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Abstract

Quantum gases are an ideal platform for studying problems in many-body physics.
Highly tunable and reconfigurable, these systems work as quantum simulators for a
range of other quantum mechanical systems, ranging from neutron stars, to super-
conductors, to quantum Hall systems. A crucial degree of freedom is the external
geometry of the trapping potential. In this thesis, we describe experiments on cre-
ating homogeneous quantum gases and performing measurements using them.

The first section of the thesis focuses on homogeneous Fermi gases, where we
use tailored optical potentials to trap 6Li atoms in a homogeneous box potential.
We observe uniform fermionic superfluids and measure the temperature dependence
of the noninteracting Fermi surface. Radiofrequency (rf) spectroscopy offers unique
insights into the spectral properties of Fermi gases. We exploit the high signal to
noise ratio of rf spectroscopy of uniform Fermi gases to obtain precise measurements
of the thermodynamic contact. We observe a dramatic change in the contact at the
superfluid transition.

The second section of this thesis concerns uniform rotating bosonic condensates.
We discuss a new experimental apparatus and outline how geometric squeezing can
be used to prepare systems of quantum gases in the lowest Landau level, a long
sought-after goal. Lastly, we show a surprising spontaneous crystallization of these
quantum Hall systems, and find that it is driven by interactions.

Thesis Supervisor: Martin W. Zwierlein
Title: Thomas A. Frank (1977) Professor of Physics
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Chapter 1

Introduction

Quantum mechanics in three dimensions restricts particles to fall into one of two

categories: fermions and bosons. Theoretically demonstrated in 1924 by Bose and

Einstein and 1926 by Fermi and Dirac [9, 37, 44, 32], the quantum statistics of

a gas of particles determines their thermodynamics and evolution. Fermions obey

the Pauli exclusion principle, where no two particles can occupy the same quantum

state. Bosons on the other hand, have no such restriction. Since then, perhaps every

single experiment in quantum physics has in one way or another, demonstrated the

consequences of these fundamental statistical principles.

Simulating quantum systems is a computationally challenging problem on classi-

cal computers. The number of states in a Hilbert space grows exponentially in the

number of particles: thus, even the best classical computers of today would struggle

to contain the full Hilbert space of just 50 fermions. In 1982, Feynman suggested

that in order to efficiently model a quantum system, we should consider building

another quantum system that follows the same physical laws [49]. Over the past few

decades, ultracold gases of atoms have emerged as a highly controllable platform for

exactly this task: quantum simulation [70, 56, 153, 122, 156]. Although all atoms are

composed of fermionic fundamental particles, the statistics of composite particles is

determined by the total spin, and as a result, composite bosons can be produced us-
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ing neutral atoms. This, in combination with laser trapping, laser cooling [121] and

evaporative cooling [30], enabled the first Bose-Einstein condensation of a dilute gas

of bosonic atoms [4, 29]. The quantum statistics of the constituent atoms resulted in

macroscopic consequences: the condensate was observed to behave as a macroscopic

wavefunction, with a well-defined phase. The observation of Abrikosov vortex lat-

tices [91, 62, 1] strikingly demonstrated superfluidity: a phenomenon where a system

flows without dissipation. Soon after the observation of BEC, fermionic atoms were

cooled to quantum degeneracy [31, 145, 110, 61]. Although Pauli blocking prevents

s-wave interactions between fermions in the same internal quantum state, a spin-

mixture of fermions can experience interparticle interactions through a magnetic-field

controlled resonance between a molecular bound state and an open channel. First

studied by Hermann Feshbach in 1958 [46], these Feshbach resonances were realized

as a method for controlling interactions in ultracold gases [143, 71]. In a Feshbach

resonance, fermions were observed to form bosonic pairs and molecules which con-

densed at sufficiently high phase space densities [60, 157, 73, 155, 123]. Much like a

BEC consisting of atomic bosons, these pair condensates exhibited superfluidity, di-

rectly demonstrated with the appearance of Abrikosov lattices in rotating fermionic

pair condensates [154].

The simplest confinement for a gas of particles is a box. The uniform density

inside a box allows for large signal for precision many-body thermodynamics, and

a translationally invariant system for studying propagating waves. Ultracold atoms

have historically been trapped in harmonic potentials. However, recent developments

have shown the power of uniform Bose-Einstein condensates for measuring critical

phenomena and turbulence, among others [55, 106, 108]. In this thesis, we cover our

efforts to produce uniformly trapped ultracold fermions [102]. Since then, we have

used the box to measure the contact of spin-balanced and polarized Fermi gases [150,

100] and measure both first and second sound in a fermionic superfluid [114].

Uniform systems are ideal for studying emergent phenomena. The presence of

20



translational symmetry allows for spontaneous modes to grow without being driven

by an external trapping potential. This makes them ideal for studying supersolidity

for instance. In supersolids, translational symmetry is spontaneously broken, but the

system retains superfluidity [13, 119, 129]. There has been much recent interest in

studying supersolids in stripe phases of BECs, as well as dipolar quantum gases [89,

88, 21, 10, 92]. Here, we study the spontaneous crystallization of a uniform gas under

rotation. The only ingredients required are an artificial gauge field, and interparticle

interactions. We find a regime where the crystallization growth rate is entirely set

by interactions, and demonstrate that an interacting Landau gauge wavefunction is

unstable towards forming a droplet array. These observations connect to the lowest

Landau level, and pave a path forward towards more exotic states of matter that lie

at even higher vortex densities [25].

1.1 Thesis outline

This thesis is organized as follows:

The second chapter of this thesis begins with an introduction to the theory behind

Fermi gases in bulk. We cover the properties of ideal Fermi gases, and provide a brief

overview on our use of Feshbach resonances to tune the interparticle scattering length.

Finally, we provide intuition for a thermodynamic quantity known as the contact.

In Chapter 3, we discuss the second quantization of the rotating 2D harmonic

oscillator, and discuss the ground state wavefunctions for a quantum gas under ro-

tation.

In Chapter 4, we outline technical details on the homogeneous box for fermions.

We discuss our optically tailored potentials, as well as our efforts to characterize the

homogeneity of our trap.

In Chapter 5 , we finally arrive at the main scientific results with fermions. We

present our measurements of the temperature dependence of the Fermi surface of
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non-interacting fermions, and outline a momentum focusing method that allows us

to effectively image in infinite time-of-flight. Then, we discuss thermometry as well as

a method to calibrate our thermometers from the onset of the superfluid transition.

We outline our measurements of the Joule-Thomson coefficient. Lastly, we discuss

rf spectroscopy of the unitary Fermi gas. We outline how the contact varies with

temperature, and show a clear effect of the onset of pairing on the contact.

In Chapter 6, we discuss our results on rotating quantum gases. We offer technical

details on the construction of our newest experiment. Turning to the scientific results,

we show how a saddle potential in the rotating frame enacts geometric squeezing and

prepares Landau gauge wavefunctions in the lowest Landau level. Finally we discuss

the spontaneous crystallization of interacting quantum Hall systems.

In Chapter 7, we provide an outlook for the two branches of experiments discussed

in this thesis.
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Chapter 2

Ultracold Fermi gases

In this chapter, we briefly present the background theory for Chapters 4 and 5, which

concern ultracold Fermi gases.

2.1 Ideal Fermi gases

Fermi gases are characterized by Pauli blocking. Indistinguishable fermions occupy

one quantum state, and prevent other fermions from occupying the same state. This

is crucially different to bosons, which owing to the spin-statistics theorem, can occupy

the same quantum state. Consider a system of two indistinguishable single particle

states |a〉 and |b〉. Since they are identical, an exchange operation must preserve

the wavefunction up to a global phase factor. In 3D, there are only two choices:

a symmetric state where particle exchange results in a phase factor of +1, and an

antisymmetric state, where the phase is -1. Fermions choose to be antisymmetric,

with a general state given by the singlet

|Ψ〉 ∼ |a〉|b〉 − |b〉|a〉 (2.1)

If the two quantum states are identical, |a〉 = |b〉, and Ψ is identically zero. This
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is forbidden, and is known as Pauli blocking.

We first consider ideal Fermi gases, which are unable to form superfluids due to

a lack of interactions. At zero temperature, non-interacting fermions occupy each

momentum state up to the Fermi momentum

kF = (6π2n)1/3 (2.2)

in 3D, where n is the density of particles. The corresponding energy is the Fermi

energy EF = ~2k2F/2m. The total number of particles is given by

N =
V

(2π)3

∫
d3k nk (2.3)

where the momentum distribution of fermions is the Fermi-Dirac distribution

nk =
1

e(εk−µ)/kBT + 1
. (2.4)

Here, T is the temperature, µ is the chemical potential, and εk = ~2k2/2m. At

high temperatures, this distribution smoothly transforms into the Maxwell-Boltzmann

distribution

nk =
1

e(ε−µ)/kBT
(2.5)

The transition between the two happens at

(ε− µ) ∼ kBT (2.6)

For the ideal Fermi gas, we can identify the chemical potential with the Fermi

energy. So in other words, the gas behaves like a quantum gas when T ≤ TF , where

TF = EF/kB is the Fermi temperature. It is worth noting here that the ideal Fermi

gas has only two energy scales - the Fermi energy and the temperature, and only

two lengthscales - the interparticle distance, set by the Fermi wavevector, and the
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thermal de Broglie wavelength

λT =
h√

2mkBT
(2.7)

2.2 Tunable interactions

Fermi gases exhibit a rich phase diagram when interactions are turned on. Interac-

tions allow fermions to correlate their motion, forming pairs, molecules, and more

exotic strongly-correlated superfluids.

Open Channel

Closed ChannelBound state

Figure 2-1: Feshbach resonances of 6Li. Left: the two-channel model of a
Feshbach resonance. Here, two atoms approach each other through an open channel.
This collision process can be resonant to a bound state of a closed channel. The
energy of this bound state can be tuned using a magnetic field, to form wide Feshbach
resonances (right).

In Figure 2-1, we show the mechanism for tuning interparticle interactions. Two

free atoms of opposite spin states approach each other, interacting through a short-

range contact interaction, typically characterized by a Lennard-Jones potential [87]:

V (r) = ε
[
(σ/r)12 − (σ/r)6

]
(2.8)

where σ and ε are the length and energy scales of the potential. In 3D, quantum
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scattering can be written as

ψ(r) = ψ0(r) + f(k, θ)
eikr

r
(2.9)

where an incoming wavefunction ψ0 interacts and scatters into an outgoing compo-

nent given by the second term. For fermions scattering at low temperatures, s-wave

scattering dominates, and the scattering amplitude can be written as a function of

k, independent of angle, an a phase shift δ satisfying the equation

k cot δ = −1

a
+

1

2
rek

2 (2.10)

where a is the scattering length and re is the effective range. If we only consider the

r−6 term in the Lennard-Jones potential, the effective range can be written as

re =

(
mC6

~2

)1/4

(2.11)

where in the notation of Equation 2.8, the coefficient C6 = σ6ε. For weakly-

interacting Fermi gases, the two atoms barely interact with each other, and escape

along the open channel. In these cases, a is small (on the order of 100a0). Note

that since the effective range re ≈ 62a0 for
6Li [151], the contribution from re can be

ignored for low-k scattering if a > re. Scattering processes at much higher energies

(e.g. in particle physics) involve high momenta. Those events can resolve re and

generally, the structure of the contact interaction.

To vary the scattering length, a magnetic field bias can be used to tune the

binding energy of a molecular state

Eb =
~2

ma2
(2.12)

where we assume a > re. This allows us to tune the scattering length through a
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Feshbach resonance where the scattering length is given by

a = abg

(
1 +

∆B

B −B0

)
(2.13)

located at B0, characterized by a width ∆B and a background scattering length abg.

Fortunately, 6Li has a set of three wide Feshbach resonances at 690G (between states

|1〉 − |3〉), 809G (|2〉 − |3〉), and 832G (|1〉 − |2〉).

For positive scattering lengths, the system forms a condensate of Feshbach molecules

at low temperatures. For negative scattering lengths, fermions form Cooper pairs

that are loosely bound, and whose size is much larger than the interparticle distance.

In between this BEC-BCS crossover, at the resonance, is a strongly-correlated sys-

tem where the pair size is the same lengthscale as the interparticle distance [117, 77].

Here, much like the noninteracting system, there are only two energy scales, set

by the Fermi energy, and the temperature. Due to the diverging scattering length,

interactions are as strong as allowed by unitarity.

2.3 The contact

Fermions interacting through a short-range interaction in the s-wave channel are

characterized by a thermodynamic quantity known as the contact [141, 139, 140]. In

nuclear physics, the contact reveals information about short-range correlations [148]

and momentum distributions within the nucleus [41]. Insensitive to the details of

the interaction potential, the contact is a universal quantity, and measurements in

ultracold gases can have direct implications on nuclear physics.

It can be shown that there is a universal relation between the tails of the mo-

mentum distribution of the system and the change of the total energy with respect
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to the inverse scattering length:

~2C
4πm

=
1

V

∂E

∂(−1/a)

∣∣∣∣
S,N,V

(2.14)

C = lim
k→∞

k4nk (2.15)

This holds whenever the effective range of the interaction is much smaller than the

interparticle distance, or other lengthscales. Here, E is the total energy of the system,

and C is the contact coefficient. The high-k tails of the momentum distribution are

closely connected to the short-range behavior in real space. Along these lines, it

can be shown that the pair correlation function at short distances is also set by the

contact:

χnn(r) = lim
r→0
〈n1(r0 + r/2)n2(r0 − r/2)〉 =

C

(4πr)2
(2.16)

Figure 2-2: Short-range pair correlations. The contact measures the short-
range pair correlations of an interacting system. In this cartoon, fermions of opposite
spin states are labeled green and orange. The dotted circle denotes a candidate region
over which the number of pairs are to be counted. On average, the contact for this
system is likely to be on the order of 2.

Integrating over r, we find the number of pairs of opposite spin within a ball of
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radius s is set by the contact.

Np(s) =

∫ s

0

dr χnn(r) (2.17)

This provides an intuition for the contact - it quantifies short-range pair correla-

tions (see Figure 2-2). Since the contact sets the weight of the momentum distribu-

tion at large momenta, it is mostly insensitive to temperature, which typically affects

the Fermi surface. However it has been predicted that near the superfluid transition,

the contact is sensitive to the pairing gap C̃ ∼ (∆/EF )2 [65, 116]. An observation of

changes in the contact for temperatures above the superfluid temperature Tc could

suggest the existence of a pseudogap, where pairing exists without superfluidity. As

we show in chapter 5, the superfluid transition marks a sharp rise in the two-body

contact. We leave further discussion on the contact and its relation to rf spectroscopy

to those chapters.
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Chapter 3

Rotating quantum gases

In this chapter, we provide theoretical background for a rotating system of ultracold

atoms. We start with an intuitive physical picture for working in the rotating frame:

the Foucault pendulum, and then introduce language from quantum Hall physics

to understand noninteracting quantum particles in a rotating frame. We provide

examples of ground state wavefunctions in the lowest Landau level, and discuss gauge

choices for rotating quantum systems. Finally, we discuss turbulence in the context

of quantum fluids, and present results from a numerical simulation of a condensate

filled with vortices.

3.1 The Foucault pendulum

Foucault pendulums are oscillators in rotating frames. In 1851, Leon Foucault sus-

pended a large pendulum from the dome of the Pantheon in Paris to measure the

rotation of the Earth. Since the pendulum oscillates independently of the Earth’s

motion, to first degree, its precession in the rotating frame must inform us of the

Earth’s rotation. The motion of the pendulum can be expressed as epicycles, where

the bob traces out arcs of a circular path. This is most evident when the pendulum

oscillates at the same frequency as the frame rotation. Then, the bob undergoes
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Figure 3-1: A Foucault pendulum.. A Foucault pendulum measures the
rotation of a reference frame. Here, we place the pendulum oscillating at frequency
ω in a frame rotating at a frequency Ω. The motion can be decomposed into a
cylotron orbit (ξ, η) and a guiding center (X, Y ). In much of this thesis, we will
consider the case where ω = Ω, and non-driven guiding centers are effectively frozen.
The (X, Y ) space of guiding centers can be counter-intuitive: the spatial variables
do not commute, and forces cause perpendicular displacement, not acceleration.

a fast cyclotron orbit with a stationary center. For every Foucault pendulum, the

actual orbit can be decomposed into a slow guiding center oscillating at ω − Ω, and

a fast cyclotron motion oscillating at ω + Ω. In Figure 3-1, we show a diagram of a

Foucault pendulum oscillating for the case ω = Ω.

3.2 1D Harmonic Oscillator

We start without rotation or interactions, in one dimension. Although this is fairly

trivial, it allows us to define a number of useful quantities. A quadratic Hamiltonian

for a particle in a harmonic trap is:

H =
p2

2m
+
m

2
ω2x2

where p is the momentum, ω is the trapping frequency, and x is position along the

single dimension. To quantize this Hamiltonian, we construct a length scale using
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these quantities and ~: the harmonic oscillator length:

d =

√
~
mω

and a set of ladder operators

a =
1√
2

(
x

d
+
ipd

~

)
(3.1)

a† =
1√
2

(
x

d
− ipd

~

)
(3.2)

Here, the commutation relation [x, p] = ~ implies [a, a†] = 1. Simple algebra will

show that

x =
d√
2

(a† + a) (3.3)

p =
i~
d
√

2
(a† − a) (3.4)

Writing the Hamiltonian in terms of the ladder operators:

H =
p2

2m
+
m

2
ω2x2 (3.5)

=
−~2
4md2

(
a†a† − a†a− aa† + aa

)
(3.6)

+
md2ω2

4

(
a†a† + a†a+ aa† + aa

)
(3.7)

=
−~2
4m

mω

~
(
a†a† + aa− 2a†a− 1

)
(3.8)

+
mω2

4

~
mω

(
a†a† + aa+ 2a†a+ 1

)
(3.9)

= ~ω
(
a†a+

1

2

)
(3.10)

where in the middle we use the commutation relation and the definition of the har-

monic oscillator length. This is the familiar quantum harmonic oscillator. Recogniz-
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ing that a†a is the number operator, the energy eigenstates are:

En = ~ω
(
n+

1

2

)

3.3 2D Harmonic Oscillator with rotation

Now let’s look at the 2D harmonic oscillator, initially without any rotation. Again,

the Hamiltonian is:

H0 =
p2x + p2y

2m
+
m

2
ω2(x2 + y2)

Defining two annihilation operators like before, along x and y:

ax =
1√
2

(
x

d
+
ipxd

~

)
(3.11)

ay =
1√
2

(
y

d
+
ipyd

~

)
(3.12)

with creation operators defined as the adjoints of these two. Since the Hamiltonian

is separable, we can use the same analysis as the last section to write:

H0 = ~ω(a†xax + a†yay + 1)

We can also define two new annihilation operators, that are the right-circular and

left-circular polarized combinations of the previous operators (the meaning of this

will become clearer when we bring in angular momentum):

a =
ax + iay√

2
(3.13)

b =
ax − iay√

2
(3.14)

This corresponds to choosing a symmetric gauge A = 2Ω(−y, x, 0). We can write

the Hamiltonian again in terms of these operators, and nothing much changes, since
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all we’ve done is rotated the operators in the complex plane:

H0 = ~ω(a†a+ b†b+ 1)

Now let’s turn on rotation. The Hamiltonian becomes:

H = H0 −Ω · L (3.15)

= H0 − ΩLz (3.16)

where we define our coordinate system so that Ω = (0, 0,Ω) = Ω ez. Now we can

write the angular momentum operator in terms of our new ladder operators:

Lz = ẑ · (r× p) = xpy − ypx (3.17)

=
1

2
i~
(
(a†x + ax)(a

†
y − ay)− (a†y + ay)(a

†
x − ax)

)
(3.18)

=
i~
4

(a†xa
†
y + axa

†
y − a†xay − axay (3.19)

− a†ya†x − aya†x + a†yax + ayax) (3.20)

=
i~
2

(axa
†
y − a†xay) (3.21)

=
~
2

(
(b+ a)(b† − a†)− (b† + a†)(a− b)

)
(3.22)

=
~
2

(bb† − ba† + ab† − aa† − (b†a− b†b+ a†a− a†b)) (3.23)

=
~
2

(bb† − aa† + b†b− a†a) (3.24)

= ~(b†b− a†a) (3.25)

The two terms in the last line are the two number operators that are constructed

from the ladder operators a and b. This gives us another physical insight: a and

b are clearly operators that change angular momentum in opposite directions, since

one number operator increases Lz and the other decreases it. So we can now write
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Figure 3-2: Rotation and Landau levels. As the rotation frequency Ω increases,
the energy levels of the harmonic oscillator move from a symmetric fan shape to a
set of degenerate flat bands known as Landau levels.

our full rotating 2D Hamiltonian in terms of the ladder operators:

H = ~ω(a†a+ b†b+ 1)− ~Ω(b†b− a†a) (3.26)

= ~ω + ~(ω − Ω)b†b+ ~(ω + Ω)a†a (3.27)

The energy eigenvalues are:

ε(na, nb) = ~ω + ~(ω − Ω)nb + ~(ω + Ω)na (3.28)

where the quantum numbers na,b ∈ Z≥0 correspond to the number operators a†a and

b†b. We can also define a new set of quantum numbers

n = na + nb (3.29)

m = na − nb (3.30)

so that the energy eigenvalues are

ε(n,m) = n~ω −m~Ω (3.31)
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and the eigenvalues of the angular momentum operator are ~m. In Figure 3-2, we

show the change in energy levels as Ω increases. At Ω = ω, the energy landscape

comprises of highly degenerate Landau levels separated by the cyclotron energy 2~ω.

Individual states in each Landau level are degenerate, and physically correspond to

translations of the guiding centers. At Ω = ω, it costs no energy to move a cyclotron

guiding center in the plane. Intuitively, this can be understood from the fact that

there is no confining potential now, in the rotating frame.

3.4 Wavefunctions in the LLL

Let us consider the groundstate wavefunctions of the Hamiltonian in Equation 3.27.

In the lowest Landau level (LLL), the wavefunctions |ΨLLL〉 satisfy

a|ΨLLL〉 = 0 (3.32)

We want to rewrite the annihilation operator a as a differential operator in real space.

a =
ax + iay√

2
=

1

2

[(
x

d
+
ipxd

~

)
+ i

(
y

d
+
ipyd

~

)]
(3.33)

=
1

2

[(
x+ iy

d

)
+ i

(
d(px + ipy)

~

)]
(3.34)

We can map R2 to C by making the complex variable and a corresponding differential

operator

z =
x+ iy

d
(3.35)

∂ =
px − ipiy

~
(3.36)
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Figure 3-3: Ground state wavefunctions in the LLL. Using Equation 3.38, we
display a set of possible wavefunctions to illustrate the behavior of the polynomial as
the zeros are moved. In the upper row, zeros are added to the center of the system,
left to right: none, one, and four. In the lower row, we place vortices on a triangular
lattice, with the lattice constant being from left to right in units of the magnetic
length `B: 3.00, 2.77, and 2.72, defined in the next section. As the vortex density
grows, so does the edge of the cloud.

So, a = 1√
2
(z + ∂̄), and

(z + ∂̄)|ΨLLL〉 = 0 (3.37)

|ΨLLL〉 ∝ f(z)e−zz̄/4 (3.38)

where f(z) is any holomorphic (complex-differentiable) function. From complex anal-

ysis, all holomorphic functions are analytic, so it can be expressed as a polynomial

of degree n. By the fundamental theorem of algebra, these can be factored into a

product of zeros zi

f(z) =
n∏

i

(z − zi) (3.39)

Here, the roots ξn correspond to the positions of zeros that can be freely translated
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without changing the energy of the ground state. Indeed, the ground state of a

rotating quantum gas in the LLL realizes random polynomials [16]. For illustration,

we show in Figure 3-3 a set of polynomials that resemble common quantum gas

systems. The first three are rotationally symmetric, while the lower three show an

Abrikosov lattice. Interestingly, it is possible to reconstruct a Thomas-Fermi profile

by optimizing the positions of the vortices [2].

3.5 Gauge freedom

There is a direct correspondence between systems of neutral atoms under rotation

and systems of charged particles in a magnetic field. This connection underlies a

major motivation for studying rotating quantum gases. Here we provide an outline

for this correspondence. We begin by simply drawing an analogy through classical

mechanics. Compare the Coriolis force on a neutral particle of mass M in a rotating

frame with the Lorentz force on a particle of charge q in a magnetic field B. With

each particle moving with velocity v,

FCoriolis = 2Mv ×Ω (3.40)

FLorentz = qv ×B (3.41)

The equivalent magnetic field for a system of neutral atoms under rotation is

B = 2M
q
Ω. We know from classical electromagnetism that a magnetic field can be

alternatively expressed as a vector potential so that B = ∇ × A. The Lagrangian

can be written using the vector potential

L =
1

2
mṙ2 + qṙ ·A (3.42)

The Euler-Lagrange equations using this Lagrangian result in the equation of mo-

tion FLorentz = mr̈. These equations are invariant under the gauge transformation
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Figure 3-4: Gauge choices. Here we illustrate two common choices for the vector
potential A. The symmetric gauge (left) preserves rotational symmetry, while the
Landau gauge (right) preserves translational symmetry along y.

A→ A +∇φ, where φ is a scalar field. This is readily verified by noting the vector

identity ∇×∇φ = 0. The Hamiltonian is

H = p · ṙ− L (3.43)

=
1

2
m(p− qA)2 (3.44)

where p = ∂L/∂ṙ is the canonical momentum. Note that whileA is gauge-dependent,

so is the canonical momentum p, and the Hamiltonian – a physical observable – is

gauge-invariant. The Landau level energy structure exists regardless of the gauge

choice. In Figure 3-4, we show two options for the vector potential. One is in the

symmetric gauge, A = 1
2
B〈−y, x, 0〉. The Hamiltonian using the symmetric gauge

is the one we have considered so far in the rotating system, and results in the set

of ground state wavefunctions described in Equation 3.38. This choice of gauge pre-

serves rotational symmetry, and is an ideal choice when the underlying geometry of

the system (e.g. any scalar potentials) is rotationally symmetric. Another choice of
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gauge is the Landau gauge A = B〈0, x, 0〉, resulting in the Hamiltonian

H =
1

2m
(p2x + (py − qBy)2) (3.45)

=
p2x
2m

+
1

2m
(py − 2Ωx)2 (3.46)

=
~2k2x
2m

+
1

2
mω2

c (x− ky`2B)2 (3.47)

where we have returned to the language of rotating neutral particles. Here, ωc = 2Ω

is the cyclotron frequency and

`B =

√
~

mωc
(3.48)

is the magnetic length. Since [H, py] = 0, the quantum eigenstates of H are plane

waves in y. In the x direction, the Hamiltonian is a displaced harmonic oscillator,

so the eigenstates in x are the product of Hermite polynomials Hn and a gaussian

function:

ψ(x, y) ∼ exp(iky)Hn(x+ k`2B) exp

[
− 1

2`2B

(
x+ k`2B

)2
]

(3.49)

For the lowest Landau level, n = 0 and H0(x + k`2B) = 1. Notably, the gauge

field couples momentum in y with position in x. This effect will feature heavily

in chapter 6, where interactions create an interference pattern between displaced

momentum components of a wavefunction.

So which gauge should one choose? From a symmetry argument, the Landau

gauge is an appropriate choice when the system breaks rotational symmetry but is

translationally invariant along one direction. A classic example where the Landau

gauge is an appropriate choice is the story of the quantum Hall effect. For further

reading on the quantum Hall effect, we refer the reader to the excellent review in [144].

In chapter 6, we will consider the effect of a rotating anisotropic potential V (x, y) =

1
2
m(ω2−Ω2)(x2+y2)+ 1

2
mεω2(x2−y2). When ω = Ω, the first term is identically zero

and scalar potential is a saddle in the rotating frame. Particles placed in this saddle
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potential drift along a zero equipotential - extending diagonally outwards from the

center. As we will see, the resulting system is translationally invariant along the

diagonal, and the Landau gauge wavefunctions are a good basis for the system. This

is seen by rotating the coordinates of the saddle potential V (x, y) ∼ mΩ(x2− y2) by
π/4 to obtain the potential V (x̃, ỹ) ∼ mΩx̃ỹ, where the equipotentials are aligned

with the (x, y) coordinate space of the Landau gauge. We can now construct a gauge

transformation from a phase shift given by the scalar saddle potential: U = eimΩxy/~.

Applying this transformation to the symmetric gauge Hamiltonian Hs = H0 − ΩLz

recovers the Landau gauge Hamiltonian HL = UHSU
† in Equation 3.47. Thus, by

breaking the rotational symmetry, the saddle potential acts as a gauge transformation

from the symmetric gauge to the Landau gauge.

3.6 Turbulence

We now discuss a numerical study of quantum turbulence. The motivation for this

study lies in the turbulence we observe in the long time evolution of a Bose-Einstein

condensate under rotation in an anisotropic harmonic trap (see Figure 6-12). Turbu-

lence is ubiquitous in nature but challenging to describe. Unlike laminar flow, where

the fluid velocity is predictable and uniform, turbulent flow is characterized by chaos

and the appearance of self-similar structures in fluids. Due to its chaotic nature,

turbulence lends itself to statistical analysis. The resulting insights we obtain are

often universal – they do not depend on the kind of fluid, its temperature, or the

scale of its turbulent structures. Thus, insights obtained for one fluid are readily

transferred to a vast range of physical phenomena.

One of these insights was discovered in 1941, when Kolmogorov predicted that

the velocity field of an incompressible turbulent fluid should be self-similar over a

large range of scales [79]. This self similarity comes from a cascade of energy from

one lengthscale to another. From the cascade, it can be shown that energy spectrum
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Figure 3-5: Simulated 2D quantum turbulence. Here we display the density
(left) and phase (right) of a simulated wavefunction. The fluid flow profile is overlaid
on each as a vector field. Here the units of the x and y axes are in microns.

follows a power law:

E(k) ∼ k−5/3 (3.50)

Turbulent flow is a well-known solution to the Navier-Stokes equation. While the

Kolmogorov scaling law can be rigorously derived from the Navier-Stokes equation, a

proof of the existence and smoothness of the solutions remains elusive [42]. For quan-

tum fluids, turbulent cascades and their associated power laws have been observed

in liquid helium [34], as well as 2D [74] and 3D [108] Bose-Einstein condensates.

Here, we present the energy spectrum of a turbulent uniform Bose-Einstein conden-

sate, simulated using the Gross-Pitaevskii equation. For more on the simulation,

see Equation 6.6 and Appendix A. We begin by initializing a condensate within a

uniform 2D disk trap, and nucleating vortices at random positions. The resulting

vortex tangle is shown in Figure 3-5. To obtain the energy spectrum, we need the

velocity of the incompressible component of the fluid flow. The total flow field is

given by the gradient of the phase:

v(r) = (~/m)|ψ(r)|∇φ (3.51)
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The gradient of the phase can be obtained from the following differentiation

∇eiφ(r) = ieiφ(r)∇φ (3.52)

∇φ = −ieiφ(r)∇eiφ(r) (3.53)

The gradient of the exponential can be numerically obtained from the wavefunction

ψ =
√
ρeiφ(r). Note that this can also be understood as obtaining the probability

flux j

j =
1

2
(ψ∗∇ψ − (∇ψ)∗ψ) (3.54)

We now want to separate the flow into a compressible component and an incom-

pressible component. The incompressible component has no divergence:

∇ · vic = 0 (3.55)

To separate v into its components, we take a Fourier transform:

∇ · vic =

∫
k · ṽeik·rdr (3.56)

Since both sides must be identically zero, the incompressible component of the flow

is perpendicular to k in momentum space: k · ṽic = 0. So, we can project the flow

into parallel and orthogonal components: v = vc + vic where in Fourier space, the

parallel (to k) component is :

ṽc =
k · v
k2

k (3.57)

and the orthogonal component is:

ṽic = ṽ − ṽc (3.58)
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Figure 3-6: Compressible and incompressible flow. The compressible and
incompressible components of the flow can be separated in momentum space. Here
we show vector fields of both components for a turbulent 2D condensate.

In Figure 3-6, we show the compressible and incompressible components of the flow.

Now, from the incompressible flow in momentum space, we can obtain the incom-

pressible energy spectrum

Eic = 2πk|ṽic|2 (3.59)

In Figure 3-7 we show the evolution of the energy spectrum in time, and compare

it to scaling laws observed in a vast range of turbulent media. We observe a scaling

that is consistent with Kolmogorov’s prediction: 1.65± 0.06.
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Figure 3-7: Energy spectrum of turbulent systems. Here we show the
incompressible energy spectrum of a 2D quantum turbulent system (upper plot),
and compare with a the energy spectra from a range of turbulent media (lower
plot reproduced from [94]). In an inset, we show the 2D Fourier transform of the
incompressible flow |ṽ(k)|. The apparent four-fold pattern is an aliasing from the
window size: we are only concerned with the region near the center. The time
evolution of the energy spectrum shows a convergence to a Kolmogorov-like scaling
law, over about a decade of energy scales. Here, the vertical line shows the healing
length ξ = ~√

2mgn
.
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Chapter 4

Tailored potentials

In this chapter we discuss the tailored potentials that produce homogeneous atomic

Fermi gases.

4.1 Optically tailored potentials

We generate potentials by shaping light. These work by employing the AC Stark

effect. Atoms are polarizable - the electric field of light can induce a small dipole

that experiences a potential in the beam of light. In the dressed atom picture, a light

field changes the energies of the quantum states of the atom. This can be seen by

writing out the time evolution of a wavefunction |ψ〉 = c1|1〉 + c2|2〉 in a two level

system:

i
d

dt


c1
c2


 =

1

2


δ Ω

Ω −δ




c1
c2


 (4.1)

where Ω is the Rabi frequency of the light. The eigenvalues to this differential

equation are λ = ±1
2

√
δ2 + Ω2. For large detunings, |δ| � Ω, and the eigenvalues
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are shifted from their original values of δ/2 by the following quantity:

∆U =
~Ω2

4δ
(4.2)

For δ < 0, the light is red detuned, and the potential is attractive. For δ > 0, it

is repulsive. For a homogeneous trap, a repulsive potential is ideal since it is dark

within the bulk of the trap. In dark traps, the majority of the inhomogeneity comes

from the edges, which have a finite resolution. So, the ideal box potential is a set of

sharp confining walls.

Figure 4-1: In the far field, an axicon generates a ring beam. Figure
from [3]

We started with a set of requirements: the trap height needed to be taller than

10kHz, the edge sharpness needed to be limited by our optical resolution, and the

setup needed to be stable enough to avoid large mechanical vibrations during ex-

periments. Although directly masking a large gaussian beam in the center would

work, a large portion of the power (both inside the dark region as well as far in

the gaussian tails) would be dumped, instead of focused around the edges. Axicons

provide an ideal solution. Used for industrial hole-cutting, the axicon is simply a

conical element [95]. In the far field at distance L, it generates a ring with a radius
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Figure 4-2: Axicon for a dark trap. Top: the axicon setup focuses 532nm light
into a ring pattern. However, the ring radius varies with distance along z, so the
effective shape is a cone. We use a silver mask to block light from the center from
reaching the atoms.

given by

R = L tan[(n− 1)α] (4.3)

where n is the refractive index of the material, α = 180◦ − θ is the cone angle of
the axicon (see Figure 4-2).

The thickness of the ring is simply the gaussian waist w0 of the incoming beam.

However, this limits us to fairly thick rings (w0 ∼mm), whereas we would like to

focus the beam down to tens of microns. In the near field, axicons generate a Bessel

beam with the following electric field profile:

E(r, z) = E0

√
2πkzw0 sin β

zmax
e
− z2

z2max J0(kr sin β) (4.4)

Here, β is as shown in the figure; J0 is the zeroth order Bessel function of the first

kind; zmax = w0/ tan β is called the Bessel range - the range over which the beam

does not diffract. Although this is not a ring potential, its Fourier transform is a ring.

This may be obvious from the fact that far field light propagation (Fraunhofer) effects

a Fourier transform. More precisely, the 2D Fourier operator in polar coordinates is
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Figure 4-3: A uniform box potential for fermions. We overlap 532nm hollow
beams to trap 6Li atoms in a dark homogeneous trapping potential. Right: column-
integrated atomic density profiles in the uniform box trap.

as follows:

E(r′) =

∫
dr E(r)J0

(
rr′

f

)
r (4.5)

Using the orthogonality of Bessel functions,

∫
dr J0(Ror)J0

(
rr′

f

)
r =

δ(r′ −R0)

R0

(4.6)

This is a delta function ring, which is exactly what we want. In practice, the

profile is convolved with the propagated gaussian waist of the input beam. To gen-

erate this beam profile without having to propagate to the far field, we use a lens

(see Figure 4-2). This also achieves a narrow wall thickness since instead of a diverg-

ing gaussian beam, the wall thickness is set by the focal length of the lens. Now, the

ring size is given by

R = (n− 1)αf (4.7)

where f is the focal length of the lens. We use a 10mm microscope objective to

50



generate a ring of radius R = 60µm and a thickness of 3µm before the vacuum

chamber. We send this beam into the chamber with a 1:1 telescope configuration,

and combine the beam with a set of perpendicular sheet beams that act as endcaps

to the cylinder. To ensure that the inside of the box is dark, we use a mask. We

detail the mask preparation steps in Appendix B. The resulting light profile is shown

in Figure 4-3.

While the mask suited us well in the densely packed environment of the old lab,

we implemented a more configurable option using a digital micromirror device in the

new lab (see Figure 4-4). We use a cube to multiplex a stirring beam, which is then

sent to both a monitor camera as well as the atoms after the objective. The ring is

4mm at the DMD device, and 100µm at the objective.

Fiber

Asphere

Cleaning
cube

PID lock mirror

Axicon
f=125mm

DMD

f=450mm

f=75mm

f=300mm

f=30mm
Atoms

Monitor Camera

Stirring    beam

Figure 4-4: Tailored potential optical setup. We use an axicon to send a 4mm
diameter ring beam on the DMD. The DMD masks the central part of the beam to
ensure it is as dark as possible.

4.2 Trap characterization

In this section, we outline two methods we use to characterize the homogeneity of

our trap. The first method measures the sharpness of the walls. Modeling the walls

as a power law, we plot the measured cloud radius as a function of Fermi energy. For

an ideal box, the Thomas Fermi radius is independent of the Fermi energy. For finite

wall sharpness, the gas ’recedes’ into the box as the number of atoms decreases. We

find that our implementation of the box is equivalent to V (r) ∼ r16.2±1.6.
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Another measure of the trap homogeneity, one that includes the nonuniformity

at the center of the box, is the probability of finding an atom at a particular density.

For a perfectly homogeneous cloud, this is a delta function: all atoms are likely to be

found at the constant density. However, for a harmonic trap, this function is almost

uniform [102]. We find that for our homogeneous trapped gas, the probability is

sharply peaked around the central density.

0 63 1290
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Figure 4-5: Box homogeneity characterization. Left: Compared to a har-
monic trap (red dashed line), the Thomas-Fermi radius of our box is closer to a
perfect box (black dashed line), as a function of the Fermi energy. The blue line is
a power law fit to V (r) ∼ r16. Right: A comparison of the probability of finding a
particle at a given density, between the uniform trap (blue) and the harmonic trap
(red).
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Chapter 5

Thermodynamics of Fermi gases

In this chapter, we present the first science results with homogeneous Fermi gases. We

start the chapter with momentum distributions of Fermi gases, discussing both the

ideal noninteracting Fermi gas, and the spin-balanced unitary superfluid. The next

section covers thermometry, and outlines a number of methods we have used to ex-

tract global temperatures in our gases. We provide a discussion of the Joule-Thomson

coefficient, and present measurements using the local density approximation.

The remainder of the chapter is dedicated to the measurement of the spectral

response of a balanced Fermi gas at unitarity. We provide details on radiofrequency

(rf) spectroscopy methods in the box and the hybrid potential, and discuss how we

enzsure that we remain in linear response. Diffusion is a significant obstacle when it

comes to measuring spectra in the hybrid trap, and we will provide measurements

that place bounds on the resolution of rf spectroscopy in inhomogeneous trapping

potentials. Spectroscopy measurements in the box do not suffer from diffusion, so

the subsequent measurements were all performed in the box. We chart the evolution

of rf spectral response and discuss the shape of the high frequency tails. These

tails are influenced by both the interactions in the final state after the rf transfer

as well as the contact. We present our measurement of the temperature dependence

of the contact, and compare with theoretical predictions. Finally, we show how
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the temperature dependence of the spectral response can be used to perform insitu

thermal imaging and measure second sound.

The research presented in this chapter has resulted in the following publications:

B. Mukherjee, Z. Yan, P. B. Patel, T. Yefsah, J. Struck, M. W. Zwierlein, “Ho-

mogeneous Atomic Fermi Gases,” Phys. Rev. Lett. 118, 123401 (2017)[102]

B. Mukherjee, P. B. Patel, Z. Yan, R. J. Fletcher, J. Struck, M. W. Zwierlein,

“Spectral Response and Contact of the Unitary Fermi Gas,” Phys. Rev. Lett. 122,

203402 (2019)[100]

5.1 Momentum distributions

As a direct consequence of Pauli blocking, degenerate fermions fill up low energy

states, forming what is known as the Fermi sea. Many phenomena, from transport

to superfluidity, are a result of physics near the surface of that sea, at the Fermi

surface.

5.1.1 Previous experimental work

Two prominent methods for measuring the Fermi surface in solid state systems con-

nect directly with topics discussed in this thesis. The first involves a technique that

exploits the quantum Hall effect. Following the discussion in Section 3.4, an applied

magnetic field causes oscillations in the conductivity of the sample. It was shown

by Onsager that the frequency of these oscillations is directly related to the cross

sectional area of the Fermi surface:

A⊥ =
2πe∆H

~c
(5.1)
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By changing the direction of the B-field, it is possible to map out the shape of

the Fermi surface. Although the method does not provide the entire momentum

distribution, in solid state systems, the relevant quantity is often the Fermi surface.

The second method is similar in principle to the method described in this chap-

ter. Angle-resolved photo-emission spectroscopy (ARPES) is a technique used to

map the entire spectral function of a solid state system [26]. The technique works on

the principle of photoemission spectroscopy, where a photon that impacts a surface

at energy E = hν can release an electron at an angle θ to the surface normal with

energy Ek = hν−Eb where Eb is the binding energy of the electron. This constrains

the magnitude of the total momentum, p =
√

2mEk. The angle provides another

piece of information: the component of the momentum parallel to the crystal lattice:

p‖ = p sin θ. Both the energy and the angle of the emitted electrons can be measured

with a tool known as an electron spectrometer. In the spectrometer, electrons with

different kinetic energies are separated with a hemispherical electrode, and analyzed

on a multichannel plate. The resulting data provide a map of the spectral weight at

a point in momentum and energy. A simple example is a free electron: an ARPES

measurement would result in a parabolic spectral map, representing the free particle

dispersion relation. With interactions, the picture changes, and details of the elec-

tronic band structure can be obtained from an ARPES measurement. As a byproduct

of obtaining the full spectrum of excitations, ARPES also provides the shape of the

Fermi surface. The Fermi surface is simply a slice of the energy-momentum map at

a constant Fermi energy EF. Note that since ARPES is a surface measurement, it is

best suited for two dimensional solid state systems.

In typical cold atom experiments, the atoms are trapped in nonuniform harmonic

potentials. These inhomogeneous traps result in a broadening of the Fermi surface.

Since the density is typically distributed over a large range of kF (see section 4.2),

each shell in an inhomogeneous cloud contributes to a Fermi surface at a different kF.

In addition, the density in the trap varies so the size of each shell also depends on the
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Figure 5-1: Trap averaged Fermi-Dirac momentum distributions. The
familiar Fermi-Dirac distributions fk are shown in (a) for homogeneous ideal Fermi
gases at a range of temperatures (T/TF = 0.01, 0.2, 0.5, 1, and 2). The insitu density
distributions for 1D harmonically-trapped ideal Fermi gases are shown in (b), and
the corresponding trap-averaged momentum distributions are shown in (c). Even for
very low temperatures, the apparent Fermi surface is no longer sharp at k = kF.

global temperature of the gas. Typically, the trap-averaged momentum distribution

of a degenerate cold Fermi gas looks unlike a Fermi-Dirac distribution (see Fig. 5-1).

Thus, a simple time of flight measurement from a trapped gas would not reveal a

clear Fermi surface.

This obstacle can be partly overcome by selecting a subset of the trapped gas that

is roughly at a constant density. Selection can be performed using hollow beams of

pumping light that transfer atoms into an optically dark state just before the time-

of-flight imaging. This technique, pioneered at JILA, has resulted in measurements

of the Fermi surface, the contact, and the spectral function [35, 126, 125]. However,

many of these measurements remained sensitive to the fraction of the atoms probed.

Since a smaller fraction probed meant a more homogeneous measurement, there was a

tradeoff between signal to noise and homogeneity. Ideally, those two concerns should

be decoupled, and the gas should be as homogeneous as possible. Furthermore, the

temperature dependence of the contact remained mysterious, and in conflict with

most theories, with no resolution even after half a decade [33].
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5.1.2 Momentum focusing

Having motivated the need for a homogeneous trap for fermions, we now turn to our

method of measuring the momentum distribution. A popular method for measuring

the temperature of a thermal gas is to release it from the trap and allow for a free

ballistic expansion [76] Faster atoms travel further; as a result, the resulting atomic

density profile reveals the temperature T of the Maxwell-Boltzmann distribution in

the initial gas:

T = lim
t→∞

m

2kB

σ2

t2
(5.2)

Here σ is the width of the cloud after expansion, t is the duration of expansion

and m is the mass of each atom. Note that the direct relationship between the

width of the cloud in time-of-flight and the temperature is only true in the limit of

infinitely long expansion. After a finite expansion time t, the position of an atom

with initial momentum p(0) is r(t) = r(t = 0)+p(0)t/m. Thus for shorter times, the

width of the cloud is convolved with the initial density profile and obtaining the initial

momentum distribution can be challenging. Furthermore, the iconic bimodal profiles

that represent the onset of BEC reveal another important obstacle in time-of-flight

measurements: hydrodynamic flow. For sufficiently large densities, the interatomic

interactions are relatively strong. While thermal atoms quickly expand, decreasing

the interaction strength to negligible values, the condensate remains at a high density.

Thus, the profile of a condensate after a time-of-flight expansion is a hydrodynamic

expansion from a trapped gas, whose profile is strongly influenced by both the insitu

density profile as well as hydrodynamic expansion. This expansion has been used

to obtain properties of strongly-interacting gases, from the viscosity of the unitary

Fermi gas [14] to properties of normal Bose gases [52].

We now consider the two important ingredients for time-of-flight measurements:

long expansion times, and low interactions during expansion. We achieve the first
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through a technique called momentum-space focusing [136, 146, 103]. From observ-

ing local phase fluctuations in 1D Bose gases, to pinpointing the emergence of the

presuperfluid regime in 2D Bose gases, condensate focusing has been successfully

used to perform pioneering momentum-space measurements. As the name suggests,

the method takes inspiration from optics. In optical systems, phase gradients in the

near-field determine intensity patterns at far-field. Thus, far-field propagation can

be thought of as a Fourier transform, mapping momentum-space to real-space. As

in cold atom systems, far-field propagation (or long-time expansion) can be inconve-

nient, so we use lenses to perform the same transform.

The kinetic equivalent of an optical lens is a harmonic potential. We will now

overview how momentum focusing works, and provide details that are specific to

momentum focusing strongly-interacting homogenous Fermi gases. Let us first con-

sider ideal noninteracting particles of mass m moving freely in a 1D harmonic trap

of frequency ω. The Hamiltonian is:

H =
p2

2m
+
mω2x2

2
(5.3)

Hamiltonian time evolution under H is given by oscillatory motion, which can be

written as a rotation in phase space:


x̄(t)

p(t)


 =


 cos(ωt) sin(ωt)

− sin(ωt) cos(ωt)




x̄(0)

p(0)


 (5.4)

Here x̄ = mωx is a rescaled position coordinate. After a time of t = T/4 =

π/(2 ∗ ω), the coordinates are rotated by π/4 in phase space. Finally, the position

of the particle reads out the initial momentum:

x(T/4) =
1

mω
x̄(T/4) (5.5)

=
p(0)

mω
(5.6)
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Figure 5-2: Momentum focusing of an ideal Fermi gas. (a) A 1D Fermi gas
in phase space occupies a rectangle, with edges that are softened by the temperature
T/TF = 0.2 along the momentum axis, and the box wall rounding along the position
axis. (b) After a time t = π/(2 ∗ ω), the phase space is rotated by 90◦, transforming
the initial uniform density profile (c) into the familiar Fermi-Dirac distribution, du-
plicated along the rescaled x-axis (d).

It can be shown that for both bosonic and fermionic field operators, time evolu-

tion under the same Hamiltonian is a Fourier transform of the initial operators [103].

Thus for ideal Fermi gases, momentum focusing provides an ideal method to read

out the Fermi-Dirac distribution of a homogeneously trapped gas. For illustration,

we show in Fig. 5-2 a 1D non-interacting Fermi gas released from a uniform trapping

potential into a harmonic trap. The density profile expands, and at t = T/4, the

profile along the position axis displays the familiar Fermi-Dirac distribution. Note

that conveniently, the distribution is duplicated on either side of the harmonic trap,

allowing an experimentalist to double the signal for each experimental run. Further-
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more, releasing from a >1D homogeneous trap into a 1D harmonic trap allows for

averaging along the uniform axes, significantly improving the signal. An important

point to note here is the timescale and lengthscale set by the focusing trap frequency

ω. For large ω, the gas is contained within a small field of view, and the higher

optical density can improve the signal-to-noise ratio. However, the momentum-space

magnification is also lower, and therefore, for a finite optical resolution, the momen-

tum space resolution is also smaller. Efforts that attempt to resolve fine structures

in momentum space must consider the finite resolution imposed by both the optics

as well as the harmonic trap.

Our box of atoms lives inside not only hollow light beams, but also a deep, smooth

magnetic potential. The magnetic potential is anti-confining in the x-y plane (includ-

ing gravity), and provides levitation. Along the z-axis, the potential is confining: we

set the current in the curvature coil to form an ω = 23Hz trapping potential. We now

briefly consider the effective momentum resolution obtained by condensate focusing

into the confining magnetic trap. For this experiment, the z-axis harmonic trap fre-

quency was set to ωz = 23Hz. At the camera, the digital resolution is δx = 1.39µm

per pixel. This is comparable to the optical resolution limited by the first imag-

ing lens, an f = 90mm focal length Special Optics objective with a diameter of

D = 50.8mm. The Rayleigh criterion for lithium imaging is therefore

d = 0.61λ
2f

D
(5.7)

≈ 1.45µm. (5.8)

If we consider an ideal Fermi gas with a generous 10kHz Fermi energy, then kF =
√

2mEF~ = 3.44×106 m−1. The momentum focused cloud will span 2∗~kF/(mωz) =

3.2 mm. The momentum resolution is δk = mωzδx/~ = 3.0× 103 m−1. Comparing

this to the Fermi momentum, we can fit δk/kF ∼ 103 momentum-resolved bins in

the Fermi sea.
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(a)

(b)

Figure 5-3: Momentum focusing in the axicon. (a) A sequence of images
starting with a spin-imbalanced (95-5) box of fermions in |1〉 − |2〉 at unitarity. At
t=0, the endcaps are switched off, and the subsequent evolution is shown in steps of
1 ms. (b) A gaussian fit produces a width σz in arbitrary units. The time evolution
of the width can be fit to a sin function to find the point in time that corresponds
to T/4.

As noted above, the magnetic potential along the x-y direction is anti-confining at

an imaginary frequency ωr = 23i/
√

2. This results in an radial expansion of the cloud

during the axial focusing. In order to avoid this expansion, we might consider keeping

the cylindrical trap on during the focusing process. The experimental sequence

involves preparing the box, and then switching off the axially confining endcap beams.

After a variable focusing time t, the cloud is imaged from the top, integrating along

the y direction. The expected T/4 time is 1/(4 ∗ 23 Hz) = 10.8 ms.

In Fig. 5-3, we show a sequence of images that show momentum focusing in the

cylindrical axicon. Here, we prepare a 95/5 spin mixture of |1〉−|2〉 at unitarity. The
small admixture of the interacting minority enables thermalization during prepara-

tion, and importantly, allows us to reach a temperature low enough to both load

efficiently into the box, and potentially measure a clear Fermi surface. From the
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Spin imbalance Tmax σz(T/2)/σz(0)

50-50 12.3 1.3
80-20 12.0 2.9
95-5 11.4 3.7

Table 5.1: Interactions during expansion in the axicon. For each level of
spin imbalance, we image time-resolved sequences of momentum focusing into a 23
Hz harmonic trap from an L = 30µm box. We compare Tmax, the time taken to
reach the largest axial extent of the cloud with T/4 ∼ 10.8 ms. We also compare the
width σz(T/2) after half a period to the initial width σz(0). For an ideal focusing,
ballistic expansion implies that Tmax = T/4 and σz(T/2)/σz(0) = 1. We attribute
the observed deviations to interactions during focusing.

sequence, a few things are apparent. The first is the profile of the gas after T/2 is

no longer the same as the initial box profile. Assuming a perfect ballistic evolution

under a harmonic potential, the density profile should have returned to the initial

profile after T/2. Furthermore, the apparent point at which the gas reaches its max-

imum extent is measurably late: 12.2 ms, instead of 10.8. In order to characterize

effects of interactions during the expansion in the axicon, we vary the spin-imbalance

and find that both the width after T/2 and the time taken to reach the maximum

σz vary considerably with the spin imbalance (see Table 5.1). We attribute both

deviations to interactions during the expansion, and we will return to this effect.

When momentum focusing a 3D box along a 1D harmonic trap, we benefit from

integrating along the two nonfocused axes. We provide an overview on how to obtain

the momentum distribution f(k) from the measured 1D density distribution n1D(z).

As discussed earlier, a quarter period in the harmonic trap applies a rescaling trans-

formation between position and momentum ~kz = mωzz. We can use this to relate

the density distribution with the integrated momentum distribution f1D(kz):

n1D(z) = Af1D(kz) (5.9)

=
A

4π2

∫∫
dkxdky f(kx, ky, kz) (5.10)
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Now, all we need is to solve this equation for f(k), and find the appropriate

proportionality constant A. We can convert to cylindrical coordinates kρ, kz and

apply a change of variables using the energy ε = ~2(k2ρ + k2z)/2m:

f1D(kz) =
1

2π

∫ ∞

0

dkρkρ f(kρ, kz) (5.11)

=
m

2π~2

∫ ∞

~2k2z/2m
dε f(ε, kz) (5.12)

This equation can be inverted through differentiation:

df1D(kz)

dε
=

m

2π~2

(
f(ε =∞, kz)− f

(
ε =

~2k2z
2m

, kz

))
(5.13)

We know that limε→∞ fk = 0, so that leaves us with only the second term:

df1D(kz)

dk2z
= − 1

4π
f(k) (5.14)

where we have substituted ε = ~2(k2ρ + k2z)/2m. We also make use of the assumption

that the momentum distribution is spherically symmetric and f(k) = f(k). Now,

all that’s left is to find the proportionality constant. We know that the total atom

number is

N =
V

2π

∫ +∞

−∞
dkz f1Dkz (5.15)

=
V

2πA

∫ +∞

−∞

dkz
dz

dzn1D(z) (5.16)

=
V mωz
2π~A

∫ +∞

−∞
dz n1D(z) (5.17)

=
V mωz
2π~A

N (5.18)

Solving for the proportionality constant A, and substituting into Equation 5.10,
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we finally arrive at a formula for the momentum distribution fk:

fk = − 8π2~3

V m3ω3
z

dn1D(z)

dz2
(5.19)

In order to identify whether the shape of the axicon has an effect on the mo-

mentum focusing procedure, we show results from a simple classical Monte Carlo

simulation with atoms moving in two dimensions. Along one axis, they are confined

by configurable hard walls, and along the other, they are confined in a box for t < 0.

We initialize the box with N = 2000 atoms, with momenta sampled from a T = 0

Fermi-Dirac distribution (a.k.a, a uniform distribution up to a finite kF). At t = 0,

the simulated atoms are released along the z-axis into a harmonic trap. The particles

undergo elastic collisions with the walls, and do not interact with each other. Time

evolution is implemented using the forward Euler method. When a particle reaches

a hard wall, its velocity is reflected about a normal vector at the nearest wall:

r(t+ δt) = r(t) + v(t)× δt (5.20)

v(t+ δt) =




v(t) x ∈ Ω

v(t)− 2[v(t) · n(r)] n(r) x ∈ δΩ
(5.21)

where Ω is the region inside the box, r(t) and v(t) are the position and velocity

respectively, and n(r) is the normal vector at the wall near the particle. The results,

shown in Figure 5-4, demonstrate that tilted hard walls alter the z component of the

momentum during focusing, and distort the symmetry of the measured momentum

distribution. Since as shown earlier, the single axicon produces a conical trapping

potential for our fermions, it must be switched off during the ballistic expansion

required for momentum focusing. The code for this simulation is available at [99]

We now return to the effects of interactions during the focusing. Turning off the

axicon from the focusing process allows the atoms to freely explore the magnetic

potential. For a spin-balanced superfluid at unitarity, interactions are as strong as
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Figure 5-4: Single particle simulations of momentum focusing. A single
particle simulation of noninteracting fermions at T=0 shows a dependence on the
shape of the radial confinement. Top row: hard walls in x parallel to the z-axis.
Bottom row: a wedge-shaped trap with walls at an angle. Boundary collisions are
fully elastic. After t = T/4, the extents of the clouds are similar. However, the 1D
density profile (right) shows a large asymmetry in the case of the wedge-shaped trap.

allowed by quantum mechanics. The expansion of the gas is hydrodynamic, not

ballistic. In Figure 5-5, we show absorption images of a fermionic superfluid released

into a harmonic trap. In the first few milliseconds, the box shape is inverted, and a

diamond shape appears. This is the analog of the characteristic aspect ratio inversion

when a BEC is released from an anisotropic harmonic trap. For a box, the expansion

is fastest at the points on the surface where the curvature is minimal, as this allows

for a coherent fast-moving wavefront to propagate outwards. This effect has been

previously observed in uniform box-trapped BECs [58].

Measuring the momentum distribution of an ideal Fermi gas is challenging with-
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Figure 5-5: Expansion of a uniform superfluid. A spin-balanced superfluid
trapped in a box (left) is released from the box into a weak harmonic trap with a
characteristic period T = 43.2 ms. Within 6ms, the cloud develops a diamond shape
(right) due to hydrodynamic flow during free expansion.

out interactions. This is because interactions allow the gas to re-thermalize once its

momentum distribution has been changed. So for instance, if we started with an ideal

Fermi gas at a given temperature in the dipole trap, after loading into the box, its

momentum distribution may be completely different from a Fermi-Dirac distribution

with a well-defined temperature. So in our measurements, we keep a small amount

of a strongly-interacting second spin state, |2〉, typically below 5% of the total atom

number. However, the momentum focusing method requires ballistic expansion. In

order to measure the effects of interactions, we plot in Figure 5-6 the integrated 1D

momentum distribution f1D as a function of k2z . For finite temperatures T̃ = T/TF,

f1D((kz/kF)2) = − 1

4π

∫ ∞

k2z

dk2
1

1 + exp
[(

k2

k2F
− 1
)
/T̃
] (5.22)

=
k2F
4π

log

[
1 + exp

[(
1− k2

k2F

)
/T̃

]]
(5.23)

Note that tor a zero temperature Fermi-Dirac distribution T̃ → 0, the function

f1D ·4π/k2F is a straight line with a slope of -1. This line is shown in comparison with

the measured f1D.

In order to completely remove interactions during the expansion, we apply an
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Figure 5-6: Optical pumping for ballistic expansion. (a) Level diagram show-
ing the pumping light (blue straight arrow) and the spontaneous decay to the other
states (wavy red arrows). On average, 1.5 photons are required to pump the atom
into |5〉. After t = T/4, the cloud looks clearly modified when the pumping beam is
turned off (b) as opposed to flashed on before the expansion (c). The effect is clear
in the integrated momentum distribution f1D, where the blue curve is without the
pumping beam, and the red is with it flashed on.

optical pumping beam for 5µs that pumps atoms in |2〉 into a weakly interacting |5〉.
The impact of this is clear in f1D, where interactions otherwise lead to a distorted

profile. A qualitative explanation for the specific shape of the distorted profile is that

the small amount of |2〉 lives within a smaller Fermi sea in momentum space. Atoms

in |1〉 at low momenta expand slower in the harmonic trap, and have more time to

interact with the smaller Fermi sea of |2〉 atoms. The mean-field attraction between

|1〉 and |2〉 at unitarity results in a greater apparent weight at lower momenta, and

a peaked f1D profile. Another method to remove interactions during the expansion

is to rapidly ramp the Feshbach field to 532 G, a zero-crossing in the scattering

length for states |1〉 and |2〉. In our experiment, the ramp takes 25 µs to drop to

500G, and then another 50-100 µs for a full ringdown. Since this timescale is three

orders of magnitude smaller than the trap period, it has little effect on the measured

momentum distribution. The resulting momentum distribution measurements are

identical to those obtained by optically pumping away the minority population. This

67



0 0.5 1 1.5 20 0.5 1 1.50 0.5 1 1.5

0

0.5

1 (d) (f)(e)

0 0.5 1 1.5 2

0

1

z

y

(a) (b) (c)

Figure 5-7: Measuring the Fermi-Dirac distribution. (a) The magnetic field
results in a saddle-like potential in the y-z plane. Along z, the trap is confining, and
along y, it is anti-confining. The resulting equations of motion describe oscillatory
motion in z and hyperbolic expansion in y. This is reflected in the cloud profile
(b) after t = π/2ωz, where the z-extent is given by kF, and the y-extent is the
expansion into the anti-confinement. From the integrated profiles f1D shown in (c),
we obtain the momentum distributions fk, and fit the Fermi-Dirac distribution with
a free temperature (d)-(f). The temperatures are from left to right T/TF = 0.49(2),
0.32(1), and 0.16(1).

is a viable solution if a separate offset-locked slicing laser is unavailable.

We finally turn to the main result of this study: the measured Fermi-Dirac dis-

tribution as a function of temperature. We vary the temperature by oscillating

the intensity of the compensating dipole trap at a resonance of the box (approxi-

mately 200 Hz). The duration of this oscillation allows us to control the amount of

heat delivered to the box of fermions. We plot the resulting momentum distribu-

tions in Figure 5-7, along with their corresponding f1D profiles. The measured fk

are obtained by differentiating f1D profiles with a Savitsky-Golay filter to mitigate

noise [128]. Finally, the data is fit to Fermi-Dirac functions with a free temperature.
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Figure 5-8: Fermi energy scaling. We vary the total atom number in the box,
and measure the Fermi surface momentum through focusing. From kF, we obtain
EF, shown in the y-axis, and from absorption imaging, we count the total number of
atoms in the box n.

We observe the saturation of momentum space occupation for momenta below kf .

Only one particle is allowed per momentum space cell, reflecting the Pauli blocking

inherent in fermions. Note that the absolute atom number calibrations are verified

with a comparison to the ideal Fermi gas compressibility in the hybrid trap, which

will be describe in the next subsection. It is reassuring to compare the Fermi energy

obtained from the edge of the Fermi sea, with a total atom number count from the

imaging. Ideally, EF = ~2k2F/2m ∼ n2/3. In Figure 5-8, we show the results of this

measurement. The exponent is observed to be 0.64± 0.04, consistent with 2/3.
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5.2 Thermometry

We now turn to the topic of thermometry of homogeneous atomic Fermi gases. Tem-

perature is an important control in the toolkit for undestanding many-body physics

in ultracold gases. Historically, thermometry in ultracold Fermi gases have used the

low-density tails in trapped gases [70]. Here we outline how this is possible using a hy-

brid trap, and how we have used the equation of state of the ideal Fermi gas to verify

our atom number calibrations. For experiments that require complete homogeneity,

the box offers no low-density wings for temperature calibrations. One method, suit-

able for ideal Fermi gases, was outlined in the previous section. Through momentum

focusing and fitting the momentum distribution with a finite temperature, we have

demonstrated the preparation of nearly spin-polarized gases at temperatures below

T/TF = 0.17. For spin-balanced gases, momentum focusing offers fewer advantages.

In order to remove interactions, the optical pumping process would likely inject a

large amount of kinetic energy into both spin states, in a momentum-dependent

fashion. In addition, the true interacting momentum distribution as a function of

temperature at unitarity remains a matter of active research [33]. By combining

the momentum focusing technique with a rapid ramp of the interaction strength,

we are able to image the pair momentum distribution, and pin point the superfluid

transition. Nevertheless, this does not provide a reliable measure of the tempera-

ture, especially for T̃ � Tc. In this section, we outline how we measure the total

energy per particle of a homogeneous Fermi gas, and use an equation of state to

obtain the global temperature. In a subsequent section, we discuss a novel method

to perform direct insitu thermometry, and use it to observe temperature waves in

the homogeneous Fermi gas.
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5.2.1 Hybrid trap thermometry

When the local density approximation (LDA) is valid, each shell of an inhomogeneous

trapped gas represents a larger system in equilibrium at the same density, tempera-

ture and pressure. This has resulted in a precision measurement of the equation of

state for fermions at unitarity [105, 81], and state of the art spectroscopic measure-

ments [134, 130]. Since the density varies across the trap, a single absorption image

of the gas scans through the phase diagram. This is a significant advantage over

a gas at a single density, as the inhomogeneous trap effectively parallelizes a ther-

modynamic measurement. However, measurements on individual shells at constant

density requires tomographic techniques such as the inverse Abel transform that

exploit the cylindrical symmetry of the harmonic trap. Typically, such transforms

decrease the signal-to-noise ratio. An ideal solution would appear to combine a uni-

form density along the line-of-sight with a spatial variation along an orthogonal axis.

This is typically trivial in 2D systems, but in 3D, it requires some potential engineer-

ing. Here, we present the hybrid trap, and our efforts to use it for thermodynamic

measurements.

Evaporation in the hybrid involves ramping down the laser power in the green

cylinder. As the height of the radial trap decreases, atoms with a higher kinetic

energy pass through and escape due to the radial anticonfinement from the magnetic

trap. Typically, evaporation ramps that are on the order of seconds allow the gas to

rethermalize into new states. Practically, this requires a good PID control over the

power sent through the axicon. Since electronic noise is typically on the scale of tens

of mV, we set the lowest powers to be controlled at 10mV, and the highest powers

controlled at a set point of a few volts.

In Figure 5-9, we show absorption images of a unitary Fermi gas being cooled in

the hybrid trap. Perhaps most strikingly, the Thomas-Fermi radius only decreases

along one axis, and remains constant along the uniform axis. This reflects the sharp-

ness of the cylinder walls in comparison to the harmonic trap, and is in stark contrast
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Figure 5-9: Evaporation in the hybrid trap. A series of absorption images
taken from the top (a) show the evolution of the cloud profile in the z-x plane as the
gas is cooled in the hybrid trap. After a rapid ramp that preserves the pair center-
of-mass momentum and a free expansion that allows thermal atoms to expand, the
condensate can be clearly seen once the gas is sufficiently cold (b). As expected, the
Thomas-Fermi radius along the harmonic trap axis changes dramatically once most
of the gas is a superfluid. This is because the width of the thermal gas is set by the
temperature, while the width of the superfluid is set by the chemical potential.

to what one might expect from a 3D harmonic trapped gas. By applying a rapid

ramp of the Feshbach field to 690G during time of flight, we can separate the thermal

atoms from the condensate. The appearance of the condensate in the rapid ramp

is interpreted as the point at which the temperature at the center of the gas drops

below Tc = 0.167TF, the superfluid transition temperature. By performing an az-

imuthal average through the rapid ramp images, we can see the emergence of the

condensate (see Figure 5-10).

For a quick calibration of the relevant Fermi energies that can be reached, we

find the Thomas-Fermi radius along the z-axis. The radius across the classical and

the degenerate regimes as a function of temperature is [70]:

R =

√
2kBT

mω2
z

f(eµβ) (5.24)
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Figure 5-10: Evaporation in the hybrid trap. A surface plot showing the
appearance of the condensate in the hybrid trap. Azimuthal averages are taken from
the rapid ramp images in Figure 5-9(b) and stacked. Note that while the wall depth
is in the very experimental units of PID setpoint voltage, we show the calibration of
the wall depth in units of Fermi energy in the next figure.

where µ is the chemical potential, β = 1/kBT and

f(x) =
1 + x

x
ln(1 + x) (5.25)

Note that in the zero temperature limit, this reduces to the familiar relation EF = 1
2
mω2

zR
2.

By finding the Thomas-Fermi radii of the clouds in Figure 5-10, we can calibrate the

Fermi energies in our experiment. We observe EF in the range of 500 Hz to over 12

kHz, spanning a large dynamic range in the phase diagram.

In order to quantitatively obtain the temperature of the gas, we need to extract

accurate 1D profiles. We correct for the varying cross-sectional area along the hybrid

by integrating along the homogeneous axes and dividing by the cross-sectional area.

This provides the true 1D number density n(z). We compare the number densities

imaged from both spin states in Figure 5-11, and discuss the thermodynamics of both

spin-imbalanced and spin-balanced gases. The 1D number density provides access
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to the isothermal compressibility

κ = − 1

n2

(
∂n

∂V

)

T

(5.26)

It is convenient to compare the isothermal compressibility to that of the ideal

gas: κ̃ = κ/κ0 where the ideal gas compressibility at T = 0 is κ0 = 3
2

1
nEF

. In terms

of the Fermi energy EF and the external potential U ,

κ̃ = −
(
∂EF

∂U

)

T

(5.27)

This derivative is numerically performed using a Savitsky-Golay filter, and the signal

to noise is sufficient to extract the isothermal compressibility from an average of just

6 images. This is a significant advantage over the harmonic trap, which requires more

than 100 images for an accurate equation of state measurement [81]. We observe an

isothermal compressibility that saturates to the ideal gas value in a spin-polarized

gas, reflecting the Pauli blocking in the system. However, interactions enable the gas

to compress further, and in the spin-balanced gas, the compressibility rises to nearly

3κ0 at Tc before settling at κ = κ0/ξ where ξ = 0.37 is the Bertsch parameter. The

chemical potential in a spin-balanced gas at unitarity is directly connected to the

Fermi energy through the Bertsch parameter: µ = ξEF [56].

We now briefly focus on the compressibility of the majority component of the

spin-imbalanced cloud. The ideal gas equation of state provides the following relation

between density n(z) and potential energy U(z) [70]:

n(z) = − 1

λdB3

Li3/2
(
−eβ(µ−U(z))

)
(5.28)

Here, λdB =
√

2π~2
mkBT

is the de Broglie wavelength and Li3/2 is the 3/2 order poly-

logarithm. We fit the majority density n↑, shown in Figure 5-12, with this function.

The only free variables are the temperature T = 1/kBβ and the chemical potential
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Figure 5-11: Unitary Fermi gases in the hybrid trap. (a) Fermions are loaded
in to a hybrid trap, where the trapping potential varies as a quadratic function in
the z-coordinate. By dividing absorption images by the local column depth, we
can obtain column-corrected images (b) of spin-imbalanced (left) and spin-balanced
clouds (right). The homogeneity in the transverse direction is evident, and allows
us to integrate across the x-y plane, and obtain the number density n, shown in
(c). From the number density and the known equation of state for ideal Fermi gases
and the strongly-interacting spin-balanced Fermi gas, we can obtain the normalized
temperature T/TF as well as the normalized isothermal compressibility κ̃ = −∂EF

∂V
.

The grey shaded region on the left demarcates the Thomas-Fermi radius of the
minority cloud while on the right, it denotes the superfluid region. The solid line in
the spin-imbalanced cloud in (e) represents the ideal Fermi gas compressibility while
the dashed horizontal line in the spin-balanced (e) represents 1/ξ. Yellow points are
taken from the measured equation of state [81].
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(a)

(b)

Figure 5-12: Spin-imbalanced compressibility. In (a) we show the density of
the minority (red) and majority (blue) components of a spin-imbalanced gas. The
isothermal compressibility of only the majority component is shown in (b). The
extent of the minority component is demarcated with the vertical dot-dashed line,
while the dashed line is a fit to Equation 5.28. The Fermi energy at the center of
the trap is EF = 5.7(1) kHz, the imbalance is N↓/N↑ = 0.18, and the temperature of
the majority is T/TF = 0.05(1).

µ. The observation of a saturated compressibility of κ0 in the spin-polarized wings

is a testament to both the low temperatures achieved as well as the accuracy of the

atom number calibrations in the experiment.

A clear feature in Figure 5-12 is the bump in the majority compressibility in the

partially polarized region. Using a Fermi liquid ansatz, we can describe the gas as a

mixture of noninteracting atoms and an ensemble of polarons [105, 107, 150]. The

resulting majority and minority densities can be shown to be

n↑(µ↑, µ↓, T ) = n0(µ↑, T )− An↓(µ↑, µ↓, T ) (5.29)

n↓(µ↑, µ↓, T ) = (m∗/m)3/2n0(µ↓ − Aµ↑, T ) (5.30)

76



Our measurements are consistent with A = −0.615, which represents the average

excess majority atoms surrounding each minority atom in the polaron [120]. From

the compressibility of the minority gas, we determine m∗/m = 1.25(1), which is the

ratio of the effective mass of of the polaron with respect to the bare mass of the

Lithium atom [150].

The Fermi liquid ansatz assumes low interactions between the quasiparticles, and

therefore, a low spin-imbalance. For higher spin-imbalance, the phase diagram shows

a transition from a partially polarized normal fluid to the paired superfluid. This is

in direct analogy to the critical magnetic field at which superconductivity is broken

in solid state systems, known as the Clogston-Chandrasekhar limit [22, 18]. Right in

BEC1, this phase diagram was mapped using a harmonic trap [135]. In that study,

a sufficiently cold spin-imbalanced Fermi gas was observed to phase separate, with a

clear boundary demarcating a balanced superfluid from a partially-polarized normal

fluid. This reflects a tricritical point in the phase diagram below which the system

is unstable towards forming a balanced superfluid. As an outlook to this section, we

briefly revisit this effect in the hybrid trap, and consider future avenues of research.

In Figure 5-13, we show a cold spin-imbalanced Fermi gas at unitarity in the

hybrid trap. The minority component visually seems to have a boundary between

a denser superfluid and fuzzy polarized wings. Plotting the spin-polarization as a

function of the z coordinate confirms this, and shows that the polarization is virtually

zero in the central portion. Although a dramatic phase separation is still elusive, we

see a sudden increase in the spin polarization at the boundary of the superfluid. The

isothermal compressibility of the minority κ↓ is interesting to consider here. In the

spin-balanced superfluid, the compressibility is roughly the same as κ0/ξ. However,

as the Clogston-Chandrasekhar limit is approached, the compressibility rises until

right at the phase transition, where it reaches a maximum of approximately 5.9κ0.

This is over twice as high as in the phase transition in a globally spin-balanced gas.

Near the phase transition, we suspect that bubbles of balanced superfluid appear
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Figure 5-13: Phase separation in the hybrid trap. In (a) we show the density
of the minority (red) and majority (blue) components of a spin-imbalanced gas. The
isothermal compressibility of only the majority component is shown in (b). The
extent of the minority component is demarcated with the vertical dot-dashed line,
while the dashed line is a fit to Equation 5.28. The Fermi energy at the center of
the trap is EF = 5.5 kHz, and the temperature of the majority is T/TF = 0.07.

within the partially-polarized gas. Minority atoms near these phase boundaries can

now decide to pair up with majority atoms, and in a sense, ‘escape’ the Pauli pressure

that keeps them apart. Near the transition, it costs no energy to create the bubbles,

and as a result when a potential changes (i.e. a force is applied), the density is free

to jump between the dense superfluid and the less dense normal fluid. This results

in an effectively infinite compressibility of the minority gas at zero temperature. The

contrast of phase separation is set by the temperature of the gas: above the tricritical

point Ttc/TF↑ = 0.07, there is no phase separation, while at T = 0, a perfect jump

in the spin-polarization is expected [135]. We suspect that we are just barely below

the tricritical point. The hybrid trap remains the coldest partially uniform system

we have prepared in this experiment. Temperatures in the gas are likely limited by
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the stability of the uniform trap; in our efforts to obtain transport coefficients by

generating sound in the gas, we have found that it is exceedingly easy to generate

heat by shaking the walls of the box. Since at low temperatures, most excitations

are of the phononic kind, we hope that more stable implementations of the unitary

Fermi box will be more stable and therefore colder.

5.2.2 Box trap thermometry

We now consider the thermometry of spin-balanced gases that are trapped in a 3D

uniform potential. Details on our thermometry method are provided, as well as a

novel method of measuring the condensate fraction in a 3D homogeneous interacting

Fermi gas. As mentioned previously, a fully homogenous potential does not allow for a

variation in the chemical potential, and the standard methods used in inhomogeneous

traps described above cannot be used. Instead, we use an isoenergetic expansion from

the box trap into the hybrid trap to find the total energy. Then, the equation of state

is used to obtain the initial temperature of the gas prior to expansion. Below we

provide a derivation of the total energy per particle measurement from the expanded

profile, and offer some technical details that are specific to the experimental process.

E
xpansion 

&
 Therm

alization 

100 μm

(a) (b)

Figure 5-14: Isoenergetic expansion into a harmonic trap. (a) The gas is
released from a box trap into an axial harmonic trap at t = 0. As the gas freely
expands and thermalizes into the hybrid trap, the total energy is conserved. (b) The
initial box-shaped profile of the gas evolves into a profile whose width reflects the
energy and temperature of the system before the expansion.
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In Figure 5-14, we show the process of isoenergetic expansion into a harmonic

trap. The initially uniform gas is trapped in a cylindrical potential with endcaps.

At t = 0, the endcap beams are suddenly turned off and the gas is free to expand

along the z-direction. The magnetic field curvature results in the same ωz = 2π · 23

Hz confinement potential as the one used for the hybrid trap and for momentum

focusing. As the gas expands, the interatomic interactions scramble the momentum

states, and the gas thermalizes into a well-defined profile that is constant in time.

Since the removal of the endcap walls does no work on the gas, the total energy is

conserved through this entire process.

The width of the cloud initially oscillates at a period close to the trapping period,

before achieving a steady-state in approximately 2s (see Figure 5-15). Gradually over

a timescale of seconds, the axicon trap heats the gas at a rate that is calibrated and

corrected for. The total energy of the system is given by the sum of the internal

energy ε(r) and the potential energy U(r) weighted by the density n(r):

E = Eint + Epot (5.31)

=

∫
d3r (ε(r) + n(r)U(r)) (5.32)

Since the hybrid trap is uniform in the x-y plane, we can integrate along x and y,

with a prefactor A representing the cross-sectional area of the hybrid trap:

E = A

∫
dz (ε(z) + n(z)U(z)) (5.33)

In the unitary Fermi gas, the internal energy is given by the pressure ε(z) = 3/2p(z) [66].

Furthermore, using the Gibbs-Duhem relation at constant scattering length and tem-
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Figure 5-15: Oscillations and long-term heating during expansion ther-

mometry. Top row: the axial profile of the cloud (shown in a blue line) expands
from the box shape at t = 0ms into a gaussian-like profile. A gaussian fit to the pro-
file provides an estimate of the rms width σ ∼

√
〈z2〉. This is plotted in the lower

row as a function of time from release. The initial hydrodynamic oscillations (shown
on the right) are damped within 1000ms, after which a slow heating is visible.

perature, dP = ndµ = −ndU , results in:

z
dP

dz
= −nzdU

dz
(5.34)

= −2nU(z) (5.35)

for the harmonic trap. We can now use integration by parts to rewrite the internal
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energy as

Eint =
3

2
A

∫
P (z) dz (5.36)

=
3A

2

(
zP (z = +∞)− zP (z = −∞)−

∫
z

dP

dz
dz

)
(5.37)

= 3A

∫
n(z)U(z) dz (5.38)

Combining the two terms, the total energy is now

Etot = 4A

∫
n(z)U(z)dz (5.39)

= 2Amω2
z

∫
n(z)z2dz (5.40)

= 2Nmω2
z〈z2〉 (5.41)

This provides a very convenient formula for the energy per particle E/N , in terms

of the width of the profile 〈z2〉. In practice, a gaussian fit to the profile provides the

most robust method of estimating 〈z2〉. Numerically computing the second moment

integral is much more sensitive to the low density noisy wings of the trap. Due to

scale invariance for fermions at unitarity, E0 = 3
5
NEF, so

E

E0

=
5

3EF

E

N
(5.42)

From the measured equation of state, we can therefore obtain T/TF from a measure-

ment of E/N . Since the gas takes a few seconds to thermalize in the hybrid trap,

there is a fair amount of residual heating that must be subtracted in order to obtain

an accurate E/N measurement. Thus, we would ideally like to have an independent

anchor for a known temperature.

The sharpest thermodynamic feature in strongly-interacting Fermi gases is the

superfluid transition at Tc = 0.167TF. Measuring the condensate fraction Nc/N

is a good proxy for the superfluid fraction ρS/ρ, especially when pinpointing the
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Figure 5-16: Momentum space measurements of the pair condensate. (a)-
(c) Images after a rapid ramp of the unitary Fermi gas. (d) The 1D profiles show a
good agreement with a thermal bose gas fit (black lines). Note that in all fits, the
region delineated by the dashed vertical black lines are excluded from the fit as they
contain the condensate.

superfluid transition temperature. In other words, the appearance of a pair con-

densate is coincident with the normal to superfluid phase transition. We obtain

the condensate fraction by rapidly ramping the magnetic field to the BEC side of

the Feshbach resonance [123, 155]. This process is rapid relative to the many-body

timescale ~/EF ∼ 3 µs, and slow relative to the two-body timescale ~/g0
√
n ∼ 20 ns.

Thus, the pair center-of-mass momentum distribution is preserved as the pairs are

converted into tightly bound molecules. These molecules are released from the trap,

causing the faster thermal atoms to fly away and separate from a pair condensate.

The magnetic field is finally ramped back up closer to the resonance in order to image

the atoms with an acceptable scattering cross-section. Typically, in the limit of a

long time of flight, the cloud profile appears bimodal, and the condensate fraction is

estimated from the relative weight under the two modes.

Armed with the tools of momentum focusing from the previous section, we com-

bine accurate momentum space measurement with the rapid ramp technique. Instead

of a completely free expansion, we release the atoms into the magnetic curvature po-
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tential right as the Feshbach field is rapidly ramped. After approximately a quarter

period, the Feshbach field is ramped back, and an image is taken. The resulting

images show an incredibly sharp line-like condensate embedded in a broad thermal

cloud (see Figure 5-16). Note that since the curvature changes slightly as the Fesh-

bach field is changed, the actual wait time in free expansion is not exactly T/4, but

rather fine-tuned for the narrowest condensate. Since we expect the condensate to

appear mostly at k = 0, with a width set by a residual mean-field repulsion during

expansion, the condensate should be as sharp as possible after momentum focusing.

A simple gaussian fit for the thermal fraction no longer works well. Near Tc,

bosonic pair correlations emerge before a true condensate forms. These correlations

are reflected in a prominent sharp cusp at k = 0, as expected from a cold Bose

gas [104]. Accordingly, we fit the wings of the axial momentum profiles with the

momentum distribution for a thermal gas of noninteracting bosons:

n1D(kz) =
1

(2πkBT )3/2
g3/2

(
e−|~

2k2z/2m−µ|/kBT
)

(5.43)

The condensate fraction is equivalent to the difference in area between the observed

profile and a fit to the thermal wings. The condensate fraction obtained in this

method is one of the most robust measures of the global temperature of the gas.

In Figure 5-16, we vary the temperature of the trapped Fermi gas by oscillating the

height of the walls at 200 Hz for a variable number of cycles. The condensate fraction

appears to sharply vanish at a reproducible number of heating cycles, demonstrating

the stability of both the heating method as well as our momentum space mapping

technique. As we will see in the subsequent section on the spectroscopy in the unitary

Fermi gas, this stability has allowed us to demonstrate a dramatic increase in the

contact at the superfluid transition.
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5.3 The Joule-Thomson effect

Classical ideal gases obey the law PV = NkBT . During an adiabatic expansion

of an ideal gas, the product PV remains constant, and thus, the temperature is

unchanged. However, if you let air rush out of a bicycle tube, you’ll notice that

the valve becomes cold to the touch. This effect was first investigated in a series

of experiments by Joule and Thomson in 1852, where they observed that real gases

do change in temperature once they undergo a rapid change in pressure [75]. Now

known as the Joule-Thomson effect, this process is especially useful when applied to

the production of liquid nitrogen and oxygen [78].

The physical origin of this effect lies in the interactions between the molecules

of a real gas. The internal energy of a gas typically comprises of an internal kinetic

energy due to the motion of the molecules, and an internal potential energy due to the

intermolecular forces. During a Joule-Thomson expansion, the molecules can climb

or roll down the intermolecular potential (such as the van der Waals potential),

and that energy can be removed from, or converted into kinetic energy. In the

subsequent derivation of the Joule-Thomson coefficient α =
(
∂T
∂P

)
H
, we will discuss

the thermodynamics behind this process in a more rigorous fashion.

Before the derivation, it is worth mentioning that unlike ideal classical gases,

ideal quantum gases do have a nonzero Joule-Thomson coefficient. Predicted in

1937, the quantum statistics of bosons results in a cooling effect, while the Fermi-

Dirac statistics of degenerate fermions is predicted to have a heating effect [80]. For

fermions, this can be understood by thinking of Pauli pressure as an effective repulsive

interaction between atoms. An expanding gas allows atoms to occupy a larger range

of momentum states, which increases the internal kinetic energy. This quantum

Joule-Thomson effect has been observed in a weakly-interacting quasihomogeneous

BEC, where atom number losses from background collisions results in an isenthalpic

cooling [131]. It is important to note that this quantum effect only appears for very

weak interactions, and at very low temperatures. For our unitary Fermi gas, the
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interactions are as strong as quantum mechanics allows, and the effects of interactions

dominates over Pauli pressure. We leave a detailed evaluation of the Joule-Thomson

effect as a function of interactions for a future study.

We take a brief moment to derive the Joule-Thomson (JT) coefficient, and show

how it can be obtained as a by-product of measuring the equation of state of the

unitary Fermi gas. To calculate the JT coefficient for the unitary Fermi gas:

α =

(
∂T

∂P

)

H

(5.44)

we make use of the relationE = 3
2
PV to note that the enthalpy isH = E + PV = 5

3
E,

so constant enthalpy is equivalent to constant E. The JT coefficient can now be cal-

culated in terms of thermodynamical quantities using the cyclic identity:

(
∂T

∂P

)

E

(
∂E

∂T

)

P

(
∂P

∂E

)

T

= −1 (5.45)

Since the specific heat at constant pressure is

CP =

(
∂E

∂T

)

P

(5.46)

we can write the JT coefficient as:

α = − 1

CP

(
∂E

∂P

)

T

(5.47)

= − 1

CP

(
∂

∂P

[
3

2
PV

])

T

(5.48)

= − 3

2CP

(
V + P

∂V

∂P

)

T

(5.49)

= −3

2

V

CP

[
1 + P

1

V

(
∂V

∂P

)

T

]
(5.50)
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The isothermal compressibility is

κ = − 1

V

(
∂V

∂P

)

T

(5.51)

so the Joule-Thomson coefficient can be rewritten in terms of the compressibility and

the pressure as:

α =
3

2

V

CP
(κP − 1) (5.52)

Now CP = 5
3
CV κP , so

α =
9

10

V

CV

(
1− 1

κP

)
(5.53)

=
9

10

V

CV

(
1− 1

κ̃p̃κ0P0

)
(5.54)

=
9

10

1

κ̃p̃

V

CV

(
κ̃p̃− 5

3

)
(5.55)

(5.56)

We can rewrite

CV
V

=
nCV
N

(5.57)

=
5

2

nkBTF
T

(
p̃− 1

κ̃

)
(5.58)

=
5

2

nkBTF
T

(
1

κ̃

)
(κ̃p̃− 1) (5.59)

Finally, the JT coefficient can be written as

α =
9

10

(
2

5

T

nkBTF p̃

)
κ̃p̃− 5/3

κ̃p̃− 1
(5.60)
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Figure 5-17: Tilting a homogenous unitary Fermi gas. (a): applying a
magnetic field gradient shifts the minimum of the magnetic trap away from the center
of the cloud This results in a force that causes a density gradient, which responds
according to the compressibility of the system. (b) A sequence of 1D profiles shows
a clear maximum in the gradient at a particular temperature. This is likely the
superfluid transition.

It turns out the following quantity:

αT =

(
∂E

∂P

)

T

(5.61)

is called the isothermal Joule-Thomson coefficient:

αT =
3

2
V (1− κP ) (5.62)

=
3

2
V

(
1− 3

5
κ̃p̃

)
(5.63)

= − 9

10
V

(
κ̃p̃− 5

3

)
(5.64)

We focus on the quantity in the parenthesis. In order to measure this quantity,

a 12.4 Hz/µm magnetic field gradient is applied to the box. This results in a tilted

axial density profile, as shown in Figure 5-17. The typical Fermi energy variation

across the center 50µm of the trap is less than 20% of the average Fermi energy.
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Figure 5-18: The Joule-Thomson coefficient of a unitary Fermi gas. These
data show the temperature dependence of the Joule-Thomson coefficient. The trend
is non-monotonic.

The initial temperature of the box is varied by a shaking method, and measured

using the expansion thermometry outlined above. Before any quantitative analysis,

it is evident that the homogeneous unitary Fermi gas is highly compressible near

the superfluid transition. This can be seen by subtracting the coldest profile from

each density profile. The resulting axial profile shows the compressibility of the gas

relative to the coldest gas, where κ̃ = 1/ξ. The difference slope is zero for low

temperatures, and peaks at the superfluid transition. This reflects the superfluid

lambda point.

By fitting the Fermi energy profile at the center of the box with a linear slope,

we can obtain the normalized compressibility Equation 5.27, and plot its variation

with the normalized pressure P̃ = P/P0 = E/E0. From those two quantities, we can
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obtain the Joule-Thomson coefficient normalized by the specific heat:

αCP ∝ κP − 1 (5.65)

∝ κ̃P̃ − 5

3
(5.66)

This is plotted in Figure 5-18. Crucially, the sign of this quantity tells us what hap-

pens when the gas is expanded in a more traditional Joule-Thomson expansion. For a

noninteracting gas, κp < 1, so the JT coefficient is always negative. Thus, when a gas

is expanded (δP < 0), it is expected to warm up (δT > 0). In contrast, the unitary

Fermi gas shows a much more interesting sign variation. Above quantum degeneracy,

attractive two-body interactions result in a positive JT coefficient (the gas would cool

on expansion). Close to quantum degeneracy, Pauli pressure produces a quantum

Joule-Thomson effect which has the opposite sign - the gas is expected to warm when

expanded. The inversion temperature for this process is near T ≈ TF. For context,

the shape of the van der Waals interaction potential results in a classical inversion

temperature for most gases - above room temperature for oxygen and nitrogen, and

far below room temperature for helium and hydrogen [78]. This is why producing

liquid helium and hydrogen is difficult: adiabatic expansion at room temperature

no longer cools the gas. However, in our system, we measure a purely quantum JT

inversion temperature due to the quantum statistical effect of Pauli pressure. The

warming effect of Pauli blocking continues down to the lowest temperatures, except

for a narrow window around the superfluid transition Tc. Here, pairing fluctuations

cause the compressibility to briefly peak, making the JT coefficient positive near

Tc. These multiple Joule-Thomson inversion temperatures illuminate the interplay

between pairing, Pauli blocking and interactions in the unitary Fermi gas. As an

outlook, it would be interesting to perform the classic Joule-Thomson expansion us-

ing two boxes connected with an aperture, much as Joule and Thomson did in 1852.

Furthermore, Joule-Thomson cooling could provide a new method of cooling a Fermi
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gas to even lower temperatures than evaporative cooling. However, as the pressure

decreases, so does the Fermi energy, so a decrease in temperature may be offset by

an increase in the Fermi temperature.

5.4 RF spectroscopy and the contact

The homogeneous Fermi box is an excellent tool for precision many-body physics.

The uniform density allows us to integrate across the entire cloud, making global

probes such as radio frequency (rf) spectroscopy easier to perform. In contrast, ob-

taining homogeneous spectroscopic measurements in previous experiments required

tomographic methods that typically isolated shells of uniform density [134, 130, 54].

We begin this section by providing a quick overview of rf spectroscopy in our system:

how it works, and why it is useful. Then, we provide details on rf spectroscopy in

the hybrid, and specifically discuss diffusion of the transferred fraction in a nonuni-

form trap. We observe the effects of final state interactions on the rf spectra, and

demonstrate the unique character of linear response in the unitary Fermi gas. We

finally discuss measurements of the spectral response of the unitary Fermi gas, and

our measurement of the temperature-dependent contact in the unitary Fermi gas.

5.4.1 RF spectroscopy

Radiofrequency (rf) radiation can be used to couple atomic states. Since rf wave-

lengths are very long (λ ≈ 3.7m for 80MHz), the momentum transfer to the atoms

is negligible. We can express the rf transfer operator as a spin-flip from state |i〉 to
state |j〉:

Vij(ω) =
~ΩR

2

∑

k

[c†k,ick,j + c†k,jck,i] (5.67)

→ ~ΩR

2

∑

k

c†k,jck,i (5.68)
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where in the last line we have assumed that we are transferring atoms from the occu-

pied state |i〉 to an empty final state |j〉. This is also known as ejection spectroscopy;

the opposite is called injection spectroscopy.

When applied to an ensemble of atoms, the spin-flip operator described above

prepares a coherent superposition of the initial and final states, whose relative phase

depends on how long and how hard the two-level system is being driven. This is

true regardless of the interparticle interactions. For spin-polarized fermions, Pauli

blocking prevents atoms from interacting with each other. Applying an rf pulse to

a spin-polarized Fermi gas would therefore result in Rabi oscillations in each atom

at frequency ΩR =. For a fixed pulse time t, the resulting rf spectrum looks like

a sinc function. This can be recognized as the Fourier transform of a rectangular

window. If one were to properly deconvolve the window (or equivalently use an

infinitely long pulse time, with infinitesimal power), the rf spectrum would approach

a delta function. Typically for rf spectroscopy of ultracold gases, other broadening

sources such as power broadening, thermal broadening, and the natural linewidth

are negligible.

In the presence of interparticle interactions however, the coherent superposition

prepared by the rf pulse decoheres into a mixed state. We use this process produce

strongly-interacting spin-mixtures of fermions [123, 155]. Once created, the initial

state is a many-body continuum of states encoding information ranging from the

Pauli blocking at low momenta, the pairing near the Fermi surface, and the two-

body short-range interactions at high momenta. In order to probe this spectrum

of information, we can apply another rf pulse, this time applied between one of the

spin-states in the interacting gas and a final state. In the limit of a long rf pulse

with infinitely low power, the rf transfer rate is given by Fermi’s golden rule:

Γ(ω) =
2π

~
∑

f

| 〈f |V |i〉|2δ(Ef − Ei − ~ω) (5.69)
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The resulting spectrum would then be I(ω) = tΓ(ω). This is a sum of matrix elements

representing the rf coupling between the initial state |i〉 with energy Ei (typically

set to zero) and all possible final states |f〉 with energies Ef . In our case, the initial

state is a many-body state, and the final states are (ideally) free particles that can be

labeled in momentum space with |k〉. By transferring single atoms from the many-

body state into free particles, rf spectroscopy probes the single-particle excitation

spectrum. The rf response is in fact, a momentum-integrated measurement of the

occupied part of the spectral function A−(k, ε) [65]:

I(ω) = ~
∫

d3k

(2π)3
A−(k, εk − ~ω) (5.70)

where εk = ~2k2
2m

. For a BCS many-body state, the spectral function is given by peaks

at the particle and hole energies:

A(k, ε) = u2kδ(ε− E+
k ) + v2kδ(ε− E−k ) (5.71)

where uk and vk are coefficients that satisfy u2k + v2k = 1. The excitation spectra are

given by:

E±k = µ±
√

(εk − µ)2 −∆2 (5.72)

Here, µ is the chemical potential, ε is the energy, and ∆ is the In contrast, the final

state is characterized by a free spectral function

Af (k, ε) = δ(ε− [Ef + εk]) (5.73)

These are shown in Figure 5-19(a). While the many-body state is no longer

a BCS state at unitarity, it provides some intuition for the shape of the typical rf
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(a) (b)

Figure 5-19: Spectral functions and rf spectroscopy. (a) The spectral
function of a BCS state consists of delta functions that represent the particle and
hole branches of excitations (red and light red lines). Near the avoided crossing at
the Fermi momentum, the excitations involve pair-breaking, while away from the
crossing, the excitations are dominantly particle-like or hole-like. The gap at kF is
∆, the pairing gap. An rf photon (dotted vertical arrow) changes the internal state
of an atom, and transfers population into a noninteracting final state. The final state
has a quadratic spectral function due to the free particles. (b) The corresponding
rf spectrum IBCS(ω) is given by the transfer rate into the final state. The onset is
marked with a dotted vertical line. In both plots ∆/µ = 0.3 is taken to be artificially
large to mimic the case at unitarity.

spectra. A molecular rf spectrum is a delta function with a width set by the molecular

size.. Similarly, to first order, the rf response of a paired BCS state is a broadened

peak, with the form [65]:

IBCS(ω) =
m3/2

21/2π2~2

[
~ω
2

+ µ− ∆2

2~ω

]1/2
∆2

2(~ω)2
(5.74)

Two features are immediately apparent in the previous equation. First, the spec-

trum has a well-defined onset at frequency ω =
√

∆2 + µ2 − µ. The second feature

is the high frequency tails of the spectrum, which go as ω−3/2. Note that this is in
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absence of final state interactions. In the presence of final state interactions, the spec-

trum can be shown to go as a different power law in the tails: I(ω) ∼ ω−5/2 [152, 116].

This effect will be discussed in subsection 5.4.5.

However, Equation 5.74 is limited in its scope. Even in the weakly-coupled BCS

limit, the onset is less sharp, due to the rf excitation of atoms at momenta lower

than kF . Furthermore, the onset and peak shift of the rf spectrum are not only

determined by the superfluid gap, but are dominated by so-called Hartree energies

that are absorbed into the chemical potential. As a result, the true onset is not

exponentially small, as might be assumed from a weakly-coupled BCS picture. In

addition, the weight in the power-law tail is given by a thermodynamic quantity

known as the contact, which is not exponentially small either. These limitations

prevent simple BCS theory from applying to even the BCS side of the Feshbach

resonance, and in general, make the computation of spectral functions at unitarity a

challenge. In this section, we aim to provide observations of rf spectra at unitarity,

as a function of temperature, in order to provide an experimental benchmark for

theories that predict the spectral weight of strongly-interacting fermions.

5.4.2 RF spectra in the hybrid

For gases trapped in a typical harmonic potential, the line-of-sight integration during

imaging prevents direct measurements of the response to global probes such as rf.

Tomographic techniques cleverly avoid this difficulty, but suffer from added noise due

to differentiation during the inverse Abel transform, or from the lower signal due to

optically pumping away a majority of the atoms prior to measurement. This was a

major drive for creating the hybrid trap, which combines the convenient scanning

of a phase diagram through the local density approximation with the high signal

to noise ratios afforded by a uniform trap. In addition, the known variation of the

external potential along the z-axis allows a direct calibration of the equation of state,

and provides a direct thermometer from the variation of the density in the wings of
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Figure 5-20: Noninteracting and interacting RF spectra in the hybrid.
(a) Here, rf transfers from |1〉 to |3〉 are shown for a spin-polarized cloud (left panel)
and the balanced |1〉 − |2〉 mixture at unitarity (right three panels). The transferred
atomic profile reflects the insitu density profile, which is uniform along the horizontal
axis in this figure, and harmonic (23Hz) in the vertical axis. In a spin-polarized gas,
the rf transfers are not density dependent, while the spin-balanced cloud shows a
clear density dependence. This is evident in (b), which shows integrated transfers as
a function of rf detuning.

the cloud.

The results of the rf spectroscopy in the hybrid trap are shown in Figure 5-20.

During the measurement, images of the initial cloud as well as the rf transferred

fraction are taken for every rf detuning. The images are then integrated along the

uniform axis to provide a map of the rf transfer as a function of z-position and

detuning. Readily apparent is the density-dependence of the onset of the rf spectrum.

Driven by mean-field interaction shifts of the energy, the peak moves towards higher

detuning at the center of the trap, where the density is the greatest. Also apparent

is the asymmetry of the spectrum - a sharp onset towards low detunings and a long
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tail at high detunings.

At the |1〉 − |2〉 Feshbach resonance of 832G, the scattering lengths to state |3〉
are |a13| = 3274a0 and |a23| = 16548a0. As a result, the three-body loss rate across

|1〉 − |2〉 − |3〉 is relatively high, and we observe large losses even during short rf

pulsetimes. To avoid these density-dependent (and hard to correct for) losses, we

switched to the |1〉 − |3〉 Feshbach resonance at 689G. Here, the other scattering

lengths are significantly lower: |a12| = 1411a0 and |a23| = 1163a0. We achieve this

by first performing a sweep from 1-5 and then 5-3. The mixture is stabilized as usual

by a final evaporation in the box which shaves off any residual fluctuating imbalance.

Figure 5-21: Hybrid rf spectra. The peak of the rf spectrum scales with the
Fermi energy. Here the color axis shows normalized transfers in [a.u.].

5.4.3 Diffusion

rf spectroscopy offers a number of control knobs: the frequency, the power, and the

pulse shape. In our experiments, we use a square pulse shape, which adds lobes

in frequency space. For some applications, such as beyond linear response Bragg

spectroscopy, these frequency lobes can be undesirable [8]. However, by setting the
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Figure 5-22: Varying rf pulse time. The rf transfers from the hybrid trap
are qualitatively different depending on the pulse time used. Shorter pulsetimes
(left) suffer from Fourier broadening, while longer pulsetimes (right) suffer from the
ballistic expansion of transferred atoms.

overall rf power so that the sidebands carry a very small fraction of the total power,

we find the distortion to the resulting rf spectra is minimal. This requirement fixes

both the power and the pulse shape, leaving the pulse time as the only free parameter.

There are clearly two timescales that set bounds for the rf pulse time. The

lower bound is set by the Fourier broadening imposed by a short time. For a pulse of

width δt, the resulting Fourier broadening is on the order of 1/δt. Since most spectral

features are on the order of the Fermi energy, a Fourier-limited frequency resolution

of 0.1EF ∼ 1kHz seems reasonable. This sets the pulsetime to 1ms. On the other

hand, the LDA requires good spatial resolution of the transferred atoms. After the

atoms are transferred, their mean free path l is set by the scattering length of the final

states. Given a collision rate of Γ ∼ nσv, we can assume l ∼ v/Γ ∼ 1/nσ ≈ 15µm.

This means if we want a spatial resolution better than 15µm, the expansion of the

transferred atoms is ballistic. For atoms that are transferred near the many-body

peak, the initial velocity is set by the momentum distribution of the atoms that

are addressed by the rf pulse. If we assume that the fastest subset of those atoms

have a Fermi momentum kF, their velocity is the Fermi velocity, which is roughly

30µm/ms. Thus, pulses longer than 1ms are likely to experience significant blurring

due to expansion. This leaves a rather narrow window for the pulsetime.

In Figure 5-22 we show the effects of blurring in inhomogeneous traps as a function

of pulse time. As seen before, since the energy scales are set by the Fermi energy, the

rf transfers at a particular frequency depend on density. The extent of the blurring

can be directly imaged in the hybrid trap, where an rf detuning less than the central
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Fermi energy ideally results in bands of transferred atoms. For short pulse times,

a wider shell of atoms are addressed under the broad Fourier envelope in frequency

space. For long pulse times, although the atoms are being transferred from a narrow

shell in the initial cloud, the transferred atoms move ballistically and are free to

explore the harmonic trapping potential during the rf pulse.

Unfortunately, the window of pulse times for which the blurring is acceptable

closes as we address atoms with greater and greater momentum. For transfers near

the onset, a 0.5ms pulse allows for a roughly 15µm blurring. However, for transfers

in the high-detuning wings, where we expect the two-body contact to contribute to

the transfer rate, the final state kinetic energy can be estimated from the detuning

provided: Ek ∼ hδ. For a detuning of 60kHz, the transferred atoms move at a speed

of about 60µm/ms. A 0.5ms pulse time would result in a blurring of 30µm, which

covers a third of the Thomas-Fermi radius of the gas in the 23Hz harmonic trap.

We have confirmed this expansion rate using a pair of co-propagating Raman beams

addressing a two-photon transition to the final state. With a two-photon detuning of

48 kHz and a pulsetime of 100µs, a ∼ 10µm slice of the cloud was transferred from a

|1〉−|3〉 mixture to |2〉. The transferred slice expands to 55±5µm, at which point the

motion is likely diffusive and covers a large axial extent of the hybrid cloud. Thus,

although the hybrid trap provides useful diagnostic insight into the evolution of the

onset of the rf spectrum, it is unsuitable for measurements of the two-body contact,

which require large detunings from the single-particle resonance. Nevertheless, we

will see that measuring insitu variations of rf transfer can lead to a method for direct

thermometry, and an observation of second sound in the unitary Fermi gas.

5.4.4 Linear Response

Beyond spatial blurring, longer pulse times can come with larger transfers, and a

departure from the linear response regime. In Equation 5.68, we assumed the rf

perturbation acts by transferring atoms into an empty final state. Once the final
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state is populated with enough interacting atoms, this approximation no longer holds,

and the response is no longer linear in the pulse time. For small transfers however,

Fermi’s golden rule asserts that the transfer is proportional to the pulse time and

the Rabi frequency squared.

Fermi’s golden rule is useful when considering transitions from a single state to

a continuum, or as in our case, from a continuum many-body energy spectrum to a

single final state. However, we know that the rf spectrum of a strongly-interacting

paired superfluid is slightly ’molecular’ - there is a clear peak that is defined by the

shape of the Fermi surface. That means for sufficiently small pulse times, the Fourier

broadening of the pulse is much larger than the width of the rf spectrum. Thus, to

the broad rf probe, the peak looks sharp, and very short time transfers should look

more like Rabi oscillations between well-defined single-particle states.

In short, we expect a transition from Rabi oscillations to golden rule linear re-

sponse, to beyond linear response saturation, as we vary the pulse time. For fixed rf

power and detuning, we measure transfers as a function of pulse time, shown in Fig-

ure 5-23. For short times (t < 2π/Ω̃R) where Ω̃R =
√

Ω2
R + δ2 is the generalized

Rabi frequency, we observe oscillations that suggest that the peak of the many-body

spectrum is not resolved as a continuum. For longer times, we observe a gradually

saturating transfer rate, whose initial slope can be used to find the true transfer rate.

5.4.5 Interacting final states

We now consider interactions between the state unaffected by the rf pulse and the

final state. It has been shown that final state interactions result in a finite clock

shift of the rf transition, while for a completely non-interacting final state, the clock

shift should be infinite [7]. This can be seen by inspecting the sum rules for an rf

transition
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Figure 5-23: Linear response.. Plotted are rf transfers as a function of time,
compared to a linear and an exponential fit. Here, the Rabi frequency is ΩR =
2π×3.02kHz, and the detuning from the single-particle resonance is δ = 2π×20kHz,
or δ/EF = 0.36.

Ωc =
1

2πω2
RN

∫ ∞

−∞
ωI(ω)dω (5.75)

Assuming the effective range of the contact interaction is much smaller than the

scattering lengths, the clockshift can be written in terms of the initial and final

couplings gij, and gif .

Ωc =

(
1

gij
− 1

gif

)
1

n2

∂(F/V )

∂g−1ij
(5.76)

Here, the partial derivative of the free energy F with respect to the coupling, is

related to the thermodynamic contact, with proportionality factors. When gif → 0,

Ωc →∞. This is expected when the long tail of the rf spectrum I(ω)→ ω−3/2, and

the integral in Equation 5.75 is divergent. However for gif 6= 0, clearly the long-tail
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behavior of the spectrum must deviate from ω−3/2.

In 1968, Ken Wilson showed that a product of quantum operators can be ex-

pressed as an expansion of local operators [149]. This result can be used to express

the product of quantum fields ψσ as [11]:

ψ†σ(R− 1
2
r)ψσ(R + 1

2
r) =

∑

n

Cσ,n(r)On(R) (5.77)

where Cσ,n(r) are known as Wilson coefficients, and On(R) are operators that

can be calculated using diagrammatic methods from the known contact interaction.

As shown above, the full expression for the rf spectrum depends on the spectral

function, which in turn depends on the momentum distribution

ρσ(k) =

∫ ∫
d3R d3r eik·r〈ψ†σ(R− 1

2
r)ψσ(R + 1

2
r)〉 (5.78)

Using the operator product expansion to replace the matrix element on the right,

the momentum spectrum – and relevant to us – the tail of the rf spectrum can be

calculated for arbitrary initial and final state interactions ai and af [11]:

Γ(ω)→ Ω2
R

4π
√
m

(a−1i − a−1f )2

(a−2i +mω)ω−3/2
C (5.79)

Here, ΩR is the Rabi frequency, and Γ(ω) is the rate at which atoms are produced

in the final state. In our case, we start with effectively infinite initial state interactions

ai →∞. We can rewrite the spectrum as

I(ω) = (Nf (ω)/Ni)(EF/~Ω2
RTPulse) (5.80)
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Figure 5-24: Final state interactions.. The rf spectrum of a spin-balanced
fermionic superfluid at T/TF = 0.10(1) shows the effects of final state interactions.
Without final state interactions the spectrum is expected to follow a power law given
by ω−3/2 (dashed line). However, the data show an agreement with Equation 5.81
(solid black line). We ensure that all measurements are taken within the linear
regime, even as we vary the Rabi frequency from 2π×0.54kHz (circles) to 2π×1.20kHz
(triangles) to 2π × 3.04kHz (squares).

in terms of the Fermi energy EF and the binding energy of the final state Eb =

~2/ma2f ≈ h× 433 kHz ≈ 40EF for our system:

lim
ω→∞

I(ω) =

(
C

NkF

)
1

2
√

2π(1 + ~ω/Eb)

(
EF
~ω

)3/2

(5.81)

For zero final state interactions, af → 0 and Eb →∞, so we recover the expected

ω−3/2 tails. However, for ω ∼ Eb and af 6= 0, the spectrum follows a steeper power

law: I(ω) ∼ ω−5/2. In Figure 5-24, we show a measured rf spectrum using a |1〉− |3〉
mixture at the lowest temperatures we can reach with our system: T/TF = 0.10(1).

Using a range of Rabi frequencies, we are able to capture over three decades of
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dynamic range in I(ω). By fitting data where ~ω > 3EF to Equation 5.81, we observe

a deviation from the typical ω−3/2 and a good agreement to the full expression given

by the operator product expansion. Here, the dimensionless contact is the only

free parameter, fitted to the low-temperature result C̃ = C/NkF = 3.07(6). This

value is consistent with quantum Monte-Carlo (C̃ = 2.95(10))[36], the Luttinger-

Ward calculation (C̃ = 2.95(10))[65] as well as previous measurements using losses

(C̃ = 2.95(10))[85] and Bragg spectroscopy (C̃ = 2.95(10))[67].

5.4.6 The temperature dependence of the contact

In the previous sections, we have established that our rf spectroscopy technique ob-

tains the dimensionless contact with precision. We have mitigated concerns regarding

linear response, diffusion during the rf pulse, and final state interactions. The curve

relating the dimensionless contact (C/NkF ) to dimensionless temperature (T/TF )

is a universal curve – true for all unitary fermions. A precise measurement of that

curve is a true many-body precision measurement, and should stand the test of time,

until another experiment improves on errors, and reaches even lower temperatures.

For efficiency, we choose to measure the contact at a fixed detuning δ = 60kHz

(~ω/EF ≈ 6). Since ω and kF are known, we only need the transfer in the limit of

linear response to measure the contact. We vary the initial temperature by oscillating

the trapping potential near a mechanical resonance. The details of this heat injection

method can be found in a separate publication that is beyond the scope of this

thesis [114]. By varying the heating time, we can prepare the system in temperatures

ranging from T/TF = 0.10 to T/TF ∼ 3. For each temperature, we measure the

number of atoms in the initial and final states by releasing the gas from the box

trap. As the atoms expand in the magnetic curvature trap, the optical density drops

to a level that allows for accurate atom counting. Using a double imaging camera,

we image N2, the atom number in the final state after the |1〉 − |2〉 rf transfer,
and N3, the unperturbed state population. After measuring the transfer rate in the
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limit of linear response, we solve Equation 5.81 for C/NkF , and plot the results in

Figure 5-25.

Firstly, in the limit of high temperatures, the data show a good agreement to the

third order virial expansion, indicating that we have a good control over systematic

errors. Below T ∼ TF , the virial expansion is no longer reliable, and we compare

our results to a wide range of theories that make vastly different predictions: Bold-

diagrammatic Monte Carlo (BDMC) [124], QMC [59], Luttinger-Ward (LW) [40],

large-N [39], and Gaussian pair fluctuations (GPF) [68]. Also shown is the homo-

geneous contact obtained from the equation of state (ENS-EOS) [105], from loss

rate measurements (ENS-L) [85], and from rf spectroscopy by the JILA group [125]

across a range of temperatures. We also observe a good agreement with data taken

in Swinburne [15] simultaneously with our measurements. For temperatures above

Tc, the BDMC data appear to accurately describe the changes in the contact.

At the superfluid transition, we measure the change in the contact. In order to

verify our temperature calibration, we use the rapid ramp momentum focus technique

described earlier to measure the condensate fraction. We observe a prominent rise

in the contact at Tc. This follows prediction from the Luttinger-Ward calculation,

in which the contact is sensitive to the pairing gap. Predictions that involve a pseu-

dogap theory predict an even steeper rise exactly at the phase transition, which we

do not observe here [116, 111, 97]. Instead, the rise we observe indicates an increase

in short-range pair correlations that follow the onset of pairing. Since our measure-

ments, a finite-temperature auxiliary-field quantum Monte Carlo (AFMC) method

has calculated the temperature dependence of the contact below the superfluid tran-

sition [72]. By taking the continuum limit from a number of lattice calculations, they

are able to directly compare their predictions to our measurements. Their results

agree well with ours and the data from Swinburne - including in the region where

T > Tc where our data appear below most other theoretical predictions.
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(a)

(b)

Figure 5-25: Contact vs T. (a) We measure the temperature dependence of the
contact and compare the results to a range of theories (discussed in the main text).
The contact rises prominently in the superfluid regime. (b) In order to precisely
calibrate the superfluid transition, we also measure the condensate fraction using
a rapid ramp method combined with a momentum focusing during free expansion.
This method is discussed in section 5.2. The vertical blue dotted lines and light blue
shaded vertical regions mark Tc/TF = 0.167(13) [81]. The green solid line shows the
third-order virial expansion for the contact.
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5.4.7 The many-body peak

(a) (b)

(c)

Figure 5-26: Spectral response. (a) Temperature dependence of the peak of the
rf spectrum. As the temperature increases, the peak shifts towards zero detuning
(b) and displays a non-monotonic change in width (c). Qualitative changes at the
superfluid transition (vertical dashed red line in (b) and (c)) appear minimal. We
compare the peak shift Ep, with white points marking the peaks, to the change in
the energy of the finite temperature Cooper problem (gray line). In addition, the
changes in widths (blue data in (c)) are compared to the corresponding widths for
a gas of Fermi polarons at unitarity (gray triangles) [150]. The black dot-dashed
line represents the temperature dependence of the width due to scattering in the
high-temperature gas Γ/EF = 1.2

√
TF/T [40, 138]

We now approach the first topic covered in [100]: the spectral response near the

peak in the rf spectrum. The bulk of the spectral weight is contained in the many-

body rf transfer peak. The rf transfer at these detunings consist of a wide range

of momentum components, from k = 0 to near kF . The position and width of this

peak therefore contains information about the many-body system as a whole, from

Hartree energies to the pairing gap [130]. While the pairing gap has been measured

at low temperatures across the BEC-BCS crossover, its temperature dependence

remains a mystery. Closely connected to this mystery is the possible existence of
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a ’pseudogap’ regime, where a pairing gap exists without superfluidity [97]. Hints

of such a pseudogap regime in ultracold systems of fermions at unitarity have been

observed [54].

However, in order to disentangle mean-field interaction energy shifts from shifts

due to a spectral gap, it is necessary to populate both branches of the single-particle

excitation spectrum. This can be achieved by preparing a slightly spin-polarized

gas. Due to Pauli blocking, the unpaired excess fermions are required to live at the

Fermi surface as quasiparticle excitations [130]. Like many of the rf measurements

outlined earlier, inhomogeneous quasiparticle spectroscopy has so far depended on

the inverse Abel transform. With a fully homogeneous cloud, quasiparticles could be

resolved not only in rf detuning, but also in momentum space. A future homogeneous

measurement of the full spectral function as a function of the temperature T and

polarization σ can be directly compared with results from previous experiments as

well as numerical methods [54, 65, 33].

In Figure 5-26, we show our results for the changes in the many-body peak as a

function of temperature. Here, the spectrum I(ω) is defined in Equation 5.80, and

the detuning is relative to the bare rf resonance. At high temperatures T � TF, the

peak is unshifted, despite the presence of interactions. This is because at unitarity,

the attractive and a repulsive branch are centered around zero and are separated

by ∼ EF. For large temperatures, both branches contribute equally to the shift,

and cancel each other out [66]. For lower temperatures, the peak shifts towards the

attractive branch, and reaches a maximum of Ep ≈ 0.8EF for a paired superfluid.

To quantify the full widths at half maximum (FWHM) of the peaks, we fit

quadratic functions to the peak and its flanks. The fit to the peak provides the

center position and the height. The flank fits then provide the widths at half the

fitted height. This procedure is robust to both noise as well as peak asymmetry. At

high temperatures, the system is a Boltzmann gas with a scattering rate Γ ∼ nσv.

Here, the scattering cross section σ ∼ λ2T is set by the thermal de-Broglie wavelength
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and v ∼ ~/mλT is the thermally-averaged relative velocity. Thus, the scattering

rate is proportional to λT , or inversely proportional to
√
T . This is reflected in the

rf spectra for both the spin-polarized gas as well as the balanced gas. Both show

identical peak widths for T > TF.

For degenerate gases however, the peak widths differ considerably. The spin-

polarized gas shows a quadratic dependence on temperature. This observation agrees

with a Fermi liquid picture, where minority gas is treated as a system of fermionic

polarons, dressed by its interactions with the majority spin state [12, 150]. For very

low temperatures, Pauli blocking prevents scattering, and the quasiparticles are long

lived. This is reflected in our Fourier-limited observation of a sharp rf spectral peak.

As the temperature of the system increases, the once sharp Fermi surface of the

majority becomes blurred, and the phase space available for scattering increases;

from dimensional analysis, the scattering rate of the Fermi polaron is Γ ∼ kT 2/TF.

Near T ∼ TF, both rf spectra have widths γ > EF, reflecting the breakdown of the

quasiparticle picture [109, 39, 53].

The spin-balanced Fermi gas displays a non-Fermi liquid rf spectral width for all

temperatures. Instead of a quadratic dependence on temperature, the width varies

linearly with T below TF. This is significant as previous studies have suggested

that the normal phase above Tc could be a Fermi liquid [105]. In fact across a

broad quantum critical regime (near µ = 0, T/TF ≈ 0.68), the observed T-linear

spectral widths mirror the enigmatic T-linear resistivities observed in a wide range

of solid state systems [90, 24, 86]. This universality suggests a common underlying

physical character across these quantum critical systems, despite the breakdown of

the quasiparticle picture.

Unlike the gas of polarons, the spin-balanced Fermi gas displays a spectral func-

tion with a finite width at the lowest temperatures. This is because when the two

Fermi surfaces overlap at sufficiently low temperatures, Pauli blocking plays a vastly

different role. Unlike the momentum diffusion shielding in polarons, here Pauli block-
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Figure 5-27: Temperature dependent spectral response. From top to bot-
tom, these panels show the variation of the rf spectral response vs T/TF, for five
specific fixed rf frequency detunings. The vertical dotted line represents the super-
fluid transition. The slope relates the rf spectral response to changes in temperature.

ing results in correlations between opposite spin states and momenta, realizing pair-

ing. At unitarity, the rf spectra are broadened by the spread of momenta in a pair.

This is given by the Fermi momentum kF = 1/ξ, where ξ ∼ λF is the characteristic

size of the pair. The expected spectral width is Γ ∼ ~nλF/m. Thus, the finite pair

size results in a finite spectral width.
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5.4.8 A local thermometer

As part of an outlook, we present data that establish rf spectroscopy as an effective

local thermometer. A quick inspection of Figure 5-26(a) shows a clear tempera-

ture dependence of the rf spectral response. A similar phenomenon drives thermal

imaging. Due to Planck’s law, the blackbody spectrum of an object varies with

temperature. For temperatures between 300-1000K, the peak of the blackbody spec-

trum shifts from approximately 8 to 3 µm. This change in the energy spectrum

allows thermal cameras to take spatially-resolved images of temperature. Crucial to

this imaging is a careful calibration of spectroscopic imaging to temperature. In our

system, this calibration is readily obtained from the data in Figure 5-26(a).

In Figure 5-27, we rearrange the same data for small detunings, now plotted

against temperature. We observe that for cold gases (near and below the superfluid

transition), the rf spectral response grows with temperature. This can be intuitively

understood as measuring the density of thermal excitations such as broken pairs

that populate the upper branch of the spectral function at higher temperatures. The

closing gap near the superfluid transition is also expected to change the shape of the

spectral function, contributing to an increased rf transfer in the flank of the main

peak. In Landau’s two-fluid model, the rf response for small detunings effectively

couples to the normal fluid fraction, which changes with temperature. The slope of

the curve ∂n
∂T
‖n provides the calibration and allows us to convert images of rf transfer

into temperature.

As a demonstration of insitu thermometry, in Figure 5-28, we present an image

of thermal gradients generated in a Fermi superfluid. We produce a density gradient

by oscillating a gradient potential across the z-direction of the box. Due to a weak

coupling between the density and temperature of a superfluid [142], this generates a

temperature gradient across the box. We measure this by applying a 0.5ms rf pulse

at a small detuning (δ/EF ≈ 0.3) from the bare atomic resonance. We then apply

a rapid double imaging: first the transferred atoms in |2〉, followed by a reference
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Figure 5-28: Insitu thermometry of a Fermi superfluid. Here we show
the insitu density and thermal profiles of a gas in which a temperature gradient has
been created. Although the density profile (left column) shows no obvious indication
of thermal variations, the thermal profile (right column) obtained from insitu rf
thermometry clearly shows a gradient in temperature.

density image. Using the thermometer calibration from the slope in Figure 5-27, the

transferred fraction readily provides the temperature. A signal-to-noise ratio of 1 is

achieved for sub-nanoKelvin temperature variations at T = 63nK or 0.75Tc.

It is worth noting the spatial resolution of the insitu rf thermometer. Although

our optical imaging is limited by our objective to ∼ 5µm, the true insitu resolution

of rf imaging is limited by the motion of the atoms during the pulse. Although

the transferred energy from the rf pulse is small due to the small detuning, the rf

addresses atoms across the Fermi sphere, including those at the Fermi momentum.

This is after all what allows us to measure broken pairs and perform thermal imaging.

Assuming a worst-case scenario where all transferred atoms are broken pairs that

move with a Fermi momentum, the atoms would travel 13µm assuming ballistic

expansion and a 10kHz Fermi energy. Although the final state interactions with |2〉
are weak, the motion is diffusive for sufficiently long timescales. As mentioned earlier,

the mean free path for our system is ` = 1/(nσ) ≈ 15µm. So the motion is partially

diffusive, and we can expect a blurring of 10-13µm. This is more than sufficient

for measuring the lowest modes of the box, since our box length is fortunately L ≈
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100µm. It turns out that higher second sound modes are significantly damped in

our system, and we only observe the first two. In the main outlook section, we

will provide a quick outline on how we have used this technique to measure the

propagation of these second sound waves in a fermionic superfluid.
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Chapter 6

Landau gauge wavefunctions

We now turn to our experiments on uniform rotating quantum gases. As discussed

in chapter 3, rotating systems of neutral ultracold atoms are an ideal platform for

studying the quantum Hall effect. In general, ultracold quantum gas experiments

benefit from the measurement and control of a large number of degrees of freedom,

such as the interaction strength, the local density, scalar potentials and gauge fields.

As we shall show in this chapter, these characteristics have enabled us to study a

fundamental building block of the quantum Hall effect: the Landau gauge wavefunc-

tion.

Since the demonstration of Bose-Einstein condensation, there has been significant

interest and progress towards rotating ultracold atomic gases close to the lowest

Landau level [132, 25]. However, in order to prepare perfectly degenerate Landau

levels, the gas must be rotated at the trapping frequency, resulting in atoms that

are untrapped in the rotating frame. This has remained a significant challenge, since

ultracold atoms are usually studied inside trapping potentials. As a result, neutral

atom quantum Hall experiments have been so far restricted to the study of non-

uniform vortex lattices that are close, but not at, the limit of perfectly degenerate

Landau levels.

Furthermore, past experiments have relied on the effective magnification from

115



a time-of-flight expansion [91, 1]. This prevents a quantitative study of unstable,

untrapped quantum Hall systems using ultracold atoms. In recent years, high reso-

lution insitu imaging has proved remarkably useful, especially for measurements of

local quantities in many-body quantum systems [20, 113]. In order to understand

the quantum Hall effect on a microscopic level, we probe the in situ evolution of in-

dividual Landau gauge wavefunctions in the lowest Landau level using a microscope

objective.

We begin the chapter by describing our construction of the new experimental

apparatus, with details on the design of the vacuum chamber and imaging system.

We will give a wide overview of the apparatus and the steps we took to achieve

BEC. For more details regarding the magnetic transport system, the slower, and

the fermionic 6Li laser system, we refer the reader to the other theses from this

lab. We then describe the preparation of the first longitudinally-uniform Landau

gauge wavefunctions in the lowest Landau level using a sodium BEC. We outline the

experimental sequence, and summarize our measurements of the distribution of cy-

clotron guiding centers. We discuss deviations from the expected Hall response due

to trap anharmonicity, and provide details on simulating BECs that are untrapped

in the rotating frame. Lastly, we describe our observations of the effects of inter-

actions on a Landau gauge wavefunction. We observe a spontaneous crystallization

of a longitudinally homogeneous condensate. We characterize the interaction-driven

crystallization, specifically outlining a smooth connection from a hydrodynamic in-

stability to a quantum magneto-roton.

The research presented in this chapter has resulted in the following publications,

the second of which is to appear in Nature:

R. J. Fletcher, A. Shaffer, C. C Wilson, P. B Patel, Z. Yan, V. Crépel, B.

Mukherjee, M. W. Zwierlein, "Geometric squeezing into the lowest Landau level,"

Science 372, 6548, pp. 1318-1322 (2020) [51]

B. Mukherjee, A. Shaffer, P. B Patel, Z. Yan, C. C Wilson, V. Crépel, R.
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J. Fletcher, M. W. Zwierlein, "Crystallization of Bosonic Quantum Hall States,"

arXiv:2106.11300 (2021) [101]

6.1 A quantum Hall microscope

The design and construction of our newest cold atom machine was driven by a desire

to revisit the study of rotating quantum gases. Nevertheless, we took a broader

approach, and built a general-purpose dual species experimental apparatus instead

of a specialized machine. To that end, it would be remiss to omit mention of our

oldest cold atom machine, BEC1, the focus of the first part of this thesis, and the

design inspiration for the new experiment. The success of BEC1 has spanned over two

decades, covering aspects of the field hardly imaginable when the vacuum chamber

was first designed. Indeed, this success is due to a combination of the hard work

of the generations of students before us, and a flexible experimental design that has

formed the blueprint of many experiments in the hallway. As BEC1 approached the

end of its life, we endeavored to build a replacement, Fermi3: one that could continue

the same experiments, was similarly flexible, but lacked the limitations of the old

machine.

The heart of the experiment is almost identical to BEC1, sharing the same atomic

species, oven design, slower length, and overall size (see Fig. 6-1). The reader is

therefore encouraged to explore the theses from the old machine for a deeper un-

derstanding of the new one. Our first design choice concerned the atomic species.

Fermionic 6Li was a straightforward choice, given the presence of broad Feshbach

resonances near 832G. At lower fields and lower interaction strengths, Pauli block-

ing prevents efficient evaporative cooling, necessitating the pre-cooling of fermions.

A few experiments have achieved a single-species approach to this problem, gener-

ating fermionic clouds at sufficiently high phase-space density through direct laser

cooling [69, 133, 112]. While the simplicity and potentially rapid development of
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Figure 6-1: 3D CAD render of Fermi3.. The vacuum chamber consists of
three gated subchambers. To the left is the source of the atoms: the oven chamber,
containing the cups of alkali and the atomic beam nozzle. In the middle is an
intermediate chamber, with ports for observation and potential transverse cooling.
An electronic gate valve separates the main chamber, which consists of a slower tube,
a Kimball physics octagon, a glass cell, and a pump tower. Also shown in this render
are the magnetic coil holders around the main chamber, and the custom optical
breadboards for mounting MOT and imaging optics.

a single-species machine seemed appealing at first, we decided to exploit the proven

reliability of using a massive bosonic condensate of 23Na as a coolant. In retro-

spect, this approach has produced not only large fermionic clouds, but also original

scientific measurements using just the 23Na BEC. Thus, the dual species machine

will allow us to study a range of physics in bulk: from weakly-interacting BECs, to

strongly-interacting fermionic superfluids.

While designing the optical system for homogeneous atomic Fermi gases in BEC1,

we faced an important limitation of the old vacuum chamber: a lack of optical ac-
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cess. While the bucket windows allowed us to place lenses relatively close to the

atoms, the optical resolution was limited to a few microns. As a result, imprinting

and imaging structures on the order of the superfluid healing length ξ ∼ 1µm re-

mained out of reach. Furthermore, the deep buckets prevented a stable well-centered

mounting system for the lens tubes placed inside. The cantilevered optics were sensi-

tive to vibrations, and caused a slow but unavoidable heating of atoms placed inside

all-optical potentials in BEC1. Thus, we prioritized optical resolution in the new

experiment, and decided on using a glass cell as our ‘science chamber’.

The MOT optics in the old experiment had presented another challenge. Large

and bulky, they often stood in the way of science optics, and we placed a number of

two inch motorized flipper mirrors to switch between the MOT loading and imaging

stage of the sequence. The deep horizontal bucket windows in BEC1 admitted two

counter-propagating MOT beams of 589 and 671nm each, two pumping beams, a

1064nm dipole trap, both low- and high-field imaging, and finally, the 532nm high-

resolution axicon beam. Since passing the large well-collimated MOT beams through

a dedicated objective was infeasible, the old machine required additional optics for

1:1 telescopes on either end. Additional optics resulted in additional mechanical

instability, and additional alignment.

Separating the MOT loading optics from the science imaging optics would allow us

to place objectives close to the glass cell and spread the optics over a larger volume. A

simple solution is to transport the atoms from a MOT region to a science region. This

can be achieved within the same chamber, limited to distances of a few inches. We

have decided to transport the atoms from a dedicated MOT chamber into the glass

cell (see Fig. 6-2). Following the philosophy of plug-and-play reliability, we opted for

magnetic transport with no moving parts: overlapping coils that provide a moving

zero to transport weak-field seeking atoms. Although the apparatus is designed to

image atoms placed in the center of the glass cell, it can be in principle modified to

transport and image atoms closer to a surface, without breaking vacuum. However,
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Figure 6-2: Main chamber section view render.. The MOT chamber octagon
is directly pumped by the pump tower visible in the background. The atomic cloud
(artistically depicted as a yellow sphere, not to scale) is captured in the quadrupole
trap, and transported by overlapping anti-Helmholtz-like coils to the glass cell (on
the right). The objectives (vertical tubes above and below the glass cell) are then
used for measurement and optical control.

this would involve a significantly modified objective system, possibly involving a solid

immersion hemispherical lens.

6.1.1 Vacuum apparatus

We start our description of the vacuum apparatus with the oven chamber. The oven

chamber design is largely identical to BEC1, with the exception of the oven shutter,

which uses a flag mounted on a bellows driven by a linear actuator instead of a rotary

feedthrough. This has proved to be significantly more reliable. The nozzle is a 4mm
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circular hole in an adjustable sheet of copper.

Due to the heat from the oven heating elements, the oven chamber is full of alkali

vapor and other more undesirable gases that are usually adsorbed into cold metal

chambers. Thus, the pressure is on the order of 10−7 Torr. Differential pumping

enables us to maintain a far superior pressure in the main chamber than in the oven

chamber. Specifically, there are two differential pumping tubes on either side of the

intermediate chamber. A drawing of the intermediate chamber is shown in Fig. 6-3.

Figure 6-3: Intermediate chamber.. The intermediate chamber consists of
a central 6-way with a set of 4 viewports that look directly into the atomic beam.
Two of the atoms of the viewport cross are extended to allow for pipes that hold
the Nextorr 50D vacuum pump, and a vacuum gauge. The ports are useful for
monitoring, but could also be used for transverse cooling of the molecular beam.

The typical mean free path of a molecule in the chamber is given by the following

formula from kinetic theory:

` =
kBT√
2πd2p

(6.1)

where T is the temperature, p is the pressure, and d is the typical diameter of the

molecule. Since d is poorly-defined, it is often substituted for the Lennard-Jones
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Pumping tube OD ID L C [L/s] Pi/Pf

Oven-Intermediate 0.25" 0.194" 5" 0.11 900
Intermediate-Main 0.375" 0.305" 2.5" 0.781 128

Table 6.1: Differential pumping tubes.

parameter σ ≈ 0.24nm for the intermolecular potential of H2 [50]. For T=300K

and pressures below 10−3 Torr, the typical mean free path for hydrogen is tens of

centimeters, larger than most chamber parts. In this regime, the fluid dynamics

of the gas is known as molecular flow. Here, the conductance of cm-size pipes is

determined solely by its geometrical characteristics, and not by the pressure of the

gas. The conductance of a pipe, for instance, is given by the following formula:

C = 12.1
D3

L
(6.2)

in units of L/s. Here, D and L are the diameter and length of the pipe respectively,

in centimeters. The parameters of the two differential pumping tubes are given

in Table6.1. The diameter of the differential pumping tubes are chosen so that

the slower beam is not clipped. The length is chosen to ensure a sufficiently large

differential pumping Pi/Pf between the chambers connected. Since conductances in

series add in vacuum just like like conductances in electronics, the total differential

pumping between the intermediate and the main chamber is given by

1

Ctot
=

1

Cdp
+

1

Cslower
(6.3)

The conductance of the slower is Cslower ≈ 1.92L/s, so Ctot ≈ 0.56. Assuming

that all chambers are pumped at S = 100L/s, this gives an estimate of the differential

pumping Pi/Pf = S/Ctot ≈ 181. In reality, the main chamber is pumped by not only

an ion pump, but also a large getter surface that will be detailed further on. This

surface should provide a significantly large pumping speed.
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There are two gate valves in the experiment. The first is a manual VAT valve

for isolating the intermediate and the main chamber from the oven during an oven

change or a cleaning operation. This valve is intended to remain open overnight to

avoid damage from repeated use. The diaphragm is capable of sustaining a 2atm

pressure differential, so it should keep a good vacuum while it is closed and exposed to

atmospheric pressure. The main nightly safety valve is the second valve: a pneumatic

valve from MDC that isolates the intermediate from the main chamber. This valve

is closed when the experiment is not actively running to prevent a leak in the oven

or intermediate chambers from necessitating a full bakeout of the main chamber.

Once fully constructed, the main chamber is surrounded closely by precisely-aligned

optics. Removing or covering these for a bakeout could lose many valuable alignment

days.

The slower design is an increasing field slower optimized for loading sodium, of

length 50cm, divided into four sections. The first three starting from the nozzle side

are low current, drawing about 35A. The last section near the MOT chamber draws

130A. In contrast to a decreasing field slower, the slower light is far off-resonant (≈ 1

GHz) with respect to the MOT. This results in a less heating and deflection of the

MOT cloud from the slower beam. However, the magnetic field from the slower is

higher in the MOT chamber, and has to be tapered down a few cm before to ensure

that the MOT gradient isn’t significantly perturbed along the slower axis. Like many

other increasing field slower experiments, we counter the B-field offset at the MOT

position using a ‘slower x-bias’ coil, wrapped on the other side of the MOT chamber

from the slower.

The main chamber is comprised of an octagon manufactured by Kimball physics,

with bucket windows from UKAEA, a glass cell, and a pump tower. Four of the

smaller octagon ports and the bucket windows admit the cross arms of the MOT

beams. The other four small ports connect to the slower, the pump tower, the

glass cell, and a window for imaging. We will outline the imaging axes and other
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experimental details in the next subsection.

In order to ensure maximum optical access into the MOT chamber, we designed

the pump tower to hold the rather bulky ion pump out of the plane of the optical

beams surrounding the MOT chamber. The ion pump is also oriented away from the

glass cell to make further space for science optics. The pump tower is a J-shaped

tube, holding titanium filaments on the vertical port, and the on pump on the bent

horizontal port. The height of the tower is just high enough to ensure that the Ti

filaments have no line-of-sight to either the slower port on the pump tower or any of

the glass ports in the main chamber, as this would cause them to be coated during

firing. The minimum horizontal beam height of the slower and the glass cell is set by

the bottom of the ion pump being flush with the main optical table; in practice, this

is mounted a few inches above to ensure a comfortable working space underneath

the plane of the glass cell. Lugs welded onto the surface of the pump tower enable

vertical mounting of breadboards for MOT and slower optics. This has proved to be

particularly useful for saving space on the main optical table.

We perform our science in a glass cell, manufactured by ColdQuanta. The tube

connecting the main chamber to the center of the cell has a conductance of 50L/s.

This corresponds to a pressure differential of less than a factor of two between the

main chamber and the science region. The cell windows are 5mm thick borofloat,

resulting in aberrations to any imaging system using spherical optics; this is corrected

for using custom-designed microscope objectives, detailed later.

We will detail two details in the assembly of the experiment here. The first

concerns the alignment of the chamber nozzle. The second concerns the baking

process. In order to facilitate the nozzle alignment, the machine has been designed

with a bellows between the intermediate chamber and the slower. Before starting

the bakes, we passed an aligning beam that simulates the solid angle occupied by the

slower beam. We sent the beam towards the oven, centered on the slower window,

traveling level with respect to the optical table (see Fig. 6-4 for a view from the open
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Figure 6-4: Nozzle alignment.. This photograph shows the nozzle alignment
beam passing through the nozzle into the oven chamber (removed for alignment).
The beam is centered with the main slower axis of the experiment.

oven). Without the cold plate installed, we placed a plumb line to mark the position

of the beam. We ensured that the beam is circular by aligning the differential tubes

using the bellows. Then, we aligned the hole in the cold plate to pass the beam, and

lastly the oven nozzle. Finally, we closed the chamber by installing the oven part

(without alkali), and prepared for the baking of the experiment.

Baking the machine under vacuum removes various chemicals that are adsorbed

into the inner surfaces of the metal chambers. While this is a fairly well-covered topic

in many theses, here we provide a few details into the idiosyncracies of baking Fermi3,

and some errors in retrospect that could be avoided in future new experiments. As

in other experiments, we wrapped the chamber with heating tape, and installed

blanks instead of windows to bake the chamber at a higher temperature (The glass-
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Figure 6-5: A sample bake.. Temperatures and pressures during an early bake
we performed after switching the blanks with the windows.

to-metal seal of the chamber windows limits the temperatures of baking to 200C).

The first windowless bake ended up reaching temperatures as high as 350C, and as

a result, many gaskets had partly fused to the knife edges. The blanks installed

on the octagon were particularly challenging to remove. So much so, the toughest

to remove blank had to be knocked out with considerable force using a steel pipe

through the opposite port (which had luckily come off using a pair of heavy-duty

pliers). Ideally, the process of replacing a blank with a window after the first bake

should be a roughly fast replacement, to prevent the reintroduction of water and

other compounds into the inner surface of the chamber. In this case, the chamber

had been opened for a few hours as we struggled to completely remove all blanks.

A future experiment could do well to take care to keep temperatures below 350C.

This can be achieved by placing thermocouples placed in close thermal contact to

the knife edges near the blanks.

The first bake of the intermediate and the main chambers was done with with

the manual valve closed, retaining a single window on the slower port. The cell port

was replaced by a feedthrough holding three filaments consisting of 1mm diameter

titanium, zirconium, and vanadium wire. After the bake, these filaments were fired in

succession to coat the interior of the main chamber with a getter material. Although
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the coating was undoubtably exposed to water vapor while replacing blanks, we

hope that the subsequent cooler bake was sufficient to reactivate the getter material.

During baking, individual heaters are gradually ramped up in temperature while the

chamber is held under vacuum with the combination of the ion, turbo, and roughing

pumps. As typical pressures in hot chambers can be drastically higher than those

in colder chambers, it can be useful to visualize the baking progress combining both

temperature and pressure. To that end, we plot logP vs T , as shown in Fig. 6-5.

The high final temperatures are due to a faulty angle valve that was subsequently

replaced, and the chamber was re-baked down to pressures near the detection limit

of the ion gauges.

6.1.2 Condensate preparation

Atoms are transported from the MOT chamber into the glass cell using overlapping

coils that slowly shift the position of the quadrupole zero into the glass cell. The

coils for the magnetic transport are housed inside cooling plates that surround the

chamber, but do not touch it. This is done so that sudden changes in the current of

the coil are not transferred to the main chamber, and conversely, any movement of

the main chamber are not transferred to the position of the atoms in the magnetic

trap, set by the location of the coils. We use a plugged quadrupole trap to hold the

atoms during the magnetic transport [28], and perform evaporation in the quadrupole

trap within the glass cell. The first condensates imaged in our experiment are shown

in Figure 6-6.

6.2 Rotating a superfluid

One of the outstanding challenges in rotating quantum gases is reaching the lowest

Landau level. By this we mean the chemical potential is less than the cyclotron fre-

quency ωc = 2ω, i.e., the spacing between Landau levels. Of course, in order to even
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Figure 6-6: The first condensates in the new machine.. This is a view
looking up into the MOT chamber from below. To the left is the high phase space
density thermal cloud bisected by the 532nm plug beam. From left to right, the rf
knife is lowered gradually. The left hand cloud started at a slightly higher number
of atoms, and happened to condense first. The result is a set of two condensates
separated by the plug beam. In subsequent experimental sequences, we transport
the cloud away from the MOT chamber before reaching BEC.

have well-defined Landau levels, the rotation frequency Ω must be very close to the

trapping frequency ω. This ensures a high degeneracy of each Landau level. Prac-

tically, these objectives place many limitations on experimental approaches. Firstly,

as the rotation frequency approaches the trapping frequency, the effective trapping

frequency of the gas in the rotating frame decreases until Ω = ω, when the gas is

completely untrapped. Thus, a study that focuses on the ground state in the rotating

frame, i.e. vortex lattices, will encounter the issue that the ground state is increas-

ingly extended in real space. Secondly, reaching low chemical potentials requires low

densities, and therefore measurements are often low in signal-to-noise ratio. Thirdly,

the signature of reaching the lowest Landau level is often not obvious, especially

with bosonic condensates. In solid state systems, the classic signature of Landau

levels is the discrete jumps in the Hall conductivity under a varying magnetic field.

A sharp Fermi surface and low disorder are important ingredients in the observation

of the quantum Hall effect. In our experiments, bosons take the place of electrons.

Due to the lack of Pauli blocking, there is no Fermi surface, and transport does not

show plateaux when the chemical potential is between Landau levels. An alternative

method to detect the bosonic occupation of the lowest Landau level has been to

observe shear modes in vortex lattices [132]
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Superfluids can be difficult to rotate. By the Landau criterion, superfluids are

fluids that flow around obstacles without dissipation [118]. The first vortices were

generated in superfluids through phase imprinting angular momentum [93], however

this was typically limited to small numbers of vortices. As mentioned earlier, a major

goal for rotating condensates has been to reach high angular momentum states.

To achieve this, condensates are first prepared in a harmonic trap. Then, a trap

deformation creates an angular asymmetry in the cloud, and is rotated to deliver

angular momentum to the condensate. This deformation is either achieved using a

laser beam, controlled with an acousto-optical deflector (AOD) [91, 1], or by turning

on an elliptical deformation in a time-orbiting potential (TOP) trap [63]. The first

method led to a clear demonstration of fermionic superfluidity [154]. The second

method was further improved by applying an evaporative spin-up technique that

selectively removed atoms with low angular momenta, near the center of the harmonic

trap [38]. Doing so led to the observation of Tkachenko modes in large rapidly

rotating vortex lattices near the lowest Landau level [132].

Here we briefly describe our implementation of a time-orbiting potential trap and

a rotating elliptical deformation. We start with a normal Bose gas in the quadrupole

trap, and turn on a time-orbiting bias field. This is generated using two sets of

perpendicular bias coils, placed in the x-y plane around the glass cell. The electronics

driving the TOP trap are show as a simplified schematic in Figure 6-7.

The TOP trap works by rapidly rotating the zero of the quadrupole trap in a

circle. The TOP frequency must be significantly larger than typical energy scales

in the system. In order to be compatible with large Fermi seas, we set our TOP

frequency to νT = 15.475kHz. The resulting bias field is given by

Bbias = B0 cos(νT t)x +B0 cos(νT t)y. (6.4)

In combination with the quadrupole magnetic field, this bias field results in a

harmonic trap with frequencies ωρ, ωz in cylindrical coordinates, with ωρ =
√
k/m
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Figure 6-7: TOP trap driving schematic. We use three channels of function
generators to produce a TOP trap with an elliptical deformation. The circularly-
symmetric TOP is generated by two channels, whose relative phases and amplitudes
are optimized to ensure the trap is as circular as possible. Here, "Ell" refers to
components related to the ellipsifier. The two coil components on the right represent
the perpendicular TOP coils. Note: all analog isolators are hidden in this schematic.

and ωz =
√

8ωρ [115, 96] . The spring constant is k = |µ|a2/8B0, where |µ| is
the magnetic moment of the atom and a is the quadrupole gradient at the origin.

Anharmonicities appear as quartic terms in the potential. In our experiment, we can

adjust the trapping frequency by changing the gradient of the magnetic quadrupole.

The vast majority of the data presented in this paper was taken at a trap frequency

of ω = 2π × 88.Hz.

On top of the TOP oscillation, we apply a phase-shifted bias field oscillating at

the same frequency [23]. The amplitude of the additional oscillation is ε(t) and the

phase shift is φ(t). Now, the bias field is given by:

Bbias = B0 (cos(νT t) + ε cos(νT t+ φt))y +B0 (sin(νT t) + ε sin(νT t+ φt))y (6.5)

Applying the trigonometric identity cos(x+ y) = cos x cos y−sinx sin y will show

that Equation 6.5 results in an elliptic path for the zero, with the major axis rotating
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at a frequency Ω(t) = dφ
dt
. In practice, we implement the ellipsifier with a single

channel split in two. One of the paths is phase shifted using a voltage-controlled

phase delay, and the two paths are combined with the usual TOP oscillators. We use

a mixer to rapidly control the amplitude of the ellipse deformation. A synchronizing

circuit allows us to trigger our imaging with a well-defined orientation of the ellipse.

Interestingly, suddenly turning on a rotating potential fails to generate an ex-

tended condensate. Intuition for this effect can be found in the solutions to the

superfluid hydrodynamic equations. The Gross-Pitaevskii (GP) equation

i~
∂ψ

∂t
=

[
− ~2

2m
∇2 + U + g|ψ|2 −Ω(t) · L

]
ψ (6.6)

can be rewritten in terms of a phase φ and density ρ by expressing the wave-

function as a field ψ =
√
ρeiφ/~. The resulting equations are known as the superfluid

hydrodynamic equations, which are so far identical to the GP equation:

∂ρ

∂t
= −∇ ·

[
ρ

(∇φ
m
−Ω× r

)]
(6.7)

−∂φ
∂t

= U + gρ− (Ω× r) · ∇φ+
1

2m
√
ρ

[
(∇φ)2

√
ρ+∇2√ρ

]
(6.8)

The last term in the equation for the phase is known as the quantum pres-

sure: ∇2√ρ/2m√ρ. If the gas is in the Thomas-Fermi regime, we can neglect this

term, since ρ is large compared to its curvature. These hydrodynamic equations

can be solved using a polynomial ansatz, resulting in the following equation for the

anisotropy α = RTFx/RTFy of the cloud profile [137]:

α3 +

(
1− 2

Ω2

ω2

)
α− Ω

ω
ε = 0 (6.9)

Here, ω = ωx√
1−ε = ωy√

1+ε
is the radial trapping frequency. The solutions to the

above equation are plotted in Figure 6-8. The two branches show two paths to

large cloud ellipticity. One is an adiabatic approach from low frequencies, the other
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Figure 6-8: Cloud ellipticity from hydrodynamics. The ellipticity of the
cloud α is plotted as a function of the rotation frequency Ω. Here, the ellipticity is
set to ε = 0.1. Points are solutions to Equation 6.9 [137].

from high frequencies. The exact shape of the adiabatic path is dependent on the

ellipticity ε of the driving potential, but is independent of the interaction strength g.

Intuitively, the shape of the curve is given by the rotation drive at Ω ≈ 0.7ω coupling

to the quadrupole mode of the BEC at ω
√

2 [137].

In our experiment, we apply a rotation frequency ramp given by the equation

Ω(t) = Aω tanh

(
B

t

Tmax

)
(6.10)

Here, B = tanh−1(1/A), so that Ω(t = Tmax) = ω. The tanh function ensures an

adiabatic condition dΩ
dt
∝ (ω2 − Ω2), or in words, the rate of change of the rotation

frequency is proportional to the trapping potential energy in the rotating frame.

6.3 Pattern formation in rotating condensates

It is also possible to ramp the frequency too slowly. By linearizing the hydrodynamic

equations, one can evaluate the stability of the solutions mentioned above [137]. It
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Figure 6-9: Pattern formation in 2D rotating condensates. The condensate
is set into rotation at frequency Ω within an anisotropic harmonic trap characterized
by an ellipticity ε (a). The rotation frequency is ramped from zero, and then held
at a fixed value, e.g. Ωf = 0.91ω in this case (b). Absorption images taken after a
variable hold time show the evolution of the resulting elliptical condensate (c). From
left to right, thold = 0, 40, 70 and 100ms. Here, ω = 2π × 88.6Hz.

turns out that solutions in both branches are unstable to dynamical instabilities.

These instabilities cover a wide range of the Ω, ε parameter space, and are explored

in brief in this section. This dynamical instability is also closely connected to a

spontaneous crystallization that we observe in Landau gauge wavefunctions, which

we will cover at the end end of this chapter.

The hydrodynamic equations are linearized by assuming that ρ = ρ0 + δρ and

φ = φ0 + δφ with small δρ and δφ. Now the polynomial ansatz of degree n evolves

with an operator Un(t). When at least one eigenvalue of Un(t) grows exponentially

fast with t, the system is dynamically unstable to small perturbations. To probe this

effect experimentally, we pause the rotation ramp at a particular value of Ω and hold

for a variable time interval. The results are shown in ãutoreffig:2drotiniprep.

As the rotation is ramped up, the initially circular condensate extends into the

weak axis of the rotating anisotropic potential. The condensate is intact through the
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Figure 6-10: The instability phase diagram of a BEC in an anisotropic

harmonic trap.. Here, images of the cloud at thold/T = 7 are shown for varying
ellipticity ε and rotation frequency Ω. The corresponding potential contours are
shown for ε = 0.16 (top row).

initial ramp, but when the rotation frequency is held, it develops a density modula-

tion. This modulation increases in amplitude until the condensate is fragmented into

a number of pieces, which rotate at their own frequency. Over 10 rotation periods,

the pieces interact with each other and produce vortices, which can be seen in the

last insitu frame in Figure 6-9.

We further explore the (Ω, ε) parameter space by scanning both quantities and

imaging when the density modulation has fragmented the condensate. The results

are shown in tabular form in Figure 6-11, along with a set of potential contours in the

rotating frame. As the rotation frequency increases, the scalar potential landscape

turns from an elliptic parabola to a trough with no confinement along one axis, to a
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saddle potential for Ω > ω
√

1− ε with one axis confined and the other anti-confined.

The phase diagram shows a rich variety of condensate shapes. To first order,

we can classify these shapes by the number of components that they possess. This

provides us with an estimate of the regions of dynamical instability, which we com-

pare in Figure 6-11 with results from a stability analysis of the linearized superfluid

hydrodynamic equations. We label the unstable regions by n, the degree of the poly-

nomial ansatz, or in the case of the experiment, the number of pieces or nodes in the

condensate wavefunction. We observe a qualitative agreement between the obser-

vations and the predictions from hydrodynamics. Specifically, as the wavefunction

approaches the deconfinement limit, it develops a larger number of nodes. Beyond

the deconfinement, there is no instability, at least while the system is continually

driven (i.e. ε > 0).

Many of the shapes are transient, evolving into a disordered system of vortices.

In Figure 6-12, we show the evolution of a simply-connected condensate into a well-

defined regular pattern, and into a turbulent state riddled with vortices. Vortices

initially enter the cloud through the shear interfaces between the pieces of the pattern.

Then, over many trapping periods, the vortices interact and rearrange chaotically.

The corresponding images in reciprocal space show the development of peaks that

correspond to the regular pattern. As the pattern self-destructs, the lobes split

repeatedly until the dc peak is surrounded by noise that corresponds to the presence

of randomly positioned vortices.

The turbulent state is an excellent starting point for generating large vortex

lattices. We remove the excess energy by holding the rf evaporation on for ∼ 500ms.

This solidifies the vortex liquid into an Abrikosov lattice; a typical set of results are

shown in Figure 6-13. These vortex lattices were generated by ramping to a final

rotation frequency Ω and holding for 1s with ε = 0.12. Then, the ellipse was turned

off, returning the condensate to a circularly symmetric trap. An rf ‘knife’ that barely

shaves the condensate was held on for 4s, followed by an absorption image. Across a
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Figure 6-11: Regions of dynamical instability . (a) An instability plot of the
superfluid hydrodynamic equations using a polynomial ansatz with varying degree,
corresponding to the color [137]. (b) The number of components in the condensate
can be counted after the pattern has formed, and before turbulent flow sets in. The
region in which the superfluid is deconfined is shown here in white, since there is no
dynamical instability that leads to pattern formation.

wide range of rotation frequencies, we see large vortex lattices form. As the rotation

frequency increases, so does the spatial wavevector for the Abrikosov lattice. This

is due to the increase in angular momentum, succinctly summarized in Feynman’s

rule for the vortex density Nv
h
m

= 2ΩA relating the number of vortices Nv in a given

area A to the angular frequency Ω of a rotating superfluid [48]. In Figure 6-13, we

compare the position of the main peaks in reciprocal space to the prediction for the

lattice wavevector from Feynman’s rule. The filling factor ν = N/Nv, a quantity

relating the number of atoms to the number of vortices, decreases as Ω→ ω. In this
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Figure 6-12: A route to turbulence.. These are frames from a time evolution
of a 2D pattern. Here Ω = 0.9ω, and the frames are taken at t=0, 60, 80, 90, 120,
and 160 ms after the initial ramp. The upper row shows images in real space, while
the lower row shows them in reciprocal space.

limit, meanfield theory is expected to break down, and strongly-correlated bosonic

quantum Hall states are expected to form [25, 47].

In the above results, we did not systematically vary the interaction parameter

g. As we saw from the solutions of the hydrodynamic equations, without quan-

tum pressure, the instability regions are independent of the interaction parameter.

However, since quantum pressure is not negligible near the lowest Landau level, this

interaction-driven instability will change in character. We investigate this regime for

a one-dimensional version of the pattern formation, at the end of this chapter.

6.4 Geometric squeezing to the Lowest Landau Level

For Ω > ω
√

1− ε, the condensate is unconfined, and a long-time evolution fails to

generate large vortex lattices. Historically, rotating condensates have been imaged

after a free expansion to magnify vortices [91, 1]. Interest has been mostly centered

around trapped vortex lattices, and experiments that reached the rapid rotation

limit stayed short of complete deconfinement [132]. However, insitu imaging reveals

that this regime provides a direct pathway to the lowest Landau Level (LLL). In this

section, we provide a brief outline on the preparation of Landau gauge wavefunctions
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Figure 6-13: Well-ordered vortex lattice preparation. Insitu density images
show vortex lattices prepared from rotating condensates at varying initial rotation
frequencies (Ω labeled on each image). Faster spinning clouds show a higher density
of vortices, and a lower atomic density. This can be seen in reciprocal space (right
plot), where an azimuthal average shows the position of the six peaks that define the
Abrikosov lattice (see inset, a 2D FFT of a single vortex lattice image). The white
line shows the prediction from Feynman’s rule for the density of vortices.

in the LLL. For further details, see [51].

We begin with a discussion of the shapes visible in Figure 6-11, for Ω > ω
√

1− ε.
The condensate extends out along an equipotential line, and atoms are constantly

driven outwards while the scalar potential is left on. Classically, this can be un-

derstood through the Hall effect. Much like the conventional magnetic Hall effect,

the rotational Hall effect requires only two ingredients: a gauge field and a scalar

potential. From the rotational counterpart to the Lorentz force F = 2mv ×Ω, the

Hall drift at Ω = ω is given by

vd =
F

2mΩ
(6.11)

=
mεω2r

2mω
(6.12)

= ζr (6.13)

where ζ = εω/2.

where in the second line we identify the force with the gradient of the scalar

potential due to the harmonic saddle V = mεω2(x2−y2)/2. We take the gradient on
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Figure 6-14: The Hall effect in a saddle potential.. Left: the condensate
extends along equipotential lines, with a drift velocity vd driven by the Hall force
F . Image shows a single frame from the experiment. The rotation vector points
out of the page. Center: A Gross-Pitaevskii (GP) simulation, incorporating the
anharmonicity of the trapping potential, shows a very similar result. Right: The
drift velocity along the diagonal is proportional to the force applied, assuming a
perfectly harmonic saddle (red line). The data however, appear to slightly deviate
from the line, which is captured in a GP numerical simulation that includes the
quartic terms in the trapping potential.

the diagonal equipotential since that is the only allowed path for the guiding centers

of cyclotron orbits. This is because the gauge field can do no work on the atoms.

For a vector diagram, see Figure 6-14. Thus, for a perfectly harmonic saddle, both

the drift velocity as well as the Hall force should scale linearly with distance.

From a continuity equation for a box of length L, the number of atoms leaving

the box should be given by the drift velocity and density at the edges of the box.

Integrating this equation dN/dt = −2vdn gives the equation

1− N(t)

N(0)
= 2vd

∫ t

0

dt′
n(t′)

N(0)
(6.14)

The integration can be done for a range of lengths, and for each length, the drift

velocity can be extracted from the slope of the line defined by the two sides of the

last equation.

We now turn to a quantum picture of the process, using the language of creation
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Figure 6-15: Geometric squeezing to the lowest Landau level.. The 1D
transverse profiles (left) show a transition from a Thomas-Fermi profile for gn� 2~ω
(top) to a gaussian (bottom) for gn ≤ 2~ω. The transverse width from a gaussian fit
reflects this transition from a hydrodynamic prediction (red line) to the LLL limit
of σLLL = `B/

√
2. A numerical GP simulation shown in green captures the behavior

in the intermediate regime.

and annihilation operators introduced in chapter 3. To the rotating 2D Hamiltonian

in Equation 3.27 we add a scalar field defined by the saddle. We write the saddle

Hamiltonian for Ω = ω in terms of the ladder operators â and b̂ for the cyclotron

and guiding center respectively [51]:

H ≈ 2~ω(a†a+ 1/2) +
~ζ
2

(b†b† + bb) (6.15)

The second term is analogous to a squeezing operator in quantum optics. In this

case, the configuration space is the space of guiding centers (X, Y ), and he squeezing

is geometric in nature. The full expression includes a term that also talks to the

cyclotron modes, but due to a small ε, we find this term negligible [51].

In Figure 6-15, we show how the transverse profile of the condensate evolves

during squeezing. We observe the quantum nature of the system in the long-time

limit of squeezing. The crucial observation here is that the commutator of the guiding

center and cyclotron coordinates [X, Y ] = −[ξ, η] = −i`2B leads to a minimal width

140



`B/
√

2, where `B =
√
~/2mω is the magnetic length. The saddle squeezing operator

completely squeezes the guiding center orbits, resulting in a strip whose width is

given by the minimum cyclotron orbit in the LLL. Thus, the width reveals the finite

energy of the quantum mechanical ground state of the cyclotron harmonic oscillator.

At t = 0, the ramp from Ω = 0 to Ω = ω ends. The transverse profile is a Thomas-

Fermi function, indicating a large occupation of Landau levels (NLL = µ/(2~ω) ≈
10). The time evolution of the width shows a small oscillation at the cyclotron

frequency 2ω. As the saddle squeezes the guiding centers, the average width drops

exponentially at first with a rate ζ/4. After t = 3/ζ, the widths saturate to `B/
√

2,

indicating the near complete squeezing of the guiding centers. The exact evolution

of the transverse width agrees well with a GP numerical simulation that incorporates

absorbing boundary conditions that handle the constant outflow of atoms. The final

wavefunction is the groundstate in the Landau gauge Equation 3.49, with a gaussian

transverse density profile.

6.5 Crystallization of Landau Gauge wavefunctions

In the previous section, we demonstrated that in the rotating frame, a saddle poten-

tial realizes a squeezing operator in the space of the geometric centers of cyclotron

orbits. We use this squeezing to prepare states that are in the lowest Landau level,

and realize a macroscopic wavefunction that is the ground state of the Hamiltonian

in the Landau gauge.

A natural question at this point is: what happens when the saddle is turned off?

In the lab, this corresponds to returning the BEC to an isotropic circularly symmetric

trap with no ellipticity. Note that in the rotating frame, this corresponds to atoms

living in flat land (see Fig. 6-16). There is no scalar potential, all that remains are

the artificial gauge field from rotation, and the interparticle interactions. Would the

cloud keep spinning as a Landau gauge strip? Would it fly apart (as we might expect
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Figure 6-16: In flat land.. A cartoon depiction of the confining potential in
the lab frame and in the rotating frame. The harmonic confinement in the lab
frame exactly cancels the deconfinement from the centrifugal force of rotation. In
the rotating frame, the cloud is static, and is only under the effects of the artificial
gauge field, and the interparticle interactions.

from a BEC released from a confining potential)? What are the effects (if any) of

interactions?

As a preview to the rest of this section, in Fig. 6-17 we show a sequence of frames

with the time evolution of a typical Landau gauge wavefunction. For initial times, the

strip rotates at the trapping frequency, and is static in the rotating frame. However,

within 2T, where T = ω/2π, the strip develops a density modulation at a well-defined

lengthscale. This modulation grows until the cloud is fragmented into droplets. The

droplets are separated by tendrils of condensate, which develop vortices as the system

evolves. Two aspects of this evolution are apparent: the lengthscale of the density

modulation, and the timescale over which it grows. In the following sections, we will

focus on a few details on the methodology used. We direct the reader to Appendix F

for further discussion on topics not covered here.

6.5.1 Lengthscales

We begin with a discussion of the characteristic lengthscales of spontaneous crys-

tallization. Each OD image is summed along the transverse direction to obtain a
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Figure 6-17: Spontaneous crystallization of a quantum Hall wavefunction..
A time sequence of images taken at intervals of 2.5 cyclotron periods show an in-
stability of the Landau gauge wavefunction towards a well-ordered crystal phase.
The density modulation grows until it fragments the strip into individual droplets
which are still connected by thin tendrils of condensate. As the droplets rotate, they
interfere, and the shear velocity results in the formation of vortices at the interface,
shown in the inset to the right.

1D density n1D(y). The power spectrum of this profile is the static structure factor:

Sk = 1
N

∣∣∫ dy n1D(y) e−iky
∣∣2 For each image, we calculate Sk, and fit a gaussian func-

tion to the prominent peak that corresponds to the coherent 1D crystal in reciprocal

space. The width of the gaussian fit provides information about the coherence: the

narrower the peak, the more well-defined the crystal is, at least within the window

of our imaging. We filter the structure factors by placing a threshold on the fitted

widths - this selects for the crystals that exhibit a high degree of coherence (e.g.

unlikely to have blobs missing). Note that this process does not bias the position of

the peak. We now average the ∼ 40 remaining structure factors for each interaction

strength and plot them in Figure 6-18.

We control the interaction strength (or equivalently the number of landau levels

occupied) by squeezing for more, or less, time before switching off the saddle poten-

tial. We parameterize the interactions by comparing the widthR = FWHM/2
√

log 2

to the magnetic length `B. Note that when gn→ 0, R→ `B. This procedure allows

us to access R/`B ranging from 3, for minimal squeezing, to 1.2, for the longest
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Figure 6-18: Structure factors of the spontaneous crystal.. We plot the
structure factors Sk for a range of interaction strengths. We parameterize the inter-
actions through the initial widths of the clouds, here R/`B = 2.58, 1.75, 1.59, 1.28,
1.22 from top to bottom. On the right we show sample insitu images that correspond
to the structure factors shown.

squeezing times. We are limited by signal-to-noise for the thinnest strips.

An interesting feature in the structure factors is the appearance of a second peak,

at roughly twice the wavevector of the first. This smaller peak corresponds to the

thin tendrils of atoms connecting the individual droplets, visible in the insitu images

shown to the right. These features show the contiguous nature of the crystals, and

hints at the preservation of phase coherence across the system.

More indication of the phase coherence can be seen in Figure 6-19. A GP simu-

lations shows a coherent phase pattern defined by the positions of vortices. We use

this knowledge to reconstruct the phase profile of the experimental density images.

Although the presence of vortices does not necessarily imply global phase coherence,

it is an indication that there is a well-defined relative phase between the droplets.

Due to the continuous density profile, it is not unreasonable to conclude that the

system is phase coherent. This satisfies a particular definition of a supersolid: a
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Figure 6-19: Vortex patterns and phase profiles. We compare the density
(top row), vortex patterns (middle row) and phase profiles (bottom row) between
the experimental data (left column) and GP simulations (right column). The exper-
imental phase profile is reconstructed from the vortex positions.

combination of supersolidity and broken translational invariance. Note that another

definition requires independently existing Goldstone modes, and precludes a vortex

lattice from being a supersolid [147]. The modes of the crystal we observe are a topic

of future investigation.

We find the peak positions of the averaged Sk with another final gaussian fit.

As the system approaches the lowest Landau level, the most critical wavevector

approaches 1/`B. This can be understood from a lowest Landau level picture, where

interactions cause scattering from the k = 0 state to higher k states. Due to the

presence of the gauge field, components of the wavefunction with finite momentum

are displaced from the center. The resulting interference pattern exhibits a density

modulation with R/`B ≈ 1.

On the other hand, for a hydrodynamic system in the Thomas-Fermi limit, the

shear flow v = −2ωxŷ results in a Kelvin-Helmholtz-like instability. This is a clas-

sical instability where a shear interface is unstable to rolling up into arrays of large
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Figure 6-20: Lengthscale of the spontaneous crystal.. We compare the peaks
of the structure factors kmax (red data) to predictions from linearized hydrodynamics
(dashed line) and Bogliubov analysis (solid line). We see lengthscales approach 2π`B
for systems close to the lowest Landau level.

vortices [19, 82]. It has been observed in a wide range of systems [27, 17], and

predicted to appear in Bose-Einstein condensates [5]. A solution to the hydrody-

namic equations outlined in Equation 6.8 results in a critical wavevector kmax =

1.12/RTF = 0/95/R. Here the Thomas-Fermi radius is RTF =
√

gn
~ω `B. We show

the peak positions as a function of interactions in Figure 6-20. The data show good

agreement to both the hydrodynamic prediction as well as a Bogoliubov analysis

outlined in Appendix F.

6.5.2 Timescales

We now turn to the characteristic timescales over which the crystal develops. Within

an LLL picture, the growth rate is set by the interaction strength gn, since that is

the dominant energy scale. On the other hand, for high densities, the cyclotron
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frequency ωc = 2ω provides the energy scale. In other words, as the interactions

decrease and the system approaches a lowest Landau level wavefunction, there should

be a transition from a fixed trap-determined growth rate to one set by the varying

interaction strength.

The growth rates are well-described by the function Sk(t) = A cosh(2Γt) [43]. In

the long-time limit, this appears as an exponential growth. This is a two-parameter

fit, which is highly sensitive to offsets due to noise. If there is a large spurious offset

in Sk, the fit can compensate by increasing A, and decreasing Γ. To understand any

potential offsets, we characterize the effects of shot noise on Sk. Assume n1D(y) is

a noise vector with mean µ = 0, and variance σ2. Since the Fourier transform is a

linear operator, and the 1D profile is a vector of independent random variables, the

FFT shares the same variance and mean. So, the mean of the power spectrum is

just the variance of the noise:

E[S(k)] = E[
1

N

∣∣∣∣
∫

dy n1D(y) e−iky
∣∣∣∣
2

] (6.16)

= V ar[
1√
N

∫
dy n1D(y) e−iky] (6.17)

= V ar[n1D] (6.18)

= σ2 (6.19)

This makes sense: variances add, and so should independent sources of noise in

power spectra. So, ideally we should be able to subtract a noise power spectrum

from a signal power spectrum. However, the variance inside the condensate, where

the optical density is nonzero is not equal to the variance outside the condensate.

The variance in a region with finite OD is [127]:

V ar[OD] = 0.5V0(1 + exp(OD)) (6.20)
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Figure 6-21: Noise variance. Left: The variance of the optical density (OD)
depends exponentially on the mean OD. Here, the prediction from Equation 6.20
(black line) agrees well with data from a simulation (red points). Right: The OD
dependence on the photon shot noise decreases with I/Isat.

Now, given the variance V0 of the OD outside the cloud, and the mean OD, we

know what the offset to Sk should be. This equation assumes that we are in the

low-intensity regime for imaging. If we include the linear term in the absorption

equation, the equation for the variance becomes

V ar[OD] = 0.5V0

[
1 +

(
1 + γe−OD

1 + γ

)2

eOD

]
(6.21)

where γ = I/Isat. In Figure 6-21, we show how both the mean OD as well as the

saturation factor γ affect the variance of the imaging. We show that we can predict

the noise floor at any OD, given the noise floor in a background region (where

OD = 0).

Armed with this understanding of offsets in Sk, we apply the following procedure

to obtain the growth rates of Sk:

1. Find a region of interest in the images without atoms, and one with atoms

2. Evaluate Sk for each, and use Equation 6.20 to appropriately subtract the

contribution to Sk from background shot noise.

3. Bin Sk(t) in k-space. To find peak growth rates, first find the peak position
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Figure 6-22: Growth rates of spectra. The growth rate of the structure factor
depends on interactions: in the LLL, it is defined by the interaction strength Γ =
0.21gn/~. The dashed horizontal line shows a prediction from hydrodynamics, where
Γ = 0.14ωc. Inset: two sample Sk datasets and fits show significantly slower dynamics
in the LLL. The black line shows the result of a Bogoliubov analysis (see Appendix F)

kmax from the saturated Sk, then bin in an interval (0.9, 1.1) around kmax.

4. Fit A cosh(2Γt) in linear space. Note that log space fitting does not work due

to negative values from the offset subtraction.

5. Apply robust nonlinear fitting: label points that are more than 5σ away from

the fit line as outliers, and mask them before applying a second round of fitting.

This typically removes < 10% of the points, but greatly increases the stability

of the fit.

Sample fits are shown in the inset of Figure 6-22, and the resulting peak growth

rates are shown in the main figure. The growth of the structure factors is hyperbolic

149



at first, rising until it saturates. In terms of the insitu density profile, this corresponds

to when the condensate fragments into a droplet array. For wavefunctions in the LLL,

we observe a dramatic slowing of dynamics. The crystal grows half as fast for the

narrowest clouds we observe, compared to the Thomas-Fermi limit.

150



Chapter 7

Outlook

In this chapter, we provide a brief outlook on future directions of research that might

be of interest.

7.1 Homogeneous Fermi gases

A uniform system of interacting fermions is ideal for observing critical phenomena.

Earlier in this thesis, we discussed the application of an insitu rf thermometer for mea-

suring temperatures in a superfluid. We have used this method to measure the propa-

gation of second sound, a phenomenon where heat propagates as a wave instead of dif-

fusing. We note here as an outlook that the diffusivity of second sound is expected to

show critical behavior near the superfluid transition: D2 ∝ |Tc − T |−1/3 [64, 45, 57].
We do observe a rise in the diffusivity near Tc, which is reminiscent of 4He, but we

do not have the data to measure the exponent. The exponent could be confirmed

with a more stable experimental system, possibly Fermi3.

Our spatial resolution for insitu thermometry is currently limited by the motion

of 6Li during the rf pulse. Performing a similar measurement in a heavier alkali

system such as potassium might provide sharper details, and possibly allow us to

measure heat fluctuations. Fluctuations are another indicator of criticality, and
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would be fascinating to observe, in both the density as well as the heat channel.

Insitu rf thermometry could provide us with a unique time-resolved insight into

thermalization in bulk systems. We might be able to see how heat propagates in the

lowest Landau Level, around vortices, and through narrow channels. In the Landau

gauge wavefunctions that we prepare, the condensate approaches an effectively 1D

system, likely with unique thermalization properties.

Lastly, spin imbalance remains an open frontier for many observations related to

sound and criticality. Patches of superfluid at the Clogston limit might show up in a

stable, high resolution experiment. The propagation of both first and sound through

a homogeneous spin-imbalanced system would be a fascinating avenue of research.

7.2 Rotating Fermi gases

Fermi3, our latest experiment, is a dual species machine capable of rotating strongly-

interacting systems of fermions. In the limit of high rotation, strongly-interacting

systems of fermions are likely to exhibit exotic forms of excitations [25]. The integer

quantum Hall effect requires a Fermi surface. Using fermions, we might be able to

resolve discrete jumps in something akin to transverse resistivity. It is likely we will

need to add some disorder in the rotating frame to localize states, in analogy to the

quantum Hall effect in solid state systems.

Fermi 3 is an ideal apparatus for investigating quantum turbulence, discussed

in chapter 3 and briefly demonstrated in chapter 6. The characteristic critical ex-

ponents of 2D quantum turbulence lends itself to a study using a uniform rotating

gas. Furthermore, we observe that vortex lattices show a Kelvin-Helmholtz-like phe-

nomenon when geometric squeezing is applied [51]. The well-ordered vortex lattice

separates into individual rows, which form clusters, in analogy to a classical hy-

drodynamic roll-up of a shear interface. The long-time evolution of the system is

reminiscent of the crystallization discussed in the context of Landau gauge wave-
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functions, only in this case, the system is actively driven by a saddle potential in the

rotating frame.

Lastly, the phase diagram of strongly-interacting fermions under spin-imbalance

contains the exotic Ferrell-Fulde-Larkin-Ovchinnikov state [84, 83]. Appearing near

the Chandrasekhar-Clogston limit, the state is characterized by a spatial modulation

in the order parameter, here given by the gap ∆. The wavevector of the spatial

modulation is given by the difference in the two Fermi wavevectors kF↓ and kF↑

of the two Fermi surfaces. Eluding direct observations for over half a century, this

state could be observed in Fermi3. The two required ingredients are low temperatures

(likely T/TF < 0.1), and a stable experimental apparatus. We suspect that in BEC1,

a large limitation to the stability is a long tube that holds a 1:1 imaging system for

the box potential. This is held in a horizontal cantilever off of a gimbal mount, and is

susceptible to mechanical vibrations. In Fermi3, due to the robust construction of the

microscope objective mounts, and the floating tables, we expect the box potentials

to be far more stable.
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Appendix A

Interactive realtime GPU-accelerated

GP simulations

Under weak interactions and at low temperatures, a Bose gas can be described using

a mean-field theory, replacing the entire system with a macroscopic wavefunction

representing the condensate order parameter. The Hamiltonian for the wavefunction

Ψ is given in Equation 6.6. Low-energy excitations in Bose gases such as phonons

and vortices can be quantitatively captured with this description. This section of

the thesis describes a fast numerical solver for the GP equation built to compare our

measurements with mean-field predictions. The code is available at [98].

A.1 Approach

We ran into a few challenges with available GP solver packages. Some, written

in python and MATLAB were unfortunately too slow. These often relied on the

central processing unit (CPU). Despite a fast clock rate and a slowly increasing

number of cores, the CPU is a suboptimal engine for parallel processing. Developed

for image processing and display, the graphics processing unit (GPU) is an ideal

choice for general purpose parallel processing of arrays. BLAS algorithms recast and
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Method Time Comments

Vanilla numpy 394 Slowest, but most convenient in python.
No GPU acceleration

Scikit-cuda with copies 107 Copying from host to device on every
iteration

cupy 64 Generates an FFT plan for every call.
Good for one-off computations, with a
numpy-like syntax

cufft+swig with copies 50 Copying is slow, but much faster than
when using scikit-cuda

cufft+swig without copies 0.01 Major gains by avoiding copying and
plan generation on each iteration.

Table A.1: An FFT benchmark, on random 4096 square arrays. Averaged

over 100 iterations..

optimized for the GPU show strikingly impressive speedups over similar operations

on the CPU. A benchmark test between a few common python FFT CPU routines

and a direct FFT on the GPU shows the speedup clearly. We use a time-split spectral

method [6] to numerically evolve the wavefunction. Since the TSSP scheme uses the

FFT liberally, it’s natural to implement it on the GPU.

Our approach is to combine the versatility of python programming with the speed

of the GPU. While there are GPU libraries for python, we have found that they often

perform hidden operations that slow their speed. In Table A.1, we outline the results

of a few FFT benchmarks we ran from python. Instead, we opted to use python as

an interface language. The python package calls C++ library routines and runs the

required operations on the GPU. Realtime rendering is handled by OpenGL, which

is significantly faster than copying the array to the memory and using the CPU to

visualize each frame. We use a leap motion controller to interact in real-time with

the condensate. This allows us to capture vortices and generate turbulent states with

the swish of a finger.

A flowchart of the implementation is shown in Figure A-1. In both the python

and the C++ code, we separate quantities directly related to the wavefunction (e.g.
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the complex wavefunction Ψ(x, y) itself, the methods needed for time evolution) from

the environmental variables (such as the dimension of the grid, the field of view, and

the potentials). Once the wavefunction is initialized in python, and time evolution

is called as a method on the python object, the double precision complex-valued

numpy array is sent using SWIG to a C++ array, and copied into the GPU memory.

In C++, the main time evolution loop runs over the number of steps specified, and

each step calls the appropriate CUDA kernels for split-step time evolution.

A.2 Results

In this section, we compare our experiment on Landau gauge wavefunctions to a GP

simulation. We show a qualitative comparison in Figure A-2. Both GP and exper-

imental data show vortices entering the bulk of the condensate through the shear

interfaces between the droplets. Noise in the wavefunction is an essential ingredient

in the simulation of spontaneous crystallization in the numerical simulation [101].

Due to the presence of seeding noise, the positions and shapes of the simulated

droplets are random. As a result, quantitative measurements using the GP simu-

lation require multiple repetitions with varying noise seeds, much like in a Monte

Carlo experiment.

We note that the default boundary conditions are periodic - this makes it straight-

forward to simulate large uniform systems in the lab frame. To simulate systems with

open boundaries, we apply absorbing boundary conditions enforced by an imaginary

ring of death potential at a fixed radius. Time evolution under a locally imaginary

potential results in an exponential decay of the wavefunction amplitude in that re-

gion. The rotational symmetry of the ring of death makes it especially well-suited

for rotating condensates since there is a small probability of reflection or a phase

shift due to the added potential.

A large grid size allows for a larger contrast between the field of view (the largest
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possible wavefunction) and the spatial period of features in the wavefunction. For

example, we observe a deviation in the growth rates of the spontaneous crystallization

when the crystal period is on the order of the condensate length. This is likely due to

edge effects, since despite the absorbing boundary conditions, there is a small chance

that the edges will seed the instability. This is illustrated in Figure A-3, where for

thick condenates, a 512x512 simulation fails to capture the growth rates we observe

in the experiment, and deviate from the rates predicted by a Bogoliubov analysis.

Doubling the grid dimension to 1024x1024 rectifies the issue.

Lastly in Figure A-4 we show how the addition of imaging noise results in an

apparent decrease in fitted growth rates. We first generated simulated data on the

crystallization of a wide range of initial condensate widths. Then, we extract the

structure factor Sk(t) for each n1D(z, t), and average over the peak of the structure

factor. We follow an identical analysis procedure to the one described in chapter 6.

We fit the resulting Speak(t) with the function y = A cosh(2Γt) in linear space with

a saturation point t0, also a free parameter. The resulting growth rates agree well

with a Bogoliubov analysis (left column). However, if we artificially include imaging

noise (additive in Sk(t)), we observe deviations from the expected growth rates.

Even minuscule amounts of noise, barely detectable in the structure factor plots,

can change the apparent growth rates by up to a factor of two. Even a χ2 analysis

does not reveal the issues in the fits, and the fit errors remain small. This turned

out to solve a mystery in our experimental data, since we had not been subtracting

the contribution of the photon shot noise on Sk. The numerical simulation allows

us to consider a situation with zero imaging noise, and independently verify analysis

procedures used on experimental data.

158



Figure A-1: Python and C++ based numerical simulation of the GP

equation.. Here we outline the technical implementation of a GP solver. Informa-
tion about the wavefunction and its environmental variables flow from a high-level
interface API in python to the low-level implementation of CUDA kernels. Python
bindings allow for a flexible experimental environment, written often in jupyter note-
books. The main evolution loop is called from C++ for performance.
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(a)

(b)

Figure A-2: Bosonic crystallization in GP and experiment.. The results
of a GP simulation (a) and experimental data (b) show a good agreement. Here,
R/`B = 2.3. The white bar is 10`B in length.
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Figure A-3: Grid size in a GP simulation of crystallization growth rates .
Here we show the results of a GP simulation of Landau gauge wavefunction crystal
growth, in the same parameter regime as in Figure 6-22. We see that although a
512x512 simulation fails to capture the growth rates of condensates in the hydrody-
namic regime, a 1024x1024 simulation does well. This is because the LLL is easier to
simulate. The presence of interactions increases the cloud width, and makes it more
likely that the edges contribute to the growth rates of the crystallization.
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Figure A-4: The effect of imaging noise on measured growth rates. From
left to right, increasing imaging noise results in an apparently slower growth rate.
The imaging noise is added as an artificial noise source on top of GP simulations.
The first row from top shows growth rates as a function of R/`B. The second row
shows Sk(t), with white lines demarcating the k−region over which Sk is averaged
and fit to find the most critical growth rate. The third and fourth rows show the fit
to Speak in logarithmic and linear y-axes.
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Appendix B

Microfabrication of silver photomasks

Imprinting high resolution potentials requires high intensities. We focus 1W of

power on features as small as 10µm. As a result, chrome masks are insufficient for

our needs. We chose silver due to its high reflectivity at 532nm. However, silver

oxidizes, so we were required to apply a 20nm protective oxide layer on top of the

150nm Ag to ensure that the silver remains untarnished. We purchased AR-coated

windows from thorlabs, and used the NSL facility at MIT to print custom patterns

in silver. Here, we provide the fabrication process so that others may choose to

replicate it:

B.1 Step 1: Write a negative mask

This step produces a master mask from which copies will be made.

1. Draw patterns as closed contours (no hatching) in Autocad

2. Load the .DxF file into the Heidelberg writer. Use Units:1000000

3. Load a 2.5" chrome mask - use the 2" suction

4. Verify the pattern, control panel-> focus

163



5. Write time should be ∼ 1.5h

6. Develop 60s in MF321 developer. Rinse, blow-dry, and check in the microscope

7. Place in the plasma etch / Asher: O2 gas for 5-7 seconds at 200W

8. Chrome edge in CR-7 for 70s, rinse, dry, check

9. Strip resist with acetone for 5 min. Rinse with acetone methanol, and IPA

B.2 Step 2: Daughter (positive) mask

This step produces a copy of the master mask. Since writing on the Heidelberg is

often a slow step, we want to make as few master masks as possible. These copies

are easier to make, and are more disposable.

1. Take a normal 2.5 in mask, strip resist in acetone

2. Place in spinner: the O-ring should be smaller

3. Drop a puddle (∼ 7 drops) of HMDS using a clean pipette

4. Dispose pipette, use a new one for ∼ 12 drops of NR9-1000Py(-) photo resist

5. Spin at 3k RPM to make a 1µm resist layer

6. Bake at 150 degrees C for 2.5 min on hot plate. Cool for 3 minutes

7. Expose in Tamarack UV floodlamp at 2mW/cm2 for 3.5 min under the master

mask

8. Bake again at 100 degrees C for 3.5 minutes. Let cool for 3 minutes.

9. Develop for 30 seconds in RD6 developer. Rinse, dry, inspect in the microscopy,

and clean in the asher.
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10. Wet etch in CR− 7 for 2 minutes. The background should clear out.

11. Inspect in the microscope. If the edges look clean, strip the resist, rinse in the

usual sequence. Dry.

B.3 Step 3: Silver final mask

This step finally copies the mask patterns onto the coated windows.

1. Get a window with the proper AR coating from Thorlabs.

2. Spin clean with acetone, IPA

3. Spin HMDS, then NR9-1000PY at 3k RPM

4. Bake at 150 degrees C for 4 min

5. Expose for 3.5 min under the positive daughter mask. Clean before use. Care-

fully align the window to the daughter mask. If doing under a UV flood lamp,

make sure there is no gap between the two surfaces by adapting a rubber gasket

and using suction. This is often the most difficult step.

6. Bake for 4 min at 100C. Let fully cool, and then apply 5-7s of the asher.

7. Develop in RD6 for 30 seconds. Inspect in the microscope. The coating on the

window should be exposed where the silver will be.

8. Give to the molecular beam deposition chamber owner for 150nm Ag + 20nm

SiO2 deposition.

9. When finished, prepare a beaker of acetone at 80 degrees C on hot plate

10. Hold window with plastic tweezers in beaker for ∼ 4 min

11. Rinse with acetone -the background should peel off. Rinse in the usual se-

quence. Dry.
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Appendix C

Fermi 3 Vacuum chamber schematics

The vacuum chamber in the Fermi 3 experiment consists of three chambers: the

oven, the intermediate, and the main. In this appendix, we provide the drawings for

the full vacuum setup, the oven 6-way, the custom intermediate chamber, and the

custom pump tower.
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We report on the creation of homogeneous Fermi gases of ultracold atoms in a uniform potential. In the
momentum distribution of a spin-polarized gas, we observe the emergence of the Fermi surface and the
saturated occupation of one particle per momentum state: the striking consequence of Pauli blocking in
momentum space for a degenerate gas. Cooling a spin-balanced Fermi gas at unitarity, we create
homogeneous superfluids and observe spatially uniform pair condensates. For thermodynamic measure-
ments, we introduce a hybrid potential that is harmonic in one dimension and uniform in the other two.
The spatially resolved compressibility reveals the superfluid transition in a spin-balanced Fermi gas,
saturation in a fully polarized Fermi gas, and strong attraction in the polaronic regime of a partially
polarized Fermi gas.

DOI: 10.1103/PhysRevLett.118.123401

Ninety years ago, Fermi derived the thermodynamics of
a gas of particles obeying the Pauli exclusion principle [1].
The Fermi gas quickly became a ubiquitous paradigm in
many-body physics; yet even today, Fermi gases in the
presence of strong interactions pose severe challenges to
our understanding. Ultracold atomic Fermi gases have
emerged as a flexible platform for studying such strongly
correlated fermionic systems [2–6]. In contrast to tradi-
tional solid state systems, quantum gases feature tunable
spin polarization, dimensionality, and interaction strength.
This enables the separation of quantum statistical effects
from interaction-driven effects, and invites the exploration
of rich phase diagrams, for example bulk Fermi gases in the
BEC-BCS crossover [3–10] and Fermi-Hubbard models in
optical lattices [11–20].
So far, Fermi gas experiments have been performed in

inhomogeneous traps, where the nonuniform density leads to
spatially varying energy and length scales. This poses a
fundamental problem for studies of critical phenomena for
which the correlation length diverges. Furthermore, in a gas
with spatially varying density, a large region of the phase
diagram is traversed, potentially obscuring exotic phases that
are predicted to occur in a narrow range of parameters. This is
most severe for supersolid states, such as the elusive FFLO
state [21–23], where the emergent spatial period is well
defined only in a homogeneous setting. A natural solution to
these problems is the use of uniform potentials, which have
recently proved to be advantageous for thermodynamic and
coherence measurements with Bose gases [24–27].
Here, we realize homogeneous Fermi gases in a versatile

uniform potential. For spin-polarized gases, we observe
both the formation of the Fermi surface and the saturation at

one fermion per momentum state, due to Pauli blocking.
Spatially uniform pair condensates are observed for
spin-balanced gases, offering strong prospects for the
exploration of long-range coherence, critical fluctuations,
and supersolidity.
In cases where the local density approximation (LDA)

is valid, the spatially varying local chemical potential in
an inhomogeneous trap can be utilized for thermodyna-
mic [28–31] and spectroscopic [7,32,33] measurements.
However, reconstructing the local density from line-of-
sight integrated density profiles typically increases noise,
while spatially selecting a central region of the gas reduces
signal. A potential that is uniform along the line-of-sight is
the natural solution. Combining the desirable features of
homogeneous and spatially varying potentials, we intro-
duce a hybrid potential that is uniform in two dimensions
and harmonic in the third. The line-of-sight integration
is now turned into an advantage: instead of averaging
over a wide region of the phase diagram, the integration
yields a higher signal-to-noise measurement of the local
density. Using this geometry, we observe the characteri-
stic saturation of isothermal compressibility in a spin-
polarized gas, while a strongly interacting spin-balanced
gas features a peak in the compressibility near the super-
fluid transition [31].
In our experiment, we prepare atoms in the two lowest

hyperfine states of 6Li near a Feshbach resonance, and load
them into the uniform potential of the optical box trap
depicted in Fig. 1(a), after evaporative precooling in a crossed
dipole trap.We typically achieve densities andFermi energies
of up ton ≈ 1012 cm−3 andEF ≈ h × 13 kHz, corresponding
to ∼106 atoms per spin state in the box. The lifetime of the
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Fermi gas in the box trap is several tens of seconds. The
uniform potential is tailored using blue-detuned laser light for
the confining walls. The sharp radial trap barrier is provided
by a ring beam generated by an axicon [34,35], while two
light sheets act as end caps for the axial trapping [36].
Furthermore, the atoms are levitated against gravity by a
magnetic saddle potential [3]. The residual radial anticonfin-
ing curvature of the magnetic potential is compensated
optically, while an axial curvature results in a weak harmonic
potential described by a trapping frequency of ωz ¼ 2π×
23.9 Hz. This typically results in a variation of the potential
along the axial direction that is less than 5% of the Fermi
energy. Note that themagneticmoments of the two spin states
of 6Li differ by less than 0.1% at unitarity, resulting in a
negligible difference in trapping potentials. We characterize
the steepnessof the trapwalls bymeasuring the radial extentR
of the cloud as a function of Fermi energy [see Fig. 1(b)].
Modeling the trapwallswith a power law potential, we obtain
VðrÞ ∼ r16.2�1.6 [36].
A stringent measure of the homogeneity of the gas is the

probability distribution PðnÞ for the atomic density n.
Imaging along the z and x directions yields the radial and
axial probability distributionPðn2DÞ for the column density
n2D (see Fig. 1(c) and Ref. [36]). The distribution for the

homogeneous gas is sharply peaked near the trap average
density n2D. For comparison, we also show Pðn2DÞ for an
optical Gaussian trap, which is spread over a large range of
densities.
Fermions at low temperatures are characterized by Pauli

blocking [1]. Consequences of Pauli blocking have been
observed in ultracold gases, for example, in nondegenerate
samples, the reduction of collisions in spin-polarized gases
below the p-wave threshold [2,37] and, upon entering
degeneracy, Pauli pressure [38,39], reduced collisions
[40,41], antibunching in noise correlations [42], and the
reduction of density fluctuations [43,44]. In optical lattices
under microscopes, Pauli blocking has been observed in
real space through observations of band insulating states
[16,17,45] and of the Pauli hole in pair correlations [20].
Typically obscured in the time of flight expansion of an
inhomogeneous atomic gas, the Fermi surface has been
observed by probing only the central region of a harmoni-
cally trapped gas [46]. Now, the uniform box potential
enables us to directly observe the consequence of Pauli
blocking in momentum space for degenerate gases: the
Fermi-Dirac momentum distribution, featuring the emer-
gence of a Fermi surface near the Fermi wave vector kF and
the saturated occupation of momentum states below kF to
one particle per momentum cell.
To measure the momentum distribution fðkÞ, we release a

highly spin-imbalanced gas (n↓=n↑ < 0.05, wheren↑ andn↓
are the densities of the majority and minority spin compo-
nents, respectively) from the uniform potential into the small
residual axial harmonic potential (along the z axis). To ensure
the ballistic expansion of the gas, the minority component is
optically pumped into a weakly interacting state within 5 μs
[36]. After a quarter period of expansion in the harmonic trap,
the axial momenta kz are mapped into real space via z ¼
ℏkz=mωz [47–50]. In contrast to conventional time of flight
measurements, thismethod is unaffected by the in-trap size of
the gas. The measured integrated density profile n1DðzÞ ¼
∬ dxdynðx; y; zÞ reflects the integrated momentum distribu-
tion f1DðkzÞ ¼ ð2πÞ−2∬ dkxdkyfðkx; ky; kzÞ via

f1DðkzÞ ¼
2πℏ
Vmωz

n1DðzÞ: ð1Þ

Here, V is the volume of the uniform trap. Figure 2(a)
shows the integrated momentum distribution for dif-
ferent temperatures. Assuming a spherically symmetric
momentum distribution, fk ≡ fðkÞ ¼ fðkÞ. Noting that
R
dkxdkyf

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q �
¼ π

R∞
k2z
dðk2ÞfðkÞ, the three-

dimensionalmomentumdistribution can beobtained from the
integrated momentum distribution by differentiation:

fk ¼ −4π
df1DðkzÞ

dk2z
: ð2Þ
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FIG. 1. Homogeneous Fermi gas. (a) Schematic of the box trap
and cuts through the column-integrated density profiles along the
axial and radial directions. (b) Radius of the cloud as a function of
the Fermi energy. The dotted black and dashed red lines
correspond to a perfect box potential and a harmonic potential,
respectively, and are scaled to converge at the highest EF. The
blue solid line corresponds to a power law potential VðrÞ ∼ r16.
(c) Measured radial probability density Pðn2DÞ for the column-
integrated density n2D, averaging about 20 in-trap images. The
blue solid and red dashed lines correspond to the uniform and
Gaussian traps, respectively.
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As the temperature is lowered, the momentum distribution
develops a Fermi surface, and we observe a momentum state
occupation of 1.04(15) at lowmomenta [see Figs. 2(b)–2(d)],
where the error in fk is dominated by the systematic
uncertainties in the box volume and the imaging magnifica-
tion [36]. This is the direct consequence of Pauli blocking and
confirms saturation at one fermion per momentum state.
An important motivation for the realization of a homo-

geneous Fermi gas is the prospect of observing exotic
strongly correlated states predicted to exist in narrow parts
of the phase diagram, such as the FFLO state [21,22]. In a
harmonic trap, such states would be confined to thin
isopotential shells of the cloud, making them challenging
to observe. We observe pair condensation in a uniformly
trapped strongly interacting spin-balanced Fermi gas
through a rapid ramp of the magnetic field during time
of flight [3,51,52], as shown in Figs. 3(a)–3(c). The pair
condensate at the end of the ramp barely expands in time of

flight. As a result, the in-trap homogeneity is reflected in a
flat top profile of the condensate [see Fig. 3(f)].
Although a fully uniform potential is ideal for measure-

ments that require translational symmetry, a spatially vary-
ing potential can access a large region of the phase diagram
in a single experimental run. To harness the advantages of
both potentials, we introduce a hybrid geometry that
combines the radially uniform cylinder trap with an axially
harmonic magnetic trap along the z direction [see Fig. 4(a)].
As a benchmark for the hybrid trap, we perform a thermo-
dynamic study of both a strongly spin-imbalanced and a
spin-balanced unitary gas. Figures 4(c)–4(e) display for both
cases the y-axis averaged local density, temperature, and
compressibility. The data shown in Fig. 4 are extracted from
an average of just six images per spin component. For
comparison, precisionmeasurements of the equation of state
at unitarity, performed in conventional harmonic traps,
required averaging of over 100 absorption images [31].
The temperature is obtained from fits to the known equations
of state of the noninteracting and spin-balanced unitary
Fermi gas, respectively. From the local density in the hybrid
trap, we determine the normalized isothermal compressibil-
ity ~κ ¼ κ=κ0 ¼ −∂EF=∂UjT for the spin-imbalanced and
the spin-balanced gas. Here,U is the external potential, and
κ0 ¼ 3

2
ð1=nEFÞ is the compressibility of the noninteracting

Fermi gas at zero temperature [31].
The strongly spin-imbalanced cloud features two distinct

regions in the trap. The center of the cloud is a partially
polarized region in which ðn↑ − n↓Þ=ðn↑ þ n↓Þ > 0.64,
well above the Clogston-Chandrasekhar limit of super-
fluidity [53–55]. Surrounding the center is a fully polarized
region, where the compressibility is seen to saturate: the
real space consequence of the Pauli blocking in momentum
space demonstrated in Fig. 2.
The majority spin component in the partially polarized

region is affected by the presence of theminority spin compo-
nent. We measure the compressibility ~κ↑ ¼ −∂EF↑=∂U in
the partially polarized region, and observe an increase
compared to the fully polarized gas. This is expected as
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FIG. 2. Momentum distribution of the homogeneous spin-polarized Fermi gas. (a) Doubly integrated momentum distribution f1D
for different temperatures in the uniform trap. In order of decreasing temperature: red dotted line, orange dashed line, and blue solid
line. Each line corresponds to averages over seven images. The optical density after momentum space mapping along z is shown in the
inset. (b),(c),(d) Momentum distribution fk ¼ −4πdf1D=dk2, showing Pauli blocking and Fermi surface formation. Fermi-Dirac fits
(solid line) give (b) T=TF ¼ 0.49ð2Þ, (c) T=TF ¼ 0.32ð1Þ, and (d) T=TF ¼ 0.16ð1Þ, with kF ranging between 2.8 μm−1 and 3.7 μm−1.
The estimated systematic error in the measurement of fk is 15%.
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FIG. 3. Pair condensation in the uniform trap. (a), (b), and
(c) Absorption images after a rapid ramp of the magnetic field and
10 ms of time of flight. The temperature of the gas is lowered (left
to right) by evaporation in the uniform trap. The onset of a
bimodal distribution signals the formation of a pair condensate.
(d), (e), and (f) show cuts through the images in the top row.
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the minority atoms in the center of the trap attract majority
atoms and form polarons [7,8]. The effect is indeed predicted
by the polaron equation of state [29,30,56]. The observation
of this subtle effect highlights the sensitivity of the hybrid
potential for thermodynamic measurements.
In the spin-balanced case, κ=κ0 is significantly larger than

for the ideal Fermi gas due to strong interactions. The two
prominent peaks in the reduced compressibility signal the
superfluid transition at the two boundary surfaces between
the superfluid core and the surrounding normal fluid. Near
the center of the trap, the reduced compressibility agrees
with the T ¼ 0 equation of state κ=κ0 ¼ 1=ξ ¼ 2.65ð4Þ,

where ξ is the Bertsch parameter. The shaded region in the
right column of Fig. 4 shows the superfluid part of the gas,
where the temperature is below the critical temperature for
superfluidity Tc ¼ 0.17TF [31].
The realization of uniform Fermi gases promises further

insight into phases and states of matter that have eluded
observation or quantitive understanding. This includes the
observation of the quasiparticle jump [57] in the momentum
distribution of a Fermi liquid, critical fluctuations in theBEC-
BCS crossover, and long-lived solitons [58]. Of particular
interest are spin imbalanced mixtures that have been studied
extensively in harmonic traps [29,30,55,59–62], where the
trap drives the separation of normal and superfluid phases into
a shell structure. This phase separation should occur sponta-
neously in a uniform spin-imbalanced gas, possibly forming
domains of superfluid and eventually ordering into an FFLO
state. In addition, the hybrid potential is a valuable tool for
precision measurements that rely on an in-trap density
variation. For example, spatially resolved rf spectroscopy
[32] in the hybrid potential would measure the homogenous
response of the system over a large range of normalized
temperatures T=TF in a single experimental run.
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CYLINDER-SHAPED TRAP

For the repulsive optical potential, we use laser light
that is blue detuned with respect to the D-lines of 6Li at
671 nm. The laser source is a multi-mode 10W laser at
532 nm. Figure S1 shows the optical setup that is used to
shape the beam into a hollow core cylinder. A collimated
gaussian beam propagates through an axicon and a mi-
croscope objective, generating a hollow cylindrical beam
in the Fourier plane [S2, S3]. An opaque circular silver
mask is placed in the focal plane to block the residual
light inside the ring and provide a sharper inner edge.
The resulting intensity distribution at the focal plane is
imaged onto the atoms along the z-axis. This confines the
atoms into a cylinder oriented along the axial direction
(z-axis).

In addition to the radial cylinder-shaped trap, the uni-
form trap requires sharp end cap walls that confine the
atoms along the axial direction. For the endcaps, we use
second 532 nm beam from the same laser source and de-
tuned it by 160 MHz to avoid interference between the
beams. The end cap beam is split into two elliptically
shaped beams with opposite polarizations, which are fo-

FIG. S1. Optical setup for cylinder-shaped trap. From left to
right: A gaussian beam propagates through an axicon result-
ing in a Bessel beam in the near field. Subsequently the Bessel
beam is focused through a microscope objective. In the focal
plane, the resulting intensity pattern is a ring with gaussian
rim. A matched circular opaque mask is used to block out
residual light in the center of the ring. Finally the mask is
projected through an imaging system onto the atoms, creat-
ing the cylinder-shaped trap for the atoms. A small variation
of cylinder radius is unavoidable when using a single axicon
[S1].
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FIG. S2. Determination of the power law exponent of the
radial wall potential. Log-log plot of the data shown in Fig.
1(b). The blue dotted line is a linear fit, with a slope of
m = 16.2± 1.6 for the power law exponent.

cused onto the edges of a rectangular opaque mask. The
intensity distribution at the mask is projected onto the
atoms and provides two sharp confining walls.

TRAP CHARACTERIZATION

Radial Trap Wall: Power Law Potential

To describe the radial extent of the gas as a function
of the Fermi energy, we model our radial potential with a
power law U(r) = αrm. Within the local density approx-
imation, the local chemical potential is then determined
by µ(r) = µ0 − αrm, where µ0 = µ(r = 0). The radius
measurements have been performed with a spin-balanced
superfluid. Assuming T = 0, the cloud has a well defined
Thomas-Fermi radius R, where the density drops to zero:

µ0 = ξEF = αRm, (S1)

with the Bertsch parameter ξ. Fitting the data shown
in Fig. S2 with a power-law gives m = 16.2± 1.6.
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FIG. S3. Axial probability distribution. The blue solid line
(red dashed line) shows P(navg) for the uniform (hybrid) trap.
Absorption images are taken along x-axis. The line of sight
averaged local density navg is calculated assuming a uniform
cylindrical trap.

Axial Probability Distribution

To extract information about the axial homogeneity of
the gas, we image the atoms along the x-axis. We obtain
the line-of-sight averaged local density navg from the col-
umn density by dividing by the local column length. Fig-
ure S3 shows the probability distribution P(navg) for the
line-of-sight averaged density of the uniform and hybrid
trap. The axial probability distribution shows a narrow
peak similar to the one observed for the radial distribu-
tion. The probability distribution for the hybrid trap
is broadened due to the harmonic trapping along the z
direction.

OPTICAL PUMPING OF THE MINORITY
ATOMS FOR MOMENTUM-SPACE MAPPING

The measurement of the momentum distribution re-
lies on ballistic expansion of the gas immediately after
release from the trap. However, the expansion of the
atoms is strongly influenced by a small minority frac-
tion (< 5%) of strongly interacting atoms admixed to
ensure the thermalization of the gas. To eliminate the
interactions between the two spin states during the ex-
pansion, the minority atoms are optically pumped into
the hyperfine state |mJ = +1/2, mI = 0〉 that is weakly
interacting with the majority cloud. The 5µs pumping
pulse is applied right before the release of the atoms into
the harmonic trap. On average, 1.5 photons are required
to pump an atom into the weakly interacting hyperfine
state. The transitions involved in this pumping scheme
are shown in the inset of Fig. S4. Figure S4 shows the in-
tegrated momentum distribution of the gas obtained us-
ing momentum-space mapping with and without pump-
ing of minority atoms. Note that without the optical
pumping of the minority atoms, f1D(kz

2) is distorted
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FIG. S4. Influence of the minority atoms on the expansion
of the majority cloud. The blue (red) line corresponds to the
observed integrated momentum distribution without (with)
optical pumping of the minority atoms. The dashed line is
a guide to the eye. The inset displays the level scheme for
the optical pumping at a magnetic field of B = 832G. The
yellow ellipse marks the two strongly interacting spin states,
where the minority is in |mJ = −1/2, mI = 0〉. The pumping
transition is shown as the blue line and the spontaneous decay
channels with red curvy lines.

from the triangular shape expected for a low tempera-
ture Fermi gas.

DENSITY MEASUREMENT WITH
ABSORPTION IMAGING

For heavy atoms, such as Rb and Cs, and imaging in-
tensities that are small compared to the saturation inten-
sity (Isat), the column density ncol = −(1/σ0) log (If/Ii)
is determined by the Beer-Lambert law. Here, Ii and If
are the intensities of the imaging beam before and after
the atoms, respectively, and σ0 is the absorption cross-
section. However, for light atoms such as Li, the Doppler
effect plays a dominant role in realistic experimental sce-
narios, where a low imaging intensity and short expo-
sure time is in conflict with a high signal to noise ratio.
For our experiment, depending on the column density
of the sample, preferred values for the imaging intensi-
ties are 0.1 − 0.5 Isat at an exposure time of 4 − 10µs.
Under these conditions, each 6Li atom scatters up to 35
photons. The corresponding photon recoil results in a
Doppler shift of up to 6 MHz, which is comparable to
the natural linewidth of 6Li.

In order to account for the Doppler and saturation ef-
fects, we numerically solve two coupled differential equa-
tions for the local, time-dependent saturation parameter
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FIG. S5. Apparent atom count for the spin up component
(N↑) measured at different imaging intensities (I↑). A refer-
ence atom count (N↓) is obtained by subsequently imaging
a second spin component at a fixed imaging intensity (I↓ =
0.23Isat). Red circles, blue squares, and green triangles are
obtained using Beer-Lambert, saturated Beer-Lambert, and
Doppler Beer-Lambert, respectively. Spin balanced clouds are
used for these measurements.

s(z, t) = I(z, t)/Isat and velocity v(z, t);

∂s

∂z
= −nσ0

s

1 + s+ (2kv/Γ)
2 . (S2a)

∂v

∂t
=

~kΓ

2m

s

1 + s+ (2kv/Γ)
2 . (S2b)

Here, σ0, k, m and Γ are the bare scattering cross-
section, photon wave vector, atomic mass and natural

linewidth.

In the limit where the Doppler effect is negligible
(v = 0), the analytical solution of Eq. S2 is ncolσ0 =
− log (sf/si) − (sf − si). Here, si and sf are reduced
imaging intensities before and after the atoms, respec-
tively. This is the modified version of the Beer-Lambert
law that includes saturation of the atomic transition. For
the general case, we numerically solve Eq. S2 to find the
Doppler-corrected relation between Ii and If (which we
call the “Doppler Beer-Lambert” law).

We compare these aforementioned methods by subse-
quently imaging the two spin states of a spin-balanced
gas with a fast SCMOS camera. The first image is taken
with fixed saturation intensity of s↓ = 0.23 and serves as
the density reference. The second absorption image for
the other spin component, with a variable s↑, is obtained
15µs after the first image. Figure S5 shows the differ-
ences in the measured total atom numbers between two
spin components for various s↑ calculated using the Beer-
Lambert law (red circles), the saturated Beer-Lambert
law (blue squares) and Doppler Beer-Lambert (green tri-
angles). For the atom number differences calculated us-
ing the Doppler Beer-Lambert law, the mean deviation
from the reference density is only 3% compared to 27%
and 46% for the saturated Beer-Lambert and the basic
Beer-Lambert law, respectively.

[S1] A. L. Gaunt, Degenerate Bose Gases : Tuning Interac-
tions & Geometry, PhD, University of Cambridge (2014).

[S2] J. H. McLeod, Journal of the Optical Society of America
44, 592 (1954).

[S3] I. Manek, Y. Ovchinnikov, and R. Grimm, Optics Com-
munications 147, 67 (1998).
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We measure radio frequency (rf) spectra of the homogeneous unitary Fermi gas at temperatures ranging
from the Boltzmann regime through quantum degeneracy and across the superfluid transition. For all
temperatures, a single spectral peak is observed. Its position smoothly evolves from the bare atomic
resonance in the Boltzmann regime to a frequency corresponding to nearly one Fermi energy at the lowest
temperatures. At high temperatures, the peak width reflects the scattering rate of the atoms, while at low
temperatures, the width is set by the size of fermion pairs. Above the superfluid transition, and approaching
the quantum critical regime, the width increases linearly with temperature, indicating non-Fermi-liquid
behavior. From thewings of the rf spectra, we obtain the contact, quantifying the strength of short-range pair
correlations. We find that the contact rapidly increases as the gas is cooled below the superfluid transition.

DOI: 10.1103/PhysRevLett.122.203402

Understanding fermion pairing and pair correlations is of
central relevance to strongly interacting Fermi systems such
as nuclei [1,2], ultracold gases [3–6], liquid 3He [7], high
temperature superconductors [8], and neutron stars [9].
Strong interactions on the order of the Fermi energy
challenge theoretical approaches, especially methods that
predict dynamic properties such as transport or the spectral
response at finite temperature [10]. Atomic Fermi gases at
Feshbach resonances realize a paradigmatic system where
the gas becomes as strongly interacting as allowed by
unitarity [3–6,11]. Here, the system becomes universal,
requiring only two energy scales: the Fermi energy EF and
thermal energy kBT, where kB is the Boltzmann constant
and T is the temperature. The corresponding length scales
are the interparticle spacing λF ¼ n−1=3 and the thermal de
Broglie wavelength λT ¼ h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πmkBT

p
, where m and n are

the mass and number density of the atoms, respectively.
When the two energy scales are comparable, the system
enters a quantum critical regime separating the high
temperature Boltzmann gas from the fermionic superfluid
[12]. Quantum criticality is often associated with the
absence of quasiparticles [10,12,13], spurring a debate
on the applicability of Fermi liquid theory to the degenerate
normal fluid below the Fermi temperature TF ¼ EF=kB but
above the superfluid transition temperature Tc ≈ 0.167TF
[14–16]. It has been conjectured that preformed pairs exist
above Tc, up to a pairing temperature T� [3,5,11,17–21].
Radio frequency (rf) spectroscopy measures the momen-

tum integrated, occupied spectral function, providing a
powerful tool for studying interactions and correlations in
Fermi gases [22–27]. Here, a particle is ejected from the

interacting many-body state and transferred into a weakly
interacting final state. Shifts in rf spectra indicate attractive
or repulsive interactions in the gas. At high temperatures,
the width of the rf spectrum reflects the scattering rate in the
gas, while at low temperatures, the width has been used to
infer the pair size of superfluid fermion pairs [26].
The high frequency tails of the rf spectra are sensitive to

the spectral function at high momenta and, therefore, are
governed by short range correlations quantified by the
contact, which also determines the change of the energy
with respect to the interaction strength [28–30]. From the
momentum distribution within nuclei [1,2] to the frequency
dependence of the shear viscosity in ultracold fermionic
superfluids [31,32], the contact is central to Fermi gases
dominated by short-range interactions. Since the contact is
proposed to be sensitive to the superfluid pairing gap, it
could signal a pseudogap regime above Tc [32–35].
Although the temperature dependence of the contact near
Tc has been the subject of many theoretical predictions, a
consensus has not been reached [32,36–38].
Initial studies of unitary Fermi gases using rf spectroscopy

were affected by inhomogeneous densities in harmonic traps,
yielding doubly peaked spectra that were interpreted as
observations of the pairing gap [25,39], and from the
influence of interactions in the final state, which caused
significantly narrower spectra and smaller shifts than
expected [22,39–41]. Measurements of the contact, made
using both rf [42,43] and Bragg [44–46] spectroscopy, were
also broadened by inhomogeneous potentials. To avoid trap
broadening, tomographic techniques have been used to
measure local rf spectra, yielding measurements of the
superfluid gap [47], the spectral function [17,18], and the

PHYSICAL REVIEW LETTERS 122, 203402 (2019)
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contact [48]. A recent advance has been the creation of
uniform box potentials [49–51]. These are ideal for rf
spectroscopy and precision measurements of the contact:
since the entire cloud is at a constant density, global probes
such as rf address all atoms, andbenefit froma stronger signal.
In this Letter, we report on rf spectroscopy of the

homogeneous unitary Fermi gas in a box potential. A
single peak is observed for all temperatures from the
superfluid regime into the high temperature Boltzmann
gas. The tails of the rf spectra reveal the contact, which
shows a rapid rise as the temperature is reduced below Tc.
We prepare 6Li atoms in two of the three lowest hyper-

fine states j↓i ¼ j1i and j↑i ¼ j3i at a magnetic field of
690 G, where interspin interactions are resonant. A uniform
optical box potential with cylindrical symmetry is loaded
with N ∼ 106 atoms per spin state (with Fermi energies
EF ∼ h × 10 kHz), creating spin-balanced homogeneous
gases at temperatures ranging from T=TF ¼ 0.10 to 3.0
[50]. A square rf pulse transfers atoms from state j↓i
into state jfi ¼ j2i. Final state interactions between
atoms in state jfi and atoms in states j↑i and j↓i are
small (kFaf ≲ 0.2, where af is the scattering length
characterizing collisions between atoms in the final and
initial states, and ℏkF ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2mEF
p

is the Fermi momentum)

[26]. After the rf pulse, we measure the atom numbers
N↓ and Nf in the initial and final states. Within linear
response, according to Fermi’s golden rule, Nf is propor-
tional to the pulse time TPulse, the square of the single-
particle Rabi frequencyΩR, and an energy density of states.
Thus, we define a normalized, dimensionless rf spectrum as
IðωÞ ¼ ½NfðωÞ=N↓�ðEF=ℏΩ2

RTPulseÞ [52,57]. Because of
the scale invariance of the balanced unitary Fermi gas,
this dimensionless function can only depend on T=TF
and ℏω=EF.
For thermometry, we release the cloud from the uniform

potential into a harmonic trap along one direction [57].
Since the cloud expands isoenergetically, the resulting
spatial profile after thermalization provides the energy
per particle, which can be related to the reduced temper-
ature, T=TF, using a virial relation and the measured
equation of state [14]. To clearly identify the superfluid
transition, we measure the pair momentum distribution by
a rapid ramp of the magnetic field to the molecular side of
the Feshbach resonance before releasing the gas into a
harmonic trap for a quarter period [50,52].
Initially, we focus on changes in the line shape for rf

frequencies within ∼EF=ℏ of the bare (single-particle)
resonance [see Fig. 1(a)], and follow the changes in

(a) (b)

(c)

FIG. 1. (a) Thermal evolution of rf spectra. The Rabi frequency is ΩR ¼ 2π × 0.5 kHz and the pulse duration is TPulse ¼ 1 ms. The
solid lines are guides to the eye. (b) Frequency of the peak (Ep ¼ −ℏω) of the rf spectra as a function of temperature shown as white dots
on an intensity plot of the rf response. The grey solid line is a solution to the Cooper problem at nonzero temperature [52]. (c) The full
width at half maximum Γ of the rf peak as a function of T=TF. The black dotted-dashed line Γ=EF ¼ 1.2

ffiffiffiffiffiffiffiffiffiffiffiffi
TF=T

p
shows the temperature

dependence of the width due to scattering in the high-temperature gas [32,60]. The grey triangles are the corresponding width
measurements of a highly spin-imbalanced gas [57]. The horizontal black dotted line represents the Fourier broadening of 0.1EF [52].
The vertical dashed red line in both (b) and (c) marks the superfluid transition [14].
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the peak position Ep [shown in Fig. 1(b)]. As the hot spin-
balanced Fermi gas is cooled below the Fermi temperature,
the peak shift decreases from roughly zero for temperatures
T ≳ TF, to Ep ≈ −0.8EF for temperatures below the super-
fluid transition temperature [see Fig. 1(b)]. At high temper-
atures, one might naïvely expect a shift on the order of
Ep ∼ ℏnλT=m due to unitarity-limited interactions in the
gas. However, there exists both an attractive and a repulsive
energy branch, which are symmetric about zero at unitarity
[58], and when T ≫ TF, their contributions to the shift
cancel [32,59,60]. As to the interpretation of the peak shift at
degenerate temperatures, a solution to the Cooper problem in
the presence of a T > 0 Fermi sea shows that it is
energetically favorable to form pairs when T ≲ 0.5TF
[52], and the resulting pair energy agrees qualitatively
with the observed shifts [grey line in Fig. 1(b)]. However,
it is known that fluctuations suppress the onset of pair
condensation and superfluidity to 0.167ð13ÞTF [5,11,14,61].
In a zero-temperature superfluid, BCS theory would
predict a peak shift given by the pair binding energy
EB ¼ Δ2=2EF, where Δ is the pairing gap [3]. Including
Hartree terms is found to result in an additional shift of the
peak [27,47].
Now, we turn to the widths, Γ, defined as the full width at

half maximum of the rf spectra [see Fig. 1(c)]. As the gas is
cooled from the Boltzmann regime, the width gradually
increases, and attains a maximum of Γ ¼ 1.35ð5ÞEF near
T ¼ 0.44ð4ÞTF. For temperatures much higher than TF,
the system is a Boltzmann gas of atoms scattering with a
unitarity limited cross section σ ∼ λ2T . Transport properties
and short-range pair correlations are governed by the scatter-
ing rate Γ ¼ n↓σhvreli ∼ ℏn↓λT=m and a mean-free path
l ¼ ðn↓σÞ−1 ∼ ðn↓λ2TÞ−1, where n↓ is the density of atoms in
j↓i, and hvreli ∼ ℏ=mλT is the thermally averaged relative
velocity. This leads to a width that scales as Γ ∝ 1=

ffiffiffiffi
T

p
,

shown as the dotted-dashed line in Fig. 1(c) [32].
As the cloud is cooled below T ≈ 0.5TF, the width

decreases linearly with temperature to Γ ∼ 0.52EF=ℏ in the
coldest gases measured [T ¼ 0.10ð1ÞTF]. For temperatures
below Tc, we expect the gas to consist of pairs of size ξ.
The rf spectrum will be broadened by the distribution of
momenta ∼ℏ=ξ inside each pair, leading to a spread of
possible final kinetic energies ℏ2k2=m ∼ ℏ2=mξ2 and a
corresponding spectral width ℏ=mξ2. At unitarity and at
T ¼ 0, the pair size is set by the interparticle spacing λF
[3,5,26]. Thus, the rf width at low temperatures
is Γ ∼ ℏnλF=m.
For temperatures above Tc, it has been suggested that

the normal fluid can be described as a Fermi liquid
[15,62]. This would imply a quadratic relation between
the peak width and the temperature [63], as observed in the
widths of the rf spectra of Fermi polarons at unitarity [57].
However, the measured width of the spin-balanced Fermi
gas changes linearly in temperature, implying non-Fermi

liquid behavior in the normal fluid. In addition, Γ > EF=ℏ
for 0.3≲ T=TF ≲ 1.2, indicating a breakdown of well-
defined quasiparticles over a large range of temperatures
near the quantum critical regime [10,12,13].
We now consider the rf spectrum at frequencies much

larger than EF=ℏ, where the rf-coupled high-momentum
tails reveal information about the short-range pair correla-
tions between atoms. In a gas with contact interactions,
the pair correlation function at short distances is
limr→0hn↑ðr0 þ r=2Þn↓ðr0 − r=2Þi ¼ C=ð4πrÞ2. The con-
tact C connects a number of fundamental relations, inde-
pendent of the details of the short-range interaction
potential [28]. In particular, the contact governs the
momentum distribution at large momenta: limk→∞nðkÞ ¼
C=k4. For rf spectroscopy, the density of final states scales
as

ffiffiffiffi
ω

p
, and the energy cost to flip a spin at high momenta is

limk→∞ℏω ¼ ℏ2k2=m. Thus, the number of atoms trans-
ferred by the rf pulse at high frequencies in linear response
is ∝ C=ω3=2 [5,27]. Including final state interactions, the
general expression for the rf transfer rate in a gas with
unitarity-limited initial state interactions is [64]

lim
ω→∞

IðωÞ ¼
�

C
NkF

�
1

2
ffiffiffi
2

p
πð1þ ℏω=EbÞ

�
EF

ℏω

�
3=2

; ð1Þ

FIG. 2. Rf spectrum at high frequencies. Here, the temperature
of the gas is T=TF ¼ 0.10ð1Þ, the pulse duration is TPulse ¼ 1 ms,
and the Rabi frequencies are 2π × 536 Hz (light blue circles),
2π × 1.20 kHz (medium blue triangles), and 2π × 3.04 kHz
(dark blue squares). The black solid line shows a fit of Eq. (1)
to the data, while the grey dashed line shows the fit neglecting
final state interactions. The contact can be directly obtained from
the transfer rate at a fixed detuning of 60 kHz (ℏω=EF ∼ 7.1)
(dotted-dashed vertical line). Inset: we vary the pulse time at this
fixed detuning, and extract the initial slope (dashed line) of the
exponential saturating fit (solid line). The rf transfer rate obtained
from the initial linear slope is shown as the red diamond in the
main plot. Here, ΩR ¼ 2π × 1.18 kHz.
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where N ¼ N↑ þ N↓ is the total number of atoms, and the
final state molecular binding energy is Eb ¼ ℏ2=ma2f ≈
h × 433 kHz ≈ 40EF. Figure 2 shows a typical rf spectrum
at T=TF ¼ 0.10, with a fit of Eq. (1) to data with detunings
ℏω > 3EF, using the dimensionless contact C̃ ¼ C=NkF as
the only free parameter. At detunings larger than about
10 EF, the data deviate from a typical ω−3=2 tail, and are
better described by the full expression Eq. (1) including
final state interactions. Here, the Rabi frequency was varied
across the plot to ensure small transfers near the peak and a
high signal-to-noise ratio at detunings up to ℏω=EF ¼ 31.
The fit of Eq. (1) to the data gives a low-temperature
contact of C̃ ¼ 3.07ð6Þ, consistent with a quantum
Monte Carlo result C̃ ¼ 2.95ð10Þ [65], the Luttinger-
Ward (LW) calculation C̃ ¼ 3.02 [27], as well as previous
measurements using losses C̃ ¼ 3.1ð3Þ [66] and Bragg
spectroscopy C̃ ¼ 3.06ð8Þ [46].
For a more efficient measurement of the contact

across a range of temperatures, we vary the pulse time
at a fixed detuning of 60 kHz (ℏω=EF ≳ 6) that is large
compared to the Fermi energy and temperature. [52].
Deviations from linear response are observed for transfers
as small as 5% (see inset of Fig. 2). We fit the transfers to an
exponentially saturating function A½1 − expð−TPulse=τÞ�,
and find the initial linear slope A=τ in order to extract
the contact for each temperature using Eq. (1). This ensures
that every measurement is taken in the linear response
regime.
In Fig. 3(a), we show the temperature dependence of the

contact. As the gas is cooled, the contact shows a gradual
increase down to the superfluid transition Tc. Entering the
superfluid transition, the contact rapidly rises by approx-
imately 15%. The changes in the contact reveal the
temperature dependence of short-range pair correlations
in the spin-balanced Fermi gas. At temperatures far above
TF, the contact reflects the inverse mean free path in the gas
1=l ∼ 1=T. At lower temperatures, the behavior of the
contact is better described by a third-order virial expansion
[see inset of 3(a)] [36]. Near Tc, predictions of the contact
vary considerably. In the quantum critical regime, a
leading-order 1=N calculation (equivalent to a Gaussian
pair fluctuation or Nozières–Schmitt-Rink method) results
in a prediction C̃ðμ ¼ 0; T ≈ 0.68TFÞ ¼ 2.34 [10], which
is consistent with our measurement of C̃½T¼0.65ð4ÞTF�¼
2.29ð13Þ. For temperatures above the superfluid transition,
our data agree well with both a bold diagrammatic
Monte Carlo calculation [38], and, especially near Tc,
the LW calculation [32]. The contact rises as the temper-
ature is decreased below Tc, a feature captured by the LW
formalism, in which the contact is directly sensitive to
pairing: C̃ ∼ ðΔ=EFÞ2 [27,33]. While short-range pair
correlations do not necessarily signify pairing [35], the
rapid rise of the contact below Tc is strongly indicative of
an additional contribution from fermion pairs, as predicted

by LW. At temperatures T ≪ Tc, below the reach of our
experiment, phonons are likely the only remaining excita-
tions in the unitary Fermi gas, and are expected to contribute
to the contact by an amount that scales as T4 [67].
In conclusion, rf spectroscopy of the homogeneous

unitary Fermi gas reveals strong attractive interactions,
the non-Fermi-liquid nature of excitations in the gas across
the quantum critical regime, and a rapid increase in short-
range pair correlations upon entering the superfluid regime.
The strong variation with temperature of the position
of the spectral peak may serve as a local thermometer in
future studies of heat transport in ultracold Fermi gases.
Furthermore, these measurements of the contact provide
a benchmark for many-body theories of the unitary
Fermi gas. The uniform trap enables direct access to
homogeneous measurements of thermodynamic quantities,

(a)

(b)

FIG. 3. The dimensionless contact C=NkF (a) and condensate
fraction N0=N (b) of the unitary Fermi gas as a function of the
reduced temperature T=TF. Our measurements of the contact
(red points) are compared with a number of theoretical estimates:
bold-diagrammatic Monte Carlo (BDMC) [38], quantum
Monte Carlo (QMC) [37], Luttinger-Ward (LW) [32], large N
[10], and Gaussian pair fluctuations (GPF) [36]. Also shown is
the homogeneous contact obtained from the equation of state at
the École normale supérieure (ENS-EOS) [62], from loss rate
measurements (ENS-L) [66], and from rf spectroscopy by the
JILA group [18] across a range of temperatures. The vertical
blue dotted lines and light blue shaded vertical regions mark
Tc=TF ¼ 0.167ð13Þ [14]. The inset of (a) shows the contact over
a wider range of temperatures and marks the high-temperature
agreement with the third order virial expansion. The error bars
account for the statistical uncertainties in the data.
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and increases sensitivity to abrupt changes of those
quantities near phase transitions. This could be particularly
useful in the limit of high spin imbalance, where the nature
of impurities suddenly transitions from Fermi polarons to
molecules. [68,69].
We note that measurements of the temperature depend-

ence of the contact were simultaneously performed at
Swinburne using Bragg spectroscopy [70]. Their data are
in excellent agreement with the present results.
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DENSITY CALIBRATION IN THE
HOMOGENEOUS TRAP

The density of atoms in the homogeneous trap is mea-
sured using in situ absorption imaging [S1]. The ab-
solute atom numbers are calibrated by loading a spin-
imbalanced gas into a hybrid trap that is axially har-
monic and radially homogeneous [S2]. In Fig. S1, we plot
the 1D density profile given by the integrated profile
along the two homogeneous directions and the isother-
mal compressibility κ/κ0 = −∂EF↑/∂U of the majority
component, where κ0 = 3

2n↑EF
is the compressibility of

an ideal Fermi gas at density n↑.The compressibility in
the spin-polarized region provides the calibration of our
measurement of density.

(a)

(b)

FIG. S1. Density calibration using the spin-imbalanced Fermi
gas in the axially harmonic, radially homogeneous trap. Here,
the majority Fermi energy is EF↑/h = 5.7(1) kHz, T/TF↑ =
0.05(1) and the imbalance is N↓/N↑ = 0.18. (a) Majority
(minority) density profiles in blue (red) data points. The
dashed line is a fit to the ideal equation of state for the spin-
polarized Fermi gas, restricted to the polarized wings of the
cloud (outside the minority component edge, marked with
the dot-dashed line). (b) The isothermal compressibility of
the majority component as a function of position.

RF SPECTROSCOPY MEASUREMENTS

For rf spectroscopy measurements, two images are
taken within several µs of each other. The first image
records the transferred cloud in state |f〉= |2〉, while the
second image allows for counting the number of atoms
in the initial state |↓〉= |1〉. For measurements of the full
spectrum, the pulse time is set to TPulse = 1 ms, giving
a Fourier-limited spectral resolution of 1 kHz. For mea-
surements of the contact, we select a detuning that is
large compared to both the Fermi energy and the tem-
perature of the cloud. This ensures that atoms are trans-
ferred from the high-momentum tails, and the transfer
rate accurately measures the contact. For detunings be-
tween ~ω ≈ 5EF and ~ω ≈ 13EF , we verified that the
measured value of C̃ is constant within statistical errors.
The Rabi frequencies are adjusted between ΩR = 2π×500
Hz and ΩR = 2π × 1 kHz to maintain a high signal to
noise ratio.

COOPER PROBLEM AT FINITE
TEMPERATURE

In the Cooper problem [S3] one searches for the bind-
ing energy of two opposite-spin fermions on top of the
filled Fermi sea. The Fermi sea is treated as “inert”, its
only role being to block momentum states that would
otherwise be available to the scattering pair. This con-
straint alone already leads to pairing in three dimensions.
Cooper’s solution can be extended to non-zero temper-
ature, in the search of a bound state on top of a finite
temperature Fermi gas. A standard approach [S4] yields
an equation for the bound state energy Ec for Cooper
pairs:

− m

4π~2a
=

∫
d3p

(2π)3

(
(1− nF (ξp))

2

2ξp − Ec
− 1

2εp

)
, (S1)

where nF (ε) = (1 + exp(ε/T ))−1 is the Fermi func-

tion, ξp = p2

2m − µ, and µ the chemical potential of the
non-interacting Fermi gas at temperature T . The factor
(1 − nF (ξp))

2 represents Pauli blocking of momentum
states already occupied in the spin up and the spin down
Fermi sea. Without it, there would be no pairing of two
190



S2

particles, as is well known in three dimensions. This sim-
plest approach to pairing in a Fermi gas predicts a Cooper
pair energy at resonance (1/a = 0) of Ec = −0.61EF at
zero temperature, and an onset of pairing (Ec < 0) at
T ∗/TF = 0.41EF . To look for binding in the full many-
body framework, one searches for poles of the pair propa-
gator. In the lowest-order T-matrix calculation or equiva-
lently to lowest order in a 1/N expansion [S5, S6] (where
2N is the number of spin components of the Fermi gas),
one finds an equation for this pole that is nearly identical
to the above:

− m

4π~2a
=

∫
d3p

(2π)3

(
(1− nF (ξp))

2 − nF (ξp)
2

2ξp − Ec
− 1

2εp

)
.

(S2)
Compared to the simple Cooper problem, the many-body
approach yields an additional contribution to the inte-
gral from occupied momentum states ∝ −nF (ξp)

2 as
fermions within the Fermi sea now also profit from pair-
ing. This does not change the prediction for the T = 0
binding energy Ec = −0.61EF , but it yields stronger
binding at finite temperature, and predicts an onset of
pairing at T ∗/TF = 0.5. In the main text, we show
Ec from this lowest-order many-body approach. As is
well-known, fluctuations reduce the onset of superfluid-
ity to lower Tc. The next order in the 1/N expansion
yields [S5] Tc/TF = 0.14, and the self-consistent T-matrix
approach [S7] yields Tc/TF = 0.16, in agreement with the
experimental value Tc/TF = 0.167(13) [S8]. However, T ∗

is often interpreted as the crossover temperature scale for
pair formation [S9], and the region between Tc and T ∗ is
the putative “pseudogap” regime. For a recent analysis
of pair correlations see [S10].

CONDENSATE FRACTION

The condensate fraction is measured by performing
a momentum space mapping of the pair wavefunction.
The atoms are released from the optical box potential
into a magnetic harmonic trap with a confining trap-
ping frequency ωz = 2π × 23 Hz along the z-direction.
Simultaneously, the bias field is rapidly ramped from the
Feshbach resonance to a value near a zero crossing of
the scattering length, which associates existing fermion
pairs into bosonic molecules, and preserves the center
of mass momentum. Assuming the resulting molecules
are non-interacting, the density profile of the cloud af-
ter a quarter-period oscillation in the harmonic trap pro-
vides the pair center of mass momentum distribution [S2].
The measured integrated profiles n1D(z) are functions of
the momentum kz = mωzz/~ along the z direction (see
Fig. S2). We fit the wings with the momentum distribu-
tion for a thermal gas of non-interacting bosons [S11]:

n1D(kz) =
1

(2πkBT )3/2
g3/2

(
e−|~

2k2z/2m−µ|/kBT
)

(S3)

(a) (d)

(b)

(c)

FIG. S2. Momentum space mapping of the box pair wavefunc-
tion. (a)-(c) Images of the cloud at T/TF = 0.13 in (a), 0.16 in
(b), and 0.18 in (c), after a quarter-period release along the
horizontal direction. (d) From top to bottom, T/TF = 0.13,
0.16, 0.18, 0.21, 0.43. Here, n1D is the two-axis integrated
pair center of mass momentum distribution, and the dashed
black lines are polylogarithm fits to the thermal wings. The
dashed vertical lines in (a)-(c) and the dotted vertical lines
in (d) mark the condensate region excluded from the fit
(≈ ±0.07kF ). Here, kF is the Fermi wavevector in the uni-
form trap.

As the gas is cooled, the profiles display an increased
occupation near zero momentum, and at Tc, a clear con-
densate peak emerges. We define the condensate fraction
N0/N as the difference in area between the observed pro-
file and the fit to the thermal wings.
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The dominance of interactions over kinetic energy lies
at the heart of strongly correlated quantum matter, from
fractional quantum Hall liquids [1], to atoms in optical
lattices [2] and twisted bilayer graphene [3]. Crystalline
phases often compete with correlated quantum liquids,
and transitions between them occur when the energy cost
of forming a density wave approaches zero. A prime ex-
ample occurs for electrons in high magnetic fields, where
the instability of quantum Hall liquids towards a Wigner
crystal [4–9] is heralded by a roton-like softening of den-
sity modulations at the magnetic length [7, 10–12]. Re-
markably, interacting bosons in a gauge field are also ex-
pected to form analogous liquid and crystalline states [13–
21]. However, combining interactions with strong syn-
thetic magnetic fields has been a challenge for experiments
on bosonic quantum gases [18, 21]. Here, we study the
purely interaction-driven dynamics of a Landau gauge
Bose-Einstein condensate [22] in and near the lowest Lan-
dau level (LLL). We observe a spontaneous crystallization
driven by condensation of magneto-rotons [7, 10], excita-
tions visible as density modulations at the magnetic length.
Increasing the cloud density smoothly connects this be-
haviour to a quantum version of the Kelvin-Helmholtz
hydrodynamic instability, driven by the sheared internal
flow profile of the rapidly rotating condensate. At long
times the condensate self-organizes into a persistent array
of droplets, separated by vortex streets, which are stabi-
lized by a balance of interactions and effective magnetic
forces.

When electrons are placed in a magnetic field, their ki-
netic energy is quenched. The single particle states form
discrete, highly degenerate Landau levels, and correspond
to wavepackets localized to the magnetic length `B . In the
presence of interactions between electrons, owing to the ab-
sence of kinetic energy, one naturally expects the formation
of a Wigner crystal of periodicity ∼ `B [4–6, 8, 9, 23]. Fa-
mously however, the interplay of the macroscopic degeneracy
and interactions instead typically favours the strongly corre-
lated fractional quantum Hall liquids, which host fractional
charges, anyonic exchange statistics, and topologically pro-
tected transport properties [1]. The tendency to crystallize
is still apparent in a pronounced minimum in the collective
excitation spectrum at wavevectors k ∼ 1/`B [7, 10–12]. In
analogy with the roton minimum in 4He, also considered a
precursor of solidification [24], these excitations are called
magneto-rotons [7, 11, 12].

The fate of interacting bosons in the presence of a gauge

field is of fundamental importance in the classification of
topological states of matter [19]. Quantum Hall states [13,
16, 20], exotic vortex lattices [14] and vortex-free states un-
der extreme fields [17] were predicted. Quantum phase tran-
sitions between such states were found to be signaled by the
softening of a roton-like collective mode [15, 25].

Bosonic quantum gases in artificial magnetic fields [18, 21]
have been generated via spin-orbit coupling [21, 26, 27],
phase imprinting in lattices [28–32], and by rotation of the
trapped gas [16, 22, 33, 34]. The latter approach uses the
analogy between the Lorentz force on a charged particle in
a magnetic field, and the Coriolis force on a massive parti-
cle in a frame rotating at frequency Ω, giving ωc = 2Ω and
`B =

√
h̄/(mωc) as the rotational analog of the cyclotron fre-

quency and the magnetic length, respectively.
Signatures of physics near the lowest Landau level have

been observed in rotating Bose gases [33, 34]. In recent work
at MIT, condensates have been prepared directly in the lowest
Landau gauge wavefunction using geometric squeezing [22].
In this mean-field quantum Hall regime [13], all bosons oc-
cupy a single wavefunction, whose subsequent dynamics sub-
ject to a gauge field can be studied, offering a microscopic
insight into the individual building blocks of quantum Hall
systems. An advantage of rotation is that the interactions be-
tween atoms are decoupled from the induced gauge potential,
in contrast to other methods for which the effective magnetic
field appears within a dressed-atom picture, leading to addi-
tional unwanted interaction terms [35].

Here, we directly observe the evolution of an interacting
Bose-Einstein condensate occupying a single Landau gauge
wavefunction in the LLL. We find that the Landau gauge con-
densate is unstable under the influence of interactions, exhibit-
ing spontaneous growth of a snaking mode leading to a per-
sistent density wave order at the magnetic length `B as illus-
trated in Fig. 1. At the heart of this crystallization is the cou-
pling between the relative momentum and spatial overlap of
two particles in a gauge field. This lowers the interaction en-
ergy cost of populating higher-momentum states, and leads to
the dynamical instability of the lowest (Goldstone) collective
excitation branch [15, 36]. The ensuing proliferation of exci-
tations at momenta near h̄/lB can be viewed as condensation
of magneto-rotons, in analogy to the Wigner crystal instability
of quantum Hall systems [4–9].

Condensation at non-zero momentum has been predicted in
superfluid helium above a critical velocity [37–39]. Roton-
like excitations and instabilities in Bose-Einstein condensates
were induced via cavity mediated interactions [40, 41], spin-
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orbit coupling [42, 43], shaken optical lattices [44, 45], driven
interactions [46] and dipolar interactions [47–49]. These in-
stabilities were tightly connected to evidence for supersolid-
ity, the simultaneous existence of spatial and superfluid or-
der [39, 41, 43, 50–52]. In our case, the instability to density-
wave order arises purely from the interplay of contact inter-
actions and a gauge field. No external drive is present, nor is
there any residual scalar potential in the rotating frame. The
absence of kinetic energy in the LLL directly implies that the
crystallization rate is set solely by the interaction energy of
the gas.

By increasing the condensate density such that many Lan-
dau levels become populated, we observe a crossover from
LLL behaviour to a hydrodynamic instability driven by the
sheared internal velocity profile. Analogous phenomena are
ubiquitous throughout hydrodynamics, from the diocotron in-
stability in charged plasmas [53] and fragmentation of elec-
tron beams [54], to the Kelvin-Helmholtz instability in atmo-
spheric and astrophysical systems [55, 56]. In the context of
superfluids, for which the circulation is quantized, the Kelvin-
Helmholtz instability has been detected in liquid helium [57],
and theoretically predicted at the boundary between counter-
flowing condensates [58]. In our superfluid hydrodynamic
setting, we directly observe streets of quantized vortices sepa-
rating emergent droplets, revealing the quantum nature of the
instability at the most microscopic level.

To analyze the instability, consider the condensate in the
frame rotating at the frequency ω of the isotropic harmonic
trap, where it experiences a synthetic magnetic field but no
scalar potential (see Fig. 1a,b), and thus evolves under the
Hamiltonian

Ĥ =

∫
d2r Ψ̂†

[
(p̂− qA)

2

2m
+
g

2
Ψ̂†Ψ̂

]
Ψ̂. (1)

Here Ψ̂†(r) is the bosonic field operator, p̂ is the canonical
momentum, q and A are the charge and vector potential in the
equivalent magnetic problem, and g is the two-dimensional
mean-field coupling constant. Geometric squeezing prepares
a translationally-invariant condensate most conveniently de-
scribed within the Landau gauge qA = (0,mωcx) [22] for
which the Hamiltonian becomes

Ĥ =

∫
d2r Ψ̂†

[
p̂2
x

2m
+

1

2
mω2

c

(
x̂− p̂y`

2
B

h̄

)2

+
g

2
Ψ̂†Ψ̂

]
Ψ̂.

(2)

Cyclotron motion of the atoms is reflected in an effective har-
monic oscillator along the x-direction of frequency ωc = 2ω,
whose non-interacting energy states correspond to different
Landau levels (see Fig. 1b). Each level is macroscopically
degenerate since it costs no energy to translate the centers
of cyclotron orbits. Initially, the y-momentum of all atoms
is zero, and their cyclotron motion centred at x = 0 with a
two-dimensional number density n2D(x). The condensate has
uniform phase and thus features a sheared velocity profile

v = −qA/m = (0,−ωcx) proportional to the vector poten-
tial (see Fig. 1c). We parameterize the crossover from LLL
to hydrodynamic behaviour by the ratio gn

h̄ωc
of the conden-

sate’s mean-field energy ∼ gn to the Landau level spacing
h̄ωc, giving a measure for the number of occupied Landau
levels [22, 33]. Here n = n2D(0) is the peak density. In our
experiment gn

h̄ωc
varies from 0.6 to 7.3, corresponding to a cen-

tral filling fraction n`2B of 50 and higher, meaning the conden-
sate lies within the mean-field quantum Hall regime [13, 16].

The dynamical instability illustrated in Fig. 1 can be under-
stood in the low- and high-density limits as follows. When
gn <∼ h̄ωc, the condensate is restricted to the LLL and shows
a Gaussian transverse density profile with a 1/e radius of
`B [22, 36]. A Bogoliubov analysis around this state generi-
cally results in a Hamiltonian of the form [15]

ĤLLL =
∑

k>0

Ak

(
â†kâk + â†−kâ−k

)
+Bk

(
â†kâ
†
−k + âkâ−k

)
,

(3)
where âk is the annihilation operator for a particle with mo-
mentum h̄k along the y-direction. This Hamiltonian describes
pairs of modes ±k, with natural frequency Ak/h̄ and cou-
pled by a pair-creation operator of strength Bk which cor-
responds to a two-mode squeezing interaction in the lan-
guage of quantum optics. In a non-rotating uniform con-
densate, Ak = h̄2k2

2m +gn and Bk = gn [59] and hence pair-
creation is always weaker than the mode energy, leading to
stable excitations However, the effective magnetic field pro-
foundly changes this picture. First, in the LLL there is no
kinetic energy contribution to Ak. Second, as illustrated
in Fig. 1c, the coupling between momentum and position
means that states with k 6= 0 have a reduced overlap with
the condensate and a correspondingly lower interaction en-
ergy. One finds [15] Ak = gn

[
2 exp(−k2`2B/2)− 1

]
/
√

2

and Bk = gn exp(−k2`2B)/
√

2, and the resulting dispersion
εk =

√
|Ak|2 − |Bk|2 is shown in Fig. 1d. The spectrum is

imaginary for an entire range of wavevectors k > 0 beyond
the zero-energy Goldstone mode at k = 0, indicating dynam-
ical instability of the Goldstone branch and correlated expo-
nential growth of ±k pairs of these modes. Their interference
with the k = 0 condensate results in a density modulation (see
Fig. 1c). The fastest growth occurs at a wavevector ∼ 1/`B
giving a spatial modulation wavelength ∼ 2π times the mag-
netic length. This mode eventually becomes macroscopically
occupied, corresponding to condensation of magneto-rotons
and yielding a density modulation contrast of order unity.
Crucially, since interactions provide the only energy scale in
the LLL, the instability growth rate is determined purely by
the interaction energy gn.

In the high-density limit where gn� h̄ωc, a hy-
drodynamic description neglecting quantum pressure is
valid. In this regime, the condensate initially exhibits
a Thomas-Fermi density profile n2D ∝ 1−x2/R2

TF where

RTF =
√

2gn
mω2

c
=
√

2gn
h̄ωc

`B [36, 60]. The Coriolis force
2mv×Ω on each fluid element resulting from the shear flow
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v = (0,−ωcx) perfectly balances the local gradient of mean-
field energy, resulting in an inhomogeneous equilibrium den-
sity despite the absence of any scalar potential. Our hydrody-
namic stability analysis about this equilibrium state reveals a
dynamical snaking instability of the cloud [36], in analogy to
the Kelvin-Helmholtz instability of counterflow in fluid lay-
ers [55, 56], and the diocotron instability of charged plasmas
and electron beams [53, 54]. The absence of quantum pres-
sure means that the Thomas-Fermi radius and cyclotron fre-
quency provide the only lengthscale and rate. Within the hy-
drodynamic analysis the instability develops at a wavevector
set by the condensate width, as in the LLL, but at a density-
independent rate ∝ ωc in striking qualitative contrast to the
growth rate in the LLL.

From these arguments, for all condensate densities
we anticipate an emergent density modulation with a
lengthscale set by the width of the initial cloud. For a
quantitative analysis, from our experimental images (see
Fig. 1e) we obtain the static structure factor Sk ≡ |nk|2/N ,
where nk =

∫
dy n1D(y) e−iky is the Fourier transform

of the one-dimensional number density n1D(y) and
N =

∫
dy n1D(y) [48]. In Fig. 2a we show examples of

Sk obtained once the density modulation has fully developed,
which show a well-defined peak at a wavevector kmax. We
attribute the much smaller secondary peak at 2kmax to the
contiguous traces of condensate linking adjacent droplets.
In Fig. 2c we show kmax as a function of the condensate
density, which is parameterized by the ratio R/`B where
R is the full-width-at-half-maximum of the initial cloud
divided by 2

√
log 2. This normalization is chosen such

that R/`B → 1 for vanishing gn, while in the high-density
limit R/`B =

√
gn/(h̄ωc log 2). At all densities, we

indeed find an instability lengthscale of order the cloud
width, kmax ∼ 1/R. The star indicates the LLL prediction
kmax = 0.98/`B and the dashed line shows the hydrodynamic
result kmax = 0.95/R [36] neglecting quantum pressure. The
solid line presents kmax that we obtain from a numerical
solution of the Bogoliubov equations [36], showing excellent
agreement with the data without any free parameters.

While the cloud width sets the instability lengthscale in
both the LLL and hydrodynamic regimes, the growth rate
shows qualitatively different behaviour. In Fig. 3a, we show
Sk as a function of time for several different condensate den-
sities. In addition to the decrease in the instability lengthscale
at lower densities, we observe a concurrent reduction of the
growth rate. At each wavevector we fit the time-evolution of
the structure factor with the theoretically expected function
Sk(t) = A cosh(2Γt) [36], and extract the instability growth
rate Γ(k). This is reported in Fig. 3b, along with the imagi-
nary component of the corresponding Bogoliubov spectrum
which shows good agreement without any free parameters.
We note that the experimental data also reveal some growth
in Sk at higher wavevectors than the unstable region predicted
by the linear Bogoliubov analysis. We attribute this to non-
linear effects, and have performed numerical simulations of
the Gross-Pitaevskii (GP) equation, finding that these exhibit

the same behaviour [36].
We capture the typical crystallization rate corresponding to

a particular condensate density by the growth rate of the dom-
inant instability, Γ(kmax), and in Fig. 3c plot this as a function
of R/`B . When R/`B � 1 the rate is density-independent
and consistent with our hydrodynamic result Γ = 0.14ωc,
shown by the dashed line. However, for lower interaction
energies the gas enters the LLL where gn provides the only
energy scale. We observe a concurrent slowing down of
the instability, and the data approach the LLL prediction
Γ = 0.21gn/h̄ indicated by a dotted line. At all densities, the
data show good agreement with the rate obtained from our
Bogoliubov analysis, reported as the solid line.

After its initial hyperbolic growth, Sk reaches a steady-state
as shown in the inset of Fig. 3c. The emergent crystal is long-
lived, with each droplet stabilized by a balance of the out-
ward mean-field pressure and an inwards Coriolis force. This
arises from the circulating flow within each droplet which is
imposed by the gauge field, and is evident from vortices inter-
secting adjacent droplets (see Fig. 1e). The counterflow speed
at the interface of two droplets of radius R is ∼ ωcR, giving a
gradient of mωcR/h̄ in the relative phase and a vortex spac-
ing of 2π`2B/R. Adjacent droplets are therefore separated by
∼ (R/`B)2 vortices. In the limit of classical hydrodynamics
this number is large and the quantization of circulation is ir-
relevant, while in the LLL adjacent droplets are separated by
a single vortex [15].

While the dynamical instability drives the growth of a den-
sity modulation, the initial seeding of the unstable mode must
arise from thermal or quantum fluctuations in the gas density
at t = 0 [36]. Since the phase of these fluctuations is random,
this results in spontaneous breaking of the initial translational
symmetry of the condensate. In Fig. 4 we show the phase and
visibility of the density modulation observed in different iter-
ations of our experiment. To account for small fluctuations in
the overall cloud position, we fit the one-dimensional density
profile with a sinusoidal function modulated by a Gaussian
envelope, and obtain the modulation phase φ relative to the
centre-of-mass of the cloud. At all densities we find that the
phase is uncorrelated between different experimental realiza-
tions, indicating spontaneous breaking of the initial transla-
tional symmetry.

The emergent crystallization observed here offers a pristine
example of collective physics arising purely from the interplay
of interparticle interactions and a gauge field. The steady state
breaks both theU(1) symmetry associated with the wavefunc-
tion’s phase as well as translational symmetry and thus dis-
plays supersolid properties [39]. A natural immediate direc-
tion concerns the Goldstone mode associated with the spon-
taneous breaking of translational symmetry, corresponding to
magneto-phonons in the droplet array [9]. This would be a re-
markable instance of a propagating mode arising intrinsically
from interactions, in the absence of any single-particle dynam-
ics. While the densities in our experiment correspond to tens
of atoms per flux quantum, our protocol can be straightfor-
wardly extended to prepare clouds of lower filling fractions,
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which are expected to host beyond-mean-field, strongly cor-
related bosonic quantum Hall states [13–17, 19, 20, 60].
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Methods

Preparation of Landau gauge condensates We prepare
condensates occupying a single Landau gauge wavefunction
using the geometric squeezing protocol described in [22]. We
begin with a condensate of 8.1(1) × 105 atoms of 23Na in an
elliptical time-orbiting-potential (TOP) trap [61], with a rms
radial frequency ω = 2π × 88.6(1) Hz, ellipticity 0.125(4),
and axial frequency 2.8ω. We then rotate the ellipticity of
the trap, ramping the rotation frequency from zero to ω. In
the rotating frame, atoms experience both a synthetic mag-
netic field and a scalar saddle potential. Isopotential flow on
this saddle, in analogy to the E×B Hall drift of electromag-
netism, leads to elongation and contraction of the condensate
along orthogonal directions and effecting unitary squeezing of
the atomic density distribution [22]. We then turn off the sad-
dle potential by setting the trap ellipticity to zero, which halts
the outward flow of atoms. This results in an equilibrium,
quasi-translationally-invariant condensate freely rotating at ω,
which we allow to evolve for a variable time t. Finally, we ob-
tain an absorption image of the in situ density distribution.

Imaging setup Our imaging resolution is sufficient to ob-
serve vortices in situ with a contrast of ∼ 60% [22]. In the
Thomas-Fermi regime, these have a characteristic size set by
the healing length, which is ∼ 300 nm in our system. This
is significantly smaller than the quantum-mechanical ground
state size of cyclotron orbits, set by the rotational analog of
the magnetic length, `B =

√
h̄/(2mω) = 1.6 µm.

Coupling constant Given interaction energies close to
the LLL, the axial motion at frequency 2.8ω is predomi-
nantly in its ground state. The coupling constant is then
g = 4πh̄2a

m

∫
dz |φ(z)|4, where a is the three-dimensional s-

wave scattering length, and φ(z) is the axial wavefunction
with normalization

∫
dz |φ(z)|2 = 1.

Stability analysis To theoretically investigate the crys-
tallization process, we perform a stability analysis of the ini-
tial Landau gauge condensate. In the Thomas-Fermi limit,
we may neglect the quantum pressure term in the superfluid
hydrodynamic equations. We linearize the equations about
the original unperturbed condensate [62], and find an exact
analytical solution for the density and the velocity perturba-
tions in terms of the Heun function [63]. The initial coun-
terflow leads to an instability of Kelvin-Helmholtz type, and
the analysis displays a dynamical instability with a most crit-
ical wavevector at kmax = 1.12 /RTF = 0.95/R and a rate
Γ = 0.14ωc. To treat the entire region from the LLL to the
Thomas-Fermi regime, we perform a numerical Bogoliubov
analysis. In the LLL limit, the crystallization growth rate is
given by Γ = 0.21 gn/h̄, and the most critical wavevector
is kmax → 0.981 /`B . The Bogoliubov analysis shows that
the growth rate of the dominant wavevector evolves smoothly
from being interaction dominated (Γ ∼ 0.21 gn/h̄) in the LLL
regime, to being set by the cyclotron frequency (Γ ∼ ωc) in

the Thomas-Fermi regime. Further details are provided in the
supplementary information.

Gross-Pitaevskii simulation To provide insight into the
crystallization dynamics beyond what can be captured in the
linear stability analysis, we perform a numerical simulation of
our experiment based upon the Gross-Pitaevskii (GP) equa-
tion. Within a single-mode approximation, the condensate
wavefunction ψ(r, t) evolves in the rotating frame as,

ih̄
∂

∂t
ψ =

[−h̄2∇2

2m
+ V + g|ψ|2 −Ω · L

]
ψ. (4)

Here, m denotes the atomic mass of 23Na, g =
√

8π h̄
2as
mlz

is the two-dimensional mean-field coupling constant, as =

3.3 nm is the scattering length, lz =
√

h̄
mωz

is the harmonic
oscillator length of the axial trap, ωz = 2.8ω is the trap fre-
quency in the z-direction, ω = 2π × 88.6 Hz is the rms radial
trap frequency, Ω = Ω(t)ẑ is the angular velocity, L is the an-
gular momentum operator, and V is a complex scalar poten-
tial. The real part Re(V ) = 1

2mω
2[(1+ε)x2+(1−ε)y2] is the

radial trapping potential with ellipticity ε, while the imaginary
part Im(V ) ∝ 1 + erf[(r − R∞)/σ)] serves as an absorbing
circular boundary. The absorbing radius R∞ is chosen to be
much larger than the transverse size of the condensate, and we
use a wall thickness σ = R∞/10. We implement the evolu-
tion of Eq. (4) on a square grid using the time-splitting spectral
method [64] and accelerate the simulation by performing the
bulk of the computation on a graphics processing unit (GPU).

The simulated experimental sequence is identical to the ex-
periment. We first perform geometric squeezing of an ini-
tially circular condensate [22], before setting the trap elliptic-
ity ε→ 0 after which the condensate evolves freely for a time
t in the rotating frame.

We find that without the explicit addition of noise, the con-
densate does not exhibit any instability except near the bound-
aries, due to residual edge effects not mitigated by the ab-
sorbing potential (see Extended Data Fig. 1a). On the other
hand, seeding of the dynamical instability by the addition of
gaussian phase noise at time t = 0 results in a very similar
simulated evolution (Extended Data Fig. 1b) compared to the
experiment (Extended Data Fig. 1c).

We perform an identical analysis procedure as in the ex-
periment (see main text) on the simulated density profiles in
order to obtain the structure factor Sk(t), shown in Extended
Data Figs. 1d-e, and the instability growth rate shown in Ex-
tended Data Fig. 1f. The red points show the experimental in-
stability growth rate as a function of wavevector k, while the
black line shows the prediction of our Bogoliubov analysis.
For comparison, the blue line shows the rate extracted from
the simulation, which captures the observed growth at higher
wavevectors than the unstable range predicted by the Bogoli-
ubov approach. This suggests that such growth can indeed be
attributed to nonlinear effects, which are not captured by the
perturbative Bogoliubov approach. In addition to oscillations
in Sk at the cyclotron frequency ωc, a slower modulation is
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also observed. We attribute this oscillation to rotation of the
individual droplets in the crystal.

In both experiment and simulation the emergent crystal is
long-lived, persisting for ωct/(2π) > 20. In the experiment
the lifetime is only limited by the weak ∝ r4 anharmonicities
in the trapping potential, leading to a slow S-shaped distortion
of the linear crystal, similar to the Kerr effect on non-classical
states in quantum optics.

Vortex detection and phase profile: In the rotating
frame, each droplet exhibits an irrotational flow profile, with
vortices surrounding the droplets. These vortices are directly
visible in the experimental density image, and can be used
to reconstruct the phase profile of the crystal in the rotating
frame (see Extended Data Fig. 2(a, c, e)). The phase is de-
termined by the locations of the vortices, which are assumed
to each have a single unit of circulation 2πh̄/m. Most vor-
tices are outside of the bulk of the condensate, making their
detection challenging. Nevertheless, a numerical solution of
the GP equation shows similarly located vortices (Extended
Data Fig. 2d), as well as a similar irrotational flow profile in
the rotating frame (Extended Data Fig. 2f).

Data availability All data files are available from the
corresponding author upon request. Accompanying data, in-
cluding those for figures, are available from the Zenodo repos-
itory (https://doi.org/10.5281/zenodo.5533142).

Code availability The simulation and analysis code is
available from the corresponding author upon reasonable re-
quest.
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FIG. 1. Spontaneous crystallization of an interacting Bose-Einstein condensate in an artificial magnetic field. (a) In the laboratory frame,
the condensate freely rotates in a circularly symmetric harmonic trap at the trapping frequency ω. Occupied states in the energy spectrum are
sketched (Lz: angular momentum). (b) In the rotating frame, the condensate experiences an effective magnetic field B but no scalar potential.
The energy spectrum is flattened into Landau levels (k: momentum along y). Only the k = 0 Landau gauge wavefunction is occupied. (c) The
irrotationality of the condensate in the laboratory frame imposes a sheared velocity profile in the rotating frame which is dynamically unstable
towards a periodic density modulation. Motion with momentum h̄k along the y-direction is tied to sideways displacement of the wavefunction
along x. The reduced overlap of |k| > 0 states with the k = 0 condensate lowers the interaction energy cost of collective excitations, leading
to spontaneous population of ±k pairs whose interference with the condensate results in a density modulation. (d) This dynamical instability
is reflected in a (Goldstone) collective excitation branch which is imaginary across a range of wavevectors, shown by a red line. The spectrum
shown is calculated for a condensate in the LLL, for which the interaction energy gn provides the only relevant energy scale and the magnetic
length `B = 1.6µm sets the length scale. Here g is the mean-field coupling constant, and n = n2D(0) is the peak 2D density. (e) Absorption
images of the evolution of the condensate density in the rotating frame, displaying a snake-like instability and the formation of droplet arrays.
Here, the cloud width R = 2.34 `B , and the frames are taken at 0, 5, 6.2, 8.5, and 10 cyclotron periods (2π/ωc = 5.6 ms). The zoom-in
reveals vortex streets between adjacent droplets, indicating counterflow at their interface.
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reflects the periodic modulation of the cloud density. (b) Corresponding images of the steady-state crystal, illustrating the decrease in the
modulation lengthscale with falling condensate density. (c) Dependence of the dominant modulation wavevector, kmax, on the cloud width,
R/`B . The LLL and hydrodynamic results are indicated by the star and dashed line respectively (see text). The solid line shows the prediction
of our Bogoliubov analysis [36], which shows excellent agreement with our data with no free parameters.
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Solid line: Bogoliubov analysis [36]. The inset shows Sk(t) at kmax for condensates in the hydrodynamic regime (dark red) and the LLL (light
red), along with the corresponding fits used to extract the rate (see text).

203



11

b

c
visibility

1

21e4

1

2

n 1
D
 (μ

m
−1

)

−50 0 50
y (μm)

0

1

2

a

−50 0 50
y (μm)

0

1

2

n 1
D
 (μ

m
−1

)1e4

0°

45°

90°

135°

180°

225°

270°

315° R/ℓB = 3.21
R/ℓB = 1.47

FIG. 4. Spontaneous breaking of translational symmetry. (a) Images of the emergent crystal in three experimental iterations, along with
the integrated one-dimensional density profiles n1D(y). The vertical dashed line shows the position of the centre-of-mass of the cloud, relative
to which the modulation phase is random. (b) An image of the cloud averaged over 60 iterations, in which the density modulation is no longer
visible. (c) The phase, φ, and visibility of the density modulation measured for multiple iterations of the experiment, for two different initial
condensate densities. The visibility appears largely independent of the phase chosen by the modulation. The phase is randomly distributed
between 0 and 2π, indicating spontaneous breaking of the initial translational symmetry of the cloud.

204



12

a

b

c

d

e

f

Simulation: No noise seed

Simulation: With noise seed

Experiment

Extended Data Figure 1. Numerical GP simulation of the condensate evolution in the rotating frame. (a-c) Time evolution of the
condensate density without the addition of noise (top), with added phase noise (middle), and in the experiment (bottom). The frames correspond
to times ωct/(2π) = 0, 4, and 6. (d-e) Evolution of the structure factor Sk(t) extracted from the simulation (d) and the experiment (e) which
show good agreement. (f) The extracted instability growth rate as a function of wavevector k. The experimental measurements are shown by
red points, and the Bogoliubov prediction by the black line. The blue line shows the result of the GP simulation. Here, the blue shading and
the red error bars indicate 1σ standard error. This model captures the experimentally measured growth at wavevectors above the instability
region provided by the linear Bogoliubov description.
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Extended Data Figure 2. Phase profile of the crystal (a, b) The density profiles of the crystals in the experiment (a) and GP simulation (b)
appear to contain vortices which are marked in (c, d). (e) The phase of the macroscopic wavefunction can be inferred from the locations of
the vortices in the experimental image. Note that additional contributions from undetected vortices may exist. (f) The simulated phase profile
from a GP simulation shows a similar structure of irrotational flow within each segment of the crystal. In both (e) and (f), the phase shown is
in the rotating frame.
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BOGOLIUBOV STABILITY ANALYSIS OF LANDAU GAUGE CONDENSATES

A condensate prepared to have uniform phase in the Landau gauge - a “Landau gauge condensate” - is energetically unstable:
an infinitely extended Bose gas has lower energy. However, in the absence of dissipation - as in the experiment - this does not
itself lead to an instability. The question is whether the system is dynamically unstable, which would cause exponential growth of
excitations and an isoenergetic transition into a new state. To search for dynamically unstable modes and to obtain their growth
rate and spatial structure we perform a stability analysis of Landau gauge condensates via the Bogoliubov approach [1–3]. We
expect the initial unmodulated condensate to be well-described within a single-mode framework, and expand the Hamiltonian
in the Landau gauge, Eq. 2 of the main text, to second order in small fluctuations δψ̂ of the bosonic field Ψ̂ = ψ0 + δψ̂ about
the initial condensate wavefunction ψ0 [1–3]. To ensure number conservation one employs the grand-canonical Hamiltonian
K̂ = Ĥ − µN̂ with chemical potential µ:

K̂ = Ĥ − µN̂ ≈ const.+

∫
d2r δψ̂†

(
ĥ− µ0 + 2g |ψ0|2

)
δψ̂ +

1

2
g

∫
d2r

(
ψ∗0

2δψ̂ δψ̂ + δψ̂†δψ̂†ψ2
0

)
. (1)

with the single-particle Hamiltonian in the Landau gauge ĥ =
p̂2x
2m + 1

2mω
2
c

(
x̂− p̂yl

2
B

~

)2

and the constant term a function of

ψ0. Terms first order in δψ̂ vanish if ψ0 obeys the stationary Gross-Pitaevskii (GP) equation ĥψ0 + g |ψ0|2 ψ0 = µ0ψ0. Since
the initial wavefunction ψ0 = ψ0(x) is translationally invariant along y, this reads

(
− ~2

2m

d2

dx2
+

1

2
mω2

cx
2 + g |ψ0(x)|2

)
ψ0(x) = µ0ψ0(x), (2)

which is formally equivalent to the GP equation of a Bose-Einstein condensate in a one-dimensional harmonic oscillator (h.o.)
potential of frequency ωc. We solve Eq. 2 numerically via imaginary time evolution, choosing ψ0(x) to be real and normal-
ized such that

∫
dx |ψ0(x)|2 = n1D, where n1D is the initial one-dimensional number density. A dimensionless quantity

measuring the interaction energy, relative to the cyclotron level spacing ~ωc, is g̃ ≡ gn1D

lB~ωc
. Near the lowest Landau level,

the interaction is a small perturbation, resulting in the gaussian density ψ2
0(x) = n1D√

πlB
e−x

2/l2B and µ0 ≈ ~ωc

2

(
1 +

√
2
π g̃
)

,

close to the ground-state cyclotron energy. In the Thomas-Fermi regime, where the term p̂2
x/2m can be neglected, one obtains

gψ2
0(x) = µ0 − 1

2mω
2
cx

2 with µ0 = 1
2~ωc

(
3
2 g̃
)2/3

.

Translation invariance of ψ0(x) and ĥ along y allows expanding δψ̂ =
∑
k

1√
L
eikyφ̂k(x) into bosonic fields φ̂k(x) of well-

defined y-momentum ~k, with L the spatial extent of the system in the y-direction. The quadratic part of Eq. 1 then becomes,
using matrix notation,

K̂2 =
1

2

∑

k

∫
dx
(
φ̂†k φ̂−k

)( ĥk − µ0 + 2gψ2
0 gψ2

0

gψ2
0 ĥ−k − µ0 + 2gψ2

0

)(
φ̂k
φ̂†−k

)

=
1

2

∑

k

〈Φ̂k|Ĥk|Φ̂k〉 (3)

with ĥk =
p̂2x
2m + 1

2mω
2
c

(
x− kl2B

)2
, Φ̂k =

(
φ̂k φ̂

†
−k

)T

, Ĥk(x) the 2 × 2 matrix operator of the first line in Eq. 3, and

〈f |g〉 =
∫

dx f†(x) · g(x) for vectors f , g. Momentum conservation along y ensures that allowed scattering processes result
in either the simultaneous creation or simultaneous annihilation of a pair of states with momenta k and −k. Consequently the
Hamiltonian only mixes a particle with y-momentum k with a hole of y-momentum −k, as is explicit in the 2× 2 particle/hole
matrix notation. The Bogoliubov Hamiltonian Ĥk(x) in Eq. 3 is Hermitian, has only real eigenvalues (bounded from below
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by −µ0) and thus K̂2 has only real expectation values in any state. However, the time evolution of the bosonic field operators
φ̂k(x, t) evolving under the grand-canonical Hamiltonian K̂ is given by i~ ∂

∂t φ̂k =
[
φ̂k, K̂

]
, and with the bosonic commutation

relations
[
φ̂k(x), φ̂†k′(x

′)
]

= δk,k′δ(x− x′) we have

i~
∂

∂t
Φ̂k =

(
ĥk − µ0 + 2gψ2

0 gψ2
0

−gψ2
0 −(ĥ−k − µ0 + 2gψ2

0)

)
Φ̂k = ηĤkΦ̂k (4)

with η =

(
1 0
0 −1

)
acting in particle-hole space [4, 5]. The evolution of the field operators is thus governed by an operator

ηĤk that is in general non-Hermitian and can thus feature complex eigenvalues, leading to exponential growth of fluctuations -
the system features dynamical instabilities [6].

Symmetries, eigenvectors and eigenvalues of ηĤk

For each k, the Hamiltonian matrix Ĥk is real, Ĥ∗k = Ĥk, and symmetric under simultaneous reflection of space R̂ (i.e.

R̂xR̂ = −x) and exchange of particles and holes, i.e. Ĥk = γR̂ĤkR̂γ with γ =

(
0 1
1 0

)
exchanging particles and holes. It

follows that given an eigenvector Vk,n of ηĤk with eigenvalue εk,n, the vector V∗k,n is also an eigenvector with eigenvalue ε∗k,n,
and γR̂Vk,n and γR̂V∗k,n are eigenvectors with eigenvalues −εk,n and −ε∗k,n, respectively. The latter follows from γη = −ηγ.
We also note that Ĥ−k = R̂ĤkR̂ implying that R̂Vk,n ≡ V−k,n is eigenvector of ηĤ−k with eigenvalue ε−k,n = εk,n.
In general, the four values εk,n, ε∗k,n, −εk,n and −ε∗k,n are all different, implying an oscillatory evolution of exponentially
increasing and decreasing amplitudes. The instability studied in the present work concerns the mode of lowest |εk,n| for given
k, the Goldstone branch which we label by n=0. It is smoothly connected to the Goldstone mode at k=0 of zero frequency,
ε0,0=0, that reflects the free choice of the overall phase of the condensate, i.e. its U(1) symmetry. An associated second mode
with zero eigenvalue of (ηĤ0)2 describes the global phase fluctuations [7]. The next excited mode, n=1, is correlated near k=0
with the cyclotron oscillation. At k=0 the n=1 mode lies precisely at the cyclotron energy ε0,1 = ~ωc, according to Kohn’s
theorem [8, 9]. The modes at k>0 of the Goldstone branch, connecting to the Goldstone density and phase modes at k=0,
are thus well separated from any other excitations, so that this branch is described by only two, not four, distinct eigenvalues.
This implies that either εk,0 = ε∗k,0, i.e. one has two real eigenvalues ±εk,0, or εk,0 = −ε∗k,0, i.e. one has two purely imaginary
eigenvalues±εk,0. For excitations of non-rotating condensates in their ground state, only the first case occurs and corresponds to
the usual Bogoliubov phonon excitations. Here, instead, we find, in an entire range of momenta between k = 0 and a maximum
k = kc, the case of purely imaginary frequencies εk,0, corresponding to the exponential growth of correlated excitations at ±k
that causes the “snake-like” dynamical instability. Results of the numerical solution of ηĤkVk,n = εk,nVk,n are shown in
Fig. 1, from deep in the lowest Landau level (g̃ . 1) to the Thomas-Fermi regime (g̃ � 1).

Relation between eigenvalues of Ĥk and ηĤk

The difference between stable and dynamically unstable excitations is analogous to the difference between the stable
motion in a harmonic oscillator potential and the unstable motion of a particle in an inverted harmonic oscillator. The
correspondence becomes explicit if we introduce the Hermitian operators Q̂k(x) =

(
φ̂k(x) + φ̂†k(x)

)
/
√

2 and P̂k(x) =

−i
(
φ̂k(x)− φ̂†k(x)

)
/
√

2 obeying
[
Q̂k(x), P̂k′(x

′)
]

= iδk,k′δ(x− x′). They are related to the density and current fluctuations
of the condensate, as the density operator is

n̂(x, y) = Ψ̂†Ψ̂ ≈ |ψ0|2 + ψ0(δψ̂ + δψ̂†) = |ψ0|2 + ψ0

√
2

L

∑

k

cos(ky)Q̂k(x)− sin(ky)P̂k(x)

and ĵ ≈ |ψ0|2∇Θ̂ with the linear fluctuation part of the velocity potential operator [2]

Θ̂ =
~

2miψ0

(
δψ̂ − δψ̂†

)
=

~
2mψ0

√
2

L

∑

k

cos(ky)P̂k(x) + sin(ky)Q̂k(x)
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FIG. 1. Bogoliubov spectra from the Lowest Landau Level to the Thomas-Fermi regime. The interaction parameters g̃ ≡ gn1D
lB~ωc

for (a-e)
are 0.3, 1, 3, 10, 40, corresponding to R/lB = 1.04, 1.14, 1.39, 2.01, 3.28., capturing the evolution from the flat spectra deep in the LLL to
the more intricate crossings in the Thomas-Fermi regime. The bottom panel shows a zoomed-in region focusing on the unstable Goldstone
branch (red). In the bottom panel of (a), the growth rate/excitation frequencies are normalized by gn, with n = |ψ0(0)|2 = n1D/(

√
πlB) the

central 2D density in the LLL. The dashed line in this panel shows the result in the deep LLL limit using [10]. In the Thomas-Fermi regime,
the dashed line in e) shows the result of the hydrodynamic calculation (see text). Note the existence of complex eigenvalues with Re(εk) 6= 0
near the curve crossings, indicated by purple lines.

In terms of Q̂k and P̂k, we have K̂2 = 1
4

∑
k〈Q̂k|Ĥk|Q̂k〉+ 〈P̂k|ηĤkη|P̂k〉 with Q̂T

k = (Q̂k Q̂−k) and P̂T
k = (P̂k P̂−k). So

we can think of Ĥk as representing the matrix of “spring constants” and ηĤkη the matrix of “inverse masses” in the oscillator
analogy. Dynamical instabilities can arise in an oscillator when either a spring constant becomes negative, while the mass
remains positive, or vice versa.
The time evolution d

dtQ̂k =
[
Q̂k, K̂2

]
= ηĤkηP̂k and d

dt P̂k = −ĤkQ̂ yields d2

dt2 Q̂k = −ηĤkηĤkQ̂k
!
= −ε2kQ̂k showing

that eigenfrequencies of the motion correspond indeed to the eigenvalues of the operator ηĤk. The Hermitian operators Ĥk

and ηĤkη share their (real) eigenvalues, and if Uk,n is an eigenvector of Ĥk of eigenvalue Ek,n, then ηUk,n is the eigen-
vector of ηĤkη with that same eigenvalue. With Ok,nm = 〈Uk,n|η|Uk,m〉 =

∫
dxUk,n(x)ηUk,m(x) the matrix effecting

the basis change, which is symmetric and orthonormal (so O2
k = 1), we have 〈Uk,n|ηĤkη|Uk,m〉 =

∑
lOk,nlEk,lOk,lm =

(OkEkOk)nm, with Ek the diagonal matrix of eigenvalues of Ĥk (the “spring constants”). The squared eigenfrequencies ε2k are
thus eigenvalues of OkEkOkEk, and so the eigenfrequencies εk themselves are eigenvalues of OkEk, the matrix describing ηĤk

in the basis of eigenvectors of Ĥk. Importantly, whenever a “spring constant” or “inverse mass” equals zero, i.e. one of the
eigenvalues of Ĥk equals zero, one eigenfrequency εk of ηĤk also equals zero. Regions in the variable k featuring dynamical
instabilities with purely imaginary eigenfrequency are thus bounded by values of k where consecutive eigenvalues Ek of Ĥk

equal zero. This is analogous to a harmonic oscillator slowing down and becoming dynamically unstable as its spring constant
changes from positive to negative, followed by its mass diverging and changing sign to yield again a dynamically stable, but
thermodynamically unstable, oscillator. A famous example of the latter situation is the magnetron motion in Penning traps [11].

Since Ĥk commutes with simultaneous reflection and particle-hole exchange, i.e. with γR̂, eigenvectors of Ĥk can be found
as eigenvectors of γR̂ with eigenvalue σ = +1 or −1, which are states of the form U± = (u(x),±u(−x))

T, leading to the two
eigenequations

(ĥk − µ0 + 2gψ2
0)uk,n±(x)± gψ2

0uk,n±(−x) = Ek,n±uk,n±(x)

The lowest energy for σ= − 1 and k=0 is E0,0−=0, for u(x) = ψ0(x), and U0,0−(x) = (ψ0(x),−ψ0(x))
T
/
√

2 is the
Goldstone mode. Since ψ0(x) is the ground state for a condensate trapped in a 1D harmonic oscillator, the Hamiltonian Ĥ0,
describing fluctuations that are translation invariant along y, is positive semi-definite, with eigenvalues E0,n± all positive or
zero. For k > 0, the decreasing overlap of the eigenfunction uk,0− with the condensate centered at x = 0 causes the eigenvalue
Ek,0− to become negative, corresponding to the case of a negative spring constant. K̂2 then contains a term corresponding to an
inverted oscillator potential, 1

2Ek,0−Q̂2
k,0− with Q̂k,nσ ≡ 〈Uk,nσ|Q̂k〉 the “position” operators, with the canonically conjugate

“momentum” operators P̂k,nσ ≡ 〈Uk,nσ|P̂k〉 and commutation relations
[
Q̂k,nσ, P̂k,mσ′

]
= iδnmδσσ′ .
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FIG. 2. Relation between Goldstone branch instability and eigenenergies of the Bogoliubov Hamiltonian Ĥk. The decrease of overlap with
the condensate at non-zero k renders the lowest eigenvalue Ek,0− of Ĥk negative, corresponding to an inverted oscillator potential (negative
spring constant). The Goldstone branch is unstable, εk,0 being purely imaginary, until the second eigenvalue Ek,0+ of Ĥk becomes negative,
corresponding to a negative mass oscillator and resulting in stable motion, with εk,0 real.

To obtain the matrix of inverse masses, we note that since η anti-commutes with particle-hole exchange, ηγ = −γη, it only
connects states of opposite γR̂ symmetry, so 〈Uk,n+|η|Uk,m+〉 = 〈Uk,n−|η|Uk,m−〉 = 0. With O+−

k,nm ≡ 〈Uk,n+|η|Uk,m−〉 =∫
dxuk,n+(x)uk,m−(x) = O−+

k,mn we find for the “inverse mass” matrix 〈Uk,n+|ηĤkη|Uk,m+〉 =
(
O+−
k Ek−O−+

k

)
nm

and
〈Uk,n−|ηĤkη|Uk,m−〉 =

(
O−+
k Ek+O+−

k

)
nm

with Ekσ the diagonal matrix of eigenvalues Ek,σ . The squared Bogoliubov
eigenfrequencies ε2k are thus eigenvalues of the matrix O−+

k Ek+O+−
k Ek−.

Fig. 2 shows the generic case. The branch Ek,0−, the lowest eigenvalue of Ĥk, is negative for any non-zero k, and the
Goldstone branch εk,0 (eigenvalue of ηĤk) is correspondingly purely imaginary and thus dynamical unstable, until at k=kc the
second branch Ek,0+ crosses zero, and εk,0 becomes real. This is the situation of having both a negative mass and a negative
spring constant, corresponding to dynamically stable motion. The point at k = kc is called an exceptional point in the theory of
non-Hermitian physics [6]. kc is always on the order of the inverse cloud radius kc ∼ 1/R, and the maximum instability growth
rate |εk,0| is also only slightly below kc.

Normal form of K̂2

An inverted harmonic oscillator Hamiltonian H = p2

2m − 1
2κq

2 with negative spring constant (−κ < 0), and mass m > 0

can be canonically transformed via q′ = 1√
2mΓ

p +
√

κ
2Γq and p′ = 1√

2mΓ
p −

√
κ
2Γq into H = 1

2Γ(q′ p′ + p′ q′), where

Γ =
√
κ/m, with equations of motion d

dtq
′ = Γq′ and d

dtp
′ = −Γp′, generating squeezing of p′ and exponential growth of

q′. In terms of bosonic operators a = (q′ + ip′)/
√

2 and a† = (q′ − ip′)/
√

2 with [a, a†] = 1 the Hamiltonian is of the
squeezing form H = Γ 1

2i (aa − a†a†). Analogously we will find that K̂2, in the dynamically unstable region 0 < k < kc,

will contain a term of the squeezing form,
∑
k Γk

(
âkâ−k + â†kâ

†
−k

)
associated with the spontaneous pairwise creation of

excitations at ±k. Here, εk = iΓk with Γk > 0 is purely imaginary (we omit the index 0 in εk,0 for simplicity), and we
have, since εk = −ε∗k, two instead of four associated eigenvectors of ηĤk, labelled Vk and Wk = V∗k, associated with the
different eigenvalues εk and ε∗k = −εk. To have εk = −ε∗k, Vk and γR̂V∗k = γV∗−k must be linearly dependent, related by
a complex phase eiθ. Choosing this phase corresponds to a particular choice of the spatial phase of the emergent crystal. We
here set Vk = −γR̂V∗k, and we then also have Wk = −γR̂W∗

k. From this follows that Vk = (uk(x),−u∗k(−x))T and
Wk = (u∗k(x),−uk(−x))

T. We see 〈Vk|η|Vk〉 = 0 = 〈Wk|η|Wk〉 but we can choose the normalization of uk(x) such that
〈Wk|η|Vk〉 =

∫
dx
(
uk(x)2 − u∗k(x)2

)
= i. Then the action of Ĥk on the subspace relevant to εk is

Ĥk = Γk η|Vk〉〈Wk|η + Γk η|Wk〉〈Vk|η + . . .
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with . . . the part of Ĥk corresponding to modes with n > 0. Inserting this in Eq. 3, and noting that V−k = R̂Vk and so
u−k(x) = uk(−x) gives

K̂2 =
1

2

∑

k

Γk

(
〈Φ̂k|η|Vk〉〈Wk|η|Φ̂k〉+ 〈Φ̂k|η|Wk〉〈Vk|η|Φ̂k〉

)
+ . . .

=
1

2

∑

k

Γk (p̂kq̂−k + q̂kp̂−k) + . . .

=
∑

k>0

Γk
1

i

(
âkâ−k − â†kâ

†
−k

)
+ . . .

where the dots denote contributions from stable modes of higher excitation energies |εk,n| and the k=0 Goldstone mode’s
“kinetic energy” term corresponding to free global phase diffusion [7], and we defined

p̂k ≡ 〈Φ̂k|η|Vk〉 =

∫
dx
(
uk(x)φ†k + u∗k(−x)φ−k

)

q̂k ≡ 〈Φ̂k|η|Wk〉 =

∫
dx
(
u∗k(x)φ†k + uk(−x)φ−k

)

p̂†k ≡ 〈Vk|η|Φ̂k〉 =

∫
dx
(
u∗k(x)φk + uk(−x)φ†−k

)
= p̂−k

q̂†k ≡ 〈Wk|η|Φ̂k〉 =

∫
dx
(
uk(x)φk + u∗k(−x)φ†−k

)
= q̂−k

with [q̂k, p̂−k] = i and other commutators zero and âk = (q̂k+ip̂k)/
√

2, accordingly â†k =
(
q̂†k − ip̂

†
k

)
/
√

2 = (q̂−k−ip̂−k)/
√

2

and
[
âk, â

†
k

]
= 1 with other commutators zero. Other choices of the phase between Vk and γV∗−k yield equivalent forms of the

squeezing Hamiltonian [12] such as Γk

(
âkâ−k + â†kâ

†
−k

)
. The time-dependence of the operators is then:

âk(t) = cosh(Γkt)âk(0)− i sinh(Γkt)â
†
−k(0),

â†−k(t) = cosh(Γkt)â
†
−k(0) + i sinh(Γkt)âk(0). (5)

Structure factor

The structure factor Sk is obtained as follows. From the density operator n̂(x, y) we obtain the density fluctuation operator,
only retaining the contribution from unstable modes

δn̂(x, y) = ψ0(x)
1√
L

∑

k

(
ūk(x)eikyâk + v̄∗k(x)eikyâ†−k + ū∗k(x)e−ikyâ†k + v̄k(x)e−ikyâ−k

)
. (6)

where ūk = (u∗k − iuk)/
√

2 and v̄k = −(uk − iu∗k)/
√

2. Integrating along x and taking the Fourier transform along y yields
the Fourier component of the one-dimensional density profile with a wavevector q in the y-direction,

δn̂q =

∫
dx
∫

dy δn̂(x, y)e−iqy

=
√
n1D

∫
dx ψ̃0(x)

[
(ūq(x) + v̄−q(x))âq + (ū∗−q(x) + v̄∗q (x))â†−q

]
(7)

Here we define ψ0 =
√
n1Dψ̃0 such that

∫
dx |ψ̃0(x)|2 = 1. We also have

∫
dx (|ūk(x)|2 − |v̄−k(x)|2) = 1. The structure

factor is defined as [13]

Sq =
1

N
〈δn̂qδn̂†q〉

= 〈
(
Aqâq +A∗q â

†
−q
)(
A∗q â

†
q +Aqâ−q

)
〉

= |Aq|2
(
〈1 + â†qâq + â†−qâ−q〉+

1

i
〈âqâ−q − â†qâ†−q〉

)

= |Aq|2 (1 + ν) cosh(2Γkt) (8)
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where N = Ln1D is the total atom number. Since 〈âqâ−q − â†qâ†−q〉 is an expectation value of an operator which commutes
with the Hamiltonian, it is a constant of motion and here taken to be zero. The terms 〈â†qâq〉 and 〈â†−qâ−q〉 correspond to the
occupation numbers of modes ±q. They are related to their values at t = 0 using the operator time-dependence given in Eq. (5),
and we denote the initial mode populations by ν = 〈â†q(0)âq(0)〉 + 〈â†−q(0)â−q(0)〉. The contribution of a single quantum to
Sk is determined by the overlap integral Aq = A−q =

∫
dx ψ̃0(x)(ūq(x) + v̄−q(x)).

Limit of the Lowest Landau Level

The Bogoliubov analysis in the lowest Landau level was performed in [10], focussing on the stable regime occurring in a
rotating saddle potential V (x, y) = 1

2mεω
2(x2 − y2) (in the rotating frame coordinates). The rotation frequency was chosen

such that the centrifugal force precisely cancelled the trapping force in the weaker (y-)direction, i.e. Ω = ω
√

1− ε. The
experiment performed here corresponds to no rotating saddle at all, i.e. ε = 0. The Bogoliubov Hamiltonian is

K̂2 =
∑

k

(
~2k2

2m∗
+ 2g∗n1De

−k2l2B/2
)
â†kâk +

g∗n1D

2

∑

k

e−k
2l2B

(
â†kâ
†
−k + âkâ−k

)

with an effective 1D coupling constant g∗ = g/
√

2πlB and where the effective mass m∗ of excitations is given by 1/m∗ =

1/m
(

1− 4Ω2

ω2
c

)
with the cyclotron frequency ωc = ω

√
4− 2ε modified by the anharmonic potential. One has m∗ ≈ 2

εm for
small ε. We see that in the case relevant to the present experiment ε = 0 we have 1/m∗ = 0, corresponding to “infinitely heavy”
excitations, i.e. a flat band without a kinetic mass term. Importantly, although only contact interactions are present, evolution
in the rotating frame yields a k-dependent effective interaction, and correspondingly a magneto-roton minimum which evolves
into a dynamical instability as the anharmonicity ε decreases. The excitation spectrum follows as [10]

ε2k =

[
~2k2

2m∗
+ g∗n1D

(
2e−k

2l2B/2 − 1
)]2

− g∗2n2
1De
−2k2l2B (9)

In the limit ε = 0 one has an unstable Goldstone branch between k = 0 and k = kc =

√
2 log

(
1√
2−1

)
/lB = 1.33/lB . The

maximum growth rate of the instability occurs at kmax lB =

√
2 log

(
2√
5−1

)
= 0.98 and is Γkmax

=
√

5
2

√
5− 11

2 g∗n1D =

0.3 g∗n1D = 0.21gn. This is shown in Fig. 1a).

Evolution from stable magneto-roton excitations to dynamical instability

The expression Eq. 9 allows us to follow the excitation spectrum in the 1D regime of motion in a rotating anharmonic saddle
as ε→ 0. This evolution is shown in Fig. 3, varying the parameter introduced in [10] β = n1Dg

∗

~2/2m∗l2B
, comparing the interaction

energy to the kinetic energy of excitations at momentum ∼ 1/`B . The present experiment corresponds to β = ∞, i.e. zero
kinetic energy, infinite effective mass of excitations and purely interaction-driven dynamics. The figure shows how an initially
stable branch consisting of phonons at low momenta k develops a magneto-roton minimum at k ≈ 1/lB . This minimum lowers
in energy as it becomes more and more favorable to create magneto-rotons, excitations which avoid the condensate mean-field
repulsion due to their spatial shift by kl2B ≈ lB . Beyond a critical β = 4.9, a dynamical instability near k ∼ 1/lB develops,
corresponding to the onset of magneto-roton condensation - in analogy to roton condensation considered in [14, 15]. Eventually,
for β →∞, the case of the present experiment, the entire Goldstone branch up to k = kc is dynamically unstable, with maximum
growth at k = kmax ∼ 1/lB .

Thomas-Fermi limit - Hydrodynamics

The Gross-Pitaevskii equation for the wavefunction ψ =
√
ρ eiS can be equivalently rewritten as hydrodynamic equations for

the density ρ = |ψ|2 and the velocity v = ~
m∇S. The equation for the velocity is:

∂v

∂t
= −∇

(
− ~2

2m2√ρ∇
2√ρ+

1

2
v2 − v · (Ω× r) +

1

m
U +

gρ

m

)
. (10)
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FIG. 3. Evolution from stable phonon and magneto-roton excitations to dynamically unstable excitations as the anharmonicity ε of a rotating
saddle potential is reduced to zero. From top to bottom, the value of the parameter β, measuring the strength of interaction energy to kinetic
energy, is varied from β = 1, 2, 3.5, 4.9 (the critical value where the magneto-roton minimum touches zero [10]), 5.1, 7, 10, 20, 100000.

Here, U(~r, t) = 1
2mω

2
(
x2(1 + ε) + y2(1− ε)

)
is a rotating anisotropic potential - in the experiment ε = 0. Introducing the

“convective derivative” moving with a fluid element,

D

Dt
=

∂

∂t
+ (vrot · ∇) (11)

this can be written as

m
Dvrot

Dt
= 2mvrot ×Ω +mΩ2r−∇

(
− ~2

2m
√
ρ
∇2√ρ+ U + gρ

)
. (12)

with vrot = v−Ω× r the velocity in the rotating frame. This is Newton’s law in the rotating frame, featuring the Coriolis force
2mvrot×Ω, the centrifugal forcemΩ2r and the force acting on a fluid particle derived from the quantum pressure− ~2

2m
√
ρ∇2√ρ,

the mean-field potential gρ, and the external potential U . The continuity equation in the rotating frame ∂ρ
∂t = −∇ · (ρvrot) can

also be written using the convective derivative:

Dρ

Dt
= −ρ∇ · vrot. (13)

Linearizing the hydrodynamic equations - including the quantum pressure term - is equivalent to the Bogoliubov approach [2].
We now drop the quantum pressure term, considering the Thomas-Fermi limit.

We perturb the density and phase around stationary solutions ρc and Sc

ρ = ρc + δρ

S = Sc + δS (14)

and obtain the linearized hydrodynamic equations [16]

Dδρ

Dt
= − ~

m
∇ · (ρc∇δS)

~
DδS

Dt
= −gδρ (15)
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Hydrodynamics in the Landau gauge

The Landau gauge corresponds to setting Sc = −mΩ
~ xy, and we specialize to Ω = ω

√
1− ε, where the centrifugal potential

exactly cancels the (y-)direction of weak confinement. The case in the experiment is ε = 0. Neglecting the quantum pressure
term (Thomas-Fermi limit), the stationary density profile is gρc(x) = µ− 1

2mω
2
cx

2, the velocity profile is vc = ~
m∇Sc and we

have vrot = vc −Ω× r = −2Ωx ŷ. The coupled linearized hydrodynamic equations become
∂δρ

∂t
− 2Ωx∂yδρ = − ~

m
∂x (ρc(x)∂xδS)− ~

m
ρc(x)∂2

yδS

∂δS

∂t
− 2Ωx∂yδS = −1

~
gδρ (16)

As there is no explicit dependence on y, one may choose δρ = Re(eikyδρk) and δS = Re(eikyδSk). We omit the index k in the
following and find

∂δρ

∂t
− 2iΩkx δρ = − ~

m
∂x (ρc(x)∂xδS) +

~k2

m
ρc(x)δS

∂δS

∂t
− 2iΩkx δS = −1

~
gδρ (17)

Using gρc(x) = µ− 1
2mω

2
cx

2 and ∂xgρc(x) = −mω2
cx we have

∂gδρ

∂t
− 2iΩkx gδρ = ω2

cx∂x ~δS −
1

m

(
µ− 1

2
mω2

cx
2

)(
∂2
x − k2

)
~δS (18)

Measuring rates and inverse times in units of ωc (such as Ω̃ = Ω/ωc), energies in units of ~ωc (writing δρ̃ = gδρ/(~ωc)), and
lengths in units of the Thomas-Fermi radius RTF =

√
2µ/(mω2

c ), the equations become (tildes are dropped for brevity)

∂δρ

∂t
− 2iΩkx δρ =

(
x∂x −

1

2
(1− x2)(∂2

x − k2)

)
δS

∂δS

∂t
− 2iΩkx δS = −δρ (19)

The operator L ≡ x∂x − 1
2 (1− x2)∂2

x = − 1
2∂x

(
(1− x2)∂x

)
is Legendre’s differential operator, whose eigenfunctions are the

Legendre polynomials Pn(x):

LPn(x) =
1

2
n(n+ 1)Pn(x) (20)

In terms of L, the coupled equations are

∂δρ

∂t
− 2iΩkx δρ =

(
L+

k2

2
(1− x2)

)
δS

∂δS

∂t
− 2iΩkx δS = −δρ (21)

Looking for a time-dependence ∼ e−iωt, the equations become

−i(ω + 2Ωkx)δρ =

(
L+

k2

2
(1− x2)

)
δS

−i(ω + 2Ωkx)δS = −δρ (22)

and thus

(ω + 2Ωkx)2δS =

(
L+

k2

2
(1− x2)

)
δS (23)

The equation is formally solved by the confluent Heun function [17], with eigenfrequencies obtained by demanding the solution
to be regular everywhere inside the Thomas-Fermi radius (|x| < 1). In particular, for ε = 0 and so 2Ω = ωc we have
δS = e

√
3kx HC

[
2(k2 + k(

√
3− 2ω) + ω2), 4k(

√
3− 2ω), 1, 1, 4

√
3k, 1+x

2

]
, where HC [q, α, γ, δ, κ, z] satisfies the confluent

Heun differential equation z(z − 1)y′′ + (γ(z − 1) + δz + z(z − 1)κ)y′ + (αz − q)y = 0 [17]. Notably, exceptional points
where ω = 0 are obtained as special zeroes of the confluent Heun function: HC

[
2k2 + 2

√
3k, 4
√

3k, 1, 1, 4
√

3k, 1
2

]
= 0. The

critical k = kc separating the dynamically unstable modes for 0 < k < kc and the stable excitations for k > kc is obtained as
the first zero of this particular Heun function, at kc = 1.47/RTF = 1.25/R. Below we find limiting cases, a series expansion
for the solution, and identify the minimal set of modes responsible for the instability: The Goldstone mode, dipole mode and
breathing mode of the unperturbed condensate.
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Solution for k → 0

For k = 0 the problem is just that of finding the excitation spectrum of a Bose-Einstein condensate in a one-dimensional
harmonic oscillator:

ω2δS = LδS (24)

with eigenvalues ωn =
√

1
2n(n+ 1), in units of ωc, and eigenfunctions δS = Pn(x). The case n = 1 is the sloshing mode,

oscillating at the cyclotron frequency with ω1 = ωc, unshifted from the result for the non-interacting harmonic oscillator, in
accordance with Kohn’s theorem [8, 9]. Including the long-wavelength modulation ∝ sin(ky), the mode is described by

δS(x, y, t) ∝ x cos(ωct) sin(ky)

δρ(x, y, t) ∝ x sin(ωct) sin(ky)

which is a time-dependent “snaking” mode, sloshing back and forth along x at frequency ωc.
The case n = 2 is the breathing mode, at ω2 =

√
3ωc, shifted from the non-interacting case (2ωc) by the interactions, and

describing a time-dependent compression / decompression mode that periodically alternates along y.
The case n = 0 and k = 0 is the Goldstone mode at ω0 = 0, with δS(x) = const. a constant phase offset, and δρ = 0, i.e. no

density modulation, describing the zero cost of changing the phase of the wavefunction globally. For the case in the experiment
ε = 0, i.e. Ω = ω, and neglecting coupling to the breathing mode, one still has the zero-energy solution ω0 = 0, since there
is zero energy cost to displace the wavefunction along x. The mode profile is δρ(x, y, t) ∝ Ωkx cos(ky), corresponding to a
stationary “snake”-like deformation. With coupling to the breathing mode, it will grow exponentially.

Solution by expansion in Legendre polynomials

To solve the equations for δρ and δS, we expand them in the basis of normalized Legendre polynomials pn(x) ≡√
2n+1

2 Pn(x) (with Pn(x) the traditional Legendre polynomials):

δρ(x) =
∑

n

ρnpn(x)

δS(x) =
∑

n

snpn(x)

The pn(x) are orthonormal for integration over x ε [−1, 1] (while the Pn(x) are not):

〈n|m〉 =

∫ 1

−1

dx pn(x)pm(x) = δn,m

where 〈f |g〉 =
∫ 1

−1
dx f(x)g(x) defines a scalar product. The pn(x) are eigenfunctions of L, but the terms in x and in x2 in

the equations 22 couple Legendre polynomials whose index differs by 1 or 2, respectively. A recurrence relation for Legendre
polynomials gives

xPn =
n+ 1

2n+ 1
Pn+1 +

n

2n+ 1
Pn−1

which for the orthonormal pn reads

xpn =
n+ 1√

(2n+ 1)(2n+ 3)
pn+1 +

n√
(2n+ 1)(2n− 1)

pn−1

from which one finds

Xnm ≡ 〈n|x|m〉 =

∫ 1

−1

dx pn(x)xpm(x) =
1√

(2n+ 1)(2m+ 1)
(n δm,n−1 +mδn,m−1)

215



10

(
X2
)
nm

=
〈
n|x2|m

〉
=
∑

j

〈n|x|j〉 〈j|x|m〉 =
∑

j

XnjXjm

=
∑

j

1√
(2n+ 1)(2m+ 1)

1

2j + 1
(nδj,n−1 + jδn,j−1) (jδm,j−1 +mδj,m−1)

=
(2n(n+ 1)− 1)

(2n− 1)(2n+ 3)
δn,m +

1√
(2n+ 1)(2m+ 1)

(
m(m− 1)

(2m− 1)
δm,n+2 +

n(n− 1)

(2n− 1)
δn,m+2

)

The equations 22 can then be written

∂ρn
∂t

= i2ΩkXnmρm + L(k)
nmsm

∂sn
∂t

= i2ΩkXnmsm − ρn (25)

(using convention to sum over repeated indices) or in vector notation ~ρ = (ρ0, ρ1, . . . )
T

∂~ρ

∂t
= i2ΩkX~ρ+ L(k)~s

∂~s

∂t
= i2ΩkX~s− ~ρ (26)

where X is the matrix with entries Xnm, and where

L(k)
nm =

(
1

2
n(n+ 1) +

k2

2

)
δnm −

k2

2

(
X2
)
nm

This linear system is solved by choosing a cutoff in the degree n of polynomials used in the expansion. Alternatively, we can start
with Eq. 23, which is particularly useful for the case relevant to the present experiment ε = 0, so 2Ω = ωc ≡ 1 in dimensionless
units. We have

(ω + kx)2 − k2

2
(1− x2) = ω2 + 2ωkx+ k2

(
3

2
x2 − 1

2

)
= ω2P0 + 2ωkP1 + k2P2

since P2(x) = 3
2x

2 − 1
2 . So the equation to solve is

L δS = (k2P2 + 2ωkP1 + ω2P0)δS

This way of writing the equation makes it explicit that the cause of the instability of the Goldstone mode (ω = 0 for k = 0)
is coupling to the breathing mode with n = 2, caused by P2. The term multiplying P1, which could in principle couple the
Goldstone to the dipole mode, is zero for ω = 0 and thus is not responsible for the instability. In the basis of orthonormal
Legendre polynomials, we have

(P2(x))nm =
3

2

(
X2
)
nm
− 1

2
δnm. (27)

On the off-diagonals, it acts like 3
2 (X2)nm, but on the diagonal one finds the simpler

(P2(x))nn =
n(n+ 1)

(2n− 1)(2n+ 3)
(28)

This yields the equation for the sn:
(

1

2
n(n+ 1)

(
1− 2k2

(2n− 1)(2n+ 3)

)
− ω2

)
sn = 2ωkXnmsm +

3

2
k2
∑

m 6=n

(
X2
)
nm

sm

= 2ωk

(
n√

(2n− 1)(2n+ 1)
sn−1 +

n+ 1√
(2n+ 1)(2n+ 3)

sn+1

)

+
3

2
k2

(
(n+ 1)(n+ 2)

(2n+ 3)
√

(2n+ 1)(2n+ 5)
sn+2 +

n(n− 1)

(2n− 1)
√

(2n− 3)(2n+ 1)
sn−2

)

With a finite cutoff in the polynomial degree n this represents a sparse matrix, and eigenfrequencies are found by setting its
determinant to zero. In general, eigenfrequencies can be complex and one finds an unstable Goldstone branch. The result is
shown as the dashed lines in Fig. 1e).
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Minimal model

Insight is obtained by truncating the Hilbert space. Including the Goldstone, dipole and breathing mode, so p0, p1 and p2

gives equations for the coefficients (s0, s1, s2)




ω2 2kω√
3

k2√
5

2kω√
3

2k2

5 + ω2 − 1 4kω√
15

k2√
5

4kω√
15

2k2

7 + ω2 − 3






s0

s1

s2


 = 0

This minimal model already yields a dynamically unstable Goldstone branch which will lead to exponential growth for small k.
To find the critical k=kc where ω = 0 one solves

∣∣∣∣∣∣∣

0 0 k2√
5

0 2k2

5 − 1 0
k2√

5
0 2k2

7 − 3

∣∣∣∣∣∣∣
= 0 (29)

from which one finds kcRTF =
√

5
2 = 1.58. This is already close to the exact result kcRTF = 1.47. The maximum instability

is found at kmaxRTF ≈ 1.18 with Imω = 0.148ωc, close to the exact maximum in the Thomas-Fermi limit at kmaxRTF =
1.12 . . . with Imω = 0.141ωc.
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