Automatic, Careful Online Packing of Groceries Using a
Soft Robotic Manipulator and Multimodal Sensing
by
Jeana Choi

S.B. Electrical Engineering and Computer Science, Massachusetts Institute
of Technology (2021)

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Department of Electrical Engineering and Computer Science
January 14, 2022

Certified by ..o
Daniela Rus

CSAIL Director, Andrew (1956) and Erna Viterbi Professor of Electrical
Engineering and Computer Science, Deputy Dean of Research,
Schwarzman College of Computing

Thesis Supervisor

Accepted DY . .ot e
Katrina LaCurts
Chair, Master of Engineering Thesis Committee

Automatic, Careful Online Packing of Groceries Using a Soft Robotic
Manipulator and Multimodal Sensing
by

Jeana Choi

Submitted to the Department of Electrical Engineering and Computer Science
on January 14, 2022, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis describes the use of soft robotic manipulators with multimodal sensing for esti-
mating the physical properties of unknown objects to enable sorting and packing. Although
bin packing has been a key benchmark task for robotic manipulation, the community has
mainly focused on the placement of rigid rectilinear objects within the container. We ad-
dress this by presenting a soft robotic hand that uses a combination of vision, motor-based
proprioception and soft tactile sensors to identify and pack a stream of unknown objects.
We translate the ill-defined human conception of a “well-packed container” into metrics
that match combinations of our different sensor modalities and demonstrate how this works
in a grocery packing scenario, where objects of arbitrary shape, size and stiffness come
down a conveyor belt. The proposed multimodal approach is supported by physical ex-
periments demonstrating how the integration of multiple sensing modalities can address
complex manipulation applications.

Thesis Supervisor: Daniela Rus
Title: CSAIL Director, Andrew (1956) and Erna Viterbi Professor of Electrical Engineering
and Computer Science, Deputy Dean of Research, Schwarzman College of Computing

Acknowledgments

I would like to give a heartful thanks to everyone in Distributed Robotics Laboratory for
their support and kindness.

First, I would like to thank my MEng advisor, Professor Daniela Rus, for helping
me grow as a researcher and also providing valuable feedback about the grocery pack-
ing project. There is so much to learn from her passion and drive for robotics and research,
and I am very grateful for the opportunity to learn the DRL ways of thinking in the past
year.

Next, Lilly Chin, my graduate student mentor, welcomed me with (socially distanced)
open arms in Fall 2020, and graciously walked me through the onboarding process and
introduced me to the UR-5 robot. She has my sincerest gratitude for her patience and
sharing feedback especially in the 2020-2021 academic year, when we were one of the few
people in lab due to Covid restrictions on lab space occupancy.

Valerie Chen introduced me to the project, and also essentially became my soulmate
in lab - spending over 40 hours a week together in Fall 2021. I would like to thank her
especially for the amount of motivation and new ideas she comes up with in research,
which inspires me to do the same.

In addition, I would like to specifically thank: Mieke Moran for always checking up on
me and giving me delicious snacks, Jim Bern and Cenk Baykal for lending a listening ear
and providing feedback, John Romanishin for his speedy help during hardware crises, Xiao
Li and Yutong Ban for the too-frequent Cava dinner runs, Brandon Araki for all the support
with the early-stage robot demos in Spring and Summer of 2021, and Annan Zhang and
Peter Werner for their endless supply of late-night coffee.

Lastly, I would like to express my biggest thanks to my parents and my sister, who have

always supported and encouraged me to try my best regardless of the situation.

Contents

1 Introduction

1.1 Thesis Organization v v
2 Related Work
3 Hardware Architecture
3.1 Robot e
3.1.1 Safety Considerations
3.2 Proprioceptive Gripper v v v vt e
321 Grasping e
3.3 Tactile Sensors e
34 External Cameras

4 Software Architecture

4.1

4.2

4.3
4.4

Robot Operating System,
4.1.1 MotionPlanning
External Vision System o
4.2.1 Coordinate Transform
422 ObjectDetection
423 OnlinePacking
Tactile Data Pipeline

Proprioceptive Gripper Control

15
18

19

23
23
24
24
25
27
28

Grocery Packing Algorithm

5.1 Grocery Packing Algorithm
5.1.1 Robot Actions
5.1.2 Classifying Delicate Items
5.1.3 System Limitations
5.2 Automation/User Control
5.2.1 Continuously Running System

Sensor Characterization

6.1 Vision Characterization

6.2 Tactile Characterization

6.3 Proprioceptive Characterization

Experimental Results

7.1 Experimental Setup
7.2 Task Evaluation
7.2.1 Packing Rubric
73 Results.
7.3.1 Baseline Results
7.3.2 Vision-Only Results . .
7.3.3 Multimodal Results . . .

Discussion & Future Work

8.1 LessonsLearned
8.1.1 Hardware
8.1.2 Algorithms
8.1.3 Experiments

82 FutureWork

Grocery Packing Demo Instructions

Code

39
39
40
42
42
43
44

45
45
46
47

49
50
50
51
52
53
53
53

57
58
58
59
59
60

61

63

List of Figures

1-1

3-1

3-2

3-3

3-4

3-5

4-1

The setup for an end-to-end online bin packing system. Multimodal sens-
ing is utilized to achieve grasping previously unknown items from the con-
veyor belt and making real-time decisions about the packing location based

on the item’s physical properties of size, shape, and stiffness. 17

URS robot with the grocery packing setup. The grocery items, buffer zone,

and packing bin can also be seen from thisview. 24
Soft Gripper consisting of HSA fingers and driven by Dynamixel Servos. . 25

A visual representation of the gripper’s different grasping modes. (a) The
gripper is opened to its physical hardware limit, (b) The fingers are closed
just enough for sufficient contact with the item, (c) the gripper opened par-
tially but not fully, generally used to drop items carefully into the bin, (d)

A demonstration of the auxetic fingers closing to ensure better contact with

Hardware setup with digitally-fabricated HSA fingersand digitally-fabricated

hexagonal tactile sensors. L. oo 28

Grasping a soft item allows for better contact area, whereas rigid items have

the phenomenon of lower contact area due to the soft nature of the gripper. 28

The RQT Tree graph for the grocery packing system. All nodes are shown,
from the URS robot services to the external sensors and grocery packing

software module. e 32

4-2

4-3

5-1

5-2

6-1

6-2

Snapshot from the Xtion2, which detects the objects on the conveyor belt.
The green rectangles indicate bounding boxes around the detected grocery
items, and the green rectangle with a purple outline indicates the item clos-

est to the end of the conveyorbelt.

(a) The closest item to the end of the conveyor belt is the grapes, whose
bounding box from the Xtion2 camera is converted to the Xtion Pro Live.
The middle figures indicates the calculated packing point based on the
depth mask, and the right figures show the system in the same moment
from an external view. (b) Demonstrating packing a regularly-shaped item,

themuffin.

A flowchart of our system grocery packing algorithm with multimodal
sensing. The first instance of the system is activated when groceries are
detected on the conveyor belt. Depending on whether there are items in the
buffer or the belt, the robot makes the decision to move to the appropriate

location and pack the groceries inasafeway.

Using the calibration set of grocery items, we determine two thresholds for
classifying whether the item should be packed immediately or not. Tactile

readings can be converted to force outputs using Equation 6.1.

25 hand-labeled calibration items were evaluated to determine the priority
packing heuristic. Soft: clementine, grapes, juice box, mozzarella cheese.
Medium: book, celery salt, empty soda can, instant ramen, jello, milk car-
ton, mustard bottle, toy peach, toy pear, wheat thins. Rigid: apple, coffee
can, fake cake, plastic lemon, Pringles tube, Rubik’s dodecahegon, Spam,

tea box, tuna can, vegemite, vitamin bottle.

We evaluate the vision sensing method of using the item’s area by compar-
ing the actual area of the item from a bird’s eye view of the conveyor belt

with the system’s calculation of item area based on the vision data.

10

46

6-3

7-1

Left: Evaluation of 3 tactile sensors on one tactile sensor array against
increasing applied load. The three outputs from one array are averaged
to give a single measured output in millivolts. Standard deviation is also
shown. Right: Hardware setup with digitally-fabricated HSA fingers and

digitally-fabricated hexagonal tactile sensors.

System evaluation was conducted with 15 test items. Soft: bread, chips,
kale, muffin, seaweed. Medium: cheese, crackers, gum, Pringles, stroop-
wafels. Rigid: baking soda, ice cream, soup can, sprinkles, pot roast. Del-
icate: bread, chips, crackers, kale, muffin, seaweed, stroopwafels. Heavy:
baking soda, gum, ice cream, pot roast, soup, sprinkles, stroopwafels.

Packed bins for each of three trials for baseline, vision, and multimodal

EXPErIMENES. o v e e e e e e e e e e e e e

11

49

12

List of Tables

7.1 Scoring rules and associated penalties for packed bins

7.2 Experiment penalty scores

13

14

Chapter 1

Introduction

Soft robotic grasping offers a potentially robust solution to the bin packing problem. Pick-
ing items from clutter and placing them into ordered bins has been an important benchmark
for the broader robotic manipulation community, as exemplified by the Amazon Picking
and Robotics Challenge [34]. However, current solutions have only focused on vision-
based segmentation for rigid grippers, meaning that these systems only can grasp rigid
rectilinear objects with significant pre-computation [11,16,25,29,37]. Rigid systems often
shies away from extended environmental interaction to avoid visual occlusion or damag-
ing grasped objects, which has meant limited focus on the “placing” part of the “pick and
place” task. Indeed, current solvers may reach intractable run times when instructed to pack
as few as six objects [38]. Soft grippers can avoid many of these pre-computation issues, as
their compliance makes them robust to changes in objects’ stiffness, shapes and placement.
A gripper can use its softness to grasp objects of arbitrary material properties without the
models or precise location information that its rigid counterparts would require [8, 24, 32].

In this thesis, our vision is to utilize the qualities of a soft gripper to create an automated
end-to-end system that can safely grasp unknown items and pack them carefully in the
bin. In the long term, this system could extend to deploy in the real world for specific
applications in bin packing.

However, sensorizing these flexible grippers remains challenging, especially when mul-
tiple sensor modalities are needed. A soft gripper’s deformability makes it difficult to accu-

rately place tactile sensors and localize forces spatially along the gripper [31,39]. In online

15

applications where the material properties of objects and the order they arrive are unknown
— such as in bagging groceries, loading a dishwasher, or packing for a move — it becomes
critical to combine the global scale of vision with the localized scale of tactile sensors.
These different sensing modalities complement one another to ensure an accurate under-
standing of an object’s material properties in a timely manner [13,40]. While there has
been significant focus in gaining accurate proprioception of soft grippers, either through
using vision for tactile sensing [1,20] or incorporating rigid sensing elements within soft
systems [14, 28], there is still currently relatively little overlap between soft robotics with

contemporary sensor fusion techniques for complex online applications.

We address this gap by creating an end-to-end online bin packing system that can auto-
matically and carefully pack an unknown stream of groceries with a soft gripper by using
multiple sensing modalities to understand grocery item size, shape, and stiffness. Specifi-
cally, we present a system that utilizes an online algorithm for bin packing with constraints
as objects arrive on a conveyor belt. We combine RGB-Depth cameras with pressure-
transduction based sensors to provide the sensory feedback needed to make appropriate
packing decisions for our robot arm-mounted soft gripper. We incorporate proprioceptive
feedback from the rigid servo motors that drive our soft gripper with the soft tactile sensors

and external vision systems.

We demonstrate the power of this soft robotic system by comparing its performance
against sensorless and vision-only systems in a grocery packing scenario. Grocery packing
presents a strong case study as groceries range widely in size, shape, weight and fragility.
Bagging groceries well requires combining a mechanical system that can safely manipulate
objects safely with algorithms that ensure groceries on the bottom of the bin are not crushed
by groceries above it. Our system combines the robust safe handling of soft grippers with
the richness of a multimodal sensor suite to outperform traditional vision-only based ap-
proaches in this complex task. Although the objects range in size and fragility — from
heavy boxes to delicate produce — the robot is able to detect the shape and stiffness on an
object in real time and determine a placement sequence that does not cause any object to
be crushed by the weight of the objects placed on top of it. In addition, we test long runs

of the grocery packing system to evaluate its robustness against time.

16

==

"~ RGB-D Cameras

Soft Gripper

Figure 1-1: The setup for an end-to-end online bin packing system. Multimodal sensing is
utilized to achieve grasping previously unknown items from the conveyor belt and making
real-time decisions about the packing location based on the item’s physical properties of
size, shape, and stiffness.

17

In summary, we make the following contributions:

1. An automated end-to-end system that can continuously pick and pack grocery items

from a conveyor belt safely into the bin.

2. An integrated physical soft grasping platform that merges vision, motor-based pro-

prioception and pressure-based tactile sensing in a soft grasping system.

3. An online packing algorithm that takes in multiple sensor inputs to create a “well-

packed” container that matches human expectations.

4. Physical experiments with our multimodal approach and comparisons against tradi-
tional blind and vision packing methods in a realistic grocery packing scenario with

irregular objects.

1.1 Thesis Organization
This thesis is based on the following academic papers co-written by the thesis author.

1. (in submission) J. Choi*, V. K. Chen*, L. Chin, and D. Rus "Soft Robotic Manipu-
lation with Multimodal Sensing For Online Packing of Groceries", in IEEE Interna-

tional Conference on Soft Robotics (RoboSoft), 2022 - basis for Ch. 3-7

Chapter 2 is an overview of soft robots in manipulation, and multimodal sensing in
this field. Chapter 3 overviews and details the hardware architecture, including the robot,
gripper, and sensors. Chapter 4 highlights and explains the algorithms used to evaluate the
vision, tactile, and proprioception data stream. Chapter 5 explains the overall grocery pack-
ing algorithm along with its automation and limitations. Chapters 6 and 7 delve into the
evaluation method and results of the performed experiments. Lastly, Chapter 8 summarizes
the research done during the Master of Engineering program, and lists potential directions

this modular multimodal system may take in future work.

18

Chapter 2

Related Work

Robot research on packing has focused on minimizing unoccupied volume or runtime for
a given number of rigid objects [16,33]. These works often rely on knowing the packed
objects’ and bin’s geometry beforehand, with many requiring significant off board pre-
processing [2,37,41]. For online applications, where objects are not known beforehand
and may be deformable or fragile, these methods are insufficient.

A large amount of research has been conducted on manipulation-based tasks with single
modal perception, such as only using vision to generate dense three-dimensional maps of
the environment [30] or using haptic feedback through an underactuated soft hand to clas-
sify objects [15]. While utilizing one modality for manipulation may be less complicated, it
is difficult to achieve an end-to-end system of grasping unknown objects, classifying their
delicacy, and packing them online and safely in bins.

Sensor fusion may provide an effective way to achieve online packing. In particular,
visual and tactile sensors provide complementary ranges of data, focusing on global and
localized scales respectively. When combined, these different modalities can enable detec-
tion of corrupted data from a sensor and deeper understanding of an object’s tactile proper-
ties [13,40]. Widely studied for mobile robot applications (eg. navigation, state estimation
and localization), sensor fusion has been shown to improve grasp reliability [4, 6,21, 40],
task accuracy [12,42], and scene/object understanding for robot manipulation tasks [5] as
well as facilitate human-robot handovers [19]. These research discuss grasping strategies

using the sensor feedback data and the importance of using both to extract different char-

19

acteristics from the surrounding environment. F. Sun discusses the benefits of using visual
sensing to determine color and shape and coupling that with haptic feedback to receive

information about the object’s softness, stiffness, and surface texture.

Different modalities may also be combined to perform end-to-end precision tasks such
as wire-insertion [12], peg-insertion [23], and vegetable-cutting [40].

With few exceptions [22], the majority of previous work on sensor fusion for robot
manipulation relies upon machine learning for at least one portion of the pipeline [4,6,23].
In M. A. Lee et al., the robot requires self-supervised learning utilizing tactile sensors
and a camera to determine the optimal method for inserting its peg-shaped end effector to
the matching hole. While powerful for learning various grasping policies, these methods
require detailed prior knowledge of the items, such as pre-designed CAD models or built-in

learned representations, which again makes these methods ill-suited for online applications.

The context includes the weight and delicacy of the current object relative to what is
already in the bin and what is yet to come on the conveyor belt. For example, the robot
should not place potatoes on top of lettuce. Prior work on bin packing focused on the size
and shape of known rigid objects to minimize wasted space in the bin [33,37,38]. However,
geometric properties alone do not capture the full constraints required for packing without
crushing.

Although the sensorization of soft grippers is an active area of research, there has been
relatively little overlap with contemporary sensor fusion techniques. One major challenge
for soft sensorization is the soft gripper’s deformability, making it difficult to accurately
place tactile sensors and localize forces spatially along the gripper. Significant focus has
thus been placed on getting accurate proprioception as an intermediate step before more
integrated sensor fusion [39]. The most popular combination of sensor modalities is in the
use of vision for tactile sensing, where the high resolution of a camera or time-of-flight sen-
sor is used to track the deformation of a soft surface to get tactile information [1,20]. Others
incorporate rigid elements to provide proprioception within their soft structure, occasion-
ally supplementing this with further tactile sensors [14,28]. We build on this approach and
our previous work by choosing a strategy where we create an end-to-end grocery packing

system, using multimodal sensing to achieve manipulation of unknown objects with soft

20

fingers and packing them safely in the grocery bin. We incorporate proprioceptive feed-
back from the rigid servo motors that drive our soft gripper with the soft tactile sensors and

external vision systems to provide our multimodal approach [9].

21

22

Chapter 3

Hardware Architecture

Our soft end-to-end robotic packing system has four major components: (1) a soft mul-
tiplexed manipulator from [7] which provides proprioceptive feedback through its servo-
motors, (2) pressure-based tactile sensors attached to the fingers of this gripper, (3) two
external RGB-D cameras to provide visual information about objects to be grasped and
the packing area, (4) the algorithm that integrates these systems together to perform online
packing.

These components are integrated together on a URS robot arm to pick unknown objects
off a conveyor belt and pack them into a bin either immediately or after being set aside
to pack other items first. The RGB-D camera detects the object’s location and provides
an estimate of the object’s size. The tactile sensors provide additional information about
the object’s estimated stiffness. All of these properties are determined in real time without

significant pre-computation, enabling true online packing.

3.1 Robot

The UR-5 robot arm was used for this system, where it has 6 joints and a maximum reach
of 33 inches. The gripper module is attached to the robot’s end effector joint, and its cables
run down the arm of the robot. Each of the robot’s six joints have a maximum velocity of

0.1572 radians per second, and maximum joint acceleration limit of 0.0349 %d.

23

Figure 3-1: URS robot with the grocery packing setup. The grocery items, buffer zone, and
packing bin can also be seen from this view.

3.1.1 Safety Considerations

There were several safety measures taken to reduce potential harm to both the operator and
the robot with gripper. First, the joints were configured to limit the robot from colliding
with the gripper. Our setup was fixed such that the gripper would remain perpendicular to
the ground by fixing the robot’s end effector joint to only rotate about the x and y axis. Next,
there were several restrictions added to the planning space to optimize for a valid path and
to provide safety to the robot operator. As a result, there were collision surfaces added in
the software to block off irrelevant search space, and a horizontal barrier indicating where
the conveyor belt was located. This was so that the robot arm would not try to reach through

the conveyor belt and potentially damage both the gripper and the belt setup.

3.2 Proprioceptive Gripper

We use a soft gripper previously introduced in [7]. Briefly, the actuators of our gripper are

constructed from handed shearing auxetics (HSAs), which are electrically-driven by servo

24

Figure 3-2: Soft Gripper consisting of HSA fingers and driven by Dynamixel Servos.

motors. We 3D print the HSAs via digital project lithography, as we reported previously,
from a proprietary photopolymer resin (FPU 50, Carbon, Inc.) [35].

This gripper offers multiplexed manipulation, enabling us to grasp objects using parallel
plate grasps, soft finger grasps or a combination of the two. The gripper module is 23 cm

in length and 16.5 cm in height, with a maximum item cross-section clearance of 11 cm.

3.2.1 Grasping

For this work, we upgraded the servo motors from HiTec HS-5585MH to Dynamixel MX-
28T servos. This turns the motor control system from open-loop to closed feedback, as
these new servos provide feedback on their position, speed, and detected load. This enables
new features such as dynamic grasps, object grasp detection and potential size estimation.
In this thesis, we use proprioception to dynamically grasp items based on measured load,
enabling safe handing of potentially delicate objects. Additionally, we leverage estimates

of object size from vision and position feedback to adjust the amount the gripper opens to

25

(a) Full Open (b) Full Close (c) Partially Open (d) Auxetic Close

Figure 3-3: A visual representation of the gripper’s different grasping modes. (a) The
gripper is opened to its physical hardware limit, (b) The fingers are closed just enough for
sufficient contact with the item, (c) the gripper opened partially but not fully, generally used
to drop items carefully into the bin, (d) A demonstration of the auxetic fingers closing to
ensure better contact with the item.

pack objects, allowing the system to pack items into narrower gaps.

More specifically, there were three Dynamixel Servos used for the system - two to con-
trol each finger, and one for the open/close functionality of the gripper, which we will refer
to as the track servo. Position control was used to control each finger, which determined
the amount of twisting of the HSAs to provide a better grasp on the item. The track servo
used modified velocity-based control, where the gripper would close with a constant veloc-
ity until a sharp spike in the measured load value was reached, indicating contact with the
current item the gripper is attempting to grasp. At this point, the goal velocity would be set
to zero, stopping the gripper from closing too far and potentially damaging both itself and
the item. Since the setup only allowed for one synchronous read or write at a time, a state
machine needed to be defined that could interleave between reading the position, velocity,
and load values, and writing commands to set the velocities and positions of the Dynamixel
Servos. There are several actions a gripper can take for opening and closing, combining a

mix of the three servos:

(a) Open Fully: The track servo is commanded with a negative velocity of -28.6 revolu-
tions per minute, until the open position limit is reached. This gripper action is used

to either place an item or reset the gripper to its resting state.

26

(b) Close Fully: The track servo is commanded with a positive velocity of 45.8 revo-
lutions per minute, until either the load threshold or the maximum close position is

reached. This gripper action is generally used to grasp an item.

(¢c) Open Partially: The gripper is commanded a negative velocity of -28.6 revolutions
per minute until the track servo reads zero in load value, indicating that there is no
more contact with the item. Due to the thickness of the fingers, this functionality

remains vital such that the gripper does not open too wide and bump the grocery bin.

(d) Finger Close: The two servos that actuate the fingers are activated with position
control, twisting the HSAs such that the gripper curves inward for better contact

with the item it is grasping.

3.3 Tactile Sensors

In previous work, we have integrated tactile sensing capabilities in soft robotic grippers
through soft capacitive [9] and resistive sensors [36]. Inspired by promising opportunities
with fluidic tactile sensing [14, 18], we use the same 3D printer used to fabricate the HSAs
to rapidly manufacture arrays of fluidic sensors. The fluidic sensor arrays consist of hollow,
thin-walled hexagonal prisms in a semi close packed configuration. These features rest on a
thick elastomeric panel, through which empty fluidic channels run from the inner cavity of
each sensor to an edge of the panel. The entire sensor assembly is printed from a proprietary
elastomeric polyurethane resin (EPU 40, Carbon, Inc.). Excess resin is removed from the
printed part by aspirating with vacuum to create open channels. After the resin removal
hole is sealed with Gorilla Super Glue Gel, silicone tubing is used to connect the closed
volumes to differential pressure transducers (HSCDRRN160MDAAS, Honeywell).

As is common with tactile sensing approaches, lack of sufficient contact area with the
target object resulted in uncharacteristically low sensor readings. However, due to the
compliant nature of our soft gripper, this case of insufficient contact area resulted only
for rigid target items. Softer target items allowed for reliable contact area due to the dual

compliance of both gripper and target, while rigid target items forced the compliant gripper

27

Figure 3-4: Hardware setup with digitally-fabricated HSA fingersand digitally-fabricated
hexagonal tactile sensors.

(a) Grasping soft item (b) Grasping rigid item

Figure 3-5: Grasping a soft item allows for better contact area, whereas rigid items have
the phenomenon of lower contact area due to the soft nature of the gripper.

to bend away from rigid edges. We leverage this phenomenon due to the geometry of our
flexible gripper to better separate rigid and soft objects, setting a lower tactile threshold for

rigid items (Figure 5-2).

3.4 External Cameras

The external vision system uses two RGB-D cameras: an ASUS Xtion 2 to detect the loca-
tions and sizes of objects on the conveyor belt and an ASUS Xtion Pro Live to determine
the best packing location in the bin. The Xtion 2 is placed 1.2 meters above the conveyor
belt setup, and the Xtion Pro Live is secured 1.2 meters above the packing box. The cables

run down the 80-20 beam in the center of the setup, and connect by USB to the laptop. As

28

these are stereo cameras and automatically adjust the exposure and brightness, we man-
ually set the depth registration on and turn off the auto-exposure for color segmentation,

later explained in Chapter 4.

29

30

Chapter 4

Software Architecture

4.1 Robot Operating System

For this system, Python 2.7 and Robotic Operating System (ROS) Kinetic were used [26].
There is a ROS node for each external sensor, including the two RGB-depth cameras, Dy-
namixel Servos controlling the gripper, and for the custom tactile sensor. In addition, there
are a series of nodes for the motion planning, node for both object detection and online
packing, node for coordinate transforms, and a node for the grocery packing logic. 4-1
shows the complete data pipeline necessary for all moving parts to run smoothly during an

active session of the grocery packing system.

4.1.1 Motion Planning

Movelt! [10] was used as the motion planner of the UR-5 arm. The exact search algorithm
was RRT-Connect, which provides a path from bidirectionally running RRT from the start
and goal state, and a segment length of 0.005m was used. A maximum of 10 seconds is
given for planning time, and the maximum velocity and acceleration scaling factors are .3

and .15, respectively.

31

e T
ot
i
e e g
e et detecton, cameradepticamen,fo objct gt image s [T
s
-
R e e 55 B
.
—_—
e =
e
— " e
Cr——s
Lo e L] Pstte
Y . s e,
Pactile_out. ormakzed tactie_out_ s
e
T
[,
. M
- T
o
[T e BT .
~ e
o
D
— —— At static ‘packing_camera. ot g, oy
S
U e packing Jocation , MeStra
[o o
.
—
[P,
o e
——
e
o C——
[T ———" s
e
e
M
o otz
e e
-
et o
[
T i -
o
o
e
e
-
e
u o
o irver o statms
- o
o
e
= P
TS i
g camens_base s 5
o
o
.
e
e
e
.

Figure 4-1: The RQT Tree graph for the grocery packing system. All nodes are shown,
from the URS robot services to the external sensors and grocery packing software module.

32

4.2 External Vision System

The external vision system uses two RGB-D cameras, as described in Chapter 3. Algo-
rithms for object detection and online packing were defined and implemented in separate
ROS nodes, and run synchronously while the grocery packing system is active. In order to
integrate the two cameras to the software architecture, coordinate transforms were required
to translate the incoming camera stream into real world points understandable by the URS

robot’s motion planning system.

4.2.1 Coordinate Transform

Since we are using RGB-Depth cameras, it is possible to estimate the 3D pose of an item

given its 2D coordinate pixels and depth from the camera.

In the equation above, w is a scalar factor, x and y are the 2D pixel coordinates, X, Y,
and Z make up the desired 3D point in the world coordinate frame, and R, ¢ represent the
extrinsic camera matrix, K being the intrinsic camera matrix.

For object detection and packing, the robot needs to know what 3d coordinate to move
to in its coordinate frame. Therefore, there needs to be a coordinate transform from each
of the cameras to the robot frame. This can be measured once because the cameras stay at

a fixed distance from the base of the robot.

4.2.2 Object Detection

Objects to be packed are brought to the UR-5 via conveyor belt. Since the conveyor belt has
a uniform black color and consistent location, color segmentation can be used via OpenCV

to threshold out the belt and locate any number of grocery items.

33

Figure 4-2: Snapshot from the Xtion2, which detects the objects on the conveyor belt. The
green rectangles indicate bounding boxes around the detected grocery items, and the green
rectangle with a purple outline indicates the item closest to the end of the conveyor belt.

Once the items have been segmented, we fit a bounding box to each item’s contours to
estimate its size. From all the items detected on the belt, we focus on the item closest to the
edge of the conveyor belt. This can be calculated with a simple x coordinate comparison,
since we know that the conveyor belt moves with one degree of freedom in the x axis with
respect to the pixels of the Xtion2 camera. Therefore, the item with the largest x value is
the item the system focuses on for grasping.

Given the average time to plan and execute robot trajectories from the neutral position
to the conveyor belt and the speed of the conveyor belt, we determine a meeting waypoint
and the time the object will reach that point. We then use Movelt! to plan the appropriate

path for the UR-5 arm to move and grasp the object at that point.

4.2.3 Online Packing

Once an object is grasped, the vision system then identifies a favorable packing location.
First, the vision system locates the edges of the packing box in the RGB image via color
segmentation. The mask of the bin is then applied to the registered depth image, leaving
only the region of packing interest. Since our gripper’s fingers are x cm in diameter, and
the gripper widens about the x or y axis of the robot, the mask of the bin is also eroded.
This assures that the gripper will not bump into the bin, which could be a safety hazard in

the real world.

34

€« > 1t $ @ B O H H
e ’ ‘

(b) Packing a regular shaped item

Figure 4-3: (a) The closest item to the end of the conveyor belt is the grapes, whose bound-
ing box from the Xtion2 camera is converted to the Xtion Pro Live. The middle figures in-
dicates the calculated packing point based on the depth mask, and the right figures show the
system in the same moment from an external view. (b) Demonstrating packing a regularly-
shaped item, the muffin.

35

Object dimensions recorded previously during the detection and grasping tasks are
translated from the object detection camera’s pixels into the packing camera’s pixel coordi-
nates. This was done by converting the 2D dimensions into 3D coordinates, then converting
them back into 2D dimensions corresponding to the appropriate camera.

A kernel of ones with dimensions of these translated length and width values is con-
volved with the depth image of the bin to create a heatmap of packing locations. We
perform this operation twice: once with the kernel reflecting the current object orienta-
tion, and once with the kernel rotated 90 degrees. The packing location is found to be
the location with the highest score of the two heatmaps. Although this approach is not
the most optimal, it bypasses the computational intractability and training requirements
found in contemporary algorithms [17,38], allowing us to perform online packing without

significant pre-computation.

4.3 Tactile Data Pipeline

The tactile sensors have pressure readings that are read through an Arduino, which then
spins a ROS node and continuously publishes the raw values as Float32 type numbers.
This topic is then subscribed to by the Grocery Packing module, which reads and converts
the data stream of raw values as mentioned in the previous chapter, and normalizes the
six output values. The clean tactile output is utilized for decision making as explained in
Chapter 5.1.2. While the sensor readings are converted continuously, the software system
removes any outlier values, such as a negative value or a value that is much higher than the

expected range of output based on our characterization.

4.4 Proprioceptive Gripper Control

The HSA fingers are controlled by Dynamixel Servos, which can be read and written to
through a microcontroller using the Dynamixel SDK. In this thesis, we interleave between
reading the servos’ position, velocity, & load value and writing velocity & position com-

mands to the servo. As discussed before, the Dynamixel Servo in our setup cannot read and

36

write simultaneously, so we utilize a state machine to only read when no write commands
are given by the Grocery Packing module. In the last iteration, we utilized limit switches
to indicate a hardware stop when the open and close limits were reached. After switching
to the Dynamixel Servos, we use its proprioceptive properties to know exactly when the

gripper’s position is out of bounds.

37

38

Chapter 5

Grocery Packing Algorithm

The main algorithm for the online packing of groceries consists of decision-making based
on the multimodal sensing capabilities of the system. The RGB-D sensors capture the size
estimate of the grocery items and safe location to pack, the 3D printed soft fingers grasp
the items using proprioception, and the embedded fluidic sensors on the fingers measure
the pressure from the grasp. Combining these modalities allows for a fluid and autonomous
grocery packing robot, without the system requiring any priors about the item before being
spotted on the conveyor belt. Our use of a buffer table exemplifies the safety consciousness
of the system, where items classified as delicate will be packed later, on top of the non-

delicate items.

5.1 Grocery Packing Algorithm

First, the cameras continuously keep track of the items on the conveyor belt and the grocery
bin with the packed items. While there are still grocery items that have not been packed,
our multimodal system first checks whether an item has been found on the conveyor belt.
If an item exists, the system prioritizes picking up this item as the it will move in and out of
the robot arm workspace. For the closest item in reach of the arm, the system records the
dimensions of the object as measured by the RGB-D sensors, meets the object on the belt,
and grasps it using proprioceptive feedback. A reading from the tactile sensors is taken, and

the object’s packing priority score is calculated as described in Section 5.1.2. If this score

39

is greater than our initial classification threshold, then the item is packed in the optimal
location specified by the vision sensors. If there was no item found on the conveyor belt,
the system packs the item in the buffer zone with the highest priority score. This method is

also represented in Algorithm 1.

Algorithm 1: Grocery Packing Algorithm
input: n grocery items to pack
p < 0; while n > 0 do
Items move along conveyor belt;
if exists item on conveyor belt then
if closest item is within range of robot then
RGB-D sensor calculates item dimensions;
URS robot arm grasps object;
Tactile sensors read pressure for 1 second;
p = delicacy score based on classifier with test set Pick least delicate
item from buffer;
if item’s property p > THRESHOLD then
RGB-D sensor calculates optimal packing location;
Place item in box;

n=n—1;
end
end
else
| Place item in buffer;
end

end

5.1.1 Robot Actions

(a) Return Home
The robot in the grocery packing algorithm returns to a fixed neutral home position
after completing a pick and place task. At this point, the gripper position is reset to

fully open

(b) Pick Item From Belt
When the robot is in the home position, the Xtion 2 camera oversees the conveyor to

detect the item closest to the end of the belt, and records its dimensions. Using the

40

Grocery Packing Algorithm

calibrate tactile sensors read vision & tactile sensors

Groceries on Grasp obiect I:> Find optimal Pack object
conveyor belt P ool packing loc in box

Place in Ready to
buffer zone pack?

Process other :
items

Figure 5-1: A flowchart of our system grocery packing algorithm with multimodal sensing.
The first instance of the system is activated when groceries are detected on the conveyor
belt. Depending on whether there are items in the buffer or the belt, the robot makes the
decision to move to the appropriate location and pack the groceries in a safe way.

(c)

(d)

(e)

estimated time of arrival logic, the robot moves towards the predicted location of the
moving item, and grasps it. The robot then lifts the item from the conveyor belt. If

utilizing the tactile sensors, the item’s stiffness is measured at this point.

Place Item In Buffer
At this time, the robot is in possession of a delicate grocery item. It moves towards
the first available buffer location, and places the item down, then moves up in the z

direction to complete the placing of the item.

Pick Item From Buffer
The system holds a record of the items in the buffer zone and its recorded properties
of size and stiffness. Based on our metric of delicacy, the robot moves to the least

delicate item in the buffer zone, and grasps to pick it up.

Pack Item In Bin
The robot is grasping an item, and using the Xtion Pro Live camera, determines
the deepest location in the packing bin that can fit the current item. The robot then

places the grocery item at that location, either in the robot’s end effector’s current

41

orientation or rotated 90 degrees. The robot then lifts its arm in the z direction to

complete the placement.

5.1.2 Classifying Delicate Items

As grocery packing is complex and optimal packing challenging to define, in this thesis,
we utilize a classification based on fragility of objects and object geometry to pack grocery
items. We propose that two main properties of each object, detected by our multimodal
sensing system, can be leveraged in determining toward the ideal of safe packing: size and
stiffness. Size is determined using the vision sensors, and stiffness is determined by the
tactile sensors.

Using a calibration set of 25 grocery items, we perform three trials of grasps and cal-
culate the average tactile output per item along with its calculated area. We see a general
trend that, due to their compliance, softer objects apply lesser amounts of force to the tac-
tile sensors when the object are grasped. By labeling the calibration set with either rigid or
soft and large or small, we can perform a simple binary classification to decide whether an
item is rigid or not. We also apply a lower threshold to separate rigid items that do not have
sufficient contact with the tactile sensor when grasped due to our soft gripper geometry, as

explained in Section II. B.

5.1.3 System Limitations

While the decision making, manipulation, and packing of groceries is done autonomously,
there are some system limitations regarding the grocery items and continuous running of
the system. First, since the conveyor belt for the system has a belt of 15 cm in width and
the gripper has a maximum cross-sectional clearance of 11 cm, the orientation of the items
placed onto the conveyor belt were limited to ones that could satisfy the width constraints.
If we needed to pack larger items or scale up in size, then we could possibly use a bigger
conveyor belt and gripper. Another method is to change the orientation of the robot’s end
effector itself when grasping the item from the conveyor belt.

As our goal is to run an end-to-end grocery packing system without heavy computation,

42

350
L]
300 ®
250 °
- . o ® True Labels
% Not
£ 200 N
g Delicate .
E . . non-delicate
2 150
o [}
o T !
+ T e .
wd T e + delicate
* Delicate
o @
50 4
__________________ L
e © ® ® ®
01— : . - LY -
0.00 0.01 0.02 0.03 '\ 0.04
Calculated area (m?)
Not
Delicate

Figure 5-2: Using the calibration set of grocery items, we determine two thresholds for
classifying whether the item should be packed immediately or not. Tactile readings can be
converted to force outputs using Equation 6.1.

the packing locations chosen are calculated by two convolutions by the depth kernel. This
may not lead to the same solution found by a machine learning model, but the simple
elegance of the current packing method and cheap and accurate-enough solution works in
our setup. With the current gripper design, it is not trivial to achieve ’tight packing’ due to
each HSA finger being 3 cm in diameter, and the gripper being 23 cm in length.

As explained in Section 5.1.2, we apply a lower threshold to separate rigid items without
enough contact with the tactile sensors attached to the fingers. This is partly due to the
placement of the sensors at the bottom of the finger; since the fingers are soft, the contact
between the tactile sensors and rigid item may not be sufficient 3-5. For soft objects, the
finger molds its shape around the item, but for hard objects, the contact area at the bottom

of the finger may be completely missed.

5.2 Automation/User Control

In this thesis, we discuss the method for an automatic grocery packing system. This is

achieved by using the Grocery Packing ROS node to execute the next desired action in

43

sequence. While the node is spinning, the grocery packing algorithm described above is
executed, and based on the current state of the environment, determines the next action
for the robot to take. The user will press enter in the terminal to start the program, then
can place the next grocery item on the conveyor belt. Since we are only working with one
robot packing groceries at a time, the user will place the next item when the robot is finished
packing the previous item. The exact timing is not critical however, since the vision system
tracks the item down the conveyor belt, and the flexibility of the soft gripper allows for a

higher likelihood of successful item grasping.

5.2.1 Continuously Running System

In order to achieve an autonomously running system that can stay active for long periods
of time, we require a setup that can detect when a box is full, and stay active by packing
multiple boxes. We achieve this condition by taking the mask of the packing box and
checking both the height of the highest item and the average height of the items in the box.
If there exists an item that exceeds the edge of the box or on average the items are almost
near the top of the box, the grocery box is considered full. In our current system, the user is
alerted by the system when the box is full, where they can swap the fully packed box with
a new empty box.

In future work, perhaps there could be a second mobile robot whose job is to swap the
boxes, or place the items on the belt itself. The shape of our current conveyor belt is also
limited in this scenario - in most real world scenarios, the conveyor belt is round, and the
items would keep rotating, like suitcases in the baggage claim. Another method to avoid
manual interception regarding the grocery bag swapping is to place the boxes themselves
on this rounded conveyor belt - this way, the system can turn the conveyor belt on to (1)

return the fully packed bag and (2) continue to pack automatically with the next empty bag.

44

Chapter 6

Sensor Characterization

Figure 6-1: 25 hand-labeled calibration items were evaluated to determine the priority
packing heuristic. Soft: clementine, grapes, juice box, mozzarella cheese. Medium: book,
celery salt, empty soda can, instant ramen, jello, milk carton, mustard bottle, toy peach, toy
pear, wheat thins. Rigid: apple, coffee can, fake cake, plastic lemon, Pringles tube, Rubik’s
dodecahegon, Spam, tea box, tuna can, vegemite, vitamin bottle.

6.1 Vision Characterization

We characterize the vision by running a test set of 25 objects of various sizes 6-1. We use
the camera to calculate the width and length of the object and calculate area as the product
of the two. The figure 6-2 represents the actual size vs the estimated size of each test object,
which closely correlates to the line y = x, showing a relatively accurate estimate of size by
vision. Using this, we determine a threshold for ’small’ and ’large’ items used in the initial

determination of whether to pack a test object or place it in the buffer zone to be packed

45

later.

Vision-based Item Classifier

0.0225 +
0.0200 4
Large Item
75 4 R
o oo "
E .
@ 0.0150 4 +
[L
E
= o124
‘E 0.012 +
B Spam
2 0.0100 4 \ +
=
~ T dodecaheds
- + e dodecahedron
0.0075 1 e
) . ¥ 4
0.0050 4 + x -
~ "+ Small Item
oo02s{ ¥ +

f!,lll(l"\ (H;I(] 0. E;I'? 0 (;1(!
Actual area (m?)

Figure 6-2: We evaluate the vision sensing method of using the item’s area by comparing
the actual area of the item from a bird’s eye view of the conveyor belt with the system’s
calculation of item area based on the vision data.

6.2 Tactile Characterization

To characterize the soft tactile sensors, we conducted a series of experiments where weights
were placed upon a sheet of cardboard (.8g, used to distribute weight over the different
hexagonal sensors) on each sensor cap, which has seven hexagonal sensors (Figure 6-3).
Three trials were collected for each weight class, and weight totals ranging from 10g to
200g in 10g increments were used, since measured forces at the gripper fingers range from
0.75 N to 2 N, depending on where on the fingers the object is grasped [7]. Data were
collected and plotted for three sensors on each sensor cap for readability. The fitted line

allows conversion from millivolts to Newtons of force as per equation 1.

force = (sensor_out put —5.46) /.25 (6.1)

The conversion metric we determine here allows for interpretation of the tactile sensors

46

(=2}
o
L

w
o
L

Sensor Output (mV)
N w ey
o S 1)
) L L
e
\
—_—
\
\
——
\
\
\ .
\
\\
\\
\
\
\
——\
\
\
\
. \\
\
\
\

=
o
L
\
\
\\.
\
\
\

(=}
|
{ —e—
\
° \

T T T T T T T T T T T T T T T T T
1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171
Added Weight (g)

Figure 6-3: Left: Evaluation of 3 tactile sensors on one tactile sensor array against in-
creasing applied load. The three outputs from one array are averaged to give a single
measured output in millivolts. Standard deviation is also shown. Right: Hardware setup
with digitally-fabricated HSA fingers and digitally-fabricated hexagonal tactile sensors.

in our system, where we convert the raw sensor data into an understandable force in milli-

volts, and force, before the gripper grasps the item on the conveyor belt and takes the tactile

sensor reading.

6.3 Proprioceptive Characterization

We utilize three Dynamixel Servos in our gripper system - the main belt servo to control
the parallel close and two for the fingers. To account for grasping unknown items, we use
the velocity control mode for the main belt servo, setting a constant velocity to close the
gripper. When the gripper reaches a firm grasp on the item, the belt servo’s load values
spike and we set the servo velocity to zero.

Similarly, when we finish packing the item in the bin, the gripper will move the box or
disturb other objects if it opens fully. As a result, we set a constant velocity value to open

the gripper until the load values reach zero, indicating that the item is fully released.

47

48

Chapter 7

Experimental Results

Grocery items may be fragile, deformable, irregularly-shaped, perishable, and/or uncooked,
all of which contribute to an opaque idea of "optimal" packing for groceries [27]. We
choose a human-legible method of evaluation for our grocery packing task based on scor-
ing with a rubric, allowing for more intuitive understanding as well as potential expansion
to reinforcement learning or other methods.

Robotics for grocery retrieval, picking and packing has seen recent developments.
Aquilina et al. [3] performed concept validation of a robotic self-checkout system; how-
ever, the system relies on hard-coded information about the grocery items, the packing
procedure considers geometry only, and the suction-based end effector limits the graspable

items.

Figure 7-1: System evaluation was conducted with 15 test items. Soft: bread, chips, kale,
muffin, seaweed. Medium: cheese, crackers, gum, Pringles, stroopwafels. Rigid: baking
soda, ice cream, soup can, sprinkles, pot roast. Delicate: bread, chips, crackers, kale,
muffin, seaweed, stroopwafels. Heavy: baking soda, gum, ice cream, pot roast, soup,
sprinkles, stroopwafels.

49

7.1 Experimental Setup

Our experimental setup consists of a URS robot arm outfitted with a compliant robotic
gripper referenced in [7], modified to use 3D printed handed shearing auxetics [35]. In
front of the robot is a conveyor belt running at constant speed (.10 m/s) where items are
loaded manually from the end further from the robot. Three small tables are supplied
adjacent to the robot, which provide buffer space to place the items aside before they are
packed. To the side of the robot is a cardboard box, which serves as the packing bin, and
has colored markers at the edges for detection by the vision system. An ASUS XtionPro is
mounted above the packing bin, and an ASUS Xtion2 is mounted above the conveyor belt.

For the purposes of the grocery packing experiments, the following assumptions are
made to the system. First, the robot picks up one item at a time from the conveyor belt,
where the gripper grasps the item at its center point. The next items will be placed on the
conveyor belt by the user once the robot is done packing the previous item or the robot is
in an idle state. Next, the conveyor belt moves at a constant speed throughout the course
of all experiments, so the Xtion2 camera can predict where the tracked items will be in a
future point of time. Lastly, we classify items into two categories: delicate or not delicate,
and utilize the classification to determine whether the robot will place the item in the buffer

or bin.

7.2 Task Evaluation

To evaluate our multisensing system, we conduct three grocery packing experiments: (1)
a baseline experiment blind to each object’s properties, (2) a vision-only experiment that
only considers the item’s size dimensions, and (3) a multimodal experiment that combines
proprioception, tactile, and vision. For each of these experiments, we run three trials of
packing a full order of ten items, for a total of nine experiments. We then evaluate the
safety-consciousness of the different types of experiments with the use of a packing rubric,

focusing on the extent to which the system’s decision making was safe.

50

* Baseline: Vision and proprioceptive outputs are used only to ensure objects are

grasped. All objects are packed immediately and in the center of the box.

* Vision-Only: Vision and proprioceptive outputs are used to ensure objects are grasped.
In addition, vision provides an estimate of object shape (length and width) that is
used to calculate the location where the object is packed. Items with object size
greater than a threshold (determined experimentally to be .008 square meters using
the calibration items in Figure 6-2), approximated as the top-down area calculated by
area = length x width, are packed immediately, and smaller items are packed later.

Items in the buffer are packed by order of decreasing size.

* Multimodal: Vision and proprioception are used to ensure objects are grasped. The
length of the object estimated by vision is updated by the proprioceptive data from
the gripper when it has closed around the object. A combined weighted heuristic
of size and stiffness, discussed in section IV. B. 2) and determined by the tactile,
proprioceptive, and vision systems, is used online to determine the order in which
objects are packed. Vision and the size estimate are again used to determine the

packing location for the object.

Three trials are performed for each experiment with different object sequences of test ob-

jects. These trials are as follows:

* Trial 1: Kale, ice cream, crackers, seaweed, pot roast, baking soda, muffin, chips,

gum, soup

 Trial 2: Bread, kale, stroopwafels, pot roast, muffin, cheese, chips, sprinkles, gum,

crackers

* Trial 3: Cheese, muffin, crackers, pot roast, soup, chips, stroopwafels, Pringles, ice

cream, seaweed

7.2.1 Packing Rubric

For evaluation of the system, target objects were given two labels: delicate or not delicate,

and heavy or not heavy. We define a human-legible rubric for evaluation taking into ac-

51

count the ambiguous qualities that contribute toward "good" grocery packing [27]. Each
occurrence of a heavy item dropped on a delicate item was penalized during scoring of the

experiments.

A lower penalty score on a packed box indicates a more safe and optimal bin packing.

Table 7.1: Scoring rules and associated penalties for packed bins

Criterion Indicators ‘ Penalty ‘
Partial Item occludes bin edge (top-down view) 3
Potentially Damaging| Heavy item packed on delicate item 2

7.3 Results

Overall, the results shown in Table 7.2 indicate that the vision-only-based system per-
forms far better than the blind system to safely pack grocery items, and on average, the
multimodal system outperforms both the vision-only and blind systems. As expected, the
baseline experiment results in poor packing, with an average of six potentially damaging
occurrences of a heavy item dropped on a fragile item per trial. The vision experiment
produces improved packing performance, with an average of three potentially damaging
occurrences of a heavy item dropped on a fragile item per trial. Average potentially dam-

aging occurrences per trial drop to less than one for the multimodal experiement.

Table 7.2: Experiment penalty scores

Trial Partial | Potentially Damaging | Total
Baseline 1 0 7 14
Baseline 2 0 7 14
Baseline 3 0 4 8

Vision 1 0 6 12
Vision 2 0 2 4
Vision 3 0 1 2
Multimodal 1 0 0 0
Multimodal 2 1 2 7
Multimodal 3 1 0 3

52

7.3.1 Baseline Results

The baseline experiments had a grasping success rate of 100%, with ten grasps per trial for
a total of 30 successful grasps. Since the baseline scenario packs the item in the middle of
the box, no items are placed in the buffer. One box is packed with ten grocery items per
trial, for a total of three packed boxes. While there were no failures with respect to grasping,
the packing score reflected poorly, as the system was not considering the size nor overall
delicacy of the grocery item when packing its order. Overall, the baseline experiment
results in poor packing, with an average of six potentially damaging occurrences of a heavy

item dropped on a fragile item per trial.

7.3.2 Vision-Only Results

There were a total of 42 successful grasps out of 42 for the three vision-only trials. While
there are still ten items per trial, the buffer held four ’delicate’ items, as defined by the size
factor mentioned in the task evaluation. Again, there were a total of three packed boxes
that were considered full. One unexpected placement for Trial 1 was the placement of the
soup can in the buffer, where it was placed in a different orientation than when picked up
from the conveyor belt. This was caused from a change of center of mass while grasping
the object. However, since the fingers are soft, they adapted to the altered orientation and
still placed the item carefully onto the buffer, and picked it up safely when packing into
the bin. Overall, the vision experiment produces improved packing performance, with an
average of three potentially damaging occurrences of a heavy item dropped on a fragile

item per trial.

7.3.3 Multimodal Results

For the multimodal final experiment, there were 45 successful grasps out of 45. The buffer
for this experiment held five items to be considered ’delicate’: bread, kale, stroopwafels,
muffin and cheese, which are all soft to the human touch. Three boxes were packed fully,
where nondelicate items were packed first then delicate items were picked from the buffer

to the grocery bin.

53

In Trial 2, the first item was not detected due to the user misplacing the item to occlude
the entire conveyor belt from the RGB-D camera, and the robot did not attempt to grasp
the item. A second attempt was made with the correct placement, which resulted in a
successful grasp. Since color segmentation of the belt was enabled, covering the entire
width of the conveyor belt will cause an error from the system.

All penalties incurred during the multimodal tasks embody intricacies of real-world
grocery packing. The two penalties for potentially damaging packed items for Multimodal
2 arise from the bag of stroopwafels being packed on top of other delicate items. This
case of packing an item that is both delicate and heavy illuminates the complexity of the
grocery packing task; prioritizing the safety of this item could mean potentially damaging
other objects, yet packing it first could result in the object being damaged. The partial
packing penalty incurred for both Multimodal 2 and Multimodal 3 trials are due to a slight
occlusion of the bin edge by the plastic bag of the bread. If the bread, a large object, had
been packed earlier in an emptier bin (such as in Baseline 2 and Vision 2), it would likely
land entirely inside the bin at the cost of being crushed under subsequently packed items.
Intuitively, if a bin were being packed for a human to carry (eg. from shopping cart to car),
placing delicate, bulky items at the top of the bin would likely be prioritized over strictly

fitting all items within the walls of the bin.

54

Grocery Packing Bin Configurations

Trial 2

Baseline

Vision

%, U W SR

Multimodal

Figure 7-2: Packed bins for each of three trials for baseline, vision, and multimodal exper-
iments.

55

56

Chapter 8

Discussion & Future Work

In this thesis, we have achieved a soft robotic system that leverages multimodal sensing in-
put to pack groceries towards a human-legible metric of "well-packed". We have shown that
the combined multimodal system achieves greater performance than baseline and vision-
only systems and uncover tradeoffs in packing optimality inherent in the complex nature of
the grocery packing task. With this, we present an end-to-end grocery packing system that
can autonomously handle dynamic item grasping, packing, and real-time decision-making.
When the box is full, it can be swapped out for another box without full pausing the sys-
tem. The robot can continue packing, as the RGB-D sensors track the items in the conveyor
belt and box continuously in real time. By utilizing the combination of tactile sensing and
proprioception, the system can detect the fragility of an item and ensure a firm grasp but
one that could damage the grocery item.

Combining the cost-efficient color segmentation method to detect and track the items
down the conveyor belt, and using the constant speed of the belt to calculate the motion
planning to grasp and pick up the moving item allows for a reliable item grasping subsys-
tem. By running the tracking subsystem as its own ROS node, the items can get tracked
and have their estimated 3D pose calculated continuously. The same can be said about the
ROS node for the packing subsystem, where the RGB-D sensor continuously evaluates the
lowest packing area available for the item the robot is currently grasping. By running two
convolutions, we can determine a packing pose considering the size of the item.

A modular multimodal system such as the system we currently have could possibly be

57

extended to real world deployment with adjustments to the design of the gripper and tactile
sensors, along with a larger-scale and more realistic setup. In addition, the speed and accu-
racy of the grocery packing module would go up if we were to add more robot agents into

the environent - two robot arms packing groceries down the conveyor belt simultaneously.

8.1 Lessons Learned

8.1.1 Hardware

The initial obstacle was understanding how to use the URS robot since it was my first time
working with a robot arm hardware. In particular, the challenging aspects consisted of
understanding the coordinate frames of the different joints of the arm and their relationship
to the external RGB-Depth cameras and how the commands get translated from joint goal
commands to pose goal commands. Another restriction was the number of objects we had
in the environment that we did not want to robot to bump into: the box, tables, conveyor
belt, and of course, the humans. I learned how to tell the robot to exit the search if it found
a path that was out of bounds or contained too many way points, indicating a long and
inefficient path to the goal pose.

Another obstacle in the hardware system, especially during long experiments, was the
adapter between the Dynamixel servo and the gripper. This was a vital connection as it
allowed the servo to open and close the gripper, and it was important that this connection
did not break or slip significantly while the grocery packing system was active. When
resolving this issue, it was especially important to understand the stress points of hardware
and why the parts broke - this adapter for the Dynamixel servo particularly kept breaking
since the 3D printed part was too thin and sheared off. Our fix was to redesign the hardware
to avoid high torsion on the adapter, as the belt mechanism in our gripper module led to the
3D-printed adapter to be the stressor point. After long use, I learend it is important to turn
off or reboot the hardware system, especially the Dynamixel Servos, since certain features
were overridden. This also applies to the software side of the system, since the cache can

build up and sometimes result in strange system behavior.

58

Lastly, depth data from the cameras are messy! From the software side, I applied
additional filtering and averaging to the 2D camera streams to ensure that the conversion
from 2D pixel to 3D world coordinate was not erroneous, and to ignore depth values that

did not logically make sense, such as O or nan.

8.1.2 Algorithms

It is important to consider the main priorities of the specific system when implementing
decision making of the system. For example, in the current system, the conveyor belt is
short and linear, meaning that it is a priority for the robot to not let any of the items fall
off the belt. If the belt were round, the priority would change. Another important part of
the algorithm is to remember the hardware integrating into it - for example for the packing,
I initially did not consider the maximum open and close dimensions of the gripper and
assumed its size to be static when implementing the packing algorithm. The robot must
account for how far the gripper may open and make sure the pose chosen will not cause the
robot to bump into other items or the box.

Another thing I learned was efficient motion planning for a path with many environment
obstacles added as a safety mechanism. For example, there are different algorithms to use
for searching through the state space - we used RRTConnect but the original setting was
at RRT, which only searches through random tree from the start pose rather than both the
start and end poses. In addition, we can also select the segment length, which determines
how fine-grained we want the search to be. Overall, despite using the assistance of Movelt!
for motion planning, there needed to be a comprehensive understanding of how the UR-5

moves and why it moves in that particular way.

8.1.3 Experiments

When running experiments, I learned that it is critical to stay organized and record all data,
particularly when there are many moving parts in the system for each experiment. For
example, in addition to the footage filmed on the camera, we also kept rosbags with the

action history of the system, and took photos of the resulting packed bin.

59

Another critical aspect of the system I realized when getting ready to conduct the exper-
iments was to have a modular or easy-to-read codebase, in case the setup ends up changing
or different experiments need to get run in sequence. One method I used was to store
rosparams, where the user can alter the settings for the 1) experiment mode, 2) running
with the gripper on, and 3) move the robot. Since the sun casted different shadows on the
conveyor belt in the lab room every day, having a method to check the camera stream and

calibrate the box and color segmentation was crucial.

8.2 Future Work

Future work includes the expansion of tactile, vision, and proprioceptive data to further
explore physical properties of unknown objects. For example, exploration of soft sensor
array configurations towards better ensuring adequate contact between the soft fingers and
target object could occur, to remove the lower threshold that existed for the item delicacy
classifier. Next, estimation of geometric regularity from visual data was implemented in our
research but not used in experiments, and could be used if we alter the packing algorithm
to consider ’tight’ packing. Another interesting direction is to build upon the multimodal
sensing for determining the delicacy of an item, and use secondary estimates to calculate
object size and stiffness from proprioceptive data.

In the experimental results, a packing rubric was used to evaluate the safety of the items
packed in the bin. Assigning penalties and rewards to this packing rubric gives way to
reinforcement learning applications, where the system could potentially learn the delicacy
classification of the item based on the extra measurement from proprioceptive feedback.

If extended to a real world deployment, the system would require a slightly altered
setup - one larger in scale, both in terms of the surface area of the conveyor belt and buffer

zone to handle more items.

60

Appendix A

Grocery Packing Demo Instructions

1. Turn on the UR-5 Robot cart. Turn on the UR controller, then initialize and start
the robot. Check the robot’s IP address and confirm that it matches with the address

listed in moveit_URS5. launch, found in the moveit_planner ROS package.

2. Ensure the cables for the Ethernet, gripper, and both RGB-Depth cameras are con-

nected to the laptop.

3. Turn the conveyor belt on by flipping the switch, and turn on the power for the gripper

(Dynamixel Servos).

4. Open the terminal window on the laptop, andrun roslaunch moveit_planner

grocery_demo.launch.

5. Once all the programs are loaded, the terminal will say "Press to start". Press the enter
key to activate the grocery packing system, and the user will not need to interact with
the terminal until their desired termination of the system. The robot will stay idle
until the first grocery item is detected on the belt. Place each grocery item in the
center of the conveyor belt such that it does not occlude the entire width of the belt.
When the robot moves back to its idle position, place the next grocery item on the

belt.

6. Here is the param file for running the grocery system. To switch between the different

experiment modes discussed in the thesis, use "1’ for baseline, ’2’ for vision-only,

61

AN B~ W

and ’3’ for multimodal.

show_packing: false
show_obj_detection:
gripper: true

move_robot: true

false

mode: 3 # I: baseline, 2:

calibrate: false

62

vision —only ,

3: multimodal

© ® N U AW N -

C ®» 3 a3 % B> 0 = o

20
21
22
23
24
25
26
27
28
29
30
31

33
34
35
36
37
38

Appendix B

Code

Grocery Packing module

#!/usr/bin/env python

from collections import namedtuple
import numpy as np

import rospy

from moveit_planner .UR5Arm import

from moveit_planner.object_utils import ObjectUtils
from geometry_msgs.msg import =

from moveit_msgs.msg import =

from moveit_msgs.srv import

from trajectory_msgs.msg import =

from std_msgs.msg import Float32MultiArray , Int8, Int32MultiArray , Int32, Float32

from tf . transformations import euler_from_quaternion,

from gazebo_msgs.msg import ModelState

from gazebo_msgs.srv import SetModelState

CENTER_TOPIC = ’/boxcoord’ #to subscribe object center

BIN_JOINT_GOAL = [4.4839324951171875,-1.0680277983294886,
2.913686513900757] # fixed joint state location above box - allows for faster performance

dynamic picking params

TRAVEL_TIME = 4 # seconds allowed for robot to plan + travel

MIN_Y = -.43 # meters; defines area on conveyor belt we allow

MAXY = .2 # meters

BUFFER_ZONE_Z_HEIGHT = .3 #.37

GRIPPER = rospy.get_param("gripper", False)
EXPERIMENT_MODE = rospy.get_param("mode", 1)
TACTILE_TOPIC = "/tactile_out"

WILL_EXECUTE = rospy.get_param("move_robot", True)
CALIBRATION_FREQ = 3

ADC_OFFSET = 1.25
ADC_COEFF_VOLTS_PER_TICK = 2.048/16777215.0

ADC_COEFF_MV_PER_TICK = ADC_COEFF_VOLTS_PER_TICK

NUM_TACTILE_SENSORS = 6

1000

to object

quaternion_from_euler

coordinates to

1.0908217430114746,-1.593987766896383,

the robot to move

AREA_THRESHOLD = 0.008 # determined from vision characterization

meeting point

to

-1.5700305143939417,
in RRT Connect planning

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

ROBOT ACTIONS
PICK_FROM_BELT = 0
PLACE_IN_BUFFER = 1|
PICK_FROM_BUFFER = 2
PACK_IN_BIN = 3
HOME = 4

STANDBY = -1

EXPERIMENT MODES
BASELINE = 1
VISION = 2
MULTIMODAL = 3

CLASSIFIER PARAMS - calculated from calibration experiments
Y_INTERCEPT = 135.0

SLOPE = (Y_INTERCEPT -90.9)/-0.05

CONTACT_THRESHOLD = 21

class GroceryPacking () :
def __init__(self):
self . tactile_zeros = np.zeros ((6,))

self .calibrate_sensor_count = 0

self . gripper_pub = rospy.Publisher("/move_gripper", Int8 , queue_size=0) # I: open, 2: close,
auxClose

self .buffer_pub = rospy.Publisher("/buffer_flag", Point, queue_size=0)

self . tactile_sub = rospy.Subscriber (TACTILE_TOPIC, Int32MultiArray , callback=self.tactile_cb)

self.slip_pub = rospy.Publisher("/slip_amt", Int32, queue_size=0)

3:auxOpen, 4:

self .normalized_tactile_pub = rospy.Publisher("/normalized_tactile_out", Float32MultiArray , queue_size=10)

self.toggle_pub = rospy.Publisher("/toggle", Int8, queue_size=0)

self .score_pub = rospy.Publisher("/score", Float32MultiArray , queue_size=0)

self.gripper_dist_sub = rospy.Subscriber("/gripper_width", Float32, callback=self.gripper_dist_cb)

self.torque_pub = rospy.Publisher("/torque_on", Int8, queue_size=0)

self .size_check = rospy.Publisher("/size_check", Int8, queue_size=0)

self .execute = {PICK_FROM_BELT: self.PickFromConveyorBelt, PLACE_IN_BUFFER: self.PlacelnBufferZone ,
PICK_FROM_BUFFER: self.PickFromBufferZone , PACK_IN_BIN: self.PlacelnBox, HOME: self.GoToNeutralPose}

self.arm = URS5Arm()

self .utils = ObjectUtils ()

self .result = None

self.reset ()

self.custom_offset = 0
self.normalized_tactile_vals = [0,0,0,0,0,0]

self .missed = False
self .arm. printOrientation ()

def gripper_dist_cb(self, data):
dist_cm = data.data
if self.current_item is not None:

self.current_item . proprio_width = dist_cm

def tactile_cb(self, data):
Callback for tactile data stream of NUM_TACTILE_SENSORS raw values. We convert to mV and
normalize the data. If sensor value is too low (aka no contact point), disregard when
averaging values. Assumption: harder objects give higher readings.
output = data.data # array of 6 sensor values

normalized_data = np.zeros ((NUM_TACTILE_SENSORS,))

64

98 count = 0

99 for i in range(len(output)):

100 normalized = (output[i] + ADC_OFFSET/ADC_COEFF_VOLTS_PER_TICK) x ADC_COEFF_MV_PER_TICK
101 if -200 < normalized < 10000: # within reasonable range
102 normalized_data[i] += normalized

103 count += 1

104

105 self .normalized_tactile_vals = normalized_data — self.tactile_zeros
106

107 # publish normalized tactile out

108 msg = Float32MultiArray ()

109 msg.data = list(self.normalized_tactile_vals)

110 self.normalized_tactile_pub.publish (msg)

111

112 def average_tactile_out(self , num_seconds, zero=False):
113 # publish tactile calibration start

114 toggle_msg = Int8 ()

115 toggle_msg.data = 7

116 self .toggle_pub.publish(toggle_msg)

117

118 tactile_zeros = self.tactile_zeros if zero else 0

119

120 count = 0

121 total = 0.0

122 now = rospy.Time.now ()

123

124 while (rospy.Time.now().to_sec() — now.to_sec()) < num_seconds:
125 total += (self.normalized_tactile_vals + tactile_zeros)
126 count += 1

127

128 # publish tactile calibration end

129 self.toggle_pub.publish(toggle_msg)

130

131 return total / float(count)

132

133 def clean_tactile_data(self, data):

134 THRESHOLD = 5.0

135

136 output = data[data > THRESHOLD]

137 if len(output) ==

138 return 0.0, 0

139 return sum(output) / float(len(output)), max(output)
140

141 def reset(self):

142 self.clear_buffer_occupancy ()

143 self .current_item = None

144 self.packed_items = []

145 self.current_action = HOME

146 self.history = [self.current_action]

147 self.GoToNeutralPose ()

148

149 self .item_count = 0

150

151 def run(self):

152

153 Executes the sequence.

154

155 print "starting run"

156

157 self .current_action = self.get_next_event(self.result)
158 # self.current_action = self.grab_object()

65

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

rospy.loginfo ("NEXT ACTION: {}".format(self.current_action))

If a valid action exists, execute it
if self.current_action != STANDBY:
self . result = self.execute[self.current_action]()

publishing current action

msg = Int8 ()

msg.data = self.current_a

ction

self .toggle_pub.publish (msg)

self.history.append(self.current_action) # keep

def clear_buffer_occupancy(self):
This resets the buffer occupa

key is the buffer id and the

self .buffer_occupancy = {0: [
1: [
2: [
3: [
4: [

def add_packed_item(self , item):

self.packed_items.append(item

def update_item_for_buffer(self):

Determine the next item to pick from

track

of past actions

ncy. The buffer currently has 5 hardcoded locations ,

value

(-.42,
(-.42,
(-.42,
(-.42,
(-.42,

)

to the packing logic (by publishing

updated_size = Point()

is [position wrt robot,

1,

1), None],
1), None],
1), None],

.1), None],

1), None]l}

the buffer and communicate the

to a new topic).

buffer_item , _ = self.get_least_delicate_in_buffer ()

updated_size .x, updated_size.

y, updated_size.z = buffer_item.width,

self . buffer_pub.publish(updated_size)

print("publishing buffer flag with new size ({},

def get_next_event(self, result=None):

Packing algorithm logic.
1. If item on conveyor belt,
2. If item is delicate, place

3. Go home/standby .

if result is False: # if solu

return HOME

if self.current_action == HOME or

pick i

t up. Else check

in buffer.

tion not found on belt,

if self.utils.center_pixels !=

if self.ItemIsReachable ():

print("center is

(0,0):

currently ",

Else pack in bin.

self.current_action ==

Item on belt

go home

-1: # at home

self . utils . center_pixels)

return PICK_FROM_BELT # pick from conveyor belt

return STANDBY # wait

else:

until

item

is

within

reach.

66

Prioritizes

Item object]

{})".format(buffer_item.width,

if items are in buffer.

item

on belt

where the dict

item’s properties

buffer_item.length, 1

over buffer

buffer_item.length))

item.

220 for buffer_id, (buffer_loc, item) in self.buffer_occupancy.items():

221 if item is not None:

222 print ("Picking from: ",self.get_least_delicate_in_buffer())
223 return PICK_FROM_BUFFER # pick from buffer

224 return STANDBY # do nothing

225

226 if self.current_action == PICK_FROM_BELT:

227 if self.current_item is None:

228 return STANDBY

229 elif self.IsBufferFull(): # pack in bin no matter what if buffer is full
230 return PACK_IN_BIN

231 elif self.current_item.isDelicate ():

232 return PLACE_IN_BUFFER # place in buffer

233 else:

234 return PACK_IN_BIN # place in bin

235

236 if self.current_action == PLACE_IN_BUFFER: # go home after placing item in buffer
237 return HOME

238

239 if self.current_action == PICK FROM_BUFFER: # pack item after picking from buffer
240 return PACK_IN_BIN

241

242 if self.current_action == PACK_IN_BIN: # go home after placing item in bin
243 reset_buffer_flag = Point()

244 self .buffer_pub.publish(reset_buffer_flag)

245 print("Resetting buffer flag")

246 self . publish_slip_val(100) # account for gripper slip

247 return HOME

248

249 def grab_object(self):

250 if self.current_action == HOME:

251 return PICK_FROM_BELT

252 elif self.current_action == PICK_FROM_BELT:

253 rospy .sleep (1.0)

254 if GRIPPER:

255 self.OpenGripper ()

256 return HOME

257

258 def GoToNeutralPose(self):

259

260 Robot always starts and ends in the neutral position to avoid occluding the items on the conveyor belt and

packing box.

261 e

262 print_message ("4 Go To Neutral Pose")

263

264 # open gripper

265 if GRIPPER:

266 print("opening gripper from GroceryPacking node!")

267 self.OpenGripperFull ()

268

269 if EXPERIMENT MODE == MULTIMODAL and self.calibrate_sensor_count % CALIBRATION_FREQ == 0: # go to calibrate
state

270 self . FingerClose ()

271

272 if self.history[-1] == PACK_IN_BIN and WILL_EXECUTE:

273 success = self.arm.LoadandExecutePlan("binToHome", self.arm.arm_group)

274 if success:

275 return

276

277 robot_pose = self.arm.defineWaypoint ()

278

67

279

280
281

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

success = self.arm.MoveToPoseGoal(robot_pose, self.arm.arm_group, event_name="Neutral Pose",

WILL_EXECUTE)

print ("Going to Neutral Pose with x: {} y: {} z: {}".format(robot_pose.position.x,

robot_pose. position.z))

Multimodal addition: calibrate the sensors every 3 turns
if EXPERIMENT MODE == MULTIMODAL :
if self.calibrate_sensor_count % CALIBRATION_FREQ == 0:
print("Recalibrating tactile out...")

self.tactile_zeros = self.average_tactile_out (2.0, zero=True)

print("Finished calibrating with new offset of {}".format(self.tactile_zeros))

if GRIPPER:
self . OpenGripperFull ()

self.calibrate_sensor_count += 1

return robot_pose, success

ItemIsReachable (self):

Returns true if the robot’s length can reach the item on the conveyor belt.

target_loc = self.utils.get_future_loc (TRAVEL_TIME) .y

if target_loc < MIN_Y:
print("Item is too far out of reach — will try again.")

return False
if target_loc > MAXY: # we will not get to the item in time
print("Robot will not get to item in time! Aborting")

return False

return True

PickFromConveyorBelt(self):

Event 0: If the target item is reachable, calculate a reasonable location for the robot

print_message ("0 Pick From Conveyor Belt")

to pick up the

willExecute=

robot_pose.position.y,

item.

If item is not recognized, set dimensions to (0,0); otherwise set to its bounding box width and length

while np.isnan(self.utils.item_width) or np.isnan(self.utils.item_length):

size = (self.utils.item_width, self.utils.item_length)

size = (self.utils.item_width, self.utils.item_length)

rospy.sleep (.5)

robot_pose = self.arm.arm_group.get_current_pose("ee_link").pose

move to anticipated item location with z buffer

travel_time = TRAVEL_TIME

target_loc = self.utils.get_future_loc(travel_time)

if target_loc.y > MAXY: # we will not get to the item in time
print ("Robot will not get to item in time! Aborting")

return False

check if the item will still be out of our reach in TRAVEL TIME; if so, set to wait at edge of boundary

68

338
339
340
341
342
343
344
345
346
347
348
349

350
351

[
<
@

354

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

if target_loc.y < MIN_Y:
target_loc.y = MIN_Y

travel _time = self.utils.travel_time_to(target_loc)

self.item_count += 1

create new Item object for the item we are picking up
self.current_item = Item(id=self.item_count,
size=size ,

packing_pose=self.arm. getPackingLoc ())

rospy.loginfo ("New item: id {}, size ({}, {}), packing_pose ({}, {}, {})".format(self.current_item.id, self.
current_item .width, self.current_item.length, self.current_item.packing_pose.position.x,self.current_item.

packing_pose.position.y, self.current_item.packing_pose.position.z))

Robot pose for grasping item off the conveyor belt
robot_pose.position.x —= .3 # assuming that item is placed in center of conveyor belt, which is 30 cm away from
the robot

robot_pose.position.y = target_loc.y +.01 # Note: this constant is an offset dependent on the lighting and

shadows .
robot_pose.position.z = .17 # z location above conveyor belt
eta = rospy.Time.now() + rospy.Duration.from_sec(travel_time)

print("Target intercept location: {(} with eta (}".format(robot_pose, eta))

success = self.arm.MoveToObject(robot_pose, self.arm.arm_group, eta, willExecute=WILL_EXECUTE, event_name="Pick

from Belt")

If robot could not execute the plan
if not success:

print("Did not move to item location on conveyor belt")

else:
print("Successfully moved to item location on conveyor belt")

self .item_in_conveyor_belt = False

Close gripper
if GRIPPER:
self.CloseGripper ()
print ("GP CloseGripper done!")

Raise arm after grasping item
self.RaiseArm ()
print (" Successfully picked up item")

if EXPERIMENT MODE == MULTIMODAL:
aux close a little more
if GRIPPER:
self . FingerCloseExtra ()

print (" ##### press for tactile calibration #####°)

input = raw_input()

take one second to analyze tactile output at this time, determine score.
initial_tactile_out = self.average_tactile_out(1.0)

avg_value, self.current_item.tactile_out = self.clean_tactile_data(initial_tactile_out)
print("Finished calibrating with new val of {}".format(self.current_item.tactile_out))

print("average value is", avg_value)
self.current_item.setScore () # updates score with tactile info

score_msg = Float32MultiArray ()

score_msg.data = [self.current_item.width = self.current_item.length, self.current_item.tactile_out]

69

394
395
396
397
398
399

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

416
417
418
419
420
421

422
423
424
425
426
427
428
429

431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

def

def

self.score_pub.publish(score_msg)

print("New score for item {} is {}".format(self.current_item.id, self.current_item.score))

SUBGOAL

self.picked_from_conveyor_belt = True

PlacelnBufferZone (self):

Event 1: Place the item in an available spot in the buffer zone.

print_message ("1 Placing in Buffer Zone")

print (" Current item is: {}".format(self.current_item.id))

for buffer_no, (buffer_loc, item) in self.buffer_occupancy.items():
if item is None:
self .buffer_occupancy[buffer_no][1] = self.current_item # update buffer occupancy
self . item_in_buffer = True

updated_buffer_loc = buffer_loc[0], buffer_loc[1], BUFFER_ZONE_Z HEIGHT

success = self.arm.MoveToCustomPose (xupdated_buffer_loc , willExecute=WILL_EXECUTE)

success)

print("Moving to buffer zone {} with loc {}, success? {}".format(buffer_no, updated_buffer_loc ,
)
Lower arm to the buffer zone location
robot_pose = self.arm.arm_group.get_current_pose("ee_link").pose
robot_pose.position.z = .09 # hardcoded z location for the buffer zone tables
self .arm.MoveToPoseGoal (robot_pose , self.arm.arm_group, event_name="Placing object", willExecute=

WILL_EXECUTE)
break

Open gripper and place the item
if GRIPPER:
self.OpenGripperParallel ()

SUBGOAL
self .item_in_buffer = True

rospy.loginfo ("Item {} added to buffer zone {}".format(self.current_item.id, buffer_no))

Raise robot arm after placing item in buffer

self.RaiseArm ()

note: hardcoded fix for buffer zone 4 — it is furthest from the robot, so the motion planning
gets stuck sometimes. fix is to have the robot move to an intermediate pose first.
if buffer_no ==

success = self.arm.MoveToCustomPose(—-.4, -.5, BUFFER_ZONE_Z_HEIGHT, willExecute=WILL_EXECUTE)

get_least_delicate_in_buffer (self):
least_delicate = None
chosen_buffer_no = None

chosen_buffer_loc = None

print("Current state of buffer", self.buffer_occupancy)
for buffer_no, (buffer_loc, item) in self.buffer_occupancy.items():
if item is not None and (least_delicate is None or item.score > least_delicate.score):
least_delicate = item
chosen_buffer_no = buffer_no
chosen_buffer_loc = buffer_loc

print("Least delicate item is", least_delicate.id, least_delicate.score, chosen_buffer_no)

70

454 return least_delicate , chosen_buffer_no, chosen_buffer_loc

455

456 def IsBufferFull(self):

457 for buffer_no, (buffer_loc, item) in self.buffer_occupancy.items():

458 if item is None:

459 return False

460

461 return True

462

463 def PickFromBufferZone(self):

464

465 Event 2: Pick up an item from the buffer zone. If LEARNING_MODE = True, this will be a hardcoded item given in
lof_experiment_params.yaml.

466 If LEARNING_ MODE = False, this will be the first item that matches the correct properties (is_hard,

is_heavy).

467

468 print_message ("2 Picking from Buffer Zone")

469

470 print ("Buffer:", self.buffer_occupancy)

471

472 self .update_item_for_buffer ()

473 self.current_item , buffer_no, buffer_loc = self.get_least_delicate_in_buffer() # set current item

474 self . current_item.packing_pose self .arm.getPackingLoc () # update item’s packing pose

475

476 success = self.arm.MoveToCustomPose(buffer_loc[0], buffer_loc[1], BUFFER_ZONE_Z_HEIGHT, willExecute=WILL_EXECUTE
)

477 print ("Moving to buffer zone {} with loc {}, success? {}".format(buffer_no, (buffer_loc[0], buffer_loc[1],
BUFFER_ZONE_Z _HEIGHT), success))

478 rospy.loginfo ("Removed item {} from buffer zone {}".format(self.current_item.id, buffer_no))

479

480 # Lower arm to buffer location

481 lowered_z = 0.07 # currently set for buffer table height

482 print ("Custom offset is {}".format(self.custom_offset))

483 success = self.arm.MoveToCustomPose(buffer_loc[0], buffer_loc[l] + self.custom_offset, lowered_z, willExecute=
WILL_EXECUTE)

484

485 if GRIPPER:

486 self . CloseGripperParallel ()

487

488 # Raise arm after grasping item from buffer

489 success = self.arm.MoveToCustomPose(buffer_loc [0], buffer_loc[1], BUFFER_ZONE_Z_HEIGHT, willExecute=WILL_EXECUTE
)

490

491 # SUBGOAL

492 self . picked_from_buffer = True if success else False

493 self.buffer_occupancy[buffer_no][1] = None # clear buffer memory; area is now unoccupied

494

495 occupied = self.buffer_occupancy.values()

496 self .item_in_buffer = False if occupied.count(None) == len(occupied) else True

497

498 # note: hardcoded fix for buffer zone 4 — it is furthest from the robot, so the motion planning

499 # gets stuck sometimes. fix is to have the robot move to an intermediate pose first.

500 if buffer_no ==

501 success = self.arm.MoveToCustomPose(—-.4, -.5, BUFFER_ZONE_Z_HEIGHT, willExecute=WILL_EXECUTE)

502

503 def PlaceInBox(self):

504

505 Event 3: Place the item in an appropriate location inside the packing box/bin. Afterwards, the robot will move
to the neutral position.

506

71

507 # Go to center of bin before packing

508 self .arm.MoveToJointGoal (BIN_JOINT_GOAL, self.arm.arm_group, willExecute=WILL_EXECUTE)
509

510 if EXPERIMENT_MODE == BASELINE:

511 # Baseline: pack items in center of bin regardless of properties

512 self . MoveToBoxCenter ()

513

514 # open gripper

515 if GRIPPER:

516 self .OpenGripperFull ()

517

518 else:

519 packing_z_buffer = .07

520 packing_pose = self.current_item.packing_pose

521

522 # move to z buffer above packing location

523 packing_pose.position.z += packing_z_buffer

524 success = self.arm.MoveToPoseGoal(packing_pose, self.arm.arm_group, willExecute=WILL_EXECUTE)
525

526 packing_pose.position.z —= packing_z_buffer

527

528 # # Lower arm to the packing bin location

529 success = self.arm.MoveToPoseGoal(packing_pose, self.arm.arm_group, event_name="Place in box" , willExecute=

WILL_EXECUTE)
530 print_message ("3 Placing in Box at x: {} y: {} z: {}".format(round(packing_pose.position.x, 2), round(

packing_pose.position.y, 2), round(packing_pose.position.z, 2)))

531 print ("Successfully moved to packing spot?", success)

532

533 # open gripper and place item in packing bin

534 if GRIPPER:

535 self.OpenGripper ()

536

537 # Raise arm above packing location to avoid moving other items

538 alt_packing_pose = self.arm.arm_group.get_current_pose("ee_link").pose

539 alt_packing_pose.position.z += packing_z_buffer

540 success = self.arm.MoveToPoseGoal(alt_packing_pose, self.arm.arm_group, willExecute=WILL_EXECUTE)

541

542

543 # SUBGOAL

544 self.put_item_in_bin = True

545 self .add_packed_item(self.current_item)

546

547 packed_str = ""

548 for p in self.packed_items:

549 packed_str += "id: {}, area: {}*{}, score: {}, loc: ({}, {}, {})\n".format(p.id, p.width, p.length, p.score,
p.packing_pose.position.x, p.packing_pose.position.y, p.packing_pose.position.z)

550

551 print (packed_str)

552

553 # Go to center of bin; repeated twice since this planning execution is not always accurate — need two tries

554 self .arm. MoveToJointGoal (BIN_JOINT_GOAL, self.arm.arm_group, willExecute=WILL_EXECUTE)

555 self.arm.MoveToJointGoal (BIN_JOINT_GOAL, self.arm.arm_group, willExecute=WILL EXECUTE)

556

557 def RaiseArm(self):

558

559 Raise robot arm in z direction

560

561 robot_pose = self.arm.arm_group.get_current_pose("ee_link").pose

562 robot_pose.position.z = BUFFER_ZONE_Z_HEIGHT

563 self .arm.MoveToPoseGoal (robot_pose , self.arm.arm_group, willExecute=WILL_EXECUTE)

564

72

565 def MoveToBoxCenter(self):

566 robot_pose = self.arm.arm_group.get_current_pose("ee_link").pose
567 robot_pose. position.z = BUFFER_ZONE_Z HEIGHT - .05
568 self.arm.MoveToPoseGoal (robot_pose , self.arm.arm_group, willExecute=WILL_EXECUTE)
569

570 def publish_slip_val(self, val):

571 slip_msg = Int32()

572 slip_msg.data = val

573 print("Publishing slip value of {}".format(val))
574 self .slip_pub.publish(slip_msg)

575

576 ## GRIPPER FUNCTIONS ##

571

578 def check_gripper_success(self):

579 gripper_msg = rospy.wait_for_message("/gripper_finished", Int8)
580

581 if gripper_msg.data ==

582 print ("Robot missed item. Canceling operation...")
583 self . missed = True

584 else:

585 self . missed = False

586

587

588 def OpenGripper(self):

589 print ("Publishing gripper open")

590 option = Int8 ()

591 option.data = 1

592 self.gripper_pub.publish (option)

593

594 rospy . wait_for_message ("/gripper_finished", Int8)
595 self . missed = False

596

597 def CloseGripper(self):

598 print("Publishing gripper close")

599 option = Int8 ()

600 option.data = 2

601 self.gripper_pub.publish (option)

602

603 self.check_gripper_success ()

604

605 print ("Exited while loop")

606

607 def OpenGripperFull(self):

608 print("Publishing gripper open fully")

609 option = Int8 ()

610 option.data = 3

611 self.gripper_pub.publish (option)

612

613 rospy . wait_for_message ("/gripper_finished", Int8)
614 self.missed = False

615

616 def CloseGripperParallel (self):

617 print ("Publishing gripper close")

618 option = Int8 ()

619 option.data = 4

620 self . gripper_pub . publish(option)

621

622 self .check_gripper_success ()

623

624 def OpenGripperParallel(self):

625 print ("Publishing gripper open")

73

626
627
628
629
630
631

633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
632
683
634
685
636

option = Int8()
option.data = 5

self.gripper_pub.publish (option)

rospy . wait_for_message("/gripper_finished", Int8)

self . missed = False

def FingerClose(self):
print("Publishing aux close")
option = Int8 ()
option.data = 6

self . gripper_pub . publish(option)

try:
rospy . wait_for_message ("/gripper_finished", Int8, 2.0)
except:

pass

def FingerCloseExtra(self):
print ("Publishing aux close extra")
option = Int8 ()
option.data = 7
self.gripper_pub.publish (option)
try:
rospy . wait_for_message ("/gripper_finished", Int8, 2.0)
except:

print ("Took too long to receive ack")

class Item () :

Item class: can be formed once the properties are known. When the ’'pick from conveyor’ is signaled,
send the vision-related information & tactile information to this class, which will create a new Item object.
def __init__(self, id, size, packing_pose):

self.id = id

self.width = size[0]

self.length = size[1]

self . packing_pose = packing_pose

self .score = 0

self.tactile_out = 0

self.proprio_width = None

self.setScore ()

def __repr__(self):

return "Item " + str(self.id)
def setScore(self):
if EXPERIMENT MODE == BASELINE: # score is irrelevant
self.score = 0
elif EXPERIMENT MODE == VISION:
self .score = self.width % self.length

print("Setting score for item {} to: {}".format(self.id, self.score))

elif EXPERIMENT MODE == MULTIMODAL:
final_width = self.width

print ("Final width is {}, original: {}, proprio: {}".format(final_width, self.width, self.proprio_width))

area = final_width % self.length

self.score = — (SLOPE % area + Y_INTERCEPT - self.tactile_out)

74

687

688 print("Setting score for item {} to: {}".format(self.id, self.score))
689

690 def isDelicate (self):

691 if EXPERIMENT MODE == BASELINE: # control group, item is never considered delicate.
692 return False

693

694 elif EXPERIMENT MODE == VISION:

695 rospy.loginfo ("Area of current item is {}".format(self.score))

696 if self.score < AREA_THRESHOLD:

697 return True

698

699 elif EXPERIMENT MODE == MULTIMODAL:

700 if CONTACT_THRESHOLD - self.tactile_out > 0: # if > 0, pack in bin
701 print("under low threshold")

702 return False

703

704 if self.score < 0:

705 print("is delicate")

706 return True

707

708 return False

709

710 def print_message(message):

711 print (message)

712 rospy.loginfo (message)

713

714 def main(args):

715 rospy.init_node (’icra_demo’, anonymous=True)
716 g = GroceryPacking ()

717 time . sleep (0.5)

718

719 try:

720 print (" ##### press any key to start #####°)
721 input = raw_input()

722 while not rospy.is_shutdown():

723 override = None

724 action = g.get_next_event()

725 print("Tentative action is {}".format(action))
726

727 g.run()

728

729 rospy .sleep (.5)

730

731

732 except KeyboardInterrupt:

733 print "grasping_demo Shutting down"

734

735

736 if __name__ == ’__main__

737 main(sys.argv)

Object detection module

1 #!/usr/bin/env python2

import rospy
from sensor_msgs.msg import Image, PointCloud2, Cameralnfo
from geometry_msgs.msg import Point

from std_msgs.msg import Float32MultiArray

N o LR WN

from cv_bridge import CvBridge, CvBridgeError

75

18

20
21
22
23

24
25
26
27
28
29
30

32
33
34

36
37

39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

from matplotlib import pyplot as plt

import cv2

import numpy as np

from ros_numpy import point_cloud2 as np_pc2
centroid_tracker

from import CentroidTracker

CAMERA NAME = rospy.get_param("object_detection",
RGB_TOPIC = CAMERA NAME + ’/rgb/image_raw’

"/camera")

DEPTH_TOPIC = CAMERA NAME + ’/depth_registered/image_raw’ # depth registered image topic;
but not rectified)
CAM_INFO_TOPIC = CAMERA NAME + ’/depth/camera_info’ #camera info for depth

CENTER_TOPIC = ’/boxcoord’ # to publish object center coordinates to

BBOX_TOPIC = ’/bounding_box’ # publish entire bounding box

DEPTHPUB_TOPIC = ’/object_depth_image’ # to publish processed depth image to

CLOUD_TOPIC = ’/object_cloud’ # to publish object point cloud to

REGULARITY_TOPIC = ’/regularity_score’ # to publish object area / bounding box area;
score, contour_area)

DISPLAY_IMAGES = rospy.get_param("show_obj_detection", False) # when testing,

DISPLAY_DEPTHS = False # display
CLEAN_IMAGE = True # if True,
BLACK_BOUNDARY = 95 #25 # v
OBJ_DETECTION_THRESHOLD = 50
REGULARITY_THRESHOLD = .74

BELT_PIXEL_BOUNDS = (130,

depth image of object

will look for black area and zero out everything outside

in hsv to determine what will be considered black

220)
class ObjDetector ():

def __init__(self):

rospy . Subscriber (RGB_TOPIC,
rospy . Subscriber (DEPTH_TOPIC, Image,
self.center_pub = rospy.Publisher (CENTER_TOPIC, Point,
rospy . Publisher (BBOX_TOPIC, Float32MultiArray ,
rospy . Publisher (DEPTHPUB_TOPIC, Image,
rospy . Publisher (CLOUD_TOPIC, PointCloud?2 ,
self . regularity_pub = rospy.Publisher (REGULARITY_TOPIC,
CvBridge ()
((0,0) ,(479,639))
640))

self . rgb_sub = Image, self.rgb_callback)
self.depth_callback)

publish

self.depth_sub =
queue_size=10)
self .bbox_pub = queue_size=10)
self .depth_pub = queue_size=10)

self.cloud_pub = queue_size=10) # publish

Point, queue_size=10)
self.bridge = # converts between ROS and CV image
self .bounding_box = # initiallize bounding box as the entire

self .obj_depths = np.zeros ((480, # dummy first depth reading
self.camera_info_sub =
self.camera_info_pub = rospy.Publisher (CAMERA NAME +

self . K = np.zeros((3,3))

’_info’, Cameralnfo ,

calibration matrix for depthTo3d later;

be incorrect, though

self.ct = ct = CentroidTracker ()

(0,0)

self .center =

def image_print(self ,img):

Helper function to print out images, for debugging. Pass them in as a list.

Press any key to continue.

cv2.imshow("image", img)
cv2. waitKey (0)
cv2.destroyAllWindows ()

def camera_callback (self, caminfo):

self .camera_info_pub.publish(caminfo) # for rviz image visualization

self .K = np.matrix (caminfo.K).reshape ((3,3)) # resetting every time, but all relevant

def rgb_callback (self ,ros_image_msg):

76

currently

the black

the point

image (image

this may cause the first

publishes as a point (

print out rgh—related image or not

zone

the center of the object

publish entire bounding box

cloud of the object

is of shape (480,640))

rospy . Subscriber (CAM_INFO_TOPIC, Cameralnfo,self.camera_callback)

queue_size=10)

(couple?) point clouds

info should stay the same

should align with rgb image (

to

66 # Convert from ROS image to OpenCV image

67 try:

68 cv_image = self.bridge.imgmsg_to_cv2(ros_image_msg, "bgr8")

69 except CvBridgeError as e:

70 rospy . loginfo(e)

71

72 self . find_obj(cv_image)

73 point = Point() # create Point object to publish

74

75 # If the object is not where we expect it to be, publish an empty point (based on y-value)

76 if self.center[1] > BELT_PIXEL_BOUNDS[1] or self.center[l] < BELT_PIXEL_BOUNDS[0]:

77 self.center = (0,0)

78 self.center_pub.publish(point)

79 else:

80 # OpenCV gives column, row; convert to row, column

81 point.x = self.center[0]

82 point.y = self.center[1]

83 point.z = self.obj_depths[self.center[1], self.center[0]]

84 print("Center point", point.x, point.y, point.z)

85 self.center_pub.publish(point)

86

87 def depth_callback (self , ros_image_msg):

88 # Need to figure out how to deal with depth data

89 try:

90 depth_image = self.bridge.imgmsg_to_cv2(ros_image_msg,"passthrough")

91 except CvBridgeError as e:

92 rospy . loginfo (e)

93 return

94

95 # Editing depth image clear out everything outside of bounding box

96 pl, p2 = self.bounding_box

97 obj_depths = depth_image.copy()

98 obj_depths [:pl[1],:] =0

99 obj_depths [:,:pl[0]] =0

100 obj_depths[p2[1]:,:] =0

101 obj_depths [:,p2[0]:] =0

102 self.obj_depths = obj_depths

103

104 # Generate mask for point cloud

105 pc_mask = np.ones(depth_image.shape)

106 pe_mask [:pl[1],:] =0

107 pc_mask([:,:pl[0]] =0

108 pc_mask[p2[1]:,:] =0

109 pe_mask[:,p2([0]:] = 0

110 pc_array = cv2.rgbd.depthTo3d(depth_image ,self.K, mask=pc_mask)

111

112 # Splice into x’s, y’s and z’s to put back together as numpy record array (each has shape (480,640))

113 pc_x = pc_array[:,:,0]

114 pc_y = pc_array[:,:,1]

115 pc_z = pc_array[:,:,2]

116 pc_recarray = np.core.records.fromarrays ([pc_x,pc_y,pc_z],names="x,y,z’)

117 point_cloud = np_pc2.array_to_pointcloud2 (pc_recarray ,stamp=ros_image_msg.header.stamp , frame_id=ros_image_msg. header.
frame_id)

118

119 # Publish object point cloud

120 self . cloud_pub.publish (point_cloud)

121

122 # Publish object depth image

123 depth_msg = self.bridge.cv2_to_imgmsg(obj_depths ,encoding="passthrough")

124 depth_msg.header. frame_id = ros_image_msg.header.frame_id

125 depth_msg . header.stamp = ros_image_msg.header.stamp

77

126 self.depth_pub.publish (depth_msg)

127

128 if DISPLAY_DEPTHS:

129 # convert to readable np.uint8 type grayscale to use cv2 to visualize as image

130 obj_depths = np.array (obj_depths ,dtype = np.uint8)

131 temp = self.bridge.cv2_to_imgmsg(obj_depths ,encoding="mono8")

132 obj_depths = self.bridge.imgmsg_to_cv2(temp, "mono8")

133 self.image_print (img)

134

135 def find_obj(self, img):

136 o

137 Segment out the largest black area in the image, then find object against a black background.

138 Input:

139 img: np.3darray; the input image with a black area and object in the black area to be detected. BGR.

140 Return:

141 bounding_box: ((x1, yl), (x2, y2)); the bounding box of the object, unit in px

142 (x1, yl) is the bottom left of the bbox and (x2, y2) is the top right of the bbox

143 center: (x, y); the center of the bounding box

144

145 Info: Tuned hardcoded black values (HSV): [0,0,80] [179,255,255]

146 Pick colors here http ://colorizer.org/

147 e

148 # Define range of non-black color in HSV

149 lower = np.array ([0,0,BLACK_BOUNDARY])

150 upper = np.array ([179,255,255])

151

152 # Convert color space

153 hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV) # convert from BGR to HSV

154 image = hsv

155 kernel = np.ones((10,10) ,np.uint8) # for mask processing

156

157 if CLEAN_IMAGE: # look for largest black area, then zero out surrondings

158 # We want to look for black from [0,0,0] to lower bound on range

159 clean_kernel = np.ones((2,2),np.uint8)

160 # clean_mask = cv2.inRange(image np.array([0,0,0]),np.array([179,130,BLACK_ BOUNDARY]))

161 clean_mask = cv2.inRange(image ,np.array ([0,0,0]) ,np.array([255,130,BLACK_BOUNDARY]))

162 # clean_dilated = cv2.dilate(clean_mask, clean_kernel ,iterations = 1) # want to dilate because we’re looking to be
tolerant with getting the biggest black area

163 clean_closing = cv2.morphologyEx (clean_mask ,cv2.MORPH OPEN, clean_kernel)

164 # clean_masked = cv2.bitwise_and(image ,image , mask=clean_closing) #apply mask to create image of only black pixels);
for visualization

165 clean_result, clean_contours, clean_hierarchy = cv2.findContours(clean_closing , cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)

166

167 # Find rectangle

168 clean_contr = None

169 if len(clean_contours) >= 1: #use largest black object

170 clean_contr = clean_contours[0]

171 if len(clean_contours) > 1:

172 for ¢ in clean_contours:

173 if cv2.contourArea(c) > cv2.contourArea(clean_contr):

174 clean_contr = ¢

175

176 clean_x1 ,clean_x2 ,clean_w ,clean_h = cv2.boundingRect(clean_contr) #not angled

177 rect = cv2.minAreaRect(clean_contr)

178 test = cv2.inRange (image ,np.array ([0,0,0]), np.array ([0,0,0]1)) # this is a stupid hack, but np.zeros(image, dtype=np
.uint8 was throwing errors)

179 cv2.drawContours (test , [np.int0(cv2.boxPoints(rect))], 0 , (255), -1)

180 image = cv2.bitwise_and (image, image, mask=test)

181

182 # Display area to keep

78

184
185
186
187
188

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

237
238
239
240
241

if DISPLAY_IMAGES:

self .image_print(cv2.rectangle (img,(clean_x1,clean_x2) ,(clean_x1+clean_w ,clean_x2+clean_h) ,(0,100,255),2))

self.image_print(image)

mask = cv2.inRange(image,lower + np.array ([0,0,20]) ,upper)
closing = cv2.morphologyEx (mask, cv2.MORPH_CLOSE, kernel)

relevanat (object) areas

Find and draw contours of non-black areas

result , contours, hierarchy = cv2.findContours(closing ,

todraw = cv2.drawContours(result ,contours ,—-1,(0,255,0) ,3)

closest_item_contr = None
closest_center = (0,0)
closest_bounding_box = ((0,0),(0,0))
closest_item_dim = (0,0)

original_corner = (0,0)
for ¢ in contours[:-1]:
X, ¥y, w, h = cv2.boundingRect(c)

bounding_box = ((x,y) .(x+w, y+h))

center = (x + w/2, y + h/2)

if center[0] > closest_center[0] and center [0]

if w< 10 or h < 10 or w > 150:
self.center = (0,0)

continue

closest_item_contr = ¢
closest_center = center
closest_bounding_box = bounding_box
closest_item_dim = (w, h)
original_corner = (x, y)

dilation ,

< 450 and BELT_PIXEL_BOUNDS[0]

then erosion—-—worked best

c¢v2 .RETR_TREE, cv2 . CHAIN_APPROX_SIMPLE)

create a mask by thresholding for only non-black values

to smooth out the

< center[1] < BELT_PIXEL_BOUNDS[1]:

cv2.rectangle (img, bounding_box [0],bounding_box[1],(100,255,0) ,2) # draw rectangles around all detected objects

area = cv2.contourArea(c)

print("Regularity score is {} for item at

print("Contour has center {} and area {}".format(center ,harea))

{}".format(area/(w=xh), center))

if closest_item_contr is None: # don’t continue track if robot

self.center = (0,0)

return

self.bounding_box = closest_bounding_box
old_center = self.center

self.center = closest_center

max_area = cv2.contourArea(closest_item_contr)

box_area = closest_item_dim[0] = closest_item_dim/[1]

regularity_score = max_area / box_area

rospy .loginfo ("CENTER: {}, BOUNDING BOX: {}, ITEM_CONTOUR_AREA:

self .bounding_box, max_area, box_area,

self.track ()

for detecting when there’s no object

if box_area > 7500:

regularity_score))

79

is occluding conveyor belt

{}, BOX_AREA:

{}, REGULARITY:

{}".format(self.center,

242 print("too large, resetting center")

243 self.center = (0, 0)

244

245

246 X, y = original_corner

247 w, h = closest_item_dim

248 corners = [x, y, np.clip(x+w, 0, 639), np.clip(y+h, 0, 479)]
249 bbox = Float32MultiArray ()

250 bbox.data = [corners[0], corners[1], corners[2], corners[3],
251 self .obj_depths[corners[1], corners[0]],

252 self.obj_depths[corners[3], corners[0]],

253 self .obj_depths[corners[1], corners[2]],

254 self.obj_depths[corners[3], corners[2]]]

255

256 self .bbox_pub.publish (bbox)

257

258 regularity_msg = Point()

259 regularity_msg.x = regularity_score

260 regularity_msg.y = max_area

261

262 self.regularity_pub.publish(regularity_msg)

263

264

265 if DISPLAY_IMAGES:

266 result = cv2.rectangle (img, self.bounding_box[0], self.bounding_box[1],(100,255,0) ,2)
267

268 self .image_print(result)

269 self.image_print(closing)

270

271 # Return bounding box, center of box

272 return self.bounding_box, self.center

273

274 def track(self):

275 objects = self.ct.update([self.bounding_box])

276 for obj_id, obj in objects.items():

277 self .centroid = obj # center found through tracking algorithm
278

279

280 if __name__ == ’__main__

281 rospy.init_node(’obj_detector’)

282 obj_detector = ObjDetector ()
283 rospy.spin ()

Packing module

#!/usr/bin/env python2

2

3 import rospy

4 from sensor_msgs.msg import Image

5 from geometry_msgs.msg import Point, Pose, Quaternion
6 from std_msgs.msg import Float32MultiArray

7 from tf.transformations import quaternion_from_euler
8 from visualization_msgs.msg import Marker

9

10 from cv_bridge import CvBridge, CvBridgeError
11 import cv2

12 from math import pi

13 from matplotlib import pyplot as plt

14 import numpy as np

16 ~CAMERA NAME = rospy.get_param(’packing’, ’/camera’)

80

START_TOPIC = CAMERA NAME + ’/rgb/image_raw’
DEPTH_TOPIC = CAMERA NAME + "/depth_registered/image_raw"

PACK_LOC_TOPIC =
OBJECTBOX_TOPIC
DISPLAY_IMAGES =
DISPLAY_DEPTHS =
DEPTH_KERNEL = (

DEPTH_TESTING =

"/packing_location"

= "/bounding_box"
rospy .get_param("show_packing")
False

40,40)

False

DIST2PIXEL_FACTOR_WIDTH = 426.78
DIST2PIXEL_FACTOR_LENGTH = 445.93

ROTATION_EPSILON
EXPERIMENT_MODE

=15 # if length & width are similar enough,

= rospy.get_param("mode")

CALIBRATE = rospy.get_param("calibrate")

class Packing ():
def __init__(se

self.start_sub

self . pack_loc_pub = rospy.Publisher (PACK_LOC_TOPIC, Pose,
= rospy.Subscriber (DEPTH_TOPIC, Image,

self . depth_sub
self .debug_pub
self .size_sub

self . calibratio

self .bridge =
self . pack_loc
self .mask = np
self.count = 0

self.obj_depth

1f):
= rospy.Subscriber (START_TOPIC, Image

= rospy.Publisher("debug_depth", Image,

= rospy.Subscriber("/item_dim", Point,

no need to rotate

, self.packing_callback)

queue_size=10)

self.size_cb)

self.depth_callback)

queue_size=10)

n_pub = rospy.Publisher("/box_corners", Float32MultiArray , queue_size=10)

CvBridge () # Converts between ROS and CV image

= (0,0)
.ones ((480,640) ,np.uint8)

s = np.zeros ((480,640))

self .depth = None

self.depth_ker
self . written =
self . width = 0
self.length =

self . rotated =

nel = DEPTH_KERNEL

0

Initial packing location is (0,0)
0

False

def size_cb(self, size):

self . width = s

self.length =

def image_print

ize .x * DIST2PIXEL_FACTOR_WIDTH
size .y s DIST2PIXEL_FACTOR_LENGTH

(self ,img):

Helper function to print out images, for debugging.

Press any key

to continue.

cv2.imshow("image", img)

cv2. waitKey (0)

cv2.destroyAllWindows ()

def packing_cal
try:

Iback (self ,ros_image_msg):

Pass

them

cv_image = self.bridge.imgmsg_to_cv2(ros_image_msg,"bgr8")

except CvBridgeError as e:

rospy.loginfo

return

Do cumulativ

if self.count

(e)

e check

<= 50:

81

in as

a list.

78 debug_msg = self.find_obj(cv_image)

79 else:

80 return

81

82

83 def depth_callback(self ,ros_image_msg):

84 # Depth image units in mm

85 try:

86 depth_image = self.bridge.imgmsg_to_cv2(ros_image_msg,"passthrough")
87 except CvBridgeError as e:

88 rospy . loginfo (e)

89 return

90

91 # Set kernel dynamically to object size

92 self .update_kernel ()

93

94 # Editing depth image clear out everything outside of bounding box
95 obj_depths = depth_image.copy()

96

97 nans = np.isnan(obj_depths)

98 nans = nans.astype(int)

99 nans = nans #* 255

100

101 obj_depths = np.nan_to_num(obj_depths)

102

103 try:

104 obj_depths = cv2.bitwise_and (obj_depths , obj_depths , mask=self.mask)
105 except Exception as e:

106 print("failed", e)

107

108 # Check if box is full

109 depths_copy = np.nan_to_num(depth_image.copy())

110 depth_mask = self.mask.copy ()

111 obj_depths_copy = cv2.bitwise_and (depths_copy, depths_copy, mask=depth_mask)
112 depth_mask[depth_mask == 0] =1

113 depth_mask[obj_depths_copy == np.nan] = 1

114 depth_mask[obj_depths_copy == 0] =1

115 depth_mask[depth_mask == 255] = 0

116 mx = np.ma.masked_array (obj_depths_copy , mask=depth_mask)

117

118 if not CALIBRATE and (mx.min() < 1.08 or mx.mean() < 1.17):

119 print("Box is full. Replace now! Press to continue.")

120 inp = raw_input()

121

122 self.obj_depths = obj_depths

123

124 # Smooth to be less sensitive to outliers

125 smoothed = cv2.blur(obj_depths ,(1,1)) #issues here?

126

127 # build "heatmaps"

128 kernel_default = np.ones(self.depth_kernel)

129 kernel_default = kernel_default/np.sum(kernel_default)

130 convolved_default = cv2.filter2D (smoothed,—1, kernel_default) #-1 means keep the same data type as source
131 kernel_rotated = np.ones((self.depth_kernel[1],self.depth_kernel[0]))
132 kernel_rotated = kernel_rotated/np.sum(kernel_rotated)

133 convolved_rotated = cv2.filter2D (smoothed,—1, kernel_rotated) #-1 means keep the same data type as source
134

135 # locate optimal packing location

136 # gripper_safety = 35 # increasing value widens the kernel ——> takes into account the space taken by the fingers
137 gripper_safety = 0

138 if np.amax(convolved_default) > np.amax(convolved_rotated):

82

139
140

141
142
143
144

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

pack_loc = np.unravel_index (np.argmax(convolved_default),convolved_default.shape)

depth_roi = obj_depths[pack_loc[0] — self.depth_kernel [0]/2: pack_loc[0] + self.depth_kernel[0]/2, pack_loc[1] — (
self.depth_kernel[1]/2 + gripper_safety): pack_loc[1] + self.depth_kernel[1]/2+ gripper_safety]

self .rotated = False

else:

pack_loc = np.unravel_index (np.argmax(convolved_rotated),convolved_default.shape)

depth_roi = obj_depths[pack_loc[0] — (self.depth_kernel[1]/2 + gripper_safety): pack_loc[0] + self.depth_kernel[1]/2
+ gripper_safety , pack_loc[1l] - self.depth_kernel[0]/2: pack_loc[1] + self.depth_kernel[0]/2]

self.rotated = True

x_start, x_end = 284, 341
y_start , y_end = 186, 242

x_start, x_end = 0, 638
y_start, y_end = 0, 478

if CALIBRATE:
try:
test_depths = np.zeros((y_end — y_start, x_end—x_start))
min_x, min_y = float(’inf’), float(inf’)
max_x, max_y = float(’—inf’), float(’—inf")
for r in range(y_start, y_end):
for ¢ in range(x_start, x_end):
if 1 < convolved_default[r][c] < 1.3:

test_depths[r — y_start][c — x_start] = convolved_default[r][c]

min_x = min(c, min_x)

min_y = min(r, min_y)

max_X = max(c, max_x)

max_y = max(r, max_y)

calibration_msg = Float32MultiArray ()

calibration_msg.data = [min_y, min_x, self.obj_depths[min_y, min_x],
min_y, max_x, self.obj_depths[min_y, max_x],
max_y, max_x, self.obj_depths[max_y, max_x],

max_y, min_x, self.obj_depths[max_y, min_x]]

self .calibration_pub . publish(calibration_msg)
except:

pass

self .pack_loc = pack_loc

self .depth = max(1.09, np.min(depth_roi)) # take most conservative estimate of highest point

if DISPLAY_DEPTHS:

test = depth_image.copy ()
test[test <O] = np.amax(test)
normed = test / np.sum(test)
self.image_print (normed)

rospy .loginfo (np.max(obj_depths))
rospy.loginfo (np.min(obj_depths))

Publish packing location

packing_pose = Pose()

packing_pose. position.x = self.pack_loc[0]
packing_pose.position.y = self.pack_loc[1]

packing_pose.position.z = self.depth# self.obj_depths[self.pack_loc]

83

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

254
255
256
257

if EXPERIMENT_MODE == 1: # don’t rotate if control group

self .rotated = False

if self.rotated:

packing_pose.orientation = Quaternion(*quaternion_from_euler(pi/2, pi/2, -pi/2, ’rxyz’))
else:
packing_pose.orientation = Quaternion(*quaternion_from_euler(-pi/2, 0, pi/2, ’rxyz’))

self .pack_loc_pub.publish (packing_pose)

if DEPTH_TESTING:
DEPTH TESTING JEANA

corner_pixels = rospy.get_param("corner_pixels")

if self.written < 5:

print ("PACKING PIXELS", packing_pose.x, packing_pose.y, packing_pose.z)
self . written += 1

to_plot = []
for r in range(len(self.obj_depths)):

for ¢ in range(len(self.obj_depths[0])):

if self.obj_depths[r,c] > O:

to_plot.append ((r, ¢, float(self.obj_depths[r,c])))

rospy.set_param("to_plot", to_plot)

corner_depths = []

for pixel in corner_pixels:
corner_depths.append(float(self.obj_depths[pixel [0], pixel[1]]))
rospy.set_param("corner_depths", corner_depths)

END DEPTH TESTING

def find_obj(self, img):

Load mask and segment out packing box, then find lowest point inside the box.

Input:
img: np.3darray; the input image with a black area and object in the black area to be detected. BGR
Return:
bounding_box: ((x1, yl), (x2, y2)); the bounding box of the object, unit in px
(x1, yl) is the bottom left of the bbox and (x2, y2) is the top right of the bbox

center: (x, y); the center of the bounding box

Info: Tuned hardcoded black values (HSV): [0,0,80] [179,255,255]
Pick colors here http ://colorizer.org/

self .count += 1

if self.count == 1I:

self.read_mask ()

image = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

if self.count == 5: # give depth side some time to find a packing loc

rospy.loginfo ("This is the calibrated masked image with coord
))
todraw = cv2.bitwise_and (image, image, mask=self.mask)

todraw = cv2.circle (todraw ,(self.pack_loc[1], self.pack_loc[0]).10,(100,200,255),-1)

+ str(self.pack_loc) + and depth

self .image_print (todraw)

84

+ str(self.depth

258
259
260
261

262
263

264
265
266
267

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

297
298
299

300
301
302
303
304
305
306
307
308
309
310
311
312
313

if DISPLAY_IMAGES:
print("displaying image")
todraw = cv2.bitwise_and (image, image, mask=self.original_mask)
todraw = cv2.circle (todraw ,(self.pack_loc[1], self.pack_loc[0]),10,(100,200,255),-1) # opencv’s indices are column,
row — opposite from np
if self.rotated:
todraw = cv2.rectangle (todraw, (self.pack_loc[1] — self.depth_kernel[0]//2, self.pack_loc[0] — self.depth_kernel
[11772),
(self.pack_loc[1] + self.depth_kernel[0]//2, self.pack_loc[0] + self.depth_kernel[1]//2),
(100,200,255), 2)
else:
todraw = cv2.rectangle (todraw, (self.pack_loc[1] — self.depth_kernel[1]//2, self.pack_loc[0] - self.depth_kernel
[01772),
(self.pack_loc[1] + self.depth_kernel[1]//2, self.pack_loc[0] + self.depth_kernel[0]//2),
(100,200,255), 2)
print("Rotated", self.rotated)

self .image_print (todraw)
return

def update_kernel(self):

note : packing and object detection cameras are rotated pi/2 relative to each other
if np.isnan(self.width) or np.isnan(self.length):

self .depth_kernel = DEPTH_KERNEL

return

pixel_width = int(self.width + .5)
pixel_length = int(self.length + .5)

if (pixel_width == 0 or pixel_length == 0):

return

minimum kernel size

if pixel_length = pixel_width < 400:

pixel_length = max(pixel_length ,40)

pixel_width = max(pixel_width ,40)

if self.depth_kernel != (pixel_length, pixel_width):
self .depth_kernel = (pixel_length, pixel_width)

def read_mask(self):

self .mask = cv2.imread("/home/ada/manipulation_ws/src/vkchen_vision/calibration/packingBoxMask.png", cv2.
IMREAD_GRAYSCALE)

print ("Mask shape is {}, should be (480, 640)".format(self.mask.shape))

self .original_mask = cv2.imread("/home/ada/manipulation_ws/src/vkchen_vision/calibration/originalPackingBoxMask.png",
cv2 .IMREAD_GRAYSCALE)

def set_count(self, count):

self.count = count

def get_count(self):

return self.count

if __name__ == ’__main__
rospy .init_node (’packing’)

packing = Packing ()

try:

while not rospy.is_shutdown():

85

314 pass

315 except KeyboardInterrupt:

316 print "packing node shutting down"
317

318 rospy.spin ()

Dynamixel Servo Control

#!/usr/bin/env python

2

3 import numpy as np

4 import os

5 import rospy

6 from std_msgs.msg import Int8 , Float32MultiArray , Int32, Float32
7 import struct

8 from collections import namedtuple

9 from dynamixel_sdk import PortHandler, PacketHandler, COMM_SUCCESS, GroupSyncWrite, GroupSyncRead
10 from aux_gripper.DynamixelGripper import

11

12

13

14 https ://emanual. robotis.com/docs/en/software/dynamixel/dynamixel_wizard2/#usb—latency —setting

15 https ://learn.trossenrobotics.com/projects/194—setting —dynamixel —ax—and—-mx—series —firmware —id —and—baud-with—roboplus
—1-0.html

16

17 Change latency of USB port reading from Linux computer:

18 $ echo I | sudo tee /sys/bus/usb—serial/devices/ttyUSBO/latency_timer

19 $ cat /sys/bus/usb—serial/devices/ttyUSBO/latency_timer

20 e

21

22 SERVO_EPSILON = 50 # TODO: tune this // set to 1000 before

23 GOAL_VELOCITY_VALUE = 200

24 OPEN_VELOCITY = 125

25 VELOCITY_EPSILON = 15

26 LOAD_DELTA_THRESHOLD = 17

27 CONSECUTIVE_THRESH = 12

28 TRACK_LOAD_THRESH = 35

29 PARTIAL_OPEN_OFFSET = 1800

30

31 # GRIPPER ACTION MAPPINGS

32 ## naming convention: [partial/full]_[open/close]_[which servos]

33 PARTIAL_OPEN = 1

34 CLOSE_ALL = 2

35 FULL_OPEN = 3

36 CLOSE_PARALLEL = 4

37 OPEN_PARALLEL = 5

38 CLOSE_AUX = 6

39 CLOSE_AUX_CUSTOM = 7

40

41

42 class GripperControl ():

43

44 def __init__(self):

45 self.gripper = DynamixelGripper ()

46

47 # Publishers & Subscribers

48 self.gripper_finished_pub = rospy.Publisher("/gripper_finished", Int8, queue_size=0)
49 self . gripper_sub = rospy.Subscriber("/move_gripper", Int8, self.gripper_cb)

50 self.slip_sub = rospy.Subscriber("/slip_amt", Int32, self.slip_cb)

51 self . gripper_command_sub = rospy.Subscriber("/gripper_command", Int8, self.pos_command_cb)
52 self.distance_pub = rospy.Publisher("/gripper_width", Float32, queue_size=0)

86

54
55
56
57
58

60
61
62
63
64
65
66
67
68
69
70
71
7
73
74
75
76
77
78
79
80
81
82

84
85
86
87
88
89
90
91
92
93
94

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

=3
)
-

self.torque_sub = rospy.Subscriber("/torque_on", Int8, self.torque_cb)

self.option = None
self.prev_load_33 = None
self.command = False
self .count = 0

self . partial_open_count = 0

self.prev_option = -1

self .prev_prev_option = -1

self.open_limit = self.gripper.track_servo.open
self .close_limit = self.gripper.track_servo.close

self.current_close = None

OpenGripper(self , pos=None):

print("gripper opening!")

rospy . loginfo ("Opening gripper")

self.MoveToOpenPosition(pos)

self . gripper.auxOpen() # TODO: add aux control back in
self.gripper.setVelocity (~OPEN_VELOCITY)

OpenGripperParallel (self):
print("gripper opening!")

rospy.loginfo ("Opening gripper")

self . gripper.setVelocity (-OPEN_VELOCITY)

CloseGripper(self):

print("gripper closing!")

rospy .loginfo ("Closing gripper")

self.gripper.auxClose()

self.gripper.auxCloseCustom (400) # TODO: add aux control back in
self.gripper.setVelocity (GOAL_VELOCITY_VALUE)

CloseGripperParallel (self):

print("gripper closing!")

rospy.loginfo ("Closing gripper")
self.gripper.setVelocity (GOAL_VELOCITY_VALUE)

slip_cb (self, slip_amt):
new_val = slip_amt.data
self .open_limit += new_val
self.close_limit += new_val

print("Slip detected. Adjusting with new interval [{}, {}]".format(self.open_limit,

torque_cb (self , data):

torque_on = data.data

if torque_on: # enable torque

self.gripper.enable_torque ()

else: # disable torque

self . gripper.poe_exit_program ()
gripper_cb (self , move_option):
if move_option.data == PARTIAL_OPEN:
print("received gripper option 1: open gripper partially")

self.option = PARTIAL_OPEN

elif move_option.data == CLOSE_ALL:

87

self.close_limit))

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

def

print("received gripper option 2: close gripper")

self.option = CLOSE_ALL

elif move_option.data == FULL_OPEN:
print("received gripper option 3: open gripper fully")
self.option = FULL_OPEN

elif move_option.data == CLOSE_PARALLEL:
print("received gripper option 4: close gripper parallel")

self.option = CLOSE_PARALLEL

elif move_option.data == OPEN_PARALLEL:
print("received gripper option 5: open gripper parallel"”)

self.option = OPEN_PARALLEL

elif move_option.data == CLOSE_AUX:
self .option = CLOSE_AUX

print("received gripper option 6: aux close")

elif move_option.data == CLOSE AUX CUSTOM:
self.option = CLOSE_AUX_CUSTOM

print("received gripper option 7: aux close custom")

else:
print("Invalid option. Will not move gripper.")

self.option = None

publish_finished_flag(self, val):

print("Finished gripper action!")

publish finished flag

done_msg = Int8 ()

done_msg.data = val

for i in range(5):
self.gripper_finished_pub.publish(done_msg)
rospy.sleep (.2)

StopServo (self , message="", pos=None, load=None):

self . gripper.setVelocity (0)

self .option = None

val =1

if load is not None and (self.option in (CLOSE_ALL, CLOSE PARALLEL)):

if load < 123:
val = 0

print (" Gripper missed item!")

if pos is not None:
dist_msg = Float32()
ticks = self.gripper.track_servo.close — pos

cm = ticks * 0.014 / 500.0

print("Item is {} m wide with {} ticks and close pos {}".format(cm,

dist_msg.data = cm

self.distance_pub . publish (dist_msg)
self .publish_finished_flag(val)
self .command = False

if len(message) > 0:

rospy.loginfo (message)

88

ticks ,

self . gripper.track_servo.close))

175 def PositionThresholdReached (self , pos, vel):

176 return self.OpenPositionLimitReached(pos, vel) and self.ClosePositionLimitReached (pos, vel)
177

178 def OpenPositionLimitReached(self, pos, vel):

179 # stop if gripper opens past position threshold

180 if vel < -1 and (pos — SERVO_EPSILON < self.open_limit):

181 message = "Gripper opens past position threshold at {}".format(self.open_limit)
182 print (message)

183 return True

184 return False

185

186 def OpenPartialReached (self, pos, vel):

187 if vel < -1 and pos <= self.current_close — PARTIAL_OPEN_OFFSET:
188 return True

189 return False

190

191

192 def ClosePositionLimitReached (self , pos, vel):

193 # stop if gripper closes past position threshold

194 if vel > 0 and (pos + SERVO_EPSILON > self.close_limit):

195 message = "Full close reached at {}".format(self.close_limit)
196 print (message)

197 return True

198

199 return False

200

201 def readAndPublishServoData(self):

202 ids , loads, vels, pos = self.gripper.readServos ()

203

204 printstr = "ids: {}, loads: {}, vels: {}, pos: {}".format(ids, loads, vels, pos)
205 gripper_msg = Float32MultiArray ()

206 gripper_msg.data = [ids[0], loads[0], vels[0], pos[O],

207 ids[1], loads[1], vels[l], pos[l],

208 ids[2], loads[2], vels[2], pos[2]]

209

210 # self.output_pub.publish(gripper_msg)

211

212 return ids, loads, vels, pos

213

214

215 ### POSITION CONTROL ###

216

217 def pos_command_cb(self, option_data):

218 option = option_data.data

219 ### Position Control Menu ###

220 print("receiving option {}".format(option))

221

222 if option ==

223 ids , loads, vels, pos = gp.readAndPublishServoData ()

224 printstr = "ids: {}, loads: {}, vels: {}, pos: {}".format(ids, loads, vels, pos)
225 print(printstr)

226

227 elif option == 1:

228 print("option 1")

229 self.gripper.parallelOpenlInch ()

230 elif option ==

231 print("option 2")

232 self.gripper.parallelClose ()

233 elif option ==

234 print("option 3")

235 self . gripper.parallelOpen () # to change vals, modify TRACK_SERVO_INCH in DynamixelGripper.py

89

236 elif option ==

237 print("option 4")

238 self . gripper.parallelCloselnch ()
239

240 rospy.sleep (1.) # wait 1 second

241 self.publish_finished_flag (1)

242

243 PROGRAM_CURRENT_TEST = 0
244 PROGRAM_JEANA
245

246 program = PROGRAM_JEANA

247 TRACK_INDEX = 2 # index of track servo; originally 2

248

249 def main():

250 gp = GripperControl ()

251 gp.command = False

252 count = 0

253

254 if rospy.is_shutdown():

255 print("[poe] ros not running; exiting")

256 exit ()

257

258 ids , loads, vels, pos = gp.readAndPublishServoData ()

259 print("ids: {}, loads: {}, vels: {}, pos: {}".format(xgp.readAndPublishServoData()))

260

261 while not rospy.is_shutdown():

262 if (program == PROGRAM_CURRENT_TEST) :

263 load = gp.gripper.readServos () [1][0] # fornow (assumes that gripperServo is index 0)

264 print("{}".format(load))

265 elif (program == PROGRAM JEANA) :

266 if gp.command:

267 ids , loads, vels, pos = gp.readAndPublishServoData ()

268 printstr = "ids: {}, loads: {}, vels: {}, pos: {}".format(ids, loads, vels, pos)

269 print ("LOAD: {}".format(loads[TRACK_INDEX]))

270

271 ### TRACK SERVO CONTROL ###

272

273 if (gp.option in (CLOSE_ALL, CLOSE_PARALLEL) and gp.ClosePositionLimitReached (pos[TRACK_INDEX], vels][
TRACK_INDEX])) or \

274 (gp.option in (PARTIAL_OPEN, FULL_OPEN, OPEN_PARALLEL) and gp.OpenPositionLimitReached (pos[

TRACK_INDEX], vels [TRACK_INDEX])) :

275 load = loads [TRACK INDEX] if gp.option in (CLOSE_ALL, CLOSE_PARALLEL) else None

276

277 gp.StopServo (pos=pos [TRACK_INDEX], load=load)

278 gp.command = False

279 print("Open/Close limit reached..")

280 print(printstr)

281

282 elif gp.option == PARTIAL OPEN:

283 if gp.OpenPartialReached (pos[TRACK_INDEX], vels[TRACK_INDEX]) :

284 gp. StopServo ()

285 gp.command = False

286 print(printstr)

287

288 # Stop if significant load detected

289 elif pos[TRACK_INDEX] > gp.gripper.track_servo.open + 800 and (loads[TRACK_INDEX] > TRACK_LOAD_THRESH)
and abs(vels [TRACK_INDEX] - GOAL_VELOCITY_VALUE) < VELOCITY_EPSILON: # finger loads exceeded

290 message = "Load threshold reached - setting velocity to 0."

291 print(message)

292 gp.count += 1

293

90

294 print("Loads: {}, Present velocity is {} and goal velocity is {} with epsilon {}".format(loads, vels

[TRACK_INDEX], GOAL_VELOCITY_VALUE, VELOCITY_EPSILON))

295

296 if gp.count >= CONSECUTIVE_THRESH: #4 times

297 gp.StopServo (message=message , pos=pos[TRACK_INDEX]) #TODO: may need to add , load=loads]|

TRACK_INDEX |

298 gp.command = False

299 print(printstr)

300

301 else:

302 if gp.option in (PARTIAL_OPEN, FULL_OPEN, OPEN_PARALLEL): # open

303 if not gp.OpenPositionLimitReached (pos[TRACK_INDEX], vels[TRACK_INDEX]) :

304 if gp.option == OPEN_PARALLEL:

305 print ("open gripper parallel")

306 gp.OpenGripperParallel ()

307 else:

308 gp.OpenGripper ()

309 gp.command = True

310 gp.count = 0

311 gp.partial_open_count = 0

312 gp.current_close = pos[TRACK_INDEX]

313 else:

314 gp.gripper.auxOpen ()

315 gp.StopServo ()

316 gp.command = False

317 print(printstr)

318

319 elif gp.option == CLOSE_ALL: # close

320 gp.CloseGripper ()

321 gp.command = True

322

323 elif gp.option == CLOSE_PARALLEL:

324 gp.CloseGripperParallel ()

325 gp.command = True

326

327 elif gp.option == CLOSE_AUX:

328 gp.gripper.auxClose ()

329 gp.command = False

330 gp.option == None

331

332 elif gp.option == CLOSE_AUX_CUSTOM and gp.prev_option != CLOSE AUX_CUSTOM and gp.prev_prev_option !=
CLOSE_AUX_CUSTOM:

333 gp. gripper.auxCloseCustom (500)

334 gp.command = False

335 gp.option == None

336 gp.publish_finished_flag (1)

337

338 gp.prev_option = gp.option

339 gp.prev_prev_option = gp.prev_option

340

341 gp.gripper.poe_exit_program ()

342

343 if __name__ == '__main__

344 rospy.init_node (’read_servo’, anonymous=True)

345 main ()

91

92

Bibliography

[1]

[2]

(3]

[4]

[5]

[6]

[7]

[8]

Alexander C. Abad and Anuradha Ranasinghe. Visuotactile sensors with emphasis
on gelsight sensor: A review. IEEE Sensors Journal, 20(14):7628-7638, 2020.

Marichi Agarwal, Swagata Biswas, Chayan Sarkar, Sayan Paul, and Himadri Sekhar
Paul. Jampacker: An efficient and reliable robotic bin packing system for cuboid
objects. IEEE Robotics and Automation Letters, 6(2):319-326, 2021.

Yesenia Aquilina and Michael A. Saliba. An automated supermarket checkout system
utilizing a scara robot: preliminary prototype development. Procedia Manufacturing,
38:1558-1565, 2019. 29th International Conference on Flexible Automation and In-
telligent Manufacturing (FAIM 2019), June 24-28, 2019, Limerick, Ireland, Beyond
Industry 4.0: Industrial Advances, Engineering Education and Intelligent Manufac-
turing.

Yasemin Bekiroglu, Renaud Detry, and Danica Kragic. Learning tactile characteriza-
tions of object- and pose-specific grasps. In 2011 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 1554—1560, 2011.

Jeannette Bohg, Matthew Johnson-Roberson, Marten Bjorkman, and Danica Kragic.
Strategies for multi-modal scene exploration. In 2010 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 4509—-4515, 2010.

Roberto Calandra, Andrew Owens, Dinesh Jayaraman, Justin Lin, Wenzhen Yuan, Ji-
tendra Malik, Edward H. Adelson, and Sergey Levine. More than a feeling: Learning
to grasp and regrasp using vision and touch. /IEEE Robotics and Automation Letters,
3(4):3300-3307, Oct 2018.

Lillian Chin, Felipe Barscevicius, Jeffrey Lipton, and Daniela Rus. Multiplexed ma-
nipulation: Versatile multimodal grasping via a hybrid soft gripper. In 2020 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 8949-8955. IEEE,
2020.

Lillian Chin, Jeffrey Lipton, Robert MacCurdy, John Romanishin, Chetan Sharma,
and Daniela Rus. Compliant electric actuators based on handed shearing auxetics.
In 2018 IEEE International Conference on Soft Robotics (RoboSoft), pages 100—107.
IEEE, 2018.

93

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Lillian Chin, Michelle C Yuen, Jeffrey Lipton, Luis H Trueba, Rebecca Kramer-
Bottiglio, and Daniela Rus. A simple electric soft robotic gripper with high-
deformation haptic feedback. In 2019 International Conference on Robotics and
Automation (ICRA), pages 2765-2771. IEEE, 2019.

David Coleman, Ioan Sucan, Sachin Chitta, and Nikolaus Correll. Reducing the
barrier to entry of complex robotic software: a moveit! case study. arXiv preprint
arXiv:1404.3785, 2014.

Michael Danielczuk, Matthew Matl, Saurabh Gupta, Andrew Li, Andrew Lee, Jeffrey
Mahler, and Ken Goldberg. Segmenting unknown 3d objects from real depth images
using mask r-cnn trained on synthetic data. In 2019 International Conference on
Robotics and Automation (ICRA), pages 7283-7290, 2019.

Daniele De Gregorio, Riccardo Zanella, Gianluca Palli, Salvatore Pirozzi, and Clau-
dio Melchiorri. Integration of robotic vision and tactile sensing for wire-terminal in-
sertion tasks. IEEE Transactions on Automation Science and Engineering, 16(2):585—
598, 2019.

Yang Gao, Lisa Anne Hendricks, Katherine J] Kuchenbecker, and Trevor Darrell. Deep
learning for tactile understanding from visual and haptic data. In 2016 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 536-543. IEEE, 2016.

Alexander M. Gruebele, Michael A. Lin, Dane Brouwer, Shenli Yuan, Andrew C.
Zerbe, and Mark R. Cutkosky. A Stretchable Tactile Sleeve for Reaching Into Clut-
tered Spaces. IEEE Robotics and Automation Letters, 6(3):5308-5315, July 2021.

Bianca S Homberg, Robert K Katzschmann, Mehmet R Dogar, and Daniela Rus. Hap-
tic identification of objects using a modular soft robotic gripper. In Intelligent Robots
and Systems (IROS), 2015 IEEE/RSJ International Conference on, pages 1698—1705.
IEEE, 2015.

Young-Dae Hong, Young-Joo Kim, and Ki-Baek Lee. Smart Pack: Online Au-
tonomous Object-Packing System Using RGB-D Sensor Data. Sensors, 20(16):4448,
January 2020.

Ruizhen Hu, Juzhan Xu, Bin Chen, Minglun Gong, Hao Zhang, and Hui Huang. Tap-
net. ACM Transactions on Graphics, 39(6):1-15, Nov 2020.

Josie Hughes, Shuguang Li, and Daniela Rus. Sensorization of a continuum body
gripper for high force and delicate object grasping. In 2020 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 6913—6919, 2020.

Takuya Ikai, Shota Kamiya, and Masahiro Ohka. Robot control using natural instruc-
tions via visual and tactile sensations. Journal of Computer Science, 12(5):246-254,

May. 2016.

94

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Naveen Kuppuswamy, Alex Alspach, Avinash Uttamchandani, Sam Creasey, Takuya
Ikeda, and Russ Tedrake. Soft-bubble grippers for robust and perceptive manipula-
tion. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 9917-9924, October 2020.

Michelle A. Lee, Matthew Tan, Yuke Zhu, and Jeannette Bohg. Detect, reject, correct:
Crossmodal compensation of corrupted sensors, 2020.

Michelle A Lee, Brent Yi, Roberto Martin-Martin, Silvio Savarese, and Jeannette
Bohg. Multimodal sensor fusion with differentiable filters. In 2020 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 10444—-10451.
IEEE, 2020.

Michelle A. Lee, Yuke Zhu, Krishnan Srinivasan, Parth Shah, Silvio Savarese, Li Fei-
Fei, Animesh Garg, and Jeannette Bohg. Making sense of vision and touch: Self-
supervised learning of multimodal representations for contact-rich tasks. In 2019 In-
ternational Conference on Robotics and Automation (ICRA), pages 8943—-8950, 2019.

Shuguang Li, John J. Stampfli, Helen Xu, Elian Malkin, Evelin Villegas Diaz, Daniela
Rus, and Robert J. Wood. A vacuum-driven origami “magic-ball” soft gripper. 2079
International Conference on Robotics and Automation (ICRA), pages 7401-7408,
2019.

Abhijit Makhal, Federico Thomas, and Alba Perez Gracia. Grasping unknown ob-
jects in clutter by superquadric representation. In 2018 Second IEEE International
Conference on Robotic Computing (IRC), pages 292-299, 2018.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, Andrew Y Ng, et al. Ros: an open-source robot operating system. In
ICRA workshop on open source software, 2009.

Kirstie Renae. 8 tips for bagging groceries, according to someone who does it every
day. insider.com/best-way-to-bag-groceries-2018-12. Accessed:
2021-09-08.

Rocco Antonio Romeo, Michele Gesino, Marco Maggiali, and Luca Fiorio. Com-
bining Sensors Information to Enhance Pneumatic Grippers Performance. Sensors,
21(15):5020, July 2021.

Philipp Schmidt, Nikolaus Vahrenkamp, Mirko Wichter, and Tamim Asfour. Grasp-
ing of unknown objects using deep convolutional neural networks based on depth im-
ages. In 2018 IEEE International Conference on Robotics and Automation (ICRA),
pages 6831-6838, 2018.

Max Schwarz, Anton Milan, Arul Selvam Periyasamy, and Sven Behnke. RGB-D ob-
ject detection and semantic segmentation for autonomous manipulation in clutter. The
International Journal of Robotics Research, 37(4-5):437-451, April 2018. Publisher:
SAGE Publications Ltd STM.

95

insider.com/best-way-to-bag-groceries-2018-12

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Benjamin Shih, Dylan Shah, Jinxing Li, Thomas G Thuruthel, Yong-Lae Park, Fu-
miya lida, Zhenan Bao, Rebecca Kramer-Bottiglio, and Michael T Tolley. Electronic
skins and machine learning for intelligent soft robots. Science Robotics, 5(41), 2020.

Jun Shintake, Vito Cacucciolo, Dario Floreano, and Herbert Shea. Soft robotic grip-
pers. Advanced Materials, 30(29):1707035, 2018.

Rahul Shome, Wei N. Tang, Changkyu Song, Chaitanya Mitash, Hristiyan Kourtev,
Jingjin Yu, Abdeslam Boularias, and Kostas E. Bekris. Towards robust product pack-
ing with a minimalistic end-effector. In 2019 International Conference on Robotics
and Automation (ICRA), pages 9007-9013, 2019.

Benno Staub, Ajay Kumar Tanwani, Jeffrey Mahler, Michel Breyer, Michael Laskey,
Yutaka Takaoka, Max Bajracharya, Roland Siegwart, and Ken Goldberg. Dex-net
mm: Deep grasping for surface decluttering with a low-precision mobile manipulator.
In 2019 IEEE 15th International Conference on Automation Science and Engineering
(CASE), pages 1373-1379, 2019.

Ryan L Truby, Lillian Chin, and Daniela Rus. A recipe for electrically-driven soft
robots via 3d printed handed shearing auxetics. IEEE Robotics and Automation Let-
ters, 6(2):795-802, 2021.

Ryan L. Truby, Robert K. Katzschmann, Jennifer A. Lewis, and Daniela Rus. Soft
robotic fingers with embedded ionogel sensors and discrete actuation modes for so-
matosensitive manipulation. In 2019 2nd IEEE International Conference on Soft
Robotics (RoboSoft), pages 322-329, 2019.

Fan Wang and Kris Hauser. Stable Bin Packing of Non-convex 3D Objects with a
Robot Manipulator. In 2019 International Conference on Robotics and Automation
(ICRA), pages 8698-8704, May 2019.

Fan Wang and Kris Hauser. Robot packing with known items and nondeterministic
arrival order. IEEE Transactions on Automation Science and Engineering, pages 1—

15, 2020.

Hongbo Wang, Massimo Totaro, and Lucia Beccai. Toward Perceptive Soft Robots:
Progress and Challenges. Advanced Science, 5(9):1800541, 2018.

Akihiko Yamaguchi and Christopher G. Atkeson. Combining finger vision and optical
tactile sensing: Reducing and handling errors while cutting vegetables. In 2016 IEEE-
RAS 16th International Conference on Humanoid Robots (Humanoids), pages 1045—
1051, 2016.

Akiya Yasuda, Gustavo Alfonso Garcia Ricardez, Jun Takamatsu, and Tsukasa Oga-
sawara. Packing planning and execution considering arrangement rules. In 2020
Fourth IEEE International Conference on Robotic Computing (IRC), pages 100-106,
2020.

96

[42] Kuan-Ting Yu and Alberto Rodriguez. Realtime state estimation with tactile and
visual sensing for inserting a suction-held object. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1628—1635. IEEE, 2018.

97

	Introduction
	Thesis Organization

	Related Work
	Hardware Architecture
	Robot
	Safety Considerations

	Proprioceptive Gripper
	Grasping

	Tactile Sensors
	External Cameras

	Software Architecture
	Robot Operating System
	Motion Planning

	External Vision System
	Coordinate Transform
	Object Detection
	Online Packing

	Tactile Data Pipeline
	Proprioceptive Gripper Control

	Grocery Packing Algorithm
	Grocery Packing Algorithm
	Robot Actions
	Classifying Delicate Items
	System Limitations

	Automation/User Control
	Continuously Running System

	Sensor Characterization
	Vision Characterization
	Tactile Characterization
	Proprioceptive Characterization

	Experimental Results
	Experimental Setup
	Task Evaluation
	Packing Rubric

	Results
	Baseline Results
	Vision-Only Results
	Multimodal Results

	Discussion & Future Work
	Lessons Learned
	Hardware
	Algorithms
	Experiments

	Future Work

	Grocery Packing Demo Instructions
	Code

