
Visibility-Aware Motion Planning
by

Gustavo Nunes Goretkin
M. Eng. EECS, MIT (2016)

S.B. EECS and Mathematics, MIT (2013)

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

Massachusetts Institute of Technology

February 2022

© Gustavo Nunes Goretkin 2022. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or

hereafter created.

Author .
Department of Electrical Engineering and Computer Science

January 14, 2022

Certified by .
Leslie Pack Kaelbling

Professor of Computer Science and Engineering
Thesis Supervisor

Certified by .
Tomás Lozano-Pérez

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

1

Visibility-Aware Motion Planning

by Gustavo Nunes Goretkin
Submitted to the Department of Electrical Engineering and Computer Science on January 14, 2022, in

partial fulfillment of the requirements for the degree of Doctor of Philosophy

ABSTRACT

The motion planning problem, of deciding how to move to achieve a goal, is ubiquitous in robotics. In
many robotics applications, there is a map of the environment that is generally useful, but typically
outdated as it does not include information about unknown obstacles, such as clutter. This thesis
addresses the problem of planning for a robot with an onboard obstacle-detection sensor. The planning
objective is to remain safe with respect to unknown obstacles by guaranteeing that the robot will not
move into any region of the workspace before observing it.

Although much work has addressed a version of this problem in which the field of view of the sensor is
a sphere around the robot, we address robots with a limited field of view, which may arise from sensor
limitations or self-occlusions in the case of mobile manipulation robots. We provide a formal definition
of the problem, which we call Visibility-Aware Motion Planning (VAMP), and several solution methods
with different computational trade-offs. We demonstrate the behavior of these planning algorithms
in illustrative planar domains. The key to an efficient solution is to aggressively prune paths, while
ensuring that the overall search strategy is sound and complete.

We demonstrate that motion planning problems like VAMP benefit from a path-dependent formulation,
in which the state at a search node is represented implicitly by the path to that node. The straightforward
approach to computing the feasibility of a successor node in such a path-dependent formulation takes
time linear in the path length to the node, in contrast to a (possibly very large) constant time for a
more typical search formulation. For long-horizon plans, this linear-time computation for each node
becomes prohibitive. To improve upon this, we introduce the use of a fully persistent spatial data
structure (FPSDS). We apply a FPSDS to VAMP search, by using a nearest-neighbor data structure to
perform bounding-volume queries. We demonstrate an asymptotic and practical improvement in the
runtime of finding VAMP solutions in large domains. To the best of our knowledge, this is the first use
of a fully persistent data structure for accelerating motion planning.

Thesis Supervisor: Tomás Lozano-Pérez
Title: Professor of Computer Science and Engineering

Thesis Supervisor: Leslie Pack Kaelbling
Title: Professor of Computer Science and Engineering

2

Acknowledgements

It is overwhelming to consider all the individuals whose journeys have meaningfully intersected mine
during the course of this project, this degree, this graduate school experience, this most recent 40% of
my life, which I spent at MIT and in Cambridge, and this lifetime. I’ve left this difficult task to the very
end, and I’ll just have to aspire to do a decent job, because there are truly too many people to thank.

I would like to first and foremost thank my advisors Leslie and Tomás. In February 2010, I joined the
Learning and Intelligent Systems group as an undergraduate researcher, and now it’s finally time to
say goodbye. As if that wasn’t already a long time ago, Leslie was my freshman-year (September 2009!)
academic advisor, and I met Tomás that first semester as well. Their impressive commitment to doing
research and the time they dedicate to meeting with students is nothing short of incredible. I am lucky
to have had their mentorship. They have given me liberty to stumble and fall, and have stepped in when
I needed help getting back up. I am especially appreciative for their gentle recommendation to work
on the subject of this dissertation, a problem they encountered while conducting their own research. I
will miss their patience and encouragement and willingness to help when I was struggling.

Thanks to our group’s administrative assistant Teresa Cataldo for her cheerfulness and thorough work,
and to Professor Nick Roy for serving on the committee.

When I first joined the lab, I worked most closely with George Konidaris. He is the single person who
is most responsible for my having decided to pursue graduate school. I am grateful for his kind and
helpful mentorship during those early formative years.

Thank you to my fellow lab mates of LIS past, present, and future. I enjoyed the morning walks, Post-It
note shenanigans (eye’m watching you), dogs, escape rooms, surviving a virtual zombie apocalypse,
karaoke, video games, side projects, technical discussions, commiseration, and more. Thank you for
the memories, Alejandro Perez, Alex LaGrassa, Ariel Anders, Beomjoon Kim, Brian Axelrod, Caelan
Garrett, Caris Moses, Clément Gehring, Dylan Hadfield-Menell, Ferran Alet, Gilwoo Lee, Jenny Barry,
Lawson L.S. Wong, Patrick Barragán, Rachel Holladay, Rodrigo Gomes, Rohan Chitnis, Sam Davies,
Tom Silver, Yoonchang Sung, Zelda Marriet, Zhutian Yang, Zi Wang

I’d like to thank the undergraduate students with whom I’ve had the opportunity to work, Eric Chen,
and Hanxiang Ren, Silvia Knappe. Sathwik Karnik deserves special mention for tolerating me for
three years, ultimately leading to the data structure applications present in this dissertation.

I had the great privilege of being part of starting the American Sign Language and Deaf Culture club
while I was a graduate student. Thank you to Barbara Johnson and Kristina T. Johnson for their efforts
in organizing ASL classes and events. Nilma Dominque reminded me to cultivate my heritage, and
enriching my cultural experience on campus with Brazilian music and food, and Portuguese language.
Obrigado!

There were many benchmarks I was concerned with in grad school. I wanted to write faster, clearer,
shorter code, and publish many papers, and do internships, and be well-rounded, and have hobbies,
and so on. It has felt and continues to feel impossible at times to handle all these hopes, disappointments,
dreams, fears, existential crises, etc. I am humbled to have friends who believed in me when I did not,
and who kept me company especially in these recent months and years that have been particularly

3

challenging for personal and global reasons. To Ari, Caris, Clément, Diyang, Dorothy, Emily Wean,
Grace, Kamran, Makeita, Melissa, Nirmala (All these years later, I finally drank the castor oil.), Stephan,
Tharu & Rishi, and Emma and Xiaolu and others, thank you.

I cannot thank my family enough. For everything. To my parents Eleonora and Guilherme, for their
bold decision to immigrate when I was two years old, forever changing my life, for all the care and love,
and especially for amplifying my curiosity. To my brother Gui for being a role model, and teaching me
so much, and with such kindness. To my sister-in-law Laura for withholding her full celebration until
all aspects of the submission process of this document were completed. To my family here, there, and
everywhere, eu amo vocês.

Finally, no one has been as patient with me as Oscar. I don’t have
the words to describe the support he has given me. I am so lucky to
have met you, dear.

4

Contents

Contents 5

1 Introduction 11

1.1 The VAMP problem 11
1.2 Contributions . 14

Problem setting . 14
Related work . 15
Search approach . 15
Unifying related path search problems 16
Formulation . 16
Algorithms . 17
Data structures . 18
Summary . 18

2 Background 19

2.1 Planning approach to robot behavior 19
2.2 Related work . 21

Overview . 21
Motion Planning . 22
Coverage problems 22
Exploration problems 24
Navigation problems 24
Planning for perception 26

2.3 Assumptions . 26
Ball of visibility . 26
Safety criteria . 28
Observation model 28
Motion model . 28
Environment model 29
Search and execution strategies 29

3 Path Search 31

3.1 Introduction . 31
3.2 Pruning without affecting correctness 33
3.3 Generalizing pruning 33
3.4 Shortest paths . 33
3.5 Self-avoiding walks 34
3.6 Informative walks 34
3.7 Vertex visit graphs 35
3.8 Complexity of vertex visit graphs 37

Quadratic scaling of solution length 37

Polynomial-time feasibility checking for reversible
graphs . 37

NP-completeness of vertex visit graphs 37
3.9 Configuration path-dependent search 38

Algorithm . 39
Configuration path-dependent problems 39

4 Formulation and Algorithms 43

4.1 Formulation . 43
Formulation of subproblem 46

4.2 Algorithms for visibility-aware motion planning . . 46
Forward heuristic search in belief space 47
Reverse search . 49
Searches with aggressive pruning 50
Tree-visibility tour 51
Visibility preimage backchaining 53
Heuristic for exploration 54

4.3 Reformulation . 59
Pruning . 59
Constraint relaxation 60
Goal regression . 61

4.4 Complexity . 62
Complexity of problem class 62
Complexity of solution length 62
Complexity of algorithm 63

4.5 Experiments and planning results 64
4.6 Appendix: Geometry 65

Representing the sensing region 65
Visibility computations 66
Visibility constraint versus collision detection . . . 66
Representing convex polyhedra 67
Visible region by constructing shadow volumes . . 68
Constructing unseen swept region 68
Representing the visible region of a path 69
Discrete workspace 70
Post-processing to minimize views 72

4.7 Appendix: Extension to tactile sensing 73
Direct reduction to VAMP domains 74
Extension of safety constraint 74
Visual and tactile sensing 75
Temporal constraints and objectives 75

5 Data Structures for Efficient Planning 76

5.1 Introduction . 76
5.2 Traditional applications of spatial data structures . 76
5.3 Motion Planning Applications 78

Minimum Constraint Removal 78

6

Belief-Space Planning 79
Visibility-Aware Motion Planning 80

5.4 Fully Persistent Nearest-Neighbor Tree 80
Insertion . 81
Range Query . 82
Complexity Analysis 83
Comparison with Baseline 83

5.5 VAMP Problem Formulation 84
5.6 Relaxed VAMP Solution 85
5.7 Efficient Visibility Queries 86

Bounding Volumes 86
5.8 Experiments . 87

Experimental Results 88
5.9 Discussion . 89

6 Discussion 91

6.1 Execution . 91
6.2 Issues arising in replanning 91

Commitment . 91
6.3 Replanning . 92

7

List of Figures

1.1 Some possible sensed volumes with respect to robot
configuration. 11

1.2 Two views of the same robot configuration. The shaded
region cannot be seen by the head-mounted sensor in this
configuration. 11

1.3 In the HallwayEasy domain, a robot with narrow (30°)
field of view must steer carefully around a corner. . . . 13

1.4 In the HallwayHard domain, a robot with a wide field
of view, must enter the hallway camera-first, back out,
re-orient, and back in. 14

1.5 The TwoHallway domain with hand-generated configu-
ration subgoals, labeled 1–4. 14

1.6 An example minimum vertex visit graph 16
1.7 Comparison of a fully persistent and ephemeral data

structures. Circles represent states of the data structures,
and blue shapes represent data inserted into the data
structure. Traditionally, data structures are ephemeral,
meaning that updates are destructive. In a fully persistent
data structure, an update to the data structure generates
a new version, and also maintains the previous version.
The previous version is available both for querying and
for alternate updates. 18

2.1 A fundamental diagram that establishes the notion of
robot and not-robot (world, plant, environment). . . . 19

2.2 Robots that plan use some model, almost always with
less fidelity than reality, of themselves and the world. . 19

2.3 A common paradigm for designing robot behavior. This
architecture leaves room for the goal to be specified,
possibly by a higher-level system. 20

2.4 An environment in which there is no solution for a single
pursuer to catch an evader. 23

3.1 Two distinct walks (“N”and “S” shapes) with the same
start and end configurations, visiting the same configu-
rations along the way. 34

3.2 Each of the 6 informative paths on the (2, 2) lattice induces
a graph with edges labeled with subsets of vertices. . . 36

3.3 The same vertex visit graph can be induced by two infor-
mative paths. 36

3.4 The same vertex visit graph can be induced by two infor-
mative paths of the same length. 37

3.5 An example polynomial-time reduction from 3-SAT to
finding a shortest path on a vertex visit graph. 38

4.1 Illustration of violation region 𝑋. 46
4.2 Level sets and heatmap of field 𝐹 used to compute heuris-

tic for acquiring visibility of the white points in the region
surrounding (1, 2). 56

4.3 Behavior of visibility heuristic 56
4.4 Two levels of relaxed planning with a visibility goal. . 57
4.5 Difficult examples for the Vamp_Backchain algorithm. . 58
4.6 Domain illustrating worst-case (quadratic) scaling of so-

lution length with domain size. 63
4.7 Domain illustrating back-and-forth solution path in visibility-

based pursuit evasion. 64
4.8 Set difference for union of convex polyhedra represented

by half-spaces. 69
4.9 Some discretized swept volumes for a planar T-shaped

robot. 72
4.10 For cell 𝑡 to be visible from the center of cell 𝑠, the cell

below 𝑡 must be clear. 72
4.11 (a) Some possible sensed volumes with respect to robot

configuration (blue) and environment (gray). The orange
region can be covered with an unretractable cane. A few
configurations of a cane are shown in black. The yellow
region can be covered with a depth sensor (or retractable
cane). (b) A robot with vision (yellow) and bump (red)
sensing in a domain with start at s and goal at g. 74

5.1 Example vamp problem instance. In the domains we dis-
cuss, the viewcone (in yellow) is fixed relative to the
robot. 80

5.2 Example of part of a fully persistent tree with information
stored at each node. The red text at each node denotes
the changes from its parent node. The subsequence of
pointers – 𝑠1, 𝑠2, 𝑠3, and 𝑠4 – in the persistent tree nodes
is shown in the order of allocations in the memory pool.
Here, 𝑀 = 5. 81

5.3 Motivating example of a VAMP problem instance in which
computing the unseen swept region may be expensive.
The violation-free path requires the robot to look through
the glass wall into the hallway containing 𝑞𝑔𝑜𝑎𝑙 . The path
found from the relaxed vamp problem results in unseen
swept regions. 85

9

5.4 Trajectory [𝑞1 , 𝑞2 , 𝑞3 , 𝑞4]with swept region 𝑆(𝑞3 , 𝑞4) from
𝑞3 to 𝑞4. The viewcones 𝑉(𝑞) are shown with bounding
radius 𝑟𝑣𝑖𝑠 . For 𝑉(𝑞1), we show that the bounding ball
has center 𝑤𝑣,1. The swept region 𝑆(𝑞3 , 𝑞4) is shown with
a bounding ball B(𝑤𝑠,4 , 𝑟𝑠,4). 86

5.5 Experiment domains: (a) OneHallway, (b) Horseshoe-
Hallway, and (c) GlassHallway. 87

5.6 These plots show the results for the OneHallway and
HorseshoeHallway domains. The left column shows
the overall runtimes and total times spent in Find_Vis_-
Viol. The right column shows the memory storage (via
Base.summarysize) of the search trees. Discontinu-
ities in memory use as the length grows are attributed to
Julia data structure implementation details [90]. 89

5.7 These plots show similar statistics as shown in Figure 5.6
but for the GlassHallway domain. 89

6.1 In this environment, there are two walls that are detected
to have length 𝑎 and 𝑏. The walls continue beyond the
figure, possibly indefinitely. If both walls are infinitely
long, then there is no solution path from the initial to
goal configuration. 91

6.2 Illustration of replanning in an unknown environment. 94

List of Tables

2.1 Related motion planning problems. 23

3.1 The counts of informative paths for a few modest lattice
sizes. 35

4.1 Planning results across varying viewcones 65

5.1 Comparison of amortized time complexities. 83

(a)

(b)

(c)

(d)

(e)

Figure 1.1: Some possible sensed vol-
umes with respect to robot configu-
ration.

Figure 1.2: Two views of the same
robot configuration. The shaded re-
gion cannot be seen by the head-
mounted sensor in this configura-
tion.

1 Introduction

1.1 The VAMP problem

Consider a robot designer tasked with developing a mobile-manipulation
robot system that moves within an environment that contains obsta-
cles. Supposing a set of assumptions, which we postpone describing
for the sake of introduction, then a robot designer faces an algo-
rithmic problem: given some input data describing the robot and
environment, generate a path for the robot to follow. If the input
data includes an accurate-enough representation of the obstacles in
the environment, then the algorithmic problem is a traditional motion
planning problem. In addition to known obstacles, the environment
generally contains unknown obstacles — obstacles that are not rep-
resented in the input data — and in this setting, the robot must in
general incorporate sensing into its plan in order to guarantee that
it will not collide with any obstacles while it follows the planned
path to the goal.

In one extreme instance of this problem, the environment is entirely
unknown (and unchanging), and the best strategy might involve a
separate phase of exploring and building a map. If this cartography
exercise succeeds, then all obstacles are known obstacles, and the
setting becomes amenable to traditional motion planning.

We will focus on a different regime that arises in, e.g., the case
of a household robot. Many obstacles in the domain (e.g. walls,
countertops) are known, but there are other unknown temporary
obstacles (e.g., toys, trash cans, chairs). In this case, it is worthwhile
to plan a path to a target configuration, optimistically. This path must
avoid known obstacles, as is the case in traditional motion planning.
In addition, the path must take the robot’s sensing capability into
account. By executing the planned path, any region of work space
that the robot moves into will have been (optimistically observed
earlier in the path. Said differently, the robot never moves into a
region of space that it has not already observed and therefore verified
to be empty. Should the robot encounter an unknown (unexpected)
obstacle during the course of executing the plan, it can then make
a new plan that takes into account this new obstacle. This new
plan may incorporate additional sensing, avoid the obstacle, or
move it out of the way. We call this strategy “optimistic” because
the generated plans do not contain contingencies for the unknown
obstacles. Nonetheless, the strategy is safe because it ensures that

Traditional motion planning is a well-
studied problem that is simpler than
(i.e. subsumed by) the problem that
we focus on in this thesis. It is
nonetheless, in general, a challeng-
ing problem that continues to benefit
from research. [1]

the robot system will notice the need for a contingency should one
arise.

When we speak of sensing, we mean any robot-mounted ability to
gather information about the locations of obstacles in its neighbor-
hood. The sensor could be based on camera imaging, lidar, or even
the ability to reach out slowly with a hand and detect contact or
lack thereof (see 4.7). The key limitation of these sensing modalities
is occlusion; the sensor cannot report occupancy information if
there is an obstacle in the line of sight. Therefore, we name this
class of motion planning problems VAMP, for visibility-aware motion
planning.

If a robot’s sensors grant it visibility of a ball (a region in work
space) that completely includes the robot in all configurations, and
if the environment is static (unchanging), and the robot is quasi-
static (the robot can immediately stop in place) then the problem
of safe movement is simple. In such an instance of VAMP, any
path can be executed safely. That’s not to say that the robot system
need not monitor unexpected obstacles, but the problem can be
decoupled. No planning foresight is needed to ensure that paths
acquire perspectives to guarantee safety with respect to unknown
obstacles.

Figure 1.1 illustrates several sensor configurations for a non-articulated
planar mobile robot. Case (a) reflects the most common assumption
about sensing: that is, that the robot can perceive a ball in the work
space, and this ball is a superset of the robot; case (b) shows a narrow
view as might occur for a fixed vision sensors; case (c) shows a
wide field of view as might occur with some steerable sensors; case
(d) occurs for many humanoid robots with a camera mounted on
the head: although they can see a view cone in front of them, it is
occluded by the body and so there is a region of space immediately
in front of the robot that cannot be seen; and case (e) illustrates a
situation in which, for example, a humanoid is carrying a large box
in front of it, so its field of view is split into two narrow cones.

Figure 1.2 demonstrates a mobile-manipulation robot with a head-
mounted sensor; the robot is in a configuration in which its arms
cause self-occlusions. A robot designer might be tempted to assert
that the robot should just not navigate in such a precarious config-
uration; it should move its arms to the side, or perhaps it should
put down the object that is responsible for blocking its view of
the environment. However, the robot designer might reflect upon
the experience of carrying a large box, perhaps while taking some
stairs, to understand that there are important scenarios in which the

12

Figure 1.3: In the HallwayEasy do-
main, a robot with narrow (30°) field
of view must steer carefully around
a corner.

assertion is untenable. Misjudging the location of a stair step, or the
presence of a slippery or painful object (e.g. a LEGO brick!) can have
dire consequences. And so upon reflection, the designer remembers
adopting a conservative strategy involving moving slowly, of course,
but crucially also glancing past the box when and where possible.

There are many situations with less-than-perfect visibility. When
the limitation is anticipated, good design might overcome it in
practice. In a car, there are mirrors, headlights, windshield wipers,
and also rearview cameras, proximity sensors, and increasingly
sophisticated technology in the name of assisting or augmenting
the driver’s visibility. However, if, during a critical moment, the
windshield fogs up, or if the wipers are ineffective against ice or
a smudge, most drivers can mitigate the unfortunate situation by
peering out the driver-side window. With any luck, a driver never
experiences the need for such extreme improvisation, and driver’s
education and licensure does not directly prepare drivers in this way.
In this situation where it was not possible to anticipate or rectify the
limitations through design, it is the everyday experience of human
embodiment that enables a driver to improvise. We desire general
behavior from robots to cope in the face of limited visibility. Robot
systems should have the ability to perform deliberate motions to
acquire visibility.

For a large robot with a limited view that is navigating in a cluttered
environment, the two problems, 1. moving to the goal and 2. observ-
ing to guarantee safety, are generally inextricably linked. Figure 1.3
shows a plan for a robot with a narrow view cone (shown in darker
orange) to enter a hallway. The goal is depicted in the dashed outline.
The yellow shading indicates the region of work space that has been
seen by the plan. There is an initial visible region surrounding the
region occupied by the robot at the initial configuration, without
which there is no motion that would be safe. Note that the robot has
to rotate back and forth as it moves, and swing wide around the
corner, in order to guarantee safety. Figure 1.4 shows a robot with
a wider field of view that must enter a narrow hallway backwards.
Because it cannot turn around inside the hallway, it must first look
down the hallway then back out and turn around. Some situations
require fairly intricate solutions.

13

Figure 1.4: In the HallwayHard do-
main, a robot with a wide field of
view, must enter the hallway camera-
first, back out, re-orient, and back in.

0 1 2 3

0

1

2

3

4

5

6

12

3

4

Figure 1.5: The TwoHallway domain
with hand-generated configuration
subgoals, labeled 1–4.

Figure 1.5 shows a particularly difficult environment, in which the
robot must enter one hallway to look through a narrow opening to
gain visibility of a second hallway before entering that hallway. The
figure denotes some key configurations. The goal configuration is
marked 4. When the robot is at 3, it cannot continue to acquire full
visibility of the goal configuration, due to e.g. a configuration-space
obstacle that allows the robot to enter backwards only (which is
possible to construct in a 3D work space). Alternatively, “fog” (an
occluder but not a collider) may block. In either case, to make the
goal configuration visible, the robot must be at 2 and 3. Finally, to
make 2 visible, the robot must be at 1. The overall solution path for
this domain may need to visit the same configuration multiple times,
but these four subgoals partition the solution path into subpaths
that do not revisit the same configuration. In Chapter 4 we discuss
an algorithm that is incomplete (there are VAMP problems that they
cannot solve, despite the existence of a solution). This algorithm can
plan efficiently to visit these subgoals in order, if they are provided.
This example illustrates that VAMP problems can have both short-
range dependencies (which are relatively easy to handle), but also
long-range dependencies.

1.2 Contributions

Problem setting

Though they may in general be interleaved, we distinguish between
“planning” and “execution”. We assume that the robot knows a map
in advance, e.g. a floor plan of a building. In other words, this map
representation is available during the planning computation. This
map is assumed to be accurate in the sense that the obstacles it
contains are definitely present in the world. However, we wish to
guarantee the robot’s safety with respect to additional obstacles
(furniture, trash, etc.) that may also be present in the world, but not
in the map. We take for granted that it is not viable to model these
additional obstacles ahead of time, and that information about these
obstacles is first made available to the robot during the course of
executing a plan. Even though we do not assume the environment
during execution to match the environment during planning, we do
assume in this work that the environment is static.

14

An example of a search algorithm
that keeps only the lowest-cost path
is Bellman-Ford.
For some search strategies, keeping
only the first path to a configura-
tion guarantees a shortest path to ev-
ery configuration, e.g. Breadth-First
Search, or A∗with a consistent heuris-
tic. These search strategies are cor-
rect and complete if there are no
edges that can decrease the total cost
(e.g. negative-weight edges)
A configuration is not necessarily a
(search) state.

A “belief state” is almost always a
probability distribution over some
underlying states. A more general
term is “information state”, which
we discuss in Section 2.2.

Related work

There are many problems in robotics that are related to ours, either
due to similarity of solution approaches, or due to dealing with
environment uncertainty and visibility. We address these relations,
and clarify differences. For example, there is considerable work in
structuring the planning computation so that computation can be
re-used in the event of re-planning. The D∗ algorithm addresses
replanning due to unknown obstacles [2], however this category of
work addresses problem settings where there is a ball of visibility.

Search approach

We rely on what we call a path-dependent formulation. The problem
of finding a shortest collision-free path does not benefit from such a
formulation because we can represent a state as a configuration. In
this case, the search procedure does not need to maintain multiple
paths to a particular robot configuration. Instead, the search can
keep only the path with the lowest cost. Alternatively, the search can
keep only the first path found to a particular robot configuration.
Path-dependent search problems require a search strategy that can
maintain multiple paths to each reached configuration. One solution
is to simply perform a search over all paths: the search state is
the path, not the configuration. In this case, it is not necessary to
keep backpointers to a node’s predecessors — that information is
available explicitly in the search state. In many problems, however,
there is a short description that captures sufficient information about
the path. We call this a path summary. In this case, it is only necessary
to consider distinct path summaries to a given configuration, which
greatly reduces the number of paths that must be considered. This
notion of a path summary, with respect to a path, is analogous to
the notion of “belief state”, with respect to a sequence of actions
and observations in the POMDP formulation. For vamp, the path
summary is exactly a region of work space that has been previously
observed. Straightforward application of forward search to VAMP
using full visibility as the path summary, even with very aggressive
pruning and heuristics, is only feasible (in terms of computation)
for impractically small domains as shown in Section 4.2. In practice,
we must rely on backwards search, and sort of “counterfactual”
solutions that relax constraints.

15

1 2

1

2

3

Figure 1.6: The minimum vertex visit
graph corresponding to the path [(1,
1), (1, 2), (2, 2), (1, 2), (1, 1), (2, 1), (2,
2), (1, 2), (1, 3), (1, 2), (2, 2), (2, 3)]

Each arc is labeled with the set of
vertices that must be visited before
traversing the arc.

Unifying related path search problems

The state-space search formulation of planning unifies many prob-
lems that one may encounter in developing robot algorithms. Our
formulation of VAMP as a problem, and our formulation of algo-
rithms for solving VAMP problems makes use of standard concepts
such as pruning search nodes based on a domination criterion, and
pruning even more aggressively to search over only a subset of
possible solutions. Though these concepts are standard, we take
the opportunity to define them carefully in Chapter 3. We intro-
duce an abstraction that represents some features of VAMP we call
vertex-visit constrained graphs (see Figure 1.6). When appropriate,
we describe concepts in this abstract and digestible setting.

In these terms, we explain several search problems such as Risk-
Aware Motion Planning [3], Minimum-Constraint Removal [4],
Minimum-Risk (Motion) Planning[5], Visibility-Based Pursuit Eva-
sion [6], Minimum Swept-Volume Motion Planning, and Belief-Space
Planning [7].

Formulation

The planners we present for VAMP are used in a “trust but verify”
replanning framework, in which we assume, optimistically, for the
purposes of planning, that the obstacles in our current map are,
in fact, the only obstacles. This assumption makes it worthwhile
to try to plan a complete path to the goal. However, because we
are not certain that these are the only obstacles and because we
wish to guarantee the robot’s safety, we will seek a visibility-aware
path to the goal, in which the robot never moves into space that
has not been observed (and therefore verified) to be free during
some previous part of its path. The robot could then execute this
path until it observes an obstacle that invalidates the path. At that
point, the execution program would insert that obstacle into its map
and re-plan. The focus of this thesis is on methods for planning
optimistic visibility-aware trajectories, though we illustrate execution
in Chapter 6.

Our formulation allows a general visibility function that maps robot
configurations to regions of work space that are observed. There are
existing problem classes that subsume VAMP, e.g. POMDP, or belief-
space planning. It is nonetheless beneficial to formulate VAMP as an
important special case. We were initially surprised not to find a clear
statement of this problem, let alone an adequate solution to this well-
specified algorithmic problem. It is less surprising, perhaps, when

16

A differential drive robot with a cir-
cular footprint and visibility of only
the space directly in front of it does
not need VAMP, either. Forward mo-
tion is safe, because of the sens-
ing region, and rotational motion is
safe because it does not change the
workspace region occupied by the
robot.

considering that the problem arises from the requirement of a robot
capable of manipulation and navigation in some class of unforeseen
circumstances. Some mobile robots have an all-encompassing ball
of visibility in configuration space, and therefore do not need to do
VAMP. Mobile manipulation robots do not, and they have not been
deployed in many settings. Although the examples we presented
are for a robot with 3D configuration space in a 2D work space, the
formulation or algorithms are stated in general terms. This careful
distinction between the configuration space and work space is a key
feature of our approach. We assume that the robot has some form
of obstacle sensor, but make no assumptions about it except that,
for any configuration of the robot, it can observe some (possibly
disjoint) subset of the work space and that this visibility function is
known in advance, during the planning computation. We assume
that observation and control are deterministic and that the robot
always knows its configuration. In particular, we do not address the
problem of localizing within a given map or handling stochasticity
in sensor measurements.

Algorithms

Solving the VAMP problem is quite computationally complex, be-
cause the state of the planning problem must somehow represent
the region of work space that has been observed. Solutions to VAMP
problems are generally paths that a traditional motion-planner
would never generate, because the solution paths revisit the same
robot configuration with different visibility states. The principal
concern in developing an effective search algorithm is to reduce
the size of the search tree via aggressive pruning. We develop
several algorithms in relation to VAMP, which occupy different
points in the trade-off space including path objectives, planning
time, and completeness. In particular, we present in Section 4.2
an algorithm that is well-suited to solving VAMP problems. This
algorithm is provably correct (will not generate an illegal plan);
and is complete for robots that can reverse their motion without
sweeping through additional work space. This assumption holds
for holonomic robots, and also some non-holonomic robots, e.g.
differential-drive or Ackermann-drive mobile robot bases, but it is
not true for e.g. fixed-wing aircraft or a Dubins car that cannot go in
reverse. Other algorithms we present serve to illustrate the belief-
space nature of the VAMP problem, serve to efficiently determine
reachability and feasibility of a problem instance, or serve as useful
subprocedures for the algorithm in Section 4.2.

17

In cases where collision objects are
static during a planning episode,
a spatial data structure can be
constructed to accelerate collision
queries. In this case, the data struc-
ture does not need to support any
modifications during planning.

?

(a)

?
{ , }

(b)

Figure 1.7: Comparison of a fully
persistent and ephemeral data struc-
tures. Circles represent states of the
data structures, and blue shapes rep-
resent data inserted into the data
structure. Traditionally, data struc-
tures are ephemeral, meaning that up-
dates are destructive. In a fully per-
sistent data structure, an update to
the data structure generates a new
version, and also maintains the pre-
vious version. The previous version
is available both for querying and for
alternate updates.

Data structures

Determining the feasibility (or priority) of candidate successors
during planning time requires visibility queries, in addition to
collision queries. These visibility queries can account for a substantial
amount of the planning computation time, so we explore spatial
data structures for accelerating these queries. Sample-based motion
planning algorithms use spatial data structures to accelerate nearest-
neighbor queries, but in that context, there is conceptually a single
data structure that is shared by the planning computation. In our
context, each search node in a planning tree must represent its visible
region of work space, and conceptually each has its own spatial
data structure. If generating a successor node involves copying,
and then updating, this data structure, then these data structures
could offer no asymptotic (and likely no practical) improvements for
running time. Therefore, we require a substantially more intricate, so-
called “fully persistent” data structure (see Figure 1.7 for a graphical
summary) that maintains multiple versions of itself, one for each
branch in the planning tree, while still maintaining some time
and space benefits with respect to a brute-force solution. We take
advantage of the unique capabilities of fully persistent to accelerate
queries during planning in Chapter 5. Whereas in Chapter 4, a main
focus is to reduce the number of paths present in a search tree, in
this chapter the main focus is to reduce the computational effort for
each path in the search tree.

Summary

Chapter 2 discusses a wide body of related work. Chapter 3 in-
troduces path-dependent search on a simple, abstract problem.
Chapter 4 provides multiple solution strategies to our planning
problem; it is the core of this dissertation. Chapter 5 provides a
method for accelerating our planning algorithm with spatial data
structures. Chapter 6 demonstrates the use of the planning algo-
rithm in a re-planning loop as the environment is incrementally
discovered.

18

actions

observations
Figure 2.1: A fundamental diagram
that establishes the notion of robot
and not-robot (world, plant, environ-
ment).

actions

observations
Figure 2.2: Robots that plan use some
model, almost always with less fi-
delity than reality, of themselves and
the world.

2 Background

Fundamentally, a robot receives observations and takes actions.
There are many ways to design a robotic system with such an in-
terface. There are many approaches for how to select actions given
observations and goals, and a robotic system may have several differ-
ent approaches operating together. For some tasks, it is conceivable
to hand-write a controller (e.g. Proportional-Integral-Derivative
(PID), finite-state machine (FSM)). Such a solution is appropriate
when it is possible to achieve goals with straightforward behav-
iors, but such a solution is unlikely to generalize to unanticipated
situations. Alternatively, a controller could be synthesized from a
declarative specification (e.g. Linear-Quadratic Regulator (LQR),
Markov Decision Process (MDP)). Loosely speaking, in this case
the designer chooses a parameterized family of controllers and
uses a systematic way (e.g. minimizing an objective or satisfying a
specification) of arriving at parameter values.

In recent years, there is growing popularity in applying reinforcement
learning as directly as possible to the observation/action interface.
When there is no model available, this is essentially the only appli-
cable approach.

We are interested in the more traditional approach, where there are
multiple modules (some of which may be designed by learning).
The interfaces between modules are chosen with considerations
toward computational capabilities (e.g. summarize high bitrate
camera images), human-interpretability (e.g. for debugging), and to
encourage modularity (e.g. replace one manufacturer’s robot arm
with another’s).

2.1 Planning approach to robot behavior

The work in this thesis does not directly determine what power to
apply to robot actuators, nor how to interpret sensor signals. Those
responsibilities belong to other subsystems.

A planning-based approach is natural given the requirements to
generalize over the geometric data about the environment and the
robot. This approach can lead to a general solution to a well-specified
problem, even in tricky situations. Consider again Figure 1.5. It is

map

pose
Localization and

Mapping
Controller

path

range
measurements actuator

commands

Planner

goal

Figure 2.3: A common paradigm for
designing robot behavior. This archi-
tecture leaves room for the goal to be
specified, possibly by a higher-level
system.

hard to imagine such a path arising from an approach unless it
includes a component of planning.

In a robot system designed to operate in real-life general envi-
ronments, geometric data about the environment and the robot’s
location within it comes from a perception and estimation subsystem
that incorporates sensor data. Similarly, the path generated by the
planner must be executed by a controller. Figure 2.3 demonstrates a
common architecture for a robotic system.

It is important to distinguish between planning and execution phases.
We must ultimately have a feedback policy to determine actions
based on [a history of] observations. In some cases, such as for
a deterministic, static world, a sequence of open-loop actions is
sufficient to solve the task. In other cases, generating contingencies
for all possible evolutions of the world is not feasible, and so we
may make assumptions during planning time, and validate those
assumptions during execution, replanning as necessary if they are
violated. While we decompose robotic systems into these sense-
plan-act modules, the concerns of the planner cannot be completely
decoupled from the concerns of the adjacent systems. In general, the
planner should be aware of limitations in perception and control. A
plan that a robot cannot follow (for instance because it requires that
a car-like vehicle move laterally, or because it requires a plan to fly in
reverse) is of limited value. A plan that leads the robot to featureless
regions where it loses track of its position in the world is similarly
ill-advised. Section 2.2 provides examples of such work. Our VAMP
problem is in the same spirit, to ensure that the mapping system
acquires the relevant range measurements to produce a map that is
valid.

Depending on the particular problem setting, there may be one
or more sensible forms that the solution can take. In some cases
(e.g., coverage, or navigation with a distribution over maps and
a probabilistic guarantee) it is possible to find a single open-loop
trajectory that solves the problem, e.g. [8]. In other cases, the trajec-
tory must depend on the information that the robot gathers during
execution. This may be handled by executing a policy online (which
might be found by an off-line algorithm, such as a POMDP solver,
or hand-constructed, as in the case of the Bug algorithm [9]) or by

20

interleaving planning and execution in the style of receding-horizon
control, e.g. [10].

2.2 Related work

Overview

There are many avenues for connecting VAMP to other problems in
robotics. Robot motion planning problems vary considerably in their
objectives and assumptions about the problem. “Obstacle/collision
avoidance”, which is also the goal of motion planning, typically
denotes the feedback policy setting rather than the planning setting.
Our work focuses on uncertainty about the presence of obstacles,
and there is other work to address other forms of uncertainty. Some
of this work shares in common with VAMP a solution that that
can be characterized as “optimism in the face of uncertainty”, in
which a complete path to the goal is planned optimistically. There
are also computational geometry problems that are related by virtue
of dealing with notions of visibility and coverage. Finally, there
are several problems that share in common with VAMP a solution
that involves path-dependent search on a graph of configurations. We
summarize those problems in Section 3.9.

“Navigation” typically suggests motion planning for a mobile robot
on a plane, but our setting applies to planning for general robots (and
is in fact motivated by planning for mobile manipulation robots).
VAMP is a navigation problem not an exploration problem; i.e. it
finds a path to a goal configuration, not a path that, e.g., acquires
coverage of some kind (some of our algorithms generate exploration
subproblems to be solved, however). Additional key features of
VAMP are that

▶ the solution is a path, not e.g. a set of views nor a controller,
▶ the collision sensing region depends on the robot configura-

tion, and
▶ the legality of motions is governed by the sensing.

The last two points have a circular relation. Moving requires sens-
ing, and sensing requires moving. The reason we perform motion
planning is for collision avoidance. However, almost all the work
involving collision avoidance in unknown environments, regard-
less of whether it addresses navigation or exploration problems,
assumes a ball of visibility in configuration space that encompasses
the robot. This assumption (described in more detail in Section 2.3)

21

Generally planning is required not
for a single rigid body (such as a
piano), but for an articulated robot.

In the sense of coverage in information
space, not work space [18, 19].

is necessary to decoupling the circular relationship between motion
and perception, and critically we do not make this assumption in
the VAMP setting.

Motion Planning

Classical motion planning can be characterized by the assumption
of perfect, complete, and metric model of quasi-static actuation,
information about obstacles, the environment, and the goal. Under
this setting, there is no need for sensing and feedback control.

This setting sometimes goes by the name Generalized Mover’s Prob-
lem [1]. The solution to classical motion planning is a path in a robot’s
configuration space.

Kinodynamic motion planning relaxes the assumption that the robot
can move quasi-statically through the configuration space. Feed-
back motion planning relaxes the assumption of perfect actuation
by generating a path and also a state feedback controller. Sensor-
based motion planning relaxes the assumption of perfect obstacle
information. Examples include the so-called bug algorithms, which
require only robot-local information [9, 11]. Conformant planning
relaxes the assumption of perfect initial state information, using an
open-loop plan (no feedback) that relies on funneling properties of
the dynamics.

Under the assumption of perfect actuation and robot state infor-
mation, we can organize the remaining motion planning problems
into the following two orthogonal features: 1. the goal is a set in
configuration space, or to observe a region of work space, and 2. the
environment (for the sake of determining collisions) is known, or
must be sensed. Table 2.1 provides a summary, with terminology.

Coverage problems

Coverage problems generally assume a known map of obstacles but
require planning a path that will observe or touch all parts of the
reachable space, for example, to inspect a structure, mow a lawn,
mill a part, or vacuum a room [8, 12–15]

There are several problem statements in the purview of computa-
tional geometry that include a notion of visibility. The Watchman
Route Problem [16], determine a shortest path for one “watchman”
to cover a target region. Visibility-based Pursuit Evasion [6, 17] de-
termines paths that achieve coverage in a stricter sense. When one

22

Table 2.1: Related motion planning problems. “c-space” denotes goals that are sets of configuration space. “i-space” stands
for “information space” and denotes goals that are e.g. sets of workspace to be covered. An asterisk (*) denotes a wildcard.
For example, the solution to a navigation problem could be either an open-loop path, or a feedback controller.

Problem
Setting

solution goal obstacles collision
detection

localization

Classical
motion
planning

path c-space known N/A perfect

Lazy classical
motion
planning

path c-space known arbitrary perfect

Coverage path i-space known N/A perfect
Exploration * i-space unknown

static
* *

Navigation * c-space unknown
static

* *

VAMP path c-space unknown
static

directional perfect

Canadian
Traveller

path c-space unknown
static

vertex
incidence

perfect

Dynamic
Window
Approach

controller N/A unknown
dynamic

directional

Bug
algorithms

controller c-space unknown
static

ball perfect

Perception-
Aware Motion
Planning

path * known N/A limited

Figure 2.4: An environment in which
there is no solution for a single
pursuer to catch an evader.

watchman suffices, a solution is a path, which the pursuer follows,
that guarantees that any evaders will be detected. The evaders are
generally assumed to move arbitrarily fast, but cannot teleport. So-
lution paths to this problem necessarily cover the whole space, and
additionally must also ensure that evaders cannot enter a region
that was previously inspected if the region will remain out of sight.
In general the paths must revisit the same robot configuration with
different information states.

When coverage achieved by following a path, the problem setting of
covering a target set with a subset of arbitrary covering sets is often
called set cover [20]. When the covering sets are geometric in some
sense (boxes, half planes, balls, etc.), the setting is called Geometric Set
Cover [21]. If the covering sets are further constrained to correspond
to visibility (e.g. in planar problems, the sets are visibility polygons),
then determining the set of viewpoints (i.e. stationary watchmen)
to cover a target is called the Art Gallery Problem [22].

23

Exploration problems

Exploration problems generally assume no prior knowledge of the
obstacles and desire that the robot eventually observe all parts of
the space, possibly while building a map of the obstacles [10, 23–
28]. In computational geometry, the “online polygon exploration”
problem [29] is such an example. Many computational geometry
treatments of both coverage and exploration problems assume that
coverage occurs continuously as the agent moves Some versions
of the problem use “time-discrete vision”, which is an important
consideration for robots that must be stationary while an observation
is collected [30].

Unless otherwise noted, exploration strategies generally assume
perfect robot localization. Simultaneous Localization and Mapping
(SLAM) is usually framed as an estimation problem. “Active SLAM”
refers to an approach that decides actions to execute for the sake of
exploration, without assuming perfect localization [31].

Navigation problems

Navigation problems seek to reach a specified configuration goal
region in an incompletely known environment [32–34]. The general
problem of optimizing a path between two vertices in a static,
deterministic graph in which the edge weights are not known a
priori is known as the Canadian Traveler Problem, which is discussed
in more detail below.

Connection to lazy search

It is worth noting that lazy motion planning approaches [35, 36],
which attempt to reduce the time complexity of motion planning by
postponing collision checks, fall into this category of planning on
unknown graphs. All of the edge weights are “known” a priori, in
the sense that they are computable by the planner — no sensing is
required to measure them — but since computing this information
is often time-consuming, lazy motion planning strategies generate
tentative plans using incomplete information, and decide on a
strategy for evaluating the graph edge weights. These approaches
differ conceptually from navigation problems, however, since during
execution of a navigation plan, the robot is restricted to a certain
sensing model, and generally cannot evaluate arbitrary edges.

24

CTP and BTP differ only in the for-
mulations of cost. In BTP, an edge
is detected as blocked by attempt-
ing to traverse it, and there is a
cost incurred for partially traversing
the edge up until the point where
the obstacle is detected. Traditional
shortest-path planning, CTP, and
BTP can be harmonized by allow-
ing actions that attempt traversing
blocked edges, and describing the
sensing in terms of ∞-, 1-, and 0-
lookahead, respectively. [40]
It is worth remembering to distin-
guish between planning and execu-
tion, or the planner and a controller.
While these planners may make an
optimistic assumption that an edge
is traversable, the overall problem
formulation does not. The problem
formulations instead determine at
what point the traversability of an
edge can be determined.

Determining traversability of graph edges

In the graph-theoretic formulation of motion planning, vertices are
embedded in the configuration space, and edges correspond to mo-
tion primitives [35]. When all edges in the graph are traversable, then
any path in the graph is a valid, executable path. Otherwise, either
sensing or computation must occur to determine the traversability of
an edge.

In lazy motion planning, collision checking computation is deferred
in the interest of reducing overall computation time [36]. A planner
may speculatively generate successors of a configuration, betting
on the reachability of that configuration. This strategy has proven
to be effective in many diverse contexts in computing [37]. Lazy
motion planning strategies must generate tentative plans using
incomplete information, and decide on a strategy for evaluating the
graph edge weights. In this setting, the traversability of any edge
can be determined, without any commitment to executing a robot
motion.

In the Canadian Traveler Problem [38, 39] and the Blindfolded Traveler
Problem [40], the traversability of an edge can be determined once
the robot is at a vertex incident to the edge (formulations with
“remote sensing” have been considered [41]). This is the same “graph
discovery” model as D∗ [42], but, whereas D∗ assumes that all edges
are traversable optimistically (“optimism in the face of uncertainty”),
these methods enable less restrictive assumptions on traversability,
e.g. using probabilities, and the planning objective may involve
maximizing the probability of success.

For VAMP, in contrast, determining whether an edge is traversable
requires satisfying a more complicated condition. Stated graph-
theoretically, each edge induces a disjunction of conjunctions of
vertices that must be visited before an edge can be determined. For
example, the domain in Figure 1.5 is constructed so that any edge
that leads to the goal induces a disjunction of conjunctions where
each conjunction contains at least two vertices. Namely, suppose
the configurations 𝑞2 and 𝑞3 have nearby configurations 𝑞′2 and 𝑞′3,
respectively, that achieve the same visibility, and that there are no
other such configurations (for the sake of a small example). The
edge leading to 𝑞4 is traversable if and only if

(𝑞2 ∧ 𝑞3) ∨ (𝑞′2 ∧ 𝑞3) ∨ (𝑞2 ∧ 𝑞′3) ∨ (𝑞′2 ∧ 𝑞′3) ,

where through abuse of notation, a configuration 𝑞𝑖 is a truth value
indicating whether it has been visited.

25

The term Simultaneous Mapping
and Planning and Simultaneous Lo-
calization and Planning has been
used in analogy to Simultaneous Lo-
calization and Mapping [50, 54].

Planning for perception

When there is non-negligible actuation and localization uncertainty,
the assumptions of traditional motion planning are untenable. If
there are stable landmarks in the environment, the motion planning
problem can involve reasoning about landmarks. Similarly, visual
odometry might rely on regions of the scene that have salient
properties (like sufficient texture). Much work addressing robot state
uncertainty assumes that the environment is known, and therefore
does not apply to the VAMP setting. Paths may be constrained
to keep a stationary landmark visible throughout [43] (this work
assumes an environment with no obstacles). Perception-Aware Path
Planning [44] has an objective favoring paths where high-texture
regions are in view of the robot-mounted camera so that localization
accuracy during execution (which depends on visual odometry)
does not degrade. Coastal navigation [45, 46] has an objective favoring
paths that travel closer to walls instead of through featureless
regions of the environment to the same effect. The planning state
space may be augmented (in addition to the robot configuration) to
include localization uncertainty; some formulations in principle may
permit anisotropic sensing for the purposes of localization, but in
practice do assume ball visibility [46, 47]. Some formulations rely on
smoothness assumptions with respect to sensing that are generally
incompatible with visibility-based localization [48–50]. However,
none of these methods involves a constraint to steer a sensor for
the sake of avoiding unknown obstacles. Some work relaxes the
assumption of a known environment, and plans feasible trajectories
in a belief space over both robot pose and landmark pose [51, 52].
This formulation in principle may additionally represent belief over
obstacle maps, but does not, and refers to another formulation
of planning under localization uncertainty to avoid obstacles in
an unknown environment, which, again, explicitly assumes ball
visibility [53].

2.3 Assumptions

In this section we examine some assumptions commonly made in
robot systems.

Ball of visibility

Formulations in which the robot geometry is a single point (or a
grid cell, for discrete-space formulations) in the workspace often

26

have an implicit assumption that the robot has visibility of a ball
in configuration space. This assumption may be justified for an
uncrowded environment and for a robot that is small relative to
the obstacles. In this setting, at least with respect to the obstacle
map representation, the robot does not have an orientation (or any
other degrees of freedom); the configuration space and the work
space are equivalent to each other. Such is the case in the heuristic
incremental search for the navigation algorithm D∗ [42], along with
numerous other settings. In frontier-based exploration [23], a frontier
is a region on the boundary between the unmapped regions and
known-free regions of the work space. It is often stated that a robot
must “navigate to a frontier point”, but a frontier, a work space
notion, must be injected into the configuration space, in order to
generate a navigation goal. Carefully stated, the navigation problem
is to find a path to a configuration that observes some unmapped
region of the work space, where the path of the robot must stay
within the region of work space that is known to be free. This
navigation subproblem is a subproblem of some of our algorithms
for VAMP.

The notion of a ball of visibility in configuration space applies beyond
mobile navigation. In an extension of Lumelsky’s Bug algorithms
to manipulator planning, the assumption is physically realized:
“‘Clearly, if any point of the arm body is subject to collision, the only
way to guarantee obstacle detection is to supply every point of the
body with the sensing capability. In this study, the surface of the
robot arm is covered with sensitive skin.” [55].

In some approaches, safety with respect to unknown obstacles is
achieved by constructing a set of “primitive motions that allows the
[robot] to turn on the spot, and move within the camera’s field of
view” [24], thereby reducing the planning problem to the case of
ball visibility.

In work on designing a controller to follow a planned trajectory while
performing collision avoidance, the dynamic window approach,
the approach is “implemented and tested using the robot RHINO,
which is a synchro-drive robot currently equipped with a ring of
24 Polaroid ultrasonic sensors, 56 infrared detectors, and a stereo
camera system. Because the main beam width of an ultrasonic
transducer is approximately 15", the whole 360" area surrounding
the robot can be measured with one sweep of all sensors.” [56].

27

Safety criteria

Within problems with obstacle uncertainty, an additional source of
variation is the notion of safety: one might wish to guarantee safety
(non-collision with any obstacle) absolutely, e.g. [8, 10], or with high
probability with respect to a distribution over obstacles, e.g. [5, 34]
and with respect to obstacles that may move, e.g. [57].

Observation model

Whether for navigation or exploration problems, formulations vary
in their assumptions about observations. Sometimes an observation
is made from some or all states of the robot during execution; the
observation depends on the underlying true world map as well as
on the robot’s state and may be an arbitrary function of those inputs.
Typically, observations are assumed to be in the plane and take the
form of either a fixed cone or a circle centered on the robot’s location,
although more general 3D observations have been considered [26].
As previously mentioned, the robot is typically assumed to be small
relative to the obstacles and the environment uncrowded, so that the
robot can be approximated as a point. These simplifying assumptions
blur the distinction between work space and configuration space and
limit the application of these algorithms to more general settings,
such as those arising in mobile manipulation. In many formulations
of navigation problems, it is taken for granted that traversability
information will be readily acquired by the robot.

Motion model

In much of the related work, robot motion is typically assumed to
be planar. However, during mobile manipulation, all the degrees
of freedom of the robot may affect observations, e.g. the arms may
partially block the sensor Figure 1.2. This is the exact setting moti-
vates our work. Previous work has considered a variety of motion
models: kinematic, whether holonomic or non-holonomic [27], or
kinodynamic [7, 32], and with deterministic or noisy actuation [28,
33]. Robot dynamics introduce additional difficulty because the
robot is not able to stop instantly when an obstacle is detected;
instead, it must ensure that it never enters an inevitable collision
state(ICS) with respect to its current known free space and a motion
model of possible obstacles.

28

Environment model

There are several forms of assumptions that can be placed on the
environment. The environment can be assumed to be static, dynamic,
consist of structured obstacles (with unknown poses, or parameters),
or unstructured clutter. In practical deployments, there must be care
in updating a map. If objects don’t persist long enough, the planner
can thrash back and forth. If they persist too long, no plan may be
found, even though the objects have been (re)moved.

Search and execution strategies

Problems dealing with map uncertainty (navigation, lazy search,
or exploration problems) typically involve solving similar search
problems as information is incrementally gathered. Problems with
map uncertainty, as in our case, can all be cast as some version of
a partially observed Markov decision process (POMDP). For our
version of the problem, the state space would be the cross product
of the robot’s configuration space with the space of all possible
arrangements of free/occupied space defined by the unknown
obstacles, the actions would be finite linear motions in configuration
space, and the observations would be determined by the visibility
function of the sensor. The objective would be to minimize an
objective involving path length and an infinite penalty for moving
into obstacles and outside the visible region. Seeing the problem
this way is often clarifying, but it does not immediately lead to a
solution strategy, since the optimal solution of POMDPs is highly
computationally intractable even in discrete state and action spaces.
If it were possible to solve the POMDP optimally, the result would
be a policy that maps the robot configuration and a distribution over
(or set of) possible maps consistent with the history of observations
into actions. Such a policy is intractable to explicitly compute or
even represent.

Practical approximation strategies for POMDPs almost all rely on
some form of receding-horizon control [10]. The system makes a plan
for a sub-problem under some assumptions, and begins executing
it, gathering further information about the map as it goes. When it
receives an observation that invalidates its plan (e.g. an object in its
path) or reaches its subgoal, the system makes a new plan based on
the current robot configuration and map state.

One example of this approximation strategy is in exploration prob-
lems, where a typical strategy is some form of frontier-based or
next-best view planning method [23, 26, 27]. On each replanning

29

iteration, a subgoal configuration is selected (a) that is reachable
within known free space from the robot’s current configuration
and (b) from which some previously-unobserved parts of the work
space can be viewed. A motion planner appropriate for the robot’s
dynamics is used to plan a path to that subgoal configuration, while
staying within the previously observed space, possibly with an
additional objective of viewing as much unobserved work space
as possible along the way; the robot executes the path, gathering
information, and then replans. The most important question in these
methods is how to select subgoals. Even if the information utility is
submodular [58], a greedy strategy may be significantly suboptimal
in terms of robot motion, as it can cause the robot to move back and
forth between distant subgoals.

When the objective is navigation, a typical replanning strategy is to be
optimistic, planning a path to the goal that makes some assumptions
about the true map and replanning if that assumption is invalidated.
There are several approaches to reusing computation for searching
on a modified graph [59]. It is generally the job of an execution
monitor (e.g. [60]) to update the graph based on observations. Our
main contribution in this thesis addresses the planning component
of this approach.

30

It can be convenient to consider all
transitions to be valid, but those that
are invalid in spirit incur infinite cost.
Predecessor and parent are synonyms.
The reference to the predecessor is
sometimes called a back pointer.
Typically, the cost incurred in achiev-
ing a state is formulated to be exoge-
nous to the state itself. If, for example,
cost corresponds to energy, and cer-
tain actions may be unavailable if
there is not enough energy, this no-
tion of cost must be represented in
the state.

3 Path Search

We will ultimately focus on path search as it applies to VAMP, but
we can develop some concepts abstractly, without any geometry, by
considering graphs where each edge is labeled with a set of vertices
that must be visited before the edge is traversable. A path from one
vertex to another might have to make an excursion to visit other
vertices, which resembles the situation of long-range dependencies
in VAMP domains. For general graphs, it is easy to show that this
problem is NP-hard.

3.1 Introduction

We will speak of a “planning problem”, and algorithms for solving
it. For a planning instance, we have a set of solutions. If we have
an optimizing planning problem, we distinguish between feasible
solutions and optimal solutions.

Given an algorithm, a planning instance, and possibly some initial
algorithm state (e.g. the seed of a pseudorandom number generator),
we can produce a result.

An algorithm is “sound” if all results produced by it solve the
planning problem. An algorithm is “complete” if given a planning
problem with a solution, the algorithm is guaranteed to produce a
valid solution. The “completeness” property can be with respect to
either feasibility or optimality.

In a typical formulation, to design a solution strategy based on
search for a planning problem, a designer identifies a state space,
and expresses transition costs, and the goal test in terms of the state
space. The valid transitions from a state are called the successors of
a state. Instead of states, we can think of search nodes. A search node
contains a reference to its predecessor.

A state summarizes the relevant information in a path and initial
state. The path may be over configurations, or it may be a path
of actions if it is necessary to distinguish different paths between
configurations (e.g. if a path contains two successive configurations
that are a half-turn apart, it can be unclear which direction the robot
turned) or if determining the action given two configurations is not
trivial (e.g. requires solving a two-point boundary value problem).

The qualifier “algorithmic” serves to
distinguish from the typical notion of
state in a search problem. It is some-
times referred to as the “metalevel
state space” [61].

A more common perspective is that
the priority queue stores states, and
there is additional bookkeeping keep
track of the predecessor of states in
the priority queue. By the definition
of the state space, there is no need to
keep track of multiple predecessors
for the same state.

We use the term “walk” because
some authors use “path” to mean
a “walk” where all the vertices are
unique. Later we will use “path” to
mean “walk”.

This formulation is extremely flexible and useful. In a setting with
finitely many actions, it is possible to use a priority queue to organize
the search process. The priority queue maintains (at least in part) the
“algorithmic state” of the search process. Within this formulation,
there are possible variations of data layout. For our sake, we will say
that an element of the priority queue is a pair of type (node, priority).
There is a start node, and to initialize the algorithm, the state is
placed on a queue with an arbitrary priority. On every iteration, a
minimal node is extracted from the queue. A procedure generates
successors for that node, computes corresponding priorities, and
inserts successor nodes into the queue. This procedure typically
iterates until a goal node is extracted from the priority queue, until
the priority queue is empty, or until a timeout is reached. These
outcomes correspond respectively to a problem that is feasible,
infeasible, or indeterminate.

In practice, it is almost always necessary to prune nodes, e.g. those
representing multiple paths to the same state, either before inserting
them into the priority queue or before generating successors.

We adopt a slightly different view of search. A search node is nothing
more than an efficient representation of a path. Fundamentally, the
priority queue stores paths. To make the discussion more concrete,
we will consider walks on a square lattice graph of configurations
of size (𝑚, 𝑛).

We use C = {(𝑖 , 𝑗) | 𝑖 ∈ [1, 𝑚], 𝑗 ∈ [1, 𝑛]}. We will consider walks
starting at vertex (1, 1) and ending at (𝑚, 𝑛), where each step changes
one coordinate by one unit (i.e. 4-connected). The goal configuration
is (𝑚, 𝑛), and in our search formulation goals are “absorbing”, so we
do not consider walks that visit (𝑚, 𝑛) in the middle. Let𝑊(𝑚,𝑛) stand
for the set of all such walks.𝑊(𝑚,𝑛) is an infinite set since a walk may
contain cycles, e.g. [(1, 1), (1, 2), (1, 1), (1, 2), · · · , (1, 1), (1, 2), (2, 2)] ∈
𝑊(2,2). We will introduce subsets of 𝑊(𝑚,𝑛) that are finite, and use
our search formulation to explicitly enumerate all the walks in these
subsets. It is uncommon in robotic applications of path search to
require enumerating multiple equivalent paths that solve a search
problem. It is more common to find a single solution. If that solu-
tion is inadequate, then search problem is updated such that the
previously generated path is invalid. The number of possible paths
in the lattice does not necessarily correspond to the difficulty of
finding a specific solution path. We are most interested in what
we call informative walks. The number of informative walks on an
(𝑚, 𝑛)-lattice does not appear to be published (for example, it is not
yet in the OEIS [62]). Because integer sequences are so distinctive

32

If the heuristic is consistent, then the
first path found to a state is guar-
anteed to be a cost-minimal path.
When the heuristic is merely admis-
sible, then an optimal search must
consider additional paths to reached
states. [61]
The term pruning usually does not
apply if there is a static set of paths
that are removed, such as paths that
collide with an obstacle. Such a con-
straint expressible in the successor
function.

and characteristic, yet so abstract, documenting even the first few
terms might lead to interesting connections.

3.2 Pruning without affecting correctness

If the aim is to produce a cost-minimal path, then in the presence of
duplicate states, the lower-cost one is kept. There are two distinct
operations: determining a notion of equivalence of nodes, and
a comparison of cost. The process of removing paths from the
consideration of a search procedure is called “pruning”. If pruning
is performed on the basis of state equality, then it does not affect the
correctness of the search algorithm. On a regular lattice, there are
many ties, and this pruning can exponentially reduce the number
of paths to be considered.

3.3 Generalizing pruning

We define a projection of the state space into a space on which
the equivalence check is performed. We can recover the traditional
formulation by using an identity projection. The advantage of interest
is that we have additional flexibility for defining pruning rules that
serve to approximate complete searches. The choice of pruning is
not tied to the choice of state space. By isolating path pruning into
this projection and domination, we can describe different search
problems in a unified manner. A secondary benefit to this alternate
formulation is that there is a small change in the algorithm between
finding a single shortest path and finding all shortest paths. To find
a single shortest path, the search prunes any paths that are equal or
worse in cost. To find all of them, the search prunes any path that is
strictly worse in cost.

3.4 Shortest paths

Consider all the shortest paths in 𝑊(𝑚,𝑛). If our goal is to count
the paths, there is a straightforward combinatorial argument. Any
shortest path must take 𝑚 steps in the first coordinate (rightward)
and take 𝑛 steps in the second coordinate (upward). Any interleaving
of these lattice steps will produce a shortest path, and so there are(︁𝑛+𝑚

𝑛

)︁
paths.

To enumerate these paths in our formulation, we specify

33

We could remove successors that are
guaranteed not to be on a shortest
path, such as successors that revisit
a configuration.

This point is inconsequential for
shortest paths (), but not so for self-
avoiding walks.

Any shortest path is also self-
avoiding.
Here, 𝑣 can stand for “visited”. In
Chapter 4, 𝑣 will stand for “visible”,
and will be a subset of a distinct
space Wnot C.

1 2 3

1

2

3

1 2 3

1

2

3

Figure 3.1: Two distinct walks
(“N”and “S” shapes) with the same
start and end configurations, visit-
ing the same configurations along
the way.

▶ a successor function where a path of length 𝑙 generates all
possible successor paths of length 𝑙 + 1 (all lattice moves are
valid),

▶ a path projects to its tip configuration,
▶ the domination quantity is the length of a path, and
▶ a pruning rule that prunes paths that are longer than the

minimum domination quantity found so far.

We use the goal test to keep track of the enumerated paths, but
we keep searching until the priority queue is empty. We also use
the goal to "absorb" paths. If an extracted path satisfies the goal,
its successors are not generated, and they are not inserted into the
queue.

We enumerate paths with our implementation of path-dependent
search (Algorithm 1) and verified the number of paths for modest
lattice sizes against the combinatorial argument above.

3.5 Self-avoiding walks

Consider all the self-avoiding walks in𝑊(𝑚,𝑛). A walk is self-avoiding
if there are no repeated vertices in the walk. We encode this constraint
in the successor function; only lattice moves that self-avoid the path
so far are valid.

To find one self-avoiding walk in the state-space formulation, the
state space is isomorphic to C× ℙ(C). An element is (𝑞, 𝑣) with
𝑞 ∈ C and 𝑣 ⊆ C. If the aim is to generate all self-avoiding walks
in this space, we disable pruning. See Figure 3.1 for two paths that
must be distinguished.

We enumerate paths with our implementation of path-dependent
search (Algorithm 1) and verified the number of paths for modest
lattice sizes against OEISA064298 [63].

3.6 Informative walks

The self-avoiding constraint above is one example of a constraint
that can be expressed in a (𝑞, 𝑣) state space. We consider now a
validity check that eliminates cycles in the (𝑞, 𝑣) space mentioned
above. We call these walks “informative” because we imagine 𝑣
to represent some information, and some information is necessary
before a transition can be taken. For example, consider the path
𝑝 = [𝑞1 , 𝑞2 , 𝑞1 , 𝑞2]. Lifted into the (𝑞, 𝑣) space, the path is lift(𝑝) =

34

Any path containing 𝑝 as a
subpath is redundant. The path
[· · · , 𝑞1 , 𝑞2 , 𝑞1 , 𝑞2 , · · ·] is redun-
dant since the cycle could be re-
moved to form the equivalent path
[· · · , 𝑞1 , 𝑞2 , · · ·]

[(𝑞1 , {𝑞1}), (𝑞2 , {𝑞1 , 𝑞2}), (𝑞1 , {𝑞1 , 𝑞2}), (𝑞2 , {𝑞1 , 𝑞2})]. Revisiting 𝑞1
at 𝑝𝑙[3] is fine, because there is new information, and perhaps a new
transition is now valid at 𝑞1. However, lift(𝑝)[4] = lift(𝑝)[2]. There is
nothing possible from 𝑝𝑙[4] that was not possible from 𝑝𝑙[2]. A walk
𝑝 is informative if and only if lift(𝑝) does not contain any repeated
elements.

For the (2, 2) lattice, with nodes labeled (1, 1), (1, 2), (2, 1), (2, 2)
there are 6 paths that do not cycle in (𝑞, 𝑣) space:

▶ 1: [(1, 1), (1, 2), (2, 2)]
▶ 2: [(1, 1), (2, 1), (2, 2)]
▶ 3: [(1, 1), (2, 1), (1, 1), (1, 2), (2, 2)]
▶ 4: [(1, 1), (1, 2), (1, 1), (2, 1), (2, 2)]
▶ 5: [(1, 1), (1, 2), (1, 1), (2, 1), (1, 1), (1, 2), (2, 2)]
▶ 6: [(1, 1), (2, 1), (1, 1), (1, 2), (1, 1), (2, 1), (2, 2)]

3.7 Vertex visit graphs

We now introduce in Figure 3.2 a graphical tool that will play two
roles. We call such a graph a vertex-visit graph. We will first use vertex
visit graphs to illustrate the vertex visit sets between configurations
of a given walk. We will then consider vertex visit graphs as an
abstract version of VAMP where there is no geometry.

On the (3, 3) lattice, there are 242220 informative paths. We pro-
vide a summary of quantities we were able to compute with our
implementation in Table 3.1

On the (3, 3) lattice, we observe that there are informative paths that
induce the same vertex visit graph. In fact, there are 182932 unique
vertex visit graphs generated by the 242220 paths. We will look in
detail at two paths that produce the vertex visit graph in Figure 3.3.
Consider three segments

lattice informative paths
(2, 2) 6
(2, 3) 98
(2, 4) 3909
(2, 5) 334276
(2, 6) 60230715
(3, 3) 242220
(3, 4) > 95 million

Table 3.1: The counts of informative
paths for a few modest lattice sizes.

35

1 2

1

2

1 2

1

2

1 2

1

2

1 2

1

2

1 2

1

2

1 2

1

2

Figure 3.2: Each of the 6 informative
paths on the (2, 2) lattice induces a
graph with edges labeled with sub-
sets of vertices.

𝐴; 𝐵 represents the concatenation of
𝐴 then 𝐵.
There are only two successors from
(1, 1), both of which are traversed in
the A segment. On the third visit, the
new information cannot allow any
new transitions immediately, since
all possible transitions have been
taken. We still must consider the
path, since the additional informa-
tion may allow a transition further
down the line.

1 2 3

1

2

3

Figure 3.3: The same vertex visit
graph can be induced by two infor-
mative paths. One path is 𝐴;𝐶, the
other is 𝐴; 𝐵;𝐶, for 𝐴 = [(1, 1), (1,
2), (2, 2), (1, 2), (1, 1), (2, 1), (2, 2),
(2, 3), (1, 3), (1, 2)], and 𝐵 =[(1, 1), (2,
1)], and 𝐶 =[(2, 2), (2, 3), (3, 3)].

▶ 𝐴 = [(1, 1), (1, 2), (2, 2), (1, 2), (1, 1), (2, 1), (2, 2), (2, 3), (1, 3),
(1, 2)], and

▶ 𝐵 = [(1, 1), (2, 1)], and
▶ 𝐶 = [(2, 2), (2, 3), (3, 3)].

The longer path is 𝐴; 𝐵;𝐶, and the shorter path is 𝐴;𝐶. The longer
path visits (1, 1) three times. Take a look at these three visits in (𝑞, 𝑣)
space:

▶ 1: ((1, 1), {(1, 1)})
▶ 2: ((1, 1), {(1, 1), (1, 2), (2, 2)})
▶ 3: ((1, 1), {(1, 1), (1, 2), (2, 2), (2, 1), (2, 3), (1, 3)})

Indeed, each visit of (1, 1) contains new vertices, otherwise the
path 𝐴; 𝐵;𝐶 would not be informative. The path 𝐴; 𝐵;𝐶 is not
redundant on its own. What one might desire to be true is that path
𝐴; 𝐵; [(2, 2)] is dominated by 𝐴; [(2, 2)]; they both reach (2, 2) with
set {(1, 1), (1, 2), (2, 2), (2, 1), (2, 3), (1, 3)}, but one is longer than the
other.

We just saw a case in which one path was longer than the other,
but both had the same vertex visit graph. There are also such paths
that have the same length. For example, define a common prefix
𝑝 = [(1, 1), (2, 1), (2, 2), (3, 2), (2, 2), (2, 1), (3, 1), (3, 2),
(2, 2), (1, 2), (1, 1), (2, 1)] , The paths 𝑝1 = 𝑝; [(2, 2), (3, 2), (3, 3)],
and 𝑝2 = 𝑝; [(3, 1), (3, 2), (3, 3)] have the same length and induce
the same vertex visit graph.

To summarize, the constraint to generate informative walks applies
to an individual path. However, the decision to prune a candidate
path is based on what paths have already been found by the search.

36

1 2 3

1

2

3

Figure 3.4: The same vertex visit
graph can be induced by two infor-
mative paths of the same length. One
path is 𝐴; 𝐵, the other is 𝐴;𝐶, for
𝐴 =[(1, 1), (2, 1), (2, 2), (3, 2), (2, 2),
(2, 1), (3, 1), (3, 2), (2, 2), (1, 2), (1, 1),
(2, 1)], and

𝐵 =[(2, 2), (3, 2), (3, 3)], and

𝐶 =[(3, 1), (3, 2), (3, 3)].

The empty brackets are included to
help illustrate the pattern.

3.8 Complexity of vertex visit graphs

Vertex visit graphs are a convenient way to explore complexity of
path-dependent problems search formulations.

Quadratic scaling of solution length

We provide an argument for the worst-case length of a walk on a
vertex visit graph with 𝑛 vertices. Assume a solution exists and that
a walk exists from 𝑞1 to 𝑞𝑛 . The worst case is achieved when we
must revisit every node we have already visited to make progress
toward 𝑞𝑛 . For 𝑛 = 6, this looks like [𝑞1 , {}, 𝑞2 , {𝑞1}, 𝑞3 , {𝑞1 , 𝑞2},
𝑞4 , {𝑞1 , 𝑞2 , 𝑞3}, 𝑞5 , {𝑞1 , 𝑞2 , 𝑞3 , 𝑞4}, 𝑞6] The configurations contained
within curly brackets are the ones that are revisited, and may be
revisited in some other order than depicted. Whatever the order,
such a walk is informative, and it is possible to construct a vertex
visit graph that requires such a walk. The length of such a walk is
𝑛 + 1+ 2+ · · · + (𝑛 − 1) = 𝑛 + 𝑛(𝑛 − 1)/2. This quadratic behavior is
also possible in VAMP domains (see Section 4.4).

Polynomial-time feasibility checking for reversible graphs

Consider a vertex visit graph 𝐺. 𝐺 is reversible if and only if

[𝑞1 , 𝑞2 , · · · , 𝑞𝑘−1 , 𝑞𝑘]

being a valid walk in 𝐺 implies that

[𝑞1 , 𝑞2 , · · · , 𝑞𝑘−1 , 𝑞𝑘 , 𝑞𝑘−1 , · · · , 𝑞2 , 𝑞1]

is a valid walk in 𝐺, too. For such a graph, determining reachability
from a source to target vertices can be done in time polynomial in the
number of vertices in 𝐺. The algorithm in Section 4.2 is described in
terms of the VAMP problem, and also applies to finding a walk in a
vertex-visit graph.

NP-completeness of vertex visit graphs

The decision problem of determining whether a non-reversible
vertex visit graph contains a feasible path from source to target, or
whether a reversible vertex visit graph contains a feasible path of
length no greater than 𝑘 is NP-complete. First, the problem is in
NP because a solution path is a certificate, and its validity can be

37

Figure 3.5: An example polynomial-
time reduction from 3-SAT to find-
ing a shortest path on a vertex visit
graph.

checked in polynomial time. Next, to show the problem is NP-hard,
we provide a reduction from boolean satisfiability, specifically 3-SAT.
We demonstrate this reduction by example. Take the following 3-SAT
problem:

(𝑥 ∨ 𝑦 ∨ 𝑤) ∧ (𝑦 ∨ 𝑧 ∨ 𝑤) ∧ (𝑥 ∨ 𝑧 ∨ 𝑦) . (3.1)

We can encode this as a vertex visit graph with source vertex 𝑠 and
target vertex 𝑡, depicted in Section 3.8, where each edge has unit
weight. The path first goes through vertices labeled with assignments
to the variables (e.g. 𝑥 and 𝑥). After the variables have been assigned,
the path goes through the clause gadgets where the fan-out edges
are labeled with the vertex that must have been visited to allow
the edge to be traversed. All other edges in the graph do not have
constraints. If the edges are undirected, as shown, then this is a
reversible vertex visit graph, and a feasible path can be found in
polynomial time. A feasible path, however, might visit both 𝑥 and
𝑥, which destroys the interpretation of the first part of the path
as being an assignment to the variables, since now 𝑥 is both true
and false. If the edges are directed to move rightward, this is not
possible.

Similarly, a path that visits 𝑥 or 𝑥, but not both, is shorter than the
path that visits both 𝑥 and 𝑥. The formula is satisfiable if and only
if there is a path of length (no greater than) 11. Since the graph is
polynomial in the size of the satisfiability formula, the reduction
can be performed in polynomial time. Colloquially, finding optimal
paths in vertex visit graphs is therefore NP-hard. Since we already
showed it was in NP, therefore it is NP-complete.

3.9 Configuration path-dependent search

In problems where there is path-dependency on the history of
configurations, one typically identifies a state space, and in this state
space there is no path dependence. Here, we do not introduce a
state space and operate directly in the space of path histories.

38

Algorithm

We now outline a general search algorithm suitable for path-
dependent formulations. Algorithm 1 presents the general structure
of a path-dependent search algorithm. DominationTest allows the
search to prune certain paths. To maintain a search procedure that is
complete, the search can only prune paths that have equivalent path
summaries. However, in our application, we use aggressive pruning
strategies for efficiency, and rely on a higher-level search procedure
to maintain correctness of the overall path. When used in this way,
DominationTest has the effect of aliasing a set of search states into
one representation in the priority queue. In practice, the algorithm
would maintain the 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 data structure as an associative array
indexed by this search-state aliasing key. For problems in which
the robot configuration is a “sufficient statistic’, e.g. shortest path
problems, the path summary is just the last configuration on a path.
DominationTest can be chosen to recover the behavior of Dĳkstra’s
algorithm by considering only the first path to a configuration.

Configuration path-dependent problems

In this section, we frame existing problems in this path-dependent
formulation. In all of these problems, there’s a robot configuration
and there is a configuration path summary. All of these problems
require a search over path summaries. The path summary is the
information, in addition to the current configuration, to form a
state space for the purpose of planning. There are multiple ways
in which the formulation may require the path dependency. The
cost function on a path may not be decomposable. In this case,
we clarify this by considering two paths 𝑝1 and 𝑝2 that can be
concatenated, and describing what equality fails to hold. When
the cost function is a traditional notion of path length, it does
decompose: length(𝑝1)) + length(𝑝2)) = length(𝑝1; 𝑝2)). Or perhaps
the cost function does decompose, but the goal condition depends
on the configuration path taken.

The test DominationTest(𝑝, �̃�) should return true if �̃� cannot lead
to a better solution than 𝑝. Typically, �̃� can be pruned if ∃𝑝 where
𝑝[end] = �̃�[end] (both paths lead to the same configuration), and
an additional problem-specific condition, shown below.

39

See irreducible constraint removal
in [4].

See Section 8.4. Pruning via path
dominance in [6].

Risk-Aware Motion Planning [3]

path summary: how much risk is accumulated. risk(𝑝) ∈ ℝ.
DominationTest(𝑝, �̃�) ≡ (length(�̃�) > length(𝑝))∧(risk(�̃�) > risk(𝑝))
path dependency: risk(𝑝1) + risk(𝑝2) ≠ risk(𝑝1; 𝑝2)

Minimum-Constraint Removal [4]

path summary: which obstacles have been violated. ViolObst(𝑝) ⊆
𝑂

DominationTest(𝑝, �̃�) ≡ ViolObst(�̃�) ⊇ ViolObst(𝑝)
path dependency: |ViolObst(𝑝1)|+|ViolObst(𝑝2)| ≠ |ViolObst(𝑝1; 𝑝2)|
Note that the problem of minimum swept-volume motion planning
can be seen as a version of minimum constraint removal.

Minimum-Risk Motion Planning with Obstacle Uncertainty [64]

path summary: depends on the parameterization of the distribution
of the environment, and whether a union approximation is taken.
For simplicity, assume environment consists of balls 𝐵𝑖 , 𝑖 = 1, · · · , 𝑛
with larger radii being less probable. risk(𝑝) ∈ ℝ𝑛 , where 𝑛 is the
number of obstacles
DominationTest(𝑝, �̃�) ≡ risk(�̃� , 𝐵𝑖) > risk(𝑝, 𝐵𝑖)∀𝐵𝑖
path dependency: risk(𝑝1 , 𝐵𝑖) + risk(𝑝2 , 𝐵𝑖) ≠ risk(𝑝1; 𝑝2 , 𝐵𝑖)

Optimal Visibility-Based Pursuit Evasion [6]

path summary: status of shadows, contaminated or uncontaminated
DominationTest(𝑝, �̃�) ≡ (length(�̃�) > length(𝑝))∧()UncontaminatedShadows(�̃�) ⊆
UncontaminatedShadows(𝑝))
path dependency: GoalTest(𝑝) ≡ ContaminatedShadows(𝑝) = ∅
note: Optimal path may revisit the same configuration.

Belief-Space Planning [7]

path summary: covariance matrix, assuming some distribution of
observations at planning time In this case, 𝑝[end] represents the
mean and variance under some distribution of observations. And
we can generate confidence intervals from the distribution over
obstacles.

40

This is a centered ellipsoid inclusion
test, equivalent to a positive definite
test on the difference of covariance
matrices. In practice, it may be un-
likely that different paths achieve
exactly the same mean, and so a gen-
eral ellipsoid inclusion test could be
used.

DominationTest𝑝, �̃� ≡ conf_int(var(𝑝), 𝜎) ⊆ conf_int(var(�̃�), 𝜎)∀𝜎

path dependency: path constraints (via chance constraint), and goal
test

For VAMP, the path summary is the set of previously visited con-
figurations, plus initial visibility. Or ℙ(𝑊). The aspect of the search
problem that is sensitive to the path summary is the extension check,
via Equation V-Safety Constraint as the visibility constraint. In the
first three problems, the path dependence does not play a role in
determining path legality.

41

Algorithm 1

1: procedure PathDepSearch(𝐺, 𝑝𝑎𝑡ℎ𝑠𝑡𝑎𝑟𝑡 , ValidTest,
QueueOrder, DominationTest, GoalTest)

2: 𝑞𝑢𝑒𝑢𝑒 ← 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑄𝑢𝑒𝑢𝑒()
3: 𝑞𝑢𝑒𝑢𝑒 ← Push(𝑞𝑢𝑒𝑢𝑒, 𝑝𝑎𝑡ℎ𝑠𝑡𝑎𝑟𝑡 , 0))
4: 𝑣𝑖𝑠𝑡𝑒𝑑← ∅
5: 𝑏𝑒𝑠𝑡_𝑝𝑎𝑡ℎ ← null

6: 𝑖 ← 0
7: while ∥𝑞𝑢𝑒𝑢𝑒∥ > 0 do

8: 𝑖 ← 𝑖 + 1
9: (𝑞𝑢𝑒𝑢𝑒, 𝑝𝑎𝑡ℎ) ← PopMin(𝑞𝑢𝑒𝑢𝑒)

10: if GoalTest(𝑝𝑎𝑡ℎ) then

11: return 𝑝𝑎𝑡ℎ

12: end if

13: for 𝑝𝑎𝑡ℎ𝑜𝑙𝑑 ∈ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 do

14: ⊲ the domination test typically requires some sort of
equality to pass, so 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 can be an associative
array and iterate only on a subset.

15: if DominationTest(𝑝𝑎𝑡ℎ𝑜𝑙𝑑 , 𝑝𝑎𝑡ℎ) then continue

16: end if

17: end for

18: for 𝑐 ∈ Descendents(𝐺, 𝑝𝑎𝑡ℎ[end]) do

19: 𝑝𝑎𝑡ℎ𝑛𝑒𝑤 ← 𝑝𝑎𝑡ℎ; [𝑐]
20: if ValidTest(𝑝𝑎𝑡ℎ𝑛𝑒𝑤) then

21: 𝑞𝑢𝑒𝑢𝑒 ← Push(𝑞𝑢𝑒𝑢𝑒, 𝑝𝑎𝑡ℎ𝑛𝑒𝑤),QueueOrder(𝑝𝑎𝑡ℎ𝑛𝑒𝑤)
22: end if

23: end for

24: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∪ {𝑝𝑎𝑡ℎ}
25: end while

26: return 𝑏𝑒𝑠𝑡_𝑝𝑎𝑡ℎ
27: end procedure

42

It is also helpful if the robot is holo-
nomic, because the motion primi-
tives can be straight line segments in
configuration space.

It is common to approximate
𝑆(𝑞1 , 𝑞2) by sampling configurations
from 𝑞1 to 𝑞2, possibly just those two
endpoints, in contrast to doing con-
tinuous collision checking. In prac-
tice this is possible when 𝑁 allows
only small steps in configuration
space, along with using an overap-
proximation of 𝑆(𝑞), such that the
discrepancy caused by the approxi-
mation is negligible.

4 Formulation and Algorithms

In this chapter we present the core contribution of this thesis:
a general formulation of VAMP and algorithms for producing
solutions to VAMP instances.

4.1 Formulation

We formally state the VAMP problem as a generalization of tra-
ditional motion planning, with additional constraints. We also
provide a generalization that relaxes the constraint, and introduces
a workspace visibility goal because it arises in one of our solution
approaches of the original problem.

A traditional motion planning formulation may be a tuple consisting
of

Configuration Space C

Work Space W

CNeighborhood 𝑁(𝑞) ⊆ C, 𝑞 ∈ C

Collider Region col ⊆ W

Swept Region 𝑆(𝑞1 , 𝑞2) ⊆ W, 𝑞𝑖 ∈ C

Initial Configuration 𝑞init ∈ C

Goal Configuration Set 𝑄goal ⊆ C

We focus on problems in which the robot motion is quasi-static, so
the state of the robot can be modeled entirely by its configuration. In
this setting, we assume some set of motions giving the connectivity
in configuration space, e.g. a probabilistic roadmap [65] or a regular
lattice graph embedded in configuration space. Therefore, C is a
finite set, and the problem instance includes an implementation of a
connectivity function 𝑁 . This function encodes a topology of the
configuration space and does not encode feasibility with regard to
collisions. 𝑆(𝑞1 , 𝑞2) is the region swept by the robot when following
a primitive motion from 𝑞1 to 𝑞2. The motion from 𝑞1 to 𝑞2 is
topologically valid and feasible when 𝑞2 ∈ 𝑁(𝑞1) 𝑆(𝑞1 , 𝑞2) ∩ col = ∅.
𝑆(𝑞) = 𝑆(𝑞, 𝑞) is used to denote the region occupied by a robot in
configuration 𝑞.

A solution to this motion planning problem is a sequence of con-
figurations that starts at 𝑞init, ends in 𝑄goal, is connected according
to 𝑁 and is feasible with respect to 𝑆 and col. We may addition-
ally be interested in some cost function on the path, which almost

An example of a non-additive cost
function is to minimize the total
swept volume of the path.

ℙ(𝐴) is the power set of 𝐴, the set of
all subsets.

always decomposes additively, such as the length of the path in
configuration space.

To arrive at our first definition of a VAMP problem instance, we
extend the above table with additional entries

Occluder Region occ ⊆ W

Visible Region 𝑉(𝑞) ⊆ W, 𝑞 ∈ C

Initial Visible Set 𝑣init ⊆ W

Goal Configuration Set 𝑄goal ⊆ C

In most cases, col = occ, but we nevertheless make the distinction.
In general, there are transparent obstacles (e.g. glass) and opaque
non-obstacles (e.g. fog). There may also be a region that does not
generate occlusions, but should nevertheless exclude the robot.

𝑉(𝑞) is the region that is visible by the robot at 𝑞, taking into
consideration occ and self-occlusions.

We are assuming that motion is continuous-time (so all configura-
tions along a path must be previously viewed) but that perception
is discrete-time (so new views are only gained at the end of each
primitive trajectory). In general, 𝑆(𝑞init) ⊈ 𝑉(𝑞init), and so to admit a
solution, 𝑣init must be large enough so that the robot may take some
safe action.

Altogether, a VAMP problem instance is a tuple

𝐷 =
(︁
C, W, 𝑁 , col, occ, 𝑆, 𝑉, 𝑞init , 𝑣init , 𝑄goal ,

)︁
(4.1)

Where it is necessary to discuss multiple problem instances, e.g. 𝐷1
and 𝐷2, we distinguish between fields of different instances with
𝐷1.𝑣init and 𝐷2.𝑣init.

We now introduce some notation used to characterize paths 𝑃:

𝑃[𝑖] ∈ C , 𝑖 = 1, · · · , 𝑛 .

For convenience, define length(𝑃) = 𝑛 and define𝑃[end] = 𝑃[length(𝑃)]

Define (by overloading notation) a corresponding sequence of accu-
mulated visibility 𝑉(𝑃):

𝑉(𝑃)[𝑖] ∈ W, 𝑖 = 0, · · · , 𝑛

with 𝑉(𝑃)[0] = 𝑣init and

𝑉(𝑃)[𝑖] = 𝑉(𝑃)[𝑖 − 1] ∪𝑉(𝑃[𝑖]) , 𝑖 = 1, · · · , 𝑛 . cf. prefix “sum”, cumulative “sum”,
or scan

44

Note that this formulation bakes in
the assumption that the acquired vis-
ibility increases monotonically.

To represent set-theoretic difference,
we use 𝐴 \ 𝐵 = {𝑥 |𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵}

A union of no terms is ∅, so 𝑉([]) =
𝑣0 We do not rely on it, but an in-
tersection of no terms is the uni-
verse. From the perspective of a com-
putational implementation with an
“accumulator” these choices are as
natural as choosing zero/one for a
sum/product of no terms, since they
correspond to the initial value of the
accumulator. An unbiased definition
would not require a definition of
these edge cases [66].

For sets 𝐴 and 𝐵, the statement
𝐴 \ 𝐵 = ∅ is equivalent to 𝐵 ⊆ 𝐴.
We express Equation V-Safety Con-
straint in terms of set difference be-
cause it will be useful to allow viola-
tions of the constraint, and to keep
track of where those violations oc-
curred.

Note that 𝑉(𝑃[𝑖]) is the subset of W that is visible at configuration
𝑃[𝑖], whereas 𝑉(𝑃)[𝑖] is the subset of W that is visible from a
configuration 𝑃[𝑗] for any 𝑗 = 1 · · · 𝑖.

Define a corresponding sequence of incremental violations

𝑋(𝑃)[𝑖] ∈ W, 𝑖 = 1, · · · , 𝑛 ,

with e.g. 𝑋(𝑃)[1] = ∅ and

𝑋(𝑃)[𝑖] = 𝑆(𝑃[𝑖 − 1], 𝑃[𝑖]) \𝑉(𝑃)[𝑖 − 1] , 𝑖 = 2, · · · , 𝑛 .

It can be convenient to refer to sequences with more traditional
notation. We will use 𝑞𝑖 for an element of sequence of configurations,
and 𝑣𝑖 for an element of a sequence of accumulated visibility.

𝑉 ([𝑞1 · · · , 𝑞𝑛]) =
⋃︂
𝑖=1···𝑛

𝑉 (𝑞𝑖) ∪ 𝑣0 (4.2)

𝑆 ([𝑞1 · · · , 𝑞𝑛]) =
⋃︂

𝑖=1···𝑛−1
𝑆 (𝑞𝑖 , 𝑞𝑖+1) (4.3)

𝑃 is a solution to the VAMP instance if it satisfies:

𝑃[1] = 𝑞init (4.4)

𝑃[end] ∈ 𝑄goal (4.5)

𝑆(𝑃[𝑖], 𝑃[𝑖 + 1]) ∩ col = ∅ , 𝑖 = 1 · · · 𝑛 − 1 (4.6)

𝑋(𝑃)[𝑖] = ∅ , 𝑖 = 1 · · · 𝑛 (V-Safety Constraint)

We refer to Equation V-Safety Constraint as the visibility constraint
or safety constraint. It could alternately be expressed as

𝑆 (𝑞𝑖 , 𝑞𝑖+1) ⊆ 𝑉 ([𝑞1 , · · · , 𝑞𝑖]) ,∀𝑖 ∈ {0, . . . , 𝑛 − 1} (4.7)

Figure 4.1 graphically depicts the sequence of sets 𝑋 for a path that
is not safe with respect to Equation V-Safety Constraint.

Because we are interested in the length of solution paths, de-
fine 𝐷(𝑞𝑖 , 𝑞 𝑗) to be the length of the primitive trajectory moving

45

Figure 4.1: Illustration of violation
region 𝑋 shown in red. In the Hall-
wayHard domain, a motion plan that
is constrained only to avoid obsta-
cles incurs violations of Equation V-
Safety Constraint.

from 𝑞𝑖 to 𝑞 𝑗 . The length of a path is similarly 𝐷([𝑞1 , · · · 𝑞𝑛]) =∑︁𝑛−1
𝑖=1 𝐷(𝑞𝑖 , 𝑞𝑖+1)

Formulation of subproblem

The purpose of VAMP is to plan a path to a goal that is safe with
respect to Equation V-Safety Constraint. We have so far taken the
goal to be a set in configuration space, and we consider a solution to
satisfy the goal if the path terminates with a configuration in the
goal set. As we have alluded to, we may relax Equation V-Safety
Constraint, which would produce a violation region. We would
like to plan a path that acquires visibility of this region, and so we
extend our current formulation to include an additional goal:

Goal Visible Set (disjunction) 𝑉goal ⊆ ℙ(W)

A solution path 𝑃 satisfies this overall VAMP instance if it satisfies

∃𝑣goal ∈ 𝑉goal𝑉(𝑃)[end] ⊇ 𝑣goal (4.8)

(there exists a set in 𝑉goal such that 𝑃 acquires visibility of that set)
in addition to Equation 4.5, Equation 4.6, and Equation V-Safety
Constraint.

If there is effectively no goal to acquire visibility, then 𝑉goal = W,
which is how we recover the previous formulation. If there is a
visibility goal, then in practice 𝑄goal = C.

4.2 Algorithms for visibility-aware motion

planning

We present several algorithmic approaches to the VAMP problem,
beginning with a computationally inefficient method that produces

46

very high quality plans, and then exploring alternative strategies
that are more computationally tractable. We identified a strategy
for solving VAMP instances based on pruning, constraint relaxation
and goal regression.

As formulated in Section 4.1, in all these algorithms, we assume a
given finite graph (𝑄, 𝐸) where 𝑄 ⊂ 𝐶 is a set of configurations
and all edges (𝑞1 , 𝑞2) ∈ 𝐸 are collision-free with respect to𝑊obs, so
𝑆(𝑞1 , 𝑞2)∩𝑊obs = ∅. Any of our VAMP algorithms can be augmented
by an outer loop that increases the resolution or sampling density
of the graph.

Forward heuristic search in belief space

The most conceptually straightforward approach to this problem
is to perform a search in belief space [7, 67] to find solutions to
uncertain robot motion planning problems. The basic idea is that
a state of the whole system consists of a robot configuration and a
current belief state. In this problem, the belief state is (𝑞, 𝑣), with
𝑞 ∈ 𝑄 and 𝑣 ∈ ℙ(𝑊) representing the current configuration and the
region of the workspace that has been observed by the robot to be
collision-free.

The belief state is also completely characterized by the path taken
to a given configuration, which allows us to express this as a path-
dependent search.

Algorithm 2

procedure Vamp_Bel((𝑄, 𝐸), 𝑞0, 𝑄goal)
𝑝𝑎𝑡ℎ0 ← [𝑞0]
procedure GoalTest(path)

⊲ return first path to goal found
return if 𝑝𝑎𝑡ℎ[end] ∉ 𝑄goal

end procedure

procedure ValidTest(𝑝𝑎𝑡ℎ)
return CollisionFreeTest(𝑝𝑎𝑡ℎ) and (⋃︁𝑋(𝑝𝑎𝑡ℎ) = ∅)

end procedure

𝐻(𝑝𝑎𝑡ℎ) ← 𝛼
|︁|︁𝑆(mp((𝑄, 𝐸), 𝑝𝑎𝑡ℎ[end], 𝑄goal)) \ 𝑣

|︁|︁
QueueOrder(𝑝𝑎𝑡ℎ) = 𝐷(𝑝𝑎𝑡ℎ) + 𝐻(𝑝𝑎𝑡ℎ)

⊲ DominationTest described in text.
return PathDepSearch((𝑄, 𝐸), 𝑝𝑎𝑡ℎ0, ValidTest,

QueueOrder, DominationTest, GoalTest)
end procedure

Procedure Vamp_Bel provides an implementation of the belief-space
search via a call to PathDepSearch. The procedure is given, as input,

47

To approximate the remaining search
effort, we could use 1. configuration
space distance as the crow flies 2.
configuration space distance on the
graph of configurations 3. previous,
and also avoiding edges that collide
with obstacles 4. previous, and also
obeying V-Safety Constraint (akin to
solving the original problem) In our
first results for forward search, we
use method 3 plus a measure of the
violation region.

the graph (𝑄, 𝐸), initial configuration 𝑞0, and goal test 𝑄goal. The
set of legal actions 𝐴 that can be taken from state (𝑞, 𝑣) is the set of
outgoing edges from configuration 𝑞 that have the property that
their swept volume is contained in the previously-viewed region of
the workspace 𝑣.

The transition function 𝑇 moves along the edge to a new config-
uration and augments 𝑣 with the region of configuration space
visible from the new configuration. In order to drive the search
toward a goal state, we define a heuristic which is based on a
visibility-unaware path mp((𝑄, 𝐸), 𝑞, 𝑄goal) obtained by solving the
underlying motion-planning problem to the goal. The size of the
swept volume of that path that has not yet been viewed is used as a
measure of the difficulty of the remaining problem; 𝛼 is a constant
that makes the units match between a measure on workspace (e.g.
m2) and distance in configuration space (e.g. m). The principle be-
hind using such a heuristic is that a small violation region is easier
to cover (less search effort and short path) than a big one. This is a
heuristic, and not necessarily true, since a large contiguous region
may be easy to cover than a disjoint region, scattered about, with
small total area.

Note that, in this search, it is possible for an optimal path to visit the
same configuration more than once (with different visibility states
𝑣). Nonetheless, the search space is finite given finite 𝑄, because
only finitely many possible visibility states can be reached (at most
one for each set of configurations in 𝑄).

Theorem 4.2.1 Algorithm Vamp_Bel is correct and complete with respect
to configuration space graph (𝑄, 𝐸).

Proof. It is correct, because if it returns a path, that path is a feasible
path to a goal state. The 𝐴 function only allows the robot to move
through space that has already been made visible along the path, so
the steps are all feasible, and 𝐴∗ ensures that the final configuration
satisfies the goal test. It is complete, because the search space is finite,
no feasible actions are ever disallowed, and 𝐴∗ is complete.

This algorithm is computationally very complex even on modest
graphs because the search must generally consider multiple distinct
paths that reach a given robot configuration. The search can be
pruned by using a domination criterion: state (𝑞, 𝑣1) dominates (𝑞, 𝑣2)
if 𝑣1 ⊆ 𝑣2, which means that if the search visits a state that is
dominated by a state that has already been expanded, it can discard
the dominated state. In our experiments, this condition did not

48

Optimal Visibility-Based Pursuit
Evasion [6] provides multiple prun-
ing rules that are relevant to that
problem. Some rules are quick to
compute, and others provide more
effective pruning (without pruning
any paths that may be optimal).

occur frequently enough to be useful; different paths will see slightly
different regions. On the other hand, in the setting of Bry and Roy [7],
the belief space is lower dimensional (covariance matrices of the
dynamical state space) and so domination happens much more
frequently and makes the search tractable.

We implemented this algorithm with a very computationally cheap
domination criterion that eliminates paths that revisit configurations
without having visited any new configurations since the last visit
(this eliminates looping paths, among others). For HallwayEasy,
Figure 1.3, the heuristic is very effective at guiding the search—a
solution is found in under 10 sec after expanding 500 search nodes.
However, on HallwayHard, Figure 1.4, no solution was found after
expanding 440K nodes, with 2 million nodes on the queue, with a
computation time of over 2 h.

We also experimented with a more expensive domination criterion,
and used an admissible heuristic of the distance to the goal, avoiding
obstacles. A search node (𝑞1 , 𝑣1) dominates (𝑞2 , 𝑣2) if and only if
𝑞1 = 𝑞2, and the path to 𝑞1 is shorter than the path to 𝑞2, and
𝑣1 ⊇ 𝑣2. This criterion subsumes the cheap criterion mentioned
above. This is implemented by maintaining a list of 𝑣s for each 𝑞,
and iterating the list checking the criterion. Furthermore, for each
configuration 𝑞 we maintain the union of all 𝑣s that were achieved
at that configuration. This is a least upper bound on all the 𝑣s. If a
search node achieves any visibility outside the least upper bound,
then we can determine that is not dominated by any previous node
without iterating through the entire list. Finally, we iterate the list
by visiting the most recent elements first, since these are more likely
to dominate the tentative search node. These two enhancements
have no effect on the domination decision, but enhance performance
substantially. However, this method is still only practical for very
tiny domains.

Reverse search

One may wonder whether a formulation exists to do search back-
wards from the goal to, for example, do bi-directional search. We
sketch how to perform a search to solve VAMP that operates in
reverse, growing a search tree rooted at the goal configuration to-
ward the initial configuration. The backwards dynamics are defined
over a space denoted (𝑞, 𝑥), representing the configuration and
“borrowed visibility” respectively. Consider a backwards transition

49

In published work [68], we refer to
“local-visibility search”, since these
search strategies are ineffective for
problems where the swept volume
at one segment of the path requires
visibility acquired much earlier (non-
locally) in the path. These algorithms
are also “local” in contrast to the al-
gorithm described in Section 4.2 that
maintains a single visible region to
be shared (globally) across all search
nodes.

from (𝑞𝑖+1 , 𝑥𝑖+1 to (𝑞𝑖 , 𝑥𝑖 . 𝑥𝑖 is given by

𝑥𝑖 = (𝑥𝑖+1 ∪ 𝑆(𝑞𝑖 , 𝑞𝑖+1)) \𝑉(𝑞𝑖) . (4.9)

Consider VAMP problems with exactly one goal configuration, and
no goal visibility. The initial state in the backwards problem is
(𝑞goal , ∅). The goal state is (𝑞init , ∅).

Searches with aggressive pruning

The approaches in this section are not complete in general, but may
be complete for some robots (e.g. with ball visibility, see Section 2.3);
they will prove useful as a subroutine in later algorithms.

Vamp_Generic_Vis is defined in Algorithm 3. The basic version of
the method has the same arguments as Vamp_Bel, but it may also be
used in relaxed mode, which is signaled by an 𝑚𝑎𝑠𝑘 ⊂ 𝑊 , which is
the workspace region where the visibility constraint is enforced. By
default, 𝑚𝑎𝑠𝑘 = W, which is the unrelaxed problem. In any mode, it
may optionally be given a heuristic function.

Algorithm 3

1: procedure Vamp_Generic_Vis(𝐺, 𝑝𝑎𝑡ℎ𝑠𝑡𝑎𝑟𝑡 , 𝑄goal, 𝑚𝑎𝑠𝑘 = W)
2: procedure ValidTest(𝑝𝑎𝑡ℎ)
3: return CollisionFreeTest(𝑝𝑎𝑡ℎ) and

(⋃︁𝑋(𝑝𝑎𝑡ℎ) ∩ 𝑚𝑎𝑠𝑘 = ∅)
4: end procedure

5: procedure QueueOrder(𝑝𝑎𝑡ℎ)
6: ⊲ The violations are penalized regardless of 𝑚𝑎𝑠𝑘.
7: return 𝐷(𝑝𝑎𝑡ℎ) +∑︁

𝑖 |𝑋(𝑝𝑎𝑡ℎ)𝑖 | +Heuristic(𝑝𝑎𝑡ℎ)
8: end procedure

9: procedure DominationTest(𝑝1, 𝑝2)
10: ⊲ consider only first path to a configuration
11: return 𝑝1[end] = 𝑝2[end]
12: end procedure

13: procedure Heuristic(𝑝𝑎𝑡ℎ)
14: return min𝑞∈𝑄goal 𝐷(𝑞, 𝑝𝑎𝑡ℎ[end])
15: end procedure

16: ⊲ GoalTest same as in algorithm 2.
17: return PathDepSearch(𝐺, 𝑝𝑎𝑡ℎ𝑠𝑡𝑎𝑟𝑡 , ValidTest,

QueueOrder, DominationTest, GoalTest)
18: end procedure

When it is not relaxed, it allows traversal of any edge (𝑞, 𝑞′) ∈ 𝐸
whose swept volume is entirely contained in the visible region of the
path leading to 𝑞 (the constraint is enforced everwhere). The choice

50

It is possible that this method pro-
duces feasible paths, in the same
way that the relaxation of an integer
linear program may “accidentally”
have an integer solution.

of DominationTest prevents the search from considering multiple
paths to a given robot configuration. For some combinations of
robot kinematics, visibility, and environment this algorithm will be
complete. For example, a robot with a wide field of view will always
be able to see the space it is about to move into, and so the path taken
to a configuration does not affect the feasibility of future segments.
However, this method does not suffice for situations in which a
robot must move into space that is not immediately visible to it.
Whatever visibility we have the first time we expand a configuration
𝑞 is the visibility that will be permanently associated with it. The
algorithm is incomplete because it might commit to a path to some
configuration that is not the best in terms of visibility, and it cannot
contemplate paths that must revisit the same configuration.

Relaxed mode is used to compute intermediate subgoals, and the
robot is allowed to move into areas of the workspace that have not yet
been seen, but these motions incur an extra cost. It is not, however,
still required to satisfy the constraint in the region specified by
𝑚𝑎𝑠𝑘, a feature which is used in the Tourist algorithm of Section 4.2.
Relaxed mode is “complete”, in the sense that the planner will
return a path if one exists under the relaxed constraints. Ideally,
the relaxed planner would solve a minimum-swept volume problem,
keeping track of regions that have ever been violated, and not
double-counting the regions that experience repeat violations. As
we describe in Section 3.9, this itself is a path-dependent problem
and exact solutions are not amenable to efficient search. To keep the
computational tractability of sub-problem, so we simply penalize
additively the area traversed through unseen regions.

In some cases, it is possible to minimize this penalty by an elaborate,
zig-zagging path. This occurs when 𝛼 is too high, and it produces a
scattered region of visibility violations. The region, though small in
area, is disjoint, and so a path that achieves visibility of this region
is itself elaborate. This pathological behavior is possible due to the
heuristic nature of the algorithm.

Tree-visibility tour

In this section we present an algorithm that creates a tree that
resembles a search tree, but does not have the semantics of a search
tree. We are led to this algorithm by the observation that if 𝑃 is
a path that satisfies Equation V-Safety Constraint, then so does
𝑃; reverse(𝑃).

51

Our first implementation of this con-
cept was based on Rapidly-exploring
Random Trees [1], inheriting the
probabilistic completeness property.
It is also worth pointing out a connec-
tion to relaxations in classical search.
In a classical search (automated plan-
ning) formulation of this problem,
there is an atom for each configura-
tion that the robot can attain. This
search strategy is analogous to a
delete relaxation on those fluents, al-
lowing the robot to be at multiple
configurations simultaneously.

This is guaranteed by the following condition placed on the swept
volume.

𝑆(𝑞𝑖 , 𝑞 𝑗) = 𝑆(𝑞 𝑗 , 𝑞𝑖)∀𝑞1 , 𝑞2 (4.10)

Furthermore, visibility is monotonic, that is, as the robot moves
through the world, after any discrete path step and observation, the
visible region is non-decreasing.

𝑉([𝑞1 , . . . , 𝑞𝑛−1]) ⊆ 𝑉([𝑞1 , . . . , 𝑞𝑛]) (4.11)

These observations lead us to an algorithm that is complete and
much more efficient at finding solution paths for VAMP problems
than belief-space search, although we will find that it will generally
be unsuitable in practice. The purpose of the algorithm is instead
to emphasize how to leverage the structure of assumptions 4.10
and 4.11 in VAMP problems.

Rather than associating a new visibility region 𝑣 with each state in
the search, we will maintain a single, global 𝑣 ∈ ℙ(𝑊) and carry
out a search directly in 𝑄. The search can only traverse an edge if
its swept volume is contained in the workspace that has been viewed
during the entire search process up until that time. Once this process
reaches a goal state, the tree, in the order it was constructed, is used
to construct a solution path. Pseudocode is shown in Algorithm 4.

It proceeds in two phases. First, it constructs a search tree, where
the extension from a point in the tree is made only within the region
that has been visible from any configuration previously visited
in the search. Second, it constructs a path that visits all of the
configurations, in the order in which they were added to the tree,
and returns that path. The tree search is slightly unusual, because
which edges in the graph can be traversed depends globally on all
search nodes in the tree. For this reason, we perform a queue-based
search, keeping an agenda of edges, rather than nodes. If an edge is
selected for expansion, but is not yet traversable, it is added back to
the end of the agenda for reconsideration after some more of the
tree has been grown. When a goal state has been reached, we extract
a path from the tree. This path will visit the configurations in the
same order that they were visited by the search, but they must be
connected together via paths in the tree that existed at the point in
the search when the configuration was visited.

Theorem 4.2.2 Vamp_Tree is correct and complete with respect to the
configuration-space graph (𝑄, 𝐸) for any robot such that Equation 4.10

52

The concept of goal regression and
backwards reasoning is traditional
in AI and robotics [69].

holds.

Proof. It is correct because, if it returns a path, it is a feasible path
to a goal state. The set of edges (𝑞1 , 𝑞2) added to 𝑝 on iteration 𝑖 of
the path-construction phase have the property that either (𝑞1 , 𝑞2)
or (𝑞2 , 𝑞1) is in 𝑇[0 : 𝑖 − 1], which, by construction of the tree 𝑇 and
the reversibility assumption in the theorem statement, means that
𝑆(𝑞1 , 𝑞2) ⊆ 𝑉(visited[0..𝑖 − 1]). This, in turn, implies that the path
is feasible. The last configuration in visited clearly satisfies the goal
test, and it is also the last configuration in the returned path 𝑝.

To show that it is complete, we must show that if a feasible path to a
goal state exists in (𝑄, 𝐸), the search will find it (or another feasible
path). Assume [𝑞0 , . . . , 𝑞𝑛] where 𝑄goal(𝑞𝑛) = true is a feasible path
and assume, for the sake of contradiction, that the first while loop
cannot add all of the configurations [𝑞0 , . . . , 𝑞𝑛] to visited. Then
there must be a point in that loop when [𝑞0 , . . . , 𝑞𝑖] are in visited
for some 0 ≤ 𝑖 < 𝑛, but the algorithm cannot reach 𝑞𝑖+1. We know
by the assumption that this is a feasible path, so (𝑞𝑖 , 𝑞𝑖+1) ∈ 𝐸
and 𝑆(𝑞𝑖 , 𝑞𝑖+1) ⊆ 𝑉([𝑞0 , . . . , 𝑞𝑖]) ∪ 𝑣0, which means 𝑞𝑖+1 must be in
𝐴(𝑞𝑖). We also know that (𝑞𝑖 , 𝑞𝑖+1) will be in agenda, because 𝑞𝑖 is
in visited, so it was added, but 𝑞𝑖+1 is not in visited, so that edge
has not been removed from the agenda. But if (𝑞𝑖 , 𝑞𝑖+1) is in the
agenda and 𝑞𝑖+1 is in 𝐴(𝑞𝑖), then 𝑞𝑖+1 can be added to visited, and
so we reach a contradiction. Thus, we have shown that after the
while loop, 𝑞𝑛 has been reached, and so the algorithm continues
to the second phase. The only possible failure mode of the second
phase is if shortest_undirected_path fails; but, by construction, both
𝑞curr = visited[𝑖 − 1] and 𝑞next = visited[𝑖] are in 𝑇[0 : 𝑖], as are
paths from 𝑞0 to each of them. Thus we know that there is, at worst,
a path going from 𝑞curr up to 𝑞0 and back down to 𝑞next, by the
reversibility assumption. So this loop will terminate and a path 𝑝
will be returned.

Visibility preimage backchaining

Our final approach to this problem is to perform a much more
goal-driven search to observe parts of the workspace that will make
desired paths feasible. This algorithm is motivated by the observa-
tion that goals can be decomposed into subgoals, as demonstrated
in Figure 1.5. Furthermore, VAMP as we have defined it has a strong
property of monotonicity (Equation 4.11). Paired with the reversibility
condition (Equation 4.10), this means that motions in the configura-
tion space are undoable, in a manner that preserves the information

53

space. These properties allow us to formulate an algorithm that com-
mits to some parts of a solution without worrying about dead-ends.
With this motivation in mind, we describe a general algorithm that
has several special cases of interest, described in Section 4.5.

We make use of the Tourist algorithm, whose goal is to see some
part of a given previously-unobserved region of workspace. It uses
a local-visibility algorithm to find a path, but where the goal test
for a configuration is that it is possible to observe some previously
unobserved part of the workspace from there.

Heuristic for exploration

A critical aspect to making this search effective is to use a heuristic
that drives progress toward the objective of observing part of a region
of interest, 𝑅. We begin by computing a scalar field, 𝐹, in workspace,
of the shortest distance from location 𝑥 to a point in 𝑅. Then, the
heuristic is 𝐻(𝑞) = min𝑥∈𝑉(𝑞) 𝐹(𝑥), which assigns 0 heuristic value
to a configuration that can see part of 𝑅 (because it will be able to
see a workspace point 𝑥 with 𝐹(𝑥) = 0) and increasingly higher
heuristic values to configurations that can only see points that are
"far" in the sense of 𝐹 from 𝑅. Computing 𝐹 is relatively inexpensive,
and it effectively models the fact that visibility does not go through
walls. This heuristic is illustrated in Section 4.2: the black nodes are
the workspace target region 𝑅. The figure illustrates the level sets of
𝐹.

54

Algorithm 4

procedure Vamp_Tree((𝑄, 𝐸), 𝑉 , 𝑞0, 𝑄goal, 𝑣0)
agenda← [(𝑞0 , 𝑞

′) for (𝑞0 , 𝑞
′) ∈ 𝐸]

visited← [𝑞0]; 𝑇 ← []; 𝑣 ← 𝑣0
while agenda is not empty do

(𝑞𝑠 , 𝑞𝑒) ← pop(agenda)
if 𝑞𝑒 ∈ visited then continue

end if

if 𝑆(𝑞𝑠 , 𝑞𝑒) ⊆ 𝑣 then

visited.append(𝑞𝑒) ⊲ add conf to path
𝑇.append((𝑞𝑠 , 𝑞𝑒)) ⊲ add edge to tree
if 𝑄goal(𝑞𝑒) then break

end if

𝑣 ← 𝑣 ∪𝑉(𝑞𝑒) ⊲ add new visibility
agenda.extend([(𝑞𝑒 , 𝑞′) for (𝑞𝑒 , 𝑞′) ∈ 𝐸]) ⊲ add
outgoing edges to agenda

else

agenda.append((𝑞𝑠 , 𝑞𝑒)) ⊲ save edge for
reconsideration

end if

end while

if not 𝑄goal(𝑞𝑒) then return Failed
end if

𝑝 ← [𝑞0]; 𝑞curr ← 𝑞0
for 𝑖 ∈ [1..len(visited)] do

𝑞next ← visited[𝑖] ⊲ link configurations using
previously-enabled edges

𝑝.extend(shortest_undirected_path(𝑞curr , 𝑞next , 𝑇[0 :
𝑖])[1 :])

𝑞curr ← 𝑞next
end for

return p
end procedure

55

Figure 4.2: Level sets and heatmap
of field 𝐹 used to compute heuristic
for acquiring visibility of the white
points in the region surrounding
(1, 2).

1 2

3
4

Figure 4.3: The target region to see
is marked by a star. Dashed lines in-
dicate the shortest path to the target
from a few points in the workspace.
Visible regions are labeled 1-4. A
motion from 1 to 2 decreases the
heuristic value. A motion from 3 to
4 decreases the heuristic value, even
though it might be going away from
the target region. From 4, there are
no incremental translations to fur-
ther decrease the heuristic value.

This choice of heuristic causes some plateaus, and there may be
even moments when the heuristic value increases while progress
is made toward a goal configuration. Section 4.2 explores some of
these issues.

Algorithm 5

1: procedure Tourist(𝐺, 𝑝𝑎𝑡ℎ𝑠𝑡𝑎𝑟𝑡 , 𝐺𝑜𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛, 𝑚𝑎𝑠𝑘 = W)
2: ⊲ ValidTest, QueueOrder, DominationTest from algorithm 3.
3: procedure GoalTest(path)
4: ⊲ see any of the goal region
5: return 𝐺𝑜𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛 ∩𝑉(𝑝𝑎𝑡ℎ) = ∅
6: end procedure

7: 𝐻(𝑞) = min𝑥∈𝑉(𝑞) 𝐹(𝑥) ⊲ where 𝐹 is distance field
8: procedure Heuristic(𝑝𝑎𝑡ℎ)
9: return 𝐻(𝑝𝑎𝑡ℎ[end])

10: end procedure

11: return PathDepSearch(𝐺, 𝑝𝑎𝑡ℎ𝑠𝑡𝑎𝑟𝑡 , ValidTest,
QueueOrder, DominationTest, GoalTest)

12: end procedure

Now we can describe the Vamp_Backchain algorithm, with pseu-
docode shown in Algorithm 7. The main loop of the algorithm is in
lines 3–16. It keeps track of path, the solution path it is constructing.
On every iteration, it checks to see whether a goal state is reachable
from path[end] with the visibility 𝑉(path). If so, it appends the path
that does so to 𝑝 and returns a final solution. If that test fails, then it
generates a path that is guaranteed to increase the visible region (if
the problem is feasible), ideally in a way that makes it easier to reach
a goal configuration. In line 8, we find a relaxed plan 𝑝relaxed that
reaches a goal state, preferring to stay inside 𝑉(path), but allowing
excursions if necessary. Now, our objective is to find a path 𝑝vis that
will observe some previously-unobserved part of the swept volume
of 𝑝relaxed, by calling procedure TouristBoost. If that call fails, then
we fall back on an undirected exploration strategy, to view any part
of the unseen workspace. Once we have found a view path, we test
to see if we can now find a path to the goal, etc.

Figure 4.4 illustrates the operation of Vamp_Backchain in the
TwoHallway domain. It is given a goal to see the region at the
end of the vertical hallway (red points in Figure 4.4a). The hallway is
keyed, and the robot can only see the region through the peephole.
The planner generates a relaxed plan (gray) to see these points.
This relaxed path is in violation, and requires regions be made
visible (blue points in Figure 4.4b) before it can be executed. The
planner recurses one level, with the blue region as the goal, and both
marked "out of bounds" via 𝑚𝑎𝑠𝑘, and generates the gray path in

56

Algorithm 6

1: procedure TouristBoost(𝐺, 𝑝𝑎𝑡ℎ, 𝐺𝑜𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛, 𝑚𝑎𝑠𝑘 = W)
2: 𝑝vis ← Tourist(𝐺, 𝑝𝑎𝑡ℎ, 𝐺𝑜𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛)
3: if 𝑝vis ≠ null then

4: return 𝑝vis
5: end if

6: 𝑚𝑎𝑠𝑘′← 𝑚𝑎𝑠𝑘 ∪ 𝐺𝑜𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛
7: 𝑝relaxed ← Tourist(𝐺, 𝑝𝑎𝑡ℎ, 𝐺𝑜𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛, 𝑚𝑎𝑠𝑘′)
8: if 𝑝relaxed ≠ null then

9: 𝐺𝑜𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛′← ⋃︁
𝑋(𝑝relaxed)

10: return TouristBoost(𝐺, 𝑝𝑎𝑡ℎ, 𝐺𝑜𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛′, 𝑚𝑎𝑠𝑘′)
11: end if

12: return null

13: end procedure

0 1 2 3 4
0

1

2

3

4

(a)

0 1 2 3 4
0

1

2

3

4

(b)

Figure 4.4: Two levels of relaxed planning with a visibility goal.

Figure 4.4b. This path satisfies the full constraints, and it is returned
by the planner. Note that the returned path does not satisfy the
original goal, but achieves visibility to enable solving the original
visibily goal in a later call to the planner.

Two difficult examples that motivate the structure of the Vamp_-
Backchain algorithm are illustrated in Figure 4.5.

In Figure 4.5a, the robot must move to the dashed outline on the
right. It cannot do so with step-wise visibility (line 4), so it makes
a relaxed plan (line 8) to slide horizontally to the goal. However,
none of the swept volume of that relaxed plan can be viewed (line
2) under normal visibility constraints, nor can we even generate a
relaxed plan to view it (line 7). We fall back on simply generating a
path that views some part of the unseen workspace (line 12) which
yields the path shown by the unfilled robot outlines. The ultimate
solution to the problem is indicated by the robot outlines.

In Figure 4.5b, we see an example illustrating the potential need

57

Algorithm 7

1: procedure Vamp_Backchain(𝐺, 𝑞start, 𝑄goal)
2: 𝑝𝑎𝑡ℎ ← [𝑞start]
3: while true do

4: 𝑝 ← Vamp_Generic_Vis(𝐺, 𝑝𝑎𝑡ℎ, 𝑄goal)
5: if 𝑝 ≠ null then

6: return 𝑝

7: end if

8: 𝑝 ← Vamp_Generic_Vis(𝐺, 𝑝𝑎𝑡ℎ, 𝑄goal , 𝑚𝑎𝑠𝑘 = ∅)
9: 𝐺𝑜𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛 ← 𝑋(𝑝)[end]

10: 𝑝 ← TouristBoost(𝐺, 𝑝𝑎𝑡ℎ, 𝐺𝑜𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛)
11: if 𝑝 = null then

12: 𝑝𝑎𝑡ℎ ← Tourist(𝐺, 𝑝𝑎𝑡ℎ, 𝐺𝑜𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛 =

W\𝑉(𝑝𝑎𝑡ℎ))
13: else

14: 𝑝𝑎𝑡ℎ ← 𝑝

15: end if

16: end while

17: end procedure

(a) (b)

Figure 4.5: Difficult examples for the
Vamp_Backchain algorithm.

for arbitrary recursive nesting. In this case, the inner walls are
transparent (so the robot can see through them, but it cannot move
through them.) The solution requires moving forward into the
bottom-most hallway to clear it, then moving into it again sideways
to look through the windows, thus clearing the hallway above it,
and so on.

Theorem 4.2.3 The algorithm Vamp_Backchain is correct and complete
with respect to the configuration-space graph (𝑄, 𝐸) for any robot such
that Equation 4.10 holds.

Proof. If the algorithm returns an answer, it is a feasible path to a
goal state. The path is feasible because it is a concatenation of paths
made by non-relaxed calls to Vamp_Path_Vis (either directly or via
calls to Tourist), and those paths are feasible by construction. The
final call to Vamp_Path_Vis guarantees that the final configuration
satisfies 𝑄goal.

To show that it is complete, we begin with some lemmas.

58

In this formulation of Tourist, the
search is over as soon as any of the
goal region is seen. The entire region
can be seen, if possible, by repeat-
ing the search with the remaining
region. In published work [68], we
used an alternative formulation in
which the search attempts to see “as
much as possible” of the goal region.
In essence, this formulation gener-
alizes a goal test. It also separates
the notion of the order in the pri-
ority queue from the quality of the
path. The search is not allowed to
terminate until some of the goal re-
gion is seen, but once some of the
goal region is seen, the search ter-
minates only if there has not been
recent progress. There is a clear no-
tion of progress based on the size of
the region that remains to be seen,
but it is challenging to determine
what counts as “recent” in a princi-
pled manner. This strategy may be
interesting for practical reasons, but
we choose to describe the straightfor-
ward formulation here.

Lemma 1. The Tourist procedure is guaranteed to terminate, and
either return a path that will visit a configuration that has not been
reached before or fail.

Lemma 2. If there is a feasible path and the call in line 4 and line 8
fails, and the call to TouristBoost fails, then the call to Tourist in
line 12 is guaranteed to return a path that will visit a configuration
that has not been visited before.

By Lemmas 1 and 2, on every iteration of the main while loop, either
the call to Vamp_Path_Vis succeeds and finds and returns a solution
path, or, a sequence of configurations will be added to the path that
causes some not-yet-viewed space to be seen.

The while loop terminates. If a path does not exist, then eventually
all the space that can be seen will have been seen and the call on
line 12 will fail, and the algorithm will terminate with failure. If a
solution path [𝑞0 , . . . , 𝑞𝑛] does exist, then because repeated calls on
line 12 will eventually visit all configurations that can be reached on
feasible paths, and therefore see all the space that can be seen, then
there is a point at which all of 𝑆([𝑞0 , . . . , 𝑞𝑛])will be in 𝑣 and so a
call to Vamp_Path_Vis on line 4 will return with a solution.

4.3 Reformulation

Here we provide a formulation that sheds some light on the algo-
rithms above.

Pruning

Instead of searching over all possible configuration-space paths, we
search over some subset. Moreover, this subset may be dynamically
determined. A projection function maps a path to a hash space. In
almost all of our experiments we consider specifically the projection
function that looks at the final configuration of the path:

𝜋(𝑃) = 𝑃[end] (4.12)

In this case, 𝜋(𝑃) ∈ C, but other choices are possible. In the extreme
case, the projection function corresponds to computing the path
summary, and leads to a search over all relevant paths (which seems
generally intractable).

59

Additionally, for a given hash, the domination criterion determines
which paths to keep. In our experiments we consider specifically the
criterion which keeps the first (according to the search order) path
for a given hash. In this case, each hash value is associated with up
to one path, but other choices are possible.

Constraint relaxation

Because of the pruning, there are usually no paths that solve the
problem. The easiest witness for this assertion is to consider a
VAMP instance for which any solution path must contain the same
configuration twice. With the projection function and domination
criterion given as examples above, the search will never consider
this path.

To get useful information from running this search, the visibility
safety constraint (Equation V-Safety Constraint) is relaxed into a cost
penalty. The paths produced by this search are not (at least not on
their own) solutions, and intuitively the penalty should reflect how
much “effort” is required (by 𝑃pre below) to restore the solution.

There are multiple possible formulations for the penalty. The ap-
proach in Section 4.2 paper penalizes a path 𝑃 by (possibly) over-
counting the violation set:

length(𝑃)∑︂
𝑖=1

𝜇(𝑋(𝑃)[𝑖]) . (4.13)

A path that sweeps a given region of Wmultiple times without
acquiring additional visibility is penalized more than a path that
sweeps the given region just once. This approach was chosen at
that time because, relative to that implementation, it would require
less computation because we must only keep track of a scalar per
candidate path.

The more principled approach avoids over-counting:

𝜇

(︄
length(𝑃)⋃︂
𝑖=1

𝑋(𝑃)[𝑖]
)︄
. (4.14)

This choice requires either keeping a representation of the iterates
(sets in W), or computing the penalty iterating through the path. Both
of these are less efficient in memory and/or time than over-counting,
though note that computing𝑋(𝑃)[𝑖] requires computing𝑉(𝑃)[𝑖−1],

60

A see-any problem is a relaxation of a
see-all problem where a conjunction
is replaced by disjunction in the goal
condition. This relaxation is easier to
solve. We can solve the see-all prob-
lem by repeatedly solving see-any in
a receding horizon fashion.

and so an implementation already needs either a representation of
that set, or to compute the set by iterating through the path.

To represent the relaxed problem in the same framework, we aug-
ment the formulation of a VAMP problem instance with the following
fields:

Safety Violation Penalty 𝑐 : (C)∗ → ℝ

Safety Constraint Mask mask ⊆ W

and redefine Equation V-Safety Constraint as follows:

𝑋(𝑃)[𝑖] ∩mask = ∅ , 𝑖 = 1 · · · 𝑛 . (Masked V-Safety Constraint)

By default, mask = W. In the relaxed setting mask = ∅.

Goal regression

The relaxed search above generates two results: 1. a path 𝑃 that is
generally not a solution to the original VAMP instance 𝐷init. 2. a
region 𝑣missing ⊆ W:

𝑣missing =

length(𝑃)⋃︂
𝑖=1

𝑋(𝑃)[𝑖] . (4.15)

If 𝑣missing were somehow made visible initially, then we would have
a solution to the original instance. In other words, let 𝐷𝑠𝑜𝑙𝑣𝑒𝑑 be a
VAMP instance like 𝐷init, except that

𝐷𝑠𝑜𝑙𝑣𝑒𝑑 .𝑣init = 𝐷init ∪ 𝑣missing (4.16)

𝑃 is a solution to 𝐷𝑠𝑜𝑙𝑣𝑒𝑑.

The problem at hand now is to compute a path 𝑃pre for a domain
𝐷pre with𝐷pre𝑄goal = Cand𝑉goal = {𝑣missing} (“see-all”) or𝑉goal =

{𝑣 |𝑣 ⊆ 𝑣missing} (“see-any”).

This path acquires visibility of 𝑣missing. (If we choose 𝑉goal corre-
sponding to “see-all”, and we further constrain 𝑄goal = {𝐷init.𝑞init},
then we could simply concatenate 𝑃pre and 𝑃 to get a solution. This
approach would generally produce a longer path at the benefit of not
needing to solve a new planning instance with 𝑞init = 𝑃pre[end]).)

In general, computing 𝑃pre may itself be an intractable problem. We
apply the same pruning as above and relax the constraint into a

61

penalty, to compute 𝑃′. Critically, we re-introduce a constraint on
𝑋(𝑃′) to ensure that a solution to this subproblem makes progress
toward solving the overall problem. mask = 𝑣missing

Just as before, 𝑃′ is generally not a solution to𝐷pre (with mask = W),
and induces an analogous 𝑣missing. Goal regression continues and
relaxed searching continues until the relaxed search generates a
path that happens to solve mask = W. If W is bounded, then this is
guaranteed.

4.4 Complexity

Complexity of problem class

VAMP is a generalization of classical motion planning, which is
PSPACE-hard [70]. There are, however, restricted classes of classical
motion planning that are in P. For example, there are algorithms
that require time exponential in the dimension of the configuration
space, but are polynomial in all other quantities (such as the number
of obstacles and the degree of polynomial defining the obstacles). If
we consider the class of classical motion planning problems with
bounded dimensionality of the configuration space, that class is
in P. However, when we demand shortest paths, the problem is
NP-hard even for finding the shortest path for a point in a 3D
workspace [71].

There are generalizations of motion planning problem ([72, 73])
that are computationally hard even when considering this restricted
class among feasibility. We conjecture that finding optimal VAMP
paths is NP-hard in planar domains in an (𝑥, 𝑦, 𝜃) configuration
space. The argument presented for an abstracted version of VAMP
in Section 3.8 shows that this abstracted version is NP-complete,
but the vertex visit graphs arising from VAMP instances is more
restricted than arbitrary vertex visit graphs.

Complexity of solution length

Section 3.8 demonstrates the existence of an abstracted path search
problem, without any geometry, exhibiting quadratic scaling of the
length of a solution with respect to the size of the problem. We
can construct VAMP problems with this property, too, in Figure 4.6.
The robot must start in the green configuration at the lower left
and navigate to the red configuration in the top right. An example
configuration is shown in purple with the corresponding view region.

62

Figure 4.6: Domain illustrating
worst-case (quadratic) scaling of so-
lution length with domain size.

The view region does not allow the robot to translate sideways (strafe)
locally. Only the bottom part of the domain contains enough room
for the robot to change orientation. The length of a solution grows
quadratically with the number of steps in the domain (here a domain
with 5 steps is shown), since the robot must return to the bottom
each time it makes a step’s worth of progress toward the goal.

Compared to some other motion planning problems that remain
computationally hard even when restricted to a low-dimensional
configuration space, such as minimum constraint removal and
motion planning with obstacle uncertainty [72, 73], VAMP stands
out by having solutions whose lengths scale quadratically in the
worst case. There are instances of Visibility-based pursuit evasion
that require shadows to be recontaminated linearly many times, but
this does not necessarily result in paths with quadratic length. An
example is available in Theorem 7 and Figure 3 of Guibas et al. [74],
and the same example is reproduced in Figure 4.7.

Complexity of algorithm

We provide here some quantities that can be used in analyzing the
algorithmic complexity of the procedures mentioned in this chapter.
For a configuration graph with 𝑐 vertices and a workspace with
𝑤 cells, there are at most 2𝑐 distinct visible regions. This is still
huge, and also may be considerably less than 2𝑤 , the number of
“occupancy grid” states of the discretized workspace. Both of these
numbers may wildly overestimate the number of reachable distinct
visible regions, since there are many distinct sets of configurations
that induce the same visible region, even more so when there are
occluders.

One difficulty in stating the algorithmic time complexity is deter-
mining the time complexity of geometric operations. Chapter 5
enables a trade-off between time and memory for determining the
incremental violation region 𝑋(𝑝), and contains a discussion of the
geometric operations. We leave a careful analysis of the complexity
of the algorithms for future work.

VAMP instances are challenging when the domain requires plans
that achieve visibility in order to perform a motion in the future.
We present two small instances, HallwayHard and TwoHallway
that have this property. Solving the problem directly in the belief
space is computationally intractable. We, instead, direct the search
by relying on calls to constraint-relaxed plans.

63

Figure 4.7: Domain illustrating back-
and-forth solution path in visibility-
based pursuit evasion. The path
starts at the top green marker, and
the goal is to ensure all regions are
uncontaminated. The optimal solu-
tion takes the path in blue, ending
at the red marker, and must clear
the nook at the top repeatedly. The
length of the path depends linearly
on the number of hooks on the bot-
tom, and linearly on the height of
the domain. This figure is based on
Figure 25(d) in Stiffler et al. [6].

For example, for a robot with a wide
view cone approaches a wall fol-
lowing 𝑞1 , 𝑞2 , · · · , we have 𝑉(𝑞1) ⊃
𝑉(𝑞2) ⊃ · · · .

4.5 Experiments and planning results

In our experiments, we consider a planar robot (1 m× 1 m) operating
in a 2D workspace. For all of the experiments, we discretize the robot
motions and search on a 6-connected lattice (Δ𝑥 = Δ𝑦 = 0.125 m,
Δ𝜃 = 2𝜋

16). The depth of view of the visible region is 2.5 m. All
swept volume and containment computations were performed by
sampling points along the boundary of the robot.

We ran two versions of Vamp_Backchain. VB∞ corresponds to the
algorithm as presented in Section 4.2, with the difference that all
sub-calls to the planners are relaxed versions. We never call the
unrelaxed planner, however we still verify the feasibility of paths
before incorporating them into the final path. This choice has the
benefit of accelerating the search procedure, since we do not have to
wait for Tourist to return failure in situations where the search is
incomplete. In practice, the relaxed planners often return a feasible
path if one exists, but occasionally they produce a violating path,
which means subsequent searches may do unnecessary work to
provide visibility in the violated region.

VB1 corresponds to Vamp_Backchain, but with a recursion depth
limit. In this variation the call to TouristBoost is skipped. Further-
more, instead of waiting for the call to Tourist to fail we set a timeout,
to trigger the subsequent call to Tourist.

We run experiments on many instances of VAMP problems. Instances
vary in obstacle, start and goal states, and field of view of the vision
sensor.

There are three combinations of obstacle layout and start/goal states,
each exhibiting increasing problem difficulty: HallwayEasy depicted
in Figure 1.3, HallwayHard depicted in Figure 1.4, and TwoHallway
depicted in Figure 1.5, which contains a “keyed” vertical hallway,
which can only be entered backwards.

For each experiment, we report search time, path length, and total
number of nodes expanded in any subroutine searches.

TwoHallway is designed to demonstrate the recursion capabilities
of
Vamp_Backchain, so VB∞ noticeably outperforms VB1 on it. Because
VB1 does not perform backchaining more than once, it relies on
line 12 of Vamp_Backchain. In practice, for problems exhibiting the
nested dependency as in TwoHallway, VB1 generates paths that
view the whole space because the search cannot be guided through
nested dependencies.

64

Table 4.1: Planning results across varying viewcones

fov=50° fov=200° fov=350°
VB1 VB∞ VB1 VB∞ VB1 VB∞

Search time (s) HallwayEasy 5.1 16.4 1.2 1.2 1.0 2.2
HallwayHard 23.4 315.3 9.4 13.9 2.4 3.5
TwoHallway 2868.3 281.3 638.5 220.9 1952.1 134.8

Path length (m) HallwayEasy 12.3 13.3 8.4 8.4 8.4 8.4
HallwayHard 14.3 16.9 12.5 12.5 11.4 11.4
TwoHallway 63.9 43.4 47.6 43.2 40.6 34.3

Closed nodes HallwayEasy 2578 9241 377 377 137 137
HallwayHard 7667 40428 3436 4469 604 604
TwoHallway 139484 64145 76083 62586 92184 44188

Situations in which VB∞ performs worse are due to suboptimal
relaxed paths, which incur violations that could be avoided.

We also collected search times and tree size for the TreeVis algorithm.
For TwoHallway, it expands 62,000 nodes and searches for 60
seconds. Note that this does not include any time for generating a
path. The naïve path would include every edge in the tree, visiting
every node in search order, which would never be a practical path.
Note additionally that TreeVis is not a directed search, and so in
domains where the workspace is large, it is unlikely that TreeVis
will be practical.

4.6 Appendix: Geometry

The language of set theory gives us a compact way to express
the above formulation. However, to compute with these sets, we
must choose a representation. In this dissertation, we have con-
sidered three classes of representations: boundary representations
(such as meshes, polygons, and polyhedra), uniform raster grids
(pixel/voxels), and sampling points (point clouds).

Representing the sensing region

A camera’s data sheet specifies the horizontal and vertical field of
view, along with a measurement range. These specifications can be
used to construct a view frustum consisting of the intersection of 6
half-spaces. We assume that if an obstacle is in the view frustum, it
will be sensed.

65

Visibility computations

We have considered several methods for performing the geometric
computations required, specifically computing the visibility viola-
tion region (either its size or its extent). Each method imposes a set
of requirements on the representation of the robot and occluder
geometry. Note that the logic of performing collision detection is
different from computing visibility violations.

Visibility constraint versus collision detection

Given obstacle/occluder regions 𝑜𝑖 , 𝑠 is collision-free iff

𝑠 ∩ (𝑜1 ∪ 𝑜2 ∪ · · ·) = ∅ (4.17)

Distributing gives

(𝑠 ∩ 𝑜1) ∪ (𝑠 ∩ 𝑜2) ∪ · · · = ∅ (4.18)

which can be logically decomposed

(𝑠 ∩ 𝑜1 = ∅) ∧ (𝑠 ∩ 𝑜2 = ∅) ∧ · · · (4.19)

On the other hand, 𝑠 is visibility-safe with respect to visible regions
𝑣𝑖 iff

𝑠 ⊆ (𝑣1 ∪ 𝑣2 ∪ · · ·) (4.20)

Equivalently
𝑠 \ (𝑣1 ∪ 𝑣2 ∪ · · ·) = ∅ (4.21)

which can be written as

((𝑠 \ 𝑣1) \ 𝑣2) \ · · · = ∅ (4.22)

The logic of collision detection decomposes in such a way that Equa-
tion V-Safety Constraint cannot. If we were specifically interested in
𝑠 ⊆ 𝑣𝑖 , we could use a raster graphics rendering pipeline to deter-
mine visibility. Assign a sentinel color to the object whose visibility
you want to check, 𝑠, and render the scene without any occluders
from the perspective corresponding to 𝑣𝑖 . Count the number of pix-
els with the sentinel color, and re-render the scene with occluders.
If the count is the same, then 𝑠 ⊆ 𝑣𝑖 . If the count is reduced, then
some of 𝑠 is occluded. Without knowing the specific region of 𝑠 that

66

To see how this representation is
not minimal in general, consider tak-
ing the intersection of two intricate
shapes with no overlap. Determining
emptiness of the half-space represen-
tation is equivalent to deciding the
feasibility of a linear program.

is occluded, it is not possible to use this procedure to answer our
query with respect to ⋃︁

𝑣𝑖 .

We could also use a ray casting operation. If 𝑠 is convex, we can
determine its visibility from a vantage point by constructing the
convex hull 𝑠 and the point. If this convex hull “collides” with any
occluders, then some of 𝑠 is occluded. The convex hull must also
be contained within the visible region. But because there may not
be any single view that covers 𝑠, we need to consider unions of
views.

Representing convex polyhedra

There are two complementary representations for convex polyhedra:
the half space representation and the vertex representation.

The half-space representation is given by the intersection of finitely
many half spaces. Each half-space is given by a normal vector, which
by convention points out of the shape, and an offset. A point with
coordinates represented as a column vector 𝑥 is inside the region if
𝐴𝑥 ≤ 𝑏, where 𝐴 is a matrix with row vectors corresponding to the
half-space normals, and 𝑏 is a vector of the half-space offsets. The
inequality applies element-wise.

The vertex representation is given by the convex hull of finitely
many points and the conic hull of finitely many rays. 𝑥 is inside the
region if 𝑥 = 𝑉𝑦 + 𝑅𝑧, where 𝑉 is a matrix with column vectors
representing coordinates of the points and 𝑅 the direction of rays.∑︁
𝑦𝑖 = 1, 𝑦𝑖 ≥ 0 and 𝑧𝑖 ≥ 0.

Neither of these representations are unique. For the half-space
representation, any half-space that contains the entire region can be
added. For the vertex representation, any point or ray in the convex
or conic hull, respectively, can be added. Note that rays are required
in the vertex representation, since the half-spaces may not be closed.
This is exactly the case when representing the shadow cast by a
convex object. Also note the degenerate cases. The intersection of
no half spaces represents the entire domain. To represent an empty
region, there should be no solution 𝑥.

There are algorithms to convert between representations. This is
helpful because different operations between convex polytopes are
easiest in different representations. For example, taking intersections
of convex polyhedra amounts to combining all their half-spaces. As
noted, this does not in general result in a minimal representation.

67

In 3D, we detect silhouette edges that
are straddled by two faces.

Visible region by constructing shadow volumes

Given a vantage point and a polyhedral occluder, the shadow cast by
an occluder can be constructed by first determining its silhouette. For
example, in 2D, we can detect the silhouette points of an occluder
by identifying points that are straddled by two edges, one facing
toward and the other away from the vantage point. If the occluder
is convex, then the half-space representation of the shadow consists
of 1. all of the half-spaces of the occluder facing the vantage point
2. half-spaces generated by the silhouette element (point or edge)
and vantage point. Figure 4.8 shows the half-spaces involved in the
shadow of a rectangular occluder.

This process is related to shadow volumes in computer graphics. If
the occluder is nonconvex, then multiple shadow volumes arise
from the object, which does not cause a problem in the graphics use
case [75].

A point is visible if and only if it is in the view cone and outside at
least one shadow. If we discretize the robot into points, then we can
use this procedure to answer approximate visibility queries. On the
other hand, we can perform ray cast queries from the vantage point
to these queries. This amounts to checking line segment intersection
against occluder geometry. This approximation of the problem (it
is a relaxation, since fewer constraints apply) is easier to solve, and
each discretized point can be checked in parallel.

Constructing unseen swept region

Figure 4.8 illustrates a procedure that explicitly constructs the set
difference of two convex polyhedra, representing the result as a
union of convex polyhedra.

Once the visible region is constructed explicitly, the same procedure
can be used to take a set difference with the swept geometry. What
remains is the unseen region.

If the workspace is 2D, there are efficient boundary representations
for nonconvex polygons, including those with holes. However, it
is challenging to handle boolean operations robustly. Even when
maintaining only convex objects, robustness problems arise, e.g.
when slivers in workspace are generated. Furthermore, these kinds
of computational geometry computations are relatively slow to
perform within the planner.

68

(a) (b) (c)

(d) (e) (f)

Figure 4.8: Set difference (positive \
negative) for union of convex polyhe-
dra represented by half-spaces. The
positive set is the convex yellow re-
gion, which is the intersection of
3 half-spaces drawn with a solid
boundary. The negative set is the con-
vex blue region, which is the inter-
section of 4 half-spaces drawn with
a dashed boundary. The negative set
is the shadow, from the red vantage
point, of a rectangle. Figures 4.8b
to 4.8e shows each step of the proce-
dure, which splits the yellow region
into the two regions, yellow and red,
depicted in the subsequent subfig-
ure. Figure 4.8f shows the final result:
the union of these four yellow con-
vex regions. Note that the resulting
convex decomposition depends on
the order in which the half-spaces
are considered.

We discussed the approximating the geometry of the robot with
point samples. We used this technique in most experiments in
continuous-workspace domains. In principle, the solution of this
approximate plan can be verified with the approach above. If any
violation is found, a point in the unseen swept region can be added to
the sample approximation of the robot, and the planning procedure
rerun in the modified domain where the approximation has been
refined.

Representing the visible region of a path

In the continuous-workspace experiments, we do not explicitly
construct the union of all the visible regions. We instead maintain a
list of regions. A point is in the union if it is in any of the components.
To reduce memory usage and computation time, we attempted an
optimization to remove visible regions that do not contribute to
the union. This was done approximately, by sampling points in the
workspace. A region does not contribute to the union if it does not
include any additional points. This solution is undesirable since it
is approximate, and requires a choice of sampling procedure (we
used a uniform grid).

69

For example, we will solve the
eikonal equations in the workspace
for the heuristic to achieve visibil-
ity. As with many partial differential
equations, discretization is central to
computing solutions.

cf. In video games, the collision re-
gion of a sprite does not necessarily
match the geometry suggested by
the sprite. When collision checking
is done in accordance with the ren-
dering of the sprite and colliders, it
is called pixel-perfect or per-pixel colli-
sion detection.

The concept of a supercover also goes
by the name of conservative rasteriza-
tion and outer Jordan digitization.

Discrete workspace

There are many challenges arising from how to represent continuous-
space geometry and quantities over said geometry. The way to
address most of these challenges is to discretize, so we attempted a
formulation of VAMP that is stated completely in terms of a discrete
workspace. A set in discrete workspace can be represented compu-
tationally as a set of tuples of integer coordinates. Set operations
with a geometric interpretation can be performed directly on these
sets. The simplicity of this approach has a downside—large sets
are expensive to compute on. Hence, in practice, spatial hierarchy
is exploited to represent large regions efficiently [76]. We focus on
small workspaces to avoid these issues.

Collision checking

At first, we desired to stay completely in the world of discrete
geometry, sometimes called digital geometry. The occluder and
collider geometries, along with the robot swept volume and visible
region, were all to be defined discretely. We would have the robot
move immediately from one configuration, to the next. To prevent
the robot from reorienting itself in a narrow hallway, it would be
necessary to make the robot’s bounding volume be rectangular,
and have a hallway with a width in between the short and long
dimension of the rectangle. However, this choice allows the robot to
only enter in two orientations, a half-turn apart. The TwoHallway
domain requires the robot to enter the hallway in at least three
orientations, and so it would not be possible to model this domain
in the discrete world.

We therefore returned to thinking about an underlying continuous
workspace geometry and computing a grid supercover to overap-
proximate the continuous geometry. Because the discretization of
the configuration space was chosen to be uniform, we can precom-
pute the discretized swept volume of all motion actions. It would
have been sufficient to sample densely along an action transition,
but there is a risk of under-approximating the swept volume. We
instead used general-purpose off-the-shelf algorithms for comput-
ing forward-reachability of a set of initial conditions under linear
ordinary differential equations (ODE) [77]. These methods produce
over-approximations, and since we aim to over-approximate the
continuous set in the discretized workspace anyway, a visual in-
spection can ensure that the correct volume is computed. More
efficient solutions for computing swept volumes certainly exist, but

70

It is possible to be more careful about
the dimensionality here. 𝑐 has units
of velocity, but multiplied by unit
time, it is a displacement. The matrix
𝐴 is also dimensioned [78].

since these sets can be precomputed, we use these general purpose
tools.

A linear ODE can be expressed as

𝑥′(𝑡) = 𝐴𝑥(𝑡) , (4.23)

where 𝐴 is a time-varying matrix.

To compute 𝑆(𝑞1 , 𝑞2), we set the initial condition set 𝑥(0) ∈ 𝑆(𝑞1),
set 𝐴(𝑡) according to the motion, and integrate forward for one unit
of time (without loss of generality). For example, to rotate a planar
set about the origin at velocity 𝑟,

𝐴 =

[︃
0 −𝑟
𝑟 0

]︃
(4.24)

To translate, one can use homogeneous coordinates to express an
affine equation linearly. Here, we will just state the equation in affine
form as

𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝑐 (4.25)

So with 𝐴 = 0, the initial condition set translates by 𝑐 in unit
time. Together, this allows computing the rotation about any point,
not just the origin. However, primitive motions are often straight
lines in configuration space. For a rigid-body robot with translation
and orientation, there is not a single translation or rotation that
corresponds to the motion of a straight line in configuration space.
The robot rotates about a point that is itself being translated. In
other words, there is no static 2D vector field that would cause a set
of initial conditions to simultaneously translate, and rotate about a
translating point.

To use the reachability analysis tools, we express simultaneous
translation and rotation by adding dimensions corresponding to the
center point of the rotation. We use �̂� to represent this lifted space.
The motion corresponding to a simultaneous 𝑟/2𝜋 rotation about
the point initially at the 𝑎, translating by 𝑏 is given by

�̂�
′ (𝑡) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 −𝑟 0 𝑟

𝑟 0 −𝑟 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ �̂� (𝑡) +
⎡⎢⎢⎢⎢⎢⎢⎣
𝑏1
𝑏2
𝑏1
𝑏2

⎤⎥⎥⎥⎥⎥⎥⎦ (4.26)

71

Figure 4.9: Some discretized swept
volumes for a planar T-shaped robot.

s

t

Figure 4.10: For cell 𝑡 to be visible
from the center of cell 𝑠, the cell be-
low 𝑡 must be clear.

with

�̂� (0) =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥1 (0)
𝑥2 (0)
𝑎1
𝑎2

⎤⎥⎥⎥⎥⎥⎥⎦ (4.27)

To determine the unlifted set, just project onto the original coordi-
nates.

Visibility

There is a rich body of work on formulating geometry over uniform
grids that has parallels to Euclidean geometry. We attempted to
define visibility in terms of digital straight lines, however it produces
results that do not correspond to a helpful notion of visibility in
continuous geometry. In fact, it reveals a subtle issue with defining
visibility, illustrated in Figure 4.10. For cell 𝑡 to be visible from the
center of cell 𝑠, the cell below 𝑡 must be clear. If there is a vertical
wall in the first column, including 𝑡, then 𝑡 is not visible. The fix we
use is to define a cell to be visible if any of the edges are visible. On
the grid, it is sufficient to cast a ray to each corner, and check two
adjacent corners, since no occluder is smaller than a grid element.

Post-processing to minimize views

Each of the algorithms returns a path of consecutive configurations
such that, if the robot were to take and process an image at every
configuration, the path would be safe. However, when imaging
requires the robot to be stationary or the processing is slow, it is
desirable to minimize the number of images required while still
guaranteeing safety. To select which configurations actually require
an image to be acquired and processed, we simply run a greedy
set-cover algorithm, and then annotate the configurations in the
path to indicate whether the robot should take an image there.

Many mobile-manipulation robots have heads that pan and tilt.
If the head is such that moving it substantially changes the robot
configuration from a collision-avoidance perspective (e.g., it can
extend a periscope) then it may be necessary to include the degrees
of freedom of the head in the robot’s configuration, 𝑞, and apply
the algorithms in this thesis directly. However, when moving the
head makes a relatively small change in the swept volume of the
robot, planning for the head can be decoupled from planning for
the rest of the robot. This is an easier planning problem. We do this

72

This material was originally pre-
sented in the ICRA 2019 workshop
ViTac: Integrating Vision and Touch for
Multimodal and Cross-modal Percep-
tion.

in two phases. First, we run one of the VAMP algorithms in the
configuration space of the robot, but without including the head’s
degrees of freedom. We use a visibility function 𝑉 that includes
the union of all possible views (the field of regard) that can be obtained
by moving the head, given the rest of the configuration 𝑞. When a
path is returned, we post-process by selecting not just what robot
configurations require an image but also which orientation(s) the
head should have when taking the images. We accomplish this
by partitioning the viewable region of space into a finite set and
associate a head configuration with each element. Then, when we
have a set-cover problem. We run it over the product of the body
configurations in the path and the possible head configurations. We
used an integer linear programming formulation of minimum set
cover. This formulation penalizes the first view at robot configuration
more than subsequent views. This can be slow, and a greedy set-cover
approach is faster.

4.7 Appendix: Extension to tactile sensing

Although it was originally developed for robots with limited visual
sensing, the techniques can be generalized to robots equipped with
tactile sensors. The formulation we propose allows the robot to
make unexpected contact with the environment, so long as contact
is guaranteed to happen on specific contact-sensitive surfaces of the
robot.

We propose an extended model of safety that is appropriate for
robots with both visual and tactile sensors. These models of safety
are suitable for motion planning in unknown maps. In the following,
we begin by describing our approach to planning with incomplete
information [68] and then discuss ways in which it can be directly
applied to robots with tactile sensing.

If the robot is entirely covered in tactile sensors [55, 79], then it could
proceed without any special planning, assuming it is executing
guarded moves (moving slowly enough to not damage itself before
it can detect contact and halt). More generally, a robot cannot detect
contact as it moves in an arbitrary direction in configuration space.
We explore a few cases, starting with a case that reduces directly to
the previous formulation of the VAMP problem. To handle more
general robots, we require a new formulation of the safety constraint.
Finally, we explain the strategies that a planner may exploit when a
robot has access to both visual and tactile sensing modalities.

73

(a) (b)

Figure 4.11: (a) Some possible sensed
volumes with respect to robot con-
figuration (blue) and environment
(gray). The orange region can be
covered with an unretractable cane.
A few configurations of a cane are
shown in black. The yellow region
can be covered with a depth sensor
(or retractable cane). (b) A robot with
vision (yellow) and bump (red) sens-
ing in a domain with start at s and
goal at g.

Direct reduction to VAMP domains

We consider a domain that resembles how a blind person sweeps
a cane to detect obstacles, in which the previous formulation ap-
plies directly. We assume that the cane is permitted to contact the
environment and reliably detects contact anywhere along its edge.

If the cane can be retracted radially, as well as be swept angularly,
then the problem reduces to the domains where the depth sensor
has a limited field of view and depth of view. If the cane cannot
be retracted, the problem changes in two ways. 1. the function 𝑉
behaves differently, since the “occlusions” induced by the known
environment obstacles are larger, as shown in figure 4.11a. 2. the
cane must be considered in the collision checking, and as such must
be added to the planning state space. Even though the configuration
of the cane is part of the state space, the planner itself does not
need to plan the sweeping action, and does not need to consider
every configuration of the cane. We may assume that the cane can
be swept within the connected component of configuration space.
More specifically, consider an equivalence class such that 𝑞𝑖 and
𝑞 𝑗 are equal if the robot (ignoring the cane) is in the same pose
but the cane itself is in different poses, and the cane may move
freely from 𝑞𝑖 to 𝑞 𝑗 . The planner may treat 𝑞𝑖 to 𝑞 𝑗 as equivalent
in most configurations, except for those that may transition into
a configuration in which the configuration space becomes further
disconnected.

Extension of safety constraint

The previous section demonstrates a specific robot for which tactile-
safe motion planning reduces to a previous VAMP formulation.
More generally, the robot may contain contact-sensitive and contact-
insensitive surfaces. The planner would deploy the contact-sensitive

74

surfaces, shielding the contact-insensitive surfaces and leading with
the contact-sensitive ones. The tactile-equivalent of constraint V-
Safety Constraint depends on the geometry of these surfaces. A
motion is valid if the swept volume of the contact-insensitive surfaces
does not include any unseen regions of workspace. To implement
the check of the visibility-safety constraint V-Safety Constraint,
the robot geometry is discretized into points. This approximation
enables handling the union without relying on explicit geometry
calculations. It is similarly possible to formulate the tactile-safety
constraint for point geometries.

Visual and tactile sensing

A combination of vision and tactile sensors allow the option of
moving quickly through known-free space and slowly, but leading
with a contact sensitive surface in unknown space. To illustrate,
consider a robot with a front-facing depth sensor and a rear bumper
in figure 4.11b. The goal is still to move about safely in an uncertain
environment. The planner decides when to do guarded moves (when
it is relying on the tactile modality to guarantee safety), and when to
move at full speed (when it is moving through space that has been
previously seen or previously traversed). The structure of the VAMP
algorithm remains the same, and a primitive motion is only valid if it
satisfies equation V-Safety Constraint, or if throughout the execution
only contact-sensitive surfaces traverse unknown workspace regions.
To achieve the goal, the planner for the robot in figure 4.11b may
enter the hallway to visually confirm it is clear, then maneuver to
the goal (which it cannot do directly, since the robot cannot turn
inside of the narrow hallway), or it may execute a guarded move to
back into the hallway, leading with the robot’s contact-sensitive rear
bumper.

Temporal constraints and objectives

It may be beneficial to impose a temporal constraint between when a
region of space is seen, and when it is swept. Expressed temporally,
V-Safety Constraint says "look before sweep". Some perception
systems might take time to incorporate a measurement into their
maps. We might also want to ensure a minimum time gap, to account
for processing delays in a perception subsystem. We also might want
to minimize the maximum time gap between when a region was
seen and when it was swept. This is a heuristic to handle dynamic
environments.

75

This chapter is joint work with Sath-
wik V. Karnik.

5 Data Structures for Efficient

Planning

In this chapter, we explain how to use persistent data structures to
accelerate planning problems. The key idea is to do structure sharing
across multiple instances of hierarchical spatial data structures. We
re-introduce Visibility-Aware Motion Planning.

5.1 Introduction

Motion planning is a crucial computation for many robotic systems
that often requires significant resources. Spatial data structures pro-
vide asymptotic complexity benefits for many geometric problems,
and used judiciously, they also produce practical benefits. In this
chapter we develop a fully persistent spatial data structure (FPSDS)
and explore its use in accelerating motion planning. Before introduc-
ing the FPSDS, we discuss two uses of emphemeral (not persistent)
spatial data structures in robotics.

5.2 Traditional applications of spatial data

structures

Rapidly-exploring Randomized Tree (RRT) planners typically use
a nearest-neighbor (NN) data structure that supports dynamic
insertions as planning progresses [80]. Note that the data structure
corresponds to the “algorithmic” state of the RRT search procedure
itself, not the state in the sense of the dynamics of the planning
problem.

Physics simulations and ray tracing require collision checks between
many entities. The entities are approximated with bounding volumes
within a spatial data structure (“broad-phase collision checks”) [81].
If the bounding volumes intersect, we say that the entities interfere.
If two entities do not interfere, then they do not collide. As the
simulation progresses, the bounding volumes are updated.

In both cases, the data structure is dynamically updated destructively
(i.e. in place) since it is not necessary to access or modify previous
versions of the data structure.

There are, however, many important formulations of motion plan-
ning problems that benefit from the use of spatial data structures
that support access and modification of previous versions. Like in
typical search, e.g. A∗ or RRT, this formulation has search nodes
organized in a tree. Unlike other formulations, these search nodes
are not “self-contained” in that they do not explicitly represent the
full state. Computing successor search nodes and their priorities
in a queue, in general, requires information not just from a given
search node, but the entire path to the root node. We call this formu-
lation path-dependent. A path-dependent formulation is beneficial in
practice for problems where it is more efficient to represent the state
implicitly as a sequence, e.g., of previously visited configurations,
than it is to represent the state explicitly, e.g., with an occupancy grid
or a probability distribution that aggregates information obtained
along the path.

Path-dependent formulations lack the property of optimal substruc-
ture, without which an optimizing search must, in general, maintain
multiple paths to each configuration. This situation also arises when
the path cost is non-additive, and efficient solutions are possible in
settings with an effective domination criterion [3].

A naïve approach to computing node successors in a path-dependent
formulation will require time linear in the length of the path to
the node, whereas in a typical search this operation takes (roughly)
constant time. We can improve upon this by noting that, even though
path-dependent formulations generally require information from
the entire path, there are applications where only nodes that are local
in the workspace are relevant. Conceptually, we require a spatial
data structure at each search node∗, though in order to benefit
(asymptotically and in practice), we must leverage computation and
data reuse. Our strategy is to use an FPSDS, which allows access and
modification to any version of the spatial data structure [82]. For
spatial data structures such as kd-trees [83], we may use the FPSDS
to perform, for instance, range queries to a particular version of the
spatial data structure to filter points within a bounding volume.

In this chapter, we describe how to apply this strategy to several
problems and describe in detail our contribution of a specific type
of FPSDS – a fully persistent nearest neighbor tree (FPNNT). We
describe an application to Visibility-Aware Motion Planning (VAMP)
[68], along with experimental results demonstrating the effectiveness
of the FPSDS in illustrative domains. This application has some

∗ The spatial data structure corresponds to the problem state, not the algorithmic
state as is the case in RRT

77

overhead, but we show a substantial performance benefit for large
domains.

5.3 Motion Planning Applications

In this section, we outline three important classes of motion planning
problems that benefit from path-dependent formulations.

Minimum Constraint Removal

In the Minimum Constraint Removal (MCR) [4] problem, the objec-
tive is to find a solution that may be infeasible, but that can be made
feasible by the removal of a set of constraints. In general, one seeks
a solution that requires removal of as few constraints as possible.
Such problems require keeping track of the violations that have
been accumulated along each path during the search.

Whereas in shortest-path motion planning, the state is simply the
configuration, in MCR, the state of the search problem is the con-
figuration and the set of constraint violations. So, although in
shortest-path motion planning, it is sufficient to consider only a
shortest path to a given configuration, MCR planning may need
to consider multiple paths to a given configuration, each with a
different violation set. Whereas the cost function (on configurations)
in shortest-path motion planning is additive, in MCR, it is not,
because we must not double-count constraint violations.

If there are many removable obstacles, then representing this set
explicitly in the state can become prohibitive in memory and in time,
since the violation set must be updated non-destructively, and there-
fore, it must be copied for the new descendants added to the node.
For motivation and illustration, consider a variant of MCR, where
the objective involves the path swept volume. Given a discretization
of the workspace, “Minimum Swept Volume” planning is simply
MCR, where each workspace cell (voxel) is a removable obstacle.
In this setting, it is clear that explicitly representing an occupancy
grid at each search node is prohibitive. MCR is amenable to the
path-dependent formulation since a path of configurations induces
a swept region.

Let n𝑖 represent a search node in the search tree. Let |𝑆(n1 , . . . , n𝑖)|
denote the size of the swept region induced by the path of configu-
rations represented in n1 to n𝑖 . We are interested in computing this

78

quantity and improving on the straightforward approach with time
linear in the path length.

We provide a sketch of the improvement. For brevity, let 𝐴𝑖 =

𝑆(n1 , . . . , n𝑖) and 𝐵𝑖+1 = 𝑆(n𝑖 , n𝑖+1). To update the swept region
from n𝑖 to n𝑖+1, we can recursively compute |𝐴𝑖+1 | = |𝐴𝑖 |+ |𝐵𝑖+1\𝐴𝑖 |.
We must therefore compute the incremental swept volume 𝐵𝑖+1, but
since we would like to avoid storing an explicit representation of
𝐴𝑖 (we only need its size), we must visit each node and determine
the incremental swept volume at that node, and subtract that set
from 𝐵𝑖+1. This requires only temporary use of a workspace occu-
pancy grid. However, this solution still takes time linear in the path
length.

We improve upon this solution by using the FPSDS to compute
fewer swept volumes along a path. In this case, we do not need to
explicitly compute the entire swept volume 𝐴𝑖 ; rather, we only need
to compute swept regions for transitions that interfere with 𝐵𝑖+1.
These transitions can be determined with a range query, based on
𝐵𝑖+1, to the FPSDS that stores a workspace point corresponding to
each transition along the path.

Belief-Space Planning

In the previous example, we relied on representing a swept volume
explicitly as an occupancy grid or implicitly from a sequence of
configurations. In a Partially-Observed Markov Decision Process
(POMDP) [84], a belief state can be represented explicitly as a
probability distribution or implicitly as a starting belief and history
of actions and observations.

In general, only an approximation of an explicit representation of
the belief state is possible. When the state includes the position of
objects, and there are “complicated” constraints (e.g., objects are
known to not penetrate), or “complicated” observations (e.g., some
region of space is unoccupied), committing to an explicit posterior
and using it in a recursive filtering strategy may “lock in” errors in
the approximate representation [85]. The alternative is to store all
observations, and perform inference on that data as needed.

Consider observations that indicate that the position of an object is
uniformly distributed within a disk. The posterior can be computed
by set intersection of the observation disks. Whereas the sequence of
observations has a straightforward representation, an explicit exact
representation of the intersection region does not. However, given

79

the observations, we may produce samples of the exact “posterior”
by e.g. rejection sampling.

Observations are generated by the environment, but during belief-
space planning we might approximate by choosing the maximum-
likelihood observations [86]. The belief over object position could
then be used to determine the collision-free probability of an in-
cremental motion. However, only a subset of observations is likely
to be relevant to determining such a quantity. Under certain realis-
tic assumptions, a range query to the FPSDS returns the relevant
observations.

Visibility-Aware Motion Planning

Figure 5.1: Example vamp problem
instance. In the domains we discuss,
the viewcone (in yellow) is fixed rel-
ative to the robot.

In the most classic formulation of robot motion planning, the geom-
etry of the robot and environment is fully determined, and there is
perfect actuation, so the problem of finding a path in configuration
space that avoids obstacles can be solved “open-loop.” We have
previously introduced visibility-aware motion planning, or vamp [68],
where there is uncertainty about the environment in that there
may be obstacles not represented in the map given to the motion
planner. The motion planner must produce an open-loop path that
avoids all obstacles represented in the map and is safe with respect
to “unknown” obstacles. At each moment, the robot may move into
a region of space only if there is no obstacle in that region and that
region was observed (by an on-board sensor) earlier in the path.
The first condition can be determined with collision checking of an
articulated body against a static obstacle map. The second condition
– called the visibility constraint – requires a different computation
and contributes substantially to the planning time. Figure 5.1 shows
an example of a vamp problem instance in which a violation-free
path exists and requires the robot to view the lower hallway before
moving backwards into the goal. In the remainder, we address
algorithmic optimizations to this computation using a FPSDS.

5.4 Fully Persistent Nearest-Neighbor Tree

In this section, we discuss our contribution of the fully persistent
nearest-neighbor tree (FPNNT), which stores its points efficiently

80

with a tree. The approach is inspired by the static-to-dynamic
logarithmic method [87], which organizes a collection of static trees.
For 𝑛 points, there is a static tree that contains 2𝑖𝑀 points iff the 𝑖th

bit of the binary representation of ⌊(𝑛 − 1)/𝑀⌋ is “1,” and (𝑛 − 1)
(mod 𝑀) + 1 points in the “remainder,” which has maximum size
equal to a fixed parameter 𝑀. In the FPNNT, the static trees are
nearest-neighbors (NN) [88] trees.

Each node in the FPNNT stores (1) a new point and label in the
remainder, (2) a pointer to the parent node, (3) the number of most
recent predecessors (corresponding to the size of the remainder),
and (4) a dynamically-sized array of pointers (the history) to NN
trees. An example excerpted FPNNT is shown in Figure 5.2.

𝑛𝑖−1

Point and Label 𝑝𝑖−1

size_remainder = 4

History
𝑠3 𝑠2 ∅ 𝑠1 · · ·

𝑛𝑖

Point and Label 𝑝𝑖

size_remainder = 5

History
𝑠3 𝑠2 ∅ 𝑠1 · · ·

𝑛𝑖+1

Point and Label 𝑝𝑖+1

size_remainder = 1

History
∅ ∅ 𝑠4 𝑠1 · · ·

Memory
Pool

...

ptr 𝑠1

...

ptr 𝑠2

...

ptr 𝑠3

...

ptr 𝑠4

...

Figure 5.2: Example of part of a
fully persistent tree with information
stored at each node. The red text at
each node denotes the changes from
its parent node. The subsequence of
pointers – 𝑠1, 𝑠2, 𝑠3, and 𝑠4 – in the
persistent tree nodes is shown in the
order of allocations in the memory
pool. Here, 𝑀 = 5.

Insertion

Algorithm 8 shows the pseudocode for the function Insert_Node,
which creates a new node of the FPNNT that corresponds with a
version of the data structure containing the new point-label pair
𝑝𝑛𝑒𝑤 and all the points in 𝑛𝑝𝑎𝑟 . In the insertion, there are two cases:
𝑟𝑒𝑚𝑝𝑎𝑟 < 𝑀 and 𝑟𝑒𝑚𝑝𝑎𝑟 = 𝑀. In the first case, the node can simply
be inserted. In the second case, we first call the Remainder function,
which collects the point-label pairs from the 𝑟𝑒𝑚𝑝𝑎𝑟 most recent
predecessors. In addition, we iterate through the pointers in the
node history ℎ𝑛𝑒𝑤 . In particular, we collect the 2𝑖𝑀 points stored
in each of the trees 𝑇𝑖 in the history for 0 ≤ 𝑖 ≤ 𝑘 − 1, where 𝑇𝑘

81

is the first tree that is empty or null. Altogether these 2𝑘𝑀 points
are denoted as pt_labels. An NN tree is batch-constructed from
these points. Finally, we update ℎ𝑛𝑒𝑤 so that the first 𝑘 pointers are
null pointers and the (𝑘 + 1)𝑡ℎ element is the pointer to the newly
constructed NN tree. The newly computed 𝑟𝑒𝑚𝑛𝑒𝑤 and ℎ𝑛𝑒𝑤 are
then used to construct the new node, which is then inserted into the
FPNNT with parent 𝑛𝑝𝑎𝑟 .

Algorithm 8 Insert_Node(𝑛𝑝𝑎𝑟 , 𝑝𝑛𝑒𝑤)
1: ℎ𝑛𝑒𝑤 ← 𝑛𝑝𝑎𝑟 .history
2: 𝑟𝑒𝑚𝑝𝑎𝑟 ← 𝑛𝑝𝑎𝑟 .size_remainder
3: 𝑡𝑛𝑒𝑤 ← ∅
4: if 𝑟𝑒𝑚𝑝𝑎𝑟 ≥ 𝑀 then

5: pt_labels← Remainder(𝑛𝑝𝑎𝑟)
6: 𝑖 ← 0 ⊲ Index into history
7: while ℎ𝑛𝑒𝑤[𝑖] ≠ ∅ do

8: pt_labels← Append(pt_labels, ℎ𝑛𝑒𝑤[𝑖].pt_labels)
9: ℎ𝑛𝑒𝑤[𝑖] = ∅

10: 𝑖 ← 𝑖 + 1
11: end while

12: 𝑡𝑛𝑒𝑤 ← Build_NN_Tree(pt_labels)
13: ℎ𝑛𝑒𝑤[𝑖] ← 𝑡𝑛𝑒𝑤
14: end if

15: 𝑟𝑒𝑚𝑛𝑒𝑤 ← 𝑟𝑒𝑚𝑝𝑎𝑟 + 1 (mod 𝑀)
16: return Construct_Node(𝑟𝑒𝑚𝑛𝑒𝑤 , ℎ𝑛𝑒𝑤 , 𝑝𝑛𝑒𝑤)

Figure 5.2 illustrates both cases of the insertion at a given node.
Specifically, the changes in the information stored from node to child
node are denoted in red. The first case is illustrated in the insertion
of 𝑝𝑖 at node 𝑛𝑖 with parent 𝑛𝑖−1. The only changes from 𝑛𝑖−1 to 𝑛𝑖
include the new point and label and the size of the remainder. In
the second case of insertion, as seen in the insertion of 𝑝𝑖+1 at node
𝑛𝑖+1 with parent 𝑛𝑖 , we observe the same changes as in the first case,
as well as the new NN-tree pointer 𝑠4 in the history.

Range Query

In the Range_Query function, we search for the relevant point-label
pairs such that the points are within a bounding ball with radius
𝑟𝑞𝑢𝑒𝑟𝑦 of and center𝑤. To do so, we iterate through ℎ𝑐𝑢𝑟 and perform
the standard range query in each NN tree, and we iterate through the
remainder 𝑟𝑒𝑚𝑐𝑢𝑟 of 𝑛𝑐𝑢𝑟 and perform a brute-force range query.

82

Complexity Analysis

In this section, we evaluate the time complexities of the Insert_Node
and Range_Query functions. Assume that the NN trees used in the
FPNNT are kd-trees. Let 𝑁 be the total number of nodes in the
persistent tree, and let 𝐿 be the length of the longest path in the tree
from the root. Let 𝐷 be the dimension of the points (in our case, the
dimension of the workspace).

With the motion planning application solutions we seek to optimize,
we keep a bounded number of paths to a given configuration. Thus,
we can assume that the number of nodes on a given depth in the
tree grows polynomially, not exponentially.

Insertion Time

For search trees where the number of nodes per level grows
polynomially, the time complexity of each insertion is amortized
𝑂((log 𝐿)2).

Range Query Time

Assuming that we query in the longest path of length 𝐿, we must
perform the range query in the remainder and for each of the kd-
trees stored in the history of the leaf node. For the remainder, the
time complexity is constant, as 𝑀 is a constant. For the largest of
the kd-trees, the time complexity is worst-case 𝑂(𝐿1−1/𝐷), from the
orthogonal range query time complexity [83]. Let 𝐾 be the total
number of points within the radius of the query point. In total, we
have a time complexity of 𝑂(𝐿1−1/𝐷 log 𝐿 + 𝐾), where we use the
fact that there are 𝑂(log 𝐿) trees.

Comparison with Baseline

In the baseline method, at each node, we only store a point-label
pair and perform brute-force range queries along the path from a
node to the root.

Operation Baseline FPNNT
Insert_Node 𝑂(1) 𝑂((log 𝐿)2)
Range_Query 𝑂(𝐿) 𝑂(𝐿1−1/𝐷 + 𝐾)

Table 5.1: Comparison of amortized
time complexities.

83

We can see from Table 5.1 that the FPNNT provides a much faster
amortized asymptotic runtime in the FPNNT Range_Query than
the baseline Range_Query. Although this optimization does result
in a slower amortized insertion time, in our experiments, we show
that this can be a favorable trade off. Note that in our planning
applications, the number of insertions and queries are roughly
equal.

5.5 VAMP Problem Formulation

To observe the benefits of the FPSDS, we focus on the application
to vamp. We now provide a formulation of vamp similar to the one
provided in [68].

Let𝑊 be the workspace (ℝ2 or ℝ3), and let 𝐶 be the configuration
space of the robot. Furthermore, let𝑊𝑜𝑏𝑠 ⊆ 𝑊 be the region of space
known to contain obstacles. Let 𝑞0 be the initial configuration and
let 𝑣0 ⊆ 𝑊 be the initial visible region. In this problem, we assume
that the entire space swept from the motion of the robot during its
path must be previously viewed but the new visible regions are
gained only at the end of each primitive motion.

We now define the following functions characterizing visible regions
and swept volumes. Let ℙ(𝑋) denote the power set of the set 𝑋.
We define 𝑉 : 𝐶 → ℙ(𝑊) to be the visibility function – that
is, the function computes the subset of 𝑊 that is visible from a
configuration. We overload the notation and define𝑉([𝑞1 , . . . , 𝑞𝑛]) =⋃︁𝑛
𝑖=1𝑉(𝑞𝑖). Let 𝑆 : 𝐶 → ℙ(𝑊) denote the swept volume function.

As before, we extend this definition so that 𝑆(𝑞𝑖 , 𝑞 𝑗) ⊆ 𝑊 represents
the space the robot sweeps when moving from 𝑞𝑖 to 𝑞 𝑗 . More
generally, we define 𝑆([𝑞1 , . . . , 𝑞𝑛]) =

⋃︁𝑛−1
𝑖=1 𝑆(𝑞𝑖 , 𝑞𝑖+1). Finally, let

𝑄𝑔𝑜𝑎𝑙 ⊆ 𝐶 be a set of goal configurations. A vamp problem instance
is represented by the tuple (𝑊, 𝐶,𝑉, 𝑆,𝑊𝑜𝑏𝑠 , 𝑞0 , 𝑄𝑔𝑜𝑎𝑙 , 𝑣0).

We assume a graph of primitive motions, with vertices embedded
in 𝐶. If there is an edge between 𝑞𝑖 and 𝑞 𝑗 , and 𝑆(𝑞𝑖 , 𝑞 𝑗) ∩𝑊𝑜𝑏𝑠 = ∅,
then it is collision-free. A path [𝑞1 , . . . , 𝑞𝑛] is said to be feasible if
and only if: (1) each edge from 𝑞𝑖 to 𝑞𝑖+1 in the path is collision-
free and (2) the path satisfies the visibility constraint – that is,
𝑆(𝑞𝑖 , 𝑞𝑖+1) ⊆ 𝑣0 ∪ 𝑉([𝑞1 , . . . , 𝑞𝑖]) for all 𝑖 ∈ {1, . . . , 𝑛 − 1}. The
state space of this problem is naturally (𝑞, 𝑣) ∈ 𝐶 ×ℙ(𝑊), represent-
ing the configuration and the visible region attained along the path
to the configuration. As in Section 5.3, the visible region 𝑣𝑖 can be
represented implicitly by an initial region 𝑣0 and path [𝑞1 , . . . , 𝑞𝑖].
Note that, due to path dependence, the visibility constraint cannot

84

be applied “pointwise” in the same way that the collision constraint
can.

5.6 Relaxed VAMP Solution

A feasible solution to VAMP can be found in time polynomial in
the size of the problem description. We conjecture that the optimal
solution is hard, and seek approximate solutions. The strategy is
to relax the visibility constraint and keep track of the unseen swept
region

⋃︁𝑛
𝑖=1 𝑆(𝑞𝑖 , 𝑞𝑖+1) \ (𝑣0 ∪𝑉([𝑞1 , . . . , 𝑞𝑖])), also referred to as the

(visibility) violation region. We refer to the computation of the
unseen swept region as a visibility query.

This relaxed VAMP search produces a collision-free path that penal-
izes, but ultimately allows, visibility violations. As such, it is not
responsible for producing a feasible solution on its own, but the vio-
lation region is used to inform another search procedure described in
earlier work [68], which uses the region as a visibility subgoal. Note
that minimizing the size of the violation region does not guarantee
that the final path is optimal in length, but it is a useful heuristic
for generating effective subgoals. We will ultimately minimize an
over-approximation to the size of the violation region.

We avoid storing a representation of the visible region and violation
region at each search node, and determine the incremental viola-
tion region, and accumulate its size. Determining the incremental
violation region can be done inefficiently by iterating towards the
root node of the search tree until the incremental unseen region is
empty, or until the root node is reached. Due to the relaxation of the
visibility constraint, there are some domains where traversing to the
root occurs often (e.g. Figure 5.3).

Figure 5.3: Motivating example of
a VAMP problem instance in which
computing the unseen swept region
may be expensive. The violation-
free path requires the robot to look
through the glass wall into the
hallway containing 𝑞𝑔𝑜𝑎𝑙 . The path
found from the relaxed vamp prob-
lem results in unseen swept regions.

The size of the violation region of an incremental motion – later
described in Algorithm 9 – is used to determine the transition cost
in the relaxed VAMP search (corresponding to the Vamp_Path_Vis
algorithm with relaxed = true in earlier work [68])). This results in
an over-approximation of the violation region size, but means that

85

only a subsequence of the search nodes along the path to the root
are relevant for determining the new cost, which enables the key
optimization of this chapter.

5.7 Efficient Visibility Queries

The visibility queries can be made more efficient by filtering out
configurations outside a bounding volume. We formalize the use of
bounding volumes in the next section.

Bounding Volumes

Let dist(𝑝1 , 𝑝2) denote the Euclidean distance between two points
𝑝1 and 𝑝2. We define a ball B(𝑐, 𝑟) to be the set of points 𝑝 such that
dist(𝑝, 𝑐) ≤ 𝑟. Let 𝑟𝑣𝑖𝑠 be the radius of the smallest ball containing
any visible region. We define𝜑 : 𝐶 →𝑊 such that𝜑(𝑞) = 𝑤𝑣 , where
𝑉(𝑞) ⊆ B(𝑤𝑣 , 𝑟𝑣𝑖𝑠). Furthermore, define 𝜓 : 𝐶 × 𝐶 → 𝑊 × ℝ≥0
such that 𝜓(𝑞𝑎 , 𝑞𝑏) = (𝑤𝑠 , 𝑟𝑠), where 𝑟𝑠 is the smallest radius such
that 𝑆(𝑞𝑎 , 𝑞𝑏) ⊆ B(𝑤𝑠 , 𝑟𝑠). Denote 𝑟𝑞𝑢𝑒𝑟𝑦 := 𝑟𝑣𝑖𝑠 + 𝑟𝑠 .

Figure 5.4: Trajectory [𝑞1 , 𝑞2 , 𝑞3 , 𝑞4]
with swept region 𝑆(𝑞3 , 𝑞4) from 𝑞3
to 𝑞4. The viewcones𝑉(𝑞) are shown
with bounding radius 𝑟𝑣𝑖𝑠 . For𝑉(𝑞1),
we show that the bounding ball
has center 𝑤𝑣,1. The swept region
𝑆(𝑞3 , 𝑞4) is shown with a bounding
ball B(𝑤𝑠,4 , 𝑟𝑠,4).

Consider the path [𝑞1 , . . . , 𝑞𝑖] in our search tree, and suppose we
are interested in calculating the unseen swept volume 𝑆(𝑞𝑖 , 𝑞𝑖+1) \
𝑉([𝑞1 , . . . , 𝑞𝑖]) for some configuration 𝑞𝑖+1. Let𝜓(𝑞𝑖 , 𝑞𝑖+1) = (𝑤𝑠,𝑖+1 , 𝑟𝑠,𝑖+1).
For 𝑟𝑞𝑢𝑒𝑟𝑦 = 𝑟𝑣𝑖𝑠 + 𝑟𝑠,𝑖+1, we can guarantee that all configura-
tions 𝑞 for which dist(𝜑(𝑞), 𝑤𝑠,𝑖+1) > 𝑟𝑞𝑢𝑒𝑟𝑦 have the property
that 𝑆(𝑞𝑖 , 𝑞𝑖+1) ∩ 𝑉(𝑞) = ∅. Figure 5.4 illustrates a trajectory with
swept region 𝑆(𝑞3 , 𝑞4) from 𝑞3 to 𝑞4. It can be seen that if the dis-
tance between the centers of the viewcone bounding balls and
B(𝑤𝑠,4 , 𝑟𝑠,4) exceeds 𝑟𝑣𝑖𝑠 + 𝑟𝑠,4, the balls do not intersect and, thus,
𝑆(𝑞3 , 𝑞4) ∩𝑉(𝑞) = ∅.

86

(a) (b)

(c)

Figure 5.5: Experiment domains: (a)
OneHallway, (b) HorseshoeHall-
way, and (c) GlassHallway.

Since computing the incremental updates to the unseen swept
region (see Algorithm 9 Line 6) can be expensive, our approach
considers only the configurations in the path that do not interfere
with B(𝑤𝑠,𝑖+1 , 𝑟𝑠,𝑖+1). Algorithm 9 illustrates this point through the
call to Range_Query in the Find_Vis_Viol function, which returns
𝑆(𝑞𝑖 , 𝑞𝑖+1) \𝑉([𝑞1 , . . . , 𝑞𝑖]).

Algorithm 9 Find_Vis_Viol(path, 𝑞𝑖+1, 𝑟𝑣𝑖𝑠)
1: 𝑞𝑖 ← path[end]
2: (𝑤𝑠,𝑖+1 , 𝑟𝑠,𝑖+1) ← 𝜓(𝑞𝑖 , 𝑞𝑖+1)
3: 𝑟𝑞𝑢𝑒𝑟𝑦 ← 𝑟𝑣𝑖𝑠 + 𝑟𝑠,𝑖+1
4: unseen_swept← 𝑆(𝑞𝑖 , 𝑞𝑖+1)
5: for 𝑞 𝑗 ∈ Range_Query(path, 𝑤𝑠,𝑖+1 , 𝑟𝑞𝑢𝑒𝑟𝑦) do

6: unseen_swept← unseen_swept \𝑉(𝑞 𝑗)
7: if unseen_swept = ∅ then

8: break

9: end if

10: end for

11: return unseen_swept

Range_Query can be determined by brute force, requiring time
linear in the path length. We can improve on this, at the cost of
storage, by performing range queries using the FPNNT in the vamp
application. Specifically, we use kd-trees in the Build_NN_Tree
function of Algorithm 8. Using the notation of Section 5.4, we can
set the “points” as viewcone bounding ball centers 𝑤𝑣,𝑖 and “labels”
as configurations 𝑞𝑖 . Thus, Range_Query returns the configurations
with viewcone bounding balls interfering with the swept region of
interest.

5.8 Experiments

We now discuss the experiments that demonstrate that the FPNNT,
using kd-trees, provides an efficient way to perform the Range_-
Query in Algorithm 9. We measure the performance of solving
relaxed VAMP problems and compare the FPNNT with the baseline
of performing brute-force range queries. The experiments are im-
plemented in the Julia language [89]. Here, we omit the compilation
times.

Throughout our experiments, we focus on domains with a dis-
cretized workspace and configuration space. The workspace is
planar and the configuration space represents the position of a ref-
erence point of the robot, along with the robot’s orientation. There

87

are 6 possible actions, one in the positive and negative direction for
each dimension of the configuration space, forming a 6-connected
lattice in the configuration space. The viewcone is fixed and is about
1.5 times the length of the robot.

Experimental Results

For each of the domains shown in Figure 5.5, we parameterize the
length of the domain for demonstrating asymptotic performance of
the use of different visibility query optimization methods. For the
OneHallway and HorseshoeHallway domains, we vary the vertical
lengths from 1000 to 15000 cells, incremented by 1000 cells, while
maintaining the widths of the domains. For the GlassHallway
domain, we vary the sizes from 100 × 100 to 1500 × 1500 cells,
incremented by 100 cells. Note that as we increase the size of the
GlassHallway, the number of glass hallways linearly increases as a
function of the length. In all of these domains, the hallway widths
remain constant.

Figure 5.6 and Figure 5.7 show the comparisons of the use of
the FPNNT with the baseline in terms of runtimes and search
tree storage. We separate the plots for GlassHallway from those
corresponding to the other domains to emphasize the difference in
scaling domain lengths.

The left column of plots shows the comparisons of runtimes and the
right column of plots shows the comparisons of search tree storage.
For each domain length, we ran 10 iterations of the Vamp_Path_Vis
algorithm for the baseline and the use of the FPNNT. We collected
and reported the average total runtime and the average runtime
spent in the Find_Vis_Viol function. Additionally, for each vamp
problem instance and range query method, we reported the overall
memory consumed by the search.

In Figure 5.6, we can see that in the simple vamp problem instance
of the OneHallway domain, the total runtime of the search is
approximately 1 second for even the highest domain sizes we tested
with. We can see that the baseline method outperforms our method
in this simple case. It is also apparent from the empirical data that
Find_Vis_Viol takes the majority of the runtime, thus illustrating
the importance of these performance improvements.

As the unseen swept region computation requires more visibility
calculations, the domains – HorseshoeHallway and GlassHallway –
illustrate a significant performance improvement. In the GlassHall-
way domain, we observe the performance improvement at even

88

Runtimes Search Tree Storage

2000 4000 6000 8000 10000 12000 14000
Domain Length

0.2

0.4

0.6

0.8

1.0

1.2

1.4
To

ta
l T

im
e

(s
)

OneHallway Runtimes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fin
d_

Vi
s_

Vi
ol

 T
im

e
(s

)

FPNNT (Total)
Baseline (Total)
FPNNT (Find_Vis_Viol)
Baseline (Find_Vis_Viol)

2000 4000 6000 8000 10000 12000 14000
Domain Length

0

10

20

30

40

M
em

or
y

(m
eg

ab
yt

es
)

OneHallway Memory
FPNNT
Baseline

2000 4000 6000 8000 10000 12000 14000
Domain Length

0

10

20

30

40

50

60

70

80

To
ta

l T
im

e
(s

)

HorseshoeHallway Runtimes

0

10

20

30

40

50

60

Fin
d_

Vi
s_

Vi
ol

 T
im

e
(s

)

FPNNT (Total)
Baseline (Total)
FPNNT (Find_Vis_Viol)
Baseline (Find_Vis_Viol)

2000 4000 6000 8000 10000 12000 14000
Domain Length

0

50

100

150

200

250

M
em

or
y

(m
eg

ab
yt

es
)

HorseshoeHallway Memory
FPNNT
Baseline

Figure 5.6: These plots show the re-
sults for the OneHallway and Horse-
shoeHallway domains. The left col-
umn shows the overall runtimes and
total times spent in Find_Vis_Viol.
The right column shows the memory
storage (via Base.summarysize)
of the search trees. Discontinuities
in memory use as the length grows
are attributed to Julia data structure
implementation details [90].

200 400 600 800 1000 1200 1400
Domain Length

0

20

40

60

80

100

120

140

To
ta

l T
im

e
(s

)

GlassHallway Runtimes

0

20

40

60

80

100

120

Fin
d_

Vi
s_

Vi
ol

 T
im

e
(s

)

FPNNT (Total)
Baseline (Total)
FPNNT (Find_Vis_Viol)
Baseline (Find_Vis_Viol)

200 400 600 800 1000 1200 1400
Domain Length

0

100

200

300

400

500

600

M
em

or
y

(m
eg

ab
yt

es
)

GlassHallway Memory
FPNNT
Baseline

Figure 5.7: These plots show similar
statistics as shown in Figure 5.6 but
for the GlassHallway domain.

smaller sizes. The overall runtime improvement does not exactly
match the reduction in time spent in Find_Vis_Viol due to the inser-
tion time into the FPNNT. The insertion times are already accounted
for in the total runtimes.

The second column of plots in Figure 5.6 and Figure 5.7 shows the
total memory of the search trees. Since each node of the FPNNT is
stored at each node of the search tree, our method is expected to have
a search tree that costs more memory than the baseline. Across all
of the domains, the search tree storage plots reflect this expectation.
However, for the domains tested, the ratio of memory stored in the
search tree between our method and the baseline method remains
under 4.2 even as the domain size grows.

5.9 Discussion

Fully persistent data structures are key to some algorithms [91],
and find applications in strictly functional programming, where
mutation is prohibited [92]. To our knowledge, this is the first use of
a fully persistent data structure to accelerate planning. We showcase

89

the approach in discrete search on a lattice, but the idea extends
to any tree-based approach, such as RRT or searching for paths
within a Probabilistic Road Map (PRM). In the applications we
discussed, the FPSDS accelerates what is otherwise a linear-time
search to determine points in a range, where these points represent
the centers of bounding balls of predetermined radius. For large
instances of a recent formulation called Visibility-Aware Motion
Planning, we find that the FPNNT improves the planning runtimes
by a factor of 2, at the expense of memory use. Other choices
of FPSDS, such as using an R-Tree [93] to represent the extent of
bounding volumes, may further improve the performance in various
settings.

90

...

...

goal

init
a

b

Figure 6.1: In this environment, there
are two walls that are detected to
have length 𝑎 and 𝑏. The walls con-
tinue beyond the figure, possibly in-
definitely. If both walls are infinitely
long, then there is no solution path
from the initial to goal configuration.

6 Discussion

6.1 Execution

In the previous chapters, we provide results on planning on a given
environment. The reason to plan, however, is to execute plans. And
the reason for vamp is to ensure that critical regions are observed, in
case there are unforeseen obstacles, so that an execution monitor
can replan as necessary. In this chapter, we demonstrate replanning
in an environment that is observed incrementally.

6.2 Issues arising in replanning

Commitment

Take the situation depicted in Figure 6.1. Assume that the robot can
only detect if there is additional wall by being at the known end of
the wall. There are three critical configurations, 𝑞0 (depicted with
label init), 𝑞𝑎 (the robot is at the known end of the horizontal wall),
and 𝑞𝑏 (the robot is at the known end of the vertical wall). Let (𝑎, 𝑏)
describe the known model of the environment. There are always two
conceivable paths, one around the horizontal wall, and the other
around the vertical wall.

▶ From 𝑞0, the paths have lengths 2𝑎 and 2𝑏 respectively.
▶ From 𝑞𝑎 , the paths have lengths 𝑎 and 𝑎 + 2𝑏 respectively.
▶ From 𝑞𝑏 , the paths have lengths 𝑏 + 2𝑎 and 𝑏 respectively.

If initially (𝑎, 𝑏) = (1, 1), then the path lengths are 2 and 2. If the
planner is optimal, it may choose either path. For sake of illustration,
suppose it chooses the first path, and once it gets to 𝑞𝑎 , it discovers
that the wall longer. The environment is now known to be (2, 1), and
the lengths of the paths from 𝑞𝑎 are 2 and 4. Replanning from this
configuration will generate a plan that continues along 𝑎. Now, if the
horizontal wall is an infinite obstacle, but the vertical wall is finite,
then this situation will continue indefinitely, and the robot will never
achieve the goal despite it being reachable. This problem does not
arise under the assumption that the environment is bounded in size.
We think of this as a strategy with very high commitment.

Suppose both walls are indeed finite and that the robot switches
paths as soon as it detects that the current wall is longer than was

1 + 2 + 3 + · · · + 𝑛 = 𝑛(𝑛 + 1)/2

1 + 2 + 4 + · · · + 2𝑖 = 2𝑖+1 − 1

modeled. Let 𝑎𝑖 and 𝑏𝑖 denote the known length of the wall on the
𝑖th visit. For example if the robot travels down the 𝑎wall first, and it’s
the shorter wall with length 𝑛, then the accumulated path length is
2𝑎1+2𝑏1+2𝑎2+2𝑏2+· · ·+2𝑎𝑘 . If the other wall is shorter, then there
is an extra 2𝑏𝑘 term. 𝑘 is the number of times the robot goes down
the first wall. We will consider symmetric strategies (𝑎𝑖 = 𝑏𝑖), so on
average the accumulated path length is 4(𝑎1+ 𝑎2+· · ·+ 𝑎𝑘−1)+3𝑎𝑘 .

Consider a strategy with very low commitment. As soon as a wall
is detected to be longer than anticipated, the robot switches the
path. In our notation, 𝑎𝑖 = 𝑏𝑖 = 𝑖 and 𝑘 = 𝑛. The expected total path
length is 2𝑛2 + 𝑛 where 𝑛 is the length of the shortest wall. The
shortest path given complete information is 2𝑛, so this strategy has
an expected decision-theoretic regret of 2𝑛2 − 𝑛.

If the length of the longer wall is 𝑚, and you commit to going down
that wall, then the total path is 2𝑚. This strategy in this situation
has a regret of 2(𝑚 − 𝑛). The expected regret is 𝑚 − 𝑛.

What about a multiplicative strategy? If a wall is longer than expected,
the robot does not immediately switch to the other wall, but instead
continues to a depth twice as much as it tried last time. In our notation,
𝑎𝑖 = 𝑏𝑖 = 2𝑖 and 𝑘 = log2 𝑛 For the sake of simplicity assume the
true wall lengths make 𝑘 an integer. On average, the accumulated
path length is 4(21 + 22 + · · · + 2𝑘−1) + 3(2𝑘) Or, 4(2𝑘) + 3(2𝑘), which
is 7𝑛. The expected regret is therefore 5𝑛.

This problem of thrashing is seemingly inescapable when performing
goal-seeking behavior in an unknown environment. Intuitively, if
the robot gives up too early, it will thrash too much. Unfortunately,
this can also arise when using a suboptimal planner, as is the case
for our practical algorithms for VAMP.

6.3 Replanning

When an observation is made that invalidates the current plan, we
can choose to immediately replan, or we could execute the plan up
until the point it is no longer valid. In the following experiments,
we immediately replan, but because the planner is suboptimal, it
thrashes. As demonstrated above, some intermediate amount of
commitment to the invalidated plan can reduce regret.

We first demonstrate replanning when the robot has very little
knowledge about the environment in Figure 6.2. In such a situation,
it is expected that a more efficient strategy is to make a map using
methods discussed in Section 2.2. In the domain illustrated in

92

Figure 6.2, the planner is careful to check the hallway before going
backwards into it. However, if there truly is something in the way,
there is no other path to the goal. In a domain where there are
multiple paths to the goal, the replanning could succeed. It is better
for planning to fail (the robot can ask for help, or perhaps move the
obstacle) than to cause an unexpected collision.

93

0 10 20 30
0

10

20

30

sim 49

0 10 20 30
0

10

20

30

sim 50

0 10 20 30
0

10

20

30

sim 65

0 10 20 30
0

10

20

30

sim 66

0 10 20 30
0

10

20

30

sim 193

0 10 20 30
0

10

20

30

sim 194

0 10 20 30
0

10

20

30

sim 277

0 10 20 30
0

10

20

30

sim 278

Figure 6.2: Illustration of replanning
starting from no knowledge of the
environment except for its extent (the
border) in the discrete HallwayHard
domain. The red robot depicts the
configuration goal. The green dots
represent the swept volume of the
current plan. The plan is executed
until an obstacle is in the way of the
robot (a red cross), or an occluder
blocks a necessary view (a purple
plus), at which point a new plan is
made.

94

Bibliography

[1] Steven M. LaValle. Planning Algorithms. Cambridge: Cambridge University Press, 2006. (Visited
on 11/28/2021) (cited on pages 12, 22, 52).

[2] Dave Ferguson, Maxim Likhachev, and Anthony Stentz. ‘A Guide to Heuristic-based Path
Planning’. In: Proceedings of ICAPS ’05 Workshop on Planning under Uncertainty for Autonomous
Systems. June 2005, p. 10 (cited on page 15).

[3] Oren Salzman, Brian Hou, and Siddhartha Srinivasa. ‘Efficient Motion Planning for Problems
Lacking Optimal Substructure’. In: Proceedings of the Twenty-Seventh International Conference on
Automated Planning and Scheduling, ICAPS 2017, Pittsburgh, Pennsylvania, USA, June 18-23, 2017.
Ed. by Laura Barbulescu et al. AAAI Press, 2017, pp. 531–539 (cited on pages 16, 40, 77).

[4] Kris Hauser. ‘The Minimum Constraint Removal Problem with Three Robotics Applications’.
In: The International Journal of Robotics Research 33.1 (Jan. 1, 2014), pp. 5–17. doi: 10.1177/
0278364913507795. (Visited on 09/03/2021) (cited on pages 16, 40, 78).

[5] Brian Axelrod, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. ‘Provably Safe Robot Navigation
with Obstacle Uncertainty’. In: The International Journal of Robotics Research (June 7, 2018). doi:
10.1177/0278364918778338. (Visited on 03/12/2021) (cited on pages 16, 28).

[6] Nicholas M Stiffler and Jason M O’Kane. ‘Complete and Optimal Visibility-Based Pursuit-
Evasion’. In: The International Journal of Robotics Research 36.8 (July 1, 2017), pp. 923–946. doi:
10.1177/0278364917711535. (Visited on 03/12/2021) (cited on pages 16, 22, 40, 49, 64).

[7] A. Bry and N. Roy. ‘Rapidly-Exploring Random Belief Trees for Motion Planning under
Uncertainty’. In: 2011 IEEE International Conference on Robotics and Automation. 2011 IEEE
International Conference on Robotics and Automation. May 2011, pp. 723–730. doi: 10.1109/
ICRA.2011.5980508 (cited on pages 16, 28, 40, 47, 49).

[8] Brendan Englot and Franz S. Hover. ‘Sampling-Based Coverage Path Planning for Inspection of
Complex Structures’. In: Proceedings of the Twenty-Second International Conference on International
Conference on Automated Planning and Scheduling. ICAPS’12. Atibaia, São Paulo, Brazil: AAAI
Press, June 25, 2012, pp. 29–37 (cited on pages 20, 22, 28).

[9] Vladimir J. Lumelsky and Alexander A. Stepanov. ‘Path-Planning Strategies for a Point Mobile
Automaton Moving amidst Unknown Obstacles of Arbitrary Shape’. In: Algorithmica 2.1 (Nov. 1,
1987), pp. 403–430. doi: 10.1007/BF01840369. (Visited on 03/12/2021) (cited on pages 20,
22).

[10] A. Bircher et al. ‘Receding Horizon "Next-Best-View" Planner for 3D Exploration’. In: 2016 IEEE
International Conference on Robotics and Automation (ICRA). 2016 IEEE International Conference
on Robotics and Automation (ICRA). May 2016, pp. 1462–1468. doi: 10.1109/ICRA.2016.
7487281 (cited on pages 21, 24, 28, 29).

[11] ‘Sensor Based Motion Planning: The Hierarchical Generalized Voronoi Graph’. In: Algorithms for
Robotic Motion and Manipulation. Ed. by Jean-Paul Laumond and Mark Overmars. 0th ed. A K
Peters/CRC Press, Feb. 11, 1997, pp. 59–74. doi: 10.1201/9781439864524-10. (Visited on
03/26/2021) (cited on page 22).

https://doi.org/10.1177/0278364913507795
https://doi.org/10.1177/0278364913507795
https://doi.org/10.1177/0278364918778338
https://doi.org/10.1177/0278364917711535
https://doi.org/10.1109/ICRA.2011.5980508
https://doi.org/10.1109/ICRA.2011.5980508
https://doi.org/10.1007/BF01840369
https://doi.org/10.1109/ICRA.2016.7487281
https://doi.org/10.1109/ICRA.2016.7487281
https://doi.org/10.1201/9781439864524-10

[12] Enric Galceran and Marc Carreras. ‘A Survey on Coverage Path Planning for Robotics’. In:
Robotics and Autonomous Systems 61.12 (Dec. 1, 2013), pp. 1258–1276. doi: 10.1016/j.robot.
2013.09.004. (Visited on 03/12/2021) (cited on page 22).

[13] B. Davis, I. Karamouzas, and S. J. Guy. ‘C-OPT: Coverage-Aware Trajectory Optimization
Under Uncertainty’. In: IEEE Robotics and Automation Letters 1.2 (July 2016), pp. 1020–1027. doi:
10.1109/LRA.2016.2530302 (cited on page 22).

[14] Sándor P. Fekete, Joseph S. B. Mitchell, and Christiane Schmidt. ‘Minimum Covering with Travel
Cost’. In: Journal of Combinatorial Optimization 24.1 (July 1, 2012), pp. 32–51. doi: 10.1007/
s10878-010-9303-0. (Visited on 03/15/2021) (cited on page 22).

[15] Esther M. Arkin, Sándor P. Fekete, and Joseph S. B. Mitchell. ‘Approximation Algorithms
for Lawn Mowing and Milling’. In: Computational Geometry 17.1 (Oct. 1, 2000), pp. 25–50. doi:
10.1016/S0925-7721(00)00015-8. (Visited on 03/15/2021) (cited on page 22).

[16] Wei-pang Chin and Simeon Ntafos. ‘Optimum Watchman Routes’. In: Information Processing
Letters 28.1 (May 13, 1988), pp. 39–44. doi: 10.1016/0020-0190(88)90141-X. (Visited on
03/12/2021) (cited on page 22).

[17] Brian P. Gerkey, Sebastian Thrun, and Geoff Gordon. ‘Visibility-Based Pursuit-evasion with
Limited Field of View’. In: The International Journal of Robotics Research 25.4 (Apr. 1, 2006),
pp. 299–315. doi: 10.1177/0278364906065023. (Visited on 03/12/2021) (cited on page 22).

[18] Zhan Wei Lim, David Hsu, and Wee Sun Lee. ‘Adaptive Informative Path Planning in Metric
Spaces’. In: The International Journal of Robotics Research 35.5 (Apr. 1, 2016), pp. 585–598. doi:
10.1177/0278364915596378. (Visited on 03/15/2021) (cited on page 22).

[19] Steven M. LaValle. ‘Sensing and Filtering: A Fresh Perspective Based on Preimages and In-
formation Spaces’. In: Foundations and Trends® in Robotics 1.4 (Feb. 21, 2012), pp. 253–372. doi:
10.1561/2300000004. (Visited on 12/05/2021) (cited on page 22).

[20] Thomas H Cormen et al. Introduction to Algorithms. MIT press, 2009 (cited on page 23).

[21] Nabil H. Mustafa, Rajiv Raman, and Saurabh Ray. ‘Settling the APX-Hardness Status for
Geometric Set Cover’. In: 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.
2014 IEEE 55th Annual Symposium on Foundations of Computer Science. Oct. 2014, pp. 541–550.
doi: 10.1109/FOCS.2014.64 (cited on page 23).

[22] J. O’Rourke. Art Gallery Theorems and Algorithms. Vol. 57. Oxford, 1987 (cited on page 23).

[23] B. Yamauchi. ‘A Frontier-Based Approach for Autonomous Exploration’. In: Proceedings 1997 IEEE
International Symposium on Computational Intelligence in Robotics and Automation CIRA’97. ’Towards
New Computational Principles for Robotics and Automation’. Proceedings 1997 IEEE International
Symposium on Computational Intelligence in Robotics and Automation CIRA’97. ’Towards
New Computational Principles for Robotics and Automation’. July 1997, pp. 146–151. doi:
10.1109/CIRA.1997.613851 (cited on pages 24, 27, 29).

[24] L. Heng et al. ‘Efficient Visual Exploration and Coverage with a Micro Aerial Vehicle in Unknown
Environments’. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). 2015
IEEE International Conference on Robotics and Automation (ICRA). May 2015, pp. 1071–1078.
doi: 10.1109/ICRA.2015.7139309 (cited on pages 24, 27).

96

https://doi.org/10.1016/j.robot.2013.09.004
https://doi.org/10.1016/j.robot.2013.09.004
https://doi.org/10.1109/LRA.2016.2530302
https://doi.org/10.1007/s10878-010-9303-0
https://doi.org/10.1007/s10878-010-9303-0
https://doi.org/10.1016/S0925-7721(00)00015-8
https://doi.org/10.1016/0020-0190(88)90141-X
https://doi.org/10.1177/0278364906065023
https://doi.org/10.1177/0278364915596378
https://doi.org/10.1561/2300000004
https://doi.org/10.1109/FOCS.2014.64
https://doi.org/10.1109/CIRA.1997.613851
https://doi.org/10.1109/ICRA.2015.7139309

[25] G. Oriolo et al. ‘The SRT Method: Randomized Strategies for Exploration’. In: IEEE International
Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004. IEEE International
Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004. Vol. 5. Apr. 2004,
4688–4694 Vol.5. doi: 10.1109/ROBOT.2004.1302457 (cited on page 24).

[26] Christian Dornhege and Alexander Kleiner. ‘A Frontier-Void-Based Approach for Autonomous
Exploration in 3D’. In: Advanced Robotics 27.6 (Apr. 1, 2013), pp. 459–468. doi: 10.1080/
01691864.2013.763720. (Visited on 03/12/2021) (cited on pages 24, 28, 29).

[27] K. E. Bekris and L. E. Kavraki. ‘Greedy but Safe Replanning under Kinodynamic Constraints’.
In: Proceedings 2007 IEEE International Conference on Robotics and Automation. Proceedings 2007
IEEE International Conference on Robotics and Automation. Apr. 2007, pp. 704–710. doi:
10.1109/ROBOT.2007.363069 (cited on pages 24, 28, 29).

[28] Mikko Lauri and Risto Ritala. ‘Planning for Robotic Exploration Based on Forward Simulation’.
In: Robotics and Autonomous Systems 83 (Sept. 1, 2016), pp. 15–31. doi: 10.1016/j.robot.
2016.06.008. (Visited on 03/12/2021) (cited on pages 24, 28).

[29] Frank Hoffmann et al. ‘The Polygon Exploration Problem’. In: SIAM Journal on Computing 31.2
(Jan. 1, 2001), pp. 577–600. doi: 10.1137/S0097539799348670. (Visited on 03/12/2021)
(cited on page 24).

[30] Sándor P. Fekete and Christiane Schmidt. ‘Polygon Exploration with Time-Discrete Vision’. In:
Computational Geometry 43.2 (2010), pp. 148–168. doi: 10.1016/j.comgeo.2009.06.003
(cited on page 24).

[31] C. Cadena et al. ‘Past, Present, and Future of Simultaneous Localization and Mapping: Toward
the Robust-Perception Age’. In: IEEE Transactions on Robotics 32.6 (Dec. 2016), pp. 1309–1332. doi:
10.1109/TRO.2016.2624754 (cited on page 24).

[32] Lucas Janson, Tommy Hu, and Marco Pavone. ‘Safe Motion Planning in Unknown Environments:
Optimality Benchmarks and Tractable Policies’. In: Robotics: Science and Systems XIV. Vol. 14.
June 26, 2018. (Visited on 03/12/2021) (cited on pages 24, 28).

[33] Ioannis Arvanitakis, Anthony Tzes, and Konstantinos Giannousakis. ‘Synergistic Exploration
and Navigation of Mobile Robots under Pose Uncertainty in Unknown Environments’. In:
International Journal of Advanced Robotic Systems 15.1 (Jan. 1, 2018), p. 1729881417750785. doi:
10.1177/1729881417750785. (Visited on 03/12/2021) (cited on pages 24, 28).

[34] Charles Richter, William Vega-Brown, and N. Roy. ‘Bayesian Learning for Safe High-Speed
Navigation in Unknown Environments’. In: ISRR. 2015. doi: 10.1007/978-3-319-60916-
4_19 (cited on pages 24, 28).

[35] R. Bohlin and L. E. Kavraki. ‘Path Planning Using Lazy PRM’. In: Proceedings 2000 ICRA. Millen-
nium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat.
No.00CH37065). Vol. 1. IEEE. Apr. 2000, 521–528 vol.1. doi: 10.1109/ROBOT.2000.844107
(cited on pages 24, 25).

[36] Aditya Mandalika et al. ‘Generalized Lazy Search for Robot Motion Planning: Interleaving
Search and Edge Evaluation via Event-Based Toggles’. In: CoRR abs/1904.02795 (2019) (cited on
pages 24, 25).

97

https://doi.org/10.1109/ROBOT.2004.1302457
https://doi.org/10.1080/01691864.2013.763720
https://doi.org/10.1080/01691864.2013.763720
https://doi.org/10.1109/ROBOT.2007.363069
https://doi.org/10.1016/j.robot.2016.06.008
https://doi.org/10.1016/j.robot.2016.06.008
https://doi.org/10.1137/S0097539799348670
https://doi.org/10.1016/j.comgeo.2009.06.003
https://doi.org/10.1109/TRO.2016.2624754
https://doi.org/10.1177/1729881417750785
https://doi.org/10.1007/978-3-319-60916-4_19
https://doi.org/10.1007/978-3-319-60916-4_19
https://doi.org/10.1109/ROBOT.2000.844107

[37] Butler W. Lampson. ‘Lazy and Speculative Execution in Computer Systems’. In: Proceedings of the
13th ACM SIGPLAN International Conference on Functional Programming. ICFP ’08. New York, NY,
USA: Association for Computing Machinery, Sept. 20, 2008, pp. 1–2. doi: 10.1145/1411204.
1411205. (Visited on 03/18/2021) (cited on page 25).

[38] Evdokia Nikolova and David R. Karger. ‘Route Planning under Uncertainty: The Canadian
Traveller Problem’. In: Proceedings of the 23rd National Conference on Artificial Intelligence - Volume
2. AAAI’08. Chicago, Illinois: AAAI Press, July 13, 2008, pp. 969–974. (Visited on 03/12/2021)
(cited on page 25).

[39] Z.W. Lim, D. Hsu, and W.S. Lee. ‘Shortest Path under Uncertainty: Exploration versus Exploita-
tion’. In: Proc. Conf. on Uncertainty in Artificial Intelligence. 2017 (cited on page 25).

[40] Brad Saund et al. ‘The Blindfolded Robot: A Bayesian Approach to Planning with Contact
Feedback’. In: International Symposium on Robotics Research (ISRR). 2019 (cited on page 25).

[41] Zahy Bnaya, Ariel Felner, and Solomon Eyal Shimony. ‘Canadian Traveler Problem with Remote
Sensing’. In: Twenty-First International Joint Conference on Artificial Intelligence. 2009 (cited on
page 25).

[42] S. Koenig and M. Likhachev. ‘Fast Replanning for Navigation in Unknown Terrain’. In: IEEE
Transactions on Robotics 21.3 (June 2005), pp. 354–363. doi: 10.1109/TRO.2004.838026.
(Visited on 03/16/2021) (cited on pages 25, 27).

[43] Sourabh Bhattacharya, Rafael Murrieta-Cid, and Seth Hutchinson. ‘Optimal Paths for Landmark-
Based Navigation by Differential-Drive Vehicles With Field-of-View Constraints’. In: IEEE
Transactions on Robotics 23.1 (2007), pp. 47–59. doi: 10.1109/TRO.2006.886841 (cited on
page 26).

[44] Gabriele Costante et al. ‘Perception-Aware Path Planning’. In: CoRR abs/1605.04151 (2016) (cited
on page 26).

[45] N. Roy et al. ‘Coastal Navigation-Mobile Robot Navigation with Uncertainty in Dynamic
Environments’. In: Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat.
No.99CH36288C). Proceedings 1999 IEEE International Conference on Robotics and Automation
(Cat. No.99CH36288C). Vol. 1. May 1999, 35–40 vol.1. doi: 10.1109/ROBOT.1999.769927
(cited on page 26).

[46] Nicholas Roy and Sebastian Thrun. ‘Coastal Navigation with Mobile Robots’. In: Proceedings of
the 12th International Conference on Neural Information Processing Systems. NIPS’99. Cambridge,
MA, USA: MIT Press, Nov. 29, 1999, pp. 1043–1049 (cited on page 26).

[47] J. P. Gonzalez and A. Stentz. ‘Planning with Uncertainty in Position an Optimal and Efficient
Planner’. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2005 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Aug. 2005, pp. 2435–2442. doi:
10.1109/IROS.2005.1545048 (cited on page 26).

[48] R. Platt et al. ‘Belief Space Planning Assuming Maximum Likelihood Observations’. In: Robotics:
Science and Systems VI. Vol. 06. June 27, 2010. (Visited on 03/18/2021) (cited on page 26).

98

https://doi.org/10.1145/1411204.1411205
https://doi.org/10.1145/1411204.1411205
https://doi.org/10.1109/TRO.2004.838026
https://doi.org/10.1109/TRO.2006.886841
https://doi.org/10.1109/ROBOT.1999.769927
https://doi.org/10.1109/IROS.2005.1545048

[49] Jur van den Berg, Sachin Patil, and Ron Alterovitz. ‘Motion Planning under Uncertainty Using
Iterative Local Optimization in Belief Space’. In: The International Journal of Robotics Research 31.11
(Sept. 1, 2012), pp. 1263–1278. doi: 10.1177/0278364912456319. (Visited on 03/18/2021)
(cited on page 26).

[50] Ali-akbar Agha-mohammadi et al. ‘SLAP: Simultaneous Localization and Planning Under
Uncertainty via Dynamic Replanning in Belief Space’. In: IEEE Transactions on Robotics 34.5 (Oct.
2018), pp. 1195–1214. doi: 10.1109/TRO.2018.2838556 (cited on page 26).

[51] Ruben Martinez-Cantin et al. ‘A Bayesian Exploration-Exploitation Approach for Optimal Online
Sensing and Planning with a Visually Guided Mobile Robot’. In: Autonomous Robots 27.2 (Aug. 1,
2009), pp. 93–103. doi: 10.1007/s10514-009-9130-2. (Visited on 03/19/2021) (cited on
page 26).

[52] Vadim Indelman, Luca Carlone, and Frank Dellaert. ‘Planning in the Continuous Domain: A
Generalized Belief Space Approach for Autonomous Navigation in Unknown Environments’.
In: The International Journal of Robotics Research 34.7 (June 1, 2015), pp. 849–882. doi: 10.1177/
0278364914561102. (Visited on 03/12/2021) (cited on page 26).

[53] L. Carlone and D. Lyons. ‘Uncertainty-Constrained Robot Exploration: A Mixed-Integer Linear
Programming Approach’. In: 2014 IEEE International Conference on Robotics and Automation
(ICRA). 2014 IEEE International Conference on Robotics and Automation (ICRA). May 2014,
pp. 1140–1147. doi: 10.1109/ICRA.2014.6906997 (cited on page 26).

[54] Ali-akbar Agha-mohammadi. SMAP: Simultaneous Mapping and Planning on Occupancy Grids.
Sept. 18, 2016. url: http://arxiv.org/abs/1608.04712 (visited on 12/04/2021) (cited
on page 26).

[55] Jin Bao, Wang Shuguo, and Yili Fu. ‘Sensor-Based Motion Planning for Robot Manipulators
in Unknown Environments’. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and
Systems. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Aug. 2005,
pp. 199–204. doi: 10.1109/IROS.2005.1545512 (cited on pages 27, 73).

[56] D. Fox, W. Burgard, and S. Thrun. ‘The Dynamic Window Approach to Collision Avoidance’.
In: IEEE Robotics Automation Magazine 4.1 (Mar. 1997), pp. 23–33. doi: 10.1109/100.580977
(cited on page 27).

[57] Sara Bouraine, Thierry Fraichard, and Hassen Salhi. ‘Provably Safe Navigation for Mobile Robots
with Limited Field-of-Views in Dynamic Environments’. In: Autonomous Robots 32.3 (Apr. 1,
2012), pp. 267–283. doi: 10.1007/s10514-011-9258-8. (Visited on 03/12/2021) (cited on
page 28).

[58] Andreas Krause and Daniel Golovin. ‘Submodular Function Maximization’. In: Tractability.
Ed. by Lucas Bordeaux et al. Cambridge: Cambridge University Press, 2013, pp. 71–104. doi:
10.1017/CBO9781139177801.004. (Visited on 01/03/2022) (cited on page 30).

[59] Sven Koenig and Maxim Likhachev. ‘D* Lite’. In: Aaai/iaai 15 (2002) (cited on page 30).

[60] Bhaskara Marthi. ‘Robust Navigation Execution by Planning in Belief Space’. In: Robotics: Science
and Systems. MIT Press, 2012. doi: 10.15607/RSS.2012.VIII.037 (cited on page 30).

[61] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Fourth edition.
Pearson Series in Artificial Intelligence. Hoboken: Pearson, 2021 (cited on pages 32, 33).

99

https://doi.org/10.1177/0278364912456319
https://doi.org/10.1109/TRO.2018.2838556
https://doi.org/10.1007/s10514-009-9130-2
https://doi.org/10.1177/0278364914561102
https://doi.org/10.1177/0278364914561102
https://doi.org/10.1109/ICRA.2014.6906997
http://arxiv.org/abs/1608.04712
https://doi.org/10.1109/IROS.2005.1545512
https://doi.org/10.1109/100.580977
https://doi.org/10.1007/s10514-011-9258-8
https://doi.org/10.1017/CBO9781139177801.004
https://doi.org/10.15607/RSS.2012.VIII.037

[62] Neil J. A. Sloane and The OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences. url:
http://oeis.org/?language=english (cited on page 32).

[63] Neil J. A. Sloane and The OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences,
A064298, Square Array Read by Antidiagonals of Self-Avoiding Rook Paths Joining Opposite Corners of
n X k Board. url: https://oeis.org/A064298 (cited on page 34).

[64] Luke Shimanuki and Brian Axelrod. ‘Hardness of 3D Motion Planning under Obstacle Uncer-
tainty’. In: WAFR. 2018 (cited on page 40).

[65] L. E. Kavraki et al. ‘Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration
Spaces’. In: IEEE Transactions on Robotics and Automation 12.4 (Aug. 1996), pp. 566–580. doi:
10.1109/70.508439 (cited on page 43).

[66] nLab authors. nLab: Biased Definition. url: https://ncatlab.org/nlab/show/biased+
definition (visited on 11/09/2021) (cited on page 45).

[67] Samuel Prentice and Nicholas Roy. ‘The Belief Roadmap: Efficient Planning in Belief Space
by Factoring the Covariance’. In: The International Journal of Robotics Research 28.11-12 (Nov. 1,
2009), pp. 1448–1465. doi: 10.1177/0278364909341659. (Visited on 03/12/2021) (cited on
page 47).

[68] Gustavo Goretkin, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. ‘Look Before You Sweep:
Visibility-Aware Motion Planning’. In: Algorithmic Foundations of Robotics XIII. Ed. by Marco
Morales et al. Springer Proceedings in Advanced Robotics. Cham: Springer International
Publishing, 2020, pp. 373–388. doi: 10.1007/978-3-030-44051-0_22 (cited on pages 50,
59, 73, 77, 80, 84, 85).

[69] Tomás Lozano-Pérez, Matthew T. Mason, and Russell H. Taylor. ‘Automatic Synthesis of Fine-
Motion Strategies for Robots’. In: The International Journal of Robotics Research 3.1 (Mar. 1, 1984),
pp. 3–24. doi: 10.1177/027836498400300101. (Visited on 11/29/2021) (cited on page 53).

[70] John H. Reif. ‘Complexity of the Mover’s Problem and Generalizations’. In: 20th Annual Symposium
on Foundations of Computer Science (Sfcs 1979). 20th Annual Symposium on Foundations of
Computer Science (Sfcs 1979). Oct. 1979, pp. 421–427. doi: 10.1109/SFCS.1979.10 (cited on
page 62).

[71] John Canny and John Reif. ‘New Lower Bound Techniques for Robot Motion Planning Problems’.
In: 28th Annual Symposium on Foundations of Computer Science (Sfcs 1987). 28th Annual Symposium
on Foundations of Computer Science (Sfcs 1987). Oct. 1987, pp. 49–60. doi: 10.1109/SFCS.
1987.42 (cited on page 62).

[72] Lawrence H. Erickson and Steven M. LaVall. ‘A Simple, but NP-hard, Motion Planning Problem’.
In: Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence. AAAI’13. Bellevue,
Washington: AAAI Press, July 14, 2013, pp. 1388–1393 (cited on pages 62, 63).

[73] Luke Shimanuki and Brian Axelrod. ‘Hardness of Motion Planning with Obstacle Uncertainty in
Two Dimensions’. In: The International Journal of Robotics Research 40.10-11 (Sept. 1, 2021), pp. 1151–
1166. doi: 10.1177/0278364921992787. (Visited on 01/03/2022) (cited on pages 62, 63).

100

http://oeis.org/?language=english
https://oeis.org/A064298
https://doi.org/10.1109/70.508439
https://ncatlab.org/nlab/show/biased+definition
https://ncatlab.org/nlab/show/biased+definition
https://doi.org/10.1177/0278364909341659
https://doi.org/10.1007/978-3-030-44051-0_22
https://doi.org/10.1177/027836498400300101
https://doi.org/10.1109/SFCS.1979.10
https://doi.org/10.1109/SFCS.1987.42
https://doi.org/10.1109/SFCS.1987.42
https://doi.org/10.1177/0278364921992787

[74] Leonidas J. Guibas et al. ‘Visibility-Based Pursuit-Evasion in a Polygonal Environment’. In:
Algorithms and Data Structures. Ed. by Frank Dehne et al. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 1997, pp. 17–30. doi: 10.1007/3-540-63307-3_45 (cited on
page 63).

[75] Hubert Nguyen and NVIDIA Corporation. GPU Gems 3. Upper Saddle River, N.J.: Addison-
Wesley, 2008 (cited on page 68).

[76] Steve Macenski, David Tsai, and Max Feinberg. ‘Spatio-Temporal Voxel Layer: A View on
Robot Perception for the Dynamic World’. In: International Journal of Advanced Robotic Systems
17.2 (Mar. 1, 2020), p. 1729881420910530. doi: 10.1177/1729881420910530. (Visited on
10/20/2021) (cited on page 70).

[77] Sergiy Bogomolov et al. ‘JuliaReach: A Toolbox for Set-Based Reachability’. In: Proceedings of the
22nd ACM International Conference on Hybrid Systems: Computation and Control. 2019, pp. 39–44
(cited on page 70).

[78] George W Hart. Multidimensional Analysis: Algebras and Systems for Science and Engineering. New
York, NY: Springer New York, 1995. (Visited on 11/29/2021) (cited on page 71).

[79] Advait Jain et al. ‘Reaching in Clutter with Whole-Arm Tactile Sensing’. In: The International
Journal of Robotics Research 32.4 (Apr. 1, 2013), pp. 458–482. doi:10.1177/0278364912471865.
(Visited on 09/29/2021) (cited on page 73).

[80] Anna Yershova and Steven M. LaValle. ‘Improving Motion-Planning Algorithms by Efficient
Nearest-Neighbor Searching’. In: IEEE Transactions on Robotics 23.1 (Feb. 2007), pp. 151–157. doi:
10.1109/TRO.2006.886840 (cited on page 76).

[81] Christer Ericson. Real-Time Collision Detection. CRC Press, Dec. 22, 2004. 633 pp. (cited on
page 76).

[82] James R. Driscoll et al. ‘Making Data Structures Persistent’. In: Journal of Computer and System
Sciences 38.1 (Feb. 1, 1989), pp. 86–124. doi: 10.1016/0022-0000(89)90034-2. (Visited on
09/03/2021) (cited on page 77).

[83] Jon Louis Bentley. ‘Multidimensional Binary Search Trees Used for Associative Searching’. In:
Communications of the ACM 18.9 (Sept. 1, 1975), pp. 509–517. doi: 10.1145/361002.361007.
(Visited on 09/03/2021) (cited on pages 77, 83).

[84] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. ‘Planning and Acting in
Partially Observable Stochastic Domains’. In: Artificial Intelligence 101.1 (May 1, 1998), pp. 99–134.
doi: 10.1016/S0004-3702(98)00023-X. (Visited on 09/03/2021) (cited on page 79).

[85] Lawson L. S. Wong, Leslie Pack Kaelbling, and Tomas Lozano-Perez. ‘Not Seeing Is Also Believing:
Combining Object and Metric Spatial Information’. In: 2014 IEEE International Conference on
Robotics and Automation (ICRA). 2014 IEEE International Conference on Robotics and Automation
(ICRA). May 2014, pp. 1253–1260. doi: 10.1109/ICRA.2014.6907014 (cited on page 79).

[86] R. Platt et al. ‘Belief Space Planning Assuming Maximum Likelihood Observations’. In: Robotics:
Science and Systems VI. Vol. 06. June 27, 2010. (Visited on 09/03/2021) (cited on page 80).

[87] Jon Louis Bentley and James B Saxe. ‘Decomposable Searching Problems I. Static-to-dynamic
Transformation’. In: Journal of Algorithms 1.4 (Dec. 1, 1980), pp. 301–358. doi: 10.1016/0196-
6774(80)90015-2. (Visited on 09/03/2021) (cited on page 81).

101

https://doi.org/10.1007/3-540-63307-3_45
https://doi.org/10.1177/1729881420910530
https://doi.org/10.1177/0278364912471865
https://doi.org/10.1109/TRO.2006.886840
https://doi.org/10.1016/0022-0000(89)90034-2
https://doi.org/10.1145/361002.361007
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1109/ICRA.2014.6907014
https://doi.org/10.1016/0196-6774(80)90015-2
https://doi.org/10.1016/0196-6774(80)90015-2

[88] Hanan Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley Series in
Computer Science. Reading, Mass: Addison-Wesley, 1990. 493 pp. (cited on page 81).

[89] Jeff Bezanson et al. ‘Julia: A Fresh Approach to Numerical Computing’. In: SIAM Review 59.1
(Jan. 1, 2017), pp. 65–98. doi: 10.1137/141000671. (Visited on 09/09/2021) (cited on page 87).

[90] Julia Base Dict Implementation Resizing julia/dict.jl · JuliaLang/Julia. url: https://github.com/
JuliaLang/julia/blob/fd7bc03e1dc3fe2d45957d41944f32a7a20e08bf/base/

dict.jl#L354-L370 (visited on 09/14/2021) (cited on page 89).

[91] Haim Kaplan. ‘Persistent Data Structures *’. In: Handbook of Data Structures and Applications.
2nd ed. Chapman and Hall/CRC, 2017 (cited on page 89).

[92] Chris Okasaki. ‘Purely Functional Data Structures’. Princeton University, 1996. 162 pp. (cited on
page 89).

[93] Antonin Guttman. ‘R-Trees: A Dynamic Index Structure for Spatial Searching’. In: Proceedings
of the 1984 ACM SIGMOD International Conference on Management of Data. SIGMOD ’84. New
York, NY, USA: Association for Computing Machinery, June 1, 1984, pp. 47–57. doi: 10.1145/
602259.602266. (Visited on 09/02/2021) (cited on page 90).

102

https://doi.org/10.1137/141000671
https://github.com/JuliaLang/julia/blob/fd7bc03e1dc3fe2d45957d41944f32a7a20e08bf/base/dict.jl#L354-L370
https://github.com/JuliaLang/julia/blob/fd7bc03e1dc3fe2d45957d41944f32a7a20e08bf/base/dict.jl#L354-L370
https://github.com/JuliaLang/julia/blob/fd7bc03e1dc3fe2d45957d41944f32a7a20e08bf/base/dict.jl#L354-L370
https://doi.org/10.1145/602259.602266
https://doi.org/10.1145/602259.602266

	Contents
	Introduction
	The VAMP problem
	Contributions

	Background
	Planning approach to robot behavior
	Related work
	Assumptions

	Path Search
	Introduction
	Pruning without affecting correctness
	Generalizing pruning
	Shortest paths
	Self-avoiding walks
	Informative walks
	Vertex visit graphs
	Complexity of vertex visit graphs
	Configuration path-dependent search

	Formulation and Algorithms
	Formulation
	Algorithms for visibility-aware motion planning
	Reformulation
	Complexity
	Experiments and planning results
	Appendix: Geometry
	Appendix: Extension to tactile sensing

	Data Structures for Efficient Planning
	Introduction
	Traditional applications of spatial data structures
	Motion Planning Applications
	Fully Persistent Nearest-Neighbor Tree
	VAMP Problem Formulation
	Relaxed VAMP Solution
	Efficient Visibility Queries
	Experiments
	Discussion

	Discussion
	Execution
	Issues arising in replanning
	Replanning

