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Abstract

Traffic congestion is a serious problem that imposes significant costs on the economy,
environment, and society. Congestion pricing as a demand management instrument
has been known to be a cost-effective approach to deal with congestion. However,
the issue of equity remains one of the major challenges to the successful design,
acceptance, and deployment of congestion pricing. Although refunding revenues in
a personalized manner has the potential to improve its acceptance by being Pareto-
improving, there is limited research on methodologies to do so.

An alternative approach to travel demand management termed tradable mobility
credits (TMC) has been gaining attention recently. It is a type of quantity control
which can avoid the flow of money from users to the regulator and has been shown to
have better performance than pricing under demand and supply uncertainty. Despite
these promises, several important questions remain with regard to the design and
functioning of the market within the TMC schemes, an aspect critical to the effective
operationalization of these schemes.

The objective of this thesis is to design the efficient, equitable and Pareto im-
proving congestion tolling for both price and quantity controls. First, we develop a
market design for TMC schemes that ensures TMC is used for mobility management
and avoids undesirable behavior such as hoarding, frequent selling and speculation,
excessive activity at boundary (of token expiration), and negotiation cost. The de-
veloped design considers all aspects of market including token allocation, expiration,
transaction fee, price adjustment and market rules governing trading. In addition,
a heuristic approach to model disaggregate selling behavior is developed and the re-
sulting simple selling strategy is derived. The developed market design addresses a
growing and imminent need to develop methodologies to realistically model TMC
schemes that are suited for real-world deployments.

Second, we develop a bi-level optimization framework for personalized distribu-
tion to make congestion tolling (both price and quantity controls) efficient, equitable,
and Pareto improving. The system optimization determines the toll policy with the
objective to maximize social welfare while the user optimization can be formulated
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with different objectives (e.g. to achieve Pareto improvement or maximize social
welfare) to determine an individual-specific distribution of revenue for pricing or mo-
bility credits for TMC. The developed personalized congestion tolling is promising as
it addresses the important issue of equity and has the potential to improve public
acceptance.

The performance of the designed instruments are demonstrated via microsimula-
tion in a daily commute context between a single origin-destination pair. The simula-
tion experiments employ a day-to-day assignment framework wherein transportation
demand is modeled using a logit-mixture model with the nonlinear income effects
and supply is modeled using a standard bottleneck model. The evaluation framework
includes four main categories: social welfare, distributional impacts, behavior change,
and level of congestion.

Thesis Supervisor: Moshe E. Ben-Akiva
Title: Edmund K. Turner Professor of Civil and Environmental Engineering

Thesis Supervisor: Ravi Seshadri
Title: Assistant Professor, Department of Technology, Management and Economics,
DTU
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Chapter 1

Introduction

Congestion pricing (price control) is a well-researched mechanism to deal with traffic

congestion by charging a toll to internalize congestion externalities. However, it

is often perceived as a flat tax and receives low public acceptance. It is natural to

think about whether and how revenues from congestion pricing can be used to benefit

“losers” and improve its acceptance. In contrast, another variant of congestion tolling,

termed tradable mobility credits has been gaining attention recently. It is a type of

quantity control which can avoid the flow of money from users to the regulator and

has been shown to have better performance than pricing under demand and supply

uncertainty. However, several key elements of such schemes (revenue refunding and

tradable mobility credits) still need more investigation for operationalizing them.

We start by introducing the background of these two types of controls and the

motivation for this research. Then, we describe the research objectives and approach.

Next, key contributions of this research are explained, and the outline of the thesis is

described.

1.1 Background and Motivation

Traffic congestion is a serious problem that imposes significant costs on the economy,

environment and society. For example, [Schrank et al., 2015] reported that peak hour

trips took 35% more time on average than non-peak hour trips in 2016 compared to
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20% in 2010 in United States. Also, it was found that congestion caused an extra 3.1

billion gallons of fuel consumption in U.S. [Global, 2018] finds that Americans lose

97 hours per year due to congestion, equivalent to 1348 USD. It is expected that the

world’s population residing in urban areas will increase from 50% currently to 70% by

2050 [United Nations Department of Economical and Social Affairs (DESA), 2018],

which will lead to the increased travel demand and more severe congestion.

Treating road space as a scarce resource, there are three perspectives to deal with

congestion. The first is to simply increase road capacity. However, it is less attrac-

tive and often difficult to implement because of financial, spatial, and environmental

constraints. It has also been shown to be self-defeating because the increased capac-

ity will be absorbed quickly by the induced demand [Goodwin, 1996,Goodwin and

Noland, 2003, Duranton and Turner, 2011]. The second is to reduce demand (e.g.

car ownership or usage) but it suppresses activities and hinders economic growth.

The third is transportation system management [Bull et al., 2003,Kuhn et al., 2017],

including traffic management (e.g. reversible lanes, signal control, ramp metering)

and demand management (e.g. congestion pricing).

Congestion pricing as a demand management instrument has been known to be

a cost-effective approach to deal with congestion (e.g. [Lindsney and Verhoef, 2001]).

It was first introduced by [Pigou, 1920] as a tax to internalize the costs of a nega-

tive externality. It can influence travelers to alter their travel decisions on whether

to travel, departure time, mode and destination choice [Saleh and Sammer, 2016].

Successful applications, such as Singapore’s Electronic Road Pricing Scheme (ERP),

London’s Congestion Charge (CC), and Stockholm’s Congestion Tax have highlighted

the effectiveness of congestion-pricing schemes.

However, the issue of equity remains one of several challenges to the successful

design, acceptance and deployment of congestion pricing as evident in the failures

of previous plans in the Greater Manchester, Edinburgh and New York City. The

out-of-pocket charges hamper low-income users from using road facilities and make

road usage a privilege of high-income users [Lindsney and Verhoef, 2001,Gu et al.,

2018].
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[Jaensirisak et al., 2003] find that congestion pricing could be more acceptable

if it increases everyone’s benefit (so called Pareto-improving) besides the net social

benefit. It is natural to consider how pricing revenue can be used to benefit users. In

the literature, some studies have studied refunding revenue uniformly to users but this

is not guaranteed to be Pareto-improving with realistic assumptions like heterogeneity

(e.g. [Small, 1992,Arnott et al., 1994]). To the best of our knowledge, there has been

no study on refunding revenue in a personalized way, although it has the potential to

allocate revenue more efficiently and equitably. Moreover, the analysis of impacts of

congestion tolling is limited with unrealistic assumptions (e.g. homogeneity, inelastic

demand, constant income effect).

An alternative approach of travel demand management that has received increas-

ing attention in the transportation domain in recent years is quantity control – in

particular, tradable mobility credit (TMC) schemes (e.g. [Fan and Jiang, 2013,Grant-

Muller and Xu, 2014,Dogterom et al., 2017].)

Within a TMC system, a regulator provides an initial endowment of mobility

credits or tokens to all potential travelers. In order to use the road network or

transportation system, users need to spend a certain number of tokens (i.e., tariff)

that could vary with the attributes or performance of the specific mobility alternative

used. The tokens can be bought and sold in a market that is monitored by the

regulator at a price determined by the token demand and supply.

In principle, TMC schemes are appealing since they offer a means of directly

controlling quantity (important when the elasticity of demand to prices in the short

term may be low), they are revenue neutral in that there is no transfer of money to

the regulator, they improve equity even with uniform token allocation, and they are

shown to be more efficient than price control under uncertainty.

Despite these promises, several important questions remain with regard to the

design and functioning of the market within TMC schemes, an aspect critical to the

effective operationalization of these schemes. For instance, how should the allocation

and expiration of tokens be designed? What rules should govern trading behavior in

the market so as to avoid undesirable speculation and trading (see [Brands et al., 2020]
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Table 1.1: Research approach

Uniform (𝑈) Personalized (𝐼)
Pricing (𝑃 ) 𝑃𝑈 𝑃𝐼
TMC (𝑀) 𝑀𝑈 𝑀𝐼

for more on this), and yet ensure efficiency and revenue neutrality? How should the

regulator intervene in the market in the presence of special or non-recurrent events?

What is the role and impact of transaction fees? Despite the large body of literature

on TMCs, issues of market design, market dynamics and behavior of individuals in the

market has received relatively little attention despite being critical to the successful

real-world deployment of a TMC scheme.

1.2 Research Approach and Contributions

The objective of this thesis is to design efficient, equitable and Pareto improving

congestion tolling for both price and quantity controls. The research approach consists

of two dimensions: mechanism and distribution. For mechanism, we consider both

pricing and tradable mobility credits (TMC); while for distribution, it can be either

uniform or personalized. This leads to four instruments as shown in Table 1.1.

Each instrument is labeled by two characters, for which the first character repre-

sents mechanism and the second one represents distribution. For pricing, it is revenue

to be distributed (more precisely re-distributed) while it is tokens (to be allocated) for

TMC. In this study, besides these four instruments, the baseline considered is a no toll

scenario denoted as 𝑁𝑇 and the traditional congestion pricing without re-distribution

of toll revenues, which is denoted as 𝑃−.

This thesis has two major contributions as follows:

1. Develop a market design for TMC schemes that ensures TMC is used for mo-

bility management and avoids undesirable behavior such as hoarding, frequent

selling and speculation, excessive activity at boundary (of token expiration),

and negotiation cost.
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2. Develop a bi-level optimization framework for personalized distribution to make

congestion tolling (both price and quantity controls) efficient, equitable, and

Pareto improving.

The performance of the designed instruments are demonstrated via microsimula-

tion in a daily commute context. Under congestion tolling, travelers are subject to

a toll profile in units of dollars (for pricing) or tokens (for TMC). Taking advantage

of microsimulation, we can examine agent-level travel and market behavior and the

distributional impacts of the instruments. Heterogeneity, nonlinear income effects

and user learning are considered to make our analysis realistic. A detailed discussion

of the simulation framework can be found in Chapter 5.

The framework of pricing without distribution is illustrated in Figure 1-1. Users’

day-to-day mobility choices considering traffic conditions and a toll profile are simu-

lated in the network. User benefits and regulator revenue at equilibrium (convergence

of the day-to-day dynamic process) are used to calculate social welfare and other met-

rics. The toll profile is optimized to maximize social welfare.

Figure 1-1: Illustration of pricing without distribution

For pricing with uniform distribution, the only change is to have the available

regulator revenue distributed equally to users, while for personalized distribution,

the framework is illustrated in Figure 1-2. A bi-level optimization formulation is

adopted to determine the toll and personalized refunds. The system optimization

determines the toll with the objective of maximizing social welfare; the user opti-

mization determines personalized refunds with the objective of benefiting all users.
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They are interdependent such that user optimization depends on system optimization

policies and user behavior also affects system optimization. This bi-level optimization

is an application of a general framework of online analytics for transportation system

management termed Tri-POP, which combines prediction, optimization and person-

alization (POP) [Atasoy et al., 2020]. A detailed discussion of this can be found in

Chapter 6.

Figure 1-2: Illustration of pricing with personalized distribution

Regarding TMC, the framework is illustrated in Figure 1-3. Travelers now are

subject to a toll charged in tokens instead of dollars. They receive a token allocation

from the regulator which can be either uniform or personalized. In order to buy or

sell tokens, they can send requests to a market in which all requests are satisfied by

the regulator. Such a setting can avoid negotiation costs and information acquisition

costs compared to peer-to-peer trading or auction markets [Brands et al., 2020]. The

token price is adjusted based on demand and supply of tokens. Details of the market

design and market behavior are discussed in Chapter 4.

1.3 Thesis Outline

The rest of the thesis has six chapters and is organized as follows: Chapter 2 reviews

the relevant literature about congestion pricing and TMC in detail; Chapter 3 dis-

cusses a detailed market design for TMC schemes to manage travel demand; Chapter

4 introduces the simulation framework for numerical demonstration and toll profile

20



Figure 1-3: Illustration of tradable mobility credits

optimization formulations; Chapter 5 discusses the methodology for personalized dis-

tribution; Chapter 6 examines the designed instruments via numerical experiments;

Chapter 7 summarizes contributions, findings, as well as future research directions.
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Chapter 2

Literature Review

Congestion pricing has a long history since Pigou developed the initial concept in

1920. There is a vast body of literature on it. The review in this chapter focuses

on congestion pricing design and its public acceptance. Recently, tradable mobility

credits have received increasing attention leveraging on its successful application in

other fields. It has the potential to address some drawbacks of congestion pricing,

such as equity issues. This chapter reviews its design, mathematical modeling and

economic properties.

2.1 Congestion pricing

2.1.1 First-best Pricing

The introduction of congestion pricing can be traced back to the seminal work by

[Pigou, 1920] and [Knight, 1924]. Assume a single road network with homogeneous

travelers and elastic demand. Let 𝑣 denote the traffic flow, 𝑐(𝑣) denote the travel cost.

The marginal social cost 𝑀𝐶(𝑣) is the additional cost of having one more traveler to

the road, which includes the additional cost on all other travelers already on the road

and her own cost. It can be written as
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𝑀𝐶(𝑣) =
𝜕𝑐(𝑣) · 𝑣

𝜕𝑣
= 𝑐(𝑣) + 𝑣 · 𝜕𝑐(𝑣)

𝜕𝑣
(2.1)

At equilibrium, marginal benefit (marginal willingness-to-pay) is equal to average

cost 𝑐(𝑣) without tolling, which is less than marginal social cost 𝑀𝐶(𝑣). Therefore,

the optimal toll to have social welfare maximized should be equal to 𝑣 · 𝜕𝑐(𝑣)
𝜕𝑣

, which

is the difference between marginal social cost and average cost. It is also known as

“Pigouvian toll”.

Marginal cost pricing can be extended to a network. For an unpriced network, a

user equilibrium is reached when all used routes for an OD pair have the same travel

time equal to marginal benefits for that OD pair, and there are no unused routes with

lower travel time. These user equilibrium conditions are also referred to as Wardrop’s

first principle [Wardrop, 1952]. However, the optimal flow pattern, referred to as

system optimum, is different from the user equilibrium flow pattern. The conditions

of system optimum are referred to as Wardrop’s second principle such that all used

routes for an OD pair have the same marginal cost equal to the marginal benefits for

that OD pair, and there are no unused routes with lower marginal costs. It can be

shown that for every link 𝑙, marginal cost pricing with toll as 𝑉𝑙 · 𝜕𝑐(𝑣𝑙)
𝜕𝑣𝑙

achieves the

system optimum. But marginal cost pricing is not necessarily the only pricing scheme

to achieve system optimum. [Hearn and Ramana, 1998] pointed out that the system

optimum can be achieved as long as the sum of link tolls over each route equal to the

sum of marginal external costs of all routes’ links.

Another stream of research on congestion pricing is from a dynamic perspective. It

starts with the basic bottleneck model proposed by [Vickrey, 1969]. In Vickrey’s basic

bottleneck model, congestion is modeled by a single bottleneck with a finite capacity

𝑠. The first in first out (FIFO) queue starts forming once flow rate is equal to the

capacity and queuing time is proportional to queue length. Free flow travel time is

assumed to be 0 for simplicity. It only considers homogeneous travelers: namely, the

value of time 𝛼, the value of schedule delay early 𝛽 and value of schedule delay late 𝛾,
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and the desired arrival time 𝑡* are identical for all travelers. Also, the total demand

𝑄 is inelastic. The generalized price of a user 𝑖’s trip for arrival at 𝑡 can be written

as:

𝑝𝑖(𝑡) = 𝛼𝑇 (𝑡) + 𝜏(𝑡) + max(0, 𝛽(𝑡* − 𝑡)) + max(0, 𝛾(𝑡− 𝑡*)) (2.2)

where 𝑇 (𝑡) denotes travel time for arrival at 𝑡; 𝜏(𝑡) denotes a toll defined in terms of

arrival time 𝑡; max(0, 𝛽(𝑡*−𝑡)) denotes schedule delay early cost and max(0, 𝛾(𝑡−𝑡*))

denotes schedule delay late cost.

For the no toll equilibrium, since every user should bear the same generalized

cost and the duration of the peak is 𝑄
𝑠
, the equilibrium generalized cost can be easily

calculated as:

𝑝 = 𝛿
𝑄

𝑠
with 𝛿 =

𝛽𝛾

𝛽 + 𝛾
(2.3)

The departure rate of no toll equilibrium is equal to 𝑠𝛼
𝛼−𝛽

for early arrivals and
𝑠𝛼
𝛼+𝛾

for late arrivals. The former expression requires 𝛼 > 𝛽 > 0, which is consistent

with empirical data.

It can be shown that a triangular toll schedule that at each instant is equal to

the value of queuing delay in the no toll equilibrium can eliminate queuing delay

completely (i.e. departure rate is equal to 𝑠). The generalized cost for every traveler

is still the same as the no toll equilibrium since queuing delay is replaced fully by a

toll. More details about the bottleneck model can be found in [Small, 2015,Li et al.,

2020].

2.1.2 Second-best Pricing

Research reviewed in the previous section on first-best pricing provide important in-

sights, but because of constraints and distorted markets, second-best pricing analysis
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is more relevant for realistic applications. Five main cases are summarized by [Lind-

sey and Verhoef, 2001,Small et al., 2007]: pricing in networks, pricing by time-of-day,

heterogeneity of users, demand and supply uncertainty and interactions with the rest

of the economy.

There are many studies about the case where not every congested link is tolled

because of political constraints, acceptability constraints and economic constraints.

The simplest case is the classic two-route problem with one route allowed to have a

toll while the other must remain untolled. When users are homogeneous in all aspects

except willingness to pay and congestion is static, the optimal toll can be solved by

maximizing social surplus under equilibrium conditions. [Verhoef and Small, 2004]

applied simulation to study the change of relative efficiency of second-best pricing

compared to first-best pricing by varying the relative size of priced capacity from 0

to 1. They found that the welfare losses of second-best pricing from spillovers on

untolled capacity are substantial unless a significant portion of capacity is priced.

Considering departure-time adjustments, dynamic models (bottlenecks) of the two-

route problem estimate the relative welfare gains from second-best pricing greater

than those of static models [Braid, 1996,De Palma and Lindsey, 2000].

For more general networks, the toll design problems are usually formulated as

bi-level optimization problems [Yan and Lam, 1996, Yang and Bell, 1997, Ferrari,

1999,Verhoef, 2002a,Verhoef, 2002b]. A bi-level optimization problem contains two

inter-dependent problems, where upper-level problem is to optimize some system

performance measure based on lower-level user responses; lower-level problem is to

optimize users’ objectives subject to toll solution from upper-level. Common upper-

level objectives include social benefits [Yan and Lam, 1996, Ferrari, 1999, Verhoef,

2002b], toll revenue [Dial, 1999], or multiple objectives such as congestion, equity,

and emissions [Wang et al., 2014b]. For the lower-level, it is often formulated as an

user equilibrium problem to minimize generalized travel cost (travel time and toll)

or stochastic user equilibrium problem to minimize perceived travel cost [Liu et al.,

2014].

Various algorithms have been developed to solve the formulated problems, in-
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cluding sensitivity analysis based approaches [Yan and Lam, 1996], genetic algo-

rithms based approaches [Shepherd and Sumalee, 2004], heuristic methods using

Lagrangian multipliers [Verhoef, 2002b, Verhoef, 2002a] and manifold suboptimiza-

tion [Lawphongpanich and Yin, 2010].

A second case is when the toll cannot be fully time varying. The simplest case

is to have a single fixed (“flat" or “uniform") toll throughout the peak period. A

more sophisticated case is a “step" or coarse toll with one or more non-zero toll

values. [Arnott et al., 1990a] considered a case of two parallel bottlenecks with an

optimal time varying toll, an uniform toll and a step toll. They found that the

step toll in general yields more efficiency gains than the uniform toll. [Chu, 1999]

confirmed this with an equilibrium simulation model of peak period commuting along

a highway. [Laih, 1994] showed that the efficiency gains of step tolls increase with the

number of steps.

Regarding behavioral aspects of coarse tolling, there are three different ways to

equalize price before and after a toll change. The first is “Laih model" [Laih, 1994],

which considers two separate queues for tolled users and untolled users after the toll

is lifted; the second “ADL model" by [Arnott et al., 1990a] has a mass departure

right after the toll is lifted; the third “Braking model" by [Lindsey et al., 2012,Xiao

et al., 2012] incorporates more realistic behavior that users who are about to pass the

tolling point just before toll is lifted would brake and wait until toll is lifted.

[De Palma et al., 2005] studied both network and time-of-day aspects of second-

best pricing on a circular network. Using the dynamic queue-based METROPOLIS

model, they found that welfare gains are higher with area pricing (pricing all trips

within a cordon) than with cordon pricing and higher with step tolls than with flat

tolls. Also, there is a trade-off between welfare gain and acceptability. Specifically,

the highest welfare gain (61% of the first-best pricing) is achieved by area pricing

with step tolls. While cordon pricing with step tolls achieves less relative welfare gain

as 44%, it has the highest proportion of positive consumer-surplus changes as 41%.

A third case of the second-best problem concerns user heterogeneity. [Verhoef

et al., 1995] found that within a static model the second-best toll is a weighted average
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of the marginal external costs of different groups. It is found that heterogeneity

plays a significant role in benefit analysis of the second-best pricing [Small and Yan,

2001, Verhoef and Small, 2003]. [Verhoef and Small, 2003] found that the welfare

benefits of the second-best pricing of one of two parallel links can be dramatically

underestimated if heterogeneity is ignored.

Another case of second-best pricing is about uncertainty, including idiosyncratic

and objective uncertainties [Small et al., 2007]. Idiosyncratic uncertainty is about

individual idiosyncratic behavior, such that they perceive traffic conditions differently.

A standard way to model this is the Stochastic User Equilibrium (SUE). [Yang, 1999]

demonstrated that marginal cost pricing is still applicable in logit based SUE. [Maher

et al., 2005] extended analysis on stochastic system optimum to a general utility

maximizing framework. [Jiang et al., 2011] developed a multi-criterion dynamic user

equilibrium traffic assignment model considering heterogeneous users for analyzing a

variety of road pricing scenarios in large-scale networks.

Objective uncertainty refers to unpredictable traffic conditions because of acci-

dents, bad weather, unusual events, or others. Instruments like Advanced Traveler

Information System (ATIS) are developed to guide travelers to make better decisions.

However, information provision could be welfare-reducing if travelers’ responses are

not considered [Rapoport et al., 2014]. [Verhoef et al., 1996] studied the joint appli-

cation of information and congestion pricing in a stochastic two-route network. They

found information provision and flat tolling are highly complementary. [De Palma and

Lindsey, 1998] had similar findings and also found that when price is not responsive,

information provision could reduce welfare gains from congestion pricing. [de Cea Ch

et al., 2009] extended the work of [Verhoef et al., 1996] to incorporate various infor-

mation penetration. They found when the impact of non-recurrent events is small,

congestion pricing is more efficient. [Liu and Yang, 2021] studied heterogeneous trav-

elers in a two-route network and demonstrated how willingness of travelers change

with information price and toll.

The last case is about the influence of pricing on the rest of the economy. For

instance, tolling could discourage labor supply as it raises the living costs for low
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income workers. [Mayeres and Proost, 2001] used a general-equilibrium model to

evaluate the efficiency effects of tolling in Belgium and found inefficient spending of

congestion pricing revenues can weaken the net benefits of the policy. [Parry and

Bento, 2001, Van Dender, 2003] obtained similar findings. [Anas, 2020] applied a

general-equilibrium model to the greater LA region and found that recycling the

toll revenue by cutting the income taxes of low income workers can bring additional

benefits.

2.1.3 Public Acceptance

Despite numerous theoretical studies supporting congestion pricing, there are still

many concerns in practical applications. Successful applications, such as Singapore’s

Electronic Road Pricing Scheme (ERP), London’s Congestion Charge (CC), and

Stockholm’s Congestion Tax have highlighted the effectiveness of congestion-pricing

schemes. However, low public acceptance remains as the main challenge to the suc-

cessful design and deployment of congestion pricing as indicated by the failures of

previous plans in the Greater Manchester, Edinburgh and New York City [Altshuler,

2010,Schuitema et al., 2010].

As pointed out in [de Palma and Lindsey, 2011], congestion pricing practices can be

divided into four categories: facility-based, zonal-based, cordon-based and distance-

based. Zonal and cordon are often combined together as area-based pricing. Since

area-based pricing has more popularity than others, there are more studies on public

acceptance about them [Sørensen et al., 2014,Hensher and Li, 2013,Noordegraaf et al.,

2014]. A widely used approach to study public acceptance is called qualitative case

study approach [Seale et al., 2003] based on the principle that certain closely related

cases can serve as a foundation for generalizations.

[Gu et al., 2018] have a detailed review of evidence in the literature for various

cases and show that there are four main factors of public acceptance, including pri-

vacy, complexity, uncertainty and equity. Privacy concern is mainly about travelers’

information among various stakeholders [Ison and Rye, 2005]. It was the main reason

that led to the rejection of Hong Kong congestion pricing [Hau, 1990]. Singapore ERP
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and London congestion pricing addressed privacy concerns by not recording personal

information and itineraries of travelers [Noordegraaf et al., 2014].

The failures of Edinburgh and the Greater Manchester congestion pricing were

partially because the proposed schemes were more complicated compared to those of

Stockholm and Milan [Hensher and Li, 2013]. They considered two pricing cordons

while Stockholm only considered one. It was found that transition from complexity

to simplicity is effective to gain public acceptance [Hensher and Li, 2013].

Regarding uncertainty, [De Borger et al., 2008] identified two sources of uncer-

tainty as uncertainty about the effectiveness of the proposed scheme and uncertainty

in terms of revenue allocation. Through surveying 368 Edinburgh residents, [Gaunt

et al., 2007,Allen et al., 2006] found that the lack of understanding of the effectiveness

of congestion pricing scheme was one of key reasons for the rejection. In terms of rev-

enue allocation, [Farrell and Saleh, 2005] found using stated preference surveys that

congestion pricing revenues should be used to improve public transit, while [Ubbels

and Verhoef, 2006] found that congestion pricing revenues should be used to replace

car taxes or lower fuel taxes also using surveys. Therefore, [De Borger and Proost,

2012] compared two alternatives and found that applying the generated revenues to

improve public transit receives more support.

With respect to equity, the out-of-pocket charges hamper the low-income from us-

ing road facilities and make road usage a privilege of the high-income [Lindsney and

Verhoef, 2001,Gu et al., 2018]. Through studying the New York congestion pricing ex-

perience, [Schaller, 2010] found that it is not enough for congestion pricing to be just

perceived as benefiting society without benefiting drivers individually. [Jaensirisak

et al., 2003] has similar findings that congestion pricing could be more acceptable

if it increases everyone’s benefit (so called Pareto-improving) besides the total so-

cial benefit. Successful applications in London, Stockholm and Milan all have some

measures to address equity concerns. For example, London provides full exemption

to disabled people and discounts to residents of the central zone [Santos and Fraser,

2006] and Milan also provides full exemption to disabled people and discounts to fre-

quent users [Rotaris et al., 2010]. [Jaensirisak et al., 2005] found that a fixed charge
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was more preferred than a variable one while [Francke and Kaniok, 2013] found that

distance-based charge with fixed kilometer charge was the most preferred than others

on average.

To resolve the equity problem of congestion pricing, several studies in the literature

try to find congestion pricing schemes that are Pareto improving directly. [Lawphong-

panich and Yin, 2010] investigated searching anonymous nonnegative and Pareto im-

proving (in terms of travel time) toll schemes. They only considered a single mode and

homogeneous users. Also, they did not consider other system objectives (e.g. max-

imize social welfare or minimize travel time). They found that a Pareto improving

toll might not always exist. [Nie and Liu, 2010] found that self-financing and Pareto

improving pricing schemes might not always exist when the continuously distributed

VOT is highly skewed to the right (lower end). [Xiao and Zhang, 2014] developed

a link-based toll and subsidy (via negative toll) scheme on a one origin network to

achieve Pareto-improving, system optimal and revenue neutral. However, it is not

guaranteed to exist for a network with multiple origins and destinations.

Another stream of research tried to achieve Pareto improving schemes through

revenue refunding/distribution. [Small, 1992] showed that it is possible for congestion

pricing to be progressive if all users receive an equal travel allowance. [Adler and Cetin,

2001] proposed an analytical model for a two-node two-route bottleneck network, in

which toll revenues collected from users on a more desirable route are transferred

users on a less desirable route. It is shown that their approach can eliminate queuing

time and reduce travel cost of all users. Under the assumptions that all users have

the same choice set and all alternatives have the same monetary cost, [Eliasson, 2001]

showed that a tolling scheme that reduces aggregate travel time and refunds the

revenues equally to all users will make everyone better off. Using Vickrey’s model

[Vickrey, 1969], [Arnott et al., 1994] found that it is not always possible to get Pareto-

improvement with an equal lump sum refund. [Guo and Yang, 2010] studied OD-based

Pareto-improving congestion pricing revenue refunding schemes for the fixed demand

case with multiclass users. They proved that the existence of OD-based uniform

Pareto-improving refunding scheme is ensured if the degree of user heterogeneity of
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VOT is not too large. [Guo et al., 2012] extended it to elastic demand. [Liu et al.,

2009] investigated the performance of distributing equal allowance in multi-modal

systems.

2.1.4 Summary

Congestion pricing has low public acceptance, which prevents its widespread appli-

cation. Despite the recognition of the potential of using congestion pricing revenues

to improve its acceptance, current methods focus on simple equal refunding, which

is not guaranteed to achieve Pareto improvement in realistic settings with user het-

erogeneity. Recently, there has been increasing interest in practice on providing dis-

counts to low income toll road users to counter their losses. Some active programs

can be found in Illinois, Los Angeles and Norfolk. Besides toll discounts, there are

other applications of using incentives or discounts to benefit low income users. For

example, Portland Bureau of Transportation started a transportation incentive pro-

gram to increase low income users’ mobility in 2018 [McNeil et al., 2021]; Bay Area

Metropolitan Transportation Commission and Ford GoBike/Motivate provided dis-

counted bike share memberships in 2018. However, to the best of our awareness,

the literature has not attempted to study methodologies for providing discounts or

incentives in a personalized way given it is achievable with current technology devel-

opment. Personalization has the potential to allocate resources more efficiently and

further improve efficiency and equity. It is also a promising means of designing Pareto

improving revenue refunding schemes. In addition, existing literature on the analy-

sis of the welfare impacts of congestion tolling suffers from unrealistic assumptions

(e.g. homogeneity, inelastic demand, linear income effect) and pays less attention to

distributional impacts.

2.2 Tradable Mobility Credits

Recently, tradable mobility credits (TMC; also termed TCS or Tradable Credit Schemes

in the literature), a type of quantity control, has been receiving increasing attention
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in literature leveraging its successful applications in other fields. The main idea of

TMC is that users receive an initial allocation of credits/tokens from the regulator.

In order to use the road network, they have to spend a certain number of tokens

which can vary with the alternative used. They can buy and sell tokens in a market,

in which token price is determined by token demand and supply.

In the literature, some studies use permits instead of credits to describe a more

restrictive scheme such that road usage is restricted to travelers who have road and

time specific permits (e.g. [Wang et al., 2018,Wada and Akamatsu, 2013]), which can

be treated as a special type of credit-based schemes.

The main advantages of TMC include: 1) no transfer of money from users to the

regulator (i.e. revenue neutral); 2) still effective when the price elasticity in short

term is low because of controlling quantity; 3) progressive distributions of benefits

even with uniform token allocations because of trading; and 4) more efficient than

pricing under demand or supply uncertainty.

2.2.1 Methodological Development

Early work on the use of tradable mobility credits in transportation date back several

years [Verhoef et al., 1997,Raux, 2007,Goddard, 1997]. Existing literature on TMC

can be broadly classified into three domains and includes comprehensive reviews cor-

responding to each. The first domain includes studies that propose and conceptualize

the scheme design, implementation and credit distribution of individual TMC [Fan

and Jiang, 2013]. The second domain focuses on formulating a mathematical pro-

gramming approach to study user equilibrium and market equilibrium under different

assumptions, such as with/without transaction costs, fixed/elastic demand, homoge-

neous/heterogeneous users [Grant-Muller and Xu, 2014]. The third domain includes

works that empirically investigate individual behavior under TMC schemes, consid-

ering risk aversion, mental accounting, loss aversion and other concepts [Dogterom

et al., 2017].

The initial endowment of credits plays a key role within a TMC system and it in-

volves both determining the number of available credits (which is closely related to the
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credit tariff rates), selecting eligible credit recipients, and defining the allocation pol-

icy to recipients [Fan and Jiang, 2013]. [Fan and Jiang, 2013] lists two main methods

of initial allocation, including free allocation and pay-for-permits allocation. [Wada

and Akamatsu, 2013] adopted a auction mechanism where the central authority sells

the permits in an auction market to travelers.

The free allocation approach is adopted by most of studies, which can be fur-

ther classified into a uniform allocation and a non-uniform allocation, such as an

origin-destination specific credit distribution investigated in [Yang and Wang, 2011a]

which might make every user better off. However, there is evidence from other fields

suggesting that such a non-uniform allocation can cause entry barriers [Hepburn,

2006,Newell et al., 2005]. Hence, it is important to systematically investigate the ini-

tial credit allocation in a transportation context. [Xiao et al., 2019] propose a cyclic

tradable credit scheme (CTCS) which does not need periodic collection and redistri-

bution of credits. The link-based credit charge can be either positive or negative (as

a subsidy) to have credits circulated within the system such that the number of total

credits collected from the travelers is constrained to be zero.

Regarding the credit charging scheme, it could be time-place specific (e.g. [Wong,

1997,Buitelaar et al., 2007]) wherein the mobility credits are distinct for every net-

work link and time-interval. However, operationalizing such a system is likely to be

extremely complicated and would necessitate a sophisticated booking system and

trading market. Alternatively, time-place dependent TMCs (e.g. [Verhoef et al.,

1997, Raux, 2007, Yang and Wang, 2011a]) -which are the most widely discussed

in the literature- are universal and usable on the entire network, but the token tariff

rates themselves can differ across the network links and time of entry. The time-place

dependent TMCs could further have tariffs that are quantified by trips (e.g [Fiorello

et al., 2010]), by days (e.g. [Goddard, 1997]) or by vehicle-miles-traveled (e.g. [Ver-

hoef et al., 1997, Raux, 2007, Yang and Wang, 2011a]). The nature of the token

charging scheme itself is another aspect of the TMC scheme design that warrants

more systematic investigation.

Adopting mathematical programming or Variational Inequality (VI) approaches, a
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large body of current literature examines user and market equilibrium under different

assumptions. In the model of [Yang and Wang, 2011b], the regulator distributes a pre-

specified number of credits to travelers, charges a link-specific credit tariff and allows

trading of credits within a market. They demonstrate that for a given set of credit

rates in a general network, the user equilibrium (UE) link flow pattern is unique under

standard assumptions and identify additional conditions (relatively mild) to ensure

uniqueness of the credit price at the market equilibrium. Extensions to their model

have been proposed to incorporate heterogeneity in the value of time [Wang et al.,

2012] and multiple user classes [Zhu et al., 2015] using variational inequality formu-

lations to establish existence and uniqueness properties of the network and market

equilibrium. [He et al., 2013] employ a similar equilibrium approach considering allo-

cations of credits to not just individual travelers, but to transportation firms such as

logistics companies and transit agencies.

The effect of transaction costs in a TMC scheme on efficiency with two types of

markets (auction-based and negotiated) is considered by [Nie, 2012]. [Bao et al., 2014]

consider travelers’ loss aversion by formulating a reference-dependent user equilibrium

model. The transaction costs are also incorporated in the travel disutility function.

They demonstrate the system optimum link flow pattern may not be achievable.

[Xiao et al., 2019] extend [Xiao and Zhang, 2014]’s investigate Pareto-improving

toll and subsidy schemes to tradable mobility credits using [Yang and Wang, 2011b]’s

tradable credit system. With their cyclic tradable credit scheme and under certain

conditions on the OD matrix of the network, the Pareto-improving solution is shown

to exist.

In contrast with the aforementioned TMC schemes, [Kockelman and Kalmanje,

2005, Gulipalli and Kockelman, 2008] proposed a system of credit-based congestion

pricing (termed CBCP) where credits are allowances used to pay tolls. [Bao et al.,

2019] showed that the equilibrium under TMC scheme with Vickrey’s bottleneck

model of congestion is not unique while with Chu’s dynamic flow congestion model

it is unique.

While most attention focuses on static equilibrium, literature on the dynamics
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of the credit price considering travelers day-to-day learning is scarce. [Ye and Yang,

2013] incorporated a day-to-day learning model under route choice setting to model

the dynamic evolution of traffic flow and credit price. The work investigated the

conditions for stability and convergence. [Miralinaghi and Peeta, 2016] is the first

study to address the long-term planning problem by modeling the multi-period TMC.

The framework developed allows the central authority solve the planning problem at

the end of each perid with current conditions and future forecast but subject to critical

assumptions like perfect information about future credit prices and homogeneous

travelers. [Miralinaghi et al., 2019] extend this framework to consider heterogeneity

of value of time and schedule delay and travelers’ loss aversion. The proposed model

can be combined with day-to-day models of [Ye and Yang, 2013] to represent credit

price and flow evolutions in each period.

On the other hand, the comparison of efficiency and equity properties of tradable

credits and congestion pricing has received relatively less attention. [Akamatsu and

Wada, 2017] showed that TMC is equivalently efficient as congestion under perfect

information in a general network, while TMC is advantageous when demand infor-

mation is not perfect. [de Palma et al., 2018] performed a comparative analysis of

the two instruments in a simple transportation network, which has parallel roads for

travelers to choose and road usage is free if there is no pricing or TMC in place.

They showed that without uncertainty price and quantity are equivalent as in the

regular market case studied by [Weitzman, 1974]; under uncertainty, TMC can out-

perform the pricing instrument in terms of efficiency if the congestion cost is strongly

convex. [Xiao et al., 2019] demonstrate that TMC can improve equity compared to

several traditional tolling schemes.

Experiments about TMC are also limited. An online experiment about tradable

carbon allowance scheme for personal travel is conducted by [Aziz et al., 2015]. They

found that high income groups are less sensitive to carbon cost increase for work trips

while middle and low income groups are highly sensitive to carbon cost increase for

non-work trips. [Tian et al., 2019] conducted an online experiment focusing on behav-

ioral effects under TMC schemes. They observed loss aversion, an immediacy effect

36



and a learning effect and showed that the proposed TMC is efficient and financially

sustainable.

Recently, [Brands et al., 2020] empirically tested a complete market design for

TMC scheme though a lab-in-the-field experiment where participants make virtual

travel choices and real transactions in a tradable parking permits setting. The results

showed that credit prices stay within a desired range, and the number of bought

and sold quantities kept close to each other, in accordance with a theoretical market

equilibrium. [Brands et al., 2021] conducted a 8-week field experiment with TMC

applied to manage parking. They adopted the market design proposed in [Brands

et al., 2020]. They observed that active users adjusted behavior as intended and

participation required less effort than people anticipated. From survey responses,

TMC schemes are perceived as a fairer and better alternative to paid parking.

2.2.2 Summary

In summary, despite the large body of research on TMCs, several gaps remain. First,

the modeling of the market has received little attention and almost all the studies em-

ploy an equilibrium approach to model the credit market (with the notable exception

of [Ye and Yang, 2013] who model the price and flow dynamics of a tradable credit

scheme). The literature has –to the best of our knowledge– thus far not attempted

to model realistically the disaggregate behavior of individuals within the market that

could enable the consideration of empirically observed phenomena such as loss aver-

sion, endowment effects, mental accounting, day-to-day learning [Dogterom et al.,

2017]. Second, design aspects of the credit market have received little attention (de-

spite being a critical step towards real-world deployment) including features such as

token allocation/expiration, trading, intervention, and transaction fees, and the im-

pact of these on behavior of individuals in the market and efficiency. Finally, income

effects (that impact both efficiency and equity) have received relatively little attention

(with the exception of [Wu et al., 2012] who consider it in a route choice setting). A

part of this thesis aims to address these gaps by proposing and examining alternative

market designs of the TMC system and investigating their performance relative to
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congestion pricing using realistic models of traveler behavior (with heterogeneity and

income effects), congestion and their interactions.
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Chapter 3

Market Design for Tradable Mobility

Credits

This chapter aims to design a market (including allocation/expiration of credits,

transaction fees, price adjustment, and rules governing trading) for a tradable mo-

bility credits (TMC) system, and develop a methodology that explicitly models the

disaggregate behavior of individuals within the market.

3.1 System Design

Before we describe the elements of market design, we first describe a real-time ar-

chitecture of the TMC system to operationalize the scheme depicted in Figure 1-3.

The proposed TMC system comprises three main components, an online bi-level op-

timization model, a market model and a smartphone app (see Figure 3-1).

From the user’s perspective, the proposed TMC system is a smartphone app which

includes (1) a personalized trip planner, (2) interfaces to allow the user to manage

her/his token account and (3) a trading module. Prior to a trip, travelers open the

trip planner, which presents a menu with different travel alternatives along with their

predicted attributes. Each alternative is also associated with a token tariff, which is

calculated based on the alternative-specific contribution to the system’s congestion.

The app tracks and verifies realized trips, and charges tokens accordingly. Validated
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Figure 3-1: The proposed TMC system architecture

frequent travelers will be endowed with a budget of tokens (e.g., mobility credits)

obtained through free allocation by the regulator. Moreover, it learns individual user’s

preferences from previous choices and presents personalized menus, which increases

the user’s benefit [Song et al., 2018].

The second component of the proposed TMC system is the bi-level optimization

module, which is responsible for setting the token charges or tariff for each travel

alternative in real time (‘system-level’ optimization) and provides personalized ‘user-

optimal’ menu to travelers (‘user-level’ optimization). The system-level optimization

utilizes a simulation-based predictive system that uses real-time data from the market

and from sensors in the transportation system [Araldo et al., 2019]. The overall policy

objectives for the proposed TMC system in terms of congestion, emissions, network

performance, quality of service and sustainability are defined via the system-level

optimization. It is an application of a general framework of online analytics for smart

mobility and transportation system management named as Tri-POP, which combines

prediction, optimization and personalization (POP). More details about Tri-POP are
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provided in Chapter 5.

The third component of the proposed TMC system is the Market in which users

can sell or buy tokens. If a user chooses a travel alternative associated with a certain

token amount and her token budget is insufficient, she can buy the remaining needed

tokens. On the other hand, a user can sell excess tokens in her budget at any time.

The token market price at which these exchanges occur adjusts dynamically based

on demand and supply of tokens. If demand exceeds supply, the price increases and

vice-versa. The market enables the TMC system to achieve revenue neutrality, which

means the system avoids taxes, user charges or incentive funding programs. The

operator can also intervene in the market, reducing or increasing the number of tokens

available and thus allowing for a better management of non-recurrent situations.

Note that the key focus in this chapter is on the analysis and design of the market

within the proposed TMC system. Chapter 5 focuses on developing the bi-level

optimization framework for pricing and TMC with personalized distribution.

3.1.1 Market Design

In this section, the features of the market within the proposed TMC scheme and the

behavior of users in this market are described in detail. Within the TMC scheme,

the regulator provides a token endowment to all travelers (more on the nature of this

endowment in the following paragraph). The application we explore in the numerical

experiments involves a daily commute where in order to use the network at a particular

time-of-day (e.g., for a given departure time interval), travelers have to pay a pre-

specified toll in tokens that does not vary from day to day. In other words, the

toll in tokens is dynamic and varies by time-of-day, but is fixed across days. The

rationale for this assumption is that modifying the toll in tokens from day to day

would involve communicating the tariff or toll structure on a daily basis, which is

complicated, particularly in large general networks (for instance, the electronic road

pricing or ERP scheme in Singapore includes dynamic tolls, which are revised only

every three months or longer). The developed market design is generic and can be

used for other applications as well including parking management.
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The regulator operates a market where tokens can be bought and sold at a pre-

vailing market price, and may also levy pre-specified transaction fees for buying and

selling. The market price of the token varies across days and is adjusted by the reg-

ulator to achieve revenue neutrality, considering the demand and supply of tokens in

the market. Note that all transactions take place between an individual and the reg-

ulator directly, who guarantees all buying and selling requests. This central market

with a regulator who acts as a price setting intermediary is similar to the virtual bank

in [Brands et al., 2020], who note that such a market can significantly reduce trans-

action costs (associated with information acquisition, negotiation, finding a potential

buyer or seller etc.) compared to designs that involve consumer to consumer trading

(and over existing designs such as Dutch and English auctions, sealed-bid auctions

and Vickerey auction markets). The regulator may also intervene in the token market

within a day by controlling token market price, token allocation, and transaction fees

to manage non-recurrent events.

With regard to the token allocation or endowment, we adopt a ‘continuous time’

approach wherein tokens are acquired (provided by the regulator) at a certain rate

over the entire day and each token has a lifetime (i.e., it expires after a certain

period specified by the regulator). The expiration of tokens will avoid undesirable

consequences of the TMC system that can compromise public acceptability such as

speculative behavior and hedging in the market. The ’continuous’ allocation avoids

concentrated trading activities and excessive trading near boundary (a time period

when a large amount of tokens expire at the same time for lump-sum allocation.). It

also provides more degrees of freedom for the regulator to intervene than that of a

‘lump sum’ allocation which distributes tokens at the beginning of each day. A com-

parison between the two allocation approaches will be performed through numerical

experiments presented in Chapter 6.

As a result, each individual acquires tokens at a constant rate 𝑟 over the entire

day (credited into a wallet) and each token has a lifetime 𝐿 to avoid speculation and

hoarding. Let 𝑥𝑑
𝑛(𝑡) denote traveler 𝑛’s token account (or wallet) balance at time 𝑡

on day 𝑑. A full wallet state indicates that the number of tokens in the wallet has
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reached a maximum (𝐿𝑟), and in the absence of travelling or selling, does not change

since the acquisition of new tokens is balanced by an expiry of old tokens. Thus, a

full wallet implies that the oldest token in an individual’s account has an age of 𝐿.

In contrast, when the account is not in a full wallet state, it increases by an amount

𝑟∆𝑡 in a unit time interval ∆𝑡.

Several additional assumptions regarding market design are noteworthy – these

serve to avoid quantity buildup and market manipulation. First, travelers can only

buy tokens from the regulator at the time of traveling for immediate use, i.e., only

if they wish to travel and are short of tokens. Second, when they sell tokens to

the regulator, they have to sell all tokens in their wallet. Third, buying and selling

cannot happen at the same time, i.e. travelers can sell all tokens anytime except at the

time of buying. Note that the second assumption differs from the design of [Brands

et al., 2020], who assume that tokens can be traded per piece, and implications of

this assumption warrant more investigation, particularly when the market prices vary

within-day. Since a large part of our experiments do not involve within-day dynamic

prices and given that it considerably simplifies the modeling of selling behavior, we

defer the relaxation of this assumption to future research.

3.1.2 Account Evolution

Let 𝑇 (𝑡) denote the toll in tokens to travel at time 𝑡, 𝑡𝑑𝑛 represent the departure time

of traveler 𝑛 on day 𝑑 and 𝐷 represent the duration of one day. Note that in the

simulation (Chapter 4) and experiments (Chapter 6), time will be discretized into

time intervals of a specified size; for now, we treat it as continuous. Let 𝑟 denote the

allocation rate, 𝐿 denote token lifetime, and 𝑥𝑑
𝑛(𝑡) denote traveler 𝑛’s token account

balance at time 𝑡 on day 𝑑. At time 𝑡 on day 𝑑, traveler 𝑛 can perform one and only

one of the following actions:

1. Perform a trip if 𝑡 = 𝑡𝑑𝑛.

• If 𝑥𝑑
𝑛(𝑡) ≥ 𝑇 (𝑡), she consumes 𝑇 (𝑡). Her account balance at 𝑡+∆𝑡, 𝑥𝑑

𝑛(𝑡+
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∆𝑡), can be written as:

𝑥𝑑
𝑛(𝑡+∆𝑡) = 𝑚𝑖𝑛

(︀
𝑥𝑑
𝑛(𝑡)− 𝑇 (𝑡) + 𝑟∆𝑡, 𝐿𝑟

)︀
(3.1)

where the cap 𝐿𝑟 ensures that tokens with life greater than 𝐿 expire.

• If 𝑥𝑑
𝑛(𝑡) < 𝑇 (𝑡), she needs to buy 𝑇 (𝑡)−𝑥𝑑

𝑛(𝑡) tokens. Her account balance

𝑥𝑑
𝑛(𝑡+∆𝑡) becomes:

𝑥𝑑
𝑛(𝑡+∆𝑡) = 𝑟∆𝑡 (3.2)

since all of 𝑥𝑑
𝑛(𝑡) and the newly bought tokens are used to travel.

2. Does nothing. Her account balance 𝑥𝑑
𝑛(𝑡+∆𝑡) becomes:

𝑥𝑑
𝑛(𝑡+∆𝑡) = 𝑚𝑖𝑛

(︀
𝑥𝑑
𝑛(𝑡) + 𝑟∆𝑡, 𝐿𝑟

)︀
(3.3)

3. Sells all tokens 𝑥𝑑
𝑛(𝑡). Her account balance becomes:

𝑥𝑑
𝑛(𝑡+∆𝑡) = 𝑟∆𝑡 (3.4)

3.1.3 Buying and Selling

The token market price 𝑝𝑑 is fixed within day 𝑑 (in the absence of non-recurrent

events) and is only adjusted day to day. Details of the price adjustment process are

discussed in Section 3.1.4. We assume that the regulator levies a two-part (fixed and

proportional) transaction fee for both buying and selling transactions. Let 𝐹 𝑃
𝑆 , 𝐹 𝑃

𝐵

(𝐹 𝑃
𝑆 , 𝐹 𝑃

𝐵 ≥ 0) denote the proportional part of selling and buying transaction fees (this

component of the transaction fee is proportional to the amount of the trade), and

𝐹 𝐹
𝑆 , 𝐹 𝐹

𝐵 (𝐹 𝐹
𝑆 , 𝐹 𝐹

𝐵 ≥ 0) denote the fixed part of selling and buying transaction fees.

The effect of transaction fees on market behavior and efficiency will be examined in

Chapter 6.

The revenue obtained from selling 𝑦 tokens (𝑦 ≤ 𝐿𝑟) tokens with transaction fees
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on day 𝑑 at time 𝑡 can be written as,

𝑆(𝑦) = 𝑦𝑝𝑑𝑠 − 𝐹 𝐹
𝑆 (3.5)

where 𝑝𝑑𝑠 = 𝑝𝑑(1− 𝐹 𝑃
𝑆 ), which is the token market price adjusted for the propor-

tional selling transaction fee. Transaction fees and price are not expressed in function

inputs for conciseness.

The cost of buying 𝑦 tokens (𝑦 ≤ 𝐿𝑟) tokens with transaction fees at time 𝑡 on

day 𝑑 can be written as,

𝐵(𝑦) = 𝑦𝑝𝑑𝑏 + 𝐹 𝐹
𝐵 (3.6)

where 𝑝𝑑𝑏 = 𝑝𝑑(1 + 𝐹 𝑃
𝐵 ), which is the token market price adjusted for the propor-

tional buying transaction fee.

3.1.4 Price Adjustment

The marketplace dictates the token price 𝑝𝑑 on day 𝑑, which is adjusted according to

an apriori rule established by the regulator to achieve revenue neutrality. The price

𝑝𝑑 is modified daily with a deterministic rule considering the regulator revenue 𝐾𝑑−1

(net revenue from all buying and selling transactions of users) from the previous day

as follows

𝑝𝑑 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑝𝑑−1 𝐾𝑑−1 ∈ [−𝐾𝑡, 𝐾𝑡]

𝑝𝑑−1 +∆𝑝 𝐾𝑑−1 < −𝐾𝑡

𝑝𝑑−1 −∆𝑝 𝐾𝑑−1 > 𝐾𝑡

(3.7)

where ∆𝑝 currently is a constant parameter representing the price change amount.
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𝐾𝑡 is a constant parameter representing a regulator revenue threshold to adjust the

price and ensures that price will not fluctuate for small regulator revenues close to

zero. Price is ensured to be positive and below a certain cap 𝑝𝑚 as follows:

𝑝𝑑 = max
(︀
0,min

(︀
𝑝𝑑, 𝑝𝑚

)︀)︀
(3.8)

Although token price is typically constant within a day, the regulator may inter-

vene in the market to adjust the market price during a day in the presence of unusual

events. For example, if road capacity drops because of an accident, or if demand

increases due to a concert, the regulator can intervene, increasing token price in cer-

tain period to discourage travel and reduce congestion. Numerical experiments are

conducted to study this in Chapter 6.

Market elements discussed in this section are summarized in Table 3.1.

Table 3.1: Market elements for the tradable mobility credits system

Elements Design Motivation

Allocation Lump-sum Simple; automated trading

Continuous Avoid concentrated trading;
additional control

Expiration Lifetime Avoid quantity buildup

Transaction fee Proportional Avoid undesirable market
behavior (e.g. frequent selling)Fixed

Price adjustment Day to day
constant adjustment Balance demand and supply

Market rules governing trading

3.2 Market Behavior

As buying behavior is governed by the previously specified buying rule, this section

mainly discusses individual selling behavior. It is assumed that individual selling

decision is based on their mobility decision (departure time 𝑡𝑛). In general, the
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decision to sell can be formulated as a dynamic programming or optimal control

problem, where the optimal selling strategy is characterized by Bellman’s equation

[Kirk, 2004]. However, this may be unrealistic as a model of individual decision

making. Instead, a simpler heuristic approach is developed to model an individual’s

selling strategy.

At time 𝑡 on day 𝑑, assume traveler 𝑛 has an upcoming planned trip at a time

denoted by 𝑡𝑛, where 𝑡𝑛 = 𝑡𝑑𝑛 if 𝑡 ≤ 𝑡𝑑𝑛, and 𝑡𝑛 = 𝑡
(𝑑+1)
𝑛 , if 𝑡 > 𝑡𝑑𝑛. Given the next trip,

a conditional profit function Π𝑑
𝑛(𝑡), which represents the profit obtained by selling all

tokens at time 𝑡 (with no future selling until the next departure 𝑡𝑛) can be written

as follows,

Π𝑑
𝑛(𝑡) = 𝑆

(︀
𝑥𝑑
𝑛(𝑡)

)︀
− I

(︀
𝑇 (𝑡𝑛) ≥ 𝑥̂𝑛(𝑡𝑛)

)︀
·𝐵

(︀
𝑇 (𝑡𝑛)− 𝑥̂𝑛(𝑡𝑛)

)︀
(3.9)

= 𝑥𝑑
𝑛(𝑡)𝑝

𝑑
𝑠 − 𝐹 𝐹

𝑆 − I
(︀
𝑇 (𝑡𝑛) ≥ 𝑥̂𝑛(𝑡𝑛)

)︀
·
(︀(︀
𝑇 (𝑡𝑛)− 𝑥̂𝑛(𝑡𝑛)

)︀
𝑝𝑑𝑏 + 𝐹 𝐹

𝐵

)︀
where 𝑥̂𝑛(𝑡𝑛) represents the expected account balance at next travel 𝑡𝑛. Since it is

assumed there will be no future selling until the next departure 𝑡𝑛, it can be written

as,

𝑥̂𝑛(𝑡𝑛) = min
[︀
(𝑡𝑛 − 𝑡)𝑟, 𝐿𝑟

]︀
(3.10)

For other notation in the conditional profit function Π𝑑
𝑛(𝑡), 𝑇 (𝑡𝑛) represents toll

in tokens of traveling at departure time 𝑡𝑛. A buying cost is incurred only if the toll

at 𝑡𝑛 is greater than or equal to traveler 𝑛’s expected account balance (i.e. 𝑇 (𝑡𝑛) ≥

𝑥̂𝑛(𝑡𝑛)), which is represented by the indicator function. Note that in defining the

profit function above, we have made the critical assumption that if a decision to sell

at the current time is made, no further selling will occur until the next trip. This

simplification allows us to derive an optimal selling strategy analytically and is partly

justifiable given that we also assume that during selling, an individual needs to sell
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all tokens in her wallet, and that prices do not vary within-day.

Under our assumptions, at time 𝑡 on day 𝑑, traveler 𝑛 will consider selling tokens

only if the profit value is positive, i.e., Π𝑑
𝑛(𝑡) > 0. If the profit value is positive, she

may still decide to wait if the derivative of the profit function is positive (meaning

that the profit is expected to increase if she defers the decision to sell). Therefore,

the selling strategy depends on both the profit function and its derivative, which can

be analyzed from the following three cases:

1. 𝑇 (𝑡𝑛) < 𝑥̂𝑛(𝑡𝑛) (no tokens need to be bought for the next trip)

The profit function Π𝑑
𝑛(𝑡) can be written as

Π𝑑
𝑛(𝑡) = 𝑥𝑑

𝑛(𝑡)𝑝
𝑑
𝑠 − 𝐹 𝐹

𝑆 (3.11)

and the derivative can be written as

𝑑Π𝑑
𝑛(𝑡)

𝑑𝑡
=

⎧⎪⎨⎪⎩0 𝑥𝑑
𝑛(𝑡) = 𝐿𝑟

𝑟𝑝𝑑𝑠 otherwise
(3.12)

which implies that profit will continue to increase until a full wallet is reached.

It does not make sense to wait longer at a full wallet because new acquired

tokens are canceled out with the expired tokens. Hence, the selling should be

at full wallet.

However, it is worth noting that, without fixed transaction fees, the selling

revenue at full wallet is the same as selling every time when one receives new

tokens. In fact, as long as one avoids token expiration, any selling strategy is

equivalent in the absence of fixed transaction fees. It is fixed transaction fees

that avoid frequent selling.

2. 𝑇 (𝑡𝑛) > 𝑥̂𝑛(𝑡𝑛) (tokens need to be bought for the next trip)

The profit function Π𝑑
𝑛(𝑡) can be written as

48



Π𝑑
𝑛(𝑡) = 𝑥𝑑

𝑛(𝑡)𝑝
𝑑
𝑠 − 𝐹 𝐹

𝑆 −
(︀(︀
𝑇 (𝑡𝑛)− 𝑥̂𝑛(𝑡𝑛)

)︀
𝑝𝑑𝑏 + 𝐹 𝐹

𝐵

)︀
(3.13)

and its derivative can be written as

𝑑Π𝑑
𝑛(𝑡)

𝑑𝑡
=

⎧⎪⎨⎪⎩−𝑟𝑝𝑑𝑏 𝑥𝑑
𝑛(𝑡) = 𝐿𝑟

𝑟𝑝𝑑𝑠 − 𝑟𝑝𝑑𝑏 otherwise
(3.14)

which is always negative since 𝑝𝑑𝑠 < 𝑝𝑑𝑏 given 𝐹 𝑃
𝐵 or 𝐹 𝑃

𝑆 is greater than 0. This

implies that profit obtained from waiting and selling at any time in the future

(until the next trip) is guaranteed to be less than the profit from selling now.

Hence, she should sell now if profit is positive.

Without transaction fees, the profit function Π𝑑
𝑛(𝑡) can be written as

Π𝑑
𝑛(𝑡) = 𝑥𝑑

𝑛(𝑡)𝑝
𝑑 −

(︀
𝑇 (𝑡𝑛)− 𝑥̂𝑛(𝑡𝑛)

)︀
𝑝𝑑 (3.15)

and its derivative can be written as

𝑑Π𝑑
𝑛(𝑡)

𝑑𝑡
=

⎧⎪⎨⎪⎩−𝑟𝑝𝑑 𝑥𝑑
𝑛(𝑡) = 𝐿𝑟

0 otherwise
(3.16)

which means as long as account balance is not full, it does not matter whether

one sells now or later. However, once we introduce fixed transaction fees, it

is better to sell at a full wallet to minimize the number of transactions. With

additional proportional transaction fees, it is better to sell immediately and not

worth waiting anymore as the derivative is always negative.

3. 𝑇 (𝑡𝑛) = 𝑥̂𝑛(𝑡𝑛) (the expected account balance is just enough to cover the toll of

the next trip)
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The profit function Π𝑑
𝑛(𝑡) can be written as

Π𝑑
𝑛(𝑡) = 𝑥𝑑

𝑛(𝑡)𝑝
𝑑
𝑠 − 𝐹 𝐹

𝑆 (3.17)

but its derivative does not exit because the conditional profit function is dis-

continuous at 𝑡 due to the transaction fees of buying. To avoid any buying

transaction fees (either fixed or proportional), it is optimal to sell immediately

if profit Π𝑑
𝑛(𝑡) is positive. Without transaction fees, similarly, it does not matter

to sell now or later as long as token expiration is avoided.

Based on the analysis, the effect of fixed transaction fees is to prevent multiple

transactions while the effect of proportional transaction fees is to make one sell as

soon as possible when the conditional profit is positive (if buying is required at next

travel). The proportional transaction fee is not preferable because it does not prevent

frequent selling but instead prevents selling at a full wallet. Numerical experiments

in Chapter 6 will provide further justification for the use of only a fixed transaction

fee from an efficiency perspective.

The selling strategy for an individual 𝑛 at any time 𝑡 on day 𝑑 considering positive

transaction fees is summarized in Algorithm 1.

3.3 Summary

This chapter introduces the detailed market design for tradable mobility credits

schemes to manage travel demand and avoid undesirable market behavior, includ-

ing hoarding, frequent selling, excessive activity at boundary and negotiation cost.

Market elements like token allocation, expiration, transaction fee, price adjustment

and market rules governing trading are explained in detail. A heuristic approach

to model disaggregate selling behavior is developed and the resulting simple selling

strategy is derived. The effect of proportional and fixed transaction fees on selling

behavior are discussed analytically.
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Algorithm 1: Selling Rule
input: 𝑑, 𝑡, 𝑛, 𝑝𝑑, 𝑡𝑛, 𝑥𝑑

𝑛(𝑡), 𝐿, 𝑟
At time 𝑡 on day 𝑑, calculate Π𝑑

𝑛(𝑡);
and expected account balance 𝑥̂𝑛(𝑡𝑛) = min

[︀
(𝑡𝑛 − 𝑡)𝑟, 𝐿𝑟

]︀
;

if Π𝑑
𝑛(𝑡) > 0 then
if 𝑇 (𝑡𝑛) ≥ 𝑥̂𝑛(𝑡𝑛) then

Sell now;
else

if 𝑥(𝑡) = 𝐿𝑟 then
Sell now;

else
Do nothing;

end
end

else
Do nothing;

end
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Chapter 4

Simulation Framework

This chapter describes the modeling and simulation framework for evaluating the

performance of the designed instruments including both tradable mobility credits

and pricing. Following this, the design of the personalized pricing and TMC schemes

are discussed in the next chapter. The overall simulation framework is shown in

Figure 4-1.

Figure 4-1: Simulation Framework

𝑁 travelers perform a daily commute between a single origin-destination pair.

For the sake of simplicity, each traveler performs a single morning trip and a single
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evening trip. Only their morning commute trip will be explicitly simulated and their

evening trip is assumed to be a mirror of the morning trip.

At the beginning of each day, every traveler uses forecasted information of travel

times, schedule delays and their account balance over the entire day to make a pre-

day mobility decision, which is the combination choice of mode (between car and PT)

plus departure time (over a individual set of departure time choices) for their morning

commute trip. Travelers who choose to drive may be subject to a time-of-day toll.

For TMC, the time-of-day toll profile is in units of tokens. Note that mobility credits

can only be used for toll road payment. The individual mobility decision is modeled

using a logit mixture model allowing for heterogeneity and non-linear income effects.

Next, the determined mobility decisions along with trading decisions (TMC only)

are simulated on a simple network connected by a single driving path and an alter-

native public transit (PT) line. Congestion (for driving) is modeled by a point queue

model (bottleneck of finite capacity), in which a queue develops once flow exceeds

capacity. Travel time of PT is assumed to be constant.

Travelers’ day-to-day learning is modeled through an exponential smoothing filter

to update forecasts of travel times and account balance. The day-to-day framework

in Figure 4-1 is used to simulate the evolution of the system state (departure flows,

travel times) until a measure of convergence has been reached. The performance

measures (overall welfare, distribution of user benefits, congestion, and mode shares)

at convergence are used to evaluate the given instruments.

In the following sections, we first describe the models of demand, supply and

day-to-day learning, termed the system model, in more detail. Next, we discuss

social welfare computation and the simulation-based toll optimization problem (to

determine optimal tolls) for the different instruments. The evaluation framework is

introduced at the end. Relevant notation is shown in Table 4.1. Note that models and

optimization formulation introduced in this chapter pertain to pricing without revenue

distribution (P-) and TMC with uniform allocation (MU). Other instruments (e.g.

pricing with revenue distribution) can be incorporated with modifications discussed

in more detail in Chapter 5.
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Table 4.1: Notation

Variables Description
ℎ Departure time interval
𝑡 Simulation time step
𝑑 Day 𝑑
𝑡ℎ Start time of interval ℎ
∆ℎ Duration of departure time interval
∆𝑡 Duration of simulation time step
∆𝑎 Size of desired arrival window
𝑛 Individual 𝑛
𝛼𝑛 Value of time of individual 𝑛
𝛽𝐸𝑛, 𝛽𝐿𝑛 Value of schedule delay early/late of individual 𝑛
𝜆 Coefficient of nonlinear income effect
𝛾 Nonlinear income effect adjustment parameter
𝜇𝑛 Random component scale parameter of individual 𝑛
𝜖𝑖𝑛 Random utility component for mobility decision 𝑖 of individual 𝑛
𝐼𝑛 Disposable income of individual 𝑛
𝐻𝑛 Departure time choice set of individual 𝑛
𝑀𝑛 Mode choice set of individual 𝑛
𝑡𝑛 Desired arrival time of individual 𝑛
𝜂 Departure time window size parameter
𝑝 Market price
T𝑗(ℎ) Toll of instrument 𝑗 in ℎ
𝜏𝑖 Forecasted travel time of choice 𝑖
𝑐𝑖𝑛 Expected cost for mobility decision 𝑖
𝑥𝑑
𝑛(𝑡) Account balance of individual 𝑛 at time 𝑡

𝐿 Token lifetime
𝑟 Token allocation rate
𝑡𝑓 Free flow travel time
𝑡𝑣(𝑡) Delay in queue at 𝑡
𝑄(𝑡) Number of drivers in queue at 𝑡
𝜃𝜏/𝜃𝑡 Weights on previous day’s forecasts
(·)𝑗 Variable associated with instrument 𝑗
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4.1 System Model

As noted previously, the setting we consider involves 𝑁 users traveling between a

single origin-destination pair connected by a path containing a bottleneck of finite

capacity and a PT line. Users wish to arrive at the destination within a certain “pre-

ferred arrival time window” in the morning, and can choose between PT and car. If

they decide to drive, they can adjust their departure times to avoid congestion (similar

to the model in [Ben-Akiva et al., 1984], which is a dynamic extension of [De Palma

and Lefevre, 1983]). The system is modeled using a stochastic process approach that

can be viewed as a simplification of the model in [Cascetta and Cantarella, 1991],

which considers the stochastic assignment problem in general networks. Day to day

adjustment is modeled using suitable learning and forecasting filters, within-day de-

parture time decisions and mode choices are modeled using a logit-mixture model, and

supply is modeled using a point queue model. We refer to [Cantarella and Cascetta,

1995] for a nuanced discussion of terminology and a detailed description of determin-

istic and stochastic process models (with probabilistic assignment or a probabilistic

model for users’ choice behavior). It is noted that the model of [Ben-Akiva et al.,

1984] may be viewed as a deterministic process model with probabilistic assignment.

The mobility demand model, network model, and demand-supply interactions are

discussed in detail next.

4.1.1 Demand Model

The demand model (preday mobility decision) is a model of departure time and mode

choice. Unless otherwise specified, everything discussed below pertain to day 𝑑. The

day is discretized into ℎ = 1 . . . 𝐻 time intervals of size ∆ℎ (let the set of all time

intervals in the day be denoted by ℋ = {1, . . . , ℎ, . . . , 𝐻}), and it is assumed that

each individual 𝑛 has a preferred/desired arrival time 𝑡𝑛 (more specifically, users are

assumed to wish to arrive within a time window of size 2∆𝑎 centered around 𝑡𝑛; this is

discussed in more detail later in the section). The day is also discretized into smaller

time intervals of size 𝑡 = 1 . . . 𝑇 of size ∆𝑡, which is the resolution of the supply model
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and trading (selling) decisions.

The choice set of mode for individual 𝑛 is defined as 𝑀𝑛 = {𝐶,𝑃𝑇}, where

𝐶 represents car choice and 𝑃𝑇 represents PT choice. The choice set of feasible

departure time intervals 𝐻𝑛 ⊂ ℋ is individual-specific and defined as 𝐻𝐶
𝑛 = {𝑡0𝑛 −

𝜂∆ℎ, 𝑡0𝑛 − (𝜂 − 1)∆ℎ, . . . , 𝑡0𝑛 + 𝜂∆ℎ}, where 𝜂 is a parameter, and 𝑡0𝑛 represents the

initial departure time interval on day 0, which is computed based on the preferred

arrival time 𝑡𝑛 and the free flow travel time. Thus, the departure time choice set 𝐻𝑛

consists of 2𝜂 time intervals of size ∆ℎ centered around the preferred departure time

interval on day 0, 𝑡0𝑛. Let 𝑖 = (𝑚,ℎ) represent an individual mobility decision as a

combination of mode and departure time choice (𝑖 ∈ {𝑚,ℎ|𝑚 ∈ 𝑀𝑛, ℎ ∈ 𝐻𝑛}).

Each individual is assumed to be rational and she wants to maximize her money

metric utility from the choice. The utility of the mobility decision 𝑖 is denoted as 𝑈𝑖𝑛.

The individual utility consists of two parts: a systematic utility 𝑉𝑖𝑛 which is a function

of observable variables and a random utility component 𝜖𝑖𝑛 which represents the

analyst’s imperfect knowledge. 𝜖𝑖𝑛 is assumed to be in i.i.d. extreme value distribution

with zero mean and individual specific scale parameter 𝜇𝑛. It is also assumed that

individual random utility term is perfectly correlated across instruments (i.e. remains

the same before the change and after the change) assuming before and after periods are

not too far apart (e.g. [McFadden, 2001,de Palma and Kilani, 2005]). This assumption

can be relaxed in future work according to [Delle Site and Salucci, 2013,Zhao et al.,

2008].

The systematic money-metric utility for individual 𝑛 departing in time interval

ℎ by car under instrument 𝑗, 𝑉𝑖𝑛(𝜑
𝑗

𝑖 ), where 𝑖 ∈ {𝑚 = 𝐶, ℎ|ℎ ∈ 𝐻𝑛}. 𝜑
𝑗

𝑖 is a

vector of forecasted information in the systematic utility that affects the choice of

departure time interval of driving. The first is forecasted/expected travel time 𝜏 𝑗𝑖 ,

which determines the expected schedule delay early (second component) and schedule

delay late (third component). The fourth component is expected cost 𝑐𝑗𝑖𝑛 which is

explained in more detail next. The last component is remaining income, which is

equal to the disposable income for transportation 𝐼𝑛 minus expected cost 𝑐𝑗𝑖𝑛.

The marginal utility of an additional unit of travel time for individual 𝑛 is denoted
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by 𝛼𝑛. For simplicity, we assume travelers have common knowledge of forecasted

travel times (more on this in section 4.1.3). The desired arrival time window for

individual 𝑛 is defined as [𝑡𝑛 − ∆𝑎, 𝑡𝑛 + ∆𝑎], where 𝑡𝑛 represents the center of the

period and ∆𝑎 represents arrival flexibility. If she arrives outside of desired time

period, she suffers a schedule delay. The marginal utility of an additional unit of

schedule delay early is 𝛽𝐸𝑛 and an additional unit of schedule delay late is 𝛽𝐿𝑛, where

𝛽𝐸𝑛 ≤ 𝛼𝑛 ≤ 𝛽𝐿𝑛 according to empirical results (e.g., [Small, 1982]).

The expected cost 𝑐𝑗𝑖𝑛 warrants additional discussion. Under the No Toll (NT)

scenario, it is equal to the operation cost 𝑐𝑓 (fuel cost). Under pricing (𝑗 = 𝑃 ), it is

equal to the toll in dollars charged for departing in time interval ℎ, 𝑇 𝑃 (ℎ), plus an

operation cost 𝑐𝑓 , which can be written as

𝑐𝑃𝑖𝑛 = 𝑇 𝑃 (ℎ) + 𝑐𝑓 (4.1)

Under the TMC (𝑗 = 𝑀) scheme, it depends on an individual’s expected oppor-

tunity cost of tokens 𝑅̃𝑖𝑛 plus the operation cost 𝑐𝑓 as follows:

𝑐𝑀𝑖𝑛 = 𝑅̃𝑖𝑛 + 𝑐𝑓 (4.2)

Recall that the selling revenue of 𝑦 tokens with transaction fees (𝐹 𝐹
𝑆 , 𝐹 𝑃

𝑆 ) and

token price (𝑝) can be written as (selling revenue function),

𝑆(𝑦) = 𝑦𝑝
(︀
1− 𝐹 𝑃

𝑆

)︀
− 𝐹 𝐹

𝑆 (4.3)

and similarly, the buying cost of 𝑦 tokens can be written as (buying cost function),

𝐵(𝑦) = 𝑦𝑝
(︀
1 + 𝐹 𝑃

𝐵

)︀
+ 𝐹 𝐹

𝐵 (4.4)

Let 𝑡ℎ be the start time of interval ℎ, 𝑥̃𝑛(𝑡ℎ) be the expected account balance at
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time 𝑡ℎ, the beginning time of the time interval ℎ. If a traveler does not need to

pay any toll, she can sell the entire day’s token allocation completely. Hence, the

opportunity cost (or negative opportunity benefit) is equal to the negative of selling

revenue of the entire day’s allocation, 𝑆(𝐿𝑟).

If a traveler needs to pay toll 𝑇𝑀(ℎ) in ℎ but the expected account balance 𝑥̃𝑛(𝑡ℎ)

is greater or equal to 𝑇𝑀(ℎ) (no buying), her opportunity cost is equal to the negative

of selling revenue of one-day allocation 𝐿𝑟 minus toll in tokens 𝑇𝑀(ℎ), which can be

written as

𝑅̃𝑖𝑛 = −𝑆
(︀
𝐿𝑟 − 𝑇𝑀(ℎ)

)︀
(4.5)

However, if she does not have enough account balance to cover the toll 𝑇𝑀(ℎ),

she has to buy additional tokens equal to 𝑇𝑀(ℎ)− 𝑥̃𝑛(𝑡ℎ) in order to travel in ℎ. The

amount of tokens she can sell for profit is equal to one-day allocation 𝐿𝑟 minus her

expected account balance 𝑥̃𝑛(𝑡ℎ) since all of her tokens will be used for toll payment

if she departs in ℎ. The opportunity cost can be written as

𝑅̃𝑖𝑛 = −𝑆 (𝐿𝑟 − 𝑥̃𝑛(𝑡ℎ)) +𝐵
(︀
𝑇𝑀(ℎ)− 𝑥̃𝑛(𝑡ℎ)

)︀
(4.6)

In summary, the expected opportunity cost 𝑅̃𝑖𝑛 depends on an individual’s fore-

casted account balance 𝑥̃𝑛(𝑡ℎ), market price 𝑝, the toll in tokens 𝑇𝑀(ℎ) and transac-

tion fees as follows:

𝑅̃𝑖𝑛 =

⎧⎪⎨⎪⎩−𝑆
(︀
𝐿𝑟 − 𝑇𝑀(ℎ)

)︀
𝑥̃𝑛(𝑡ℎ) ≥ T𝑀(ℎ)

−𝑆 (𝐿𝑟 − 𝑥̃𝑛(𝑡ℎ)) +𝐵
(︀
𝑇𝑀(ℎ)− 𝑥̃𝑛(𝑡ℎ)

)︀
otherwise

(4.7)

Note that if transaction fees are zero, the opportunity cost in Equation 4.7 reduces

to the one-day allocation minus the toll in tokens times token price, i.e., 𝑅̃𝑖𝑛 =

−
(︀
𝐿𝑟 − T𝑀(ℎ)

)︀
𝑝. In the absence of non-linear income effects, 𝐿𝑟 can be overlooked

because it is a constant which does not affect the choice.
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Regarding the income effect, the diminishing marginal utility of income suggests

that as an individual’s income increases, the extra benefit to that individual decreases.

It is thus natural to model this nonlinear effect of remaining income by a quasiconcave

function (as per [McFadden, 2017]). Hence, we add the remaining income plus a

natural log of the remaining income to the systematic money-metric utility.

The utility of an individual 𝑛 driving and departing in time interval ℎ (choosing

a mobility decision 𝑖 ∈ {𝑚 = 𝐶, ℎ|ℎ ∈ 𝐻𝑛}) under instrument 𝑗 can be written as,

𝑈𝑖𝑛

(︁
𝜑

𝑗

𝑖

)︁
=𝑉𝑖𝑛

(︁
𝜑

𝑗

𝑖

)︁
+ 𝜖𝑖𝑛 (4.8)

=− 2𝛼𝑛𝜏
𝑗
𝑖 − 𝛽𝐸𝑛𝑆𝐷𝐸

(︀
ℎ, 𝑡𝑛, 𝜏

𝑗
𝑖

)︀
− 𝛽𝐿𝑛𝑆𝐷𝐿

(︀
ℎ, 𝑡𝑛, 𝜏

𝑗
𝑖

)︀
+ 𝐼𝑛 − 2𝑐𝑗𝑖𝑛 + 𝜆𝑙𝑛

(︀
𝛾 + 𝐼𝑛 − 2𝑐𝑗𝑖𝑛

)︀
+ 𝜖𝑖𝑛

where

𝑆𝐷𝐸
(︀
ℎ, 𝑡𝑛, 𝜏

𝑗
𝑖

)︀
= max

(︀
0, 𝑡𝑛 −∆𝑎 − (𝑡ℎ + 𝜏 𝑗𝑖 )

)︀
(4.9)

𝑆𝐷𝐿
(︀
ℎ, 𝑡𝑛, 𝜏

𝑗
𝑖

)︀
= max

(︀
0, (𝑡ℎ + 𝜏 𝑗𝑖 )− 𝑡𝑛 −∆𝑎

)︀
(4.10)

Schedule delay of the evening trip is ignored because it is assumed to be more

flexible. The individual departure time choice set 𝐻𝑛 is also subject to a budget

constraint (i.e. an individual cannot choose a departure time that is not affordable).

The systematic money-metric utility function of user 𝑛 who departs in time inter-

val ℎ by PT is denoted as 𝑉𝑖𝑛(𝜑
𝑗

𝑖 ), where 𝑖 ∈ {𝑚 = 𝑃𝑇, ℎ|ℎ = ⌊𝑡𝑛 − 𝜏𝑃𝑇 ⌋}. Since the

travel time and headway of PT are constant, we only need to consider one departure

time interval ℎ, which has a corresponding arrival time closest to the desired arrival

time 𝑡𝑛. For PT, the input vector 𝜑
𝑗

𝑖 for the systematic utility consists of four com-

ponents: PT travel time 𝜏𝑃𝑇 , expected waiting time 𝑊𝑃𝑇 , expected PT cost 𝑐𝑗𝑖𝑛 and

remaining income 𝐼𝑛 − 𝑐𝑗𝑖𝑛.

The marginal utility of an additional unit of PT travel time of individual 𝑛 is

assumed to be the same as that of car travel time as 𝛼𝑛. The marginal utility of an
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additional unit of waiting time is 𝛽𝑊𝑛.

Regarding the expected PT cost 𝑐𝑗𝑖𝑛, it is equal to operation cost (i.e. PT fare)

𝑐𝑃𝑇 under the No Toll (NT) scenario and pricing. Under the TMC scheme, it depends

on an individual’s expected opportunity cost of tokens 𝑅̃𝑖𝑛 plus operation cost 𝑐𝑃𝑇 ,

where 𝑅̃𝑖𝑛 is equal to the negative of selling revenue of a full wallet 𝐿𝑟 since travelers

who choose PT can sell all of her tokens acquired in one day for maximum return. It

can be written as 𝑅̃𝑖𝑛 = 𝑆(𝐿𝑟)

Hence, the expected PT cost 𝑐𝑗𝑖𝑛 under the TMC scheme can be written as

𝑐𝑀𝑖𝑛 = −𝑅̃𝑖𝑛 + 𝑐𝑃𝑇 (4.11)

The utility of an individual 𝑛 using PT who departs in interval ℎ (choosing a

mobility decision 𝑖 ∈ {𝑚 = 𝑃𝑇, ℎ|ℎ = ⌊𝑡𝑛 − 𝜏𝑃𝑇 ⌋}) can be written as,

𝑈𝑖𝑛

(︁
𝜑

𝑗

𝑖

)︁
=𝑉𝑖𝑛

(︁
𝜑

𝑗

𝑖

)︁
+ 𝜖𝑖𝑛 (4.12)

=− 2𝛼𝑛𝜏𝑃𝑇 − 2𝛽𝑊𝑛𝑊𝑃𝑇 + 𝐼𝑛 − 2𝑐𝑗𝑖𝑛 + 𝜆𝑙𝑛
(︀
𝛾 + 𝐼𝑛 − 2𝑐𝑗𝑖𝑛

)︀
+ 𝜖𝑖𝑛

4.1.2 Supply Model

The network is assumed to be a single origin-destination pair connected by a single

path containing a bottleneck of fixed capacity 𝑠 [Arnott et al., 1990b]. A first-in-first-

out (FIFO) queue develops once the flow of travelers exceeds 𝑠. The free flow travel

time is 𝑡𝑓 and the extra delay time for a traveler departing from home at time 𝑡 is

𝑡𝑣(𝑡). Thus, the total travel time for a traveler departing from home at time 𝑡 is:

𝜏(𝑡) = 𝑡𝑣(𝑡) + 𝑡𝑓 (4.13)

Let 𝑄(𝑡) be the number of travelers in the queue at time 𝑡. The delay time at
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time 𝑡 is derived from the deterministic queuing model as follows:

𝑡𝑣(𝑡) =
𝑄(𝑡)

𝑠
(4.14)

where 𝑄(𝑡) = 0 and 𝑡𝑣(𝑡) = 0 when there is no congestion.

Note that within our simulation, the capacity 𝑠 is defined for time intervals 𝑡 of

size ∆𝑡. The travel time for a given departure time interval ℎ is obtained by averaging

the travel times of all travelers departing in ℎ. Further, the exact time of departure of

a traveler within the supply model is randomly (uniformly) drawn within the chosen

departure time interval ℎ.

For the alternative PT line, it has constant travel time 𝜏𝑃𝑇 . Its headway is also

constant, which is equal to twice of the expected waiting time 𝑊𝑃𝑇 .

4.1.3 Day-to-Day Learning

Let 𝜏 𝑑−1
𝑖 denote the actual or experienced car travel time on day 𝑑 − 1 of choice

𝑖, where 𝑖 ∈ {𝑚 = 𝐶, ℎ|ℎ ∈ 𝐻𝑛}. As we specified in the demand model, travelers

are assumed to make their choices of departure time according to forecasted car

travel times 𝜏 𝑑𝑖 , ∀ℎ ∈ ℋ from their memory and learning. We use an exponential

smoothing filter, a type of homogeneous filter [Cantarella and Cascetta, 1995], to

model the learning and forecasting process by weighting actual and forecasted costs

of the previous day as follows:

𝜏 𝑑𝑖 = (1− 𝜃𝜏 )𝜏
𝑑−1
𝑖 + 𝜃𝜏𝜏

𝑑−1
𝑖 (4.15)

where 𝜃𝜏 ∈ [0, 1] is a learning weight for the previous day’s forecasted travel time.

In order to get individual forecasted account balance on day 𝑑 𝑥̃𝑑
𝑛(𝑡), the individual

forecasted departure time 𝑡𝑑𝑛 is first acquired by applying a similar filter as follows:
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𝑡𝑑𝑛 = (1− 𝜃𝑡)𝑡
𝑑−1
𝑛 + 𝜃𝑡𝑡

𝑑−1
𝑛 (4.16)

where 𝜃𝑡 ∈ [0, 1].

Next, the trading model presented in Section 3.1.3 is applied using the individual

forecasted departure time to determine their forecasted account balance over the

entire day, which is used to compute the expected toll costs under the TMC scheme

through Equation 4.7.

4.2 Toll Optimization

This section discusses time-of-day toll profile optimization problem with the objective

to maximize the improvement of social welfare. In the following sections, the social

welfare measure used in this study is defined first; then the toll profile optimization

problem is formulated; finally, the solution procedure of the optimization problem is

presented.

4.2.1 Social Welfare

In order to evaluate the policy impacts of the different instruments, a real-value

function termed the social welfare function (SWF) is adopted, which is an aggregate

measure of the whole society’s well-being. From individualistic ethics, social welfare

depends on the welfare of all agents in society. If the utility is cardinal, it can

be used to measure individual welfare and it is natural to have SWF as a form

of a non-weighted sum of individual utilities [Harsanyi, 1955]. A weighted sum is

also possible with weights determined based on analysts’ value judgements. This

viewpoint dates back to the work of Bentham and such a form of SWF is also know

as the Benthamite social welfare function. Note that there are other forms of SWF,

like Nash’s social welfare function [Kaneko and Nakamura, 1979], Rawlsian minmax

social welfare function [Rawls, 2020] and Sen’s welfare function [Sen, 2009]. In the
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case considered in this study, users and the regulator are the only two types of agents

in society.

For the regulator, it is assumed that the operation cost is constant across instru-

ments. Therefore, its surplus is only represented by regulator revenue (𝐾). Under

pricing without revenue distribution (P-), it can be written as

𝐾𝑃− =
𝑁∑︁

𝑛=1

∑︁
𝑖∈𝑀𝑛×𝐻𝑃−

𝑛

𝑐𝑃−
𝑖𝑛 I𝑛

(︀
𝑖|𝑇 𝑃−)︀ (4.17)

where 𝑖 is the mobility decision, which is a combination of mode and departure time

choice; I𝑛(𝑖|𝑇 𝑃−) is a indicator if traveler 𝑛 chooses mobility choice 𝑖 or not given toll

vector 𝑇 𝑃− = {𝑇 𝑃−(ℎ)|ℎ ∈ ℋ}; 𝑐𝑃−
𝑖𝑛 is equal to the toll payment for driving (𝑇 𝑃−(ℎ))

or the PT fare payment for PT (𝑐𝑃𝑇 ); and 𝐻𝑃−
𝑛 might be instrument specific because

of budget constraints.

Under the TMC scheme, regulator revenue 𝐾𝑀 consists of two parts. The first

part is the sum of PT fare payments and the second part is the sum of tokens bought

minus tokens sold over one day. 𝐾𝑀 can be written as

𝐾𝑀 =
𝑁∑︁

𝑛=1

⎛⎝𝑐𝑃𝑇 I𝑛
(︀
𝑃𝑇 |𝑇𝑀(ℎ)

)︀
+

∑︁
𝑡∈{1...𝑇}

(︀
𝐵
(︀
𝑇𝑀 (𝑡)− 𝑥𝑛(𝑡)

)︀
I𝐵𝑛

(︀
𝑡|𝑇𝑀

)︀
− 𝑆 (𝑥𝑛(𝑡)) I𝑆𝑛(𝑡|𝑇𝑀)

)︀⎞⎠
(4.18)

where 𝐵(·) is cost of buying function and 𝑆(·) is revenue of selling function;

I𝐵𝑛
(︀
𝑡|𝑇𝑀

)︀
and I𝑆𝑛

(︀
𝑡|𝑇𝑀

)︀
are indicators of buying or selling at 𝑡 given toll in tokens

𝑇𝑀 . Note that the price adjustment mechanism described in Section 3.1.4, is designed

to ensure that the regulator revenue of the TMC scheme at equilibrium is close to

zero, thereby achieving revenue neutrality.

In the literature, in the presence of nonlinear income effects, three ways are usually

used to measure user benefits: Compensating Equivalent (MCE), Hicksian Compen-

sating Variation (HCV), and Hicksian Equivalent Variation (HEV). MCE is equal to
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the difference in indirect utilities between a “but for” scenario and an “as is” scenario,

scaled to money metric units by dividing by the marginal utility of income (MUI) at

the “as is” scenario level. It differs from the commonly used Marshallian consumer

surplus (MCS) only in the MUI scaling factor. It can be easily computed when the in-

direct utility function and its derivatives are known. HCV is equal to the net decrease

in “but for” scenario income that equates utility in two scenarios while HEV is equal

to the net increase in “as is” scenario income that equates utility in two scenarios.

Refer to [McFadden, 2017] for a detailed discussion.

A major drawback of these three measures is that their ethical implications are not

defensible as pointed out by [Blackorby and Donaldson, 1990]. Well-being measured

in units of income treat increases in income as equally socially valuable no matter

who receives them. This is not the case for net utility improvement as the nonlinear

effect of income improvement is captured by a nonlinear income effect term in the

utility specification.

In this study, user benefits (𝑍𝑗) under instrument 𝑗 is the sum of all users’ net

experienced utilities relative to NT denoted as 𝑧𝑗𝑛. This is similar to what [De Palma

and Lindsey, 2004] used except they summed up the log transformations of individual

utilities. Since utilities adopted in this study are money-metric, the net utility amount

serves as a meaningful measurement of improvement directly. An individual 𝑛’s net

experienced utility is the difference between maximum utility under instrument 𝑗 and

under NT, which can be written as,

𝑧𝑗𝑛 = max
𝑖∈𝑀𝑛×𝐻𝑗

𝑛

(︀
𝑈𝑖𝑛

(︀
𝜑𝑗

𝑖

)︀)︀
− max

𝑖∈𝑀𝑛×𝐻𝑁𝑇
𝑛

(︀
𝑈𝑖𝑛

(︀
𝜑𝑁𝑇

𝑖

)︀)︀
(4.19)

where 𝜑𝑗
𝑖 is a vector of experienced variables under instrument 𝑗 and 𝜑𝑁𝑇

𝑖 is a

vector of experienced variables under 𝑁𝑇 .

Hence, the user benefits 𝑍𝑗 can be written as
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𝑍𝑗 =
𝑁∑︁

𝑛=1

𝑧𝑗𝑛 (4.20)

4.2.2 Optimization Formulation

It is possible to consider different time-of-day toll profile specifications. For a smooth

and continuous toll profile, one can express the tolling function (or profile) by a

mixture of 𝑀 Gaussian functions, which are specified by 3𝑀 parameters, mean,

variance and amplitude, 𝑚 = 1, 2, . . . ,𝑀 . However, in practice, implementing a

smooth and continuous toll profile of this nature is complex. Hence, the toll function

that we consider is a step toll profile (of the kind implemented in Singapore and

Stockholm), which consists of five step toll values and six break points.

The toll profile optimization can be formulated as a simulation-based optimization

problem with the objective of maximizing total social welfare (𝑆𝑊 ) as follows

max
𝑇 𝑗

𝑍𝑗 +𝐾𝑗

s.t. 𝑍𝑗, 𝐾𝑗 = 𝑆𝑀
(︀
𝑇 𝑗, 𝜉,𝜓

)︀
𝑇 𝑗 = {𝑇 𝑗(ℎ)|ℎ ∈ ℋ}

𝑇 𝑗 ≥ 0

(4.21)

where 𝑗 can be either 𝑃− or 𝑀𝑈 ; toll profile 𝑇 𝑗 is a set of toll values over the

entire day. In the case of pricing, the toll profile is in units of dollars while it is in

units of tokens in the case of TMC. For the TMC system, in addition to the toll

profile in tokens, other parameters like the allocation rate 𝑟 and transaction fees have

to be determined. For the allocation rate 𝑟, making it exogenous will avoid the issue

of non-uniqueness (during optimization) of combinations of allocation rate and the

toll profile. For transaction fees, they are determined based on not only social welfare

optimization, but also undesirable market behavior reduction, which is discussed in

detail in Chapter 6.

𝜉 represents all input data for simulation, such as individual income, preferred ar-
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rival time, and choice attributes. 𝜓 represents all model parameters, such as demand

model coefficients, bottleneck capacity, user learning weights, and market parameters

for the TMC scheme. The 𝑆𝑀(·) function is the system model discussed in Section

4.1.

The user benefit 𝑍𝑗 is defined in Equation 4.20 and the regulator revenue 𝐾𝑗 is

defined in Equation 4.17 and 4.18.

Clearly, the optimization problem in 4.21 has no closed-form since the objective

function for a given toll profile is the outcome of a simulation of the stochastic process

(a simulation-based optimization problem), or more specifically, the system model

presented in 4.1, which includes traveler behavior, regulator states and actions, and

the resulting network and market conditions. The social welfare given an instrument

𝑗 is evaluated at simulation convergence.

4.2.3 Solution Procedure

In order to solve this simulation-based optimization problem, a differential evolu-

tion (DE) algorithm is adopted as it is derivative-free and performs well for global

optimization problems of this kind [Price, 2013]. In the literature, metaheuristic

algorithms have been shown to work well for nonconvex and nonlinear toll design

problems (e.g. [Shepherd and Sumalee, 2004,Zhang and Yang, 2004]). In this section,

the solution procedure is introduced and some key steps are illustrated in detail.

Let X represent the decision variables of the simulation-based optimization prob-

lem (i.e., the parameters of the toll profile), X = (𝜉0, 𝜉𝑚, 𝐴𝑚) , 𝑚 = 1, 2, . . . ,𝑀 , where

𝜉0 represents the starting time of the toll and 𝜉𝑚 represents the breaking points for

the 𝑚th step of the toll; 𝐴𝑚 represents the toll value for the interval between 𝜉𝑚−1

and 𝜉𝑚; 𝑀 represents the number of steps. The procedure of the differential evolution

(DE) algorithms is as follows:

Step 1: Initial population. Randomly generate an initial population of feasible step

toll profiles of size 𝒩 , where 𝒩 represents the solution population size. Feasibility

constraints include 𝜉𝑚 ≥ 𝜉𝑚−1+15 (minimum duration of one step toll is 15 minutes)

and 𝐴𝑚 < 15 (maximum toll has to be less than 15 dollars).

67



Step 2: Simulation evaluation. Run simulations in parallel given 𝒩 solutions and

obtain social welfare values at convergence.

Step 3: Mutation. Randomly uses individuals from the current solution population

to generate variant vectors subject to feasibility constraints. For instance, the 𝑔th

variable of vector 𝑖 at generation 𝑘, Y𝑘
𝑔,𝑖, is given by

Y𝑘
𝑔,𝑖 = X𝑘

𝑔,𝑟1 + 𝐹 ·
(︀
X𝑘

𝑔,𝑟2 −X𝑘
𝑔,𝑟3

)︀
(4.22)

where 𝑟1, 𝑟2, 𝑟3 are randomly selected from [1,𝒩 ], 𝑖 ̸= 𝑟1 ̸= 𝑟2 ̸= 𝑟3, and 𝐹 is a

scale factor. If the resulting Y𝑘
𝑔,𝑖 is not feasible, discard and re-generate a feasible

solution.

Step 4: Crossover. Combine variants and original solutions subject to feasibility

constraints. For example, a trial vector U𝑘
𝑖 is created by combining the variant vector

and original vector as follows,

U𝑘
𝑔,𝑖 =

⎧⎪⎨⎪⎩Y𝑘
𝑔,𝑖 if 𝑟𝑎𝑛𝑑(0, 1) < 𝐶𝑟 or 𝑔 = 𝑟𝑔

X𝑘
𝑔,𝑖 otherwise

(4.23)

where 𝐶𝑟 ∈ [0, 1] is the crossover rate, 𝑟𝑎𝑛𝑑(0, 1) represents a random uniformly

distributed variable within (0, 1), and 𝑟𝑔 is a random integer in [1, 2𝑀 ] ensuring at

least one variable of the trial vector U𝑘
𝑖 is from the variant vector Y𝑘

𝑖 . Similarly, Y𝑘
𝑔,𝑖

is re-generated if it violates feasibility constraints.

Step 5: Next generation. Produce the next generation solutions by comparing the

previous solutions and trial solutions. For example, the next generation vector 𝑖 is

acquired by comparing the original vector X𝑘
𝑖 and the trial vector U𝑘

𝑖 in terms of

social welfare as follows,

X𝑘+1
𝑖 =

⎧⎪⎨⎪⎩U𝑘
𝑖 if 𝑆𝑊 (U𝑘

𝑖 ) > 𝑆𝑊 (X𝑘
𝑖 )

X𝑘
𝑖 otherwise

(4.24)

Step 6: Verification of stopping criterion. If the stopping criterion has not been
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reached, go to Step 2; otherwise stop.

This algorithm is fairly robust to initial values because of mutation, crossover and

selection steps in the algorithm.

4.3 Evaluation Framework

The policy evaluation is based on microsimulation outputs under the baseline 𝑁𝑇 and

various designed instruments. Each instrument is simulated until convergence so that

the performance indicators represent the day at equilibrium. The evaluation frame-

work include four main categories: social welfare, distributional impacts, behavior

change and level of congestion, incorporating aggregate-level and disaggregate-level

indicators.

Social welfare is a monetary aggregated measurement of overall societal well-being.

As discussed in previous section, it consists of user benefits and regulator revenue.

In order to analyze how user benefits distribute across users, the Lorenz curve

[Gastwirth, 1972] of individual benefit 𝑧𝑗𝑛 is plotted. If the curve is strictly nonnega-

tive, it means the corresponding instrument is Pareto improving. As Pareto improve-

ment does not relate to equity, a commonly used equity index, the Gini coefficient,

is also calculated. Note that Gini coefficient is calculated using disposable income 𝐼𝑛

plus monetary benefit 𝑧𝑗𝑛 to measure the inequality of new income distribution for a

given instrument 𝑗.

As there are only two modes considered in this study, the indicator for behavior

change is PT usage. The purpose of this evaluation is to help policy-makers adapt

relevant public services and prevent undesirable activities accordingly. For example,

charging a higher toll may increase PT usage, which may require improved PT sup-

ply. Also, giving revenue refund or tokens may have undesirable consequences like

increasing number of cancelled trips, which may reduce economic productivity. It is

important to consider other travel behavior indicators in future work, such as number

of trips, number of activities, and trip distance.

The last category is level of congestion, which is measured by the car trip travel
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time index (TTI). It is an average ratio of simulated travel time to free flow travel

time. It can also be weighted by distance to incorporate the effect of trip length.

However, in this study, we only consider a single path, and hence, weighting is not

required.

It is worth noting that the simulation is stochastic. Therefore, it is important to

examine whether the performance differences are due to policy impacts or stochastic-

ity. On the one hand, the level stochasticity in the simulator is controlled as much as

possible using the same random seed for simulations of different scenarios to ensure

the same agent has the same random error and coefficients (e.g. VOT) drawn in

demand model. On the other hand, each policy is evaluated multiple times with dif-

ferent random seeds in numerical experiments. The level of stochasticity is quantified

and considered in comparisons.

4.4 Summary

This chapter discusses the simulation framework for evaluating the performance of

various instruments. The demand model, supply model and day-to-day learning are

explained in detail. Next, toll design is formulated as a simulation-based optimization

problem to maximize social welfare at equilibrium. A metaheuristic algorithm, namely

the Differential Evolution algorithm is applied to solve it. Finally, the evaluation

framework including four categories of performance indicators are explained. The

performance of various instruments are compared against the NT baseline.
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Chapter 5

Personalization for Pricing and

Tradable Mobility Credits

As a uniform revenue refund has been shown to not guarantee Pareto improvement, it

is natural to consider how to refund revenue more efficiently through personalization.

Since low income users are known to more likely lose from pricing, personalization

has the potential to improve equity at the same time. Given current developments in

technology, it becomes easier to infer users’ preferences but there has been no research

on methodologies for personalized revenue refunding and tradable mobility credits.

Due to the hierarchical nature of the problem, formulating it as a bi-level opti-

mization problem allows us to consider system and user objectives together. This

chapter develops a bi-level optimization framework for both price and quantity con-

trols to achieve personalized distribution, which is an application of an online bi-level

optimization framework for smart mobility and transportation system management

termed Tri-POP [Atasoy et al., 2020].

The rest of chapter first reviews the literature on bi-level optimization and person-

alized pricing in transportation. Next, optimization problems for uniform and per-

sonalized distribution are formulated utilizing the system model discussed in Chapter

4.
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5.1 Literature Review

5.1.1 Bi-level Optimization

Bi-level optimization is a mathematical framework suitable for optimizing large-scale

hierarchical decision-making processes, wherein the realized outcomes of any policy

or decision by the upper level (system) to optimize their goals is affected by the

response of lower level entities (users), who want to optimize their own outcomes.

The upper level or system optimization contains another optimization problem (user)

as a constraint. It is appealing because the objectives of users (e.g. maximize their

own benefits) can be in conflict with the system objectives and bi-level optimization

provides a way to reconcile conflicting objectives. Refer to [Sinha et al., 2017] for

more details about bi-level optimization.

However, because of the hierarchical optimization structure, it also becomes dif-

ficult to solve. [Hansen et al., 1992] showed that Bi-level programming is strongly

NP-hard. [Vicente et al., 1994] have proven that even evaluating a solution for op-

timality is also a NP-hard problem. [Deng, 1998] discuss the complexity issues of

bi-level optimization and prove that there is no polynomial time algorithm for linear

bi-level problems.

Due to its difficult nature, much of the literature considers bi-level optimization

with well-behaved functions (e.g. linear, quadratic or convex) with strong assump-

tions (e.g. continuity, semi-continuity, differentiability). In these cases, a single-level

reduction approach can be applied to replace the lower level optimization problem

with its KKT conditions and solve the bi-level problem as a single level optimiza-

tion problem. However, classical methods fail for complex formulations. Recently,

more studies adopt evolutionary algorithms to solve bi-level optimization. A detailed

survey of classical and evolutionary algorithms can be found in [Sinha et al., 2017].

As pointed out by [Migdalas, 1995], the transportation planning process has hier-

archical characteristics for applications of bi-level optimization, such that the public

sector at system level wants to improve network performance while users at another

level make choices (e.g. route, mode, departure time, destination) to improve their
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own benefits. For example, [Constantin and Florian, 1995] formulate the problem

of optimizing the frequencies of transit lines as bi-level optimization and solve it by

sub-gradient algorithm.

More applications of bi-level optimization in the transportation field can be found

in toll design. For example, [Labbé et al., 1998] study a bi-level optimization of

pricing, in which the system optimization objective is to maximize revenues and the

user optimization works like an assignment problem with the objective to find the

shortest path. [Yin, 2002] consider a multi-objective system optimization to minimize

the total travel cost and maximize the total revenue with a user-equilibrium traffic

assignment at the user level. The formulated problem is solved by a genetic algorithm-

based (GAB) approach. [Wang et al., 2014b] consider multiple objectives both in

system optimization and user optimization. System objectives include minimizing

system travel, total vehicle emissions and negative health impacts; user objectives

include minimizing travel time and toll. A combination of a metaheuristic and a

classical optimization algorithm is used to solve it.

The design of tradable mobility credits has also been explored using bi-level op-

timization formulations. For example, [Wu et al., 2012] formulated the design of

congestion pricing and tradable credit schemes as mathematical programs with equi-

librium constraints. The system optimization optimizes toll policy to maximize both

net social benefit and equity while the user level determines equilibrium flows and the

credit price. Along similar lines, [Wang et al., 2014a] consider capacity enhancements

for selected links in addition to link-based credit charges in system optimization to

minimize total system costs and a similar equilibrium problem at user level. [Wang

et al., 2020] extend the bi-level optimization to consider traffic emission management

at the system level.

Recently, [Azevedo et al., 2018] developed a smartphone-based system termed Tri-

pod (an application of the Tri-POP framework) to influence travelers’ real time deci-

sions by providing optimized incentives. The involved bi-level optimization framework

is novel because it integrates prediction and personalization. The system optimization

has the objective to minimize system-wide energy consumption by optimizing energy
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saved per token and the user optimization has the objective to maximize individual’s

expected consumer surplus or expected revenue.

5.1.2 Personalized Pricing in Transportation

The main idea of personalization is to tailor a product, service or policy to accom-

modate specific users in order to improve certain objectives (e.g. revenues, customer

satisfaction, conversion, and etc.). In the transportation pricing context, personaliza-

tion can be achieved via price discrimination based on individual willingness to pay

(WTP) for various objectives, including revenue improvement, congestion reduction,

and social welfare improvement.

Literature on personalized pricing in the transportation field is scarce. There are

some applications in the airline industry to provide personalized fare offers based on

estimated WTP [Wittman and Belobaba, 2017]. [Zhang, 2019] develop personalized

discounting policies for application on managed lane tolling with an objective of

maximizing revenue subject to practical considerations. The demand and supply

interactions are captured by a DTA system. A personalized choice model is developed

to capture systematic heterogeneity in individual’s preferences to managed lanes and

sensitivities to toll and travel time.

The Tripod system [Azevedo et al., 2018] mentioned previously uses personalized

incentives to encourage altering travel decisions. The personalized menu provided in

the Tripod smartphone app includes various travel options and associated incentives.

Traveler behavior is modeled by a series of discrete choice models [Xie et al., 2020].

[Zhu et al., 2020] develop a similar personalized system to encourage sustainable

travel. The amount of incentives is determined to have the probability of accepting

the promoting choice greater than a threshold (e.g. 0.5). The individual preferences

are inferred by a particle filter approach. They do not integrate system level goals

into the developed personalized system. [Xiong et al., 2020] also develop an integrated

and personalized travel information and incentive scheme to minimize system-wide

energy consumption. However, they do not consider individual preferences update

with real-time data.
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5.2 Tri-POP Framework

Tri-POP is an online analytics framework for smart mobility and transportation sys-

tem management combining capabilities of prediction, optimization, and personaliza-

tion (POP). Predictions are performed at network and individual levels using real-time

data. Based on the latest predictions, optimization algorithms are used to determine

the optimal operation parameters at system and user levels. Personalization refers

to the user level operation parameters which are determined based on individual

preferences considering heterogeneity.

In order to effectively optimize operation parameters, Tri-POP adopts an online

bi-level optimization framework shown in Figure 5-1. Periodically, the system level

prediction and optimization algorithms determine the system policy (e.g. surge pric-

ing, incentive allocation) for optimizing system-wide objectives in real-time based on

predictions. Upon request from a user, the user level optimization determines opti-

mal service (e.g. on-demand) options based on individual preferences (e.g. maximize

surplus assortment).

As a proactive operational system, performance of Tri-POP depends on the qual-

ity of the predictive models for system dynamics and individual behavior. Predictive

models for Tri-POP need to have two key desirable properties. First, as reasonable

out-of-sample predictions are critical for meaningful optimization, theory-driven traf-

fic and behavioral models should be preferred compared to black-box models. Second,

to address the intrinsic uncertainty of transportation systems, these models need to

be estimated or calibrated online to incorporate real-time information (from traffic

monitoring system and cellphone sensors).

In summary, the Tri-POP platform is user-oriented such that it considers user

behavior in determining the policy and does the best possible for the user. It is also

fair as all users are subject to the same policy, which has the potential for wider

acceptance. In this study, Tri-POP is applied to provide personalized congestion

pricing revenue refunds to improve acceptance of congestion pricing. Broadly, it is

applicable to any service that is on-demand and relies on an app (e.g. MOD, ride
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Figure 5-1: Tri-POP Framework

sharing, car sharing, MaaS). More details about Tri-POP can be found in [Atasoy

et al., 2020].

5.3 Model Formulation

As discussed in Chapter 4, the context considered in this study is a daily commute

problem between a single origin-destination pair for 𝑁 travelers. Each traveler per-

forms a single morning trip and a single evening trip. Only their morning commute

trip is explicitly simulated and their evening trip is assumed to be a mirror of morning

trip.

In following sections, the system model (models of demand, supply and day-to-day

learning) discussed extensively in Chapter 4 is briefly reviewed and modified to in-

corporate the effect of revenue refunds. Following this, the optimization problems for

uniform and personalized revenue refunds are formulated. Their solution algorithms

are discussed at the end.
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5.3.1 System model

The only part of the system model described in Chapter 4 that needs to be updated

is the demand model to consider the effect of the revenue refund. Let 𝑎𝑗𝑛 denote

the amount of refund in dollars received by individual 𝑛 under instrument 𝑗; then

her expected remaining income becomes equal to the disposable income 𝐼𝑛 minus

expected cost 𝑐𝑗𝑖𝑛 plus the refund 𝑎𝑗𝑛. Her utility of driving and departing in time

interval ℎ (choosing a mobility decision 𝑖 ∈ {𝑚 = 𝐶, ℎ|ℎ ∈ 𝐻𝑛}) under instrument 𝑗

can be written as,

𝑈𝑖𝑛

(︁
𝜑

𝑗

𝑖

)︁
=𝑉𝑖𝑛

(︁
𝜑

𝑗

𝑖

)︁
+ 𝜖𝑖𝑛 (5.1)

=− 2𝛼𝑛𝜏
𝑗(ℎ)− 𝛽𝐸𝑛𝑆𝐷𝐸

(︀
ℎ, 𝑡𝑛, 𝜏

𝑗(ℎ)
)︀
− 𝛽𝐿𝑛𝑆𝐷𝐿

(︀
ℎ, 𝑡𝑛, 𝜏

𝑗(ℎ)
)︀

+ 𝐼𝑛 − 2𝑐𝑗𝑖𝑛 + 2𝑎𝑗𝑛 + 𝜆𝑙𝑛
(︀
𝛾 + 𝐼𝑛 − 2𝑐𝑗𝑖𝑛 + 2𝑎𝑗𝑛

)︀
+ 𝜖𝑖𝑛

where

𝑆𝐷𝐸
(︀
ℎ, 𝑡𝑛, 𝜏

𝑗
𝑖

)︀
= max

(︀
0, 𝑡𝑛 −∆𝑎 −

(︀
𝑡ℎ + 𝜏 𝑗𝑖

)︀)︀
(5.2)

𝑆𝐷𝐿
(︀
ℎ, 𝑡𝑛, 𝜏

𝑗
𝑖

)︀
= max

(︀
0,
(︀
𝑡ℎ + 𝜏 𝑗𝑖

)︀
− 𝑡𝑛 −∆𝑎

)︀
(5.3)

and individual refund 𝑎𝑗𝑛 is associated with income terms as it is an additional

income.

Similarly, the utility of an individual 𝑛 using PT departing in interval ℎ (choosing

a mobility decision 𝑖 ∈ {𝑚 = 𝑃𝑇, ℎ|ℎ = ⌊𝑡𝑛 − 𝜏𝑃𝑇 ⌋}) can be written as,

𝑈𝑖𝑛

(︁
𝜑

𝑗

𝑖

)︁
=𝑉𝑖𝑛

(︁
𝜑

𝑗

𝑖

)︁
+ 𝜖𝑖𝑛 (5.4)

=− 2𝛼𝑛𝜏𝑃𝑇 − 2𝛽𝑊𝑛𝑊𝑃𝑇

+ 𝐼𝑛 − 2𝑐𝑗𝑖𝑛 + 2𝑎𝑗𝑛 + 𝜆𝑙𝑛
(︀
𝛾 + 𝐼𝑛 − 2𝑐𝑗𝑖𝑛 + 2𝑎𝑗𝑛

)︀
+ 𝜖𝑖𝑛
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As we can see, without considering the nonlinear income effect of remaining in-

come, adding a refund 𝑎𝑛 will not change user behavior because a constant 𝑎𝑛 will

not change utility differences. In contrast, considering the nonlinear income effect,

receiving a refund 𝑎𝑛 could possibly change user behavior and the degree of change

depends on the level on income effect 𝜆 and the value of remaining income.

5.3.2 PU Optimization

For pricing with uniform distribution (𝑃𝑈), the main idea is to distribute regulator

revenue equally to all users to improve everyone’s benefit and make the pricing scheme

more politically acceptable. [Small, 1992, Adler and Cetin, 2001] have shown that

providing an equal refund can make pricing Pareto-improving (increase everyone’s

benefit). However, it is not always guaranteed for travelers with heterogeneous values

of time [Arnott et al., 1994]. In this study, the 𝑃𝑈 will be formulated and compared

against other instruments.

Similar to the other instruments, the objective of 𝑃𝑈 is to maximize social welfare,

which consists of user benefits and regulator revenue. The total user benefit is equal

to the sum of each user’s experienced utility difference under 𝑃𝑈 and 𝑁𝑇 . Compared

to pricing without distribution (𝑃−), the distributed refund needs to be considered

in the individual’s experienced utility under 𝑃𝑈 . By construction, the refund is the

same for everyone, and is denoted by 𝑎𝑃𝑈 . As a result, the user benefits of PU, 𝑍𝑃𝑈

can be written as,

𝑍𝑃𝑈 =
𝑁∑︁

𝑛=1

(︂
max

𝑖∈𝑀𝑛×𝐻𝑃𝑈
𝑛

(︀
𝑈𝑖𝑛

(︀
𝜑𝑃𝑈

𝑖

)︀)︀
− max

𝑖∈𝑀𝑛×𝐻𝑁𝑇
𝑛

(︀
𝑈𝑖𝑛

(︀
𝜑𝑁𝑇

𝑖

)︀)︀)︂
(5.5)

For the regulator, its revenue of toll payment and PT fare payment 𝐸𝑃𝑈 can be

written as,
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𝐸𝑃𝑈 =
𝑁∑︁

𝑛=1

∑︁
𝑖∈𝑀𝑛×𝐻𝑃𝑈

𝑛

𝑐𝑃𝑈
𝑖𝑛 I𝑛(𝑖|𝑇 𝑃𝑈 , 𝑎𝑃𝑈) (5.6)

where 𝑖 is a mobility decision as a combination of mode and departure time choice;

I𝑛(𝑖|𝑇 𝑃𝑈 , 𝑎𝑃𝑈) is an indicator if traveler 𝑛 chooses mobility choice 𝑖 or not given toll

vector 𝑇 𝑃𝑈 = {𝑇 𝑃𝑈(ℎ)|ℎ ∈ ℋ} and refund 𝑎𝑃𝑈 ; 𝑐𝑃𝑈
𝑖𝑛 is equal to the toll payment for

driving (𝑇 𝑃𝑈(ℎ)) or PT fare payment for PT (𝑐𝑃𝑇 ); and 𝐻𝑃𝑈
𝑛 might be instrument

specific because of budget constraints.

Assume the operation cost is constant across instruments, the surplus of regulator

is only represented by the (net) regulator revenue (𝐾). Under pricing with uniform

distribution (𝑃𝑈), it can be written as,

𝐾𝑃𝑈 = 𝐸𝑃𝑈 −
𝑁∑︁

𝑛=1

𝑎𝑃𝑈 (5.7)

=
𝑁∑︁

𝑛=1

⎛⎝ ∑︁
𝑖∈𝑀𝑛×𝐻𝑃𝑈

𝑛

𝑐𝑃𝑈
𝑖𝑛 I𝑛(𝑖|𝑇 𝑃𝑈 , 𝑎𝑃𝑈)− 𝑎𝑃𝑈

⎞⎠
Since the money collected by the regulator needs to be refunded equally to every-

one, the refund 𝑎𝑃𝑈 can be written as,

𝑎𝑃𝑈 =
1

𝑁
𝛿𝐸𝑃𝑈 (5.8)

where 𝛿 is a parameter representing the percentage of total money collected by the

regulator can be distributed. If 𝛿 is equal to 1, all regulator revenue will be equally

distributed, which achieves revenue neutrality. It can be less than 1 to accommodate

the additional operation cost of 𝑃𝑈 .

The toll profile optimization can be formulated as a simulation-based optimization

problem with the objective of maximizing total social welfare (𝑆𝑊 ) similar to the

79



problem formulated in Chapter 4 to incorporate the equal revenue refund constraint

as follows,

max
𝑇𝑃𝑈

𝑍𝑃𝑈 +𝐾𝑃𝑈

s.t. 𝑍𝑃𝑈 , 𝐾𝑃𝑈 , 𝐸𝑃𝑈 = 𝑆𝑀
(︀
𝑇 𝑃𝑈 , 𝑎𝑃𝑈 , 𝜉,𝜓

)︀
𝑎𝑃𝑈 =

1

𝑁
𝛿𝐸𝑃𝑈

𝑇 𝑃𝑈 = {𝑇 𝑃𝑈(ℎ)|ℎ ∈ ℋ}

𝑇 𝑃𝑈 ≥ 0

(5.9)

where toll profile 𝑇 𝑃𝑈 is a set of toll values over the entire day; 𝜉 represents all

input data for simulation, such as individual income, preferred arrival time, choice

attributes; 𝜓 represents all model parameters, such as demand model coefficients,

bottleneck capacity, user learning weights, and market parameters for TMC only;

𝑆𝑀(·) is the system model covered in Chapter 4; the user benefit 𝑍𝑃𝑈 is defined in

Equation 5.5; and the regulator revenue 𝐾𝑃𝑈 is defined in Equation 5.7.

5.3.3 PI Optimization

Along similar lines, the pricing with personalized distribution is formulated as a bi-

level optimization problem. The system optimization is to determine the system

level policy with the objective to maximize social welfare and the user optimization

is to determine the individual refund under suitable objectives (e.g achieve Pareto

improvement or maximize social welfare). These two levels are interdependent in

that the system optimization depends on the user optimization solution while the user

optimization is also dependent on the system optimization solution. Such a bi-level

optimization framework reconciles two conflicting objectives and has the potential to

improve both efficiency and equity.
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System Optimization

For the system optimization, its objective is the same as the objective of PU, which

can be formulated as follows,

max
𝑇𝑃𝐼

𝑍𝑃𝐼 +𝐾𝑃𝐼

s.t. 𝑍𝑃𝐼 , 𝐾𝑃𝐼 , 𝐸𝑃𝐼 = 𝑆𝑀
(︀
𝑇 𝑃𝐼 ,𝑎𝑃𝐼 , 𝜉,𝜓

)︀
𝑎𝑃𝐼 = 𝑈𝑂

(︀
𝑇 𝑃𝐼(ℎ)|𝜉,𝜓

)︀
𝑁∑︁

𝑛=1

𝑎𝑃𝐼
𝑛 ≤ 𝛿𝐸𝑃𝐼

𝑇 𝑃𝐼 = {𝑇 𝑃𝐼(ℎ)|ℎ ∈ ℋ}

𝑇 𝑃𝐼 ≥ 0

(5.10)

where 𝑎𝑃𝐼 represents a set of refunds over the population {𝑎𝑃𝐼
𝑛 |𝑛 = 1, ..., 𝑁}

determined from the user optimization (UO) given toll policy 𝑇 𝑃𝐼 determined in

system optimization. The total revenue refund has to be less or equal to available

revenue for distribution.

The user benefits under PI 𝑍𝑃𝐼 can be written as,

𝑍𝑃𝐼 =
𝑁∑︁

𝑛=1

(︂
max

𝑖∈𝑀𝑛×𝐻𝑃𝐼
𝑛

(︀
𝑈𝑖𝑛

(︀
𝜑𝑃𝐼

𝑖

)︀)︀
− max

𝑖∈𝑀𝑛×𝐻𝑁𝑇
𝑛

(︀
𝑈𝑖𝑛

(︀
𝜑𝑁𝑇

𝑖

)︀)︀)︂
(5.11)

and the total money collected by the regulator 𝐸𝑃𝐼 can be written as,

𝐸𝑃𝐼 =
𝑁∑︁

𝑛=1

∑︁
𝑖∈𝑀𝑛×𝐻𝑃𝐼

𝑛

𝑐𝑃𝐼
𝑖𝑛 I𝑛

(︀
𝑖|𝑇 𝑃𝐼 , 𝑎𝑃𝐼

𝑛

)︀
(5.12)

and the (net) regulator revenue 𝐾𝑃𝐼 can be written as

81



𝐾𝑃𝐼 = 𝐸𝑃𝐼 −
𝑁∑︁

𝑛=1

𝑎𝑃𝐼
𝑛 (5.13)

=
𝑁∑︁

𝑛=1

⎛⎝ ∑︁
𝑖∈𝑀𝑛×𝐻𝑃𝐼

𝑛

𝑐𝑃𝐼
𝑖𝑛 I𝑛

(︀
𝑖|𝑇 𝑃𝐼 , 𝑎𝑃𝐼

𝑛

)︀
− 𝑎𝑃𝐼

𝑛

⎞⎠
User Optimization

Depending on the objective, the user optimization can be formulated differently. In

order to ensure a Pareto improving outcome (i.e. everyone is not worse off but at least

one is better off) compared to NT, the revenue can be distributed to make sure every

traveler’s net experienced utility relative to NT is non-negative. The personalized

refunds with this distribution rule is denoted as 𝑃𝐼𝐻 .

With a slight abuse of notation, let 𝑧𝑛
(︀
𝐼𝑛 − 𝑐𝑃𝐼𝐻

𝑖𝑛 + 𝑎𝑃𝐼𝐻
𝑛

)︀
denote individual 𝑛’s net

experienced utility under 𝑃𝐼𝐻 relative to NT as a function of her remaining income

𝐼𝑛 − 𝑐𝑃𝐼𝐻
𝑖𝑛 + 𝑎𝑃𝐼𝐻

𝑛 . The Pareto improving distribution rule can be written as follows,

if 𝑧𝑛
(︀
𝐼𝑛 − 𝑐𝑃𝐼𝐻

𝑖𝑛

)︀
≥ 0, then 𝑎𝑃𝐼𝐻

𝑛 = 0

else set 𝑎𝑃𝐼𝐻
𝑛 𝑠.𝑡. 𝑧𝑛

(︀
𝐼𝑛 − 𝑐𝑃𝐼𝐻

𝑖𝑛 + 𝑎𝑃𝐼𝐻
𝑛

)︀
= 0

where

𝑧𝑛
(︀
𝐼𝑛 − 𝑐𝑃𝐼𝐻

𝑖𝑛

)︀
= max

𝑖∈𝑀𝑛×𝐻
𝑃𝐼𝐻
𝑛

(︀
𝑈𝑖𝑛

(︀
𝜑𝑃𝐼𝐻

𝑖

)︀)︀
− max

𝑖∈𝑀𝑛×𝐻𝑁𝑇
𝑛

(︀
𝑈𝑖𝑛

(︀
𝜑𝑁𝑇

𝑖

)︀)︀
(5.14)

If the individual net experienced utility is already positive, then she receives no

refund; otherwise, she receives the amount of refund that makes her net experienced

utility equal to 0. Since the nonlinear income effect of remaining income is modeled

by a strictly monotonic quasi-concave function, which is continuous over the interval

that 𝐼𝑛 − 𝑐𝑃𝐼𝐻
𝑖𝑛 + 𝑎𝑃𝐼𝐻

𝑛 > 0, Equation 5.14 has a unique solution 𝑎𝑃𝐼𝐻
𝑛 . Note that the

condition 𝐼𝑛 − 𝑐𝑃𝐼𝐻
𝑖𝑛 + 𝑎𝑃𝐼𝐻

𝑛 > 0 is guaranteed because of budget constraint on travel

choices.

Note that the premise of achieving a Pareto improving outcome which satisfies

the revenue refund constraint in system optimization is that the available revenue for
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refunds can cover the total losses. For homogeneous travelers, this is guaranteed as

long as social welfare of pricing is positive, since homogeneous users face the same

generalized cost at equilibrium [Arnott et al., 1994]. However, to the best of our

knowledge, this property has not been shown to hold under user heterogeneity, elastic

demand, nonlinear income effects in general networks. In the numerical experiments,

we will examine this through sensitivity tests.

Alternatively, the objective of user optimization can be to maximize social welfare.

Assuming other components in the utility specification do not change (which might

not be true as the nonlinear income effect can influence choices), it makes sense to

refund revenue to users who value it the most. In other words, low income users

receive revenue refunds first, which implicitly also improves equity. The personalized

refunds with this distribution rule is denoted as 𝑃𝐼𝑆

An additional policy that needs to be optimized in the system optimization is the

revenue distribution control parameter 𝑦𝑑, which determines who is eligible and how

much they can get. The corresponding distribution rule can be written as,

if 𝑀𝑈𝐼
(︀
𝐼𝑛 − 𝑐𝑃𝐼𝑆

𝑖𝑛

)︀
≤ 𝑦𝑑, then 𝑎𝑃𝐼𝑆

𝑛 = 0

else set 𝑎𝑃𝐼𝑆
𝑛 𝑠.𝑡. 𝑀𝑈𝐼

(︀
𝐼𝑛 − 𝑐𝑃𝐼𝑆

𝑖𝑛 + 𝑎𝑃𝐼𝑆
𝑛

)︀
= 𝑦𝑑

where

𝑀𝑈𝐼
(︀
𝐼𝑛 − 𝑐𝑃𝐼𝑆

𝑖𝑛

)︀
=

𝜕𝑧𝑛
(︀
𝐼𝑛 − 𝑐𝑃𝐼𝑆

𝑖𝑛

)︀
𝜕𝐼𝑛

= 1 +
𝜆

𝛾 + 𝐼𝑛 − 𝑐𝑃𝐼𝑆
𝑖𝑛

𝑧𝑛
(︀
𝐼𝑛 − 𝑐𝑃𝐼𝑆

𝑖𝑛

)︀
= max

𝑖∈𝑀𝑛×𝐻
𝑃𝐼𝑆
𝑛

(︀
𝑈𝑖𝑛

(︀
𝜑𝑃𝐼𝑆

𝑖

)︀)︀
− max

𝑖∈𝑀𝑛×𝐻𝑁𝑇
𝑛

(︀
𝑈𝑖𝑛

(︀
𝜑𝑁𝑇

𝑖

)︀)︀
(5.15)

where 𝑐𝑃𝐼𝑆
𝑖𝑛 represents the cost of the chosen alternative in 𝑃𝐼𝑆 (i.e. the cost of

the alternative 𝑖 with the maximum utility); 𝑈𝑖𝑛

(︀
𝜑𝑃𝐼𝑆

𝑖

)︀
is expressed in Equation 5.1

and 5.4; max𝑖∈𝑀𝑛×𝐻𝑁𝑇
𝑛

(︀
𝑈𝑖𝑛

(︀
𝜑𝑁𝑇

𝑖

)︀)︀
represents the maximum utility of choice 𝑖 for

individual 𝑛 in 𝑁𝑇 , which is a constant.

Similarly, it has a unique solution 𝑎𝑃𝐼𝑆
𝑛 when the income effect is nonlinear. Note

that if the income effect is linear (i.e. utility coefficient of income 𝜆 = 0), this
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distribution rule does not apply anymore since every traveler has marginal utility

of income as 1. Although there is no additional utility gain for poor people from

receiving refunds (efficiency gain), it is still possible to improve equity by refunding

revenue to poor people according to the individual’s remaining income. Let 𝑃𝐼𝑅

denote the instrument with the distribution rule based on the remaining income. The

corresponding distribution rule can be written as,

if 𝐼𝑛 − 𝑐𝑃𝐼𝑅
𝑖𝑛 ≥ 𝑦𝑑, then 𝑎𝑃𝐼𝑅

𝑛 = 0

else set 𝑎𝑃𝐼𝑅
𝑛 𝑠.𝑡. 𝐼𝑛 − 𝑐𝑃𝐼𝑅

𝑖𝑛 + 𝑎𝑃𝐼𝑅
𝑛 = 𝑦𝑑

(5.16)

where 𝑐𝑃𝐼𝑅
𝑖𝑛 represents the cost of the chosen alternative in 𝑃𝐼𝑅; the revenue distri-

bution control parameter 𝑦𝑑 is in unit of dollars and can be optimized in the system

optimization. This distribution rule also has an unique solution for everyone because

the remaining income 𝐼𝑛 − 𝑐𝑃𝐼𝑅
𝑖𝑛 is a strictly monotonic and continuous function.

In fact, it can be shown that the distribution rule in Equation 5.16 is equivalent

to the the distribution rule in Equation 5.15 when the income effect is nonlinear

given they have the same toll profile (i.e. 𝑐𝑃𝐼𝑅 = 𝑐𝑃𝐼𝑆). From the Equation 5.15, the

Equation 5.16 can be derived as follows,

1. if 𝑀𝑈𝐼
(︀
𝐼𝑛 − 𝑐𝑃𝐼𝑆

𝑖𝑛

)︀
≤ 𝑦𝑑, then 𝑎𝑃𝐼𝑆

𝑛 = 0

This is the case in the distribution rule 5.15 that the marginal utility income of

an individual 𝑛 is less or equal to the revenue refund control parameter 𝑦𝑑 and

she receives zero refund. By expanding 𝑀𝑈𝐼
(︀
𝐼𝑛 − 𝑐𝑃𝐼𝑆

𝑖𝑛

)︀
, the condition can be

expressed as,

𝑀𝑈𝐼
(︀
𝐼𝑛 − 𝑐𝑃𝐼𝑆

𝑖𝑛

)︀
=

𝜕𝑧𝑛
(︀
𝐼𝑛 − 𝑐𝑃𝐼𝑆

𝑖𝑛

)︀
𝜕𝐼𝑛

(5.17)

= 1 +
𝜆

𝛾 + 𝐼𝑛 − 𝑐𝑃𝐼𝑆
𝑖𝑛

≤ 𝑦𝑑

The Equation 5.17 can be rearranged as follows,
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𝜆

𝑦𝑑 − 1
− 𝛾 ≤ 𝐼𝑛 − 𝑐𝑃𝐼𝑆

𝑖𝑛 (5.18)

Let 𝑦𝑑 = 𝜆
𝑦𝑑−1

−𝛾, the Equation 5.18 implies if the remaining income 𝐼𝑛−𝑐𝑃𝐼𝑅
𝑖𝑛 ≥

𝑦𝑑, then 𝑎𝑃𝐼𝑅
𝑛 is the same as 𝑎𝑃𝐼𝑅

𝑛 , which is equal to 0. Note that 𝑐𝑃𝐼𝑆
𝑖𝑛 is assumed

to be equal to 𝑐𝑃𝐼𝑅
𝑖𝑛 .

2. else set 𝑎𝑃𝐼𝑆
𝑛 𝑠.𝑡. 𝑀𝑈𝐼

(︀
𝐼𝑛 − 𝑐𝑃𝐼𝑆

𝑖𝑛 + 𝑎𝑃𝐼𝑆
𝑛

)︀
= 𝑦𝑑

This is the case in the distribution rule 5.15 that the marginal utility income

of an individual 𝑛 is greater than the revenue refund control parameter 𝑦𝑑

and she receives a refund that makes her 𝑀𝑈𝐼 equal to 𝑦𝑑. By expanding

𝑀𝑈𝐼
(︀
𝐼𝑛 − 𝑐𝑃𝐼𝑆

𝑖𝑛 + 𝑎𝑃𝐼𝑆
𝑛

)︀
, the condition can be expressed as,

𝑀𝑈𝐼
(︀
𝐼𝑛 − 𝑐𝑃𝐼𝑆

𝑖𝑛 + 𝑎𝑃𝐼𝑆
𝑛

)︀
=

𝜕𝑧𝑛
(︀
𝐼𝑛 − 𝑐𝑃𝐼𝑆

𝑖𝑛 + 𝑎𝑃𝐼𝑆
𝑛

)︀
𝜕𝐼𝑛

(5.19)

= 1 +
𝜆

𝛾 + 𝐼𝑛 − 𝑐𝑃𝐼𝑆
𝑖𝑛 + 𝑎𝑃𝐼𝑆

𝑛

= 𝑦𝑑

The Equation 5.19 can be rearranged as follows,

𝜆

𝑦𝑑 − 1
− 𝛾 = 𝐼𝑛 − 𝑐𝑃𝐼𝑆

𝑖𝑛 + 𝑎𝑃𝐼𝑆
𝑛 (5.20)

Similarly, let 𝑦𝑑 =
𝜆

𝑦𝑑−1
− 𝛾, the Equation 5.20 implies that 𝑎𝑃𝐼𝑅

𝑛 should be set

to make the remaining income 𝐼𝑛 − 𝑐𝑃𝐼𝑅
𝑖𝑛 + 𝑎𝑃𝐼𝑅

𝑛 be equal to 𝑦𝑑, which is the

same as 𝑎𝑃𝐼𝑆
𝑛 since 𝑐𝑃𝐼𝑆

𝑖𝑛 is equal to 𝑐𝑃𝐼𝑅
𝑖𝑛 .

Hence, when the income effect is nonlinear, the distribution rule in Equation 5.16

can be derived from the distribution rule in Equation 5.15 by having 𝑦𝑑 = 𝜆
𝑦𝑑−1

− 𝛾.

Similarly, it is straightforward to show this in the opposite direction since the 𝑀𝑈𝐼
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function is monotonic and continuous. However, when the income effect is constant,

the distribution rule in Equation 5.15 fails as everyone’s 𝑀𝑈𝐼 is equal to 1. Therefore,

the distribution rule based on the remaining income in Equation 5.16 dominates the

other one. Henceforth, the social welfare maximization distribution rule refers to

Equation 5.16 and the corresponding instrument is denoted as 𝑃𝐼𝑆.

Finally, it is possible to combine the Pareto improving distribution rule in Equa-

tion 5.14 and the social welfare maximization distribution rule in Equation 5.16 to

have a hybrid distribution rule, which ensures Pareto improvement first and if there is

some revenue left over, it can be distributed to maximize social welfare. As a result,

the performance of this hybrid rule can be expected to dominate the pure Pareto

improving distribution rule in terms of both efficiency and equity.

5.3.4 MI Optimization

For every traveler, assuming other components in the utility specification do not

change, if the market value of token allocations in TMC is equal to the dollar value

of revenue refunds in pricing, she is supposed to have almost the same behavior given

the losses due to the transaction fees are minimal. This is because the income effects

are similar. This implies that we can utilize the solution of the pricing with per-

sonalized refunds 𝑃𝐼 for the TMC with personalized token allocations 𝑀𝐼. Assume

the equilibrium token price is $1, the system optimization solution —toll profile in

dollars, can be converted to toll profile in tokens for 𝑀𝐼; while the user optimization

solution —personalized refunds, can be converted to the personalized token alloca-

tions. It is demonstrated in Chapter 6 that 𝑀𝐼 performs almost the same as 𝑃𝐼 in

terms of the social welfare, equity, behavior change, level of congestion, and distribu-

tional impacts. It requires further investigations to solve the optimization problem

(i.e. the toll profile and personalized token allocations) of 𝑀𝐼 directly without rely-

ing on the solution of 𝑃𝐼. It might not be straightforward since the token price in

𝑀𝐼 is determined endogenously to balance the demand and supply of tokens, which

is dependent on the token allocations and the toll profile. In other words, there is

an issue of non-uniqueness (during optimization) of combinations of the personalized
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token allocations and the toll profile.

5.4 Summary

This chapter first summarizes relevant literature about bi-level optimization and per-

sonalized pricing in transportation. Next, the online bi-level optimization framework

Tri-POP is introduced and the detailed methodology on bi-level optimization for per-

sonalized distribution is developed. Two different distribution rules are developed for

personalized distribution; the first maximizes social welfare and the second achieves

Pareto improvement first and then maximizes social welfare with the remaining rev-

enue.
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Chapter 6

Numerical Experiments

6.1 Experiment Setup

In order to perform credible comparisons of the various tolling instruments, it is im-

portant to have realistic parameters and input data. In the following sections, data

and parameters of the demand model, supply model, and the day-to-day learning

model will be introduced for simulating a realistic base case. Some of the key param-

eters will be varied in later experiments.

6.1.1 Data and Model Parameters

To begin with, the demand model requires both choice attributes and individual

characteristics as input data. For individual characteristics, this includes disposable

income 𝐼𝑛 and preferred arrival time 𝑡𝑛. Recall that disposable income 𝐼𝑛 defined in

this study is personal net income after taxes and subtracting necessary living expenses

(e.g. housing, health, food). In other words, it represents the individual’s available

income for traveling. The individual pre-tax annual income is assumed to be a log-

normal distribution fitted using the Integrated Public Use Microdata Series (IPUMS)

2019 census data [Ruggles et al., 2021]. The cumulative distribution function (CDF)

of IPUMS data and fitted data are shown in Figure 6-1. The x-axis represents individ-

ual pre-tax annual income in units of one thousand dollars and the y-axis represents
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Figure 6-1: Individual pre-tax annual income distribution

cumulative probability values. Note that all annual incomes greater than 500 thou-

sand dollars are grouped together. As we can see, the lognormal distribution fits the

income distribution quite well.

Individual daily income can be acquired using annual income divided by 260 work-

ing days per year. The individual hourly wage rate can be acquired by dividing daily

income by 8 working hours per day. The minimum wage rate is set to $7.25 pro-

vided by the U.S. Department of Labor. However, it is not straightforward to get

disposable income after taxes because it depends on individual income and other at-

tributes. Further, individual necessary living expenses could vary based on income

and there is limited disaggregate data on this. According to data from the Bureau

of Labor Statistics, the average pretax household income in the United States in

2019 was $82,852, while average household expenditures except transportation added

up to $52,294, which means that the average American has 63% of their pretax or

market income available for transportation and other expenditures [U.S. Bureau of

Labor Statistics, 2019]. Hence, in this study, it is assumed that each traveler’s daily
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Figure 6-2: Individual preferred departure times distribution

disposable income after taxes and necessary living expenses is equal to 60% of their

pre-tax daily income.

The preferred arrival time 𝑡𝑛 represents the optimal or desired arrival time. The

preferred departure time is just a shift of preferred arrival time by free flow travel

time. Many researchers have assumed it follows a uniform distribution [De Palma and

Lindsey, 2002a]. A more recent study estimated preferred departure of morning road

users in Stockholm [Kristoffersson and Engelson, 2018]. The distribution of preferred

departure times estimated from their study is adopted in this study and is shown in

Figure 6-2. The x-axis represents departure time in hours and the y-axis represents

probability values. As we can see, it does not follow the uniform distribution exactly.

For simplicity, the size of the preferred arrival window ∆𝑎 is set as 0, which implies

that individuals have a single preferred arrival time as in the standard Vickrey model.

The departure time window size parameter 𝜂 is set to 30, which means the individual

departure time choice set 𝐻𝑛 ranges over a 60-minute interval.

From empirical evidence (e.g. [Small et al., 2005]), values of time differs substan-

91



tially over drivers. In this study, individual values of time 𝛼𝑛 are calculated as one

thirds of their wage rate [White, 2016]. Therefore, they are perfectly correlated with

income. However, this will be relaxed and different levels of heterogeneity will be

evaluated in experiments. For bottleneck models of congestion, schedule delay costs

are another important part of congestion costs. It is likely that values of schedule

delay early 𝛽𝐸𝑛 and late 𝛽𝐿𝑛 are also distributed across individuals. Because of lack of

empirical data, literature on bottleneck models incorporate heterogeneity by making

assumptions on ratios between values of schedule early/late to values of time.

As summarized in [Van den Berg and Verhoef, 2011,Van Den Berg and Verhoef,

2011], there are mainly two types of heterogeneity for bottleneck models. The first

type of heterogeneity is termed proportional heterogeneity and first considered by

[Vickrey, 1973]. It assumes values of time and schedule delays vary proportionally.

In other words, the ratios of parameters are identical. A different case studied by

[De Palma and Lindsey, 2002b] assumes values of schedule delays are fixed and only

values of time are distributed. As a result, ratios of parameters are distributions. This

type of heterogeneity is known as ratio heterogeneity. Behavioral interpretations of

these two types can be found in [Van Den Berg and Verhoef, 2011]. Further, [Van

Den Berg and Verhoef, 2011] considers a more general heterogeneity, assuming the

ratio of values of time to values of schedule delay early follows a symmetric triangular

distribution from 1 to 3 based on intuition and ratio of values of schedule delay late

to values of schedule delay early is a constant 3.9 based on [Arnott et al., 1990b].

In this study, the ratio of values of schedule delay early 𝛽𝐸𝑛 to values of time

𝛼𝑛 is assumed to follow a triangular distribution from 0.1 to 1 with a mode at 0.5.

The ratio of values of schedule delay late 𝛽𝐿𝑛 to 𝛼𝑛 is assumed to follow a triangular

distribution from 1 to 3 with a mode at 2. The modes are selected as 0.5 and 2

respectively based on empirical relationships that 𝛽𝐿𝑛 is twice large as 𝛼𝑛 and 𝛼𝑛 is

twice large as 𝛽𝐸𝑛 [Small, 2012]. The bounds are set based on empirical relationships

that 𝛽𝐸𝑛 ≤ 𝛼𝑛 ≤ 𝛽𝐿𝑛 [Small, 2012]. As pointed out by [Small, 2012], waiting times are

onerous compared to in vehicle times by multiples of two to three by most assessments.

For simplicity, the ratio of values of time 𝛼𝑛 to values of waiting time 𝛽𝑊𝑛 is assumed

92



to be a constant equal to 3.

Regarding utility coefficients of income effect 𝜆 and 𝛾, 𝜆 measures the strength

of nonlinear income effect and 𝛾 ensures the logarithmic function is defined when

remaining income is equal to 0. In this study, 𝛾 is set to 2 and 𝜆 is calibrated to be

3 to have the highest marginal utility of income to be less than 1.34 [Layard et al.,

2008].

For the scale parameter 𝜇𝑛, it is known that it is both confounded with the

systematic utility as well as being inversely related to error variance within the choice

data [Ben-Akiva et al., 1985]. As pointed out in the literature (e.g. [Louviere and

Eagle, 2006]), the modeled heterogeneity can come from heterogeneity in individual

coefficients and scale heterogeneity that is shared across coefficients. In this study,

the distribution of the scale parameter is assumed to be a lognormal distribution as

the scale parameter has to be greater than 0. Also based on realistic judgements, the

coefficient of variation of scale parameter is set as 0.5. The mean of scale parameter

is calibrated based on price elasticity.

Since coefficients of mobility demand models are distributed, it requires simulation

to obtain price elasticity. Each iteration consists of two simulation runs. Run 0 is the

base case and run 1 is the case with operation costs and peak hour toll (7 to 8AM)

increased by 5% to calculate peak hour price elasticity. Several iterations are done

for different initial toll levels. For simplicity, flat toll profiles are used from 6:30 to

9:30AM.

From the literature, the aggregate elasticities of peak hour travel vary greatly from

case to case as they are dependent on the model structure, physical environment,

activity type, initial toll levels and many other factors. [Ding et al., 2015] estimated

the elasticity of departing during the peak in Washington D.C. is -0.0906 for driving

alone. [Sasic and Habib, 2013] showed that the elasticity of departing in AM peak for

work trips in Toronto is between -0.067 to -0.12 by car mode. [Holguin-Veras et al.,

2005] found price elasticity of using crossings (tunnels and bridges) in NYC range

from -0.31 to -1.97 for weekdays depending on the time-of-day. When there is no

initial toll, the price elasticity just represents fuel elasticity. [Lipow, 2008] estimated
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Table 6.1: Price elasticities across income groups by toll levels

Toll ≤ 25% 25% to 50% 50% to 75% 75% to 90% 90% ≤ Total
0 -0.34 -0.29 -0.12 0.00 0.00 -0.19

2.5 -1.14 -0.59 -0.10 -0.04 -0.03 -0.38
5 -1.57 -1.07 -0.20 -0.09 -0.06 -0.53

fuel elasticity as -0.17 and [Gillingham, 2014] estimated fuel elasticity in California

as -0.15.

Based on evidence from literature, the mean of scale parameter is determined to

be 0.5. The corresponding price elasticities across different income groups and initial

toll levels are presented in Table 6.1. As we can see, low income users are more

sensitive to price than high income users. Also, when there is no toll, the aggregated

price elasticity is similar to empirical fuel elasticity. As the toll level increases, the

aggregate price elasticity also increases and becomes closer to empirical values found

in [Holguin-Veras et al., 2005].

Regarding the supply model, attributes of car and public transit (PT) have to be

specified. The free flow speed of car is set to be 45mph [Ali et al., 2007] and the

one way driving distance is assumed to be 18 miles. Thus, the free flow travel time

is calculated to be 24 minutes. The operation cost of driving is assumed to be fuel

cost only, which is equal to $3.13 (driving distance (18 miles) times 1/23 gallon per

mile times 4 dollars per gallon). For public transit, based on the New York City

MTA data, the fare is 2-dollar; average speed is 25mph; and headway is 10 minutes.

The PT distance is also assumed to be 18 miles, and the resulting PT travel time is

43 minutes since both headway and travel time of PT are constant. The expected

waiting time is 5 minutes.

The bottleneck capacity 𝑠 is determined based on travel time index (TTI) cali-

bration. The TTI represents the ratio between actual travel time and free flow travel

time. For instance, a TTI value of 1.2 means actual travel time is 20% longer than

free flow travel time. In this study, the base case capacity is selected as 2340 vehicles

per hour to have a reasonable level of congestion with TTI as 1.68 [Chen, 2010] under

the no toll (NT) scenario.
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As mentioned in Chapter 4, an exponential smoothing filter is adopted to update

travel time information and individual departure time. The greater the learning

weights are, the more unstable the system becomes [Cantarella and Cascetta, 1995].

In this study, the learning weights 𝜃𝜏 and 𝜃𝑡 are selected as 0.1.

Recall that we focus on the morning commute and hence, we simulate half of a day

(12 hours) with a simulation time interval ∆𝑡 of 1-minute, yielding 720 time intervals,

𝑡 = 0 . . . 719. The market elements (allocation, expiration, and price adjustment)

and trading behavior are also simulated for the first half. The second half of a day is

assumed to be a mirror of the first half. The departure time interval (∆ℎ) is assumed

to be 5 minutes. The total population number 𝑁 is 7500. Descriptions and values of

key parameters are summarized in Table 6.2.

Table 6.2: Model and simulation parameters

Variables Description Values
𝑁 Population 7, 500
∆𝑡 Duration of a simulation time step 1 min
∆ℎ Duration of a departure time interval 5 min
∆𝑎 Size of desired arrival window 0 min
𝜂 Departure time window size parameter 30
𝜆 Coefficient of nonlinear income effect 3
𝛾 Nonlinear income effect adjustment parameter 2
𝑠 Bottleneck capacity (per min) 39
𝑡0 Free flow travel time 24 mins
𝑐𝑓 Operation cost of car $3.13
𝜏𝑃𝑇 PT travel time 43 mins
𝑊𝑃𝑇 Expected waiting time 5 mins
𝑐𝑃𝑇 Operation cost of PT $2
𝜃𝜏/𝜃𝑡 Learning weights 0.1

6.1.2 Existence and Uniqueness of Equilibrium

In this section, we examine existence and uniqueness of properties of equilibrium in

the day-to-day dynamic model. It is important to check whether an equilibrium exists

since the analysis and comparisons are meaningless when system states are still chang-
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ing. Once equilibrium existence is confirmed, it is important to confirm uniqueness

of equilibrium to avoid issues with multiple equilibria. As pointed out by [Lindsey,

2004], some problems include the questionable validity of comparative statistics under

multiple equilibria, the possible instability of equilibrium, the difficulty of determining

which equilibrium will prevail, and sensitivity to starting values.

In the literature, existence and uniqueness of equilibrium in the bottleneck model

have been widely studied (e.g. [Hendrickson and Kocur, 1981, Hurdle et al., 1983,

Smith, 1984, Daganzo, 1985]). However, they limit the scope to heterogeneity in

desired arrival time. [Lindsey, 2004] considers a more general heterogeneity in values

of time, desired arrival times, and values of schedule delay. He established conditions

for existence and uniqueness of a deterministic departure time user equilibrium in

the bottleneck model. [De Palma et al., 1983] extend considerations to stochastic

user equilibrium but travelers are assumed to have identical systematic travel cost

functions. They prove the equilibrium departure rate is unique but their findings

cannot be directly applied to our model as we consider heterogeneity.

[Miyao and Shapiro, 1981] establish conditions for the existence, uniqueness and

stability of equilibrium for discrete choice models. Although their framework is rela-

tively general, it is once again not compatible with our model because they consider

individuals with the same choice set whereas in our case, choice sets (departure time

choices) are individual specific. To the best of our knowledge, there are no analytical

results on uniqueness of the equilibrium for our model. However, simulations with

different initial conditions suggest that the equilibrium exists and is unique.

Using data and parameters discussed in the previous section, a No Toll (NT)

scenario with different sets of initial travel time information of driving is simulated.

The population size 𝑁 is 7500. Because the simulation is stochastic, five replications

with different initial seeds for random number generation are performed for each

initial travel time of driving condition.

The four different sets of initial travel time information of driving are plotted in

Figure 6-3. Note that the initial travel time information of driving serves as the basis

for the departure time decisions in day 0 of the simulation. The initial travel time
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(a) Initial travel time of driving information (b) Convergence of travel time of driving

Figure 6-3: Various initial travel time information of driving and corresponding con-
vergence

set 0 of driving represents free flow travel times of driving across the entire day; the

initial travel time set 1 of driving is an equilibrium travel time of driving from the

simulation using the initial travel time set 0 for a particular random seed; the initial

travel time set 2 of driving is generated as 0.6 of the travel time set 1; finally, the

initial travel time set 3 of driving represents a constant 30 minutes travel time of

driving across the entire day.

Travel time of driving is used as a representative measure of system state partly

because it is central to the day-to-day learning process of travelers (alternatively,

departure flows could also be used). The infinity norm (also known as supremum

norm) of day 𝑑 − 1’s travel time vector of driving and day 𝑑’s travel time vector of

driving is calculated and used as a measure of convergence across days. The expression

of this norm can be written as follows:

||𝜏 𝑑−1 − 𝜏 𝑑||∞ = sup {|𝜏 𝑑−1
𝑖 − 𝜏 𝑑𝑖 | : 𝑖 ∈ {𝑚 = 𝐶, ℎ|ℎ ∈ ℋ}} (6.1)

where 𝜏 𝑑−1 is the vector of travel times of day 𝑑 − 1 defined over a set of time

intervals ℋ. The corresponding convergence of travel time of driving is plotted in
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(a) Travel time of driving at equilibrium (b) Flow rate of driving at equilibrium

Figure 6-4: Travel time and flow of driving at equilibrium with different sets of initial
travel time information

Figure 6-3. The lines in the plot represent averages over different random seeds and

bands are plotted based on the standard deviations. As we can see from the plot,

the infinity norm converges to zero by about 50 days, which implies the point wise

maximum difference between the travel time vector of day 𝑑−1 and travel time vector

of day 𝑑 converges to 0 according to the definition of infinity norm. This suggests

that simulations with different initial travel time sets have all converged in terms of

travel times. The convergence of green line does not start from 0 because the initial

travel time set 1 of driving is an equilibrium travel time of a particular random seed.

However, this still does not establish whether the equilibrium is unique or not.

Thus, the travel time vectors and flow vectors of driving at equilibrium are plotted

in Figure 6-4. As we can see, simulations with different initial travel times of driving

converge to the same travel times and departure flow rate at equilibrium. As only two

mode choices are considered and the travel time and headway of PT are constant,

once the travel time of driving converges, the resulting departure flow of PT also

converges.
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(a) Convergence of the social welfare (b) Optimal toll profile

Figure 6-5: Convergence of the social welfare and optimal time-of-day step toll profile
of 𝑃− by initial values

6.1.3 Optimization Performance

As discussed in Chapter 4, the system optimization for the time-of-day step toll profile

is solved using a type of metaheuristic algorithm known as Differential Evolution

(DE). In the literature, metaheuristic algorithms have been shown to work well for

nonconvex and nonlinear toll design problems (e.g. [Shepherd and Sumalee, 2004,

Zhang and Yang, 2004]). They are fairly robust to initial values because of mutation,

crossover and selection steps in the algorithm.

In this study, the population size of the DE algorithm 𝑁𝑃 is set to 15, which means

15 candidates of the time-of-day step toll profile are evaluated in one iteration. Tak-

ing advantage of parallelization, they can be simulated and evaluated concurrently.

With data and parameters discussed in the previous section, a pricing without dis-

tribution (𝑃−) case is used to test the performance of the optimization algorithm.

Three different initial populations (with 15 candidates) are used for the algorithm to

optimize the time-of-day step toll profile.

The convergence of the optimization objective (social welfare) along with the

optimal time-of-day step toll profile with three different initial populations are shown

in Figure 6-5. The total number of iterations is 300 but considering 15 candidates are

evaluated in each iteration, a total of 4500 candidates are evaluated. Recall that social
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welfare is equal to the sum of user benefits relative to NT and regulator revenue. As

we can see, although the starting social welfare is very different because of different

initial values, they converge to the same social welfare (within a tolerance of $0.01)

after about 150 iterations. The optimal toll profiles are also very similar with small

differences.

6.2 Market Design for Tradable Mobility Credits

In Chapter 3, we discuss various market elements (e.g. allocation, expiration, transac-

tion fees, price adjustment and market rules governing trading) and market behavior

for TMC to manage travel demand and avoid profiteering. In this section, numerical

experiments are conducted to demonstrate the performance of TMC and compare it

to pricing. We first introduce market setup in this study. Next, we demonstrate the

existence and uniqueness of TMC system equilibrium. Then, we inspect the mar-

ket behavior of travelers. Finally, we examine the robustness of the two instruments

under sub-optimal toll profiles.

6.2.1 Market Setup

The token allocation rate is an exogenous variable determined by the regulator. Given

a toll profile, the more tokens the regulator distributes, the smaller the token market

price is at equilibrium and vice versa. For an extreme case that everyone has enough

tokens to pay the toll, the token price would be zero as there is no demand for buying

tokens. Hence, it is important that the regulator specifies an appropriate allocation

amount.

We determine the amount of total daily allocation by dividing the regulator rev-

enue of pricing without distribution (𝐾𝑃−) by 1 dollar assuming the token market

price at equilibrium is 1 dollar. Next, we re-optimize the toll profile in tokens given

the determined allocation. The optimization performances with different allocation

rates are examined in the next section.

Experiments in this section assume tokens are distributed uniformly to every-
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one (𝑀𝑈) while experiments in next section looks into personalized distribution.

Also, continuous allocation is the default method for token allocation because of its

advantages discussed in Chapter 3, which is also demonstrated later in the case of

sub-optimal toll profiles. Every traveler is assumed to have a random account balance

at the beginning of the simulation. The effect of initial account balance is examined

in the following section 6.2.4.

Since the base case 𝑃− has revenue as 4.1040 dollars per capita over the entire

day, the individual allocation rate 𝑟 is 0.00285 tokens per minute. The token lifetime

𝐿 should be one day since the context we consider is a daily commute problem and

the frequency of trip making is one day. However, since we only simulate half day,

the lifetime 𝐿 is 720 minutes.

The effect of both proportional and fixed transaction fees are investigated later

in this section. In all prior experiments they are assumed to be 0. The token price

is adjusted daily by a constant based on the demand and supply of tokens, which is

represented by regulator revenue of MU directly 𝐾𝑀𝑈 . The greater the revenue is,

the more demand for buying tokens and price increases and vice versa. The initial

price (𝑝0) is by default set at 1 dollar but is varied in later experiments. The constant

price change ∆𝑝 is 5 cents (0.05 dollars). To avoid unnecessary price fluctuations

for small amounts of regulator revenue, the price does not change when revenue is

in the interval [−𝐾𝑡, 𝐾𝑡], where 𝐾𝑡 is equal to 300 dollars in this study (based on

preliminary experiments). In addition, the price cannot fall below 0 but there is no

maximum cap for it.

Descriptions and values of key parameters are summarized in Table 6.3.

6.2.2 Optimization Performance

The convergence of the optimization objective values (social welfare) along with the

optimal time-of-day step toll profile in tokens and in dollars (tokens times token price)

with three different allocation rates varied from 15% less than the baseline to 15%

more than the baseline are shown in Figure 6-6.

As we can see, although the starting social welfare are very different because of
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Table 6.3: Market parameters for tradable mobility credits (base case)

Variables Description Values
𝑟 Token allocation rate 0.00285 per min
𝐿 Token lifetime 720 mins
𝐹 𝐹
𝐵 /𝐹 𝐹

𝑆 Proportional transaction fee of buying/selling 0
𝐹 𝑃
𝐵 /𝐹 𝑃

𝑆 Fixed transaction fee of buying/selling $0
𝑝0 Initial token price $1
∆𝑝 Price change $0.05
𝐾𝑡 Regulator revenue threshold $300

different allocation rates, they converge to the same social welfare (within a tolerance

of $0.02) at the end of 300 iterations. Also, the social welfare of TMC is greater than

that of pricing without distribution.

The token price of the baseline allocation rate is $1 while the lower allocation

rate has the token price equal to $1.1 and the higher allocation rate has the token

price equal to $0.9. This is consistent with our expectations that the lower allocation

rate leads to the higher token price due to less supply and vice versa. The optimal

toll profiles in tokens in Figure 6-6b show that the lower allocation rate leads to the

overall higher toll profile in tokens and vice versa. This is because as the token price

increases (decreases) the toll in tokens has to decrease (increase) to maintain the

product of the price and toll in tokens similar to the optimal toll in dollars.

The product of toll profiles in tokens and token prices are shown in Figure 6-6c.

The black line represents the optimal toll profile in dollars for 𝑃−, which is also

the red line shown in Figure 6-5a. In the peak hour (from 7AM to 8:30AM) when

the most people are traveling, the toll profiles in dollars are very similar with small

differences. The differences among the toll profiles in the off peak indicate that the

objective function (social welfare function) might have the relatively flat landscape

near the optimal values.
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(a) Convergence of the social welfare (b) Optimal toll profile in tokens

(c) Optimal toll profile in dollars

Figure 6-6: Convergence of the social welfare, optimal time-of-day step toll profile in
tokens and in dollars of 𝑀𝑈 by three allocation rates

6.2.3 Existence and Uniqueness of Equilibrium

We first present the effect of various allocation rates 𝑟 on convergence of token price,

social welfare, regulator revenue, and travel time of driving in Figure 6-7. As we can

see, different allocation rates lead to different social welfare and price values. At the

baseline allocation rate (recall that this is computed based on an optimized toll in

dollars from pricing without distribution), token price of MU (TMC with uniform

allocation) converges to $1. With smaller allocation rate, token price converges to

be higher than $1 due to more demand and less supply; with greater allocation rate,

token price converges to be less than $1 due to less demand and more supply. The
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social welfare of greater or smaller allocation rates are less than that of the baseline

allocation rate. The social welfare of the baseline allocation rate is greater than that

of pricing without distribution. The regulator revenues under the three allocation

rates converge to be within the regulator revenue threshold band (the black lines)

as shown in Figure 6-7c. Travel times of driving under the three allocation rates

converge too as shown in Figure 6-7d.

(a) Convergence of social welfare (b) Convergence of token price

(c) Convergence of regulator revenue (d) Convergence of travel time of driving

Figure 6-7: Convergence of social welfare, token price, regulator revenue, and travel
time of driving by allocation rate 𝑟

Next, the effect of various initial market prices 𝑝0 on convergence of token price,

social welfare, regulator revenue, and travel time are examined in Figure 6-8. The

price and social welfare converge to values that are not statistically significantly dif-

ferent at a significance level of 0.05 no matter what the initial price is. The regulator
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revenues under the three initial prices converge to be within the regulator revenue

threshold band (the black lines) as shown in Figure 6-8c. Travel times under the

three initial prices converge too as shown in Figure 6-8d.

(a) Convergence of social welfare (b) Convergence of token price

(c) Convergence of regulator revenue (d) Convergence of travel time of driving

Figure 6-8: Convergence of social welfare, token price, regulator revenue, and travel
time of driving by initial price 𝑝0

6.2.4 Trading behavior

We present the effect of full initial account balances and random initial account bal-

ances on the transaction numbers and amount by time-of-day at equilibrium. The

plots are based on simulations with a particular random seed because stochasticity

can make visualizations hard to interpret but findings and insights from the plots are
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general.

In Figure 6-9a, the numbers of buying and selling transactions in percentage of

corresponding total numbers by time-of-day at equilibrium for full initial account

balances are plotted. As we can see, buying transactions only happen in the peak

hour because travelers can only buy tokens at time of traveling if they are short of

tokens, which is consistent with the buying rule. While selling transactions happen at

the beginning of the day, in the early morning, and peak hour, which can be explained

by the plot of the average transaction amount by time-of-day for full initial account

balances in Figure 6-9b. For travelers sell at the beginning of the day, all of them sell

at full wallets as shown in Figure 6-9b (2.052 tokens as equilibrium token price is $1)

because they travel in the off peak and do not need to use tokens; for travelers sell

in the early morning (around 2AM), their account balances at time of selling are not

full because their future token allocations until their departure times can cover their

toll and it is optimal for them to sell now; for travelers sell in the peak period, they

sell at full wallets because their account balances reach full after paying small toll

charges. The selling behavior is consistent with the derived selling strategy but the

excessive trading the beginning of the day contradicts the motivation of continuous

allocation.

In practice, travelers will participate in the program in different times. As a

result, their account balances at the beginning of the day will be different. Assume

their initial account balances are distributed uniformly between 0 and the maximum

account balance (2.052 tokens). As shown in Figure 6-9c, the selling transactions are

spread across the day with a peak in the early morning (around 2AM) because of

the same reason explained above. Apart from these travelers who sell in the early

morning not at full wallets, other travelers sell only at full wallets as shown in in

Figure 6-9d, which are desirable.

6.2.5 Effect of Transaction Fees

In the literature, a transaction fee is argued to prevent undesirable market behavior

like frequent selling. For example, [Brands et al., 2020] apply a small transaction fee
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(a) Transaction numbers of full wallets (b) Avg. trading amount of full wallets

(c) Transaction numbers of random wallets (d) Avg. trading amount of random wallets

Figure 6-9: The effects of full and random initial account balances on the transaction
numbers and amount by time-of-day at equilibrium

of 0.01 euro to prevent frequent selling in their experiment. However, it has also been

shown that transaction fees could reduce system efficiency [Nie, 2012].

Our analysis in Chapter 3 shows that the effect of a fixed transaction fees is to

prevent multiple transactions while the effect of a proportional transaction fees is to

make one sell as soon as possible when the conditional profit is positive (if buying is

required at the time of the next trip).

Numerical experiments in this section examine the effect of proportional and fixed

transaction fees on social welfare and undesirable behavior. Specifically, undesirable

behavior is defined as buying back tokens sold previously. This is because we would
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like to have users strictly being either sellers or buyers (not both). Sellers are the

ones who travel in the off peak and sell their tokens while buyers are the ones who

are willing to pay a high toll to travel in the peak. Optimal transaction fees are

determined to eliminate buyback behavior while yielding the least efficiency loss.

For simplicity, the fixed transaction fees of buying and selling are varied together

with the proportional transaction fees set to zero and vice versa. The effects of fixed

and proportional transaction fees on social welfare and buyback behavior are shown

in Figure 6-10. From the simulation experiments, a small fixed transaction fees (5

cents in this study) is seen to be able to eliminate buyback behavior in Figure 6-10c

and reduce welfare only slightly in Figure 6-10a. While there are higher social welfare

losses in the case of the proportional transactions fees in Figure 6-10b, which is also

less effective in reducing buyback behavior in Figure 6-10d.

6.2.6 Sub-optimal Toll Profile

In practice, toll profiles may often be sub-optimal because of changing conditions,

forecast errors and uncertainty. It is difficult to update these toll profiles (especially

at the network level) regularly in practice since travelers need time for planning. For

example, Singapore updates the ERP scheme once every three months. However,

some market elements of the TMC scheme (e.g. allocation rate) are easier to change

and also have the potential to influence travelers’ behavior to recover efficiency losses.

In this section, two scenarios of a sub-optimal toll profile are investigated, including

forecast error and non-recurrent events.

The first scenario is forecast error wherein actual road capacity is assumed to

be 15% less than the anticipated road capacity used to optimize the toll profile.

The social welfare of pricing and TMC with this sub-optimal toll profile (based on

anticipated road capacity) are plotted in Figure 6-11 and denoted by 𝑃−𝑆 and 𝑀𝑈𝑆.

The social welfare of pricing and TMC with optimal toll profiles are also plotted and

denoted as 𝑃−𝑂 and 𝑀𝑈𝑂. As we can see, 𝑀𝑈𝑆 (TMC with sub-optimal tolls) is

able to recover efficiency loss by reducing the allocation rate, which reduces token

supply and increases token price. The optimal allocation rate is determined using a
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(a) Effect of Fixed TF on SW (b) Effect of Proportional TF on SW

(c) Effect of Fixed TF on Buyback (d) Effect of Proportional TF on Buyback

Figure 6-10: The effect of fixed and proportional transaction fees on social welfare
and buyback behavior

grid search, which is found to be 15% lower than the original allocation rate.

The second scenario is a non-recurrent event. Specifically, it is assumed that there

is a sudden within-day capacity drop by 15% (e.g. due to an accident or incident)

from 7AM to 8:30AM on the 10th day after the system has reached an equilibrium.

The social welfare across days for the three instruments are plotted in Figure 6-12.

The first instrument is pricing without distribution and denoted as 𝑃−. The second
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Figure 6-11: The social welfare of pricing and TMC with sub-optimal and optimal
toll profiles

one is TMC with lump-sum allocation and denoted as 𝑀𝑈𝐿. The third instrument

is TMC with continuous allocation and denoted as 𝑀𝑈𝐶 .

Under 𝑀𝑈𝐿, travelers receive the entire day’s token allocation at the beginning

of the day in the form of a ‘lump-sum’ allocation. This form of token allocation is

the standard design of TMC schemes in the literature (e.g. [Yang and Wang, 2011a,

Brands et al., 2020]). Regarding trading, they can buy additional tokens at the

time of traveling for immediate use and redeem unused tokens at the end of the day.

Since trading is automated, there is no transaction fee considered under the lump-

sum allocation. The regulator has three market parameters to control, including

within-day token price, regulation starting time and ending time. She cannot control

allocation rate as all the tokens have already been allocated at the beginning of the

day. Users who have not traveled yet before the new token price takes effect can

update their plans according to the new information. Using the DE algorithm, we

determine that it is optimal for the regulator to increase the token price to $1.8

between 6:55AM and 9:15AM. As shown in Figure 6-12, it performs better than 𝑃−.
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Figure 6-12: Social welfare of pricing and TMC with sub-optimal and optimal toll
profiles

For 𝑀𝑈𝐶 , the regulator not only can control token price, regulation starting and

ending time, she can also control allocation rate and transaction fees. We ignore

proportional transaction fees and optimize fixed transaction fees of buying and selling

together. Through optimization, between 7:05AM and 8:50AM, the regulator should

set token price equal to $1.25, allocation rate 𝑟 equal to 0 and fixed transaction fee

equal to $0.5. It performs better than the lump-sum allocation 𝑀𝑈𝐿 as shown in

Figure 6-12. This is intuitive because the cost term in the behavioral model under

continuous allocation depends on allocation rate and transaction fees, which provides

the regulator more degrees of freedom to intervene. This demonstrates the advantages

of a continuous allocation of tokens over a lump-sum allocation of tokens.

6.3 Personalization for Pricing and TMC

6.3.1 Experimental Design

Three important factors: capacity, income effect and heterogeneity are varied one at

a time across three levels as presented in Table 6.4. Values used in the base case are

highlighted in red. With regard to the capacity factor, bottleneck capacity 𝑠 is varied
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Table 6.4: Factor levels for experiments

Factor Level 1 Level 2 Level 3
Capacity (𝑠) -15% 0% 15%

Income Effect (𝜆) 0 3 6
Heterogeneity (c.o.v) 0.2 0.9 1.6

from 15% less capacity than the baseline to 15% more capacity than the baseline; for

the income effect, the nonlinear income effect coefficient in the utility specification 𝜆

is varied from 0 to 6; for heterogeneity, the coefficient of variation of value of time 𝛼𝑛

is varied from 0.2 to 1.6.

For each scenario in the experimental design, six instruments and NT are simu-

lated with five different random seeds until convergence. The selected instruments

are pricing without distribution (𝑃−), pricing with uniform distribution (𝑃𝑈), pric-

ing with personalized social welfare maximization distribution rule (𝑃𝐼𝑆), pricing

with personalized hybrid distribution rule (𝑃𝐼𝐻), TMC with uniform distribution

(𝑀𝑈), and TMC with personalized distribution (𝑀𝐼) (with hybrid distribution rule

as default). Pricing with the personalized Pareto improving distribution rule is not

presented since it is dominated by the hybrid distribution rule. Also, it is assumed

all regulator revenue are available for distribution (i.e. 𝛿 = 1).

6.3.2 Results

As discussed in Chapter 5, the premise of achieving Pareto improvement from distri-

bution is that available revenue for distribution can cover total user losses. Although

it has not been proved theoretically for heterogeneous travelers, this holds for the pric-

ing without distribution instrument 𝑃− across all of our simulation experiments as

shown in Figure 6-13, where 𝑍𝐿 represents the aggregate user losses and 𝐾 represents

the regulator revenue.

Also, we can observe the linear trend that as capacity level increases, regulator

revenue decreases due to less congestion, and as income effect increases, regulator

revenue decreases due to increasing cost sensitivity. However, the trend is not linear

and not monotonic across the selected three levels of heterogeneity.
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(a) Varying capacity (b) Varying income effect

(c) Varying heterogeneity

Figure 6-13: Regulator revenue versus user loss for the pricing without distribution
(𝑃−) by three factors

The comparative performance of the various instruments under varying levels of

capacity in terms of social welfare, Gini coefficient, PT share and travel time index

(TTI) are shown in Figure 6-14. A similar plot of the ratios of these four metrics

to the baseline values under varying levels of capacity can be found in Figure A-1

in Appendix A. The social welfare is computed relative to the NT and consists of

the user benefit and regulator revenue. As it is revenue neutral for all instruments

with distribution (𝛿 = 1), their social welfare are also their user benefits. For the

pricing without distribution 𝑃−, since regulator revenue is not neutral under 𝑃−,

it is expected that the user benefit of 𝑃− is less than other instruments. This is

confirmed by the following plots on distributional impacts.

As capacity level decreases, congestion increases and the social welfare of all in-
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(a) Social welfare of various instruments (b) Gini coefficients of various instruments

(c) PT share of various instruments (d) TTI of various instruments

Figure 6-14: Social welfare, Gini coefficient, PT share and Travel time index (TTI)
of various instruments by capacity levels

struments increase relative to NT. Among all instruments, 𝑃𝐼𝑆 achieves the highest

social welfare as its distribution rule is to maximize social welfare directly. The pric-

ing with hybrid distribution rule 𝑃𝐼𝐻 has social welfare less than that of 𝑃𝐼𝑆 as

its revenue is distributed to compensate all users’ losses (not only low-income users)

to ensure Pareto improvement. The pricing with uniform distribution 𝑃𝑈 has so-

cial welfare less than that of 𝑃𝐼𝐻 as its revenue is distributed uniformly to all users

including those who do not have losses.

We can also observe than TMC with uniform token allocation 𝑀𝑈 performs the

same as 𝑃𝑈 and TMC with personalized token allocation 𝑀𝐼 performs the same as

𝑃𝐼 given the effect of transaction fess are minimal. This is because the market value

of token allocation is roughly equal to the dollar value of the corresponding refund,
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which causes similar behavior changes as the income effects are similar.

It is worth noting that in the absence of the income effects, all instruments are

expected to have almost identical social welfare given that the losses due to the

TMC transaction fees are minimal. This is because the distribution does not change

the user behavior as utility differences are the same. The distribution also does

not bring additional benefit to low-income users because their marginal utilities of

income are 1. This is demonstrated in the following experiments on varying levels of

the income effects. Considering the nonlinear income effects, the results indicate that

the behavior changes and the marginal utility benefit of income due to the refunding

and the credit allocation lead to small gains in welfare. This is promising given the

other benefits, especially the distributional benefits, shown in next.

The Gini coefficient is calculated using the individual disposable income 𝐼𝑛 plus

her benefit 𝑧𝑛. The Gini coefficient of 𝑃− increases as capacity level decreases, which

implies that 𝑃− becomes less equitable. This is because as capacity level decreases,

the toll has to increase to deal with the increasing congestion leading to the greater

losses of low income users. Among all instruments, 𝑃𝐼𝑆 is the most equitable because

the social welfare maximization distribution rule also directly benefits low income

users. It becomes more equitable as capacity level decreases because more revenue

can be distributed to benefit low income users. 𝑃𝐼𝐻 is less equitable than 𝑃𝐼𝑆 because

its revenue is distributed to compensate all users’ losses. 𝑃𝑈 is less equitable than

𝑃𝐼𝐻 because its revenue is distributed uniformly to all users. The TMC instruments

have the same equity as the corresponding pricing instruments with refunding because

of similar reasons mentioned in social welfare discussion. A uniform refund or token

allocation always improves the Gini coefficient because it increases the proportion of

user benefits obtained by the lower income segments.

Regarding the PT share in NT, it increases as capacity level decreases because as

capacity decreases, congestion on the road network increases leading to more users

switching to PT. 𝑃− has much more PT users than that of NT because of tolling.

The difference between PT share in 𝑃− and 𝑁𝑇 also increases as capacity decreases

because as capacity decreases, congestion on the road network increases leading to
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higher toll, which causes more users switching to PT. The rest of instruments have

similar PT shares because their toll profiles are constrained to be similar to toll

profile of 𝑃− in toll optimization to avoid significant behavior changes. Without this

constraint, the optimal toll of instruments with distribution could increase relative to

𝑃−, causing the greater behavior changes. In this case, it is more users to switch to

PT as we only consider two modes and such changes might be desirable if we want

to promote PT. However, broadly, this could lead to some undesirable impacts on

the economy also. For example, the trip cancellation might increase due to revenue

refunding and higher toll charges, which prevents economic growth if the extent is too

large. The issue of behavior change is subtle and needs further investigations taking

more aspects of travel behavior into considerations.

In Figure 6-14d, the travel time index (TTI) of NT increases as capacity level

decreases because congestion on the road network increases. Clearly, all instruments

including both refunding and TMC attain the desired improvements in network per-

formance as shown in Figure 6-14d that their TTI are close to 1.

The distributional impacts of instruments are shown in Figure 6-15. The y-axis is

cumulative user benefits normalized by population. The x-axis of Figure 6-15a (left

column) is user benefit percentile while the x-axis 6-15b (right column) is income

percentile. If an instrument is Pareto improving, then its line should not go below 0

in Figure 6-15a. In addition, if an instrument is progressive, then its line is supposed

to increase fast initially in Figure 6-15b, which means low income users have the most

user benefits.

We can observe that 𝑃− is regressive and not Pareto improving because low

income users have losses in Figure 6-15a. When capacity is high (15%), the user

benefit per capita of 𝑃− is close to 0 as shown in Figure 6-15, meaning that the most

of social welfare gain is due to regulator revenue. Uniform distribution (𝑃𝑈 and 𝑀𝑈)

cannot eliminate “losers” because every user receives the same amount of distribution.

Although 𝑃𝐼𝑆 benefits low income users significantly compared to other instruments

as shown in Figure 6-15b, the mid income users still have losses. 𝑃𝐼𝐻 and 𝑀𝐼 are

not only progressive that they benefit low income more than other users as shown
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(a) Lorenz curve of user benefits (b) Distribution of user benefits by income

Figure 6-15: Distributional impacts of various instruments by capacity levels

in Figure 6-15b, but also Pareto improving that no user has loss as shown in Figure

6-15a.

The results demonstrate that the developed bi-level optimization framework can
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significantly improve the distributional impacts to achieve progressive Pareto improve-

ment without having significant behavior changes and deteriorating network perfor-

mance. This is promising to improve the public acceptance of congestion tolling as it

addresses the important equity issue.

In order to operationalize this bi-level optimization framework, it is important to

measure and infer user preferences and behavior accurately. We can take advantage

of the existing development of the Tri-POP framework. In the example of Tripod

application reviewed in Chapter 5, user behavior is modeled by a discrete choice

model with inter- and intra-consumer heterogeneity using stated preferences (SP)

data [Danaf et al., 2019]. The SP data collection can leverage the revealed preferences

(RP) data (e.g. the departure and arrival times, origin and destination, trip mode

and purpose, and activity duration) obtained using the smartphone-based sensing

app [You et al., 2019] and pre-survey data on the user’s characteristics (e.g. income,

age, car owernship, etc.) to generate choice tasks. User’s preferences can be updated

online after each choice and offline periodically. The developed online estimation

methodology by [Danaf et al., 2019] is also demonstrated to be scalable.

Next, the comparative performance of the various instruments under varying levels

of income effects in terms of social welfare, Gini coefficient, PT share and travel time

index (TTI) are shown in Figure 6-16. A similar plot of the ratios of these four

metrics to the baseline values under varying levels of income effects can be found in

Figure A-2 in Appendix A. As we can see, in the absence of nonlinear income effect

(𝜆 = 0), all instruments perform the same in terms of all four metrics because there

is no impact on behavior as we have explained already.

Considering the nonlinear income effects, similar to previous cases, 𝑃𝐼𝑆 achieves

the highest social welfare and lowest Gini coefficient among the considered instru-

ments. Its social welfare increases as the income effect increases due to the higher

marginal utilities of income of low income users. In contrast, the social welfare of

𝑃− decreases as the income effect increases since users are more sensitive to tolls.

𝑃𝐼𝐻 performs the same as 𝑀𝐼, which perform slightly worse than 𝑃𝐼𝑆 in terms of

efficiency and equity. 𝑃𝑈 and 𝑀𝑈 also perform the same, which are worse than
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(a) Social welfare of various instruments (b) Gini coefficients of various instruments

(c) PT share of various instruments (d) TTI of various instruments

Figure 6-16: Social welfare, Gini coefficient, PT share and Travel time index (TTI)
of various instruments by income effect levels

instruments with the hybrid distribution rule.

Regarding the PT share in NT, it increases as the income effect level increases

because the PT fare is cheaper than the fuel cost of driving leading to more users

switching to PT. Similar to varying capacity levels, all instruments have similar PT

shares because of their constrained toll profiles. This implies that they do not cause

significant behavior changes. In addition, all instruments have similar TTI as that of

𝑃− that are close to 1 as shown in Figure 6-16d, which implies they all attain the

desired improvements in network performance.

The distributional impacts of instruments across three levels of income effect are

shown in Figure 6-17. Clearly, 𝑃− is regressive and not Pareto improving; 𝑃𝐼𝑆

benefits low income users without paying attention to mid income users; 𝑃𝑈 and
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(a) Lorenz curve of user benefits (b) Distribution of user benefits by income

Figure 6-17: Distributional impacts of various instruments by income effect levels

𝑀𝑈 fail to benefit all users; and 𝑃𝐼𝐻 and 𝑀𝐼 are both progressive and Pareto

improving.

Finally, the social welfare, Gini coefficient, PT share and travel time index (TTI)
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(a) Social welfare of various instruments (b) Gini coefficients of various instruments

(c) PT share of various instruments (d) TTI of various instruments

Figure 6-18: Social welfare, Gini coefficient, PT share and Travel time index (TTI)
of various instruments by heterogeneity levels

of various instruments across three levels of heterogeneity are shown in Figure 6-

18. A similar plot of the ratios of these four metrics to the baseline values under

varying levels of heterogeneity can be found in Figure A-3 in Appendix A. As the

heterogeneity level increases, the social welfare of 𝑃− increases, which is consistent

with findings in the literature (e.g. [Van Den Berg and Verhoef, 2011]). This shows the

importance of incorporating heterogeneity into the analysis to avoid underestimating

the benefits of congestion tolling instruments.

Similar to the previous two sets of experiments, 𝑃𝐼𝑆 achieves the highest social

welfare and lowest Gini coefficient among the considered instruments. 𝑃𝐼𝐻 performs

the same as 𝑀𝐼, which perform slightly worse than 𝑃𝐼𝑆 in terms of efficiency and

equity. 𝑃𝑈 and 𝑀𝑈 also perform the same, which are worse than instruments with
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hybrid distribution rule.

As shown in Figure 6-18c, all instruments including both revenue refunding and

TMC have similar PT shares to that of 𝑃−, which means they do not cause significant

behavior changes. As shown in Figure 6-18d, all instruments have similar TTI, which

means they all attain the desired improvements in network performance.

The distributional impacts of instruments across three levels of heterogeneity are

shown in Figure 6-19. Similarly, 𝑃− is regressive and not Pareto improving; 𝑃𝐼𝑆

benefits low income users without paying attention to mid income users; 𝑃𝑈 and

𝑀𝑈 fail to benefit all users; and 𝑃𝐼𝐻 and 𝑀𝐼 are both progressive and Pareto

improving. For the lowest heterogeneity level, the user benefit per capita of 𝑃− is

negative (reflected by the negative cumulative user benefit at the end of x-axis as

shown in Figure 6-19). This implies that social welfare gain of 𝑃− is due to regulator

revenue only, which causes equity issues and reduces public acceptance.

6.4 Summary

This chapter first introduces the setup for numerical experiments. Next, the existence

and uniqueness of equilibrium and the performance of the DE optimization algorithm

are demonstrated numerically. Next, the market behavior of travelers is investigated

to demonstrate the market design for TMC prevents undesirable behavior like ex-

cessive activities at the boundary and frequent selling. The advantages of the TMC

instruments over pricing under sub-optimal toll profiles are also demonstrated. Fi-

nally, the comparative performance of the various instruments across different levels

of three factors are examined. It is shown that with realistic capacity, income ef-

fects, and heterogeneity, personalization for both pricing and TMC can significantly

improve distributional impacts of congestion tolling, achieving progressive Pareto im-

provement while maintaining efficiency without causing significant behavior changes,

and deteriorating network performance.
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(a) Lorenz curve of user benefits (b) Distribution of user benefits by income

Figure 6-19: Distributional impacts of various instruments by heterogeneity levels
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Chapter 7

Conclusions

7.1 Contributions and Findings

This thesis has two major contributions. First, we develop a market design for TMC

schemes that ensures TMC is used for mobility management and avoids undesirable

behavior such as hoarding, frequent selling and speculation, excessive activity at

boundary (of token expiration), and negotiation cost. The developed design considers

all aspects of the market including token allocation, expiration, transaction fee, price

adjustment and market rules governing trading. In addition, a heuristic approach

to model disaggregate selling behavior is developed and the resulting simple selling

strategy is derived. The effect of proportional and fixed transaction fees on selling

behavior are discussed analytically. The developed market design addresses a growing

and imminent need to develop methodologies to realistically model TMC schemes

that are suited for real-world deployments and can help us better understand the

performance of these systems – and the impact in particular, of market dynamics.

Second, we develop a bi-level optimization framework for personalized distribu-

tion to make congestion tolling (both price and quantity controls) efficient, equitable,

and Pareto improving. It is an application of an online analytics framework for

transportation system management and smart mobility termed Tri-POP, which com-

bines prediction, optimization and personalization (POP). The system optimization

determines toll policy with the objective to maximize social welfare while the user
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optimization can be formulated with different objectives (e.g. maximize social welfare

or achieve Pareto improvement) to determine individual distribution of revenue for

pricing or tokens for TMC. The system optimization is solved using a metaheuristic

approach termed Differential Evolution (DE) while the user optimization is solved

analytically. The developed personalized congestion tolling is promising to improve

the public acceptance as it addresses the important equity issue.

The performance of the designed instruments are demonstrated via microsimu-

lation in a daily commute context between a single origin-destination pair. Under

congestion tolling, travelers are subject to a time-of-day toll profile in units of dol-

lars (for pricing) or tokens (for TMC). The simulation experiments employ a day-

to-day assignment framework wherein transportation demand is modeled using a

logit-mixture model with the nonlinear income effects and supply is modeled using a

standard bottleneck model. The evaluation framework includes four main categories:

social welfare, distributional impacts, behavior change, and level of congestion.

Regarding market design for TMC, the results indicate that small fixed transaction

fees can effectively mitigate undesirable behavior in the market without a significant

loss in efficiency (social welfare) whereas proportional transaction fees are less effective

both in terms of efficiency and in achieving desirable market behavior. Further, the

TMC scheme is more robust in the presence of forecasting errors and non-recurrent

events due to the adaptiveness of the market.

For the personalized pricing and TMC instruments, we vary three factors (capac-

ity, income effect, and heterogeneity) across three levels, one at a time. We examine

the comparative performance of the personalized congestion tolling (both pricing and

TMC) relative to the traditional congestion pricing without revenue refunds and con-

gestion tolling with uniform distribution. First, we show that the regulator revenue

of the pricing without revenue refunds 𝑃− is always greater than the user losses in

all experiments we try, which is the premise of achieving Pareto improvement.

Second, we find it is important to consider the nonlinear income effect, otherwise,

all instruments have almost the identical social welfare given that the losses due to

the TMC transaction fees are minimal. This is because the distribution does not
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change the user behavior as utility differences are the same.

Finally, with the realistic capacity, heterogeneity and income effect, personaliza-

tion with the hybrid distribution rule for both pricing and TMC (𝑃𝐼𝐻 and 𝑀𝐼) can

make congestion tolling more efficient, equitable and achieve Pareto improvement

without having significant behavior changes and deteriorating network performance.

Although pricing with social welfare maximization distribution rule (𝑃𝐼𝑆) is able to

achieve the highest social welfare and equity among the considered instruments, it

fails to benefit all users such that the mid income users still have losses.

7.2 Limitations and Future Work

We suggest the following future research directions to improve and extend method-

ologies developed in this study.

1. There are a few aspects of the market design for TMC that need further inves-

tigation. First, the token price is adjusted daily in this thesis but it is worth

investigating the within day price adjustment also, which may balance demand

and supply faster and improve efficiency. Second, the user selling strategy is

derived using a heuristic approach, which needs to be validated with empirical

data. Third, it is worth considering users’ loss aversion and novelty effect.

2. This thesis mainly focuses on the departure time choice and two-mode choice

in the context of a daily commute. More dimensions of travelers’ behavior

(e.g. route choice, other modes, parking, and other travel purposes) can be

incorporated. The toll optimization then needs to be extended to capture such

behaviors. In addition, it would be more realistic to relax the assumption that

the evening trip and morning trip are symmetric.

3. The time-of-day pricing or token charging schemes considered in this thesis are

for a single link. For real-world implementations, it is meaningful to extend

current work to accommodate tolling on general networks and investigate the
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implications of different forms of tolling (e.g. link-based, cordon-based, area-

based, and distance-based). It is also possible to consider multiple objectives

in the optimization (e.g. reduce emission or energy consumption). Also, for

general networks, both social and spatial equity issues exist, which may need

different solutions to offset the disadvantage.

4. It is shown that the real-time optimization can further improve efficiency (e.g.

[de Palma and Lindsey, 2011]). It is meaningful to investigate adaptive tolling

and market parameters for TMC in real-time based on predictions (e.g. speed

and flow). Travelers’ preferences can also be updated both online and offline to

improve optimization performance.

5. This thesis develops and demonstrates the personalized congestion tolling can

be more efficient, equitable and benefit all travelers (Pareto improving), which

likely increases its public acceptance. However, as reviewed in Chapter 2, the

public acceptance is also affected by factors such as privacy, complexity and

uncertainty. For practical applications of the personalized pricing or TMC, it is

important for policy makers to address these concerns. Also, it is important to

investigate the interactions of personalized congestion tolling with other sectors

of the economy (e.g. labor supply, freight).

6. The premise of achieving Pareto improvement from personalization is that avail-

able revenue for distribution can cover total user losses. Although this holds

for all experiments conducted in this study, it is important to mathematically

derive conditions for this to hold and investigate whether this holds or not in

general networks considering heterogeneity, elastic demand and nonlinear in-

come effect. On the other hand, it is possible to include a constraint in toll

optimization to ensure the optimized toll profile allows to achieve Pareto im-

provement, otherwise it is not sensible to implement congestion tolling.

7. The scope of thesis focuses on the short-term effects of congestion tolling as-

suming that the long-term decisions such as residential location choice, work
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location choice, vehicle ownership, network infrastructures and services, and

consumption are not affected. While in the long-term, congestion tolling could

have substantial impacts to travelers and different among instruments. For ex-

ample, it is found that the demand is more elastic in the long-run as travelers

have more time to react and find other options (e.g. living or working at places

where they can avoid toll charges).

8. In the numerical experiments, we do not have reliable data sources for some

parameters. For example, because we do not find empirical data about the

distribution of values of schedule delay early and late, we assume their distribu-

tion based on reasonable justification. Similarly, we assume a constant necessary

living expense for all travelers to convert their market income to disposable in-

come for transportation. The individual specific random component term is

calibrated based on price elasticity but is assumed to be perfectly correlated

under all instruments, which might not be true.

9. More extensive testing and analysis of the developed market design for TMC

and personalization framework are necessary. More levels of factors and full

factorial experiments can be conducted to compare various instruments. For

example, it is important to investigate the influence of different distributions of

disposable income. Large-scale simulation experiments on a realistic network

are helpful to provide insights for real-world applications. Field experiments

can provide valuable empirical data for model estimation and validation, per-

formance evaluation, and insights on users’ attitudes towards new instruments.
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Appendix A

Figures

The ratios of social welfare, Gini coefficient, PT share and travel time index to the

baseline values under varying levels of capacity are shown in Figure A-1. Specifically,

in Figure A-1a, the ratios of social welfare of each instrument to the social welfare

of 𝑃− with the baseline capacity are plotted; in Figure A-1b, the ratios of Gini

coefficient of each instrument to the Gini coefficient of 𝑁𝑇 with the baseline capacity

are plotted; in Figure A-1c, the ratios of PT share of each instrument to the PT share

of 𝑁𝑇 with the baseline capacity are plotted; in Figure A-1d, the ratios of TTI of

each instrument to the TTI of 𝑁𝑇 with the baseline capacity are plotted.

Similarly, the ratios of social welfare, Gini coefficient, PT share and travel time

index to the baseline values under varying levels of income effects are shown in Figure

A-2; the ratios of social welfare, Gini coefficient, PT share and travel time index to

the baseline values under varying levels of heterogeneity are shown in Figure A-3.

The findings and insights from these three plots are the same as those discussed in

Chapter 6.
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(a) Social welfare of various instruments (b) Gini coefficients of various instruments

(c) PT share of various instruments (d) TTI of various instruments

Figure A-1: The ratios of social welfare, Gini coefficient, PT share and Travel time
index (TTI) to the baseline values of various instruments by capacity levels
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(a) Social welfare of various instruments (b) Gini coefficients of various instruments

(c) PT share of various instruments (d) TTI of various instruments

Figure A-2: The ratios of social welfare, Gini coefficient, PT share and Travel time
index (TTI) to the baseline values of various instruments by income effect levels
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(a) Social welfare of various instruments (b) Gini coefficients of various instruments

(c) PT share of various instruments (d) TTI of various instruments

Figure A-3: The ratios of social welfare, Gini coefficient, PT share and Travel time
index (TTI) to the baseline values of various instruments by heterogeneity levels
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