision-making. Several algorithms presented in earlier chapters (e.g.,

Chapter 10) require knowledge of the communication graph and specific partitions as well,

e.g., the minimal clique cover or dominating set. These partitions are known to be NP-Hard

to evaluate for arbitrary graphs (see Remark 10.3, for example). While we can indeed ap-
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proximate them efficiently for several families of graphs, in applications where the number

of agents is substantially large (e.g., comparable with T), it is prudent to deploy alternative

communication protocols that do not rely on graph partitions. A potential approach to this

problem is to construct a hierarchical arrangement of agents, where “server” agents are

arranged in a decentralized network with a standard topology (e.g., a ring or star arrange-

ment), and the remaining agents are connected directly to the servers, running a distributed

optimization. This approach will potentially eliminate graph partitioning (or make it triv-

ial), but will require a more nuanced communication protocol that allows for stochastic

message-passing and asynchronous communication, as discussed next.

11.2 Asynchronous and Stochastic Communication

A notable restriction of the setting considered is that communication (both in the message-

passing and distributed environments) occurs via synchronization, i.e., by ensuring that the

arm pulls effectively follow the same “clock”. While synchronous communication provides

a cleaner and easier method to prove the efficiency of multi-agent algorithms, enabling

synchronous communication in practice is not straightforward.

Asynchronous communication is long-known to be more efficient in distributed com-

putation (Arjomandi et al., 1983), however the implementation of asynchronous commu-

nication in decision-making presents an additional challenge in proving regret bounds -

it is non-trivial to bound the variation in arm pulls whenever the system clocks are not

synchronized across agents. This is in contrast to federated optimization (Sprague et al.,

2018; Chen et al., 2020b; Lu et al., 2019), where efficiency is measured relative to the optimal

solution and one does not need exploration.

Therefore, extending approaches from the asynchronous optimization literature to deci-

sionbmaking is a valuable line of pursuit. The primary hurdle in extending synchronization

approaches directly to the asynchronous decision-making setting is that it is not straightfor-

ward to provide a control over the amount of exploration an agent does (i.e., number of sub-

optimal pulls of an arm) without assuming stochasticity within the environment. For exam-

ple, in the linear contextual bandit case, an assumption that would be sufficient is to assume

that the contexts are drawn from a distribution P such that λmin
(
Ext∼P[xtx>t |Ht−1]

)
≥ λ0,

i.e., the smallest eigenvalues of the context distribution are bounded away from zero with
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high probability. This ensures that even in the worst case, any individual agent would be

guaranteed to explore the decision space sufficiently, ensuring a no-regret solution. Relax-

ing this assumption to adversarially-drawn contexts for asynchronous bandits is an inter-

esting open problem.

As an alternative to asynchronous communication, one can consider the stochastic com-

munication case, i.e., when the network G is random and time-varying, such that the effec-

tive communication complexity decreases. While we have done a preliminary investigation

in this direction in Madhushani et al. (2021), there are numerous open problems that can be

addressed. As is in the case of asynchronous communication, it appears that the stochastic

communication protocol also requires a “diversity” constraint to guarantee some explo-

ration required for no-regret learning across agents, a constraint that is in sharp contrast

to work on distributed optimization, where stochasticity can be used in synergy with opti-

mization. Additionally, investigating the interactions with stochastic communication and

decentralization is an interesting avenue as well. Particularly, one can intuit that leveraging

fractional colorings of the communication graph might provide a mechanism to unify the

network suboptimality gap present in deterministic communication.

11.3 Differential Privacy

There are several aspects worthy of inquiry in the context of differential privacy in federated

online learning. Most notable of them is local differential privacy, where, in contrast to the

(majority of) work presented in this thesis, we require that the privacy guarantee be valid

for each outgoing message separately. While this may seem like a small change in terms

of algorithm design, there are several open problems at the intersection of bandit learning

and local differential privacy.

First, consider the local differential privacy rates obtained for Gaussian process and lin-

ear bandits in Chapter 7. We see that since each arm pull requires adding a new noise term

in local privacy, the overall variance of noise added over T rounds scales as O(T), which

leads to a cumulative regret ofO(T3/4). When the context distribution is stochastic, recent

work has shown that this rate can be improved to the regularO(
√

T) by leveraging the ran-

domness of the contexts themselves to bypass explicit UCB-style bonuses (Han et al., 2021),

however, it is still an open question whether this gap is necessary for adversarially chosen
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contexts. In follow-up work, we demonstrate that for “smoothed” adversarial context dis-

tributions, i.e., context distributions that are chosen adversarially but then are perturbed

slightly (at random) by the environment (Kannan et al., 2018), once again, the well-known

O(
√

T) can be achieved. The case for deterministic adversarial contexts is yet to be solved.

In an alternate line of inquiry, one can argue that neither joint nor local differential pri-

vacy may not be the ideal privacy guarantee for federated environments, as the joint guar-

antee only provides privacy with respect to the individual sequence, and the local guarantee

provides message-level privacy, which in fact is overkill for federated learning applications

such as learning personalized recommender systems, where we would desire a guarantee

that lies somewhere in between, i.e., that protects an entire user’s history against adver-

saries, and not the complete sequence. Very recent work has investigated this in the context

of federated optimization (Levy et al., 2021), it would be interesting to examine such a user

level analysis for federated bandit systems in the future as well.
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