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Abstract

A longstanding problem of interest is that of finding covering numbers. A very important measure be-
tween probability distributions is Kullback-Leibler (KL) divergence. Both topics have been massively studied
in various contexts, and in this thesis we focus on studying the problem when the two concepts are combined.
This combination yields interesting techniques for providing useful bounds on a number of important prob-
lems related to information theory. Our goal is to explore covering the probability simplex in terms of KL
divergence. Various properties of KL divergence (e.g. it is not a metric, not symmetric, and can easily blow
up to infinity) make it unintuitive and difficult to analyze using traditional methods. We look at covering
discrete large-alphabet probabilities both with worst-case divergence distance and average-case divergence
distance and examine the implications of these divergence covering numbers. One implication of worst-case
divergence covering is finding how to communicate probability distributions with limited communication
bandwidth. Another implication is in universal compression and universal prediction, where the divergence
covering number provides upper bounds on minimax risk. A third application is computing capacity of the
noisy permutation channel. We then use average-case divergence covering to study efficient algorithms for
quantizing large-alphabet distributions in order to save storage space.

Thesis Supervisor: Yury Polyanskiy
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Consider the following questions:

1. You are gambling with the devil. The devil picks a secret probability distribution on K letters. He
reveals a letter selected randomly and independently from his distribution one at a time. You must,
before each letter is revealed, predict the likelihood of what that letter will be. You will be penalized
with log-loss. The devil’s secret probability does not change, so you can learn from the past letters to
predict the current one. What is your strategy for prediction when the number of letters K is as large
as the sequence you are trying to predict?

2. You send data over the network but, due to a quirk, your data symbols arrive in a random order. Usu-
ally, when you encode your message, your data symbols appear in a string and the order of the symbols
matters for decoding. Now the receiver has an unordered set of symbols. How much information are
you able to communicate with this scheme?

3. You have determined the frequency of words in various books by different authors. This way, the next
time an author writes a book, you are ready to use your Huffman encoder or arithmetic encoder to
compress it. However, storing all the different frequencies for each author takes too much space on
your limited hard drive. You would like to compress these frequencies to a small number of bits, while
still keeping them useful for compression tasks. What is the best way to compress these frequencies?

While these are three seemingly different questions about different topics, it turns out that they are united
by a common theme: they are all applications of divergence covering. Specifically, we mean a Kullback-Leibler
(or KL) divergence. The goal of this thesis is to explore divergence covering and its consequences, which
include finding a solution to each of the three questions.

We begin with a gentle introduction first discussing the idea of covering and then divergence. A covering
number for a space A, distance metric D(x, y), and distance ε is defined as the size of the smallest set of
points C ⊂ A so that all points in A are within a distance of ε from a point in C. Defining the covering
number as M(A,D, ε) formally, we have

M(A,D, ε) = inf{|C| : min
y∈C

D(x, y) ≤ ε,∀x ∈ A} (1.1)

Typically, covering numbers are studied when D is a norm, and most commonly the L2 or Euclidean
norm is considered. For the Euclidean norm, while there are many nuances to the problem of finding the
covering number that still require more research, a first order approximation can usually be given by using
a volume argument: take the volume of the space of A and divide that by the volume of a Euclidean ball
with radius ε. Special adjustments might have to be made to ensure the method gets proper upper and
lower bounds on the covering number, but in general this volume argument works when D is a metric on a
finite-dimensional space.

But what if the notion of distance we are interested in is not a norm or even a metric. This is what
occurs when the distance used for the covering number problem is the KL divergence. As its name suggests,

7



Figure 1.1: Example of divergence balls centered at different points in 42 with the same radius.

KL divergence is a divergence and not a distance metric in the technical sense, though colloquially, we say
it measures the “distance” between two probability distributions. Studying this as the distance for covering
implies that the space A we are considering must be the space of probabilities. We will be focusing on
the case when A is the (K − 1)-dimensional simplex representing the space of discrete probabilities on K
outcomes.

1.0.1 KL Divergence Basics

For probability distributions P and Q over a discrete alphabet A, the KL divergence is defined as

D(P‖Q) =
∑

a∈A
P (a) log

P (a)

Q(a)
(1.2)

Unlike a metric, the KL divergence is not symmetric and does not obey the triangle inequality. We thus
need to specify that we want probability distribution P , the first argument in (1.2), to be covered, and that
Q, the second argument in (1.2) is doing the covering. We call the set of Q used to cover the space the set
of centers.

Like a metric, D(P‖Q) ≥ 0 with equality if and only if P = Q. We can define a divergence ball of
radius ε around Q to be all P in the simplex so that D(P‖Q) ≤ ε. Unlike Euclidean balls, KL divergence
balls cover a different volume of points depending on where Q is. For an illustration of this, see Figure 1.1.
The ball around Q covers more volume when Q is closer to the center of simplex. In fact, if there is an a
such that Q(a) = 0, then the ball of radius ε around Q can only contain P where P (a) = 0. This uneven-
ness in ball volume makes using the volume argument (discussed above) to compute covering numbers not
straightforward (we will be using this argument in places, but with appropriate considerations that need to
be discussed). In addition to covering numbers, we are interested in examining where to best place these
KL divergence balls. Figure 1.2 gives a picture of randomly selected centers and which points are closest to
which center.

1.0.2 Definitions

We will use the notation 4K−1 to mean a (K − 1)-dimensional simplex (and thus the alphabet size here is
K).

Definition 1 (Simplex).

4K−1 =

{
x ∈ RK , xi ≥ 0 :

K∑

i=1

xi = 1

}
(1.3)

One of our main focuses is to explore how many covering centers are needed to cover the probability
simplex. There are two notions we can define of what it means to be covered, worst-case and average-case.
Worst-case covering means that the distance of any P ∈ 4K−1 to a covering center is smaller than some
value ε. This covering number for worst-case divergence covering is given by the following:

8



Figure 1.2: Illustration of a 2-dimensional simplex and which points on the simplex are closest to which
centers in KL divergence. Notice that the regions have very different boundaries than what would have
occurred with Euclidean distance (but the boundaries are still straight lines).

Definition 2 (Worst-Case Divergence Covering of Simplex). Let K be the alphabet size and ε > 0.

M(K, ε) = inf{m : ∃{Q(1), ..., Q(m)} s.t max
P∈4K−1

min
Q(i)

D(P ||Q(i)) ≤ ε} (1.4)

We will call ε the radius. The set of centers is denoted as Q = {Q(1), ..., Q(m)}. We will also refer to
M(K, ε) as the covering number.

For average-case divergence covering, we instead consider how many covering centers are needed so that
the expected KL divergence between points P and one of the centers is less than ε, under some prior W over
the probability simplex.

Definition 3 (Average-Case). Given a distribution W over the simplex 4K−1,

M∗(W, ε) = inf{|Q| : Eπ∼W [min
Q∈Q

D(π‖Q)] ≤ ε} . (1.5)

The number of centers needed in the average-case is a lower bound for worst-case divergence covering.
We will use the term divergence covering to mean worst-case divergence covering and only add “worst-case”
to clarify the difference from average-case.

1.1 Worst-Case KL Divergence Covering

1.1.1 Divergence Covering Results

We show in this work that the divergence covering number can be bounded by

(
c
1

ε

)K−1
2

≤M(K, ε) ≤
(
C

logK

ε

)K−1
2

(1.6)

for positive constants c and C. This is our most general bound which applies for any ε < logK (note that
all points in 4K−1 can be covered with one point using radius logK). The exponent of (K − 1)/2 implies
that covering the simplex with divergence balls of radius ε is similar to covering a space with Euclidean balls
of radius

√
ε.
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Our bound in (1.6) is not best bound for all possible ε and K. For a region of small ε, we can remove
the logK term (though a term with ε shows up). For very large ε, say example when ε = 1

2 logK, we can
find subexponential bounds where the exponent of 1/ε in the divergence covering number is less than linear
in K. Our divergence covering bounds will be explored in Chapter 2 and the subexponential ones will be
explored in Chapter 3.

In the next sections, we introduce some of the applications of the divergence covering number. We will
start by discussing our initial motivation (the Cloud Communication Problem) and then move to other
applications, including the three problems mentioned earlier.

1.1.2 Application to Cloud Communication Problem

Suppose that a company has a centralized computing and data storage component, for example a cloud, and
also has many subsidiaries around the world which have limited computing and storage abilities.

Overall, the task of the centralized cloud and all the subsidiaries is to compress their users’ information,
so that this information can be stored or transmitted efficiently. To use a compression algorithm, such
as Huffman or arithmetic coding, each subsidiary would need to know the probability distribution of the
symbols the users are using.

The centralized cloud has access to all the data and can therefore determine the statistics of the users’
data. It can, on any given day, model the current trends of the data and determine the best probability
distribution to use to compress the users’ data. Each subsidiary on the other hand has no way of determining
which probability distribution to use. They rely on communication from the centralized cloud for this
information. But to save on cost, we want to limit the communication bandwidth between the centralized
cloud and all the subsidiaries. The task is then to communicate a probability distribution to the subsidiaries
using a limited number of bits.

Limiting the number of bits has a trade-off with how precisely a probability distribution can be described.
If we limit the number of bits to b, then we can communicate at most 2b different probability distributions.
Let Q be this set of 2b probabilities chosen as candidates to describe. Then if the centralized cloud discovers
that P is the distribution that best describes the data to lower expected compression length, we know from
[1] that the best choice of Q∗ ∈ Q to send to the subsidiaries is

Q∗ = arg min
Q∈Q

D(P‖Q) . (1.7)

Ideally Q is chosen so that each P is not far from some Q ∈ Q in KL divergence distance. An equivalent
way of looking at the problem is to fix the maximum distance D(P‖Q) to be less than ε, and to determine
how many bits our communication system has to use. The number of bits is given by log2 |Q|, and |Q| is
the covering number for KL divergence.

Using our results we can show the following as an example: Suppose that the alphabet size is K = 30, 000,
which is a typical vocabulary sized used for modeling English words, and we want D(P‖Q) to be less than
1 bit (so ε = 1). Using (1.6), get that

log2M(30000, 1) ≈ 173000 (1.8)

then at most 173, 000 bits of communication are needed from the centralized cloud to the subsidiary. This
means we can send Q, the approximation to P , using less than 173000/30000 ≈ 5.7 bits for each word in the
vocabulary. Increasing or decreasing the bound on D(P‖Q) leads to different tradeoffs in numbers of bits,
characterized by our bounds.

1.1.3 Application to Universal Compression and Universal Prediction

An important question which has been studied in depth is that of finding minimax redundancy and minimax
regret for iid discrete alphabets sources. We will also look into this problem by showing how divergence
covering can be used to find upper bounds on both quantities. The goal is to develop the framework which
can be used to obtain non-asymptotic results for any alphabet size and sequence length. The upper bounds
we compute from our results are tight enough to get all the first order terms of known regret bounds.
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In the same chapter, using similar techniques, we show how divergence covering can be used for finding
regret for the class of patterns. Our resulting regret is (for length n sequences)

cn1/3 log4/3(n) (1.9)

improving the exponent on the logarithmic factor compared to known results [2].

1.1.4 Application to Permutation Channels

Another application of our divergence covering results is that we can use it to analyze the noisy permutation
channel. The noisy permutation channel is used to represent communication channels where symbols might
not arrive in the same order they were sent (as in our second question). It can be be used to model
applications like multipath communication and biological storage systems.

The structure of the noisy permutation channel can be represented by the Markov chain

Xn → Zn → Y n (1.10)

where eachXn, Y n, Zn is a length n sequence. The transformation betweenXn to Zn is a discrete memoryless
channel given by the transition probabilities PZ|X . The sequence Y n is a uniformly random permutation
of Zn. The goal is to determine the capacity of the noisy permutation channel for different transition
probabilities PZ|X .

While it might not seem obvious at first, it turns out that KL divergence is exactly the correct distance
to study the noisy permutation channel with. Covering with KL divergence allows us to get converse bounds
(or upper bounds on the capacity). We will be able to resolve the conjecture in [3] and show that as a
function of the transition probabilities PZ|X , the capacity of the permutation channel is

Cperm(PZ|X) =
rank(PZ|X)− 1

2
. (1.11)

where rank(·) gives the rank of the matrix. We dedicate Chapter 5 to exploring the noisy permutation
channel in depth.

1.2 Average-Case Divergence Covering

Worst-case divergence covering is the correct criteria to use when it is necessary to make sure every possible
probability distribution P in 4K−1 is close to a center. However, when working with a collection of P drawn
randomly, it is sometimes sufficient that P is just on average close to one of the centers. Certain distributions
P might be very rare and it may not be necessary to dedicate so many centers to covering rare distributions.

Our average-case divergence covering problem can be restated as a quantization problem where the loss
function is the KL divergence. The goal is to find centers, or reconstruction points, so that the expected
loss is less than ε. Thus, an application of average-case divergence covering is our third question about lossy
compression of probability distributions.

We will focus on solutions where the covering (or quantization) centers can be determined by looking at
each coordinate of the probability distribution separately. This assumption greatly simplifies the quantization
steps and makes the solution practical for implementation.

1.2.1 Rate Distortion Single-Letterization

Since our average-case divergence covering problem is also a quantization problem, it is natural to look at
the problem through the lens of rate distortion (which we can do because we are looking at each coordinate
separately). As we mentioned above, for average-case divergence covering we need a prior W over the
probability simplex. We will be particularly interested in the case when the prior W is a symmetric Dirichlet
distribution. This class of priors covers the uniform prior and the Jeffreys’ prior (which is known to be
asymptotically worst-case for certain problems). We develop our rate distortion problem for average-case
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Figure 1.3: Illustration of the concept of worst-case covering (left) and average-case covering (right). For a
set of centers, the radius in worst-case covering is determined by the largest KL divergence distance from any
point to its nearest center (we illustrate this distance with a red line). In contrast, for average-case covering,
the radius is determined by the average KL distance from a point to its nearest center. This average is
computed with respect to prior W (the prior is illustrated by the shade of blue).

divergence covering in Chapter 6 where we determine upper that if our prior W is a symmetric Dirichlet
distribution with parameter α, then approximately

logM∗(W, ε) ≈ K

2
log

c(α)

ε
. (1.12)

Our results show that the number of quantization points needed per symbol does not increase with K. An
implementable method based on our proof for the case when W is the uniform prior (this is the same as a
symmetric Dirichlet with parameter α = 1) is called the EDI (exponential density intervals) method. It’s
performance is illustrated in Figure 1.4. We show that if we fix the number of quantization points per
symbol, then the KL divergence loss of the EDI method is nearly constant with K, agreeing with (1.12).

1.2.2 Efficient Quantization via Companding

While showing some of our theoretical results for average-case divergence covering with Dirichlet priors,
we discovered that perhaps very simple coordinate-based quantization schemes exist for our average KL
divergence loss. We describe these schemes as companders, based on companding, a type of transform
coding used in signal processing. We discuss what our companding scheme is in Chapter 7.

In our study of companders for average-case KL divergence, we discovered that there exists a minimax
compander which is the best compander to use against the worst-case prior W chosen on the probability
simplex. Our analysis gives asymptotic guarantees on the performance of the minimax compander and other
companders. Impressively, our experimental results with our companders give performances very close to
what is expected theoretically, despite the fact that the parameters are far from the asymptotic regime.

Typically, if each value in a probability distribution needs to be stored only using 8-bits per value, the
most direct solution is to quantize the value using uniform (equally-spaced) bins. Our experiments on both
randomly generated data and real data show that this solution (which we call truncation) achieves a KL
divergence on the order of 10−1. However, using our minimax companders, an operation with an insignificant
amount of overhead, we can reduce the KL divergence between the true distribution and stored distribution
to 10−4, a massive reduction in loss. These results are in Figure 1.4. These experiments show that indeed
well-defined companders are excellent choices for quantization with respect to average KL divergence. They
give a practical and efficient solution to our third problem.
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Figure 1.4: This plot shows different methods used to quantize probability distributions with respect to
KL divergence. The number of quantization levels (the granularity) is fixed to N = 256 per symbol in the
alphabet size of K. This plot shows two things. First, the EDI method with uniformly generated probabilities
is constant even as K grows. Second, our method, the minimax compander, is able to get a few orders of
magnitude improvement compared to truncation (the default method). Though it is not as good as the EDI
on randomly drawn probabilities, the minimax compander is better on real data compared to the EDI.

1.3 Other Results: Divergence Covering of Subsets of the Simplex

In addition to finding divergence covering of the whole simplex (as in Definition 2), we also explore divergence
coverings of certain subsets of the simplex. The formal definition for this is as one would expect:

Definition 4. For a subset B ⊂ ∆K−1

M(K, ε,B) = inf{m : ∃{Q(1), ..., Q(m)} s.t max
P∈B

min
Q(i)

D(P ||Q(i)) ≤ ε} . (1.13)

Some of the key results we derive in this work relies on covering a subset of the simplex. One occurs
in the problem of finding regret on the class of patterns. Here, the subset B is the set of probabilities in
4K−1 which are in sorted order. This means that if probability P is such that symbol i ∈ [K] occurs with
probability pi, then if i < j, we have pi ≥ pj . For this subset (with another condition that non-zero pi must
not be too small) we can show (ignoring logarithmic factors) that logM(K,n−2/3,B) ≤ cn1/3. Finding the
covering number is essential to determining Equation (1.9).

Another instance subset covering appears is in the application to the noisy permutation channel where
we need to cover a lower dimensional linear subspace of the simplex. In such a case, if the linear subspace
has dimension `, then the divergence covering of the subspace, M(K, ε,B) can be bounded by

(
K
`

)
M(`, ε).

We discuss this in Chapter 5 while discussing the noisy permutation channel.
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Chapter 2

Divergence Covering

2.1 Introduction

In this chapter, our primary task is to determine upper and lower bounds on the (worst-case) divergence
covering number M(K, ε) defined in Definition 2. We will primarily focus on the case when the covering
radius ε is small, meaning (roughly) constant in size even as the dimension of the simplex we are covering
grows. (Chapter 3 will focus on the case when ε is large.)

A secondary goal is to examine how the divergence covering centers Q should be placed throughout
the simplex in order to minimize the number of centers used. For this purpose, we include some analysis
which give suboptimal bounds for M(K, ε). The first of these is an analysis of when the divergence covering
centers are on a uniform grid. This placement of centers is likely the default, and therefore it is informative
to understand its performance. The second suboptimal choice of centers we give is one similar to placing
centers on a grid, but the grid is unevenly spaced throughout the simplex.

The choice of centers which gives the upper bound that is closest to the known lower bound is one where
the centers are chosen randomly. We also show two different techniques for choosing these random centers.
All of these are summarized below in Section 2.1, after a discussion of the applications and previous works.

Application To reiterate from the introduction, we have two main applications of divergence covering
numbers. The first is the cloud communication problem: to find the trade-off between the excess coding
length for communications between subsidiaries and bits needed for communication from the cloud. The
second important application of divergence covering numbers (the upper bounds in particular) is that they
can be used to find upper bounds on redundancy and regret for a class of iid distributions. This is discussed
in Chapter 4.

Our results on redundancy and regret also tie in with the fact that worst-case divergence covering can be
used as a 2-part universal code. For any length n sequence which needs to be compressed, we can determine
the empirical distribution P of the sequence. For each P , we can determine the center Q ∈ Q so that
D(P‖Q) ≤ ε. The first part of the code tells us which Q to use. The second part encodes the sequence using
Q.

The expected coding length (or rather the idealized code length which ignores constants occurring in
practical codes) for this scheme is given by

E[L] = logM(K, ε) + n min
Q∈Q

D(P‖Q) + nH(P ) (2.1)

This 2-part code is an achievable code for universal compression. It is similar to 2-part codes used in the
minimum description length (MDL) literature.

Previous Works If we take the logarithm of the definition for covering number in (1.1) of Chapter 1,
we get the Kolmogorov metric entropy. Kolmogorov introduced the notion of ε-entropy for function classes
which are discussed in [4] and referenced by [5]. Let T be a domain and let class F be a set of functions f(t)
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with t ∈ T , where F is compact for norm D(f1, f2). Then an ε-net is a system N (ε) such that

sup
f∈F

min
f ′∈N (ε)

D(f, f ′) ≤ ε . (2.2)

If M(F , D, ε) is the minimal size of the ε-net, then the Kolmogorov ε-entropy is

Hε(F , D) = log2M(F , D, ε) . (2.3)

Even though KL divergence is not a norm or metric, authors will still refer to logarithm of the covering
number under KL divergence as a metric entropy. Yang and Barron1 [6], use metric entropies to determine
the minimax rates of convergence for estimating parameters of densities. While they discuss implications
of finding the metric entropies and give examples for certain cases, they do not determine what the metric
entropy actually is for the case of discrete probability distributions. Our divergence covering numbers will
determine this metric entropy. We will be using a key technique of Yang-Barron throughout this work.

Other than the line of work from [6], we did not find works which discuss covering with KL divergence.
However, there are some works which consider very similar problems.

In [7], the authors examined the problem of vector quantization for universal coding. They analyze a two-
stage universal noiseless code and determine an iterative (Lloyd-like) algorithm to construct the codebook
for this code. If only the first stage of their noiseless coding is used, then their construction becomes a
universal lossy code. Their work applies to loss functions in general, and KL divergence is considered as a
special case. The quantization points which result from the first stage code using KL divergence is analogous
to our centers for covering (though this connection is more relevant to average-case divergence covering).
They applied their algorithm to find quantization points for the probability simplex. However, critically,
their algorithm and results do not apply when the boundary points of the simplex are included; their results
only hold for some interior of the simplex. This scenario is unsatisfying for the purposes of finding centers
for a divergence covering for high-dimensional spaces, where the boundary will take up a larger proportion
of the space. Also, for the applications, probability distributions where a symbol occurs with probability
zero are very likely. Neglecting them drastically limits the utility of the divergence covering.

The problem of ignoring the boundary of the simplex similarly comes up in [8], where the author considers
an algorithm for quantizing probabilities which primarily uses lattices. Different distortion measures for
quantizing are considered including KL divergence. (The author considers both average-case and worst-case
quantization.) For quantizing in terms of KL, the author’s main technique is to use chi-squared divergence
to upper bound KL divergence. This however, still excludes the boundary points, since the equation for
computing the chi-squared divergence explodes to infinity for points on the boundary.

The boundary is precisely where the difficulty lies for finding a divergence covering. Points which are
close in Euclidean distance near the boundary can be very far, even infinite, in terms of KL distance. A key
contribution of this work is find methods which can take care of these effects at the boundary.

Summary of Main Results First, we give the suboptimal results for when the centers are on a uniform
grid. The centers points here are evenly spaced throughout the simplex. The bounds for the divergence
covering number achievable with these centers is

(
c
1

ε

)K−1

≤Mevenly spaced(K, ε) ≤
(
C
K

ε

)K−1

(2.4)

where2 0 ≤ ε ≤ logK. This bound shows that if we want the radius of our covering balls to be ε, using
centers that are evenly spaced will require on the order of (1/ε)K−1 total number of centers. We have
mentioned already that this placement of centers is suboptimal. One reason this is apparent is that points
near the center are very close in KL distance to a center, whereas points near the boundary are very far
from a center point. An equivalent way of thinking about this is that points near the center of simplex are
covered by multiple divergence balls. We can remove many of the centers near the center and still maintain
the same radius ε.

1We will be using a key technique of Yang-Barron throughout this work.
2Note that the radius ε can at most be logK. This is the radius achievable with one center in the exact middle of the

simplex.
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Next, we give a lower bound for the divergence covering number (for any placement of centers). For any
0 ≤ ε ≤ logK,

M(K, ε) ≥
(

1

8ε

)(K−1)/2

. (2.5)

When we compare this lower bound to (2.4), we see there is a very large gap in the exponent for the covering
number. Centers on a uniform grid give an exponent of K − 1 which is twice as large. It turns out that the
smaller (K − 1)/2 exponent is the correct one.

Our first result which gets the correct exponent is one which uses a grid-like structure. It is not the
tightest bound, but it gives an easy and explicit placement of centers. The basic insight in this bound is
that more centers need on the edges of the simplex. We call this the explicit bound: For 0 < ε < 1,

M(K, ε) ≤ cK−1

(
K − 1

ε

)K−1
2

(2.6)

for some constant c. While the exponent in this bound is tight, the extra factor of k − 1 which is raised to
the exponent form a gap from the lower bound (2.5).

To tighten this gap, we have our next upper bound on the divergence covering number. This is one of
our tightest upper bounds. We call the technique we use for computing the bound the “using-Hellinger”
technique, since the key is to use Hellinger divergence as an upper bound on KL divergence (we discuss
divergences in general in Section 2.2.1). The technique shows that some set of centers must exist, but does
not explicitly define where the centers are. The using-Hellinger upper bound is: For ε ≤ logK,

M(K, ε) ≤ K
(
C

logK

ε

)K−1
2

(2.7)

for some constant C. Compared to (2.6), the using-Hellinger upper bound reduces the K − 1 raised to the
exponent to a factor of logK raised to the exponent.

KL divergence can also be bounded above using chi-squared divergence. Our last upper bound using
chi-squared balls to upper bound the divergence covering number. Like the using-Hellinger upper bound,
this upper bound only gives existence of points. The goal of this bound is to remove logK raised to the
exponent factor entirely. This upper bound states: For ε ≤ 1

4(K+1)2 ,

M(K, ε) ≤ c0K3/2
(c1
ε

)K−1
2

log
1

ε
(2.8)

for constants c0 and c1. While this bounds removes the logK raised to the exponent, it is not shown to
work for ε too large. The log(1/ε) also makes the bound worse than (2.7) when ε is too small. However,
we believe that the using chi-squared bound is the “correct” approach to use to find the divergence covering
number. The method for producing the centers is possibly tight, but we think it is our analysis that has
limitations.

Here we give an overview of all the divergence covering number results. Other bounds, which are the
subexponential and polynomial bounds, are the topics of the next chapter and are not presented in these
tables.

Divergence Covering Lower Bounds

Restrictions Lower Bound

Evenly Spaced ( cε )K−1

None ( cε )
K−1

2

Figure 2.1: Table comparing lower bounds for divergence covering for alphabet size K. Value of constant c
will vary for each bound.
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Divergence Covering Upper Bounds

Technique Restrictions Upper Bound

Evenly spaced (CK
ε )K−1

Explicit 0 < ε < 1 (CK
ε )

K−1
2

Using-Hellinger None (C logK
ε )

K−1
2

Using-chi-squared 0 < ε < 1
4(K−1)2 (log 1

ε )(Cε )
K−1

2

Figure 2.2: Table comparing upper bounds for divergence covering for alphabet size K. Value of constant
C will vary for each bound.

Chapter Organization First we start with some preliminaries in Section 2.2 which introduces some
definitions and theorems we will need for our proofs. Our first result on evenly spaced centers is given in
Section 2.3. We then discuss the lower bound on the number of centers in Section 2.4. This is followed by
our upper bounds. The explicit bound is given in Section 2.5. The using-Hellinger upper bound is presented
in Section 2.6. And lastly, the using-chi-squared upper bound is discussed in Section 2.7.

Notational Notes For probability distributions, in general, we can use capital letters like P or Q for
either discrete or continuous distributions. If P refers to a discrete distribution on one variable, then we can
write the probability of x under P as P (x).

When we are working exclusively with discrete distributions in 4K−1 for some K (probability simplex
with alphabet size K), it is more convenient at times to use lower case letters such as p or q. Unless
otherwise specified, we assume the symbols (or labels) when the alphabet is of size K is given by 1, 2, . . . ,K.
To simplify notation for this, for any integer n, we let [n] = {1, 2, . . . , n}.

For each i ∈ [K], we let pi be the probability discrete distribution p has on symbol i. Thus, we can write
for p ∈ 4K−1,

p = (p1, p2, . . . , pK) . (2.9)

When working with vectors (not necessarily probability vectors) we also bold the letters to emphasize
that quantity is a vector. The ith entry of vector a is written as ai, so similarly to above,

a = (a1, a2, . . . , aK) . (2.10)

We may also bold probability vectors, but will not if the notation is clear. For continuous distributions,
we also typically use lower case letters like p or f to denote the probability density function (pdf), but it
should be clear from context that p is a pdf and not a discrete probability.

2.2 Set of Tools

This sections includes some background which will apply to some of the ideas in this chapter (and possibly
to other chapters).

2.2.1 KL Divergence and Other Divergences

KL divergences are a type of f -divergences. Other f -divergences are Hellinger and χ2 divergence, both of
which will come up in our upper bounds in this chapter. We give some exposition on f -divergences here,
starting with a definition.

Definition 5 (f -Divergence). For a convex function f : R→ R with f(1) = 0, the f -divergence is
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Df (P ||Q) = EX∼Q
[
f

(
P (X)

Q(X)

)]
(2.11)

for distributions P,Q.

Next, we give some examples and their formulas on discrete probabilities.

Definition 6 (Various f divergences). Some important examples:

• KL Divergence:

D(p‖q) =
∑

i

pi log
pi
qi

(2.12)

• χ2 Divergence:

Dχ2(p||q) =
∑

i

(pi − qi)2

qi
(2.13)

• Total Variation (TV)

TV (p, q) =
1

2

∑

i

|pi − qi| (2.14)

For probabilities on the set A,

TV (P,Q) = sup
B⊂A

|P (B)−Q(B)| (2.15)

• Squared Hellinger

DH2(p, q) =
∑

i

(
√
pi −

√
qi)

2
(2.16)

The most important inequality we will use for finding upper bounds on divergence covering the inequality
which upper bounds KL divergence with χ2 divergence. The following is from [9].

Fact 1. For discrete probabilities p and q, we have

D(p||q) ≤
∑

i

(pi − qi)2

qi
= Dχ2(p||q) (2.17)

Proof. We will use that log x ≤ x− 1.
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D(p||q) =
∑

i

pi log
pi
qi

(2.18)

≤
∑

i

pi

(
pi
qi
− 1

)
(2.19)

=
∑

i

p2
i

qi
− pi (2.20)

=
∑

i

p2
i

qi
− pi − pi + qi (2.21)

=
∑

i

p2
i

qi
− 2piqi
P2(a)

+
q2
i

qi
(2.22)

=
∑

i

(pi − qi)2

qi
(2.23)

There is unfortunately no lower bound on KL divergence using χ2 divergence. However, locally, any
f -divergence will look like the χ2 divergence.

Fact 2. Locally, f -divergences look like χ2-divergences,

Df (εP + (1− ε)Q||Q) = ε2f ′′(1)Dχ2(P ||Q) + o(ε2) (2.24)

Proof. We can use from Taylor expansions that

f(t+ 1) = f(1) + f ′(1)t+
1

2
f ′′(1)t2 + o(t2) . (2.25)

For divergences, f(1) = 0.

Df (εP + (1− ε)Q||Q) = EQ
[
f

(
εP (X) + (1− ε)Q(X)

Q(X)

)]
(2.26)

= EQ
[
f

(
ε(P (X)−Q(X))

Q(X)
+ 1

)]
(2.27)

= EQ

[
f ′(1)

ε(P (X)−Q(X))

Q(X)
+

1

2
f ′′(1)

(
ε(P (X)−Q(X))

Q(X)

)2

+ o(ε2)

]
(2.28)

=
1

2
ε2f ′′(1)EQ

[(
P (X)

Q(X)
− 1

)2
]

+ o(ε2) (2.29)

=
1

2
ε2f ′′(1)Dχ2(P ||Q) + o(ε2) (2.30)

The following bound relates KL divergence to total variation. This will be used in the proof of our lower
bound for divergence covering numbers.

Fact 3 (Pinsker’s Inequality).

2TV (P,Q)2 ≤ DKL(P‖Q) (2.31)

The next bound relates Hellinger to KL divergence.
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Fact 4 (Hellinger Bound).

K∑

i=1

pi log
pi
qi
≤

K∑

i=1

(
√
pi −

√
qi)

2 1

(
√
e− 1)2

max

{
1, log

pi
qi

}
(2.32)

which implies

DKL(p‖q) ≤ DH2(p‖q) 1

(
√
e− 1)2

max

{
1,max

i
log

pi
qi

}
. (2.33)

Proof. Set c = 1
(
√
e−1)2 . To show this, the equivalences are:

K∑

i=1

pi log
pi
qi
≤ c

K∑

i=1

(
√
pi −

√
qi)

2 max

{
1, log

pi
qi

}
(2.34)

K∑

i=1

pi log
pi
qi
− pi + qi ≤ c

K∑

i=1

(
√
pi −

√
qi)

2 max

{
1, log

pi
qi

}
(2.35)

K∑

i=1

pi
qi

log
pi
qi
− pi
qi

+ 1 ≤ c
K∑

i=1

(√
pi
qi
− 1

)2

max

{
1, log

pi
qi

}
(2.36)

K∑

i=1

r2 log r2 − r2 + 1 ≤ c
K∑

i=1

(r − 1)2 max{1, 2 log r} (2.37)

Hence we can show the inequality if

r2 log r2 − r2 + 1 ≤ c(r − 1)2 max{1, 2 log r} (2.38)

r2 log r2 − r2 + 1

(r − 1)2
≤ cmax{1, 2 log r} (2.39)

When r =
√
e, both the left hand side of (2.39) and 2 log r all equal the value c. The derivative of the left

hand side equation is

2(r2 − 1 + r log r2)

(r − 1)3
(2.40)

The derivative is always positive, so for r ≤ √e, the left hand side is less than c. For values r >
√
e, we have

r2 log r2 − r2 + 1

(r − 1)2
≤ r2 log r2 − r2 + 1

r2
≤ 2 log r (2.41)

This proves the result.

2.2.2 Basic Volumes in High Dimensional Spaces

A very useful tool for finding bounds on covering (or packing) numbers is to look at volumes of high
dimensional shapes. We include calculations for volumes of balls and simplices and a way to bound covering
numbers.

We will use the notation BKf (r) to mean a ball in K-dimensional space, with norm f and radius r.

Fact 5 (Volume of K-Dimensional Balls). Let r be the radius of the Euclidean (`2) ball BK`2 (r), then

vol(BK`2 (r)) =
π
K
2

Γ
(
K
2 + 1

)rK . (2.42)
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Let r be the radius of the `1 ball BK`1 (r), then

vol(BK`1 (r)) =
2K

K!
rK . (2.43)

.

Fact 6 (Volume of a Simplex). For a (K − 1)-dimensional simplex with side lengths
√

2 (this is chosen
to match the probability simplex over K symbols), the volume is

vol(4K−1) =

√
K

(K − 1)!
. (2.44)

The volume under the (K − 1)-dimensional simplex to the origin is

1

K!
(2.45)

Fact 7. Let M(A, f, r) be the number of covers needed to cover space A ⊂ Rd with norm f and radius
r. Let B be the unit ball in norm f (i.e. B = BKf (1)) and + be the Minkowski sum. Then,

(
1

r

)K
vol(A)

vol(B)
≤M(A, f, r) ≤ vol

(
A+ r

2B
)

vol
(
r
2B
) . (2.46)

Note that since KL divergence is not a norm, we cannot apply Fact 7 to our problem directly. However,
what we an do upper and lower bound KL divergence with other f -divergences which do behaves as norms,
then apply Fact 7 to these other f -divergences.

2.2.3 Dirichlet Distribution

The Dirichlet distribution is a very common prior to use on the simplex.

Definition 7. The Dirichlet distribution is on support x1, ..., xK where xi ∈ (0, 1) and
∑K
i=1 xi = 1.

The parameters are α1, ..., αK where αi > 0.
The pdf of x = (x1, . . . , xK) ∼ Dir(α1, . . . , αK) is given by

p(x1, x2, . . . , xK) =
Γ
(∑K

i=1 αi

)

∏K
i=1 Γ(αi)

K∏

i=1

xαi−1
i (2.47)

Recall for positive integers n, Γ(n) = (n − 1)!. Dirichlet distributions are commonly used a priors over the
probability simplex. (We also use them in later chapters for examining average-case divergence covering.)
The Jeffreys’ prior is a particular instance of the Dirichlet distribution when all the parameters are set to
1/2, that is when the pdf is

p(x1, x2, . . . , xK) =
Γ
(
K
2

)

π
K
2

1√
x1x2 . . . xK

(2.48)

The Jeffreys’ prior is an important prior on the simplex. We use in this chapter and will discuss it further
in Chapter 4.

2.2.4 Other Bounds

It is useful to have easy upper and lower bounds for the binomial coefficient.
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nk

kk
≤
(
n

k

)
≤
(ne
k

)k
(2.49)

Also useful is the following:

Fact 8 (Gautschi’s Inequality). For any real positive x and s ∈ (0, 1),

x1−s ≤ Γ(x+ 1)

Γ(x+ s)
≤ (x+ 1)1−s (2.50)

2.3 Evenly Spaced Center Points

We begin our first exploration of (worst-case) divergence covering. A reasonable approach for finding covering
centers is to start with what happens if the centers are placed on a uniform grid.

We require the set of centers Q to be on an evenly spaced grid in the simplex. An evenly spaced grid
requires that each center q ∈ Q has the form

q = (q1, . . . , qK) =

(
a1

γ
, . . . ,

aK
γ

)
(2.51)

where each ai is an non-negative integer and γ is an integer specifying how fine the grid is.
Define Q(γ,K) to be the set of probabilities on K symbols where the probability of any symbol i is of

the form qi = ai/γ where ai is an integer so that 1 ≤ ai ≤ γ − (K − 1).
We now ask, for a fixed γ, what can be say about the covering radius ε?

Upper Bound We will let our centers Q be exactly the points in the simplex which are in Q(γ,K).
For any p in the simplex, notice we can map p to a center q ∈ Q where at for at least K − 1 of the

symbols, |pi − qi| ≤ i/γ. For this to work, the remaining symbol must be mapped to the value which allows
q to sum up to one. If we let K be this remaining symbol, this means that at most |pK − qK | ≤ (K − 1)/γ.

D(P ||Q) ≤
K∑

i=1

(pi − qi)2

1/γ
(2.52)

≤ (K − 1)
1/γ2

1/γ
+

(K − 1)2/γ2

1/γ
(2.53)

= (K − 1)
1

γ
+

(K − 1)2

γ
(2.54)

=
K(K − 1)

γ
. (2.55)

We can choose γ so that K(K−1)
γ ≤ ε which means we have the constraint K(K−1)

ε ≤ γ.

This means that the total number of centers is (using (2.49)),

(
γ − 1

K − 1

)
≤
(

γe

K − 1

)K−1

≈
(
e
K

ε

)K−1

. (2.56)

(The approximation is due to integer constraints on γ.)

Lower Bound Because we are dealing with equally spaced points, like in the upper bound, we will assume
that all centers have each coordinate of the form a

γ for non-negative integers a. It is possible to have a be 0,
but a center with a value of 0 will have infinite divergence with any point without a 0 in that coordinate.
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To find a lowerbound, it is only necessary to check the distance of some point, say p = (δ, δ, ..., δ, 1− (K−
1)δ) with the q =

(
1
γ ,

1
γ , ...,

1
γ ,

γ−(K−1)
γ

)
. If δ << 1

γ , then q is the closest center point to p.

lim
δ→0

D(p||q) = lim
δ→0

(K − 1)δ log
δ

1/γ
+ (1− (K − 1)δ) log

1− (K − 1)δ

1− K−1
γ

(2.57)

= − log

(
1− K − 1

γ

)
(2.58)

>
K − 1

γ
. (2.59)

Hence there is a point with non-zero coordinates arbitrarily close to having divergence of K−1
γ with the

closest possible center. We can set γ ≥ K−1
ε so that (2.59) can be less than ε. Similar to the above, the

number of centers with equally spaced centers is

(γ − 1)K−1

(K − 1)K−1
≤
(
γ − 1

K − 1

)
. (2.60)

Then there are at least

(γ − 1)K−1

(K − 1)K−1
≥
(
K−1

2ε

)K−1

(K − 1)K−1
=

(
1

2ε

)K−1

(2.61)

centers.
Putting thesis upper and lower bounds together gives the following:

Proposition 1. If we restrict the covering centers to be evenly spaced in the K−1 dimensional simplex,
then

(
c
1

ε

)K−1

≤Mevenly spaced(K, ε) ≤
(
C
K

ε

)K−1

. (2.62)

Here the covering number depends on the inverse of ε to the power of K− 1. This exponent is twice that
of the exponent we get in the next lower bound.

2.4 Divergence Covering Lower Bound

Here, we show our first and only lower bound.

Proposition 2. For any 0 ≤ ε ≤ logK,

M(K, ε) ≥
(

1

8ε

)(K−1)/2

. (2.63)

Proof. Pick any q(1), . . . , q(M) which are centers for a covering in KL divergence for the (K− 1)-dimensional
simplex. For any probability p ∈ 4K−1, Pinsker’s inequality (2.31) gives

min
j

2TV (p, q(j))2 ≤ min
j
D(p‖q(j)) ≤ ε (2.64)

=⇒ min
j

2
1

4

(
K∑

i=1

|p− q(j)|
)2

≤ ε (2.65)

=⇒ min
j

K∑

i=1

|pi − q(j)
i | ≤

√
2ε (2.66)
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Hence any divergence covering with radius ε should also give a `1-norm covering of the simplex with radius√
2ε. Using (2.46), we can lower bound the number of centers needed in an `1-norm covering with

M ≥ vol(4K−1)

vol(BK−1
`1

(1))(
√

2ε)K−1
=

1
(K−1)!

2K−1

(K−1)! (
√

2ε)K−1
=

(
1

8ε

)K−1
2

. (2.67)

To make this calculation, we projected the the simplex 4K−1 in RK to the space RK−1. The projected
simplex is equivalent to the space connecting 4K−2 to the origin. To compute the volume of this projected
simplex, we used (2.45). The volume of the `1 ball in RK−1 is given by (2.43).

The (K − 1)/2 is indeed the correct exponent of 1/ε for divergence covering numbers. This is verified
with the upper bound in the next section.

2.5 Divergence Covering Explicit Upper Bound

To match the lower bound, we give is our first divergence covering upper bound which achieves (K − 1)/2.
While it does not give the best bound, we include it because the proof explicitly defines the set of centers
needed (instead of arguing that they must exist), which can be useful for practical implementation. It also
illustrates how careful placement of centers can improve the exponent compared to that of the evenly spaced
covering.

Theorem 1 (Explicit Upper Bound on Divergence Covering). For 0 < ε < 1,

M(K, ε) ≤ cK−1

(
K − 1

ε

)K−1
2

(2.68)

for some constant c.

Remark 1. The constant c above is shown to be less than 7.

In order to show Theorem 1, we will start with a lemma about comparing the divergence of two points
which lie on a line between a and b.

Lemma 1. For any a, b ∈ ∆K−1 and λ1, λ2 ∈ [0, 1] we have that

D(λ1a+ (1− λ1)b||λ2a+ (1− λ2)b) ≤ (λ1 − λ2)2

λ2(1− λ2)
. (2.69)

Proof. (When a scalar λi is used in D(·‖·), it is notation for a Bernoulli distribution with probabilities λi
and 1− λi.) Fact 1 implies that

D(λ1||λ2) ≤ (λ1 − λ2)2

λ2
+

(λ1 − λ2)2

1− λ2
=

(λ1 − λ2)2

λ2(1− λ2)
. (2.70)

Then using data processing inequality, we get

D(λ1a+ (1− λ1)b||λ2a+ (1− λ2)b) ≤ D(λ1||λ2) ≤ (λ1 − λ2)2

λ2(1− λ2)
. (2.71)

To define our covering centers for the simplex, we will start with a set of scalars. Let

Λ (ε)
4
=

{
εi2 : for i ∈ Z>0, εi

2 <
1

2

}
∪
{

1− εi2 : for i ∈ Z>0, εi
2 <

1

2

}
∪
{

1

2

}
(2.72)
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Define

Λ2 (ε) = {(λ, 1− λ) : λ ∈ Λ (ε)} (2.73)

For each k, let uk ∈ ∆k−1 be uk = (0, . . . , 0, 1). For each q ∈ ∆k−2, let q̂ be the corresponding q̂ ∈ ∆k−1

where q̂ = (q1, . . . , qk−1, 0).
For each q ∈ ∆k−2, define q(λ) such that

q(λ) = λuk + (1− λ)q̂ . (2.74)

For k > 2, recursively define

Λk (ε)
4
=

⋃

λ∈Λ( εk )

{
q(λ) : q ∈ Λk−1

(
k − 1

k
ε

)}
(2.75)

Lemma 2. For any p ∈ ∆k−1,

min
q∈Λk(ε)

D(p‖q) ≤ γε (2.76)

where γ is a constant.

Proof. We will show this by using induction. First, for any p ∈ ∆1, we want to show that

min
q∈Λ2(ε)

D(p‖q) ≤ γε . (2.77)

Suppose that p ∈ ∆1 and p1 < 1/2. Then ε(i − 1)2 < p1 ≤ εi2 for some positive integer i. Assume
for now that εi2 < 1/2. Choose q = (εi2, 1 − εi2) ∈ Λ2(ε). Note that we must have 1 − εi2 > 1/2. Using
Lemma 1,

D(p‖q) ≤ (p1 − q1)2

q1(1− q1)
(2.78)

=
(p1 − εi2)2

(εi2)(1− εi2)
(2.79)

≤ (ε(i− 1)2 − εi2)2

(εi2)(1− εi2)
(2.80)

≤ ε (−2i+ 1)2

i2(1/2)
(2.81)

≤ ε4i2 − 4i+ 1

i2/2
(2.82)

≤ 4ε (2.83)

If εi2 > 1/2, we can choose q = (1/2, 1/2). For this case, we can also assume i > 1, otherwise one center
point, q = (1/2, 1/2) is sufficient for covering the whole simplex. Then

D(p‖q) ≤ (p1 − 1/2)2

(1/2)(1/2)
(2.84)

≤ (ε(i− 1)2 − εi2)2

1/4
(2.85)

≤ 4ε2(−2i+ 1)2 (2.86)

≤ 4

2
ε

4i2 − 4i+ 1

(i− 1)2
(2.87)

≤ 18ε (2.88)
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where we used that ε < 1/(2(i−1)2). This shows that we can set γ = 18. By symmetry, minq∈Λ2(ε)D(p‖q) ≤
γε holds for p1 > 1/2 as well.

Suppose in dimension k − 1, that we have for any p ∈ ∆k−2,

min
q∈Λk−1(ε)

D(p‖q) ≤ γε (2.89)

For each p = (p1, ..., pk) ∈ ∆k−1, we will specify a scalar quantity λp ∈ [0, 1]. If pk < 1/2, like above, we can
find a positive integer i where

ε

k
(i− 1)2 ≤ pk ≤

ε

k
i2 (2.90)

and set

λp = min

{
ε

k
i2,

1

2

}
∈ Λ

( ε
k

)
. (2.91)

If pk > 1/2, find i such that

1− ε

k
i2 < pk ≤ 1− ε

k
(i− 1)2 (2.92)

and set

λp = max

{
1− ε

k
i2,

1

2

}
∈ Λ

( ε
k

)
. (2.93)

Define p′k = (pk, 1− pk) and λ′p = (λp, 1− λp), then similar to above

D(p′k‖λ′p) ≤ γ
ε

k
. (2.94)

min
q∈Λk(ε)

D(p‖q) ≤ min
q∈Λk(ε):qk=λp

pk log
pk
qk

+

k−1∑

i=1

pi log
pi
qi

(2.95)

≤ pk log
pk
λp

+ min
q∈Λk(ε):qk=λp

k−1∑

i=1

pi log
pi
qi

(2.96)

≤ pk log
pk
λp

+ min
q∈Λk(ε):qk=λp

(1− pk) log
1− pk
1− λp

+ (1− pk)

k−1∑

i=1

pi
1− pk

log
pi/(1− pk)

qi/(1− λp)
(2.97)

≤ D(p′k‖λ′p) + (1− pk) min
q′∈Λk−1( k−1

k ε)

k−1∑

i=1

pi
1− pk

log
pi/(1− pk)

q′i
(2.98)

≤ γ ε
k

+ (1− pk)γ
k − 1

k
ε (2.99)

≤ γε . (2.100)

Proof of Theorem 1. We will use Qk(ε) to denote the set of centers we need to cover ∆k−1 with radius ε.
Let

Qk(ε) = Λk

(
ε

γ

)
(2.101)

where γ is the constant in Lemma 2. Then using Lemma 2, for p ∈ ∆k−1,

min
q∈Qk(ε)

D(p||q) ≤ ε . (2.102)
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Since, M(k, ε) ≤ |Qk(ε)|, it remains to count the size of each Qk(ε). We will show its size by induction.
First, we have that

∣∣∣∣Λ
(
ε

γ

)∣∣∣∣ ≤ 2

√
γ

2ε
+ 1 =

√
2γ

ε
+ 1 ≤

√
2γ + 1√
ε

(2.103)

where the last inequality holds if ε ≤ 1. Therefore we have for some constant c (we can show c ≤ 7),

|Q2(ε)| ≤ c 1√
ε
. (2.104)

For the inductive case, given alphabet size k and any ε ≤ 1, we have |Λk
(
ε
γ

)
| ≤ ck−1

(
k−1
ε

) k−1
2 .

Now consider the case of alphabet size k + 1. The set Λk+1

(
ε
γ

)
is defined as a set of points which is a

product of sets Λ
(

1
k
ε
γ

)
and Λk+1

(
k−1
k

ε
γ

)
. This gives

|Qk+1(ε)| =
∣∣∣∣Λk+1

(
ε

γ

)∣∣∣∣ =

∣∣∣∣Λ
(

1

k

ε

γ

)∣∣∣∣
∣∣∣∣Λk

(
k − 1

k

ε

γ

)∣∣∣∣ (2.105)

≤
(
c

1√
ε
k

)
ck−1

(
k − 1

εk−1
k

) k−1
2


 (2.106)

= c

√
k√
ε
ck−1

(
k

ε

) k−1
2

(2.107)

= ck
(
k

ε

) k
2

(2.108)

as the number of centers.

Notice that our explicit arrangement of centers is very structured. Instead of being on an evenly spaced
grid, we have a grid-like structure but the spacing is adjusted. A denser number of centers are required near
the edges, where it is “harder” to cover points.

Compared to the lower bound Proposition 2, we do not lose in the exponent, but there is an extra K
multiplicative factor raised to the exponent. While our construction is not the best we can do, we do not
believe that using an explicit grid-like structure can significantly improve this extra K term.

Our construction does not optimize the number of centers. We can make a small modification to improve
the number of centers needed. Consider the “slice” in ∆K−1 where pK = λ. This slice is a ∆K−2 dimensional
simplex. We can pick a set of points which cover it at radius γK−1

K ε 1
1−λ . This term will make (2.100) be

closer to γε and reduce the number of points. However, such a modification would only change the constant
and not the extra K multiplicative factor.

Also, though we did not explain it, the choice to allocate radius εK−1
K to the previous dimension and

ε/K to next dimension is the optimal choice. We could have chosen any two values that add up to ε, but
this choice minimizes the number of centers.

Thus there is no real place to make any improvements in the grid-like structure to remove the extra K
term which will be raised to the exponent. This might make sense intuitively. If we ignore the edges of
the simplex and stick to center, KL divergence (as seen from the χ2 upper bound) behaves like the square
of Euclidean (or `2) distance. If we pick centers for Euclidean distance fitted on a grid, then two centers
might be separated with a distance 2r. For each center, the hardest points to cover (the ones farthest from
the center) are diagonal points, which in each dimension differ from the center point’s value by r. The
Euclidean distance from the center to this diagonal point is r

√
K. Hence if we set r

√
K ≤ √ε, we need

to set r =
√
ε/K. Then points which differ from the center points in only 1 dimension will be covered by

multiple points and thus such a covering will not be efficient. We believe the extra factor of K appears for
the same reason in our explicit divergence covering.

Hence, for our next approach, we will only show that a set of centers exists. We will not know exactly
where they lie.
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Figure 2.3: Instead of covering the simplex, the using-Hellinger bound first covers the quadrant of the sphere.
Point in the quadrant of sphere are mapped back into the simplex. We show the quadrant of the sphere
corresponding to 42.

2.6 Using Hellinger: Tighter Upper Bound for All Small Radii

The following bound will be strongest bound we have when the radius ε is small (constant with respect to
K).

Theorem 2. For ε ≤ logK,

M(K, ε) ≤ K
(
C

logK

ε

)K−1
2

(2.109)

Remark 2. The constant C in the statement of the result can be set to 200. If we are not concerned about
the constant C, note that since K ≤ 2K−1 for positive integers K, we can always remove the first term K
in the expression by increasing C to 4C.

The main idea of this proof is to bound KL divergence with Hellinger distance. We simply need to make
adjustments for how a bound in Hellinger translates into KL. We use the notation SK−1 to mean a sphere
in K-dimensional space,

SK−1 = {x = (x1, . . . , xK) ∈ RK : x2
1 + · · ·+ x2

K = 1} . (2.110)

We again use the notation BK`2 (R) as the unit Euclidean ball with radius R.

Proof. First, we consider a set of points which cover A = RK≥0 ∩ SK−1. We want to cover A ∈ RK with `2
balls which we denote as BK`2

(
R
2

)
, where R is the radius of the ball.

Using Fact 7, the covering number, denoted as M(A, `2, R), is bounded by

M(A, `2, R) ≤ vol
(
A+BK`2

(
R
2

))

vol
(
BK`2

(
R
2

)) (2.111)

=
1

2K

πK/2

Γ(K/2+1)

(
(1 +R/2)K − (1−R/2)K

)

πK/2

Γ(K/2+1)R
K

(2.112)

= cK1

(
(1 +R/2)K − (1−R/2)K

)

RK
(2.113)
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(1 +R/2)K − (1−R/2)K (2.114)

=

(
1 +K

R

2
+

(
K

3

)(
R

2

)3

+ · · ·+
(
K

K

)(
R

2

)K)
−
(

1−KR

2
+

(
K

3

)(
R

2

)3

+ · · · ±
(
K

K

)(
R

2

)K)

(2.115)

≤ KR+ 2
(KR/2)3

3!
+ . . . (2.116)

= 2 sinh(KR/2) . (2.117)

If Rd < 1, then the sum above is less than c2dR. Thus, we have for R ∈ (0, 1/d), thatKN(A, `2, R) ≤
K(c/R)K−1.

If 1
K < R < 1, then

(
(1 +R/2)K − (1−R/2)K

)

RK
≤
(

1 +R/2

R

)K
(2.118)

=

(
1

R
+

1

2

)K
(2.119)

≤
(
c′

R

)K
(2.120)

≤ c′K
(
c′

R

)K−1

. (2.121)

Hence we get for all R ∈ (0, 1), that N(A, `2, R) ≤ K(c/R)K−1. This means we can find a set of
K(c/R)K−1 in RK which covers the sphere in the positive coordinates with radius R.

We first loosen the requirement so that A′ = RK
>R/

√
K
∩ SK−1 ⊂ A is covered. This requires almost as

many points it takes to cover A.
We would like the centers of the cover to be in A′. We will achieve this by mapping each point in our

cover to its closest point in A′. This implies that each center will have all its coordinates larger than R/
√
K.

Using triangle inequality, these centers are still a cover with of A′ if we expand our radius to 2R.
We currently have a set of points, call the set QH , where

• Each point has the form a = (a1, ..., aK) so that a2
1 + ...+ a2

K = 1

• For each i, ai > R/
√
K

• |QH | < K(c/R)K

Then for each b ∈ RK ∩SK+1, each p is at most distance R from a point in A′. Using triangle inequality
again, we have ‖a− b‖2 ≤ 3R.

To make the covering for KL divergence space, we will set

QKL = {(a2
1, ..., a

2
K) : (a1, ..., aK) ∈ QH} . (2.122)

Hence if q ∈ QKL, then for each p ∈ 4K−1, DH2(p, q) =
∑K
i=1(
√
pi − √qi)2 ≤ 9R2. We can then use the

inequality (2.33) which relates KL divergence to Hellinger distance. This gives

D(p||q) ≤ 9R2 1

(
√
e− 1)2

max

{
1,max

i
log

pi
qi

}
. (2.123)
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Then we will show that

K∑

i=1

(
√
pi −

√
qi)

2 ≤ 9R2 (2.124)

=⇒ (
√
pi −

√
qi)

2 ≤ 9R2 (2.125)

=⇒ |√pi −
√
qi| ≤ 3R (2.126)

=⇒ √pi ≤ 3R+
√
qi (2.127)

=⇒
√
pi√
qi
≤ 3R+

√
qi√

qi
(2.128)

=⇒
√
pi√
qi
≤ 1 +

3R

R/
√
K

(2.129)

=⇒ max

{
1, 2 log

pi
qi

}
≤ 4 log

(
1 + 3

√
K
)
. (2.130)

Hence we have

D(p‖q) ≤ 9R2 1

(
√
e− 1)2

4 log
(

1 + 3
√
K
)

(2.131)

≤ 200R2 logK . (2.132)

Setting R =
√

ε
200 logK gets the desired result.

We could potentially improve the bound if instead of using `2 distance, we try `z for larger values of z.
However, we cannot get a bound like that in Equation (2.32) to be true. In the proof of Equation (2.32),
near r = 1, the value will explode to infinity. We cannot simply add αpi − βqi to make the function have a
limit near r = 1.

2.7 Using χ2: Almost Tight Covering

The goal of this section is to try improve the upper bound on the covering number by drawing random
centers according to Jeffreys’ prior (or Dirichlet with parameters 1/2). We do not exactly use Jeffreys’ prior
because it is difficult to show what happens on the edge of the simplex. We instead use a modified Jeffreys’
prior. The key will be to use a χ2 divergence upper bound on KL divergence.

2.7.1 Properties of Ellipsoids

Because KL divergence is not symmetric, we define two different types of divergence balls.

Definition 8 (I-Ball and R-Ball).

BKL,I(q, ε)
4
= {p : D(p||q) ≤ ε} (2.133)

BKL,R(p, ε)
4
= {q : D(p||q) ≤ ε} . (2.134)

We name I-balls after Information projections. The name R-balls is for reverse I-projection (potentially
we will change this name). The R-ball BKL,R(p, ε) represents all points p in the simplex which can be
covered by q at a radius ε.

We will use a χ2 upper bound for KL divergence in this section. Hence, we also want the notion of a χ2

ball. These balls will look like ellipsoids in high dimensional space, though the size of the ellipsoid depends
on the center point.
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Definition 9 (Ellipsoids). For a = (a1, ..., aK) ∈ 4K−1 let

E(a, r2)
4
=

{
(x1, ..., xK) ∈ 4K−1 :

K∑

i=1

(xi − ai)2

ai
≤ r2

}
. (2.135)

ER(a, r2)
4
=

{
(x1, ..., xK) ∈ 4K−1 :

K∑

i=1

(xi − ai)2

xi
≤ r2

}
. (2.136)

We could have equivalently defined the sets using notation Dχ2(x||a) ≤ r2 and Dχ2(a||x) ≤ r2. Based on
the χ2 upper bound, every p in E(q, ε) will also satisfy the that D(p‖q) ≤ ε, so p ∈ BKL,I(q, ε). The same
thing holds for q in ER(p, ε). This gives

E(q, ε) ⊂ BKL,I(q, ε) (2.137)

ER(p, ε) ⊂ BKL,R(p, ε) . (2.138)

Lemma 3. Fix ε > 0. Let a = (a1, . . . , aK) ∈ 4K−1 be such that ai ≥ ε for each i. Then

E(a, ε/4) ⊂ ER(a, ε) . (2.139)

Instead of ε/4, we can do better by using

ε
3
2 +

√
5

2

. (2.140)

However we choose to keep the constant simple.

Proof. Let x ∈ E(a, ε/4). Given x, there exists a ε1, . . . εK where each εi ≥ 0 and
∑K
i=1 εi/4 = ε/4 such that

(xi − ai)2

ai
≤ εi

4
. (2.141)

This implies that

ai −
√
εiai

4
≤ xi ≤ ai +

√
εiai

4
. (2.142)

Then

K∑

i=1

(ai − xi)2

xi
≤

K∑

i=1

1

4

εiai

ai −
√

εiai
4

(2.143)

≤
K∑

i=1

1

4

εiai

ai −
√

aiai
4

(2.144)

=

K∑

i=1

1

4

εiai
1
2ai

(2.145)

=

K∑

i=1

1

2
εi (2.146)

=
1

2
ε (2.147)

where we used the condition that ai > ε > εi in (2.144). Thus, x ∈ ER(a, ε/2) ⊂ ER(a, ε)

We will need the volume that these ellipsoids cover.
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Lemma 4 (Volume of Ellipsoid). Fix r2. For a = (a1, ..., aK) ∈ 4K−1 where ai ≥ r2,

vol
(
E(a, r2)

)
=

π(K−1)/2

Γ
(
K−1

2 + 1
)rK−1

K∏

i=1

√
ai . (2.148)

The condition that ai ≥ r2 prevents the ellipsoid from crossing the boundary of the simplex.

Proof. We will integrate over x1, ..., xK−1 ∈ RK−1 and let xK = 1− x1 − · · · − xK−1.

vol
(
E(a, r2)

)
=

∫

x1

· · ·
∫

xK−1

I{(x1, . . . , xK) ∈ E(a, r2)}dx1 . . . dxK−1 (2.149)

=

∫

x1

· · ·
∫

xK−1

I

{
K∑

i=1

(xi − ai)2

ai
≤ r2

}
I

{
K∑

i=1

xi = 1

}
K∏

i=1

I{xi > 0}dx1 . . . dxK−1 . (2.150)

We will do a substitution with ui = xi√
ai
−√ai.

vol
(
E(a, r2)

)
=

∫

x1

· · ·
∫

xK−1

I

{
K∑

i=1

u2
i ≤ r2

}
I

{
K∑

i=1

ui
√
ai + ai = 1

}

K∏

i=1

I{ui
√
ai + ai > 0}√a1 . . . aK du1 . . . duK−1 (2.151)

=

∫

x1

· · ·
∫

xK−1

I

{
K∑

i=1

u2
i ≤ r2

}
I

{
K∑

i=1

ui
√
ai = 0

}
K∏

i=1

I{ui > −
√
ai}
√
a1 . . . aK du1 . . . duK−1 .

(2.152)

Since ai ≥ r2, the constraint I{ui > −
√
ai} must occur in order for I

{∑K
i=1 u

2
i ≤ r2

}
to hold. That

constraint is redundant and we can remove it.

vol
(
E(a, r2)

)
=
√
a1 . . . aK

∫

x1

· · ·
∫

xK−1

I

{
K∑

i=1

u2
i ≤ r2

}
I

{
K∑

i=1

ui
√
ai = 0

}
du1 . . . duK−1 . (2.153)

The integral is the K − 1-dimensional volume of the intersection of K-dimensional sphere with radius r
and a hyperplane through the origin. By symmetry, this is just the volume of a K − 1-dimensional sphere
with radius r. Therefore,

vol
(
E(a, r2)

)
=
√
a1 . . . aK

π(K−1)/2

Γ
(
K−1

2 + 1
)rK−1 . (2.154)

Lemma 5. Fix ε > 0. Let a = (a1, . . . , aK) ∈ 4K−1 where ai > ε for each i. Then if

X ∼ DirK(1/2, 1/2, ..., 1/2) (2.155)

then

P(X ∈ E(a, ε)) ≥
√

2

Kπ

√
ε
K−1

. (2.156)

Proof. We will use the notation x = (x1, . . . , xK).
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For the first step, we use a Taylor expansion on 1/
√
xi around ai for each i.

1√
xi

=
1√
ai
− xi − ai

2a
3/2
i

+

∞∑

k=2

(−1)k
(2k − 1)!!

(2k)!!

(xi − ai)k

a
(2k+1)/2
i

(2.157)

=
1√
a1

(
1− xi − ai

2ai
+

∞∑

k=2

(−1)k
(2k − 1)!!

(2k)!!

(xi − ai)k
aki

)
. (2.158)

If we constrain x ∈ E(a, ε), then

|xi − ai| ≤
√
aiε (2.159)

and
∣∣∣∣
xi − ai
ai

∣∣∣∣ ≤
√
ε√
ai
< 1 . (2.160)

Since we also know that (2k − 1)!!/(2k)!! < 1, we can conclude the Taylor series for 1/
√
xi converges

absolutely.
The product of the series for 1/

√
xi and 1/

√
xj multipling out all the terms will also converge (see [10,

Theorem 3.50]) and this series also converges absolutely (we can just take absolute values of all the terms).
For a given a, we can integrate over the distribution of x, which is Dirichlet, to find the probability X

lands in the ellipsoid around a.

P(X ∈ E(a, ε)) =

∫

E(a,ε)

Γ(K/2)

πK/2
1√

x1 . . . xK
dx1 . . . dxK (2.161)

=

∫

E(a,ε)

Γ(K/2)

πK/2

d∏

i=1

(
1√
ai
− xi − ai

2a
3/2
i

+

∞∑

k=2

(−1)k
(2k − 1)!!

(2k)!!

(xi − ai)k

a
(2k+1)/2
i

)
dx1 . . . dxK

(2.162)

=

∫

E(a,ε)

Γ(K/2)

πK/2
1√

a1 . . . aK

K∏

i=1

(
1− xi − ai

2ai
+

∞∑

k=2

(−1)k
(2k − 1)!!

(2k)!!

(xi − ai)k
aki

)
dx1 . . . dxK .

(2.163)

For any x ∈ E(a, ε), suppose xi = ai + δi for each i ∈ [K]. Let x′ be where x′i = ai − δi for all i. Then
x′ ∈ E(a, ε). Hence by symmetry, any term in the integral which is multiplied by an odd power of (xi − ai)
will cancel out to 0. We can remove these terms in the integration.

P(X ∈ E(a, ε)) =

∫

E(a,ε)

Γ(K/2)

πK/2
1√

a1 . . . aK

K∏

i=1


1 +

∞∑

k=2,k is even

(2k − 1)!!

(2k)!!

(xi − ai)k
aki


 dx1 . . . dxK

(2.164)

≥ Γ(K/2)

πK/2
1√

a1 . . . aK

∫

E(a,ε)

1 dx1 . . . dxK (2.165)

=
Γ(K/2)

πK/2
1√

a1 . . . aK
vol(E(a, ε)) (2.166)

=
Γ(K/2)

πK/2
1√

a1 . . . aK

π(K−1)/2

Γ
(
K−1

2 + 1
)√εK−1

K∏

i=1

√
ai (2.167)

=
1√
π

Γ(K/2)

Γ
(
K
2 + 1

2

)√εK−1
(2.168)

≥
√

2

Kπ

√
ε
K−1

. (2.169)
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We used Lemma 4 to compute vol(E(a, ε)), and in the last inequality we used Gautschi’s inequality (2.50).

Γ(K/2)

Γ
(
K
2 + 1

2

) =
Γ(K/2 + 1)

Γ
(
K
2 + 1

2

) Γ(K/2)

Γ(K/2 + 1)
≥ (K/2)1/2 1

K/2
=

√
2

K
. (2.170)

2.7.2 A Modification of Jeffreys’ Prior on Simplex

For K and ε, we will define the following modification to the Jeffreys’ prior on 4K−1 (the idea to do
this is inspired by [11]). First, we present how this prior, which we denote as W (K, ε) is generated. Let
x = (x1, ..., xK) be the probability we are randomly generating. We will need to check that the probabilities
we picked are valid (values are between 0 and 1) but we leave that to the end.

First, we define a set S. For each i ∈ [K], independently with probability (K + 1)/η, let i ∈ S. Then if
i ∈ S, with probability 1/(K + 1), let xi = z εK for z ∈ 0, 1, 2, ...,K. Thus, we will have with probability 1/η
that xi = z εK and i ∈ S.

For notation, let S[z] be the set of all subsets of d elements. Then for each S ∈ S[z], let s = |S|. We will
use Sc to denote the complement of S. Order the indices in Sc as (j1, ..., jK−s).

Next, given what we have specified for each xi where i ∈ S, to determine the values of each xi where
i ∈ Sc, draw a vector x′ = (x′1, ..., x

′
K−s) using DirK−s(1/2, ...1/2). Let β = 1−∑i∈S xi and set xji = βx′i.

(Note that it is technically possible for xi = z εK even if i /∈ S). This defines all of x. (Because of scaling by
β, the values of x does sum up to 1).

Next we need to set η. First, we must have that (K + 1)/η < 1. We will have a stricter condition that
(K + 1)/η < 1/2. We set 1/η =

√
ε. This gives the condition that

(K + 1)
√
ε ≤ 1

2
(2.171)

ε ≤ 1

4(K + 1)2
(2.172)

We also need that β < 1 which will happen if Kε ≤ 1, so we have that condition covered.
There is also the caveat that in the way we are generating the distribution. It is possible that all i ∈ [K]

are randomly chosen to be in S. Call this event ζ. Event ζ would not be a valid probability distribution.
We need to throw out this possibility from the distribution. Doing so would increase the likelihood of all the
other events. Since the next step will be to lower bound the probability of one of these events, it is simpler
for our calculation to ignore ζ.

Proposition 3. Let ε ≤ 1
4(K+1)2 . Let p = (p1, ..., pK) ∈ 4K−1 where for each i, either

• pi > ε

• or pi has the form pi = k ε
K for k ∈ {0, 1, . . . ,K}.

Then if q ∼W (K, ε) (as defined above)

P[q ∈ ER(p, ε)] ≥
√

1

d2π

(√
ε

4

)K−1

(2.173)

Proof. For each p = (p1, ..., pK), let S be the set of symbols i where pi ≤ ε. We again use the notation
s = |S|.

We will use the notation p|Sc and q|Sc to mean the coordinates of p and q respectively where i ∈ Sc. Let

β = 1−∑i∈S pi. We can treat p|Sc
β as a probability vector over K − s dimensions.

First, if for i ∈ S, we have qi = pi, then

Dχ2(p||q) =
∑

i

(pi − qi)2

qi
=
∑

i∈Sc

(pi − qi)2

qi
= β

∑

i∈Sc

(pi/β − qi/β)2

qi/β
= βDχ2

(
p|Sc
β

∥∥∥∥
q|Sc
β

)
. (2.174)
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Then if q|Sc
β is such that q|Sc

β ∈ ER
(
p|Sc
β , ε

)
, this would imply that Dχ2(p||q) ≤ βε ≤ ε. Thus,

P[q ∈ ER(p, ε)] ≥ P
[
qi = pi for i ∈ S and Dχ2

(
p|Sc
β

∥∥∥∥
q|Sc
β

)
≤ ε
]

(2.175)

= P
[
qi = pi for i ∈ S and

q|Sc
β
∈ ER

(
p|Sc
β
, ε

)]
(2.176)

≥ P
[
qi = pi for i ∈ S and

q|Sc
β
∈ E

(
p|Sc
β
,
ε

4

)]
. (2.177)

For the last inequality, we used Lemma 3. We can check the conditions of Lemma 3. For each i ∈ Sc,
pi
β
> pi > ε . (2.178)

Given that pi = qi for i ∈ S, we know that q|Sc
β ∼ DirK−s(1/2, ..., 1/2). Using Lemma 5 (this requires

condition (2.178) again),

P
[
q|Sc
β
∈ E

(
p|Sc
β
,
ε

4

) ∣∣∣∣qi = pi for i ∈ S
]

= P
[
q|Sc
β
∈ E

(
p|Sc
β
,
ε

4

) ∣∣∣∣
q|Sc
β
∼ DirK−s(1/2, ..., 1/2)

]
(2.179)

≥
√

2

(K − s)π

√
ε

4

K−s−1

. (2.180)

Putting this all together gives

P[q ∈ ER(p, ε)] ≥ P
[
qi = pi for i ∈ S and

q|Sc
β
∈ E

(
p|Sc
β
,
ε

4

)]
(2.181)

= P [qi = pi for i ∈ S]P
[
q|Sc
β
∈ E

(
p|Sc
β
,
ε

4

) ∣∣∣∣qi = pi for i ∈ S
]

(2.182)

≥ 1

ηs

(
1− K + 1

η

)K−s√
2

(K − s)π

√
ε

4

K−s−1

(2.183)

≥ √εs
(

1

2

)K−s√
2

(K − s)π

√
ε

4

K−s−1

(2.184)

=
√
ε
s

√
1

(K − s)2π

(√
ε

4

)K−s−1

(2.185)

≥
√

1

d2π

(√
ε

4

)K−1

. (2.186)

We used that 1/η =
√
ε and that (K + 1)

√
ε ≤ 1/2. This completes the proof.

2.7.3 Expanding Radius of Covering

Since Proposition 3 only applies to probabilities p where if pi ≤ ε, then pi = k ε
K for some k ∈ {0, 1, . . . ,K},

we need some other means to make sure other values of p where pi ≤ ε are also covered. To do this, we will
show that as long as a certain grid of points in the simplex are covered by a set of centers, expanding the
radius will cover the other points in the simplex. We will start with the following definitions to make this
precise.

Definition 10. For ε = 1
κ where k ∈ Z+, let a uniform ε-net N (ε) be a set of points in 4K−1 which

are equally spaced with a distance of ε between points. Specifically, x = (x1, ..., xK) ∈ N (ε) if xi has the
form j

κ where j ∈ Z.
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Let Nint(ε) be the proper subset of N (ε) where x = (x1, ..., xK) ∈ Nint(ε) if xi has the form j
κ where

j ∈ Z and j > 0.

In other words, Nint(ε) is the set of points in the ε-net which are not on the boundary of the simplex.

Definition 11. Let VK be the set of vectors of the form (v1, ..., vK) in K-dimension each vi has one of

the values in {−1, 0, 1} and
∑K
i=1 vi = 0.

When we use Nint(ε), it is possible that ε will not necessarily be of the form 1/κ for κ ∈ Z. In this case,
assume that we will pick some ε′ < ε where ε′ = 1/κ for κ ∈ Z and actually create the net using ε′. At most
this affects our results by a constant.

Proposition 4. Consider an ε
K -net N ( εK ) and a set of C centers in 4K−1. Suppose for each point in

x ∈ Nint(
ε
K ), there exists a c ∈ C so that x ∈ E(c, ε). Then for any v ∈ VK , the point y = x + ε

K v is
such that

y ∈ E(c, αeε) (2.187)

where αe = 10.

For this proposition, if c has each coordinate greater than ε
K (that is ci >

ε
K ), then we can show this

with one simple inequality which states that (a+ b)2 ≤ 2a2 + 2b2. The fact that x ∈ E(c, ε) implies that

K∑

i=1

(xi − ci)2

ci
≤ ε (2.188)

Then we have

K

K∑

i=1

(yi − ci)2

ci
=

K∑

i=1

(xi + vi
ε
K − ci)2

ci
(2.189)

≤ 2

K∑

i=1

(xi − ci)2

ci
+ 2

K∑

i=1

(
vi

ε
K

)2

ci
(2.190)

≤ 2ε+ 2

K∑

i=1

ε

K
(2.191)

= 4ε (2.192)

For the case where there is some ci ≤ ε
K , we need to use something more precise. Our method will be

similar. We will just look at some constraints c must have.

Lemma 6. Suppose 0 ≤ m ≤ K and that xi ≥ ε
K for 0 < i ≤ m. Given that 0 < ci < ε/K for

0 < i ≤ m and the constraint
∑m
i=1

(ci−xi)2

ci
≤ ε, it must be that

m∑

i=1

1

ci
≤ 3

ε
K2 (2.193)

Proof. Since we need that
∑m
i=1

(ci−xi)2

ci
≤ ε, then there must exist values a1, ..., am such that ai > 0 and∑m

i=1 ai ≤ 1 so that

(ci − xi)2

ci
= aiε . (2.194)
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We will show that for each i

ci >
ε

K2
(
ai + 2

K

) . (2.195)

Otherwise,

(ci − xi)2

ci
>

(
ci − ε

K

)2

ci
(2.196)

>

(
ε

K2(ai+ 2
K )
− ε

K

)2

ε

K2(ai+ 2
K )

(2.197)

=
K2
(
ai + 2

K

)

ε

(
ε

K2
(
ai + 2

K

) − ε

K

)2

(2.198)

=
K2
(
ai + 2

K

)

ε

ε2

K2

(
1−K

(
ai + 2

K

)

K
(
ai + 2

K

)
)2

(2.199)

=

(
ai +

2

K

)
ε

1− 2d
(
ai + 2

K

)
+K2

(
ai + 2

K

)2

K2
(
ai + 2

K

)2 (2.200)

= ε
1− 2d

(
ai + 2

K

)
+K2

(
ai + 2

K

)2

K2
(
ai + 2

K

) (2.201)

= ε

((
ai +

2

K

)
− 2

K
+

1

K2
(
ai + 2

K

)
)

(2.202)

> aiε (2.203)

which is a contradiction. In (2.197), we used that xi > ε/K.
Then,

m∑

i=1

1

ci
≤

m∑

i=1

1
ε

K2(ai+ 2
K )

(2.204)

=
K2

ε

m∑

i=1

ai +
2

K
(2.205)

≤ 3
K2

ε
(2.206)

Proof of Proposition 4. Suppose that the coordinates where ci ≤ ε
K are the first set of coordinates, c1, c2, ..., cm,

where 0 ≤ m ≤ K. Using the inequality (a+ b)2 ≤ 2a2 + 2b2,
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K∑

i=1

(yi − ci)2

ci
=

K∑

i=1

(xi + vi
ε
K − ci)2

ci
(2.207)

≤ 2

K∑

i=1

(xi − ci)2

ci
+ 2

K∑

i=1

(
vi

ε
K

)2

ci
(2.208)

≤ 2

K∑

i=1

(xi − ci)2

ci
+ 2

m∑

i=1

(
ε
K

)2

ci
+ 2

K∑

i=m+1

(
ε
K

)2

ci
(2.209)

≤ 2

K∑

i=1

(xi − ci)2

ci
+ 2

( ε
K

)2 m∑

i=1

1

ci
+ 2

K∑

i=m+1

( ε
K

)
(2.210)

≤ 10ε (2.211)

The first term (2.210) is less than 2ε since the fact that x ∈ E(c, ε) implies that
∑K
i=1

(xi−ci)2

ci
≤ ε. The

second term in (2.210) is less than 6ε due to Lemma 6. The third term in (2.210) is less than 2ε since it is
upperbounded by 2d εK .

2.7.4 A χ2 Covering of the Simplex

Theorem 3. For ε ≤ 1
4(K+1)2 ,

M(K, ε) ≤ c0K3/2
(c1
ε

)K−1
2

log
1

ε
(2.212)

where c0 ≤ 10 and c1 ≤ 4.

Since K3/2 ≤ 5K , a simpler way to express the bound in Theorem 3 with explicit constants is

M(K, ε) ≤ 10

(
20

ε

)K−1
2

log
1

ε
(2.213)

Proof. We show the KL divergence covering by given a χ2 divergence covering. We will find a set of M

centers Q so that for every point p ∈ Nint

(
ε

αeK

)
, p ∈ E

(
q, ε
αe

)
for some q in Q.

For notation in this proof, we will let the result of Proposition 3 be denoted as

f(ε,K) =

√
1

K2π

(√
ε

4

)K−1

. (2.214)

Using Proposition 3, we know that for a random center drawn from W (K, ε), any one point p ∈
Nint

(
ε

αeK

)
has probabiltiy greater than f(ε/αe,K) of being covered. Suppose M points are drawn with

W (K, ε/αe). We will use a union bound to upper bound the probability that there exists a p in Nint(
ε

αeK
)

which is not covered. Let Q(M) denote the M randomly selected centers drawn according to W (K, ε/αe).

P
[
∃p ∈ Nint

(
ε

αeK

)
, s.t. ∀q ∈ Q(M), p /∈ E(q, ε/αe)

]
≤

∑

p∈Nint( ε
αeK

)

P [∀q ∈ Q(M), f /∈ E(q, ε/αe)]

(2.215)

≤
∑

p∈Nint( ε
αeK

)

(1− f(ε/αe,K))
M

(2.216)

≤
∣∣∣∣Nint

(
ε

αeK

) ∣∣∣∣ (1− f(ε/αe,K))
M
. (2.217)
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∣∣∣∣Nint

(
ε

αeK

) ∣∣∣∣ =

(
αeK

1
ε − 1

K − 1

)
(2.218)

≤
(
e
(
αeK

1
ε − 1

)

K − 1

)K−1

(2.219)

≤
(
αeed

1
ε

2K

)K−1

(2.220)

=

(
(αe/2)e

ε

)K−1

. (2.221)

We want the event in (2.215) to occur with probability less than 1. We can choose 1/2 for this value.
We need to find M so that

(
(αe/2)e

ε

)K−1

(1− f(ε/αe,K))
M
<

1

2
(2.222)

(K − 1) log

(
(αe/2)e

ε

)
+M log (1− f(ε/αe,K)) < log

1

2
(2.223)

M log (1− f(ε/αe,K)) < log
1

2
− (K − 1) log

(
(αe/2)e

ε

)
(2.224)

M >
log 1

2 − (K − 1) log
(

(αe/2)e
ε

)

log (1− f(ε/αe,K))
(2.225)

M >
log 2 + (K − 1) log

(
(αe/2)e

ε

)

− log (1− f(ε/αe,K))
. (2.226)

The ensure the condition is met for M , we need an upper bound on the quantity in (2.226). Since
log(1− y) ≤ −y, which implies that 1

− log(1−y) ≤ 1
y .

We can determine that

log 2 + (K − 1) log
(

(αe/2)e
ε

)

− log (1− f(ε/αe,K))
≤

log 2 + (K − 1) log
(

(αe/2)e
ε

)

f(ε/αe,K)
(2.227)

≤
√
K2π

(
log 2 + (K − 1) log

(
(αe/2)e

ε

))

√
ε/4

K−1
(2.228)

≤ c0K3/2

(
log

1

ε

)
1

√
ε/c1

K−1
(2.229)

Where c0 ≤ 10 and c1 ≤ 4.
Thus, there exists a random selection of centers where we can cover all the points in Nint(

ε
αeK

). We can
then use Proposition 4 to show that by increasing the size from ε/αe to ε in order to cover all points within
the simplex.

The covering in ellipsoids gives a covering in KL divergence using (2.137).

The using-chi-squared bound presented has some limitations. First, ε must be smaller than roughly 1/K2

due to how we have defined the center points. Second, the factor log(1/ε) make make this bound must worse
than the bound in Theorem 2 if ε is too small.

However, there is a band of ε values where the chi-squared bound is better than the Hellinger bound.
We can see this in Figure 2.4. Thus, there are values of ε where the chi-squared bound is the best bound.
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Figure 2.4: Comparing the using-chi-squared bound and the using-Hellinger bound for alphabet size K =
30000. We plot the log of the number of centers against values of ε. Only the values of ε where the chi-squared
bound is valid is plotted.

We believe the chi-squared bound is likely the technique that will gives us a tight bound. We can possibly
improve the analysis and remove the log(1/ε) entirely, which is an artifact using the probabilistic method to
show all points are covered. There also might be a more clever way modify the Jeffrey’s prior and allow ε to
take more values.

2.8 Some Discussion

In this chapter, we have given various bounds on finding the (worst-case) divergence covering number. In
later chapters, we will show how these bounds can be used to get existing results on redundancy and regret
in the setting of universal prediction and use our upper bounds to determine the capacity of the permutation
channel.

Some things to consider is how would these bounds differ if instead we are only covering a subset of the
simplex. For instance, what would happen if we only needed to cover points on grid in the simplex?

In the next chapter we continue to find more (worst-case) divergence covering bounds, but for the case
when ε is larger. We will continue to discuss the bounds in this chapter in the next chapter.

Also, surprisingly, our analysis for average-case divergence covering (spoilers!) gives us an additional
bound which is not included in this chapter or the next. We save that discussion for later.
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Chapter 3

Divergence Covering Continued:
Subexponential Covering

3.1 Introduction

In the previous chapter, our bounds for the divergence covering number M(K, ε) had a behavior of 1/ε to
the power of (K − 1)/2. This exponent is linear in the dimension (or alphabet size) K and thus the bound
is exponential in 1/ε. In this chapter we explore the regime where the covering number for KL divergence is
subexponential, meaning that as K grows, the number of centers needed grows with an exponent Kc where
c < 1.

For the subexponential bounds, we want to work with regimes where ε is large. Here is an alternative
way of looking at the problem: We know that one center point is sufficient for covering the whole simplex
when ε = logK. If we change ε to 1

2 logK, how does that change the number of centers needed? This is the
key question we are trying to answer. If radius is some fraction of the largest possible radius, can we get
exponentially fewer centers?

Summary of Main Results We first present the subexponential bound in an very informal (not quite
precise) statement: For constant α ≤ 1, if the the radius ε is set to α logK,

1

e2
K1−α ≤ logM (K,α logK) ≤ K1−α logK . (3.1)

Based on the bound above, if we let ε = 1
2 logK, then log of the number of centers should behave as

√
K,

ignoring the additional logarithmic factor. In (3.1), the upper and lower bounds are off by a factor of e2 logK.
Our precise statement of the subexponential bound has one main difference from (3.1). For the upper

bound, there is an additional term added to the radius. This term prevents us from just making α smaller to
get an arbitrarily small radius. However, this additional term is negligible if α is fixed and K is large. The
tightest version of the upper bound is given with the proof. A less tight but accurate bound is the following:
For 1/(e logK) ≤ α ≤ 1,

M

(
K,α logK + log

(
1

α
+ 1

))
≤ eK1−α logK . (3.2)

(Also, in the proofs below, instead of using α in the expression α logK for the radius, we use (1/r) logK
where r = 1/α.)

We also have polynomial bounds, where the number of centers are polynomial in K. This occurs when
the radius is logK − c for some small c.

Implications on Applications Our main motivation for studying the subexponential bounds is for our
cloud communication problem (see Section 1.1.2). The small radius regime is for when we want the excess
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Figure 3.1: When K = 30, 000, comparison of log of the number of centers needed to cover the simplex
plotted against ε. The subexponential bound and the using-Hellinger bounds are plotted.

code length of the subsidiary communication to be within a constant number of bits from optimal. However,
given a large alphabet size, this might not be a feasible expectation. If the alphabet is the set of English
words, it is typical in language models to use a vocabulary size of around 10, 000 to 50, 000 words (very
large vocabulary sizes for language models can go up to 500, 000.) For our example, suppose our system had
an alphabet size of K = 30, 000. Then sending a probability distribution over 30, 000 symbols, so that the
excess distortion is within say 1 bit, would require around 173, 000 bits using our Hellinger bound. (The
Hellinger bound is best bound for the setting of K = 30, 000 and ε = 1. The subexponential bound tells us
that we would require around 223, 000 bits.) While this is very reasonable (since we are sending information
for 30, 000 symbols) it might still be too much. Depending on the application, we may want a trade-off
where the probability distribution takes fewer bits to describe and have more distortion.

Our subexponential bound does show that we can get a number of bits sublinear in the size of the
alphabet. If instead, we let the excess code length be 1

2 logK ≈ 7.5, then the subexponential bound would
tell us that we require around 2, 600 bits, which is a dramatic amount of savings.

Using the Hellinger bound in place of the subexponential bound does not improve the number of savings
as much for the large radius setting. (For instance, when ε = 7.5 and K = 30, 000, the Hellinger bound gives
around 129, 000 bits.) We show the comparison in Figure 3.1.

In Figure 3.2 give a table of all our bounds on divergence covering numbers thus far.

Divergence Covering Bounds

Name ε Regime Lower Bound Upper Bound

using-Hellinger 0 < ε < logK ( cε )
K−1

2 (C logK
ε )

K−1
2

Using-chi-squared 0 < ε < 1
4(K−1)2 ( cε )

K−1
2 (log 1

ε )(Cε )
K−1

2

Subexponential ε = 1
r logK + log(r + 1), 1 ≤ r ≤ e logK e

1
e2
K1−1/r

eK
1−1/r logK

Polynomial ε = log K
γ , γ ≤

√
K
2 e

γ
e+log

√
2πγ/e e2γ logK

Figure 3.2: Table comparing bounds for divergence covering for alphabet size K for different regimes of ε.
Value of constant c and C will vary for each bound. The using-Hellinger and using-chi-squared are bounds
for small values of ε, whereas the subexponential and polynomial for large values of ε.
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Chapter Organization We will first discuss the achievability result for subexponential covering in Sec-
tion 3.2. This is followed by the converse result in Section 3.3. After the subexponential regime, we explore
the polynomial regime in Section 3.4.

In this chapter, it is useful to have the ability to use subscripts on different discrete probability distribu-
tions. Hence for p ∈ 4K−1, we write the probability for symbol i as p(i). So

p = (p(1), . . . , p(K)) . (3.3)

3.2 A Subexponential Achieveability

Proposition 5. For 1 ≤ r ≤ e logK,

M

(
K,

1

r
logK + log

(
r − (r − 1)

1

K1/r
+

1

K2/r −K1/r

))
≤ eK1− 1

r logK . (3.4)

A less tight but easier result to work with is that for 1 ≤ r ≤ e logK,

M

(
K,

1

r
logK + log(r + 1)

)
≤ eK1− 1

r logK . (3.5)

We will give an explicit construction to achieve the covering at these distances. The main idea of our
construction is to find a cover for all probabilities which are equivalent up to a permutation. The distribution
q which will do this will have a tiered structure. Symbols in the smallest tier will have the largest probability.
Symbols in the second smallest tier will have a slightly lower probability and this keeps decreasing until we
get to a tier with all the symbols.

Proof. We will first define a specific distribution qe in terms of r.

qe(i)
4
=





α 1
K1/r for 1 ≤ i ≤ K1/r

α 1
K2/r for K1/r < i ≤ K2/r

...

α 1
K(r−1)/r for K(r−2)/r < i ≤ K(r−1)/r

α 1
K for K(r−1)/r < i ≤ K

. (3.6)

Note that by bounding r ≤ e logK, the smallest value of K1/r is e1/e. Due to the property that ej/e ≥ j,
this guarantees that bKt/rc < bK(t+1)/rc for all t. This means the value α 1

Kt/r for each t ∈ {1, . . . , r}
appears as qe(i) for some i.

The normalization constant α is given as

1

α
=

1

K1/r
bK1/rc+

r∑

i=2

1

Ki/r
(bKi/rc − bK(i−1)/rc) (3.7)

≤ 1

K1/r
K1/r +

r∑

i=2

1

Ki/r
(Ki/r −K(i−1)/r + 1) (3.8)

= r −
r∑

i=2

1

K1/r
+

r∑

i=2

1

Ki/r
(3.9)

= r − (r − 1)
1

K1/r
+

1

K2/r −K1/r
. (3.10)

For any permutation σ of theK symbols, define distribution qσ as qσ(σ(i)) = qe(i). Different permutations
σ can correspond to the same distribution. Let Qr be the set of covering centers, defined as

Qr 4=
⋃

σ

{qσ} . (3.11)
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Let p̄k for k = 1, · · · ,K be the set of distribution where

p̄k(i)
4
=

{
1
k for i ≤ k
0 for i > k

. (3.12)

For each k, let t(k) be value t ∈ {1, · · · , r} such that K(t−1)/r ≤ k < Kt/r.

D(p̄k||qe) =

k∑

i=1

1

k
log

1/k

qe(i)
(3.13)

≤
k∑

i=1

1

k
log

1/k

α 1
Kt(k)/r

(3.14)

≤ log
1

Kt(k)/r

α 1
K(t(k)+1)/r

(3.15)

= log
1

α
+ log

K(t(k)+1)/r

Kt(k)/r
(3.16)

= log
1

α
+ logK1/r . (3.17)

For each p ∈ 4K−1, there exists a p̃ so that p(σ(i)) = p̃(i) and p̃(1) ≥ p̃(2) ≥ · · · ≥ p̃(K). The distribution
p̃ can be expressed as a linear combination of all the p̄k. Using convexity of KL divergence, this means that

D(p||qσ) = D(p̃||qe) ≤ log
1

α
+ (1/r) logK . (3.18)

It remains to count the size of Qr.

|Qr| =
K!

(K −K(r−1)/r)!(K(r−1)/r −K(r−2)/r)! · · · (K2/r −K1/r)!K1/r!
(3.19)

≤ K!

(K −K(r−1)/r)!
(3.20)

≤ KK(r−1)/r

. (3.21)

3.3 A Subexponential Converse

Definition 12. Let S(K, j) be the set of all subsets of size j on K symbols.

Lemma 7. Let q be a distribution on K symbols, where the probability on the ith symbol is given by
q(i). Then for any B where B > 0,

∑

S∈S(K,j)

I





1

B
≤
(∏

i∈S
q(i)

)1/j


 ≤

Bj

j!
. (3.22)

Note that the expression (1/B) ≤
(∏

i∈S q(i)
)1/j

is the statement that the geometric mean of the of the
probabilities associated with j elements of S have a value greater than 1/B.

As long as K is sufficiently large, it is clear that the number of subsets which satisfy this geometric mean
constraint is not affected by the size of K. For very large K compared to B, most symbols would have
probability 0 in order to maximize the number of subsets.
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The conjecture is that the distribution which maximizes the number of subsets while satisfying the
geometric mean constraint is roughly the distribution that gives 1/B probability to B symbols and 0 to
everything else. It might make sense to conjecture that the optimal distribution should the uniform distri-
bution on a subset of symbols. But the uniform distribution on a subset is not optimal in general, as there
are counterexamples that exploit the fact that B might not be an integer. The result of Lemma 7 attempts
to achieve the same order as this conjecture would.

Proof. Let q be any distribution. Group the symbols into bins where each bin contains all the symbols which
have the same q(i). Let B be the set of bins.

For each b ∈ B, let n(b) be the number of elements in bin b. If qb is the probability of each element in b,
let α(b) be such that

(
1

Bj

)α(b)

= qb . (3.23)

Define p(b) the total probability (under q) of all elements in b. We can write

p(b) = n(b)

(
1

Bj

)α(b)

. (3.24)

We can think of p(·) as a probability distribution over the bins, where bin b has probability p(n).
Select an ordered sequence (with repeats) of j bins, call this sequence W = w1, ..., wj . Let W be the set

of all sequences. We can choose one symbol from each bin, to give an ordered (and possibly repeating) set
of symbols T .

For each W and its associated T , we have the following equivalence.

1

B
≤
(∏

i∈T
q(i)

)1/j

(3.25)

1

Bj
≤
∏

i∈T
q(i) (3.26)

1

Bj
≤

j∏

i=1

(
1

Bj

)α(wi)

(3.27)

1

Bj
≤
(

1

Bj

)∑j
i=1 α(wi)

(3.28)

(Bj)
∑j
i=1 α(wi) ≤ Bj . (3.29)

For each W , let n′(W ) be the number of symbol sequences where the ith symbol is in bin wi. Then

n′(W ) = n(w1)n(w2)...n(wj) (3.30)

=

j∏

i=1

p(wi)(B
j)
α(wi)

(3.31)

= (Bj)
∑j
i=1 α(wi)

j∏

i=1

p(wi) . (3.32)

We can upperbound summing over all subsets by summing over all sequences of bins and weighting these

45



sequences of bins by n′(W ). Define T (K, j) to be the set of ordered lists of j elements from K symbols.

∑

S∈S(K,j)

I





1

B
≤
(∏

i∈S
q(i)

)1/j


 =

1

j!

∑

T∈T (K,j)

I





1

B
≤
(∏

i∈T
q(i)

)1/j


 (3.33)

≤ 1

j!

∑

W∈W
n′(W )I

{
(Bj)

∑j
i=1 α(wi) ≤ Bj

}
(3.34)

=
1

j!

∑

W∈W
(Bj)

∑j
i=1 α(wi)

(
j∏

i=1

p(wi)

)
I
{

(Bj)
∑j
i=1 α(wi) ≤ Bj

}
(3.35)

≤ Bj

j!

∑

W∈W

(
j∏

i=1

p(wi)

)
I
{

(Bj)
∑j
i=1 α(wi) ≤ Bj

}
(3.36)

≤ Bj

j!

∑

W∈W

j∏

i=1

p(wi) (3.37)

=
Bj

j!
. (3.38)

We get the last line from the fact that we are summing probabilities of all sequences of bins.

Proposition 6.

M

(
K,

1

r
logK

)
> e

1
e2
K1− 1

r
. (3.39)

Proof. To show the lowerbound, we will relax the problem to covering only a subset of points in the simplex
instead of the whole simplex. Let Pj be the set of probabilities on 4K−1. Define distribution pS ∈ Pj for
S ∈ S(K, j) as,

pS(i)
4
=

{
1
j for i ∈ s
0 for i /∈ s

. (3.40)

For each pS , the condition that D(pS ||q) < (1/r) logK is equivalent to the following:

D(pS ||q) ≤
1

r
logK (3.41)

∑

i∈S

1

j
log

1

jq(i)
≤ 1

r
logK (3.42)

log
1

j
(∏

i∈S q(i)
)1/j ≤ logK1/r (3.43)

1

jK1/r
≤
(∏

i∈S
q(i)

)1/j

. (3.44)

From Lemma 7,

∑

S∈S(K,j)

I





1

jK1/r
≤
(∏

i∈S
q(i)

)1/j


 ≤

(jK1/r)j

j!
(3.45)

meaning that at most (jK1/r)j distributions in Pj can have divergence less than (1/r) logK to any one
distribution q.
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Let β be such that j = Kβ . There are

(
K

Kβ

)
≥ KKβ

KβKβ = K(1−β)Kβ

(3.46)

total number of distributions in Pj . Hence we need

(
K
j

)

(jK1/r)j/j!
≥ K(1−β)Kβ

(KβK1/r)KβK
βKβ

e−K
β

= K(1−β− 1
r )Kβ

e−K
β

(3.47)

number of centers to cover all of them. To compute this, we used that

j! ≥
√

2πj

(
j

e

)j
> KβKβ

e−K
β

. (3.48)

We will write β = (1− 1/r − γ), give the result that the number of covers is more than

(
Kγ

e

)K(1− 1
r
−γ)

. (3.49)

We can choose γ = 2
logK (the value which gives the maximum), so that (3.49) becomes

e
1
e2
K1− 1

r
. (3.50)

Some insights from this proof are that if we are looking for j, the subset size so that Pj requires the most
number of covering centers, for a distance of 1

r logK, we should choose j = K1−1/r/e2.
Overall, we are able to get results:

• For a distance of (1/r) logK + log(logK + 1), the number of centers M satisfies logM < K1− 1
r logK.

• For a distance of (1/r) logK, the number of centers M satisfies logM > K1− 1
r /e2.

3.4 Polynomial Region

Using similar techniques as we did for the the subexponential bounds above, we can find upper and lower
bounds for when the divergence distance between any point in the simplex and our selected centers for
covering balls is less than logK − c where c is a positive constant. For this region, we can show an upper
bound of a polynomial number of covers and a lower bound of a constant number of coverings. These results
can be thought of as corollaries of the above results, but we will derive the upper bound separately.

It is more useful to express

logK − c = log
K

γ
(3.51)

where γ is such that log γ = c. To distinguish this region from the subexponential region above, we require
that γ << K. To be more exact, we will require that

γ ≤
√
K

2
(3.52)

though for γ close to
√
K the following result will be the same as Proposition 5.
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Corollary 1. If γ ≤
√

K
2 ,

logM

(
K, log

K

γ

)
≤ 2γ logK . (3.53)

Proof. For any probability p ∈ 4K−1 there are at most 2γ symbols with probability more than 1/2γ. Call
these symbols set A. Let

qA(i)
4
=

{
1

2γ + 1
2d for i ∈ A

1
2d otherwise

. (3.54)

D(p||qA) =
∑

i

p(i) log
p(i)

qA(i)
(3.55)

≤
∑

i∈A
p(i) log

1
1

2γ + 1
2d

+
∑

i/∈A
p(i) log

1
2γ
1
2d

(3.56)

=
∑

i∈A
p(i) log

2γK

K + γ
+
∑

i/∈A
p(i) log

K

γ
(3.57)

≤
∑

i∈A
p(i) log 2γ +

∑

i/∈A
p(i) log

K

γ
(3.58)

≤ log
K

γ
. (3.59)

where we used that 2γ < K/γ from our assumption (3.52) in the last line.
It remains to count the number of such qA given by the number of possible sets A.

|A| =
(
K

2γ

)
≤ (ed)2γ

(2γ)2γ
(3.60)

and thus

logM

(
K, log

K

γ

)
≤ log |A| = 2γ logK − 2γ log

2γ

e
≤ 2γ logK − c (3.61)

where c is positive so long as 2γ > e.

For the lower bound, we know that there has to be at least a constant number of covers. Using similar
techniques as we used to prove Proposition 6, we can at best show that the lower bound is a constant. So
nothing is gained from this technique in terms of dependence on K. We show the results to understand the
dependence on γ.

Corollary 2.

logM

(
K, log

K

γ

)
≥ γ

e
+ log

√
2πγ/e . (3.62)

Using Proposition 6, we can set

1

r
=

(
1− log γ

logK

)
(3.63)

logM

(
K, log

K

γ

)
≥ 1

e2
K

log γ
logK =

γ

e2
. (3.64)

However, we can strengthen this by doing the calculations exactly.
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Proof. Using Lemma 7, the number of subset distributions of size m covered by one distribution of the form
in (3.54) is at most

(
ed

γ

)m
1

2πm
. (3.65)

This gives the number of distributions to cover all subset m distributions as

(
K
m

)

ed
γ

m 1
2πm

=
γm

mm

√
2πm . (3.66)

By taking the derivative, the value of m which approximately maximizes this value is m = γ
e .

This gives the number of centers needed as eγ/e
√

2πγ/e.

We believe that the lowerbound is not tight. (Though the upper bound is probably not tight either.) One
of the issues with the lowerbound is that while it counts how many subsets are covered, it does not make
sure that the subsets are distinct. Working with m = 2, assuming that the probabilities which cover subsets
of 2 are uniform over some set, we can show using the probabilistic method that the number of probabilities
needed is at least logK. If we can show this, it would give the results

logM

(
K, log

K

γ

)
≥ log logK . (3.67)

However, we do not know how to prove that uniform probabilities cover subsets best (a strong version of
Lemma 7). Hence the above is still a conjecture.
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Chapter 4

Application to Redundancy and
Regret

4.1 Introduction

From the previous two chapters we explored bounds on the divergence covering number. Now in this chapter,
we begin using them. The purpose of the current chapter is to examine how divergence covering bounds,
particularly the upper bounds, can be used to find minimax redundancy and minimax regret bounds for
universal compression (or universal prediction) problems.

The first part of the chapter is an overview on the setting of universal compression. The second part
derives a framework for finding minimax redundancy and minimax regret for the class of iid finite alphabet
distributions using our divergence covering results from the previous chapters. We compare the results we
get here with existing results. The third part looks at another problem of minimax regret where divergence
covering applies, but it requires us to consider divergence coverings of a particular subset of the simplex.

Summary of Results Our goal is to develop and analyze the framework for how divergence covering
bounds can be transformed into bounds for minimax redundancy (denoted by R+

n ) and minimax regret
(denoted by r+

n ). (Here, n is the length of sequence we are predicting.) Getting upper bounds on minimax
redundancy from divergence covering upper bounds is a straight-forward application of Yang-Barron [6].
However, getting minimax regret from divergence covering results requires some additional analysis. This is
presented in Theorem 4, where divergence covering numbers are connected to minimax regret if the maximum
likelihood distribution and empirical distribution match.

We first compare our bounds using divergence covering and Yang-Barron for finding minimax redundancy
for the class of iid large alphabet (n-fold product) distributions, denoted by InK . For redundancy, our method
using covering gets

R+
n (InK) ≤ K − 1

2
log n+O(K) +O(log log n) (4.1)

for large n compared to K. whereas the (well-known and famous) result is

R+
n (InK) =

K − 1

2
log

n

2πe
+ log

Γ (1/2)
K

Γ (K/2)
+ o(1) . (4.2)

Our result (4.1) is not nearly as precise as (4.2), but we are able to capture the first order term exactly.
We are not as tight by an additive factor of O(log log n), but this term is small since applying log twice
drastically reduces the value. The advantages of our bound is though we are hiding the constants in the
O(K) and O(log log n) terms, our bound is not asymptotic. Unlike (4.2), we do not have a o(1) term that
that depends on K being fixed.

For regret, we give the comparison between using our method and the known results in Table 4.1. The
bounds using our method is very close to the known result. We are only larger by a factor of K log logK in
each of the bounds.
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Regime Known Regret Regret Using Divergence Covering

n = o(K) r+
n (InK) ∼ n log K

n r+
n (InK) ≤ n log K

n +O(n log logK)

K = Θ(n) r+
n (InK) = Θ(n) r+

n (InK) = O(n log log n)

K = o(n) r+
n (InK) ∼ K−1

2 log n
K r+

n (InK) ≤ K−1
2 log n

K−1 +O(K log logK)

Table 4.1: The regime is only the approximate values of n and K where our bounds apply. Exact results are
given in Proposition 7.

In addition to the iid finite alphabet results, we also have results when the source is an order r Markov
model. Typically, the known results for redundancy and regret were discovered using methods which require
specific details about the class, such as applying Stirling’s approximation for iid distributions. In our frame-
work, for several different problems, once divergence covering bounds are known, the same machinery can
be applied to get the minimax regret (and redundancy) bounds.

The last part of this chapter is to apply our framework to get minimax regret over patterns. For the
class of patterns, denoted by InΨ, we can show using our methods that

r+
n (InΨ) ≤ cn1/3 log4/3 n (4.3)

for some constant c. Here we are able to improve the existing result, which is

r+
n (InΨ) ≤ cn1/3 log4 n (4.4)

for some (different) constant c. For our result, we need to show a new covering bound (based on a result
known for finding redundancy) and a more intricate connection between divergence covering to regret.

Chapter Organization Background on the universal compression begins in Section 4.2. Specifically in
Section 4.2.4 we discuss Yang-Barron [6] which will connect covering results to redundancy. In Section 4.3,
we start by showing how divergence covering can be used to upper bound minimax regret. Following this, we
show how divergence covering results from the previous chapters can be used to bound regret for iid product
distributions sources and Markov sources. In Section 4.4, we give the background on patterns and show how
to obtain a result for regret on patterns.

Notational Notes The distributions P and Q can be distribution on many variables. For instance, if
random variables X,Y, Z have some joint distribution under P , we can use PXY Z to discrete the joint
distribution. We can use PXY Z(x, y, z) to mean the probability that X = x, Y = y and Z = z. We can also
discuss marginal distributions using notation like PX or conditional distributions using notation like PY |Z .
We use the same notation for parameterized distributions: the distribution on Y parameterized by θ can be
written as PY |θ(y|θ) for each y.

4.2 Universal Compression Overview

4.2.1 Introduction to Universal Compression

The core problem of universal compression is the problem of compressing an iid sequence of symbols. The
main difficultly is not knowing the probability distribution which generates the sequence, yet the goal is to
still be able to compress almost as well as if you had known the probability distribution. We elaborate on
this:

Suppose the estimator has a sequence Xn, which has n symbols on an alphabet of size K. It is the
estimator’s job to compress this sequence. Classical Shannon Theory has told us that if the symbols in
Xn are generated iid from a distribution PX , (where Xi ∼ PX for each i), then the estimator should
asymptotically achieve a compression rate of R = H(PX). This means that if the original length of the
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X1 X2 . . . Xn

Figure 4.1: Illustration of the prediction game (for redundancy) between the estimator and the devil. The
estimator is trying to predict the probability of the next symbol based on past symbols. The symbols are
generated with some true distribution PX .

sequence is n, we expect the compressed sequence to have length nR as n → ∞. To achieves this, it is
typical to use a technique like Huffman coding or arithmetic coding.

In the universal compression setting, the estimator is given the same problem, except that the estimator
does not know PX . Perhaps in such a case, one would guess a distribution QX and compress with that
in place of PX . Then, the rate of the compression on the sequence would be R = D(PX‖QX) + H(PX).
Compared to if we knew PX , our rate R is worse by an additional term D(PX‖QX).

However, the estimator is allowed to compress the sequence in an online manner. This means that the
sequence Xn is revealed to the estimator one at a time. At each time step, estimator must determine their
prediction for PX to use for compressing the next symbol, and this prediction can be informed by all the
past symbols they have seen. The question of universal compression is as the estimator repeatedly uses their
best prediction of PX to predict the next symbol, can the estimator eventually achieve a rate which is equal
to H(PX)?

At this point, we no longer worry about the mechanics of data compression. The estimator is only
evaluated based on how well they predict PX at each time step. Issues of needing to encode a block of
certain length and integer constraints that arise in compression are neglected. We can restate the problem
replacing the goal of shortest compression with the goal of getting the lowest loss with the log-loss criteria,
making it a universal prediction problem. Both problems are fundamentally the same.

In the universal prediction problem, at each time, the estimator gives the prediction of the next symbol,
in the form of a probability distribution, to minimize the log-loss of your probability distribution and the
true next symbol. Can this log-loss asymptotically to do a rate of H(PX)?

As we see below, this question has been answered and it turns out that asymptotically the estimator
can compress as well as if they knew PX . We begin to discuss this formally. Our two characters are 1) the
estimator which we have introduced and 2) the devil, a character who chooses the distribution PX to give
the estimator the most trouble.

They are different ways we can define this estimation game between the estimator and the devil. We
focus on expected log-loss (giving a quantity called redundancy) and individual sequence with log-loss (giving
a quantity called regret).

4.2.2 Log-Loss and Expected Redundancy

Let n be the total number of symbols (or sequence length) the estimator has to predict. At each time step
t, the estimator’s task is to produce a function f which minimizes the loss measured by a function L(f, x),
where x is the true value revealed at the next time step.

The expected loss at time step t is

min
f

E[L(f,Xt)|Xt−1
1 = xt−1] . (4.5)
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This notation captures that the fact that the function f can depend on the symbols xt−1
1 , which are symbols

seen in the past, at steps 1 through t− 1.
While L can be many different loss functions, we will choose our loss function as the log-loss distortion.

For log-loss, the estimator’s function f needs to be given as a probability distribution over the possible
symbols.

Definition 13 (Log-Loss). Let QX be a probability over space X and x ∈ X , then the log-loss is given
by

L(QX , x) = log
1

QX(x)
. (4.6)

For example: if X = [K] and K = 3, the estimator’s f would be a probability QX over the symbols 1, 2
and 3. If say the estimator chooses QX(1) = 1/2, QX(2) = 1/4, QX(3) = 1/4 and then afterwards, the true
symbols is revealed to be 2, the estimator suffers a loss of

L(QX , 2) = log
1

QX(2)
= log 4 . (4.7)

Redundancy is the loss of the estimator’s prediction QX against the the true distribution PX , which
generates the symbol X. The estimator’s prediction QX is evaluated on their average log-loss (which is
averaged over PX). The following definitions are from [12]. The first deals with the redundancy of one
symbol:

Definition 14 (Redundancy).

R(QX , PX) = EX∼PX
[
log

1

QX(X)
− log

1

PX(X)

]
= D(PX ||QX) (4.8)

In the online learning setting, the estimator gives a prediction at each step. This prediction is based on
symbols seen in the past. The principled way to denote this prediction is

QXt|Xt−1(x|xt−1) (4.9)

where x is the symbol we want the probability for and xt−1 are the past t − 1 symbols. We purposefully
write this as a conditional probability distribution, since the rules of conditional probability dictate that for
any xn

QXn(xn) =

n∏

t=1

QXt|Xt−1(x|xt−1) . (4.10)

This quantity QXn(xn) is relevant if we add up the log-loss taken over all n steps for sequence xn:

n∑

t=1

L(QXt|Xt−1 , xt) =

n∑

t=1

log
1

QXt|Xt−1(x|xt−1)
(4.11)

= log

n∏

t=1

1

QXt|Xt−1(x|xt−1)
(4.12)

= log
1

QXn(xn)
. (4.13)

This development shows that when the estimator gives probabilities as predictions in each step as part of
an online process, this is the same as giving a joint probability distribution as a prediction over the whole
sequence. Cumulative loss for the estimator’s prediction under log-loss can is equal to the log-loss over the
whole joint distribution.

If we want to find the cumulative redundancy, we can sum up the log-loss of estimator’s prediction with
the log-loss of the true distribution at each time step. For this next definition, we don’t assume that Xn is
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generated iid. We let Xn ∼ PXn for any joint distribution PXn . If PXn is known, given Xt−1, the symbol
Xt is generated as PXt|Xt−1 .

EXn∼PXn

[
n∑

t=1

log
1

QXt|Xt−1(Xt|Xt−1)
− log

1

PXt|Xt−1(Xt|Xt−1)

]
(4.14)

= EXn∼PnX

[
log

1

QXn(Xn)
− 1

PXn(Xn)

]
. (4.15)

Definition 15 (Cumulative Redundancy).

Rn(QXn , PXn) = EXn∼PnX

[
log

1

QXn(Xn)
− log

1

PXn(Xn)

]
= D(PXn ||QXn) . (4.16)

If PXn is an n-fold product distribution, then we can set PXn = PnX(xn), where use the notation PnX(xn) =∏n
t=1 PX(xt) to mean an iid product (or n-fold product) distribution. This will be the case we discuss in

this chapter.
So far in the development, our protagonist the estimator has only been faced with some fixed PX .

However, the estimator’s prediction, whatever it is, could work better for some PX ’s and do terribly for
others. What should the estimator’s predictions be good against? We use our antagonist, the devil, to define
this precisely. The devil’s purpose is the make things harder for the estimator. By harder, we mean, the
devil would like to choose PX so that the estimator has the largest possible redundancy.

There are different notions of how the devil can make things difficult for the estimator. If in this game,
the estimator is forced to pick a prediction strategy first (i.e. choose QXn first), then the devil can, based
on his knowledge of the estimator’s strategy, pick the worst possible PnX . The resulting redundancy here is
called the minimax redundancy. We will use Θ to denote the set of all PXn the devil can pick. When Xn

has an iid product distribution, one distribution PX specifies PXn . When this occurs, we will write PX = pθ
where θ ∈ Θ is used as the devil’s choice.

Something else that can happen, is that the devil must first reveal his strategy. Assume we are only
working with iid product distributions. If the devil picks any single PX , then of course the estimator can
always just use QXn = PnX and get zero redundancy. To make things more interesting, when we say the devil
goes first, we let the devil choose a probability distribution on all possible PX . We call this the prior. Then
one PX is chosen randomly according to this prior and this chosen distribution is what the estimator must
play their strategy against. Here, we want to average redundancy over the prior. This gives what is called
the maximin redundancy. Like above, the space of probability distribution at the devil’s disposal is given
by Θ. The probability the devil can pick over on the space Θ will be denoted by w. This means probability
distribution pθ occurs randomly as the true distribution with probability w(θ).

While for this work we are focusing on the case where the devil’s secret probability is an n-fold product
distribution, in general for redundancy, this does not need to be the case. Hence we will use the notation
PXn|θ to mean a distribution on xn parameterized by θ ∈ Θ. If PXn|θ is an n-fold product distribution, then
we write PXn|θ = PnX|θ or pnθ as stated above.

The formal definitions of minimax redundancy and maximin redundancy are given here:

Definition 16 (Minimax and Maximin Redundancy). The minimax redundancy is

R+
n (Θ) = inf

QXn
sup
θ∈Θ

D(PXn|θ||QXn) . (4.17)

For some prior w on Θ define

Rn(QXn , w) = Eθ∼w[D(PXn|θ||QXn)] . (4.18)
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The maximin redundancy is

R−n (Θ) = sup
w

inf
QXn

Rn(QXn , w) . (4.19)

The setting of maximin redundancy can be understood in Bayesian terms. The quantity w(θ) is, as its
name suggests, a Bayesian prior. If the estimator wants to minimize log-loss, then the best choice for the
estimator is to choose QXn which is the estimator’s belief of the distribution of xn. This is clear since if we
want to choose QXn to minimize

EXn∼PXn
[
log

1

QXn(x)

]
= D(PXn‖QXn) +H(PXn) (4.20)

picking QXn = PXn is the best choice since it minimizes the KL divergence. Thus, if the estimator knows
the prior w, the estimator’s best QXn is to choose the posterior probability on Xn. This what we call the
weighted average estimator and the redundancy we get from using it is called the Bayes Risk.

Definition 17 (Weighted Average Estimator and Bayes Risk). For any prior w, the weighted average
estimator is

mw
n (xn) =

∫

Θ

PXn|θ(x
n)w(θ)dθ . (4.21)

The Bayes risk for prior w is

Rn(w) = Rn(mw
n , w) (4.22)

It turns out that the Bayes risk is exactly a mutual information.

inf
QXn

Rn(QXn , w) = inf
QXn

Eθ∼w
[
EXn∼PXn|θ log

PXn|θ(Xn)

QXn(Xn)

]
(4.23)

= inf
QXn

∫

θ

∑

xn

PXn|θ(x
n)w(θ) log

PXn|θ(xn)

QXn(xn)
dθ (4.24)

=

∫

θ

∑

xn

PXn|θ(x
n)w(θ) log

PXn|θ(xn)

mw
n (xn)

dθ (4.25)

= I(θ;Xn) (4.26)

If we describe minimax redundancy in classical information theory language, we get the following1:

inf
QXn

Rn(QXn , w) = I(θ;Xn) (4.27)

sup
w

inf
Q
Rn(Q,w) = sup

w
I(θ;Xn) (4.28)

R−n (Θ) = Cn(Θ) (4.29)

where Cn(Θ) is the capacity for a channel defined on variables θ and Xn. The optimal w∗ which achieves
the capacity is called the capacity-achieving prior or the least-favorable prior. We will also refer to it as the
maximin prior.

The redundancy-capacity theorem says that

Cn(Θ) = R−n (Θ) = R+
n (Θ) (4.30)

Thus, calculating maximin redundancy will give minimax redundancy.
We will focus on the problem of finding Cn(Θ) when Θ is the set of n-fold product distributions on a

certain fixed alphabet size. We will use Θ = InK to denote this.
A long line of work was done in efforts to compute Cn(InK). In the next section, we go over some of the

this history.

1The connection to capacity is due to Gallager in unpublished lecture notes [13].
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4.2.3 History of Minimax Redundancy

Kolmogorov mentioned the idea of universal compression in [14], but this work was very expository. Fitingof
in [15, 16] continued the ideas of [14] with more details. A line of work proceeded from these ideas, summa-
rized in [17]. Among these, an interesting early application of universal coding is the Rice Machine, which
was used for transmitting images from the Voyager spacecraft [18]. This line of work eventually lead way to
finding R+

n (InK) (or Cn(InK)) as a key problem.
The first order term in the expression for R+

n (InK) is credited to Krichevsky and Trofimov [19], where
they determined that

R+
n (InK) ∼ K − 1

2
log n . (4.31)

Our analysis on using divergence covering for finding R+
n (InK) will be about recovering this first order term.

However, it is interesting to go over the history of the lower order terms in the expression for R+
n (InK).

Authors Clarke and Barron in [20] found that under appropriate conditions, for a given prior w on Θ,
and θ0 ∈ Θ,

D(pnθ0 ||mw
n ) =

d

2
log

n

2πe
+

1

2
log det I(θ0) + log

1

w(θ0)
+ o(1) (4.32)

where d is the dimension of parameter space Θ. (If Θ = InK then d = K − 1.) They showed this bound by
using Laplace’s method to approximate mw

n (xn)/pnθ0(xn). Three events need to occur with small probability
for the approximation to be accurate. The first is that outside a ball Nδ (with distance measured with the
Fisher information) of δ, the integral over pθ(x

n)w(θ) is less than ε of that within the ball Nδ. The second is
that the empirical Fisher information is close to the theoretical one. The third is that a particular average
score function they defined has norm near zero. These events have probabilities that go to zero, but this is
assuming that d is fixed.

Continuing down this line, the same authors [21] determined that Jeffreys’ prior is asymptotically the
worst-case, i.e. the least-favorable prior. (For Jeffreys’ prior on the probability simplex, see (2.48).) For
each finite n, the prior which is worst-case is a discrete prior (so not Jeffreys’). The minimax risk (under
certain assumptions) is then

R+
n (Θ) = inf

qn
sup
θ∈Θ

D(pnθ ||qn) =
d

2
log

n

2πe
+ log

∫

Θ

√
det I(θ)dθ + o(1) . (4.33)

Here, I(θ) is the Fisher information associated with pnθ .
To show this, the important first theorem is that the authors prove on a compact set Θ0 in the interior

of Θ, the Bayes risk converges uniformly. In particular, they showed that

lim
n→∞

sup
θ∈Θ0

∣∣∣∣∣D(pnθ ‖mw
n )−

(
d

2
log

n

2πe
+ log

√
det I(θ)

w(θ)

)∣∣∣∣∣ = 0 (4.34)

The key here is the uniformity. To show this, the authors use Laplace’s method, which uses the same
methods as in [20]. The expression for this has the empirical Fisher information as the covariance term in
the Gaussian approximation. Restricting to a neighborhood around θ and arguing that the empirical Fisher
information can be replaced with the theoretical Fisher information gives the desired result.

In order to show the error on this approximation goes to zero, the authors determine upper and lower
bounds on the remainder term. To compute the remainder term bounds, the authors need to bound the
probability of a few events which are similar to those in [20], and will ultimately show that the remainder
terms are O(1/n). Bounding this probability is most of the proof. However, the important thing to notice
is that the authors treat d as constant in these bounds. Bounds like d/(nε) are O(1/n) but only if d does
not grow like n.

To show the result that Jeffreys’ prior is maximin, the authors have to argue that they can extend the
result on compact subsets in the interior to all of Θ. Then by the fact that the minimax risk and maximin
risk are the same and observing that the Jeffreys’ prior can be substituted to both equations to get the same
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value, the authors conclude that the Jeffreys’ prior is the maximin prior and thus give the values for the
both the asymptotic minimax and maximin risk.

In Xie and Barron [22], the authors show that for Θ = InK , both the minimax and maximin redundancy
subtracting K−1

2 log n converges to

log

∫

IK

√
det I(θ)dθ = log

Γ(1/2)K

Γ(K/2)
(4.35)

as n goes to infinity. While the Jeffreys’ prior is asymptotically least favorable, meaning it is asymptotically
the maximin prior, it is not the minimax worst prior. The minimax procedure requires a modification (this
modification inspired the modification of Jeffreys’ prior in the proof of Theorem 3).

This gives that the final minimax redundancy results as

R+
n (IK) =

K − 1

2
log

n

2πe
+ log

Γ (1/2)
K

Γ (K/2)
+ o(1) . (4.36)

The o(1) term is as n→∞ for a fixed K.

4.2.4 Yang-Barron: Minimax Bounds Using Covering

Next, we go over the main inequality that lets us connect divergence covering to finding mutual information
(which is equal to minimax redundancy).

Authors Yang and Barron in [6] use KL divergence covering to find minimax rates of convergence for
density estimation problems. For distortions d2(g, f) such as squared-error, KL divergence or (squared)
Hellinger divergence (see Definition 6), the central result of [6] is that

min
f

max
g∈G

Efd2(f, g) � ν2
n (4.37)

where ν2
n is a critical radius related to the packing number. This characterizes the minimax bound in terms

of the metric entropy. Their work focuses on the case of densities, but they do use their result in the discrete
alphabet case. However, they do not compute the covering numbers necessary; they only determine the rates
if the covering number were to have a specific form.

Authors Haussler and Opper [23], similar to [6], use metric entropy to bound the Bayes risk. They
show that the Bayes risk is upper bounded by KL divergence covering number and that the Bayes risk is
lower bounded by Renyi entropy. For computing the covering numbers, the authors opt for using Hellinger
covering. They have theorems where given a dimension of the space (this is defined in terms of the metric
entropy), the Bayes risks will be of a certain form. They also do not give covering numbers for finite alphabet
spaces.

We will go over one of the inequalities used in [6] which is key to our ideas. This will be used to give
bounds for minimax redundancy. Let Q be a set which covers the probability space in KL divergence with
radius ε. (For each q ∈ Q, we use qn to be the distribution on the n-fold product). Set

QXn(xn) =
1

|Q|
∑

q∈Q
qn(xn) . (4.38)

Then for any prior w on θ,

I(θ,Xn) ≤ sup
θ
D(pnθ ||QXn) (4.39)

for any QXn (due to property of mutual information. Then,
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I(θ,Xn) ≤ sup
θ

E

[
log

pnθ (Xn)
1
|Q|
∑
q∈Q q

n(Xn)

]
(4.40)

= sup
θ

∑

xn

pnθ (xn) log
pnθ (xn)

1
|Q|
∑
q∈Q q

n(xn)
(4.41)

= log |Q|+ sup
θ

∑

xn

pnθ (xn) log
pnθ (xn)∑
q∈Q q

n(xn)
(4.42)

≤ log |Q|+ sup
θ

∑

xn

pnθ (xn) log
pnθ (xn)

qn(xn)
(4.43)

≤ log |Q|+ sup
θ

inf
q
D(pnθ ||qn) . (4.44)

If Q is a divergence overing of the space of pθ at radius ε, then for any pθ, minq∈QD(pθ‖q) ≤ ε. Also,
since pnθ is an iid product distribution, we can relate

max
θ

min
q∈Q

D(pnθ ||qn) = sup
θ

inf
q∈Q

nD(pθ||q) ≤ nε . (4.45)

Thus,

I(θ,Xn) ≤ log |Q|+ nε (4.46)

To find the best bound on the mutual information for each n, we need to find the right trade off between
ε and |Q| by considering different choices of Q. If we are working with pθ which are over the simplex, then
|Q| = M(K, ε).

4.2.5 Applying Our Covering Results

In this section we take a break from overviewing literature and apply our divergence covering bounds from
Chapter 2 to determine an upper bound on R+

n (InK) using (4.44). We know the correct result we should get
is (4.36).

Recall that our divergence covering results upper bound M(K, ε) such that if m = M(K, ε), then

∃{Q(1), . . . , Q(m) : Q(i) ∈ 4K−1} s.t. sup
P∈4K−1

D(P ||Q(i)) ≤ ε . (4.47)

We choose to use Theorem 3 for this demonstration. For this bound, we need to assume that 4(K−1)2 < n
since we will be setting ε = 1/n. Applying the divergence covering result in Theorem 3, we have that

M(K, 1/n) =

(
c

1/n

)K−1
2

log
1

1/n
. (4.48)

Let

QXn(xn) =
1

m

m∑

t=1

n∏

i=1

Q(i)(xt) . (4.49)
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Then using (4.44) we have

R+
n (InK) ≤ max

θ∈IK
D(pnθ ‖QXn) (4.50)

≤ logm+ max
θ∈IK

min
Q(i)

D

(
pnθ

∣∣∣∣
∣∣∣∣
n∏

i=1

Q(i)

)
(4.51)

≤ log

((
c

1/n

)K−1
2

log
1

1/n

)
+ max
θ∈IK

min
Q(i)

nD(pθ‖Q(i)) (4.52)

≤ K − 1

2
log(cn) + log log n+ n

1

n
(4.53)

≤ K − 1

2
log n+O(K) +O(log log n) (4.54)

We are able to recover the first order term in (4.36). While we do not have the correct constants, our O(K)
term is analogous to the second order term in (4.36). Our bound is not tight because we have an additional
O(log log n) which is not present in (4.36).

However, the advantage of our bound is that it is explicit. For every K and n allowed, we give a value
for which the minimax redundancy is definitely less than. There is no o(1) term like in (4.36) which hides
possibly large terms for finite n.

Remark 3. Since we have known results for redundancy, we can translate these known results to lower bounds
on divergence covering. For instance, since we know that K−1

2 log n is the correct minimax redundancy, it

implies that M(K, ε) ≥ (1/ε)
K−1

2 . Otherwise we have a contradiction. (We already know this to be a lower
bound, but this is a good sanity check.)

We can also apply our other upper bounds in Chapter 2 or Chapter 3 to get some different bounds on the
minimax redundancy. However, instead of doing this, we begin our analysis of regret, a quantity different
than though similar to redundancy. It turns out that upper bounds on regret translate to upper bounds on
redundancy. We will apply our other bounds on the divergence covering after the next section.

4.2.6 Worst-Case Regret

We now go back to the story of the estimator and the devil. This time, we have them play a slightly
different game than before. Instead of having the length n sequence of symbols be generated iid from some
distribution PX , we let the devil choose any length n sequence. Since there is no generating distribution,
there is no averaging. The estimator’s predictions are evaluated as the log-loss against the devil’s single
sequence. This is compared against the log-loss of the best possible probability that could have been used
for the devil’s sequence. Essentially, the regret2 is

inf
Q

sup
xn

[
log

1

Q(xn)
− inf

P
log

1

P (xn)

]
= inf

Q
sup
P

sup
xn

log
P (xn)

Q(xn)
(4.55)

(4.56)

where the estimator chooses Q first, and then devil gets to choose both P and xn. It might seem that it is
impossible for the estimator to have a chance of getting good log-loss against a devil who can pick both P
and xn. However, what makes this work is that P is restricted to a particular set. The devil can only choose
P where P = PXn|θ(xn) for some θ ∈ Θ.

We give the formal definitions below.

Definition 18. Regret for an estimator QXn , a class Θ, and sequence xn is

rn(QXn , x
n,Θ) = sup

θ∈Θ
log

PXn|θ(xn)

QXn(xn)
. (4.57)

2Instead of the term regret, sometimes the term maximum redundancy is used. In such a case, our notion of redundancy is
called average or mean redundancy.
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The minimax regret is

r+
n (Θ) = inf

QXn
sup
xn

rn(QXn , x
n,Θ) . (4.58)

The maximin regret is

r−n (Θ) = sup
θ∈Θ

inf
QXn

∑

xn

PXn|θ(x
n)rn(QXn , x

n,Θ) . (4.59)

As the estimator, the optimal prediction QXn is the Shtarkov estimator. The Shtarkov estimator is given
by

Q∗n(xn1 ) =
1

γn(Θ)
sup
θ∈Θ

PXn|θ(x
n|θ) (4.60)

where

γn(Θ) =
∑

xn

sup
θ∈Θ

PXn|θ(x
n|θ) . (4.61)

Similar to capacity redundancy theory, we have for regret that

r−n (Θ) = r+
n (Θ) = log γn . (4.62)

The Shtarkov estimator is the unique minimax strategy and the unique least favorable distribution for
the maximin. This follows from computation similar to that discussed in Section 4.2.4. Compared to the
redundancy setting, we have the following important fact:

Fact 9.

log γn(Θ) ≥ Cn(Θ) (4.63)

Proof. We will fix a specific QXn .

Cn(Θ) ≤ sup
θ∈Θ

Exn∼PXn|θ

[
log

1

QXn(xn)
− log

1

PXn|θ(xn|θ)

]
(4.64)

≤ sup
θ∈Θ

Exn∼PXn|θ

[
log

1

QXn(xn)
− inf
θ′∈Θ

log
1

PXn|θ(xn|θ′)

]
(4.65)

= sup
θ∈Θ

∑

xn

PXn|θ(x
n|θ)

[
log

1

QXn(xn)
− inf
θ′∈Θ

log
1

PXn|θ(xn|θ′)

]
(4.66)

≤ sup
xn

[
log

1

QXn(xn)
− inf
θ′∈Θ

log
1

PXn|θ′(xn|θ′)

]
(4.67)

If we choose QXn to minimize (4.67), then (4.67) is equal to log γn.

Authors Xie and Barron [11] find that for finite alphabet of size K, the minimax regret is

rn(InK) =
K − 1

2
log

n

2π
+ log

Γ(1/2)K

Γ(K/2)
+ o(1) (4.68)

The Dirichlet prior with all parameters 1/2 (Jeffreys’ prior!) is asymptotically maximin for the regret.
Compared to minimax redundancy, the difference is an additive factor of K−1

2 log e.
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4.2.7 Large Alphabet Redundancy and Regret

The formulas we give above for the redundancy (4.36) and regret (4.68) is for when when the alphabet size
K is fixed and the sequence length n is very large (accurate when n goes to infinity). They do not give
satisfying enough solutions when the alphabet size is large compared to the number of samples. In other
words, the o(1) term that appears in (4.36) and (4.68) depends on K. If we disregard this fact and use the
formula anyways, then if we let the alphabet size K = n, this results in a minimax redundancy (or regret)
of order n log n. This value is really large! It is the regret that the estimator is guaranteed to achieve if the
estimator predicted that each symbol was equally likely at every step. We expect that perhaps we can do
better. We start the discussion of these better results for large alphabet size with some history.

Davisson in his 1973 paper [17] on noiseless universal coding defines that a universal code as possible
if the redundancy goes to zero asymptotically when normalized by n (the number of samples). Davisson
includes multiple definitions of what it means to be universal, such as weighted universal codes, weakly
minimax universal and minimax universal. Weakly minimax universal corresponds to our definition. For
the universal code to exist, the per letter minimax redundancy has to go to zero (per letter redundancy is
the cumulative redundancy divided by n). Minimax universal is a stronger case where the convergence of
the redundancy is uniform over the set of all possible parameters. He observed that for a stationary ergodic
process over a finite alphabet, weakly minimax universal codes exists (and if the source satisfies certain
entropy requirements, minimax universal codes exists.) The agrees with our background results on minimax
redundancy from above. However, for infinite alphabets however, additional conditions are required to show
that weakly minimax universal codes exists.

Following this, Keiffer in [24] clarified what the conditions for the existence of weakly minimax universal
codes are. His paper also showed that for an iid source with an infinite alphabet, there is indeed no way to
get a weakly universal minimax code. We can infer from this that for large alphabet sizes (and small n),
we will have per letter redundancy which is fixed above some constant. Then the cumulative redundancy
should at least be a constant times the sample size n.

In [25], the authors determine the regret for large alphabet iid distributions. They compute the regret
for sample lengths n and alphabet sizes K for the cases where K = o(n), K = Θ(n) and n = o(K). Their
results are summarized below. The upper bound results heavily utilize results from [26].

Regime Regret

K = o(n) r+
n (InK) ∼ K−1

2 log n
K

K = Θ(n) r+
n (InK) = Θ(n)

n = o(K) r+
n (InK) ∼ n log K

n

Table 4.2: Table with regrets for standard iid distribution. Results are given for asymptotic n.

Because there is no diminishing per-symbol redundancy in the large alphabet case, another direction in
the study of redundancy for large alphabet is to consider shapes and patterns of infinite alphabets sequences.
These are explored in [25] and we discuss them in Section 4.4.

4.3 Connection to Minimax Regret

Yang-Barron’s technique (4.44) directly connects divergence covering to minimax redundancy. This makes
sense since minimax redundancy is a mutual information and (4.44) is a bound on mutual information. What
is less obvious is what divergence covering can show for minimax regret, as minimax regret is not expressed
as mutual information. Yet, it is possible to finagle minimax regret so that it is also bounded by (4.44).

The connection between divergence covering and regret requires the following definitions.
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Definition 19. Define θ̂(xn) to be the parameter such that

θ̂(xn) = arg max
θ∈Θ

PXn|θ(x
n|θ) . (4.69)

In other words, θ̂(xn) is the parameter that gives the maximum likelihood estimator for xn.

Definition 20. Define p̂(x;xn) to be the empirical distribution for xn, i.e.

p̂(x;xn) =
1

n

n∑

t=1

1{xt = x} . (4.70)

Theorem 4. If for each xn and x ∈ X we have that

p̂(x;xn) = PX|θ(x|θ̂(xn)) (4.71)

and we have a divergence covering with set of centers Qn on the distributions parameterized by θ ∈ Θ
at radius ε, then

r+
n (Θ) ≤ log |Qn|+ nε (4.72)

To find the best possible bound, we would need to determine the optimal ε.

Proof. For any ε, the conditions of the theorem states that there exists a divergence covering with centers
Qn = Q(1), ..., Q(m) where m = |Qn|. Recall this implies that for any θ ∈ Θ we have minj D(PX|θ‖Q(j)) ≤ ε.

Let j(θ) = arg minj D(PX|θ‖Q(j)) and let

Q̄n(xn) =
1

m

m∑

j=1

n∏

t=1

Q(j)(xt) (4.73)

r+
n (Θ) ≤ max

xn
rn(Q̄n, xn,Θ) (4.74)

= max
xn

log
PXn|θ(xn|θ̂(xn))

Q̄n(xn)
(4.75)

= max
xn

log
PXn|θ(xn|θ̂(xn))

1
m

∑m
j=1

∏n
t=1Q(j)(xt)

(4.76)

≤ logm+ max
xn

log
PXn|θ(xn|θ̂(xn))∏n
t=1Q(j(θ̂(xn)))(xt)

(4.77)

= logm+ max
xn

log

∏n
t=1 PX|θ(xt|θ̂(xn))∏n
t=1Q(j(θ̂(xn)))(xt)

(4.78)

= logm+ max
xn

n∑

t=1

log
PX|θ(xt|θ̂(xn))

Q(j(θ̂(xn)))(xt)
(4.79)

= logm+ max
xn

∑

x∈X
np̂(x;x

n) log
PX|θ(x|θ̂(xn))

Q(j(θ̂(xn)))(x)
(4.80)

= logm+ nmax
xn

∑

x∈X
P̂X|θ(x|θ̂(xn)) log

PX|θ(x|θ̂(xn))

Q(j(θ̂(xn)))(x)
(4.81)

= logm+ nmax
xn

D(P̂X|θ(·|θ̂(xn))‖Q(j(θ̂(xn)))(·)) (4.82)

= logm+ nε (4.83)
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The key to this proof relies on the fact that for regret, the devil will always choose the maximum
likelihood estimator for his chosen sequence xn. If the maximum likelihood estimator reflects the empirical
distribution of xn, then taking log of the maximum likelihood estimator will give a quantity that resembles
a KL divergence. This allows us to connect regret for these problems to divergence covering.

Since minimax regret is always larger than minimax redundancy, bounding the regret automatically gives
a bound on the redundancy. Our divergence covering results for finite dimensional simplices corresponds to
regret problems on iid product distributions. We find these exact bounds given by this below.

4.3.1 Regret for IID Distributions Using Divergence Covering

In this section we will use Theorem 4 and our covering results to find upper bounds on minimax regret for
the standard iid product distribution on any alphabet size relative to the number of samples.

For each divergence covering bound we have, we can use Theorem 4 and then optimize for the best value
of ε to use. We will start with the subexponential bound in Proposition 5. We will use the simpler version
where

logM

(
K,

1

r
logK + log(r + 1)

)
≤ K1− 1

r logK (4.84)

for 1 < r < e logK. We have that for any alphabet size K and n samples, that

r+
n (InK) ≤ K1− 1

r logK + n

(
1

r
logK + log(r + 1)

)
(4.85)

= e−α logKK logK + n

(
α logK + log

(
1

α
+ 1

))
. (4.86)

Using derivatives, we could solve for the value of α which makes the above the smallest. This gets a bit
messy, so instead we ignore the the log

(
1
α + 1

)
and just optimize the other terms. The best value of α is at

e−α logK =
n

K logK
(4.87)

=⇒ α =
log K logK

n

logK
(4.88)

We need to satisfy the condition that 1 ≤ 1/α ≤ e logK. This forces the constraints that logK ≤ n ≤
e−1/eK logK.

This gives

r+
n (InK) ≤ n

K logK
K logK + n

log K logK
n

logK
logK + n log

(
logK

log K logK
n

+ 1

)
(4.89)

≤ n+ n log
K

n
+ 2n log(logK + 1) . (4.90)

(we used that log K logK
n ≥ 1). This gives us a bound which is the same order as the bound given in Table 4.2

for when K = o(n). We will skip using the polynomial covering in Corollary 1 since it gives the same result
as the subexponential bound (up to constants on the lower order terms).

Next, we will do the same for the divergence covering result using Hellinger (in Theorem 2) where

logM(K, ε) = log

(
K

(
C logK

ε

)K−1
2

)
(4.91)

(where the constant C ≤ 200).
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This gives

r+
n (InK) ≤ K − 1

2
log

(
C logK

ε

)
+ logK + nε (4.92)

Optimizing for ε gives ε = K−1
2n , which gives

r+
n (InK) ≤ K − 1

2
log

(
C2n logK

K − 1

)
+ logK + n

K − 1

2n
(4.93)

=
K − 1

2
log

n

K − 1
+
K − 1

2
(log logK + log 2Ce) + logK . (4.94)

We technically need ε ≤ logK, so n > K−1
2 logK .

When K − 1 = n, we see that the dominate term is O(K log logK). This is not as tight as the result for
when K = Θ(n) in Table 4.2. However, when K = o(n), we do get the correct order of growth.

Lastly, we will apply our covering bound which uses χ2 for the regime of small ε. This bound will be
restricted only to the case when K is at least some polynomial factor smaller than n. The bound is

M(K, ε) ≤ K3/2
( c
ε

)K−1
2

log
1

ε
(4.95)

Instead of optimizing, we will choose ε = K−1
2n but we need ε ≤ 1

4(K+1)2 . This implies that roughly n > 4d3

for this bound to hold. We get

r+
n (InK) ≤ K − 1

2
log

(
2cn

K − 1

)
+ log log

2n

K − 1
+

3

2
logK + n

K − 1

2n
(4.96)

≤ K − 1

2
log

(
n

K − 1

)
+
K − 1

2
log 2ce+

3

2
logK + log log

2n

K − 1
(4.97)

(4.98)

We will summarize these results in the following proposition:

Proposition 7 (Divergence Covering Upper Bounds on Regret). For iid distributions on alphabet of
size K and n samples, the following all bound the minimax regret:

• For logK ≤ n ≤ e−1/eK logK,

r+
n (InK) ≤ n log

K

n
+ n+ 2n log(logK + 1) . (4.99)

• For n > (K − 1)/(2 logK),

r+
n (InK) ≤ K − 1

2
log

n

K − 1
+
K − 1

2
(log logK + log 2Ce) + logK (4.100)

where C is a constant.

• For n > 4(K + 1)3,

r+
n (InK) ≤ K − 1

2
log

(
c

n

K − 1

)
+

3

2
logK + log log

2n

K − 1
(4.101)

where c is a constant.

We summarize the same results in the following table:
Comparing to the regrets calculated in [25], it seems our upper bounds have an additional O(n log logK)

or O(K log logK) term. For instance, in the case where n = o(K), it seems the bound n log K
n + n is close

to correct. The O(n log logK) is the only additional term.
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Regime Regret

n ≤ e−1/eK logK r+
n (InK) ≤ n log K

n +O(n log logK)

n > (K − 1)/(2 logK) r+
n (InK) ≤ K−1

2 log n
K−1 +O(K log logK)

n > 4(K + 1)3 r+
n (InK) ≤ K−1

2 log n
K−1 +O(K)

This could be due to looseness in our divergence covering bounds. However, our bounds are still very
close. We are correct up to the first order term, except in the case where K = Θ(n). Our results are also
very clearly non-asymptotic. We did not need to use any approximations that rely on n being large.

Though we do not beat the minimax regret bounds calculated specifically for iid distributions, our
technique for covering is still more versatile. With the same techniques, we can apply our bounds to other
problems. The next section shows this for Markov models.

4.3.2 Markov Models

In this section we will look at how divergence covering can be applied to Markov models. (In [27], the author
is also able to extend regret results for iid sources to Markov models; hence we believe that we should have
a parallel connection.) For notation, we will use InK,r to mean the class of probability distributions on xn

which are Markov models of order r over alphabet K.
For the first example, suppose we have an alphabet of size K and an order r = 1 Markov model. If

sequence xn is generated using probability P , this means that there is a p0(·) and pw(·|·) so that

PXn(xn) = p0(x1)

n−1∏

t=1

pw(xt+1|xt) . (4.102)

Similarly, for another distribution Q, we can alter the notation to have

QXn(xn) = q0(x1)

n−1∏

t=1

qw(xt+1|xt) . (4.103)

Let pt(xt) be the marginal probability of xt under P and similarly let qt(xt) be the marginal probability
of xt under Q. If we only consider length n sequences xn, we have

D(PXn‖QXn) =
∑

xn

p0(x1)

n−1∏

t=1

pw(xt+1|xt) log
p0(x1)

∏n−1
t=1 pw(xt+1|xt)

q0(x1)
∏n−1
t=1 qw(xt+1|xt)

(4.104)

=
∑

x1

p0(x1) log
p0(x1)

q0(x1)
+

n−1∑

t

∑

xt

pt(xt)
∑

xt+1

pw(xt+1|xt) log
pw(xt+1|xt)
qw(xt+1|xt)

(4.105)

To cover all distributions PXn , one solution is to cover all possible p0(·) and all possible pw(·|x) for each
x ∈ [K]. Each of these can be thought of as separate iid distribution on an alphabet of size K. Thus, one
way to cover P is to take the product of the covers at radius ε for the distribution p0(·) and each pw(·|x).
This gives the total number of covering points as

M = M(K, ε)K+1 (4.106)

and the divergence will be bounded by nε.
This can give a bound for a redundancy for a Markov model of order 1 on a fixed length sequence. We

can also consider higher order Markov models. The analysis is the same for Markov models of order r, but
we would need a covering on the simplex for each Kr possible previous sequences. To covering the first r
starting symbols, we actually need (K+1)r different coverings. (The value is a slight overestimate. We need
K + 1 instead of K since we need the conditional distributions for the start of the sequence. One way of
understanding this is to consider “positions” before the start of the sequence as a new K + 1-th symbol.)
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Like we did with iid distributions, we also want to make connections to minimax regret. Given an
arbitrary sequence xn, to calculate the regret, we need the best order 1 Markov model that bests fits xn.
This is given by setting

p
(xn)
0 (a) =

{
1 if x1 = a

0 else
(4.107)

and

p(xn)
w (a|b) =

|t : {xt+1 = a and xt = b}|
|{t : xt = b, t < n}| . (4.108)

We will also use

p(xn)(b) =
|{t : xt = b, t < n}|

n
. (4.109)

(For r > 1, we will need b to be r consecutive symbols.)
Then

r+
n (Q, xn, InK,1) = max

P
log

p
(xn)
0 (x1)

∏n−1
t=1 p

(xn)
w (xt+1|xt)

q0(x1)
∏n−1
t=1 qw(xt+1|xt)

(4.110)

= log
p

(xn)
0 (x1)

∏n−1
t=1 p

(xn)
w (xt+1|xt)

q0(x1)
∏n−1
t=1 qw(xt+1|xt)

(4.111)

= log
p

(xn)
0 (x1)

q0(x1)
+ log

∏
a,b p

(xn)
w (a|b)np(xn)(b)p(xn)

w (a|b)
∏
a,b qw(a|b)np(xn)(b)p

(xn)
w (a|b)

(4.112)

= log
p

(xn)
0 (x1)

q0(x1)
+
∑

a,b

np(xn)(b)p(xn)
w (a|b) log

p
(xn)
w (a|b)
qw(a|b) (4.113)

= log
p

(xn)
0 (x1)

q0(x1)
+ n

∑

b

p(xn)(b)
∑

a

p(xn)
w (a|b) log

p
(xn)
w (a|b)
qw(a|b) (4.114)

(4.115)

In this formulation, the value of p
(xn)
0 is always zero or one. We can let Q0 be the set of all possible p0.

Then |Q0| = K. Fix ε, for each b, we want a set Q(b) so that

min
qw(·|b)∈Q(b)

D(p∗w(·|b)‖q∗w(·|b)) ≤ ε (4.116)

we need the set of {q∗w(·|b)} to have size M(K, ε). Then |Q(b)| = M(K, ε).
The overall distribution Q on Markov models can be chosen from Q = Q0 ×Q(1)× ...×Q(K), and thus

|Q| = K ·M(K, ε)K . Let Q̄Xn(xn) = 1
|Q|
∑
Q∈QQXn(xn).

Then let q∗(a|b) be the distribution in Q(b) which is the arg min of (4.116) given p(xn). Let q∗0 be equal

to p
(xn)
0 (take can take one of K values). Let Q∗Xn be the overall distribution created from q∗(a|b) and q∗0 .
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Then

r+
n (InK,1) =≤ max

xn
rn(Q̄Xn , x

n, InK,1) (4.117)

= max
xn

log
p

(xn)
0 (x1)

∏n−1
t=1 p

(xn)
w (xt+1|xt)

Q̄Xn(xn)
(4.118)

= max
xn

log
p

(xn)
0 (x1)

∏n−1
t=1 p

(xn)
w (xt+1|xt)

1
|Q|
∑
QXn∈QQXn(xn)

(4.119)

= log |Q|+ max
xn

log
p

(xn)
0 (x1)

∏n−1
t=1 p

(xn)
w (xt+1|xt)

Q∗Xn(xn)
(4.120)

= log |Q|+ max
xn

log
p

(xn)
0 (x1)

q∗0(x1)
+ n

∑

b

p(xn)(b)
∑

a

p(xn)
w (a|b) log

p
(xn)
w (a|b)
q∗w(a|b) (4.121)

≤ log |Q|+ nε (4.122)

= logK +K logM(K, ε) + nε (4.123)

The above is similar to Theorem 4 except specifically tailored to Markov models. We can generalize to
other order Markov models as well, getting the result logKr +Kr logM(K, ε) + nε.

Proposition 8. For order r Markov models on K symbols, the minimax regret on sequences of length
n can be bounded by

r+
n (InM,k) ≤ logKr +Kr logM(K, ε) + nε (4.124)

for any ε.

This bound matches the result for Markov models to the first term given in [27] (as claimed by [28]). A
more precise regret is given in [29].

4.3.3 Poisson Distributions

It is very straightforward to connect distributions on iid samples to Poisson distributions. Suppose we have
two probabilities on K symbols, p = (p1, . . . , pK) and q = (q1, . . . , qK). For some n, let λi = npi and

µi = nqi. Let Ipoi
K be the class of Poisson Distributions over K symbols.

For this section, let v = (v1, . . . , vK) be a type on j symbols (so vi is the number of times symbol i
appears). We use the notation poi(λ,v) to mean to mean the probability of v under the poisson process
with parameters λ = (λ1, . . . , λK). Specifically,

poi(λ,v) =
∏

i=1

e−λiλvii
vi!

(4.125)

We have that

D(poi(λ, ·)‖poi(µ, ·)) =
∑

v

poi(λ,v) log

∏
i
e−λiλ

vi
i

vi!∏
i
e−µiµ

vi
i

vi!

(4.126)

=
∑

v

poi(λ,v)

(∑

i

µi − λi + vi log
λi
µi

)
(4.127)

=
∑

i

λi log
λi
µi

(4.128)

= nD(p‖q) (4.129)

Hence any divergence covering over the simplex is also a divergence covering for poisson distributions over
types.
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Suppose we are also interested in the regret of a type under all possible Poisson parameters. For a given
µ, suppose we want

rn(µ,v, Ipoi
K ) = max

λ
log

poi(λ,v)

poi(µ,v)
. (4.130)

Given the observation v the most likely value of λ is λ = v. Suppose that v is a type over n symbols
and p is such that pi = vi/n. We will also let qi = µi/n. Then,

rn(µ,v, Ipoi
K ) = max

λ

(∑

i

µi − λi + vi log
λi
µi

)
(4.131)

= max
λ

∑

i

vi log
λi
µi

(4.132)

=
∑

i

vi log
vi
µi

(4.133)

= n
∑

i

pi log
npi
nqi

(4.134)

= nD(p‖q) (4.135)

So for any µ, both for redundancy and regret, the log-loss of poisson distribution over types is given by
the KL divergence.

4.4 Regret on Patterns

In this section, we look at regret on the class of patterns, which we denote by InΨ. We discuss what patterns
are in Section 4.4.1. Our main results are that we can show the following using divergence covering on a
particular subset of the simplex.

Theorem 5 (Regret on Patterns).

r+
n (InΨ) ≤ cn1/3 log4/3(n) (4.136)

for some constant c.

Compared to the current known regret upper bound for patterns (see Section 4.4.1), our result improves
the exponent on the logarithmic term.

Our procedure for finding this result is to first find a way to connect regret to a divergence covering, using
the Yang-Barron technique (4.44). This is non-trivial since the class of patterns is very much not iid. (Our
previous result connecting divergence covering to regret requires iid.) However, we manage this with help of
the log-sum inequality. Once this connection is made, it determines a particular subset of the simplex which
we need to cover. We then find a set of centers which covers it, and we get our bound.

4.4.1 Patterns Background

Because the per-symbol redundancy of the class of large-alphabet iid distributions does not go to zero, there
is a line of work developed to study redundancy on patterns. Patterns are discussed in [25, 30]; we give a
brief exposition here in this section. Essentially, a pattern only considers the number of times each symbol
occurs, and not the actual label on the symbol. To describe what a pattern is, we first discuss what a shape
is.

A shape of sequence of symbols is what happens when symbols in a sequence are relabeled based on
when they first appear. The first symbol that occurs is labeled a 1. If the same symbol appears again, it is
similarly labeled a 1. The second symbol that appears (which is different than the symbol associated with
1) is labeled a 2 and so on. This relabeling keeps all the new symbols in a length n sequence between 1 and
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n, which nicely keeps the alphabet finite. However, even with this relabeling, regret for shapes is still linear
in the length of the sequence, meaning it does not have diminishing per-symbol redundancy. Thus we need
to apply an additional simplification in order to get vanishing per-symbol regret. This is why patterns are
studied. A pattern is similar to a shape except that it is only the multiset of multiplicities of symbol counts
which matter. Any one multiset of multiplicities is called a profile.

For instance, a profile could be ϕ = {3, 2, 2}. This means that two symbols appear twice and one
symbols appears three times. Depending on the alphabet size, this profile corresponds with any type with
these numbers of symbols appearing (we need at least alphabet size of 3). If for example the alphabet size
is 4, the types which map to profile ϕ = {3, 2, 2} are

(3, 2, 2, 0), (3, 2, 0, 2), (3, 0, 2, 2), . . . , (0, 2, 2, 3) . (4.137)

Each type corresponds with some (disjoint) set of sequences. For each sequence xn, we can find its corre-
sponding profile, denoted as ϕ(xn).

Let P = (p1, . . . , pK) be a discrete probability where pi is the probability of symbol i occurring. For
each P , we use PXn to be the n-fold product distribution on sequence xn. Let the probability of profile ϕ
occurring under P be denoted as Pϕ where

Pϕ(ϕ) =
∑

xn:ϕ(xn)=ϕ

Pxn(xn) . (4.138)

We let the alphabet size of P be equal to n, so that all possible patterns, including the one where ϕ =
{1, 1, . . . , 1}, has some P where it occurs with positive probability.

Finding the distribution over profiles can be very complicated. In order to find redundancy and regret on
profiles, authors in [25, 30, 2] work with a Poissonized process on profiles. For distribution P , let λi = npi.
The poissonized version of P with average length n is given by parameters Λ = (λ1, . . . , λn). For profile ϕ,
let ϕµ be the number of elements in the multiset ϕ which is equal to µ. Then the probability a profile ϕ is
generated is equal to

Λ(ϕ) =
1∏∞

µ=0 ϕµ!

∑

σ

n∏

i

poi(λσ(i), µi) . (4.139)

where we use Λ(ϕ) to denote the probability of ϕ in this Poisson process with parameters given by Λ. This
characterization is used to determine bounds for redundancy and regret of profiles. The class for profiles is
defined as follows:

Definition 21. Let the class of probabilities for patterns be

InΨ = {Pϕ(·) : P is a discrete iid distribution } . (4.140)

The tightest results in the literature for redundancy and regret on patterns, given in [2], are

0.3 · n1/3 ≤ R+
n (InΨ) ≤ n1/3(log n)4/3 (4.141)

(
3

2 log 2

)
n1/3 ≤ r+

n (InΨ) ≤ n1/3(log n)4 . (4.142)

Comparing our result Theorem 5 to the upper bound in (4.142), we see that we improve the exponent
on the logarithm from 4 to 4/3, matching the exponent on the upper bound for redundancy of patterns.

4.4.2 Regret on Mixtures of Multinomials

We can see from (4.138) that the distribution Pϕ is a mixture of iid distributions. We use this idea to show
how divergence covering can be used for getting bounds on redundancy.

Because of (4.138), if P1 and P2 are iid probabilities which are equivalent to another up to a permutation
of the symbols, then (P1)ϕ and (P2)ϕ are the exact same distribution on every profiles. Thus, to specify all
the distributions on patterns of length n, it is enough to define the following class of probabilities:

Pn↘ = { discrete probability P = (p1, . . . , pn) : p1 ≥ p2 ≥ · · · ≥ pn} (4.143)
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There is a bijective map between the class InΨ and Pn↘.
We can bound regret with the following:

r+
n (InΨ) = inf

Qϕ
sup
ϕ

sup
Pϕ∈InΨ

log
Pϕ(ϕ)

Qϕ(ϕ)
(4.144)

= inf
Qϕ

sup
ϕ

sup
Pϕ∈InΨ

1

Pϕ(ϕ)
Pϕ(ϕ) log

Pϕ(ϕ)

Qϕ(ϕ)
(4.145)

(4.146)

For an upperbound, we assume that Qϕ(ϕ) =
∑
xn:ϕ(xn)=ϕQXn(xn) for some Q ∈ Pn↘. We choose this

so that we can apply log-sum inequality next.

r+
n (InΨ) ≤ sup

ϕ
sup
P∈Pn↘

1

Pϕ(ϕ)


 ∑

xn:ϕ(xn)=ϕ

PXn(xn)


 log

∑
xn:ϕ(xn)=ϕ PXn(xn)

∑
xn:ϕ(xn)=ϕQXn(xn)

(4.147)

≤ sup
ϕ

sup
P∈Pn↘

1

Pϕ(ϕ)

∑

xn:ϕ(xn)=ϕ

PXn(xn) log
PXn(xn)

QXn(xn)
(4.148)

≤ sup
ϕ

sup
P∈Pn↘

1

Pϕ(ϕ)

∑

xn:ϕ(xn)=ϕ

PXn(xn)

(
sup
xn

log
PXn(xn)

QXn(xn)

)
(4.149)

= sup
P∈Pn↘

sup
xn

log
PXn(xn)

QXn(xn)
. (4.150)

Thus, finding r+
n (Pn↘) gives an upper bound to r+

n (InΨ).
Let the type of xn be v = (v1, . . . , vn). (So vi represents the count of symbol i.) If v1 ≥ v2 ≥ · · · ≥ vn,

then we know the P which maximizes PXn(xn) is where P = v/n. However, when v does not have this
sorted form, we need to determine which P ∈ Pn↘ is the maximum likelihood estimator for v.

Define

P↘ML(xn) = P↘ML(v) = max
P=(p1,...,pn)∈Pn↘

n∏

i=1

pvii . (4.151)

Finding P↘ML(xn) is a well known problem. The solution is given by the Grenander estimator [31]. The
Grenander estimator is typically used for the case of continuous densities on an interval. The question it
answers is what density f , constrained so that f(x) ≥ f(y) if x > y, is the maximum likelihood estimator of
the a given set of data points. The solution is that f is the the left derivative of the least concave majorant
of the empirical cumulative distribution of the data points. This implies that f is a vector of local averages
over a partition. We capture this fact when the data points are counts over [K] in the following:

Lemma 8. Fix v to be the type of xn (e.g.
∑n
i=1 vi = n). There exists a vector u = (u1, . . . , un) where

• u1 ≥ u2 ≥ ... ≥ un
• ∑n

i=1 ui = n

• Let J be all induces i where ui = uj for some uj. Then ui =
∑
i∈J vi
|J | .

so that

P↘ML(v) = P↘ML(u) . (4.152)

The lemma merely states the local average property just in terms of a vector u of decreasing counts that
sum up to n. Because of the local average property we know that

ui =
z

r
(4.153)
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for z ∈ Z≥0 and r ∈ [n − 1]. This is because ui is an average of integers and in fact it is an average of less
than n integers. If it were an average of all n integers, then ui = 1, so a denominator of n is not necessary.

We get (4.152) since

P↘ML(v) =

n∏

i=1

(ui
n

)vi
=

n∏

u

(u
n

)∑
i:vi=u

vi
=

n∏

u

(u
n

)∑
i:vi=u

u

=

n∏

i=1

(ui
n

)ui
= P↘ML(u) . (4.154)

There are two important points we need from Lemma 8. First, is the form of u. For any xn, let v be the
type of xn. Let u be the vector given by Lemma 8 for v.

log
PXn(xn)

QXn(xn)
≤ log

P↘ML(v)

QXn(xn)
(4.155)

≤ log
P↘ML(u)

QXn(xn)
(4.156)

≤ log

∏n
i=1

(
ui
n

)ui
QXn(xn)

(4.157)

(4.158)

Now suppose that there is a set Q which is a divergence covering of Pn↘ with radius ε. We will add an
attentional constraint on Q = (q1, . . . , qn) ∈ Q which covers P = (p1, . . . , pn): For indices where pi = pi+1,
we require that qi = qi+1. Let Q̄ be such that

Q̄Xn(xn) =
1

|Q|
∑

QXn∈Q
QXn(xn) . (4.159)

Then,

log
PXn(xn)

QXn(xn)
≤ log

∏n
i=1

(
ui
n

)ui
QXn(xn)

(4.160)

= log

∏n
i=1

(
ui
n

)ui
1
|Q|
∑
QXn∈QQXn(xn)

(4.161)

≤ log |Q|+ log

∏n
i=1

(
ui
n

)ui
∏n
i=1 q

vi
i

(4.162)

= log |Q|+ log

∏n
i=1

(
ui
n

)ui
∏n
i=1 q

ui
i

(4.163)

In the last equality, we chose q to cover u/n. This means when ui = uj , we have that qi = qj . For the set
of indices J where ui are the same, we have that

∑
i∈J ui =

∑
i∈J vi. Thus,

∏
i∈J q

vi
i =

∏
i∈J q

ui
i .

log
PXn(xn)

QXn(xn)
= log |Q|+

n∑

i=1

ui log

(
ui
n

)

qi
(4.164)

= log |Q|+ n

n∑

i=1

ui
n

log

(
ui
n

)

qi
(4.165)

= log |Q|+ nD(u/n‖Q) (4.166)

= log |Q|+ nε (4.167)

and thus

r+
n (InΨ) = sup

P∈Pn↘
sup
xn

log
PXn(xn)

QXn(xn)
(4.168)

≤ sup
P∈Pn↘

sup
xn

(log |Q|+ nε) (4.169)

≤ log |Q|+ nε (4.170)
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This gives a bound on regret for patterns. It remains to find a covering of the space Pn↘ with the
additional constraint that if Q covers P , Q is equal on indices for each P has equal values on. The second
fact we use from Lemma 8 is that the minimum non-zero value of ui/n is some positive integer divided by
n(n− 1). If pi is not zero, then pi ≥ 1/n2. Our covering only needs to look at P of this type. We formally
define this class of distributions which is a subset of the class Pn↘ but with a lower bound on the minimum
non-zero value.

Definition 22 (Sorted Class with Minimum). Let

Pn↘{L} = {discrete probability P = (p1, . . . , pn) : p1 ≥ p2 ≥ · · · ≥ pn and ∀i, pi ≥ L or pi = 0} (4.171)

4.4.3 Divergence Covering of Sorted Distributions with a Minimum

For the next lemma. we will look at covering the subset Pn↘{1/n2} in the simplex (recall Definition 4).

Lemma 9. For the set of probabilities on sorted step distributions, we have that

M

(
n, c0

log2/3 n

n2/3
,Pn↘{1/n2}

)
= nc1n

1/3 log1/3 n (4.172)

for some absolute contants c0 and c1. This covering also satisfies the condition that if P = (p1, . . . , pn)
is covered by some Q = (q1, . . . , qn) and pi = pi+1, then qi = qi+1.

This proof is based on some of the ideas of the proof in [32].

Proof. Let Q be a set of centers for divergence covering of radius ε = n1/3

n log1/3 n on Pn↘{1/n2}. We will

determine the set of centers Q needed by first dividing all possible probabilities in Pn↘{1/n2} into groups.

Let G be the set of all groups. We will assign one qG ∈ Q to each G ∈ G. We will show that ∀p ∈ G, the qG

assigned is such that

D(p||qG) ≤ 30
log4/3 n

n2/3
. (4.173)

Before defining groups, we will first define tiers. Each p ∈ Pn↘{1/n2} will be associated with a set of n
tiers. Each symbol x ∈ [n] will be assigned to one tier. The tiers are T1, . . . , Tt and Tzero, for some integer t
(defined very soon), The tier for x is determined by the value of p(x).

x ∈ T1 if p(x) ∈
((

1− log2/3 n

n1/3

)
, 1

]
(4.174)

x ∈ T2 if p(x) ∈



(

1− log2/3 n

n1/3

)2

,

(
1− log2/3 n

n1/3

)
 (4.175)

...

x ∈ Ti if p(x) ∈



(

1− log2/3 n

n1/3

)i
,

(
1− log2/3 n

n1/3

)i−1

 (4.176)

...

x ∈ Tt if p(x) ∈



(

1− log2/3 n

n1/3

)t
,

(
1− log2/3 n

n1/3

)t−1

 (4.177)

x ∈ Tzero if p(x) = 0 (4.178)
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In order so that all x belong to some tier (recall either p(x) > 1/n2 or p(x) = 0), it is sufficient that the
last tier t is such that

(
1− log2/3 n

n1/3

)t
≤ 1

n2
(4.179)

If we let (ignore integer constants, since it differs by a constant),

t =
n1/3 log(n2)

log2/3 n
= 2n1/3 log1/3 n (4.180)

then

(
1− log2/3 n

n1/3

)n1/3 log(n2)

log2/3 n

≤ (e−1)log(n2) (4.181)

≤ 1

n2
(4.182)

For each p ∈ Pn↘{1/n2}, we define the tier fingerprint of p as T (p) = (a1, . . . , at, azero) where aj = |{x :
x ∈ Tj}|. Because p is sorted by value, knowing T (p) specifies exactly which x belongs to each tier. If p1

and p2 have the same tier fingerprint, then they must have the same values of x in each teir (because p1(x)
and p2(x) are sorted). We place p1 and p2 in the same group if T (p1) = T (p2).

Fix some p. For each tier Ti, for i ∈ {[t] ∪ zero}, define

βi =
∑

x∈Ti
p(x) . (4.183)

Naturally
∑
βi = 1.

Let ni be the number of symbols in Ti. Then for i ∈ [t], we can bound

ni ≤
βi(

1− log2/3 n
n1/3

)i . (4.184)

This uses the fact that the smallest possible probability of p(x) where x ∈ Ti is given by
(

1− log2/3 n
n1/3

)i
.

We now define the probability qG for each group G, which we do by picking any p ∈ G and defining

qG(x) =
1

|Tj |
∑

y∈Tj
p(y) if x ∈ Tj (4.185)

for all x ∈ G. Since for every p ∈ G, the same symbols x are in the same tiers, if x ∈ Ti, then for all p ∈ G

p(x) ∈



(

1− log2/3 n

n1/3

)i
,

(
1− log2/3 n

n1/3

)i−1

 . (4.186)

and thus

qG(x) ∈



(

1− log2/3 n

n1/3

)i
,

(
1− log2/3 n

n1/3

)i−1

 . (4.187)

(So p(x) and q(x) should be pretty close.) For x ∈ Tzero, qG(x) = p(x) = 0 for every p ∈ G. For every p ∈ G,
if p(x) = p(y), then x and y will be in the same tier. If x and y are in the same tier, then qG(x) = qG(y).
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For each qG, we can compute the divergence distance to p ∈ G.

D(p||q) ≤
∑

x

(p(x)− qG(x))2

qG(x)
(4.188)

≤
∑

i∈[t]

ni

((
1− log2/3 n

n1/3

)i
−
(

1− log2/3 n
n1/3

)i−1
)2

(
1− log2/3 n

n1/3

)i (4.189)

≤
∑

i∈[t]

βi(
1− log2/3 n

n1/3

)i

(
1− log2/3 n

n1/3

)2i−2 (
1− log2/3 n

n1/3 − 1
)2

(
1− log2/3 n

n1/3

)i (4.190)

=
∑

i∈[t]

βi

(
− log2/3 n

n1/3

)2

(
1− log2/3 n

n1/3

)2 (4.191)

=


∑

i∈[t]

βi







(
− log2/3 n

n1/3

)2

(
1− log2/3 n

n1/3

)2


 (4.192)

=
log4/3 n

n2/3
(

1− log2/3 n
n1/3

)2 (4.193)

The quantity 1/
(

1− log2/3 n
n1/3

)2

has a maximum occurring at n = 7, so

1
(

1− log2/3 n
n1/3

)2 ≤ 29.1542 . (4.194)

This shows (4.173).
Next, we want to count the total number of groups, i.e., determine |G|. We do this by counting the number

of possible tier fingerprints. There are t+ 1 different tier levels. While it is true that tiers corresponding to
larger values of p(x) cannot possibly contain too many x’s, for the purposes of getting an upper bound, we
assume the values ai in the tier fingerprint can be of any value between 0 and n. Then

|G| =
(
n+ 1 + t+ 1

t+ 1

)
(4.195)

≤
(
e(n+ 1 + t+ 1)

t+ 1

)t+1

(4.196)

≤
(
e(n+ 2n1/3 log1/3 n+ 2)

2n1/3 log1/3 n+ 1

)2n1/3 log1/3 n+1

(4.197)

≤ (e2n)2n1/3 log1/3 n+1 (4.198)

≤ n8n1/3 log1/3 n+1 (4.199)

Finally, |Q| = |G|.
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Our bound is given by

r+
n (InΨ) ≤ log |Q|+ min

Q∈Q
max

P∈Pn↘{1/n2}
nD(P ||Q) (4.200)

= log
(
n8n1/3 log1/3 n

)
+ n · 30

log2/3 n

n2/3
(4.201)

= 8n1/3 log4/3(n) + 30n1/3 log2/3 n (4.202)

≤ 38n1/3 log4/3(n) . (4.203)

This show Theorem 5.

4.5 Some Discussion

We developed the framework for connecting divergence covering to minimax redundancy and minimax regret
in this chapter. Where our framework is likely the most useful for finding new results is for problems where
we need a divergence covering of some subset of the simplex. We did exactly this to get our result for regret
on patterns. Even for computing minimax regret on discrete iid distributions, it is only necessary to cover
all possible empirical distributions. We can perhaps improve our results by using this fact.
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Chapter 5

Application to Permutation Channels

The noisy permutation channel is an information theory problem where divergence covering is needed in order
to compute the capacity. We go over the motivation, definitions, results and proofs of the problem in this
chapter. While divergence covering is the central argument, there are other results, unrelated to divergence
covering, which also need to be proved. A particularly interesting one is a result on the KL divergence
between drawing balls from an urn with replacement and without replacement. Another additional result
included here is about divergence covering of a smaller dimensional linear subspace within the simplex.

Chapter Introduction We start the next section with the problem statement and a summary of the
main results. We discuss the motivations for studying the noisy permutation channel in Section 5.1.2. In
Section 5.2, we discuss how covering is used to determine the capacity of the noisy permutation channel. In
Section 5.2.1, we give our result on covering a subspace of the probability simplex. We begin the proof of
our main theorem in Section 5.3. Other theorems are proved afterwards.

5.1 Problem Statement and Main Results

The noisy permutation channel, as formally introduced in [3], is a communication model in which an n-letter
input undergoes a concatenation of a discrete memoryless channel (DMC) and a uniform permutation of
the n letters. Since the receiver observes a uniformly permuted output, the order of symbols conveys no
information. More formally, the channel PY n|Xn can be described by the following Markov chain:

Xn → Zn → Y n . (5.1)

Here the channel input Xn is a length n sequence where each position takes a value in X = [q] (where
[q] = {1, 2, . . . , q}). The sequence Xn goes through the DMC which operates independently and identically
on each symbol. This results in a sequence Zn where each position takes a value in Y = [K]. The DMC
transition probabilities can be represented as a q × K matrix PZ|X . After the DMC, the sequence Zn

goes through the permutation part of the channel and results in sequence Y n which is a uniformly random
permutation of symbols on Zn.

Let fn and gn be the channel encoder and decoder respectively. For each message W ∈ [M ], the input to
the channel is Xn = fn(W ). The output is Y n, which the decoder decodes as Ŵ = gn(Y n). The probability

of error is given by P
(n)
error

4
= P[W 6= Ŵ ]. The rate for the encoder-decoder pair (fn, gn) is defined as

R
4
=

logM

log n
. (5.2)

A rate R is achievable if there is a sequence of encoder-decoder pairs (fn, gn) with rate R such that

limn→∞ P
(n)
error = 0. The capacity for the noisy permutation channel with DMC PZ|X is Cperm(PZ|X)

4
=

sup{R ≥ 0 : R is achievable} .
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Figure 5.1: Illustration of the noisy permutation channel procedure. The vertical line of colored letters
represents a sequence of n = 5 symbols. A iid noisy process, represented by DMC matrix PZ|X , is applied
to transform Xn to Zn. Then, the sequence of symbols in Zn is permuted uniformly to get Y n.

In [3], the author determined that the noisy permutation channel capacity1 for DMC PZ|X is bounded
by

Cperm(PZ|X) ≥ rank(PZ|X)− 1

2
. (5.3)

For strictly positive matrices PZ|X (meaning all the transition probabilities are greater than 0), the author
shows a converse bound

Cperm(PZ|X) ≤ |Y| − 1

2
. (5.4)

The author also gives a second converse bound: Cperm(PZ|X) ≤ (ext(PZ|X)− 1)/2, where ext(P ) is the
number of extreme points of the convex hull of the rows of P . For the case of strictly positive DMC PZ|X ,
these upper and lower bounds do not necessarily match if the rank of matrix PZ|X does not equal to |Y| or
ext(PZ|X).

5.1.1 Main Results

Our main result is establishing tightness of the lower bound (5.3), resolving Conjecture 1 of [3].

Theorem 6 (Strictly Positive DMC). For strictly positive PZ|X ,

Cperm(PZ|X) =
rank(PZ|X)− 1

2
. (5.5)

In order to reduce to the covering question, we first need another result that is, perhaps, of separate
interest as well. We discuss some notation for this result first.

We let Pn be the set of n-types (probabilities which can be written with denominator n). For P ∈ Pn,
let Tn(P ) be the set of sequences of length n in the type class of P . For instance, when working with 3
symbols, the sequence 1233 is in T4(P ) where P = (1/4, 1/4, 1/2) and P is a 4-type. The notation QY
means a distribution on random variable Y . For any distribution QY , we will use QnY to mean the product
distribution QnY (yn) =

∏n
t=1QY (yt).

1While it might seem that the noisy permutation channel capacity should be a continuous function of the values in PZ|X ,
note that this is not the case due to how capacity is defined. Changing values in PZ|X by a small δ could change the rank of
PZ|X by 1, but no matter how small δ is, there exists an n large enough so its effects can make a difference.
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Figure 5.2: This diagram illustrates the special case of Theorem 7 where QY = PY . It shows how Ŷ n relates
to Y n.

Theorem 7. Fix channel PY |X which is strictly positive. Then there exists a constant c = c(PY |X)
such that the following holds: For any n-type P , let U be uniform on Tn(P ). For all QY we have

nD(PY ‖QY ) ≤ D(PnY |X ◦ U‖QnY ) ≤ nD(PY ‖QY ) + c (5.6)

where PY is the marginal distribution of Y under (P × PY |X).

Remark 4. It can be shown that the constant c in Theorem 7 is

c ≤ q − 1

2
log

2πα2

c∗
+

q

12n
≤ q − 1

2
log

2πα2

c∗
+

q

12
. (5.7)

where α is a universal constant defined in Theorem 9 (see Section 5.3.3) and if pij denote the values in
matrix PY |X ,

c∗ = min
i

minj pij
maxj pij

. (5.8)

Theorem 7 deals with the following scenario: Select some P ∈ Pn and suppose we have two sequences,
Xn and X̂n. The sequence Xn is generated iid using the probability P . On the other hand, X̂n has
uniform probability over all sequences in the type Tn(P ). Both sequences Xn and X̂n undergo the transition
PY |X applied independently on each symbol and respectively results in Y n and Ŷ n. How different are the

distributions of Y n and Ŷ n under KL divergence? See Figure 5.2 for a diagram. Another interpretation of
this scenario is if there are n balls of q colors in an urn. The sequence Xn are n draws from the urn with
replacement and X̂n are n draws without replacement (all the balls are drawn). These observations then
both go through the same noisy process to produce Y n and Ŷ n.

It turns out that if PY |X is strictly positive, then regardless of the sequence length n,

D(PŶ n‖PY n) ≤ c (5.9)

where c is a constant that only depends on PY |X . Theorem 7 actually shows something more general. The
sequence Xn can be generated iid with another distribution Q, and the KL divergence can still be bounded
by constant c plus another term which is the KL divergence of the marginals on Y generated by P and
Q. In other words, the divergence of (a complicated distribution) PŶ n to any iid distribution QnY can be
approximated with nD(PY ‖QY ) and this approximation will only be off by a constant.

Remark 5. Note that D(PX̂m‖PmX ) describes the difference between sampling m balls from an n-urn with
and without replacement. This is a classical question studied in [33]. Our setting studies this question for the
particular case when n = m and when the observations are noisy. Bounds for the noiseless case D(PX̂m‖PmX )
can still be an upper bound for the noisy case if we apply the data processing inequality. This shows that
D(PnY |X ◦ U‖PnY ) ≤ D(PX̂n‖PnX) ≤ K−1

2 (log n + c), where the second inequality is shown using Stirling’s
approximation. Our result removes the log n term in this bound, but only under the assumption of a strictly
positive PY |X . See Section 5.3.5 for more details on comparing our bound to that of [33] when m < n. We
also note that results of [33] as shown in [34] imply the finitary case of de Finetti’s theorem.

Other contributions of this work use similar techniques to get converse results in other settings which do
not have strictly positive DMC matrices.
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Figure 5.3: Illustration of drawing balls from an urn with and without replacement.

Theorem 8. Other channel results:

1. Suppose PZ|X can be written as a block diagonal matrix with β blocks where each block is strictly
positive. Then,

Cperm(PZ|X) =
rank(PZ|X) + β − 2

2
. (5.10)

2. For DMC PZ|X which is a q-ary erasure channel for q ≥ 2 (assuming non-zero transition proba-
bilities), then

Cperm(PZ|X) =
q − 1

2
. (5.11)

3. For DMC PZ|X which is a Z-channel (assuming non-zero probabilities on the edges), then

Cperm(PZ|X) =
1

2
. (5.12)

The first result in Theorem 8 applies to DMC PZ|X which are block diagonal matrices where each block is
strictly positive. As eq. (5.10) of Theorem 8 implies, we are able to show both the achievability and converse
results for block diagonal DMC matrices. We will prove both these results in Section 5.4.

The second result is for binary erasure channels and q-ary erasure channels. The work in [3] determines
the capacity for when the DMC matrix is the binary symmetric channel, but leaves the binary and q-ary
erasure channels as open problems. Item 2 of Theorem 8 resolves Conjecture 2 presented in [3] regarding
the capacity of binary erasure channels and the conjecture regarding q-ary erasure channels2. These results
use (5.3) as the tight achievability.

The third result in Theorem 8 deals with DMC which is the Z-channel. While this is tight, for a q-ary
Z-channel (if this exists) or what we call a “zigzag” channel, we are not able to find tight results with our
current covering technique. The erasure channels, Z-channels, and a brief analysis on the zigzag channel are
discussed in Section 5.5

All of these results also use the method of covering. Using covering as a technique to determine the
capacity for the noisy permutation channel is reasonable because the covering centers can intuitively be
equated with messages that can be distinguishable. When the messages correspond to two distributions q1

and q2 which are far in KL divergence, it is unlikely that noisy versions of q1 will be close to noisy versions

2Note that while binary erasure channels and q-ary erasure channels usually have the same probabilities for each symbol
getting erased, item 2 of Theorem 8 is still true even if these probabilities are different. The only requirement is that the
probability of getting erased is not 0 or 1. The capacity when the transition probabilities are 0 or 1 is discussed in [3].
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Figure 5.4: Illustration of communication over a multipath routed network. The sender transmits bits which
gets shuffled at the receiver end due to the latency of different paths in the network. The received bits can
also be noisy.

of q2. If two distributions are close in KL divergence, their noisy versions are likely to be confused. For
a converse bound, covering is useful because we know that no more center points can be added which are
far from all existing center points. This roughly corresponds to not being able to add another decodable
message.

5.1.2 Motivation

The motivation for studying the permutation channel is that it captures a setting where codewords get
reordered. This occurs in applications such as communication networks and biological storage systems. We
briefly describe some of these applications. More details on these applications and other relevant work can
be found in [3].

Communication Networks Suppose we have a point-to-point communication network where the in-
formation is transmitted through a multipath routed network. Different packets are transmitted through
different routes in the network, and each route has its own amount of latency, causing packets traveling on
different routes to arrive at different times. The order in which the sender transmits packets is no longer
preserved at the receiver end. Such a scenario is studied in [35] where the authors are primarily concerned
with reducing delay in their channel. Unlike our work, they do not consider noisy symbols. Another line of
work on packet-switched networks deals with the permutation channel along with errors such as insertions,
deletions, and substitutions of symbols [36, 37]. Their work primarily focuses on building minimum distance
codes and perfect codes for the permutation channel.

DNA Storage Systems DNA-based storage systems are an attractive option for data storage due to
its ability to withstand time and encode a very high-density of information [38, 39]. The state-of-the-art
technology for storing information on DNA uses nucleotides with relatively small lengths (few hundreds)
[40]. Each of these DNA molecules are stored in a pool without any regard to order. The different molecule
types can be treated as symbols in the setting of the permutation channel. Noise in this channel models any
error that can occur, whether it is in synthesizing the DNA molecules or in reading the molecules. DNA
storage is also the motivation for studying the permutation channel in [41, 42].

As typical in information theory, a question of fundamental interest is to determine the capacity of
channels. We determine the capacity of the noisy permutation channel in the strictly positive case, settling
the problem introduced in [3]. This setting differs from some of the models studied in the works described
in the motivations, as it looks at the problem from a purely information theoretic standpoint and does not
include assumptions which might be specific to the application.

Among the works relevant to the motivations described, those that have some information theoretical
flavors include [41], which deals with asymptotic bounds on rate, but for a fixed number of errors rather
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Figure 5.5: Order of received symbols Y n do not matter since all the permutations are uniform.

than probabilitistic errors. The work in [40] finds the capacity when the symbols are sampled randomly
then read, something relevant to DNA models, but not to general permutation channels. The results in [42]
are specifically for when the permuted objects are a string of symbols and the noisy process is applied to
symbols on a string; the set of strings are permuted but symbols in each string are not.

Our results for when the DMC is the erasure channel are particularly interesting to DNA storage appli-
cations since the erased symbol can model deletion errors. Permutation channels with deletions are central
to the work in [41]. In our work, we find the probabilistic analogue of their bounds.

5.1.3 Notation

The set of all probability distributions on q symbols is defined as the probability simplex

∆q−1
4
=

{
(π1, ..., πq) :

q∑

i=1

πi = 1, 0 ≤ πi ≤ 1

}
. (5.13)

For a q ×K DMC matrix PZ|X , we can express the individual transitions as

PZ|X =




p11 p12 . . . p1d

p21 p22 . . . p2d

...
...

. . .
...

pq1 pq2 . . . pqd



. (5.14)

We assume that the values in each row of the matrix sums up to 1 (i.e, the matrix is stochastic). Symbol
i ∈ X has probability pij of becoming symbol j ∈ Y. We can also write this probability as PZ|X(j|i). We
say that the DMC matrix (or a submatrix) is strictly positive if pij > 0 for all i and j in the matrix (or
submatrix).

Though different from how we described it in the introduction, it is convenient to describe the Markov
chain of the noisy permutation channel as

π → Xn → Zn → Y n . (5.15)

Each π = (π1, .., πq) ∈ ∆q−1 corresponds to a possible channel input. For each n, we will restrict π to be in
Pn. The value of πi represents the proportion of positions in sequence Xn which have symbol i. We can also
understand πi to be the proportion of the n symbols which undergo the transition given in row i of PZ|X .

The order of the symbols in Y n does not matter for decoding the messages. The only relevant statistic
the receiver would use from Y n is which type class Y n belongs to. Note that it is entirely equivalent to
perform the permutation on the sequence Xn first and then apply the DMC. In this case, we no longer
need the random variable Zn. Because of this, we will also use PY |X to specify the transition matrix, where
PY |X = PZ|X .

Since we will need to specify multiple distributions on Y , we will distinguish them using the parameter
π. We use the notation QY |µ for µ = (µ1, ..., µk) ∈ ∆K−1 to mean

QY |µ(j) = µj . (5.16)
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The distribution PY n|π refers the the distribution on sequences Y n when π ∈ Pn is the input to the noisy
permutation channel as described in (5.15). However, we also use the following notation

PY n|π = PnY |X ◦ U (5.17)

where U is a uniform distribution on Tn(π), as seen in Theorem 7. Equation (5.17) can be understood as
permuting the input symbols, which gives a sequence in the support of U , and then passing each permuted
symbol through the transition probabilities PY |X independently.

When it is clear what π is, we use PY to mean the marginal distribution for each Yt in the sequence
Y n ∼ PnY |X ◦ U . This distribution does not depend on the index t since U is uniform on all permutations.

Define for any π ∈ ∆q−1

µM (π)
4
=

(∑

i

πipi1, ...,
∑

i

πipik

)
. (5.18)

The vector µM (π) is the mean of the distribution PY n|π = PnY |X ◦ U . Note that PY (j) =
∑
i πipij . Also if

µ = µM (π), we can write PY = QY |µ.

5.2 Covering Converse

The main concept of our proof uses covering ideas similar to [6, Theorem 1] in order to upper bound the
mutual information I(π;Y n). In summary, we need a find a set of covering centers which are close in KL
divergence to all the possible distributions on Y n that can occur as outputs of the noisy permutation channel.
Our set of centers need not be possible distributions over Y n generated by the channel. We will opt for using
iid distributions as our set of covering centers.

Let Nn be a discrete set in ∆K−1 which we will specify (later) for each n (these will be the covering
centers). Mutual information has the property that

I(π;Y n) ≤ max
π

D(PY n|π‖Q̃Y n) . (5.19)

The above holds for any Q̃Y n , thus we can choose

Q̃Y n(yn) =
∑

µ∈Nn
QnY |µ(yn) =

∑

µ∈Nn

n∏

t=1

QY |µ(yt) . (5.20)

The following proposition the main work-horse of all our converse results.

Proposition 9 (Covering for Noisy Permutation Channels). Suppose that for the noisy permutation
channel with DMC PY |X , we have that for any π ∈ Pn,

D(PnY |X ◦ U‖QnY ) ≤ c+ nD(PY ‖QY ) + f(n) (5.21)

where U is uniform on the type Tn(π), PY is the marginal distribution of PnY |X ◦U , c is a constant (only

a function of PY |X) and f is only a function of n (and possibly PY |X) . Then

Cperm(PY |X) ≤ rank(PY |X)− 1

2
+ lim
n→∞

f(n)

log n
. (5.22)

Proof. Following techniques used in the proof of Theorem 1 from [6], we can upper bound the mutual
information given in (5.19) by

I(π;Y n) ≤ log |Nn|+ max
π∈Pn

min
µ̄∈Nn

D(PY n|π‖QnY |µ̄) . (5.23)
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To specify Nn, first define

L(PY |X) =
⋃

π∈∆K−1

µM (π) . (5.24)

This is the space of all possible marginals PY .
Let Nn be a covering of L(PY |X) under KL divergence with covering radius 1/n. In other words,

Nn = {µ̄(1), ..., µ̄(m)} so that

max
µ∈L(PY |X)

min
µ̄∈Nn

D(QY |µ‖QY |µ̄) ≤ 1

n
. (5.25)

Let ` be the dimension of L(PZ|X). Using Theorem 1 and the result specifically about covering an
`-dimensional subspace (see next part Section 5.2.1),

|Nn| ≤ C(q, `)

(
`

1/n

) `
2

(5.26)

where C(q, `) depends on q and ` but not n.
Using assumption (5.21) and putting this into (5.23), gives

I(π;Y n) ≤ log |Nn|+ max
π∈Pn

min
µ̄∈Nn

D(PY n|π‖QnY |µ̄) (5.27)

≤ log

(
C(q, `)

(
`

1/n

) `
2

)
+ c+ f(n) + max

π∈Pn
min
µ̄∈Nn

nD(PY ‖QY |µ̄) (5.28)

≤ `

2
log n+ logC(q, `) +

`

2
log `+ c+ f(n) + n

1

n
(5.29)

≤ `

2
log n+ c′ + f(n) (5.30)

where c′ is a constant which does not depend on n.
For the noisy permutation channel, recall that the rate is defined as (5.2). Since asymptotically logM ≤

I(π, Y n) ≤ `
2 log n+ c′ + f(n), we have

R ≤ `

2
+

c′

log n
+
f(n)

log n
→ `

2
+ lim
n→∞

f(n)

log n
. (5.31)

Since ` = rank(PZ|X)− 1, we have an upper bound for the capacity of the noisy permutation channel.
(To see that ` = rank(PZ|X)− 1, let r = rank(PZ|X). When the domain is any vector, the image space of

PZ|X is r dimensional. But since we are restricting the domain and image to probability vectors, this adds
an additional constraint to the image space and reduces the dimension by 1.)

5.2.1 Subspace Covering

To use our covering result for noisy permutation channels, we actually need to cover a lower dimensional
subspace of a (K − 1)-dimensional simplex. We will use Definition 4 (see Chapter 1) for this.

Proposition 10. For linear space B ⊂ ∆K−1, suppose there is a stochastic matrix F which maps ∆q−1

onto B. Suppose that B is a space of dimension `− 1 (or likewise, F has rank `). Then,

M(K, ε,B) ≤
(
K

`

)
M(`, ε) . (5.32)

First, we show the following lemma.
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Lemma 10. For B ⊂ ∆K−1, suppose there is a stochastic matrix F which maps ∆`−1 onto B. Then,

M(K, ε,B) ≤M(`, ε) . (5.33)

Proof. Let Nc(`, ε) be the set of points which are centers for a divergence covering of ∆`−1 with covering
radius ε. For each b ∈ B, there exists a p ∈ ∆`−1 such that pF = b. For this p, let r ∈ Nc(`, ε) be such that
D(p||r) ≤ ε. Let b∗ = rF . By data processing inequality [43, Theorem 2.2],

D(b||b∗) ≤ D(p||r) ≤ ε . (5.34)

Hence the image of the set of centers in Nc(`, ε) mapped using F , becomes the set of centers for a
divergence covering on B with radius ε.

Proof of Proposition 10. The key to this proof is to divide the space B into simplices of dimension `− 1.
We will upper bound the number of simplices needed for a partition of B. The image of F is a convex

hull of at most q points (recall q is the size of the input symbols). We will call these corner points. Consider
all possible choices of ` of these q corner points. Let this set of all combinations be S, where

|S| =
(
q

`

)
. (5.35)

For each s ∈ S, let Bs be the simplex which is the convex hull of the ` corner points in set s.
For each point x in the image of F , since F has rank `, there exists some linear combination of ` corner

points which results in x. If s is this set of ` points, then x ∈ Bs. Thus for all x ∈ B, there exists some
s ∈ S, so that x ∈ Bs.

Label each of these simplices as B1, ...,B|S|. There exists a stochastic matrix Fi which maps from space
∆`−1 onto the space Bi. In particular, we can find this map Fi by mapping each of the ` corners of ∆`−1

into one of the ` corner points of Bi. This map will cover all of Bi by linearity.
Hence using Lemma 10, we can find a divergence covering of size M(`, ε) for each Bi. Combining these

covering centers together for all i, we get a covering of size

(
q

`

)
M(`, ε) . (5.36)

We are most assuredly over counting the number of simplices B has to be divided up into. However, this
number does not depend on ε, which is sufficient for our application to noisy permutation channels.

5.3 Divergence Under Fixed Types

For computing our converse bounds, we need to determine the expression (5.21) for our DMC matrices. This
is where we need Theorem 7 which gives the divergence between transition on a fixed type compared to an
iid distribution.

We will prove Theorem 7 by showing some relevant intermediate results. The techniques in these inter-
mediate results are also useful for when PZ|X is not strictly positive and therefore relevant for getting results
in Theorem 8. Before doing so, we will briefly discuss the tightness of Theorem 7.

5.3.1 Tightness of Theorem 7

Here we show a proof sketch that the constant c in Theorem 7 is sharp (cannot be improved to o(1)). One
tool we will need is the following theorem by Marton [44] shown below.
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Lemma 11 (Marton’s Transportation Inequality). Let Xn ∼ ∏n
t=1 PXt and X̂n ∼ PX̂n . Then there exists

a joint probability measure PXn,X̂n with these given marginals such that

1

n
E[d(Xn, X̂n)] =

1

n

n∑

t=1

P[Xt 6= X̂t] ≤
(

1

n
D

(
PX̂n

∥∥∥∥
n∏

t=1

PXt

))1/2

(5.37)

where d(X,Y ) is the Hamming distance.

Suppose that we are only working with 2 symbols, {0, 1}, for the space of X and Y . Using the notation
in Theorem 7, let Y n ∼ PnY |X ◦ U and Ŷ n ∼ QnY . Choose P = (n/2, n/2) and PY |X to be that of a binary
symmetric channel with crossover probability ε. Choose QY = PY . Distribution QY will be uniform on the
two symbols.

We can choose ε to be non-zero but also small enough (for instance ε = 1/n) so that all sequences likely
to occur under PnY |X ◦U have a type differing by only a constant number of changes from the type (n/2, n/2).
On the other hand, under QnY , with constant probability, we expect sequences to have types that differ by√
n changes from the type (n/2, n/2). Hence no matter the coupling chosen, the expected Hamming distance

is

E[d(Y n, Ŷ n)] ≈ √n . (5.38)

We use Lemma 11 to get the lower bound,

1√
n
≈ 1

n
E[d(Y n, Ŷ n)] ≤

(
1

n
D(PnY |X ◦ U‖QnY )

)1/2

≤
(

1

n
(nD(PY ‖QY ) + c)

)1/2

=

√
c√
n
. (5.39)

Improving c to be o(1) in n would violate this lower bound.
Intuitively, think of what happens when we let PY |X be the identity matrix where Y = X. In such a

case, Theorem 7 is not true (in order to get a true statement, the constant c should be replaced with a value
that grows logarithmically with n, see Section 5.3.2). This is the same setting as the example given above
but with ε = 0. It is clear here that Y n will have

√
n deviations in the number of 0’s from the mean whereas

any sequence Ŷ n will have exactly the type (n/2, n/2). This creates an expected Hamming distance of
√
n.

Slightly increasing ε above zero will not change the Hamming distance by much but make PZ|X strictly
positive.

5.3.2 Expression for Divergence Under Fixed Types

We will use the following to show Theorem 7. This proposition can be used for any PY |X , not just those
which are strictly positive.

Proposition 11. Let U be uniform on the type Tn(P ) and (X,Y )n be iid from (P × PY |X). Let PY be
the marginal distribution of Y under (P × PY |X).

Then for all QY ,

D(PnY |X ◦ U‖QnY ) = nD(PY ‖QY ) + E
[
log

P[A = 1|Y n]

P[A = 1]

∣∣∣∣A = 1

]
(5.40)

where A = I{Xn ∈ Tn(P )}.

For notation, we use P to mean under the probability where (X,Y )n is iid from (P × PY |X).

Proof. Note that (PnY |X ◦ U)(yn) = P[Y n = yn|A = 1].
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D(PnY |X ◦ U‖QnY ) =
∑

yn

P[Y n = yn|A = 1] log
P[Y n = yn|A = 1]

QnY (yn)
(5.41)

=
∑

yn

P[Y n = yn|A = 1] log
P[A = 1|Y n = yn]P[Y n = yn]

P[A = 1]QnY (yn)
(5.42)

= E
[
log

P[Y n]

QnY (Y n)

∣∣∣∣A = 1

]
+ E

[
log

P[A = 1|Y n]

P[A = 1]

∣∣∣∣A = 1

]
. (5.43)

The marginal distribution PY (a) is also the probability that any position t in sequence Y n takes the
value a, i.e. PY (a) = P[Yt = a|A = 1]. This occurs since U is uniform on all permutations of type Tn(P ).
We get for the first term in the sum,

E
[
log

P[Y n]

QnY (Y n)

∣∣∣∣A = 1

]
=
∑

yn

P[Y n = yn|A = 1] log
PnY (yn)

QnY (yn)
(5.44)

=
∑

yn

P[Y n = yn|A = 1]
∑

a

n
|{t : yt = a}|

n
log

PY (a)

QY (a)
(5.45)

= n
∑

a

PY (a) log
PY (a)

QY (a)
(5.46)

= nD(PY ‖QY ) . (5.47)

This give the result (5.40).

Lemma 12. Let P = (p1, ..., pq) ∈ Pn and let A = I{Xn ∈ Tn(P )}. Then if (X,Y )n is drawn iid from
(P × PY |X),

log
1

P[A = 1]
≤ −1

2
log n+

∑

i:pi>0

1

2
log pin+

q − 1

2
log 2π +

1

12n
. (5.48)

For this proof, we will use a Stirling approximation type bound from [45]: For positive integers n,

√
2πn

(n
e

)n
e

1
12n+1 ≤ n! ≤

√
2πn

(n
e

)n
e

1
12n . (5.49)

Proof. We will assume that all pi > 0 since we can always reduce P to a shorter vector and decrease q.
The probability a specific type occurs is given by the multinomial distribution.

− logP[A = 1] = − log

(
n!∏q

i=1(pin)!

q∏

i=1

ppini

)
(5.50)

= − log

(
n!

nn

)
− log

(
q∏

i=1

(pin)pin

(pin)!

)
(5.51)

≤ n− 1

2
log n− 1

2
log 2π +

q∑

i=1

(
−pin+

1

2
log pin+

1

2
log 2π +

q

12n

)
. (5.52)

We used (5.49) last inequality (we can do this since each pin is an integer greater than 0). Combining terms
gives the result.

Theorem 7 Without Strictly Positive

We briefly mentioned above that if we remove the strictly positive requirement for PY |X in Theorem 7, in
the worst case, the constant c would need to be replaced with a logarithmic term. To be exact, if PY |X is
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not strictly positive, c needs to be replaced with a poly-logarithmic term in n. Using Proposition 11 and
Lemma 12, we can get an upperbound on c with

c = E
[
log

P[A = 1|Y n]

P[A = 1]

∣∣∣∣A = 1

]
(5.53)

≤ q − 1

2
log n+ c′ + E

[
logP[A = 1|Y n]

∣∣∣∣A = 1

]
(5.54)

≤ q − 1

2
log n+ c′ . (5.55)

We used the fact that the largest value P[A = 1|Y n] can take is 1 since it is a probability. The inequality is
tight when PY |X is the identity matrix (when Y = X). We also discuss this in later sections where we look
at DMC matrices that are not strictly positive.

5.3.3 Concentration of Sums of Independent Variables

The concentration function Q(X;λ) of random variable X is defined by

Q(X;λ) = sup
x

P[x ≤ X ≤ x+ λ] (5.56)

for every λ ≥ 0 [46]. Let Sn =
∑n
i=1Xi where the Xi are independent.

Theorem 9 (Petrov [46]). Let the numbers ai and bi be such that

P
[
Xi − ai ≤ −

λi
2

]
≥ bi (5.57)

P
[
Xi − ai ≥

λi
2

]
≥ bi (5.58)

for i = 1, ..., n. Then there exists a universal constant α so that

Q(Sn;λ) ≤ αλ
(

n∑

i=1

λ2
i bi

)−1/2

(5.59)

for every positive λ1, ..., λn none of which exceeds λ.

To apply Theorem 9 to our problem, each Xi is a Bernoulli random variable where the probability Xi = 1
is pi. Let bi = min{pi, 1 − pi}. We can fix ai = 1/2. We can also fix λi = 1/2 and λ = 1/2, though this
exact value does not matter so long as λ < 1− ε for a small ε > 0.

This gives that for some integer w

P[Sn = w] ≤ Q(Sn; 1/2) (5.60)

≤ α(1/2)√∑n
i=1(1/2)2 min{pi, 1− pi}

(5.61)

≤ α√∑n
i=1 min{pi, 1− pi}

. (5.62)

We will use this in the next lemma which is key to computing the second term in (5.40).

Lemma 13. There are n balls thrown in q bins independently, so that for the i-th ball, the relative
probability of landing in bin b is pi,b.

Let Nb be the ball count of the b-th bin. Then if πb > 0 for all b and
∑
b πb = 1, we have

P[N1 = nπ1, . . . , Nq = nπq] ≤
αq−1

n(q−1)/2
√
B

(5.63)
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where

B = cq−1
∗

∏
b πb

πmax
(5.64)

c∗ = min
i

c−(i)

c+(i)
(5.65)

c−(i) = min
b

pi,b
πb

(5.66)

c+(i) = max
b

pi,b
πb

(5.67)

πmax = max
b
πb (5.68)

and α is the universal constant used in Theorem 9.

The values pi,b need only be relative probabilities. The exact probability that ball i lands in bin b is
pi,b/

∑
a pi,a. Given that ball i does not land in some bin outside of some set B, the probability that ball i

lands in b ∈ B is pi,b/
∑
a∈B pi,a

Proof. For notation, let Xi,b be the indicator variable of whether ball i was thrown into bin b. We can
express Nb =

∑n
i=1Xi,b. Arrange the indices so that π1 ≤ π2 · · · ≤ πq.

First observe that

P[N1 = nπ1, . . . , Nq = nπq] =

q∏

b=1

P[Nb = nπb|N1 = nπ1, . . . , Nb−1 = nπb−1] . (5.69)

For b = q,

P[Nb = nπb|N1 = nπ1, . . . , Nb−1 = nπb−1] = 1 . (5.70)

For b < q, we can compute for any i that

min

{
pi,b∑q
a=b pi,a

, 1− pi,b∑q
a=b pi,a

}
= min

{
pi,b∑q
a=b pi,a

,

∑q
a>b pi,a∑q
a=b pi,a

}
(5.71)

= min

{
πb

pi,b
πb∑q

a=b πa
pi,a
πa

,

∑q
a>b πa

pi,a
πa∑q

a=b πa
pi,a
πa

}
(5.72)

≥
mina

pi,a
πa

maxa
pi,a
πa

min

{
πb∑q
a=b πa

,

∑q
a>b πa∑q
a=b πa

}
(5.73)

≥ min
i

c−(i)

c+(i)

1∑q
a=b πa

min

{
πb,

q∑

a>b

πa

}
(5.74)

= c∗
πb∑q
a=b πa

. (5.75)

We get the last equality because we have arranged πb in increasing order. Hence by (5.62)

P[Nb = nπb|N1 = nπ1, . . . , Nb−1 = nπb−1] ≤ α√(
n−∑b−1

a=1 nπa

)
c∗

πb∑q
a=b πa

(5.76)

=
α√

n−∑b−1
a=1 nπa
n nc∗

πb∑q
a=b πa

(5.77)

=
α

n1/2
√
c∗πb

(5.78)
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where we used that n−∑b−1
a=1 nπa = n

∑q
a=b πa to get the last inequality. Taking a product of all terms in

(5.69), gives

P[N1 = nπ1, . . . , Nq = nπq] ≤
q−1∏

b=1

α

n1/2
√
c∗πb

(5.79)

=
αq−1

n(q−1)/2

√
cq−1
∗

∏q−1
b=1 πb

(5.80)

=
αq−1

n(q−1)/2

√
cq−1
∗

∏
b πb
πq

(5.81)

=
αq−1

n(q−1)/2
√
B
. (5.82)

5.3.4 Completing Proof of Theorem 7 and Determining Capacity.

Proof of Theorem 7. First we show the easier lower bound. Using Proposition 11, we need only to show that

E
[
log

P[A = 1|Y n]

P[A = 1]

∣∣∣∣A = 1

]
≥ 0 . (5.83)

We do this by,

E
[
log

P[A = 1|Y n]

P[A = 1]

∣∣∣∣A = 1

]
=
∑

yn

P[Y n = yn|A = 1] log
P[A = 1|Y n = yn]

P[A = 1]
(5.84)

=
∑

yn

P[Y n = yn|A = 1] log
P[Y n = yn|A = 1]P[A = 1]

P[Y n = yn]P[A = 1]
(5.85)

=
∑

yn

P[Y n = yn|A = 1] log
P[Y n = yn|A = 1]

P[Y n = yn]
(5.86)

= D(P[Y n|A = 1]‖P[Y n]) (5.87)

≥ 0 (5.88)

since divergences are always positive.
To get the upper bound, we will express

E
[
log

P[A = 1|Y n]

P[A = 1]

∣∣∣∣A = 1

]
= E

[
logP[A = 1|Y n]

∣∣∣∣A = 1

]
− logP[A = 1] (5.89)

and use Lemma 13 for the first term in the sum and Lemma 12 for the second term in sum.
To see why Lemma 13 applies to the first term, note that the first term is trying to calculate given

some Y n, what the probability that the type of Xn is equal to Tn(P ). This is under a distribution where
(X,Y )n ∼ (PY |X × P ).

We will express the type Tn(P ) with P = (π1, ..., πq) where P ∈ Pn. This implies that πb = P[X = b]. Let
the balls described in Lemma 13 be each of the elements of Y n. If Yi = y, then let pi,b = P[X = b, Y = y].
This way pi,b = P[X = b|Y = y]P[Y = y] is appropriately the relative probability that Xi = b given that
Yi = y. As in Lemma 13, Nb is the number of balls in bin b. Then the probability that Xn ∈ Tn(P ) is
equivalent to P[N1 = nπ1, . . . , Nq = nπq]. This is computed for a specific value of Y n, but notice that the
expression we derived for P[N1 = nπ1, . . . , Nq = nπq] in Lemma 13 does not depend on Y n.

Before computing the rest of the expression, we need to pay particular attention to the case when there
exists a b such that πb = 0. If πb = 0, then P[X = b] = 0, which would also imply that pi,b = 0 for all i.
In this case, we can remove the symbol b (or bin b in the interpretation of Lemma 13) from consideration
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and apply Lemma 13 to just the symbols with non-zero probability. We can always reorder the symbols, so
that the first q′ of the q symbols all have πb > 0 and the remaining b > q′ are such that πb = 0. Like in
Lemma 13, we can define

B = cq
′−1
∗

∏q′

b=1 πb
πmax

(5.90)

c∗ = min
i

c−(i)

c+(i)
(5.91)

c−(i) = min
b:b≤q′

pi,b
πb

(5.92)

c+(i) = max
b:b≤q′

pi,b
πb

. (5.93)

E
[
logP[A = 1|Y n]

∣∣∣∣A = 1

]
= logP[N1 = nπ1, . . . , Nq′ = nπq′ ] (5.94)

= log
αq
′−1

n(q′−1)/2
√
B

(5.95)

= log

(
αq
′−1

n(q′−1)/2c
q′−1

2∗

(
πmax∏
b πb

)1/2
)

(5.96)

= log


α

q′−1

c
q′−1

2∗

(
nπmax∏q′

b=1 nπb

)1/2

 (5.97)

=
1

2
log nπmax −

∑

b:πb>0

1

2
log nπb + (q′ − 1) log

(
α√
c∗

)
(5.98)

≤ 1

2
log n−

∑

b:πb>0

1

2
log nπb + c′ . (5.99)

where c′ is constant that does not depend on n. Importantly, the value of c′ also does not depend on πb for
any b. Even though c′ depends on c∗, the latter quantity depends only on the quotient pi,b/πb.

pi,b
πb

=
P[X = b, Y = y]

πb
=

P[Y = y|X = b]P[X = b]

πb
= P[Y = y|X = b] = PY |X(y|b) . (5.100)

So c∗ only depends on PY |X .
Combining these terms with those from Lemma 12 gives that the expression in (5.89) is a constant when

PY |X is strictly positive. This constant depends on q and PY |X but not on n or πb for any b.

Proof of Theorem 6. Using Theorem 7 with Proposition 9 completes the proof for strictly positive DMC.

5.3.5 Comparing Theorem 7 to Stam

Here we give some details on how our result relates to that of Stam in [33]. First, Stam’s setting has noiseless
observations whereas our setting has noise. However, using data processing inequality, we can always use
Stam’s result as an upperbound for the noisy case. Second, Stam’s result generalizes to m observations,
where m can be less than n. Our result Theorem 7 only applies to exactly n observations. However, we can
also use a version of Han’s inequality for divergence [47, Proposition 5.5] (applies when the second probability
argument is independent over the entries of the vector Y n), to get the following corollary:
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Corollary 3. Let Y n ∼ PnY |X ◦ U , so that PY n is the distribution as in Theorem 2. Then for every
m ≤ n we have:

D(PYm‖QmY ) ≤ mD(PY ‖QY ) +
m

n
c (5.101)

where c is the same constant as in Theorem 7.

Here, Y m are the first m entries of vector Y n. In Stam’s setting we have QY = PY , so

D(PYm‖PmY ) ≤ m

n
c . (5.102)

Using Stam’s result with data processing gives

D(PYm‖PmY ) ≤ D(PXm‖PmX ) ≤ (q − 1)

2

m(m− 1)

(n− 1)(n−m+ 1)
. (5.103)

The above equation, which is presented as Stam’s final result, is actually not the tightest when m is close
to n. For instance, when m = n, (5.103) gives q−1

2 n which is far from q−1
2 (log n+ c′), the actual divergence

when computed directly. Work in [48] is able to make for an improvement on Stam’s bound when m is close
to n. We show an easier improvement, using an intermediate result in the proof of (5.103). We can derive
for larger m that

D(PYm‖PmY ) ≤ D(PXm‖PmX ) (5.104)

≤ q − 1

n− 1

m−1∑

t=1

t

n− t (5.105)

=
q − 1

n− 1

n−1∑

j=n−m+1

n− j
j

(5.106)

=
q − 1

n− 1


n




n−1∑

j=n−m+1

1

j


− (m− 1)


 (5.107)

=
q − 1

n− 1
(n (log(n− 1)− log(n−m) + c′′)− (m− 1)) (5.108)

=
q − 1

n− 1

(
n log

n− 1

n−m + nc′′ − (m− 1)

)
(5.109)

= (q − 1) log
n− 1

n−m +O(q) (5.110)

for m < n and c′′ is a constant leftover from approximating the harmonic sum by a log.
When m << n, (5.103) is the better bound. The bound in (5.102) will be a tighter bound than both

(5.103) and (5.110) for the case when m is very close to n, such as when n−m = o(n). When m is linear in
n, then it becomes important to compare the constant factors. Let γ = m/n. To get an estimate on when
our bound is tighter, we will first assume n is large and ignore the lower order constants which appear in
the bounds. Using Remark 4, the bound in (5.102) can be tighter than (5.103) and (5.110) for large n if

1

2
log

2πα2

c∗
≤ min

{
γ

1− γ ,
1

γ
log

1

1− γ

}
. (5.111)

This can occur for certain values of γ depending on the size of c∗, which is a function of PY |X .

5.4 Block Diagonal Case

With a small modification to the proof of Theorem 6, we can show a converse bound for block diagonal
matrices where each block is strictly positive. The modification uses that each block is independent from all
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the other blocks, so we can apply the bound for strictly positive matrices separately to each block. We will
need to show a separate achievability result to match this converse bound.

As a sanity check, the block diagonal case captures the situation where PZ|X is the identity matrix. In
which case, it is possible to use all possible permutations of symbols as messages. No errors are allowed so
decoding is straight-forward. Using an identity matrix of size q × q for the DMC, for each n,

R =
logM

log n
=

log
(
n
q−1

)

log n
≈ log(cq−1nq−1/(q − 1)q−1)

log n
= q − 1 +

c′

log n
(5.112)

which goes to q − 1 asymptotically. This matches our block diagonal converse result.

5.4.1 Converse

Proposition 12 (Block Diagonal Converse). Suppose PZ|X can be written as a block diagonal matrix
with β blocks, so that each block is strictly positive. Then,

Cperm(PZ|X) ≤ rank(PZ|X) + β − 2

2
. (5.113)

Proof. We will use Proposition 9 but we need to show a version of the upper bound in Theorem 7 which
applies to block diagonal matrices instead of strictly positive matrices.

Fix π ∈ Pn. Arrange the matrix PZ|X in block diagonal form and let Xb be the set of symbols in X
which are in the bth block. Let (X,Y )n be generated iid from (π×PY |X). Let Wi be the number of X which
equals i, i.e.

Wi = |{t : Xt = i}| . (5.114)

Define

Ab =

{ ⋂

i∈Xb
Wi = πin

}
. (5.115)

This is the event that all symbols i associated with block b occur with the count πin. Each block has its own
separate set of output symbols in Y. The probability of Wi is independent of what happens in other blocks.
Let Y n(b) (and yn(b)) be notation for the counts restricted to just the output symbols associated with the
bth block.

Using the definition in Proposition 11, notice that A = I
[⋂β

b=1Ab

]
. Then using (5.40) with Lemma 12,

D(PnY |X ◦ U‖QnY ) = nD(PY ‖QY ) + E
[
log

P[A = 1|Y n]

P[A = 1]

∣∣∣∣A = 1

]
(5.116)

≤ nD(PY ‖QY )− 1

2
log n+

∑

i:πi>0

1

2
log πin+ c+ E

[
logP[A = 1|Y n]

∣∣∣∣A = 1

]
. (5.117)

For any Y n,

P[A = 1|Y n] =

β∏

b=1

P[Ab = 1|Y n(b) = yn(b)] . (5.118)

Each block is a strictly positive matrix. From Lemma 13 and following the same calculations that results in
(5.99), we know that

logP[Ab = 1|Y n(b) = yn(b)] ≤ 1

2
log n−

∑

i∈Xb:πi>0

1

2
log nπi + c′ (5.119)
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and thus

logP[A = 1|Y n] ≤
β∑

b=1

(
1

2
log n−

∑

i∈Xb:πi>0

1

2
log nπi + c′

)
(5.120)

=
β

2
log n−

∑

i:πi>0

1

2
log nπi + βc′ . (5.121)

This holds for all Y n so it automatically gives the expected value. Putting all these terms together, for any
π, we get

D(PnY |X ◦ U‖QnY ) = nD(PY ||QY ) +
β − 1

2
log n+ c′′ (5.122)

where c′′ combines all the constants. Using Proposition 9, gives

Cperm(PZ|X) ≤ rank(PZ|X)− 1

2
+ lim
n→∞

β−1
2 log n+ c′′

log n
(5.123)

=
rank(PZ|X)− 1

2
+
β − 1

2
(5.124)

=
rank(PZ|X) + β − 2

2
. (5.125)

5.4.2 Achievability

Proposition 13 (Block Diagonal Achievability). Suppose PZ|X can be written as a block diagonal
matrix with β blocks, so that each block is strictly positive. Then,

Cperm(PZ|X) ≥ rank(PZ|X) + β − 2

2
. (5.126)

Proof. The achievability proof encodes using two steps. The first step is a zero-error code based on which
block in the block diagonal matrix the symbols are associated with. Let M1 denote the total possible messages
(or rather message stems) for the first step. The second step operates only on each block independently, and
uses the achievability given by (5.3). Let M2 denote the total messages (or message tails) possible here.

Label the β blocks in PZ|X as B1, ..., Bβ . Define the sets of input symbols X1, ..,Xβ and output symbols
Y1, ...,Yβ , so that Xb and Yb are the input and output symbols respectively associated with block Bb. (In
other words, if pij > 0 and pij falls into block Bb, then i ∈ Xb and j ∈ Yb.) These sets X1, ..,Xβ and
Y1, ...,Yβ will both be disjoint.

Let L = rank(PZ|X) and let Lb = rank(Bb). Because of the block diagonal structure, L =
∑β
b=1 Lb.

For fixed n, set aside the first n/2 input symbol positions so that exactly n/(2β) are from set Xb for
each b. These will not be used for the first step of the two-step code and is used to make the analysis of the
second step easier. The remaining n/2 positions can be encoded using symbols from any set and this is used
to make the first step of the code. There are

(
n/2

β − 1

)
≥
(
n/2

β − 1

)β−1

(5.127)

possible combinations of symbols chosen from β blocks, disregarding order. The DMC will map the symbols
in set Xb to symbols in set Yb without any error. Hence, (5.127) is the number of messages M1 the first step
can encode without any error.

Once it is determined how many symbols of each set will be used, we can determine which symbol in the
set will be used for the second step. Suppose there are nb positions which are designated for symbols in set
Xb. This includes the n/(2β) we set aside in the beginning and how ever many were chosen to make the first

93



step of the code. Using (5.3), we know there exists a encoder-decoder pair (fnb , gnb) so that the decoding
error is vanishingly small as nb →∞. Just by choosing which symbol in Xb to send, for some εnb > 0 where
εnb → 0, we can encode a set of messages with size Mb satisfying

logMb ≥
(
Lb − 1

2
− εnb

)
log nb . (5.128)

The set of messages possible for all the β different sets is

logM2 = log

β∏

b=1

Mb (5.129)

≥
β∑

b=1

(
Lb − 1

2
− εnb

)
log nb (5.130)

≥
β∑

b=1

(
Lb − 1

2
− εnb

)
log

n

2β
(5.131)

=

(
L− β

2
−

β∑

b=1

εnb

)
log

n

2β
. (5.132)

The total number of messages is the product of those available at the first and second steps.

logM = logM1 + logM2 (5.133)

≥ log

(
n/2

β − 1

)β−1

+

(
L− β

2
−

β∑

b=1

εnb

)
log

n

2β
(5.134)

= (β − 1) log
n

2β − 2
+

(
L− β

2
−

β∑

b=1

εnb

)
log

n

2β
(5.135)

≥
(

2β − 2

2
+
L− β

2
−

β∑

b=1

εnb

)
log

n

2β
(5.136)

=

(
L+ β − 2

2
−

β∑

b=1

εnb

)
log

n

2β
. (5.137)

Since each nb ≥ n
2β →∞ as n→∞, asymptotically the term

∑β
b=1 εnb disappears.

The achievable rate is given by

R =
logM

log n
≥
(
L− β − 2

2
+

β∑

b=1

εnb

)
log n− log 2β

log n
→ L− β − 2

2
. (5.138)

Combining Proposition 12 and Proposition 13 gives the first result in Theorem 8.

5.5 Erasure and Z Channels

5.5.1 Preliminaries

The following lemma will be useful for computing the probability of event A (see Proposition 11) when the
DMC matrix is not strictly positive. It is a straight-forward concentration bound which is a direct application
of Bernstein’s inequality. We choose to write the proof anyways for completeness.
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Lemma 14. Suppose that Y is a sum of n independent Bernoulli random variables. Let E[Y ] be the
expected value of Y .

Fix γ. If E[Y ] > 2γ log n, then with probability at least 1− 2/nγ/4, we have that

E[Y ] > E[Y ]−
√
E[Y ]γ log n ≥ 1

5
E[Y ] . (5.139)

Proof. Let Y =
∑n
i=1Xi where Xi is the ith Bernoulli random variable. Let 0 < pi < 1 be the probability

of Xi = 1.

n∑

i=1

E[(Xi − E[Xi])
2] =

n∑

i=1

pi(1− pi) ≤
n∑

i=1

pi = E[Y ] . (5.140)

We will use Bernstein’s inequality for bounded variables [49, Theorem 2.8.4].

P
[
Y − E[Y ] ≤ −

√
E[Y ]γ log n

]
≤ 2 exp

(
− 1

2E[Y ]γ log n
∑n
i=1 E[(Xi − E[Xi])2] + 1

31
√
E[Y ]γ log n

)
(5.141)

≤ 2 exp

(
− 1

2E[Y ]γ log n

E[Y ] + 1
3

√
E[Y ]γ log n

)
(5.142)

≤ 2 exp


 − 1

2γ log n

1 + 1
3

√
γ logn√
EY


 . (5.143)

Using that E[Y ] > 2γ log n, we have 1 + 1
3

√
γ logn√
E[Y ]

≤ 1 + 1
3

√
γ logn√
2γ logn

≤ 2.

P
[
Y − E[Y ] ≤ −

√
E[Y ]γ log n

]
≤ 2 exp

(−1

4
γ log n

)
≤ 2

nγ/4
. (5.144)

Hence, with probability 1− 2/nγ/4,

E[Y ] ≥ E[Y ]−
√
EY γ log n ≥ E[Y ]−

√
E[Y ]

1

2
E[Y ] ≥

(
1− 1√

2

)
E[Y ] ≥ 1

5
E[Y ] . (5.145)

5.5.2 The q-ary Erasure Channel

We now can prove the converse bound for q-ary erasure channels, where q is the number of input symbols.
Let K = q + 1 represent the erased symbol.

The matrix PZ|X for a q-ary erasure channel has the following structure:

PZ|X =




p11 0 · · · 0 p1K

0 p22 · · · 0 p2K

...
...

. . .
...

...

0 0 · · · pqq pqK



. (5.146)

We will assume that each piK > 0.

Proof of Item 2 of Theorem 8. Fix π = (π1, ..., πq) where π ∈ Pn. (We will assume each πi > 0, otherwise
we can remove it.) Reorder the symbols in {1, ..., q} so that π1 ≤ π2 ≤ ... ≤ πq. (We will use PY |X = PZ|X .)
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Following Proposition 11, let (X,Y )n be generated iid according to (π × PY |X). To use Proposition 11
we need to determine P[logP[A = 1|Y n]|A = 1].

Unlike the case of strictly positive PY |X , the value of P[A = 1|Y n] depends on Y n. For instance, it is
easy to see that when the erasure symbol K does not appear, then P[A = 1|Y n] = 1. While Y n like this can
occur under the event A = 1, we want to show that these events are rare, this way the expected value of
P[A = 1|Y n] given that A = 1 will be much smaller than 1 and close to the value which will give our result.
We will first show a concentration result on Y n given that A = 1.

Let Ub be the random variable which gives the count of the number of times the symbol b is erased, i.e

Ub =

n∑

i=1

{(Xi, Yi) = (b,K)} . (5.147)

Let vb(y
n) = {Ub|A = 1, Y n = yn}. Note that vb(y

n) is deterministic. If A = 1 and Y n is known, we can
determine exactly what Ub is.

Define Sb =
∑
a≥b Ua. Given Y n, S1 is deterministic. Given Y n and U1, .., Ub−1, Sb is deterministic.

Using Lemma 14, since E[Sb] = n
∑
a≥b πapaK ≥ nπqpqK > 2γ log n for some γ (chosen later) and all b

for large enough n, we have

P


Sb >

1

5
n
∑

a≥b
πapaK


 ≥ 1− 2/nγ/4 . (5.148)

Using the union bound,

P




q⋂

b=1



Sb >

1

5
n
∑

a≥b
πapaK






 ≥ 1− 2q/nγ/4 . (5.149)

Next, for any yn which has positive probability given A = 1,

P[A = 1|Y n = yn] = P

[
q⋂

b=1

Ub = vb(y
n)

∣∣∣∣Y n = yn

]
(5.150)

=

q−1∏

b=1

P

[
Ub = vb(y

n)

∣∣∣∣
b−1⋂

a=1

Ua = va(yn), Y n = yn

]
. (5.151)

We compute the following which is like the proof Lemma 13 of but with appropriate adjustments. Using
(5.62),

P

[
Ub = vb(y

n)

∣∣∣∣
b−1⋂

a=1

Ua = va(yn), Y n = yn

]
≤ α√∑Sb

i=1 min
{

πbpbK∑
a≥b πapaK

,
∑
a>b πapaK∑
a≥b πapaK

} . (5.152)

Like in Lemma 13, define c− = mini piK .

min

{
πbpbK∑
a≥b πapaK

,

∑
a>b πapaK∑
a≥b πapaK

}
= (min

i
piK) min

{
πb∑

a≥b πapaK
,

∑
a>b πa∑

a≥b πapaK

}
(5.153)

=
c−πb∑

a≥b πapaK
. (5.154)

We get the last equality since πi is in increasing order. Hence

P

[
Ub = vb(y

n)

∣∣∣∣
b−1⋂

a=1

Ua = va(yn), Y n = yn

]
≤ α√

Sb
c−πb∑

a≥b πapaK

. (5.155)
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We can now compute

E[logP[A = 1|Y n]|A = 1] =
∑

yn

P[Y n = yn|A = 1] logP[A = 1|Y n = yn] (5.156)

≤ log
∑

yn

P[Y n = yn|A = 1]P[A = 1|Y n = yn] (5.157)

≤ log
∑

yn

P[Y n = yn|A = 1]

q−1∏

b=1

α√
Sb

c−πb∑
a≥b πapaK

(5.158)

≤ log


(2q/nγ/4) + (1− 2q/nγ/4)

q−1∏

b=1

α√(
1
5n
∑
a≥b πapaK

)
c−πb∑

a≥b πapaK


 (5.159)

≤ log


(2q/nγ/4) +

αq

( c−
5

) q−1
2 n

q−1
2

√∏q
b=1 πb
πmax


 (5.160)

where in (5.159) we used (5.149). We can pick γ large enough3 so that the first term in the logarithm is
negligible compared to the second term for large n.

This gives

P[logP[A = 1|Y n]|A = 1] ≤ log


 2αq

( c−
5

) q−1
2 n

q−1
2

√∏q
b=1 πb
πmax


 (5.161)

≤ 1

2
log n−

q∑

b=1

1

2
log πbn+ c′ . (5.162)

The value c′ collects all the constants. Combining with Lemma 12, we get that for the q-ary erasure channel
and sufficiently large n that

D(PY |X ◦ U‖QnY ) ≤ nD(PY ‖QY ) + c (5.163)

where c does not depend on n or π. Using Proposition 9 completes the proof.

5.5.3 Z-Channel

The matrix for the Z-channel [1, p 225] is


p11 p12

0 1


 (5.164)

where we require that pij > 0. (Typically, p11 = p12 = 1/2, but we will consider a more general case.)
We can actually get the capacity of the noisy permutation channel with the Z-channel without altering

the proof for the q-ary erasure channels. The transition matrix for the Z-channel can be written as

p11 p12 0

p21 0 p23


 (5.165)

setting p23 = 0. This does not change the rank of the matrix or the analysis in the proof.

3For instance, we can pick γ = 40q. For large enough n, we still get that E[Sb] = n
∑

a≥b πapaK > 2γ logn is true for all b.
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Corollary 4. Let PZ|X be a stochastic matrix for the Z-channel, then

Cperm(PZ|X) =
1

2
. (5.166)

This is item 3 of Theorem 8.

5.5.4 “Zigzag” Channel

In this section, we explore the limits of our approach. We have a particular DMC matrix which is similar
to the q-ary erasure channel, but our method is not known to give a tight converse. We will use a matrix
which could be considered a q-ary Z-channel. We will call it a “zigzag” channel since its edges in a transition
diagram form a zigzag.

The matrix has the form:




p11 p12 0 · · · 0 0

0 p22 p23 · · · 0 0

0 0 p33 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · pq−1,q−1 pq−1,q

0 0 0 · · · 0 pqq




(5.167)

where each pij > 0. This matrix has rank q.
Suppose that q is odd and that π is such that πi is 0 for all even values of i. Following the notation and

method in Proposition 11, P[A = 1|Y n] = 1, since any output symbol can be decoded to exactly one input
symbol. For any π of this choice,

D(PY |X ||QnY ) = −nD(PY ||QY )− 1

2
log n+

∑

i:πi>0

1

2
log πin+ c+ E[logP[A = 1|Y n]|A = 1] (5.168)

= −nD(PY ||QY )− 1

2
log n+

∑

i:πi>0

1

2
log πin+ c (5.169)

≤ −nD(PY ||QY )− 1

2
log n+

q + 1

2

1

2
log n+ c (5.170)

≤ −nD(PY ||QY ) +
q − 1

4
log n+ c . (5.171)

If π of this form is the worst case π to use, meaning it gives the largest possible value of D(PY |X ◦U‖QY n)
for any QY , then we get that

Cperm(PZ|X) ≤ q − 1

2
+
q − 1

4
=

3(q − 1)

4
. (5.172)

If there is another π which is the worst, then our upper bound on the capacity will be larger than the value
on the right side of (5.172). In either case, there is a gap between our upper bound for the capacity and the
lower bound of (q − 1)/2 given by (5.3).

5.6 Some Concluding Remarks

Our overall solution for finding converse bounds to the noisy permutation channel is to use divergence
covering to upper bound mutual information followed by KL divergence results on the specific distributions
which occur as outputs of the noisy permutation channel. The approach to find the converse bound in [3] is to
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use Fano’s inequality to bound mutual information and to compute the necessary quantities using entropies
for binomial distributions. We note that both these approaches avoid the issue of needing to understand
convergence rates for multidimensional central limit type problems.

The most straight-forward approach to finding a converse bound for the noisy permutation channel is to
understand that each message, which can be sent through the noisy permutation channel, leads to a type at
the output. This output type converges to its average value, and due to the intuition from multidimensional
central limit theorem, we expect that the distribution of this output type has some variance when normalized
appropriately. This variance is what limits the number of messages the transmitter can send. While dealing
with 1-dimensional central limit theorem has corresponding results that show how fast the sums converge
to the limiting cdf (particularly, Berry-Esseen), multidimensional results on how the sums converges are
much harder. Part of this reason is that Fourier-type analysis (characteristic functions) can be used for
showing Berry-Esseen type bounds for 1-dimensional variables, but this analysis does not hold as easily in
the multidimensional case [50]. Without a strong enough result for convergence in the multidimensional
case, we cannot take the straight-forward approach of using variance to find converse bounds.

The key to our divergence covering approach is that we have Theorem 7. The difficult distribution
we cannot characterize the convergence rate of is the distribution of drawing balls out of an urn without
replacement (hypergeometric). A much easier distribution to work with is the distribution of drawing
balls out of an urn with replacement (multinomial), since each draw is iid. Theorem 7 shows that these
distributions are close to one another as the length n increases. Thus, we can use the convergence rates of
iid distributions to find the bounds we need, and side-step working with a difficult distribution.
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Chapter 6

Average-Case Divergence Covering

In this chapter, we begin our journey of bounding the number of covering centers needed for average-case
divergence covering. We dedicate two chapters for this exploration. In this chapter, we want to determine
bounds on the average-case divergence covering when the prior W is a symmetric Dirichlet distribution. Our
main technique for finding these bounds is to use rate distortion, treating each probability vector as a block
and each symbol as a single letter. In the same spirit as Chapter 4, we also draw a connection between
average-case divergence covering and the Bayes risk.

Chapter Organization We introduce the problem, with its motivation and connections to rate distortion
in Section 6.1. We find the main lower bound in Theorem 11. We give the technique for the upper bound,
which we name the Interval Method, in Section 6.4 and use this to find upper bounds in Section 6.5. We
connect the rate distortion problem to average divergence covering in Section 6.6.

Notational Notes Since, the letter “D” appears frequently in this chapter as notation for various quan-
tities, to clarify, we will use DKL(P‖Q) to mean D(P‖Q).

6.1 Introduction and Motivation

Suppose one wants to compress iid data over a large alphabet [K] sampled from a distribution π. The
distribution is considered to be known to the compressor (because it possesses a very large corpus of data)
and unknown to the decompressor. A natural two-step compression scheme would be to first describe the
distribution π and then use an optimal (Huffman, arithmetic, etc) compressor for it. Since π is to be
represented with finitely many bits, only an approximation π̂ can be conveyed to the decompressor. It is
well known that this incurs penalty DKL(π‖π̂) in compression length [1, Ch 5]. This motivates our definition
for average-case divergence covering in Definition 3 in Chapter 1. The centers Q are the set of quantized
distributions. We map each π to the element of Q closest1 in KL divergence to π.

The quantity M∗(W, ε) is intimately connected with Bayes risk or average redundancy (expressible as
mutual information) in the universal compression setting.

Proposition 14. Suppose that π ∼W and Xn is generated iid from π. Then for any n,

I(π;Xn) ≤ inf
ε
{nε+ logM∗(W, ε)} . (6.1)

When n = 1, the above is equality.

The proof (shown in Section 6.7) is similar to techniques used in [6, 51]. Known results on I(π;Xn) imply
lower bounds on M∗(W, ε) (discussed in Section 6.1.1 and more in Section 6.7).

1This is the ideal goal. Both in practice and in our analysis, we do not necessarily know which element of Q is closest. We
usually just map to a center which is close enough.
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Perhaps the most natural prior W to consider, in the absence of other knowledge, is the uniform prior
which belongs to the family of symmetric Dirichlet distributions. Symmetric Dirichlet distributions only
need to be specified with one scalar parameter α and an alphabet size K. We will use the notation DirK(α)
with scalar α to specify the symmetric Dirichlet on [K] with all parameters set to α; the uniform distribution
is DirK(1). Another important prior is Jeffreys’ prior[21] which is DirK(1/2).

Dirichlet distributions are popular choices for modeling unknown discrete distributions in Bayesian statis-
tics partly because they are the conjugate priors to multinomial distributions; they are used in many fields,
including Dirichlet Processes [52] and other learning and estimation problems, such as in [53, 54, 55].

In [53], the authors use Dirichlet distributions for topic modeling under a hierarchical Bayesian model.
Our problem fits nicely with this application. Each document has a probability over topics and each topic has
a probability over words, resulting in many probability distributions which need to be saved. To save space
on storage, all these probabilities can be quantized, reducing space requirements while keeping distortion
(measured by KL divergence) low. The stored probabilities will then be well suited for tasks like compression
or prediction with log-loss.

Our main result is the following:

Theorem 10. For each α, there exists a constant c1(α) > 0 such that for all K and ε > 0,

logM∗(DirK(α), ε) ≥ K

2
log

c1(α)

ε+ 1
2αK

. (6.2)

Furthermore, there exists a c2(α) > 0 such that for all ε > 0 and all K such that αK > 1

logM∗(DirK(α), ε) ≤ K

2
log

c2(α)

ε(1− (αK)−1/3)2
. (6.3)

A practically important consequence of our analysis is that an almost optimal quantization of large-
alphabet distributions is obtained by companding πj 7→ f(sπj) (for some constant s), followed by the
uniform (scalar) quantizer and projection back onto the simplex. For α = 1, our method recommends

f(x) =

{
c(x/τ)2/3 for x ≤ τ
(1− c)

(
1− exp(−(x− τ)/3)

)
+ c for x > τ

(6.4)

where τ = 2.954, c = 0.664. (We will use the expression for f in Chapter 7. We name it the Exponential
Density Intervals (EDI) method for quantization.)

Our approach is to reduce the single-sample covering question to the following rate-distortion function
(corresponding to an iid multi-sample covering question):

Definition 23. For distribution PX over R≥0 and D > 0,

R(PX , D)
4
= inf
PY |X
{I(X;Y ) : E[Y ] = E[X], E[d(X,Y )] ≤ D,Y > 0} , (6.5)

where

d(x, y)
4
= x log(x/y) (6.6)

(for x ≥ 0 and y > 0).

We call d(x, y) the divergence distortion. While divergence distortion is convex in both inputs and d(x, y) = 0
iff x = y, it has the unusual property of being negative when x < y (with minimum at x = y/e). However,
from E[Y ] = E[X] and convexity we still get E[d(X,Y )] ≥ 0. Note that without the constraint E[Y ] = E[X],
R(PX , D) would be 0 trivially by increasing Y without bound.

It turns out (Section 6.6) that computing (6.5) with PX being the Gamma distribution yields bounds on
M∗(W, ε) with W = DirK(α) (and exponential PX corresponds to uniform W ).
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Other work on quantizing probabilities includes [56], where they are quantized using the average Lp norm,
and [57]. Particularly relevant is [5] which connects rate distortion to ε-nets, inspiring subsequent works on
quantizing functions [58, 59].

In the remainder of this section, we will give a summary of the connection to universal compression,
review the background of rate distortion and summarize the analysis in this paper.

6.1.1 Universal Compression

Much work has been done in the setting of universal compression on the asymptotic Bayes risk or average
redundancy defined in [12, 23], mostly for the case where W is the least-favorable prior for maximin redun-
dancy, the Jeffreys’ prior (or W = DirK(1/2) for discrete alphabets) [21]. The dominant term of the Bayes
risk is K−1

2 log n, where K − 1 is the dimension of the parameter space and n is the number of samples
[19, 60]; the other terms are constant or order o(1) in n [61, 20, 21, 13, 22].

Based on the above results on Jeffreys’ prior and Proposition 14, we conjecture that in general logM∗(W, ε)
will have a dominant term of K−1

2 log 1
ε as ε→ 0. This is close to our upper bound from Theorem 10, espe-

cially for large alphabets (our bound behaves as K
2 log 1

ε as ε→ 0). An interesting direction for future work
would be to close the gap between our upper and lower bound, using the conjectured asymptotic rate as a
guide. The advantage of our results, however, is in yielding an explicit non-asymptotic upper bound on the
Bayes risk. More details are discussed in Section 6.7.

6.1.2 Rate Distortion Background

For rate distortion problems which quantize X to Y , points in the support of Y are called reconstruction
points. We typically use QY to denote the pdf (probability density function) or pmf (probability mass
function) of the reconstruction points. The probabilities with which each X maps to each Y are the transition
probabilities. We usually use QY |X or PY |X to specify this. The transition probabilities are optimal if they
minimize I(X;Y ). We refer to PX as the source distribution.

Reconstruction Points

Reconstruction points can be either discrete or continuous. The rate distortion problem for Gaussian sources
and squared-error distortion gives continuous reconstruction points, but this is not the usual case for other
problems. Even for squared-error distortion, the optimal reconstruction is discrete if the source distribution
is not supported on the whole real line [62]. There is sometimes a transition point at a critical distortion,
where for all D below the critical point, the reconstruction is continuous, and above the critical point it
is discrete [63]. For other distortion measures the reconstruction can sometimes be continuous, such as
for Gamma distributions with the Itakura-Saito measure. For a summary of results on several distortion
measures on continuous sources, see [64].

Shannon Lower Bound (SLB)

Rate distortion functions are difficult to compute in general. For many rate distortion problems, the SLB
is used for lower-bounding and even approximating R(D). The concept behind the SLB is to minimize the
mutual information in the rate distortion problem by maximizing the entropy H(X|Y = y) (or differential
entropy h(X|Y = y)) for a particular y. We get a lower bound by relaxing the constraint that QX|Y needs
to reproduce the original source distribution. This allows us to have a lower bound which depends on the
source only through a h(X) (differential entropy) term. See [65] for more on the SLB.

Several works show that asymptotically as the distortion D goes to zero, the SLB can be tight under
various conditions [66, 67, 68].

When working with squared-error distortion, the SLB coincides with R(D) if and only if the source
X can be written as X = Y + N , where Y and N are independent and Y is the reproduction (or the
“backward channel” condition). The reconstruction points are continuous when the SLB is met. Otherwise,
the reconstruction points are discrete. [63].
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Computing Upper Bounds

For large distortions, we can numerically compute the rate distortion function using Arimoto-Blahut [69]
or [63]. The latter avoids the need for infinite discretization which Arimoto-Blahut would require. (The
approach in [63] still needs discretization, but instead discretizes the unit interval.) Such algorithms are still
complicated and intensive when dealing with continuous sources, especially for smaller and smaller distortion
values. For small distortions, while not optimal, scalar quantization is useful for computing analytic upper
bounds. In particular, [70] showed that quantizing to intervals is asymptotically optimal for the squared-error
distortion measure. We will use a similar technique for our upper bounds.

Related Work

The following works solve the rate distortion problem for distortions measures which have similarities to the
divergence distortion. In [71], the authors look at distortion measures which are a function of the quotient
X/Y . Using this result and then taking U = logX and V = log Y gives results for other distortion measures.
Their results show that for the Itakura-Saito measure the worst-case sources are Gamma distributions. In
[72], the authors solve the rate distortion function using the absolute magnitude measure, d(x, y) = |x− y|.
For their proof, their main technique is to use the SLB. In [64], the authors solve for the rate distortion
function for Gamma sources using the distortion measure d(x, y) = | log(x)− log(y)|.

6.1.3 Summary

In Section 6.2 we show some preliminary results for problem (6.5). In Section 6.3 we show the following
lower bound on (6.5) for continuous sources (i.e. described by density functions):

Theorem 11. For any X with density pX(x), if D ≤ E[X] we have

R(pX , D) ≥ 1

2
log

(
1

D

)
+ h(X)− 1

2
logE[X] + cL (6.7)

where h(·) is the differential entropy and cL is a constant.a

aThe −(1/2) logE[X] term might seem strange in light of the intuition that scaling X up will make it harder to
approximate with low distortion (see Proposition 15). However, scaling X up increases h(X) and the net effect is positive.

In Section 6.4 we describe a certain method, called the Interval Method, based on the technique of [70],
for upper-bounding (6.5), as well as lemmas allowing easy manipulation of bounds using this method. In
Section 6.5, we use the tools from Section 6.4 to give upper bounds for the following important sources:

Theorem 12. For a uniform source X ∼ Unif [a,b],

R(pX , D) ≤ 1

2
log
( 1

D

)
+

1

2
log
( (b− a)2

b

9

32

)
(6.8)

Theorem 13. For X ∼ Exponential(1),

R(pX , D) ≤ 1

2
log

(
1

D

)
+

1

2
log (9) ≤ 1

2
log

(
1

D

)
+ 1.1 (6.9)

The exponential distribution is also a Gamma distribution. We can use the results from the Interval Method
on uniform sources and exponential sources to get a result on general Gamma sources.
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Theorem 14. For source X ∼ Gamma(α, β) for any α, β,

R(pX , D) ≤ 1

2
log
( 1

D

)
+ c(α, β) (6.10)

For all of these, our upper and lower bounds are tight up to an additive constant. This shows that 1
2 log

(
1
D

)

is the correct rate of growth for these sources under divergence distortion. Equating D with ε approximately
gives the size of M∗(DirK(α), ε). We show this precisely in Section 6.6, where we use Theorem 11 and
Theorem 14 to derive Theorem 10.

6.2 Preliminaries

We first give some preliminary results about the rate distortion function in (6.5).

Proposition 15 (Scaling). Suppose X ′ = cX for c > 0, then R(pX′ , cD) = R(pX , D).

Proof. Let qY |X satisfy the constraints of the rate distortion problem on pX with distortion bound D (i.e.
E[X log(X/Y )] ≤ D and E[Y ] = E[X] when X ∼ pX and Y ∼ qY |X). Then we use

q′Y ′|X′(y|x) =
1

c
qY |X(y/c|x/c) (6.11)

This is equivalent to: given X ′, first extract X = X ′/c, then produce Y given X as in qY |X , and then
produce Y ′ = cY . It is also equivalent to generating X, then Y from X according to q, and finally extracting
X ′ = cX and Y ′ = cY . Thus,

EX′,Y ′∼pX′ ,q′Y ′|X′

[
X ′ log

(X ′
Y ′

)]
(6.12)

= EX,Y∼pX ,qY |X

[
cX log

(cX
cY

)]
≤ cD (6.13)

and so q′Y ′|X′ achieves distortion ≤ cD with pX′ . Furthermore, it is trivial that E[Y ] = E[X] =⇒ E[Y ′] =

E[X ′], since Y ′ = cY and X ′ = cX.
Then, since scaling the inputs of mutual information does not affect the result, we have

I(X ′;Y ′) = I(cX; cY ) = I(X;Y ) (6.14)

Thus, any value of the mutual information achievable on X with distortion ≤ D is also achievable on X ′ = cX
with distortion ≤ cD, and since

R(pX , D) = inf
qY |X

I(X;Y ) (6.15)

s.t. EX,Y∼pX ,qY |X

[
X log

(X
Y

)]
≤ D and E[Y ] = E[X] (6.16)

we can conclude that R(pX′ , cD) ≤ R(pX , D). To get the converse, R(pX , D) ≤ R(pX′ , cD), we use the
exact same argument, noting that if c′ = 1/c then X = c′X ′ and D = c′(cD), and conclude that R(pX , D) =
R(pX′ , cD) as we wanted.

The scaling property should fit with our intuition that quantizing variables X which are larger should
be harder to achieve smaller distortion. For the rate to be the same, we must allow the larger variables a
higher distortion.

Proposition 16 (Discrete Reconstruction). For any source probability density pX where E[X] < ∞,
the optimal reconstruction for (6.5) is discrete.

This proof follows the analysis of [63] except with some modifications to fit the divergence distortion and
its constraints. We give in the proof in Appendix B.2.2.
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Proposition 17. For any source probability density pX where E[X] < ∞, the optimal reconstruction
for (6.5) is discrete, and

yi =

∫
pX(x)qY |X(yi|x)x dx∫
pX(x)qY |X(yi|x) dx

= E[X|X maps to yi] (6.17)

where qY |X(·|·) are the optimal transition probabilities for (6.5).

There are multiple ways of proving this proposition. We present just one below.

Proof. Fix E[X] = 1. We can scale otherwise.
Since we know the reconstruction must be discrete from Proposition 16, list the discrete values as

y1, y2, . . . . We construct a joint probability on X and J where J is the random index yJ which X maps to.
Let pJ(i) be the probability J = i.

Suppose Y = wi if J = i. Let Z = zi be the quantity defined in (6.17) if J = i. We have the constraint
that E[Y ] = E[X] which implies

1 = E[Y ] = E[E[Y |J ]] =
∑

i

pJ(i)wi . (6.18)

Similarly,
∑
i pJ(i)zi = 1 Then

E
[
X log

X

Y

]
− E

[
X log

X

Z

]
(6.19)

= E
[
X log

Z

Y

]
(6.20)

= E
[
E
[
X log

Z

Y

∣∣∣∣J
]]

(6.21)

= E
[
wJ log

wJ
zJ

∣∣∣∣J
]

(6.22)

=
∑

i

pJ(i)wi log
pJ(i)wi
pJ(i)zi

(6.23)

≥ 0 (6.24)

where equality holds iff wi = zi

6.3 Lower Bound

Our method for finding a lower bound to (6.5) is to use the Shannon Lower Bound. First, we simplify by
combining the distortion measure and expected value constraints into one inequality. We will relax (6.17) so
that

∫∞
0
qX|Y (x|yi)x dx ≥ yi. For qY |X(y|x) and pX(x), let qY (y) be the resulting marginal on y. (The joint

distribution can be expressed either as qY (y)qX|Y (x|y) or pX(x)qY |X(y|x).) We add the constraints together
to get

∫

y

∫

x

qY (y)qX|Y (x|y)

(
x log

x

y
− x
)
dx dy ≤ D − E[Y ] (6.25)

Our new distortion for finding a lower bound is

dSLB(x, y) = x log(x/y)− x . (6.26)

We will start with the following proposition, which is a slight variation on a result by Berger in [65, Ch 4]:
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Proposition 18. Let p(x) be a probability density on X and d(·, ·) be a distortion measure. Let Aλ be
the set of all nonnegative functions αλ(x, y) satisfying

c(y) =

∫ ∞

0

αλ(x, y)p(x)e−λd(x,y)dx ≤ 1 (6.27)

for all y. For all D > 0, suppose B is the set of conditional probabilities meeting E[d(X,Y )] ≤ D. Then

R(p,D) ≥ inf
QY |X∈B

sup
λ≥0,αλ∈Aλ

(
− λD +

∫

y

∫

x

QY |X(y|x)p(x) logαλ(x, y) dx dy

)
(6.28)

The proof is in Appendix B.2.3. The nice property of Proposition 18 is that it allows us to choose any
nonnegative function αλ(x, y) and relate it to a lower bound on rate distortion. To make computations
easier, the Shannon Lower Bound chooses αλ(x, y) to be the reciprocal of p(x). We want to do this, but to
make sure condition (6.27) is satisfied, we need to make sure that if we pick

αλ(x, y) =
1

p(x)ζ
(6.29)

that ζ (a value we choose to be independent of x) is set appropriately. To find a good value for ζ we will
compute the integral in the following lemma.

Lemma 15. For any y > 0 and any λ > 0,

∫ ∞

0

e−λ(x log x
y−x)dx ≤ 3

2
eλy
√
y

λ

2π

1− 2c
+

1

λ
(6.30)

where c = 2 log 2− 3/2.

We need a bound which holds even as λ → ∞. We will show this using a modified version of Laplace’s
method. The key is to show that the integrand is Gaussian-like for x < ey and is exponential-like for x > ey.
When we integrate in (6.30), we get two terms, one related to the Gaussian part and one related to the
exponential part.

Proof. Let

fy(x)
4
= e−λ(x log x

y−x) . (6.31)

We will compute the integral (6.30) by splitting up the domain into a few parts. The main focus will be to
bound the portion where x is in [0, 2y). We will use that result to bound [2y, 3y). The interval [3y,∞) we
will bound separately at the end.

Bound for x ∈ [0, 2y) First, observe that maxx fy(x) = fy(y) = eλy. For the exponent part, the Taylor
expansion around y is

x log
x

y
− x = −y +

(x− y)2

2y
+

∞∑

n=1

(−1)n(x− y)n+2

(n+ 1)(n+ 2)yn+1
(6.32)

= −y +
(x− y)2

y

∞∑

n=0

(−1)n

(n+ 1)(n+ 2)

(
x− y
y

)n
(6.33)

and this Taylor expansion expression has a radius of convergence on (0, 2y).
For any −1 < r < 1, we have that

g(r)
4
=

∞∑

n=0

(−1)n

(n+ 1)(n+ 2)
rn =

−r + (r + 1) log(r + 1)

r2
. (6.34)
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For r ∈ [−1, 1],

g(r) ≥ 2 log 2− 1 (6.35)

≥ 1

2
− c (6.36)

where c = − 3
2 + 2 log 2 ≈ 0.11. Notice also that (in the limit) g(0) = 1/2. Writing

x log
x

y
− x = −y +

(x− y)2

y
g

(
x− y
y

)
(6.37)

x log
x

y
− x ≥ −y +

(x− y)2

y

1

2
(1− 2c) (6.38)

−λ
(
x log

x

y
− x
)
≤ λy − λ (x− y)2

y

1

2
(1− 2c) (6.39)

we get

∫ 2y

0

e−λ(x log x
y−x)dx ≤

∫ 2y

0

eλye
−λ
(

1
2

(x−y)2

y (1−2c)

)
dx (6.40)

<

∫ ∞

−∞
eλye

−λ
(

1
2

(x−y)2

y (1−2c)

)
dx (6.41)

= eλy
√
y

λ

2π

1− 2c
. (6.42)

Bound for x ∈ [2y, 3y) Since fy(x) decreases on (y, 3y), we can upper bound the integral of fy(x) on
[2y, 3y] with the integral of fy(x) on [y, 2y]. Combining the two bounds together gives

∫ 3y

0

e−λ(x log x
y−x)dx ≤ 3

2
eλy
√
y

λ

2π

1− 2c
. (6.43)

Bound for x ∈ [3y,∞) Note that fy(ey) = 1.
For x ∈ [3y,∞) ⊂ [ey,∞), the function fy(x) ≤ e−λ(x−ey). Once we have this, we can bound the integral

∫ ∞

ey

e−λ(x log x
y−x)dx ≤

∫ ∞

ey

e−λ(x−ey)dx (6.44)

≤
∫ ∞

0

e−λxdx (6.45)

=
1

λ
. (6.46)

To verify that fy(x) ≤ e−λ(x−ey) on x ∈ [ey,∞), we can use derivatives to check that

x log
x

y
− x ≥ x− ey (6.47)

on this domain. Notice at x = ey,

x log
x

y
− x = ey log

ey

y
− ey = ey − ey = x− ey . (6.48)

The derivative of x− ey is 1. The derivative of x log x
y − x is log x

y which for x ≥ ey is always greater than

or equal to 1. This shows (6.47).2

2Our result in Lemma 15 is loose mostly from the crude upper bounding used in part b). Comparing to some selected values
computed with numerical integration, our bound is off by less than a factor of 3/2.
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To get our lower bound, we just need to combine the results and do the calculations.

Proof of Theorem 11. For this proof we assume E[X] = 1 so that D < 1 based on the conditions and also
logE[X] = 0. For E[X] 6= 1 (but still finite) we can scale the source and the optimal reconstruction will scale
with it to give the extra 1

2 logE[X] term. We will discuss this scaling at the end. 3

We will use Proposition 18 with (6.26) as the distortion measure. Let

ζ(y, λ)
4
= Ceλy

√
y

λ
+

1

λ
≥
∫ ∞

0

e−λdSLB(x,y)dx (6.49)

where we pick C appropriately using Lemma 15. Fix some y and some λ, we will choose

αλ(x, y) =
1

pX(x)ζ(y, λ)
. (6.50)

It follows from Lemma 15 that

c(y) =

∫ ∞

0

αλ(x, y)p(x)e−λdSLB(x,y)dx ≤ 1 . (6.51)

Let Q(D) be the set of conditional probabilities meeting the constraints and let qY |X ∈ Q(D). Then
qY |X must satisfy D − E[Y ] = E[dSLB(x, y)], which is the distortion when applying Proposition 18. Define

f(D,λ, qY |X) (6.52)

4
= −λD + λE[Y ] +

∫

x

∫

y

qY |X(y|x)p(x) logαλ(x, y) dx dy (6.53)

= −λD + λE[Y ] + h(X)−
∫

y

qY (y) log (ζ(y, λ)) dx dy (6.54)

where qY (y) =
∫
x
pX(x)qY |X(y|x) dx.

Next, we will upper bound

ζ(y, λ) ≤ 2 max

{
Ceλy

√
y

λ
,

1

λ

}
. (6.55)

Define

Asmall
4
=

{
y : Ceλy

√
y

λ
<

1

λ

}
(6.56)

Alarge
4
=

{
y : Ceλy

√
y

λ
≥ 1

λ

}
(6.57)

psmall
4
=

∫

y∈Asmall

qY (y) dy (6.58)

plarge
4
=

∫

y∈Alarge

qY (y) dy (6.59)

3We still choose to write E[Y ] in the proof even though it equals 1 so its clearer that it relates to quantities like conditional
expectations on Y .
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These quantities depend on λ and qY |X , though we do not explicitly write these dependencies. Then

f(D,λ, qY |X) (6.60)

≥ −λD + λE[Y ] + h(X)− psmall log
2

λ
−
∫

y∈Alarge

qY (y) log

(
2Ceλy

√
y

λ

)
dy (6.61)

= −λD + λE[Y ] + h(X)− psmall log
2

λ

− plarge log 2C −
∫

y∈Alarge

qY (y)λy dy −
∫

y∈Alarge

1

2
qY (y) log y dy − plarge

1

2
log

1

λ
(6.62)

≥ −λD + h(X) + C ′ − psmall log
2

λ
+ psmallE[λY |Y ∈ Asmall]−

∫

y∈Alarge

1

2
qY (y) log y dy − plarge

1

2
log

1

λ

(6.63)

≥ −λD + h(X) + C ′ − psmall log
2

λ
− plarge

1

2
log

1

λ

−
∫

y∈Alarge

1

2
qY (y) log y dy . (6.64)

We take out the term psmallE[λY |Y ∈ Asmall] since it is positive. We will need to evaluate the last term in
the sum. Using Jensen’s inequality, we have

−
∫

y∈Alarge

1

2
qY (y) log y dy =

1

2
plargeE[− log Y |Alarge] (6.65)

≥ 1

2
plarge(− logE[Y |Alarge]) . (6.66)

Then since E[Y ] = psmallE[Y |Asmall] + plargeE[Y |Alarge] and Y ≥ 0

E[Y |Alarge] =
E[Y ]− psmallE[Y |Asmall]

plarge
(6.67)

≤ E[Y ]

plarge
. (6.68)

Recall that we assumed E[Y ] = E[X] = 1.

−
∫

y∈Alarge

1

2
qY (y) log y dy ≥ 1

2
plarge(− log plarge) (6.69)

≥ − 1

2e
. (6.70)

Hence −
∫
y∈Alarge

1
2qY (y) log y dy can be bounded by a constant. Select λ = 1/D. Then using Proposition 18

inf
QY |X∈Q(D)

R(D, pX) ≥ inf
QY |X∈Q(D)

f(D, 1/D, qY |X) (6.71)

≥ inf
QY |X∈Q(D)

h(X) + cL + psmall log
1

D
+ plarge

1

2
log

1

D
(6.72)

≥ h(X) + cL +
1

2
log

1

D
. (6.73)

where

cL = −1− plarge log

(
3

√
2π

1− 2c

)
− 1/2plarge log plarge − psmall log 2 (6.74)

≥ −3.84 . (6.75)

109



Now suppose we want to find a rate distortion lower bound for X ′ which has E[X ′] = a. Let random variable
X be so that X ′ = aX and thus E[X] = 1. Then by Proposition 15,

R(p′X , D) = R(p′X , (D/a)a) (6.76)

= R(pX , D/a) (6.77)

= h(X) + cL +
1

2
log

1

D/a
(6.78)

= h(X) + cL +
1

2
log

1

D
+

1

2
log a (6.79)

We know that pX′(x) = 1
apX(x/a).

h(X ′) =

∫
p′X(x) log

1

pX′(x)
dx (6.80)

=

∫
1

a
pX(x/a) log

1
1
apX(x/a)

dx (6.81)

=

∫
1

a
pX(u) log

1
1
apX(u)

a du (6.82)

= h(X) + log a (6.83)

where we substituted u = x/a. This gives

R(p′X , D) = h(X ′)− log a+ cL +
1

2
log

1

D
+

1

2
log a (6.84)

= h(X ′) + cL +
1

2
log

1

D
− 1

2
logE[X] . (6.85)

6.4 Interval Method

We develop the Interval Method for upper-bounding (6.5), which is an instance of scalar quantization, similar
to the technique of Gish and Pierce [70]. The Interval Method partitions the support of X into n intervals

Ij . We set Y by interval, i.e. (Y |X ∈ Ij) = yj
4
= E[X|X ∈ Ij ] (we refer to yj as the center that X ∈ Ij maps

to). Note that this assigns Y from X in a deterministic way, i.e. PY |X(·|·) ∈ {0, 1}, which is not necessarily
optimal but simplifies the analysis. The distortion of any such quantization must, of course, upper bound the
minimum possible distortion. We present some definitions and lemmas which help us derive upper bounds
using the Interval Method.

Definition 24. For an interval I ⊆ R≥0, let FI be the set of functions p : I → R≥0 such that∫
I
p(x) dx <∞ and

∫
I
p(x)x dx <∞.

Since we will upper bound some probability density functions, it is important that this definition include
functions that do not integrate to 1.

Definition 25. We define for p ∈ FI the values

y(p,I) 4=

∫
I
p(x)x dx∫
I
p(x) dx

(6.86)

and

D(p,I) 4=
∫

I

p(x)x log

(
x

y(p,I)

)
dx . (6.87)
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We will write y(p,I) and D(p,I) even when p is defined outside of I as well, to mean y(p|I ,I) and D(p|I ,I) where
p|I is the restriction of p to I.

Note that when p is a probability distribution (i.e.
∫
p(x)dx = 1), this definition is equivalent to y(p,I) =

EX∼p[X|X ∈ I]. Therefore the Interval Method automatically satisfies yi = E[X|X maps to yi] and E[Y ] =
E[X] so we will ignore this constraint moving forward.

Definition 26. The minimum distortion on intervals of density p ∈ FI onto n centers is

D(p, n)
4
= inf
{I1,...,In}

n∑

j=1

D(p,Ij) (6.88)

where the infimum is taken over I1, . . . , In partitioning I.

The goal is to determine the intervals I1, ..., In in order to minimze D(p, n). We will generally find
intervals which are easy to perform calculations and get an upper bound on D(p, n). The intervals will
couple X to a discrete Y . Limiting Y to n values limits the mutual information I(X;Y ) (since it is at most
the entropy of Y , which is at most log(n) on n values), giving us:

Proposition 19. Let X be a random variable with probability density pX ; f be a decreasing nonnegative
function; and b, c > 0 be constants. Suppose for all ε > 0, the following holds for all sufficiently large
n: (i) D(pX , n) ≤ c f(n) and (ii) n−b−ε ≤ f(n) ≤ n−b+ε. Then the rate distortion function satisfies

R(pX , D) ≤ log(f−1(D)) +
1

b
log(c) + o(1) (6.89)

(where f−1 is the inverse of f). Furthermore, if f(n) = n−b, then

R(pX , D) ≤ 1

b
log
( 1

D

)
+

1

b
log(c) (6.90)

The proof for this is in Appendix B.2.4. Note that even if the constant c is not known, this proposition
gives R(pX , D) ≤ log(f−1(D)) +O(1).

In principle, it may be possible to show better results in particular cases where I(X;Y ) is significantly
smaller than log(n). However, the process of minimizing the distortion seems to produce Y which are close
enough to uniform that H(Y ) = log(n)−O(1); additionally, for simplicity we work with joint distributions
where X determines Y , so H(Y |X) = 0. Thus, we get I(X;Y ) = log(n)−O(1) and so Proposition 19 is the
best one can do in these cases with the upper bound D(pX , n) = O(α(n)).

Next we discuss useful lemmas for determining D(p, n).

Lemma 16. For p ∈ FI and constant c > 0 (where cI and I + c scale and shift I by c, respectively),
let p×c and p+c be p on cI and I + c with the input scaled or shifted accordingly:

• p×c : cI → [0,∞) such that p×c(x) = p(x/c)

• p+c : I + c→ [0,∞) such that p+c(x) = p(x− c).

Then if p×c ∈ FcI and p+c ∈ FI+c:

i. D(cp,I) = cD(p,I);

ii. D(p×c,cI) = c2D(p,I);

iii. D(p+c,I+c) ≤ y(p,I)

y(p,I)+c
D(p,I) if p is uniform on I

Parts i) and ii) of this lemma can be combined to give a similar result to Proposition 15. For part iii),
this lemma gives a bound on the distortion for translating an interval to the right, but not to the left. The
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proof of part iii) will also show that for c > 0 and any p (and interval I with nonzero distortion),

D(p+c,I+c) < D(p,I) . (6.91)

So translation to the right always decreases the distortion of a given interval. For the proof, the first two
parts of the lemma is straightforward. The third part is more involved. We give the proofs in Appendix B.2.5

The next lemma makes it possible to upper-bound the density function p1 of a source by another function
p2 (which will not actually be a probability distribution since it will sum to more than 1), then upper-bound
the “distortion” for the new function using the Interval Method, and immediately get an upper bound for
the distortion of p1 using the same intervals.

Lemma 17. Let p1, p2 ∈ FI for an interval I ⊆ R≥0. Then

p1 ≤ p2 =⇒ D(p1,I) ≤ D(p2,I) . (6.92)

The principal difficulty is that p1 and p2 can have different averages y(p1,I), y(p2,I). We need to show
that changing these averages does not decrease the distortion. The following proof sketch removes some
computation steps. The same proof but with all computation steps is in Appendix B.2.6.

Proof Sketch. We prove this by showing that for any p ∈ FI , adding a tiny bit of mass (however distributed
as long as its nonnegative everywhere) cannot decrease the distortion. Then the result follows because p2 can
be generated from p1 by smoothly adding mass (e.g. adding λ(p2−p1) and taking λ from 0 to 1 continuously)
and at no point can the distortion be decreasing.

We define for p ∈ FI , any z ∈ FI (WLOG
∫
I
p(x) dx =

∫
I
z(x) dx = 1 because we can scale) and ε > 0

the distribution pε
4
= p + εz; our objective will be to show that for all such p, z,

[
d
dεD

(pε,I)
]
ε=0
≥ 0 . We

accomplish this by looking at how adding εz moves the average, defining y∗
4
= y(z) − y(p,I); then (thanks to

normalization making things easier),

y(pε) = y(p,I)
(

1 +
ε

1 + ε

y∗

y(p,I)

)
(6.93)

Then we can take the derivative

d

dε
D(pε) =

d

dε

∫

I

p(x)x log
( x

y(pε)

)
dx (6.94)

+
d

dε
ε

∫

I

z(x)x log
( x

y(pε)

)
dx (6.95)

and since we only need the value at ε = 0, it simplifies nicely. First, we note that the first term depends
only on ε through y(pε), whose dependence on ε was noted above, so we get:

[
d

dε

∫

I

p(x)x log
( x

y(pε)

)
dx

]

ε=0

= −y∗ (6.96)

Next, we note by the derivative product rule, the derivative of the second part consists of
∫
I
z(x)x log

(
x

y(pε)

)
dx

plus a term multiplied by ε, which disappears at ε = 0 (and y(pε) reduces just to y(p)). Thus,

[ d
dε
D(pε)

]
ε=0

=

∫

I

z(x)x log
( x

y(p)

)
dx− y∗ (6.97)

But (since z(x) is a probability density over I),

∫

I

z(x)x log
( x

y(p)

)
dx = EX∼z

[
X log

( X

y(p)

)]
(6.98)

112



i.e. the expectation over a convex function. Thus, we may apply Jensen’s inequality to it, which reduces
nicely to give

EX∼z
[
X log

( X

y(p)

)]
≥ EX∼z[X] log

(EX∼z[X]

y(p)

)]
≥ y∗ (6.99)

and hence
[
d
dεD

(pε)
]
ε=0
≥ y∗ − y∗ = 0.

The following lemma is especially useful because we can bound a density function p1 by a larger density
function p2 and have a distortion bound over n intervals (rather than just treating their domain as one
interval).

Lemma 18. If p1 ≤ p2 ∈ F[0,∞), then D(p1, n) ≤ D(p2, n) .

Proof. We note that p1, p2 ∈ PI mean that their restrictions to any Ij ⊆ I are in PIj , and that p1 ≥ p2 on
Ij as well. Thus, for any {I1, . . . , In} partitioning I, we have

n∑

j=1

D(p1,Ij) ≤
n∑

j=1

D(p2,Ij) (6.100)

But we note that this means we can take the infimum of both sides and get

D(p1, n) = inf
{I1,...,In}

n∑

j=1

D(p1,Ij) (6.101)

≤ inf
{I1,...,In}

n∑

j=1

D(p2,Ij) = D(p2, n) (6.102)

and we are done.

6.5 Upper Bounds

In this section we derive upper bounds for (6.5) when pX is a) uniform and b) exponential, and use them
to show upper bounds for when pX is Gamma. Let the support of X be [`, L] (typically [0, 1] or [0,∞)); we
denote the intervals as Ij = [aj−1, aj ] where

` = a0 ≤ a1 ≤ · · · ≤ an−1 ≤ an = L . (6.103)

Let yj
4
= y(pX ,Ij) = E[X|X ∈ Ij ], and let rj

4
= aj − aj−1 (width of interval Ij).

6.5.1 Upper Bound for Uniform X

Since X is uniform, the computation of the centers is greatly simplified: yj =
aj+aj−1

2 = aj − 1
2rj .

Lemma 19. The distortion on interval Ij is at most 1
12

r3
j

yj
.

Proof. Since pX(x) = 1 in Ij , by the fact that x > 0 and log is concave, the distortion is

∫ yj+
rj
2

yj−
rj
2

x log
( x
yj

)
dx =

∫ rj
2

− rj2
(x+ yj) log

(
1 +

x

yj

)
dx (6.104)

≤
∫ rj

2

− rj2
(x+ yj)

x

yj
dx =

1

12

r3
j

yj
. (6.105)

113



Theorem 15. For X ∼ Unif [0,1],

D(pX , n) ≤ 9

32

1

n2
. (6.106)

Proof. Using the Interval Method, we set the interval boundaries as aj = j3/2/n3/2. Then the width of each
interval is

rj =
j3/2 − (j − 1)3/2

n3/2
≤ 3

2

(j − 1
2 )1/2

n3/2
, (6.107)

and the midpoint is

yj =
j3/2 + (j − 1)3/2

2n3/2
≥ (j − 1

2 )3/2

n3/2
(6.108)

The second follows from Jensen’s inequality because j3/2 is convex, while the first follows because if f ′(t) is
concave (for simplicity we’ll use Newton notation here), then

f(t)− f(t− 1) =

∫ t

t−1

f ′(x) dx (6.109)

≤
∫ 1/2

−1/2

(
f ′(t− 1/2) + f ′′(t− 1/2)x

)
dx (6.110)

= f ′(t− 1/2) (6.111)

(we upper bound the integral over f ′(x) with the integral of the tangent line at x = t − 1/2, which holds
because f ′ is concave, and the linear term in the second integral cancels itself out since no matter what f ′′

is, it evaluates equally at x = 1/2 and x = −1/2). Therefore, letting f(t) = t3/2, we can conclude that

t3/2 − (t− 1)3/2 ≤ 3

2
(t− 1/2)1/2 (6.112)

Therefore, using Lemma 19 we can upper bound the total distortion on Ij by

1

12

r3
j

yj
≤ 1

12

(3/2)3(j − 1
2 )3/2

(j − 1
2 )3/2

1/n9/2

1/n3/2
=

9

32

1

n3
. (6.113)

Since there are n intervals, the total distortion is bounded above by (9/32)/n2, and we are done.

An interesting thing to note is that an upper bound of O(1/n2) is achievable by intervals with boundaries
defined by aj+1 = (j + 1)b/nb for any b > 1. (When b = 1 the intervals are equally spaced, and decay rate
becomes O(log(n)/n2).) Here is an intuitive argument. Roughly speaking,

rj ≈
d

dj

jb

nb
= b

jb−1

nb
(6.114)

and yj ≈ jb/nb, giving a bound of

D(pX , n) ≤ 1

12

r3
j

yj
≈ 1

12
b3j2b−3n−2b (6.115)

Then, approximating the sum of j2b−3 for j = 1, . . . , n as

∫ n

0

t2b−3dt =
1

2b− 2
n2b−2 , (6.116)
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we combine for a bound of

n∑

j=1

1

12

r3
j

yj
≈ 1

12

b3

2b− 2

1

n2
. (6.117)

Setting b = 3/2 not only allows for a very clean proof but also minimizes the constant b3/(2b− 2). This
reasoning also makes clear why b = 1 introduces the log factor, as the sum of 1/j for j = 1, . . . , n grows like
log(n).

We then use Lemma 16 with Theorem 15 to get Theorem 12. This is shown in Appendix B.2.7.

6.5.2 Upper Bound for Exponential X

Proof of Theorem 13. We split the distribution into the regions x ≤ τ and x > τ for some τ ≥ 1 and use the
results in Section 6.4 to bound the distortion from each region separately. We will give n1 intervals to the
[0, τ ] region and n2 to the [τ,∞) region; thus, if n = n1 + n2,

D(pX , n) ≤ D(pX |[0,τ ], n1) +D(pX |[τ,∞), n2). (6.118)

We will discuss how to set n1, n2 and τ later.
For the [0, τ ] region, we use the upper bound pX(x) ≤ 1. Therefore, by Lemmas 16 and 18 and Theo-

rem 15,

D(pX |[0,τ ], n1) ≤ τ2 9

32

1

n2
1

. (6.119)

For the [τ,∞) region, we use aj = 3 log
(
n2/(n2 − j)

)
+ τ as our interval boundaries (noting that an2 =∞,

as it should).
First, we consider the infinite interval In2

= [an2−1, an2
) = [3 log(n2) + τ,∞).

∫ ∞

an2−1

e−xx log

(
x

yn2

)
dx (6.120)

=

∫ ∞

an2−1

e−xx log x dx−
∫ ∞

an2−1

e−xx log yn2
dx . (6.121)

For simplicity, denote a = an2−1. Using integration by parts on the first integral, we get that

∫ ∞

a

e−xx log x dx (6.122)

= −(log x)(x+ 1)e−x
∣∣∣∣
∞

a

+

∫ ∞

a

e−x
x+ 1

x
dx (6.123)

= e−a(a+ 1) log a+ e−a +

∫ ∞

a

e−x

x
dx (6.124)

≤ e−a(a+ 1) log a+
(

1 +
1

a

)
e−a (6.125)

= e−a(a+ 1)
(

log a+
1

a

)
(6.126)

For computing the second integral, from memorylessness of the exponential distribution, yn2
= a+ 1.

−
∫ ∞

a

e−xx log yn2 dx = −
∫ ∞

a

e−xx log(a+ 1) dx (6.127)

= e−a(a+ 1) log
1

a+ 1
(6.128)
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Combining the integrals gives

e−a(a+ 1) log
1

a+ 1
+ e−a(a+ 1)

(
log a+

1

a

)
(6.129)

= e−a(a+ 1)
(

log
a

a+ 1
+

1

a

)
(6.130)

≤ e−a(a+ 1)
(
− 1

a+ 1
+

1

a

)
(6.131)

=
e−a

a
(6.132)

≤ e−τ

τ

1

n3
2

(6.133)

The last inequality happens because a = 3 log(n2) + τ so a > τ (for the denominator) and e−a = e−τ 1
n3

2
. We

then take the rather unusual step of using

e−τ

τ

1

n3
2

≤ 18
e−τ

τ

1

n3
2

(6.134)

This is meant to match it to the bound we get for other intervals [aj−1, aj ], so that we can sum them all
nicely.

For the other intervals Ij , since pX(x) = e−x is decreasing,

pX(x) ≤ e−aj−1 = e−τ
(
n2 − j + 1

n2

)3

(6.135)

over Ij . Also,

rj = 3 log

(
n2

n2 − j

)
+ τ − 3 log

(
n2

n2 − j + 1

)
− τ (6.136)

= 3 (log(n2 − j + 1)− log(n2 − j)) (6.137)

≤ 3
1

n2 − j
. (6.138)

Therefore, by Lemmas 16, 17 and 19 we get, for all j,

D(pX ,Ij) ≤ D(e−τ (
n2−j+1
n2

)3,Ij) (6.139)

≤ 1

12
e−τ

(
n2 − j + 1

n2

)3 r3
j

yj
(6.140)

≤ 1

12
e−τ

(
n2 − j + 1

n2

)3
27

(n2 − j)3yj
(6.141)

≤ 18
e−τ

τ

1

n3
2

(6.142)

since yj ≥ τ and
(
n2−j+1
n2−j

)3 ≤ 8 (a very loose bound for most j). Summing gives D(pX |[τ,∞), n2) ≤ 18 e
−τ

τ
1
n2

2
.

Therefore, we have our bound over [0,∞) for n = n1 + n2:

D(pX , n) ≤ τ2 9

32

1

n2
1

+ 18
e−τ

τ

1

n2
2

. (6.143)

Let n1 = cn and n2 = (1−c)n; we know c = j/n for some j ∈ [n−1], but for now let’s require only c ∈ (0, 1).
Thus,

D(pX , n) ≤
(
τ2 9

32

1

c2
+ 18

e−τ

τ

1

(1− c)2

) 1

n2
. (6.144)
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Figure 6.1: Diagram of interval sizes and function p′(x) used for computing the upper bound for the expo-
nential function. (NOTE: Exponential function not drawn to scale for illustrative purposes.)

Numerical optimization gives a minimum at τ ≈ 2.954 and c ≈ 0.664, giving a constant of 8.4.
Now we bring back the c = j/n condition. We note that any c ∈ [0.614, 0.714] (and τ = 2.954) gives

D(pX , n) ≤ 9/n2; so this holds for all n ≥ 10 since c = j/n ∈ [0.614, 0.714] always exists for n ≥ 10. For
n = 5, 6, 7, 8, 9 we can set c = 3/5, 4/6, 5/7, 5/8, 6/9 respectively (with the same τ), which gives a constant of
≤ 9 as well; and for n ≤ 4 direct numerical optimization of the intervals gives the desired bound. Therefore,
D(pX , n) ≤ 9/n2 as we wanted.

Some of the bounds we used were quite loose, so more detailed analysis (omitted) can improve the
constant, though not the decay rate.

Corollary 5. For X ∼ Exponential(λ), D(pX , n) ≤ 9
λn2

Proof. Let pE(x) = e−x. The random variable X has pdf pX(x) = λe−λx. Using i) and ii) of Lemma 16,

D(pX , n) = D(λpE(λx), n) (6.145)

=
1

λ
D(pE , n) . (6.146)

The corresponding rate distortion function for X ∼ Exponential(λ) has an additional (1/2) log(1/λ) term.

6.5.3 Upper Bound for Gamma X

We will combine the bounds we found for the uniform and exponential case to get bounds for Gamma
distributions. A random variable X ∼ Gamma(α, β) where α, β > 0 has the probability density

PX(x) =
βαxα−1e−βx

Γ(α)
(6.147)

where α is the shape parameter and β is the rate parameter.
When α < 1, “head” part (portion near zero) has probability density which goes to infinity as x → 0.

We need the following lemma to find intervals for this “head” part before deriving a bound for all Gamma
distributions.
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Lemma 20. For any −1 < s < 0, if pX(x) = (1 + s)xs on [0, 1] (and 0 elsewhere),

D(pX , n) ≤ 19/3

n2
. (6.148)

While give the formal proof in Appendix B.2.8, the following illustrates the main ideas of the proof. Suppose
we set the interval boundaries at aj = jγ/nγ (where γ is to be determined later). Ignoring the first interval,
we have interval lengths

rj = aj − aj−1 =
jγ − (j − 1)γ

nγ
≈ γ(j − 1/2)γ−1

nγ
(6.149)

(The above is a less-than if xs is convex.) We also approximate yj ≈ (j−1/2)γ

nγ and the density over Ij as

(1 + s)
( (j−1/2)γ

nγ

)s
. Therefore, we can get the distortion over Ij to be approximately

D(pX , Ij) ≤
1

12
(1 + s)

( (j − 1/2)γ

nγ

)s r3
j

yj
(6.150)

=
1

12
γ3(1 + s)

(j − 1/2)(2+s)γ−3

n(2+s)γ
(6.151)

The overall distortion is a sum over all this, i.e.

D(pX , n) ≤ 1

12
γ3(1 + s)n−(2+s)γ

n∑

j=1

(j − 1/2)(2+s)γ−3 (6.152)

≈ 1

12
γ3(1 + s)n−(2+s)γ

∫ n

0

t(2+s)γ−3dt (6.153)

=
1

12
γ3(1 + s)n−(2+s)γ+1

∫ 1

0

(nu)(2+s)γ−3du (6.154)

=
1

12
γ3(1 + s)n−2

∫ 1

0

u(2+s)γ−3du (6.155)

=
1

12
γ3(1 + s)n−2 1

(2 + s)γ − 2
(6.156)

(using change of variables u = t/n). This holds for all γ > 2
2+s . Now we ask, what γ minimizes this? All

the terms except γ3

(2+s)γ−2 are irrelevant to that question. Taking the derivative, we get

d

dγ

γ3

(2 + s)γ − 2
=

3γ2((2 + s)γ − 2)− (2 + s)γ3

((2 + s)γ − 2)2
(6.157)

=
2(2 + s)γ3 − 6γ2

((2 + s)γ − 2)2
(6.158)

Setting the above to 0 (when γ > 2
2+s yields γ = 3

2+s , and plugging back into the bound we get approximately
gives

D(pX , n) .
9

4

1 + s

(2 + s)3

1

n2
(6.159)

We can ask: what s maximizes this (clearly s → −1 and s → ∞ both push the constant down towards
0)? It turns out that s = −1/2 is the worst constant, giving

D(pX , n) .
1

3

1

n2
(6.160)

and this corresponds to the Jeffreys prior (Dirichlet with α = 1/2).
These ‘head’ (as opposed to ‘tail’) bounds can be combined with Lemma 17 to obtain bounds for other

common ways that densities can increase to ∞ as x→ 0:
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Proposition 20. For X ∼ Gamma(α, β),

D(pX , n) =
CG(α)

βn2
. (6.161)

where

CG(α) =





144
Γ(α) + (α−1)4√

2π(α−1)

81
8 , α > 1

9, α = 1(
36 + 4

α

)
1

Γ(α) , α < 1

(6.162)

Proof. The key to this proof is that, using the Interval Method, we will bound the tail portion of the Gamma
distribution by upper bounding with the exponential function. For the front or head portion, depending on
the parameter α of the Gamma distribution (6.147), we will either bound with uniform or the function from
Lemma 20.

Let pX be the pdf of X ∼ Gamma(α, 1). (Since the rate parameter β just scales the function, we will
account for general values of β at the end after solving for the case where β = 1.) We will use IL = [0, b) and
IR = [b,∞) for some b. The intended purpose is to indicate that the values in IR will be those upper-bounded
by the exponential, and IL to be the values bounded by either the uniform or the function in Lemma 20.
The value of b will need to specified. We will use pX,R to be the function which is equal to pX on IR and
zero otherwise. Similarly, pX,L is the function equal to pX on IL and is zero otherwise. Let hE(x) = e−x.

We will start with the case where α > 1. First we find the point b where we switch from using the
uniform upper bound to the exponential upper bound.

Let b be such that

log x

x
≤ 1/2

α− 1
(6.163)

for all x ≥ b. This must exist since log x
x → 0 as x→∞. For a crude value of b, we can choose b = 3(α− 1)2.

We chose this particular condition on b because

log x

x
≤ 1/2

α− 1
(6.164)

(α− 1) log x ≤ x

2
(6.165)

xα−1 ≤ ex/2 (6.166)

1

Γ(α)
xα−1e−x ≤ 1

Γ(α)
e−x/2 . (6.167)

Define hR(x) = 1
Γ(α)e

−x/2 on IR and zero elsewhere. Using parts i) and ii) of Lemma 16 with the optimal

intervals I1, ..., In for the exponential distribution,

D(pX,R, n) ≤ D(hR, n) (6.168)

≤ D
(

1

Γ(α)
hE(x/2), n

)
(6.169)

≤
n∑

j=1

22

Γ(α)
D(hE ,Ij) (6.170)

=
36

Γ(α)n2
(6.171)

This upper-bounds the tail portion when α > 1. Now for the head portion. Let m = maxx∈IL pX(x) and
define hL(x) = m on IL and zero otherwise. The mode of the distribution Gamma(α, 1) occurs at α − 1
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when α > 1. This means that

m =
1

Γ(α)
(α− 1)α−1e−(α−1) (6.172)

=
1

Γ(α)

(
α− 1

e

)α−1

≤ 1√
2π(α− 1)

. (6.173)

where to simplify, we used the Stirling approximation lower bound for when α > 1.
Let u(x) = 1 on the interval [0, 1] and zero elsewhere. Using parts i) and ii) of Lemma 16 with the

optimal intervals I1, ..., In for the uniform distribution on [0, 1]

D(pX,L, n) ≤ D(hL, n) (6.174)

≤ D(m · u(x/b), n) (6.175)

≤
n∑

j=1

mb2D(u,Ij) (6.176)

=
9mb2

32n2
(6.177)

≤ 9(α− 1)4

√
2π(α− 1)

9

32

1

n2
. (6.178)

Then

D(pX , n) ≤ D(pX,L, n/2) +D(pX,R, n/2) (6.179)

≤ 36

Γ(α)(n/2)2
+

(α− 1)4

√
2π(α− 1)

81

32

1

(n/2)2
(6.180)

≤
(

144

Γ(α)
+

(α− 1)4

√
2π(α− 1)

81

8

)
1

n2
. (6.181)

This completes the proof for when α > 1. We do not need to consider when α = 1 because that is the
exponential distribution showed in Theorem 13. We now show the result for α < 1. The process is very
similar to the case of α > 1. We will choose b = 1.

Let hR(x) = 1
Γ(α)e

−x on IR and zero elsewhere. Because we are restricting to x ≥ 1, pX,R(x) ≤ hR(x).

Like above,

D(pX,R, n) ≤ D(hR, n) (6.182)

≤ D
(

1

Γ(α)
hE(x), n

)
(6.183)

≤
n∑

j=1

1

Γ(α)
D(hE ,Ij) (6.184)

=
9

Γ(α)n2
. (6.185)

Let hL(x) = 1
Γ(α)x

α−1 on IL and zero elsewhere. Let hS(x) = αxα−1. We have shown in Lemma 20

that D(hS , n) is bounded above by 19/(3n2)). Using parts i) and ii) of Lemma 16 with the optimal intervals
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I1, ..., In for hS on [0, 1],

D(pX,L, n) ≤ D(hL, n) (6.186)

≤ D
(

1

αΓ(α)
hS(x), n

)
(6.187)

≤
n∑

j=1

1

αΓ(α)
D(hS ,Ij) (6.188)

=
1

αΓ(α)n2
. (6.189)

Like above,

D(pX , n) ≤ D(pX,L, n/2) +D(pX,R, n/2) (6.190)

≤ 9

Γ(α)(n/2)2
+

1

αΓ(α)(n/2)2
(6.191)

≤
(

36 +
4

α

)
1

Γ(α)

1

n2
(6.192)

This completes the proof for when α < 1.
If we have the distribution Gamma(α, β), we can use parts i) and ii) of Lemma 16 to scale the distortion.

We need a scaling that transforms

1

Γ(α)
xα−1e−x → β

Γ(α)
(βx)α−1e−βx (6.193)

pX(x)→ βpX(βx) . (6.194)

The overall distortion is scaled by 1/β.

Proof of Theorem 14. From Proposition 20 and Proposition 19, we then get the rate distortion result for
Gamma distributions.

6.6 Expected Divergence Results

Finally, we connect divergence rate distortion on Gamma sources to quantizing P([K]) with symmetric
Dirichlet prior.

Fact 10. Let Xi
iid∼ Gamma(α, β) for i ∈ [K] (giving random vector XK) and let S

4
=
∑K
i=1Xi. Then

P
4
= XK/S ∼ DirK(α) (6.195)

and S and P are independent. (The division above treats P and XK as K-length vectors.)

Lemma 21. For S ∼ Gamma(α, α), E[S logS] ≤ 1/(2α).

This can be proved using properties of the Gamma function. We show this in Appendix B.2.9.

Proposition 21. Let pZ be the probability density of Z ∼ Gamma(α, α). Then, for K > 0,

K ·R (pZ , D + 1/(2αK)) ≤ logM∗(DirK(α), D). (6.196)
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Proof. Let random vector XK = (X1, ..., XK) be such that each Xi ∼ Gamma(α, αK). Let

S =

K∑

i=1

Xi . (6.197)

Then, S ∼ Gamma(αK,αK) and E[S] = 1.
From Fact 10, we know that XK/S ∼ DirK(α). Also S is independent of XK/S and therefore it is also

independent of minj DKL((XK/S)||Q(j)). Fixing J as the argmin, we denote the components of Q(J) as
(Y1, . . . , YK). Using Lemma 21,

K∑

i=1

E
[
Xi log

Xi

Yi

]
(6.198)

= E

[
K∑

i=1

S
Xi

S
log

Xi

SYi
+Xi logS

]
(6.199)

= E[S]E[DKL((XK/S)||Q(J))] + E[S logS] (6.200)

≤ D +
1

2αK
(6.201)

Since we showed that a K-ary quantizer with the given average distortion exists, the standard single-letter
lower bound from rate distortion[43, Ch 25] implies

logM∗(DirK(α), D) ≥ KR
(
pX ,

D + 1/(2αK)

K

)
. (6.202)

If pX is the density of each Xi, then by scaling (Proposition 15)

R

(
pX ,

D + 1/(2αK)

K

)
= R(pZ , D + 1/(2αK)) (6.203)

where Z ∼ Gamma(α, α).

Proposition 22. For any α,K such that αK > 1, there exist

m =

(
CG(α)/α

D(1− (αK)−1/3)2

)K/2
(6.204)

centers Q(1), . . . , Q(m) such that

EP∼DirK(α) min
j
DKL(P ||Q(j)) ≤ D . (6.205)

The values for CG(α) are given in Proposition 20.

Proof. Let S ∼ Gamma(αK,αK) and P = (p1, ..., pK) ∼ DirK(α). Let Xi = Spi so Xi ∼ Gamma(α, αK).
From Proposition 20, we know there exists a scheme using n quantization points for Xi, so that

E[d(Xi, Yi)] ≤
CG(α)

αKn2
and E[Xi] = E[Yi] . (6.206)

Set D′ = CG(α)/(αn2). Then for

m =

(
CG(α)

αD′

)K/2
=

(
CG(α)

αK(D′/K)

)K/2
(6.207)
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centers, we have that

K∑

i=1

E[d(Xi, Yi)] ≤
K∑

i=1

D′

i
= D′ . (6.208)

Next we will relate this to DKL(P‖Q).

D′ ≥
K∑

i=1

E[d(Xi, Yi)] = E

[
K∑

i=1

Xi log
Xi

Yi

]
(6.209)

= E

[
S

K∑

i=1

Xi

S
log

Xi/S

Yi/
∑K
i=1 Yi

+ S log
S

∑K
i=1 Yi

]
(6.210)

= E

[
SDKL(P ||Q) + S log

S
∑K
i=1 Yi

]
(6.211)

≥ E [SDKL(P ||Q)] . (6.212)

To get the last inequality, we can apply the log sum inequality [1, Ch. 2]. Let T =
∑K
i=1 Yi and p(s, t) =

P [S = s, T = t]. to show that

E
[
S log

S

T

]
=

∫
p(s, t)s log

p(s, t)s

p(s, t)t
ds dt (6.213)

≥
∫
p(s, t)s ds log

∫
p(s, t)s ds∫
p(s, t)t dt

(6.214)

= E[S] log
E[S]

E [T ]
(6.215)

= E[S] log
E[S]

E [
∑n
i=1Xi]

(6.216)

= 0 . (6.217)

Note that Q depends on S and P . We use the following fact: if Z1, Z2 ≥ 0 are random variables then for
any σ > 0,

E[Z2 |Z1 ≥ σ] ≤ E[Z1Z2]

σP[Z1 ≥ σ]
. (6.218)

Therefore, we have for any σ > 0,

E[DKL(P ||Q) |S ≥ σ] ≤ E[SDKL(P ||Q)]

σP[S ≥ σ]
≤ D′

σP[S ≥ σ]
. (6.219)

We then fix s ≥ σ to minimize E[DKL(P ||Q) |S = s] to get

min
s≥σ

E[DKL(P ||Q) |S = s] ≤ D′

σP[S ≥ σ]
. (6.220)

We then want to set σ to maximize σP[S ≥ σ]. We have E[S] = αK/(αK) = 1 and Var[S] = αK/(αK)2 =
1/(αK). Thus, defining t = 1 − σ (assuming σ ≤ 1), applying Chebyshev’s inequality, and setting t =
(αK)−1/3 gives

P[S ≥ 1− t] ≥ 1− 1/(αKt2) (6.221)

which implies (for t = (αK)−1/3),

EDKL(P ||Q) ≤ D′

(1− t)
(
1− 1

(αKt2)

) =
D′

(1− (αK)−1/3)2
(6.222)
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(here the expectation is only over P , and use fixed S = s).
We can then define our coding of P ∈ P([K]) to a center Q ∈ {Q(j)}mj=1 to be the result of the following

procedure:

P → XK → Y K → Q (6.223)

where XK = sP , Y K is the encoding of XK using the Interval Method and Q = Y K/
∑K
i=1 Yi.

Now that we have a bound on the distortion produced by this mapping of each P to a center Q, we need
to consider how many centers it maps to. Recall that each XK maps to one of m = (CG(α)/(αD′))K/2

centers. Thus, letting

D =
D′

(1− (αK)−1/3)2
, (6.224)

we get a coding scheme on m centers where E[DKL(P ||Q)] ≤ D, so long as

m =
(CG(α)

αD′

)K/2
=
( CG(α)/α

D(1− (αK)−1/3)2

)K/2
. (6.225)

While we proved the existence of such a set of centers, note that we do not explicitly compute s and so
finding an efficient covering remains open. We suspect that s = 1 will work in practice.

Finally, we can put these together to prove Theorem 10:

Proof of Theorem 10. The first part follows from Proposition 21 and Theorem 11, and the second from
Proposition 22.

6.7 Connection to Universal Compression

Since we are working with KL divergence, our work ties in directly to universal compression. This connection
to universal compression also connects this work to Minimum Description Length (MDL) [73, 60, 13, 74]
and especially to two-step compression algorithms.

Our method suggests a two-step compression algorithm to losslessly compress Xn by (i) selecting a distri-
bution Qi (over the symbol set) from a finite set Q = {Q1, . . . , Qm}, and (ii) compressing Xn according to Qi
(using for example Huffman coding or arithmetic coding). This incurs additional loss (above the loss needed
to compress Xn given the true distribution) from two sources: (a) not having exactly the right distribution,
and (b) from the need to specify i from [m]. The term at (a) causes at most Eπ∼W miniDKL(π||Qi) extra
loss per symbol; (b) causes log(m) loss.

Proof of Proposition 14. Fix W , and for simplicity let m := M∗(W, ε). Let PXn|π(Xn|π) =
∏n
t=1 π(Xt).

For ε, let Q be the set {Q1, ..., Qm} so that Eπ∼W miniDKL(π‖Qi) ≤ ε. We will use the notation Q⊗ni
to be a product distribution on Xn (i.e. Q⊗ni (Xn) =

∏n
t=1Qi(Xt)).

Let

Q̄(Xn) =
1

m

m∑

i=1

Q⊗ni (Xn) . (6.226)
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I(π;Xn)

= min
Q

D(PXn|π‖Q|Pπ) (6.227)

≤ D(PXn|π‖Q̄|Pπ)

= Eπ∼W
∑

xn

PXn|π(xn|π) log
PXn|π(xn|π)

1
m

∑m
i=1Q

⊗n
i (xn)

≤ Eπ∼W min
i

∑

xn

PXn|π(xn|π) log
PXn|π(xn|π)

1
mQ

⊗n
i (xn)

= Eπ∼W logm+ min
i

∑

xn

n∏

t=1

π(xt) log

∏n
t=1 π(xt)∏n
t=1Qi(xt)

= logm+ Eπ∼W min
i
nDKL(π‖Qi)

≤ logM∗(W, ε) + nε

In (6.227) we used [43, Corollary 3.1] where Q is any distribution on Xn. Since the equation holds for all
ε ≥ 0, we can use the ε which gives the infimum.

For the case when n = 1, suppose we set ε = I(π;X). Then for Q1(x) =
∫
π(x)W (dπ),

ε = I(π;X) (6.228)

=

∫
W (dπ)

∑

x

π(x) log
π(x)

Q1(x)
(6.229)

= Eπ∼WDKL(π||Q1) (6.230)

Only one center, Q1, is needed to achieve Eπ∼WDKL(π||Q1) ≤ ε. So logM∗(W, ε) = 0, and thus there exists
a ε for which

I(π;X) = logM∗(W, ε) + ε . (6.231)

In the universal compression setting, the quantity I(π;Xn) equals the Bayes risk (or average redundancy)
Rn(W ) with respect to prior W , which is defined as

Rn(W ) =

∫
D(PXn|π‖Q(n))W (dπ) (6.232)

where the best strategy Q(n) is to chose the posterior distribution

Q(n)(Xn) =

∫
PXn|π(Xn|π)W (dπ) . (6.233)

A long line of work has been dedicated to computing (6.232), though most focus on when W is the worst
case prior or least-favorable prior [19, 12]. (The worst case occurs at W = Dir(1/2) which also known as the
Jeffreys’ prior [21].)

In [20], the authors computed that given suitable conditions on W , for any π0 in the interior of the
simplex

D(PXn|π0
‖Q(n)) =

K − 1

2
log

n

2πe
+

1

2
log det I(π0) + log

1

W (π0)
+ o(1) . (6.234)

This bound computes all the constant terms in the asymptotic expression. (Previously, an asymptotic lower
bound of ((K − 1)/2) log n for almost all θ was shown in [60]. The same term without specifying constants
was also shown to be the order of growth for [73].)
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It is believed that the the term ((K − 1)/2) log n plus some constant is the correct asymptotic limit.
(Issues with uniform convergence prevents us from simply taking an integral of (6.234) over the prior W .
Unfortunately, the Dirichlet prior can blow up near the boundary of the simplex.)

Using (14) and setting ε = 1/n, we get the (supposed) asymptotic lower bound

M∗(W, ε) ≥ K − 1

2
log

1/ε

2πe
+ c(W )− 1 + o(1) . (6.235)

Conditions when the Bayes risk equals the integration of (6.234) are explored in [61].
We can use our upper bounds on M∗(W, ε) to upper bound the Bayes risk. Setting ε = 1/n, we can get

a non-asymptotic bound for any W = Dir(α) on a alphabet of size K, that

Rn(W ) ≤ K

2
log

nCG(α)/α

(1− (αK)−1/3)2
. (6.236)

When W is least favorable (i.e. W = Dir(1/2)), it is known that [22]

Rn(W ) =
K − 1

2
log

n

2πe
+ log

Γ(1/2)K

Γ(K/2)
+ o(1) (6.237)

and there is a corresponding result in the MDL literature [13]. Our bounds do not quite have this behavior,
illustrating that neither of our upper or lower bounds are asymptotically tight. However, the advantage of
our bounds is that they hold even in the non-asymptotic case.
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Chapter 7

Companders for Quantization

In this chapter, we continue to study quantizing large alphabet discrete probability distributions using
Kullback-Leibler (KL) divergence as the primary loss between the true distribution and its reconstruction. In
order to quantize quickly and efficiently, we focus on using companders. This method applies predetermined
function to each value of the probability distribution independently, so that quantization is computationally
easy. (Also recall we showed in the previous chapter that for symmetric Dirichlet priors, methods using scalar
quantization are close to optimal.) We develop and analyze a minimax compander which gives performance
guarantees even when the probability distribution we are trying to quantize is chosen to be the worst case.
Empirically, this compander is able to produce small KL divergence loss on real-world data.

Chapter Organization We go over what a compander is in Section 7.2 and show our main results in
Section 7.3. A history of companders and other previous works is given in Section 7.4. The proof for the
asymptotic KL loss of companders is in Section 7.5. The development of the minimax compander is in
Section 7.6. Worst-case divergence covering results for the minimax compander are given in Section 7.7.

7.1 Introduction and Motivation

As more and more data is collected, more and more data needs to be stored. While many current technological
innovations are aimed at increasing the amount of data we can store per amount of physical hardware, another
direction which can help meet increasing data storage demands to is to reduce the physical resources needed
to store data by considering lossy storage. This method quantizes data which loses some information, but
in a way which preserves the information content that we consider most important. Typically, we quantify
what is the important content by using a loss or distortion function. We will choose the distortion function
to the be the KL divergence between the original and quantized version.

The precise scenario we will study is quantizing discrete probability distributions on large alphabets. For
each P over K symbols, we want to quantize P to another probability distribution Q, where Q is selected
from a predetermined set Q = {Q(1), ..., Q(M)} of size M . This allows us to store each P with log2M bits.
Choosing M so that log2M is small reduces the amount of storage data needed to store P .

While reducing storage is a our objective, we also prioritize making the quantization algorithm simple to
implement, so that it can be added to existing systems which store probabilities without much overhead.

Our main result is that we developed a technique called the (approximate) minimax compander, which
we advocate for regular use. When we are quantizing to 8-bits per symbol and when the number of symbols
is large (K = 105), compared to uniform quantizing (likely default method), using the minimax compander
reduces the KL divergence loss from 10−1 to 10−4, a significant amount of saving in terms of the fidelity of
the quantization.

Notational Notes Instead of P or Q, we use vectors x and y to represent probabilities.
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Figure 7.1: An application of quantizing probabilities is to store word frequencies in books. We give a
few examples of frequencies of words (in sorted order by largest probability) in different books. The third
frequency shown is from a bigram model, where we show the frequency of words appearing after the word
“the”.

7.2 Compander Basics and Definitions

Our goal is to find a quantization scheme on 4K−1 (probability simplex of alphabet size K) minimizing the
KL (Kullback-Leibler) divergence between probability vectors and their representations. In this chapter, we
consider only scalar quantization methods, since we showed in Chapter 6 that for Dirichlet priors on the
simplex, methods using scalar quantization perform nearly as well as optimal vector quantization; scalar
quantization is typically simpler and faster to use, and can be parallelized easily. Our scalar quantization
function is based on companders (portmanteau of ‘compressor’ and ‘expander’).

Encoding

Companders require two things: a monotonically increasing function f : [0, 1] → [0, 1] (we denote the set
of such functions as F) and an integer N representing the number of quantization levels, or granularity.
To quantize x ∈ [0, 1], the compander computes f(x) and applies a uniform quantizer with N levels, i.e.
encoding x to Enc(x) = n ∈ [N ] if f(x) ∈ (n−1

N , nN ]; this is equivalent to Enc(x) = df(x)Ne.
This encoding system induces bins over [0, 1]:

x ∈ f−1
((n− 1

N
,
n

N

])
⇐⇒ Enc(x) = n (7.1)

where f−1 denotes the preimage in f . We denote these bins as I(n), and the bin containing x at granularity
N as I(nN (x)).

To simplify the problem and algorithm, we use the same f for each element of the probability vector
x ∈ 4K−1.

For a graphical example of compander encoding, see Figure 7.2. We give a graphical example of the bins
given by compander function f in Figure 7.3.

Decoding

To decode n ∈ [N ], we pick some ŷ(n) ∈ I(n) to represent all x ∈ I(n); for a given x (at granularity N),
its representation is denoted ŷ(x) = ŷ(nN (x)). This is usually the midpoint of the bin or, if x is drawn
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Figure 7.2: For compander function f , to find what input x encodes to, we will use a uniform quantizer on
the range f(x). Since in the illustration, f(x) lands in the fifth bin, Enc(x) = 5. (Note that here N = 9
since in our experiments we make zero its own interval.)
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Figure 7.3: Illustration of the bins given by compander function f .
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randomly from a prior,1 the centroid (the mean within bin I(nN (x))). The midpoint of I(n) can be computed
as (f−1(n−1

N ) + f−1( nN ))/2.
The use of scalar quantization makes it difficult to ensure that the decoded values will sum to one, so we

normalize. Let x = (x1, .., xK) be the input probability vector; then, letting

y(xi) =
ŷ(xi)∑K
j=1 ŷ(xj)

(7.2)

the vector y = y(x) = (y(x1), . . . , y(xK)) ∈ 4K−1 is the output of the compander. We refer to ŷ = ŷ(x) =
(ŷ(x1), . . . , ŷ(xK)) as the raw reconstruction of x, and y as the normalized reconstruction. (We generally
use the ·̂ accent to mark values dependent on the raw reconstruction.)

Thus, any x ∈ 4K−1 requires K log2N bits to store; to encode and decode, only f and N need to be
stored (as well as the prior if using centroid decoding). Another major advantage of companders is that a
single f can work well over all choices of N , making the design more flexible.

KL divergence loss

The loss incurred by representing x as y(x) is the KL divergence

DKL(x‖y(x)) =

K∑

i=1

xi log
xi

y(xi)
. (7.3)

Distributions from a prior

Much of our work concerns the case where x ∈ 4K−1 is drawn from some prior Px (to be commonly denoted
as simply P ), whose marginals are absolutely continuous. Using a single f for each entry also means we can
WLOG assume that P is symmetric over the alphabet, since permuting the symbol indices doesn’t affect
the KL divergence. We denote the set of such priors as P4K .

We let P denote the class of absolutely continuous probability distributions on [0, 1], represented by their
probability density functions (PDFs), denoted p. Let P1/K ⊂ P be the set of p where EX∼p[X] = 1/K.

Note that P ∈ P4K implies its marginals are in P1/K .

Expected loss and preliminary results

For P ∈ P4K , f ∈ F and granularity N , we define the expected loss:

LK(P, f,N) = EX∼P [DKL(X‖y(X))] . (7.4)

This is the value we want to minimize.
Note that LK(P, f,N) can almost be decomposed into a sum of K separate expected values (one per

entry), except the normalization step (7.2) depends on the vector as a whole. Hence, we define the raw loss:

L̂K(P, f,N) = EX∼P
[ K∑

i=1

Xi log(Xi/ŷ(Xi))
]

(7.5)

We also define for p ∈ P, the single-symbol loss as

L̂(p, f,N) = EX∼p
[
X log(X/ŷ(X))

]
(7.6)

The raw loss is useful because it bounds the (normalized) expected loss and is decomposable into single-
symbol losses:

1Priors on 4K−1 induce priors over [0, 1] for each entry.
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Proposition 23. For P ∈ P4K with marginals p, under centroid decoding

LK(P, f,N) ≤ L̂K(P, f,N) = K L̂(p, f,N) (7.7)

To derive our results about worst-case priors (for instance, Theorem 18), we will also be interested in

L̂(p, f,N) even when p is not known to be a marginal of some P ∈ P4K .

Proof. Since

L(P, (fk), N) = EX∼PDKL(X||Y )

= L̂K(P, (fk), N) + EX∼P

[
log

(
K∑

k=1

Ỹk

)]
(7.8)

it remains to show that

EX∼P

[
log

(
K∑

k=1

Ỹk

)]
≤ 0 (7.9)

Since E[Ỹk] = E[Xk] for all k,
∑K
k=1 E[Ỹk] =

∑K
k=1 E[Xk] = 1. Because log is concave, by Jensen’s

Inequality

E
[

log
( K∑

k=1

Ŷk

)]
≤ log

(
E
[ K∑

k=1

Ŷk

])
= log(1) = 0 . (7.10)

Remark 6. Raw and single-symbol loss lose much of their meaning without centroid decoding, because
L̂(p, f,N) will be dominated by the difference between E[X] and E[ŷ(X)], potentially even making it negative
(this ‘first-order’ effect gets canceled out by the normalization step). Centroid decoding solves this problem
by ensuring E[X] = E[ŷ(X)].

As we will show, when N is large these values are roughly proportional to N−2 (for well-chosen f) and
hence we define the asymptotic average single-symbol loss:

L̂(p, f) = lim
N→∞

N2L̂(p, f,N) (7.11)

We similarly define L̂K(P, f) and LK(P, f). While the limit in (7.11) does not exist for every p, f , one can
ensure it exists by choosing an appropriate f (which works against any p ∈ P), and cannot gain much by
not doing so, as we will show.

Finally, we define the following function on p and f :

L†(p, f) =
1

24

∫ 1

0

p(x)f ′(x)−2x−1 dx (7.12)

For a wide class of functions f , we will show that L̂(p, f) = L†(p, f). Furthermore, L†(p, f) is a lower bound
on the asymptotic performance of f against p for any f ∈ F .

7.3 Main Results

We demonstrate, theoretically and experimentally, the efficacy of companding for quantizing probability
distributions with KL divergence loss, and show their optimal use. Though our theoretical results are
asymptotic as N →∞ and focus on raw loss, the experimental (normalized) loss of the various companders
closely tracks the (raw) loss predicted theoretically, even for quantization levels as low as N = 256 (i.e.
where each value can be stored on 8 bits).
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Theoretical Results

Definition 27. Define F† ⊆ F to be the set of f such that there exists c > 0 and α ∈ (0, 1) for which
f(x)− cxα is still monotonically increasing.

This is equivalent to f ′(x) ≥ c α xα−1 for all x where f ′ is defined (which is almost everywhere since f is
monotonic).

Theorem 16. For any p ∈ P and f ∈ F†,

L̂(p, f) = L†(p, f) . (7.13)

Additionally, for all f ∈ F ,

lim inf
N→∞

N2L̂(p, f,N) ≥ L†(p, f) (7.14)

This shows how to compute the asymptotic single-symbol loss for any f ∈ F† (against any p ∈ P). The
lower bound shows that f 6∈ F† cannot outperform the formula L†(p, f).

Theorem 17. The best loss against source p ∈ P is

inf
f∈F

L̂(p, f) = min
f∈F

L†(p, f) =
1

24

(∫ 1

0

(p(x)x−1)1/3dx
)3

(7.15)

where the optimal compander against p is

fp(x) = arg minf∈FL
†(p, f) =

∫ x
0

(p(t)t−1)1/3 dt
∫ 1

0
(p(t)t−1)1/3 dt

(7.16)

(satisfying f ′p(x) ∝ (p(x)x−1)1/3).

If fp ∈ F†, it achieves the value from (7.15); otherwise, there is a sequence fp,δ ∈ F† such that

lim
δ→0

L̂(p, fp,δ) = lim
δ→0

L†(p, fp,δ) = L†(p, fp) (7.17)

Thus, even if fp 6∈ F†, there is a way to approximate L†(p, fp) by functions in F† and hence achieve
asymptotic performance arbitrarily close to optimal, as per Theorem 16. This shows there is no real advantage
to using f 6∈ F†; thus we can now restrict our analysis to f ∈ F†, for which (7.12) holds.

While in practice we do not always know the prior P on the simplex, we can show the existence of a
particular compander which performs well against any prior.

Proposition 24. For alphabet size K > 4, there is a unique 1
4 ≤ cK ≤ 3

4 such that if aK =

(4/(cKK logK + 1))1/3 and bK = 4/a2
K − aK , then the following density is in P1/K :

p∗K(x) = (aKx
1/3 + bKx

4/3)−3/2 (7.18)

Furthermore, limK→∞ cK = 1/2.

We call p∗K the maximin single-symbol density.
The optimal compander against p∗K is the minimax compander :

f∗K(x) =
ArcSinh(

√
cKK logK x)

ArcSinh(
√
cKK logK)

(7.19)

Note that f∗K ∈ F† (see Remark 9). The source p∗K and compander f∗K then form an ‘equilibrium’:
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Theorem 18. The minimax compander f∗K and maximin single-symbol density p∗K satisfy

sup
p∈P1/K

L̂(p, f∗K) = inf
f∈F†

sup
p∈P1/K

L̂(p, f) = sup
p∈P1/K

inf
f∈F†

L̂(p, f) = inf
f∈F†

L̂(p∗K , f) (7.20)

which is equal to L̂(p∗K , f
∗
K) and satisfies

L̂(p∗K , f
∗
K) = Θ(K−1 log2K) (7.21)

This theorem importantly implies the following:

Corollary 6. For any prior P ∈ P4K ,

LK(P, f∗K) ≤ L̂K(P, f∗K) = Θ(log2K) (7.22)

Furthermore, there exists a prior P ∗ ∈ P4K such that

inf
f∈F
L̂K(P ∗, f) ≥ K − 1

K

1

2
sup
P∈P4K

L̂K(P, f∗K) = Θ(log2K) (7.23)

The constant-factor gap exists because P ∗ ∈ P4K is a stronger constraint than p∗K ∈ P1/K .

Using the minimax compander f∗K on P ∈ P4K with granularity N , we have a bound on the average KL
divergence:

EX∼P [DKL(X‖Y )] = O
(
N−2 log2K

)
+ o

(
N−2

)
(7.24)

Remark 7. For a given K, cK can be computed numerically. While p∗K must use the exact value (otherwise
it’s not in P1/K), the compander can approximate f∗K (using an approximation of cK , such as 1/2 (see
Appendix C.6) for large K) and still perform well. This suggests the approximate minimax compander

f(x) =
ArcSinh(

√
(1/2)K logK x)

ArcSinh(
√

(1/2)K logK)
(7.25)

as a simple compander whose performance is close to optimal.

Remark 8. When b is the number of bits used to quantize each value in the probability vector, we get a loss on
the order of 2−2b log2K. If we use our divergence covering numbers (for worst-case loss instead of average-

case), then the loss will an order between 2−2b K
K−1 and 2−2b K

K−1 logK. Thus, our result using companders

is within a factor 22b/(K−1) log2K of the optimal loss. (The bound 2−2b K
K−1 logK from Theorem 2 is not

associated with an explicit quantization scheme. One is only shown to exist.)

Remark 9. While the minimax compander might appear complicated, ArcSinh(
√
z) = log(

√
z +
√
z + 1) is

fairly simple. Taking the Taylor expansion also confirms that f∗K ∈ F†.
Note that (7.16) (Theorem 17) suggests that the natural form of an optimal compander against p is

a normalized incomplete integral, which is hard to use; thus, the closed-form expression of the minimax
compander is a welcome surprise.

The above are all ‘average case’ results, where X is drawn from a prior P (which is fixed as N → ∞).
In the worst-case problem, x is chosen to maximize loss and can depend on N :

Theorem 19. There exists constant c such that if N > c logK, the minimax compander with midpoint
decoding achieves

max
x∈4K−1

DKL(x‖y) = Θ
(
N−2 log2K

)
. (7.26)
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Figure 7.4: Power compander f(x) = xs performance with different powers s used to quantize frequency of
words in books. Number of distinct words in each book is shown in the legend.

Experimental results

Our experiments verify that the approximate minimax compander (7.25) behaves as the theory predicts. We
test it on three types of datasets: (i) random synthetic distributions drawn from the uniform prior over the
simplex; (ii) frequency of words in books; and (iii) frequency of k-mers in DNA (for more details about these
datasets, see Appendix C.1). We compare the minimax compander against three alternatives:

• Truncation: Values are quantized uniformly (equivalent to f(x) = x or the “identity” compander),
which truncates the least significant bits. This is the ‘default’ quantization option for values in [0, 1].

• Exponential Density Interval (EDI): This is the quantization method we used in an achievability
proof for Theorem 13 given in (6.4). Recall that the EDI is designed for the uniform prior over the
simplex.

• Power Compander: The compander where f(x) = xs. We optimize s, both in theory and exper-
imentally, and find that s = 1

logK minimizes KL divergence. To see the effects of different powers s
on the performance of the power compander, see Figure 7.4. For more on the power compander, see
Appendix C.2.

Our main experimental results are given in Figure 7.5, showing the KL divergence between the original
distribution x and its quantized version y versus alphabet size K. In the plots, the approximate minimax
compander (7.25) performs well against all sources. For truncation, as the alphabet size K increases, the KL
divergence increases as expected (larger alphabets are harder to quantize). The EDI quantizer works well
for the synthetic uniform prior (as it should), but for real-world datasets like word frequency in books, it
performs worse even than truncation. The power compander performs similarly to the minimax compander
and is worse only by a constant2.

The experiments demonstrate that the minimax compander achieves low loss on the entire ensemble of
data (even for relatively small granularity, such as N = 256), validating our theoretical analysis. Currently,
most systems which store probability values likely use the truncation method by default. However, our
theoretical and experimental results show that using the minimax compander decreases the KL divergence
loss by several orders of magnitude across a wide variety of datasets; additionally, its closed-form expression
(and entrywise application) makes it simple to implement and computationally inexpensive. Thus it can be
easily added to existing storage systems, yielding significant gains in fidelity for little cost.

2Theorem 19 also holds for the power compander with different constants.
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Figure 7.5: Plot comparing the performance of the truncation compander, the EDI compander, the power
compander, and the approximate minimax compander (7.25) on probability distributions of various sizes.
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7.4 Related Previous Works

7.4.1 Compander History

Companders (spelled “compandors” in some references) appeared in 1948 in a paper by Bennett [75], where
he considers quantizing signals for newly developed high speed electronic devices. These devices deal with
speech signals, where it is advantageous to give finer quantization levels to weaker signals and coarser levels
to larger signals. This method was implemented by a transducer before and after the uniform quantizer.
The transducer before the quantizer functions as a “compressor” and the transducer after functions an
“expander”. Bennett gives a first order approximation that the mean-square error in this system is given by

1

12N2

∫ b

a

p(x)

(E′(x))2
dx (7.27)

where N is the number quantization levels, a and b are the minimum and maximum values of the input
signal, p is the probability density of the input signal, and E′ is the slope of the compressor function E. This
becomes the companding model for studying non-uniform quantization. This expression for mean-squared
error is very similar to our result for average KL divergence loss in Theorem 17. The only two differences
are that the x−1 term is missing and the constant out front is different.

Other have expanded on this line of work by Bennett. In Panter-Dite [76], the authors studied the same
problem and determined the optimal compressor. They assume that the intervals they are quantizing to are
small enough so that p(x) is constant in the interval. If λ(x) is the density of the quantization points, then
the mean-squared error, denoted as L2(p, λ), is

L2(p, λ) =
1

12N2

∫ b

a

p(x)
1

λ(x)2
dx . (7.28)

The optimal density for λ(x) is to choose

λ∗(x) =
p(x)1/3

∫ b
a
p(x)1/3dx

(7.29)

which gives

L2(p, λ∗) =
1

12N2

(∫ b

a

p(x)1/3dx

)3

. (7.30)

Generalizations of Bennett’s formula are also studied when instead of mean-square error, the loss is the
expected rth moment loss E‖ · ‖r. This is computed for vectors of length K in [77] and [78]. The loss in this
scenario is given by

Lr(p, λ
∗) = βN−r/K

(∫
(p(x))K/(K+r)dx

)(K+r)/K

(7.31)

for some value β which depends on K and r but not on p.

Practical Use of Companders

The typical examples of companders used in engineering are µ-law and A-law companders [79]. Both these
companders have international standards3 and both are primarily used for compressing human speech. It
is believed that the human auditory system processes the logarithm of sound amplitudes. The idea is that
a uniform quantizer would not give enough resolution to the sounds humans can distinguish, and thus the
µ-law and A-law use companding by applying a logarithm to the signal amplitude. Panter-Dite and [80]
also consider what happens when the compander function is (essentially) the µ-Law compander. They argue

3The µ-law compander is used in the US and Japan and the A-law is used in Europe.
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for large enough constant µ, in the case of mean-squared error, the distortion becomes independent of the
signal.

Though it is not relevant to any of our results, we analyze the performance of the µ-law and A-law
companders in Appendix C.5. These companders do not preform too badly for quantizing large alphabet
distributions if we replace the constants used in both companders with values which grow with K. The

results for these have a slightly worse order of growth. They behave as O
(

logN
N2

)
instead of O

(
1
N2

)
(which

is the growth of the optimal compander for each prior.)

7.4.2 Information k-means

Companders have not been studied with KL divergence (as far as we know). However, a similar problem
which does use KL divergence is the problem information k-means. The goal of information k-means is to
cluster points a ∈ A which represents a set of features in high-dimensional space. Each a is associated with a
distribution on some set B, which we can write as pA|B(b|a) for each b ∈ B. The goal of information k-means
is to cluster each point a to a center ã to minimize the distortion

d(a, ã) = D
(
pB|A(·|a)‖pB|A(·|ã)

)
. (7.32)

The authors in [81] and [82] show that this distortion is the natural consequence for a problem where we
want the cluster center to be such that the mutual information I(A; Ã) is small while I(B; Ã) is large, where
A, Ã,B represent the random variables for a, ã, b respectively.

The authors in [83] use (7.32) has the distortion for clustering nouns, where pB|A(b|a) gives the frequency
over verbs b, that noun a is the direct object of verb b. This approach is able to produce semantically
significant clusters. Other applications include using information k-means to cluster a distribution of ratings
[84] and to cluster images of landmarks [85]. There are also other works that study clustering with a slightly
different but related metric, such as Jensen-Shannon distortion [86, 87] or symmetric KL distortion [88].

Clustering and quantization are inherently similar since the goal in both is to find centers which are
representative of the data in order to reduce complexity. However our framework fundamentally has a
different goal than clustering. While our method will cluster points, the objective is that the reconstruction
of each point can be easily mapped backed to a probability distribution for immediate use. This is also why
we choose to use scalar quantization, so that this mapping can be done quickly and possibly in parallel. Using
general clustering for this task will require that we store information about each cluster center, increasing
the overhead for storage. Also, information k-means is generally used as a tool for analyzing existing data
rather than for reducing storage bits.

7.5 Asymptotic Analysis

Following the ideas of Panter-Dite [76], the analysis in this section is intended for the case where the
quantization is very fine. While this is not the case for our applications, we see that empirically, the same
consequences apply when the quantization levels N is not that large. Similar to the work in Panter-Dite, we
want to determine asymptotically what the correct compander is given a prior distribution. To do that, we
want to show

L̂(p, f) = L†(p, f) =
1

24

∫ 1

0

p(x)f ′(x)−2x−1 dx . (7.33)

This is the key idea we are trying to capture with Theorem 16.

Remark 10. Note that the expression L†(p, f) resembles (7.28) except there is an additional divide by x
and a difference in the constant.

7.5.1 Sketch of Intuition Behind Theorem 16

Unfortunately, showing (7.33) is for every p and f is very difficult and possibly not true for pathological
choices. (We note that [76] proved (7.28) by making assumptions that densities are uniform over small
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intervals. We do not make this assumption, causing much of the difficulty.) This is why Theorem 16 requires
that we define the classes P and F†, to limit p to having densities and f to very nice functions. Still, the
proof of Theorem 16 is very complicated. We are interested in showing (7.33) for functions p and f which
might have discontinuities, areas where values are zero, and places where f ′(x) = 0, which all complicate
any proof.

However, serving the purpose of giving an explanation of where the formula for L†(p, f) comes from, we
give the following proof sketch for when:

1. Density p is continuous, bounded and greater than 0 everywhere on [0, 1]

2. Derivative f ′ is continuous and greater than 0 everywhere on [0, 1] (this implies that f is strictly
monotone).

We note that these conditions are not sufficient enough for problems we are interested in, but the proof
of this is helpful for understanding, and thus we show it.

Proof sketch for very nice p and f ′. We want to show that

lim
N→∞

N2L̂(p, f,N) =
1

24

∫ 1

0

p(x)(f ′(x))−2x−1dx . (7.34)

For each I(n) where n ∈ [N ], we use yn to denote the conditional expectation. We use Ĩ(n) to denote image
of I(n) under f .

First, using Taylor expansion, we have that
∫

I(n)

p(x)x log
x

yn
dx =

∫

I(n)

p(x)

(
(x− yn) +

(x− yn)2

2yn
−O((x− y)3)

)
dx (7.35)

=
1

2

∫

I(n)

p(x)
(x− yn)2

yn
dx+O

(
1

N4

)
(7.36)

and thus

N2L̂(p, f,N) = N2


1

2

∑

n∈[N ]

∫

I(n)

p(x)
(x− yn)2

yn
dx


+O

(
1

N

)
(7.37)

We can ignore the O(1/N) since it will not affect our asymptotic result.
To find the term in the integral, we will do a substitution where z = f(x). To make notation easier to

read, let g = f−1. The function g is well-defined since we can assume that f is strictly monotone . Then

dx = g′(z)dz . (7.38)

We will also use z̃n = f(yn). This gives

N2L̂(p, f,N) = N2 1

2

∑

n∈[N ]

∫

Ĩ(n)

p(g(z))
(g(z)− g(z̃n))2

g(z̃n)
g′(z)dz (7.39)

= N2 1

2

∑

n∈[N ]

∫

Ĩ(n)

p(g(z))

p(g(z̃n))

p(g(z̃n))

g(z̃n)
(z − z̃n)2 (g(z)− g(z̃n))2

(z − z̃n)2

g′(z)
g′(z̃n)

g′(z̃n)dz (7.40)

= N2 1

2

∑

n∈[N ]

p(g(z̃n))

g(z̃n)
(g′(z̃n))3

∫

Ĩ(n)

(z − z̃n)2

(
p(g(z))

p(g(z̃n))

) (g(z)−g(z̃n))2

(z−z̃n)2

(g′(z̃n))2

(
g′(z)
g′(z̃n)

)
dz . (7.41)

Next, we bound many of the terms in the integral. Since p is continuous, because p is a function on a
compact set, we can assume p must also be uniformly continuous. Thus, we can find a sequence of εN → 0
as N →∞ so that for each n ∈ [N ],

(
p(g(z))

p(g(z̃n))

)
= 1 + εN (7.42)
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Similarly, if f ′ is continuous on an interval (thus uniformly continuous), for some sequence νN → 0 as
N →∞ so that for each n ∈ [N ] except where a discontinuity occurs,

(
g′(z)
g′(z̃n)

)
= 1 + νN (7.43)

Finally, using the definition of a derivative, for some sequence ηN → 0 as N →∞ so that for each n ∈ [N ]

(g(z)−g(z̃n))2

(z−z̃n)2

(g′(z̃n))2
= 1 + ηN (7.44)

Next, each interval Ĩ(n) is has length 1/N . The value of the integral
∫
Ĩ(n)(z− z̃n)2dz depends on the location

of z̃n within the interval. Let zn,mid be the midpoint of Ĩ(n). Let δn,N = zn,mid − z̃n. Then

∫

Ĩ(n)

(z − z̃n)2dz =

∫ z̃n+δn,N+ 1
2N

z̃n+δn,N− 1
2N

(z − z̃n)2dz (7.45)

=

∫ δn,N+ 1
2N

δn,N− 1
2N

z2dz (7.46)

=
1

3

(
1

2N
+ δn,N

)3

− 1

3

(−1

2N
+ δn,N

)3

(7.47)

=
1

12N3
+
δ2
n,N

N
(7.48)

The value in (7.48) is at minimum 1/(12N3) and at maximum 1/(3N3). As the size of Ĩ(n) decreases, we
expect the value of p over the integral to be flat. Thus, the value of δn,N should go to zero. We will write
(7.48) as

κn,N
12N3 where κn,N → 1.

This gives that

N2L̂(p, f,N) =
1

2
N2
∑

n

p(g(z̃n))

g(z̃n)
(g′(z̃n))3

( κn,N
12N3

)
(1 + εN )(1 + νN )(1 + ηN ) (7.49)

= (1 + εN )(1 + νN )(1 + ηN )
(

max
n

κn,N

) 1

24

∑

n

1

N

p(g(z̃n))

g(z̃n)
(g′(z̃n))3 (7.50)

=
αN
24

∑

n

1

N

p(g(z̃n))

g(z̃n)
(g′(z̃n))3 (7.51)

→ 1

24

∫ 1

0

p(g(z))

g(z)
g′(z)3dz (7.52)

where αN collects the constants approaching 1. The other terms in (7.51) are exactly the terms used to
approach a Riemann integral over all z̃n. Integrating with respect to x instead of z gives

N2L̂(p, f,N)→ 1

24

∫ 1

0

p(x)

x

1

(f ′(x))2
dx (7.53)

Showing the proof of Theorem 16 is much more complicated. We only give a sketch and provide more
detail on one aspect of the proof.

7.5.2 Proof Sketch of Theorem 16

In this section we sketch the proof of Theorem 16. For an interval I ⊆ [0, 1], we denote its size as rI , its
midpoint as ȳI , and its centroid (under fixed p) as ỹI := EX∼p[X |X ∈ I]. If PX∼p[X ∈ I] = 0 we set
ỹI = ȳI by default.
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Given single-source density p and compander f , to prove Theorem 16 we construct the following functions:
the local loss function at granularity N , defined as

gN (x) = N2E[X log(X/ŷ(X)) |X ∈ I(nN (x))] (7.54)

and the asymptotic local loss function, defined as

g(x) =
1

24
f ′(x)−2x−1 . (7.55)

The function gN basically takes each x and returns the expected loss for X ∼ p which fall in the same bin
as x, thus averaging the losses in each bin (and keeping the overall average the same). The goal is thus to
show that

lim
N→∞

∫
gN dp =

∫
g dp . (7.56)

We get this by showing limN→∞ gN (X)→ g(X) almost surely for X ∼ p.
Let rN (x) = rI(nN (x)) be the size of the bin I(nN (x)).

Lemma 22. If f ′ is well-defined at x, then

lim
N→∞

N rN (x) = f ′(x)−1 (7.57)

(including the limit going to infinity when f ′(x) = 0).

(The key idea of this lemma is that the size of the intervals can be approximated by the derivative of f .)
For any interval I, we want to compare p over I with a uniform distribution; to do this, we define a

probability distribution pI over [−1, 1] (but with support of width 1) which is a shifted and scaled version
of p|I (p restricted to I) such that EZ∼pI [Z] = 0. Specifically, if we have X ∼ p |X ∈ I then

Z = (X − ỹI)/rI (7.58)

is distributed according to pI . It turns out that if p(x) is well-defined (as a derivative of the cumulative
distribution function) and positive, then any sufficiently small interval I around x should produce pI close
to the uniform distribution on [−1/2, 1/2]. Letting

d(p, q) = ‖Fp − Fq‖∞ (7.59)

denote the maximum difference between the CDFs of p and q, and letting 1[−1/2,1/2] be the indicator function
of [−1/2, 1/2]:

Proposition 25. For p ∈ P, if X ∼ p then almost surely

lim
r→0

d(pIr ,1[−1/2,1/2]) = 0 (7.60)

for any set of intervals containing X where Ir has width r.

Thus, if X ∼ p we know that p is almost surely close to uniform on sufficiently small I around p; and
Lemma 22 shows that the bins about X shrink as N−1f ′(X)−1 + o(N−1).

Then we can estimate the expected loss within the bin as:

Proposition 26. Let I be such that d(pI ,1[−1/2,1/2]) ≤ ε < 1/2 and rI ≤ ȳI . Then,

∣∣∣∣E[X log(X/ỹI) |X ∈ I]− 1

24

r2
I

ỹI

∣∣∣∣ ≤
1

2

r2
I

ỹI
ε+O

(
r3
I

ỹ2
I

)
. (7.61)
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(To prove the above proposition, we do need a step where we bound KL divergence by the chi-squared
divergence.) When N is large,

rN (X) = N−1f ′(X)−1 + o(N−1) (7.62)

(and hence ỹ(X) = X +O(N−1) since ỹ(X) must fall in the same interval). Since I(nN (X)) shrinks to size 0
about X as N →∞, the above results give:

d(pI(nN (X)) ,1[−1/2,1/2]) = o(1) (7.63)

=⇒
∣∣gN (X)− g(X)

∣∣ =

∣∣∣∣gN (X)− 1

24

f ′(X)−2

X

∣∣∣∣ (7.64)

=

∣∣∣∣gN (X)− N2

24

rN (X)−2

ỹ(X)

∣∣∣∣+ o(1) (7.65)

= o(1) (7.66)

almost surely if X ∼ p. Fatou’s Lemma then gives the lower bound (7.14) from Theorem 16.
To get the full result (7.12) for f ∈ F†, we build a function h∗ for which h∗(x) ≥ gN (x) for all x and∫

h∗ dp < ∞ (assuming
∫
g dp < ∞), allowing us to apply the Dominated Convergence Theorem. Since

f ∈ F†, there are c > 0 and α ∈ (0, 1) such that f(x)− cxα is monotonic. Hence all the bins induced by f
are smaller than those induced by cxα (treating it as a compander). Using the bound

E[X log(X/ỹI) |X ∈ I] ≤ 1

2

r2
I

ȳI
(7.67)

we show that

h∗(x) = 22/α+124g(x) + 21/α+2c−1/α (7.68)

dominates all local loss functions induced by cxα, thus also dominating all local loss functions induced by f .
Since g is integrable over p, so is h∗, completing the proof of Theorem 16.

In the next section, we discuss how to get (7.68).

7.5.3 Proof For Power Companders

Then, we define for x ∈ [0, 1] and ε ∈ (0, 1] the following:

Jε(x) = f−1
(
[f(x)− ε/2, f(x) + ε/2] ∩ [0, 1]

)
(7.69)

rε(x) = |Jε(x)| (7.70)

hε(x) = 4ε−2rε(x)2/max(x, f−1(ε/2)) (7.71)

We now consider what happens for a compander f such that f ′(x) ≥ c α xα−1 for some α ∈ (0, 1), c > 0
for all x; such f satisfy f(x) ≥ cxα, but the converse is not necessarily true (since f(x) ≥ cxα might have
flat, or nearly flat, sections).

For such a function, the intervals rε(x) are always smaller than they would be for cxα as a compander,
and hence an h∗ which dominated all hε for the compander c xα will work for f as well. Therefore, we
assume that f(x) = c xα and the result will apply for all f such that f ′(x) ≥ c α xα−1. Since f(x) = cxα,
we have f−1(z) = (z/c)1/α = c−1/αz1/α.

We split things into two cases (each expressed in three different equivalent ways):

(i) f(x) ≥ ε/2 ⇐⇒ x ≥ c−1/α(ε/2)1/α ⇐⇒ ε ≤ 2cxα

(ii) f(x) ≤ ε/2 ⇐⇒ x ≤ c−1/α(ε/2)1/α ⇐⇒ ε ≥ 2cxα

Case (i) is when Jε(x) does not reach 0 on the lower end, while Case (ii) is when it does. Note that in Case
(i), since f(x) ≥ ε/2, we have max(x, f−1(ε/2)) = x, while in Case (ii) we have

max(x, f−1(ε/2)) = f−1(ε/2) = c−1/α(ε/2)1/α (7.72)
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In both cases we can derive that:

Jε(x) ⊆
[
c−1/α(f(x)− ε/2)1/α, c−1/α(f(x) + ε/2)1/α

]
(7.73)

rε(x) ≤ c−1/α
(
(f(x) + ε/2)1/α − (f(x)− ε/2)1/α

)
(7.74)

Case (i) Since α ∈ (0, 1), we know that z1/α is convex, and hence we can bound with the right-hand
derivative:

(
(f(x) + ε/2)1/α − (f(x)− ε/2)1/α

)
=

∫ f(x)+ε/2

f(x)−ε/2
α−1z1/α−1 dz (7.75)

≤
∫ f(x)+ε/2

f(x)−ε/2
α−1(f(x) + ε/2)1/α−1 dz (7.76)

= εα−1(f(x) + ε/2)1/α−1 (7.77)

Thus we can get:

rε(x) ≤ εc−1/αα−1
(
f(x) + ε/2

)1/α−1
(7.78)

≤ εc−1/αα−1(2f(x))1/α−1 (7.79)

= εc−1/αα−121/α−1(cxα)1/α−1 (7.80)

= 21/α−1ε
(
c−1α−1x1−α) (7.81)

= 21/α−1εf ′(x)−1 (7.82)

Noting that Case (i) is exactly when hε(x) = 4ε−2rε(x)/x, we get

hε(x) = 4ε−2rε(x)2x−1 (7.83)

≤ 4ε−2
(
21/α−1εf ′(x)−1

)2
x−1 (7.84)

= 22/α+1f ′(x)−2x−1 (7.85)

which holds for all ε ≤ 2cxα.

Case (ii) In this case, the lower bound of f(Jε(x)) is 0 and the upper bound is no more than ε (since
f(x) + ε/2 ≤ ε/2 + ε/2 = ε). Noting that f−1(0) = 0, we get that

rε(x) ≤ f−1(ε) = c−1/αε1/α (7.86)

Thus, we can plug this in straight away (noting that in this case hε(x) divides by f−1(ε/2)):

hε(x) = 4ε−2rε(x)/f−1(ε/2) (7.87)

≤ 4c−2/αε2/α−2
(
c−1/α(ε/2)1/α

)−1
(7.88)

= 21/α+2c−1/αε1/α−2 (7.89)

When α ≤ 1/2, the ε1/α−2 term is maximized by making ε as large as possible, which is 1 (because we only
define hε(x) for ε up to 1 and hence hε(x) ≤ 21/α+2c−1/α, which is a constant, for all ε ≥ 2cxα. When
α > 1/2, the value is maximized by making ε as small as possible, which in Case (ii) means ε = 2cxα. This
means

hε(x) ≤ 21/α+2c−1/α(2cxα)1/α−2 (7.90)

= 22/αc−2x1−2α (7.91)

= 22/αα2(c−1α−1x1−α)2x−1 (7.92)

= 22/αα2f ′(x)−2x−1 (7.93)
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This means we have one bound for ε ≤ 2cxα and another for ε ≥ 2cxα; the overall bound can then be
found by taking the maximum of the two, and if necessary by adding them. When α ∈ [1/2, 1), we see that
22/α+1 = 2 ·22/α > 22/αα2, and when α ∈ (0, 1/2) we have hε(x) ≤ 21/α+2c−1/α and hence our overall bound
is

hε(x) ≤ 22/α+1f ′(x)−2x−1 + 21/α+2c−1/α = h∗(x) (7.94)

which holds for every x, ε pair for every α ∈ (0, 1) and c > 0. For any fixed α, c, we have that h∗ is a simply
a constant multiple of g plus a constant, so

∫
g dp <∞ implies

∫

[0,1]

h∗ dp = 24· ≤ 22/α+1

∫

[0,1]

g dp+ 21/α+2c−1/α <∞ (7.95)

Since h∗ dominates all hε, it also dominates all gN (as h2/N dominates gN ; and therefore we can apply the
Dominated Convergence Theorem to achieve our result.

7.6 Minimax Compander

The purpose of this section is to optimize over the expression for L†(p, f). This is possible due to the
following:

Proposition 27. The function L†(p, f) is convex in f for any p and linear (and therefore concave) in
p for any f .

Proof. First, we show that L†(p, f) is convex in f for any p. For this, we will be primarily using the fact
that 1/x2 for x ≥ 0, is a convex function. For any f1, f2 ∈ F and a fixed p,

L†(p, λf1 + (1− λ)f2) =
1

24

∫ 1

0

p(x)x−1 1

(λf ′1(x) + (1− λ)f ′2(x))2
dx (7.96)

≤ 1

24

∫ 1

0

p(x)x−1

(
λ

1

(f ′1(x))2
+ (1− λ)

1

(f ′2(x))2

)
dx (7.97)

= λL†(p, f1) + (1− λ)L†(p, f2) (7.98)

For any p1, p2 ∈ PK and a fixed f ,

L†(λp1 + (1− λ)p2) =
1

24

∫ 1

0

(λp1(x) + (1− λ)p2(x))x−1 1

f ′(x)
dx (7.99)

= λL†(p1, f) + (1− λ)L†(p2, f) (7.100)

In this section we use g(x) and h(x) as auxiliary functions; note that these have nothing to do with the
asymptotic local loss function or dominating function from the previous section.

7.6.1 Optimizing for Best Compander

Theorem 17 follows from Theorem 16 by finding f ∈ F which minimizes L†(p, f); however, the form of
L†(p, f) makes it more natural to optimize over f ′. Since f : [0, 1]→ [0, 1] is monotonic, we use constraints

f ′(x) ≥ 0 and
∫ 1

0
f ′(x) dx = 1 (equal since using the whole range is optimal).

We solve the following:

minimize L†(p, f) =
1

24

∫ 1

0

p(x)f ′(x)−2x−1 dx

subject to

∫ 1

0

f ′(x) dx = 1 and f ′(x) ≥ 0 for all x ∈ [0, 1]
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The function L†(p, f) is convex in f ′, and thus first order conditions show optimality. Let g(x) be a function

such that
∫ 1

0
g(x)dx = 0. We derive:

d

dt

1

24

∫ 1

0

p(x)
(
f ′(x) + t g(x)

)−2
x−1 dx =

1

24

∫ 1

0

p(x)x−1 d

dt

(
f ′(x) + t g(x)

)−2
dx (7.101)

= − 1

12

∫ 1

0

p(x)x−1
(
f ′(x) + t g(x)

)−3
g(x) dx (7.102)

= − 1

12

∫ 1

0

p(x)x−1f ′(x)−3g(x) dx (at t = 0) (7.103)

If f is such that f ′(x) ∝ (p(x)x−1)1/3, then for all g(x) integrating to 0, the function (7.101) has value 0,
making it optimal. This gives

f ′p(x) ∝ (p(x)x−1)1/3 (7.104)

and f(0) = 0 and f(1) = 1, from which (7.15) and (7.16) follow. If fp ∈ F†, then fp = arg minf L̂(p, f)
because for any other f ∈ F ,

L̂(p, fp) = L†(p, fp) ≤ L†(p, f) ≤ lim inf
N→∞

N2L̂(p, f,N) (7.105)

If fp 6∈ F†, for any δ > 0 define fp,δ ∈ F† where

fp,δ(x) = (1− δ)fp(x) + δx1/2 (7.106)

=⇒ L̂(p, fp,δ) = L†(p, fp,δ) ≤ L†(p, fp)(1− δ)−2 . (7.107)

Taking δ → 0 (and noting that F† ⊆ F) thus shows that

L†(p, fp) = inf
f∈F†

L̂(p, f) . (7.108)

With (7.104), we can derive the best compander for symmetric Dirichlet priors and compare this to the
EDI method. We show this in Appendix C.4

7.6.2 Most Difficult Density to Quantize

What density p maximizes (7.15) (i.e. is hardest to quantize with a compander)? Using calculus of variations
to maximize

∫ 1

0

(p(x)x−1)1/3 dx (7.109)

(which of course maximizes (7.15)) subject to p(x) ≥ 0 and
∫ 1

0
p(x) dx = 1, we find that maximizer is

p(x) = 1
2x
−1/2. However, while interesting, this is only for a single symbol; and because E[X] = 1/3 under

this distribution, it is clearly impossible to construct a prior over the simplex (whose output vector must
sum to 1) with this marginal (unless K = 3). (See Appendix C.3 for commentary on p(x) = 1

2x
−1/2.)

Hence, we add an expected value constraint while maximizing (7.109). This gives the problem:

maximize

∫ 1

0

(
p(x)x−1

)1/3
dx (7.110)

subject to

∫ 1

0

p(x) dx = 1; (7.111)

∫ 1

0

p(x)x dx =
1

K
; (7.112)

and p(x) ≥ 0 for all x (7.113)
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We can solve this again using variational methods (we are maximizing a concave function so satisfying first
order conditions are enough to ensure optimality). A function p(x) > 0 is optimal if, for any g(x) where

∫ 1

0

g(x) dx = 0 and

∫ 1

0

g(x)x dx = 0 (7.114)

the following holds:

d

dt

∫ 1

0

x−1/3
(
p(x) + t g(x)

)1/3
dx = 0 . (7.115)

We have by the same logic as before:

d

dt

∫ 1

0

x−1/3
(
p(x) + t g(x)

)1/3
dx =

1

3

∫ 1

0

x−1/3
(
p(x) + t g(x)

)−2/3
g(x) dx (7.116)

=
1

3

∫ 1

0

x−1/3p(x)−2/3g(x) dx (at t = 0) (7.117)

Thus, if we can arrange things so that there are constants aK , bK such that

x−1/3p(x)−2/3 = aK + bKx (7.118)

this ensures (7.117) holds. In that case,

x−1/3p(x)−2/3 = aK + bKx (7.119)

⇐⇒ p(x)−2/3 = aKx
1/3 + bKx

4/3 (7.120)

⇐⇒ p(x) =
(
aKx

1/3 + bKx
4/3
)−3/2

(7.121)

This yields the maximin density p∗K (7.18) from Theorem 18, where aK , bK are set to meet the constraints
(7.111) and (7.112). We can determine aK and bK numerically given K, but getting a formula for aK or bK
is difficult. We choose to parameterize bK/aK = cKK logK.

We can show that if K > 24, then 1/4 < cK < 3/4. We can also express aK , bK directly as:

aK = 41/3(cKK logK + 1)−1/3 (7.122)

bK = 4a−2
K − aK . (7.123)

See Appendix C.6 for this.
Now that we have the worst density p∗K , we can use Theorem 17 to determine the best compander. We

need to combine (7.121) with Theorem 17. The normalization constant (denominator of (7.16)) is

∫ x′

0

x−1/3
(
aKx

1/3 + bKx
4/3
)−1/2

dx =
2ArcSinh

(√
bKx′

aK

)

√
bK

(7.124)

which implies that

f∗K(x) =
ArcSinh

(√
bKx
aK

)

ArcSinh
(√

bK
aK

) =
ArcSinh

(√
cKK logKx

)

ArcSinh
(√
cKK logK

) . (7.125)

To compute the loss, we have

L†(p∗K , f
∗
K) =

1

24

(
2ArcSinh

(√
cKK logK

)
√
bK

)3

(7.126)
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The second term in (7.123) is negligible compared to the first. Ignoring it we get

L†(p∗K , f
∗
K) =

1

24

8(log
(√
cKK logK +

√
cKK logK + 1

)3

2cKK logK
(7.127)

≤ 1

24

(log 4(cKK logK + 1))3

2cKK logK
(7.128)

=
1

24

(
log2K

cKK
+
O(logK)

2cKK

)
(7.129)

= Θ

(
1

24cK

log2K

K

)
. (7.130)

This shows (7.21).

7.6.3 Saddle Point

The function L†(p, f) is concave (actually linear) in p and convex in f ′, and we can show that the pair
(f∗K , p

∗
K) forms a saddle point, thus proving (7.20) from Theorem 18.

We can compute that

(f∗K)′(x) ∝ (p∗K(x)x−1)1/3 (7.131)

= x−1/3(aKx
1/3 + bKx

4/3)−1/2 (7.132)

= (x2/3)−1/2(aKx
1/3 + bKx

4/3)−1/2 (7.133)

=
1√

aKx+ bKx2
(7.134)

Assume we set aK and bK to the appropriate value for K. For any p ∈ PK ,

L†(p, f∗K) =

∫ 1

0

p(x)x−1((f∗K)′(x))−2dx (7.135)

=

∫ 1

0

p(x)x−1(aKx+ bKx
2)dx (7.136)

=

∫ 1

0

p(x)(aK + bKx)dx (7.137)

= aK + bK
1

K
(7.138)

which implies that

sup
p∈PK

L†(p, f∗K) = sup
p∈PK

inf
f∈F

L†(p, f) . (7.139)

Since it is always true that

sup
p∈P1/K

min
f∈F

L†(p, f) ≤ min
f∈F

sup
p∈P1/K

L†(p, f) , (7.140)

this completes showing that (f∗, p∗K) is a saddle point.

Furthermore, f∗K ∈ F† (specifically it behaves as a multiple of x1/2 near 0), so L̂(p, f∗K) = L†(p, f∗K) for
all p, thus showing that f∗K performs well against any p ∈ P1/K . Using (7.12) with the expressions for p∗K
and f∗K gives (7.21).

7.6.4 Prior on Simplex

While p∗K is the worst single-symbol distribution in P1/K , it is unclear whether a prior P ∗ on 4K−1 exists
with marginals p∗K . However, it is possible to construct a prior P ∗ whose marginals are as hard to quantize,
up to a constant, as p∗K .
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Lemma 23. Let p ∈ P1/K . Then there exists a joint distribution of (X1, . . . , XK) such that (i) Xi ∼ p
for all i ∈ [K] and (ii)

∑
i∈[K]Xi ≤ 2, guaranteed.

Proof. Let F be the cumulative distribution function of p. We define the quantile function F−1 as

F−1(u) = inf{x : F (x) ≥ u}. (7.141)

We break [0, 1] into K uniform sub-intervals Ii = ((i− 1)/K, i/K] (let I1 = [0, 1/K]). We then generate
X1, X2, . . . , XK jointly by the following procedure:

1. Choose a permutation σ : [K]→ [K] uniformly at random (from K! possibilities).

2. Let Uk ∼ UnifIσ(k)
independently for all k.

3. Let Xk = F−1(Uk).

Now we consider
∑
kXk. Let bi = F−1(i/k) for i = 0, 1, . . . ,K. Note that if σ(k) = i then Uk ∈

((i − 1)/K, i/K] and hence Xk = F−1(Uk) ∈ [bi−1, bi]. Therefore Xσ−1(i) ∈ [bi−1, bi] and thus for any
permutation σ,

K∑

i=1

bi−1 ≤
K∑

i=1

Xσ−1(i) ≤
K∑

i=1

bi (7.142)

=
( K∑

i=1

bi−1

)
+ bK − b0 (7.143)

≤
( K∑

i=1

bi−1

)
+ 1 ≤ 2 (7.144)

We use Lemma 23 to determine a joint distribution on K − 1 symbols with Xi ∼ p∗K . Then we scale
all the symbol values by 1/2, so their sum is guaranteed to be less than 1. Then the last symbol is XK =

1−∑K−1
i=1 Xi ≥ 0 so the sum of all K variables is exactly one. For this prior P ∗ we get that

inf
f∈F
L̂K(P ∗, f) ≥ (K − 1) inf

f∈F
L̂(2p∗K(2x), f) (7.145)

= (K − 1)
1

2
L†(p∗K , f

∗
K) (7.146)

≥ 1

2

K − 1

K
sup
P∈P4K

L̂K(P, f∗K) (7.147)

where the last inequality holds because p∗K is the worst-case single-symbol density (under expectation con-
straints). To make P ∗ symmetric, we can permute the symbol indices randomly without affecting the raw
loss; thus we get Corollary 6.

To show how to get (7.146) from (7.145), we have

inf
f∈F

L̂(2p∗K(2x), f) =
1

24

(∫ 1

0

(2p∗K(2x)x−1)1/3dx

)3

(7.148)

=
1

24

(∫ 1

0

(2p∗K(u)2u−1)1/3 1

2
du

)3

(7.149)

=
1

2
L†(p∗K , f∗) (7.150)

In Figure 7.6, we validate the distribution P ∗ by showing the performance of each compander when
quantizing random distributions drawn from P ∗. For the minimax compander, the KL divergence loss on
the worst-case prior looks to be within a constant of that for the other datasets.
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Figure 7.6: Each compander (or quantization method) is used on random distributions drawn for the prior
P ∗.

7.7 Worst-Case Analysis

In this section, we prove Theorem 19 which applies both to the minimax compander and the power compan-
der.

Proof of Theorem 19. For notation, let δi = ŷi − xi.

DKL (x‖y) =
∑

i

xi log
xi
yi

(7.151)

=
∑

i

xi log
xi
ŷi

+ log

(∑

i

ŷi

)
(7.152)

=
∑

i

(ŷi − δi) log
ŷi − δi
ŷi

+ log

(
1 +

∑

i

δi

)
(7.153)

Next we use that log(1 + x) ≤ x.

DKL (x‖y) ≤
∑

i

(ŷi − δi)
−δi
ŷi

+
∑

i

δi (7.154)

=
∑

i

−δi +
∑

i

δ2
i

ŷi
+
∑

i

δi (7.155)

=
∑

i

(ŷi − xi)2

ŷi
(7.156)

where in (7.154) we used the inequality log(1 + x) ≤ x on both appearances of the logarithm.
Since there is no prior in the worst-case problem, we use midpoint decoding. Let ȳi be the midpoint

value of the interval xi is mapped to. For interval j, let ýj be the value associated with the mean value of
the interval. For a continuous and smooth companding function f(x), and interval j with boundaries bj and
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bj+1, let x be such that

f ′(x) =
f(bj+1)− f(bj)

bj+1 − bj
=

1

N

1

bj+1 − bj
(7.157)

Let ýj be this x.
Thus for any x in an interval associated with mean value given by ý, the length of the interval of x falls

in can be given by

`(x)
4
= bj+1 − bj =

1

Nf ′(ý)
. (7.158)

For any ý in an interval with midpoint ȳ

ý

2
≤ ȳ . (7.159)

Then

DKL (x‖y) ≤
∑

i

(ȳi − xi)2

ȳi
(7.160)

≤
∑

i

`(x)2

ȳi
(7.161)

=
∑

i

1

N2(ýi/2)(f ′(ýi))2
(7.162)

=
2

N2

∑

i

1

ýi(f ′(ýi))2
(7.163)

Going further, we simply let yi = ýi.
First, we analyze the worst-case performance of the power compander (which is easier to analyze). The

first part of the analysis will be similar to the average analysis.

f(x) = xr (7.164)

f ′(x) = rxr−1 (7.165)

which leads to

DKL (x‖y) ≤ 2

N2r2

∑

i

1

yiy
2r−2
i

(7.166)

≤ 2

N2r2

∑

i

y1−2r
i (7.167)

For power compander, we pick r = 1
logK . So long as r < 1/2, the function y1−2r

i is concave in yi. The

maximum value is achieved when each of yi is the same for each i. We do not know what
∑
i yi is, but we

can divide this value into K equal parts for an upper bound.

DKL (x‖y) ≤ 2

N2r2
K

(∑
i yi
K

)1−2r

(7.168)

≤ 2

N2r2
K2r

(∑

i

yi

)1−2r

(7.169)

≤ 2

N2r2
e2 max

{
1,
∑

i

yi

}
(7.170)
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Next, we need to bound max {1,∑i yi}. Assume
∑
i yi > 1.

∑

i

|yi − xi| ≤
∑

i

`(yi) (7.171)

∑

i

yi ≤
∑

i

xi +
1

Nr

∑

i

y1−r
i (7.172)

∑

i

yi ≤
∑

i

xi +
1

Nr
K

(∑
i yi
K

)1−r
(7.173)

∑

i

yi ≤
∑

i

xi +
e

Nr

(∑

i

yi

)1−r

(7.174)

∑

i

yi ≤
∑

i

xi +
e

Nr

(∑

i

yi

)
(7.175)

We can combine terms with
∑
i yi.

(
1− e

Nr

)∑

i

yi ≤ 1 (7.176)

=⇒
∑

i

yi ≤
1

1− e
Nr

(7.177)

=⇒
∑

i

yi ≤
N

N − e logK
= 1 +

logK

N − e logK
(7.178)

For the bound to make sense N > e logK. For the bound to be a constant, we need roughly that N >
2e logK. Assuming this and combining (7.170) with (7.178), we have

DKL(x‖y) ≤ 2e2 (logK)2

N2
max

{
1,

(
1 +

e logK

N − e logK

)}

≤ 2e2 (logK)2

N2

(
1 +

e logK

N − e logK

)
(7.179)

Now we will do the analysis for the minimax compander. To start, we will use C = cK logK

f(x) =
ArcSinh(

√
Cx)

ArcSinh(
√
C)

(7.180)

f ′(x) =
1

2ArcSinh(
√
C)

√
C√

x
√

1− Cx (7.181)

1

f ′(x)
= 2ArcSinh(

√
C)

√
x

C
+ x2 (7.182)

DKL(x‖y) ≤ (2ArcSinh(
√
C))2

N2

∑

i

yi
C + y2

i

yi
(7.183)

≤ (2ArcSinh(
√
C))2

N2

(
K

C
+
∑

i

yi

)
(7.184)

Assume that
∑
i yi > 1.

∑

i

|yi − xi| ≤
∑

`(yi) (7.185)

∑

i

yi ≤
∑

i

xi +
2ArcSinh(

√
C)

N

∑

i

√
yi
C

+ y2
i (7.186)
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We will first bound the second sum in the equation above

∑

i

√
yi
C

+ y2
i ≤

∑

i

√
yi
C

+
√
y2
i (7.187)

≤
(
K

( ∑
i yi

K(cK logK)

)1/2

+
∑

i

yi

)
(7.188)

≤
(( ∑

i yi
c logK

)1/2

+
∑

i

yi

)
(7.189)

≤
(( ∑

i yi
(c logK)1/2

)
+
∑

i

yi

)
(7.190)

≤
(∑

i

yi

)(
1 +

1

(c logK)1/2

)
(7.191)

≤ 2

(∑

i

yi

)
(7.192)

Then (7.186) becomes

∑

i

yi ≤ 1 +
4ArcSinh(

√
C)

N

(∑

i

yi

)
(7.193)

Since we have
∑
i yi on both sides of the equation, we can combine these terms like before.

(
1− 4ArcSinh(

√
C)

N

)∑

i

yi ≤ 1 (7.194)

=⇒
∑

i

yi ≤
N

N − 4ArcSinh(
√
C)

(7.195)

Combining things together and using ArcSinh(
√
x) = log(

√
x+ 1 +

√
x) ≤ log(2

√
x+ 1) we get

DKL(x‖y) ≤ 2
(2ArcSinh(

√
C))2

N2

(
K

C
+

N

N − 4ArcSinh(
√
C)

)

= 2
(2ArcSinh(

√
cK logK))2

N2

(
K

cK logK
+

N

N − 4ArcSinh(
√
cK logK)

)
(7.196)

= 2
(2 log(2

√
cK logK + 1))2

N2

(
1

c logK
+

N

N − 4 log(2
√
cK logK + 1)

)
(7.197)

We will assume that N > 8 log(2
√
cK logK + 1) so the second term in the parenthesis is a constant close to

1. We can then bound the entire term in the parenthesis by 2. Then,

DKL(x‖y) ≤ 4(log cK logK + 2 log 3)2

N2
(7.198)

= Θ

(
(logK)2

N2

)
(7.199)

We note that both the minimax compander and the power compander are achievable solutions for worst-
case divergence covering. Theoretically, these companders show that as ε→ 0, we get that

logM(K, ε) ≤
(

(logK)2

ε

)K/2
. (7.200)
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However, the advantage is that both the power compander and minimax compander are explicit quan-
tization methods which are simple to use. In conclusion, the minimax compander (better than the power
compander) is both a practical and effective solution.
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Appendix A

Permutation Channel: Other Tools

A.1 Berry-Esseen

Here is an alternative method to Petrov’s calculation of bounding sums of independent random variables.

Theorem 20. (Berry-Esseen[89])
For X1, X2, ..., Xn which are independent random variables with E[Xi] = 0, E[X2

i ] = σ2
i < ∞ and

E|Xi|3 = γi <∞, let

Y =
X1 +X2 + ...+Xn√∑n

i=1 σ
2
i

(A.1)

and let Fn(x) be the cdf of W . Then

sup
x∈R
|Fn(x)− Φ(x)| ≤ c

∑n
i=1 γi

(
∑n
i=1 σ

2
i )3/2

(A.2)

where Φ(x) is a standard normal and c is some constant.

Suppose we have zero-mean random variables which might not be identical, but where |Xi| < 1. Since
Xi takes values in [−1, 1], E|Xi|3 ≤ E|Xi|2, and therefore

∑n
i=1 γi ≤

∑n
i=1 σ

2
i . Thus,

sup
x∈R
|Fn(x)− Φ(x)| ≤ c

∑n
i=1 σ

2
i

(
∑n
i=1 σ

2
i )3/2

≤ c√∑n
i=1 σ

2
i

. (A.3)

Let W = X ′1 + ... + X ′n where X ′i is an independent Bernoulli with some parameter. Each takes values
in 0 or 1 and the expected value is not 0. Let F ′n(·) be the cdf of S = W/

√∑n
i=1 σ

2
i and let G(x) be the cdf

of a Gaussian with variance 1 shifted to match the mean of S.
In this shifted version, if we want to find the probability that W = w for some integer w. We can find

the pdf PW (w) by integrating over G(x) with an interval of length 1/
√∑n

i=1 σ
2
i corresponding to where w

occurs. The result of the integral will at most be 1/
√∑n

i=1 σ
2
i times 1/

√
2π (since the maxmium of the pdf

of a Gaussian with unit variance is 1/
√

2π), so

PW (w) ≤ 1/
√

2π√∑n
i=1 σ

2
i

+
c√∑n
i=1 σ

2
i

≤ c′√∑n
i=1 σ

2
i

=
c′√

Var(W )
(A.4)

for any constant w.
We will restate this in the following corollary.
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Corollary 7. For independent (possibly non-identical) Bernoulli random variables Xi, if W =
∑n
i Xi

then for some integer w,

P[W = w] ≤ c√
Var(W )

(A.5)

where c is a constant that does not depend on n.
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Appendix B

More on Average-Case Divergence

B.1 Gamma Distribution

There are two ways to parameterize the Gamma distribution.

Definition 28 (Gamma Distribution).
The α, β parameterization (shape-rate): Random variable X ∼ Gamma(α, β) has pdf

f(x) =
βαxα−1e−βx

Γ(α)
(B.1)

for x > 0 and α, β > 0.
The k, θ parameterization (shape-scale): Random variable X ∼ Gamma(k, θ) has pdf

f(x) =
xk−1e−

x
θ

θkΓ(k)
(B.2)

for x > 0 and k, θ > 0.

We can switch between the parameterization using k = α and β = 1
θ . The mean of a Gamma random

variable is kθ (or α
β ). The variance is kθ2 (or α

β2 ).
Some examples:

• If k (or α) is a positive integer, the Gamma Distribution gives the Erlang Distribution.

• If k = 1, we get an exponential distribution with parameter 1
θ or α.

• If X ∼ Gamma(v/2, 2), then X is a chi-squared distribution with v degrees of freedom.

Fact 11 (Scaling). If X ∼ Gamma(k, θ) then for any c > 0, cX ∼ Gamma(k, cθ).

Fact 12 (Summation). If Xi ∼ Gamma(ki, θ) and are independent with the same θ, where i = 1, ..., N ,

then
∑N
i=1Xi ∼ Gamma

(∑N
i=1 ki, θ

)
.

For integer ki, this makes sense since the sum of k exponentials random variables with the same θ are Erlang
distributions with k. It follows sums of Erlang random variables are Erlang.

The Dirichlet distribution is the normalized sum of independent Gamma distribution.
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Fact 13 (Normalized Sum). Let Xi ∼ Gamma(ki, θ), where i = 1, ..., N , be N independent Gamma
distributions. Let

V =

N∑

i=1

Xi . (B.3)

Then

Y = (Y1, . . . , YN ) =

(
X1

V
, . . . ,

XN

V

)
(B.4)

is distributed as Dirichlet(k1, ..., km). The random variable Y is independent of X.

If we want to get points sampled according to Jeffreys’ Prior on the simplex, we can do so by fixing any
θ, and sampling N independent values from X ∼ Gamma

(
1
2 , θ
)
. If we normalize the values in the vector so

they become 1, this vector is distributed Dirichlet.
In particular if we have X ∼ Gamma(α, θ) and Y ∼ Gamma(β, θ) and X and Y are independent, then

X
X+Y is a beta distribution with parameters α and β.

To find the entropy of a the Gamma distribution, we need some more definitions.

Definition 29. The digamma function is

ψ(x) =
d

dx
ln(Γ(x)) =

Γ′(x)

Γ(x)
. (B.5)

The trigamma function is

ψ1(x) =
d2

dx2
ln Γ(x) . (B.6)

Definition 30. Let γ is the Euler-Mascheroni constant, that is

γ = lim
n→∞

(
− log n+

n∑

k=1

1

k

)
= 0.57721... (B.7)

The Euler-Mascheroni constant is the limiting difference between the Harmonic Series and natural logarithm.
It appears frequently in integrals involving the exponential function. The log used is natural log.

Some properties of the digamma function are

• ψ(z + 1) = ψ(z) + 1
z

• ψ(n) =
∑n−1
k=1

1
k − γ

• ψ(1) = −γ
• ψ(1/2) = −2 log 2− γ
• ψ(n+ 1/2) = −γ − 2 log 2 +

∑n
k=1

2
2k−1

Fact 14 (Logarithmic Expectations). If X ∼ Gamma(k, θ) then

• E[log(X)] = ψ(k) + log(θ)

• Var[log(X)] = ψ1(k)
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Fact 15 (Entropy). If X ∼ Gamma(k, θ) then H(X) = k + log(θ) + log(Γ(k)) + (1− k)ψ(k).

B.2 Proofs

B.2.1 Dmax for Exponential

Proposition 28. If pX(x) = e−x, R(px, D) intersects 0 at D = 1−γ, where γ is the Eulor-Mascheroni
constant.

Proof. When there is only 1 reconstruction one, that point occurs at y = 1. We can integrate to determine
what distortion level occurs. The integral to find is

∫ ∞

0

e−xx log xdx = 1− γ . (B.8)

It is known that
∫∞

0
e−x log x dx = −γ. We can find the result using integration by parts on

∫∞
0
e−x log xdx.

B.2.2 Proof of Proposition 16

This is a variation on a proof in [63] with changes for the divergence distortion.

Proof. If we first ignore the constraint E[X] = E[Y ], then finding the minimum in (6.5) is equivalent to
minimizing

F (q) = − 1

β

∫
pX(x) log

(∫
qY (y)eβd(x,y) dy

)
dx (B.9)

over the distribution qY (y).
(Optimizing (B.9) for a chosen β gives an equivalent set of solutions as optimizing (6.5) without E[X] =

E[Y ] for a corresponding D). Instead of searching for an optimal qY (y), define ŷ : [0, 1] → Y . We can
replace y in equation (B.9) with ŷ(u) and take the integral over u instead of y. Using calculus of variations
by perturbing ŷ(u) with εη(u), a conditional for optimality is that

∫
η(u)

(∫
pX(x)

e−βd(x,ŷ(u))

∫
e−βd(x,ŷ(u′))du′

∂

∂y
d(x, ŷ(u)) dx

)
du = 0 . (B.10)

(We will skip the derivation of this part as it is presented in [63].) Define Z(x) =
∫
e−βd(x,ŷ(u)) du. We will

add the constraint E[X] = E[Y ] back into the problem by only allowing η(u) such that
∫
η(u) du = 0. Hence,

as a function in u, we must have that the expression
∫
pX(x)

Z(x)
e−βd(x,ŷ(u)) ∂

∂y
d(x, ŷ(u)) dx (B.11)

is constant. Thus there is a constant c so that if value y0 is in the support of the optimal function ŷ, we
must have ∫

pX(x)

Z(x)
e−βd(x,y0) ∂

∂y
d(x, y0) dx = c . (B.12)

Suppose that the optimal q(ŷ(u)) has a continuous interval I in its support. Then its derivatives in terms
of y0 on the left-hand side of (B.12) must be zero when evaluated at any point y0 ∈ I. Noting that
∂
∂yd(x, y0) = −x/y0, we can evaluate the conditions

0 =

∫
pX(x)

Z(x)

∂

∂y0
e−βd(x,y0) ∂

∂y
d(x, y0) dx (B.13)

=

∫
pX(x)

Z(x)

[
(−β)

(
− x

y0

)
e−βd(x,y0)

(
− x

y0

)
− e−βd(x,y0)

(−x
y2

0

)]
dx (B.14)

=

∫
pX(x)

Z(x)
e−βd(x,y0) x

y2
0

(−βx+ 1) dx . (B.15)
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We can continue to compute higher order derivatives.

0 =

∫
pX(x)

Z(x)

∂2

∂y2
0

e−βd(x,y0) ∂

∂y
d(x, y0) dx (B.16)

=

∫
pX(x)

Z(x)

∂

∂y0
e−βd(x,y0) x

y2
0

(−βx+ 1) dx (B.17)

=

∫
pX(x)

Z(x)
e−βd(x,y0) x

y3
0

(−βx+ 1)

(
βx− 1

2

)
dx (B.18)

Formally, we can use induction to get the nth order derivative.

0 =

∫
pX(x)

Z(x)

∂n

∂yn0
e−βd(x,y0) ∂

∂y
d(x, y0) dx (B.19)

=

∫
pX(x)

Z(x)
e−βd(x,y0) x

yn+1
0

(−1)

n∏

k=1

(
βx− 1

k

)
dx . (B.20)

We now complete the proof by showing it is not possible for find a continuous interval where these

constraints are met. Let f(x, y0) = pX(x)
Z(x) e

−βd(x,y0)x(βx−1) and gn(x) =
∏n−1
k=1

(
βx− 1

k+1

)
where g1(x) = 1.

For y0 to be in a continuous interval, for all n we must have

∫
dx f(x, y0)gn(x) = 0 (B.21)

Linear combinations of gn (which are polynomials of every possible order) are sufficient to span to space
of all functions so we can write f(x, y0) =

∑∞
n=1 cngn(x) for some choices of ci. We get

∫
dx f(x, y0)2 =∫

dx f(x, y0)
∑∞
n=1 cngn(x) = 0, and thus f(x, y0) must be the zero function. This is not possible for any

distribution pX(x).

B.2.3 Proof of Proposition 18

Proof. Suppose QY |X(y|x) is a conditional probability density meeting constraints for a specific D (i.e.
QY |X(y|x) ∈ B). Below, are the calculations where the distribution of X,Y is according to PXQY |X . For
any αλ ∈ Aλ,

I(X;Y )+λE[d(X,Y )]−
∫

x

∫

y

QY |X(y|x)pX(x) logαλ(x, y)dydx (B.22)

=

∫

x

∫

y

pX(x)QY |X(y|x) log
QY |X(y|x)

αλ(x, y)Q(y)e−λd(x,y)
dxdy (B.23)

≥
∫

x

∫

y

pX(x)QY |X(y|x)

[
1− αλ(x, y)Q(y)e−λd(x,y)

QY |X(y|x)

]
dxdy (B.24)

= 1−
∫

y

QY (y)

∫

x

pX(x)αλ(x, y)e−λd(x,y)dxdy (B.25)

= 1−
∫

y

QY (y)c(y)dy (B.26)

≥ 0 (B.27)

where we used that log(1/x) ≥ 1− x. This gives for any QY |X ∈ B

I(X;Y ) ≥ sup
λ≥0,αλ∈Aλ

−λD +

∫

x

∫

y

QY |X(y|x)p(x) logαλ(x, y) dx dy . (B.28)

Taking the infimum over all QY |X ∈ B gives the result.
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B.2.4 Proof of Proposition 19

Proof. Since Y is discrete on n values, we have

I(X;Y ) = H(Y )−H(Y |X) ≤ log(n)−H(Y |X) ≤ log(n) (B.29)

Since f is strictly decreasing and only has nonnegative inputs, it has a nonnegative and strictly decreasing
inverse f−1 and Theorem 11 shows that f can decay at most quadratically in n. This is because, per
Theorem 11, for some constant cX (dependent on X but not on n or D), we have

cX +
1

2
log
( 1

D

)
≤ R(pX , D) ≤ I(X;Y ) ≤ log(n) (B.30)

Letting D = D(pX , n) (the distortion achievable with n centers), we get that cX + 1
2 log

(
1

D(pX ,n)

)
≤ log(n)

which implies ecXD(pX , n)−1/2 ≤ n and hence D(pX , n) ≥ e2cXn−2. Since f is such that D(pX , n) ≤ c f(n),
for constant c, we get a contradiction if f(n) = o(n−2), and so f cannot decay faster than quadratically.

Let D
4
= D(pX , n). Then for sufficiently large n,

I(X;Y ) ≤ log(n) = log(f−1(f(n))) (B.31)

≤ log(f−1(D/c)) (B.32)

≤ log
(
c1/b(1 + o(1))f−1(D)

)
(B.33)

= log(f−1(D)) +
1

b
log(c) + o(1) (B.34)

If f(n) = n−b then f−1(n) = n−1/b and log(f−1(D/c)) = 1
b log

(
1
D

)
+ 1

b log(c) exactly.

B.2.5 Proof of Lemma 16

Proof. Part i) (vertical scaling): y(cp,I) = y(p,I) because y can be thought of as the expectation of a normal-
ized p over I, and so scaling p does not change it. So:

D(cp,I) =

∫

I

cp(x)x log
( x

y(p,I)

)
dx (B.35)

= c

∫

I

p(x)x log
( x

y(p,I)

)
dx = cD(p,I) (B.36)

Part ii) (horizontal scaling): First we note that y(p×c,I×c) = cy(p,I) (it scales with the interval). This is
trivial from the ‘conditional expectation’ interpretation of the definition (‘conditional expectation’ in quotes
because we can evaluate it even if p integrates to more than 1 over the interval in question). Then we can
use a change of variables x/c→ x to put everything back into I:

D(p×c,I×c) =

∫

I×c

p×c(x)x log
( x

y(p×c,I×c)

)
dx (B.37)

=

∫

I×c

p(x/c)x log
( x

cy(p,I)

)
dx (B.38)

=

∫

I

p(x)cx log
( cx

cy(p,I)

)
c dx (B.39)

= c2
∫

I

p(x)x log
( x

y(p,I)

)
dx (B.40)

= c2D(p,I) (B.41)

Part iii) (translation): First we will scale p so that p is a probability distribution on I (we can always
undo the scale at the end). We note that y(p+c,I+c) = y(p,I) + c and use a change of variables x− c → x to
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put everything back into i, giving us

D(p+c,I+c) =

∫

I+c

p+c(x)x log
( x

y(p+c,I+c)

)
dx (B.42)

=

∫

I

p(x)(x+ c) log
( x+ c

y(p,I) + c

)
dx (B.43)

For ease of writing we will let y := y(p,I) for the remainder of this proof.
We will use a variational method. Let

f(c) = yD(p,I) − (y + c)D(p+c,I+c) (B.44)

Note that f(0) = 0. If f(c) is nonnegative, this proves our result; since f(0) = 0, if d
dcf(c) ≥ 0 for all c,

that proves f(c) is nonnegative for all c > 0. We calculate the derivative of f(c). First we will compute the
derivative of D(p+c,I+c).

d

dc
log

(
x+ c

y + c

)
=
y + c

x+ c

(
− x− y

(y + c)2

)
(B.45)

=
−1

x+ c

x− y
y + c

. (B.46)

d

dc
D(p+c,I+c) =

d

dc

∫

I

p(x)(x+ c) log
(x+ c

y + c

)
dx (B.47)

=

∫

I

p(x) log
(x+ c

y + c

)
dx−

∫

I

p(x)
x− y
y + c

dx (B.48)

=

∫

I

p(x) log
(x+ c

y + c

)
dx (B.49)

since y =
∫
I
p(x)x dx. Note that E[log(x+c)]−E[log(y+c)] ≤ 0 due to Jensen’s inequality. We can conclude

that shifting by c always decreases the distortion.

d

dc
f(c) = −(y + c)

∫

I

p(x) log
(x+ c

y + c

)
dx−D(p+c,I+c) (B.50)

d
dcf(c)

y + c
= −

∫

I

p(x)

(
1 +

x+ c

y + c

)
log

(
x+ c

y + c

)
(B.51)

= −
∫

I

p ((y + c)z − c) (1 + z) log z dz (B.52)

= −EZ [(Z + 1) logZ] (B.53)

where z = x+c
y+c , and Z is the random variable produced by generating X according to p and letting Z = X+c

y+c

(since we’re only dealing with one interval, y is fixed). Since p (governing X) is uniform, Z is also uniform
(since Z is just a shifted and scaled X); since E[X] = y by definition, E[Z] = 1. Thus, Z is uniform and
centered at 1, supported on [c/(y+c), (2y+c)/(y+c)]. Therefore, we need to show that−EZ [(Z+1) logZ] ≥ 0,
or equivalently that EZ [(Z + 1) logZ] ≤ 0.

Letting θ = c
y+c ∈ [0, 1), we note that Z is uniform on [θ, 2 − θ] (centered at 1). Therefore, we aim to

show that for all θ,

EZ∼Unif[θ,2−θ] [(Z + 1) logZ] ≤ 0 (B.54)

We do this by writing out the Taylor expansion of (z + 1) log(z) at z = 1:

(z + 1) log(z) = (2z − 1) +
∑

n≥2

(−1)n+1(z − 1)n(n− 2)

(n− 1)n
(B.55)
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This Taylor expansion converges for all |z−1| < 1, which is exactly what we need. By linearity of expectations,
to get the expected value of (Z + 1) log(Z), we can take the expectation of each term of the sum separately
and add those up.

Taking the expectation over an interval centered at 1, we note that the terms for odd n (including
the 2z − 1 term) all wind up with expectation 0 by symmetry (since Z − 1 will be symmetric about 0, so
E[(Z−1)n] = 0 for all odd n). For even n, we get that (−1)n+1 = −1, and all the other terms are nonnegative
(including E[(Z − 1)n]).

Thus, we can conclude that

E[(Z + 1) log(Z)] =
∑

even n≥2

−E[(Z − 1)n](n− 2)

(n− 1)n
< 0 (B.56)

whenever the expectation is taken over a uniform distribution on [θ, 2 − θ]. Thus, we have shown that
d
dcf(c) = −E[(Z + 1) log(Z)] > 0 and thus (since f(0) = 0) that f(c) ≥ 0 for all c, thus showing our
result.

B.2.6 Full Proof of Lemma 17

Proof. We will show that for any p, continuously adding mass to p will never decrease the distortion (even
as the conditional expected value y changes according to the mass added). Since p2 can be produced from
p1 by continuously adding p2−p1 (i.e. we can define p(λ) = p1 +λ(p2−p1) and let λ smoothly increase from

0 to 1, and if D(p(λ)) is increasing the whole time then D(p2) ≥ D(p1)).
So let p : I → R≥0 such that

∫
I
p(x) dx = 1 WLOG (since scaling p will scale the distortion as it does

not change y, and we can scale ε to match) and z : I → R≥0 such that
∫
I
z(x) dx = 1 as well (z indicates

the “direction” in which we increase p, so as long as
∫
I
z(x) dx < ∞, we can scale it WLOG to have total

mass 1 on I). We then define pε
4
= p+ εz and make our claim:

[ d
dε
D(pε)

]
ε=0
≥ 0 for all such p, z

If we prove this, then, as discussed above, we have proved the lemma.

First, defining y∗
4
= y(z) − y(p), we get

y(pε) =

∫
I
pε(x)x dx∫
I
pε(x) dx

(B.57)

=

∫
I
(p(x) + εz(x))x dx∫
I
(p(x) + εz(x)) dx

(B.58)

=
y(p) + εy(z)

1 + ε
(B.59)

= y(p) +
ε

1 + ε
y∗ = y(p)

(
1 +

ε

1 + ε

y∗

y(p)

)
(B.60)

Therefore, we can write

D(pε) =

∫

I

pε(x)x log
( x

y(pε)

)
dx (B.61)

=

∫

I

p(x)x log
( x

y(pε)

)
dx+ ε

∫

I

z(x)x log
( x

y(pε)

)
dx (B.62)
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Let’s isolate the first term
∫
I
p(x)x log

(
x

y(pε)

)
dx. We can break it down further as

∫

I

p(x)x log

(
x

y(pε)

)
dx =

∫

I

p(x)x

(
log
( x

y(p)

)
+ log

( y(p)

y(pε)

))
dx (B.63)

=

∫

I

p(x)x

(
log
( x

y(p)

)
− log

(
1 +

ε

1 + ε

y∗

y(p)

))
dx (B.64)

= D(p) −
∫

I

p(x)x log
(

1 +
ε

1 + ε

y∗

y(p)

)
dx (B.65)

Now we can take the derivative with respect to ε of this first part, which yields

d

dε

∫

I

p(x)x log
( x

y(pε)

)
dx = − d

dε

∫

I

p(x)x log
(

1 +
ε

1 + ε

y∗

y(p)

)
dx (B.66)

= −
∫

I

p(x)x
d

dε
log
(

1 +
ε

1 + ε

y∗

y(p)

)
dx (B.67)

= −
∫

I

p(x)x
1

1 + ε
1+ε

y∗

y(p)

1

(1 + ε)2

y∗

y(p)
dx (B.68)

(switching the integral and derivative via the Leibniz rule). Evaluating at ε = 0 (which is the case we need
as that is when we are adding a tiny bit of mass to p) gives

[
−
∫

I

p(x)x
1

1 + ε
1+ε

y∗

y(p)

1

(1 + ε)2

y∗

y(p)
dx

]

ε=0

=−
∫

I

p(x)x
y∗

y(p)
dx = −y∗ (B.69)

because
∫
I
p(x)x dx = y(p).

Now we can isolate the second term ε
∫
I
z(x)x log

(
x

y(pε)

)
dx and take the derivative:

d

dε
ε

∫

I

z(x)x log
( x

y(pε)

)
dx =

∫

I

z(x)x log
( x

y(pε)

)
dx+ ε

∫

I

z(x)x
d

dε
log
( x

y(pε)

)
dx (B.70)

From before we saw that

d

dε
log
( x

y(pε)

)
= − 1

1 + ε
1+ε

y∗

y(p)

1

(1 + ε)2

y∗

y(p)
(B.71)

(noting that the x in the numerator can be ignored). Noting that we need to evaluate at ε = 0, we observe
that the ε in front of the integral eliminates that term entirely (and that p0 = p) and we get

[
d

dε
ε

∫

I

z(x)x log
( x

y(pε)

)
dx

]

ε=0

=

∫

I

z(x)x log
( x

y(p)

)
dx (B.72)

We can therefore combine both parts to get

[ d
dε
D(pε)

]
ε=0

=

∫

I

z(x)x log
( x

y(p)

)
dx− y∗ (B.73)

To prove this is nonnegative, we use the fact that z is actually a probability distribution over I (since it is
nonnegative and

∫
I
z(x) dx = 1). Noting that x log(x/c) (for any constant c > 0) is a convex function and
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EX∼z[X] = y(z), we can use Jensen’s inequality to get:

∫

I

z(x)x log
( x

y(p)

)
dx = EX∼z

[
X log

( X

y(p)

)]
(B.74)

≥ EX∼Z [X] log
(EX∼z[X]

y(p)

)
(B.75)

= y(z) log
(y(z)

y(p)

)
(B.76)

= −y(z) log
(y(p)

y(z)

)
(B.77)

= −y(z) log
(

1 +
y(p) − y(z)

y(z)

)
(B.78)

≥ −y(z) y
(p) − y(z)

y(z)
(B.79)

= −
(
y(p) − y(z)

)
(B.80)

= y∗ (B.81)

(since y(z) > 0 the log(1 + t) ≤ t inequality gets reversed). Thus, we get

[ d
dε
D(pε)

]
ε=0
≥ 0 (B.82)

as desired, and the proof is complete.

B.2.7 Proof of Theorem 12

Proof of Theorem 12. Let XI denote a uniform source over interval I.
We first give a bound on D(pX[a,b]

, n) by scaling and translating from D(pX[0,1]
, n). By Theorem 15, we

know D(pX[0,1]
, n) ≤ (9/32)/n2; then we scale it out to a width of b− a, which requires a horizontal scaling

by b − a and a vertical scaling by 1/(b− a) (since the way we define horizontal scaling in Lemma 16 does
not adjust the densities). This means that

D(pX[0,b−a]
, n) ≤ (b− a)

9

32

1

n2
. (B.83)

Then we add a to the interval to go from [0, b − a] to [a, b], which multiplies the distortion of an interval
centered at y by a factor of (at most) y/(y + a). Noting that each interval is in [0, b− a], we have

y ≤ b− a (B.84)

yb+ ay ≤ yb+ ab+ a2 (B.85)

y

y + a
≤ b− a

b
(B.86)

so multiplying the distortion by this is an upper bound. Hence

D(pX[a,b]
, n) ≤ (b− a)2

b

9

32

1

n2
. (B.87)

B.2.8 Proof of Lemma 20

Proof. Choose γ = 3/(2 + s) and set the interval boundaries at aj = jγ/nγ .
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We will first compute the distortion on interval [a0, a1] = [0, 1/nγ ]. Select

y1 = E[X|X ∈ [0, a1]] =

∫ a1

0
(1 + s)xxs dx∫ a1

0
(1 + s)xs dx

(B.88)

=
(a2+s

1 )/(2 + s)

(a1+s
1 )/(1 + s)

=
1 + s

2 + s
a1 . (B.89)

D(p,[0,a1]) =

∫ a1

0

(1 + s)xsx log
x

y1
dx (B.90)

= (1 + s)

∫ a1

0

xsx log x dx−
∫ a1

0

xsx log

(
1 + s

2 + s
a1

)
dx (B.91)

= a2+s
1

(
1 + s

2 + s
log

2 + s

1 + s
− 1 + s

(2 + s)2

)
(B.92)

=

(
1

nγ

)2+s(
1 + s

2 + s
log

2 + s

1 + s
− 1 + s

(2 + s)2

)
(B.93)

=
1

n3
C(s) . (B.94)

We use C(s) to denote that terms are a constant which do not depend on n. For −1 < s < 0, maximizing
over s gives C(s) < 0.162.

Next we will compute the distortion on the remaining intervals. We will use Lemma 17 and bound each
of the intervals by a uniform density and use Lemma 19 to compute an upper bound on the distortion.

Let uj be the density where uj(x) = (1 + s)asj . Then on [aj , aj+1] for j ≥ 1,

p(x) = (1 + s)xs ≤ (1 + s)asj = uj(x) . (B.95)

D(p,[aj ,aj+1]) ≤ D(uj ,[aj ,aj+1]) (B.96)

=

∫ aj+1

aj

(1 + s)asjx log
x

y(uj ,[aj ,aj+1])
dx (B.97)

≤ (1 + s)asj
1

12

(aj+1 − aj)3

1
2 (aj+1 + aj)

(B.98)

= (1 + s)

(
jγ

nγ

)s
1

12

(
(j+1)γ

nγ − jγ

nγ

)3

1
2

(
(j+1)γ

nγ + jγ

nγ

) (B.99)

≤ (1 + s)
jγs

nγs
1

12

(
C̃(γ)jγ−1

nγ

)3

jγ

nγ

(B.100)

= (1 + s)
(C̃(γ))3

12

j2γ+γs−3

n2γ+γs
(B.101)

= (1 + s)
(C̃(γ))3

12

1

n3
. (B.102)

We use C̃(γ) to denote a constant which only depends on γ. In order to find a bound on C̃(γ) in terms of
γ, we can first see that jγ/nγ is a convex function in j. This is because −1 < s < 0 and γ = 3/(2 + s),
3/2 < γ < 3. We upper-bound the difference by approximating both points using the tangent line at
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(j + 1)γ/nγ . Recall that j ≥ 1.

(j + 1)γ

nγ
− jγ

nγ
≤ γ (j + 1)γ−1

nγ
(B.103)

≤ γ (2j)γ−1

nγ
(B.104)

= γ2γ−1 j
γ−1

nγ
(B.105)

=
C̃(γ)jγ−1

nγ
. (B.106)

Maximizing over s gives

(1 + s)(C̃(γ))3/12 ≤ 6.332 . (B.107)

D(p, n) ≤
n−1∑

j=0

D(p,[aj ,aj+1]) (B.108)

≤ 1

n3
C(s) + (1 + s)

n−1∑

j=1

(C̃(γ))3

12

1

n3
(B.109)

≤ 19/3

n2
(B.110)

B.2.9 Proof of Lemma 21

Fact 16 (Summation). If Xi ∼ Gamma(αi, β) and are independent with the same β, where i = 1, ..., k,

then
∑k
i=1Xi ∼ Gamma (

∑n
i=1 αi, β).

Fact 17. For x ∈ R>0, we have

dn

dxn
Γ(x) =

∫ ∞

0

(log t)ntx−1e−tdt (B.111)

Fact 18 (ψ-function). Define

ψ(x) =
Γ′(x)

Γ(x)
. (B.112)

where Γ′(x) = d
dxΓ(x). Then

1. ψ(x+ 1) = ψ(x) + 1
x

2. 1
2x ≤ log x− ψ(x) ≤ 1

x

Proof. We want to compute a bound on E[S logS] where S ∼ Gamma(α, α). First, consider when S ∼
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Gamma(α, β).

E[S logS] =

∫ ∞

0

t log t
βαtα−1e−βt

Γ(α)
dt (B.113)

=
βα

Γ(α)

∫ ∞

0

(log t)tαe−βtdt (B.114)

=
βα

Γ(α)

∫ ∞

0

log
u

β

(
u

β

)α
e−u

1

β
du (B.115)

=
1

βΓ(α)

(∫ ∞

0

(− log β)(u)αe−u du+

∫ ∞

0

(log u)(u)αe−u du

)
(B.116)

In the above, we substituted βt with u. Next, we will use Fact 17 to compute rightmost integral.

E[S logS] =
1

βΓ(α)

(
Γ(α+ 1) log

1

β
+ Γ′(α+ 1)

)
(B.117)

=
α

β
log

1

β
+

1

β

Γ′(α+ 1)

Γ(α)
(B.118)

=
α

β
log

1

β
+

1

β

Γ′(α+ 1)

Γ(α+ 1)

Γ(α+ 1)

Γ(α)
(B.119)

=
α

β
(− log β + ψ(α+ 1)) (B.120)

In the last line, we used the definition of ψ from Fact 18. Next we will continue to use two statements in
Fact 18 and set α = β.

E[S logS] =
α

β

(
− log β + ψ(α) +

1

α

)
(B.121)

= − logα+ ψ(α) +
1

α
(B.122)

≤ − 1

2α
+

1

α
(B.123)

=
1

2α
. (B.124)

While we used an inequality on ψ(α) to show that E[S logS] ≤ 1/(2α), asymptotically,

ψ(α) ∼ logα− 1/(2α) . (B.125)

Thus we expect as α grows, E[S logS] ∼ 1/(2α).
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Appendix C

Compander Appendix

C.1 Experimental Data Overview

The purpose of our experiments is to demonstrate that our methods using companders do get good results.
They also demonstrate that some of our asymptotic theoretical results hold non-asymptotically. Our exper-
iments include one synthetic dataset on randomly generated distributions, and two datasets from based on
real-world data.

Random Synthetic Distributions In the absence of any other information, it is typical to use a uniform
prior. For our synthetic dataset, we draw random distributions from a uniform prior on the probability
simplex.

The uniform prior is a member of the class of Dirichlet priors which are a commonly used class of priors
for modeling probability. We say that the Dirichlet distribution is symmetric when the marginal distribution
on each symbol is the same. This distribution can be parameterized by one value α. Choosing α = 1 gives
the uniform prior over the probability simplex. (In some other experiments, we change the value of α.)

For our experiments, we draw 1000 random distributions x = (x1, ..., xK). The KL divergence loss we
get from these 1000 samples are average together in our results. Unless specified, we draw this from the
uniform (α = 1) prior.

Word Frequencies A natural source of distributions over large alphabets are distributions on words. The
study of natural language processing historically has used many large alphabet distributions. While there
are fairly elaborate models that exists, such as n-grams, which are order n Markov models of appearances
of words in text, for our experiments, we stick to using the frequency of words which occur in a particular
book as a probability distribution.

These frequencies are computed from text available on the Natural Language Toolkit (NLTK) libraries
for Python. For each text, we get tokens (single words or punctuation) from each text and simply count the
occurrence of each token.

DNA k-mers Large alphabet distributions also occur in biological applications, especially with DNA.
DNA sequences from many different sources are stored for research purposes. The shear number of stored
sequences strain storage resources. A particular statistic of DNA information which is relevant for research is
k-mers. For a given sequence of DNA, the set of k-mers are the set of length k substrings which appear in the
sequence. These frequency naturally form a probability distribution. The alphabet size of this distribution
grows exponentially in k. For commonly used values of k such as 9, the alphabet size is already prohibitively
large.

To get k-mer frequencies, our data source is the human genome sequences uploaded on December 2013
(on UCSC website). We select certain chromosomes and list the frequencies of k-mers from the sequences
recorded. Parts of the sequences are marked as repeats (where viruses might have inserted DNA) and these
are removed when we compute frequencies.
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C.2 Power Compander

One of our original interests in the EDI compander was how simple the function x2/3 (appears as the scale
for the intervals near 0) is as a compander function. This led us to explore compander functions of the form
f(x) = xs for some value s ∈ (0, 1). We call this the power compander. The results were, very surprisingly,
good. We discuss experiments using the power compander on the synthetic and real-world data. We apply
this compander function so that the reconstruction point ȳ uses the midpoint of I(n).

Experiments Varying Power

For our first set of experiments, we plot the value of the KL divergence, LK(W,xs, N) for different values
of s. When we do this, we get a rather interesting observation. The curve as a function of s empirically
behaves similarly regardless of the distribution. In particular, for frequencies of words in books, plotted in
Figure 7.4 regardless of the book, for the same choice of N , the curve corresponding to each book has nearly
the exact same pattern.

Generally, the KL divergence is large for large s. If we set s = 1, this is equal to truncating. Decreasing s
makes the intervals I(n) near 0 (small values of n) smaller relative to the intervals near 1 (larger values of n).
Hence, lowering the value of s creates less KL divergence loss since smaller values are being quantized into
smaller intervals, making the reconstruction points much closer to the original value. However, at some point
while decreasing s, the KL divergence goes up. We can see this in Figure C.1 where we plot the performance
of the power compander against synthetic distributions with different parameters. This also occurs for our
real-world distributions. These are shown in Figure C.2 and Figure C.3 where we compare them to synthetic
distributions with different α (parameter of the symmetric Dirichlet distribution). We show the comparison
of the same chromosome but with different values of k (length of k-mer strings) in Figure C.5

In all these plots, there is a clearly a value of s which gives the minimum KL Divergence. The natural
question to ask is what value of s achieves this. Empirically, this value can be approximated by

s =
1

logK
. (C.1)

This is most clearly observed in Figure C.4. We will show in the next section that (C.1) is indeed the correct
power s to use for minimizing KL divergence.

C.2.1 Analysis of Power Compander

Starting with Theorem 17, we can use the asymptotic analysis to understand why the power compander
works well for all distributions.

Proposition 29. Let single-symbol density p be the marginal probability of one symbol on any symmetric
probability distribution W over K symbols. For the power compander f(x) = xs where s ≤ 1

2 ,

L̂(p, f) ≤ 1

K

1

24
s−2K2s (C.2)

and for any symmetric prior W ,

L̂K(W,xs) ≤ 1

24
s−2K2s . (C.3)

Optimizing over s gives

L̂K(W,xs) ≤ e2

24
(logK)2 (C.4)

Proof. Since f(x) = xs we have that f ′(x) = sxs−1. Using Theorem 17, this gives

L̂(p, f) =
1

24
s−2

∫ 1

0

x1−2sp(x)dx =
1

24
s−2EX∼p[X1−2s] . (C.5)
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Figure C.1: Plots varying compander power while testing different α (Dirichlet parameter), K (alphabet
size) and N (number of levels or granularity). Plots show logarithm of KL divergence on y-axis. We tested
s at intervals of 0.05 over [0, 1] with addition values between [.10, .25] at intervals of .01

169



Figure C.2: Comparing the power compander used on word frequencies from different text to the power
compander on random distributions drawn with symmetric Dirichlet prior with different α. Alphabet size
K is chosen to match number of distinct words in the text and N = 28.
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Figure C.3: Plots varying the compander power for quantizing frequencies of k-mers. The data is for
chromosome 1. The plots range cover the range for k = 4, 5, 6, 8. Plotted against the KL divergence results
are plots for synthetic Dirichlet drawn distributions with the same number of symbols. We show also the
point corresponding to s = 1

logK with the larger dot.
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Figure C.4: Plots of synthetic distribution with different values of K. The triangle marks where s = 1
logK

occurs. This value of s seems to give the minimum KL divergence.

Figure C.5: Varying the compander power and the value of k (length of k-mers). For chromosomes 1 and
21.
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Note that the function x1−2s is increasing and also a concave function.
We want to find the worst-case prior distribution W = (p1, p2, ..., pK) over the simplex. The constraints

are that

∑

i

EXi∼pi [Xi] = 1 (C.6)

E(X1,...,XK)∼p

[∑

i

Xi

]
= 1 (C.7)

(another constraint is that values of p(x) must sum to one, but we give a weaker constraint here).
We want to choose W to maximize

∑

i

EXi∼pi [X
1−2r
i ] = E(X1,...,XK)∼W

[∑

i

X1−2s
i

]
(C.8)

By concavity, the maximum solution is given when X1 = · · · = XK . Therefore, the worst-case W is such
that

p1 = p2 = · · · = pK = p =
1

K
(C.9)

The density p = 1
K is a limit point of a continuous density which is of the form

p(x) =
1

2ε
on

[
1

K
− ε, 1

K
+ ε

]
. (C.10)

since we are restricting to continuous probability distribution (the cumulative distribution function is con-
tinuous).

Evaluating gives

L̂(p, f) =
1

24
s−2EX∼p[X1−2s] (C.11)

≤ 1

24
s−2

(
1

K

)1−2s

(C.12)

=
1

K

1

24
s−2K2s (C.13)

which shows (C.4). Multiplying by K gives L̂K(p, f).
Finding the s which minimizes 1

24s
−2K2s is equivalent to finding s which minimizes s logK − log s.

0 =
d

ds
s logK − log s = logK − 1

s
(C.14)

=⇒ s =
1

logK
(C.15)

We can plug this back into our equation, using the fact that elogK = K implies that K1/ logK = e.
Our final result is that using f(x) = x1/ logK gives a worst-case bound for any prior W is

L̂K(W, f) ≤ e2

24
(logK)2 (C.16)

The power compander turns out to give guarantees bounds on the value on L̂K(W, f) when f is chosen
so that s = 1/logK.
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C.3 Optimal Compander for One Value

As alluded to in Section 7.6.2, finding the worst-case density p(x) that maximizes
∫

(p(x)x−1)1/3dx leads to
an interesting corollary.

Corollary 8. The single-symbol density p which produces the largest value of minf L
†(p, f) (i.e. the

source p which is most difficult to quantize accurately with a compander) is

p(x) =
1

2
x−1/2 . (C.17)

and f(x) = x1/2 is the optimal compander. Then

L̂(p, f) =
1

24

(∫ 1

0

(
p(x)x−1

)1/3
dx

)3

=
1

24
(22/3)3 =

1

6
(C.18)

Proof. The optimal compander f satisfies f ′(x) ∝ (p(x)x−1)1/3 ∝ x−1/2. Normalizing gives f(x) = x1/2.

Remark 11. Furthermore, on 42 (the simplex on 3 variables), the Dirichlet prior Dir3(1/2) has p(x) =
1
2x
−1/2 as the marginal on all three symbols, making it automatically the most difficult prior to compand on

42.

While this is interesting, we note that EX∼p[X] = 1/3 when p(x) = 1
2x
−1/2. This means that for large-

alphabet distributions (over the simplex 4K−1 where K is large), the prior cannot have this p over many
different symbols since the sum of the values must be equal to 1.

In [90], the authors computed the optimal quantization function for a binary alphabet using worst-case
KL divergence loss. When this quantization function is described as a compander function f , then

f(x) =
cos−1 (1− 2x)

2π
. (C.19)

This function does not generalize well to more than 2 symbols, however it turns how that if we were to use it
anyways and test it on our experimental dataset, its average KL loss is very similar to when the compander
function is x1/2. This makes sense since for small x, the functions x1/2 and (C.19) look similar when scaled
by some multiplicative constant.

C.4 Beta Companders for Symmetric Dirichlet Priors

In this section, we want to derive the optimal compander fp for symmetric Dirichlet distributions. The
following fact is necessary:

Fact 19. For x ∼ Dir(α1, . . . , αK), the marginal distribution on xk is xk ∼ Beta(αk, βk), where βk =∑
j 6=k αk (of course, the xk are not independent). When the prior is symmetric with parameter α, we

get that all xk are distributed according to Beta(α, (K − 1)α).

As a corollary to Theorem 17 and Fact 19, we get the following:

Corollary 9. When x ∼ DirK(α), let p(x) be the associated single-symbol density (same for all elements
due to symmetry). The optimal compander for p satisfies

f ′(x) = B
(α+ 1

3
,

(K − 1)α+ 2

3

)−1

x(α−2)/3(1− x)((K−1)α−1)/3 (C.20)

where B(a, b) is the Beta function. Therefore, f(x) is the normalized incomplete Beta function Ix((α+
1)/3, ((K − 1)α+ 2)/3).
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Figure C.6: Comparing the beta compander and the EDI method.

Then

L̂(p, f) =
1

2
B
(α+ 1

3
,

(K − 1)α+ 2

3

)3

B(α, (K − 1)α)−1 (C.21)

Remark 12. Since (C.21) scales with K−1, this means that L̂K(DirK(α), f) and LK(DirK(α), f) are con-
stants with respect to K. This is consistent with what we get with the EDI compander (6.4).

We will call this compander the beta compander since the companding function is defined as an incomplete
beta function. The beta compander is most similar to the EDI method, which also has LK(DirK(α), f) which
is constant with K. The beta compander naturally performs better than the EDI method since this beta
compander is optimized to do so (the EDI method is primarily a tool for deriving bounds). We can see the
comparison in Figure C.6, where the beta compander is better than the EDI method by a constant amount
for all K.

The beta compander is not the easiest algorithm to implement however. It is necessary to compute an
incomplete beta function in order to find the compander function f . (In contrast, applying the minimax
compander does not require an integral step.)
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C.5 Analysis of Truncate Companding, µ-Law and A-Law

Using Theorem 16, we can look at how various companding functions f(x) perform with different p(x). In
this section, we want to assess how well the truncate compander (this is when f(x) = x; we can also call it
the identity compander) and the µ-law and A-law companders work.

Definitions of µ-law and A-law The companding function for µ-law for −1 ≤ x ≤ 1 is

f(x) = sgn(x)
log(1 + µ|x|)

log(1 + µ)
(C.22)

where µ is generally set to 255.
The companding function for A-law is

f(x) = sgn(x)

{
A|x|

1+logA if |x| < 1
A

1+log(A|x|)
1+logA if 1

A ≤ |x| ≤ 1
(C.23)

where A is generally set to 87.6.

Infinite Asymptotic Normalized Expected Divgerence Starting for f the truncate (identity) com-
pander, we have

L̂(p, f) =
1

24

∫ 1

0

p(x)

xf ′(x)
dx =

∫ 1

0

p(x)

x
dx . (C.24)

If the value p(x) does not go to zero sufficiently quickly at x = 0, then the integral will not be finite. This is
the major problem with the truncate compander. Distributions with marginals that have mass at zero will
not quantize well.

The same thing occurs with the µ-law and A-law companders. For f which is the compander function
for the µ-law,

L̂(p, f) =
1

24

∫ 1

0

p(x)

xf ′(x)
dx (C.25)

=
1

24

∫ 1

0

(
log(1 + µ)

µ

)2

p(x)
(1 + µx)2

x
dx (C.26)

=
1

24

(
log(1 + µ)

µ

)2 ∫ 1

0

p(x)

(
1

x
+ 2µ+ µ2x

)
dx . (C.27)

Similarly if we let f be the A-law, we have

L̂(p, f) =
1

24

∫ 1

0

p(x)

xf ′(x)
dx (C.28)

=
1

24

∫ 1/A

0

(
1 + logA

A

)2
p(x)

x
dx+

1

24

∫ 1

1/A

(1 + logA)
2
x2 p(x)

x
dx . (C.29)

Both the µ-law and A-law have a problematic term 1/x which needs to be integrated. This will cause
the integral to be infinite if limx→0 p(x) is not 0 (or if it does not go to zero quickly enough.)

For instance, the value of L̂(p, f) is infinite for these companders if

p(x) =
Γ(Kα)

Γ(α)Γ((K − 1)α)
xα−1(1− x)(K−1)α−1 . (C.30)

for α ≤ 1. This p(x) has a beta distribution, which is the marginal distribution which occurs for one symbol
under a probability which is generated from a symmetric Dirichlet prior with alphabet size K and parameter
α.
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If α ≤ 1, then L̂(p, f) is infinite; however, if α > 1, then L̂(p, f) can be finite if we adjust the value of
µ or A. For the rest of the analysis, we will focus on the µ-law (since the A-law is similar).Suppose α > 1,
then with f as the compander function from the µ-law, we have

L̂(p, f) =
1

24

(
log(1 + µ)

µ

)2(∫ 1

0

Γ(Kα)

Γ(α)Γ((K − 1)α)
xα−2(1− x)(K−1)α−1dx+ 2µ+ µ2E[x]

)
(C.31)

=
1

24

(
log(1 + µ)

µ

)2(
Kα− 1

α− 1
+ 2µ+ µ2 1

K

)
(C.32)

=
1

24
(log(1 + µ))

2

(
Kα− 1

µ2(α− 1)
+ 2

1

µ
+

1

K

)
. (C.33)

For such a case, we can set µ = K (this is roughly optimal up to constant). This gives that L̂(p, f) ≈
1
K (logK)2. This is the distortion for one symbol. For K symbols, the distortion is (logK)2. This illustrates

that even for distributions p where the integral for L̂(p, f) is not infinite, there is still a need to optimize µ
in terms of K in order to get reasonable distortion.

Behavior of µ-Law with N Plots comparing the performance of the truncate, µ-law and A-law compan-
ders are in Figure C.7. We notice that though we computed L̂(p, f) is infinite for the µ-law, the behavior of
µ-law when µ = K resembles the behavior of the minimax compander even when testing on a the synthetic
distributions with α = 1 (the case which L̂(p, f) is infinite). The performance seems to only be off by a con-

stant as K increases. This is because L̂(p, f) being infinite comes into affect as N increases, not necessarily
as K increases.

In the case where the integral L̂(p, f) is infinite, the performance of the compander does not behave as
O(1/N2). However, it can still have a performance which is close to O(1/N2), like say O((logN)/N2). For
small values of N , this performance will not differ so much from O(1/N2). This is in fact what happens
with µ-law companding.

Starting at the beginning, we will create intervals I(n) according to the companding given by the µ-law.
Let yn be the midpoint of these intervals. Then, we have that the expected divergence is

EL̂(p, f,N) =

N∑

n=1

∫

I(n)

p(x)x log
x

yn
dx (C.34)

≤
N∑

n=1

∫

I(n)

p(x)
(x− yn)2

yn
dx (C.35)

(C.36)

We approximate that p(x) is uniform over each interval and is close to p(yn). The interval length is
approximated by 1/(Nf ′(yn)). Let δ = x− yn. This gives

EL̂(p, f,N) ≈
N∑

n=1

∫

I(n)

p(yn)
δ2

yn
dδ (C.37)

=

N∑

n=1

∫ 1
2

1
Nf′(yn)

− 1
2

1
Nf′(yn)

p(yn)
δ2

yn
dδ (C.38)

=

N∑

n=1

p(yn)
1

yn

1

24

1

N3(f ′(yn))3
(C.39)

(C.40)

We now will compute approximately what the values of yn are under the µ-law companding. We know
that the boundaries of the intervals, which we will express as b0, ..., bN are given as b0 = 1 and bj for j > 0
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Figure C.7: Plots comparing performance of the truncate, µ-law and A-law companders with standard values
for µ and A, and µ-law and A-law with K as the value for µ and A.
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can be expressed by

f(bj) =
log(1 + µbj)

log(1 + µ)
=

j

N
(C.41)

For small values of x, like say x ≤ 1/µ, we can use the approximation that log(1 + µx) ≈ µx. This gives
that

bj =
log(1 + µ)

µ

j

N
(C.42)

If we want to be more precise, we can try to bound bj precisely. We have for when bj ≤ 1
µ

log 2
µbj

log(1 + µ)
≤ log(1 + µbj)

log(1 + µ)
≤ µbj

log(1 + µ)
(C.43)

and hence we get that

log 2
log(1 + µ)

µ

j

N
≤ bj ≤

log(1 + µ)

µ

j

N
(C.44)

We can use this when j ≤ N
log(1+µ) .

When bj ≥ 1
µ (and µ is large, say µ > 1), we can use the approximation that

log(1 + µbj)

log(1 + µ)
≈ log(µx)

logµ
(C.45)

which gives

bj ≈ u1−j/N (C.46)

For the purposes of determining the right behavior, we can use that yn = bn. Under this assumption, we
have that

N∑

n=1

1

yn
≈

N
log(1+µ)∑

n=1

µ

log(1 + µ)

N

j
+

N∑

n= N
log(1+µ)

1

u1−j/N (C.47)

≤ µ

log(1 + µ)
N

N
log(1+µ)∑

n=1

1

j
+

N∑

n= N
log(1+µ)

1 (C.48)

≈ µ

log(1 + µ)
N log

(
N

log(1 + µ)

)
+

(
N − N

log(1 + µ)

)
(C.49)

(C.50)

We can see the N logN term appearing. The behavior will still need to depend on p(x). (As we showed
above, if p(x) corresponds to a symmetric Dirichlet with α > 1, we will get a behavior in O(1/N2).) For
symmetric Dirichlet with α = 1, we have

p(x) =
Kα− 1

α− 1
(1− x)(K−1)α−1 ≤ Kα− 1

α− 1
(C.51)

If we will treat p(x) as a uniform function, then L̂(p, f,N) scales as O((logN)/N2).

We can see from Figure C.8 that indeed the other companders where L̂(p, f) is finite have divergences
which are constant when multiplied by N2. However, the curve for the µ-law increasing as N increases.

Next, we will consider what is the worst-case p(x) that gets the largest performance in terns of N . Recall
the issue with the µ-law compander is that we are left with a term which depends only on the probability
p(x) and 1/yn.
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Figure C.8: Fixing the alphabet size and then varying the quantization levels N . The plot gives the average
KL divergences times N2 for synthetic distributions under uniform prior.
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Writing this slightly different than above, we have

L̂(p, f,N) =

N∑

n=1

∫

I(n)

p(x)

(
1

Nf ′(yn)

)2

yn
dx (C.52)

≈
N∑

n=1

(∫

I(n)

p(x)dx

)
1

yn

1

N2(g′(yn))2
(C.53)

(See above to note that 1/(g′(yn))2 contributes a constant term.)
Given a value of N , we want to pick a p(x) so that

∫

I(n)

p(x)dx ∝ 1

yn
(C.54)

We should then set
∫

I(n)

p(x)dx =
1

n

1

logN
(C.55)

which will match the values of yn for the smaller values (the larger values do affect the sum as much.)
Evaluating gives that

L̂(p, f,N) =

N∑

n=1

1

n

1

logN

log(1 + µ)

µ

N

n

1

N2(f ′(yn))2
= O

(
1

N logN

)
(C.56)

since
∑N
i=1

1
n2 is finite.

C.6 Analysis of Minimax Companding Constant

Determining bounds on cK If aK , bK ≥ 0, then p(x) is well-behaved (and bigger than 0) and we are
done. Now we set

aK = 4b−2
K − aK (C.57)

We must meet the condition that

EX∼p[X] =

∫ 1

0

x
(
aKx

1/3 + bKx
4/3
)−3/2

dx (C.58)

=
−2

bK
√
aK + bK

+
2 sinh−1

(√
bK
aK

)

b
3/2
K

(C.59)

The constraint that
∫ 1

0
p(x) dx = 1 requires that aK

√
aK + bK = 2. We can use this to get

EX∼p[X] =
−aK
bK

+
aK
√

aK
bK

+ 1 sinh−1
(√

bK
aK

)

bK
(C.60)

=
−1

r
+

√
1
r + 1 sinh−1 (

√
r)

r
(C.61)

=
−1

r
+

√
1
r + 1 log

(√
r +
√
r + 1

)

r
(C.62)
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where we use r = bK/aK . We will find upper and lower bounds in order to approximate what r should be.

EX∼p[X] ≤ 1

2

log r

r
(C.63)

so long as r > 3. If we choose r = cKK logK and set cK = .75, then

EX∼p[X] ≤ 1

2

log(cKK logK)

cKK logK
≤ 1

2cKK
+

log logK

2cKK logK
+

log cK
2cKK logK

≤ 1

K
(C.64)

so long as K > 4. We also have

EX∼p[X] ≥ 1

3

log r

r
(C.65)

for all r. If we choose r = cKK logK and set cK = .25, then

EX∼p[X] ≥ 1

3

log(cKK logK)

cKK logK
≥ 1

K
(C.66)

so long as K > 24.
Changing the value of cK changes the value of EX∼p[X] continuously. Hence, for each K > 24, there

exists a cK so that if r = cKK logK, then

EX∼p[X] =
1

K
. (C.67)

Limiting value of cK

Lemma 24. In the limit, cK → 1/2.

Proof. We start with r = bK
aK

= cKK logK, and we need to meet the condition that

−1

r
+

√
1
r + 1 log

(√
r +
√
r + 1

)

r
=

1

K
. (C.68)

Substituting we get

−1

cKK logK
+

√
1

cKK logK + 1 log
(√
cKK logK +

√
cKK logK + 1

)

cKK logK
=

1

K
(C.69)

−1

logK
+

√
1

cKK logK + 1 log
(√
cKK logK +

√
cKK logK + 1

)

logK
= cK (C.70)

(C.71)

Let c = limK→∞ cK . Since cK is bounded, we know that limK→∞ cKK logK → ∞ since cK is bounded
above by 3/4.

c = lim
K→∞

−1

logK
+

√
1

cKK logK + 1 log
(√
cKK logK +

√
cKK logK + 1

)

logK
(C.72)

= 0 + 1 lim
K→∞

log
(
2
√
cKK logK

)

logK
(C.73)

= lim
K→∞

log 2 + 1
2 log cK + 1

2 logK + 1
2 log logK

logK
(C.74)

=
1

2
(C.75)

182



Bibliography

[1] T.M. Cover and J.A. Thomas, Elements of Information Theory (Wiley Series in Telecommunications
and Signal Processing), Wiley-Interscience, USA, 2006.

[2] Jayadev Acharya, Hirakendu Das, Ashkan Jafarpour, Alon Orlitsky, and Ananda Theertha Suresh,
“Tight bounds for universal compression of large alphabets,” in 2013 IEEE International Symposium
on Information Theory, 2013, pp. 2875–2879.

[3] Anuran Makur, “Coding theorems for noisy permutation channels,” IEEE Transactions on Information
Theory, vol. 66, no. 11, pp. 672–6748, Nov 2020.

[4] V. M. Tikhomirov A. N. Kolmogorov, “ε-entropy and ε-capacity of sets in function spaces,” Uspekhi
Mat. Nauk, vol. 14, no. 2(86), pp. 3–86, 1959.

[5] D. Donoho, “Wald lecture I: Counting bits with Kolmogorov and Shannon,” 2000.

[6] Y. Yang and A. Barron, “Information-theoretic determination of minimax rates of convergence,” The
Annals of Statistics, vol. 27, no. 5, pp. 1564–1599, 1999.

[7] P.A. Chou, M. Effros, and R.M. Gray, “A vector quantization approach to universal noiseless coding
and quantization,” IEEE Transactions on Information Theory, vol. 42, no. 4, pp. 1109–1138, 1996.

[8] Yuriy A. Reznik, “An algorithm for quantization of discrete probability distributions,” in 2011 Data
Compression Conference, 2011, pp. 333–342.

[9] I. Csiszar and Z. Talata, “Context tree estimation for not necessarily finite memory processes, via BIC
and MDL,” IEEE Transactions on Information Theory, vol. 52, no. 3, pp. 1007–1016, March 2006.

[10] W. Rudin, Principles of Mathematical Analysis, International series in pure and applied mathematics.
McGraw-Hill, 1976.

[11] Qun Xie and A.R. Barron, “Asymptotic minimax regret for data compression, gambling, and predic-
tion,” IEEE Transactions on Information Theory, vol. 46, no. 2, pp. 431–445, 2000.

[12] N. Merhav and M. Feder, “Universal prediction,” IEEE Transactions on Information Theory, vol. 44,
no. 6, pp. 2124–2147, 1998.

[13] J. Rissanen, “Fisher information and stochastic complexity,” IEEE Transactions on Information Theory,
vol. 42, no. 1, pp. 40–47, 1996.

[14] AN Kolmogorov, “Three approaches to the definition of notion ?quantity of information?,” The Selectas,
vol. 3, 1965.

[15] B.M. Fitingof, “Optimal coding in the case of unknown and changing message statistics,” Problems
Inform. Transmission, vol. 2, pp. 1–7, 1966.

[16] B.M. Fitingof, “The compression of discrete information,” Problems Inform. Transmission, vol. 3, pp.
28–36, 1967.

183



[17] L. Davisson, “Universal noiseless coding,” IEEE Transactions on Information Theory, vol. 19, no. 6,
pp. 783–795, 1973.

[18] R. Rice and J. Plaunt, “Adaptive variable-length coding for efficient compression of spacecraft television
data,” IEEE Transactions on Communication Technology, vol. 19, no. 6, pp. 889–897, 1971.

[19] R. Krichevsky and V. Trofimov, “The performance of universal encoding,” IEEE Transactions on
Information Theory, vol. 27, no. 2, pp. 199–207, 1981.

[20] B.S. Clarke and A.R. Barron, “Information-theoretic asymptotics of bayes methods,” IEEE Transac-
tions on Information Theory, vol. 36, no. 3, pp. 453–471, 1990.

[21] Bertrand S. Clarke and Andrew R. Barron, “Jeffreys’ prior is asymptotically least favorable under
entropy risk,” Journal of Statistical Planning and Inference, vol. 41, no. 1, pp. 37–60, 1994.

[22] Q. Xie and A. Barron, “Minimax redundancy for the class of memoryless sources,” IEEE Transactions
on Information Theory, vol. 43, no. 2, pp. 646–657, 1997.

[23] David Haussler and Manfred Opper, “Mutual information, metric entropy and cumulative relative
entropy risk,” The Annals of Statistics, vol. 25, no. 6, pp. 2451–2492, 1997.

[24] J. Kieffer, “A unified approach to weak universal source coding,” IEEE Transactions on Information
Theory, vol. 24, no. 6, pp. 674–682, 1978.

[25] A. Orlitsky and N.P. Santhanam, “Speaking of infinity [i.i.d. strings],” IEEE Transactions on Infor-
mation Theory, vol. 50, no. 10, pp. 2215–2230, 2004.

[26] Y. Shtarkov, T. Tjalkens, and F. Willems, “Multialphabet universal coding of memoryless sources,”
Problems of Information Transmission, vol. 31, pp. 114–127, 1995.

[27] Y. Shtarkov, “Universal sequential coding of single messages,” Probl. Peredachi Inf., vol. 23, pp. 3–17,
1987.

[28] M. Drmota and W. Szpankowski, “Precise minimax redundancy and regret,” IEEE Transactions on
Information Theory, vol. 50, no. 11, pp. 2686–2707, 2004.

[29] P. Jacquet and W. Szpankowski, “Markov types and minimax redundancy for markov sources,” IEEE
Transactions on Information Theory, vol. 50, no. 7, pp. 1393–1402, 2004.

[30] Jayadev Acharya, Hirakendu Das, and Alon Orlitsky, “Tight bounds on profile redundancy and dis-
tinguishability,” in Advances in Neural Information Processing Systems, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. 2012, vol. 25, Curran Associates, Inc.

[31] Ulf Grenander, “On the theory of mortality measurement,” Scandinavian Actuarial Journal, vol. 1956,
no. 2, pp. 125–153, 1956.

[32] J. Acharya, H. Das, A. Jafarpour, A. Orlitsky, and A. T. Suresh, “Tight bounds for universal com-
pression of large alphabets,” in 2013 IEEE International Symposium on Information Theory, 2013, pp.
2875–2879.

[33] A. J. Stam, “Distance between sampling with and without replacement,” Statistica Neerlandica, vol.
32, pp. 81–91, 1978.

[34] P. Diaconis and D. Freedman, “Finite exchangeable sequences,” The Annals of Probability, vol. 8, no.
4, pp. 745–764, 1980.

[35] John MacLaren Walsh, Steven Weber, and Ciira wa Maina, “Optimal rate delay tradeoffs for multipath
routed and network coded networks,” in 2008 IEEE International Symposium on Information Theory,
2008, pp. 682–686.

184



[36] Mladen Kovacevic and Dejan Vukobratovic, “Subset codes for packet networks,” IEEE Communications
Letters, vol. 17, no. 4, pp. 729–732, Apr 2013.

[37] Mladen Kovacevic and Dejan Vukobratovic, “Perfect codes in the discrete simplex,” Designs, Codes
and Cryptography, vol. 75, no. 1, pp. 81–95, Nov 2013.

[38] S. M. Hossein Tabatabaei Yazdi, Han Mao Kiah, Eva Garcia-Ruiz, Jian Ma, Huimin Zhao, and Olgica
Milenkovic, “DNA-based storage: Trends and methods,” IEEE Transactions on Molecular, Biological
and Multi-Scale Communications, vol. 1, no. 3, pp. 230–248, 2015.

[39] Yaniv Erlich and Dina Zielinski, “DNA fountain enables a robust and efficient storage architecture,”
bioRxiv, 2016.

[40] Reinhard Heckel, Ilan Shomorony, Kannan Ramchandran, and David N. C. Tse, “Fundamental limits
of DNA storage systems,” in 2017 IEEE International Symposium on Information Theory (ISIT), 2017,
pp. 3130–3134.

[41] Mladen Kovacevic and Vincent Y. F. Tan, “Codes in the space of multisets-coding for permutation
channels with impairments,” IEEE Transactions on Information Theory, vol. 64, no. 7, pp. 5156–5169,
Jul 2018.

[42] Ilan Shomorony and Reinhard Heckel, “Capacity results for the noisy shuffling channel,” in 2019 IEEE
International Symposium on Information Theory (ISIT), 2019, pp. 762–766.

[43] Y. Polyanskiy and Y. Wu, “Lecture notes on information theory,” MIT (6.441), UIUC (ECE 563),
2013-2016.

[44] K. Marton, “A simple proof of the blowing-up lemma (corresp.),” IEEE Transactions on Information
Theory, vol. 32, no. 3, pp. 445–446, 1986.

[45] Herbert Robbins, “A remark on stirling’s formula,” The American Mathematical Monthly, vol. 62, no.
1, pp. 26–29, 1955.

[46] V.V. Petrov, Sums of Independent Random Variables, Ergebnisse der Mathematik und ihrer Grenzge-
biete. 2. Folge. Springer Berlin Heidelberg, 2012.

[47] John Duchi, “Lecture notes for statistics 311/electrical engineering 377,” Stanford (Statistics 311/EE
377), 2021.

[48] Frantisek Matus, “Urns and entropies revisited,” in 2017 IEEE International Symposium on Information
Theory (ISIT), 2017, pp. 1451–1454.

[49] Roman Vershynin, High-Dimensional Probability: An Introduction with Applications in Data Science,
Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2018.

[50] Terrance Tao, “254a, notes 2: The central limit theorem,” Jan 2010.

[51] D. Haussler and A. Barron, “How well do Bayes methods work for on-line prediction of ±1 values?,” in
In Proceedings of the Third NEC Symposium on Computation and Cognition. SIAM, 1992, pp. 74–100.

[52] T.S. Ferguson, “A Bayesian analysis of some nonparametric problems,” The Annals of Statistics, vol.
1, no. 2, pp. 209–230, 1973.

[53] D. Blei, A. Ng, and M. Jordan, “Latent Dirichlet allocation,” Journal of Machine Learning Research,
vol. 3, pp. 993?1022, January 2003.

[54] H. Steck and T. Jaakkola, “On the Dirichlet prior and Bayesian regularization,” in Proceedings of the
15th International Conference on Neural Information Processing Systems, Cambridge, MA, USA, 2002,
NIPS’02, p. 713?720, MIT Press.

185



[55] S. Schober, “Some worst-case bounds for Bayesian estimators of discrete distributions,” in 2013 IEEE
International Symposium on Information Theory, 2013, pp. 2194–2198.

[56] S. Graf and H. Luschgy, Foundations of Quantization for Probability Distributions, Lecture Notes in
Mathematics. Springer Berlin Heidelberg, 2007.

[57] K. Varshney and L. Varshney, “Quantization of prior probabilities for hypothesis testing,” IEEE
Transactions on Signal Processing, vol. 56, no. 10, pp. 4553–4562, 2008.

[58] Y. Zhu and J. Lafferty, “Quantized estimation of Gaussian sequence models in euclidean balls,” 2014.

[59] Y. Zhu and J. Lafferty, “Quantized minimax estimation over Sobolev ellipsoids,” Information and
Inference: A Journal of the IMA, vol. 7, no. 1, pp. 31–82, 06 2017.

[60] J. Rissanen, “Stochastic complexity and modeling,” The Annals of Statistics, vol. 14, no. 3, pp.
1080–1100, 1986.

[61] B. Clarke, “Asymptotic cumulative risk and Bayes risk under entropy loss, with applications,” 1989.

[62] S.L. Fix, “Rate distortion functions for squared error distortion measures,” Proc. 16th Annu. Allerton
Conf. Commun., Contr., Comput., Oct. 1978.

[63] K. Rose, “A mapping approach to rate-distortion computation and analysis,” IEEE Transactions on
Information Theory, vol. 40, no. 6, pp. 1939–1952, 1994.

[64] K. Watanabe and S. Ikeda, “Rate-distortion function for gamma sources under absolute-log distortion
measure,” in 2013 IEEE International Symposium on Information Theory, 2013, pp. 2557–2561.

[65] T. Berger, Rate Distortion Theory: Mathematical Basis for Data Compression, Prentice-Hall, Engle-
wood Cliffs, NJ, USA, 1971.

[66] T. Linder and R. Zamir, “On the asymptotic tightness of the Shannon lower bound,” IEEE Transactions
on Information Theory, vol. 40, no. 6, pp. 2026–2031, 1994.

[67] T. Koch, “The Shannon lower bound is asymptotically tight,” IEEE Transactions on Information
Theory, vol. 62, no. 11, pp. 6155–6161, 2016.

[68] T. Linder and R. Zamir, “High-resolution source coding for non-difference distortion measures: the
rate-distortion function,” IEEE Transactions on Information Theory, vol. 45, no. 2, pp. 533–547, 1999.

[69] R. Blahut, “Computation of channel capacity and rate-distortion functions,” IEEE Transactions on
Information Theory, vol. 18, no. 4, pp. 460–473, 1972.

[70] H. Gish and J. Pierce, “Asymptotically efficient quantizing,” IEEE Transactions on Information Theory,
vol. 14, no. 5, pp. 676–683, 1968.

[71] A. Buzo, F. Kuhlmann, and C. Rivera, “Rate-distortion bounds for quotient-based distortions with
application to Itakura-Saito distortion measures,” IEEE Transactions on Information Theory, vol. 32,
no. 2, pp. 141–147, 1986.

[72] H. Tan and K. Yao, “Evaluation of rate-distortion functions for a class of independent identically
distributed sources under an absolute-magnitude criterion,” IEEE Transactions on Information Theory,
vol. 21, no. 1, pp. 59–64, 1975.

[73] J. Rissanen, “Universal coding, information, prediction, and estimation,” Information Theory, IEEE
Transactions on, vol. 30, pp. 629 – 636, 08 1984.

[74] A. Barron, J. Rissanen, and B. Yu, “The minimum description length principle in coding and modeling,”
IEEE Transactions on Information Theory, vol. 44, no. 6, pp. 2743–2760, 1998.

[75] W. R. Bennett, “Spectra of quantized signals,” The Bell System Technical Journal, vol. 27, no. 3, pp.
446–472, 1948.

186



[76] P.F. Panter and W. Dite, “Quantization distortion in pulse-count modulation with nonuniform spacing
of levels,” Proceedings of the IRE, vol. 39, no. 1, pp. 44–48, 1951.

[77] P. Zador, “Asymptotic quantization error of continuous signals and the quantization dimension,” IEEE
Transactions on Information Theory, vol. 28, no. 2, pp. 139–149, 1982.

[78] A. Gersho, “Asymptotically optimal block quantization,” IEEE Transactions on Information Theory,
vol. 25, no. 4, pp. 373–380, 1979.

[79] Michele Lewis and SC MTSA, “A-law and mu-law companding implementations using the tms320c54x,”
1997.

[80] Bernard Smith, “Instantaneous companding of quantized signals,” The Bell System Technical Journal,
vol. 36, no. 3, pp. 653–710, 1957.

[81] Noam Slonim and Naftali Tishby, “Agglomerative information bottleneck,” in Proceedings of the
12th International Conference on Neural Information Processing Systems, Cambridge, MA, USA, 1999,
NIPS’99, p. 617?623, MIT Press.

[82] Naftali Tishby, Fernando C Pereira, and William Bialek, “The information bottleneck method,” arXiv
preprint physics/0004057, 2000.

[83] Fernando Pereira, Naftali Tishby, and Lillian Lee, “Distributional clustering of English words,” in
Proceedings of the ACL, 1993, pp. 183–190.

[84] Bin Jiang, Jian Pei, Yufei Tao, and Xuemin Lin, “Clustering uncertain data based on probability
distribution similarity,” IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 4, pp.
751–763, 2013.

[85] Jie Cao, Zhiang Wu, Junjie Wu, and Wenjie Liu, “Towards information-theoretic k-means clustering
for image indexing,” Signal Processing, vol. 93, no. 7, pp. 2026–2037, 2013.

[86] Inderjit Dhillon and Subramanyam Mallela, “A divisive information-theoretic feature clustering algo-
rithm for text classification,” Journal of machine learning research, vol. 3, pp. 1265?1287, 04 2003.

[87] Frank Nielsen, “Jeffreys centroids: A closed-form expression for positive histograms and a guaranteed
tight approximation for frequency histograms,” IEEE Signal Processing Letters, vol. 20, no. 7, pp.
657–660, 2013.

[88] R. Veldhuis, “The centroid of the symmetrical kullback-leibler distance,” IEEE Signal Processing
Letters, vol. 9, no. 3, pp. 96–99, 2002.

[89] Carl-Gustav Esseen, “On the remainder term in the central limit theorem,” Arkiv fr Matematik, vol.
8, no. 1, pp. 7–15, 1969.

[90] D. Rajwan and M. Feder, “Universal finite memory machines for coding binary sequences,” in Proceed-
ings DCC 2000. Data Compression Conference, 2000, pp. 113–122.

187


