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Abstract

Over the last several decades, neuroscientists, cognitive scientists, and psychologists have made strides in
understanding the complex and mysterious processes that define the interaction between our minds and
the sounds around us. Some of these processes, particularly at the lowest levels of abstraction relative to a
sound wave, are well understood, and are easy to characterize across large sections of the human population;
others, however, are the sum of both intuition and observations drawn from small-scale laboratory experi-
ments, and remain as of yet poorly understood. In this thesis, I suggest that there is value in coupling insight
into the workings of auditory processing, beginning with abstractions in pre-conscious processing, with new
frontiers in interface design and state-of-the-art infrastructure for parsing and identifying sound objects, as
a means of unlocking audio technologies that are much more immersive, naturalistic, and synergistic than
those present in the existing landscape. From the vantage point of today’s computational models and de-
vices that largely represent audio at the level of the digital sample, I gesture towards a world of auditory
interfaces that work deeply in concert with uniquely human tendencies, allowing us to altogether re-imagine
how we capture, preserve, and experience bodies of sound – towards, for example, augmented reality devices
that manipulate sound objects to minimize distractions, lossy "codecs" that operate on semantic rather than
time-frequency information, and soundscape design engines operating on large corpora of audio data that
optimize for aesthetic or experiential outcomes instead of purely objective ones.

To do this, I aim to introduce and explore a new research direction focused on the marriage of principles
governing pre-conscious auditory cognition with traditional HCI approaches to auditory interface design via
explicit statistical modeling, termed "Cognitive Audio". Along the way, I consider the major roadblocks that
present themselves in approaching this convergence: I ask how we might "probe" and measure a cognitive
principle of interest robustly enough to inform system design, in the absence of immediately observable
biophysical phenomena that may accompany, for example, visual cognition; I also ask how we might build
reliable, meaningful statistical models from the resulting data that drive compelling experiences despite
inherent noise, sparsity, and generalizations made at the level of the crowd.

I discuss early insights into these questions through the lens of a series of projects centered on auditory
processing at different levels of abstraction. I begin with a discussion of early work focused on cognitive
models of lower-level phenomena; these exercises then inform a comprehensive effort to construct general
purpose estimators of gestalt concepts in sound understanding. I then demonstrate the affordances of these
estimators in the context of application systems that I construct and characterize, incorporating additional
explorations on methods for personalization that sit atop these estimators. Finally, I conclude with a dialogue
on the intersection between the key contributions in this dissertation and a string of major themes relevant to
the audio technology and computation world today.
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1

Introduction

1.1 Auditory Interfaces and Created Experiences

It is only apt that we begin this narrative with an attempt to frame
the term auditory interfaces, which is used liberally over the pages of
this thesis. In the context of this work, we can think of an interface as
a technological embodiment that stands between us – or more specif-
ically, our minds – and the sounds that we consume. This definition
is perhaps much broader than what might otherwise come to mind;
in this definition, I include technologies that mediate the sounds that
naturally exist around us, and technologies that synthesize and mod-
ulate entirely new sonic environments, and technologies that inhabit
the ambiguous space between the two. In this definition, I include
physical hardware with active and passive components that we might
treat as appendages to our bodies, such as headphones or virtual re-
ality headsets; algorithms that we encounter on our daily forays into
the digital world, such as those for audio enhancement or compres-
sion; tools meant for the creation, production, and curation of audio,
such as digital audio workstations and compositional applications;
sound installations and public art designed with the intent to edu-
cate or amuse; and sonic "displays" that allow us to tap into auditory
environments that are vastly different from the ones physically sur-
rounding us. Moreover, I suggest that we can think of all interfaces
as begetting of an experience – from feeling connected to a loved one
when listening to his or her voice over a phone call, to enjoying a
deep sense of focus and productivity while using noise-cancelling
headphones and listening to a favorite soundtrack, to losing our-
selves on an immersive virtual tour in an alternate sonic reality –
which is a term I use (equally liberally) to a describe a uniquely hu-
man internalization of an audio stimulus, after it has been mediated
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by an interface and distilled to some representation by our cogni-
tive hardware, comprised of our ears, our pre-conscious, and then
conscious minds.

These sorts of interfaces and associated experiences are ubiquitous
in today’s world, as are the forces of research and development that
are seeking to push them to new frontiers. These forces consider new
sensory modalities and new interaction paradigms, greater input-
output fidelity and greater resources for compute, and new form
factors that better suit our dynamic environments and lifestyles.
What they rarely consider, I argue, is a computational paradigm cen-
tered about our collective knowledge – both formal and intuitive –
of how we, as humans, hear. The how, while not exclusive of it, refers
to far more than the anatomical structures which serve to transduce
physical stimuli in the environment to electrical signals that travel to
our neural circuitry1; it also refers to the higher order behaviors that

1 The knowledge of which has, increas-
ingly, made its way into commonplace
audio devices and infrastructure, from
headphones to codecs.

allow us to identify whether the barking sound emanating from the
distance belongs to a dog that is threatening or innocuous; whether
the series of otherwise spectrally indistinguishable sonic events we
have just heard correspond to someone ascending or descending the
stairs; it refers to our ability to unconsciously respond to the sound
of our name being whispered on the opposite end of a loud and
crowded room, despite the fact that we are actively attending to an
alternate conversation; and it refers to our ability to recognize the
voice of a person on the phone whom we’ve met only once before.
These behaviors, and the many more that will be discussed in detail
over the pages of this work, together form the nuts, bolts, and gears
of our auditory machinery. If we are able to deeply understand and
computationally mimic aspects of this machinery – whether individ-
ual phenomena or whole subsystems at once – I believe we will have
created the potential to unlock a landscape of technologies that are
unknown to us as of yet.

For just a moment, let us suspend the disbelief that stems from our
experience with the state of auditory interfaces at present, and imag-
ine enhanced interfaces – or entirely new ones – that point, in turn,
to enhanced experiences, as a result of having tapped into an under-
standing of human hearing. Let us imagine, for instance, headphones
that do not simply uniformly cancel all environmental sounds, but
that instead delete or modify select sounds in our periphery that are
most likely to distract us from our work; or soundscape engines for
virtual reality applications that estimate regions in time, frequency,
and space that are expected to draw our attention, and optimize
activity and rendering fidelity accordingly; or search and curation
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engines for large bodies of audio, such as recordings from ecological
monitoring efforts or lifelogging databases, that operate along emo-
tional or aesthetic dimensions rather than objective, informational
ones; or a new generation of audio "codecs" that are informed by
auditory semantics, such as sound sources, musical structures, and
perceived emotions, instead of redundancy in time and frequency. At
the core of each of these futuristic technologies is a model that maps
sound to sound interpretation at some level of our cognitive pipeline,
used in a predictive capacity to drive an experience that is in synergy
with human listening tendencies – some shared, and some subjective.
These examples illustrate the power that would be awarded to tech-
nologists if such models were constructed; they also clearly illustrate
the challenges associated with doing so, including defining and scop-
ing phenomena of interest, scaling models to diverse demographics,
and creating models that exhibit flexibility and malleability over time
and towards individual preferences.

This thesis is about asking if it is possible, and if so, what it takes, to
make small strides towards this futuristic landscape, towards pushing
the auditory interfaces we are familiar with into new territory, as a
way of catalyzing compelling experiences we hadn’t yet imagined;
this thesis is about forming concrete representations of key ideas
in the body of knowledge that theorizes about the way we hear as
humans, so that they may drive these experiences; and this thesis is
about a journey of conjecture, experimentation, and evaluation at the
little-known crossroads between several of these ideas and the trade
of statistical modeling, so that we might arrive at a set of tools that
allows us to construct these representations, both in the context of
the application spaces chosen for exploration in this work, and in the
context of those that might present themselves well beyond the pages
of this thesis.

1.2 How We Hear

Imagine that you are a participant in a psychology experiment on
the perception of complex sounds. Your task is to listen to a series of
sounds and write down a brief description of what you hear.

"A single-engine propeller plane flying past," you write in response to
the first sound, pleased with yourself for providing so much detail.

The experimenter, on the other hand, is not pleased. He says, with
some irration, "No, no, no. Write down what you hear, not what you
think it is."
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"But I heard a propeller plane fly past," you object. "I didn’t think
about it; that’s what I heard."

"You may not have thought about it consciously," he retorts, "but you
didn’t hear an airplane, you heard a quasi-harmonic tone lasting ap-
proximately 3 seconds with smooth variations in the fundamental
frequency and the overall amplitude. That’s what I want you tell me
about."

"I don’t understand," you persist, though a little hesitantly. "I didn’t
hear whatever it is you said. I heard a propeller plane."

The experimenter signs and explains patiently, "No, you interpreted
the sound as a propeller plan by matching the incoming stimulus
with representations stored in your memory. I’m not interested in
how people interpret sounds; that’s a job for cognitive science. I’m
interested in how you hear the sound itself. Now try again.."

- Adapted from William Gaver’s "How Do We Hear in the World?",
Ecological Psychology, p. 286, 1993.

Over the last several decades, the psychology, neuroscience, and cog-
nitive science communities have made massive strides in uncovering
the mysteries and complexities of the interaction between our minds
and the sounds around us. Researchers agree that this interaction is
governed by an intricate interplay of conscious and pre-conscious
processing, and use the phrase "auditory cognition" frequently as an
umbrella term for many sub-processes that have been examined for
years in highly constrained, laboratory environments – psychoacous-
tics, spatial localization, scene analysis, auditory attention, memory,
causal reasoning, and language understanding, to name hardly a
few. Some of these research disciplines take a bottom-up approach,
choosing to begin by studying the aspects of our response to sonic
stimuli that is a function of sounds themselves; others take a top-down
approach, studying a sonic stimulus as something that is always in-
terpreted in the larger context of the world knowledge, rationale, and
consciousness of the interpreter.

For the moment, let us zoom into a smaller region of this multi-tiered
and multi-dimensional research space, comprised of pre-conscious
processes and abstractions at the lowest levels of human auditory
cognition – we choose to begin our study here, as the literature sug-
gests that the abstractions that live within this space have the valu-
able property of being largely shared across human listeners, and can
be meaningfully associated with the sound content itself, allowing us
to examine them with a bottom-up approach. In this regime, notions
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that stem from our understanding of lower-level processes, such as
those within the studies of psychoacoustics and spatial localization –
notions like "we don’t hear high-frequencies very well" or "the shape
of our head and ears informs how we use sound information to lo-
cate objects" – are well supported by neuroscientific observations.
More abstract notions that are derived from our understanding of
higher-level processes, such as ecological listening and short-term,
pre-conscious memory – notions like "our ability to name and picture
a sound influences our ability to remember it", or "hearing the sound
of a farm animal amidst a scene of urban sounds is likely to draw our
attention!" – are intuitive notions, and are still shared, but have more
poorly understood neural underpinnings.

The satirical and fictitious exchange printed at the start of this sec-
tion, originally scripted in William Gaver’s seminal paper, playfully
illustrates the dynamics and tension between these two classes of ab-
stractions, and the schools of research surrounding them. Technically,
neither the participant nor researcher is at fault. In the dialogue, the
researcher describes the sound in terms of its spectral properties,
which, psychoacousticians would argue, is a representation formed
by a segment of the auditory pathway at the lowest levels of inter-
action between a physical stimulus and conscious internalization
of a sound – and therefore, is what the participant is hearing. The
participant presents the case, in line with the literature on ecologi-
cal listening, that the fundamental unit of human hearing should be
treated as one that is more complex than a series of spectral cues or
even a composition of them, or one that is gestalt. This research ar-
gues that as a human, even in the absence of conscious thought, one
reaches first for the source of a sound, attempts to label it, to embed
it quickly in the model of the world in sound that one already pos-
sesses; and only under circumstance that one is unable to succeed in
this classification process would one begin to implicitly rely on the
tools expressed in the language of the researcher2.

2 This is, in fact, true, and shown
explicitly in an experiment we conduct
ourselves, described in Chapter 4.At the crux of this work is the gap that persists when this dialogue,

or the larger dichotomy that it represents, meets the field of com-
putational modeling. To most readers, the participant’s response is
intuitive and human-like, relative to that of the researcher. There-
fore, capturing information at the level of abstraction expressed by
the participant would appear to be a valuable tool for constructing
human-meaningful experiences. However, it is also noticeably more
difficult to define, capture, and interpret from a sound stimulus than
the description provided by the researcher. This discrepancy finds an
analog in the computational modeling domain, as will be discussed
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in detail in Chapter 2 – while the community has made sizeable
contributions in terms of general purpose spectral representations,
cochlear models, frequency masking models, and other models of
low-level phenomena in the pre-conscious realm, there is a scarcity of
systematic, scalable work targeting gestalt ideas.

1.3 Cognitive Audio: A New Research Paradigm

This dissertation presents the idea of Cognitive Audio, a name that
I’ve given both to the series of individual explorations in this work
as well as the larger research trajectory that they together shape. At
the core of the idea is a rethinking of the traditional paradigms en-
acted by today’s auditory interfaces – paradigms of audio capture,
representation, replay, and retrieval, amongst others – by capitaliz-
ing on the principles of pre-conscious auditory cognition. As hinted
at thus far, I suggest that the key to enabling this is the explicit con-
struction of statistical models of cognitive phenomena, with a focus
on gestalt ideas from the ecological listening literature that are now
tractable given advances in deep learning that enable robust audio
segmentation and classification.

As one might imagine, probing, quantifying, and synthetically ap-
proximating any of the subset of the processes discussed in Section
1.2 in the wild is non-trivial; much of the structure that has been
outlined in the literature about our auditory pathways stems from
empirical studies conducted in closed-door, carefully controlled ex-
perimental settings. Below, I discuss the biggest obstacles to building
generalized statistical models of auditory phenomena, which serve as
the most significant research questions motivating this work.

The problem of data acquisition: How do we query or "probe" a
cognitive principle of interest, in order to obtain data labels? As
we consider pre-conscious processes at greater and greater levels
of abstraction, such as auditory attention or memory, self-report is
rarely an option; and where one might rely on bio-physical mark-
ers as ground-truth for processes in visual cognition (like using the
movement of the eyes as a marker for visual salience), analogs for
the auditory domain are not immediately apparent. What do we use
as an observable marker when attempting to capture more abstract
phenomena in sound perception? How do we choose probes that are
applicable to real-world audio or environments as opposed to only in
experimental setting, so that we may obtain sufficient data?

The problem of data scale and robustness: As we approach more
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complex, semantic ideas in sound understanding, all our models
are likely to suffer from a similar fate – models constructed from
individual-first datasets have a greater potential to drive personalized
experiences; however, if collected in realistic, longitudinal scenaries,
this data is likely to have gaps and sizeable uncertainty. Datasets
gathered en masse via crowd-sourcing platforms or large-scale lab-
oratory assessments, on the other hand, are more likely to produce
more robust labels; they are more likely also to only account for
trends observable across the entire population, blissfully ignorant of
the behaviors of demographic sub-groups or individuals that sub-
tly influence auditory cognition. What is the value embedded in the
different balances of this tradeoff, and are there strategies that might
point us to a meaningful middle ground?

This dissertation is a critical examination of these questions through
the lens of a series of projects that I have developed and contributed
to, centered about different phenomena in auditory cognition. In
Chapter 2, I provide a brief survey of relevant background material,
covering examples of auditory interfaces that begin to dance with
but fall short of fully embracing cognitive ideas, detailing the state-
of-the-art in the machine learning infrastructure that makes this re-
search possible, and discussing the progress in auditory modeling at
present, highlighting a gap where this research exists. In Chapter 3,
I begin with a simpler version of the research problem, and examine
case studies in cognitive modeling for lower-level auditory phenom-
ena. I translate the tools and techniques that emerge from this work
to gestalt ideas in Chapter 4, and discuss the process of building gen-
eral purpose models of these ideas from the ground up, including the
construction of custom datasets and intermediate representations. In
Chapter 5 and 6, we apply these models towards specific experiences
in sound, and evaluate the unique affordances they provide; we also
consider the point where general purpose models fail to meet the
nuanced preferences of individuals, and illustrate a personalization
paradigm that serves as an example of the bridge between the two.
Finally, in Chapter 7, we conclude with a discussion of the intersec-
tion between the contributions in this work and a string of themes
that represent active areas of research in the audio technology and
computation world today.
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2

Background

2.1 Cognitively-inspired Interfaces

The Responsive Environments group has a longstanding tradition of
creating audio technologies that edge forward the state-of-the-art and
consider new user interaction paradigms altogether. In particular,
the group has experimented with several examples of novel audio
interfaces that begin to foray into cognitive and perceptual territory,
drawing inspiration from the sound cognition literature on sensory
augmentation, extension, confusion, transpresence, and incongru-
ence. For instance, as a part of a series of work merging artistic prac-
tice with the newest frontiers in HCI, Gershon Dublon and Rebecca
Kleinberger developed PhoxEars — a device consisting of a helmet
with two parabolic microphones attached as “ears”, whose positions
a user can independently control with joysticks [4]. Based on a cus-
tom bone conduction headset, the user-controlled ears overlay highly
directional sound sources on top of the user’s natural experience
of the soundscape. The evolution of this work led the researchers
to develop a more comprehensive system, known as HearThere [5].
HearThere users wear a bone-conduction headset that overlays vir-
tual sounds, sourced from a real-world environment instrumented
with microphones and other sensors, over their natural hearing; the
HearThere headset uses a combination of GPS and head tracking to
render these sounds as though they are coming from their real-world
locations. Because HearThere combines distributed sound capture in
a dynamic environment with auditory AR presentation, the device
goes beyond creating a traditional AR "layer" towards creating an
experience of extended hearing, the first of its kind; the device infers
a user’s attentional state by taking into account stillness, eye move-
ment, and neural signals. PhoxEars and HearThere can be considered



30

sensory prostheses that toy with well understood axioms of audi-
tory attention – a user’s natural ability to hear is supplemented and
heightened intuitively, but users experience sensory confusion as a
result; it is difficult for them to tell which sounds are real and which
are virtual. The prosthesis provides the user access to an additional
perceptual layer, to which they may choose to direct their conscious
attention; when the user turns their visual attention to a particular
area of the instrumented site, for instance, sounds from that area
(normally too far to hear) organically blend over their usual hearing.

Figure 2.1: The PhoxEars project, an
example of an auditory interface that
begins to explore cognitive ideas.

In another project from the group, called SoundSignaling, we intro-
duce a platform for notification delivery (such as from email, social
media, or SMS) via subtle, stylistic manipulations in a personal cor-
pus of music [6]. The system injects genre-specific modifications —
such as adding harmonies to a jazz standard, adding extra layers
of rhythm to a blues track, or altering the tempo of a classical piece
— at varying levels of conspicuity to a stream of music in real-time.
SoundSignaling is an example of design by cognitive heuristics: it
operates on the implicit assumption that attentional load modulates
awareness of incongruence, an idea borrowed from Stroop’s famous
colored text experiments [7] and explorations of auditory and visual
switching costs [8]; here, the magnitude of “incongruence” is intu-
ited by the designer based on music theory and studies in musical
perception1. Quantitative and anecdotal data from in-the-wild, long-

1 Audio examples can be found at
https://resenv.media.mit.edu/
soundsignaling/

term studies support the conclusion that SoundSignaling reduces
task-switching cost and mediates the intrusion of everyday notifica-
tions as a function of cognitive load.

Figure 2.2: The SoundSignaling project
incorporates ideas from the cognitive
science literature, though only implic-
itly.

All three of the above examples interface deeply and intuitively with
individual perception, working in tandem with a user’s attention to
support a holistic experience. However, in order to create interfaces
that give us more control over or allow us to engage more directly
with an individual’s experience, we require underlying models that
are informed by more than just assumptions and heuristics. This
demands that we walk one step further to create explicit models of
cognitive phenomena – consisting of a structured representation
that affords inferential power – rather than the implicit connection
between cognitive ideas and experimental devices that are demon-
strated in these examples. In the following section, I discuss the ma-
chine learning tools available to the auditory community that render
the construction of these explicit models tractable.

https://resenv.media.mit.edu/soundsignaling/
https://resenv.media.mit.edu/soundsignaling/
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2.2 Deep Learning Infrastructure

A precursor to the construction of cognitive models that tackle gestalt
ideas is the ability of the model, or the pre-processing pipeline that
feeds in to it, to parse, isolate, and identify a sound object – much like
in the intuitive response provided by the participant in Section 1.2.
Tools to undertake this prerequisite step are now under active de-
velopment in the deep learning community. For instance, several re-
search efforts have focused on deep learning architectures for classifi-
cation and tagging of environmental sounds, spanning datasets that
reflect both urban and nature soundscapes [9, 10, 11, 12, 13]. These
efforts have typically been centered about large scale convolutional
networks [13], as well as transformer architectures in more recent
years [10, 11], trained under fully supervised conditions. Several of
the datasets used for training in these works, like Google’s AudioSet
[2], offer hierarchical ontologies of the associated label set, which
serve as valuable, knowledge-graph-like representations of semantic
relationships in sound from a human’s perspective. Additionally,
there has been significant progress in the domains of machine-driven
sound-event detection and segmentation [14, 15, 16], localization [17],
and environmental audio source separation [18]. In order to consider
more dynamic, noise-laden environments and sound stimuli, some
recent work has moved towards constructing small-scale, efficient
implementations of classification neural networks that can operate on
board wearable, always-on devices [19], and other work has demon-
strated classification, source separation, and volumetric resynthesis
capabilities in highly constrained, complex auditory settings, like
at a wetland site instrumented for ecological monitoring purposes
[20, 21].

Overall, the advancements in these areas continue to bridge the gap
between machine listening and human listening, in two ways that
are particularly useful for the construction of gestalt cognitive mod-
els: firstly, this infrastructure provides the tools to convert streams
of sound into isolated sound objects, or percepts, so that we may con-
struct bottom-up models that reflect gestalt phenomena as a com-
posite of the cognitive impact of these individual percepts; secondly,
it is working towards repositories of world knowledge in sound –
relationships between label categories, sound-producing actions that
map to labels, etc – and building tools that can apply that knowledge
predictively at a rudimentary level equivalent to the capabilities of a
human child. For instance, these tools are able to make a guess as to
the source of a sound, and express uncertainty in that estimation that
stems from their underlying knowledge structure.
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I discuss this research here for two reasons: the first is that I capital-
ize on existing versions of some of this infrastructure already in this
dissertation, to construct cognitive models that capture gestalt ideas;
the second is that many of the early ideas presented in this work
can be expanded upon and extended to other application spaces if
deployed in conjunction with this infrastructure, and the rapid ad-
vances we expect to see in it over the next several years.

2.3 Auditory Models

Auditory Model Examples Built on Cognitive Principles? Scales to Real-World Audio?
T-F Representations:

Cochleagrams,
Mel-Spec, Correlograms

[22, 23, 24] 3 3

Audio Coding (Spectral Masking) [25, 26] 3 3

Auditory Saliency Maps [27, 28] 3 3

Bottom-up Attention Models [29] 3 7

Auditory Scene Understanding [30, 31] 3 7

Source Separation [32, 33, 34] 7 3

Audio Classification [35] 3 3

Sound Semantic Relations [36, 37] 7 3

Affect Estimation [38, 39] 3 7

Memorability [40] 3 7

Table 2.1: An overview of computa-
tional models of audition at different
levels of abstraction and complexity.

In this section, I provide a survey of the existing computational mod-
els of audition that loosely map to the pre-conscious, environmental
sound-focused region of human auditory cognition that we are inter-
ested in in this work. As shown in Table 2.1, I choose several state-
of-the-art examples from the machine learning and hearing sciences
domains, and roughly organize them in order of increasing complex-
ity and abstraction, moving from top to bottom. Neither the chosen
model topics nor the research examples associated with each topic
are comprehensive, but are selected as representative examples. I also
include several model topics that may not have been constructed with
the intention of modeling human audition, but can be considered
fruitful first steps towards that aim.

For each auditory model type, I evaluate it along two dimensions. I
first ask whether the model is built on cognitive principles, wherein I
evaluate whether or not a model has explicitly been constructed us-
ing human anatomical data, user behavior data collected in empirical
research experiments (such as in a psychology study), or human-
supplied data annotations; in the case of the latter, I am interested in
whether the model handles subjectivity and rater diversity, if applica-
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ble. I then ask whether the model scales to real-world data, evaluating
a model for its generalizability to unseen environmental data, as a
function of having both analytic and predictive capabilities, and in
the case of statistical models, having been trained on a sufficiently di-
verse and representative dataset, having an explainable intermediate
structure for wider inference, or both.

In the case of the models capturing the lowest level cognitive phe-
nomena, such as perceptually motivated time-frequency representa-
tions [22, 23, 24], models of frequency masking and psychoacoustics
present in audio coding technology [25, 26], and multi-resolution,
kernel-based auditory saliency implementations derived from the vi-
sual saliency literature [27, 28] , we find that all are built on cognitive
principles – the shared characteristics of the principles they repre-
sent far outweigh the subtle differences stemming from demographic
diversity2 – and that as largely a series of signal transforms, readily

2 For instance, audio coding in tele-
phony applications creates satisfaction
in intelligibility for most people.

scale to all audio. As we move up the ladder of abstractions, mod-
els of sound-driven attention and scene understanding [30, 31, 29]
tightly adhere to the mechanics outlined in the experimental hearing
sciences literature – for instance, on the grouping of time-frequency
units into auditory cues – but current implementations are demon-
strative rather than inferential, and are therefore not applicable to
unseen audio data. Further up the ladder, we find scalable statistical
models that aim to tackle source separation [32, 33, 34] or build an
understanding of semantic relationships in sound [36, 37], but note
that the training data is not built on human behavior data – it is built,
rather, on tasks that may have coarse cognitive analogs, such as learn-
ing to estimate individual tracks from audio mixtures, or learning the
equivalence of audio signals under statistical perturbations. Finally,
we find models for affect and memorability estimation from audio
[38, 39, 40]. While more recent modeling efforts in this arena are sta-
tistical and result in predictive capability, we classify them as being
unable to scale to real-world data for two reasons – (1) the datasets
that are used, due to the cost and complexity of human annotation
of these phenomena, are small and unrepresentative of a real-world
sound ontology, and the resulting models fail to generalize; and (2)
almost all of these efforts, both models and corresponding datasets,
fail to capture annotator spread. This is a critical idea in this research
– while we are interested in capturing shared trends, as we move
towards modeling more complex ideas, we edge upon the terrain of
subjectivity. Therefore building datasets with point objectives, such as
for emotion recognition, and then building models to overfit to those
point estimates, quickly becomes meaningless. What we seek instead
are models that express uncertainty in these regimes, or quantify the
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shape of the annotation distribution, which can be treated as desired
in the context of a downstream application.

In Table 2.1, we are looking for models that are both built on cogni-
tive principles and scale to real-world audio. Overall, we find that
most of the models that meet this criteria exist in the lower-level
regime, with audio classification [35] being a notable exception3. Tak-

3 Though one may argue about the
cognitive validity of and inherent
diversity in sound source annotations.

ing advantage of audio classification models as pre-requisite infras-
tructure (as discused in Section 2.2), I contribute in this work to the
gap highlighted by Table 2.1 by ultimately attempting to construct
scalable, generalizable models of gestalt ideas from experimental
data, and demonstrating their utility towards the advancement of
auditory interfaces.
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3

Explorations in Cognitive Modeling

In this chapter, we take a step back from the task of modeling gestalt
phenomena, and begin with modeling exercises involving lower-level
perceptual phenomena. From our results in this arena, we begin to
form a set of computational strategies for tackling the research ques-
tions posed in Section 1.3, that we will ultimately extend to gestalt
phenomena in the sections that follow. Specifically, this chapter will
cover the following projects and associated insights:

Cognitive Models with Large-scale Data: Loss Functions for Lim-
ited Capacity Inference We discuss a model that mimics an MP3
codec as an approximation for simple auditory perception behav-
iors, such as spectral masking and filtering, and uses the model as an
error metric for neural source separation tasks. The work is a demon-
stration of choosing an approximate mechanism to serve as a data
labeling oracle (the codec) and constructing a model under a fully
supervised scenario.

Adapting to Sparse Cognitive Labels: Distance Metrics for HRTF
Localization We present a model built to compare HRTFs using an
error metric that is relevant to human spatial localization, as opposed
to computing the error on the basis of the spectral difference. Unlike
in the previous work, perceptual data labels are more difficult to
acquire, and the model must be constructed in conjunction with non-
perceptual data using a domain adaptation and statistical testing
approach.
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3.1 Cognitive Models with Large Data: Loss Functions for Lim-
ited Capacity Inference

There is an increasing demand for generative audio applications that
are powered by neural networks with lower model complexity and
fewer free parameters. This ensures that they can be run, for exam-
ple, on power- or memory-constrained devices such as mobile phones
or wearables. To train such neural networks, there is a significant
push in the research community to develop better error metrics for
audio representations. Today, much of the state-of-the-art for audio-
outputting neural networks relies on sample level euclidean distances
[41, 42], which have been shown to correlate poorly with notions
in human listening [43]. In light of the mentioned constraints, one
option may be to use error functions that are designed to reflect au-
ditory perception, so as to optimize limited neural network capacity
only towards perceptually relevant signal components. However, two
key requirements must be met in designing such an error function,
both of which have historically rendered this regime of research chal-
lenging in the deep learning community [44]– (1) the assumptions
about perception that are represented by the error function must be
sufficiently generalizable and applicable to all listeners; and (2) the
error function must be fully differentiable, so as to maintain training
compatibility for any downstream task.

In an early collaboration with Dr. Sebastian Ewert of Spotify’s MIQ
research team, I presented a strategy for optimizing the performance
of limited capacity networks by training a secondary network to em-
ulate a low bit-rate codec [44, 26]. In the work, we make the assump-
tion that, given its ubiquity in modern telecommunications infras-
tructure, an MP3 codec is a robust approximation of the lowest-level
aspects of our pre-conscious cognition, representative of principles
such as logarithmic hearing, filtering, spectral masking, etc. In train-
ing a neural network to approximate a codec, which includes com-
plex non-linearities in its contemporary form, we are able to arrive
at a fully differentiable approximation that can be used directly with
a downstream training task. To demonstrate the efficacy of the pro-
posed approach, we consider two commonplace audio learning tasks
– vocal source separation and speech denoising – and demonstrate
that the loss function outperforms a traditional spectral `2 measure in
listening tests for sample outputs from parameter-constrained neural
networks.
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3.1.1 Related Work

Developing objective functions that incorporate principles of percep-
tion is not a well-explored area. Some attempts have been made to
approximate metrics used in existing perceptual evaluation toolkits
(e.g., STOI [45] and PESQ [46]), such as in [47, 48, 49]. These met-
rics, however, are either not differentiable functions, thus requiring
numerical approximations for back propagation which is highly in-
efficient, or can be represented as differentiable functions with the
consequence of being limited to rather simple models. Most recently,
the authors in [50] suggested a perceptual weighting derived from
psychoacoustic models applied to a mean-squared-error objective
function and highlighted improvements in the performance of small
scale neural networks. While this work provides a foundational step
in exploring the intersection of psychoacoustic objective functions
and limited capacity networks, we note that it does not incorporate
subjective listening tests as a part of the evaluation, and employs a
per-spectrum calculation of the global masking threshold from the
PAM-1 model, which is a non-differentiable approximation.

Figure 3.1: An illustration of the u-
network architecture used for our
separation and loss networks.

3.1.2 Modeling Approach

To describe our approach, let fQ denote a function representing a
neural network with parameters Q. Our aim is to train fQ to maxi-
mize performance for a specific audio separation task, while taking
resource constraints for Q into account. We consider noise removal
in speech and vocal separation as applications; since they are source
separation tasks, we refer to f as the separation network in the follow-
ing. In this context, fQ will operate on short snippets of magnitude
spectrograms, with XM 2 RF⇥N denoting the input mixture and
XS 2 RF⇥N the desired output for the target source. Given this nota-
tion, a baseline speech noise removal or vocal separation method can
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be trained in a supervised fashion using a standard `1 loss:

Q⇤ = argmin
Q

E
(XM ,XS)

|| fQ(XM)� XM � XS||1, (3.1)

where � denotes the Hadamard product and fQ(XM) 2 [0, 1]F⇥N

represents a mask to be applied to XM (resembling Wiener filtering).

For our method, we follow [51] and replace the `1 term with a new
expression that takes human perception into account. To this end,
we define a second function gF, which we train to approximate the
operation of an audio codec. More precisely, let X denote a snippet
of a magnitude spectrogram for an audio signal and let XC be the
corresponding representation for the signal after applying a codec,
we train gF to approximate the codec via:

F⇤ = argmin
F

E
(X,XC)

||gF(X)� XC||1.

This way, we can construct a new supervised loss L̃

L̃(X, Y) := ||gF⇤(X)� gF⇤(Y)||1

and by replacing the `1 term in Eq. 3.1 with L̃( fQ(XM)� XM, XS) we
obtain a first version of a loss that removes signal components that
are perceptually less relevant before computing the actual compari-
son. We refer to gF as the loss network in the following.

While L̃ can work, we observed in practice slow convergence and
sometimes even instabilities during training. Therefore, we incorpo-
rate ideas found useful in the image domain [52, 53], where trained
classifiers were used as losses, which is conceptually related to our
approach. More precisely, let gm

F(X) denote the output of the m-th
layer of the multilayer network gF. In this context, gm

F(X) corre-
sponds to representations or features the network extracts intermit-
tently to fulfill its task, i.e. the input signal is represented at various
semantic levels. Thus, we can compare the two inputs not only at the
final output layer but also at additional semantic levels. In [52, 53],
this was shown to considerably stabilize the use of such a loss and
we observed similar behaviour in our setting as well. Our proposed
perceptual loss is thus defined as:

LM(X, Y) := Â
m2M

lm||gm
F⇤(X)� gm

F⇤(Y)||1, (3.2)

where lm are weights to adjust the importance of individual lay-
ers and M ⇢ {1, . . . , M}, where M is the number of layers. In
practice, we first train for 10 epochs with lm = 1, and then set lm
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= 1
||gm

F⇤ (X)�gm
F⇤ (Y)||1

for the remainder of the training to equally weight
the contribution of the selected layers, following the suggestion in
[52].

The architectures for our loss and separation networks closely follow
the U-Net architecture described in [54, 32], as shown in Figure 3.1.
Similar to wavelets, the architecture is designed to represent the sig-
nal at multiple scales, via a series of down- and up-sampling blocks,
which are implemented as convolutional or transposed convolu-
tional layers with stride. As demonstrated in [32], the addition of
skip connections between the layers enables the network to focus on
higher-level semantics at higher layers, while still being able to ac-
cess low-level information to reconstruct the signal as needed. This
architecture was found useful for various tasks, including source sep-
aration [32] and lyrics alignment [55]. One may observe that using
a U-Network architecture also for the loss network does not directly
emulate the typical encoder-decoder structure that is characteristic
of an audio codec, as the presence of skip connections circumvents
the introduction of a true information bottleneck. In other words,
we do not choose a network that would imitate an audio codec also
on the architecture side. In particular, as the MP3 compressed audio
data is already limited in information compared to the original au-
dio, there is no need to introduce a separate information bottleneck
in the network itself, which would limit the network’s capacity to
reproduce the audio codec faithfully. Instead, we use specific regu-
larizers to provide a balance between approximation accuracy for the
audio codec and smoothness of the function described by the loss
network – we found this to be essential to be able to back-propagate
through the loss network in a meaningful way. We use different con-
figurations of this architecture in our experiments, which are given in
Table 3.1.

3.1.3 Experiments

Parameter Loss Network
Speech Denoising Network

Loss Configuration Experiment
Speech Denoising Network
Model Capacity Experiment

Vocal Separation Network
Model Capacity Experiment

Number of Layers 6 2 {1,1,1,2,2} {2,2,3,4,5}
W 128 128 128 128
H 512 512 512 512
F 28 1 {1,2,4,2,4} {1,4,2,2,4}

Batch Normalization All layers All layers All layers All layers
Dropout 50% (first 3 upsampling layers) 50% (first 3 upsampling layers) 50% (first 3 upsampling layers) 50% (first 3 upsampling layers)

Kernel Size (Downsampling) (5,5), Stride=2 (5,5), Stride=2 (5,5), Stride=2 (5,5), Stride=2
Kernel Size (Upsampling) (5,5), Stride=2 (5,5), Stride=2 (5,5), Stride=2 (5,5), Stride=2

Activation ReLu, sigmoid in final layer ReLu, sigmoid in final layer ReLu, sigmoid in final layer ReLu, sigmoid in final layer
Learning Rate 0.0001 0.001 0.001 0.001

Decay 5e-6 5e-6 5e-6 5e-6
Batch Size 32 16 16 16
Optimizer Adam Adam Adam Adam

Table 3.1: A list of the model architec-
ture parameters and hyperparameters
used in training the loss and separation
networks for all experiments.
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We conducted a series of experiments to investigate the benefit of our
proposed loss strategy for limited capacity networks in the context
of the speech denoising and vocal separation tasks. We choose these
tasks due to their relevance to on-device applications – examples in-
clude speech enhancement for phone calls and song identification
based on lyric transcription. For the former task, we used the dataset
first presented in [56], selecting the 56 speaker corpus. To increase
the difficulty of the task, we select only those examples where the
speech and noise are mixed at 0dB SNR, and sub-divide these ex-
amples into training, validation, and test sets of approximately 4000,
1200, and 600 samples respectively. For vocal separation, we employ
the MUSDB18 dataset [57], which consists of pairs of mixes and cor-
responding stems for entire songs. We choose the mixture stem as the
noisy input XM, and attempt to predict the vocal stem as the clean
output XS.

Model Type
Num of Parameters

(Speech)
Num of Parameters

(Vocals)
P1 54 188
P2 107 1,949
P3 213 2,411
P4 575 9,683
P5 1,949 153,653

Table 3.2: Number of trainable pa-
rameters associated with each limited-
capacity configuration.

This dataset is sub-divided into train, validation, and test sets con-
sisting of 100, 25, and 25 tracks respectively, with each track being
several minutes in length. All of the speech segments/ music tracks
are downsampled to 22050Hz, magnitude spectrograms are com-
puted with a window size of 1024 and a hop size of 512 samples, and
are broken into non-overlapping snippets of size 128. Some speech
segments are simply tiled if they do not meet this minimum input
width of the separation network.

We select and fix the loss network parameters as in Table 3.1, and
then choose five different sets of parameters determining model ca-
pacity for the separation networks performing each of the two tasks,
denoted P1, P2, P3, P4, P5. In this context it should be noted that the
size of the loss network does not contribute to the model capacity for
the separation network associated with each experiment – the loss
network is only used during training to improve the performance of
the separation network at inference time. A set of parameters P is de-
termined by the values for W and F in the U-Network (see Fig. 3.1),
and are given in Table 3.1; the corresponding total number of train-
able parameters is shown in Table 3.2. Note that the values for W
and F for a given model type P may not be identical between the
two tasks; state-of-the-art results in music separation tasks have been
achieved with significantly larger networks than those needed for
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speech denoising tasks. We choose a range of model capacities whose
extremes still demonstrate meaningful outputs, and discuss results
from a few points sub-sampled in this range.

We begin by training the loss network in a fashion similar to our pre-
vious work, and utilize the dataset detailed in [51] consisting of loss-
less music tracks paired with their 16kbps MP3 coded counterparts;
we pre-process the training examples to a sample rate of 22050Hz
(as we intuit that perception will be influenced by higher frequency
spectral detail in speech and music), a window size of 1024 and a
hop size of 512, and use an `1 loss with early stopping to terminate
training. Once this is complete and coding behavior is verified on
the test set as in [51], this network is fixed without any further train-
ing. We then proceed to train the combined system of the separation
network in each configuration P with the loss network, using Eq. 3.2
applied to an optimal subset of layers from the loss network1. We

1 The experiment conducted to identify
this configuration is detailed in [44].

additionally train the separation network in each configuration using
an `1 loss to illustrate the respective performance improvement over
the loss used in state-of-the-art systems for source separation, such
as [32] and [33]. Our training is performed on a single GPU machine,
using early stopping to terminate training; each experiment takes
approximately 8-10 hours and 4-6 hours for the speech denoising and
vocal separation tasks respectively.

We finally generate several examples from the test set for each config-
uration by applying the phase of the input mixture to the predicted
output and inverting the resulting spectrogram. We evaluate the
outcomes by conducting an online listening test, recruiting 20 par-
ticipants in a crowd-sourced experiment for a small fee. We found
that performing an actual listening test yielded more reliable results
compared to approximative metrics such as PESQ or STOI. Each task
in a study consisted of an A/B/X evaluation of a sample track or
speech sample comparing our proposed loss metric to the baseline,
corresponding to a particular model capacity type P. Each participant
evaluated the same five speech samples/ tracks for each of the five
configurations in a random order, for a total of 25 comparisons. For
the speech task, participants were asked to select the sample that
was more intelligible; for the vocal separation task, participants were
asked to select the sample where the vocals were more distinct and
stronger compared to the background track; in both cases, partici-
pants could select "I Don’t Know" if they were unable to decide.
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Figure 3.2: Magnitude spectrogram
examples comparing the output of P1
models trained with the baseline (cen-
ter) and custom loss (right), referenced
against the input (left), for the speech
denoising (top) and vocal separation
(bottom) tasks.

3.1.4 Results

Audio samples from both the experiments can be found at the repos-
itory accompanying the paper2. In Figure 3.3, we summarize the

2 https://ishwaryaanant.github.io/
small-network-perceptual-loss/

quantitative results from our listening experiments by plotting the
rate of selection of a sample associated with our proposed loss over
the baseline loss strategy, as a function of model capacity for both
the speech denoising and vocal separation tasks. We observe that the
likelihood that a sample generated using a network trained with our
proposed loss is preferred over a sample from the baseline procedure

https://ishwaryaanant.github.io/small-network-perceptual-loss/
https://ishwaryaanant.github.io/small-network-perceptual-loss/
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Figure 3.3: Results from the listening
tests comparing the proposed loss
with the baseline for different model
capacity configurations; (Top) For both
the speech and vocal separation task,
use of the proposed loss leads to better
performance for lower capacity models;
(Bottom) The `1 metric resulting from
the loss case closely follows or is
greater than that which results from the
baseline case, suggesting that the loss
network optimizes for a different set of
constraints.

decreases as model capacity increases, for both tasks; the likelihood
of a participant choosing option "X" ("I Don’t Know") also increases
with model capacity for both tasks. For example, we see that for
Model P1, 80% or more of the participants were likely to choose
the sample associated with our proposed loss for both tasks. Con-
versely, this number falls to 50% or less for Model P5. We also note
the inter-rater variance by the error bars in both cases. While this
variance is roughly constant for the vocal separation tasks, we see a
significant drop in the variance for configurations P1 and P5 in the
speech denoising tasks, indicating high confidence in rater agreement
on preferring the proposed loss sample (P1) or the baseline sample
(P5). Taken together, this behavior suggests that perceptual gains
are afforded by our proposed objective function particularly in the
case of the smallest source separation networks, while performance
converges to the baseline with an increase in model capacity.

Additionally in Figure 3.3, we plot the final test set `1 error for both
training procedures as a function of model capacity. We show that
the `1 error for the baseline case tightly follows the perceptual loss
case; this suggests that our loss strategy is not simply a form of a
regularizer that leads to better `1 optimization, but an error metric
that optimizes for a different set of aims.

In Figure 3.2, we show spectrograms for sound samples from the test
set corresponding to both the speech denoising and vocal separation
tasks. Visually inspecting the samples provides an interesting ob-
servation – that the spectrogram resulting from the perceptual loss
strategy appear to be "noisier" than their baseline counterparts, or
that the noise appears in different time-frequency regions than in
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the baseline. This suggests that our proposed loss enables the net-
work to optimize for regions of the spectrogram that more strongly
influence our audition and ignore other regions, rather than optimize
uniformly across the spectrogram – particularly in the case of limited
capacity networks.

3.1.5 Summary

The work is an illustration of simple first steps in explicit cogni-
tive modeling; an MP3 codec is treated as a compact and broadly
applicable approximation of psychoacoustic principles, and a fully
supervised approach is followed to derive a statistical model of them.
While there is both noise resulting from the codec’s representation
of individualized psyachoacoustics and the model’s representation
of the codec, a clear advantage in this work is the sheer abundance
of perceptual labels – for any audio sample, we can readily compute
its coded counterpart. But what of the case where this isn’t possible,
where labeled data is sparse relative to the modeling strategy that we
wish to use?

3.2 Adapting to Sparse Cognitive Labels: Distance Metrics for
HRTFs

A Head-related Transfer Function (HRTF) parameterizes the relation-
ship between the spatial position of a sound source and the signal
received by an individual at either ear. A requirement for achieving
realism in virtually rendered soundscapes is a robust reproduction of
a user’s unique HRTF, allowing him/ her to localize sound sources
accurately in the virtual environment. However, an HRTF is highly
person-specific, and is determined by one’s anthropometric features,
such as ear shape, head circumference and torso size [58]. The cost
and complexity of HRTF measurement systems has resulted in a
significant body of recent work surrounding the automated estima-
tion of personalized HRTFs from representations of anthropometric
features, such as photographs of the ears or 3D scans of the head
and torso [59, 60, 61], and methods to adapt or select from a pool of
generic HRTFs that are most appropriate for a given user (as in HRTF
selection) [62, 63, 64].

Both these paradigms of personalization require a means to com-
pare two HRTFs and quantify the distance between them. This has
traditionally been achieved by error functions that are computed as
log-scaled lp norms directly on the filter representations in the mag-
nitude frequency domain, known as Spectral Difference Errors (SDE).
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However, while robust and easy to implement, this class of error
metrics is not always well-correlated to perceptual errors. In a col-
laborative effort with researchers Dr. Vamsi Krishna Ithapu and Dr.
Owen Brimijoin at the Facebook Reality Labs (formerly Oculus Re-
search) Audio Team, I sought to develop a more effective error metric
for HRTF comparison that is better aligned with localization percep-
tion than SDE measures. To achieve this, we attempted to design a
statistical model that relates a spectral HRTF representation to a spa-
tial location, according to human perception, allowing us to then use
any spherical distance measure in spatial location as an error metric.
A naive approach to this problem would entail an approach similar
to the previous project on mimicking psychoacoustic principles in a
loss function – it would require collecting data in an experimental
setting wherein (1) high-fidelity HRTFs are acoustically measured for
each participant, (2) participants are presented with a series of sound
sources rendered at different spatial locations using these measure-
ments, and (3) are asked to relay their perception of the location of
the sources; this data would then be used to create a fully supervised
model relating an HRTF to a perceived spatial location. In practice,
however, collecting comprehensive amounts of data involving person-
alized HRTF measurement and listening/ localization experiments is
costly and inefficient. In the absence of such large datasets, learning
models derived solely from small, sparse, noisy datasets are likely
to be unstable and generalize poorly – a well-known challenge in
classical data learning contexts [65, 66].

To this end, we proposed and demonstrated a more flexible frame-
work for constructing an HRTF comparison error metric that incor-
porates localization perception. We suggested a methodology which
requires (1) constructing a model that is first built on large amounts
of informative, non-perceptual data, which constitutes a "prior" on
the relationship between an HRTF spectrum and its corresponding
spatial location; (2) fine-tuning this model to reflect sparse, noisy per-
ceptual observations from experiments like the hypothetical setting
described above, which we consider the "posterior" model; and (3)
computing measures of statistical significance as a function of spatial
location between the prior and posterior model to inform further col-
lection of perceptual data. We demonstrated this idea in practice by
constructing a neural network model designed to predict a spatial lo-
cation, parameterized by azimuth and elevation, from a left-right pair
of HRTF magnitude frequency responses. The model is first trained
on a large database of acoustic HRTF measurements, and further
fine-tuned with a small set of observations from a spatial localization
experiment using a transfer learning approach.
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3.2.1 Datasets

Measured HRIRs: (H) consists of a database of acoustic far-field
head-related impulse response (HRIR) measurements captured from
123 subjects. The 201-point, 48KHz-sampled HRIRs were captured
along a 612 point spherical grid (denoted by G) of directions with 36
equally-spaced azimuth locations and 17 equally-spaced elevation
locations. For the purposes of this work, we used the corresponding
magnitude spectra HRTFs, normalized by the maximum spectral
energy across all of the individual’s measured responses.

Localization Test: (L) is formed by the results of a listening test con-
ducted to evaluate localization perception, using a subset of 30 indi-
viduals from H. The participants were presented with a series of vir-
tual sound sources, rendered using their measured HRTF, through a
pair of headphones. The test was performed in a quiet room, and the
participants were seated at the center of a spherical dome mounted
at the center of the room. The participants were asked to identify the
sound source location by pointing with a head-mounted laser pointer
to the location on the dome where they perceived the sound to be
coming from. This location was registered as azimuth and elevation
angles relative to the initial front direction. Further details regarding
the setup, experiment protocol, and spatial processing necessary for
synthesizing the virtual sound sources can be found in [67].

3.2.2 Modeling Approach

We propose a computational framework that predicts the perceived
spatial location of the sound from a given pair of far-field left and
right HRTFs. To do this, we first constructed a learning model that
directly relates this HRTF pair to its measured source location, rely-
ing only on H; we then modified this trained model appropriately
using the perceptual data in L. This two stage framework allowed
us to validate the efficacy of the trained model with and without the
perceptual data, implicitly providing insight into the biases induced
by the perceptual feedback. We utilized ideas from deep learning
(and more precisely, feed forward convolutional networks) to design
this model.

We denote the left and right HRTFs corresponding to azimuth q and
elevation f by hL

q,f and hR
q,f respectively, defined over frequency. We

constructed a learning model M that maps these signals to q and
f. Ideally, this is a regression prediction problem from continuous
inputs to continuous outputs; however, keeping in mind the sparse
structure of the spatial grid G, and the fact that a discrete output or
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target space is desirable for neural network training (as highlighted
in audio applications like [68, 69]), we transformed the prediction
problem into a classification one. The outputs are denoted by y 2
[0, 1]612, where yi represents the ith direction from the grid G.

At prediction time, given a new pair of HRTFs, the vector entry with
the greatest probability in the prediction ŷ represents the estimated
source location, denoted by (q̂, f̂). These predictions from M can be
used to construct an error metric for downstream tasks. Given two
HRTFs hi and hj from some unknown locations, M estimates (q̂i, f̂i)

and (q̂j, f̂j), which can then be used to compute the distance metric
d(|q̂i � q̂j|, |f̂i � f̂j|). d(·) can take the form of any appropriately
chosen angular distance metric in the spherical domain.

To explicitly account for the influence of perceptual feedback from
L, as mentioned earlier in this section, we first trained M with H,
followed by a fine-tuning training phase with the data from L, re-
sulting in a model denoted M̃. Details regarding the architecture,
design, learning, and optimization strategies for M can be found in
the supplement. Training the models followed the standard learn-
ing criterion and cross-validation principles employed in the deep
learning literature [70, 35].

3.2.3 Experiments and Results

Without Perceptual Feedback In this first set of experiments, we ex-
amined the performance of M without the inclusion of perceptual
data L. The model achieves an absolute test set classification accu-
racy of 65.8 %, with a mean distance error (absolute difference in
predicted angle) of 0.67� (s = 2.7�) and 4.7� (s = 12.7�) in azimuth
and elevation respectively. As a more meaningful representation of
performance, however, we also report the 1-bin Tolerance (1BT) mea-
sure, which corresponds to the model’s accuracy in predicting the
true spatial location of HRTFs within one neighboring grid location
(where one grid location has a resolution of 10�). In Figure 3.4, we
show both the 1BT and absolute accuracy as a function of space. For
simplicity, we report this measure along the elevation and azimuth
axes independently, aggregating the opposite axis. We note slightly
decreased performance in elevation classification at the extremes,
likely due to measurement noise. We also observe lower performance
in azimuth prediction overall as compared to elevation prediction
likely due to smaller cartesian spacing in azimuth at higher eleva-
tions.



48

Figure 3.4: Accuracy and 1BT for
elevation (top) and azimuth (bottom),
aggregated over azimuth and elevation
respectively.

We next attempted to understand how the distance metric derived
using M behaves in comparison to SDE. We did this using the follow-
ing procedure: given an azimuth q0, we chose two possible grid lo-
cations along the elevation axis (fi and fj), and selected two HRTFs,
hL/R,P1

q0,fi
and hL/R,P2

q0,fj
belonging to two random individuals P1 and P2

from the database H. Using these, we computed a simple distance
measure in the output space of M, namely:

LM = |f̂P1
i � f̂P2

j | (3.3)

where f̂i and f̂j are predicted by M. We additionally computed an
SDE measure from the magnitude frequency HRTFs. For the right
HRTF, this is defined as:

LSDER =
1
N

N

Â
n
|20 · log10(h

R,P1
q0,fi

[n])� 20 · log10(h
R,P2
q0,fj

[n])| (3.4)

which we repeat separately for the left HRTF; N is the number of
frequency bins, equal to the tap length of the measured HRIRs (see
Section 3.2.1). We averaged these measures (LM, LSDER , LSDEL ) across
all pairs of subjects in the test partition of H (approximately 50 sub-
jects) for a given location, and repeated the procedure for every pos-
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Figure 3.5: We show a comparison
between LM and LSDE for several pairs
of HRTFs from randomly sampled
subjects in H; the vertical bars give
the standard deviation across subject
pairs. We show trends in elevation
for a selected azimuth location (left),
and trends in azimuth for a selected
elevation location (right).

sible location along the fixed axis, choosing a few values in azimuth
and elevation for the fixed axis. The results of this process are shown
in Figure 3.5, with trends in elevation for a fixed azimuth shown in
the left image and trends in azimuth for a fixed elevation shown in
the right image. We note that LM is linear and monotonic with in-
creasing distance in elevation and azimuth. On the other hand, while
LSDE for the ipsilateral ear is monotonic with increasing distance,
and it lacks linearity. We also show that LM displays significantly less
inter-person variability than LSDE. To ensure that these trends are
robust and do not result from sampling noise, we treat each curve
in Figure 3.5 as a 2D distribution in angular distance and subject
pair, and compute a two-sample multivariate t-test on LM and the
mean of LSDER and LSDEL . A T2 statistic with a p-value < 0.05 sug-
gests that the two distributions are unrelated. Taken together, these
demonstrate the utility of our proposed metric – while SDE may re-
flect variance in distance at a course spatial resolution, our proposed
metric is more robust for fine-grained angular distance comparisons,
and is more robust to inter-personal spectral differences.

In Figure 3.6, we provide an example to illustrate the affordances of
the proposed metric. On the left, we show two magnitude HRTFs
from the ipsilateral ear of two subjects which were measured 150�

apart in elevation, at a fixed azimuth location of 20�; on the right, we
show another pair from the same two subjects and azimuth location
representing a difference of only 10� in elevation. LM predicts a value
of 150� and 10� respectively, while LSDE reports 25dB for both pairs.

With Perceptual Feedback In a second set of experiments, we ex-
plored the role of perceptual data in shaping predictions across spa-
tial locations. To do this, we applied M and M̃ to the test partition of
L, and compared the performance of the two models. As an exhaus-
tive approach, we performed an iterative hypothesis test comparing
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Figure 3.6: A comparison of two pairs
of right-HRTFs measured from the
same two subjects at the same azimuth
location (20�); the first pair (left) were
measured 150� apart, and the second
pair were 10� apart. However, both
pairs result in the same LSDE value.

the two distributions of model predictions for each possible grid lo-
cation along either the elevation or azimuth axis. This results in a
measure of confidence describing whether the two distributions were
drawn from the same underlying distribution. We suggest that com-
bining this information with the models’ performance as indicated
by the 1BT measure provides insight into the value of perceptual data
as a function of space, and we provide an illustrative example for
discussion.

In Figure 3.7, we plot the 1BT measure for each possible location
along the elevation axis, above the p-values (plotted as 1 - p-value)
resulting from the iterative hypothesis test and the number of percep-
tual observations available for each location from L. An analogous
plot for this analysis in azimuth can be found in the supplement. In
spatial regions where the hypothesis test shows statistical signifi-
cance, and M̃ has outperformed M, such as where f = 10�, we draw
the conclusion that perceptual observations provide critical infor-
mation; in regions where the improved performance of model M̃ is
not supported by statistical significance, such as where f = 0�, we
conclude that perceptual observations do not afford additional infor-
mation over that already captured by M. However in spatial regions
where the hypothesis test does not show statistical significance and
very few perceptual observations have been captured relative to other
locations, such as where f = �40�, there is not enough certainty to
draw either conclusion; instead, we suggest that this is a useful spa-
tial heuristic to inform the collection of perceptual observations in
future iterations of participant experiments.
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Figure 3.7: We give a comparison of
the performance of M and M̃ on the
elevation axis via the 1BT measure
(top); we juxtapose this with the p-
values from the iterative hypothesis
test comparing the two distributions
(bottom).

3.2.4 Summary

As an illustrative example of an exercise in cognitive modeling, two
key takeaways can be drawn from the work:

(1) There is value in choosing an appropriately scaled and rich
dataset representing a reasonable causal assumption to form the
"prior" that is later adapted to small-scale perceptual data. In the
case of this project, for example, it is reasonable to assume that
HRTF measurement location is very coarsely correlated with per-
ceived location, and sizeable datasets consisting of human HRTF
measurements are easily available for research purposes [71]. The
results from the project also go on to show that the error met-
ric obtained directly from the "prior" data already outperformed
SDE measures in terms of monotonicity and linearity with spa-
tial distance. From a machine learning standpoint, this is not a
technically novel concept, and is well explored in the literature
on transfer learning, domain adaptation, pre-training, etc. How-
ever, forming a suitable prior more broadly requires both insight
into the application domain and intuition about alignment with
cognition.

(2) Measures of statistical significance, such as hypothesis testing, are
required to quantify the affordances of domain adaptation strate-
gies to small-scale perceptual datasets, and to provide feedback to
the perceptual label acquisition process. In this work, the perfor-
mance of the fine-tuned model on unseen perceptual data provides
insight into model uncertainty as a function of space; by obtain-
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ing measures of confidence for the difference between priors and
posteriors at a particular location in space, we draw conclusions
regarding the spatial regions where perceptual data does or does
not provide critical information over non-perceptual information,
and where more perceptual data needs to be collected to be able to
draw such a conclusion.

3.3 Conclusions

In this chapter, we’ve discussed two example projects that are sugges-
tive of two important ideas in auditory cognition modeling. The first
is that we need to be creative in identifying tractable, computationally-
friendly proxies for cognitive phenomena so that we can quantify
them robustly at scale – we demonstrate this idea in Section 3.1,
where we trained a deep learning model to emulate an MP3 codec.
The second is that domain adaptation is a practical approach to
building models of cognitive phenomena when the available dataset
is small, noisy, and sparse. However, it is important that the domain
adaptation approach is complemented by an analysis of uncertainty
within smaller datasets or a measure of uncertainty that is propa-
gated through to the final, adapted model, just as hypothesis tests
are used to estimate the significance of the perceptual feedback in
Section 3.2. We revisit both of these ideas in our discussion of gestalt
modeling in Chapter 4.
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4

Modeling Gestalt Phenomena

In this chapter, I consider the insights and learnings from the prob-
lems tackled in Chapter 3 as I move towards exploring shared no-
tions in auditory cognition that are more complex the ones presented
thus far, wherein the challenges of reasonable "probing" and label
uncertainty make themselves more apparent, in addition to problems
of data scale.

As an early foray into exploring these challenges, and as the primary
contribution in this thesis, I attempt to construct statistical models
that reflect higher-level, semantic concepts in sound understand-
ing that are derived from the literature on ecological listening and
short-term, pre-conscious memory. Following the nomenclature in
the auditory psychology literature, I collectively refer to these con-
cepts as gestalt principles. One might argue, of course, that the set
of concepts that constitute gestalt principles can be quite large, and
that it would be rather bold to assume that all of the information re-
quired to estimate these principles is contained entirely within the
audio signal. However, attempting to capture pre-conscious ideas
(see Section 1.2) means that we wish to begin by working with prin-
ciples that, as we identify through crowd-sourced annotations, are
largely shared and agnostic to the diversity in individuals’ process-
ing, world-experiences, sound exposure, and other such factors that
influence auditory cognition. It is important to note that these prop-
erties (or estimates of them) on their own are not likely to say very
much about an individual’s gestalt response to a sound object that has
been presented to them; but they are extremely valuable building
blocks for constructing downstream interfaces which afford mean-
ing at the level of the individual, which we will discuss further in
Chapter 5 and Chapter 6.
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All of the work described in this chapter is a close collaboration with
fellow graduate student David Ramsay1; to the best of our knowl-

1 Statement of contributions: David
Ramsay and I jointly designed the
data collection procedure and infras-
tructure for the HCU400 dataset and
accompanying memorability scores.
The subsequent work that builds on
these results, including the general pur-
pose estimators, audio summarization
project (Chapter 5) and personaliza-
tion experiments (Chapter 6), is my
own, though with frequent input and
constructive feedback from David. I
am grateful for his involvement in and
support of this work.

edge, this is the first end-to-end effort to bridge the study of the
gestalt and acoustic principles of everyday sound objects with statisti-
cal models.

In the sections ahead, I first present an overview of the background
literature that highlights the cognitive principles we wish to examine
from a modeling standpoint. I then discuss the curation, annotation,
and validation of two datasets that we construct to support our mod-
eling efforts. I next describe a probabilistic bootstrapping strategy
that we develop to create robust estimators for the gestalt proper-
ties in these datasets, which are limited to several hundred isolated
sounds, in the face of unseen, real-world audio. Finally, while the
approach is well-motivated and demonstrates potential, I discuss the
possible shortcomings of the approach given our choice of interme-
diate structure for bootstrapping, and suggest that we must consider
these limitations when connecting the estimators to downstream,
user-facing auditory interfaces.

4.1 Ecological Listening and Memory

A review of auditory perception and taxonomy research reveals that
listeners typically conceive of sounds they encounter in the language
of higher level semantics first, and only when a sound’s source object
becomes ambiguous – or causally uncertain – do they tend to resort
to acoustic features for distinction. As mentioned in Section 1.2, this
idea was introduced in [72, 73] with Gaver’s model of ecological
listening, suggesting that our consumption of and interaction with
everyday sounds is primarily driven by our ability to estimate the
source of the sound and the physical interactions that resulted in its
production, and secondarily by acoustic and spectral properties. This
dichotomy and hierarchy was reinforced by several later studies –
[74, 75, 76] suggest that listeners rely on sound source and context/
location identification prior to acoustic features in categorization
tasks; [77, 78, 79, 80] suggest that soundscapes with living/ organic
elements (humans, animals, etc) are perceived differently and elicit
different emotional responses than soundscapes with purely inor-
ganic sounds, and point to the role that source attribution plays in
determining a listener’s response. In [81, 82], researchers attempt to
quantify causal uncertainty (Hcu) from a listener’s perspective, de-
scribe its complex relationship with a sound’s typicality, familiarity,
and ecological frequency, and demonstrate the role that the measure
plays in sound organization and clustering tasks.
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The interplay of higher and lower level processing is further cor-
roborated by neurological observations. Studies of Event Related
Potentials (ERPs) demonstrate that the earliest layers of our pre-
conscious auditory processing rely on the gestalt semantics of the
auditory objects we encounter, as pre-attentive characteristics of these
neurological signals are invoked in response to changes in both low-
level acoustic changes (like a sudden loud noise) as well as high-level
semantic ones (like the sound of a farm animal unexpectedly appear-
ing in a series of urban sounds) [83, 84, 85, 86]. Measurement results
in these works indicate that pre-conscious processing of, attention
towards, and memory of two events that might sound very similar
– a snare drum and a gunshot, for instance – will vary drastically
given different semantic interpretations despite very close acoustic
signatures.

The literature also suggests that these concepts play a role in au-
ditory memory formation. For a sound to enter our memory, it is
first unconsciously processed by a change-sensitive neural mecha-
nism before passing through a conscious filtering process [85, 86, 83].
We then encode this auditory information via a complex and vari-
able procedure; frequently we abstract our experiences into words,
though we also utilize phonological-articulatory, visual/visuospatial,
semantic, and echoic memory [87, 88]. Different types of memory
may also drive more visceral forms of recollection and experience;
non-semantic memory, for example, may underpin powerful rec-
ollection and nostalgia similar to that reported with music [89].
Research shows a complicated interdependence between attention,
acoustic feature salience, source concept salience, emotion, and mem-
ory; furthermore, verbal, pictorial, and phonological-articulatory
mnemonics can also have a significant impact on sound recall tasks
[28, 90, 91, 92, 87, 88]. The research suggests that sounds that are
both contextually novel based on their acoustic features, as well as
sounds that are only conceptually novel (i.e., differ from the sur-
rounding objects in semantic terms) are likely to trigger neural mech-
anisms that are responsible for encoding into memory.

4.2 HCU400

To begin to capture these higher-level ideas, and explore the di-
chotomy between them and traditional, lower-level sound properties
as a function of the notion of causal uncertainty, we constructed the
HCU400 dataset2 [1]. At the time that the HCU400 dataset was intro-

2 An interactive demo of the dataset can
be found at: https://resenv.media.
mit.edu/memory-dataset/demo.html

duced, it was largest dataset available for studying everyday sound
phenomenology. The dataset includes 402 sounds that were chosen

https://resenv.media.mit.edu/memory-dataset/demo.html
https://resenv.media.mit.edu/memory-dataset/demo.html
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to (1) capture common environmental sounds from everyday life, and
(2) to fully sample the range of causal uncertainty. While many of
the sounds in the dataset are unambiguous, over 100 of the sounds
are modified to intentionally obscure their source– allowing explicit
control of source-dependent effects.

As part of the dataset, we include high-level emotional features corre-
sponding to each sound’s valence and arousal, in line with previous
work on affective sound measurement [93]. We also account for fea-
tures that provide other insights into the mental processing of sound–
familiarity and imageability [94, 95]. We also introduce word em-
beddings as a clustering technique to extend the original Hcu, and
apply it to the free response labels we gathered for each sound in the
dataset.

4.2.1 Dataset Construction

The HCU400 dataset consists of 402 sound samples and 3 groups of
features: sound sample annotations and associated metadata, audio
features, and semantic features. It is freely available for public use3.

3 http://github.com/mitmedialab/
HCU400

Sourcing the Sounds All sounds in the dataset are sourced from
the Freesound archive4. We built tools to rapidly explore the archive

4 https://freesound.organd re-label sound samples, searching for likely candidates based on
tags and descriptions, and finally filtering by star and user ratings.
Each candidate sound was split into 5 second increments (and shorter
sounds were extended to 5 seconds) during audition.

A major goal in our curation was to find audio samples that spanned
the space from "common and easy to identify" to "common but diffi-
cult to identify" and finally to "uncommon and difficult to identify".
We explicitly sought an even distribution of sounds in each broad
category (approximately 130 sounds) using rudimentary blind self-
tests. In sourcing sounds for the first two categories, we attempted to
select samples that form common scenes one might encounter, such
as kitchen, restaurant, bar, home, office, factory, airport, street, cabin, jungle,
river, beach, construction site, warzone, ship, farm, and human vocalization.
We avoided any samples with explicit speech.

To source unfamiliar and ambiguous sounds, we include digitally
synthesized samples in addition to artificially manipulated every-
day sounds. Our manipulation pipeline applies a series of random
effects and transforms to our existing samples from the former cat-
egories, from which we curated a subset of sufficiently unrecogniz-

http://github.com/mitmedialab/HCU400
http://github.com/mitmedialab/HCU400
https://freesound.org
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able results. Effects include reverberation, time reversal, echo, time
stretch/shrink, pitch modulation, and amplitude modulation.

Annotated Features We began by designing an Amazon Mechanical
Turk (AMT) experiment in which participants were presented with
a sound chosen at random. Upon listening as many times as they
desired, they then provided a free-text description alongside likert
ratings of its familiarity, imageability, arousal, and valence (as de-
picted by the commonly used self-assessment manikins [93]). The
interface additionally captured metadata such as the time taken by
each participant to complete their responses, the number of times a
given sound was played, and the number of words used in the free-
text response. Roughly 12000 data points were collected through the
experiment, resulting in approximately 30 evaluations per sound
after discarding outliers (individual workers whose overall rank-
ings deviate strongly from the global mean/standard deviation). A
screenshot of the interface can be seen in Figure 4.1

Figure 4.1: The AMT interface used to
collect the crowd-sourced annotations
which form the HCU400 dataset.

Hcu Features A novel contribution of this work is the estimation of
Hcu using word embeddings and knowledge graphs, applied to the
set of free-text labels accompanying each audio sample. Traditionally,
these graphs are used to geometrically capture semantic word rela-
tionships; here, we leverage the "clustering radius" of the set of label
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embeddings as a metric for each sound’s Hcu.

We employed three major approaches to embed each label: (1) av-
eraging all constituent words that are nouns, verbs, adjectives, and
adverbs– a common average encoding technique [96]– (2) choosing
only the first or last noun and verb, and (3) choosing a single "head
word" for each embedding based on a greedy search across a heavily
stemmed version of all of the labels (using the aggressive Lancester
Stemmer [97]). In cases where words are out-of-corpus, we auto-
correct their spelling, and/or replace them with a synonym from
WordNet [98] where available. Labels that fail to cluster are repre-
sented by the word with the smallest distance to an existing cluster
for that sound (using WordNet path-length). This greedy search tech-
nique is used to automatically generate the group of labels used in
the Hcu calculation. Both Word2Vec [99] and Conceptnet Number-
batch [100] were tested to embed individual words.

After embedding each label, we derived a "cluster radius" score for
the set of labels, using the mean and standard deviation of the dis-
tance of each label from the centroid as a baseline method. We also
explore (k=3) nearest neighbor intra-cluster distances to reduce the
impact of outliers and increase tolerance of oblong shapes. Finally,
we calculate the sum of weighted distance from each label subgroup
to the largest "head word" cluster– a technique which emphasizes
sounds with a single dominant label. We also include a location-
based embedding to capture information pertaining to the likelihood
of concept co-location in a physical environment. In order to gener-
ate a co-location embedding, we implement a shallow-depth crawler
that operates on ConceptNet’s location relationships (’Located-Near’,
’Located-At’, etc) to create a weighted intersection matrix of the set
of unique nouns across all our labels as a pseudo-embedding. Again,
we derive the centroid location and mean deviation from the centroid
of the labels (represented by the first unique noun) for a given sound
sample.

All clustering approaches give a similar overall monotonic trend, but
a qualitative analysis of cluster labels in conjunction with scores sug-
gests that a distance-from-primary-cluster definition is most fitting.
We focus on ConceptNet embeddings over others in the subsequent
discussion, because it is explicitly designed to capture meaningful
semantic relationships in language and in other domains that reflect
world knowledge.

Our clustering results using a ConceptNet embedding are plotted
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Figure 4.2: Average ConceptNet embed-
ding where the radius represents our
Hcu metric; red bubbles and the "_mod"
suffix are used to indicate sounds that
have been intentionally modified.

in Figure 4.2, and a qualitative example of user labels is given in
Table 4.1 Intentionally modified sounds are plotted in red, and we see
most sounds with divergent labeling fall into this category. Sounds
that have not been modified are in other colors, reflecting the cluster
size– here we see examples of completely unambiguous sounds, like
human vocalizations, animal sounds, sirens, and instruments.

Typing Modified Chair Sliding
Cluster Radius = 6.3 Cluster Radius = 8.7
typing on a keyboard bowling ball
Typing on keyboard electric tube
typing PVC pipe building pressure and release
typing Error message on computer
Typing on a keyboard High Speed Frisbee
someone typing beer mug sliding on bar
Someone typing on keyboard driving a car
keyboard toy car hitting wall
typing filling up a tub
... ...

Table 4.1: Example labels provided by
annotators for two audio samples in the
HCU400 set, which result in different
cluster radii.

4.2.2 Baseline Analysis

First, we find that the likert annotations are reliable amongst online
workers, using a split ranking evaluation adapted from [101]. Each
of the groups consisted of 50% of the workers, and the mean ranking
was computed after averaging N=5 splits. The resulting spearman
rank coefficient value for each of the crowd-sourced features is given
in Figure 4.3. This provides the basis for several intuitive trends in
our data, as shown by Figure 4.4 – we find a near linear correlation
between mean imageability and familiarity, and a significant inverse
correlation between mean arousal and valence. We also find a strong
correlation between imageability, familiarity, time-based individual
measures of uncertainty (such as such "time to first letter" or "num
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Figure 4.3: Split ranking correlation
plots and Spearman rank coefficient
values for the four likert annotated
features.

of times played"), and the label-based, aggregate measures of uncer-
tainty (the cluster radii and Hcu).

We next see strong evidence of the value of word embeddings as a
measure of causal uncertainty – the automated technique aligns well
with the split of modified/ non-modified sounds (see Fig. 4.2) and a
qualitative review of the data labels. Furthermore, we use this data
to explore the causal relationship between average source uncertainty
and individual assessment behavior. In Figure 4.5, we plot the dis-
tributions of pairs of features as a function of data points within the
15th (red) and greater than 85th (blue) percentile of a single con-
ceptnet cluster metric. It confirms a strong relationship between the
extremes of the metric and individual deliberation (bottom right), as
reported by [102]. We further find that more ambiguous sounds have
less extreme emotion ratings (top right); the data suggest this is not
because of disagreement in causal attribution, but because individu-
als are less impacted when the source is less clear (bottom left). This
trend is not true of imageability and familiarity, however; as sounds
become more ambiguous, individuals are more likely to diverge in
their responses (top center). Regardless, we find a strong downward
trend in average familiarity and imageability scores as the source
becomes more uncertain (top left).

4.3 Intrinsic Memorability

We next set out to obtain annotations for the intrinsic memorability
of each audio sample in the HCU400 dataset 5[3]. In order to quan-

5 An interactive demo of the dataset can
be found at" https://resenv.media.
mit.edu/memory-dataset/demo.html

tify memorability, we drew inspiration from work in [101], which

https://resenv.media.mit.edu/memory-dataset/demo.html
https://resenv.media.mit.edu/memory-dataset/demo.html


61

Figure 4.4: Correlation Matrix display-
ing the absolute value of the Pearson
correlation coefficient between the
mean values of annotated features,
metadata, and four representative word
embedding based clustering techniques.

Figure 4.5: Feature distributions
grouped by extremes in the "Pro-
cessed CNET" cluster metric; red points
represent data at  15th percentile (low
Hcu); blue dots are � 85th percentile
(high Hcu).

used an online memory game to determine the features that make
images memorable. We designed an analogous interface for the au-
dio samples in the HCU400 dataset. The game opens with a short
auditory phase alignment-based assessment [103] to ensure that par-
ticipants are wearing headphones, followed by a survey that captures
data about where they spend their time (urban vs. rural areas, the
workplace vs home, etc). Participants are then presented with a series
of 5 second sound clips from the HCU400 dataset, and are asked to
click when they encounter a sound that they’ve heard previously in
the task. At the end of each round consisting of roughly 70 sound
clips, the participant is provided with a score. Screenshots of the
interface at each stage are shown in Figure 4.6.

By design, each round of the game consisted of 1-2 pairs of target
sounds and 20 pairs of vigilance sounds. Target sounds were defined as
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Figure 4.6: Screenshots of the auditory
memory game interface presented to
participants as a part of our study.

samples from the dataset that were separated by exactly 60 samples–
the sounds for which memorability was being assessed in a given
round. The vigilance sounds, pairs of sounds that were separated in
the stream by 2 to 3 others, were used to ensure reliable engagement
throughout the task following the method in [101]. Roughly 20,000
samples were crowd-sourced on Amazon Mechanical Turk such that
a single task consisted of a single round in the game. Individual
workers were limited to no more than 8 rounds to ensure that target
samples were not repeated. Rounds that failed to meet a minimum
vigilance score (>60%) or exceeded a maximum false positive rate
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(>40%) were discarded.

Audio samples for this test were taken from the HCU400 dataset
[104], and standard low-level acoustic features were extracted from
each sample based on prior precedent [105]. We used default config-
urations from three audio analysis tools: Librosa [106], pyAudioAnal-
ysis [107], and Audio Commons [108], which include basic features
(i.e. spectral spread) as well as more advanced timbral modeling. We
supplement these features with additional summary statistics like
high/mid/bass energy ratios, percussive vs. harmonic energy, and
pitch contour diversity. We also include a vision-inspired perceptual
saliency model following the procedure proposed by [28], applying
separate temporal, frequency, and intensity kernels to an input mag-
nitude spectrogram to produce three time-frequency salience maps.
From these maps, we compute a series of summary statistics to be
used as features.

High-level features were taken from [1] and include causal uncer-
tainty (Hcu), the cluster diameter of embedding vectors generated
from user-provided labels (quantifying source agreement or source
location), familiarity, imageability, valence, and arousal.

4.3.1 Summary of Participant Data

We recruited 4488 participants, consisting of a small (<50) number of
volunteers from the university community and the rest from Amazon
Mechanical Turk. Our survey data shows that our participants report
a 51/37/12% split between urban, suburban, and rural communities.
We see weak trends in the average time per location reported for each
community type– urbanites self-report spending less time at home,
in the kitchen, in cars, and watching media on average. Rural partic-
ipants report spending more time in churches and in nature. Using
KNN clustering and silhouette analysis, we find four latent clusters –
students (590 users), office workers (1250 users), home-makers (1640
users), and none of these (1010 users). Split-rank comparisons be-
tween groups did not reveal meaningful differences in results across
user groups; we speculate any differences due to ecological expo-
sure of sounds between environments is not consistent or influential
enough at this group level to alter performance.

4.3.2 Summary of Memory Data

The raw memorability score M for each sound is simply computed as
the number of times it was correctly identified as the target divided
by the number of its appearances. However, this does not account for
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Figure 4.7: A histogram of the raw
scores for each sound – they were
successfully remembered and identified
about 55% of the time on average, with
a large standard deviation (left); A
histogram of "confusability" scores for
each sound, with an average score of
about 25% (right).

the likelihood that the sound will be falsely remembered (i.e. clicked
on without a prior presentation). We additionally compute a "confus-
ability" score C10 for each sound sample, defined as the false positive
rate for sounds when they fall close to the second target presenta-
tion (i.e. in the last ten positions of the game). We can thus derive
a "normalized memory score" represented by M � C10. In attempt-
ing to understand auditory memory, we consider both what makes
a sound memorable and what makes a sound easily mis-attributed
to other sounds, whether those sounds are encountered in our game
or represent the broader set of sounds that one encounters on a ha-
bitual basis. We therefore model both normalized memorability and
confusability in this work.

Figure 4.8: The results of the split-
ranking analysis for the normalized
memorability score and confusability
score, using 5 splits; the Spearman
coefficient correlations demonstrate the
reliability of these scores across study
participants, enabling us to model both
metrics in the later parts of the work.

We confirm the reliability of both the normalized memory scores
and the confusability scores across participants by performing a split
ranking analysis similar to [101] with 5 splits, shown in Figure 4.8
with their respective Spearman correlation coefficients. This confirms
that memorability and confusability are consistent, user-independent
properties.

In Table 4.2, we show a short list of the most and least memorable
and confusable sounds in our dataset as a function of the normalized
memorability score and confusability score.
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Most Memorable Least Memorable
man_screaming.wav morphed_firecracker_fx.wav
woman_screaming.wav truck_(idling).wav
flute.wav morphed_turkey2_fx.wav
woman_crying.wav morphed_airplane_fx.wav
opera.wav morphed_metal_gate_fx.wav
yawn.wav morphed_shovel_fx.wav
Most Confusable Least Confusable
garage_opener.wav clock.wav
lawn_mower.wav morphed_335538_fx.wav
washing_machine.wav phone_ring.wav
rain.wav woman_crying.wav
morphed_tank_fx.wav woman_screaming.wav
morphed_printing_press_fx.wav vomit.wav

Table 4.2: A list of the most and least
memorable and confusable sounds from
the HCU400 dataset.

4.3.3 Feature Trends in Memorability and Confusability

We consider two objectives – (1) to determine the relationship be-
tween individual features and our measured memorability and con-
fusability scores, and (2) to determine the relative importance of
these features in predicting memorability and confusability. To ad-
dress the former, we provide the resulting R2 value after applying
a transform learned using support vector regression (SVR) for each
individual feature. For the latter, we use a sampled Shapely value
regression technique in the context of SVR– that is, we first take N
random features (N between 1 and 10) and perform an SVR to pre-
dict memorability or confusability scores for our 402 sounds and the
calculated R2 of the fit. We then measure the change in R2 as we ap-
pend every remaining feature to the model, each individually. The
largest average changes over 10k models are reported in Table 4.3.
This technique is robust to complex underlying nonlinear relation-
ships mapping the feature space to the predicted metric as well as
to feature collinearity. We find that the strongest predictors of both
memorability and confusability are the measures of imageability and
causal uncertainty. Memorability is dominated by high level, gestalt
features, with only one lower level feature (‘pitch diversity’) in the
ten most important features. Low level features, including those de-
rived from the auditory salience models, play a more significant role
in determining confusability.

The absolute R2 values indicate that no individual feature is a sig-
nificant predictor of memorability by itself. This implies a complex
causal interplay in feature space, which we explore further in the
set of plots presented by Figure 4.9. In each plot, we show a distri-
bution of feature values for the sounds that are most memorable or
least confusable (>85th percentile, blue) contrasted against the least
memorable or most confusable sounds (<15th percentile, red). We
first consider the effect of Hcu and valence on memory– low memo-
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Figure 4.9: Scatter plots showing the
changes in distribution of select features
based on extremes in memorability (top
row) and confusability (bottom row);
blue indicates sounds that are most
memorable or least confusable (85th
percentile); red indicates sounds that
are least memorable or most confusable
(15th percentile).

rability and high confusability sounds exhibit a similar trend of high
causal uncertainty and neutral valence (Column 1); In Column 2, we
consider imageability and familiarity ratings, shown to be strongly
collinear in [1]. Here, their relationship to memorability and confus-
ability diverge; while both are positively correlated with memora-
bility, neutral ratings are the stronger predictor of confusability. This
suggests that we are most likely to confuse sounds if they are loosely
familiar but neither strictly novel nor immediately recognizable. Fi-
nally, Column 3 reveals a discernible decision boundary in low-level
feature space for confusability which doesn’t exist in its memorability
counterpart. The relative importance of low-level salience features,
here represented by spectral spread, aligns with intuition– in the
absence of strong causal certainty or affect feature values, our percep-
tion of sounds is driven by their spectral properties.

4.3.4 Per-game Modeling of Memorability

The aural context in which a sound is presented, which includes
ecological exposure as well as the immediate preceding sounds in
our audition task, may influence the memory formation process.
The literature supports the notion that, given a context, unexpected
sounds are more likely to grab our attention and engage memory
[94]. To understand this effect in our test, we ran two studies based
on a 5 sound context (approximating the limits of semantic working
memory) and a 1 sound context (approximating the limits of echoic
memory).
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Top Predictors for Memorability and Confusability
Memorability Confusability

Feature R2 Shapely D R2 Feature R2 Shapely D R2

Imageability 0.201 0.126 Imageability 0.065 0.078
Hcu 0.224 0.125 Hcu 0.073 0.078
Familiarity 0.176 0.123 Avg Spectral Spread 0.087 0.078
Valence 0.178 0.120 Peak Spectral Spread 0.037 0.076
Location Embedding Density 0.147 0.117 Peak Energy, Frequency Salience Map 0.059 0.076
Familiarity std 0.103 0.117 Location Embedding Density 0.100 0.076
Pitch Diversity 0.084 0.113 Frequency Skew, Frequency Salience Map 0.059 0.076
Imageability std 0.086 0.113 Arousal 0.039 0.076
Arousal 0.072 0.112 Peak Energy, Intensity Salience Map 0.044 0.075
Arousal std 0.056 0.111 Familiarity 0.045 0.075
Avg Spectral Spread 0.099 0.107 Valence 0.100 0.075
Timbral Sharpness 0.094 0.091 Timbral Roughness 0.094 0.047
Max Energy 0.091 0.100 Avg Flux, Sub-band 1 0.092 0.064
Treble Energy Ratio 0.090 0.020 Flux Entropy, Sub-band 1 0.091 0.061

Table 4.3: The top performing features
from the Shapely regression analysis
for both memorability and confusability
(gestalt features are bolded); shown are
the features ordered by their respective
contributions to the R2 value, with
additional features with top performing
individual R2 values appended in
italics. The first column indicates the
individual predictive power of each
feature; the second indicates its relative
importance in the context of the full
feature set.

Table 4.4 shows the results of a simple Support Vector classification
model trained to predict whether the target in each game will be
successfully recalled. This model was trained with the most memo-
rable and least memorable sounds only (85th/15th percentiles) with
a 5-fold cross-validation process, and results are reported on a 15%
hold-out test set.

To begin, a baseline model is trained using the absolute, immutable
features of the target sound. Because there are a limited number of
sounds in our dataset relative to the number of games, the feature
space is redundant and sparse, and we expect the accuracy of this
model to converge to the average expected value over our set of
sounds. We then introduce contextual features– the relative difference
(z-score) of target sound features with those of the varying sounds
that precede its first presentation in each game– to see if our model
improves based on the context of our 50 most meaningful features
(from the SVR analysis; 25 high-level and 25 low-level). In both 5-
and 1-sound context cases, however, model performance does not
improve as we would expect if the context provided additional useful
information.

We also run a classifier that only uses contextual features, to ensure
informative context has not been obscured or subsumed by the ab-
solute features in our first test. We start with a noise baseline, in
which contextual features are calculated using a random, incorrect
context– these features are still informative as the z-score depends
largely on the absolute features of the target sound. We then train
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the same model with the proper context to assess the difference in
performance. There is no improvement when the true context is re-
introduced.

This leads us to a meaningful insight, contrary to our hypothesis –
context does not exert a measurable influence on our results. While
context likely does matter in real-world settings, we suspect that our
memory game framework indirectly primes participants to expect
otherwise surprising sounds. This confirms that our data is the con-
sequence of truly intrinsic properties of the sounds themselves, inde-
pendent of immediate context and participant ecological exposure (as
was demonstrated in the split-rank analysis).

Memorability Per-Game Models
Features Accuracy (%)
Absolute + All 5-Sound Context Feats (working semantic) 68.0
Absolute + Top 50 5-Sound Context Feats 69.1
Absolute Feature Only Baseline (~expected value) 70.3

Contextual Only, 5-Sound Context (working semantic) 62.5
5 Sound Context, Noise Baseline 64.1

Absolute + All 1-Sound Context Feats (echoic) 68.0
Absolute + Top 50 1-Sound Context Feats 69.5
Absolute Feature Only Baseline (~expected value) 70.3

Contextual Only, 1-Sound Context (echoic) 60.0
1 Sound Context, Noise Baseline 61.3

Table 4.4: The influence of contextual
sounds before the first presentation of
the target on our ability to predict recall
across games.

4.3.5 Summary of Findings

In this leg of the work, we broadly showed that (1) the most impor-
tant features that contribute to a sound being remembered are gestalt
– namely, the sounds with clear sound sources (low Hcu), that are
easy to visualize, are familiar, and elicit strong emotions; (2) high
Hcu sounds that are not familiar to listeners or are not easy to visual-
ize are more likely to be "confused" and misattributed, and low-level
or acoustic features play an important role in predicting this behav-
ior; and (3) these relationships are not influenced by the context of
surrounding sounds within the confines of the game, and are in-
trinsic properties of the sounds themselves. Although this baseline
analysis is only cursory, we believe that the publicly available data is
rich with a plethora of insights and relationships that we hope many
others will investigate and uncover.
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4.4 Bootstrapping General Purpose Estimators

As hinted at in the discussion surrounding the preliminary findings
from our memory assessment, it is challenging to construct end-
to-end models that can estimate gestalt or intrinsic memorability
characteristics directly from audio. This stems from both the small-
scale nature of the dataset (as a function of the total number of audio
examples in the datasets and the number of annotations per example
that was feasible to acquire), and the inter-rater diversity amongst the
annotations.

Given this, in order to generalize gestalt and memorability character-
ization to unseen, real-world audio, we require an alternate way to
obtain a general purpose estimator. We suggest a simple bootstrap-
ping approach that allows us to construct a model with the sound
source label as the input, mimicking the role of causal certainty in
sound understanding as highlighted by Gaver [72]. To do this, we
propose a strategy for mapping the gestalt and memorability scores
from the small HCU400 dataset to Google’s AudioSet [9, 2] ontology.
We choose the AudioSet ontology as it is a set of class labels that ac-
companies one of the largest available sound object datasets for deep
learning research, and is therefore the ontology that lies in the output
space of many state-of-the-art audio classification neural networks.
Therefore, given a reliable strategy for mapping from a small dataset
to a fixed ontology, both the refinement and expansion of the label
set as well as advances in audio classification networks from the deep
learning community have the power to enable increasingly nuanced
cognitive labels for real-world audio.

The problem that’s posed here – attempting to build a modeling
structure that can generalize from a smaller dataset to diverse, un-
seen data – is a common problem encountered in machine learning.
One method used to tackle this problem is transfer learning, wherein
a model first trained on a larger, related dataset is fine-tuned via
training on the smaller, target dataset [109]; an instance of this class
of strategies is explored in Section 3.2. Another approach entails the
use of Few-shot learning (or Low-shot learning), wherein a model
relies on an intermediate relational space, metric learning, the synthe-
sis of additional training examples, or improved weight optimization
methods tailored to the scenario of limited per-class examples, in
order to assign labels to unseen data. Groundbreaking examples
of advancements in this area include the development of Match-
ing Networks [110], Prototypical Networks [111], Triplet Networks
[112], the Model-Agnostic Meta Learning (MAML) method [113],
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Figure 4.10: A summary of the pro-
posed bootstrapping approach. We
first bootstrap gestalt property scores
to all labels in the AudioSet ontology
by running a classifier on the HCU400
dataset (top); we then estimate gestalt
property scores for unseen audio ex-
amples by first predicting AudioSet
labels, and then combining the scores
associated with these labels, weighted
by the prediction uncertainty (bottom).

Memory-Augmented Neural Networks [114], and the "Shrinking and
Hallucinating" strategy [115].

However, we choose a related but slightly different approach, using
the AudioSet ontology as an intermediary in the manner mentioned
above, for two reasons: (1) firstly, in our case, we seek an intermedi-
ate structure that affords interpretability, which we wish to achieve
by drawing structure from the learnings that stem from empirical hu-
man psychology research. While it is unclear whether this objective
provides advantages in terms of generalizability (see Section 4.4.2),
we see value in it when applying the resulting estimators to devices
or experiences, as interpretability allows us to more easily identify
and understand failure cases. (2) Secondly, we also want a model-
ing structure that allows us to represent uncertainty; uncertainty in
this context does not refer to the stochastic measurement of a single
ground truth label or quantity, but refers rather to annotator diversity
which we wish to capture explicitly and propagate to downstream
interfaces or experiences. Several machine learning research efforts
which attempt to model gestalt principles – for instance, affect recog-
nition tasks [116] – collapse annotator diversity into point objectives
at the dataset preparation or model training phase; we can intuit that
constructing models that attempt to estimate these objectives provide
little value, especially as the community considers objectives that rep-
resent increasingly higher-level aspects of cognition where we expect
to observe greater amounts of diversity. Given these two constraints,
we believe that the approach we design, which is detailed below, is a
suitable option; however, we do explicitly discuss the limitations of
the approach in Section 4.4.3.

4.4.1 Approach

To illustrate our approach (summarized in Figure 4.10), we con-
sider the HCU400 and memorability datasets presented in [1, 3],
and aim to scale the hand-labeled annotations of six gestalt proper-
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ties – arousal, valence, imageability, familiarity, memorability, and
confusability6 – to unseen audio. We achieve this by building a prob-

6 The previous section suggests that
"confusability" is predicted well by
acoustic features; however, we expect
to find interesting semantic links as
well, since the ontology we use also
includes some tags that assign language
to acoustic properties – for instance,
"rumbling" or "buzzing".

abilistic mapping between these scores and the 600+ labels in the
AudioSet ontology. To do this, we first consider audio samples Xk in
the HCU400 dataset, with a corresponding set of annotations for a
given gestalt feature Sk, which consists of all of the individual crowd-
sourced ratings sn

k collected for that feature and audio sample. Each
of these audio samples has an associated set of AudioSet labels. This
setup is illustrated in Table 4.5.

HCU400
Dataset

Gestalt
Annotations

AudioSet Label
Predictions

Xk Sk = {S0
k , . . . , SN�1

k } {. . . , l, . . .}
· · · · · · · · ·

Xk+1 Sk+1 = {S0
k+1, . . . , SN�1

k+1 } {l, . . . , . . . , }

Table 4.5: An illustration of the formu-
lation that enables bootstrapping.

For a given label l in the AudioSet ontology, we wish to obtain a
gaussian estimate Nl(µ, s2) of the associated gestalt feature score7.

7 We note that a gaussian distribution
does not have the capacity to repre-
sent, for instance, bimodal responses;
however, we expect the variance to still
be a useful measure of dispersion for
our illustrative tasks, while keeping the
math convenient.

To do this, we compute:

Nl  hist

0

B@
Â

k2K
Fq(pk(l)) ⇤ Sk

Â
k2K

Fq(pk(l))

1

CA (4.1)

where pk(l) represents the classification probability associated with
label l as a prediction for sound Xk, scaled and normed by a function
Fq , a hyperparameter. We use the probabilities as a "weighting" on
the frequency of the set of ratings Sk, and combine all of the ratings
across sound samples where l appears as a predicted label into a
single data series. We compute a histogram of this data, and estimate
a best-fit gaussian, Nl .

Unfortunately, the labels associated with the sounds in the HCU400
dataset are too sparse to fully cover all of the AudioSet labels, so
some labels l remain without an estimated Nl . To address this, we
can exploit the existing class relationships in the AudioSet ontology
to meaningfully impute our estimates of the new gestalt properties
to the uncharacterized labels: parents adopt mean scores of children,
children inherit parent scores. Example results from the complete
label estimation and imputation process can be seen in Table 4.7.

Unseen
Audio Recording

AudioSet Label
Predictions

AudioSet Label
Gestalt Scores

Xr {l0, . . . , ln�1} {Nl0 , . . . ,Nln�1}

· · · · · · · · ·

Table 4.6: An illustration of the formu-
lation that enables inference.
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To calculate gestalt property scores for unseen audio examples, this
process can effectively be inverted. We consider the setup in Table
4.6, where each new audio example Xr has associated AudioSet la-
bels {l0, . . . , lN�1}, and associated gestalt scores {Nl0 , . . . ,NlN�1} that
map to each label for the gestalt feature in question. We compute:

N̂r =

0

@
Â

n2N
Jf(pr(ln)) · Nln

Â
n2N

Jf(pr(ln))

1

A (4.2)

where pr(ln) represents the prediction probability associated with
label ln for example Xr. We use this probability, after scaling via
hyperparameter function Jq and norming, to weight and sum the pre-
computed gaussian functions Nln assigned to each label ln, obtain an
estimated N̂r for the new recording.

Figure 4.11: Plots showing the distribu-
tion of sounds in the HCU400 dataset
labelled with their original categories
from [1], namely "Natural", "Ambigu-
ous", or "Synthetic". We compare the
separation of these "Natural" and "Syn-
thetic" classes via the human annotated
Hcu metric (left) with the proposed,
neural network-based approach (right).

Throughout this approach, we treat the uncertainty of the pre-trained
AudioSet model as a proxy for human uncertainty in sound source
identification. As shown in Figure 4.11, plotting the audio classes
from the HCU400 dataset against the human-rated and artificial
causal uncertainty measures demonstrates that it is a reasonable
proxy. We use this notion implicitly in the bootstrapping process as
we weight the contribution from different instances in the HCU400
dataset by the network prediction uncertainty, mimicking the role
of causal uncertainty as the fulcrum between semantic and acoustic
processing [73, 72]. We can also use this notion explicitly as a tool for
constructing experiences (see Chapter 7).

The intermediary structure in this approach can be constructed us-
ing a spectrum of methods, spanning simple causal intuition derived
from auditory psychology literature to rigorous bootstrapping from
more extensive datasets onto detailed ontologies. In contrast to tradi-
tional transfer or few-shot learning approaches, the structure here has
intuitive meaning, and we rely on explicit relationships in label and
language space to provide scaffolding for relationships in cognitive
understanding space.
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Top Scores: "Memorability" Top Scores: "Confusability"

Guitar Rain on surface
Wail, moan Pink noise
Fire alarm Ocean

Baby cry, infant cry Vibration
Crying, sobbing Traffic noise, roadway noise

Cough Idling
Singing Stream

Whistling Fire
Chuckle, chortle Typewriter

Belly laughter Wind
Baby laughter Rustling Leaves

Ambulance (siren) Thump. Thud
Sneeze Electric shaver, electric razor

Top Scores: “Arousal” Top Scores: “Valence”

Skidding Acoustic Guitar
Machine gun Strum

Ambulance (siren) Wind Chime
Emergency vehicle Chuckle, chortle

Toot Giggle
Train horn Laughter
Fire alarm Flute

Vehicle horn, car horn, honking Cello
Growling Classical Music
Doorbell Waterfall
Ringtone Bird call, bird song

Boom Rain on surface
Roar Church bell

Table 4.7: Sound category labels from
the AudioSet [2] ontology with top
scores for Memorability, Confusability,
Arousal, and Valence, determined by
bootstrapping from the small HCU400
dataset [1, 3].

4.4.2 Baseline Validation

For the sake of completeness, we describe the results of a simple val-
idation experiment, entailing a test of the bootstrapping approach
on a very small, external dataset annotated in the same format as
the HCU400 dataset. We use the ESC-50 dataset8, a publicly avail-

8 https://github.com/karolpiczak/
ESC-50

able dataset of environmental sounds, and obtain 30 crowd-sourced
ratings for each of the likert features in HCU400 – arousal, valence,
imagebility, and familiarity9. We use our bootstrapped approach to

9 Running fresh cycles of memorability
games at the rate of the original dataset
(approximately 20,000 games) with
the ESC-50 dataset was prohibitively
expensive and time consuming at this
stage, so we exclude memorability and
confusability from this analysis.

estimate these features in the ESC-50 dataset, and compare it against
a very standard zero-shot learning approach that relies on a weight-
ing scheme based on distance in the AudioSet vector embedding
space [117]. We report the results as KL-divergences comparing the
discrete distributions (the predicted distribution evaluated at the lik-
ert intervals, and the annotated ground truth), aggregated across of
the sound examples. The results are given in Table 4.8.

While our approach does perform marginally better than the zero-
shot approach, we provide these results only to understand whether
our approach is within a reasonable ballpark of standard transfer
learning or few shot approaches. We do not believe that the value of

https://github.com/karolpiczak/ESC-50
https://github.com/karolpiczak/ESC-50
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Bootstrap
HCU400 (train)

µ, s

Bootstrap
ESC-50

µ, s

Zero Shot
ESC-50

µ, s

arousal 0.12, 0.11 0.29, 0.24 0.35, 0.29
valence 0.19, 0.15 0.35, 0.27 0.47, 0.34

familiarity 0.22, 0.18 0.39, 0.22 0.56, 0.34
imageability 0.20, 0.14 0.40, 0.24 0.54, 0.31

Table 4.8: Validation experiment results.
The mean and std of the KL divergence
is reported in a comparison between the
our bootstrapping approach and a zero-
shot learning approach on the ESC-50
dataset. The training performance of
the bootstrapping method is given for
reference.

this work is in finding a state-of-the-art transfer learning technique,
but in finding a technique that reflects hearing science research and is
interpretable.

4.4.3 Limitations

We see two major sources of limitations in the presented approach –
one associated with the intermediate structure we choose for boot-
strapping, and one associated with our dataset annotation and anal-
ysis process. In the former case, we first note that AudioSet has only
a finite number of classes to which a classification model may map
a new sound; as a result, substantially erroneous gestalt quantities
might be estimated for sounds that do not fit neatly into the ontology
– examples include synthesized sounds or inorganic sounds whose
causality may still be readily apparent to a listener. We also point out
that the semantic relationships in the AudioSet ontology that we rely
on for the bootstrapping process were not originally curated in an
entirely crowd-sourced manner; the relationships are inferred from
hyponyms found across a large corpus of internet text and further
curated manually by the original researchers – so the extent to which
they are reflective of a vast demographic is difficult to discern. We
describe a strategy for bridging the gap between these estimators
and individual differences in Chapter 6, but having a more represen-
tative or more democratically collected structure even at this phase
would be beneficial. We hope that the audio research community will
consider these challenges and requirements as new ontologies are
created and associated classification engines are trained.

In the latter case, while our dataset formation process captures anno-
tator disagreement and coarse trends in annotator demographics, we
did not collect the demographic information at sufficient resolution
to be able to statistically connect the two – that is, explicitly estab-
lish causal links between demographic subgroups and annotation
behavior – prior to the estimation phase. We note that having had
this capacity would afford us better estimators; therefore, revisiting
our small-scale datasets (or those like them) with an eye towards this
additional capability would be critical future work.
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4.5 Summary

The work delineated in this chapter results in datasets that tackle as-
pects of auditory phenomenology and a set of models that attempt to
extend some of the properties examined in the datasets to real-world
audio. The more important takeaways from this series of work, how-
ever, surround the motivation behind and framework for constructing
these data and models. The key ideas are:

• A thorough survey of auditory psychology and neuroscience lit-
erature is first conducted and distilled into factors of interest that
together would form a valuable sound cognition dataset.

• The dataset is collected at crowd-scale, under the considerations of
rater diversity, uncertainty, and unreliability of self-report.

• A structure for generalizing a subset of the factors in the dataset
to unseen audio is proposed, using a transfer-learning scaffolding
that takes inspiration from the literature on auditory pathways and
capitalizes on advancing deep learning infrastructure for sound
object segmentation and labeling.

I suggest that this paradigm of model building is more broadly use-
ful, either in considering other, unexplored phenomena in sound
cognition, or in working towards generalized models that draw
from existing, small-scale datasets. In the forthcoming chapter, I
connect these efforts back to the narrative surrounding new and/
or enhanced experiences presented at the start of this dissertation,
by building and evaluating systems that apply the cognitive models
towards select, human-meaningful tasks.
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5

Constructing Experiences

We now move on to the discussion of a system built with and around
the models that we constructed in the previous chapter, that is sug-
gestive of the sorts of experiences that motivate this research. In this
section, we describe a concatenative synthesis engine that employs
the gestalt estimation models to automatically create short audio
presentations as a means of exploring large corpora of audio data
along aesthetic, subjective dimensions. We present the motivation for
the system, the role of the cognitive modeling in the system design,
a detailed description of the system mechanics, and outcomes and
learnings from corresponding user evaluations. In the larger context
of this work, we treat the construction of and experimentation with
this system as a means to examine (1) the unique affordances of a
feature space powered by gestalt ideas over purely acoustic measures,
and (2) the magnitude of the impact stemming from the system on
the user, and whether or not we can link that impact explicitly to the
underlying cognitive models.

5.1 Cognitive Content Curation: A Novel Audio Summarization
Tool

Over the last decade, we have witnessed a massive shift towards
ubiquity and capacity in audio capture. Low-power, always-on audio
sensing technology in our homes and our phones makes it easy to
record hours of uninterrupted data; the rapidly falling cost of storage
infrastructure makes it even easier to archive. From lifelogged record-
ings to environmental monitoring databases, however, this trend has
resulted in a paradox for consumption – the more audio there is, the
harder it is for the average user to interact with the it, and the less
likely they are to do so.
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While research has produced many strategies for condensing large
audio corpora into representations that are distilled in time, these
approaches are frequently motivated by the goal of maximizing infor-
mation in the output representation [118, 119, 120, 121, 122, 123, 124].
We argue that such approaches do not enable other, subjective modal-
ities of engagement with or explorations of a specific body of audio,
such as aesthetic or emotional modalities. For example, we find many
means of distilling a body of audio so as to preserve only speech or
detect new events in a soundscape, as may be useful in a memory
aid or surveillance task, but few means to use the audio to create an
appropriate background track for sleeping or studying, or for evok-
ing nostalgia of a place and time. In addition, we note that most of
the aforementioned systems distill audio by optimizing for a sin-
gle, well-defined objective function; they do not represent tunable
systems with exposed input parameters that can be reconfigured to
generate perceptually diverse outcomes. We intuit that this short-
coming is driven by feature space design – these systems are largely
built on feature representations that quantify statistical properties of
the audio itself (spectral derivatives, event detection, audio quality,
frame diversity, etc), instead of being rooted in the science of how the
human brain perceives and processes sound.

We attempt to address this gap by constructing an audio summariza-
tion system with a feature space that is driven by the principles of
auditory processing, incorporating the gestalt estimators described
in Chapter 4. We aim to create a feature space that reflects gestalt/
memorability properties and acoustic measures, and expect that alter-
ing the relative weighting of these features at the input can produce
a diversity of outcomes along emotional and aesthetic axes. Specifi-
cally, we contribute the following:

1. We construct a feature space derived from the gestalt, intrinsic
memorability (which we collectively refer to as gestalt), and acous-
tic features examined in Chapter 4, employing the general purpose
estimators constructed at the end of the chapter.

2. We build a tool that labels audio recordings with these features,
surfaces short clips along the extremes of the features, and com-
bines them in chronological order to generate audio summaries1.

1 Audio examples that demonstrate
this process on generic, ambient
field recordings can be found at
https://ishwaryaanant.github.
io/audio-stories/

3. We evaluate our system in the context of more than 800 hours of
"lifelogged" audio recordings, wherein 10 participants each collect
high-fidelity, first-person recordings over the span of 1 to 3 weeks,
and provide quantitative and qualitative feedback regarding the

https://ishwaryaanant.github.io/audio-stories/
https://ishwaryaanant.github.io/audio-stories/
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Figure 5.1: Our audio summarization
tool takes real-world, lifelogged audio
(1) as input, uses cognitive principles
to extract acoustic and semantic feature
information from the audio (2, 3),
and reassembles the highest or lowest
scoring excerpts to form "summaries"
(4). The method allows for summaries
that elicit specific subjective, perceptual
responses in users, and results in
listening experiences that are emotional,
compelling, and engaging.

summaries generated from their own data.

4. We demonstrate the utility of our gestalt feature implementations
in the context of audio summarization by showing that (1) acoustic
and gestalt features statistically surface different content in long-
term recordings; (2) that gestalt features are the strongest drivers
of perceptual responses in study participants; and (3) that the
presented system results in listening experiences that are immer-
sive, intimate, artistically compelling, emotionally intense, and are
suggestive of various user-highlighted use cases geared towards
well-being.

Through this work, we suggest a novel paradigm for designing me-
dia summarization systems, and gesture towards a broader frame-
work for capitalizing on elements of cognition to enable novel forms
of media interaction.

5.1.1 Related Work

Content curation of large multimedia collections has been a problem
of interest to the HCI community for many years, and has gener-
ated a significant body of literature. One approach condenses a large
volume into a smaller presentation by selecting and recombining a
subset of the content – this has been referred to as summarization
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[125, 126]. Summarization efforts in multimedia typically focus on
building systems with a singular objective function, with the aim of
maximizing information [118, 119, 120, 121, 122, 123, 124, 125, 126] or
representativeness of/ similarity to the larger media body [127, 128,
129, 130] in the output presentation. Common sub-themes of these
goals include frame diversity and quality [125, 126], event detection
[131, 132, 133, 134, 135], and preserving distinct speech [136, 122]; less
frequently, we find examples of more abstract goals, such as mem-
ory retention or a qualitative assessment that a summary is "good"
– however, these systems are often explicitly constructed using the
aforementioned information criteria as input features [137, 138, 131].
Our system aims to address some of the gaps in this literature by
(1) considering a set of outcomes beyond information maximization
to generate summaries that allow users to engage with their sound-
scapes from an aesthetic, emotional, therapeutic, or sound-design
standpoint; and by (2) incorporating principles of perception and
cognition into the feature design space to enable these outcomes.

5.1.2 Feature Implementations

We create seven classes of feature extractors to operate on raw am-
bient audio streams as inputs to our summarization system: Affect,
Memorability, Causal Uncertainty, Semantic Novelty, Acoustic Saliency,
Acoustic Self-similarity, Spectral Cues. These extractors produce scalar
feature curves associated with the audio as a function of time. The
Affect, Memorability, and Causal Uncertainty implementations draw
from the approach described in Section 4.4; the Semantic Novelty
implementation examines the audio classification infrastructure it-
self as a tool for capturing relationships in sound label space; and
the Acoustic Saliency, Acoustic Self-Similarity and Spectral Cues
implementations are acoustic measures extracted directly from the
audio, in part extended from the implementations in the HCU400/
memorability datasets (see Section 4.2 and Section 4.3).

Gestalt Features: Affect, Memorability, and Causal Uncertainty For
the purpose of this system, we replicate the process described in Sec-
tion 4.4 to obtain estimated scores for Arousal, Valence, Imageability,
Familiarity, Memorability, and Confusability, and consider feature
scores constructed from the mean of the predicted gaussians, using
the standard deviation as a measure of confidence in the mean. We
also replicate the idea in Section 4.4 regarding the quantification of
causal uncertainty, using the probability assigned by YAMNet to the
top performing AudioSet class and averaging it across the prediction
frames in the duration of the sound clip.
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Acoustic Features: Acoustic Self-Similarity, Acoustic Saliency,
Spectral Cues We assess acoustic-level repetition through a measure
of self-similarity, first employed in the context of audio by [139]. To
obtain a score revealing how similar an audio excerpt is relative to
itself and all other sampled audio excerpts, we compute a magnitude
Short-time Fourier Transform (STFT) for each excerpt with 512 FFT
bins and a hop size of 512 samples. To decrease the computational
overhead, each STFT is then smoothed along the time axis with a
window width of 10 units, and down-sampled along the same axis
by a factor of 10. After concatenating the magnitude STFTs from
all of the excerpts along the time dimension to create a single 2-
dimensional representation, we compute a self-similarity matrix as
the cosine distance between each pair of 512 unit time vectors in the
new representation. We then obtain a novelty curve by summing
along one of the matrix axes; the total novelty within the bounds of a
single excerpt is assigned as the self-similarity score to that excerpt.

We posit that novelty on the semantic level also represents a valuable
control in our feature space. We therefore compute a high-level self-
similarity measure, calculated with the same algorithm as for low-
level spectral self-similarity, except based on the centroid of each
audio excerpt’s YAMNet embeddings (where the centroid is the
mean of the embeddings over all of the frames in an excerpt). Given
the conceptual value of the embeddings as discussed in [9], we expect
that audio excerpts whose embedding centroids stand out in this
context represent contrasting semantic information relative to the
other excerpts being compared.

Finally, we employ the saliency model and the spectral measures
(pitch diversity, harmonic-percussive ratio, centroid, bandwidth, etc)
detailed in Section 4.3 as a part of our feature space.

5.1.3 Summarization Tool

We present a description of our audio summarization tool that em-
ploys these feature classes to generate short audio presentations
from extended recordings. An overview of the tool is as follows:
we first select 3-second audio excerpts at equally-spaced time inter-
vals throughout the body of audio, which is a concatenation of all
recorded audio (over 1-3 weeks) with appropriate padding to ensure
an excerpt does not span multiple recording files. We then extract the
value of each of our features for each excerpt in the set. Our imple-
mentation outputs a ranking of all of the excerpts ordered by feature
value assigned, and depending on the feature strategy preference
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specified, a subset of excerpts are selected for the final presentation.
The selected excerpts, about 30 excerpts for a 1-minute summary,
are finally cross-faded in chronological order and output as a single
track. Figure 5.1(4) provides a detailed illustration of the data flow in
the system.

The excerpts can be selected in one of two ways, which we call "fea-
ture strategies":

1. Top or Bottom Feature: a single feature strategy is specified, and
excerpts are simply drawn from the top or bottom of the ordered
ranking (for example, taking the top 30 acoustically salient sam-
ples is referred to as "Most Acoustically Salient", or taking the
bottom 30 semantically novel clips is referred to as "Least Semanti-
cally Novel").

2. Baseline: a naive benchmark strategy for comparison within our
listening experiments, where 30 excerpts are simply chosen at
equally spaced intervals in time from the set of excerpts being
analyzed, without any feature extraction and ranking.

5.1.4 Participant Evaluation

To understand the value of our system and the underlying feature
space, we believe it is most appropriate to evaluate it in the context
of the motivating applications – using lifelogged, first-person audio
recordings – rather than generic databases of soundscape recordings
which may be constrained in sound object content and demonstrate
no personal relationship with a listener. For a more realistic study,
we opt for an in-the-wild study conducted over the span of several
months.

In our evaluation, participants were provided with wearable, high-
fidelity stereo recorders (shown in Figure 5.1(1)) to capture their
sonic environments for as many hours as possible during waking
hours for 1 (minimum) to 3 (maximum) weeks. After signing up for
the study and providing consent, participants were delivered their
recorders in a contactless fashion, provided with detailed explana-
tions on the use of the device and ethical best practices in a video
call with the researchers, and given instructions on uploading their
recorded audio to a secure server in our lab accessible only by the
authors of this research. Significant precautions were taken to ensure
the privacy of study participants and the individuals in their envi-
ronments: based on guidance from a student law clinic associated
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with our institution, participants were allowed to pause and restart
the recorder at any point during the day to avoid capturing sensitive
content, and were required to obtain consent from individuals who
could be identified in the recordings and wear the recording device
in plain sight; the researchers also were not permitted to audition
raw participant recordings at any point, and required explicit consent
to audition generated summaries.

After the recordings were captured and uploaded by each individ-
ual, raw recordings were processed using the summarization tool,
and were used to generate 16 summaries (see Figure 5.3) from the
pool of possible feature strategies that we hypothesized would map
to unique perceptual outcomes, in addition to the baseline strategy.
The generated summaries were automatically embedded in an in-
dividualized survey, alongside several series of questions: for each
summary, participants were asked to assign relevant perceptual de-
scriptors from a pre-determined list ("calming", "nostalgic", "social",
etc), and provide ratings on perceived emotional intensity, sense of
intimacy, and positive or negative sentiment. Participants also pro-
vided lengthy qualitative descriptions of their listening experiences
using the system, responding to guiding questions such as "What
surprised you most or least about what you heard?" and "Did you
find listening to the summaries to be an immersive experience?" The
full set of questions in the survey is reproduced in Appendix A for
reference.

We recruited N=10 participants (4 females, 6 males, aged between
25 and 65), via public advertisement at our institution and the sur-
rounding community. The participants included undergraduate and
graduate students, young professionals, and faculty members, who
were associated with a spread of living spaces (dormitories, shared
apartments, suburban independent housing with large families),
working conditions (remote desk work, office space desk work, phys-
ical laboratory work), and experience with audio and music (from
no inclination towards or experience with sound recording or pro-
duction to semi-professional audio engineers and musicians). Partici-
pants collectively provided over 800 hours of audio, recording for 4-6
hours per day on average2.

2 Audio summary examples can be
requested from the researchers, con-
tingent on permission from the partici-
pants.5.1.5 Exploring Gestalt-Acoustic Clip Overlap

We suggest that the value and novelty of this system is a feature
space that incorporates gestalt auditory understanding; however, it is
possible that low-level features correlate so strongly with high-level
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ones that gestalt analysis is redundant for summarization tasks. To
assess this aspect of our summarization system, we analyze whether
high-level features independently surface novel content as compared
to low-level features. To do this, we compute the percentage of over-
lap between clips that rank in the top and bottom 1 percentile of the
entire pool of excerpts from a single participant’s data, per feature
strategy. We then average these results across all 10 participants,
shown in Figure 5.2.

Figure 5.2: Percentage of overlap
between the "Top" (left) and "Bottom"
(right) 1st percentile-ranked excerpts
from each participant’s recordings,
averaged across all participants.

From the heatmap, we see very little overlap across the two classes
of features (high-level on the bottom right of the grid, and low-level
on the top left)3. We do see evidence of intra-class overlap, such as

3 Random overlaps have a very small
likelihood, as all participants have
upwards of 10,000 excerpts in their
audio pool.

between spectral bandwidth, centroid, and flatness, and between
valence and memorability, which aligns with intuition. The results
suggest that the introduction of gestalt principles to the task of au-
dio summarization is a valuable contribution, and extends methods
relying on spectral processing alone.

5.1.6 Linking Feature Strategies to Perceptual Outcomes

We next examine how our chosen feature strategies map to percep-
tual descriptors across participants. In Figure 5.3, we show the rel-
ative contributions of the 16 feature strategies towards a perceptual
goal, given by the frequency that a particular descriptor was selected
for a particular feature strategy. The darkened bars give the most sig-
nificant drivers of a descriptor (if one exists), computed using a mod-
ified (mean-absolute-deviation) z-score [140]. We see that there are
16 descriptors for which these drivers exist (for instance, "calming",
"familiar", "distracting", "summary of events"), and 4 for which they
do not ("busy", "surprising", "stressful", "eerie"). Of the former 16,
we find that for 12 descriptors, gestalt feature strategies are the top
performers. Finally, we find that apart from the descriptor "calming",
the baseline strategy of selecting clips without any feature analysis is
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not a driver of any other descriptor.

Figure 5.3: The relative contribution
of each individual feature strategy in
driving the selection of a descriptor,
given by the likelihood that the de-
scriptor was marked by a participant
in association with summaries made
with a feature strategy. Darkened bars
highlight positive outliers identified by
2 median absolute deviations above the
median (modified z-scores).

The results also highlight trends that hint at the complexity of emo-
tional response in sound perception that this work begins to un-
cover. For instance, contrary to intuition, sound clips with significant
pitch diversity are found to be "calming" or "comforting"; percussive
sounds ("Least Harmonic Percussive Ratio") are found to be relaxing;
the most "nostalgic" summaries are comprised of sound objects with
labels that are easily identifiable and intrinsically memorable, as well
as those that are acoustically unique and diverse in tonal content. We
intuit that a personal relationship with the audio being summarized
(reflecting back on first-person recordings) is a significant functional
force in these relationships. We examine this further in Section 5.1.9.

Noting the overlap in top performing feature strategies across some
descriptors, we perform a clustering analysis to identify orthogonal
archetypes in the perception-feature strategy space. To do this, we
first compute an affinity matrix between descriptors using the jac-
card index of intersecting feature strategies as the affinity measure
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(considering only descriptors and feature strategies with signifi-
cance given by their z-scores), and perform a simple agglomerative
clustering. The results are given in Table 5.1, with the union of the
feature strategies shown beside each descriptor cluster. These clusters
suggest that we may be able to explicitly map the system’s underly-
ing feature space to different perceptual archetypes that hold across
multiple individuals; more importantly, however, on the level of an
individual listener, we suggest that these clusters are useful "initial-
izations" for personalized summary generation, wherein the relative
weights between feature strategies are refined based on user feedback
(see Section 5.1.9).

Descriptors Feature Strategies

1 familiar, comfort Least Confusability, Most Arousal, Most Memorability, Most Pitch Diversity, Most Valence
2 calming, peaceful, relaxing Baseline, Least HPR, Most Hcu, Most Pitch Diversity, Most Semantic SSM
3 loud Most Arousal, Most Confusability, Most Salience Total
4 nostalgic, social, summary of events Least Acoustic SSM, Least Confusability, Most Memorability, Most Pitch Diversity
5 salient, memory aid Least Acoustic SSM
6 uncomfortable Least Valence
7 reminder of events Most Memorability
8 distracting Least Memorability
9 annoying Most Pitch Diversity, Most Salience Total
10 activity Least Arousal

Table 5.1: The results of an Agglomer-
ative Clustering applied to the affinity
matrix describing the intersection in
dominant feature strategies between
descriptors. Each cluster is described by
the descriptor or new group of descrip-
tors, and the union of the dominant
feature strategies.

5.1.7 Examining Intimacy, Sentiment, Emotionality

We look next at the distribution of likert ratings provided by par-
ticipants in response to each summary. Participants were asked to
rate each summary on the scale of its (1) emotional intensity, (2) as-
sociated sentiment (positive/ negative), (3) intimacy and familiarity
(see Appendix for full text), and the results are shown in Figure 5.4.
We use a non-parametric Kruskal-Wallis test with post-hoc Dunn
test comparisons to examine differences between pairs of feature
strategies, and observe that the most significant (p < 0.05) drivers of
emotional intensity, positive sentiment, and intimacy are summaries
comprised of clips that score highest in memorability and valence,
and lowest in confusability. We note that all three feature strategies
are gestalt, and are based on scoring models bootstrapped from hu-
man annotations in the HCU400 dataset. We do also find that certain
low-level feature strategies are high-performing relative to others in
each assessment category – for instance, least acoustic self-similarity
for emotionality (p < 0.05) and intimacy (p < 0.05), and most salience
for intimacy (p < 0.05). We suggest that this hints at the ability of
these feature extractors to capture human-meaningful information at
scale that points to subjective, aesthetic experiences, rendering them
useful for our summarization task.
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Figure 5.4: The likert response values
to Q1, Q2, and Q4 (see Appendix)
assigned by participants to summaries
of each feature strategy.5.1.8 Anecdotal Responses to Listening Experiences

Finally, in order to understand the affordances of our summary sys-
tem that are more difficult to capture quantitatively, we examine
the free text responses provided by participants at the end of their
custom surveys. Participants were provided guiding questions (see
Appendix), but were free to provide any comments or reflections
on the listening experience that came to mind. Several participants
chose to provide further commentary by video calls with the re-
searchers regarding specific summaries in their surveys, which have
been recorded and transcribed with the participant’s consent.

Below, we highlight several themes from the responses and their sup-
porting commentary. The commentary is marked with an anonymized
participant ID, as well as the feature strategies associated with
the summaries described by the participant, if applicable. As an
overview, we uncover four major conclusions:

1. our system succeeds in creating impactful experiences over informa-
tive summaries, aligned with the motivation presented at the start
of the work

2. participants are unanimous in their willingness to use the system,



88

and suggest a diversity of application contexts and use paradigms

3. the output of our system is found to be engaging, emotional,
immersive, and intimate

4. participants offer feedback on production aspects, reinforcing
some design choices and suggesting improvements in others

We note that this anecdotal evidence alone is not sufficient to disen-
tangle the value of the system design choices (such as the size of the
audio excerpts, the cross-fading heuristic, the use of the stereo field,
etc) from the algorithmic choices (the incorporation of gestalt infor-
mation in the feature space). We treat this commentary as positive
reinforcement for both aspects of this work, and we intuit the value
of the latter aspect especially when the commentary is coupled with
the trends observed in the quantitative analysis in Sections 5.1.6 and
5.1.7.

Immersion and Intimacy
Several participants explicitly described a sense of presence in time
or place when reviewing their audio summaries. For instance:

"[Listening to the summaries] was really engaging, I think the quality and
the spatial nature of it make it feel really impactful. I actually think because
the sounds seem to move around spatially a bit between some of the clips, it
feels more like a fly on the wall observing from different perspectives, and that
really makes it feel like you’re peeking into something... there is definitely a
feeling of being there in the space in that time." - P1

We noted that participants experienced this sense of immersion from
summaries curated to have human-oriented content (via gestalt fea-
ture strategies) as well as those that combined notable but inorganic
content from a sound context:

"Ones that brought me back to a moment in time or had talking made me feel
transported. The kitchen ones also felt like I was making food again." - P4,
[Least Acoustic SSM, Most Salient, Least HPR]

"One of my tracks seemed to highlight laughter in particular, and it was
pretty neat. It’s hard to capture memories of how or what makes people––or
even if they laughed. Also hearing someone’s laugh is like hearing them in a
very innocent state that I found interesting." - P5, [Most Memorable, Most
Valence]

"..just hearing someone’s voice made me reflexively smile, which was sur-
prising. It was actually even quite immersive to hear strictly ambient noises
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that had been recorded, like keyboard typing and doors closing. " - P5, [Most
Memorable, Least Confusable, Least Arousal, Most Salient]

The participants also suggested that the compelling nature of the lis-
tening experience stemmed from a sense that the content was very
personal; while this is due in part to the nature of the recording exer-
cise (a wearable recorder that was capturing audio indiscriminately),
participants highlight the role of the "sensitive editing", or the auto-
mated sound object analysis, extraction, and curation process:

"The more unusual immersion was in the intimate mixes, again stemming
from the sensitive editing4 and the pervasive recording that managed to cap-

4 Participants were not informed of how
the summaries were prepared.

ture scenes that are usually off-limits... I am not sure whether those examples
would also feel immersive for other people, or if the sense of immersion comes
from recognizing the strange little details of one’s own life..." - P9

Triggering Memories without Explicit Documentation
A common theme that emerged from the participant responses was
the unprompted recollection of events and occurrences tied to the
summary content:

"..this was an almost bizarre (in a good way) experience of feeling the con-
nection between audio and my memory. Especially with people’s voices and
laughs. If you asked me what I did in the past few weeks before hearing this,
I’m not sure I would have written down what I am now enjoying my memory
of." - P5, [Most Memorability, Least Confusability]

"The sound was often cut too short for me to recognize the situation, but at
the same time I was surprised how much I remember from the snippet of sound
of what happened in that situation... I find the auditory experience to be very
stimulating and the fact that there are no images triggers memories in a much
more emotional way for me, because it is vague and ambiguous." - P7

"In the best examples, I was surprised by what felt like creative editing and
curation: with almost comedic timing, tying domestic activities together with
a well-cut sneeze or hoot. In those examples, I also found what felt like the
closest representation of my sense of home life: intimate, detailed snippets that
were just long enough to remind me of a bigger picture." - P9

As suggested by the quotations, most participants were aware that
they could not precisely pinpoint the events that were taking place
or the actions that they were engaged in when the audio in the sum-
maries was captured. Most, however, went on to suggest that the
curation process was effective in transforming this notion into an
emotional listening experience, eliciting feelings of nostalgia and
positive sentiment associated with past memories.
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New Perspectives on Everyday Life
Depending on the feature strategy used to curate the summary, par-
ticipants highlighted the ability of the presentation to offer different
perspectives on the same sound context, often allowing participants
to reexamine sound elements they had not noticed when recording:

"I was surprised by the level of environmental noise in [the] recordings,
combined together like in the recording they really make me feel stressed. It
makes clear how my brain filters information about my environment and
my experiences. When I hear the situations without the visuals it highlights
different aspects that was not noticeable to me before." - P7, [Least Arousal,
Most Semantic SSM, Least Memorable, Most Hcu]

"It’s just fascinating too to see what clips appear – some of them are really
clearly tied to specific events (like a video I watched or a specific project I was
working on), some evoke a common behavior I do (going for walks), some
I couldn’t even identify because they’re just background sounds I filter out
(or have headphones in)." - P1, [Least HPR, Most Semantic SSM, Most
Salience, Least Arousal]

"[I was surprised by..] the amount of laughter I encountered over the course
of the study; how eerie my workday ’silence’ sounded like; how my laugh
is more high-pitched than I remember." - P3, [Most Memorable, Least
Arousal, Most Pitch Diversity]

Using my Summaries
Participants were nearly unanimous in their interest in using the
summarization system again in the future. For instance, respondents
said:

"[I] absolutely [would use these audio presentations]. I’m actually quite
surprised at how interesting and fun and engaging listening to these clips
was, and I think it captured really interesting tidbits of life in a really unique
way." - P1

"I’d probably use it every few days. The information content was low though..
But I loved hearing a quasi-musical or sound-art gist of my days.. I would use
this more as an experience rather than anything to derive information from -
but it was indeed a fun experience, and if I listen to this a year from now, the
nostalgia quotient will probably be quite a bit higher!" - P10

Users also detailed specific use cases and application scenarios to
which they would want to see the system applied, with a focus on
reflection, wellbeing, and mindfulness practice:

"Especially would use it to capture a certain extended experience, like living
abroad, an internship, or a summer with family." - P3
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"I would use the audio presentations like a diary to reflect back on things fur-
ther in the past than a couple weeks, and I would use it as a daily diary rather
than weekly or longer. It would be interesting to use audio presentations for
funeral or wedding services, very intimate." - P4

"I’d be very interested to use this tool as 1) a kind of gratitude journal that
helps me keep my family and friends in mind, I am also interested in daily
or weekly intervals. I do a daily mindfulness meditation practice... I see
parallels and think that this could be a very valuable companion exercise to
that practice." - P5

Finally, several users alluded to the fact that given the intimate and
personal nature of the summaries, the mechanics of the summary
production that enable privacy – selecting short, individually unrec-
ognizable sound snippets that are combined by feature strategy – are
of paramount importance to the adaptation of such a system.

"If I know that the recordings never leave my recorder/phone and are processed
into unrecognizable bits (like the ones I head [sic] in the study) in real time,
would make me much more likely use this technology." - P7

"So perhaps intentional, intermittent use of a system like this would be good:
a couple of weeks a year just to have a taste of what each year felt like, not
from the perspective of the public, curated social feed but from the inside.. a
system for documenting my life that is only for ears and no one else’s." - P9

Positives and Limitations of Summary Production
Though not explicitly prompted to do so, users provided feedback
regarding the production methodology and audio rendering infras-
tructure that is used to support the algorithmic choices in the system.
Several praised aspects of the production pipeline:

"I really liked how the audio was spatialized. That added information about
the events that made the summaries tailored to how I experienced them. For
example, audio summaries of the workday (a lot of typing) had typing sounds
in different parts of space, because of my changing positions relative to my
keyboard, which made the end result more artistic" - P3

"[I was surprised by] how well some of the sounds were blended together
or laid over each other that sounded natural but I know they didn’t occur
simultaneously like that." - P4

"The way the sound clips flowed together was surprisingly good - almost like a
piece of composed sound-art music.. The stereo field was used well, and some
of the clips really did take me on a mini-voyage through the time I had the
gear." - P10

Others expressed preferences for production parameters that would
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have improved their sense of engagement:

"If the clips were longer I think I would have found it a bit more immersive...
Some way to unintentionally record would be better for me because the results
are surprising and fun." - P7

In the future, the feedback associated with this theme can be used
to explore other options for assembling summaries based on cog-
nitively analyzed and curated sound content. While we choose a
simple approach in this work and keep it consistent across users,
more complex production techniques (for instance, concatenative
synthesis [141]) could enhance the listening experience independently
of feature strategy.

5.1.9 Discussion

Thus far, we have described a new auditory interface – a tool that
can be used to mediate our interaction with the sounds that we cap-
ture around us – built with a feature space that augments traditional
spectral measures with "gestalt" measures inspired by ideas in audi-
tory cognition. In quantitative tests of user perceptions, we show that
these features dominate over or combine with spectral measures to
elicit specific aesthetic responses. And in an exploration of qualitative
feedback, we demonstrate that these features result in a system that
create compelling, moving listening experiences.

Here we address the value and limitations of this work, and suggest
several important contributions and open research problems that it
offers to the HCI community.

Cognitive Features as Inputs to Auditory User Interfaces Cognitively-
inspired "gestalt" feature extractors have the potential to be powerful,
as observed in the presented quantitative and qualitative results. In
the most reliable mappings between feature strategy and perceptual
goal from our study, gestalt feature extractors play the dominant
role; our analysis also shows that they surface a statistically differ-
ent set of audio samples than the acoustic feature extractors alone,
implying that the relationship between acoustic and gestalt informa-
tion is non-trivial and demands greater complexity in modeling. It
is important to note that these gestalt extractors cannot themselves
be considered predictive models of perceptual response – a sound
with a high "Memorability" score does not automatically mean it will
be readily remembered by a certain listener! – but instead that they
capture collective conceptual information which can be exploited to
construct such relationships in the context of an application, as was
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done in this work.

Towards Personalized Audio Summaries Despite the broad brush-
stroke conclusions that can be drawn from the aggregate participant
response, there is still significant variance in the reported summary
perception that is a function of an individual’s sonic diversity and
relationship to his or her sonic environment under personal context.
We suggest using the clusters mapped out in Section 5.1.6 as "pri-
ors" – or a priori information that forms a coarse model – between
feature strategies and perceptual archetypes, and then considering a
closed-loop system that incorporates user feedback to refine feature
weights towards specific preferences over extended periods of time.
We return to this idea in Chapter 6.

Limitations: Audio Classification Networks While neural networks
can bootstrap the translation of gestalt listening principles to system
design, there are limitations with current state-of-the-art models.
Supervised learning strategies designed to map independent sound
events to labels – as the AudioSet model does – do not generalize
well to dynamic, real-world sonic contexts, where sound events
frequently overlap and vary in signal-to-noise ratio. Classification
taxonomies are also often limited. Despite AudioSet’s notably large
ontology, information that can be extracted from the labels is drasti-
cally limited when compared to free-text human annotation. As the
research advances in favor of more naturalistic datasets and unsu-
pervised learning strategies, we can advance the capabilities of this
summarization system and other similar interfaces.

Limitations: User Study The user study methodology chosen for
this work allowed for a largely realistic evaluation of the system, but
presented certain practical challenges for the participants: discom-
fort in wearing the recording devices for several hours a day, limited
battery life and storage space, privacy concerns, and constant aware-
ness of the device’s presence all limited the extent to which a natural,
unadulterated sonic environment could be captured. In forthcoming
studies, we will consider ways to improve physical properties of the
device (i.e., choosing a device with a longer battery life and memory),
and attempt to better understand the role of the behavioral factors in
participant data.
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6

Personalizing from Gestalt Models

In the two previous chapters, we discussed constructing gestalt mod-
els that reflect crowd-average ideas about semantics in sound, and
presented examples of how these models could be used as they were
to construct applications that have the potential to modulate experi-
ence in sound at the level of the individual. However, in this chapter,
we return to a question left unanswered in Chapter 4. To illustrate it
better, let’s consider a simplistic example – our gestalt models sug-
gest that an audio clip of a body of water (sounds of a lake, waves
at the beach, a waterfall, etc) should have a high positive valence.
Having a model that assigns the clip this annotation is powerful, be-
cause it is an intrinsic measure that can’t readily be estimated from
acoustic quantities like pitch or amplitude. However, to go as far
as saying that a listener who consumes this clip will experience a
sense of calm or positivity after sampling this recording is a poor
inference. What if this listener has had a traumatic experience with
large bodies of water in the past, and feels frightened upon listening
to any related sound? Or perhaps the listener enjoys spending time
near bodies of water, and but finds the sound distracting as a result,
and chooses mostly to avoid water-centric soundscapes for his or her
daily meditation practice. Given this subjectivity and diversity, is it
at all possible to bridge the gap between our gestalt feature repre-
sentations and an individual’s interpretation of those representations
in the context of a specific application, especially when that individ-
ual interpretation is contingent on so much that is immeasurable –
such as one’s life experience, exposure, sensitivity to and training in
sound, and physiology?

In this chapter, we draw on the tools that stemmed from the work
in Chapter 3 to explore this idea – namely, we suggest that we can
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treat gestalt annotation models as a useful prior for personalized
applications, particularly because the models are constructed from
data that represents the "average" human. These priors can then
be adapted into personalized posteriors by sparse, longitudinal,
noisy reinforcement observations applied to a probabilistic modeling
framework suitable for this type of data. The powerful idea behind
this approach is that we use a probabilistic framework to treat "noise"
in observations of user preference as a single entity, allowing the
system to remain agnostic to the source of the noise and its likely
association with multiple factors that we can’t realistically account
for – such as a person’s background, an uncontrolled, naturalistic
environment that creates a diversity of biases in cognitive state, or the
lack of sensory measures that provide insight into cognitive state to
supplement self-reported measures.

To explore and demonstrate this idea, we return to the audio sum-
marization system in Chapter 5, and adapt it specifically to create a
system that condenses pre-selected ambient audio recordings into
stochastic soundscapes that facilitate a sense of focus and productiv-
ity. In this system, we use the learnings from Chapter 5 as guiderails,
by choosing a smaller set of feature strategies that we expect will
point to the appropriate cognitive outcomes; we then layer a rein-
forcement learning model on top of these "priors" to attempt to op-
timize their relative weights to an individual’s preferences with very
little data and in as natural a setting as possible. In discussing the de-
sign of this system and an analysis of the results from a deployment
study with N=25 individuals, we are most interested in the following
research questions:

- What is an appropriate modeling strategy to handle personaliza-
tion with regards to this application, where the system must han-
dle noisy, realistic observations stemming from self-report? We use
the term "noise" to collectively refer to two phenomena likely to
occur over one participant’s use of the system – changing baseline
cognitive state (and in particular, cognitive load) due to changes
in the environment, such as the work one is undertaking or levels
of activity in the surrounding space; and changes in interpretation
of the audio or the impact it has on cognitive state as a function of
stochasticity in the summary assembly process.

- What metrics do we use to understand whether we have truly
found an individual’s region of preference in the optimization
space? How can we combine observations from a test setting with
measures of confidence derived from the training process?
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- If we use this metric to examine the individuals we are able to
personalize separately from those we are not able to personalize,
in what ways do the training dynamics and engagement behaviors
appear to be different? What can these differences tell us about
whether and why personalization is necessary, and the ways in
which a system built under the proposed modeling framework
might succeed or fail?

6.1 Related Work

Personalization applied to tasks and interventions in the study of
HCI is not a new area of research, broadly speaking – we can think
of recommendation engines, location-specific services, customized
educational technology, and automated adaptations of interaction
modalities and user interfaces as illustrations of this intersection
[142]. Depending on the context, applications in this space are of-
ten powered by a spread of machine learning paradigms – examples
include domain adaptation (such as transfer learning or few shot
learning with neural networks) [117], bayesian inference [143], tradi-
tional or deep reinforcement learning [144], multi-task learning with
neural networks [145], or active learning conditioned explicitly on
demographic information [146].

While still few in number relative to other application spaces, there
an increasing number of applications employing personalization to
tasks and interventions in sound perception. For instance, [147] and
[148] apply a simple best fit mechanism and a gaussian optimization
process respectively to adapt to a user’s perception preferences for an
EQ tool; [149] demonstrates a gaussian process regression and active
learning system to optimize hearing aid parameters for individuals
with different assistive needs; and [150] mentions several approaches
using neural networks to individualize HRTFs by adapting generic
HRTFs under perceptual feedback.

The novelty of this work lies not only in applying a machine learning-
driven personalization strategy to previously unexplored terrain in
audio perception, but more importantly in demonstrating a person-
alization paradigm in this field that exhibits a fine-tuning procedure
layered on top of prior intuition. Unlike the approaches common in
the deep learning literature, we undertake this fine-tuning in a prob-
abilistic manner using a reinforcement learning strategy to account
for real-world observation constraints. We suggest that the approach
allows us to abstract away some of the sources of "noise" that are not
a function of individual preference, and provide an accompanying
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analysis that illustrates how failure modes can still form if the noise
is sizeable and persistent.

6.2 Methods

6.2.1 System Overview

The goal of our system is to create a soundscape from an extended
ambient recording that an individual feels is suitable for facilitating a
state of focus and productivity – a cognitive state that we choose by
drawing from the HCI literature on synthetic atmospheres [151] – by
optimizing over the relative weighting of a subset of summarization
feature strategies presented in Section 5.1. The subset of features
is chosen from the original set of 16 based on the feature strategies
that were found to be the most significant drivers of the "familiar,
comfort" and "calming, peaceful, and relaxing" clusters (see Table
5.1). To further restrict the optimization space, the union of these
feature strategies was whittled down to a set of four strategies per
ambient recording, by choosing the most divergent four strategies
after a content overlap analysis mimicking Section 5.1.5.

Interaction with the system consists of two phases: in the "train-
ing" phase, participants are asked to engage in a task that demands
a state of deep focus – such as working on an assignment, writing
code, reading a paper, or working at the lab bench – for several min-
utes while listening to the automatically generated soundscape. Any
time and any number of repetitions after the prescribed duration has
passed, participants are required to provide a rating along a 5-point
semantic differential scale regarding the suitability of the soundtrack
for their desired mental state. The system uses this rating to gen-
erate another soundscape in a subsequent trial, and the process is
repeated for a fixed number of trials. In the testing phase, partici-
pants are asked to repeat the process of listening and evaluating, but
are informed that all subsequent trials are the system’s best guesses
as to their preferences and that they are now evaluating the learning
outcomes.

6.2.2 Model

As the preference model underlying the interface, let us consider
an optimization space that has F features. For each feature, a cor-
responding weight l can be chosen from a scale of 0 to 1, and the
weights must sum to 1 across features. Therefore, the grid that we
use as a visual representation of the optimization space has as many
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dimensions as degrees-of-freedom, F - 1, and is only valid in the re-
gion where the weights are convex. A single point in the space can be
represented as:

lp = (l0, ..., lF�1), s.t. Â
f2F

l f = 1 (6.1)

A typical optimization problem would be framed as

O := argmin
lp ,p2P

H(lp) (6.2)

where P represents the set of all of the valid points in the optimiza-
tion space, and H is a function representing a human’s preference. In
this framing, the human response is perfectly deterministic, and any
number of numerical optimization methods could be used to locate
the optimal lp.

More realistically, however, we wish to construct a framework un-
der the assumption that H is probabilistic and reflects an underlying
preference likelihood, and that we build confidence that likelihood
by probing a lp repeatedly and inferring information about it from
neighboring points. In this vein, there are many traditional proba-
bilistic optimization approaches that one may consider – examples
include gaussian process optimization and bayesian optimization
[152], markov decision processes [153], etc.

In this work, we diverge slightly from the optimization literature and
frame the problem as a reinforcement learning problem. Namely, we
consider a Multi-arm Bandit (MAB) problem solved with Thompson
sampling [154], and adapt it slightly to the context of the system.
We choose this framework over the aforementioned strategies for
the following reasons: (1) given a limited number of user trials and
perceptual equivalence of the system output for very small perturba-
tions of a given lp, we wish to discretize the optimization space, and
make assumptions about the spatial independence of lp’s as a func-
tion of the euclidean distances between them; (2) for a given lp, we
wish to assume an underlying expected probability distribution over
preference outcomes (such as "preferred" or "not preferred"), rather
than a ground truth outcome with noisy measurements, which is the
assumption made in stochastic numerical optimization approaches
[155]; and (3) we want to be able to easily incorporate tunable heuris-
tics into the model about spatial relevance and the tradeoff between
exploration and exploitation as a function of the number of user tri-
als.

In our application of MAB to this system, we first discretize each di-
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mension of the optimization grid into D weights. Then, each possible
grid point is treated as a bernoulli bandit arm, which when evaluated
by a human listener (H) after listening to the corresponding sound-
scape, returns a reward r 2 {0, 1}, indicating whether the soundscape
is preferred or not preferred. As in the Thompson sampling ap-
proach, each point is represented by a beta distribution, parametrized
by pseudocounts a and b. The probability density function (PDF) is
given below:

f (x; a, b) =
1

B(a, b)
xa�1(1� x)b�1 (6.3)

where B is the Beta function. The PDF represents the likelihood of
the mean expected reward, qlp =

alp
alp+blp

, as a function of the ratio of
observed positive/ negative rewards and the total number of obser-
vations at that point. In our setup, the objective is first to maximize
ÂT

t=1 rt, the cumulative reward obtained over the total number of user
trials T, and then to select lp that maximizes q over p 2 P as the
region of greatest preference for further, fine-grained evaluation.

Our basic algorithm for sampling from the optimization space to
present soundscapes to the user and update the probability estimates
based on the user-supplied reward observation roughly follows [154],
as below: Algorithm 1: Sampling and updat-

ing Bernoulli Bandit with Thompson
Samplingfor t 2 T do

# sample model
for p 2 P do

sample q̂lp ⇠ f (alp , blp )
end for

# select and apply action
lt

p  argmaxlp
q̂lp

Apply lt
p to H and observe rt

# update distribution
(alt

p
, blt

p
) (alt

p
+ rt, blt

p
+ 1� rt)

end for

However, we determine the need to make minor adjustments to this
algorithm to account for constraints and requirements stemming
from pilot experiments – for instance, we would like to restrict the
number of user trials so as to bound the experimental duration to
1-2 hours, to minimize user fatigue; and users preferred to respond
with a graded scale as opposed to in a binary format, to better ex-
press nuances in their assessment of a soundscape. As a result, we
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(1) include a spatial reward update kernel, allowing us to use reward
information about a specific point in the grid to make weak infer-
ences about neighbors; and (2) replace the binary response options
on the user interface ("I Prefer this Soundscape" vs. "I Don’t Prefer
this Soundscape") with a 5-point semantic differential scale (from
"Strongly Not Preferred" to "Strongly Preferred"), translated to the
MAB model as weighted updates to the grid cell psedo-counts. The
revised algorithm is as below:

Algorithm 2: Adapted Bernoulli Bandit
with Thompson Samplingfor t 2 T do

# sample model
for p 2 P do

sample q̂lp ⇠ f (alp , blp )
end for

# select and apply action
lt

p  argmaxlp
q̂lp

Apply lt
p to H and observe rt, where rt 2 {0, w0, w1}

# update distribution
if likert rating is centered or positive: then
(alt

p
, blt

p
) (alt

p
+ rt, blt

p
)

for n 2 N, where N is the set of neighbors of p do
(alt

n
, blt

n
) (alt

n
+ grt, blt

n
), where g 2 [0, 1]

end for
else
(alt

p
, blt

p
) (alt

p
, blt

p
+ rt)

for n 2 N, where N is the set of neighbors of p do
(alt

n
, blt

n
) (alt

n
, blt

n
+ grt) where g 2 [0, 1]

end for
end if

end for

This algorithm is applied over T trials, which forms the training
phase. In the subsequent test phase, we choose the best performing
region from the training phase by selecting argmaxlp qlp , and probe
it for an observed reward on the semantic differential scale as in the
training phase. We additionally probe k random neighbors of this
chosen lp, which form the set of locations N, in the same manner.

At this stage, it is imperative that we discuss the several assumptions
we make regarding the model and the interactivity paradigms; we
believe that making these assumptions are useful for the task at hand,
but important to consider when examining experimental outcomes:
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- We assume that the underlying q is fixed per lp, and therefore that
varying reward observations across multiple probes of the same lp

reflects noise that emanates from changes in the user’s cognitive
state, not fundamentally shifting preferences.

- Though the user interface contains a graded scale, we model pref-
erence as a binary variable, with an expectation over preferring or
not preferring. We implement this as a more robust approach in
the face of a limited number of trials T.

- We assume that users will treat the semantic differential scale
options as spaced equidistantly, though this may not be the case in
practice.

- We assume that spatial dependence occurs at small euclidean
distances, and assume spatial independence at large euclidean
distances.

6.2.3 Experiment

To examine the research questions outlined at the start of the chapter,
we construct an evaluation system by applying the model described
above to the audio summarization system, as described in Section
6.2.1. Table 6.1 gives the values used for the tunable parameters in
the model.

Model Params Experimental Value
D 4
T 15

w0 2
w1 4
g 0.5
N radius=1
k 2

Table 6.1: Values used for model param-
eters in the experimental setting.

We choose three audio contexts – a city street, a forest, and a univer-
sity atrium – and obtain publicly available audio tracks correspond-
ing to each of these locations1. Each track is approximately 1-2 hours

1 https://freesound.org/people/
shuraifa/sounds/412817/; https:
//freesound.org/people/klankbeeld/
sounds/506678/; https://freesound.
org/people/JonnyThePonny/sounds/
232602/

in duration, recorded in or converted to stereo format, and is down-
sampled to 44100 Hz for the purpose of the evaluation. Table 6.2
gives the final list of feature strategies that were chosen per context
based on the overlap analysis.

A demonstration of the experiment can be found at the accompany-
ing website2. We recruit N=25 participants from the science crowd-

2 http://audio-mafia.media.mit.edu/
summary-study

sourcing platform Prolific3, consisting of an approximately 50:50

3 http://www.prolific.co

https://freesound.org/people/shuraifa/sounds/412817/
https://freesound.org/people/shuraifa/sounds/412817/
https://freesound.org/people/klankbeeld/sounds/506678/
https://freesound.org/people/klankbeeld/sounds/506678/
https://freesound.org/people/klankbeeld/sounds/506678/
https://freesound.org/people/JonnyThePonny/sounds/232602/
https://freesound.org/people/JonnyThePonny/sounds/232602/
https://freesound.org/people/JonnyThePonny/sounds/232602/
http://audio-mafia.media.mit.edu/summary-study
http://audio-mafia.media.mit.edu/summary-study
http://www.prolific.co
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Context Selected Feature Strategies
City most semantic self-similarity, most arousal, least

confusability, most valence
Forest most arousal, most pitch diversity, most valence, most

semantic self-similarity
Atrium least acoustic self-similarity, most arousal, least

confusability, most semantic self-similarity

Table 6.2: Chosen feature strategies per
audio context in the experiment.

male to female ratio, with participants spanning the ages of 18 to
47. Though all were required to be fluent in the English language,
participants identified as being from at least 9 different countries.
With T=15 trials, each experiment takes approximately 1.5 hours to
complete, for which we compensate participants approximately $9.

6.3 Results and Discussion

In the following section, we present and discuss the implications of
several trends that emerge from the experimental data. Unlike a tra-
ditional analysis of an experiment that might accompany a novel HCI
intervention, this section will not attempt to argue that the system is
"successful" in achieving personalization for a statistically significant
majority of the user study participants, nor will it provide a gener-
alized analysis of the outcomes as they pertain to the application
itself (such as noting that more people who listened to the "forest"
soundscapes preferred content with higher "arousal" scores)4. In-

4 This analysis, however, would be foun-
dational work for smart environment
and sound perception research – a great
starting point for future graduate thesis
work.

stead, we focus this analysis on attempting to answer the research
questions outlined at the start of the chapter, by first determining an
appropriate metric to quantify personalization, and then uncover-
ing the participant behaviors and biases that appear to separate out
the participants whom we can personalize from those that we can’t.
We believe the insight is valuable not only in the context of building
custom soundscape engines for targeted cognitive states, but more
broadly to inform the design of systems that must tackle the complex
challenges of user preference adaptation – we present examples of
such systems following the results.

In Figure 6.1, we show the distribution of participant test point
scores, normalized linearly by the range of the participant’s train-
ing rating to account for diversity in usage of the response scale. In
the case of a traditional intervention, we would consider the training
data as the input to the model and the testing data as the output;
therefore, we might draw a threshold along the score axis – perhaps
at 0.75, to select responses that map loosely to the "Prefer" option
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on the scale – and suggest that all participants that fall above this
threshold should be considered personalized.

Figure 6.1: Distribution of normalized
user test point ratings. The blue curve
gives only the ratings in the region with
the greatest q; the red curve considers
a mean of this point and the neighbors
probed in the test phase.

However, in light of the challenges motivating the chosen modeling
framework, we determine that it is not reasonable to take the test
point scores at face value, as there is little reason to believe that the
test phase evaluations are more resistant to noise than the training
phase evaluations. Therefore, we require a measure of confidence
to accompany the test scores that can be derived from the interme-
diate modeling process. In Figure 6.2, we plot the normalized test
scores against the expected reward, q, associated with the test point
location. The participants for whom we believe that we have truly
identified a region of preference – and for whom we have confidence
in this finding – are located towards the top right of the plot, asso-
ciated with a greater expected reward and normalized test rating at
the primary test region. Any heuristic can be chosen to divide the
respondents in this metric space into two groups, one representing
those for whom we have achieved personalization, and one represent-
ing those for whom we have not. For further analysis, we intuitively
select a region greater than 0.75 in expected reward and normalized
test scores, as this value would map to the "Prefer" mark on the likert
scale for most participants5.

5 This, of course, depends on a partici-
pant’s use of the scale; we can account
for conservative responding behavior
by normalizing test scores, but the
expected reward does not have a di-
rect mapping to rating behavior – it is
simply a confidence heuristic.

We next examine the behaviors of the personalized group in more
detail. Figure 6.3, 6.4, and 6.5 give a visualization of the outcomes
of the reinforcement learning process for select participants in the
personalized group. Each point on the grid, representing a point lp,
is shown with a colored circle, representing the final expected reward
q at that point. The region with the greatest q is additionally marked
with a triangle, representing the normalized likert rating assigned to
that location by the participant in the testing phase. In sample grids
corresponding to the forest context, participants’ preferred weight-
ing locations differ, but are roughly constrained to a small region,
despite different rating behaviors as a function of the optimization
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Figure 6.2: Normalized test scores in
the primary test region plotted against
corresponding q values. The shaded re-
gion indicates the participants selected
by our heuristic for personalization.

space; however, in the atrium and city contexts, preferred lp’s are
diverse and spread apart in euclidean space. These plots collectively
indicate the need for and value of personalization, contrary to intu-
ition – even within a context, and for some contexts more than others,
participants who demonstrate a reliable preference can display very
different preferences. At the accompanying repository6, we provide

6 http://audio-mafia.media.mit.edu/
MAB-personalized-soundscapes/

audio examples of summaries associated with the most preferred
grid locations associated with different contexts and different partici-
pants in the personalized group.

We then further investigate the differentiating attributes between the
personalized and non-personalized participant groups, focusing on
training dynamics. We first note an overall context bias, as shown
by Figure 6.6 – independent of the personalization outcomes, the
forest context is generally more suitable to the task of focus and
productivity when compared to the city and atrium contexts. This is
reflected in the across-participant distribution of raw training ratings
(Figure 6.6), which shows a skew towards "Preferred" and "Strongly
Preferred" in the forest context relative to the other two contexts.

Despite this bias, there are two behaviors that hold across contexts
and participants that distinguish the personalized/ non-personalized
groups, which hold implications for understanding the circumstances
under which in-the-wild systems can adapt to user preferences. The
first is shown in Figure 6.7, where we see that across all grid locations
presented to a participant – not just the location with the greatest
expected reward – participants in the personalized group have much
higher test-to-re-test consistency. This suggests that, in the context
of this task and the activity they chose to complete while listening to
the soundscapes, these participants were more likely to be in a con-
sistent cognitive state, or interpret the changes in the audio content
in a consistent manner, or both. We can go on to weakly infer that

http://audio-mafia.media.mit.edu/MAB-personalized-soundscapes/
http://audio-mafia.media.mit.edu/MAB-personalized-soundscapes/
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Figure 6.3: Visualization of sample
participant rating behaviors, in the
"Forest" context.
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Figure 6.4: Visualization of sample
participant rating behaviors, in the
"Atrium" context.
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Figure 6.5: Visualization of sample
participant rating behaviors, in the
"City" context.
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Figure 6.6: Plots describing the base-
line bias induced by the context on
personalization.

the presence of these behaviors in participants, whether tied to the
individual or the environment, increase the likelihood of our system
being able to identify a region of preference in the weighting space.

Figure 6.7: A measure of test/ re-test
consistency across locations aggregated
over participants, reported as the
spread of train ratings. The smaller bar
indicates higher consistency.

In Figure 6.8, we also see that the responses in the personalized
group (given by the circles in black) cluster towards having the most
diverse train ratings and expected reward values across the trials
they are presented with, as measured by the standard deviation of
both quantities. This suggests that the participants we are able to per-
sonalize are able to provide polarized opinions, identifying not only
regions of preference with high consistency in their ratings, but also
regions of strong dislike. We can weakly infer that these participants
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are likely to interpret the task at higher resolution, and are able to
translate to their responses subtle changes in their perception of the
audio, changes in their perception of cognitive state, or both.

Figure 6.8: A measure of response
diversity, reported by the spread of
train ratings and expected rewards
across grid locations, per participant.
Personalized participants are given in
black, and non-personalized are shown
in gray.

6.4 Conclusion

In this chapter, we present a personalization framework that allows
us to operate in the face of small quantities of data, while acquir-
ing this data through a single, noisy response modality; as a result,
we make strong assumptions about the structure of the beliefs un-
derlying the model, intuit the nature of the noise accompanying the
response channel, design an appropriately constrained optimization
space, and implement a probabilistic model that allows us to robustly
identify local optima. The insights from the analysis provide con-
crete information, specific to this intervention, about the kinds of
user behaviors that allow for personalization and about those that
pose a challenge; subsequent iterations of this and similar systems
can seek to explicitly minimize these sources of noise. For instance,
a pre-training phase can be included to improve response resolution
and graded scale interpretation; or means to capture other changes
in the environment that influence cognitive state of sound interpre-
tation – like a question field that asks, "How loud is the environment
you’re working in?" or "What task are you trying to focus on?" – can
explicitly be factored into the label confidence heuristic.

The current study does exhibit several limitations and scope for fu-
ture work. For instance, we employed only a small number of par-
ticipants each completing only a few trials due to time and cost con-
straints, which could be extended to develop a better understanding
of the modeling strategy. We also chose, in the interest of practical-
ity and realism, self-report as the sole user feedback modality for
personalization – considering signals from an array of biophysical
sensors could provide additional channels of information to the per-
sonalized model, contingent on having the ability to study those
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modalities first, per individual, in an isolated environment, so as to
obtain suitable priors before personalization. If these extensions are
explored further, the design choices and validation methods used
here could extend to the individualization of several other audio per-
ception tasks; for instance, calibration experiments for perceptually-
aligned spatial rendering on augmented and virtual reality platforms;
customized mappings for sonification engines (or sound modula-
tion engines, like the SoundSignaling system) that are tailored to
individual preferences over time via sparse, longitudinal reinforce-
ment; or the optimization of audio infrastructure attributes (speaker
placement, EQ settings, etc) for home media consumption given an
individual’s psychoacoustic profile and content preference.
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7

Towards Gestalt Computation

In this dissertation, we introduce tools for the construction of models
that reflect gestalt ideas in sound understanding. We discuss creative
means to probe and capture sound understanding phenomena at the
level of the crowd, including using a word-embedding space to as-
sess causal uncertainty, a gamified web interface to capture trends in
memorability, and a hierarchical label ontology to extrapolate from
small-data annotations to dynamic, real-world audio settings; we
discuss the value of domain adaptation in this problem space, sug-
gesting the value of a bootstrapping paradigm with interpretable
intermediate structure and constructing a secondary modeling struc-
ture on top of the crowd-scale models to attempt personalization;
and we discuss the representation of annotation diversity as model
uncertainty, as we encroach upon the cognitive ideas that sit in the
gray area between the shared and subjective. Together, these tools
will enable a suite of cognitive models in audition – including and
beyond the ones that are documented and demonstrated in this the-
sis – that will allow for what I call gestalt computation. In the idea of
gestalt computation, I suggest that the fundamental unit of process-
ing in sound shifts from signal level properties to gestalt properties,
an exact analog to the metaphorical dichotomy that is expressed in
the dialogue between the researcher and participant in Section 1.2.
Via gestalt computation, we can analyze and manipulate audio along
gestalt dimensions, as we have already demonstrated in this thesis.
But we can also go one step further – we can use gestalt measures as
metrics for distance, assigning new meaning to the idea of "loss" that
is entertained regularly in acoustics research, and we can synthesize
and generate entirely new content along gestalt dimensions.

The language used here may insinuate that this notion of gestalt
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computation is a far-fetched thought; however, in the subsequent
section, we describe an example of a simple research effort that is
illustrative of the proposed paradigm and the potential it may afford
future auditory interfaces.

7.1 Manipulating Causal Uncertainty in Sound Objects

As discussed in Section 4.1, research shows that we employ both
acoustic and gestalt sound understanding processes to make com-
plex inferences about the world around us. For example, if we hear
a dog barking, we might notice that the pitch of the bark is low, but
that its amplitude relative to the other sounds in our periphery is
high, thereby drawing our attention. At the same time, we may pro-
cess more abstract features about the sound, such as its emotionality,
which leads us to believe that the dog is not a threat as we take a
walk. Perhaps most importantly, ecological sound psychology re-
search demonstrates that one of the primary processes that our mind
engages in when interfacing with a sound object is attempting to es-
timate its source, or cause [81, 82]. When asked to describe the sound,
for instance, we might say "a dog barked," suggesting that we have
immediately inferred the cause of the sound.

As a review, this high-level aspect of auditory cognition – causal esti-
mation – is known to play an important role in sound understanding.
When treated as an intrinsic property, causal uncertainty, or how ap-
parent the source of a sound is, has been shown to be a powerful
indicator of how likely we are to remember the sound, attend to it, or
respond to it emotionally [81, 82, 3].

Because of the wide range of phenomena in sound understanding
that causal uncertainty drives, being able to manipulate a sound ob-
ject’s intrinsic causal uncertainty would prove very useful in audio
experience and interface design. For instance, subtly altering the
causal uncertainty of objects in a virtual reality soundscape might al-
low us to steer a listener’s attention or focus towards specific spatial
regions with time; we could envision augmented reality devices that
modify causal uncertainty in the sounds that surround a user during
periods of intense cognitive load to minimize distraction or surprise;
and we might imagine algorithms that manipulate causal uncertainty
in foley sounds used for film soundtrack design in an attempt to
achieve heightened emotional impact.

To this end, in a project led by undergraduate researcher Tal Boger
(Yale University)1, we present a method for changing a sound’s

1 Statement of Contributions: Tal was
a visiting undergraduate researcher
under my mentorship. The research
idea and steps to implementation
were my work, while Tal contributed
the implementation in entirety. The
writing in this section is adapted from
a publication which was a joint effort.
I thank Tal for his excellent work and
contribution to this dissertation.
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causal uncertainty by optimization over perturbations in its acoustic
properties. Unlike in the ecological audition or psychology literature,
we cannot practically compute causal uncertainty by human label an-
notation and consensus, as in the HCU400 dataset. Instead, following
the proposal in Section 4.4, we again use the uncertainty of a pre-
trained audio classification model released by Google, YAMNet, as a
proxy for human causal uncertainty2. To the best of our knowledge,

2 This approach, again, has its limi-
tations that stem from the choice of
AudioSet as the target ontology and
models trained on this ontology as the
inference engine. See Section 4.4.3 for
an in-depth discussion.

this is the first known attempt at manipulating causal uncertainty in
a structured fashion. Our early results point towards the possibility
of using more generalizable learning methods (e.g., methods that can
scale to multiple sounds and learn to use a wider range of manipula-
tion strategies) with significant implications for experiences in sound
interaction.

Our key contributions in this work are as follows:

(1) We design an optimization procedure which takes a sound ex-
cerpt as input and perturbs select acoustic properties (such as am-
plitude, pitch, playback speed, etc.) to scale the sound to a desired
level of causal uncertainty.

(2) We apply the procedure to a selection of environmental sounds,
quantitatively describe the results of the optimization in terms of
convergence and the distribution of changes in acoustic features
across sound classes.

(3) We demonstrate the effectiveness of the approach by conduct-
ing user listening tests, and show that listeners reliably perceive
changes in causal uncertainty, matching those from our optimiza-
tion procedure, in a sound comparison experiment.

7.1.1 Related Work

In this work, we aim to extend methods to quantify causal uncer-
tainty by presenting a strategy to manipulate it. Specifically, we seek
to morph sounds towards a target Hcu. To this end, methods for al-
tering sounds have progressed significantly in recent years. New
large-scale, statistical approaches using neural style transfer, gener-
ative adversarial networks, and other deep learning techniques have
produced impressive results in the domains of music, speech, and
environmental sounds [156, 157]. However, we find that such ap-
proaches require large datasets and significant compute to achieve
training stability and convergence, especially in the context of the
proposed task, which demands subtle changes to create ambiguity
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Figure 7.1: The system takes an audio
input X0 and target causal uncertainty
(Hcu) value, and estimates parameter
values Pt at each time step t for a select
set of audio transforms. The transforms
are applied to x0 to generate a modified
sound x̃t which, along with Pt and
the target Hcu, are fed to a custom
cost function defined over error in Hcu
(LHcu), relatedness in sound labels
(Llabel), and transform magnitude
(Ltrans f orm).

without significantly altering, adding, or removing sound objects or
events. We further expect statistical methods to pose challenges in
stability and complexity, because our method for estimating Hcu from
a sound excerpt also requires a pre-trained neural network which
may suffer from a lack of adversarial robustness.

As a simpler, alternative approach that serves as a proof-of-concept,
we take inspiration from the work in [158, 159, 160], which presented
a per-image optimization pipeline to modify the visual memorability
of face images. The problem in [158, 159, 160] is analogous to ours,
as both problems require similarly tight control over semantic and
lower-level properties. Their method succeeded in optimizing images
of faces to become more or less intrinsically memorable, and the re-
sults of their approach were verified in a perceptual task. Here, we
take a similar approach in designing an optimization problem, adapt-
ing the optimization space and cost function to reflect the relevant
semantic and acoustic properties of audio.

7.1.2 Methods

Overview Our proposed method operates as follows, as shown
in the illustration in Figure 7.1. The method takes as input a tar-
get Hcu value and a sound excerpt, and applies a Gaussian process
regression-based Bayesian optimization strategy [161], a "blackbox"
optimization framework, to determine parameter values for a small,
fixed set of acoustic transforms. To evaluate the parameter values,
the acoustic feature transforms are applied to the input sound, and a
cost function is computed on the result at each iteration of the opti-
mization. We utilize a blackbox approach because our cost function is
expensive to compute and not differentiable. For every sound that we
wish to manipulate, we apply this optimization for a fixed number
of calls and examine the result with the lowest cost as the output. We
examine the individual components of this optimization process in
the sections below.

Optimization Parameters We first define the parameters we are opti-
mizing. To begin with a simple formulation, we create a constrained
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search space of select low-level audio features. We selected these
features and their parameter ranges based on their definitions in a
popular sound editing toolchain known as SoX3, which we also use

3 http://sox.sourceforge.net/to implement the transforms. Table 7.1 shows the low-level feature
values we optimize over, along with the range of their search spaces.

Feature name Search range
Gain [-25, 25] (dBs)
Pitch [-250, 250] (hundredths of a semitone)
Playback Speed [0.5, 1.5] (rate)
Reverberance [0, 100] (factor)
High-pass filter [1, 3000] (Hz, cutoff frequency)
Low-pass filter [5000, 8000] (Hz, cutoff frequency)

Table 7.1: Features and parameter
ranges for optimization. Features
are presented in the order they were
applied to the sounds.

Note that when optimizing a sound to lower its Hcu (i.e., making
a sound more certain), we restrict the gain to [0, 25] dBs. This was
to ensure that sounds were not becoming "more certain" by being
converted to silence, an edge case in our optimization. We also note
that this approach can be extended to several other fine-grained
audio effects and transforms – examples include equalizers, limiters,
compressors, etc. – but we choose to limit our early explorations
to the set in Table 7.1 to achieve reasonable execution times under
limited compute.

Objective Function In our optimization, we minimize the following
loss function, which consists of a weighted sum of three terms:

L = l1LHcu + l2Llabel + l3Ltrans f orm (7.1)

where Lx represents a loss term constraining a different aspect of
the sound manipulation, and li is a weighting term. Note that each
li is defined either as a constant, or a function of the loss terms. We
provide the definitions for each term below.

LHcu represents a measure to compare the Hcu at the current opti-
mization step (Ĥcu) with the target Hcu, and penalize the error. We
define it as:

LHcu = |Ĥcu � Hcu| (7.2)

where Hcu is computed following [162] by taking the prediction
output from YAMnet on the transformed sound and obtaining the
maximum mean probability output. Then, we weight this term with
a l1 parameter which is designed to penalize larger values of LHcu

more heavily. We defined l1 with a step function that monotoni-
cally increases as LHcu increases from 0 to 0.5, after which point it is
constant.

http://sox.sourceforge.net/
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While changing Hcu is our main goal, it is important to do so while
preserving the label integrity of the initial sound. After all, any
sound can be made causally uncertain by adding noise to the point
that it is uninterpretable; doing this, however, results in little util-
ity for achieving control in sound experiences via subtle changes.
Therefore, we decide to penalize sounds based on how different their
labels are from the labels of the initial sound by introducing Llabel .

To construct Llabel , we use node distances in the class ontology of
AudioSet, the dataset used to train YAMNet [9, 2]. The ontology
presents AudioSet classes in a tree structure. For example, the label
"cat" has child nodes "purr" and "meow." We can use this tree struc-
ture to our advantage to create an intuitive Llabel term. If we apply
transforms that modify a sound that is initially labeled a "purr," we
would want to penalize it much more for becoming a "chainsaw"
than for becoming a "meow," given their relative distances on the
ontology tree.

Let S0 be the initial (i.e., before applying any audio transformations)
set of top 10 most probable labels, and St be the top 10 most probable
labels at step t. We define M to be a matrix of all pairwise combi-
nations of labels in S0 [ St. Mij is defined as the number of edges
between label i and label j in AudioSet’s ontology. For instance, a
child-parent relationship consists of a single edge, and a sibling-
sibling relationship consists of two edges. For label combinations
where no connection exists between nodes, we set the distance equal
to one more than the maximum possible number of edges. Then, we
define Llabel as the mean of Mij|i<j (i.e., M is symmetric, and we ig-
nore diagonal entries, where we have the "distance" between a label
and itself).

In defining l2, we have two separate cases: (1) Target Hcu > initial
Hcu (i.e., making a sound less certain); (2) Target Hcu  initial Hcu

(i.e., making a sound more certain). In case (1), we scale l2 according
to the current Hcu. This is because as we raise Hcu, we expect the
labels to vary slightly, so we want to relax the total penalty of the
l2Llabel term. As such, in case (1), we define:

l2 =
1

1 + Ĥcu
(7.3)

In case (2), we scale l2 according to the current Llabel . When making
a sound more certain, it is crucial to maintain its labels. So, we apply
the following very strict penalty for label distance:

l2 =
1

1� Llabel + #
(7.4)
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We lastly design a loss term to penalize large changes in the trans-
form parameters. Ltrans f orm is a normalized sum of our transforms
such that the largest transformation of a specific feature corresponds
to a penalty of 1 for that feature. We define it as:

Ltrans f orm =
1
6

✓
|gain|

gainmax
+

|pitch|
pitchmax

+
|speed� 1|

speedmax � 1
+

reverb
reverbmax

+
HPF

HPFmax
+

LPFmax � LPF
LPFmax � LPFmin

◆
(7.5)

and l3 is set to a constant scalar.

7.1.3 Experiments

Dataset To evaluate our approach, we apply our optimization method
to a selection of sounds from Google’s AudioSet dataset [2]. The
original dataset consists of 632 classes of sounds, with more than 2
million 10-second sound examples in total; however, we choose a
small set of illustrative examples to demonstrate our results. Specif-
ically, we choose four broad categories of environmental sounds –
human sounds, animal sounds, nature sounds, and inorganic sounds
– and selected pairs of classes of sounds within each category. These
include: (1) Crying and laughing (human sounds); (2) Dog and cat
(animal sounds); (3) Fire and water (nature sounds); (4) Wood and
glass (inorganic sounds).

We run our optimization on all examples within the AudioSet bal-
anced partition which list one of these categories, or their children in
the ontology, as their primary label. This gave us 323 sounds in total
(approximately 40 sounds per class). We downsample the audio to
16000 Hz to allow for compatibility with the YAMNet model, which
is embedded in the cost function. This downsampling results in au-
dio with less high-frequency detail, which may result in a narrower
scope for subtle manipulations; however, this is a limitation of the
network, rather than our approach.

Optimization Targets For each sound in our curated dataset, we
apply the optimization to generate both a more uncertain (higher
Hcu) and a less uncertain (lower Hcu) version, with target Hcu values
of 0.8 and 0.2 respectively. We therefore restricted sounds in our
dataset to include only those within an initial Hcu range of 0.3 and
0.7. This restriction ensures that we sample sounds from a broad
range of ambiguity that require some modification to reach our target
Hcu.

We allow the optimization for each sound to run for a maximum of
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200 iterations using the parameter search ranges and cost function
described in Sections 7.1.2 and 7.1.2. The initial values for the audio
transforms are set to be neutral (zero gain, playback rate of 1, etc.),
and the YAMNet model prediction is used to obtain an initial list of
the top 10 labels describing the sound.

Perceptual Evaluation We finally create a listening task to evaluate
whether our optimization results reflect human perception. Specif-
ically, we wish to know whether raising or lowering a sound’s Hcu

results in more or less certainty in listener source estimation.4
4 You can try the task yourself at http:
//audio-mafia.media.mit.edu/hcu_

task/We create a task wherein participants are asked to listen to two
sounds and choose the sound for which they have greater certainty
in its source. On 1/3 of the trials, the two sounds presented were the
unchanged sound (the anchor) and the higher Hcu version of that
sound, as created by our optimization pipeline. On 1/3 of the trials,
the two sounds were the anchor and the lower Hcu version of that
sound. On the remaining 1/3 of the trials, there was no anchor; the
two sounds presented were the higher Hcu and lower Hcu versions of
the same sound. This creates a two-alternative forced-choice task to
quantify our success in changing a sound’s causal uncertainty.

A single experiment included 48 trials in total, split into 6 blocks of
8. Each block contained one sound sample of each class. The sounds
chosen, along with the order of the sounds within-block, the order of
the trial types, and the position of the more certain sound, were all
randomized within-subject.

To conduct the study, we recruited 20 participants from the online
crowd-sourcing platform Prolific (for a discussion of the reliability
of Prolific’s subject pool, see [163]). Each experiment took approx-
imately 25 minutes, and each participant was compensated upon
completion of the experiment.

7.1.4 Results

Samples of the original and manipulated sounds can be found at the
repository accompanying this work5.

5 https://osf.io/6xmv7/?view_only=
c2dd0d00d2064b61ad380fb14e640664

In our perceptual task, human evaluations aligned with our opti-
mization results. Subjects were able to choose the more causally
certain sound (as determined by our proxy Hcu) at a rate significantly
above chance (t(19) = 4.46, p < 0.0001, M = 57.60%, 95% CIs =
[54.04%, 61.17%]). This was not simply driven by a few subjects per-

http://audio-mafia.media.mit.edu/hcu_task/
http://audio-mafia.media.mit.edu/hcu_task/
http://audio-mafia.media.mit.edu/hcu_task/
https://osf.io/6xmv7/?view_only=c2dd0d00d2064b61ad380fb14e640664
https://osf.io/6xmv7/?view_only=c2dd0d00d2064b61ad380fb14e640664
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forming with very high accuracy; 16 of 20 subjects chose the more
causally certain sound over half the time.

The results of each of the three trial types (higher-anchor, higher-
lower, and lower-anchor) were significantly different from chance
(see Figure 7.2). On higher-anchor trials, participants had nearly
perfect accuracy (90.15%). On higher-lower trials – where the original
sound was not presented – participants chose the more causally
certain sound 68.96% of the time. Finally, on the lower-anchor trials,
participants consistently mistook the original sound as more causally
certain than the one with lower Hcu (12.81% accuracy).

The very poor accuracy in the lower-anchor trials has two potential
causes. First, it highlights the challenge of making the source of a
sound less uncertain, using only a simple set of acoustic tools – we
discuss the framing of the task and future strategies for improving
performance in Section 7.1.5. Secondly, the results demonstrate that
participants potentially perceive any change to a sound using our
effects chain as increasing its source ambiguity, suggesting that the
manipulated sounds do not seem natural. We expect that this behav-
ior can be controlled for by more subtle, computationally intensive
sound operations (see Section 7.1.5).

Finally, we compare the accuracy per class in our perceptual task. In
Figure 7.3, we note that we do not have homogeneous results across
classes; for instance, sounds with the labels fire and water – the two
natural sound classes – have lower accuracy than the sounds with
other class labels. This hints at differences between sounds – either
spectral, semantic, or both – that could be further exploited for the
manipulation of causal uncertainty, with deeper analysis that could
stem from a larger number of data points per trial.

Figure 7.2: Grouped subject accuracy
for each trial type in perceptual task.
Error bars are 95% CIs. All groups
differ from 0.5 with p < 0.001
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Figure 7.3: Grouped subject accuracy
for each class in the perceptual task,
across trial types. Error bars are 95%
CIs.

7.1.5 Discussion

We have shown that our optimization pipeline succeeds in altering a
sound’s Hcu to within a close range of a target while maintaining its
labels. These results are then confirmed by a perceptual task, where
human judgments begin to align with our optimized results. The
results from the perceptual task shed light on interesting areas of fur-
ther work, especially regarding limitations in our dataset, methods,
and the notion of changing Hcu.

Dataset Selection In our evaluation, some limitations stem from
our sampling approach. For example, several sounds of one class
may not be isolated (e.g., a "rain" sound having thunder in the end),
which affects both its cognitive properties (as thunder may help
one identify the sound as rain) and its transformations (as the same
transform affects the uncertainty of rain and thunder differently).
On the contrary, we do not perceive sounds in perfectly isolated
environments; we perceive them as part of a broader world, which
often includes other sounds and properties. Our dataset selection
reflects how one would change sounds "in the wild" as opposed to in
controlled, isolated environments.

Along with the issue of isolation, our dataset contains a wide variety
of sounds within a specific class. Within the class of "dog" sounds,
for instance, are sounds of both dog barks and dog cries. While we
choose the parent label as the "cause" to demonstrate our approach, a
more granular exploration would be a valuable future exercise.

We also evaluated our methods on a small subset of the total classes
available in AudioSet. However, we chose both broad categories (e.g.,
both natural and artificial sounds) and orthogonal classes within our
categories (e.g., dog and cat), which point to the generality of our
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approach. We intend to expand our evaluation to a broader set of
AudioSet classes in future explorations.

Modeling Approaches Though we present a simple and robust ap-
proach, there are several ways to extend our framework for chang-
ing a sound’s causal uncertainty. One may consider how adding
additional transformations to increase sensitivity, removing transfor-
mations to create a more controlled set of changes, or changing the
order of transformations may affect results.

Methods other than our blackbox optimization may yield better
results, too, given that corresponding changes to the dataset are
made. For instance, since our current Hcu approximation method
does not restrict us to working with small datasets, the most natural
extension to this work would entail the use of deep learning-based
approaches – this may allow us to move beyond low-level feature
manipulation towards semantic content manipulation, and allow
for higher resolution, smooth and continuous changes to the Hcu
attribute of a given sound. Future work may explore the viability of
such approaches for this problem.

Despite its simplicity, this approach presents a first step in gener-
alized methods for scaling complex properties of sound objects,
with powerful implications for user experiences. This optimization
methodology can be readily extended to other annotated sound prop-
erties – examples include affect and memorability – when coupled
with custom or off-the-shelf proxy estimation models that scale to
real-world audio.

The Meaning of Reducing Causal Uncertainty The poor accuracy
resulting from the lower-anchor trials in our perceptual task raises
questions regarding the philosophical meaning of changing a sound’s
causal uncertainty. Raising a sound’s causal uncertainty is easy to de-
fine and understand, as it simply requires making its source less
clear. However, what does it mean to take an already-uncertain
sound, and lower its causal uncertainty? Seemingly, the opposite of
the raising Hcu definition applies – lowering a sound’s causal uncer-
tainty requires making its source more clear. However, this requires
adding information to a sound to allow it to be more identifiable,
which must be inferred. Our current methods are not well-equipped
to achieve this.

Perhaps making a sound less causally uncertain demands a broader
set of tools that includes both a suite of subtle, production quality
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acoustic effects, as well as the insertion or deletion of content on a
semantic level. To experiment with the former, we might expand the
optimization space to include operations such as multiband equal-
izers and compressors, band-specific filters, and limiters, without
constraining the order of application. To consider the latter, we even-
tually look to large-scale statistical approaches, such as deep neural
networks, in order to learn to generate a wider diversity of natural-
sounding excerpts that meet the target Hcu constraint.

Nevertheless, any future work requires additional analysis and dis-
cussion surrounding the definition of reducing causal uncertainty
from the standpoint of cognitive processing and sound understand-
ing.

7.2 Applications

I conclude this thesis with a discussion of the technological future
that gestalt computation could catalyze, by speculating about its
intersection with a few themes of active discussion in the research
community today. Some of the ideas that result from this marriage
are lofty, futuristic, and are perhaps more worthy of cinematic story-
telling than practical research aspirations; some, on the other hand,
are but a few years away from being within our grasp.

Compression While audio is becoming easier to capture, cheaper to
store, and faster to retrieve by the day, our mindset surrounding the
idea of compression hasn’t changed in decades. However, having ac-
cess to gestalt models allows us to restructure these mental models;
for instance, rather than being focused on constraints of perceptibil-
ity that are drawn from psychoacoustics research, we can consider
measuring error, or "loss", in more abstract terms. Imagine a system
that considers the portion of an audio recording you are least likely
to attend to or remember, and deletes it, instead of the portion that
is least likely to be audible; imagine a system that takes the least va-
lent or arousing components of a recording, deletes those objects at
compression time, and inserts arbitrary equivalents of those sound
objects – from a standard database – at replay time. Much like in the
way that natural language processing attempts to distill long tran-
scripts of writing into meaningful, interpretable text bytes are distinct
from condensing them by conversion into a .zip file, compression
in this sense may lead to new content and new listening behaviors
altogether. Incorporating more complex perceptual ideas into com-
pression standards is already being explored in vision6; and notably,

6 https://opensource.
googleblog.com/2021/09/
using-saliency-in-progressive-jpeg-xl-images.
html

we are steadily building up the infrastructure that would allow us

https://opensource.googleblog.com/2021/09/using-saliency-in-progressive-jpeg-xl-images.html
https://opensource.googleblog.com/2021/09/using-saliency-in-progressive-jpeg-xl-images.html
https://opensource.googleblog.com/2021/09/using-saliency-in-progressive-jpeg-xl-images.html
https://opensource.googleblog.com/2021/09/using-saliency-in-progressive-jpeg-xl-images.html
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to do it in audio – the MPEG-7 standard7 allows for the marking of
7 https://en.wikipedia.org/wiki/
MPEG-7

time-dependent audio metadata which could be used to tag audio
with gestalt information, and the new Dolby Atmos standard8 is

8 https://www.dolby.com/
technologies/dolby-atmos/

already encouraging audio content creators to treat sounds as indi-
vidual sound percepts.

Recording Since the days of Edison’s famous Montclair tone tests9,
9 https://blogs.loc.gov/
now-see-hear/2015/05/
is-it-live-or-is-it-edison/

little has changed in our definition of a recording. The idea, still, is
to reproduce the soundfield present at a particular location in space,
where the recording device was present, in a way that is as faithful to
the original as possible. However, as a society, we have learned to lis-
ten differently, and learned to alter our expectations for the listening
experience – the Edison experiments would be subject to mockery if
replicated today in their original fidelity. If this is the case, we might
consider changing aspects of the idea of a recording – the idea be-
hind the most common auditory interfaces we encounter today – in
ways that facilitate new experiences, create scope for artistic work,
or simply serve utilitarian purposes in the face of audio data scale.
For instance, gestalt computation can enable the selective capture of
content along cognitive dimensions – this points towards systems
with intelligent pass-through modes for spaces and devices that
cause acoustic isolation, like cars and noise-cancelling headphones;
or towards embedded recording devices for acoustic monitoring in
complex environments that can operate with a limited power bud-
get, though under the tradeoff of larger prediction error margins that
come with small-footprint neural networks. Gestalt computation can
enable non-deterministic replay, that plays with the idea of atten-
tional foreground and background as a function of our conscious
or subconscious needs – an extension, for instance, on the custom
soundscapes that were constructed in Chapter 6, but into a possibly
larger combinatorial space consisting of multiple sources or percep-
tual objectives that are varying over time. And lastly, it can even en-
able the degradation or erosion of audio content in a manner aligned
with theories of memorability, exhibiting artistic notions of ephemer-
ality, creating a sense of nostalgia, or even eliminating content that is
a source of discomfort.

Auditory Augmented Reality One of the most promising appli-
cations of this work is in the space of auditory augmented reality
(AAR). Not many practical realizations of AAR devices exist to date –
Gershon Dublon’s [5] is one of the earliest – but several major corpo-
rate players in the audio space are actively working on forthcoming
products10. At the crossroads of AAR and gestalt computation, one

10 https://tech.fb.com/
inside-facebook-reality-\
labs-research-the-future-of-audio/

could imagine customized sonic environments for a wearer that are

https://en.wikipedia.org/wiki/MPEG-7
https://en.wikipedia.org/wiki/MPEG-7
https://www.dolby.com/technologies/dolby-atmos/
https://www.dolby.com/technologies/dolby-atmos/
https://blogs.loc.gov/now-see-hear/2015/05/is-it-live-or-is-it-edison/
https://blogs.loc.gov/now-see-hear/2015/05/is-it-live-or-is-it-edison/
https://blogs.loc.gov/now-see-hear/2015/05/is-it-live-or-is-it-edison/
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achieved by selectively amplifying, muting, inserting, and deleting
sounds in consideration of the overall content in the scene that is
arousing or causally uncertain – a simple of manifestation of this
idea would be noise-cancelling headphones that exhibit "intelligent
pass-through" behavior; one could imagine modifying environmen-
tal sounds in real-time with subtle acoustic perturbations, like in the
work in Section 7.1, to optimize for one of these metrics as a function
of a wearer’s use case; and one could imagine new soundscapes al-
together that are generated for a wearer after an assessment of the
current environmental dynamics. In particular, there are new per-
ceptual sensibilities afforded by the overlay of virtual sounds on our
natural sense of hearing, which is an integral aspect of AAR; this, in
turn, forms a perfect environment in which gestalt computation can
exist and thrive.

Content Creation Lastly, we discuss perhaps the most obvious appli-
cation – the creation of new media content via gestalt computation.
The gestalt computation paradigm allows for the analysis and syn-
thesis of audio media along cognitive dimensions; this points towards
a set of tools that may help creators rapidly prototype content that
is appropriate given other guiding heuristics – for instance, assem-
bling soundscapes for an immersive video game, constructing foley
sound for a film or podcast, and generating ambience to accompany
an interactive art installation. Such tools could follow the creative
prototyping method introduced in an older project in the Responsive
Environments group, called VisualSoundtrack [164], wherein the cur-
rent feature axes that are sketched upon are replaced by concepts like
familiarity, sound source uncertainty, and memorability.

7.3 The Sounds We Seek

Greg Milner’s beautiful 2011 anthropological narrative, Perfecting
Sound Forever [165], begins with one of my favorite anecdotes. Milner
tells the story of Guglielmo Marconi, the father of modern radio and
communications infrastructure, and an epiphany that he had towards
the end of his life. "The godfather of radio technology decided," Mil-
ner writes, "that no sound ever dies. It just decays beyond the point
that we can detect it with our ears. Any sound was forever recover-
able," he believed – if only we had the right device. And if he had
such a device, he was often asked, what would he choose to listen to?
Marconi, a man known for his rationality, scientific approach, and
technical insight, had an answer that surprised many – his dream
was to hear the music that was playing on the night the Titanic sank,
or listen to the voice of Christ delivering the Sermon on the Mount.
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This anecdote is a touching reminder of something that makes us
human – rarely, in sound, do we look for that which is objective; we
search, instead, for emotions, aesthetics, and sentiment. Rarely do
we find ourselves scrubbing through hundreds of hours of audio in
search of an uttered phrase or in an attempt to document a precise
location or time; we are far more likely to find ourselves smirking
unexpectedly at the sound of laughter that erupts after a group jam
session; moved to tears at the sound of the voice of a grandparent
who has long passed on; or feeling transported to a busy market
in our home country, thousands of miles away, at the sound of cars
honking at an intersection in just the right way. To build the tech-
nologies that can create these experiences for us, again and again
and again, is to embrace our cerebral complexity and our love for the
subjective. To build these sorts of technologies is to know that there is
immense potential in tapping into the mysteries that make us, us.



128

“The knower of the mystery of sound knows the mystery of the whole
universe.”

- Hazrat Inayat Khan
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Appendix

Audio Summarization - User Study

Participant Procedure
This study has received approval from the MIT Institutional Review Board
(IRB) under the protocol #2006000177. The complete application and con-
sent form can be viewed on the MIT IRB platform. The participant proce-
dure is excerpted below:

If you volunteer to participate in this study, we would ask you to do
the following things:

1. Provide us a contactless means for providing you with the nec-
essary equipment (a small, pocket sized audio recorder) – for
example, your address or place of work for delivery. The device
is unused, and we encourage you to wear a face covering/ dis-
posable gloves when collecting the delivery, and to sanitize the
product using alcohol based wipes or sprays consisting of at least
70% alcohol before use in light of Covid-19 (following the recom-
mendation here – https://www.cdc.gov/coronavirus/2019-ncov/

prevent-getting-sick/cleaning-disinfection.html).

2. Choose an easy means to secure the device on your person – for
example, leave it in your pocket, secure it to your wrist using the
provided Velcro straps, etc.

3. Proceed through your day as you would ordinarily, but ensure
that the recorder is on and running. When doing so, please note
the following:

(a) You may switch off the recorder at any point during the day, if
you do not feel comfortable with recording for a brief period of
time.

https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/cleaning-disinfection.html
https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/cleaning-disinfection.html
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(b) You may encounter other individuals and record discern-
able speech that they produce. In this scenario, we ask that
you do not record without disclosure and consent (as per Mas-
sachusetts law). You may instead (1) inform the individual(s)
that you encounter that you are recording the conversation and
obtain verbal or written consent to be recorded from them (if
the individual is a minor, parental consent and child assent for
children over the age of 7 is required); or (2) choose to switch
off the recording device temporarily. If speech or other sensitive
content is recorded accidentally, you may retroactively remove
content from the recording before submitting to the researchers.
Sample script to request verbal consent: “I am participating in a
research study on capturing sounds in a person’s environment,
and would like to record this conversation. The content of this
conversation will not be reviewed by anyone other than myself
and the researchers conducting the study, except as required
by law. Do I have your permission to record? If so, please state
your name and confirm in a full sentence.”

(c) While recording audio is at the user’s discretion, we ask that
you provide us with at least 3-4 hours of audio per day. If this
will not be possible, we ask that you do not participate in the
study.

4. Once every 2 days, you will be asked to upload your recordings
from the SD card on your device to a secure repository on a server
in our lab. You will receive a unique link to this location by email,
associated with an anonymous participant ID. Prior to uploading,
you may choose to delete sensitive portions of the recordings,
though you are not permitted to edit submitted content in any
other way. Your recordings will not be accessible by anyone other
than you and the aforementioned researchers.

5. You will be asked to continue this exercise for up to 15 days.

6. Shortly after your final upload, you will receive a link by email
that points you to a set of audio summaries generated from your
recordings, as well as instructions to a short survey to complete
as you listen to these summaries. There is no time limit on this
exercise, but it should not take you more than 2 hours to complete.

7. After the study is complete, you will be free to retain the device
in the near-term. Near the end of the research period (approxi-
mately 6 months), you will be requested to return the device via a
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contactless procedure if you feel comfortable doing so.

Survey Questions
Listen to the following audio presentation generated from the audio
you recorded:
Q1: How would you say listening to this presentation made you
feel? Select a point along the scale from least to most emotionally
evocative. [Select from a scale of 1 (least) to 5 (most)]
Q2: How would you describe the sentiment (if any) associated with
this presentation? Select a point along the scale of "negative" to "posi-
tive". [Select from a scale of 1 (negative) to 3 (neutral) to 5 (positive)]
Q3: Which of the following terms best describe the presentation? Se-
lect as many as apply. [Select from – calming, annoying, nostalgic, peace-
ful, social, familiar, relaxing, busy, comfort, distracting, activity, reminder
of events, surprising, stressful, summary of events, salient, uncomfortable,
memory aid, loud, eerie]
Q4: How would you describe how intimate this presentation felt?
Select a point along the scale from least to most intimate. [Select from
a scale of 1 (This presentation felt generic, reflecting sounds that could have
been recorded by others.) to 5 (This presentation is uniquely mine, reflecting
the spaces and events I recorded.)]

Reflection Guiding Questions
G1: What surprised you most about what you heard? What didn’t
surprise you?
G2: Do you find listening to the audio to be an immersive experi-
ence? Why or why not?
G3: Would you use such audio presentations to review or reflect on
your day, week, month, or year? Why or why not?
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