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Abstract

This thesis shows that looking at intelligent systems through the lens of neurosym-
bolic models has several benefits over traditional deep learning approaches. Neu-
rosymbolic models contain symbolic programmatic constructs such as loops and con-
ditionals and continuous neural components. The symbolic part makes the model
interpretable, generalizable, and robust, while the neural part handles the complexity
of the intelligent systems. Concretely, this thesis presents two classes of neurosym-
bolic models—state-machines and neurosymbolic transformers and evaluates them
on two case studies—reinforcement-learning based autonomous systems and multi-
robot systems. These case studies showed that the learned neurosymbolic models
are human-readable, can be extrapolated to unseen scenarios, and can handle robust
objectives in the specification. To efficiently learn these neurosymbolic models, we
introduce neurosymbolic learning algorithms that leverage the latest techniques from
machine learning and program synthesis.
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Chapter 1

Introduction

Machine learning-based artificial intelligence (AI) systems are prevalent in almost

all fields, including autonomous cars, robotics, medicine, and finance. Most of these

domains are safety-critical, and hence, it is costly for a machine learning-based system

to make mistakes. Therefore, the AI systems of the future need to be robust, reliable,

and trustworthy. Below are some essential characteristics that make a AI system

robust and reliable:

• Interpretability: An interpretable AI system allows a user/a developer to

understand why the system made a particular decision/prediction, probe the

system for corner cases, and even modify the system to make small changes

without training the system from scratch.

• Generalization: Being able to generalize to new scenarios is a core require-

ment for any intelligent system. But even within generalization, there are two

types—generalization that requires (i) interpolation and (ii) extrapolation. The

first kind is relatively easy, and many current machine-learning systems already

achieve that, but the latter type is challenging and crucial. Extrapolation allows

us to learn an intelligent system from fewer data, train a system in simulation

and yet, use it in the real world, and so on.

• Ability to handle combinatorial objectives: A developer of an AI system

specifies their desired intent through an objective, which is then optimized to
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learn the best AI system. E.g. one typical objective is to minimize the L2

loss between the predicted output and the actual output summed over all data

points. In most cases, these objectives are smooth, continuous, and convex,

making the optimization problem easier. But, there are also scenarios where

the desired objective is combinatorial. Examples of combinatorial objectives

occur commonly in problems that involve routing or multi-agent systems [12].

Hence, being able to handle combinatorial objectives is an important criterion.

• Verifiability: Finally, formally verifying that an intelligent system satisfies the

desirable constraints such as safety, robustness, and fairness strongly reinforces

reliability and trustworthiness.

The state-of-the-art for many of the current AI systems uses deep learning ap-

proaches to train a complex deep neural network (DNN) for the task at hand. How-

ever, traditional deep learning approaches lack the above desirable properties needed

for a robust and reliable system. That said, recently, the deep learning commu-

nity has been working hard to achieve the above properties; In this space, there are

works that can visualize the learned features of a convolutional neural network [70]

to aid interpretability, that can do reachability analysis of neural networks and use

that to verify some properties of the network [51, 37], and that can analyze the

robustness of the networks, discover adversarial examples, and perform adversarial

training [21, 38, 63, 84, 7]. However, reasoning about complex unstructured neural

networks is fundamentally a challenging problem.

This thesis explores a different approach that allows us to achieve the above four

properties more directly. The high-level idea is to reduce the complexity of the models

using symbolic/programmatic structures—we call these types of models as neurosym-

bolic models. Then, we attempt to answer the following questions:

• What kinds of neurosymbolic models can we learn that has the above desirable

properties for robustness and reliability?

• How can we efficiently learn these neurosymbolic models?
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1.1 Neurosymbolic Models

Many real-world objects such as buildings and roads, and human activities such as

walking, swimming, and driving are very structured— e.g. they have many repeating

units. This observation motivates us to learn models for the intelligent systems that

can explicitly capture structures such as repetitions, compositions, and logical rela-

tions. And, by doing so, we learn models that are easy to interpret, generalize better

and hence, are more robust and reliable.

How can we capture these structures? The answer is symbolic models or pro-

grams. Software developers have long been using programs to communicate with a

computer in a structured format. The loop concept in programs is used to represent

repetitions, functions are used for modularity and compositionality, and Boolean logic

and branches are used to capture logical relations between different entities. These

discrete programming concepts are not restricted to just software engineering tasks

and are one of the best candidates to model the structure in intelligent systems.

However, in addition to the structure, real-world intelligent systems have noise,

uncertainty, and continuous components. To handle these, we will need continuous

models like affine/linear models or neural networks.

In this thesis, we use the term neurosymbolic models to represent this combina-

tion of discrete programming concepts (such as loops, branches, and functions) and

continuous concepts (such as neural networks and linear models).

Note that the idea here is not to throw away deep learning and go back to a purely

symbolic AI era but to leverage all the new things we can do with both programs and

neural networks to get the best of both worlds.

1.2 Neurosymbolic Learning

While neurosymbolic models have several benefits, learning them is very challenging

due to the highly discrete-continuous search space. As a result, we cannot just use

machine learning/deep learning techniques, which mainly use gradient-based numer-
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ical optimization. These techniques can efficiently handle the continuous structure

but not the discrete part. On the other hand, there is program synthesis—a field ded-

icated to synthesizing programs from specification [91, 41, 3]. However, traditional

program synthesis mainly handles only discrete programs—these techniques use the

many well-known discrete search algorithms like SAT solving or enumeration. Pro-

gram synthesis can handle the discrete structure but cannot handle the continuous

structure.

Thus, the idea of neurosymbolic learning is to leverage the techniques from both

machine learning and program synthesis to get the best of both worlds and efficiently

learn the neurosymbolic models.

1.3 Contributions

This thesis makes three kinds of contributions: (1) Developing two classes of neu-

rosymbolic models as replacements to purely deep neural models (Chapter 3). (2)

Developing neurosymbolic learning algorithms that can efficiently learn models in the

above classes of models (Chapter 5), and (3) Finally evaluating the efficiency of these

neurosymbolic learning/models on two different case-studies (Chapters 6 and 7) in

reinforcement learning (Chapter 4).

1.3.1 Classes of Neurosymbolic Models

The machine learning community has already explored a few interpretable models

such as decision trees [15] and rule lists [103]. In particular, these models can be

thought of as simple programs composed of simple primitives such as if-then-else

rules and arithmetic operations. However, a key shortcoming of these model classes

is that they have difficulty handling more complex inputs, e.g., sets of other inputs

or sequences of inputs. Thus, one of the contributions of this thesis is to introduce

two classes of neurosymbolic models with more sophisticated components.
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State Machines

One fundamental limitation of decision trees and rule lists is that they do not possess

an internal memory. Internal memory helps propagate information about the current

iteration to the next when processing a sequence of inputs (such as processing a text)

or during sequential decision-making (such as reinforcement learning tasks). In the

context of deep learning, one can use recurrent neural networks (RNNs) and long-

short term memory networks (LSTMs) to store internal memory.

In the symbolic domain, one natural analog is to use models based on finite state

machines. So, we designed a class of neurosymbolic state machine models [46]. Our

state machine models are designed to be interpretable, generalizable, and verifiable

while including internal memory. Its internal state records one of a finite set of possible

modes, each of which is annotated with (i) a simple model for computing the current

output when in this mode (e.g., a linear function of the input), and (ii) rules for

when to transition to the next mode (e.g., if some linear inequality becomes satisfied,

then transition to a given next mode). With this single integer of internal memory,

state machines can encode complex non-linear logic compactly (e.g. repetitions can

be encoded as a sequence of modes connected as a loop). Although state machines

by themselves are not a new idea, in this thesis, we view them as a class of models

for representing intelligent systems and present a efficient learning algorithm for this

class.

Neurosymbolic Transformers

Handling a list of elements or a variable number of elements as input is another

difficulty for traditional symbolic models such as decision trees. For example, in

multi-robot systems, the full input consists of a list of states for each individual

robot. In this case, the model must compute a single action for the robot based on

the given list of states. Alternatively, for problems with variable numbers of objects,

the set of object positions must be encoded as a list.

In the deep learning domain, transformer-based architectures have emerged to
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solve these kinds of tasks. At a high level, a transformer [98] is a DNN that operates

on a list of elements. A transformer first chooses a small subset of other elements of

the list to focus on (the attention layer), then uses a fully-connected layer to decide

what information from the other elements is useful (the value layer), and finally uses

a second fully connected layer to compute the result (output layer). For example,

transformers can be applied to multi-robot systems since they have to reason over

lists of other robots’ states.

In the symbolic world, an analog we explored in this thesis is list processing pro-

grams, which are compositions of components designed to manipulate lists—e.g., the

map, filter, and fold operators [33]; the set of possible components can be chosen based

on the application. In fact, we leverage these list processing programs only to replace

the attention mechanism for a transformer model. This combination gives rise to a

neurosymbolic transformer [47], which is similar to a transformer but uses attention

programs instead of deep neural attention layers; the value layer and the output layer

are still neural networks. This architecture makes the attention layer interpretable—

e.g., it is easy to understand and visualize why an element attends to another element

while still retaining much of the complexity of the original transformer.

1.3.2 Neurosymbolic Learning Algorithms

Our next contribution is algorithms for training these neurosymbolic models.

Imitation Learning

Imitation Learning is a standard approach where we first train a deep neural network

(DNN) model using deep learning. Then, using this DNN as a teacher/oracle, we train

a student (in this case, the neurosymbolic model) to imitate the DNN. This approach

is especially useful in scenarios where the original learning problem is not a simple

supervised learning problem, such as e.g. reinforcement learning (RL) problems. In

RL settings, the model (also called a policy) needs to output sequences of highly

connected decisions, and the loss function (the reward) is typically sparse (e.g. only
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at the end of the trajectory). In such cases, this imitation learning approach can

leverage sophisticated deep learning approaches developed for these settings (e.g.

policy gradient algorithm for RL problems) to train the teacher efficiently. Then,

the algorithm uses this teacher to turn the student’s learning problem into a direct

supervised learning problem, which is much easier to optimize.

In our experiments, we found this simple strategy of imitation learning to be a good

fit for learning neurosymbolic transformers. Here, the teacher learns a deep neural

transformer model to solve the problem (e.g., maximising the RL problems’ reward).

Then, using the teacher model, we gather a supervised dataset of input-attention-

output pairs. Next, we use program synthesis algorithms (such as a stochastic MCMC

search algorithm) to search in the symbolic space of the attention programs to find

one that achieves a lower loss on the supervised dataset. Now, since we are already

doing a combinatorial search over the space of programs, it is easier to include any

combinatorial objectives that the task requires.

Adaptive Teaching

One key drawback of imitation learning is that it does not adjust the teacher model

to account for the capabilities of the student model. For e.g. a teacher for a state

machine model needs to account that the state machine can only perform a limited

number of different logics (limited by the number of modes in the state machine

model).

So, we propose a new approach called adaptive teaching [46], where rather than

choosing the teacher to be a DNN, it is instead a model whose structure mirrors that of

the student. In this case, we can directly update the teacher on each training iteration

to reflect the structure of the student. For example, for the state machine models,

we chose the teacher to be a “loop-free” model, which consists of a linear sequence of

modes (instead of modes connected by switching conditions). These modes can then

be mapped to the modes of the student state machine and regularized so that their

local logics and mode transitions mirror that of the state machine. This approach

regularizes the teacher to favor strategies similar to the ones taken by the student to
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Figure 1-1: An example of an autonomous car (blue) driving out of a parallel parked
spot. The trajectories are obtained using our learned neurosymbolic model.

ensure the student can successfully mimic the teacher. As the student improves, the

teacher improves as well. We found adaptive teaching to be an effective strategy for

learning state machine models.

1.3.3 Case-studies

The neurosymbolic learning approach is applicable in a wide range of domains; in

particular, this thesis focuses on reinforcement learning applications, where reliability,

robustness, and the ability to enforce constraints are essential for safety. This thesis

focuses on the following two case studies:

Learning Interpretable, Generalizable, and Verifiable Policies for Control

Tasks

Generalization is essential in robots. Autonomous systems must possess the capacity

to work in various environments, including environments never seen previously. To

achieve this generalization, autonomous systems have to learn to extrapolate from

the scenarios seen before. E.g., consider the autonomous car (blue) in Figure 1-1,

whose goal is to move out of a parallel parking spot. From the first three scenarios,

it is clear that the car needs to make repetitive back-and-forth motions to exit the

parking spot. A policy that can capture this repetition logic can extrapolate to even

scenarios where the gap between the cars is tiny (something that is not encountered

before).
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Figure 1-2: A learned DNN policy fails to generalize for the car task. It solves the
training tasks but runs into collisions on the test task.

In addition to generalization, having an interpretable policy for an autonomous

car allows human experts to understand and debug various behaviors of the car and

even modify the policy to adapt to different situations. For example, in the above

example, we want an expert to be able to adapt the policy to a different car that

has different maximum acceleration and maximum steering angle capacities without

having to do the expensive training from scratch.

Another critical challenge in many real-world applications is the need to ensure

that the learned policy for an autonomous agent continues to act correctly once it

is deployed in the real world. However, DNN policies are typically very difficult to

understand and analyze, making it hard to have guarantees about their performance.

The reinforcement learning setting is particularly challenging since we need to reason

not just about isolated predictions but about sequences of highly connected decisions.

For example, in the above scenario, we would like to verify that a learned policy would

eventually get the car out without any collisions for some desired settings under some

target noise model for the car’s behavior.

We cast the control learning problem as a neurosymbolic learning problem to learn

such generalizable, interpretable, and verifiable behaviours [46]. In our approach, the

neurosymbolic control policies are modeled as state machines that can capture the

repetitive structures necessary for extrapolation. On a set of reinforcement learning

(RL) tasks involving cars, quadcopters, cartpoles, and pendulums, we showed that

while traditional deep reinforcement learning approaches perform well on the original
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Figure 1-3: A learned state machine policy for the task in Figure 1-1. The boxes are
the three different modes. Each mode performs a simple action. Switching conditions
(arrows) decide when the state machine switches from one mode to another. Trivially
false switching conditions are dropped. The state machine starts in mode 𝑚𝑠 and
ends in mode 𝑚𝑒.

task, they fail to generalize (e.g. see Figure 1-2). In contrast, our neurosymbolic

policies successfully generalize beyond the training distribution (as shown in Figure 1-

1).

Figure 1-3 shows the learned state machine policy for the task in Figure 1-1. The

state of the car is (𝑥, 𝑦, 𝜃, 𝑑𝑓 , 𝑑𝑏) ∈ R5, where (𝑥, 𝑦) is the center of the car, 𝜃 is its

orientation, and 𝑑𝑓 and 𝑑𝑏 are the distances between the agent and the front and back

black cars, respectively. The actions are (𝑣, 𝜓) ∈ R2, where 𝑣 is the velocity and 𝜓 is

the steering angle. This policy has three modes (besides a start mode 𝑚𝑠 and an end

mode 𝑚𝑒). Roughly speaking, it says (i) immediately shift from mode 𝑚𝑠 to 𝑚1, and

drive the car forward and to the left, (ii) continue until close to the car in front; then,

transition to mode 𝑚2, and drive the car backwards and to the right, (iii) continue

until close to the car behind; then, transition back to mode 𝑚1, (iv) iterate between

𝑚1 and 𝑚2 until the car can safely exit the parking spot; then, transition to mode

𝑚3, and drive forward and to the right to make the car parallel to the lane. Note

that, here, the two modes 𝑚1 and 𝑚2 are connected in a loop, and this is how the

policy can represent the repetitive back and forth motion needed for this task.

Furthermore, since the state machine policy has simple logic inside each mode

(e.g. scalar constants or linear functions), they are easy to interpret and modify. For

example, adapting to a car with wider steering angle ranges requires replacing only

three scalars in the learned policy with new values. Moreover, the discrete structure
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(a) Example Task (b) DNN attention (c) Program attention

𝑅1 : random(filter(⟨𝜃1, 𝜑⟩ ≥ 𝜃01, ℓ)),

𝑅2 : argmax(map(⟨𝜃3, 𝜑⟩, filter(⟨𝜃2, 𝜑⟩ ≥ 𝜃02, ℓ))).

(d) Programmatic attention rules

Figure 1-4: (a) Three groups of agents (blue, green, and red) at their initial positions
(circles) trying to reach their goal positions (crosses). The solid line shows the trajec-
tory taken by a single agent in each group. (b) Soft attention computed by a DNN for
the agent along the 𝑦-axis deciding whether to focus on the agent along the 𝑥-axis.
(c) Sparse attention computed by a program. (d) Program used by each agent to
select other agents to focus on (linear functions are abstracted for simplicity). ⟨𝑥, 𝑦⟩
denotes dot product, 𝜃 denotes learned parameters, and 𝜑 denotes the feature vector.

in a state machine makes it much more amenable to formal verification using off-the-

shelf solvers such as dReach [55].

Learning Robust and Interpretable Multi-agent Communications with Com-

binatorial Objectives

To learn the control for robots, we have to satisfy the resource limitations of the

physical hardware. This problem is significant in decentralized multi-agent planning

domains, where the agents/robots have to communicate with the other agents to

coordinate their actions. Here, the goal is to learn how to coordinate with the other

agents, both deciding whom to communicate with and what information to share,

and at the same time, minimizing the amount of communication required to satisfy

the limited network bandwidth constraint. This minimum communication objective

is a combinatorial objective which makes training DNN policies hard for this task.

For example, consider the task in Figure 1-4a, where there are three groups of
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agents (blue, green, and red), and they are moving towards their respective goals

placed randomly on the 3x3 grid. The agents need to communicate with the other

groups to ensure that their paths do not collide. In the specific scenario shown in

Figure 1-4a, the blue and the green groups need to coordinate and go around each

other (instead of going straight to their goals) to avoid collisions. Here, Figure 1-4b

shows the attention graph (i.e. which agents need to communicate to which other

agents) computed by a DNN based transformer model. As we can see, this DNN

model learns that every agent needs to communicate with almost 20 different agents,

which is not optimal.

In this thesis, we propose to learn neurosymbolic transformers to represent multi-

agent policies [47]. A neurosymbolic transformer uses a program instead of a neu-

ral network to compute which agents need to attend (communicate) to which other

agents. Our domain-specific language (DSL) for programmatic attention includes

components such as filter, map, and random choice. These components operate over

sets of inputs because choosing whom to attend to requires reasoning over sets of

other agents—e.g., to avoid collisions, an agent must attend to its nearest neighbor

in its direction of travel.

We successfully used the neurosymbolic transformer approach on several multi-

agent planning tasks that require agents to coordinate to achieve their goals. Our

algorithm learns communication policies that achieve task performance similar to the

original transformer policy (i.e., where each agent communicates with every other

agent) while significantly reducing the amount of communication (the combinatorial

objective).

Figure 1-4d shows a learned attention program that each agent can use to choose

other agents to focus on. In particular, this program consists of two rules, each of

which selects a single agent to focus on; the program returns the set consisting of

both selected agents. In each of these rules, agent 𝑖 is selecting over other agents 𝑗

in the list ℓ. The first rule starts by filtering the agents in ℓ using a learned linear

inequality (⟨𝜃1, 𝜑⟩ ≥ 𝜃01) where 𝜃1 ∈ R𝑘 and 𝜃01 ∈ R are the learned parameters, 𝜑 ∈ R𝑘

is a vector of features involving the deciding agent’s and the other agent’s current
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locations and goals, and ⟨𝑥, 𝑦⟩ denotes a dot product. Then the rule picks a random

agent in this filtered set to attend to. The second rule starts by filtering the agents

in ℓ using another learned linear inequality (⟨𝜃2, 𝜑⟩ ≥ 𝜃02 ). Then the rule computes a

score for each of the filtered agents using map and the learned scoring function ⟨𝜃3, 𝜑⟩

and finally, chooses the agent with the maximum score.

The specific learned map functions and filter conditions are visualized in Figure 1-

5. The red circle denotes the agent currently choosing an action in these figures, the

red cross denotes its goal, and the green circle denotes the agent selected by the rule.

Figures 1-5a and 1-5b correspond to the rule 𝑅1 for two different states. The orange

region denotes where the filter condition is satisfied–i.e. 𝑅1 chooses a random agent

in this region. We can see that this region is always in the direction of the deciding

agent’s goal. Figure 1-5c corresponds to the rule 𝑅2. Here, the blue region denotes

the region where the filter condition is satisfied. The gradient in the blue color relates

to the scores computed by the map function (darker colors mean higher scores)–i.e.

the rule chooses the agent with the darkest value.

The simple discrete structure in the rules and the visualizations of the learned

linear functions allow us to interpret the neurosymbolic transformers’ attention com-

ponent. For instance, in the above example, we can interpret that the agents attend

to their closest agent in the same group to avoid collisions and to an agent in the

other group in their direction of travel for long-term planning.

In addition to achieving interpretability, we show that we can additionally op-

timize for combinatorial objectives (i.e. minimize the number of communications)

when training a neurosymbolic transformer. Figure 1-4c shows the attention graph

obtained using a neurosymbolic transformer, and we can see that it is sparser than

the corresponding graph obtained with a DNN transformer in Figure 1-4b. Moreover,

we show, in Section 7.7.4, that a neurosymbolic transformer is more robust and gen-

eralizable than a DNN transformer model to different distributions of agents (that is

different from the training settings).
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Figure 1-5: Visualization of the programmatic attention layer in Figure 1-4d, which
has two rules 𝑅1 and 𝑅2. In this task, there are three groups of agents. The red
circle denotes the agent currently choosing an action, the red cross denotes its goal,
and the green circle denotes the agent selected by the rule. (a,b) Visualization of
rule 𝑅1 for two different states; orange denotes the region where the filter condition
is satisfied—i.e., 𝑅1 chooses a random agent in this region. (c) Visualization of rule
𝑅2, showing the scores output by the map operator; darker values are higher—i.e.,
the rule chooses the agent with the darkest value.
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Chapter 2

Related Works

Before elaborating on our approaches, we will look at some related works and explain

how this thesis differs.

2.1 Program Synthesis

Program synthesis is a field focused on automatically generating programs based on

specifications. Let us say we want to do a task like sorting a list. Instead of writing a

program to do this task manually, the idea of program synthesis is to use a synthesizer

and give it a high-level specification for the task. This specification can be input-

output examples or some desired properties about the output. Then, we provide the

synthesizer with a list of program components, e.g., for this sorting task, we might

know that plausible a program will have loops, branches, and some functions like swap

and peek. The job of the synthesizer is to find a program using these components

that satisfies the specification.

The program synthesis idea has gained much popularity in the last 15 years as a

technique to help software developers write code. The community can now synthe-

size programs for data structure manipulations [90, 71, 104, 75], can generate SQL

queries [102], can generate programs to do text manipulation [40, 76] (a famous ex-

ample for this is flash fill [40] which is a tool shipped with Microsoft excel), and so

on.
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There are a wide variety of synthesis techniques developed for the different do-

mains such as constraint-based [92], enumerative [96], version space algebra [40] and

stochastic [82]. However, most of these techniques are focused on synthesizing purely

discrete programs.

Our work, in this thesis, aims to learn programmatic models for AI problems

(such as learning control policies) rather than just software coding problems. As a

consequence, these program models require both discrete and continuous components.

These programs, in turn, require new learning algorithms that combine the above

program synthesis techniques with deep learning techniques.

2.2 Intersection of Program Synthesis and Machine

Learning

There has been a growing number of works in the intersection of program synthesis

and machine learning [57, 29, 30, 28, 97, 105, 31, 69, 68, 100, 99, 10, 107, 86]. To

compare these works with this thesis, it is helpful to distinguish them with respect

to (1) the kinds of symbolic or neurosymbolic models they learn, (2) their learning

algorithms, and (3) their target applications.

Symbolic/Neurosymbolic Model Classes

In many of the above works, the final models are purely discrete programs (from user-

defined domain-specific languages), but they use deep neural network intermediates

to help learn the programs [29, 28, 68, 86]. In some works, the model is a deep neural

network, but the output of the neural network is a program [30, 31, 69]. There is

another related work that learns probabilistic programs for classification tasks where

the probabilistic semantics are used to capture the noise in the task [57].

The model classes explored in this thesis are most closely related to these works [100,

10, 107, 99] in that they have both discrete and continuous components. In particu-

lar, [10] learns decision trees and [100, 99, 107] learn programs with conditionals; the
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programs in [100, 99] additionally can contain high-level list-based operators such as

map and fold (similar to our attention programs in the neurosymbolic transformers).

The works in [97] and [105] use a combination of neural networks and programs.

In particular, [97] learns programs to compose a library of neural functions. [105]

first learns a program with loops to represent the high-level structural information of

an image generation process, then they use a neural network to complete the image

obtained after rendering the synthesized program.

This thesis adds to these different neurosymbolic models by introducing models

with internal memory (state machine models) and neurosymbolic versions of trans-

formers.

Learning Algorithms

Concerning the learning algorithms explored by these prior works in the intersection

of program synthesis and machine learning, several works have explored the imitation

learning algorithm (i.e. first training a DNN and then using it as an oracle to learn the

neurosymbolic model) [100, 107]. [10] uses a more sophisticated version of imitation

learning based on the Dagger algorithm [80] and additionally, uses the learned Q-

function to weigh the data-points from the oracle towards more critical data-points.

In this thesis, we too use a simple imitation learning algorithm to train neurosymbolic

transformers.

Similar to how we designed the adaptive teaching algorithm to overcome the limi-

tations in imitation learning, [99] devised another technique called imitation-projected

gradient descent. This approach uses a form of mirror descent that takes a gradient

step into the unconstrained DNN space and then projects back onto the constrained

programmatic space. However, it is not clear if this technique can be applied to

learning state machines since it is hard to get supervision on the internal memory of

the state machine using a DNN oracle.

The learning approaches used in the other works are orthogonal to ours because

their primary goal, unlike ours, is to use neural networks to help program synthesis

problems. For instance, [31, 69, 30] learn DNNs that take in input-output examples
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and produce programs satisfying these examples. The key idea in these works is to

synthetically generate the supervised data for training the DNN by sampling pro-

grams from the DSL and generating fake input-output examples. [86] uses DNNs to

relax a combinatorial program search space and use the performance of the learned

DNN to prune out infeasible partial programs. [28] uses a DNN to learn a straight-

chain program and then synthesizes a program with loops using traditional synthesis

techniques. Similarly, [27] solves inverse graphics problems using geometric analysis

techniques to find the continuous primitives and then using program synthesis tech-

niques to figure out how to compose the primitives. Although not directly applicable

in our settings, these techniques are still relevant because our algorithms internally

have program synthesis components. Thus, the above approaches can make the pro-

gram synthesis part of our algorithm faster and more efficient.

In addition to the above learning approaches, [97] and [105] employ different ap-

proaches to learn DNN+program models. Here, the main idea is to split the DNN

training and the program synthesis parts into two separate independent steps with

direct supervision for both components. However, there is no natural way to break

the continuous learning and discrete learning for our problems; hence we require the

teacher-student based algorithms.

Applications of Neurosymbolic Models

Neurosymbolic learning approaches, so far, have been applied in a number of differ-

ent areas—such as program synthesis applications (list processing and text-editing

tasks) [30, 31], visual domain (classifying hand-written characters [57], learning vi-

sual concepts [29], graphics problems [28, 27], generative modeling [105]), language

domain (learning morphological rules [29], and instruction learning [69]). This thesis

explores reinforcement learning tasks similar to [100, 99, 10, 107].

Similar to our work, these prior works have shown that symbolic/neurosymbolic

models are better than deep neural networks in terms of achieving interpretability [10,

100, 28], few-shot learning [57, 29], safety [10, 107], and lifelong learning (ability to

reuse neural network components learned in the previous tasks) [97].
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2.3 Hybrid Systems

The hybrid systems literature [39] is relevant here because it is one of the earliest pieces

of literature to explore the combination of discrete and continuous components. This

community started by first developing techniques to verify that a manually written

hybrid-model of a dynamical system achieves some desirable properties [4]. Then,

the field gradually moved into synthesizing hybrid models for system identification

problems [73]. However, the synthesis techniques developed there are limited; for

instance, some works only focus on synthesizing the transition conditions while as-

suming that the dynamics in each mode is given [25], others use special algorithms

(such as fix-point computation) that only work under certain linear assumptions [49].

Our approach (especially the state machine based models) builds upon this pre-

viously defined class of hybrid models. However, we view it as a generic model class

for learning intelligent systems and present a new efficient learning technique that

combines the latest techniques in machine learning and program synthesis.

2.4 Teacher-Student Algorithms in Other Settings

The idea of using a teacher to guide a student is seen in several other settings. For ex-

ample, guided policy search [59] is a technique to train DNN policies for reinforcement

learning tasks; it uses a teacher in the form of a trajectory optimizer to train a neural

network student. Additionally, it has recently been shown that over-parameterization

is essential in helping neural networks avoid local minima [2]. In our approach, the

teacher can be seen as an over-parametric version of the student. Relaxing opti-

mization problems by adding more parameters is a well established technique; in

many cases, re-parameterization can make difficult non-convex problems solve effi-

ciently [17, 16]. In the multi-agent RL community, there has also been a great deal

of interest in using an oracle (e.g. a centralized policy) to train the final policy (e.g.

a decentralized policy) [95]. The above works inspire our learning algorithms, but we

adapted them to our setting where the student is a neurosymbolic model, and the
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teacher is a continuous over-approximation (such as a DNN transformer).

2.5 Interpreting/Analyzing Neural Networks

One of the main contributions of this thesis is showing the interpretability of the

learned neurosymbolic models. In the deep learning community, there are recent

approaches to interpret and explain a learned neural network. For instance, prior

works [70, 32, 64, 11] interpret a convolutional neural network by visualizing the

features learned in each layer, which is in turn done by finding inputs that maximize

activations of the given neurons. Some works try to explain individual decisions made

by a neural network; [106] finds minimal symbolic corrections in the input to flip

the current neural network’s decision and uses these corrections to explain the neural

network’s decision. In contrast, the neurosymbolic models are naturally interpretable

(without any need for additional optimizations to find the explanations). Moreover,

they can be modified easily by an expert to get different behaviors.

2.6 Meta-Learning

Our generalization goal is related to that of meta-learning [34]; however, whereas

meta-learning trains on a few examples from the novel environment, our goal is to

generalize without additional training.
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Chapter 3

Neurosymbolic Models

In this chapter, we introduce two kinds of neurosymbolic model classes: (i) state

machines, which are suitable in place of RNNs and LSTMs because of their ability

to store memory internally in the models, and (ii) neurosymbolic transformers, which

are suitable to replace transformers by their ability to operate over lists of elements

of arbitrary size.

3.1 State Machines

LSTMs and RNNs are capable of processing a sequence of inputs, learning to store

some memory about the data seen so far, and using the memory and the input to pro-

duce outputs. These models are popularly used for speech recognition and sequence

to sequence translation in natural language domains. They are also commonly used

for learning reinforcement learning policies in the presence of partial observations [44].

At some level of abstraction, a RNN or a LSTM model 𝜋 takes in the current input

𝑥𝑛 and the current memory 𝑠𝑛, and produces an output 𝑦𝑛 and the next memory

𝑠𝑛+1; 𝜋(𝑥𝑛, 𝑠𝑛) = (𝑦𝑛, 𝑠𝑛+1) where 𝑠0 is initialized by some mechanism. In LSTMs

and RNNs, this function 𝜋 is usually modelled using complex deep neural networks.

While they have been successfully used in many instances, some main drawbacks are

the lack of interpretability of the learned model and the lack of generalization beyond

the training distribution.
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As an alternative, we introduce neurosymbolic state machines that are more inter-

pretable and generalizable. Then, in Chapter 5, we describe the learning algorithm

to train these state machines from data efficiently. At a high level, state machines are

compositions of much simpler functions (e.g. linear functions). The internal mem-

ory of the state machine model (called its mode) indicates which simple function is

currently used to generate the output. Thus, the state machine models are capable

of encoding complex nonlinear functions such as iteratively repeating a sequence of

simple functions (e.g., the logic needed for the car example in Figure 1-1). At the

same time, state machines are substantially more structured than more typical model

classes such as neural networks and decision trees.

3.1.1 Formalism

Let 𝑥 ∈ 𝒳 be an input to the model and 𝑦 ∈ 𝒴 be the output and let’s assume that

the model is run on a sequence of inputs 𝑥0, · · · , 𝑥𝑁 .

A state machine 𝜋 is a tuple ⟨ℳ,ℋ,𝒢,𝑚𝑠,𝑚𝑒⟩. The modes 𝑚𝑖 ∈ ℳ of 𝜋 are

the internal memory of the state machine. Each mode 𝑚𝑖 ∈ ℳ corresponds to a

simple function 𝐻𝑚𝑖
∈ ℋ, which is a function 𝐻𝑚𝑖

: 𝒳 → 𝒴 mapping the input to

the output. When in mode 𝑚𝑖, the model outputs 𝑦𝑛 = 𝐻𝑚𝑖
(𝑥𝑛). Furthermore, each

pair of modes (𝑚𝑖,𝑚𝑗) corresponds to a switching condition 𝐺
𝑚𝑗
𝑚𝑖 ∈ 𝒢, which is a

function 𝐺
𝑚𝑗
𝑚𝑖 : 𝒳 → R. When in mode 𝑚𝑖, if the model observes an input 𝑥𝑛 such

that 𝐺𝑚𝑗
𝑚𝑖 (𝑥𝑛) ≥ 0, then the model transitions from mode 𝑚𝑖 to mode 𝑚𝑗. If there

are multiple modes 𝑚𝑗 with non-negative switching weight 𝐺𝑚𝑗
𝑚𝑖 (𝑥𝑛) ≥ 0, then the

model transitions to the one that is greatest in magnitude; if there are several modes

of equal weight, the model takes the first one according to a fixed ordering. Finally,

𝑚𝑠,𝑚𝑒 ∈ ℳ are the start and the end modes, respectively; the state machine mode

is initialized to 𝑚𝑠, and the state machine terminates when it transitions to 𝑚𝑒.
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Figure 3-1: Neural networks vs state machine models — a conceptual comparison.

Formally, 𝜋(𝑥𝑛, 𝑠𝑛) = (𝑦𝑛, 𝑠𝑛+1), where 𝑦𝑛 = 𝐻𝑠𝑛(𝑥𝑛), 𝑠0 = 𝑚𝑠 and

𝑠𝑛+1 =

⎧⎪⎨⎪⎩𝑚
* = dargmax𝑚𝐺

𝑚
𝑠𝑛(𝑥𝑛) if 𝐺𝑚*

𝑠𝑛 (𝑥𝑛) ≥ 0

𝑠𝑛 otherwise
(3.1)

where dargmax is a deterministic argmax that breaks ties as described above.

The space of simple functions in the modes and the switching conditions are

specified by grammars that encode the space of possible functions as a space of

programs. Different grammars can be used for different problems. Typical grammars

for the simple functions include scalar constants {𝐶𝛼 : 𝑥 ↦→ 𝛼} and linear functions

{𝑃 𝑖
𝛼,𝛼0

: 𝑥 ↦→ 𝛼⊤.𝑥+𝛼0}. A typical grammar for switching conditions is the grammar

𝐵 ::= {𝑥[𝑖] ≤ 𝛼}𝑖 | {𝑥[𝑖] ≥ 𝛼}𝑖 | 𝐵1 ∧𝐵2 | 𝐵1 ∨𝐵2

of Boolean predicates over the current input 𝑥, where 𝑥[𝑖] is the 𝑖th feature of 𝑥. In

all these grammars, 𝛼𝑖 ∈ R are parameters to be learned. The grammar for switching

conditions also has discrete parameters encoding the choice of expression.

For an example, see Figure 1-3, which is a learned state machine policy for the

task in Figure 1-1. This state machine has three modes in addition to the start and

the end modes. Note that our algorithm learns which edges connect which modes,

i.e. the edges are not pre-specified in the grammar by a user. The grammar for the

simple functions in each mode are scalar constants (one for each action output), and

the grammar for the switching conditions are inequalities over some feature space 𝑥.
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Figure 3-1 conceptually visualizes how a DNN model class differs from a state

machine model class. Compared to a neural network model, which is just a huge

function that takes in the current input and produces an output, a state machine

model has 𝑛 different functions for the 𝑛 different modes. These functions are much

simpler than a neural network. Then there are switching conditions (which is some

subset of the 𝑛2 edges)—each switching condition is a small decision tree that takes

in the current input and produces true or false.

An interesting property about the space of state machines is that they can capture

complex logic by increasing the number of modes. This property, in turn, allows us to

control the complexity by restricting the maximum number of modes. So, it gives us

a way to induce bias towards learning models with fewer modes, and simpler models

usually are more interpretable and generalize better.

Note that, while we call the above class of models state machines, they are, in

fact, built upon a particular subclass of state machines called hybrid automaton [45].

3.1.2 Discussion

Despite the several benefits obtained with state machines, there are a few limitations.

A primary limitation of the state machines model class, in terms of expressiveness,

is that they can only encode a single integer in its internal memory. Although this

single integer of memory can still sufficiently express policies for many tasks, as seen

in Chapter 6, it cannot encode all possible problems that RNNs and LSTMs can solve.

Future directions involve looking into neurosymbolic models that combine state ma-

chines and other data structures such as stack and map to store more information

internally. Another limitation of state machines is that currently, our learning algo-

rithm only supports scalars/linear components in each mode. However, simple scalars

and linear functions will not handle high dimensional inputs such as image inputs. In

the future, we can explore more complex grammars for the functions in the modes and

the switching conditions, for example, with some parts being small neural networks

while still retaining the ability to learn generalizable behaviors.
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3.2 Neurosymbolic Transformers

Like an LSTM, a transformer is a neural architecture for encoding one sequence

into another one. A transformer relies upon the attention-mechanism, which looks

at an input sequence and decides at each step which other parts of the sequence are

important to compute the outputs. Recently, transformers gained immense popularity

since they can learn long-distance relationships between the various elements of the

input sequence. They are widely used in natural language processing (NLP) [98],

vision [26], neural programmers [101], and to represent multi-agent policies in RL [22].

However, similar to other deep neural architectures, transformers lack interpretability

and are difficult to generalize beyond the training distribution. Moreover, it is hard

to enforce combinatorial objectives on the attention matrix, such as the sparsity

constraints.

Our solution to handle these issues is a new class of models called neurosymbolic

transformers. These are similar to transformers, but the attention networks are now

programs from a domain-specific language (DSL). Below, we first formally define the

transformer architecture and then extend it to present our neurosymbolic transformer

architecture.

3.2.1 Transformers

The backbone of a neurosymbolic transformer is a plain-vanilla transformer model.

A transformer maps an input sequence of 𝑁 elements 𝑥 = (𝑥1, · · · , 𝑥𝑁) to an output

sequence of continuous representations 𝑦 = (𝑦1, · · · , 𝑦𝑁). Each input element is en-

coded with its feature vector 𝑥𝑖 ∈ 𝒳 ∈ R𝑑𝑋 and each output element is continuous

vector 𝑦𝑖 ∈ 𝒴 ∈ R𝑑𝑌 . In contrast to the original transformer paper, our formalism also

assumes the existence of directed relational features between any two input elements

i.e. 𝑟𝑖,𝑗 ∈ ℛ ∈ R𝑑𝑅 encodes the relational feature of the element 𝑥𝑗 with respect to

the element 𝑥𝑖.

A simple transformer model has one attention layer combined with some fully

connected layers to produce the final desired outputs. An attention layer can be
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described as mapping a query and a set of key-value pairs to an intermediate output.

The queries, keys, values, and intermediate outputs are all vectors. This intermediate

output is computed as a weighted sum of the values. The weight assigned to each

value is computed by a compatibility function of the query with the corresponding

key.

Formally, a simple transformer model has four neural networks 𝜋𝜃 = (𝜋𝐾
𝜃 , 𝜋

𝑄
𝜃 , 𝜋

𝑉
𝜃 𝜋

𝑂
𝜃 ).

At a high level, 𝜋𝑉
𝜃 : 𝒳 ×ℛ → R𝑑𝑉 is the value network ; 𝑣𝑖,𝑗 = 𝜋𝑉

𝜃 (𝑥𝑖, 𝑟𝑖,𝑗) is the value

that element 𝑖 contributes to the element 𝑗. 𝜋𝐾
𝜃 : 𝒳 ×ℛ → R𝑑𝐾 is the key network ;

𝑘𝑖,𝑗 = 𝜋𝐾
𝜃 (𝑥𝑖, 𝑟𝑖,𝑗) is the key corresponding to the value 𝑣𝑖,𝑗. 𝜋𝑄

𝜃 : 𝒳 → R𝑑𝐾 is the query

network ; 𝑞𝑖 = 𝜋𝑄
𝜃 (𝑥𝑖) is the query proposed by the element 𝑖. 𝜋𝑂

𝜃 : R𝑑𝑉 +𝑑𝑋 → R𝑑𝑌 is

the final output network.

The attention layer computes a soft attention score 𝛼𝑗,𝑖 that indicates how much

weight the element 𝑖 places on the value 𝑣𝑗,𝑖 that the element 𝑗 contributes to the

element 𝑖’s query. The soft attention score is computed as

(𝛼1,𝑖, ..., 𝛼𝑁,𝑖) = softmax
(︂
⟨𝑞𝑖, 𝑘𝑖,1⟩√

𝑑𝐾
, ...,
⟨𝑞𝑖, 𝑘𝑖,𝑁⟩√

𝑑𝐾

)︂
. (3.2)

The intermediate output of the attention layer i.e. the weighted sum of the values

is then computed as

𝜆𝑖 =
𝑁∑︁
𝑗=1

𝛼𝑗,𝑖𝑣𝑗,𝑖. (3.3)

and the final output of the transformer is the computed as

𝑦𝑖 = 𝜋𝑂
𝜃 (𝑥𝑖, 𝜆𝑖). (3.4)

3.2.2 Attention Programs

In the formulation above, the key and the query networks compute the attention that

an element 𝑥𝑖 pays to the other elements 𝑥𝑗. An attention program aims to replace

this computation using simple programmatic constructs.
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We use the notation [𝑁 ] = {1, · · · , 𝑁} to indicate the set of all integers from 1

to N. We use 𝑟𝑖 = {𝑟𝑖,𝑗}𝑗 to indicate the list of relative features of all elements with

respect to the element 𝑖. An attention program 𝑃 : 𝒳 ×ℛ𝑁 → [𝑁 ]𝐾 takes as input

the feature vector of an element 𝑥𝑖 and the set of relative features of all the other

elements 𝑟𝑖 = {𝑟𝑖,𝑗}𝑗, and computes a set of 𝐾 other elements, 𝒜𝑖, to attend to;

𝒜𝑖 = 𝑃 (𝑥𝑖, 𝑟𝑖)

𝑗 ∈ 𝒜𝑖 indicates the element 𝑖 pays attention to the element 𝑗, otherwise it does not.

In our approach, an attention program is parameterized as a set of 𝐾 rules 𝑃 =

(𝑅1, ..., 𝑅𝐾) where each rule 𝑅 : 𝒳×ℛ𝑁 → [𝑁 ] selects a single other element to attend

to—i.e., 𝑃 (𝑥𝑖, 𝑟𝑖) = (𝑅1(𝑥
𝑖, 𝑟𝑖), ..., 𝑅𝐾(𝑥𝑖, 𝑟𝑖)). There is a domain-specific language or

grammar for the rules. Since these rules need to reason over a list of other elements, it

is typical to have standard list operations such as map, fold, and filter in the grammar.

When a rule is applied to symbol 𝑖, it constructs a list

ℓ = (𝑠1, ..., 𝑠𝑁) = ((𝑥𝑖, 𝑟𝑖,1, 1), ..., (𝑥𝑖, 𝑟𝑖,𝑁 , 𝑁)) ∈ 𝒮𝑁 ,

where 𝒮 = 𝒳 ×ℛ× [𝑁 ] encodes an cumulative feature vector of another agent. Then,

the rule can apply the standard list operations to ℓ.

Some common operations are

• filter(𝐵, ℓ): outputs the list of elements 𝑠 ∈ ℓ such that 𝐵(𝑠) = 1 where 𝐵 : 𝒮 →

{0, 1} is a Boolean predicate.

• map(𝐹, ℓ) outputs the list of pairs (𝐹 (𝑠), 𝑗) for 𝑠 = (𝑥𝑖, 𝑟𝑖,𝑗, 𝑗) ∈ ℓ, where

𝐹 : 𝒮 → R is a scoring function.

• argmax inputs a list ((𝑚𝑗1 , 𝑗1), ..., (𝑚
𝑗𝐻 , 𝑗𝐻)) ∈ (R× [𝑁 ])𝐻 , where 𝑚𝑗 is a score

(or a metric) computed for element 𝑗, and outputs the element 𝑗 with the highest

metric 𝑚𝑗.
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Figure 3-2: A traditional transformer’s soft attention architecture vs an attention
program.

• random(ℓ) takes as input a list ((𝑥𝑖, 𝑟𝑖,𝑗1 , 𝑗1), ..., (𝑥
𝑖, 𝑟𝑖,𝑗𝐻 , 𝑗𝐻)) ∈ 𝒮𝐻 , and outputs

𝑗ℎ for a uniformly random ℎ ∈ [𝐻].

The grammar for the rules can include compositions of the above list operations.

For example, argmax(map(𝐹, filter(𝐵, ℓ))) uses 𝐹 to score every element after filtering

based on the predicate 𝐵 and then chooses the one with the best score. Another ex-

ample, random(filter(𝐵, ℓ)) randomly chooses one of the other symbols after filtering.

Finally, the filter predicates 𝐵 and map functions 𝐹 have their grammars; some

typical grammars are:

𝐵 ::= ⟨𝜃, 𝜑(𝑥𝑖, 𝑟𝑖,𝑗)⟩ ≥ 0 | 𝐵 ∧𝐵 | 𝐵 ∨𝐵 𝐹 ::= ⟨𝜃, 𝜑(𝑥𝑖, 𝑟𝑖,𝑗)⟩,

where 𝜃 ∈ R𝑑′ are weights, 𝜑 : 𝒳 ×ℛ → R𝑑′ is a feature map, and ⟨𝑥, 𝑦⟩ denotes dot

product.

Figure 3-2 conceptually visualizes how a transformers attention network differs

from an attention program. While a transformer computes a soft-attention for every

pair of elements, each programmatic rule takes as input all the elements and chooses

the single best one to attend to.

3.2.3 Combining Transformers with Attention Programs

A programmatic attention model 𝑃 only chooses which elements to attend to; thus,

we must combine it with the value network and the output network to get the final

46



output. These are combined by first using the outputs for 𝑃 as masks to sparsify

the soft attentions computed by the key and query networks. Note that an attention

program 𝑃 can be used to replace the key and the query networks, but, here, we only

use 𝑃 as a mask to obtain real number attention rather than Boolean values. The

new attention values are computed as:

𝛼𝑃,𝑗,𝑖 =

⎧⎪⎨⎪⎩𝛼
𝑗,𝑖/𝑍 if 𝑗 ∈ 𝑃 (𝑥𝑖, 𝑟𝑖)

0 otherwise
where 𝑍 =

∑︁
𝑗∈𝑃 (𝑥𝑖,𝑟𝑖)

𝛼𝑗,𝑖 (3.5)

where 𝛼𝑗,𝑖 are computed using Eq 3.2 and 𝑍 is the normalization constant.

Now, we can use 𝛼𝑃,𝑗,𝑖 in place of 𝛼𝑗,𝑖 when computing the attention layer’s inter-

mediate output and the final output of the transformer.

𝜆𝑃,𝑖 =
𝑁∑︁
𝑗=1

𝛼𝑃,𝑗,𝑖𝑣𝑗,𝑖 (3.6)

𝑦𝑃,𝑖 = 𝜋𝑂
𝜃 (𝑥𝑖, 𝜆𝑃,𝑖) (3.7)

3.2.4 Multiple Attention Layers

The above formulation can be extended to multiple attention layers. For the trans-

former architecture with two attention layers, first there is an internal network 𝜋𝐻
𝜃 :

R𝑑𝑋+𝑑𝑉 → R𝑑𝐻 that combines the input vector 𝑥𝑖 and the cumulative value 𝜆𝑖 (eq

3.3) into an internal vector ℎ𝑖 = 𝜋𝐻
𝜃 (𝑥𝑖, 𝜆𝑖). Next, we compute the next round of

values as 𝑣′𝑖,𝑗 = 𝜋𝑉 ′

𝜃 (ℎ𝑖, 𝑟𝑖,𝑗) which replaces the input 𝑥𝑖 in the original equation with

the internal state ℎ𝑖. New keys and queries are generated as 𝑘′𝑖,𝑗 = 𝜋𝐾′

𝜃 (𝑥𝑖, 𝑟𝑖,𝑗) and

𝑞′𝑖 = 𝜋𝑄′

𝜃 (𝑥𝑖), but these still use the original input 𝑥𝑖 (to retain the interpretability

of the inputs). Finally, the Equations 3.2, 3.3, and 3.4 are repeated for the second

layer to compute the final output. This architecture can be extended similarly to an

arbitrary number of attention layers. A neurosymbolic transformer with 𝑅 layers will

have 𝑅 different programs (one for each layer).
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3.2.5 Discussion

The expressivity of a neurosymbolic transformer is limited by the expressivity of the

DSL for the attention program. In general, this issue is a common problem in any

program synthesis system. The challenge is to find the right DSL that can capture

the desired solutions and, at the same time, ensure that the DSL has a small search

space to enable efficient search. Another limitation is that the attention programs can

only operate on low-dimensional inputs (since the map functions and filter conditions

contain simple linear functions). To handle high-dimensional inputs (e.g. images), we

will need another neural network (e.g. an object segmentation network) to distil the

abstract features for the program to operate on. Finally, in the current architecture,

only the attention network is interpretable; the value network and the output network

are still opaque neural networks.
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Chapter 4

Neurosymbolic Reinforcement

Learning

Although there are many potential applications for the neurosymbolic models pre-

sented so far, this thesis mainly focuses on learning neurosymbolic policies for rein-

forcement learning tasks. So at this point, it makes sense to introduce some back-

ground on reinforcement learning and why/how neurosymbolic policies are useful

here.

4.1 Background on Reinforcement Learning

Reinforcement learning is a promising strategy for learning control policies for chal-

lenging sequential decision-making tasks. Recent work has demonstrated its promise

in applications including game playing [67, 88], robotics control [20, 58], software

systems [56, 19], and healthcare [78, 8]. A typical strategy is to build a high-fidelity

simulator of the world, and then use reinforcement learning to train a control policy

to act in this environment. This policy makes decisions (e.g., which direction to walk)

based on the current state of the environment (e.g., the current image of the envi-

ronment captured by a camera) to optimize the cumulative reward (e.g., how quickly

the agent reaches its goal).

There has been significant recent progress on developing powerful deep reinforce-
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ment learning algorithms [60, 85], which train a policy in the form of a deep neural

network (DNN) by using gradient descent on the DNN parameters to optimize the

cumulative reward. Importantly, these algorithms treat the underlying environment

as a black box, making them very generally applicable.

However, most of the RL settings (such as autonomous cars) are safety-critical.

Hence, having interpretable and verifiable policies is more crucial in RL settings than

in other settings. Moreover, since we usually train the policies in simulation and test

the policy in real-world settings, generalization is another key criterion. However,

DNN policies are typically very difficult to understand and analyze, making it hard

to guarantee their safety. The RL setting is particularly challenging since we need to

reason not about isolated predictions but sequences of highly connected decisions.

As a consequence, it is interesting to learn policies in the form of neurosymbolic

policies. They are significantly more interpretable than DNNs; consequently, human

experts can often understand and debug behaviors of a neurosymbolic policy. In ad-

dition, in contrast to DNNs, neurosymbolic policies have discrete structure, making

them much more amenable to formal verification, which can be used to prove cor-

rectness properties. Finally, neurosymbolic policies are more robust than their DNN

counterparts—e.g., they generalize better to changes in the task or robot configura-

tion.

4.2 Problem Formulation

We consider a reinforcement learning problem formulated as a Markov decision process

(MDP) 𝑀 = (𝑆,𝐴, 𝑃,𝑅) [77], where 𝑆 is the set of states, 𝐴 is the set of actions,

𝑃 (𝑠′ | 𝑎, 𝑠) ∈ [0, 1] is the probability of transitioning from state 𝑠 ∈ 𝑆 to state 𝑠′ ∈ 𝑆

upon taking action 𝑎 ∈ 𝐴, and 𝑅(𝑠, 𝑎) ∈ R is the reward accrued by taking action 𝑎

in state 𝑠.

Given an MDP 𝑀 , our goal is to train an agent that acts in 𝑀 in a way that

accrues high cumulative reward. We represent the agent as a policy 𝜋 : 𝑆 → 𝐴

mapping states to actions. Then, starting from a state 𝑠 ∈ 𝑆, the agent selects action
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𝑎 = 𝜋(𝑠) according to the policy, observes a reward 𝑅(𝑠, 𝑎), transitions to the next

state 𝑠′ ∼ 𝑃 (· | 𝑠, 𝑎), and then iteratively continues this process starting from 𝑠′. For

simplicity, we assume that a deterministic initial state 𝑠1 ∈ 𝑆 along with a fixed,

finite number of steps 𝐻 ∈ N. Then, we formalize the trajectory taken by the agent

as a rollout 𝜁 ∈ (𝑆 × 𝐴 × R)𝐻 , which is a sequence of state-action-reward tuples

𝜁 = ((𝑠1, 𝑎1, 𝑟1), ..., (𝑠𝐻 , 𝑎𝐻 , 𝑟𝐻)). We can sample a rollout by taking 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡)

and 𝑠𝑡+1 ∼ 𝑃 (· | 𝑠𝑡, 𝑎𝑡) for each 𝑡 ∈ [𝐻] = {1, ..., 𝐻}; we let 𝐷(𝜋)(𝜁) denote the

distribution over rollouts induced by using policy 𝜋.

Now, our goal is to choose a policy 𝜋 ∈ Π in a given class of policies Π that

maximizes the expected reward accrued. In particular, letting 𝐽(𝜁) =
∑︀𝐻

𝑡=1 𝑟𝑡 be the

cumulative reward of rollout 𝜁, our goal is to compute

𝜋̂ = arg max
𝜋∈Π

𝐽(𝜋) where 𝐽(𝜋) = E𝜁∼𝐷(𝜋) [𝐽(𝜁)],

i.e., the policy 𝜋 ∈ Π that maximizes the expected cumulative reward over the induced

distribution of rollouts 𝐷(𝜋)(𝜁).

As an example, we can model a robot navigating a room to reach a goal as

follows. The state (𝑥, 𝑦) ∈ 𝑆 = R2 represents the robot’s position, and the action

(𝑣, 𝜑) ∈ 𝐴 = R2 represents the robot’s velocity 𝑣 and direction 𝜑. The transition

probabilities are 𝑃 (𝑠′ | 𝑠, 𝑎) = 𝒩 (𝑓(𝑠, 𝑎),Σ), where

𝑓((𝑥, 𝑦), (𝑣, 𝜑)) = (𝑥+ 𝑣 · cos𝜑 · 𝜏, 𝑦 + 𝑣 · sin𝜑 · 𝜏),

where 𝜏 ∈ R>0 is the time increment, and where Σ ∈ R2×2 is the variance in the state

transitions due to stochastic perturbations. Finally, the rewards are the distance to

the goal—i.e., 𝑅(𝑠, 𝑎) = −‖𝑠− 𝑔‖2 + 𝜆 · ‖𝑎‖2, where 𝑔 ∈ R2 is the goal and 𝜆 ∈ R>0

is a hyperparameter. Intuitively, the optimal policy 𝜋̂ for this MDP takes actions in

a way that maximizes the time the robot spends close to the goal 𝑔, while avoiding

very large (and therefore costly) actions.
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4.3 Neurosymbolic Policies

The main difference in neurosymbolic reinforcement learning compared to traditional

reinforcement learning is the choice of policy class Π. In particular, we are interested

in cases where Π is a space of neurosymoblic models of some form. In this section,

we describe how/where state machines and neurosymbolic transformers can be used

as policies.

4.3.1 State Machines for Tracking Internal State

A state machine policy is a good choice to represent a policy with internal state. In

principle, for an MDP, keeping internal state is not necessary since the state variable

contains all information necessary to act optimally. Nevertheless, in many cases, it

can be helpful for the policy to keep internal state—for instance, for motions such

as walking or swimming that repeat iteratively, it can be helpful to keep track of

progress within the current iteration internally. In addition, if the state is partially

observed (i.e., the policy only has access to 𝑜 = ℎ(𝑠) instead of the full state 𝑠), then

internal state may be necessary to act optimally [50].

4.3.2 Neurosymbolic Transformers for List of States

In contrast to state machine policies, neurosymbolic transformers are designed to

handle situations where the state of an agent includes a list of elements. For example,

in multi-agent systems, the full state consists of a list of states for each individual

agent [48]. In this case, the policy must compute a single action based on the given

list of states. Alternatively, for environments with variable numbers of objects, the

set of object positions must be encoded as a list. Finally, they can also be used to

choose actions based on the history of the previous 𝑘 states [100].
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Chapter 5

Neurosymbolic Learning Algorithms

A key challenge with learning neurosymbolic models is that we cannot apply state-of-

the-art machine learning algorithms. In particular, these algorithms are based on the

principle of gradient descent on the model parameters. Yet, neurosymbolic policies are

typically non-differentiable (or at least, their optimization landscape contains many

local minima).

This problem is particularly challenging in reinforcement learning settings since

the policy (the model) needs to output sequences of highly connected decisions. More-

over, the loss function (the reward) is typically very sparse, leading to numerous local

minima. This chapter will focus on neurosymoblic learning algorithms for reinforce-

ment learning settings.

In RL problems, the model is a policy 𝜋 : 𝑆 → 𝐴 mapping states to actions. Then,

starting from a state 𝑠 ∈ 𝑆, the agent that is executing the policy selects action 𝑎 =

𝜋(𝑠), observes a reward 𝑅(𝑠, 𝑎), transitions to the next state 𝑠′ ∼ 𝑃 (· | 𝑠, 𝑎) according

to a transition function 𝑃 , and then iteratively continues this process starting from

𝑠′.

For continuous state and action spaces, state-of-the-art deep reinforcement learn-

ing algorithms [60, 85] consider a parameteric policy class Π = {𝜋𝜃 | 𝜃 ∈ Θ}, where

the parameters Θ ⊆ R𝑑 are real-valued—e.g., 𝜋𝜃 is a DNN and 𝜃 are its parameters.

Then, they compute 𝜋* by optimizing over 𝜃. One strategy is to use gradient descent
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on the objective—i.e.,

𝜃′ ← 𝜃 + 𝜂 · ∇𝜃𝐽(𝜋𝜃).

In particular, the policy gradient theorem [93] encodes how to compute an unbi-

ased estimator of this objective in terms of ∇𝜃𝜋𝜃. In general, most state-of-the-art

approaches rely on gradient descent on the policy parameters 𝜃. However, such ap-

proaches cannot be applied to training neurosymbolic policies since the search space

of programs is typically discrete.

The same is also the case with sequence to sequence translations. There are good

gradient-based approaches for DNNs, but they do not apply to learning neurosymbolic

models.

Consequently, a common strategy for learning neurosymbolic models is to learn

an intermediate teacher/oracle model (typically a deep neural model learned) and

then use this intermediate oracle model to break down the original neurosymbolic

learning problem into smaller problems. For example, we could convert the problem

of learning a state machine policy for an RL problem into learning each individual

small policy in the modes and the switching conditions separately with supervised

data obtained using the oracle. The search landscape of these smaller neurosymbolic

learning problems contains much fewer continuous parameters and/or fewer local

optima. Therefore, they are amenable to either traditional program synthesis methods

(enumeration/mcmc search) or traditional machine learning methods (decision tree

learning or a simple gradient descent with multiple random initializations).

5.1 Imitation Learning

Training an oracle model first and then training a different model using supervision

from the oracle model has been widely explored before as imitation learning. At a

high level, the idea of imitation learning is first to use deep reinforcement learning

to learn a high-performing DNN policy 𝜋*, and then train the symbolic policy 𝜋̂ to
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imitate 𝜋*.

A naïve strategy is to use an imitation learning algorithm called behavioral cloning [5],

which uses 𝜋* to explore the MDP, collects state-action pairs 𝑍 = {(𝑠, 𝑎)} pairs oc-

curring in rollouts 𝜁 ∼ 𝐷(𝜋*), and then trains 𝜋̂ using supervised learning on the

dataset 𝑍—i.e.,

𝜋̂ = arg min
𝜋∈Π

∑︁
(𝑠,𝑎)∈𝑍

1(𝜋(𝑠) = 𝑎). (5.1)

This simple imitation learning approach is a good fit for neurosymbolic transform-

ers. However, it is not a great fit for state machine models because the oracle does

not provide supervision on the state machine’s internal memory. In Section 5.4, we

describe another strategy to deal with this issue.

5.2 Imitation Learning for Neurosymbolic Transform-

ers

For neurosymbolic transformers, the obvious choice for an oracle model is a normal

transformer where the key, query, value, and output networks are all DNNs. Thus,

the oracle is a neural network model 𝜋𝜃 = (𝜋𝐾
𝜃 , 𝜋

𝑄
𝜃 , 𝜋

𝑉
𝜃 , 𝜋

𝑂
𝜃 ) based on the transformer

architecture [98] (Section 3.2.1); its parameters 𝜃 are trained using reinforcement

learning to optimize 𝐽(𝜋𝜃).

Given an oracle model 𝜋𝜃, we can precompute a dataset of tuples 𝑍 = {𝑥, 𝛼, 𝑦} by

sampling inputs, outputs and the intermediate attention values. Given a tuple in 𝑍

and a candidate attention program 𝑃 , we can easily compute the corresponding values

(𝛼𝑃 , 𝑦𝑃 ) for the same input 𝑥 using the neurosymbolic transformer using Equations 3.5

and 3.7. Let 𝑍𝑃 be the set of tuples (𝑥, 𝛼, 𝑦, 𝛼𝑃 , 𝑦𝑃 ).

Now a straight-forward imitation learning approach is to optimize 𝑃 so that 𝛼
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and 𝛼𝑃 are similar for all the tuples in 𝑍𝑃 i.e.

𝐽𝛼(𝑃 ; 𝜃) = −E(𝑥,𝛼,𝑦,𝛼𝑃 ,𝑦𝑃 )∈𝑍𝑃

[︀
‖𝛼− 𝛼𝑃‖1

]︀
(5.2)

which can be optimized using traditional synthesis algorithms depending on the gram-

mar of 𝑃 . A drawback of the above objective is that we actually care about imitating

the oracle’s final output at the end of the day. A similar attention value does not

necessarily mean a similar final output. So, a better objective is to optimize over 𝑃

such that the final outputs of the two models are similar.

𝐽𝑦(𝑃 ; 𝜃) = −E(𝑥,𝛼,𝑦,𝛼𝑃 ,𝑦𝑃 )∈𝑍𝑃

[︀
‖𝑦 − 𝑦𝑃‖1

]︀
(5.3)

This objective needs to execute the output layer of the transformer 𝜋𝑂
𝜃 for all 𝑥 in

the dataset 𝑍 and for every 𝑃 considered (to compute 𝑦𝑃 ). Thus, this objective is

computationally more expensive than the previous one but leads to a better-imitated

model.

Re-training the Transformer. Once we synthesized a program 𝑃 , we can form

the combined neurosymbolic transformer policy 𝜋𝑃,𝜃. One remaining issue is that the

parameters 𝜃 are optimized for using the original soft attention weights 𝛼𝑗,𝑖 rather than

the hard attention weights 𝛼𝑃,𝑗,𝑖. Thus, we re-train the parameters of the transformer

models in 𝜋𝑃,𝜃. This training is identical to how 𝜋𝜃 was originally trained, except we

use 𝛼𝑃,𝑗,𝑖 instead of 𝛼𝑗,𝑖 to compute the output.

Extending to multiple attention layers. A neurosymbolic transformer with 𝑅

attention layers will have 𝑅 different programs (one for each layer). We can synthesize

these programs independently. To synthesize the attention program 𝑃𝑟 for the 𝑟-th

layer, we use the hard attention weights 𝛼𝑃𝑟 for the 𝑟-th layer and use the original

soft attention weights for the other rounds 𝑟′ ̸= 𝑟 to compute the synthesis objective

𝐽𝑦(𝑃𝑟; 𝜃).
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5.2.1 Optimizing Combinatorial Objectives

Another advantage of neurosymbolic transformers is the ability to include combinato-

rial objectives (especially on the attention graph structure). This is possible because

we are already using combinatorial synthesis algorithms to handle the discreteness

in the program grammar, and these algorithms can naturally handle combinatorial

objectives. So, here, we can jointly optimize for the two objectives as:

𝐽(𝑃 ; 𝜃) = 𝐽𝑦(𝑃 ; 𝜃) + 𝜆̃𝐽𝛼

where 𝜆̃ ∈ R>0 is a hyperparameter, and the surrogate objective 𝐽𝛼 aims to minimize

some combinatorial objective on the attention graph 𝛼.

One useful kind of regularization objective here is to minimize the maximum

degree of the attention graph (both incoming and outgoing).

𝐽𝛼 = −

(︃
max

𝑖

∑︁
𝑗

1(𝛼𝑗,𝑖 > 0) + max
𝑖

∑︁
𝑗

1(𝛼𝑖,𝑗 > 0)

)︃

The first term in the above equation corresponds to the maximum incoming degree

and the second term corresponds to the maximum outgoing degree. The overall

objective is to minimize the sum of these two terms. This objective essentially enforces

that the output decision for any element (a robot) is only based on fewer elements

(small incoming degree). At the same time, any particular element can only influence

the output of a few other elements (small outgoing degree). This regularization

is useful for interpretability (a sparse graph is easy to interpret), robustness, and

generalization. Note that this regularization is hard to achieve with gradient descent

based techniques (especially for the outgoing direction).

5.2.2 Program Synthesis for Supervised Learning

Recall that imitation learning reduces the complex neurosymbolic reinforcement learn-

ing problem to a simpler supervised learning problem. Here, we discuss algorithms

for solving this supervised learning problem. In general, this problem is an instance
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of programming by example [40, 41], which is a special case of program synthesis [42]

where the task is specified by a set of input-output examples. In our setting, the

input-output examples are the input-output pairs in the dataset 𝑍 used to train the

attention programmatic.

An added challenge in applying program synthesis in machine learning settings

is that traditional programming by example algorithms are designed to compute a

program that correctly fits all of the training examples. In contrast, in machine

learning, there typically does not exist a single program that fits all of the training

examples. Instead, we need to solve a quantitative synthesis problem where the goal

is to minimize the number of errors on the training data.

One standard approach to solving such program synthesis problems is to enumer-

ate over all possible programmatic policies 𝜋 ∈ Π. Π is specified as a context-free

grammar, and we can use the standard algorithms to enumerate programs in that

grammar (typically up to a bounded depth) [6]. In addition, domain-specific tech-

niques can be used to prune provably suboptimal portions of the search space to speed

up enumeration [18]. For particularly large search spaces, an alternative strategy is

to use a stochastic search algorithm that heuristically optimzes the objective; for ex-

ample, Metropolis Hastings can be used to adaptively sample programs (e.g., with

the unnormalized probability density function taken to be the objective value) [83].

For the attention programs, the search space has both discrete choices (to choose

between the different combinations of list-processing operations) and continuous pa-

rameters (for the linear functions in the map functions and filter conditions). For this

space, we found the stochastic search algorithm (Metropolis Hastings) more suitable.

5.2.3 Discussion

Here, we presented a straightforward learning algorithm for training neurosymbolic

transformers. This simplistic approach is great for plugging in various other algo-

rithms for either the teacher or the student. For example, currently, we use a model-

based reinforcement learning algorithm for the teacher that backpropagates through

time [24, 9]. This algorithm can be replaced by any of the other sophisticated algo-
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rithms such as [62]. Similarly, for the student, there are different synthesis algorithms,

including several neural guided synthesis algorithms [30, 31, 68]. Some of these neural

guided synthesis algorithms can even learn the high-level DSLs (e.g. common com-

binations of list-manipulating operations) from simple basic components (e.g. map

and filter) [30].

The simple imitation learning algorithm can sometimes suffer from distribution

shifts (although not observed in our settings). But, luckily, there are already tech-

niques to address these issues, such as the Dagger algorithm [80].

5.3 Shortcomings of Imitation Learning

A fundamental shortcoming of these imitation algorithms is that they do not adjust

the oracle model 𝜋* to account for the limitations on the capabilities of the symbolic

model 𝜋̂. An oracle model can solve the task in many different ways. A naive imitation

learning would not force the oracle to learn something that a compact symbolic model

can imitate. Moreover, in the state machines case, a DNN teacher does not provide

any supervision on the internal memory of the student.

Therefore, this thesis presents another approach called adaptive teaching, where

rather than choosing 𝜋* to be a DNN, it is instead a model whose structure mirrors

that of 𝜋̂. Then, we can directly update 𝜋* on each training iteration to reflect the

structure of 𝜋̂. We showed adaptive teaching to be an effective strategy for learning

state machine policies.

5.4 Adaptive Teaching

In this section, we first describe the general idea of the adaptive teaching algorithm

and derive it using variational inference. Then, the next section will present how to

instantiate this algorithm concretely for learning state machines.
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Figure 5-1: High-level overview of the adaptive teaching algorithm.

5.4.1 Overview

In the adaptive teaching algorithm, the teacher is abstractly represented as a collection

of traces 𝜏𝑥 for each input 𝑥. An example of a trace for RL problems is a trajectory (a

sequence of actions over a bounded horizon). A key insight is that we can parameterize

𝜏𝑥 in a way that mirrors the structure of the neurosymbolic model. For instance, in

Section 5.5.1, we define a parameterization of 𝜏𝑥 that looks like a loop-free version of

a state machine.

At a high level, the algorithm alternatively learns a teacher (a collection of 𝜏𝑥

for multiple initial inputs 𝑥) and a student (𝜋). The goal for the teacher is two-fold

(i) find traces that maximize the reward for the RL problem, and (ii) find traces

that match the structure of the student learned so far. The latter objective is what

distinguishes the adaptive teaching approach from imitation learning. The goal for

the student is to “glue” the teacher’s traces together using maximum likelihood to

construct a neurosymbolic model. Figure 5-1 depicts this algorithm at a high level.

5.4.2 Adaptive Teaching via Variational Inference

Next, we derive the adaptive teaching formulation by reformulating the learning prob-

lem in the framework of probabilistic reinforcement learning, and also consider neu-

rosymbolic models 𝜋 that are probabilistic (see Section 5.5.3 for a probabilistic state

machine model). Then, we use a variational approach to break the problem into the
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teacher and the student steps. The log-likelihood of a policy 𝜋 is defined as follows:

ℓ(𝜋) = logE𝑝(𝜏 |𝜋)[𝑒
−𝜆𝐿(𝜏)] (5.4)

where 𝑝(𝜏 | 𝜋) is the probability of getting the trace 𝜏 when using the model 𝜋,

𝜆 ∈ R≥0 is a hyperparameter, and 𝐿(𝜏) is the loss (negative reward) assigned to

the trace 𝜏 . Now, we can use the variational approach to express Eq (5.4) as an

expectation over an auxiliary distribution 𝑞(𝜏) which will define the teacher. We

have

ℓ(𝜋) = logE𝑞(𝜏)

[︂
𝑒−𝜆𝐿(𝜏) · 𝑝(𝜏 | 𝜋)

𝑞(𝜏)

]︂
≥ E𝑞(𝜏)[−𝜆𝐿(𝜏) + log 𝑝(𝜏 |𝜋)− log 𝑞(𝜏)] (5.5)

where 𝑞(𝜏) is the variational distribution and the inequality follows from Jensen’s

inequality. Thus, we can optimize 𝜋 by maximizing the lower bound Eq (5.5) on ℓ(𝜋).

Since the first and third term of Eq (5.5) are constant with respect to 𝜋, we have

𝜋* = arg max
𝜋

E𝑞(𝜏)[log 𝑝(𝜏 |𝜋)]. (5.6)

Next, the optimal choice for 𝑞 (i.e., to minimize the gap in the inequality in Eq (5.5))

is

𝑞* = arg min
𝑞

𝐷KL(𝑞(𝜏) ‖ 𝑒−𝜆𝐿(𝜏) · 𝑝(𝜏 | 𝜋)/𝑍) (5.7)

where 𝑍 is a normalizing constant. We choose 𝑞 to have form 𝑞(𝜏) = 𝑝(𝑥) · 𝛿(𝜏 − 𝜏𝑥),

where 𝛿 is the Dirac delta function, 𝑝(𝑥) is the input distribution, and 𝜏𝑥 are the

parameters to be optimized, where 𝜏𝑥 encodes the trace for the input 𝑥. Then, up to

constants, the objective of Eq (5.7) equals

E𝑝(𝑥)

[︀
log 𝑝(𝑥) + E𝛿(𝜏−𝜏𝑥)[log 𝛿(𝜏 − 𝜏𝑥)]− (−𝜆𝐿(𝜏𝑥) + log 𝑝(𝜏𝑥 | 𝜋, 𝑥))

]︀
.
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The first term is constant; the second term is degenerate, but it is also constant.

Thus, we have

𝑞* = arg max
{𝜏𝑥}

E𝑝(𝑥) [−𝜆𝐿(𝜏𝑥) + log 𝑝(𝜏𝑥 | 𝜋, 𝑥)] . (5.8)

Thus, we can optimize Eq (5.4) by alternatingly optimizing Eq (5.6) and Eq (5.8).

We interpret these equations as adaptive teaching. At a high level, the teacher

(i.e., the variational distribution 𝑞* in Eq (5.8)) is used to guide the optimization of

the student (i.e., the neurosymbolic model 𝜋* in Eq (5.6)). Rather than compute the

teacher in closed form, we approximate it by sampling finitely many inputs 𝑥𝑘 ∼ 𝑋

and then computing the optimal trace for 𝑥𝑘. Formally, on the 𝑖th iteration, the

teacher and student are updated as follows:

Teacher 𝑞*𝑖 =
𝐾∑︁
𝑘=1

𝛿(𝜏 𝑖𝑘) (5.9)

where 𝜏 𝑖𝑘 = argmax𝜏 − 𝜆𝐿(𝜏) + log 𝑝(𝜏 | 𝜋𝑖−1, 𝑥𝑘) (𝑥𝑘 ∼ 𝑋)

Student 𝜋*
𝑖 = argmax𝜋

𝐾∑︁
𝑘=1

log 𝑝(𝜏 𝑖𝑘 | 𝜋, 𝑥𝑘) (5.10)

The teacher objective Eq (5.9) is to both minimize the loss 𝐿(𝜏) for a sampled input

𝑥 and to maximize the probability 𝑝(𝜏 | 𝜋, 𝑥) of obtaining the trace 𝜏 for the input 𝑥

according to the current student 𝜋. The latter encourages the teacher to match the

structure of the student. Furthermore, the teacher is itself updated at each step to

account for the changing structure of the student. The student objective Eq (5.10) is

to imitate the distribution of traces according to the teacher.
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Figure 5-2: An example loop-free policy. This policy has a sequence of 4 simple
policies. The grammar for simple policies, in this case, is scalar constants (same as
the state machine policy in Figure 1-3). Each simple policy 𝐻𝑖 is executed for 𝑇𝑖
duration before switching to the next policy.

5.5 Instantiating Adaptive Teaching for Learning State

Machine Policies

5.5.1 Trace Parameterization

One approach is to parameterize 𝜏 as an arbitrary action sequence (𝑎0, 𝑎1, ...) and

use gradient-based optimization to compute 𝜏 . However, this approach can perform

poorly—even though we regularize 𝜏 towards the student, it could exhibit behaviors

that are hard for the student to capture. Instead, we parameterize 𝜏 in a way that

mirrors the student. In particular, we parameterize 𝜏 like a state machine, but rather

than having modes and switching conditions that adaptively determine the sequence

of simple policies (in the modes) to be executed and the duration of execution, the

sequence of simple policies is fixed and each simple policy is executed for a fixed

duration.

More precisely, we represent 𝜏 as an loop-free policy 𝜏 = ⟨ℋ, 𝒯 ⟩. To execute 𝜏 ,

each simple policy 𝐻𝑖 ∈ ℋ is applied for the corresponding duration 𝑇𝑖 ∈ 𝒯 , after

which 𝐻𝑖+1 is applied. The simple policies are from the same grammar of simple

policies for the student. Figure 5-2 shows an example of a loop-free policy. The

obvious way to represent a duration 𝑇𝑖 is as a number of time steps 𝑇𝑖 ∈ N. However,

with this choice, we cannot use continuous optimization to optimize 𝑇𝑖. Instead, we

fix the number of discretization steps 𝑃 for which 𝐻𝑖 is executed, and vary the time

increment ∆𝑖 = 𝑇𝑖/𝑃—i.e., 𝑥𝑛+1 ≈ 𝑥𝑛 + 𝐹 (𝑥𝑛, 𝐻𝑖(𝑜)) · ∆𝑖. We enforce ∆𝑖 ≤ ∆max

for a small ∆max to ensure that the discrete-time approximation of the dynamics is

sufficiently accurate.
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5.5.2 Teacher’s Optimization

We use numerical optimization to solve the trace optimization problem Eq (5.9)—

i.e., computing 𝜏𝑘 for a given input 𝑥𝑘. The main challenge is handling the term

𝑝(𝜏 | 𝜋, 𝑥) in the objective. Symbolically computing this probability is hard because

of the discrete-continuous structure of 𝜋. Another alternative is to precompute the

probabilities of all traces 𝜏 that can be derived from 𝜋. However, this is also infeasible

because the number of traces is unbounded. Thus, we perform trace optimization in

two phases. First, we use a sampling-based optimization algorithm to obtain a set of

good traces 𝜏 1, ..., 𝜏𝐿 from 𝜋 for each 𝑥. Then, we apply gradient-based optimization,

replacing 𝑝(· | 𝜋, 𝑥) with a term that regularizes 𝜏 to be close to {𝜏 ℓ}𝐿ℓ=1.

The first phase proceeds as follows: (i) sample 𝜏 1, · · · , 𝜏𝐿 using 𝜋 for 𝑥, and

let 𝑝ℓ be the probability of 𝜏 ℓ according to 𝜋, (ii) sort these samples in decreasing

order of objective 𝑝ℓ · 𝑒−𝜆𝐿(𝜏ℓ), and (iii) discard all but the top 𝜌 samples. This

phase essentially performs one iteration of CEM [65]. Then, in the second phase,

we replace the probability expression with 𝑝(𝜏 | 𝜋, 𝑥) ≈
∑︀𝜌

ℓ=1 𝑝
ℓ·𝑒−𝑑(𝜏,𝜏ℓ)∑︀𝜌
ℓ=1 𝑝

ℓ , which we use

gradient-based optimization to optimize. Here, 𝑑(𝜏, 𝜏 ℓ) is a distance metric between

two loop-free policies, defined as the 𝐿2 distance between the parameters of 𝜏 and 𝜏 ℓ.

In our experiments in Chapter 6, we chose the number of samples, 𝜌 = 10. For our

benchmarks, we did not notice any improvement in the number of student-teacher

iterations by increasing 𝜌 above 10. So, we believe we are not losing any information

from this approximation.

5.5.3 Student’s Imitation Learning

Next, we describe how the student solves the maximum likelihood problem Eq (5.10)

to compute 𝜋*.

Probabilistic State Machines.

Although the output of our algorithm is a student policy that is a deterministic state

machine, our algorithm internally relies on distributions over traces induced by the
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student policy to guide the teacher. Thus, we represent the student policy as a proba-

bilistic state machine during learning. To do so, we simply make the simple functions

𝐻𝑚𝑗
and switching conditions 𝐺𝑚𝑗2

𝑚𝑗1
probabilistic—instead of constant parameters in

the grammar for simple functions and switching conditions, now we have Gaussian

distributions 𝒩 (𝛼, 𝜎). Then, when executing 𝜋, we obtain i.i.d. samples of the pa-

rameters 𝐻 ′
𝑚𝑗
∼ 𝐻𝑚𝑗

and {(𝐺𝑚′
𝑗

𝑚𝑗)
′ ∼ 𝐺

𝑚′
𝑗

𝑚𝑗}𝑚′
𝑗

every time we switch to mode 𝑚𝑗, and

act according to 𝐻 ′
𝑚𝑗

and {(𝐺𝑚′
𝑗

𝑚𝑗)
′} until the mode switches again. By re-sampling

these parameters on every mode switch, we avoid dependencies across different parts

of a rollout or different rollouts. On the other hand, by not re-sampling these param-

eters within a mode switch, we ensure that the structure of 𝜋 remains intact within

a mode.

Optimization

Each 𝜏𝑘 can be decomposed into segments (𝑘, 𝑖) where the simple function 𝐻𝑘,𝑖 is

executed for 𝑇𝑘,𝑖 iterations. For example, each block in Figure 5-2 is a segment.

Furthermore, for the student 𝜋, let 𝐻𝑚𝑗
be the simple function distribution for mode

𝑚𝑗 and 𝐺𝑚𝑗2
𝑚𝑗1

be the switching condition distribution for mode 𝑚𝑗1 to mode 𝑚𝑗2 . Note

that 𝐻𝑚𝑗
and 𝐺𝑚𝑗2

𝑚𝑗1
are distributions whereas 𝐻𝑘,𝑖 and 𝑇𝑘,𝑖 are constants. We have

𝑝(𝜏𝑘 | 𝜋, 𝑥𝑘) =
∏︁
𝑖

𝑝(𝐻𝑘,𝑖 | 𝜋, 𝑥𝑘) · 𝑝(𝑇𝑘,𝑖 | 𝜋, 𝑥𝑘).

For each segment (𝑘, 𝑖), let 𝜇𝑘,𝑖 be the latent random variable indicating the mode

used by 𝜋 to generate the segment (𝑘, 𝑖); in particular, 𝜇𝑘,𝑖 is a categorical random

variable that takes values in the modes {𝑚𝑗}𝑗. And 𝜇𝑘,𝑖 = 𝑚𝑗 means that 𝐻𝑘,𝑖 is

sampled from the distribution 𝐻𝑚𝑗
and 𝑇𝑘,𝑖 is determined by the sampled switching

conditions from distributions {𝐺𝑚′
𝑗

𝑚𝑗}𝑗′ . Assuming the presence of latent variable 𝜇𝑘,𝑖,

allows the student to compute 𝜋* by computing 𝐻*
𝑚𝑗

and 𝐺𝑚𝑗2
*

𝑚𝑗1
independently.

Since directly optimizing the maximum likelihood 𝜋 is hard in the presence of the

latent variables 𝜇𝑘,𝑖, we use the standard expectation maximization (EM) approach

to optimizing 𝜋, where the E-step computes the distributions 𝑝(𝜇𝑘,𝑖 = 𝑚𝑗) assuming
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Figure 5-3: The high-level overview of the student’s EM approach to imitate the
teacher for learning state machine policies.

𝜋 is fixed, and the M-step optimizes 𝜋 assuming the probabilities 𝑝(𝜇𝑘,𝑖 = 𝑚𝑗) are

fixed. See Section 5.5.5 for more details about this EM approach. An overview of the

student’s imitation learning algorithm is shown in figure 5-3.

5.5.4 Example

Figure 5-4 shows two iterations of the adaptive teaching algorithm. Figure 5-4(a)

and (d) show examples of loop-free policies for two different initial states and two

different teacher iterations. These traces are visualized as a sequence of boxes. The

colors signify different simple policy parameters (in Figure 5-2, a simple policy is

parameterized as two scalars). The lengths of the boxes signify the duration of the

segments. In Figure 5-4, (c) and (f) show the most probable traces from the state

machine policies learned at the end of the EM approach for two different student

iterations. In Figure 5-4, (b) and (e) show the learned mode mappings 𝑝(𝜇 = 𝑚𝑗)

for the segments in the loop-free policies shown in (a) and (d) respectively. Here,

each box shows the composition of the modes vertically distributed according to their

probabilities. Note how the loop-free policies in (d) are regularized to match the

student’s state machine policy learned in the previous iteration (c).
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Iteration 1 𝑥10 𝑥20
(a) Teacher 𝑅 = 0 𝑅 = 0
(b) Mode mapping
(c) Student 𝑅 = −0.30 𝑅 = −0.36
Iteration 2 𝑥10 𝑥20
(d) Teacher 𝑅 = 0 𝑅 = 0
(e) Mode mapping
(f) Student 𝑅 = −0.15 𝑅 = −0.04

Figure 5-4: Visualization showing the student-teacher interaction for two iterations.
(a) The loop-free policies (with their corresponding rewards) learned by the teacher
for two different initial states. Here, the boxes signify the different segments in the
loop-free policies, the colors signify different actions, and the boxes’ lengths signify
the segments’ durations. (b) The mapping between the segments and the modes in
the state machine—i.e., 𝑝(𝜇 = 𝑚𝑗). Each box shows the composition of the modes
vertically distributed according to their probabilities. For example, the third segment
in the loop-free policy for 𝑥10 has 𝑝(𝜇 = Green) = 0.65 and 𝑝(𝜇 = Brown) = 0.35.
(c) The most probable rollouts from the state machine policy learned by the student.
Finally, (d), (e) and (f) are similar to (a), (b) and (c), but for the second iteration.

5.5.5 EM Approach Details

First, note that we have

𝑝(𝜏𝑘 | 𝜋, 𝑥𝑘) =
∏︁
𝑖

𝑝(𝐻𝑘,𝑖 | 𝜋, 𝑥𝑘) · 𝑝(𝑇𝑘,𝑖 | 𝜋, 𝑥𝑘).

where

𝑝(𝐻𝑘,𝑖 | 𝜋, 𝑥𝑘) =
∑︁
𝑗

𝑝(𝐻𝑘,𝑖 | 𝐻𝑚𝑗
) · 𝑝(𝜇𝑘,𝑖 = 𝑚𝑗).

Similarly, the duration 𝑇𝑘,𝑖 is determined both by the current mode 𝜇𝑖,𝑘 = 𝑚𝑗1 ,

and by the switching conditions 𝐺−
𝑚𝑗1

= {𝐺𝑚𝑗2
𝑚𝑗1
}𝑚𝑗2

from the current mode 𝑚𝑗1 into

some other mode 𝑚𝑗2 . More precisely, let 𝛾𝑘,𝑖 denote the trajectory (sequence of

states) of the (𝑘, 𝑖) segment of 𝜏𝑘, and let 𝜁(𝛾𝑘,𝑖, 𝐺
−
𝑚𝑗

) denote the earliest time at

which a switching condition 𝐺 ∈ 𝐺−
𝑚𝑗

becomes true along 𝛾𝑘,𝑖. Since 𝐺 ∈ 𝐺−
𝑚𝑗

are
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distributions, 𝜁(𝛾𝑘,𝑖, 𝐺
−
𝑚𝑗

) is a distribution on transition times. Then, we have

𝑝(𝑇𝑘,𝑖 | 𝜋, 𝑥𝑘) =
∑︁
𝑚𝑗1

∑︁
𝑚𝑗2

𝑝(𝜇𝑘,𝑖 = 𝑚𝑗1) · 𝑝(𝜇𝑘,𝑖+1 = 𝑚𝑗2) · 𝑝(𝑇𝑘,𝑖 | 𝐺
𝑚𝑗2
𝑚𝑗1

, 𝐺−
𝑚𝑗1

)

𝑝(𝑇𝑘,𝑖 | 𝐺
𝑚𝑗2
𝑚𝑗1

, 𝐺−
𝑚𝑗1

) = 𝑝(𝑇𝑘,𝑖 = 𝜁(𝛾𝑘,𝑖, 𝐺
𝑚𝑗2
𝑚𝑗1

)) ·
∏︁

𝑚𝑗3
̸=𝑚𝑗2

𝑝(𝑇𝑘,𝑖 < 𝜁(𝛾𝑘,𝑖, 𝐺
𝑚𝑗3
𝑚𝑗1

)).

In other words, 𝑇𝑘,𝑖 is the duration until 𝐺𝑚𝑗2
𝑚𝑗1

triggers, conditioned on none of the

conditions 𝐺𝑚𝑗3
𝑚𝑗1

triggering (where 𝑚𝑗3 ̸= 𝑚𝑗2).

Numerically optimizing the maximum likelihood objective to compute 𝜋* is hard

because it requires integrating over all possible choices for the latent variables 𝜇𝑘,𝑖.

For example, if the teacher generates 10 loop-free policies every iteration and there

are 10 modes in each loop-free policy, and 4 modes in the state machine, the number

of choices for the latent variables is 4100, which makes the enumeration infeasible.

The expectation-maximization method provides an efficient way for computing the

maximum likelihood, by alternatingly optimizing for the latent variables and the state

machine parameters. The E-step computes the probability distributions 𝑝(𝜇𝑘,𝑖 = 𝑚𝑗)

for a fixed 𝜋, and the M-step optimizes 𝐻𝑚𝑗
and 𝐺𝑚𝑗2

𝑚𝑗1
given 𝑝(𝜇𝑘,𝑖 = 𝑚𝑗).

E-step. Assuming 𝜋 is fixed, we have

𝑝(𝜇𝑘,𝑖 = 𝑚𝑗 | 𝜋, {𝜏𝑘}) =
𝑝(𝐻𝑘,𝑖 | 𝐻𝑚𝑗

) · 𝑝(𝑇𝑘,𝑖 = 𝜁(𝛾𝑘,𝑖, 𝐺
−
𝑚𝑗

))∑︀
𝑚′

𝑗
𝑝(𝐻𝑘,𝑖 | 𝐻𝑚′

𝑗
) · 𝑝(𝑇𝑘,𝑖 = 𝜁(𝛾𝑘,𝑖, 𝐺

−
𝑚′

𝑗
))
. (5.11)

M-step. Assuming 𝑝(𝜇𝑘,𝑖 = 𝑚𝑗) is fixed, we solve

argmax{𝐻𝑚𝑗 }

∑︁
𝑘,𝑖

𝑝(𝜇𝑘,𝑖 = 𝑚𝑗) · log 𝑝(𝐻𝑘,𝑖 | 𝐻𝑚𝑗
) (5.12)

argmax{𝐺𝑚𝑗2
𝑚𝑗1

}

∑︁
𝑘,𝑖

𝑝(𝜇𝑘,𝑖 = 𝑚𝑗1) · 𝑝(𝜇𝑘,𝑖+1 = 𝑚𝑗2) · log 𝑝(𝑇𝑘,𝑖 = 𝜁(𝛾𝑘,𝑖, 𝐺
𝑚𝑗2
𝑚𝑗1

))

+ 𝑝(𝜇𝑘,𝑖 = 𝑚𝑗1) · (1− 𝑝(𝜇𝑘,𝑖+1 = 𝑚𝑗2)) · log 𝑝(𝑇𝑘,𝑖 < 𝜁(𝛾𝑘,𝑖, 𝐺
𝑚𝑗2
𝑚𝑗1

)) (5.13)

or 𝐺𝑚𝑗2
𝑚𝑗1

, the first term handles the case 𝜇𝑘,𝑖+1 = 𝑚𝑗2 , where we maximize the proba-

bility that 𝐺𝑚𝑗2
𝑚𝑗1

makes the transition at duration 𝑇𝑘,𝑖, and the second term handles
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the case 𝜇𝑘,𝑖+1 ̸= 𝑚𝑗2 , where we maximize the probability that 𝐺𝑚𝑗2
𝑚𝑗1

does not make

the transition until after duration 𝑇𝑘,𝑖.

We briefly discuss how to solve these equations. For the mode functions, suppose

that 𝐻 encodes the distribution 𝒩 (𝛼𝐻 , 𝜎
2
𝐻) over the simple function parameters.

Then, we have

𝛼*
𝐻𝑚𝑗

=

∑︀
𝑘,𝑖 𝑝(𝜇𝑘,𝑖 = 𝑚𝑗) · 𝛼𝐻𝑘,𝑖∑︀

𝑘,𝑖 𝑝(𝜇𝑘,𝑖 = 𝑚𝑗)
(5.14)

(𝜎*
𝐻𝑚𝑗

)2 =

∑︀
𝑘,𝑖 𝑝(𝜇𝑘,𝑖 = 𝑚𝑗) · (𝛼𝐻𝑘,𝑖

− 𝛼*
𝐻𝑚𝑗

)(𝛼𝐻𝑘,𝑖
− 𝛼*

𝐻𝑚𝑗
)𝑇∑︀

𝑘,𝑖 𝑝(𝜇𝑘,𝑖 = 𝑚𝑗)
(5.15)

Solving for the parameters of 𝐺𝑚𝑗2
𝑚𝑗1

is more challenging, since there can be multiple

kinds of expressions in the grammar that are switching conditions, which correspond

to discrete parameters, and we need to optimize over these discrete choices. To

do so, we perform a greedy search over these discrete choices (see Section 5.5.6 for

details on the greedy strategy). For each choice considered during the greedy search,

we encode Eq (5.13) as a numerical optimization problem and solve it to compute

the corresponding means 𝛼*
𝐺

𝑚𝑗2
𝑚𝑗1

and standard deviations 𝜎*
𝐺

𝑚𝑗2
𝑚𝑗1

Then, we choose the

discrete choice that achieves the best objective value according to Eq (5.13).

Computing the optimal parameters for switching conditions is more expensive

than doing so for the simple functions in the modes; thus, on each student iteration,

we iteratively solve Eq (5.11) and Eq (5.12) multiple times, but only solve Eq (5.13)

once.

The EM method does not guarantee global optima but usually works well in

practice. In addition, since computing the switching conditions is expensive, we had

to restrict the number of EM iterations. However, note that even if the EM algorithm

didn’t converge, our overall algorithm can still recover by using additional teacher-

student interactions.

The alternate method would be to run the EM algorithm multiple times/longer

to get better results per student iteration, and “maybe” reduce the total number of

teacher-student iterations. We say “maybe” because the EM algorithm might have
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already converged to the global optima, making the extra EM iterations useless. The

trade-off between our approach and this alternative depends on whether the teacher’s

algorithm or the student’s algorithm is expensive for a particular benchmark.

However, from Figure 6-16 in Chapter 6, we can see that some of our benchmarks

already use very few (< 5) teacher-student iterations (Car, QuadPO, Pendulum,

Mountain car, and Swimmer). Of the other three benchmarks that needed many

iterations, for two of them (Cartpole and Acrobot), the student’s algorithm is as

expensive as the teacher’s algorithm. This justifies our decision to not run the EM

algorithm multiple times/longer.

5.5.6 Synthesizing Switching Conditions

Next, we describe how we search over the large number of discrete choices in the

grammar for switching conditions. It is not hard to show that in Eq (5.13), the

objectives for the switching condition parameters 𝐺𝑚𝑗2
𝑚𝑗1

corresponding to different

transitions (𝑚𝑗1 ,𝑚𝑗2) decompose into separate problems. Therefore, we can perform

the search for each transition (𝑚𝑗1 ,𝑚𝑗2) separately. For each transition, the naïve

approach would be to search over the possible derivations in the context-free gram-

mar for switching conditions to some bounded depth. However, this search space is

exponential in the depth due to the productions 𝐵 ::= 𝐵∧𝐵 and 𝐵 ::= 𝐵∨𝐵. Thus,

we employ a greedy search strategy to avoid the exponential blowup.

Intuitively, our search strategy is to represent switching conditions as a kind of

decision tree, and then perform a greedy algorithm to search over decision tree1. Our

search strategy is similar to (but simpler than) the one in [13]. In particular, we

can equivalently represent a switching condition as a decision tree, where the internal

nodes have the form 𝑥[𝑖] ≤ 𝛼 or 𝑥[𝑖] ≥ 𝛼 (where 𝑖 ∈ {1, ..., 𝑑𝑥} and 𝛼 ∈ R are

parameters), and the leaf nodes are labeled with “Switch” or “Don’t switch”—e.g.,

Figure 5-5 shows two examples of switching conditions expressed as decision trees.

Then, our algorithm initializes the switching condition to a single leaf node—i.e.,

𝐺cur ← “Switch”. At each step, we consider switching conditions 𝐺 ∈ next(𝐺cur) that
1However, our algorithm is not very similar to greedy decision tree learning algorithms.
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𝑜 𝑖# ≤ 𝛼#

Switch Don’t switch

True

Leaf 
nodes

Internal 
node 𝑜 𝑖# ≤ 𝛼#

Don’t switch

True

𝑜 𝑖& ≥ 𝛼&

Switch Don’t switch

True

Figure 5-5: Switching conditions represented as decision trees.

Algorithm 1 Greedy algorithm for learning switching conditions.
procedure LearnSwitchingCondition

𝐺cur ← “Switch”
while |𝐺cur| < 𝑁 do

𝐺cur ← arg min𝐺∈next(𝐺cur) cost(𝐺)

return 𝐺cur

expand a single leaf node of 𝐺cur; among these, we choose 𝐺cur to be the one that

minimizes a loss cost(𝐺).

More precisely, to construct next(𝐺cur), we iterate over all leaf nodes 𝐿 ∈ leaves(𝐺cur),

and all expressions 𝐸 ∈ ℰ , where

ℰ =

{︂
if 𝑥[𝑖] ∼ 𝛼 then “Switch” else “Don’t Switch”

⃒⃒⃒⃒
𝑖 ∈ {1, ..., 𝑑𝑥}, 𝛼 ∈ R, ∼∈ {≥,≤}

}︂

Here, ∼∈ {≥,≤} is a inequality relation, 𝑖 ∈ {1, ..., 𝑑𝑥} is a component of 𝑥, and 𝛼 ∈ R

is a threshold. For each pair 𝐿 and 𝐸, we consider the decision tree 𝐺 obtained by

replacing 𝐿 with 𝐸 in 𝐺cur. The set next(𝐺cur) contains all 𝐺 constructed in this way.

Next, the loss function cost(𝐺) is given by Eq (5.13). In each iteration, our algo-

rithm optimizes cost(𝐺) over 𝐺 ∈ next(𝐺cur), and updates 𝐺cur ← 𝐺. To solve this

optimization problem, we enumerate the possible choices ∼ and 𝑖 and use numerical

optimization to compute 𝛼 (since 𝛼 is a continuous parameter). An example of a

single iteration of our algorithm is shown in Figure 5-5. In particular, letting 𝐺 be

the tree on the left and 𝐺′ be the tree on the right, the left-most leaf node of 𝐺 is

expanded to get 𝐺′.

Our algorithm is summarized in Algorithm 1. Overall, our algorithm searches over

𝑁 · (𝑁 − 1) · 𝑑𝑥 different discrete structures, where 𝑁 is the number of nodes in the
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decision tree and 𝑑𝑥 is the length of the input vector 𝑥.

5.5.7 Discussion

The adaptive teaching algorithm uses a special teacher that is similar to a student but

easily optimizable. This special teacher makes both the student’s learning easier (even

with internal memory) and allows the teacher to adapt to the student’s capabilities.

One of the best parts of this algorithm, in my opinion, is the ability to synthesize each

part of the state machine (i.e. the modes and the switching conditions) independently

and in parallel. This compositional learning is much needed to scale the algorithm

for larger state machines.

There is still much left to be done, here. There is scope for further optimizations in

the teacher’s and the student’s algorithm. For example, currently the teacher needs

to solve one optimization problem for each initial state. An alternative approach

would be have a NN teacher that spits out the traces for all initial states. Another

interesting aspect, here, that the student learns the modes by essentially clustering

the parameters of the simple functions in the teacher’s traces (Equation 5.14). An

interesting question for the future is how to do this for NN based mode functions?

Simple parameter clustering may not work because two neural networks with very

different parameters can still have similar behaviors.

72



Chapter 6

Case Study — State Machine Policies

for Reinforcement Learning Control

Tasks

This chapter describes a case study of neurosymbolic models in reinforcement learning

and evaluates their interpretability, robustness, and verifiability. This chapter is based

on the results from [46] with an additional verification experiment.

Repetitive control tasks are pervasive—for example, many motor tasks such as

walking, running, jumping, swimming, etc., all rely on a relatively simple behavior

being repeated a certain number of times to solve the given task. However, existing

deep reinforcement learning (RL) approaches have difficulty solving these tasks such

that they can generalize to novel environments [72, 79]. More specifically, for a task

that requires performing a repeating behavior—we would like to be able to learn a

policy that generalizes to instances requiring an arbitrary number of repetitions. We

refer to this property as inductive generalization. Moreover, we want these policies

to be interpretable, modifiable and verified to show that the policy can solve the task

for all possible initial state distributions.

For these purposes, state machine policies are well suited in this domain; they are

sufficiently expressive to capture tasks of interest—e.g., they can perform repeating

tasks by cycling through some subset of modes during execution. Additionally, state
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machine policies are strongly biased towards policies that inductively generalize, that

deep RL policies lack. In other words, this policy class is both realizable (i.e., it

contains a “right” policy that solves the problem for all environments) and identifiable

(i.e., we can learn the right policy from limited data).

We implemented our algorithm and evaluated it on reinforcement learning prob-

lems focused on tasks requiring inductive generalization. We showed that traditional

deep RL approaches perform well on the original task but fail to generalize induc-

tively, whereas our state machine policies successfully generalize beyond the training

distribution.

We emphasize that we do not focus on problems that require large state machines,

which is a qualitatively different problem from ours and would require different al-

gorithms to solve. We believe that state machines are most useful when only a few

modes are required. In particular, we are interested in problems where a relatively

simple behavior must be repeated a certain number of times to solve the given task.

The key premise behind our approach, as shown by our evaluation, is that, in these

cases, compact state machines can represent policies that both have good performance

and are generalizable. In fact, our algorithm solved all of our benchmarks using state

machine policies with at most 4 modes. When many modes are needed, the number

of possible transition structures grows exponentially, making it difficult to learn the

“right” structure without exponential training data.

6.1 Tasks

We evaluated our approach on 8 control problems, each with different training and

test distributions. Figure 6-1 shows the statistics regarding the benchmarks, such as

the number of action variables and state variables and the set of initial states used

for training and testing. Figure 6-1 also shows the different aspects of the grammar

used to describe the space of possible state machine policies. We learned policies

for these benchmarks using 2 to 4 distinct modes in the state machine with either a

constant or a proportional grammar for the simple functions in the modes. We used a
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Bench #A #S 𝑋train
0 𝑋test

0 # modes M_G C_G
Car 2 5 d ∼ [12,13.5]m d ∼ [11,12]m 3 Constant Boolean tree (depth 1)
Quad 1 8 x dist = 40m x dist = 80m 2 Proportional Boolean tree (depth 1)
QuadPO 1 4 x dist = 60m x dist = 120m 2 Proportional Boolean tree (depth 1)
Pendulum 1 2 mass ∼ [1,1.5]kg mass ∼ [1.5,5]kg 2 Constant Boolean tree (depth 2)
Cartpole 1 4 time = 5s, len = 0.5 time = 300s, len = 1.0 2 Constant Boolean tree (depth 2)
Acrobot 1 4 masses = [0.2,0.5] masses = [0.5,2] 2 Constant Boolean tree (depth 2)
Mountain car 1 2 power = [5,15]e-4 power = [3,5]e-4 2 Constant Boolean tree (depth 1)
Swimmer 3 10 len = 1 unit len = 0.75 unit 4 Proportional Boolean tree (depth 2)

Figure 6-1: Summary of our benchmarks. #A is the action dimension, #S is the state
dimension, 𝑋train

0 is the set of initial states used for training, 𝑋test
0 is the set of initial

states used to test inductive generalization, # modes is the number of modes in the
state machine policy, and M_G and C_G are the grammars for the simple functions
in the modes and the switching conditions, respectively. Depth of C_G indicates the
number of levels in the Boolean tree.

Figure 6-2: Trajectories for the Quad (left) and QuadPO (right) benchmarks using
our state machine policy.

Boolean tree grammar of depth 1 or 2 for all the switching conditions. Below are the

descriptions of the different benchmarks (in addition to the car task from Chapter 1):

• Quad, QuadPO: These benchmarks aim to maneuver a 2D quadcopter through

an obstacle course by controlling its vertical acceleration (Figure 6-12). The ac-

tion variable is the acceleration of the quadcopter in the vertical direction. The

state for Quad includes the position 𝑥, 𝑦, the velocities 𝑣𝑥, 𝑣𝑦, and the four

sensors 𝑜𝑥𝑙, 𝑜𝑥𝑢, 𝑜𝑦𝑙, 𝑜𝑦𝑢 to describe the obstacle course in the immediate neigh-

borhood. The QuadPO benchmark has the same action space as the Quad

benchmark but can only observe 𝑥, 𝑦, 𝑣𝑥, and 𝑣𝑦. The functions in the different

modes used for these benchmarks choose the acceleration to be proportional to

𝑣𝑦. To test for generalization, we vary the obstacle course length. The synthe-

sized state machine policies for these benchmarks are shown in Figure 6-17 and

Figure 6-18.
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• Pendulum: The goal for the Pendulum benchmark is to control the force

(continuous) at the actuated link to invert the link. The state includes the

angle 𝜃 and the angular velocity 𝜔 of the link. We vary the pendulum mass

across the train and test distributions. Figure 6-19 shows the synthesized state

machine policy for the pendulum benchmark.

• Cartpole: The Cartpole benchmark consists of a pole attached to a cart. The

goal is to keep the pole upright by applying a continuous force to move the cart

to the right or the left. The state includes the position 𝑥, the velocity 𝑣 of the

cart, the angle 𝜃, and the angular velocity 𝜔 of the pole. We vary the time

horizon and the pole length to test for generalization. The synthesized solution

is shown in Figure 6-20.

• Acrobot: The Acrobot benchmark is similar to the Pendulum benchmark but

with two links; only the top link can be actuated, and the goal is to drive the

bottom link above a certain height. The observations are the angles 𝜃1, 𝜃2 and

the angular velocities 𝜔1, 𝜔2 of the two links. For this benchmark, we vary

the mass of the links between the training and the test distributions. The

synthesized solution is shown in Figure 6-21.

• Mountain Car: For the Mountain car benchmark, the goal is to drive a low

powered car to the top of a hill. An agent has to go back and forth to gain

enough momentum to cross the hill. The agent controls the force (continuous)

to move the car to the right or left and observes the position 𝑥 and the velocity

𝑣 at every timestep. We vary the power of the car between the training and the

test distributions. The synthesized solution is shown in Figure 6-22.

• Swimmer: The Swimmer benchmark is based on Mujoco’s swimmer. To

make this benchmark more challenging, we use 4 segments instead of 3. There

are three actions that control the torques at the joints, and the goal is to make

the swimmer move forward through a viscous liquid. The agent can observe

the swimmer’s global angle 𝜃, the joint angles (𝜃1, 𝜃2, 𝜃3), the swimmer’s global
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angular velocity 𝜔, the angular velocities of the joints (𝜔1, 𝜔2, 𝜔3), and the

velocity of the center of mass (𝑣𝑥, 𝑣𝑦). We vary the length of the segments

between the training and the test distributions. The actions are chosen to

be proportional to their corresponding angles. The synthesized state machine

policy is shown in Figure 6-23.

6.2 Baselines

We compared against three baselines:

• RL: A proximal policy optimization (PPO) algorithm to train a feed-forward

neural network policy

• RL-LSTM: A PPO algorithm with an LSTM model,

• Direct-Opt: learning a state machine policy directly via numerical optimization.

Hyper-parameters are chosen to maximize performance on the training distribution.

6.2.1 RL Baselines

We used the PPO2 implementation from OpenAI Baselines baselines with the stan-

dard MLP and LSTM networks for our RL baselines using 107 timesteps for training.

Each algorithm is trained five times; we chose the one that performs best on the

training distribution.

Environment featurization. We used the same action spaces, state spaces, and

the set of initial states that we used for our approach. One exception is the Car

benchmark, for which we appended the state vector with the state from the previous

timestep. This modification was essential for the RL baseline to achieve a good

performance on the training dataset.
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Designing reward functions. For the classic control problems such as cartpole,

pendulum, acrobot, mountain car and swimmer, we used the standard reward func-

tions as specified by their OpenAI environments. For Quad and QuadPO benchmarks,

since the goal is to avoid collisions for as long as possible, we used a reward of 1 for

every timestep that the agent is alive and the agent is terminated as soon as it collides

with any of the obstacles. Designing the reward function for the Car benchmark was

tricky, because this benchmark has both a goal and a safety specification, and finding

a right balance between them is crucial for learning. We tried various forms of rewards

functions and finally, found that the following version achieves better performance on

the training distribution (on the metric that measures the fraction of roll-outs that

satisfy both the goal and the safety property):

𝑟(𝑥, 𝑎) = −𝜑𝐺(𝑥)+ +

⎧⎪⎨⎪⎩−𝐿 if 𝜑𝑆(𝑥) > 0

0 otherwise

where 𝜑𝐺(𝑥) measures how close the car is to achieving its goal and 𝜑𝑆(𝑥) ≤ 0 rep-

resents the safe region. The above reward adds the numerical error for not satisfying

the goal with a constant negative error (−𝐿) if the safety specification is violated

at any time step. We tried different values for 𝐿 ∈ {0.1, 1, 2, 10, 20} and found that

𝐿 = 10 achieved the best performance on the training distribution.

Hyper-parameters search. We performed a search over the various hyper-parameters

in the PPO2 algorithm. We ran 10 instances of the PPO2 algorithm with parameters

uniformly sampled from the space given below and chose the one that performs well

on the training distribution. This sampling is not exhaustive, but our results in Fig-

ure 6-3 show that we did find parameters that achieved good training performances

for most of our benchmarks.

• The number of training minibatches per update,

nminibatches = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048}.

For the lstm network, we set this hyper-parameter to 1.
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• The policy entropy coefficient in the optimization objective,

ent_coef = {0.0, 0.01, 0.05, 0.1}.

• The number of training epochs per update, noptepochs ∈ {3, ..., 36}.

• The clipping range, cliprange = {0.1, 0.2, 0.3}.

• The learning rate, lr ∈ [5× 10−6, 0.003].

Note that we used model-free algorithms for the comparison to RL approaches,

whereas, in our algorithm, the teacher used model-based optimization. We did not

compare against model-based RL approaches because (a) even model-free RL ap-

proaches achieved almost perfect performance on the training distribution (see Fig-

ure 6-3 ) and (b) our main goal is to compare the performance of our policies and

the neural network policies on the test distribution for generalization. Moreover, in

case the model of the system is unknown, we can use known algorithms to infer the

dynamics from data [1] and then use this learned dynamics in our algorithm.

6.2.2 Direct-Opt Baseline

For this baseline, we convert the problem of synthesizing a state machine policy into

a numerical optimization problem. To do this, we first encode the discreteness in

the grammar for switching conditions into a continuous one-hot representation. For

example, the set of expressions 𝑥[𝑖] ≤ 𝛼0 or 𝑥[𝑖] ≥ 𝛼0 are encoded as 𝛼𝑠(𝛼1𝑥[1] +

𝛼2𝑥[2] + · · ·𝛼𝑛𝑥[𝑛]) ≤ 𝛼0 with constraints −1 ≤ 𝛼𝑠 ≤ 1, ∀𝑖 ∈ {1, ..., 𝑛}. 0 ≤ 𝛼𝑖 ≤

1 and
∑︀𝑛

𝑖=1 𝛼𝑖 = 1. The choices between the leaf expressions, conjunctions, and

disjunctions are also encoded in a one-hot fashion. We tried another encoding without

the extra constraints on 𝛼—i.e., the switching conditions are linear functions of the

observations. We would expect the linear encoding to be less generalizable than the

one-hot encoding. However, we found that it is hard to even synthesize a policy that

works well on the training set with either of the encodings.

Another difficulty with direct optimization is that we need to optimize the com-

bined reward from all the initial states at once. In contrast, the numerical optimiza-
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tion performed by the teacher in our approach can optimize the reward for each initial

state separately. To deal with the issue, we used a batch optimization technique that

uses 10 initial states for every batch and seeds the starting point of the numerical

optimization for each batch with the parameters found so far. We restart the process

with a random starting point if the numerical optimization stalls. We carried out

this process in parallel using 10 threads until either a solution was found or the time

exceeded 2 hours.

6.3 Hyper-Parameters in Adaptive Teaching

There are three main hyper-parameters in our algorithm:

• The maximum number of segments/modes in a loop-free policy. A large number

of segments makes the teacher’s numerical optimization slow, while a small

number of segments might not be sufficient to get a high reward.

• The maximum time that a segment can be executed for in a loop-free policy.

This maximum time constraint helps the numerical optimization avoid local

optima that arise from executing a particular (non-convex) simple policy for

too long.

• The parameter 𝜆 in Section 5.4. This parameter strikes a balance between

preferring high-reward loop-free policies versus preferring policies similar to the

state machine learned so far.

The first two parameters solely affect the teacher’s algorithm; thus, we chose them

by randomly sampling from a set and selected the one that produced high-reward

loop-free policies. We used 𝜆 = 100 for all our experiments.
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Figure 6-3: Comparison of performances on the train distribution. Our approach
performs almost similar to the RL baselines, showing that our approach is expressive
for these tasks. An empty bar indicates that the policy learned for that experiment
failed on all runs.

6.4 Emperical Results

6.4.1 Inductive Generalization

Figure 6-3 and 6-4 show the results on the training and test distributions (respec-

tively). We measured performance as the fraction of rollouts (out of 1000) that both

satisfy the safety specification and reach the goal. Figure 6-5 shows the training and

test performance for the acrobot and mountain car benchmarks.

For all benchmarks, our policy generalizes well on the test distribution. In six

cases, we generalize perfectly (all runs satisfy the metric). For Quad and QuadPO,

the policies resulted in collisions on some runs, but only towards the end of the

obstacle course.

Comparison to RL Approaches

The RL policies mostly achieve good training performance but generalize poorly since

they over-specialize to the states seen during training. The exceptions are Pendulum,

Swimmer, Acrobot and Mountain Car. Even in these cases, the RL policies take longer

than our state machine policies to reach the goals. Figure 6-6 qualitatively analyzes

the policies learned by our approach versus RL for the Pendulum benchmark. We
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Figure 6-4: Comparison of performances on the test distribution. Our approach
outperforms the baselines on all benchmarks in terms of test performance. An empty
bar indicates that the policy learned for that experiment failed on all runs.

Performance on Train dist. Performance on Test dist.
Bench Algorithm G T_G G T_G

Acrobot

Ours 0.08 7.9s 0.02 31.8s
RL 0.16 6.5s 0.0 45.2s
Direct-opt ⊥ ⊥ ⊥ ⊥

Mountain car

Ours 0.001 168.5s 0.008 290.1s
RL 0.0 98.7s 0.0 214.7s
Direct-opt 0.006 105.3s 2.18 216.0s

Figure 6-5: Experiment results for additional benchmarks. G is the average goal error
(closer to 0 is better). T_G is the average number of timesteps to reach the goal
(lower the better). ⊥ indicates a timeout. We can see that both our approach and
RL generalizes for these benchmarks.

can see that the RL policy performs slightly sub-optimally compared to our policy.

Figure 6-7 shows the trajectories from the learned state machine policy and RL policy

on Swimmer for a train environment and a test environment. While both policies

generalize, the Swimmer with the state machine policy is slightly faster (it takes

about 35s to cover a distance of 10 units while the RL policy takes about 45s).

For QuadPO, the RL policy does not achieve a good training performance since

the states are partially observed. We may expect the LSTM policies to alleviate

this issue. However, the LSTM policies often perform poorly even on the training

distribution, and also generalize worse than the feed-forward neural network policies.

Figure 6-8 shows the trajectory taken by the RL policy (a), compared to our
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Figure 6-6: Trajectories taken by our state machine policy (left) and the RL policy
(right) on Pendulum for a test environment (i.e., heavier pendulum). Green (resp.,
red) indicates positive (resp., negative) torque. Our policy performs optimally by
using positive torque when angular velocity ≥ 0 and negative torque otherwise. In
contrast, the RL policy performs sub-optimally (especially at the beginning of the
trajectory).

(a) (b)

(c) (d)

Figure 6-7: Trajectories taken by our state machine policy on Swimmer for (a) a train
environment with segments of length 1, and (b) a test environment with segments
of length 0.75. The colors indicate different modes. The axes are the 𝑥 and 𝑦 coor-
dinates of the center of mass of the Swimmer. Trajectories taken by the RL policy
on Swimmer for (c) a train environment, and (d) a test environment. While both
policies generalize, the Swimmer with the state machine policy is slightly faster (it
takes about 35s to cover a distance of 10 units while the RL policy takes about 45s).
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Figure 6-8: The RL policy generates unstructured trajectories, and therefore does
not generalize from (a) the training distribution to (b) the test distribution. In
contrast, our state machine policy in (c) generates a highly structured trajectory that
generalizes well.

policy (c), from a training initial state for the Car benchmark. The RL policy does

not exhibit a repeating behavior, which causes it to fail on the trajectory from a test

state shown in (b).

Comparison to Direct Optimization Baseline

The state machine policies learned using direct-opt baseline perform poorly even

in training because of the numerous local optima arising due to the structural con-

straints. This result supports the need to use adaptive teaching to learn state machine

policies.

Varying the Training Distribution

We, next, study how the test performance changes as we vary the training distri-

bution on the Car benchmark. We varied 𝑋train
0 as 𝑑 ∼ [𝑑min, 13], where 𝑑min =

{13, 12.5, 12, 11.5, 11.2, 11}, but fix 𝑋test
0 to 𝑑 ∼ [11, 12]. Figure 6-9 shows how the

test performance varies with 𝑑min for both our policy and the RL policy. Our policy

inductively generalizes for a wide range of training distributions. In contrast, the

test performance of the RL policy initially increases as the train distribution gets
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Figure 6-9: We plot the train and the test performance for different choices of training
distribution for the Car benchmark .

bigger, but it eventually starts declining. The reason is that its training performance

actually starts to decline. Thus, in some settings, our approach (even when trained

on smaller distributions) can produce policies that outperform the neural network

policies produced by RL (even when trained on the full distribution).

6.4.2 Interpretability

An added benefit of our state machine policies is interpretability. In particular, we

demonstrated the interpretability of our policies by showing how a user can modify a

learned state machine policy. Consider the policy from Figure 1-3 for the autonomous

car. We manually made the following changes: (i) increased the steering angle in 𝐻𝑚1

to its maximum value 0.5, and (ii) decreased the gap maintained between the agent

and the black cars by changing the switching condition 𝐺𝑚2
𝑚1

to 𝑑𝑓 ≤ 0.1 and 𝐺𝑚1
𝑚2

to

𝑑𝑏 ≤ 0.1. Figure 6-10 demonstrates these changes—it shows the trajectories obtained

using the original policy (a), the first modified policy (b), and the second modified

policy (c). There is no straightforward way to make these kinds of changes to a neural

network policy.
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Figure 6-10: A user can modify a learned state machine policy to improve perfor-
mance. In (b), the user sets the steering angle in Figure 1-3 to the maximum value
0.5, and in (c), the user sets the thresholds in the switching conditions 𝐺𝑚2

𝑚1
, 𝐺𝑚1

𝑚2
to

0.1.

6.4.3 Verification

Another main advantage of neurosymbolic policies is that they are significantly eas-

ier to verify formally. Intuitively, because they effectively use discrete control flow

structures, it is easier for formal methods to prune branches of the search space cor-

responding to unreachable program paths. A standard strategy for verifying safety is

to devise a logical formula that encodes a trajectory rollout and the safety constraint

at every timestep. Then, feed this logical formula to a Satisfiability Modulo Theory

(SMT) [23] solver to check for safety violations.

As an example, we used this strategy to verify that the state machine policy

(in Figure 1-3) for the car task in Figure1-1 is correct—i.e., it successfully exits the

parking spot without colliding with the other cars. In this case, we used a safety

verification tool for hybrid systems called dReach [55] to encode and solve this verifi-

cation problem. dReach can handle general hybrid systems with nonlinear differential

equations and complex discrete mode-changes. Thus, it is a good fit for our situation.

dReach performs bounded reachability analysis; it can verify up to some pre-specified

bound on the unrolling of the state machine modes. dReach is “𝛿 complete,” i.e.

when “safe” is the answer, we know for sure that the system does not reach the unsafe
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Figure 6-11: A failure case found with verification with a noise of 0.24 in the envi-
ronment, where the car collides with the car in the front.

region; when “𝛿-unsafe” is the answer, there exists some 𝛿-bounded perturbation in

the system that would render it unsafe. Thus, we could vary 𝛿 to measure how robust

a system is to perturbations.

With 𝛿 = 0.1, the dReach solver proved that the policy in Figure 1-3 is indeed safe

for up to 7 mode unrolling of the state machine (which covers a significant fraction of

the initial state space; the rest timed out). However, with 𝛿 = 0.24, the dReach solver

identified a failure case where the car would collide with the car in the front (under

some perturbations of the original model), as shown in Figure 6-11 This problem can

be fixed by manually examining the state machine policy and modifying the switching

conditions 𝐺𝑚2
𝑚1

to 𝑑𝑓 ≤ 0.5 and 𝐺𝑚1
𝑚2

to 𝑑𝑏 ≤ 0.5. With these changes, the policy is

now correct even for 𝛿 = 0.24.

6.4.4 Behavior of Policy

We empirical analyze the behavior of the learned policies. Figure 6-12 (right) com-

pares the actions taking by our policy to those taken by the RL policy on Quad

and QuadPO. Our policy produces smooth repeating actions, whereas the RL policy

does not. This example further illustrates how neurosymbolic policies are both com-

plex (evidenced by the complexity of the red curve) yet structured (evidenced by the

smoothness of the red curve and its repeating pattern). In contrast, DNN policies are
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Figure 6-12: Graph of vertical acceleration over time for both our policy (red) and
the neural network policy (blue) for Quad (left) and QuadPO (right).
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Figure 6-13: Action vs time graphs for the car benchmark for our policy (red) and
the neural network policy (blue). (Left) shows the velocity of the agent, and (Right)
shows the steering angle.

expressive (as evidenced by the complexity of the red curve) but lack the structure

needed to generalize robustly.

Figures 6-13, 6-14, & 6-15 show the action versus time plots for the various bench-

marks using the learned state machine policies and neural network policies. Even

here, we can see that state machine polices produce smooth actions, whereas the RL

policies do not.

6.4.5 Analysis of Running Time

Figure 6-16 shows the synthesis times for various benchmarks. It also shows the

number of student-teacher iterations and the time spent separately by the teacher

and the student. The teacher optimizes the loop-free policies for different initial

states in parallel. The student optimizes the switching conditions between different

pairs of modes in parallel. We used a parallelized implementation with 10 threads

and reported the wall clock time.
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Figure 6-14: Action vs time graphs for the pendulum benchmark (left) and the cart-
pole benchmark (right) for both our policy (red) and the neural network policy (blue).
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Figure 6-15: Action vs time graphs for the swimmer benchmark for the three torques
at the three different joints of the swimmer. The blue line is for the neural network
policy, and the red is for the state machine policy.

6.5 Discussion

In this case study, we learned state machine policies for control tasks requiring repeti-

tive behaviors. Our learning approach is based on a framework called adaptive teach-

ing that alternatively learns a student that imitates a teacher, who in-turn adapts to

the structure of the student. We demonstrated that our policies inductively generalize

better than traditional RL policies.

Future works include exploring more complex grammars for the simple functions

and the switching conditions, for example, with some parts being small neural net-

works, while still retaining the ability to learn generalizable behaviors. These more

complex grammars are necessary for complex tasks and to handle high-dimensional

inputs such as images. Another direction is to extend our approach to use model-free

techniques in the teacher’s algorithm to make our approach more aligned with the

reinforcement learning premise. Finally, I believe that the idea of learning neurosym-

bolic state machines and using the adaptive teaching algorithm to deal with the mixed

discrete-continuous problems can be applied to other learning settings and domains.
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Figure 6-16: Synthesis times (in seconds, wall clock time) for learning state machines
policies for the different benchmarks. The plot breaks down the total synthesis time
into the time taken by the teacher, the student and other miscellaneous parts of the
algorithm. Misc. mainly includes the time spent for checking convergence at every
iteration. The plot also shows the number of teacher-student iterations taken for each
benchmark.

Figure 6-17: Synthesized state machine policy for the Quad benchmark.

Figure 6-18: Synthesized state machine policy for the QuadPO benchmark.

Figure 6-19: Synthesized state machine policy for Pendulum.
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Figure 6-20: Synthesized state machine policy for Cartpole.

Figure 6-21: Synthesized state machine policy for Acrobot.

Figure 6-22: Synthesized state machine policy for Mountain car.

Figure 6-23: Synthesized state machine policy for Swimmer.
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Chapter 7

Case Study: Neurosymbolic

Transformers for Multi-Agent

Communications

This chapter presents the second case study of neurosymbolic models in the context of

multi-agent systems. This chapter is based on the results from [47] with an additional

generalization experiment.

Many real-world robotics systems are distributed, with teams of agents needing

to coordinate to share information and solve problems. Reinforcement learning has

recently been demonstrated as a promising approach to automatically solve such

multi-agent planning problems [94, 61, 35, 62, 36, 53].

A key challenge in (cooperative) multi-agent planning is how to coordinate with

other agents, both deciding whom to communicate with and what information to

share. One approach is to let agents communicate with all other agents; however,

letting agents communicate arbitrarily can lead to poor generalization [52, 74]; fur-

thermore, it cannot account for physical constraints such as limited bandwidth. A

second approach is to manually impose a communication graph on the agents, typ-

ically based on distance [52, 95, 74, 87]. However, this manual structure may not

reflect the optimal communication structure—for instance, one agent may prefer to

communicate with another one that is farther away but in its desired path. A third
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approach is to use a transformer [98] as the policy network [22], which uses attention

to choose which other agents to focus on. However, since the attention is soft, each

agent still communicates with every other agent.

In this case study, we study the problem of learning a communication policy that

solves a multi-agent planning task while minimizing the amount of communication

required. We measure the amount of communication on a given step as the maximum

degree (in both directions) of the communication graph on that step; this metric cap-

tures the maximum amount of communication any single agent must perform at that

step. While we focus on this metric, our approach easily extends to handling other

metrics—e.g., the total number of edges in the communication graph, the maximum

in-degree, and the maximum out-degree, as well as general combinations of these

metrics.

A key question is how to represent the communication policy; in particular, it

must be sufficiently expressive to capture communication structures that both achieve

high reward and has low communication degree, while simultaneously being easy to

train. Neural network policies can likely capture good communication structures, but

they are hard to train since the maximum degree of the communication graph is a

discrete objective that cannot be optimized using gradient descent. An alternative is

to use a structured model such as a decision tree [14] or rule list [103] and train using

combinatorial optimization. However, these models perform poorly since choosing

whom to communicate with requires reasoning over sets of other agents—e.g., to

avoid collisions, an agent must communicate with its nearest neighbor in its direction

of travel.

Therefore, we need domain-specific programs to represent communication policies.

In contrast to rule lists, our programmatic polices include components such as filter

and map that operate over sets of inputs. Furthermore, programmatic policies are

discrete in nature, making them amenable to combinatorial optimization; in particu-

lar, we can compute a programmatic policy that minimizes the communication graph

degree using a stochastic synthesis algorithm [83] based on MCMC sampling [66, 43].

A key aspect of our programs is that they can include a random choice operator.
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Intuitively, random choice is a key ingredient needed to minimize the communication

graph degree without global coordination. For example, suppose there are two groups

of agents, and each agent in group 𝐴 needs to communicate with an agent in group

𝐵, but the specific one does not matter. Using a deterministic communication policy,

since the same policy is shared among all agents, each agent in group 𝐴 might choose

to communicate with the same agent 𝑗 in group 𝐵 (e.g., if agents in the same group

have similar states). Then, agent 𝑗 will have a very high degree in the communication

graph, which is undesirable. In contrast, having each agent in group 𝐴 communicate

with a uniformly random agent in group 𝐵 provides a near-optimal solution to this

problem, without requiring the agents to explicitly coordinate their decisions.

While we can minimize the communication graph degree using stochastic search,

we still need to choose actions based on the communicated information. Hence,

neurosymbolic transformers are good candidates for multi-agent planning problems.

We evaluated our approach on several multi-agent planning tasks that require

agents to coordinate to achieve their goals. We demonstrated that our algorithm

learns communication policies that achieve task performance similar to the original

transformer policy (i.e., where each agent communicates with every other agent),

while significantly reducing the amount of communication. Our results showed that

our algorithm is a promising approach for training policies for multi-agent systems

that additionally optimize combinatorial properties of the communication graph 1

7.1 Multi-Agent RL Related work

There has been a great deal of recent interest in using reinforcement learning to

automatically infer good communication structures for solving multi-agent planning

problems [52, 95, 74, 22, 87]. Much of this work focuses on inferring what to commu-

nicate rather than whom to communicate with; they handcraft the communication

structure to be a graph (typically based on distance) [52, 95, 74], and then use a graph

1The code and a video illustrating the different tasks are available at https://github.com/
jinala/multi-agent-neurosym-transformers.
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neural network [81, 54] as the policy network. There has been some prior work using

transformer networks to infer the communication graph [22]; however, they rely on

soft attention, so the communication graph remains fully connected. Prior work [89]

frames the multi-agent communication problem as an MDP problem where the deci-

sions of when to communicate are part of the action space. However, in our case, we

want to learn who to communicate with in addition to when to communicate. This

results in a large discrete action space, and we found that RL algorithms perform

poorly in this space. Our proposed approach addresses this challenge by using the

transformer as a teacher.

7.2 Multi-Agent Problem Formulation

We formulate the multi-agent planning problem as a decentralized partially observable

Markov decision process (POMDP). We consider 𝑁 agents 𝑖 ∈ [𝑁 ] = {1, ..., 𝑁} with

states 𝑠𝑖 ∈ 𝒮 ⊆ R𝑑𝑆 , actions 𝑎𝑖 ∈ 𝒜 ⊆ R𝑑𝐴 , and observations 𝑜𝑖,𝑗 ∈ 𝒪 ⊆ R𝑑𝑂 for

every pair of agents (𝑗 ∈ [𝑁 ]). Following prior work [62, 36, 22], we operate under the

premise of centralized training and decentralized execution. Hence, during training

the POMDP has global states 𝒮𝑁 , global actions 𝒜𝑁 , global observations 𝒪𝑁×𝑁 ,

transition function 𝐹 : 𝒮𝑁 × 𝒜𝑁 → 𝒮𝑁 , observation function 𝑍 : 𝒮𝑁 → 𝒪𝑁×𝑁 ,

initial state distribution 𝑠0 ∼ 𝒫0, and reward function 𝑟 : 𝒮𝑁 ×𝒜𝑁 → R.

The agents all use the same policy 𝜋 = (𝜋𝐶 , 𝜋𝑀 , 𝜋𝐴) divided into a communication

policy 𝜋𝐶 (choose other agents from whom to request information), a message policy

𝜋𝑀 (choose what messages to send to other agents), and an action policy 𝜋𝐴 (choose

what action to take). Below, we describe how each agent 𝑖 ∈ [𝑁 ] chooses its action

𝑎𝑖 at any time step.

Step 1 (Choose communication). The communication policy 𝜋𝐶 : 𝒮 ×𝒪𝑁 →

𝒞𝐾 inputs the state 𝑠𝑖 of current agent 𝑖 and its observations 𝑜𝑖 = (𝑜𝑖,1, ..., 𝑜𝑖,𝑁),

and outputs 𝐾 other agents 𝑐𝑖 = 𝜋𝐶(𝑠𝑖, 𝑜𝑖) ∈ 𝒞𝐾 = [𝑁 ]𝐾 from whom to request

information. The communication graph 𝑐 = (𝑐1, ..., 𝑐𝑁) ∈ 𝒞𝑁×𝐾 is the directed graph

𝐺 = (𝑉,𝐸) with nodes 𝑉 = [𝑁 ] and edges 𝐸 = {𝑗 → 𝑖 | (𝑖, 𝑗) ∈ [𝑁 ]2∧𝑗 ∈ 𝜋𝐶(𝑠𝑖, 𝑜𝑖)}.
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Step 2 (Choose and send/receive messages). For every other agent 𝑗 ∈ [𝑁 ],

the message policy 𝜋𝑀 : 𝒮 × 𝒪 → ℳ inputs 𝑠𝑖 and 𝑜𝑖,𝑗 and outputs a message

𝑚𝑖→𝑗 = 𝜋𝑀(𝑠𝑖, 𝑜𝑖,𝑗) to be sent to 𝑗 if requested. Then, agent 𝑖 receives messages

𝑚𝑖 = {𝑚𝑗→𝑖 | 𝑗 ∈ 𝑐𝑖} ∈ ℳ𝐾 .

Step 3 (Choose action). The action policy 𝜋𝐴 : 𝒮 ×𝒪𝑁 ×ℳ𝐾 → 𝒜 inputs 𝑠𝑖,

𝑜𝑖, and 𝑚𝑖, and outputs action 𝑎𝑖 = 𝜋𝐴(𝑠𝑖, 𝑜𝑖,𝑚𝑖) to take.

Here, each agent computes its action based on just its state, its observations of

other agents, and communications received from the other agents; thus, the policy

can be executed in a decentralized way.

Sampling a trajectory/rollout. Given initial state 𝑠0 ∼ 𝒫0 and time horizon

𝑇 , 𝜋 generates the trajectory (𝑠0, 𝑠1, ..., 𝑠𝑇 ), where 𝑜𝑡 = 𝑍(𝑠𝑡) and 𝑠𝑡+1 = 𝐹 (𝑠𝑡, 𝑎𝑡),

and where for all 𝑖 ∈ [𝑁 ], we have 𝑐𝑖𝑡 = 𝜋𝐶(𝑠𝑖𝑡, 𝑜
𝑖
𝑡), 𝑚𝑖

𝑡 = {𝜋𝑀(𝑠𝑗𝑡 , 𝑜
𝑗,𝑖
𝑡 ) | 𝑗 ∈ 𝑐𝑖𝑡}, and

𝑎𝑖𝑡 = 𝜋𝐴(𝑠𝑖𝑡, 𝑜
𝑖
𝑡,𝑚

𝑖
𝑡).

Objective. Then, our goal is to train a policy 𝜋 that maximizes the objective

𝐽(𝜋) = 𝐽𝑅(𝜋) + 𝜆𝐽𝐶(𝜋) = E𝑠0∼𝒫0

[︃
𝑇∑︁
𝑡=0

𝛾𝑡𝑟(𝑠𝑡, 𝑎𝑡)

]︃
− 𝜆E𝑠0∼𝒫0

[︃
𝑇∑︁
𝑡=0

max
𝑖∈[𝑁 ]

deg(𝑖; 𝑐𝑡)

]︃
(7.1)

where 𝜆 ∈ R>0 is a hyperparameter, the reward objective 𝐽𝑅 is the time-discounted

expected cumulative reward over time horizon 𝑇 with discount factor 𝛾 ∈ (0, 1), and

the communication objective 𝐽𝐶 is to minimize the degree of the communication

graph, where 𝑐𝑡 is the communication graph on step 𝑡, and deg(𝑖; 𝑐𝑡) is the sum of the

incoming and outgoing edges for node 𝑖 in 𝑐𝑡.

Assumptions on the observations of other agents. We assume that 𝑜𝑖,𝑗 is

available through visual observation (e.g., camera or LIDAR), and therefore does not

require extra communication. In all experiments, we use 𝑜𝑖,𝑗 = 𝑥𝑗 −𝑥𝑖 + 𝜖𝑖,𝑗—i.e., the

position 𝑥𝑗 of agent 𝑗 relative to the position 𝑥𝑖 of agent 𝑖, plus i.i.d. Gaussian noise

𝜖𝑖,𝑗. This information can often be obtained from visual observations (e.g., using an
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object detector); 𝜖𝑖,𝑗 represents noise in the visual localization process.

The observation 𝑜𝑖,𝑗 is necessary since it forms the basis for agent 𝑖 to decide

whether to communicate with agent 𝑗; if it is unavailable, then 𝑖 has no way to

distinguish the other agents. If 𝑜𝑖,𝑗 is unavailable for a subset of agents 𝑗 (e.g., they

are outside of sensor range), we could use a mask to indicate that the data is missing.

We could also replace it with alternative information such as the most recent message

from 𝑗 or the most recent observation of 𝑗.

We emphasize that 𝑜𝑖,𝑗 does not contain important internal information available

to the other agents—e.g., their chosen goals and their planned actions/trajectories.

This additional information is critical for the agents to coordinate their actions and

the agents must learn to communicate such information.

7.3 Neurosymbolic Transformers for Multi-Agent prob-

lem

The above policy description for the multi-agent systems can easily be encoded using

a transformer architecture (and hence, a neurosymbolic transformer). The commu-

nication policy is the attention network which is encoded by the key and the query

networks in a transformer (the attention program in a neurosymbolic transformer).

The message computation step is the same as the value network in the transformer,

and similarly, the action computation step is the same as the output network in the

transformer. We use the following grammar for the rules in the attention programs:

𝑅 ::= argmax((𝐹, filter(𝐵, ℓ))) | 𝑐ℎ𝑜𝑜𝑠𝑒(filter(𝐵, ℓ)).

Intuitively, the first kind of rule is a deterministic aggregation rule, which uses 𝐹 to

score every agent after filtering and then chooses the one with the best score, and the

second kind of rule is a nondeterministic choice rule which randomly chooses one of

the other agents after filtering.
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7.4 Tasks

Formation task. We consider multi-agent formation flying tasks in 2D space [52].

Each agent has a starting position and an assigned goal position. The task is to

learn a decentralized policy for the agents to reach the goals while avoiding collisions.

The agents are arranged into a small number of groups (between 1 and 4): starting

positions for agents within a group are close together, as are goal positions. Each

agent’s state 𝑠𝑖 contains its current position 𝑥𝑖 and goal position 𝑔𝑖. The observations

𝑜𝑖,𝑗 = 𝑥𝑗 − 𝑥𝑖 + 𝜖𝑖,𝑗 are the relative positions of the other agents, corrupted by i.i.d.

Gaussian noise 𝜖𝑖,𝑗 ∼ 𝒩 (0, 𝜎2). The actions 𝑎𝑖 are agent velocities, subject to ‖𝑎𝑖‖2 ≤

𝑣max. The reward at each step is 𝑟(𝑠, 𝑎) = 𝑟𝑔(𝑠, 𝑎) − 𝑟𝑐(𝑠, 𝑎), where the goal reward

𝑟𝑔(𝑠, 𝑎) = −
∑︀

𝑖∈[𝑁 ] ‖𝑥𝑖 − 𝑔𝑖‖2 is the negative sum of distances of all agents to their

goals, and the collision penalty 𝑟𝑐(𝑠, 𝑎) =
∑︀

𝑖,𝑗∈[𝑁 ],𝑖 ̸=𝑗 max{𝑝𝑐(2 − ‖𝑥𝑖 − 𝑥𝑗‖2/𝑑𝑐), 0}

is the hinge loss between each pair of agents, where 𝑝𝑐 is the collision penalty weight

and 𝑑𝑐 is the collision distance.

We consider two instances of formation tasks:

First, random-cross, which contains up to 4 groups; each possible group occurs

independently with probability 0.33. The starting positions in each group (if present)

are sampled uniformly randomly inside 4 boxes with center 𝑏 equal to (−ℓ, 0), (0,−ℓ),

(ℓ, 0), and (0, ℓ), respectively, and the goal positions of each group are sampled ran-

domly from boxes with centers at −𝑏. The challenge is that agents in one group must

communicate with agents in other groups to adaptively choose the most efficient path

to their goals.

Second, random-grid (Figure 1-4a) contains 3 groups with starting positions

sampled in boxes centered at (−ℓ, 0), (0, 0), and (ℓ, 0), respectively, and the goal posi-

tions are sampled in boxes centered at randomly chosen positions (𝑏𝑥, 𝑏𝑦) ∈ {−ℓ, 0, ℓ}2

(i.e., on a 3 × 3 grid), with the constraint that the starting box and goal box of a

group are adjacent and the boxes are all distinct. The challenge is that each agent

must learn whom to communicate with depending on its goal.

Unlabeled goals task. This task is a cooperative navigation task with unlabeled
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goals [62] that has 𝑁 agents along with 𝑁 goals at positions 𝑔1, ..., 𝑔𝑁 (see Figure 7-

1). The task is to drive the agents to cover as many goals as possible. We note

that this task is not just a navigation task. Since the agents are not pre-assigned

to goals, there is a combinatorial aspect where they must communicate to assign

themselves to different goals. The agent state 𝑠𝑖 is its own position 𝑥𝑖 and the positions

of the goals (ordered by distance at the initial time step). The observations 𝑜𝑖,𝑗

are the relative positions to the other agents, corrupted by Gaussian noise. The

actions 𝑎𝑖 = (𝑝𝑖1, · · · , 𝑝𝑖𝑙, · · · , 𝑝𝑖𝑁) are the weights (normalized to 1) over the goals;

the agent moves in the direction of the weighted sum of goals—i.e., its velocity is

𝑎𝑖 =
∑︀

𝑘∈[𝑁 ] 𝑝
𝑖
𝑘(𝑔𝑘−𝑥𝑖). The reward is 𝑟(𝑠, 𝑎) =

∑︀
𝑘∈[𝑁 ] max𝑖∈[𝑁 ]𝑝

𝑖
𝑘−𝑁—i.e., the sum

over goals of the maximum weight that any agent assigns to that goal minus 𝑁 .

The code and a short video illustrating the different tasks used in the paper can

be found at

https://github.com/jinala/multi-agent-neurosym-transformers.
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Figure 7-1: Unlabeled goals task: (a) Initial positions of the agents and the locations
of the goals to cover (b) Final configuration of the agents where 8 out of the 10 goals
are covered.

7.5 Baselines

We consider the following baselines.

• Fixed communication (dist): A transformer, but where other agents are masked

based on distance, so each agent can only attend to its 𝑘 nearest neighbors.
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We found this model outperforms GCNs with the same communication struc-

ture [52], since its attention parameters enable each agent to re-weight the

messages it receives.

• Transformer (tf-full): The oracle transformer policy from Section 3.2.1;

here, each agent communicates with all other agents.

• Transformer + hard attention (hard-attn): The transformer policy, but

where the communication degree is reduced by constraining each agent to only

receive messages from 𝑘 other agents with the largest attention scores. Note

that this approach only minimizes the maximum in-degree, not necessarily the

maximum out-degree; minimizing both would require a centralized algorithm.

• Transformer + program (prog): An ablation of our approach that does not re-

train the transformer after synthesizing the programmatic communication pol-

icy

• Transformer + retrained program (prog-retrain): Our full approach.

• Transformer + deterministic programs (det-prog and det-prog-retrained):

ablations of our approach that learns only deterministic rules—i.e., rules with

random are excluded from the search space, before and after the retraining

step.

• Transformer + decision trees (dt and dt-retrained): a learned commu-

nication policy in the form of a decision tree. To train the decision tree, we

constructed a supervised dataset by (i) collecting the soft-attentions from the

transformer model, and (ii) solving the global hard-attention problem at each

timestep to ensure that the maximum degree (both in-degree and out-degree)

is at most 𝑘, where 𝑘 is chosen as described below (i.e., to match the number

of rules in our programmatic communication structure). Then, we trained the

decision tree using supervised data on this dataset.
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The tasks random-cross and random-grid perform 1 round of communica-

tions per time step (i.e., 1 attention layer) for all the baselines. The unlabeled-goals

task uses 2 rounds of communications (i.e., 2 attention layers). For all approaches,

we trained the oracle transformer model with 10k rollouts. For synthesizing the pro-

grammatic policy, we built a dataset using 300 rollouts and ran MCMC for 10000

steps. We retrained the transformer with 1000 rollouts. We constrained the maxi-

mum in-degree to be a constant 𝑑0 across all approaches (except tf-full, where

each agent communicates with every other agent); for dist and hard-attn, we

did so by setting the communication neighbors to be 𝑘 = 𝑑0, and for prog and

prog-retrain, we chose the number of rules to be 𝐾 = 𝑑0. This choice ensures

fair comparison across approaches.

7.6 Hyper-parameters

There are four main hyper-parameters in our learning algorithm.

• 𝜆̃ in Section 5.2.1: This parameter strikes a balance between minimizing the dif-

ference in the actions (with and without programmatic attention) and minimiz-

ing the maximum communication degree. We sampled 𝜆̃ from {0.3, 0.5, 0.7, 1.0}.

• The number of rules in the program ∈ {2, 3, 4, 5}.

• The depth of the Boolean conditions in the filter expressions = 2.

• The feature map 𝜑 used in the filter predicates and the map functions. We

have 2 versions: 1) for every vector (𝑥, 𝑦) in the state 𝑠 and the observations

𝑜, we also encode the norm
√︀
𝑥2 + 𝑦2 and the angle tan−1(𝑦/𝑥) as part of the

features; 2) on top of 1, we add quadratic features (𝑥𝑠𝑥𝑜, 𝑥𝑠𝑦𝑜, 𝑦𝑠𝑥𝑜, 𝑦𝑠𝑦𝑜) where

(𝑥𝑠, 𝑦𝑠) is the state and (𝑥𝑜, 𝑦𝑜) is the observation.

We used cross validation to choose these parameters. In particular, we chose the ones

that produced the lowest cumulative reward on a validation set of rollouts; if the

cumulative rewards are similar, we chose the ones that reduced the communication

degree.
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7.7 Emperical Results

7.7.1 Performance and Expressiveness

We measured performance using both the loss (i.e., negative reward) and maximum

communication degree (i.e., maximum degree of the communication graph), averaged

over the time horizon. Lower values are better for both the metrics. Because the in-

degree of every agent is constant, the maximum degree equals the in-degree plus the

maximum out-degree. Thus, we report the maximum in-degree and the maximum out-

degree separately. Results are in Figure 7-2; we report mean and standard deviation

over 20 random seeds.

For random-cross and random-grid tasks, our approach (prog-retrained)

achieves loss similar to the best loss (i.e., that achieved by the full transformer),

while simultaneously achieving the best communication graph degree. In general, ap-

proaches that learn communication structure using attention (tf-full, hard-attn,

prog-retrained, and dt-retrained) perform better than having a fixed com-

munication structure (i.e., dist). In addition, using the programmatic attention is

more effective at reducing the maximum degree (in particular, the maximum out-

degree) compared with thresholding the transformer attention (i.e., hard-attn).

Finally, retraining the transformer is necessary for the neurosymbolic transformer to

perform well in terms of loss.

For unlabeled-goals task, our approach performs almost similar to dist

baseline and slightly worse than tf-full baseline, but achieves a smaller communi-

cation degree. Moreover, the loss is significantly lower than the loss of 4.13 achieved

when no communications are allowed.

The decision tree baselines (dt and dt-retrained) perform poorly in terms

of the communication degree for all the tasks, demonstrating that domain-specific

programs operating over lists are necessary to reduce the communications.

The deterministic baseline (det-prog-retrained) achieves a similar loss as

prog-retrained for the random-cross and random-grid tasks; however, it

has worse out-degrees of communication. For these tasks, it is difficult for a de-
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Figure 7-2: Statistics of cumulative loss and communication graph degrees across
baselines, for (a) random-cross, (b) random-grid, and (c) unlabeled-goals. We omit
communication degrees for tf-full, since it requires communication between all
pairs of agents.
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Figure 7-3: For random-cross, trajectories taken by each group (i.e., averaged over
all agents in that group) when all four groups are present (left) and only one group is
present (right), by prog-retrained (solid) and dist (dashed). Initial positions
are circles and goal positions are crosses.

terministic program to distinguish the different agents in a group; thus, all agents

request messages from a small set of agents. For the unlabeled goals task, the

deterministic baseline has a lower degree of communication but has higher loss than

prog-retrained. Again, we hypothesize that the deterministic rules are insuffi-

cient for an agent to distinguish the other agents, leading to a low in-degree (and

consequently low out-degree), which is insufficient to solve the task.

Analyzing the Learned Policies

Figure 7-3 shows two examples from the random-cross task: all four groups are

present (left), and only a single group is present (right). In the former case, the groups

must traverse complex trajectories to avoid collisions, whereas in the latter case, the

single group can move directly to the goal. However, with a fixed communication

structure, the policy dist cannot decide whether to use the complex trajectory or the

direct trajectory since it cannot communicate with agents in other groups to determine

if it should avoid them. Thus, it always takes the complex trajectory. In contrast,

our approach successfully decides between the complex and direct trajectories.
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Figure 7-4: Comparing attention program with a RL policy that treats communica-
tions as actions. RL1 and RL2 correspond to two different hyper-parameters in the
policy gradient algorithm that achieved lowest loss and lowest communication degree
(respectively).

Comparison to Communication Decisions as Actions

The multi-agent communication problem can be formulated as an MDP where deci-

sions about which agents to communicate with are part of the action. We performed

additional experiments to compare to this approach. Since the action space now in-

cludes discrete actions, we used the policy gradient algorithm to train the policy. We

tuned several hyper-parameters including (i) weights for balancing the reward term

with the communication cost, (ii) whether to use a shaped reward function, and (iii)

whether to initialize the policy with the pre-trained transformer policy.

Results are shown in Figure 7-4. Here, rl1 is a baseline policy that achieved

the lowest loss across all hyper-parameters we tried; however, this policy has a very

high communication degree. In addition, rl2 is a policy with lowest communication

degree; however, this policy has very high loss.

As can be seen, our approach performs significantly better than the baseline. We
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Figure 7-5: Attention weights for hard-attn and prog-retrained at a single
step near the start of a rollout, computed by the agent along the 𝑦-axis for the message
from the agent along the 𝑥-axis.

believe this is due to the combinatorial blowup in the action space—i.e., there is a

binary communication decision for each pair of agents, so the number of communica-

tion actions is 2𝑁−1 per agent and 2𝑁(𝑁−1) for all agents (where 𝑁 is the number of

agents). Our approach addresses this challenge by using the transformer as a teacher.

7.7.2 Combinatorial Optimization—Reducing the Communi-

cation Degree

From Figure 7-2, it is clear that our approach is the best at optimizing the combina-

torial objective. All other approaches (except possibly fixed) have higher commu-

nication degrees.

Figure 7-5 shows the attention maps of hard-attn and prog-retrained for

the random-cross task at a single step. Agents using hard-attn often attend

to messages from a small subset of agents; thus, even if the maximum in-degree is

low, the maximum out-degree is high—i.e., there are a few agents that must send

messages to many other agents. In contrast, prog-retrained uses randomness to

distribute communication across agents.
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Figure 7-6: Attention maps of prog-retrained for the two rounds of communi-
cation for the unlabeled goals task.

Figure 7-6 shows the attention maps for prog-retrained for the two rounds

of communication for the unlabeled goals task.

7.7.3 Interpretability

Figure 1-5 visualizes the learned attention program for the random-grid task. Here,

(a) and (b) visualize the non-deterministic rule for two different configurations. As

can be seen, the region from which the rule chooses an agent (depicted in orange)

is in the direction of the goal of the agent, presumably to perform longer-term path

planning. The deterministic rule (Figure 1-5c) prioritizes choosing a nearby agent,

presumably to avoid collisions. Thus, the rules focus on communication with other

agents relevant to planning.

7.7.4 Generalization and Robustness

Generalization

To test for generalization, we varied the distribution of agents in the groups for the

random-grid task. There can now be 2 to 20 agents in each group in this test

setup rather than a uniform 10 agents per group. We found that a transformer model

trained on the uniform distribution, when tested on this new asymmetric distribution,

paid more attention to large groups (maintaining large distance with that group) and

less attention to small groups (maintaining a very small distance with that group)
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Figure 7-7: For the random-grid task, we show how the transformer policy adapts
to new settings. On the left, we show the trajectories for a setting from the train
distribution, i.e. with an equal number of agents in all groups. On the right, we
show the trajectories for a new setting from a different test distribution, i.e. with an
asymmetric number of agents in the groups. We see that a transformer policy has an
undesirable side-effect; it pays more attention to the group with more agents.

(see Figure 7-7). On the other hand, a neurosymbolic transformer model paid equal

attention to all groups (irrespective of their sizes), which is what is needed for this task

(see Figure 7-8). We can see why this is the case by looking at the attention program

in Figure 1-4d and the visualizations in Figure 1-5; the rule 𝑅1, here, chooses a random

agent from the other group irrespective of the size of the group. This experiment is

an instance showing that neurosymbolic transformers generalize better than neural

transformers.

Case Study with Noisy Communications

We considered a new benchmark based on the random grid task, but the communi-

cation link between any pair of agents has a 50% probability of failing. The results

are shown in Figure 7-9. As can be seen, the neurosymbolic transformer policy

(prog-retrained) again has a similar loss as the transformer policy while simul-

taneously achieving a lower communication degree. Here, the best performing policy

has four rules (i.e., 𝐾 = 4), whereas, for the previous random grid task, the attention

program only had two rules. Intuitively, each agent attempts to communicate with

more of the other agents to compensate for the missing communications.
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Figure 7-8: For the random-grid task, we show how the neurosymbolic transformer
policy adapts to new settings. On the left, we show the trajectories for a setting from
the train distribution, i.e. with an equal number of agents in all groups. On the right,
we show the trajectories for a new setting from a different test distribution, i.e. with
an asymmetric number of agents in the groups. We see that the prog-retrained policy
correctly attends to all groups (irrespective of the number of agents in a group).
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Figure 7-9: Random grid task with noisy communications.
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7.8 Discussion

In this case study, we explored neurosymbolic transformer policies for decentralized

control of multi-agent systems. Our approach performed as well as state-of-the-art

transformer policies while significantly reducing the amount of communication re-

quired to achieve complex multi-agent planning goals. There is much room for future

work—e.g., exploring other measures of the amount of communication (other combi-

natorial objectives), better understanding what information is being communicated,

and handling environments with more complex observations such as camera images

or LIDAR scans. Another direction is to explore more complex multi-agent tasks that

require complex/different DSLs for the attention programs (e.g. a DSL that has a

consensus module which executes any well known consensus algorithm).

Furthermore, neurosymbolic transformers may have applications in other areas of

machine learning such as NLP where transformers are state-of-the-art. In particular,

replacing soft attention weights in transformers with programmatic attention rules

makes them much easier to interpret and generalize.
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Chapter 8

Future Directions

This thesis, so far, showed how neurosymbolic learning could help us get interpretable,

generalizable, and robust models in several domains. However, there is much left to

be done in the space for neurosymbolic learning. The ultimate goal is to achieve

scalability at the level of what deep learning can do currently.

Similar to the organization throughout this thesis, I am organizing the potential

future directions in terms of applications, model classes and algorithms.

Applications: Most of the applications explored in this thesis are in robotics. But

even within robotics, there are several other applications where the neurosymbolic

learning approach applies. Perception and dynamics modelling are examples where

I anticipate that inducing program structure in the models can help increase robust-

ness and reduce the amount of data needed for learning. Outside of robotics, some

potential domains for neurosymbolic learning techniques are healthcare, computa-

tional biology, and finance applications, where it is beneficial to have non-opaque and

interpretable models. Image/Scene generation is another domain where composition-

ality plays a key role, and I believe neurosymbolic approaches can help recover the

underlying modular representations for these problems.

Several exciting research directions use machine learning to improve computer

systems and computer programming, e.g., big-data based code assistant systems.

The idea of incorporating program structure into neural models is can also be applied
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to these systems. Neurosymbolic approaches can learn compositional models from

code databases that systematically generalize to coding problems in both the same

domain and other similar domains where the data might be limited. Thus, closing

the loop by using programming to help machine learning to help programming itself.

Model Architectures: Potential future works involve exploring other kinds of

neurosymbolic architectures for the models. So far, my model classes only involve

parametric programs with loops, conditionals, and simple list operations. However,

programs are rich; they can have functions and data structures. One potentially fu-

ture neurosymbolic architecture is to include programs that can manipulate complex

data structures and has functions. Functions are needed for modularity, and data

structures are instrumental in efficiently organizing the internal memory of a model;

these qualities, in turn, can lead to better generalization. Here, the fundamental chal-

lenge would be to develop an over-parameterized representation (the teacher/oracle)

that can meaningfully represent these complex data structures and is also amenable

to gradient-based approaches.

Another potential future direction is enabling model classes with both neural

components and program components, where the programs capture the structure and

the logical part of the model, and the neural networks capture the high-dimensionality

of the real world. There has been some prior work in this space, but the NNs and the

programs have naturally separate specs in these domains. That may not be the case

in other applications. For example, in the control problem in Figure 1-1, the input

state of the car includes its geometrical positions and velocities. However, to learn

a control policy that takes more complex inputs such as camera images or LIDAR

images, we want a neural network to handle the perception part but still have a

program component to represent the high-level logic.

Algorithms: As we try out more applications and architectures, we will need more

techniques to jointly reason about the symbolic and continuous components. An

interesting direction in this space is to dynamically learn the right teacher/oracle
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such that the teacher can be optimized easily and the teacher is able to provide the

right level of guidance to the student. An ultimate goal for neurosymbolic learning is

to have an analog of SGD (stochastic gradient descent), ADAM, or other optimization

algorithms, i.e. we need one (or a small set of) general purpose algorithm(s) that can

handle various neurosymbolic architectures/applications.

Another benefit of learning symbolic models is that we can leverage the fact that

formal verification methods are more mature at handling structured programs rather

than neural networks. Although we could use some off-the-shelf solvers to verify some

of our learned models, it is beneficial to develop more targeted algorithms to formally

prove that the neurosymbolic models learned for an intelligent system are safe, robust,

and fair.

Finally, both machine-learning and program synthesis have advanced significantly

in recent years. For example, machine learning has shifted more towards meta-

learning, library learning, and artificial general intelligence. Similarly, there are new

neural-based program synthesis techniques and techniques that can learn the DSL

from a corpus of tasks. Future neurosymbolic learning algorithms should make use

of these latest techniques.

And that’s the end of this thesis! I hope I have convinced the readers that neu-

rosymbolic learning with all its benefits can contribute to the world of robust and

reliable intelligent systems.
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