Automatic, Careful Online Packing of Groceries Using a Soft Robotic Manipulator and Multimodal Sensing

by

Jeana Choi

S.B. Electrical Engineering and Computer Science, Massachusetts Institute of Technology (2021)

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author
Department of Electrical Engineering and Computer Science
January 14, 2022
Certified by
Daniela Rus
CSAIL Director, Andrew (1956) and Erna Viterbi Professor of Electrical
Engineering and Computer Science, Deputy Dean of Research
Schwarzman College of Computing
Thesis Supervisor
Accepted by
Katrina LaCurts
Chair, Master of Engineering Thesis Committee

Automatic, Careful Online Packing of Groceries Using a Soft Robotic Manipulator and Multimodal Sensing

by

Jeana Choi

Submitted to the Department of Electrical Engineering and Computer Science on January 14, 2022, in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis describes the use of soft robotic manipulators with multimodal sensing for estimating the physical properties of unknown objects to enable sorting and packing. Although bin packing has been a key benchmark task for robotic manipulation, the community has mainly focused on the placement of rigid rectilinear objects within the container. We address this by presenting a soft robotic hand that uses a combination of vision, motor-based proprioception and soft tactile sensors to identify and pack a stream of unknown objects. We translate the ill-defined human conception of a "well-packed container" into metrics that match combinations of our different sensor modalities and demonstrate how this works in a grocery packing scenario, where objects of arbitrary shape, size and stiffness come down a conveyor belt. The proposed multimodal approach is supported by physical experiments demonstrating how the integration of multiple sensing modalities can address complex manipulation applications.

Thesis Supervisor: Daniela Rus

Title: CSAIL Director, Andrew (1956) and Erna Viterbi Professor of Electrical Engineering and Computer Science, Deputy Dean of Research, Schwarzman College of Computing

Acknowledgments

I would like to give a heartful thanks to everyone in Distributed Robotics Laboratory for their support and kindness.

First, I would like to thank my MEng advisor, Professor Daniela Rus, for helping me grow as a researcher and also providing valuable feedback about the grocery packing project. There is so much to learn from her passion and drive for robotics and research, and I am very grateful for the opportunity to learn the DRL ways of thinking in the past year.

Next, Lilly Chin, my graduate student mentor, welcomed me with (socially distanced) open arms in Fall 2020, and graciously walked me through the onboarding process and introduced me to the UR-5 robot. She has my sincerest gratitude for her patience and sharing feedback especially in the 2020-2021 academic year, when we were one of the few people in lab due to Covid restrictions on lab space occupancy.

Valerie Chen introduced me to the project, and also essentially became my soulmate in lab - spending over 40 hours a week together in Fall 2021. I would like to thank her especially for the amount of motivation and new ideas she comes up with in research, which inspires me to do the same.

In addition, I would like to specifically thank: Mieke Moran for always checking up on me and giving me delicious snacks, Jim Bern and Cenk Baykal for lending a listening ear and providing feedback, John Romanishin for his speedy help during hardware crises, Xiao Li and Yutong Ban for the too-frequent Cava dinner runs, Brandon Araki for all the support with the early-stage robot demos in Spring and Summer of 2021, and Annan Zhang and Peter Werner for their endless supply of late-night coffee.

Lastly, I would like to express my biggest thanks to my parents and my sister, who have always supported and encouraged me to try my best regardless of the situation.

Contents

1	Intr	oduction	15
	1.1	Thesis Organization	18
2	Rela	nted Work	19
3	Har	dware Architecture	23
	3.1	Robot	23
		3.1.1 Safety Considerations	24
	3.2	Proprioceptive Gripper	24
		3.2.1 Grasping	25
	3.3	Tactile Sensors	27
	3.4	External Cameras	28
4	Soft	ware Architecture	31
	4.1	Robot Operating System	31
		4.1.1 Motion Planning	31
	4.2	External Vision System	33
		4.2.1 Coordinate Transform	33
		4.2.2 Object Detection	33
		4.2.3 Online Packing	34
	4.3	Tactile Data Pipeline	36
	4.4	Proprioceptive Gripper Control	36

5	Gro	eery Packing Algorithm 3	39
	5.1	Grocery Packing Algorithm	39
		5.1.1 Robot Actions	40
		5.1.2 Classifying Delicate Items	42
		5.1.3 System Limitations	42
	5.2	Automation/User Control	43
		5.2.1 Continuously Running System	44
6	Sens	or Characterization	45
	6.1	Vision Characterization	45
	6.2	Tactile Characterization	46
	6.3	Proprioceptive Characterization	47
7	Exp	erimental Results	49
	7.1	Experimental Setup	50
	7.2	Task Evaluation	50
		7.2.1 Packing Rubric	51
	7.3	Results	52
		7.3.1 Baseline Results	53
		7.3.2 Vision-Only Results	53
		7.3.3 Multimodal Results	53
8	Disc	ussion & Future Work	57
	8.1	Lessons Learned	58
		8.1.1 Hardware	58
		8.1.2 Algorithms	59
		8.1.3 Experiments	59
	8.2	Future Work	60
A	Gro	cery Packing Demo Instructions	61
В	Cod	e e	63

List of Figures

1-1	The setup for an end-to-end online bin packing system. Multimodal sens-	
	ing is utilized to achieve grasping previously unknown items from the con-	
	veyor belt and making real-time decisions about the packing location based	
	on the item's physical properties of size, shape, and stiffness	17
3-1	UR5 robot with the grocery packing setup. The grocery items, buffer zone,	
	and packing bin can also be seen from this view	24
3-2	Soft Gripper consisting of HSA fingers and driven by Dynamixel Servos	25
3-3	A visual representation of the gripper's different grasping modes. (a) The	
	gripper is opened to its physical hardware limit, (b) The fingers are closed	
	just enough for sufficient contact with the item, (c) the gripper opened par-	
	tially but not fully, generally used to drop items carefully into the bin, (d)	
	A demonstration of the auxetic fingers closing to ensure better contact with	
	the item	26
3-4	Hardware setup with digitally-fabricated HSA fingersand digitally-fabricated	
	hexagonal tactile sensors	28
3-5	Grasping a soft item allows for better contact area, whereas rigid items have	
	the phenomenon of lower contact area due to the soft nature of the gripper.	28
4-1	The RQT Tree graph for the grocery packing system. All nodes are shown,	
	from the UR5 robot services to the external sensors and grocery packing	
	software module	32

4-2	Snapshot from the Xtion2, which detects the objects on the conveyor belt.	
	The green rectangles indicate bounding boxes around the detected grocery	
	items, and the green rectangle with a purple outline indicates the item clos-	
	est to the end of the conveyor belt	34
4-3	(a) The closest item to the end of the conveyor belt is the grapes, whose	
	bounding box from the Xtion2 camera is converted to the Xtion Pro Live.	
	The middle figures indicates the calculated packing point based on the	
	depth mask, and the right figures show the system in the same moment	
	from an external view. (b) Demonstrating packing a regularly-shaped item,	
	the muffin	35
5-1	A flowchart of our system grocery packing algorithm with multimodal	
	sensing. The first instance of the system is activated when groceries are	
	detected on the conveyor belt. Depending on whether there are items in the	
	buffer or the belt, the robot makes the decision to move to the appropriate	
	location and pack the groceries in a safe way	41
5-2	Using the calibration set of grocery items, we determine two thresholds for	
	classifying whether the item should be packed immediately or not. Tactile	
	readings can be converted to force outputs using Equation 6.1	43
6-1	25 hand-labeled calibration items were evaluated to determine the priority	
	packing heuristic. Soft: clementine, grapes, juice box, mozzarella cheese.	
	Medium: book, celery salt, empty soda can, instant ramen, jello, milk car-	
	ton, mustard bottle, toy peach, toy pear, wheat thins. Rigid: apple, coffee	
	can, fake cake, plastic lemon, Pringles tube, Rubik's dodecahegon, Spam,	
	tea box, tuna can, vegemite, vitamin bottle	45
6-2	We evaluate the vision sensing method of using the item's area by compar-	
	ing the actual area of the item from a bird's eye view of the conveyor belt	
	with the system's calculation of item area based on the vision data	46

6-3	Left: Evaluation of 3 tactile sensors on one tactile sensor array against
	increasing applied load. The three outputs from one array are averaged
	to give a single measured output in millivolts. Standard deviation is also
	shown. Right: Hardware setup with digitally-fabricated HSA fingers and
	digitally-fabricated hexagonal tactile sensors
7-1	System evaluation was conducted with 15 test items. Soft: bread, chips,
	kale, muffin, seaweed. Medium: cheese, crackers, gum, Pringles, stroop-
	wafels. Rigid: baking soda, ice cream, soup can, sprinkles, pot roast. Del-
	icate: bread, chips, crackers, kale, muffin, seaweed, stroopwafels. Heavy:
	baking soda, gum, ice cream, pot roast, soup, sprinkles, stroopwafels 49
7-2	Packed bins for each of three trials for baseline, vision, and multimodal
	experiments

List of Tables

7.1	Scoring rules and associated penalties for packed bins	52
7.2	Experiment penalty scores	52

Chapter 1

Introduction

Soft robotic grasping offers a potentially robust solution to the bin packing problem. Picking items from clutter and placing them into ordered bins has been an important benchmark for the broader robotic manipulation community, as exemplified by the Amazon Picking and Robotics Challenge [34]. However, current solutions have only focused on vision-based segmentation for rigid grippers, meaning that these systems only can grasp rigid rectilinear objects with significant pre-computation [11,16,25,29,37]. Rigid systems often shies away from extended environmental interaction to avoid visual occlusion or damaging grasped objects, which has meant limited focus on the "placing" part of the "pick and place" task. Indeed, current solvers may reach intractable run times when instructed to pack as few as six objects [38]. Soft grippers can avoid many of these pre-computation issues, as their compliance makes them robust to changes in objects' stiffness, shapes and placement. A gripper can use its softness to grasp objects of arbitrary material properties without the models or precise location information that its rigid counterparts would require [8, 24, 32].

In this thesis, our vision is to utilize the qualities of a soft gripper to create an automated end-to-end system that can safely grasp unknown items and pack them carefully in the bin. In the long term, this system could extend to deploy in the real world for specific applications in bin packing.

However, sensorizing these flexible grippers remains challenging, especially when multiple sensor modalities are needed. A soft gripper's deformability makes it difficult to accurately place tactile sensors and localize forces spatially along the gripper [31,39]. In online

applications where the material properties of objects and the order they arrive are unknown – such as in bagging groceries, loading a dishwasher, or packing for a move – it becomes critical to combine the global scale of vision with the localized scale of tactile sensors. These different sensing modalities complement one another to ensure an accurate understanding of an object's material properties in a timely manner [13, 40]. While there has been significant focus in gaining accurate proprioception of soft grippers, either through using vision *for* tactile sensing [1, 20] or incorporating rigid sensing elements within soft systems [14, 28], there is still currently relatively little overlap between soft robotics with contemporary sensor fusion techniques for complex online applications.

We address this gap by creating an end-to-end online bin packing system that can automatically and carefully pack an unknown stream of groceries with a soft gripper by using
multiple sensing modalities to understand grocery item size, shape, and stiffness. Specifically, we present a system that utilizes an online algorithm for bin packing with constraints
as objects arrive on a conveyor belt. We combine RGB-Depth cameras with pressuretransduction based sensors to provide the sensory feedback needed to make appropriate
packing decisions for our robot arm-mounted soft gripper. We incorporate proprioceptive
feedback from the rigid servo motors that drive our soft gripper with the soft tactile sensors
and external vision systems.

We demonstrate the power of this soft robotic system by comparing its performance against sensorless and vision-only systems in a grocery packing scenario. Grocery packing presents a strong case study as groceries range widely in size, shape, weight and fragility. Bagging groceries well requires combining a mechanical system that can safely manipulate objects safely with algorithms that ensure groceries on the bottom of the bin are not crushed by groceries above it. Our system combines the robust safe handling of soft grippers with the richness of a multimodal sensor suite to outperform traditional vision-only based approaches in this complex task. Although the objects range in size and fragility — from heavy boxes to delicate produce — the robot is able to detect the shape and stiffness on an object in real time and determine a placement sequence that does not cause any object to be crushed by the weight of the objects placed on top of it. In addition, we test long runs of the grocery packing system to evaluate its robustness against time.

Figure 1-1: The setup for an end-to-end online bin packing system. Multimodal sensing is utilized to achieve grasping previously unknown items from the conveyor belt and making real-time decisions about the packing location based on the item's physical properties of size, shape, and stiffness.

In summary, we make the following contributions:

- 1. An automated end-to-end system that can continuously pick and pack grocery items from a conveyor belt safely into the bin.
- 2. An integrated physical soft grasping platform that merges vision, motor-based proprioception and pressure-based tactile sensing in a soft grasping system.
- 3. An online packing algorithm that takes in multiple sensor inputs to create a "well-packed" container that matches human expectations.
- Physical experiments with our multimodal approach and comparisons against traditional blind and vision packing methods in a realistic grocery packing scenario with irregular objects.

1.1 Thesis Organization

This thesis is based on the following academic papers co-written by the thesis author.

(in submission) J. Choi*, V. K. Chen*, L. Chin, and D. Rus "Soft Robotic Manipulation with Multimodal Sensing For Online Packing of Groceries", in *IEEE International Conference on Soft Robotics (RoboSoft)*, 2022 - basis for Ch. 3-7

Chapter 2 is an overview of soft robots in manipulation, and multimodal sensing in this field. Chapter 3 overviews and details the hardware architecture, including the robot, gripper, and sensors. Chapter 4 highlights and explains the algorithms used to evaluate the vision, tactile, and proprioception data stream. Chapter 5 explains the overall grocery packing algorithm along with its automation and limitations. Chapters 6 and 7 delve into the evaluation method and results of the performed experiments. Lastly, Chapter 8 summarizes the research done during the Master of Engineering program, and lists potential directions this modular multimodal system may take in future work.

Chapter 2

Related Work

Robot research on packing has focused on minimizing unoccupied volume or runtime for a given number of rigid objects [16, 33]. These works often rely on knowing the packed objects' and bin's geometry beforehand, with many requiring significant off board preprocessing [2, 37, 41]. For online applications, where objects are not known beforehand and may be deformable or fragile, these methods are insufficient.

A large amount of research has been conducted on manipulation-based tasks with single modal perception, such as only using vision to generate dense three-dimensional maps of the environment [30] or using haptic feedback through an underactuated soft hand to classify objects [15]. While utilizing one modality for manipulation may be less complicated, it is difficult to achieve an end-to-end system of grasping unknown objects, classifying their delicacy, and packing them online and safely in bins.

Sensor fusion may provide an effective way to achieve online packing. In particular, visual and tactile sensors provide complementary ranges of data, focusing on global and localized scales respectively. When combined, these different modalities can enable detection of corrupted data from a sensor and deeper understanding of an object's tactile properties [13,40]. Widely studied for mobile robot applications (eg. navigation, state estimation and localization), sensor fusion has been shown to improve grasp reliability [4,6,21,40], task accuracy [12,42], and scene/object understanding for robot manipulation tasks [5] as well as facilitate human-robot handovers [19]. These research discuss grasping strategies using the sensor feedback data and the importance of using both to extract different char-

acteristics from the surrounding environment. F. Sun discusses the benefits of using visual sensing to determine color and shape and coupling that with haptic feedback to receive information about the object's softness, stiffness, and surface texture.

Different modalities may also be combined to perform end-to-end precision tasks such as wire-insertion [12], peg-insertion [23], and vegetable-cutting [40].

With few exceptions [22], the majority of previous work on sensor fusion for robot manipulation relies upon machine learning for at least one portion of the pipeline [4,6,23]. In M. A. Lee et al., the robot requires self-supervised learning utilizing tactile sensors and a camera to determine the optimal method for inserting its peg-shaped end effector to the matching hole. While powerful for learning various grasping policies, these methods require detailed prior knowledge of the items, such as pre-designed CAD models or built-in learned representations, which again makes these methods ill-suited for online applications.

The context includes the weight and delicacy of the current object relative to what is already in the bin and what is yet to come on the conveyor belt. For example, the robot should not place potatoes on top of lettuce. Prior work on bin packing focused on the size and shape of known rigid objects to minimize wasted space in the bin [33,37,38]. However, geometric properties alone do not capture the full constraints required for packing without crushing.

Although the sensorization of soft grippers is an active area of research, there has been relatively little overlap with contemporary sensor fusion techniques. One major challenge for soft sensorization is the soft gripper's deformability, making it difficult to accurately place tactile sensors and localize forces spatially along the gripper. Significant focus has thus been placed on getting accurate proprioception as an intermediate step before more integrated sensor fusion [39]. The most popular combination of sensor modalities is in the use of vision *for* tactile sensing, where the high resolution of a camera or time-of-flight sensor is used to track the deformation of a soft surface to get tactile information [1,20]. Others incorporate rigid elements to provide proprioception within their soft structure, occasionally supplementing this with further tactile sensors [14,28]. We build on this approach and our previous work by choosing a strategy where we create an end-to-end grocery packing system, using multimodal sensing to achieve manipulation of unknown objects with soft

fingers and packing them safely in the grocery bin. We incorporate proprioceptive feedback from the rigid servo motors that drive our soft gripper with the soft tactile sensors and external vision systems to provide our multimodal approach [9].

Chapter 3

Hardware Architecture

Our soft end-to-end robotic packing system has four major components: (1) a soft multiplexed manipulator from [7] which provides proprioceptive feedback through its servomotors, (2) pressure-based tactile sensors attached to the fingers of this gripper, (3) two external RGB-D cameras to provide visual information about objects to be grasped and the packing area, (4) the algorithm that integrates these systems together to perform online packing.

These components are integrated together on a UR5 robot arm to pick unknown objects off a conveyor belt and pack them into a bin either immediately or after being set aside to pack other items first. The RGB-D camera detects the object's location and provides an estimate of the object's size. The tactile sensors provide additional information about the object's estimated stiffness. All of these properties are determined in real time without significant pre-computation, enabling true online packing.

3.1 Robot

The UR-5 robot arm was used for this system, where it has 6 joints and a maximum reach of 33 inches. The gripper module is attached to the robot's end effector joint, and its cables run down the arm of the robot. Each of the robot's six joints have a maximum velocity of 0.1572 radians per second, and maximum joint acceleration limit of 0.0349 $\frac{\text{rad}}{\text{c}^2}$.

Figure 3-1: UR5 robot with the grocery packing setup. The grocery items, buffer zone, and packing bin can also be seen from this view.

3.1.1 Safety Considerations

There were several safety measures taken to reduce potential harm to both the operator and the robot with gripper. First, the joints were configured to limit the robot from colliding with the gripper. Our setup was fixed such that the gripper would remain perpendicular to the ground by fixing the robot's end effector joint to only rotate about the *x* and *y* axis. Next, there were several restrictions added to the planning space to optimize for a valid path and to provide safety to the robot operator. As a result, there were collision surfaces added in the software to block off irrelevant search space, and a horizontal barrier indicating where the conveyor belt was located. This was so that the robot arm would not try to reach through the conveyor belt and potentially damage both the gripper and the belt setup.

3.2 Proprioceptive Gripper

We use a soft gripper previously introduced in [7]. Briefly, the actuators of our gripper are constructed from handed shearing auxetics (HSAs), which are electrically-driven by servo

Figure 3-2: Soft Gripper consisting of HSA fingers and driven by Dynamixel Servos.

motors. We 3D print the HSAs via digital project lithography, as we reported previously, from a proprietary photopolymer resin (FPU 50, Carbon, Inc.) [35].

This gripper offers multiplexed manipulation, enabling us to grasp objects using parallel plate grasps, soft finger grasps or a combination of the two. The gripper module is 23 cm in length and 16.5 cm in height, with a maximum item cross-section clearance of 11 cm.

3.2.1 Grasping

For this work, we upgraded the servo motors from HiTec HS-5585MH to Dynamixel MX-28T servos. This turns the motor control system from open-loop to closed feedback, as these new servos provide feedback on their position, speed, and detected load. This enables new features such as dynamic grasps, object grasp detection and potential size estimation. In this thesis, we use proprioception to dynamically grasp items based on measured load, enabling safe handing of potentially delicate objects. Additionally, we leverage estimates of object size from vision and position feedback to adjust the amount the gripper opens to

(a) Full Open (b) Full Close

(c) Partially Open

(d) Auxetic Close

Figure 3-3: A visual representation of the gripper's different grasping modes. (a) The gripper is opened to its physical hardware limit, (b) The fingers are closed just enough for sufficient contact with the item, (c) the gripper opened partially but not fully, generally used to drop items carefully into the bin, (d) A demonstration of the auxetic fingers closing to ensure better contact with the item.

pack objects, allowing the system to pack items into narrower gaps.

More specifically, there were three Dynamixel Servos used for the system - two to control each finger, and one for the open/close functionality of the gripper, which we will refer to as the track servo. Position control was used to control each finger, which determined the amount of twisting of the HSAs to provide a better grasp on the item. The track servo used modified velocity-based control, where the gripper would close with a constant velocity until a sharp spike in the measured load value was reached, indicating contact with the current item the gripper is attempting to grasp. At this point, the goal velocity would be set to zero, stopping the gripper from closing too far and potentially damaging both itself and the item. Since the setup only allowed for one synchronous read or write at a time, a state machine needed to be defined that could interleave between reading the position, velocity, and load values, and writing commands to set the velocities and positions of the Dynamixel Servos. There are several actions a gripper can take for opening and closing, combining a mix of the three servos:

(a) *Open Fully:* The track servo is commanded with a negative velocity of -28.6 revolutions per minute, until the open position limit is reached. This gripper action is used to either place an item or reset the gripper to its resting state.

- (b) *Close Fully:* The track servo is commanded with a positive velocity of 45.8 revolutions per minute, until either the load threshold or the maximum close position is reached. This gripper action is generally used to grasp an item.
- (c) *Open Partially:* The gripper is commanded a negative velocity of -28.6 revolutions per minute until the track servo reads zero in load value, indicating that there is no more contact with the item. Due to the thickness of the fingers, this functionality remains vital such that the gripper does not open too wide and bump the grocery bin.
- (d) *Finger Close*: The two servos that actuate the fingers are activated with position control, twisting the HSAs such that the gripper curves inward for better contact with the item it is grasping.

3.3 Tactile Sensors

In previous work, we have integrated tactile sensing capabilities in soft robotic grippers through soft capacitive [9] and resistive sensors [36]. Inspired by promising opportunities with fluidic tactile sensing [14, 18], we use the same 3D printer used to fabricate the HSAs to rapidly manufacture arrays of fluidic sensors. The fluidic sensor arrays consist of hollow, thin-walled hexagonal prisms in a semi close packed configuration. These features rest on a thick elastomeric panel, through which empty fluidic channels run from the inner cavity of each sensor to an edge of the panel. The entire sensor assembly is printed from a proprietary elastomeric polyurethane resin (EPU 40, Carbon, Inc.). Excess resin is removed from the printed part by aspirating with vacuum to create open channels. After the resin removal hole is sealed with Gorilla Super Glue Gel, silicone tubing is used to connect the closed volumes to differential pressure transducers (HSCDRRN160MDAA5, Honeywell).

As is common with tactile sensing approaches, lack of sufficient contact area with the target object resulted in uncharacteristically low sensor readings. However, due to the compliant nature of our soft gripper, this case of insufficient contact area resulted only for rigid target items. Softer target items allowed for reliable contact area due to the dual compliance of both gripper and target, while rigid target items forced the compliant gripper

Figure 3-4: Hardware setup with digitally-fabricated HSA fingers and digitally-fabricated hexagonal tactile sensors.

(a) Grasping soft item (b) Grasping rigid item

Figure 3-5: Grasping a soft item allows for better contact area, whereas rigid items have the phenomenon of lower contact area due to the soft nature of the gripper.

to bend away from rigid edges. We leverage this phenomenon due to the geometry of our flexible gripper to better separate rigid and soft objects, setting a lower tactile threshold for rigid items (Figure 5-2).

3.4 External Cameras

The external vision system uses two RGB-D cameras: an ASUS Xtion 2 to detect the locations and sizes of objects on the conveyor belt and an ASUS Xtion Pro Live to determine the best packing location in the bin. The Xtion 2 is placed 1.2 meters above the conveyor belt setup, and the Xtion Pro Live is secured 1.2 meters above the packing box. The cables run down the 80-20 beam in the center of the setup, and connect by USB to the laptop. As

these are stereo cameras and automatically adjust the exposure and brightness, we manually set the depth registration on and turn off the auto-exposure for color segmentation, later explained in Chapter 4.

Chapter 4

Software Architecture

4.1 Robot Operating System

For this system, Python 2.7 and Robotic Operating System (ROS) Kinetic were used [26]. There is a ROS node for each external sensor, including the two RGB-depth cameras, Dynamixel Servos controlling the gripper, and for the custom tactile sensor. In addition, there are a series of nodes for the motion planning, node for both object detection and online packing, node for coordinate transforms, and a node for the grocery packing logic. 4-1 shows the complete data pipeline necessary for all moving parts to run smoothly during an active session of the grocery packing system.

4.1.1 Motion Planning

MoveIt! [10] was used as the motion planner of the UR-5 arm. The exact search algorithm was RRT-Connect, which provides a path from bidirectionally running RRT from the start and goal state, and a segment length of 0.005m was used. A maximum of 10 seconds is given for planning time, and the maximum velocity and acceleration scaling factors are .3 and .15, respectively.

Figure 4-1: The RQT Tree graph for the grocery packing system. All nodes are shown, from the UR5 robot services to the external sensors and grocery packing software module.

4.2 External Vision System

The external vision system uses two RGB-D cameras, as described in Chapter 3. Algorithms for object detection and online packing were defined and implemented in separate ROS nodes, and run synchronously while the grocery packing system is active. In order to integrate the two cameras to the software architecture, coordinate transforms were required to translate the incoming camera stream into real world points understandable by the UR5 robot's motion planning system.

4.2.1 Coordinate Transform

Since we are using RGB-Depth cameras, it is possible to estimate the 3D pose of an item given its 2D coordinate pixels and depth from the camera.

$$w \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \begin{bmatrix} R \\ t \end{bmatrix} K$$

In the equation above, w is a scalar factor, x and y are the 2D pixel coordinates, X, Y, and Z make up the desired 3D point in the world coordinate frame, and R, t represent the extrinsic camera matrix, K being the intrinsic camera matrix.

For object detection and packing, the robot needs to know what 3d coordinate to move to in its coordinate frame. Therefore, there needs to be a coordinate transform from each of the cameras to the robot frame. This can be measured once because the cameras stay at a fixed distance from the base of the robot.

4.2.2 Object Detection

Objects to be packed are brought to the UR-5 via conveyor belt. Since the conveyor belt has a uniform black color and consistent location, color segmentation can be used via OpenCV to threshold out the belt and locate any number of grocery items.

Figure 4-2: Snapshot from the Xtion2, which detects the objects on the conveyor belt. The green rectangles indicate bounding boxes around the detected grocery items, and the green rectangle with a purple outline indicates the item closest to the end of the conveyor belt.

Once the items have been segmented, we fit a bounding box to each item's contours to estimate its size. From all the items detected on the belt, we focus on the item closest to the edge of the conveyor belt. This can be calculated with a simple *x* coordinate comparison, since we know that the conveyor belt moves with one degree of freedom in the *x* axis with respect to the pixels of the Xtion2 camera. Therefore, the item with the largest *x* value is the item the system focuses on for grasping.

Given the average time to plan and execute robot trajectories from the neutral position to the conveyor belt and the speed of the conveyor belt, we determine a meeting waypoint and the time the object will reach that point. We then use MoveIt! to plan the appropriate path for the UR-5 arm to move and grasp the object at that point.

4.2.3 Online Packing

Once an object is grasped, the vision system then identifies a favorable packing location. First, the vision system locates the edges of the packing box in the RGB image via color segmentation. The mask of the bin is then applied to the registered depth image, leaving only the region of packing interest. Since our gripper's fingers are x cm in diameter, and the gripper widens about the x or y axis of the robot, the mask of the bin is also eroded. This assures that the gripper will not bump into the bin, which could be a safety hazard in the real world.

(a) Packing a non-regular shaped item

(b) Packing a regular shaped item

Figure 4-3: (a) The closest item to the end of the conveyor belt is the grapes, whose bounding box from the Xtion2 camera is converted to the Xtion Pro Live. The middle figures indicates the calculated packing point based on the depth mask, and the right figures show the system in the same moment from an external view. (b) Demonstrating packing a regularly-shaped item, the muffin.

Object dimensions recorded previously during the detection and grasping tasks are translated from the object detection camera's pixels into the packing camera's pixel coordinates. This was done by converting the 2D dimensions into 3D coordinates, then converting them back into 2D dimensions corresponding to the appropriate camera.

A kernel of ones with dimensions of these translated length and width values is convolved with the depth image of the bin to create a heatmap of packing locations. We perform this operation twice: once with the kernel reflecting the current object orientation, and once with the kernel rotated 90 degrees. The packing location is found to be the location with the highest score of the two heatmaps. Although this approach is not the most optimal, it bypasses the computational intractability and training requirements found in contemporary algorithms [17,38], allowing us to perform online packing without significant pre-computation.

4.3 Tactile Data Pipeline

The tactile sensors have pressure readings that are read through an Arduino, which then spins a ROS node and continuously publishes the raw values as Float32 type numbers. This topic is then subscribed to by the Grocery Packing module, which reads and converts the data stream of raw values as mentioned in the previous chapter, and normalizes the six output values. The clean tactile output is utilized for decision making as explained in Chapter 5.1.2. While the sensor readings are converted continuously, the software system removes any outlier values, such as a negative value or a value that is much higher than the expected range of output based on our characterization.

4.4 Proprioceptive Gripper Control

The HSA fingers are controlled by Dynamixel Servos, which can be read and written to through a microcontroller using the Dynamixel SDK. In this thesis, we interleave between reading the servos' position, velocity, & load value and writing velocity & position commands to the servo. As discussed before, the Dynamixel Servo in our setup cannot read and

write simultaneously, so we utilize a state machine to only read when no write commands are given by the Grocery Packing module. In the last iteration, we utilized limit switches to indicate a hardware stop when the open and close limits were reached. After switching to the Dynamixel Servos, we use its proprioceptive properties to know exactly when the gripper's position is out of bounds.

Chapter 5

Grocery Packing Algorithm

The main algorithm for the online packing of groceries consists of decision-making based on the multimodal sensing capabilities of the system. The RGB-D sensors capture the size estimate of the grocery items and safe location to pack, the 3D printed soft fingers grasp the items using proprioception, and the embedded fluidic sensors on the fingers measure the pressure from the grasp. Combining these modalities allows for a fluid and autonomous grocery packing robot, without the system requiring any priors about the item before being spotted on the conveyor belt. Our use of a buffer table exemplifies the safety consciousness of the system, where items classified as delicate will be packed later, on top of the non-delicate items.

5.1 Grocery Packing Algorithm

First, the cameras continuously keep track of the items on the conveyor belt and the grocery bin with the packed items. While there are still grocery items that have not been packed, our multimodal system first checks whether an item has been found on the conveyor belt. If an item exists, the system prioritizes picking up this item as the it will move in and out of the robot arm workspace. For the closest item in reach of the arm, the system records the dimensions of the object as measured by the RGB-D sensors, meets the object on the belt, and grasps it using proprioceptive feedback. A reading from the tactile sensors is taken, and the object's packing priority score is calculated as described in Section 5.1.2. If this score

is greater than our initial classification threshold, then the item is packed in the optimal location specified by the vision sensors. If there was no item found on the conveyor belt, the system packs the item in the buffer zone with the highest priority score. This method is also represented in Algorithm 1.

Algorithm 1: Grocery Packing Algorithm

```
input: n grocery items to pack
p \leftarrow 0; while n > 0 do
   Items move along conveyor belt;
   if exists item on conveyor belt then
       if closest item is within range of robot then
           RGB-D sensor calculates item dimensions;
           UR5 robot arm grasps object;
           Tactile sensors read pressure for 1 second;
           p = delicacy score based on classifier with test set Pick least delicate
            item from buffer;
           if item's property p \ge THRESHOLD then
               RGB-D sensor calculates optimal packing location;
               Place item in box;
              n = n - 1;
           end
       end
   else
       Place item in buffer;
   end
end
```

5.1.1 Robot Actions

(a) Return Home

The robot in the grocery packing algorithm returns to a fixed neutral home position after completing a pick and place task. At this point, the gripper position is reset to fully open

(b) Pick Item From Belt

When the robot is in the home position, the Xtion 2 camera oversees the conveyor to detect the item closest to the end of the belt, and records its dimensions. Using the

Grocery Packing Algorithm

Figure 5-1: A flowchart of our system grocery packing algorithm with multimodal sensing. The first instance of the system is activated when groceries are detected on the conveyor belt. Depending on whether there are items in the buffer or the belt, the robot makes the decision to move to the appropriate location and pack the groceries in a safe way.

estimated time of arrival logic, the robot moves towards the predicted location of the moving item, and grasps it. The robot then lifts the item from the conveyor belt. If utilizing the tactile sensors, the item's stiffness is measured at this point.

(c) Place Item In Buffer

At this time, the robot is in possession of a delicate grocery item. It moves towards the first available buffer location, and places the item down, then moves up in the z direction to complete the placing of the item.

(d) Pick Item From Buffer

The system holds a record of the items in the buffer zone and its recorded properties of size and stiffness. Based on our metric of delicacy, the robot moves to the least delicate item in the buffer zone, and grasps to pick it up.

(e) Pack Item In Bin

The robot is grasping an item, and using the Xtion Pro Live camera, determines the deepest location in the packing bin that can fit the current item. The robot then places the grocery item at that location, either in the robot's end effector's current orientation or rotated 90 degrees. The robot then lifts its arm in the z direction to complete the placement.

5.1.2 Classifying Delicate Items

As grocery packing is complex and optimal packing challenging to define, in this thesis, we utilize a classification based on fragility of objects and object geometry to pack grocery items. We propose that two main properties of each object, detected by our multimodal sensing system, can be leveraged in determining toward the ideal of safe packing: size and stiffness. Size is determined using the vision sensors, and stiffness is determined by the tactile sensors.

Using a calibration set of 25 grocery items, we perform three trials of grasps and calculate the average tactile output per item along with its calculated area. We see a general trend that, due to their compliance, softer objects apply lesser amounts of force to the tactile sensors when the object are grasped. By labeling the calibration set with either rigid or soft and large or small, we can perform a simple binary classification to decide whether an item is rigid or not. We also apply a lower threshold to separate rigid items that do not have sufficient contact with the tactile sensor when grasped due to our soft gripper geometry, as explained in Section II. B.

5.1.3 System Limitations

While the decision making, manipulation, and packing of groceries is done autonomously, there are some system limitations regarding the grocery items and continuous running of the system. First, since the conveyor belt for the system has a belt of 15 cm in width and the gripper has a maximum cross-sectional clearance of 11 cm, the orientation of the items placed onto the conveyor belt were limited to ones that could satisfy the width constraints. If we needed to pack larger items or scale up in size, then we could possibly use a bigger conveyor belt and gripper. Another method is to change the orientation of the robot's end effector itself when grasping the item from the conveyor belt.

As our goal is to run an end-to-end grocery packing system without heavy computation,

Figure 5-2: Using the calibration set of grocery items, we determine two thresholds for classifying whether the item should be packed immediately or not. Tactile readings can be converted to force outputs using Equation 6.1.

the packing locations chosen are calculated by two convolutions by the depth kernel. This may not lead to the same solution found by a machine learning model, but the simple elegance of the current packing method and cheap and accurate-enough solution works in our setup. With the current gripper design, it is not trivial to achieve 'tight packing' due to each HSA finger being 3 cm in diameter, and the gripper being 23 cm in length.

As explained in Section 5.1.2, we apply a lower threshold to separate rigid items without enough contact with the tactile sensors attached to the fingers. This is partly due to the placement of the sensors at the bottom of the finger; since the fingers are soft, the contact between the tactile sensors and rigid item may not be sufficient 3-5. For soft objects, the finger molds its shape around the item, but for hard objects, the contact area at the bottom of the finger may be completely missed.

5.2 Automation/User Control

In this thesis, we discuss the method for an automatic grocery packing system. This is achieved by using the Grocery Packing ROS node to execute the next desired action in

sequence. While the node is spinning, the grocery packing algorithm described above is executed, and based on the current state of the environment, determines the next action for the robot to take. The user will press enter in the terminal to start the program, then can place the next grocery item on the conveyor belt. Since we are only working with one robot packing groceries at a time, the user will place the next item when the robot is finished packing the previous item. The exact timing is not critical however, since the vision system tracks the item down the conveyor belt, and the flexibility of the soft gripper allows for a higher likelihood of successful item grasping.

5.2.1 Continuously Running System

In order to achieve an autonomously running system that can stay active for long periods of time, we require a setup that can detect when a box is full, and stay active by packing multiple boxes. We achieve this condition by taking the mask of the packing box and checking both the height of the highest item and the average height of the items in the box. If there exists an item that exceeds the edge of the box or on average the items are almost near the top of the box, the grocery box is considered full. In our current system, the user is alerted by the system when the box is full, where they can swap the fully packed box with a new empty box.

In future work, perhaps there could be a second mobile robot whose job is to swap the boxes, or place the items on the belt itself. The shape of our current conveyor belt is also limited in this scenario - in most real world scenarios, the conveyor belt is round, and the items would keep rotating, like suitcases in the baggage claim. Another method to avoid manual interception regarding the grocery bag swapping is to place the boxes themselves on this rounded conveyor belt - this way, the system can turn the conveyor belt on to (1) return the fully packed bag and (2) continue to pack automatically with the next empty bag.

Chapter 6

Sensor Characterization

Figure 6-1: 25 hand-labeled calibration items were evaluated to determine the priority packing heuristic. Soft: clementine, grapes, juice box, mozzarella cheese. Medium: book, celery salt, empty soda can, instant ramen, jello, milk carton, mustard bottle, toy peach, toy pear, wheat thins. Rigid: apple, coffee can, fake cake, plastic lemon, Pringles tube, Rubik's dodecahegon, Spam, tea box, tuna can, vegemite, vitamin bottle.

6.1 Vision Characterization

We characterize the vision by running a test set of 25 objects of various sizes 6-1. We use the camera to calculate the width and length of the object and calculate area as the product of the two. The figure 6-2 represents the actual size vs the estimated size of each test object, which closely correlates to the line y = x, showing a relatively accurate estimate of size by vision. Using this, we determine a threshold for 'small' and 'large' items used in the initial determination of whether to pack a test object or place it in the buffer zone to be packed

later.

Figure 6-2: We evaluate the vision sensing method of using the item's area by comparing the actual area of the item from a bird's eye view of the conveyor belt with the system's calculation of item area based on the vision data.

6.2 Tactile Characterization

To characterize the soft tactile sensors, we conducted a series of experiments where weights were placed upon a sheet of cardboard (.8g, used to distribute weight over the different hexagonal sensors) on each sensor cap, which has seven hexagonal sensors (Figure 6-3). Three trials were collected for each weight class, and weight totals ranging from 10g to 200g in 10g increments were used, since measured forces at the gripper fingers range from 0.75 N to 2 N, depending on where on the fingers the object is grasped [7]. Data were collected and plotted for three sensors on each sensor cap for readability. The fitted line allows conversion from millivolts to Newtons of force as per equation 1.

$$force = (sensor_out put - 5.46)/.25$$

$$(6.1)$$

The conversion metric we determine here allows for interpretation of the tactile sensors

Figure 6-3: Left: Evaluation of 3 tactile sensors on one tactile sensor array against increasing applied load. The three outputs from one array are averaged to give a single measured output in millivolts. Standard deviation is also shown. Right: Hardware setup with digitally-fabricated HSA fingers and digitally-fabricated hexagonal tactile sensors.

in our system, where we convert the raw sensor data into an understandable force in millivolts, and force, before the gripper grasps the item on the conveyor belt and takes the tactile sensor reading.

6.3 Proprioceptive Characterization

We utilize three Dynamixel Servos in our gripper system - the main belt servo to control the parallel close and two for the fingers. To account for grasping unknown items, we use the velocity control mode for the main belt servo, setting a constant velocity to close the gripper. When the gripper reaches a firm grasp on the item, the belt servo's load values spike and we set the servo velocity to zero.

Similarly, when we finish packing the item in the bin, the gripper will move the box or disturb other objects if it opens fully. As a result, we set a constant velocity value to open the gripper until the load values reach zero, indicating that the item is fully released.

Chapter 7

Experimental Results

Grocery items may be fragile, deformable, irregularly-shaped, perishable, and/or uncooked, all of which contribute to an opaque idea of "optimal" packing for groceries [27]. We choose a human-legible method of evaluation for our grocery packing task based on scoring with a rubric, allowing for more intuitive understanding as well as potential expansion to reinforcement learning or other methods.

Robotics for grocery retrieval, picking and packing has seen recent developments. Aquilina et al. [3] performed concept validation of a robotic self-checkout system; however, the system relies on hard-coded information about the grocery items, the packing procedure considers geometry only, and the suction-based end effector limits the graspable items.

Figure 7-1: System evaluation was conducted with 15 test items. Soft: bread, chips, kale, muffin, seaweed. Medium: cheese, crackers, gum, Pringles, stroopwafels. Rigid: baking soda, ice cream, soup can, sprinkles, pot roast. Delicate: bread, chips, crackers, kale, muffin, seaweed, stroopwafels. Heavy: baking soda, gum, ice cream, pot roast, soup, sprinkles, stroopwafels.

7.1 Experimental Setup

Our experimental setup consists of a UR5 robot arm outfitted with a compliant robotic gripper referenced in [7], modified to use 3D printed handed shearing auxetics [35]. In front of the robot is a conveyor belt running at constant speed (.10 m/s) where items are loaded manually from the end further from the robot. Three small tables are supplied adjacent to the robot, which provide buffer space to place the items aside before they are packed. To the side of the robot is a cardboard box, which serves as the packing bin, and has colored markers at the edges for detection by the vision system. An ASUS XtionPro is mounted above the packing bin, and an ASUS Xtion2 is mounted above the conveyor belt.

For the purposes of the grocery packing experiments, the following assumptions are made to the system. First, the robot picks up one item at a time from the conveyor belt, where the gripper grasps the item at its center point. The next items will be placed on the conveyor belt by the user once the robot is done packing the previous item or the robot is in an idle state. Next, the conveyor belt moves at a constant speed throughout the course of all experiments, so the Xtion2 camera can predict where the tracked items will be in a future point of time. Lastly, we classify items into two categories: delicate or not delicate, and utilize the classification to determine whether the robot will place the item in the buffer or bin.

7.2 Task Evaluation

To evaluate our multisensing system, we conduct three grocery packing experiments: (1) a baseline experiment blind to each object's properties, (2) a vision-only experiment that only considers the item's size dimensions, and (3) a multimodal experiment that combines proprioception, tactile, and vision. For each of these experiments, we run three trials of packing a full order of ten items, for a total of nine experiments. We then evaluate the safety-consciousness of the different types of experiments with the use of a packing rubric, focusing on the extent to which the system's decision making was safe.

- **Baseline:** Vision and proprioceptive outputs are used only to ensure objects are grasped. All objects are packed immediately and in the center of the box.
- **Vision-Only:** Vision and proprioceptive outputs are used to ensure objects are grasped. In addition, vision provides an estimate of object shape (length and width) that is used to calculate the location where the object is packed. Items with object size greater than a threshold (determined experimentally to be .008 square meters using the calibration items in Figure 6-2), approximated as the top-down area calculated by area = length*width, are packed immediately, and smaller items are packed later. Items in the buffer are packed by order of decreasing size.
- Multimodal: Vision and proprioception are used to ensure objects are grasped. The length of the object estimated by vision is updated by the proprioceptive data from the gripper when it has closed around the object. A combined weighted heuristic of size and stiffness, discussed in section IV. B. 2) and determined by the tactile, proprioceptive, and vision systems, is used online to determine the order in which objects are packed. Vision and the size estimate are again used to determine the packing location for the object.

Three trials are performed for each experiment with different object sequences of test objects. These trials are as follows:

- **Trial 1:** Kale, ice cream, crackers, seaweed, pot roast, baking soda, muffin, chips, gum, soup
- **Trial 2:** Bread, kale, stroopwafels, pot roast, muffin, cheese, chips, sprinkles, gum, crackers
- **Trial 3:** Cheese, muffin, crackers, pot roast, soup, chips, stroopwafels, Pringles, ice cream, seaweed

7.2.1 Packing Rubric

For evaluation of the system, target objects were given two labels: delicate or not delicate, and heavy or not heavy. We define a human-legible rubric for evaluation taking into ac-

count the ambiguous qualities that contribute toward "good" grocery packing [27]. Each occurrence of a heavy item dropped on a delicate item was penalized during scoring of the experiments.

A lower penalty score on a packed box indicates a more safe and optimal bin packing.

Table 7.1: Scoring rules and associated penalties for packed bins

Criterion	Indicators	Penalty
Partial	Item occludes bin edge (top-down view)	3
Potentially Damaging	Heavy item packed on delicate item	2

7.3 Results

Overall, the results shown in Table 7.2 indicate that the vision-only-based system performs far better than the blind system to safely pack grocery items, and on average, the multimodal system outperforms both the vision-only and blind systems. As expected, the baseline experiment results in poor packing, with an average of six potentially damaging occurrences of a heavy item dropped on a fragile item per trial. The vision experiment produces improved packing performance, with an average of three potentially damaging occurrences of a heavy item dropped on a fragile item per trial. Average potentially damaging occurrences per trial drop to less than one for the multimodal experiement.

Table 7.2: Experiment penalty scores

Trial	Partial	Potentially Damaging	Total
Baseline 1	0	7	14
Baseline 2	0	7	14
Baseline 3	0	4	8
Vision 1	0	6	12
Vision 2	0	2	4
Vision 3	0	1	2
Multimodal 1	0	0	0
Multimodal 2	1	2	7
Multimodal 3	1	0	3

7.3.1 Baseline Results

The baseline experiments had a grasping success rate of 100%, with ten grasps per trial for a total of 30 successful grasps. Since the baseline scenario packs the item in the middle of the box, no items are placed in the buffer. One box is packed with ten grocery items per trial, for a total of three packed boxes. While there were no failures with respect to grasping, the packing score reflected poorly, as the system was not considering the size nor overall delicacy of the grocery item when packing its order. Overall, the baseline experiment results in poor packing, with an average of six potentially damaging occurrences of a heavy item dropped on a fragile item per trial.

7.3.2 Vision-Only Results

There were a total of 42 successful grasps out of 42 for the three vision-only trials. While there are still ten items per trial, the buffer held four 'delicate' items, as defined by the size factor mentioned in the task evaluation. Again, there were a total of three packed boxes that were considered full. One unexpected placement for Trial 1 was the placement of the soup can in the buffer, where it was placed in a different orientation than when picked up from the conveyor belt. This was caused from a change of center of mass while grasping the object. However, since the fingers are soft, they adapted to the altered orientation and still placed the item carefully onto the buffer, and picked it up safely when packing into the bin. Overall, the vision experiment produces improved packing performance, with an average of three potentially damaging occurrences of a heavy item dropped on a fragile item per trial.

7.3.3 Multimodal Results

For the multimodal final experiment, there were 45 successful grasps out of 45. The buffer for this experiment held five items to be considered 'delicate': bread, kale, stroopwafels, muffin and cheese, which are all soft to the human touch. Three boxes were packed fully, where nondelicate items were packed first then delicate items were picked from the buffer to the grocery bin.

In Trial 2, the first item was not detected due to the user misplacing the item to occlude the entire conveyor belt from the RGB-D camera, and the robot did not attempt to grasp the item. A second attempt was made with the correct placement, which resulted in a successful grasp. Since color segmentation of the belt was enabled, covering the entire width of the conveyor belt will cause an error from the system.

All penalties incurred during the multimodal tasks embody intricacies of real-world grocery packing. The two penalties for potentially damaging packed items for Multimodal 2 arise from the bag of stroopwafels being packed on top of other delicate items. This case of packing an item that is both delicate and heavy illuminates the complexity of the grocery packing task; prioritizing the safety of this item could mean potentially damaging other objects, yet packing it first could result in the object being damaged. The partial packing penalty incurred for both Multimodal 2 and Multimodal 3 trials are due to a slight occlusion of the bin edge by the plastic bag of the bread. If the bread, a large object, had been packed earlier in an emptier bin (such as in Baseline 2 and Vision 2), it would likely land entirely inside the bin at the cost of being crushed under subsequently packed items. Intuitively, if a bin were being packed for a human to carry (eg. from shopping cart to car), placing delicate, bulky items at the top of the bin would likely be prioritized over strictly fitting all items within the walls of the bin.

Grocery Packing Bin Configurations

Figure 7-2: Packed bins for each of three trials for baseline, vision, and multimodal experiments.

Chapter 8

Discussion & Future Work

In this thesis, we have achieved a soft robotic system that leverages multimodal sensing input to pack groceries towards a human-legible metric of "well-packed". We have shown that the combined multimodal system achieves greater performance than baseline and vision-only systems and uncover tradeoffs in packing optimality inherent in the complex nature of the grocery packing task. With this, we present an end-to-end grocery packing system that can autonomously handle dynamic item grasping, packing, and real-time decision-making. When the box is full, it can be swapped out for another box without full pausing the system. The robot can continue packing, as the RGB-D sensors track the items in the conveyor belt and box continuously in real time. By utilizing the combination of tactile sensing and proprioception, the system can detect the fragility of an item and ensure a firm grasp but one that could damage the grocery item.

Combining the cost-efficient color segmentation method to detect and track the items down the conveyor belt, and using the constant speed of the belt to calculate the motion planning to grasp and pick up the moving item allows for a reliable item grasping subsystem. By running the tracking subsystem as its own ROS node, the items can get tracked and have their estimated 3D pose calculated continuously. The same can be said about the ROS node for the packing subsystem, where the RGB-D sensor continuously evaluates the lowest packing area available for the item the robot is currently grasping. By running two convolutions, we can determine a packing pose considering the size of the item.

A modular multimodal system such as the system we currently have could possibly be

extended to real world deployment with adjustments to the design of the gripper and tactile sensors, along with a larger-scale and more realistic setup. In addition, the speed and accuracy of the grocery packing module would go up if we were to add more robot agents into the environent - two robot arms packing groceries down the conveyor belt simultaneously.

8.1 Lessons Learned

8.1.1 Hardware

The initial obstacle was understanding how to use the UR5 robot since it was my first time working with a robot arm hardware. In particular, the challenging aspects consisted of understanding the coordinate frames of the different joints of the arm and their relationship to the external RGB-Depth cameras and how the commands get translated from joint goal commands to pose goal commands. Another restriction was the number of objects we had in the environment that we did not want to robot to bump into: the box, tables, conveyor belt, and of course, the humans. I learned how to tell the robot to exit the search if it found a path that was out of bounds or contained too many way points, indicating a long and inefficient path to the goal pose.

Another obstacle in the hardware system, especially during long experiments, was the adapter between the Dynamixel servo and the gripper. This was a vital connection as it allowed the servo to open and close the gripper, and it was important that this connection did not break or slip significantly while the grocery packing system was active. When resolving this issue, it was especially important to understand the stress points of hardware and why the parts broke - this adapter for the Dynamixel servo particularly kept breaking since the 3D printed part was too thin and sheared off. Our fix was to redesign the hardware to avoid high torsion on the adapter, as the belt mechanism in our gripper module led to the 3D-printed adapter to be the stressor point. After long use, I learend it is important to turn off or reboot the hardware system, especially the Dynamixel Servos, since certain features were overridden. This also applies to the software side of the system, since the cache can build up and sometimes result in strange system behavior.

Lastly, depth data from the cameras are messy! From the software side, I applied additional filtering and averaging to the 2D camera streams to ensure that the conversion from 2D pixel to 3D world coordinate was not erroneous, and to ignore depth values that did not logically make sense, such as 0 or nan.

8.1.2 Algorithms

It is important to consider the main priorities of the specific system when implementing decision making of the system. For example, in the current system, the conveyor belt is short and linear, meaning that it is a priority for the robot to not let any of the items fall off the belt. If the belt were round, the priority would change. Another important part of the algorithm is to remember the hardware integrating into it - for example for the packing, I initially did not consider the maximum open and close dimensions of the gripper and assumed its size to be static when implementing the packing algorithm. The robot must account for how far the gripper may open and make sure the pose chosen will not cause the robot to bump into other items or the box.

Another thing I learned was efficient motion planning for a path with many environment obstacles added as a safety mechanism. For example, there are different algorithms to use for searching through the state space - we used RRTConnect but the original setting was at RRT, which only searches through random tree from the start pose rather than both the start and end poses. In addition, we can also select the segment length, which determines how fine-grained we want the search to be. Overall, despite using the assistance of MoveIt! for motion planning, there needed to be a comprehensive understanding of how the UR-5 moves and why it moves in that particular way.

8.1.3 Experiments

When running experiments, I learned that it is critical to stay organized and record all data, particularly when there are many moving parts in the system for each experiment. For example, in addition to the footage filmed on the camera, we also kept rosbags with the action history of the system, and took photos of the resulting packed bin.

Another critical aspect of the system I realized when getting ready to conduct the experiments was to have a modular or easy-to-read codebase, in case the setup ends up changing or different experiments need to get run in sequence. One method I used was to store rosparams, where the user can alter the settings for the 1) experiment mode, 2) running with the gripper on, and 3) move the robot. Since the sun casted different shadows on the conveyor belt in the lab room every day, having a method to check the camera stream and calibrate the box and color segmentation was crucial.

8.2 Future Work

Future work includes the expansion of tactile, vision, and proprioceptive data to further explore physical properties of unknown objects. For example, exploration of soft sensor array configurations towards better ensuring adequate contact between the soft fingers and target object could occur, to remove the lower threshold that existed for the item delicacy classifier. Next, estimation of geometric regularity from visual data was implemented in our research but not used in experiments, and could be used if we alter the packing algorithm to consider 'tight' packing. Another interesting direction is to build upon the multimodal sensing for determining the delicacy of an item, and use secondary estimates to calculate object size and stiffness from proprioceptive data.

In the experimental results, a packing rubric was used to evaluate the safety of the items packed in the bin. Assigning penalties and rewards to this packing rubric gives way to reinforcement learning applications, where the system could potentially learn the delicacy classification of the item based on the extra measurement from proprioceptive feedback.

If extended to a real world deployment, the system would require a slightly altered setup - one larger in scale, both in terms of the surface area of the conveyor belt and buffer zone to handle more items.

Appendix A

Grocery Packing Demo Instructions

- 1. Turn on the UR-5 Robot cart. Turn on the UR controller, then initialize and start the robot. Check the robot's IP address and confirm that it matches with the address listed in moveit_UR5.launch, found in the moveit_planner ROS package.
- Ensure the cables for the Ethernet, gripper, and both RGB-Depth cameras are connected to the laptop.
- 3. Turn the conveyor belt on by flipping the switch, and turn on the power for the gripper (Dynamixel Servos).
- 4. Open the terminal window on the laptop, and run roslaunch moveit_planner grocery_demo.launch.
- 5. Once all the programs are loaded, the terminal will say "Press to start". Press the enter key to activate the grocery packing system, and the user will not need to interact with the terminal until their desired termination of the system. The robot will stay idle until the first grocery item is detected on the belt. Place each grocery item in the center of the conveyor belt such that it does not occlude the entire width of the belt. When the robot moves back to its idle position, place the next grocery item on the belt.
- 6. Here is the param file for running the grocery system. To switch between the different experiment modes discussed in the thesis, use '1' for baseline, '2' for vision-only,

and '3' for multimodal.

```
show_packing: false
show_obj_detection: false
gripper: true
move_robot: true
mode: 3 # 1: baseline, 2: vision-only, 3: multimodal
calibrate: false
```

Appendix B

Code

Grocery Packing module

```
#!/usr/bin/env python
        from collections import namedtuple
         import numpy as np
        import rospy
        from moveit_planner.UR5Arm import *
       from moveit_planner.object_utils import ObjectUtils
 9 from geometry_msgs.msg import *
10 from moveit_msgs.msg import *
11 from moveit_msgs.srv import *
12 from trajectory_msgs.msg import *
13 from std_msgs.msg import Float32MultiArray, Int8, Int32MultiArray, Int32, Float32
14 from tf.transformations import euler_from_quaternion, quaternion_from_euler
15 from gazebo_msgs.msg import ModelState
16 from gazebo_msgs.srv import SetModelState
17
18
        CENTER_TOPIC = '/boxcoord' #to subscribe object center coordinates to
        BIN\_JOINT\_GOAL = [4.4839324951171875, -1.0680277983294886, \ 1.0908217430114746, -1.593987766896383, \ -1.5700305143939417, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277983294886, \ -1.0680277984886, \ -1.0680277984886, \ -1.0680277984886, \ -1.0680277984886, \ -1.0680277984886, \ -1.0680277984886, \ -1.06802798886, \ -1.06802798886, \ -1.0680279888, \ -1.0680279888, \ -1.068027988, \ -1.068027988, \ -1.068027988, \ -1.068027988, \ -1.068027988, \ -1.068027988, \ -1.068027988, \ -1.068027988, \ -1.068027988, \ -1.068027988, \ -1.068027988, \ -1.068027988, \ -1.06802798, \ -1.06802798, \ -1.06802798, \ -1.06802798, \ -1.06802798, \ -1.06802798, \ -1.06802798, \ -1.06802798, \ -1.06802798, \ -1.06802798, \ -1.06802798, \ -1.06802798, \ -1.06802798, \ -1.06802798, \ -1.06802798, \ -1.06802798, \ -1.06802798, \ -1.06802798, \ -1.06802798, \ -1.06802798, \ -1.06802798, \ -1.06802798, \ -1.06802798, \ -1.06802798, \ -1.06802798, \ -1.06802798
                      2.913686513900757] # fixed joint state location above box - allows for faster performance in RRT Connect planning
20
21 # dynamic picking params
22 TRAVEL_TIME = 4 # seconds allowed for robot to plan + travel to object meeting point
23 MIN_Y = -.43 # meters; defines area on conveyor belt we allow the robot to move to
24 MAX_Y = .2 # meters
25 BUFFER_ZONE_Z_HEIGHT = .3 #.37
26 GRIPPER = rospy.get_param("gripper", False)
27 EXPERIMENT_MODE = rospy.get_param("mode", 1)
        TACTILE_TOPIC = "/tactile_out"
29 WILL_EXECUTE = rospy.get_param("move_robot", True)
        CALIBRATION\_FREQ = 3
30
31
32 ADC_OFFSET = 1.25
         ADC_COEFF_VOLTS_PER_TICK = 2.048/16777215.0
33
         ADC_COEFF_MV_PER_TICK = ADC_COEFF_VOLTS_PER_TICK * 1000
         NUM_TACTILE_SENSORS = 6
37
         AREA_THRESHOLD = 0.008 # determined from vision characterization
38
```

```
39 # ROBOT ACTIONS
40 PICK_FROM_BELT = 0
41 PLACE_IN_BUFFER = 1
42 PICK_FROM_BUFFER = 2
43 PACK_IN_BIN = 3
44 HOME = 4
45 STANDBY = -1
46
47 # EXPERIMENT MODES
48 BASELINE = 1
49
   VISION = 2
50 MULTIMODAL = 3
51
52 # CLASSIFIER PARAMS - calculated from calibration experiments
   Y INTERCEPT = 135.0
53
   SLOPE = (Y_INTERCEPT -90.9)/-0.05
    CONTACT_THRESHOLD = 21
55
56
57
    class GroceryPacking():
58
        def __init__(self):
59
             self.tactile_zeros = np.zeros((6,))
60
             self.calibrate_sensor_count = 0
             self.gripper_pub = rospy.Publisher("/move_gripper", Int8, queue_size=0) # 1: open, 2: close, 3:auxOpen, 4:
             self.buffer_pub = rospy.Publisher("/buffer_flag", Point, queue_size=0)
             self.tactile_sub = rospy.Subscriber(TACTILE_TOPIC, Int32MultiArray, callback=self.tactile_cb)
             self.slip_pub = rospy.Publisher("/slip_amt", Int32, queue_size=0)
             self.normalized\_tactile\_pub = rospy.Publisher("/normalized\_tactile\_out", Float32MultiArray, queue\_size=10) \\
             self.toggle_pub = rospy.Publisher("/toggle", Int8, queue_size=0)
             self.score_pub = rospy.Publisher("/score", Float32MultiArray, queue_size=0)
69
             self.gripper\_dist\_sub = rospy.Subscriber("/gripper\_width", Float32, callback = self.gripper\_dist\_cb)
70
             self.torque_pub = rospy.Publisher("/torque_on", Int8, queue_size=0)
71
             self.size_check = rospy.Publisher("/size_check", Int8, queue_size=0)
72
             self.execute = {PICK_FROM_BELT: self.PickFromConveyorBelt, PLACE_IN_BUFFER: self.PlaceInBufferZone,
73
                  PICK_FROM_BUFFER: self.PickFromBufferZone, PACK_IN_BIN: self.PlaceInBox, HOME: self.GoToNeutralPose}
74
             self arm = UR5Arm()
75
             self.utils = ObjectUtils()
             self.result = None
76
             self_reset()
77
             self custom offset = 0
78
79
             self.normalized_tactile_vals = [0,0,0,0,0,0]
80
             self.missed = False
81
82
             self.arm.printOrientation()
83
84
        def gripper_dist_cb(self, data):
85
             dist_cm = data.data
86
             if self.current_item is not None:
                 self.current_item.proprio_width = dist_cm
89
        def tactile_cb(self, data):
90
91
             Callback for tactile data stream of NUM_TACTILE_SENSORS raw values. We convert to mV and
92
             normalize the data. If sensor value is too low (aka no contact point), disregard when
93
             averaging values. Assumption: harder objects give higher readings.
94
95
             output = data.data # array of 6 sensor values
96
             normalized_data = np.zeros((NUM_TACTILE_SENSORS,))
97
```

```
count = 0
              for i in range(len(output)):
100
                  normalized = (output[i] + ADC_OFFSET/ADC_COEFF_VOLTS_PER_TICK) * ADC_COEFF_MV_PER_TICK
101
                  if -200 < normalized < 10000: # within reasonable range
102
                      normalized_data[i] += normalized
103
                      count += 1
104
105
              self.normalized_tactile_vals = normalized_data - self.tactile_zeros
106
107
              # publish normalized tactile out
108
              msg = Float32MultiArray()
109
              msg.data = list(self.normalized_tactile_vals)
              self.normalized_tactile_pub.publish(msg)
110
111
          def average_tactile_out(self, num_seconds, zero=False):
112
              # publish tactile calibration start
113
              toggle_msg = Int8()
114
              toggle_msg.data = 7
115
              self.toggle_pub.publish(toggle_msg)
116
117
118
              tactile_zeros = self.tactile_zeros if zero else 0
119
120
              count = 0
              total = 0.0
121
122
              now = rospy.Time.now()
123
124
              while (rospy.Time.now().to_sec() - now.to_sec()) < num_seconds:</pre>
125
                  total += (self.normalized_tactile_vals + tactile_zeros)
126
                  count += 1
127
128
              # publish tactile calibration end
129
              self.toggle_pub.publish(toggle_msg)
130
131
              return total / float (count)
132
          def clean_tactile_data(self, data):
133
             THRESHOLD = 5.0
134
135
              output = data[data > THRESHOLD]
136
              if len(output) == 0:
137
                  return 0.0, 0
138
              return sum(output) / float(len(output)), max(output)
139
140
141
          def reset(self):
              self.clear_buffer_occupancy()
142
143
              self.current item = None
144
              self.packed_items = []
145
              self.current_action = HOME
146
              self.history = [self.current_action]
147
              self.GoToNeutralPose()
148
149
              self.item_count = 0
150
151
          def run(self):
152
153
              Executes the sequence.
154
155
              print "starting run"
156
157
              self.current_action = self.get_next_event(self.result)
158
              \# \ self.current\_action = self.grab\_object()
```

```
159
160
              rospy.loginfo("NEXT ACTION: {}".format(self.current_action))
161
162
              # If a valid action exists, execute it
163
              if self.current_action != STANDBY:
164
                  self.result = self.execute[self.current_action]()
165
166
                  # publishing current action
167
                  msg = Int8()
168
                  msg.data = self.current_action
169
                  self.toggle_pub.publish(msg)
170
              self.history.append(self.current_action) # keep track of past actions
171
172
         def clear_buffer_occupancy(self):
173
174
              This resets the buffer occupancy. The buffer currently has 5 hardcoded locations, where the dict
175
              key is the buffer id and the value is [position wrt robot, Item object]
176
177
178
179
              self.buffer\_occupancy = \{0: [(-.42, .1, -.1), None],
                                       1: [(-.42, -.1, -.1), None],
180
181
                                       2: [(-.42, -.3, -.1), None],
                                       3: [(-.42, -.5, -.1), None],
182
183
                                       4: [(-.42, -.7, -.1), None]}
184
185
         def add_packed_item(self, item):
              self.packed_items.append(item)
186
187
188
         def update_item_for_buffer(self):
189
190
              Determine the next item to pick from the buffer and communicate the item's properties
191
              to the packing logic (by publishing to a new topic).
192
193
              updated size = Point()
194
              buffer_item , _, _ = self.get_least_delicate_in_buffer()
195
              updated_size.x, updated_size.y, updated_size.z = buffer_item.width, buffer_item.length, 1
196
              self.buffer_pub.publish(updated_size)
              print("publishing buffer flag with new size ({}, {})".format(buffer_item.width, buffer_item.length))
197
198
199
         def get_next_event(self, result=None):
200
              Packing algorithm logic.
201
202
              1. If item on conveyor belt, pick it up. Else check if items are in buffer.
              2. If item is delicate, place in buffer. Else pack in bin.
203
              3. Go home/standby.
204
205
206
207
              if result is False: # if solution not found on belt, go home
208
                  return HOME
209
210
              if self.current_action == HOME or self.current_action == -1: # at home
211
212
                  if self.utils.center_pixels != (0,0): # Item on belt
213
                      if self.ItemIsReachable():
214
                          print("center is currently", self.utils.center_pixels)
215
                          return PICK_FROM_BELT # pick from conveyor belt
216
217
                      return STANDBY # wait until item is within reach. Prioritizes item on belt over buffer item.
218
219
                  else:
```

```
220
                      for buffer_id, (buffer_loc, item) in self.buffer_occupancy.items():
221
                          if item is not None:
                              print("Picking from: ", self.get_least_delicate_in_buffer())
222
223
                              return PICK_FROM_BUFFER # pick from buffer
224
                      return STANDBY # do nothing
225
226
              if self.current_action == PICK_FROM_BELT:
227
                  if self.current_item is None:
228
                      return STANDBY
229
                  elif self.IsBufferFull(): # pack in bin no matter what if buffer is full
230
                      return PACK_IN_BIN
231
                  elif self.current_item.isDelicate():
                      return PLACE_IN_BUFFER # place in buffer
232
233
                  else:
                      return PACK IN BIN # place in bin
234
235
              if self.current_action == PLACE_IN_BUFFER: # go home after placing item in buffer
236
                  return HOME
237
238
239
              if self.current_action == PICK_FROM_BUFFER: # pack item after picking from buffer
                  return PACK_IN_BIN
240
241
242
              if self.current_action == PACK_IN_BIN: # go home after placing item in bin
243
                  reset_buffer_flag = Point()
244
                  self.buffer_pub.publish(reset_buffer_flag)
                  print("Resetting buffer flag")
245
                  self.publish_slip_val(100) # account for gripper slip
246
247
                  return HOME
248
249
          def grab_object(self):
250
              if self.current_action == HOME:
251
                  return PICK_FROM_BELT
252
              elif self.current_action == PICK_FROM_BELT:
253
                  rospy.sleep(1.0)
254
                  if GRIPPER:
255
                      self.OpenGripper()
256
                  return HOME
257
          def GoToNeutralPose(self):
258
259
              Robot always starts and ends in the neutral position to avoid occluding the items on the conveyor belt and
260
                   packing box.
261
262
              print_message("4 Go To Neutral Pose")
263
              # open gripper
264
              if GRIPPER:
265
                  print("opening gripper from GroceryPacking node!")
266
267
                  self.OpenGripperFull()
268
269
                  if EXPERIMENT_MODE == MULTIMODAL and self.calibrate_sensor_count % CALIBRATION_FREQ == 0: # go to calibrate
                       state
270
                      self.FingerClose()
271
272
              if self.history[-1] == PACK_IN_BIN and WILL_EXECUTE:
273
                  success = self.arm.LoadandExecutePlan("binToHome", self.arm.arm_group)
274
                  if success:
275
                      return
276
277
              robot_pose = self.arm.defineWaypoint()
278
```

```
279
              success = self.arm.MoveToPoseGoal(robot_pose, self.arm.arm_group, event_name="Neutral Pose", willExecute=
                   WILL_EXECUTE)
280
281
              print("Going to Neutral Pose with x: {} y: {} z: {}".format(robot_pose.position.x, robot_pose.position.y,
                    robot_pose.position.z))
282
283
              # Multimodal addition: calibrate the sensors every 3 turns
284
              if EXPERIMENT MODE == MULTIMODAL:
285
                  if self.calibrate\_sensor\_count \% CALIBRATION\_FREQ == 0:
286
                      print("Recalibrating tactile out...")
287
                      self.tactile_zeros = self.average_tactile_out(2.0, zero=True)
288
                      print("Finished calibrating with new offset of {}".format(self.tactile_zeros))
289
                      if GRIPPER:
290
                          self.OpenGripperFull()
291
292
                  self.calibrate sensor count += 1
293
294
              return robot_pose, success
295
          def ItemIsReachable(self):
296
297
298
              Returns true if the robot's length can reach the item on the conveyor belt.
299
300
              target_loc = self.utils.get_future_loc(TRAVEL_TIME).y
301
302
              if target_loc < MIN_Y:</pre>
303
                  print("Item is too far out of reach - will try again.")
304
305
306
              if target_loc > MAX_Y: # we will not get to the item in time
307
                  print("Robot will not get to item in time! Aborting")
308
                  return False
309
310
              return True
311
312
          def PickFromConveyorBelt(self):
313
314
              Event 0: If the target item is reachable, calculate a reasonable location for the robot to pick up the item.
315
316
317
              print message ("O Pick From Conveyor Belt")
318
              # If item is not recognized, set dimensions to (0,0); otherwise set to its bounding box width and length
319
320
321
              while np.isnan(self.utils.item_width) or np.isnan(self.utils.item_length):
                  size = (self.utils.item width, self.utils.item length)
322
323
              size = (self.utils.item_width, self.utils.item_length)
324
325
326
              rospy.sleep(.5)
327
328
              robot pose = self.arm.arm group.get current pose("ee link").pose
329
330
              # move to anticipated item location with z buffer
331
              travel_time = TRAVEL_TIME
332
              target_loc = self.utils.get_future_loc(travel_time)
333
              if target_loc.y > MAX_Y: # we will not get to the item in time
334
                  print("Robot will not get to item in time! Aborting")
335
336
337
              # check if the item will still be out of our reach in TRAVEL_TIME; if so, set to wait at edge of boundary
```

```
338
              if target_loc.y < MIN_Y:</pre>
339
                  target_loc.y = MIN_Y
340
                  travel_time = self.utils.travel_time_to(target_loc)
341
342
              self.item_count += 1
343
344
              # create new Item object for the item we are picking up
345
              self.current_item = Item(id=self.item_count,
346
                                        size=size,
347
                                        packing_pose=self.arm.getPackingLoc())
348
349
              rospy.loginfo("New item: id {}, size ({}, {}), packing_pose ({}, {}), format(self.current_item.id, self.
                   current\_item.width, self.current\_item.length, self.current\_item.packing\_pose.position.x, self.current\_item.
                   packing\_pose.position.y, self.current\_item.packing\_pose.position.z \ ))
350
351
              # Robot pose for grasping item off the conveyor belt
              robot_pose.position.x -= .3 # assuming that item is placed in center of conveyor belt, which is 30 cm away from
352
              robot_pose.position.y = target_loc.y +.01 # Note: this constant is an offset dependent on the lighting and
353
                   shadows.
              robot_pose.position.z = .17 # z location above conveyor belt
354
355
              eta = rospy.Time.now() + rospy.Duration.from_sec(travel_time)
356
              # print("Target intercept location: {} with eta {}]".format(robot_pose, eta))
              success = self.arm.MoveToObject(robot_pose, self.arm.arm_group, eta, willExecute=WILL_EXECUTE, event_name="Pick
360
              # If robot could not execute the plan
361
                  print("Did not move to item location on conveyor belt")
363
364
365
366
                  print("Successfully moved to item location on conveyor belt")
367
                  self.item_in_conveyor_belt = False
368
                  # Close gripper
369
                  if GRIPPER:
370
                      self.CloseGripper()
371
372
                      print("GP CloseGripper done!")
373
                  # Raise arm after grasping item
374
375
                  self.RaiseArm()
376
                  print("Successfully picked up item")
377
                  if EXPERIMENT MODE == MULTIMODAL:
378
                      # aux close a little more
379
                      if GRIPPER:
380
381
                          self.FingerCloseExtra()
382
383
                      print('##### press for tactile calibration #####')
384
                      input = raw_input()
385
                      # take one second to analyze tactile output at this time, determine score.
386
                      initial_tactile_out = self.average_tactile_out(1.0)
387
                      avg_value , self.current_item.tactile_out = self.clean_tactile_data(initial_tactile_out)
388
                      print("Finished calibrating with new val of {}".format(self.current_item.tactile_out))
389
                      print("average value is", avg_value)
390
391
                      self.current_item.setScore() # updates score with tactile info
392
                      score_msg = Float32MultiArray()
393
                      score_msg.data = [self.current_item.width * self.current_item.length, self.current_item.tactile_out]
```

```
394
                      self.score_pub.publish(score_msg)
395
                      print("New score for item {} is {}".format(self.current_item.id, self.current_item.score))
396
397
                  # SUBGOAL
398
                  self.picked_from_conveyor_belt = True
399
400
         def PlaceInBufferZone(self):
401
402
              Event 1: Place the item in an available spot in the buffer zone.
403
404
              print_message("1 Placing in Buffer Zone")
405
406
              print("Current item is: {}".format(self.current item.id))
407
408
              for buffer no. (buffer loc. item) in self.buffer occupancy.items():
409
                  if item is None:
                      self.buffer_occupancy[buffer_no][1] = self.current_item # update buffer occupancy
410
                      self.item in buffer = True
411
                      updated_buffer_loc = buffer_loc[0], buffer_loc[1], BUFFER_ZONE_Z_HEIGHT
412
413
414
                      success = self.arm.MoveToCustomPose(*updated buffer loc. willExecute=WILL EXECUTE)
                      print("Moving to buffer zone {} with loc {}, success? {}".format(buffer_no, updated_buffer_loc, success)
415
                           )
416
417
                      # Lower arm to the buffer zone location
                      robot_pose = self.arm.arm_group.get_current_pose("ee_link").pose
419
                      robot_pose.position.z = .09 # hardcoded z location for the buffer zone tables
420
421
                      self.arm.MoveToPoseGoal(robot_pose, self.arm.arm_group, event_name="Placing object", willExecute=
                           WILL_EXECUTE)
422
423
                      break
424
425
              # Open gripper and place the item
426
              if GRIPPER ·
427
                  self.OpenGripperParallel()
428
              # SUBGOAL
429
              self.item_in_buffer = True
430
              rospy.loginfo("Item {} added to buffer zone {}".format(self.current_item.id, buffer_no))
431
432
433
              # Raise robot arm after placing item in buffer
434
              self.RaiseArm()
435
              # note: hardcoded fix for buffer zone 4 - it is furthest from the robot, so the motion planning
436
437
              # gets stuck sometimes, fix is to have the robot move to an intermediate pose first.
438
              if buffer no == 4:
439
                  success = self.arm.MoveToCustomPose(-.4, -.5, BUFFER_ZONE_Z_HEIGHT, willExecute=WILL_EXECUTE)
440
441
         def get_least_delicate_in_buffer(self):
442
              least_delicate = None
443
              chosen_buffer_no = None
444
              chosen_buffer_loc = None
445
446
              print("Current state of buffer", self.buffer_occupancy)
447
              for buffer_no, (buffer_loc, item) in self.buffer_occupancy.items():
448
                  if item is not None and (least_delicate is None or item.score > least_delicate.score):
449
                      least_delicate = item
450
                      chosen_buffer_no = buffer_no
451
                      chosen_buffer_loc = buffer_loc
452
                      print("Least delicate item is", least_delicate.id, least_delicate.score, chosen_buffer_no)
```

```
453
454
              return least_delicate, chosen_buffer_no, chosen_buffer_loc
455
456
          def IsBufferFull(self):
457
              for buffer_no, (buffer_loc, item) in self.buffer_occupancy.items():
458
                  if item is None:
459
                      return False
460
461
              return True
462
463
          def PickFromBufferZone (self):
464
465
              Event 2: Pick up an item from the buffer zone. If LEARNING_MODE = True, this will be a hardcoded item given in
                   lof\_experiment\_params.yaml.
                       If LEARNING_MODE = False, this will be the first item that matches the correct properties (is_hard,
466
                             is heavy).
467
              print message("2 Picking from Buffer Zone")
468
469
470
              print("Buffer:", self.buffer_occupancy)
471
472
              self.update item for buffer()
473
              self.current_item, buffer_no, buffer_loc = self.get_least_delicate_in_buffer() # set current item
474
              self.current_item.packing_pose = self.arm.getPackingLoc() # update item's packing pose
475
476
              success = self.arm.MoveToCustomPose(buffer_loc[0], buffer_loc[1], BUFFER_ZONE_Z_HEIGHT, willExecute=WILL_EXECUTE
477
              print("Moving to buffer zone {} with loc {}, success? {}".format(buffer_no, (buffer_loc[0], buffer_loc[1],
                   BUFFER\_ZONE\_Z\_HEIGHT)\;,\;\;success\,)\,)
478
              rospy.loginfo("Removed item \{\} from buffer zone \{\}". \textbf{format}(self.current\_item. \textbf{id}, buffer\_no))
479
              # Lower arm to buffer location
480
481
              lowered_z = 0.07 # currently set for buffer table height
482
              print("Custom offset is {}".format(self.custom_offset))
483
              success = self.arm.MoveToCustomPose(buffer_loc[0], buffer_loc[1] + self.custom_offset, lowered_z, willExecute=
                   WILL EXECUTE)
484
              if GRIPPER
485
486
                  self.CloseGripperParallel()
487
488
              # Raise arm after grasping item from buffer
              success = self.arm.MoveToCustomPose(buffer_loc[0], buffer_loc[1], BUFFER_ZONE_Z_HEIGHT, willExecute=WILL_EXECUTE
489
                   )
490
              # SUBGOAL
491
492
              self.picked from buffer = True if success else False
              self.buffer_occupancy[buffer_no][1] = None # clear buffer memory; area is now unoccupied
493
494
495
              occupied = self.buffer occupancy.values()
496
              self.item_in_buffer = False if occupied.count(None) == len(occupied) else True
497
498
              # note: hardcoded fix for buffer zone 4 - it is furthest from the robot, so the motion planning
499
              # gets stuck sometimes. fix is to have the robot move to an intermediate pose first.
500
              if buffer no == 4:
501
                  success = self.arm.MoveToCustomPose(-.4, -.5, BUFFER_ZONE_Z_HEIGHT, willExecute=WILL_EXECUTE)
502
503
          def PlaceInBox(self):
504
505
              Event 3: Place the item in an appropriate location inside the packing box/bin. Afterwards, the robot will move
                   to the neutral position.
506
```

```
507
              # Go to center of bin before packing
              self.arm.MoveToJointGoal(BIN_JOINT_GOAL, self.arm.arm_group, willExecute=WILL_EXECUTE)
508
509
510
              if EXPERIMENT_MODE == BASELINE:
511
                  # Baseline: pack items in center of bin regardless of properties
512
                  self.MoveToBoxCenter()
513
514
                  # open gripper
515
                  if GRIPPER:
516
                      self.OpenGripperFull()
517
518
              else:
519
                  packing_z_buffer = .07
520
                  packing_pose = self.current_item.packing_pose
521
522
                  # move to z buffer above packing location
523
                  packing_pose.position.z += packing_z_buffer
                  success = self.arm.MoveToPoseGoal(packing_pose, self.arm.arm_group, willExecute=WILL_EXECUTE)
524
525
                  packing_pose.position.z -= packing_z_buffer
526
527
528
                  # # Lower arm to the packing bin location
                  success = self.arm.MoveToPoseGoal(packing_pose, self.arm.arm_group, event_name="Place in box", willExecute=
529
530
                  print_message("3 Placing in Box at x: {} y: {} z: {}".format(round(packing_pose.position.x, 2), round(
                        packing_pose.position.y, 2), round(packing_pose.position.z, 2)))
                  print("Successfully moved to packing spot?", success)
532
533
                  # open gripper and place item in packing bin
534
                  if GRIPPER:
535
                      self.OpenGripper()
536
537
                  # Raise arm above packing location to avoid moving other items
538
                  alt_packing_pose = self.arm.arm_group.get_current_pose("ee_link").pose
539
                  alt_packing_pose.position.z += packing_z_buffer
                  success = self.arm.MoveToPoseGoal(alt_packing_pose, self.arm.arm_group, willExecute=WILL_EXECUTE)
540
541
542
              # SUBGOAL
543
544
              self.put_item_in_bin = True
              self.add_packed_item(self.current_item)
545
546
547
              packed str = ""
548
              for p in self.packed_items:
                  packed_str += "id: {}, area: {}*{}, score: {}, loc: ({}, {}, {})\n".format(p.id, p.width, p.length, p.score,
549
                        p.packing\_pose.position.x,\ p.packing\_pose.position.y,\ p.packing\_pose.position.z)
550
551
              print(packed str)
552
553
              # Go to center of bin; repeated twice since this planning execution is not always accurate - need two tries
554
              self.arm.MoveToJointGoal(BIN_JOINT_GOAL, self.arm.arm_group, willExecute=WILL_EXECUTE)
555
              self.arm.MoveToJointGoal(BIN_JOINT_GOAL, self.arm.arm_group, willExecute=WILL_EXECUTE)
556
557
          def RaiseArm(self):
558
559
              Raise robot arm in z direction
560
561
              robot_pose = self.arm.arm_group.get_current_pose("ee_link").pose
562
              robot_pose.position.z = BUFFER_ZONE_Z_HEIGHT
563
              self.arm.MoveToPoseGoal(robot\_pose\;,\;\;self.arm.arm\_group\;,\;\;willExecute=WILL\_EXECUTE)
```

564

```
565
          def MoveToBoxCenter(self):
566
              robot_pose = self.arm.arm_group.get_current_pose("ee_link").pose
              robot_pose.position.z = BUFFER_ZONE_Z_HEIGHT - .05
567
568
              self.arm.MoveToPoseGoal(robot\_pose\;,\;\;self.arm.arm\_group\;,\;\;willExecute=WILL\_EXECUTE)
569
570
          def publish_slip_val(self, val):
571
              slip_msg = Int32()
572
              slip_msg.data = val
              print("Publishing slip value of {}".format(val))
573
574
              self.slip\_pub.publish(slip\_msg)
575
         ## GRIPPER FUNCTIONS ##
576
577
578
          def check_gripper_success(self):
              gripper_msg = rospy.wait_for_message("/gripper_finished", Int8)
579
580
581
              if gripper_msg.data == 0:
                  print("Robot missed item. Canceling operation...")
582
                  self.missed = True
583
584
              else:
                  self.missed = False
585
586
587
          def OpenGripper(self):
588
              print("Publishing gripper open")
590
              option = Int8()
591
              option.data = 1
592
              self.gripper_pub.publish(option)
593
594
              rospy.wait_for_message("/gripper_finished", Int8)
595
              self.missed = False
596
597
          def CloseGripper(self):
598
              print("Publishing gripper close")
599
              option = Int8()
              option.data = 2
600
601
              self.gripper_pub.publish(option)
602
603
              self.check_gripper_success()
604
              print("Exited while loop")
605
606
607
          def OpenGripperFull(self):
608
              print("Publishing gripper open fully")
609
              option = Int8()
610
              option.data = 3
              self.gripper_pub.publish(option)
611
612
613
              rospy.wait_for_message("/gripper_finished", Int8)
614
              self.missed = False
615
          def CloseGripperParallel(self):
616
617
              print("Publishing gripper close")
618
              option = Int8()
619
              option.data = 4
620
              self.gripper_pub.publish(option)
621
622
              self.check_gripper_success()
623
624
          def OpenGripperParallel(self):
625
              print("Publishing gripper open")
```

```
626
              option = Int8()
627
              option.data = 5
628
              self.gripper_pub.publish(option)
629
630
              rospy.wait_for_message("/gripper_finished", Int8)
631
              self.missed = False
632
633
          def FingerClose(self):
634
             print("Publishing aux close")
635
             option = Int8()
636
             option.data = 6
637
              self.gripper_pub.publish(option)
638
639
             try:
                  rospy.wait_for_message("/gripper_finished", Int8, 2.0)
640
641
              except:
642
                  pass
643
          def FingerCloseExtra(self):
644
645
              print("Publishing aux close extra")
              option = Int8()
646
647
             option.data = 7
648
              self.gripper_pub.publish(option)
649
             try:
650
                  rospy.wait_for_message("/gripper_finished", Int8, 2.0)
651
              except:
652
                  print("Took too long to receive ack")
654
     class Item():
655
656
          Item class: can be formed once the properties are known. When the 'pick from conveyor' is signaled,
657
          send the vision-related information & tactile information to this class, which will create a new Item object.
658
659
          def __init__(self , id , size , packing_pose):
660
             self.id = id
             self.width = size[0]
661
             self.length = size[1]
662
             self.packing_pose = packing_pose
663
             self score = 0
664
              self.tactile_out = 0
665
              self.proprio_width = None
666
             self.setScore()
667
668
669
          def __repr__(self):
670
              return "Item " + str(self.id)
671
672
          def setScore(self):
673
              if EXPERIMENT_MODE == BASELINE: # score is irrelevant
674
                  self.score = 0
675
676
              elif EXPERIMENT_MODE == VISION:
677
                  self.score = self.width * self.length
678
                  print("Setting score for item {} to: {}".format(self.id, self.score))
679
680
              elif EXPERIMENT_MODE == MULTIMODAL:
681
                  final_width = self.width
682
683
                  print("Final width is {}, original: {}, proprio: {}".format(final_width, self.width, self.proprio_width))
684
                  area = final_width * self.length
685
                  self.score = - (SLOPE * area + Y_INTERCEPT - self.tactile_out)
686
```

```
687
688
                     print("Setting score for item {} to: {}".format(self.id, self.score))
689
690
           def is Delicate (self):
                if EXPERIMENT_MODE == BASELINE: # control group, item is never considered delicate.
691
692
                     return False
693
                elif EXPERIMENT_MODE == VISION:
694
                     rospy.loginfo("Area of current item is {}".format(self.score))
695
                     if self.score < AREA_THRESHOLD:</pre>
696
697
                         return True
698
                elif \  \, \text{EXPERIMENT\_MODE} \, == \, \, \text{MULTIMODAL} :
699
                      \textbf{if} \ \ \text{CONTACT\_THRESHOLD} \ - \ \ \text{self.tactile\_out} \ > \ 0 \text{:} \quad \textit{\#} \ \ \textit{if} \ > \ \textit{0} \text{,} \ \ \textit{pack} \ \ \textit{in} \ \ \textit{bin} 
700
                          print("under low threshold")
701
                          return False
702
703
                     if self.score < 0:
704
                          print("is delicate")
705
706
                          return True
707
708
                return False
709
      def print_message (message):
710
711
           print(message)
712
           rospy.loginfo(message)
714
715
           rospy.init_node('icra_demo', anonymous=True)
716
           g = GroceryPacking()
717
           time . sleep (0.5)
718
719
720
                print('##### press any key to start #####')
                input = raw_input()
721
                while not rospy.is_shutdown():
722
                     override = None
723
724
                     action = g.get_next_event()
725
                     print("Tentative action is {}".format(action))
726
727
                     g.run()
728
729
                     rospy.sleep(.5)
730
731
732
           except KeyboardInterrupt:
733
                print "grasping_demo Shutting down"
734
735
      if __name__ == '__main__':
736
737
           main(sys.argv)
```

Object detection module

```
1 #!/usr/bin/env python2
2
3 import rospy
4 from sensor_msgs.msg import Image, PointCloud2, CameraInfo
5 from geometry_msgs.msg import Point
6 from std_msgs.msg import Float32MultiArray
7 from cv_bridge import CvBridge, CvBridgeError
```

```
8 from matplotlib import pyplot as plt
 9 import cv2
10 import numpy as np
11 from ros_numpy import point_cloud2 as np_pc2
12 from centroid_tracker import CentroidTracker
13
14
16 RGB_TOPIC = CAMERA_NAME + '/rgb/image_raw'
   DEPTH_TOPIC = CAMERA_NAME + '/depth_registered/image_raw' # depth registered image topic; should align with rgb image (
          but not rectified)
18 CAM_INFO_TOPIC = CAMERA_NAME + '/depth/camera_info' #camera info for depth
     {\tt CENTER\_TOPIC = '/boxcoord' \# to \ publish \ object \ center \ coordinates \ to } 
19
20 BBOX_TOPIC = '/bounding_box' # publish entire bounding box
21 DEPTHPUB_TOPIC = '/object_depth_image' # to publish processed depth image to
22 CLOUD_TOPIC = '/object_cloud' # to publish object point cloud to
   REGULARITY_TOPIC = '/regularity_score' # to publish object area / bounding box area; currently publishes as a point (
          score, contour area)
   DISPLAY_IMAGES = rospy.get_param("show_obj_detection", False) # when testing, print out rgb-related image or not
    DISPLAY_DEPTHS = False # display depth image of object
    CLEAN_IMAGE = True # if True, will look for black area and zero out everything outside the black zone
26
    BLACK_BOUNDARY = 95 #25 # v in hsv to determine what will be considered black
    OBJ_DETECTION_THRESHOLD = 50
    REGULARITY THRESHOLD = .74
    BELT PIXEL BOUNDS = (130, 220)
32
    class ObjDetector():
33
34
     def init (self):
35
      self.rgb_sub = rospy.Subscriber(RGB_TOPIC, Image, self.rgb_callback)
      self.depth_sub = rospy.Subscriber(DEPTH_TOPIC, Image, self.depth_callback)
36
37
      self.center_pub = rospy.Publisher(CENTER_TOPIC, Point, queue_size=10) # publish the center of the object
      self.bbox_pub = rospy.Publisher(BBOX_TOPIC, Float32MultiArray, queue_size=10) # publish entire bounding box
38
39
      self.depth_pub = rospy.Publisher(DEPTHPUB_TOPIC, Image, queue_size=10)
40
      self.cloud_pub = rospy.Publisher(CLOUD_TOPIC, PointCloud2, queue_size=10) # publish the point cloud of the object
      self.regularity_pub = rospy.Publisher(REGULARITY_TOPIC, Point, queue_size=10)
41
      self.bridge = CvBridge() # converts between ROS and CV image
42
      self.bounding\_box = ((0,0),(479,639)) # initiallize bounding box as the entire image (image is of shape (480,640))
43
      self.obj_depths = np.zeros((480, 640)) # dummy first depth reading
44
45
      self.camera_info_sub = rospy.Subscriber(CAM_INFO_TOPIC, CameraInfo, self.camera_callback)
46
      self.camera_info_pub = rospy.Publisher(CAMERA_NAME + '_info', CameraInfo, queue_size=10)
47
48
      self.K = np.zeros((3,3)) # calibration matrix for depthTo3d later; this may cause the first (couple?) point clouds to
             be incorrect, though
49
      self.ct = ct = CentroidTracker()
      self.center = (0,0)
50
51
52
     def image_print(self,img):
53
      Helper function to print out images, for debugging. Pass them in as a list.
54
55
      Press any key to continue.
56
57
      cv2.imshow("image", img)
58
      cv2.waitKev(0)
      cv2.destroyAllWindows()
59
60
     def camera_callback(self, caminfo):
61
      self.camera_info_pub.publish(caminfo) # for rviz image visualization
62
63
      self.K = np.matrix(caminfo.K).reshape((3,3)) # resetting every time, but all relevant info should stay the same
64
     def rgb_callback(self,ros_image_msg):
```

```
# Convert from ROS image to OpenCV image
  67
                cv_image = self.bridge.imgmsg_to_cv2(ros_image_msg, "bgr8")
  68
  69
               except CvBridgeError as e:
  70
                rospy.loginfo(e)
 71
  72
               self.find_obj(cv_image)
  73
               point = Point() # create Point object to publish
  74
              # If the object is not where we expect it to be, publish an empty point (based on y-value)
  75
               if \ \ self.center[1] \ > \ BELT\_PIXEL\_BOUNDS[1] \ \ or \ \ self.center[1] \ < \ BELT\_PIXEL\_BOUNDS[0]:
  76
                self.center = (0,0)
  77
                self.center_pub.publish(point)
  78
  79
               else:
  80
                # OpenCV gives column, row: convert to row, column
                point.x = self.center[0]
 81
                point.y = self.center[1]
  82
                point.z = self.obj_depths[self.center[1], self.center[0]]
  83
  84
                print("Center point", point.x, point.y, point.z)
 85
                self.center_pub.publish(point)
  86
  87
             def depth_callback(self, ros_image_msg):
              # Need to figure out how to deal with depth data
  89
              try:
  90
                depth_image = self.bridge.imgmsg_to_cv2(ros_image_msg, "passthrough")
 91
               except CvBridgeError as e:
  92
                rospy.loginfo(e)
  93
                return
  94
  95
               # Editing depth image clear out everything outside of bounding box
  96
              p1, p2 = self.bounding_box
 97
               obj_depths = depth_image.copy()
 98
               obj_depths[:p1[1],:] = 0
 99
               obj_depths[:,:p1[0]] = 0
100
               obj_depths[p2[1]:,:] = 0
               obj_depths[:,p2[0]:] = 0
101
102
               self.obj_depths = obj_depths
103
104
              # Generate mask for point cloud
              pc_mask = np.ones(depth_image.shape)
105
              pc_mask[:p1[1],:] = 0
106
107
              pc_mask[:,:p1[0]] = 0
108
              pc_{mask}[p2[1]:,:] = 0
109
              pc_mask[:, p2[0]:] = 0
110
              pc_array = cv2.rgbd.depthTo3d(depth_image, self.K, mask=pc_mask)
111
112
              # Splice into x's, y's and z's to put back together as numpy record array (each has shape (480,640))
113
              pc_x = pc_array[:,:,0]
114
              pc_y = pc_array[:,:,1]
115
              pc z = pc array[:,:,2]
116
              pc_recarray = np.core.records.fromarrays([pc_x,pc_y,pc_z],names='x,y,z')
117
               point\_cloud = np\_pc2.array\_to\_pointcloud2 (pc\_recarray\_stamp=ros\_image\_msg.header.stamp, frame\_id=ros\_image\_msg.header.stamp) = np\_pc2.array\_to\_pointcloud2 (pc\_recarray\_stamp=ros\_image\_msg.header.stamp) = np\_pc2.array\_to\_pointcloud2 (pc\_recarray\_stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros\_image\_msg.header.stamp=ros
                         frame_id)
118
119
              # Publish object point cloud
120
               self.cloud_pub.publish(point_cloud)
121
122
              # Publish object depth image
123
              depth_msg = self.bridge.cv2_to_imgmsg(obj_depths,encoding="passthrough")
124
              depth\_msg.header.frame\_id \ = \ ros\_image\_msg.header.frame\_id
125
              depth_msg.header.stamp = ros_image_msg.header.stamp
```

```
126
                   self.depth_pub.publish(depth_msg)
127
128
                   if DISPLAY_DEPTHS:
129
                    # convert to readable np.uint8 type grayscale to use cv2 to visualize as image
130
                     obj_depths = np.array(obj_depths, dtype = np.uint8)
131
                    temp = self.bridge.cv2_to_imgmsg(obj_depths,encoding="mono8")
132
                     obj_depths = self.bridge.imgmsg_to_cv2(temp, "mono8")
133
                     self.image_print(img)
134
135
                 def find_obj(self, img):
136
137
                  Segment out the largest black area in the image, then find object against a black background.
138
139
                    img: np.3darray; the input image with a black area and object in the black area to be detected. BGR.
140
141
                    bounding_box: ((x1, y1), (x2, y2)); the bounding box of the object, unit in px
                          (x1, y1) is the bottom left of the bbox and (x2, y2) is the top right of the bbox
142
143
                    center: (x, y): the center of the bounding box
144
145
                   Info: Tuned hardcoded black values (HSV): [0,0,80] [179,255,255]
                        Pick colors here http://colorizer.org/
146
147
148
                  # Define range of non-black color in HSV
149
                   lower = np.array([0,0,BLACK_BOUNDARY])
150
                  upper = np. array([179,255,255])
152
                  # Convert color space
                   hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV) # convert from BGR to HSV
153
154
155
                   kernel = np.ones((10,10),np.uint8) # for mask processing
156
157
                   if CLEAN_IMAGE: # look for largest black area, then zero out surrondings
158
                    # We want to look for black from [0,0,0] to lower bound on range
159
                    clean_kernel = np.ones((2,2),np.uint8)
160
                     # clean_mask = cv2.inRange(image, np. array([0,0,0]), np. array([179,130,BLACK_BOUNDARY]))
161
                     clean_mask = cv2.inRange(image, np.array([0,0,0]), np.array([255,130,BLACK_BOUNDARY]))
                     # clean_dilated = cv2.dilate(clean_mask, clean_kernel, iterations = 1) # want to dilate because we're looking to be
162
                                   tolerant with getting the biggest black area
                     clean_closing = cv2.morphologyEx(clean_mask,cv2.MORPH_OPEN,clean_kernel)
163
164
                     # clean_masked = cv2.bitwise_and(image,image,mask=clean_closing) #apply mask to create image of only black pixels);
                                   for visualization
                     clean\_result \;,\; clean\_contours \;,\; clean\_hierarchy \; = \; cv2 \;. \\ find Contours \; (\; clean\_closing \;,\; cv2 \;. \\ RETR\_TREE \;, cv2 \;. \\ CHAIN\_APPROX\_SIMPLE \;,\; cv3 \;. \\ CHAIN\_APPROX\_SIMPLE \;,\; cv4 \;. \\ CHAIN\_APPROX\_SIMPLE \;,\; cv5 \;. \\ CHAIN\_APPROX\_SIMPLE \;,\; cv6 \;. \\ CHAIN\_APPROX\_SIMPLE \;,\; cv7 \;. \\ CHAIN\_APPROX\_SIMPLE \;,\; cv7 \;. \\ CHAIN\_APPROX\_SIMPLE \;,\; cv8 
165
                                 )
166
                     # Find rectangle
167
168
                     clean contr = None
                     if len(clean_contours) >= 1: #use largest black object
169
170
                        clean_contr = clean_contours[0]
171
                        if len(clean_contours) > 1:
172
                          for c in clean_contours:
173
                           if cv2.contourArea(c) > cv2.contourArea(clean_contr):
174
                               clean contr = c
175
176
                     clean_x1 , clean_x2 , clean_w , clean_h = cv2.boundingRect(clean_contr) #not angled
177
                     rect = cv2.minAreaRect(clean_contr)
                     test = cv2.inRange(image, np. array([0,0,0]), np. array([0,0,0])) \# this is a stupid hack, but np. zeros(image, dtype=np, dt
178
                                   . uint8 was throwing errors)
179
                     cv2.drawContours(test, [np.int0(cv2.boxPoints(rect))], 0, (255), -1)
180
                     image = cv2.bitwise_and(image, image, mask=test)
181
182
                     # Display area to keep
```

```
183
         if DISPLAY_IMAGES:
184
          self.image_print(cv2.rectangle(img,(clean_x1,clean_x2),(clean_x1+clean_w,clean_x2+clean_h),(0,100,255),2))
185
          self.image_print(image)
186
187
        mask = cv2.inRange(image,lower + np.array([0,0,20]),upper) \textit{\# create a mask by thresholding for only non-black values}
188
        closing = cv2.morphologyEx(mask,cv2.MORPH_CLOSE, kernel) # dilation, then erosion--worked best to smooth out the
              relevanat (object) areas
189
190
        # Find and draw contours of non-black areas
        result\ ,\ contours\ ,\ hierarchy\ =\ cv2\ . find Contours\ (\ closing\ ,\ cv2\ . RETR\_TREE\ , cv2\ . CHAIN\_APPROX\_SIMPLE)
191
192
        todraw = cv2.drawContours(result, contours, -1,(0,255,0),3)
193
194
        closest_item_contr = None
195
        closest center = (0,0)
        closest\_bounding\_box = ((0,0),(0,0))
196
197
        closest item \dim = (0.0)
        original\_corner = (0,0)
198
199
200
        for c in contours [:-1]:
201
        x, y, w, h = cv2.boundingRect(c)
202
         bounding\_box = ((x,y),(x+w, y+h))
203
204
         center = (x + w/2, v + h/2)
205
206
         if center[0] > closest_center[0] and center[0] < 450 and BELT_PIXEL_BOUNDS[0] < center[1] < BELT_PIXEL_BOUNDS[1]:
          if w < 10 or h < 10 or w > 150:
207
208
           \# self.center = (0,0)
209
           continue
210
          closest_item_contr = c
211
          closest\_center = center
212
          closest_bounding_box = bounding_box
213
          closest_item_dim = (w, h)
214
          original corner = (x, y)
215
216
         cv2.rectangle(img,bounding_box[0],bounding_box[1],(100,255,0),2) # draw rectangles around all detected objects
217
218
         area = cv2.contourArea(c)
219
         \label{eq:print} \textbf{print}("Regularity score is \ \{\} \ for item \ at \ \{\}".\textbf{format}(area/(w*h), center))
220
221
         print("Contour has center {} and area {}".format(center, area))
222
        if closest_item_contr is None: # don't continue track if robot is occluding conveyor belt
223
224
        self.center = (0.0)
225
         return
226
227
        self.bounding box = closest bounding box
        old_center = self.center
228
229
        self.center = closest_center
230
        max area = cv2.contourArea(closest item contr)
231
232
        box_area = closest_item_dim[0] * closest_item_dim[1]
233
234
        regularity_score = max_area / box_area
235
236
        rospy.loginfo("CENTER: {}, BOUNDING BOX: {}, ITEM_CONTOUR_AREA: {}, BOX_AREA: {}, REGULARITY: {}".format(self.center,
              self.bounding_box , max_area , box_area , regularity_score ))
237
238
        self.track()
239
240
        # for detecting when there's no object
241
        if box_area > 7500:
```

```
242
         print("too large, resetting center")
243
         self.center = (0, 0)
244
245
246
        x, y = original_corner
247
        w, h = closest_item_dim
248
        corners = [x, y, np.clip(x+w, 0, 639), np.clip(y+h, 0, 479)]
249
        bbox = Float32MultiArray()
250
        bbox.data \ = \ [ \ corners \, [0] \, , \ corners \, [1] \, , \ corners \, [2] \, , \ corners \, [3] \, ,
251
             self.obj_depths[corners[1], corners[0]],
252
             self.obj_depths[corners[3], corners[0]],
253
             self.obj_depths[corners[1], corners[2]],
254
             self.obj_depths[corners[3], corners[2]]]
255
        self.bbox_pub.publish(bbox)
256
257
258
        regularity_msg = Point()
259
        regularity_msg.x = regularity_score
260
        regularity_msg.y = max_area
261
262
        self.regularity_pub.publish(regularity_msg)
263
264
        if DISPLAY_IMAGES:
265
266
         result = cv2.rectangle(img, self.bounding_box[0], self.bounding_box[1],(100,255,0),2)
268
         self.image_print(result)
269
         self.image_print(closing)
270
271
        # Return bounding box, center of box
272
        return self.bounding_box, self.center
273
274
275
        objects = self.ct.update([self.bounding_box])
276
        for obj_id, obj in objects.items():
         self.centroid = obj # center found through tracking algorithm
277
278
279
      if __name__ == '__main__':
280
      rospy.init_node('obj_detector')
281
       obj_detector = ObjDetector()
282
283
      rospy.spin()
```

Packing module

```
#!/usr/bin/env python2
1
2
3 import rospy
4 from sensor_msgs.msg import Image
5 from geometry_msgs.msg import Point, Pose, Quaternion
6 from std_msgs.msg import Float32MultiArray
    from tf.transformations import quaternion_from_euler
    from visualization_msgs.msg import Marker
10 from cv_bridge import CvBridge, CvBridgeError
11
   import cv2
    from math import pi
13
    from matplotlib import pyplot as plt
14
    import numpy as np
   CAMERA_NAME = rospy.get_param('packing', '/camera')
```

```
17 START_TOPIC = CAMERA_NAME + '/rgb/image_raw'
18 DEPTH_TOPIC = CAMERA_NAME + "/depth_registered/image_raw"
19 PACK_LOC_TOPIC = "/packing_location"
20 OBJECTBOX_TOPIC = "/bounding_box"
21 DISPLAY_IMAGES = rospy.get_param("show_packing")
22 DISPLAY_DEPTHS = False
23 DEPTH_KERNEL = (40,40)
24
25 DEPTH TESTING = False
26 DIST2PIXEL_FACTOR_WIDTH = 426.78
27 DIST2PIXEL_FACTOR_LENGTH = 445.93
 \begin{tabular}{ll} \bf 28 & \bf ROTATION\_EPSILON = 15 & \# if \ length \ \& width \ are \ similar \ enough \ , \ no \ need \ to \ rotate \end{tabular} 
29 \quad EXPERIMENT\_MODE = rospy.get\_param("mode")
30 CALIBRATE = rospy.get_param("calibrate")
31
32
33
   class Packing():
     def __init__(self):
34
      self.start_sub = rospy.Subscriber(START_TOPIC, Image, self.packing_callback)
35
      self.pack_loc_pub = rospy.Publisher(PACK_LOC_TOPIC, Pose, queue_size=10)
36
37
      self.depth_sub = rospy.Subscriber(DEPTH_TOPIC, Image, self.depth_callback)
      self.debug_pub = rospy.Publisher("debug_depth", Image, queue_size=10)
      self.size_sub = rospy.Subscriber("/item_dim", Point, self.size_cb)
40
      self.calibration_pub = rospy.Publisher("/box_corners", Float32MultiArray, queue_size=10)
42
      self.bridge = CvBridge() # Converts between ROS and CV image
       self.pack_loc = (0,0)
43
44
       self.mask = np.ones((480,640),np.uint8)
45
46
       self.obj\_depths = np.zeros((480,640))
47
       self.depth = None
48
       self.depth_kernel = DEPTH_KERNEL
49
      self.written = 0
50
      self.width = 0 # Initial packing location is (0,0)
      self.length = 0
51
      self.rotated = False
52
53
54
55
     def size_cb(self, size):
      self.width = size.x * DIST2PIXEL_FACTOR_WIDTH
56
      self.length = size.y * DIST2PIXEL_FACTOR_LENGTH
57
58
59
     def image_print(self,img):
60
61
      Helper function to print out images, for debugging. Pass them in as a list.
62
      Press any key to continue.
63
      cv2.imshow("image", img)
65
      cv2.waitKey(0)
66
      cv2.destroyAllWindows()
69
     def packing_callback(self,ros_image_msg):
70
71
       cv_image = self.bridge.imgmsg_to_cv2(ros_image_msg, "bgr8")
72
      except CvBridgeError as e:
73
       rospy.loginfo(e)
74
       return
75
76
      # Do cumulative check
      if self.count <= 50:
```

```
78
        debug_msg = self.find_obj(cv_image)
 79
        else:
 80
        return
 81
 82
 83
       def depth_callback(self,ros_image_msg):
 84
       # Depth image units in mm
 85
       try:
 86
        depth_image = self.bridge.imgmsg_to_cv2(ros_image_msg, "passthrough")
 87
        except CvBridgeError as e:
 88
        rospy.loginfo(e)
 29
        return
 90
 91
       # Set kernel dynamically to object size
 92
        self.update_kernel()
 93
 94
       # Editing depth image clear out everything outside of bounding box
        obj_depths = depth_image.copy()
 95
 96
 97
       nans = np.isnan(obj depths)
 98
       nans = nans.astype(int)
       nans = nans * 255
100
101
        obj_depths = np.nan_to_num(obj_depths)
102
103
104
        obj_depths = cv2.bitwise_and(obj_depths, obj_depths, mask=self.mask)
105
        except Exception as e:
106
        print("failed", e)
107
108
        # Check if box is full
109
        depths_copy = np.nan_to_num(depth_image.copy())
110
        depth_mask = self.mask.copy()
111
       obj_depths_copy = cv2.bitwise_and(depths_copy, depths_copy, mask=depth_mask)
       depth_mask[depth_mask == 0] = 1
112
113
       depth_mask[obj_depths_copy == np.nan] = 1
114
       depth_mask[obj_depths_copy == 0] = 1
115
       depth_mask[depth_mask == 255] = 0
116
       mx \, = \, np.ma.\,masked\_array\,(\,obj\_depths\_copy\,\,,\,\, mask=depth\_mask\,)
117
        if not CALIBRATE and (mx.min() < 1.08 \text{ or } mx.mean() < 1.17):
118
            print("Box is full. Replace now! Press to continue.")
119
120
           inp = raw input()
121
122
        self.obj depths = obj depths
123
124
       # Smooth to be less sensitive to outliers
125
        smoothed = cv2.blur(obj_depths,(1,1)) #issues here?
126
       # build "heatmaps"
127
128
        kernel_default = np.ones(self.depth_kernel)
129
        kernel_default = kernel_default/np.sum(kernel_default)
130
        convolved_default = cv2.filter2D(smoothed,-1, kernel_default) #-1 means keep the same data type as source
131
        kernel_rotated = np.ones((self.depth_kernel[1],self.depth_kernel[0]))
132
        kernel_rotated = kernel_rotated/np.sum(kernel_rotated)
133
        convolved_rotated = cv2.filter2D(smoothed,-1, kernel_rotated) #-1 means keep the same data type as source
134
135
       # locate optimal packing location
136
       # gripper_safety = 35 # increasing value widens the kernel --> takes into account the space taken by the fingers
137
        gripper_safety = 0
138
        if np.amax(convolved_default) > np.amax(convolved_rotated):
```

```
139
                        pack_loc = np.unravel_index(np.argmax(convolved_default),convolved_default.shape)
140
                         depth\_roi = obj\_depths[pack\_loc[0] - self.depth\_kernel[0]/2: pack\_loc[0] + self.depth\_kernel[0]/2, pack\_loc[1] - (orange of the context of 
                                         self.depth_kernel[1]/2 + gripper_safety): pack_loc[1] + self.depth_kernel[1]/2+gripper_safety]
141
                         self.rotated = False
142
                      else:
143
                        pack_loc = np.unravel_index(np.argmax(convolved_rotated),convolved_default.shape)
144
                         depth\_roi = obj\_depths[pack\_loc[0] - (self.depth\_kernel[1]/2 + gripper\_safety): pack\_loc[0] + self.depth\_kernel[1]/2 + gripper\_safety): pack\_loc[0]/2 + self.depth\_kernel[1]/2 + 
                                           + \ gripper\_safety \ , \ pack\_loc[1] \ - \ self \ . \ depth\_kernel[0]/2 \ : \ pack\_loc[1] \ + \ self \ . \ depth\_kernel[0]/2]
145
                         self.rotated = True
146
147
                      x_{start}, x_{end} = 284, 341
148
                      y_start, y_end = 186, 242
149
150
                      x_start, x_end = 0, 638
                      y_start, y_end = 0, 478
151
152
                      if CALIBRATE:
153
154
                        trv:
155
                           test_depths = np.zeros((y_end - y_start, x_end-x_start))
                           min_x, min_y = float('inf'), float('inf')
156
                           max_x, max_y = float('-inf'), float('-inf')
157
158
                           for r in range(y_start, y_end):
159
                              for c in range(x_start, x_end):
160
                                 if 1 < convolved_default[r][c] < 1.3:</pre>
161
                                    test_depths[r - y_start][c - x_start] = convolved_default[r][c]
163
                                    \min_{x} = \min(c, \min_{x})
                                    min_y = min(r, min_y)
164
165
166
                                    \max_{x} = \max(c, \max_{x})
167
                                    \max_{y} = \max(r, \max_{y})
168
169
                            calibration_msg = Float32MultiArray()
170
                            calibration_msg.data = [min_y, min_x, self.obj_depths[min_y, min_x],
                                       min\_y \;,\; max\_x \;,\; self.obj\_depths[min\_y \;,\; max\_x \;] \;,
171
172
                                      max_y, max_x, self.obj_depths[max_y, max_x],
173
                                      max_y, min_x, self.obj_depths[max_y, min_x]]
174
175
                            self.calibration_pub.publish(calibration_msg)
176
                         excent.
177
                           pass
178
179
180
                      self.pack loc = pack loc
                      self.depth = max(1.09, np.min(depth roi)) # take most conservative estimate of highest point
181
182
183
184
                      if DISPLAY_DEPTHS:
185
                        test = depth_image.copy()
186
                        test[test <0] = np.amax(test)
187
                        normed = test / np.sum(test)
188
                        self.image_print(normed)
189
                        rospy.loginfo(np.max(obj_depths))
190
                        rospy.loginfo(np.min(obj_depths))
191
192
                     # Publish packing location
193
                     packing_pose = Pose()
194
                      packing_pose.position.x = self.pack_loc[0]
195
                      packing_pose.position.y = self.pack_loc[1]
196
                      packing_pose.position.z = self.depth# self.obj_depths[self.pack_loc]
197
```

```
198
199
        if EXPERIMENT_MODE == 1: # don't rotate if control group
         self.rotated = False
200
201
202
        if self.rotated:
203
         packing_pose.orientation = Quaternion(*quaternion_from_euler(pi/2, pi/2, -pi/2, 'rxyz'))
204
        else:
205
         packing_pose.orientation = Quaternion(*quaternion_from_euler(-pi/2, 0, pi/2, 'rxyz'))
206
207
        self.pack_loc_pub.publish(packing_pose)
208
        if DEPTH TESTING:
209
         ## DEPTH TESTING JEANA ##
210
211
         corner_pixels = rospy.get_param("corner_pixels")
212
213
         if self.written < 5:
          \pmb{print}("PACKING\ PIXELS"\ ,\ packing\_pose\ .x\ ,\ packing\_pose\ .y\ ,\ packing\_pose\ .z\ )
214
215
          self.written += 1
216
          to plot = []
217
          for r in range(len(self.obj depths)):
218
           for c in range(len(self.obj_depths[0])):
219
            if self.obj_depths[r,c] > 0:
220
            to_plot.append((r, c, float(self.obj_depths[r,c])))
221
222
          rospy.set_param("to_plot", to_plot)
223
          corner_depths = []
224
          for pixel in corner_pixels:
225
           corner_depths.append(float(self.obj_depths[pixel[0], pixel[1]]))
226
          rospy.set_param("corner_depths", corner_depths)
227
         ## END DEPTH TESTING ##
228
229
230
       def find_obj(self, img):
231
232
        Load mask and segment out packing box, then find lowest point inside the box.
233
234
        img: np.3 darray; the input image with a black area and object in the black area to be detected. BGR.
235
236
237
         bounding\_box: ((x1, y1), (x2, y2)); the bounding box of the object, unit in px
238
          (x1, y1) is the bottom left of the bbox and (x2, y2) is the top right of the bbox
239
         center: (x, y); the center of the bounding box
240
241
242
        Info: Tuned hardcoded black values (HSV): [0,0,80] [179,255,255]
243
              Pick colors here http://colorizer.org/
244
245
        self.count += 1
246
247
        if self.count == 1:
248
         self.read_mask()
249
250
        image = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
251
252
        if self.count == 5: # give depth side some time to find a packing loc
253
         rospy.loginfo("This is the calibrated masked image with coord " + str(self.pack_loc) + " and depth " + str(self.depth
254
         todraw = cv2.bitwise_and(image, image, mask=self.mask)
255
         todraw \ = \ cv2. \, circle \, (todraw \, , (\, self \, . \, pack\_loc \, [\, 1\, ] \, , \ self \, . \, pack\_loc \, [\, 0\, ]) \, , 10 \, , (100 \, , 200 \, , 255) \, , -1)
256
         self.image_print(todraw)
257
```

```
258
                       if DISPLAY_IMAGES:
259
                         print("displaying image")
260
                         todraw = cv2.bitwise_and(image, image, mask=self.original_mask)
261
                         todraw = cv2.circle(todraw,(self.pack_loc[1], self.pack_loc[0]),10,(100,200,255),-1) # opencv's indices are column,
                                          row - opposite from np
 262
                         if self.rotated:
263
                            todraw = cv2.rectangle(todraw, (self.pack\_loc[1] - self.depth\_kernel[0]//2, self.pack\_loc[0] - self.depth\_kernel[0]//2, se
 264
                                                        (self.pack\_loc[1] + self.depth\_kernel[0]//2, self.pack\_loc[0] + self.depth\_kernel[1]//2), \\
                                                        (100,200,255), 2)
265
266
                          else:
                            todraw = cv2.rectangle(todraw, (self.pack\_loc[1] - self.depth\_kernel[1]//2, self.pack\_loc[0] - self.depth\_kernel[1]//2, self.depth\_loc[0] - self.depth\_loc[0]//2, self.pack\_loc[0]//2, self.depth\_loc[0]//2, self.depth\_loc[0]/2, self.depth\_loc[0]/2, self.depth\_loc[
267
268
                                                        (self.pack\_loc[1] + self.depth\_kernel[1]//2, self.pack\_loc[0] + self.depth\_kernel[0]//2), \\
                                                        (100.200.255).2)
269
                          print("Rotated", self.rotated)
270
                          self.image_print(todraw)
271
272
273
                       return
274
275
                    def update_kernel(self):
276
                      # note : packing and object detection cameras are rotated pi/2 relative to each other
 277
                       if np.isnan(self.width) or np.isnan(self.length):
 278
                         self.depth_kernel = DEPTH_KERNEL
 279
 280
281
                       pixel\_width = int(self.width + .5)
282
                       pixel_length = int(self.length + .5)
283
284
                       if (pixel_width == 0 or pixel_length == 0):
285
                         return
286
287
                       # minimum kernel size
288
                       if pixel_length * pixel_width < 400:
                         pixel_length = max(pixel_length,40)
289
                         pixel_width = max(pixel_width, 40)
290
                       if self.depth_kernel != (pixel_length, pixel_width):
291
                         self.depth_kernel = (pixel_length, pixel_width)
292
293
294
295
                    def read mask(self):
                      self.mask = cv2.imread("/home/ada/manipulation_ws/src/vkchen_vision/calibration/packingBoxMask.png", cv2.
296
                                       IMREAD GRAYSCALE)
297
                       print("Mask shape is {}, should be (480, 640)".format(self.mask.shape))
298
                       self.original_mask = cv2.imread("/home/ada/manipulation_ws/src/vkchen_vision/calibration/originalPackingBoxMask.png",
299
                                       cv2.IMREAD_GRAYSCALE)
300
301
                    def set_count(self, count):
 302
                      self.count = count
 303
 304
                    def get_count(self):
 305
                      return self.count
 306
 307
 308
                 if __name__ == '__main__':
 309
                  rospy.init_node('packing')
310
                  packing = Packing()
311
 312
 313
                      while not rospy.is_shutdown():
```

```
314 pass
315 except KeyboardInterrupt:
316 print "packing node shutting down"
317
318 rospy.spin()
```

Dynamixel Servo Control

```
#!/usr/bin/env python
                import numpy as np
                \textbf{from} \quad std\_msgs.msg \ \textbf{import} \quad Int8 \ , \quad Float32MultiArray \ , \quad Int32 \ , \quad Float32
                from collections import namedtuple
                \textbf{from} \hspace{0.1in} dynamixel\_sdk \hspace{0.1in} \textbf{import} \hspace{0.1in} PortHandler \hspace{0.1in}, \hspace{0.1in} PacketHandler \hspace{0.1in}, \hspace{0.1in} COMM\_SUCCESS, \hspace{0.1in} GroupSyncWrite \hspace{0.1in}, \hspace{0.1in} GroupSyncRead \hspace{0.1in}, \hspace{0.1in} COMM\_SUCCESS \hspace{0.1in}, \hspace{0.1in} COMM\_SU
10
               from aux_gripper.DynamixelGripper import *
11
12
13
14
               https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_wizard2/#usb-latency-setting
                 https://learn.trossenrobotics.com/projects/194-setting-dynamixel-ax-and-mx-series-firmware-id-and-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-with-roboplus-baud-wit
15
16
17
               Change latency of USB port reading from Linux computer:
               $ echo 1 | sudo tee /sys/bus/usb-serial/devices/ttyUSBO/latency_timer
               $ cat /sys/bus/usb-serial/devices/ttyUSB0/latency_timer
20
21
22 SERVO_EPSILON = 50 # TODO: tune this // set to 1000 before
23 GOAL_VELOCITY_VALUE = 200
24 OPEN_VELOCITY = 125
25 VELOCITY_EPSILON = 15
26 LOAD_DELTA_THRESHOLD = 17
27 CONSECUTIVE_THRESH = 12
28 TRACK_LOAD_THRESH = 35
29 PARTIAL OPEN OFFSET = 1800
30
31 # GRIPPER ACTION MAPPINGS
32 ## naming convention: [partial/full]_[open/close]_[which servos]
33 PARTIAL OPEN = 1
34 CLOSE ALL = 2
35 FULL OPEN = 3
36 CLOSE PARALLEL = 4
37 OPEN PARALLEL = 5
              CLOSE\_AUX = 6
38
              CLOSE\_AUX\_CUSTOM = 7
39
40
41
42
                class GripperControl():
43
44
                                def init (self):
45
                                               self.gripper = DynamixelGripper()
46
                                               # Publishers & Subscribers
48
                                               self.gripper_finished_pub = rospy.Publisher("/gripper_finished", Int8, queue_size=0)
49
                                               self.gripper_sub = rospy.Subscriber("/move_gripper", Int8, self.gripper_cb)
50
                                               self.slip_sub = rospy.Subscriber("/slip_amt", Int32, self.slip_cb)
51
                                               self.gripper_command_sub = rospy.Subscriber("/gripper_command", Int8, self.pos_command_cb)
52
                                               self.distance_pub = rospy.Publisher("/gripper_width", Float32, queue_size=0)
```

```
53
             self.torque_sub = rospy.Subscriber("/torque_on", Int8, self.torque_cb)
54
55
             self.option = None
56
             self.prev_load_33 = None
57
             self.command = False
58
             self.count = 0
59
             self.partial_open_count = 0
60
             self.prev\_option = -1
61
             self.prev\_prev\_option = -1
62
63
             self.open_limit = self.gripper.track_servo.open
64
             self.close_limit = self.gripper.track_servo.close
65
66
             self.current\_close = None
67
68
69
         def OpenGripper(self , pos=None):
70
             print("gripper opening!")
71
             rospy.loginfo("Opening gripper")
72
             # self.MoveToOpenPosition(pos)
73
             self.gripper.auxOpen() # TODO: add aux control back in
74
             self.gripper.setVelocity(-OPEN_VELOCITY)
75
         def OpenGripperParallel(self):
76
             print("gripper opening!")
             rospy.loginfo("Opening gripper")
79
             self.gripper.setVelocity(-OPEN_VELOCITY)
80
81
         def CloseGripper(self):
82
             print("gripper closing!")
83
             rospy.loginfo("Closing gripper")
84
             # self.gripper.auxClose()
85
             self.gripper.auxCloseCustom(400) # TODO: add aux control back in
86
             self.gripper.setVelocity(GOAL_VELOCITY_VALUE)
87
         def CloseGripperParallel(self):
88
             print("gripper closing!")
89
             rospy.loginfo("Closing gripper")
90
91
             self.\ gripper.\ setVelocity\ (GOAL\_VELOCITY\_VALUE)
92
         def slip_cb(self, slip_amt):
93
             new_val = slip_amt.data
94
95
             self.open_limit += new_val
96
             self.close_limit += new_val
97
             print("Slip detected. Adjusting with new interval [{}, {}]".format(self.open_limit, self.close_limit))
98
99
         def torque_cb(self, data):
100
             torque_on = data.data
101
102
             if torque_on: # enable torque
103
                  self.gripper.enable_torque()
104
105
             else: # disable torque
106
                  self.gripper.poe_exit_program()
107
108
         def gripper_cb(self , move_option):
109
             if move_option.data == PARTIAL_OPEN:
110
                  print("received gripper option 1: open gripper partially")
111
                  self.option = PARTIAL_OPEN
112
113
             elif move_option.data == CLOSE_ALL:
```

```
114
                  print("received gripper option 2: close gripper")
115
                  self.option = CLOSE_ALL
116
117
              elif move_option.data == FULL_OPEN:
118
                  print("received gripper option 3: open gripper fully")
119
                  self.option = FULL_OPEN
120
121
              elif move_option.data == CLOSE_PARALLEL:
122
                  print("received gripper option 4: close gripper parallel")
123
                  self.option = CLOSE_PARALLEL
124
125
              elif \  \  move\_option.data \  = \  OPEN\_PARALLEL:
126
                  print("received gripper option 5: open gripper parallel")
                  self.option = OPEN_PARALLEL
127
128
129
              elif move_option.data == CLOSE_AUX:
                  self.option = CLOSE_AUX
130
                  print("received gripper option 6: aux close")
131
132
133
              elif move_option.data == CLOSE_AUX_CUSTOM:
                  self.option = CLOSE_AUX_CUSTOM
134
135
                  print("received gripper option 7: aux close custom")
136
137
138
                  print("Invalid option. Will not move gripper.")
139
                  self.option = None
140
141
         def publish_finished_flag(self, val):
142
              print("Finished gripper action!")
143
              # publish finished flag
144
              done_msg = Int8()
145
              done_msg.data = val
146
              for i in range(5):
147
                  self.gripper\_finished\_pub.publish(done\_msg)
148
                  rospy.sleep(.2)
149
         def StopServo(self, message="", pos=None, load=None):
150
              self.gripper.setVelocity(0)
151
              self.option = None
152
             val = 1
153
154
              if load is not None and (self.option in (CLOSE_ALL, CLOSE_PARALLEL)):
155
                  if load < 123:
156
157
                      val = 0
                      print("Gripper missed item!")
158
159
              if pos is not None:
160
                  dist_msg = Float32()
161
162
                  ticks = self.gripper.track_servo.close - pos
163
                 cm = ticks * 0.014 / 500.0
164
                  print("Item is {} m wide with {} ticks and close pos {}".format(cm, ticks, self.gripper.track_servo.close))
165
                  dist_msg.data = cm
166
                  self.distance_pub.publish(dist_msg)
167
168
              self.publish_finished_flag(val)
169
170
              self.command = False
171
              if len(message) > 0:
172
                 rospy . loginfo (message)
173
```

174

```
175
          def PositionThresholdReached(self, pos, vel):
176
              return self.OpenPositionLimitReached(pos, vel) and self.ClosePositionLimitReached(pos, vel)
177
178
          def OpenPositionLimitReached(self, pos, vel):
179
              # stop if gripper opens past position threshold
180
              if vel < -1 and (pos - SERVO_EPSILON < self.open_limit):
181
                  message = "Gripper opens past position threshold at {}".format(self.open_limit)
182
                  print(message)
183
                  return True
184
              return False
185
186
          def OpenPartialReached(self, pos, vel):
187
              if vel < -1 and pos <= self.current_close - PARTIAL_OPEN_OFFSET:</pre>
188
                  return True
              return False
189
190
191
          def ClosePositionLimitReached(self, pos, vel):
192
              # stop if gripper closes past position threshold
193
              if vel > 0 and (pos + SERVO_EPSILON > self.close_limit):
194
                  message = "Full close reached at {}".format(self.close_limit)
195
                  print (message)
196
197
                  return True
198
199
              return False
200
201
          def readAndPublishServoData(self):
202
              ids, loads, vels, pos = self.gripper.readServos()
203
204
              printstr = "ids: {}, loads: {}, vels: {}, pos: {}".format(ids, loads, vels, pos)
205
              gripper_msg = Float32MultiArray()
206
              gripper_msg.data = [ids[0], loads[0], vels[0], pos[0],
207
                                   ids[1], loads[1], vels[1], pos[1],
208
                                   ids[2], loads[2], vels[2], pos[2]]
209
210
              # self.output_pub.publish(gripper_msg)
211
212
              return ids, loads, vels, pos
213
214
          ### POSITION CONTROL ###
215
216
          def pos_command_cb(self, option_data):
217
218
              option = option data.data
              ### Position Control Menu ###
219
220
              print("receiving option {}".format(option))
221
              if option == 0:
222
223
                  ids, loads, vels, pos = gp.readAndPublishServoData()
224
                  printstr = "ids: {}, loads: {}, vels: {}, pos: {}".format(ids, loads, vels, pos)
225
                  print(printstr)
226
227
              elif option == 1:
228
                  print("option 1")
229
                  self.gripper.parallelOpenInch()
230
              elif option == 2:
231
                  print("option 2")
232
                  self.gripper.parallelClose()
233
              elif option == 3:
234
                  print("option 3")
235
                  self.gripper.parallelOpen() # to change vals, modify TRACK_SERVO_INCH in DynamixelGripper.py
```

```
236
                                    elif option == 4:
237
                                               print("option 4")
                                               self.gripper.parallelCloseInch()
238
239
240
                                    rospy.sleep(1.) # wait 1 second
241
                                    self.publish_finished_flag(1)
242
 243
             PROGRAM\_CURRENT\_TEST = 0
244
             PROGRAM_JEANA
245
246
              program = PROGRAM_JEANA
247
             TRACK_INDEX = 2 # index of track servo; originally 2
248
249
               def main():
                         gp = GripperControl()
250
251
                         gp.command = False
                          count = 0
252
 253
                         if rospy.is_shutdown():
 254
 255
                                    print("[poe] ros not running; exiting")
 256
                                    exit()
 257
 258
                          ids, loads, vels, pos = gp.readAndPublishServoData()
 259
                          print("ids: {}, loads: {}, vels: {}, pos: {}".format(*gp.readAndPublishServoData()))
 260
 261
                          while not rospy.is_shutdown():
 262
                                    if (program == PROGRAM_CURRENT_TEST):
 263
                                               load = gp.gripper.readServos()[1][0] # fornow (assumes that gripperServo is index 0)
 264
                                               print("{}".format(load))
 265
                                    elif (program == PROGRAM_JEANA):
 267
                                                         ids, loads, vels, pos = gp.readAndPublishServoData()
 268
                                                         printstr = "ids: {}, loads: {}, vels: {}, pos: {}".format(ids, loads, vels, pos)
269
                                                         print("LOAD: {}".format(loads[TRACK_INDEX]))
270
                                                         ### TRACK SERVO CONTROL ###
271
272
                                                          \textbf{if} \ (\texttt{gp.option} \ \textbf{in} \ (\texttt{CLOSE\_ALL}, \ \texttt{CLOSE\_PARALLEL}) \ \textbf{and} \ \texttt{gp.ClosePositionLimitReached} \\ (\texttt{pos}[\texttt{TRACK\_INDEX}], \ \texttt{vels}[ \texttt{Index}] \\ \textbf{ops}[\texttt{TRACK\_INDEX}], \\ \textbf{ops}[\texttt{T
273
                                                                      TRACK INDEX1)) or \
274
                                                                    TRACK INDEX1. vels[TRACK INDEX1)):
                                                                    load = loads[TRACK_INDEX] if gp.option in (CLOSE_ALL, CLOSE_PARALLEL) else None
275
276
277
                                                                    gp.StopServo(pos=pos[TRACK_INDEX], load=load)
                                                                    gp.command = False
278
                                                                    print("Open/Close limit reached..")
279
280
                                                                    print(printstr)
 281
 282
                                                         elif gp.option == PARTIAL_OPEN:
                                                                    if \quad \texttt{gp.OpenPartialReached(pos[TRACK\_INDEX]}\,, \ \ vels[TRACK\_INDEX]):\\
 283
 284
                                                                              gp. StopServo()
 285
                                                                              gp.command = False
 286
                                                                              print(printstr)
 287
 288
                                                         # Stop if significant load detected
 289
                                                          \textbf{elif} \hspace{0.2cm} \texttt{pos} \hspace{0.1cm} \texttt{[TRACK\_INDEX]} \hspace{0.2cm} > \hspace{0.1cm} \texttt{gp.gripper.track\_servo.open} \hspace{0.2cm} + \hspace{0.1cm} 800 \hspace{0.2cm} \textbf{and} \hspace{0.2cm} (\hspace{0.1cm} \texttt{loads} \hspace{0.1cm} \texttt{[TRACK\_INDEX]} \hspace{0.2cm} > \hspace{0.1cm} \texttt{TRACK\_LOAD\_THRESH) 
                                                                       and abs(vels[TRACK_INDEX] - GOAL_VELOCITY_VALUE) < VELOCITY_EPSILON: # finger loads exceeded
 290
                                                                    message = "Load threshold reached - setting velocity to 0."
 291
                                                                    print(message)
 292
                                                                    gp.count += 1
 293
```

```
294
                                                              print("Loads: {}, Present velocity is {} and goal velocity is {} with epsilon {}".format(loads, vels
                                                                           [\mathsf{TRACK\_INDEX}]\,,\;\;\mathsf{GOAL\_VELOCITY\_VALUE},\;\;\mathsf{VELOCITY\_EPSILON})\,)
295
296
                                                              if gp.count >= CONSECUTIVE_THRESH: #4 times
297
                                                                       {\tt gp.StopServo(message=message,\ pos=pos[TRACK\_INDEX])}\ \textit{\#TODO:\ may\ need\ to\ add\ ,\ load=loads[TRACK\_INDEX]}
                                                                                     TRACK_INDEX]
298
                                                                       gp.command = False
299
                                                                        print(printstr)
300
301
                                           else:\\
302
                                                    if gp.option in (PARTIAL_OPEN, FULL_OPEN, OPEN_PARALLEL): # open
                                                              if \quad not \quad \texttt{gp.OpenPositionLimitReached(pos[TRACK\_INDEX]):} \\
303
                                                                        if gp.option == OPEN_PARALLEL:
304
305
                                                                                  print("open gripper parallel")
                                                                                  gp.OpenGripperParallel()
306
307
                                                                        else:
                                                                                 gp.OpenGripper()
308
                                                                       gp.command = True
309
                                                                       gp.count = 0
310
                                                                       gp.partial_open_count = 0
311
                                                                       gp.current_close = pos[TRACK_INDEX]
312
313
                                                              else:
                                                                       gp.gripper.auxOpen()
314
315
                                                                       gp. StopServo()
316
                                                                       gp.command = False
                                                                        print(printstr)
317
318
                                                    elif gp.option == CLOSE_ALL: # close
319
320
                                                              gp.CloseGripper()
321
                                                              gp.command = True
322
323
                                                    elif gp.option == CLOSE_PARALLEL:
324
                                                              gp. CloseGripperParallel()
325
                                                              gp.command = True
326
                                                    elif gp.option == CLOSE_AUX:
327
328
                                                              gp.gripper.auxClose()
                                                              gp.command = False
329
330
                                                              gp.option == None
331
                                                    elif \ gp.option \ == \ CLOSE\_AUX\_CUSTOM \ and \ gp.prev\_option \ != \ CLOSE\_AUX\_CUSTOM \ and \ gp.prev\_prev\_option \ != \ CLOSE\_AUX\_CUSTOM \ and \ gp.prev\_option \ != \ CLOSE\_AUX\_CUSTOM \ and \ and \ gp.prev\_option \ and \ and \ and \ an
332
                                                                CLOSE_AUX_CUSTOM:
333
                                                              gp.gripper.auxCloseCustom(500)
                                                              gp.command = False
334
                                                              gp.option == None
335
                                                              gp.publish_finished_flag(1)
336
337
                                                    gp.prev_option = gp.option
338
339
                                                    gp.prev_prev_option = gp.prev_option
340
341
                       gp.gripper.poe_exit_program()
342
343
             if __name__ == '__main__':
344
                       rospy.init_node('read_servo', anonymous=True)
345
                       main()
```

Bibliography

- [1] Alexander C. Abad and Anuradha Ranasinghe. Visuotactile sensors with emphasis on gelsight sensor: A review. *IEEE Sensors Journal*, 20(14):7628–7638, 2020.
- [2] Marichi Agarwal, Swagata Biswas, Chayan Sarkar, Sayan Paul, and Himadri Sekhar Paul. Jampacker: An efficient and reliable robotic bin packing system for cuboid objects. *IEEE Robotics and Automation Letters*, 6(2):319–326, 2021.
- [3] Yesenia Aquilina and Michael A. Saliba. An automated supermarket checkout system utilizing a scara robot: preliminary prototype development. *Procedia Manufacturing*, 38:1558–1565, 2019. 29th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM 2019), June 24-28, 2019, Limerick, Ireland, Beyond Industry 4.0: Industrial Advances, Engineering Education and Intelligent Manufacturing.
- [4] Yasemin Bekiroglu, Renaud Detry, and Danica Kragic. Learning tactile characterizations of object- and pose-specific grasps. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1554–1560, 2011.
- [5] Jeannette Bohg, Matthew Johnson-Roberson, Mårten Björkman, and Danica Kragic. Strategies for multi-modal scene exploration. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4509–4515, 2010.
- [6] Roberto Calandra, Andrew Owens, Dinesh Jayaraman, Justin Lin, Wenzhen Yuan, Jitendra Malik, Edward H. Adelson, and Sergey Levine. More than a feeling: Learning to grasp and regrasp using vision and touch. *IEEE Robotics and Automation Letters*, 3(4):3300–3307, Oct 2018.
- [7] Lillian Chin, Felipe Barscevicius, Jeffrey Lipton, and Daniela Rus. Multiplexed manipulation: Versatile multimodal grasping via a hybrid soft gripper. In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages 8949–8955. IEEE, 2020.
- [8] Lillian Chin, Jeffrey Lipton, Robert MacCurdy, John Romanishin, Chetan Sharma, and Daniela Rus. Compliant electric actuators based on handed shearing auxetics. In 2018 IEEE International Conference on Soft Robotics (RoboSoft), pages 100–107. IEEE, 2018.

- [9] Lillian Chin, Michelle C Yuen, Jeffrey Lipton, Luis H Trueba, Rebecca Kramer-Bottiglio, and Daniela Rus. A simple electric soft robotic gripper with high-deformation haptic feedback. In 2019 International Conference on Robotics and Automation (ICRA), pages 2765–2771. IEEE, 2019.
- [10] David Coleman, Ioan Sucan, Sachin Chitta, and Nikolaus Correll. Reducing the barrier to entry of complex robotic software: a moveit! case study. *arXiv* preprint *arXiv*:1404.3785, 2014.
- [11] Michael Danielczuk, Matthew Matl, Saurabh Gupta, Andrew Li, Andrew Lee, Jeffrey Mahler, and Ken Goldberg. Segmenting unknown 3d objects from real depth images using mask r-cnn trained on synthetic data. In *2019 International Conference on Robotics and Automation (ICRA)*, pages 7283–7290, 2019.
- [12] Daniele De Gregorio, Riccardo Zanella, Gianluca Palli, Salvatore Pirozzi, and Claudio Melchiorri. Integration of robotic vision and tactile sensing for wire-terminal insertion tasks. *IEEE Transactions on Automation Science and Engineering*, 16(2):585–598, 2019.
- [13] Yang Gao, Lisa Anne Hendricks, Katherine J Kuchenbecker, and Trevor Darrell. Deep learning for tactile understanding from visual and haptic data. In *2016 IEEE International Conference on Robotics and Automation (ICRA)*, pages 536–543. IEEE, 2016.
- [14] Alexander M. Gruebele, Michael A. Lin, Dane Brouwer, Shenli Yuan, Andrew C. Zerbe, and Mark R. Cutkosky. A Stretchable Tactile Sleeve for Reaching Into Cluttered Spaces. *IEEE Robotics and Automation Letters*, 6(3):5308–5315, July 2021.
- [15] Bianca S Homberg, Robert K Katzschmann, Mehmet R Dogar, and Daniela Rus. Haptic identification of objects using a modular soft robotic gripper. In *Intelligent Robots and Systems (IROS)*, 2015 IEEE/RSJ International Conference on, pages 1698–1705. IEEE, 2015.
- [16] Young-Dae Hong, Young-Joo Kim, and Ki-Baek Lee. Smart Pack: Online Autonomous Object-Packing System Using RGB-D Sensor Data. *Sensors*, 20(16):4448, January 2020.
- [17] Ruizhen Hu, Juzhan Xu, Bin Chen, Minglun Gong, Hao Zhang, and Hui Huang. Tapnet. *ACM Transactions on Graphics*, 39(6):1–15, Nov 2020.
- [18] Josie Hughes, Shuguang Li, and Daniela Rus. Sensorization of a continuum body gripper for high force and delicate object grasping. In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages 6913–6919, 2020.
- [19] Takuya Ikai, Shota Kamiya, and Masahiro Ohka. Robot control using natural instructions via visual and tactile sensations. *Journal of Computer Science*, 12(5):246–254, May. 2016.

- [20] Naveen Kuppuswamy, Alex Alspach, Avinash Uttamchandani, Sam Creasey, Takuya Ikeda, and Russ Tedrake. Soft-bubble grippers for robust and perceptive manipulation. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 9917–9924, October 2020.
- [21] Michelle A. Lee, Matthew Tan, Yuke Zhu, and Jeannette Bohg. Detect, reject, correct: Crossmodal compensation of corrupted sensors, 2020.
- [22] Michelle A Lee, Brent Yi, Roberto Martín-Martín, Silvio Savarese, and Jeannette Bohg. Multimodal sensor fusion with differentiable filters. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 10444–10451. IEEE, 2020.
- [23] Michelle A. Lee, Yuke Zhu, Krishnan Srinivasan, Parth Shah, Silvio Savarese, Li Fei-Fei, Animesh Garg, and Jeannette Bohg. Making sense of vision and touch: Self-supervised learning of multimodal representations for contact-rich tasks. In *2019 International Conference on Robotics and Automation (ICRA)*, pages 8943–8950, 2019.
- [24] Shuguang Li, John J. Stampfli, Helen Xu, Elian Malkin, Evelin Villegas Diaz, Daniela Rus, and Robert J. Wood. A vacuum-driven origami "magic-ball" soft gripper. *2019 International Conference on Robotics and Automation (ICRA)*, pages 7401–7408, 2019.
- [25] Abhijit Makhal, Federico Thomas, and Alba Perez Gracia. Grasping unknown objects in clutter by superquadric representation. In 2018 Second IEEE International Conference on Robotic Computing (IRC), pages 292–299, 2018.
- [26] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler, Andrew Y Ng, et al. Ros: an open-source robot operating system. In *ICRA workshop on open source software*, 2009.
- [27] Kirstie Renae. 8 tips for bagging groceries, according to someone who does it every day. insider.com/best-way-to-bag-groceries-2018-12. Accessed: 2021-09-08.
- [28] Rocco Antonio Romeo, Michele Gesino, Marco Maggiali, and Luca Fiorio. Combining Sensors Information to Enhance Pneumatic Grippers Performance. *Sensors*, 21(15):5020, July 2021.
- [29] Philipp Schmidt, Nikolaus Vahrenkamp, Mirko Wächter, and Tamim Asfour. Grasping of unknown objects using deep convolutional neural networks based on depth images. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages 6831–6838, 2018.
- [30] Max Schwarz, Anton Milan, Arul Selvam Periyasamy, and Sven Behnke. RGB-D object detection and semantic segmentation for autonomous manipulation in clutter. *The International Journal of Robotics Research*, 37(4-5):437–451, April 2018. Publisher: SAGE Publications Ltd STM.

- [31] Benjamin Shih, Dylan Shah, Jinxing Li, Thomas G Thuruthel, Yong-Lae Park, Fumiya Iida, Zhenan Bao, Rebecca Kramer-Bottiglio, and Michael T Tolley. Electronic skins and machine learning for intelligent soft robots. *Science Robotics*, 5(41), 2020.
- [32] Jun Shintake, Vito Cacucciolo, Dario Floreano, and Herbert Shea. Soft robotic grippers. *Advanced Materials*, 30(29):1707035, 2018.
- [33] Rahul Shome, Wei N. Tang, Changkyu Song, Chaitanya Mitash, Hristiyan Kourtev, Jingjin Yu, Abdeslam Boularias, and Kostas E. Bekris. Towards robust product packing with a minimalistic end-effector. In *2019 International Conference on Robotics and Automation (ICRA)*, pages 9007–9013, 2019.
- [34] Benno Staub, Ajay Kumar Tanwani, Jeffrey Mahler, Michel Breyer, Michael Laskey, Yutaka Takaoka, Max Bajracharya, Roland Siegwart, and Ken Goldberg. Dex-net mm: Deep grasping for surface decluttering with a low-precision mobile manipulator. In 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), pages 1373–1379, 2019.
- [35] Ryan L Truby, Lillian Chin, and Daniela Rus. A recipe for electrically-driven soft robots via 3d printed handed shearing auxetics. *IEEE Robotics and Automation Letters*, 6(2):795–802, 2021.
- [36] Ryan L. Truby, Robert K. Katzschmann, Jennifer A. Lewis, and Daniela Rus. Soft robotic fingers with embedded ionogel sensors and discrete actuation modes for somatosensitive manipulation. In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), pages 322–329, 2019.
- [37] Fan Wang and Kris Hauser. Stable Bin Packing of Non-convex 3D Objects with a Robot Manipulator. In 2019 International Conference on Robotics and Automation (ICRA), pages 8698–8704, May 2019.
- [38] Fan Wang and Kris Hauser. Robot packing with known items and nondeterministic arrival order. *IEEE Transactions on Automation Science and Engineering*, pages 1–15, 2020.
- [39] Hongbo Wang, Massimo Totaro, and Lucia Beccai. Toward Perceptive Soft Robots: Progress and Challenges. *Advanced Science*, 5(9):1800541, 2018.
- [40] Akihiko Yamaguchi and Christopher G. Atkeson. Combining finger vision and optical tactile sensing: Reducing and handling errors while cutting vegetables. In 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages 1045–1051, 2016.
- [41] Akiya Yasuda, Gustavo Alfonso Garcia Ricardez, Jun Takamatsu, and Tsukasa Ogasawara. Packing planning and execution considering arrangement rules. In 2020 Fourth IEEE International Conference on Robotic Computing (IRC), pages 100–106, 2020.

[42] Kuan-Ting Yu and Alberto Rodriguez. Realtime state estimation with tactile and visual sensing for inserting a suction-held object. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1628–1635. IEEE, 2018.