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Abstract

Buildings and building construction sectors are together responsible for 40% of global energy
consumption, 70% of electricity consumption, and 40% of carbon emission. Heating, venti-
lation, and air-conditioning systems (HVAC) in residential and commercial units account for
40% to 60% of energy usage. To increase energy efficiency and reduce energy usage, build-
ings are now better insulated, installed with energy-efficient appliances, and controlled by
advanced technologies to provide user comfort while minimizing their environmental impact.

This thesis focuses on utilizing setpoint control methods to design algorithms for operat-
ing thermostatically controlled appliances such as HVAC to achieve the goal of minimizing
energy consumption, cost, and greenhouse gas emission while maintaining thermal comfort
and indoor air quality. The problem is formulated as a constrained convex optimization
statement. Specifically, the thesis proposes three optimization-based control frameworks
that are verified in simulation testbeds (with state-of-art simulation software and numeri-
cal models with MATLAB and Python). The three methods apply setpoint control on the
room- and aggregate (building)- level devices and have achieved a 20% to 50% reduction in
the peak load demand and greenhouse gas emission in simulation testbeds.

In addition to simulation, onsite experiments are conducted. One of the three simulation-
based setpoint control frameworks is implemented in two MIT classrooms. Throughout
the eight experiment sessions, a significant amount of commissioning of HVAC, software,
and hardware is completed. This experimental verification has demonstrated a nearly 50%
savings on greenhouse gas emissions and showcased the power of data-driven control methods
in real-life settings.

Although we have witnessed the successes in both simulations and experiments, the
results presented in the thesis are preliminary and only serve as a proof of concept. There
are still plenty of areas worth further investigation to fully materialize and implement these
methods.

Thesis Supervisor: Leslie K. Norford
Title: Professor of Building Technology

Thesis Reader: Steven B. Leeb
Title: Professor of Electrical Engineering and Computer Science and Mechanical Engineering
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Chapter 1

Project Introduction

1.1 Background

Buildings and building construction sectors are together responsible for nearly 36% of global
energy consumption, 70% of electricity consumption, and 40% of CO2 emissions [1, 3]. It
is predicted that building energy usage will continue to grow globally over the next decade,
associated with a higher standard of living enabled by a wider access to household electric
appliances, such as Heating, Ventilation, and Air-Conditioning (HVAC) systems that achieve
improved occupant thermal comfort and indoor environmental quality [82].

In the meantime, the Biden administration has set a target of a 50% reduction in 2005
GHG emissions by 2030 and net zero emissions by 2050 [81]. Achieving these targets will
require deep decarbonization across all sectors. This is particularly challenging in the build-
ing sector given that the existing building stock is large and there is relatively low turnover.
Thus, to achieve such deep decarbonization targets the US must simultaneously create
energy-efficient new buildings while lowering energy consumption in existing buildings.

Building scientists have actively worked on saving energy usage by developing methods
that improve building performance and energy efficiency, such as installing better thermal
insulation [83], developing advanced control algorithms for operating lighting and HVAC
systems [61], and performing life-cycle analysis for building construction [19].

1.2 Project Overview

The thesis includes two main projects from the perspectives of two stakeholders: (1) energy
end user, and (2) energy provider. While the goals of two projects vary, both project sponsors
would like to regulate and optimize energy usage behaviors to maximize their economic and
environmental outcomes. Therefore, the methods explored and deployed share a certain
level of similarity in nature.
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1.2.1 Project 1: MIT Campus with Office of Sustainability

The first project is with MIT. In response to the clean energy initiative, MIT, as a leading
academic institution collaborating with industry pioneers, has invested capital to renovate
campus buildings and upgrade heating and cooling system control to improve building energy
efficiency. This project, sponsored by the MIT Office of Sustainability, aims at further
investigating efficient operations of heating, cooling, and air conditioning (HVAC) systems on
the MIT campus through thermostatic control, minimizing greenhouse gas (GHG) emissions
from gas and electricity consumption while maintaining satisfactory thermal comfort to
students, faculty members, and staff.

The campus environment offers unique opportunities for experimenting and implement-
ing GHG emission savings, but also poses special challenges:

On the one hand, the MIT campus has its independent energy management task force,
led by Department of Facilities (DoF), Office of Sustainability, and MIT Energy Initiative,
consistently monitoring campus energy usage. Because MIT has autonomy in regulating
its energy consumption, implementation of adjustments would face few obstacles and can
be integrated into MIT’s long-term energy emission reduction blueprint. In the meantime,
unlike residential or commercial buildings, educational institutions follow a relatively pre-
dictable building operation schedule according to course schedules and lab activities. This is
conducive to regulating energy usage as the load pattern is more predictable and controllable.

On the other hand, MIT both purchases electricity from the market (Eversource) and
generates electricity through a tri-generation plant. The DoF sources energy (i.e. when to
use onsite or offsite electricity) based on market information (electricity price) and campus
energy demand, which involves a complicated modeling and optimization process. Therefore,
an effective GHG emission reduction solution should carefully consider its compatibility
with existing campus energy supply and procurement strategies. In addition, different space
types on campus require tailored design of control methods to fulfill their specific indoor
environmental requirements. For example, labs tend to have more rigorous environmental
controls than offices and classrooms to ensure occupants’ health and safety. Before scaling
up solutions to the entire campus, a comprehensive method evaluation on different space
types should be conducted to minimize adverse effects on space users.

MIT is not the first that initiates a campus-wide building HVAC operation and thermal
comfort project. Back in 2017, UC Davis launched TherMOOstat website1) for their campus
thermal comfort initiative, where students can input their feedback on room temperature
in most campus buildings [9]. Similarly, this MIT project also includes a thermal comfort
survey that allows students to provide real-time thermal comfort feedback. The survey
results (i.e. preferred room temperature range) could also inform room setpoint design as a
critical element of the GHG minimization project.

1https://thermoostat.ucdavis.edu/
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1.2.2 Project 2: A Nation-wide Utility Company

The second project is with a large electricity and natural gas utility supplier, in collaboration
with the Department of Electrical Engineering and Computer Science (EECS) at MIT. The
project’s ultimate goal is to develop a self-driven load control model that can autonomously
smooth load demand for an aggregate (large-scale community).

From International Energy Agency (IEA)’s Smart Grids Technology Roadmap in 2011,
an increasing peak load and rising electricity consumption are the two major trends that
impact future grid operations [46]. According to EIA’s analysis on the average hourly elec-
tricity overview in Figure 1-1, electricity consumption cycles every day with a trough occur-
ring around 5 am and the one or more peaks occurring during the daytime, before dropping
during the late evening hours. While the daily profile varies seasonally and geographically,
the daily demand variation can be very significant, as illustrated in Figure 1-1, up to 50%.
To fulfill grid peak load demand, utilities ramp up stand-by small-capacity power plants
that run on less energy-efficient and environmentally-friendly fuel such as diesel and coal.
It is also economically unattractive to maintain operations of a stand-by fleet because they
only operate during peak load hours [76, 26]. Hence, an increase in the peak load demand
will further impose additional stress on power generation systems designed with an output
capacity limit, causing a reduction in power generation efficiency, the rise of grid carbon in-
tensity, emissions of toxic air pollutants such as NO𝑥 and SO2, and an increase in electricity
transmission loss.

To deal with hundreds and thousands of grid end users from diverse sectors, the utility
supplier would like to explore less user-intrusive, cost efficient, and easy-to-implement so-
lutions, monitoring and regulating users’ energy demand profile. While Internet of Things
(IoT) enabled technologies such as Nest Thermostats developed by Google learn optimal de-
vice control decisions by collecting and analyzing user behavior information, it is financially
and computationally expensive to deploy the hardware and establish a giant control hub to
provide data-driven solutions for all end users. Furthermore, grid users may be sensitive
to releasing their personal information such as daily schedule to the external network, so a
non-intrusive and locally distributed method is more suitable.

This project aims to manage a wide range of loads for various end users, such as HVAC
systems in commercial buildings, electric vehicles, refrigerators and water heaters in residen-
tial buildings, and water pumps. Collaborating with MIT EECS researchers, this project is
composed of two main aspects: first, to develop a non-intrusive load monitoring algorithm
that can detect and filter out load patterns generated from different usage of appliances;
second, to construct a distributed control method that regulates individual power usage.
The researchers in the EE department are in charge of the first part, and the Building
Technology group is mainly involved in the second half.
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Figure 1-1: Average hourly electricity load during typical day by region, selected months [6]

1.2.3 Team Contribution

The methodologies and results presented in the following chapters are a result of team
efforts. In the first MIT project, the research group includes Dr. Jeremy Gregory (Executive
Director of the Climate and Sustainability Consortium), Prof. Les Norford (Professor in
Building Technology Group), Dr. Kevin Kircher, (postdoc researcher in EECS Department),
Dr. Jasmina Burek (former postdoc researcher at MIT Materials Systems Laboratory and
currently Assistant Professor at University of Massachusetts Lowell), Julia Wang (M.Eng
Student in EECS Department), Dr. Subhro Das (Research Staff Member at the MIT-IBM
Watson AI Lab). In addition, MIT DoF and Office of Sustainability, and engineers from
Schneider Electric offered un-negligible support to facilitate methodology development and
hardware deployment in the experiment phase. The second project involves members from
MIT EECS Department – Dr. Kevin Kircher, Adedayo Aderibole (Ph.D. student) Prof.
Steven Leeb, and Building Technology Group from Architecture Department – Prof. Les
Norford.
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1.3 Thesis Organization

The thesis chapters are structured in four major sections:

• Section 1 - Chapters 1 and 2: define research problems and present the project
overview with literature review in related fields.

• Section 2 - Chapters 3 to 5: propose three methods to address the research statements
and evaluate the results in simulation environments.

• Section 3 - Chapters 6 to 8: document the procedure for onsite experiments, identify
and propose solutions for observed hardware and software issues, assess the effective-
ness of the selected approach in an experimental setting.

• Section 4 - Chapters 9 and 10: compare and contrast the three simulation- based
approaches and their practicality and feasibility for large-scale implementation, address
other considerations, and summarizes the thesis with suggestions of future work.
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Chapter 2

Research Background

2.1 Demand Side Management

Trends toward increasing energy demand, especially electricity, and its rising peak load,
observed over the past several decades and forecast for the near future, has inspired sci-
entists, economists, politicians and other stakeholders to design a set of mechanisms that
can regulate energy demand. Demand side management (DSM) is one technique. As its
name suggests, DSM provides a list of strategies that utility companies, power suppliers,
and transmitters can utilize to control power consumption profile of end users in response
to energy supply conditions [64]. DSM has two common goals to achieve [52]: (1) peak load
curtailment, and (2) load shifting, as illustrated in Figure 2-1. Load curtailment shaves
the load during the anticipated peak-load periods. Load shifting brings power consumption
during peak-load periods to off-peak load periods. With load curtailment and load shifting,
both energy supply and demand sides would enjoy significant savings as the electric grid
becomes more efficient and sustainable [60]. To be more specific, the US Energy Informa-
tion Administration (EIA) estimates that eliminating demand peaks could lead to a huge
reduction in transmission and distribution losses, which is equivalent to 5% of electricity
transmitted and distributed in the US in 2015 through 2019 [5].

Figure 2-1: Illustration of peak clipping (curtailment) and load shifting [37]

To achieve the DSM goals, two major types of methods are involved: dynamic pricing
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and direct load control (DLC). The basis of dynamic pricing is that it considers the rising
cost of electricity generation during peak hours and, therefore, adding surcharges to bills
based on consumers’ usage [21]. By setting a higher price at peak demand and a lower at
trough, it incentivizes consumers to voluntarily shift energy consumption activities to an off-
peak period [20, 2, 7]. However, establishing dynamic pricing and a reimbursement program
requires active and voluntary customer involvement [17], which may not be as effective as
expected because end users may not 1) be aware of such a price difference mechanism, and
2) or care about a minor increase in monthly recurring bills. On the other hand, DLC allows
utilities, or an aggregator, to remotely control the operations and energy consumption of
customers’ certain appliances, such as lighting, HVAC equipment, refrigerators, and pumps
[85, 77]. For example, the state of California, collaborating with PG&E, initiated the Energy
Incentive Program to reimburse customers who choose to adjust their energy usage, i.e, by
turning air-conditioners off during peak load hours for an agreed amount of time [8]. To
accurately regulate end-user loads while not impacting consumers’ comfort, it is important
to deploy advanced automation, control, and monitoring technologies that make DLC less
hindering to the customers [77]. The two projects presented in the thesis utilize DLC to
achieve peak load reduction and GHG emission savings1.

2.2 Thermostatically Controlled Appliances (TCAs)

In residential and commercial units, DLC targets background electrical loads, such as
heating, ventilating, and air-conditioning units (HVACs), refrigerators, and electric water
heaters. This is because these loads operating in the background are relatively flexible and
can be easily controlled and adjusted for load control purposes, without sacrificing too much
user experience. For example, the setpoint temperature of an air-conditioning system can
be modified to adjust power consumption without introducing excessive occupant thermal
discomfort. Due to the nature of background electrical loads, most appliances are modeled
as thermostatically controlled appliances (TCAs). TCAs refer to on/off electrical devices
that maintain their operating temperatures within a range of a user-defined setpoint. Var-
ious studies have investigated using different TCAs to provide DLC [71, 25, 65]. For both
projects in this thesis, the research focus is on HVAC systems, which are a major power
consumption component in many power systems. In its annual report, EIA estimates that
in 2020, electricity used for space cooling by the U.S. residential and commercial sectors is
about 10% of total electricity consumption [12].

To illustrate the operation of a thermostatically controlled air-conditioner, Figure 2-2
shows its on/off schedule to maintain its indoor temperature near the setpoint T𝑠𝑒𝑡, with a

1As noted in Chapter 1, MIT partially manages its energy generation and supply, so the campus can be
considered as a microgrid where MIT DoF is the "utility" regulating energy supply and demand
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deadband of 2𝜖. In this figure, the air conditioner is initially off so the indoor temperature
drifts upward until it reaches the maximum temperature allowed by the thermostat, T𝑠𝑒𝑡+𝜖.
The thermostat then switches the air conditioner on, driving the temperature downward.
When the temperature reaches the minimum allowed temperature, T𝑠𝑒𝑡− 𝜖, the thermostat
switches off the air conditioner and the process repeats itself.

Figure 2-2: Air-conditioners operate on thermostatic control

To operate TCAs in the desired manner, researchers designed control algorithms based
on their thermostatic properties. Common control algorithms include rule-based control,
PID control, model predictive control, model-free control, and reinforcement learning [62,
15, 78, 56]. Some control methods also integrate other mechanisms, for example priority
stack control that assigns an urgency of fulfilling the load demand[43, 74, 73]. Sanandaji et
al. [74] also added anti-short-cycling mechanisms to prevent deterioration of equipment.

Numerous studies have investigated DLC using different methods to address peak load
shifting at different scales. While the concept of DLC has existed for decades, most studies
develop new methods and verify them in a simulation environment. Only a few conducted
field experiments, though with simpler control policies [35], and in a small and manageable
site [75] because onsite experiments incur significant cost and could interrupt normal build-
ing operations. The difficulty in doing onsite experiments have two implications. First, an
accurate thermal simulation model is critical to understanding the thermal properties of
the modeled device/space. Second, an experimentally verified method is extremely valuable
to the entire building research community. In this thesis, we develop control algorithms
for HVAC systems to provide DLC in simulation settings and verify their effectiveness in
simulations and experiments. The following section introduces the modeling methods ex-
plored. A good simulation model can not only provide insights into building physics, but
also establish a platform to exercise building control algorithms.

2.3 Modeling Methods Overview

A variety of thermal modeling methods have been investigated and applied to TCAs [48]:
(1) an analytical and physical model with numerous building parameters and complicated
differential and algebraic equations, replicating the exact physical heat transfer process
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defined by the modeling boundary; (2) the Resistance Capacitance (RC) networks or the
semi-physical thermal circuit model, analogous to an electrical circuit to monitor heat flow as
electric current; and (3) a data-driven machine learning model that learns thermal behaviors
based on knowledge extracted from past observations. The three modeling methods have
their own application environments and limitations. For example, the analytical method
enabled by simulation software, such as EnergyPlus, gives an accurate representation of the
thermal performance of a modeled space but is not easily scalable to a large community, as
the expense of scaling up models drastically increases with explosion of modeling parameters
[31]. The RC network approach simplifies the heat transfer process by spreading the effect
of the heat transfer to several key modeling parameters termed as thermal capacitors and
resistors [48]. The few parameters and simplified modeled heat transfer processes ensure an
easy and efficient scale-up. On the other hand, a machine learning model is typically trained
on data obtained from simulation results or in real experiments, but the downside is that in
practice the availability and quality of data are not guaranteed.

Studies with various modeling and control methods also explored the impact of modeling
scales on their ability to reduce peak load demand. Lee at al. [50] used a stochastic queuing
model to control the operations of air conditioners in a 449-unit apartment complex, which
achieved 24% peak load reduction. Nghiem at al. [59] applied decoupled first-order linear
systems (1R1C Resistance-Capacitance Model) and proposed a two-level control architecture
on 5 and 20 loads, which reduced the peak aggregate demand by up to 40%. Various
reinforcement learning techniques, such as Q-learning, BRL and W-learning, have been
recently investigated to reduce peak demand with electric vehicles [57] and electric water
heaters [16].

Notwithstanding the considerable amount of research studies in peak power demand
reduction, a systematic discussion of each approach and their application environments has
not been addressed. First, when we review new simulation-based control algorithms, it is
unusual to find the results with new approaches benchmarked with the existing ones or
certain classical control models, or the quantification of the benefits of implementing the
new model. Second, most of the new algorithms are developed in simulation testbeds,
assuming perfect knowledge parameters of the model and control of model inputs, such as
building operation schedule, room thermal properties, and occupant behaviors. The lack of
onsite experiments fails to validate performance in real-life, which can be very different from
simulation-based results.

2.4 Objectives

In proposing and testing new modeling and control methods to address the two project
goals, this thesis also includes:
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• Evaluation of different modeling and control approaches in various application environ-
ments in terms of their modeling efficiency, scalability, robustness, and their capacity
of reducing peak power consumption or GHG emission, using simulation testbeds.

• Assessment of results from experiments conducted in MIT classrooms and their impli-
cations.

• Overview of hardware and software requirements and experiment protocol for a suc-
cessful implementation of field experiments on the MIT campus.

• Discussion of method scalability to large-scale instrumentation, and implications and
suggestions for future experiment implementation.

Table 2.1 summarizes simulation methods and control algorithms involved in each pro-
posed study, followed by a brief discussion of methodologies and experiment setup. The pur-
poses of the studies summarized in Table 2.1 are either (1) to reduce total GHG emissions
or (2) to minimize peak load demand, associated with HVAC system operations through
thermostatic control, while not sacrificing occupant thermal comfort and/or indoor air qual-
ity. The studies can be classified into three categories: (1) a benchmark model that uses
a simple rule-based control algorithm, (2) a room-level simulation-based model, followed
by experiments in MIT classrooms for optimal setpoint control, and (3) an aggregate-level
simulation-based model.

2.5 Methodology Overview

2.5.1 MIT Classrooms @Building66

Building 66 is the major site for experiment instrumentation and HVAC system investigation
(See Figure 2-3 map below). It is home to the Department of Chemical Engineering, with
majority space used as research labs, offices, and classrooms. In this study, we chose two
classrooms Room 154 and Room 160 for pilot research. We installed occupancy sensors and
BTU meters to keep track of room occupancy status and thermal power consumption. In
addition, building and room level data such as room temperature, supply air temperature,
setpoints, and supply air flowrate are collected and maintained at Clockworks2. The control
platform EcoStruxture provided by Schneider Electric3 allows us to adjust room temperature
setpoints for rooms on an hourly basis. In addition to the two-classroom experimentation,
further analysis of other HVAC system types was conducted to address the feasibility and
applicability of the solutions to campus-level instrumentation.

2https://clockworksanalytics.com/
3https://ecostruxureit.com/ MIT has its own EcoStruxture workstation installed to access the the

building management system
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Table 2.1: Summary of simulations and experiments

Scale Simulation or
Experiment

Control
Algorithms

Purpose

Benchmark
Model for

MIT
Classrooms
@Building

66

2 class-
rooms

Onsite experiment Rule-based
control

Reduce total GHG emission
from HVAC operations and
maintain occupant thermal

comfort

Room-level
Model

1
classroom

Numerical
simulation testbed
(decoupled 1R1C

model)

Model
predictive
control

Reduce total GHG emission
and/or energy consumption,

and maintain occupant
thermal comfort and indoor

air quality
MIT

Classrooms
@Building

66

2 class-
rooms

EnergyPlus
simulation with
machine learning
surrogate models

"Predict and
optimize"

2-step
framework

Reduce total GHG emission
from HVAC operations and
maintain occupant thermal

comfort
MIT

Classrooms
@Building

66

2 class-
rooms

Onsite experiment
using simulation

results

/ Reduce total GHG emission
from HVAC operations and
maintain occupant thermal

comfort
Aggregate-

level
Model

Multiple
buildings

Numerical
simulation testbed
(Coupled 1R1C)
with machine

learning models

"Predict,
perturb and
optimize"

3-step
framework

Reduce peak load demand
and maintain occupant

thermal comfort

Such sensor and meter installations for experimentation rarely occur because they are
time and labor consuming and involve various stakeholders across campus, such as the De-
partment of Facilities and Schneider Electric, which initially developed the control platform.
The customized control dashboards allow us to control the thermostat operations of dozens
of spaces simultaneously4. This provides us with a unique research opportunity to validate
our proposed method using real buildings, and to gain insights into the values brought by
the proposed methods in real-world implementations.

2.5.2 1R1C Thermal Capacitor and Resistor (RC) Model (Coupled and
Decoupled)

An RC network model is analogous to an electric circuit model as a numerical simulation
method [27], as shown in Figure 2-4. This 1R1C model includes one capacitor, equivalent

4In Building 66, we only have room-level control, but in the other experiment site, NW23, a multi-zone
level control dashboard has been provided to allow simultaneous control of multiple zones in the building.
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Figure 2-3: MIT campus map and Building 66

to thermal capacitance of mass and air, and one resistor that lumps all heat transfer effect
such as conduction and convection into one process. Studies have shown that a first-order
model, albeit less accurate than a second-order model, is often sufficient to describe the heat
transfer process within a space [51]; a higher-order model only brings diminishing marginal
modeling accuracy while incurring larger modeling costs.

Figure 2-4: 1R1C network model illustration

In Figure 2-4, 𝑇𝑎 represents ambient temperature; 𝑇 is indoor air temperature assumed
the same as mass temperature; thermal power �̇�𝑐 is heat injected by controlled thermal
equipment, such as HVAC equipment; and thermal power �̇�𝑒 is heat injected by exogenous
sources that contribute to thermal disturbance, which may include solar radiation, heat
brought in by outdoor air, and occupant and lighting loads. Thermal capacitance and
resistance (𝑅 and 𝐶) are properties of room construction materials. Using Kirchhoff’s
current law, we get

�̇�𝑐 + �̇�𝑒 = 𝐶
𝑑𝑇

𝑑𝑡
+

𝑇 − 𝑇𝑎

𝑅
(2.1)

The solution of this first-order model gives a linear representation of the system at time step
(𝑘 + 1)

𝑇 (𝑘 + 1) = 𝑎𝑇 (𝑘) + (1− 𝑎)[𝑇𝑎(𝑘) +𝑅(�̇�𝑐(𝑘) + �̇�𝑒(𝑘))] (2.2)
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where
𝑎 = 𝑒−

Δ𝑡
𝑅𝐶

Δ𝑡 is a discrete time interval; �̇�𝑐 is positive in the heating season and negative in the cooling
season.

When modeling multiple rooms within a building, we can treat the system either as
coupled or decoupled. A coupled system indicates that heat transfer happens between
rooms, for example, through heat conduction via connecting walls and convection through
airflow movement between rooms. Thus, a coupled system requires an additional resistor
between each room. A decoupled system, on the other hand, assumes each room transfers
heat only with outdoor space, and is adiabatic to its adjacent rooms. This thesis includes two
RC models, with one applying to room-level simulation and the other to aggregate building-
level. Only a building-level model uses a coupled configuration to consider a space’s heat
transfer with its surroundings within a building.

2.5.3 Rule-based Control

The rule-based control algorithm is not the major focus of this project - it only serves as
a benchmark for proposed method comparison. A rule- based control algorithm adjusts
temperature setpoints according to occupancy status. The controller will be notified of the
room occupancy schedule before deciding room setpoints. An unoccupied period permits a
more flexible setpoint range, while an occupied period uses a Business-As-Ususal setpoint
profile (following the existing schedule implemented in the campus buildings.)

2.5.4 Model Predictive Control (MPC)

Traditionally implemented in other engineering fields, model predictive control is used to
control a process while satisfying a set of constraints. More recently, it has been applied in
building control systems due to its capability of dealing with dynamical factors in the heat
transfer process and power grid behaviors [13, 55]. MPC is able to make decisions based on
predicted future scenarios, and therefore is capable of planning an optimized control schedule
for the near future. MPC shows strength in building HVAC operation control because it
can optimize building energy consumption, cost, and greenhouse gas emission, based on
the predicted conditions in the electricity market, energy usage, and space temperature
dynamics. For example, MPC can leverage opportunities such as shifts in energy price and
changes in grid carbon emission intensity to strategically manipulate the HVAC operation’s
schedule, which leads to minimum operating cost and GHG emission.
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2.5.5 Machine Learning Surrogate Models

Machine learning models with different scale and prediction objectives are widely deployed to
capture embedded information from the observed or simulated data points, such as power
consumption and room occupancy count, and to make accurate predictions for building
operations planning. Due to the nature of the prediction task, time series models are the
primary candidates, framed into linear regression, autoregression with exogenous inputs,
multi-layer perceptron (a simple form of neural network model), and long short-term memory
(a type of recurrent neural network) structures [31, 11, 72]. The model inputs and outputs
vary from each prediction task. The predictive power of an accurate surrogate model exempts
the researchers from laboriously configuring complicated simulation models. Besides, it
allows a seamless integration with the optimization framework that is usually less compatible
with traditional simulation approaches. Furthermore, it generalizes and scales room-level or
building-level findings to a larger application context, which fulfills the ultimate application
setting for both projects.

2.5.6 “Predict, Perturb and Optimize” Scheme

This scheme is developed and formulated collaboratively with Dr. Kevin Kircher to opti-
mize aggregate or room level peak load demand, energy costs, and GHG emission. It has
two variants: (1) three-step control and (2) two-step control. Three-step is configured to
provide aggregate-level setpoint control, including: (a) learning a baseline power prediction
model, (b) identifying a model describing perturbations about baselines, and (c) embedding
baseline predictions and perturbation model parameters in optimization that outputs opti-
mal setpoint schedules. The two-step method is applied in room-level control and combines
the step (a) and (b) into one process by directly predicting the resulting perturbed power
consumption with the perturbed setpoints, disregarding the baseline reference.

2.5.7 Simulation Testbed

In addition to EnergyPlus simulation, we established numerical simulation testbeds in
Python that consist of a system of 1R1C network models, integrated with one specific con-
troller, such as MPC, or “Predict, Perturb and Optimize” approach, to model and control
the thermal performance and response of individual spaces or the aggregate, by providing
external conditions such as the ambient temperature and occupancy schedule. The simula-
tion testbeds output hourly power consumption for each zone and whole building. Although
testbeds would never perfectly represent the thermal performance of buildings in reality,
they enable researchers to freely explore different temperature setpoint control strategies,
not limited by constraints in reality regarding thermal comfort consideration, on/off equip-
ment switch frequency concern and so on.
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Chapter 3

Three-step Peak Load Demand
Reduction

3.1 Background

This three-step approach is developed for reducing large-scale power grid peak load demand
by adjusting setpoint temperatures of HVAC units. This approach can also be further
extended to other devices controlled by setpoint temperatures, such as water heaters and
refrigerators, or devices with energy storage capacity, such as electric vehicles [47].

Applying setpoint adjustment to manage load demand is not a new idea. Researchers
have developed diverse methods to accomplish this goal, ranging from establishing model-
based control for distributed optimization [49], to reinforcement learning for various and
nonlinear loads [80, 22, 84].

While these methods demonstrate potential, they suffer from several major limitations.
First, it is almost impossible to develop simulation models perfectly matching the thermal
response of buildings, not to mention the stochastic occupant behaviors. The numerical
models often have to rely on simplified assumptions that could generate performance gaps.
Second, while reinforcement learning is model-free, it requires an extremely careful training
and calibration process, and its computational complexity explodes when the algorithm is
scaled up. In addition, implementation of the algorithm in real buildings requires consider-
able upfront setup time for the model to learn and explore building behaviors.

In comparison, the three-step approach is designed in such a way that it avoids the algo-
rithmic and implementation challenges. It is easy to scale to aggregate load for various types
of devices because it requires no device-level models, which also protects user privacy. It also
needs minimal computation and sensing as the only information it gathers and processes is
the aggregate power, which is independent of the number of devices involved. At the device
level, it only requires the device to be connected to the network to receive messages for
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setpoint adjustment.

3.2 Methods

The three-step approach includes the following: (1) establishing and learning a baseline pre-
diction model, (2) identifying a linear model generalizing load perturbations about baselines,
and (3) embedding baseline predictions and perturbation models in convex optimization to
provide optimally control setpoint schedules.

3.2.1 Baseline and Prediction

The baseline aggregate power 𝑃𝑡(𝑘) refers to the business-as-usual power consumption to
track user-specified setpoint schedules for multiple units and devices at discrete time step
𝑘. A time-series forecasting model can be used to predict aggregate power under baseline
operation. The model requires historical aggregate power measurement data and predictive
features such as weather conditions (ambient temperature, relative humidity, and cloudiness)
and temporal information (seasonality, week of day, and hour of day). Possible model
structures include linear regression, linear time series, neural networks, and support vector
machines. This chapter does not incorporate machine learning baseline models because we
would like to test the validity of the approach first by comparing the load savings directly
with the true simulated baseline without introducing confounding factors, such as accuracy
of a prediction model. However, more time series load forecasting problems are explored in
Chapter 4 and Chapter 9 where model comparison and data requirements are discussed in
detail.

3.2.2 Load Perturbation

The perturbation is simultaneously applied to all user-specific setpoints, and the allowable
perturbation is ±1 ∘C. The perturbation could either increase or decrease the total aggregate
power consumption 𝑃𝑡(𝑘). The difference between the baseline and perturbed aggregate
power is the load perturbation 𝑢(𝑘), where

𝑢(𝑘) = 𝑃𝑡(𝑘)− 𝑃𝑡(𝑘) (3.1)

To generalize the load perturbation response, we implement a linear model which is com-
patible with our following optimization framework and find sufficient for the prediction task.
Based on Taylor’s theorem, the load perturbations should respond approximately linearly
to small setpoint (±1 ∘C) adjustments, although the actual response is generally non-linear.
To reflect the unique nature of cooling and heating loads, the linear model is structured
differently from a common one where regression is performed to define model coefficients
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between inputs and outputs directly without considering historical trend. Specifically, the
power perturbation at time 𝑘 depends on not only the current setpoint perturbation, but
also the past history to account for the historical thermal dynamics. In the meantime, there
exists the non-linear property of perturbed power due to the nature of the perturbation
experiment - the perturbed power would become zero if the setpoint is lowered by 1 ∘C in
heating season and increased by 1 ∘C in cooling season. To account for these factors, we
formulated the problem such that the trend can be easily recognized by the algorithm:

𝑢(𝑘) = 𝛼1(𝑘)𝛿𝑇 (𝑘) + · · ·+ 𝛼𝑚(𝑘)𝛿𝑇 (𝑘 −𝑚+ 1) + 𝜖(𝑘) (3.2)

where 𝑢(𝑘), 𝛿𝑇 (𝑘), and 𝜖(𝑘) are load and setpoint perturbations, and the error term at
time 𝑘; parameters 𝛼𝑖(𝑘) vary with outdoor temperature:

𝛼𝑖(𝑘) = 𝛽𝑖max{0, 𝜃(𝑘)− 𝜃min} (3.3)

such that the model predicts 𝑢(𝑘) = 0 whenever 𝜃 < 𝜃min; and when above 𝜃min, the
predicted 𝑢(𝑘)| increases linearly with 𝜃(𝑘).

Parameters 𝛽1, · · · , 𝛽𝑚 are fit by running a regression model; memory 𝑚 and temperature
threshold 𝜃𝑚𝑖𝑛 are tuned by grid search, based on root mean square error (RMSE).

While a linear model is formally adopted in the framework, we also experimented with
non-linear neural networks for time series analysis with similar predictive features except
that the non-linear model does not involve very physical based specific structure. The
linear network predicts perturbed loads for a 4-hour time horizon. The inputs are scaled to
standard normal distribution before being sent to a multi-layer perceptron (neural network)
with a hidden layer of size 80 units, followed by a ReLU non-linear function and a drop out
rate of 0.5. The model is trained using mean absolute error (MAE) and evaluated with both
MAE and RMSE as metrics.

3.2.3 Load Shifting Optimization

In the last phase, the baseline predictions and the perturbation model are embedded in
the convex load-shifting optimization. The optimization framework can be extended to
other objectives such as thermal comfort, energy costs, GHG emissions, and revenues from
power system services such as frequency regulation. In this project, the optimization ob-
jective is to limit peak aggregate demand by regulating temperature setpoint perturbations
𝛿𝑇 (0), · · · , 𝛿𝑇 (𝐾 − 1):

Minimize max
𝑘∈{1,··· ,𝐾}

𝑃 (𝑘)

Subject to: |𝛿𝑇 (𝑘)| <= 1

(3.4)

where 𝑃 (𝑘) = 𝑃𝑡(𝑘) + 𝜖(𝑘) = 𝛼1(𝑘)𝛿𝑇 (𝑘) + · · ·+ 𝛼𝑚𝛿𝑇 (0) + 𝜖(𝑘) + 𝑃𝑡(𝑘).
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This is a convex optimization problem with 𝐾 + 1 variables and one constraint. It is
reformulated as a linear program and solved by a standard optimization software, in this
case, CVXPY [14, 29, 30].

3.3 Simulations

A simulation testbed for an aggregate community is developed to validate the proposed
method. The model adopts a coupled 1 resistance 1 capacitance (1R1C) network model
that accounts for heat transfer between the interior and ambient environment, as well as
between the neighbors. The testbed enables users to define the number of basic units (Figure
3-1) to adjust the size of the aggregate. The basic simulation unit is composed of five zones
in a pre-defined layout, with four exterior zones, and one interior zone. After the simulation
size is decided, the algorithm randomly generates model parameters within a reasonable
range, including 𝑅 and 𝐶 values, HVAC equipment coefficient of performance (COP), and
equipment sizing factor, etc. Depending on the position of the zone, a window size and solar
heat gain coefficient are assigned to each zone, and solar radiation generated from simulation
software Ladybug [63] is also included as a zone feature. With the defined parameters, the
testbed automatically sizes the HVAC heating and cooling capacity based on the Actual
Meteorological Year (AMY) weather data. The simulation testbed is placed in Austin, TX
and the entire simulation utilizes weather data in that area. In the meantime, to include
not just the electricity load from HVAC systems, we incorporate the non-HVAC loads such
as lighting, plug loads, and occupancy introduced loads by referring to the Cornell campus
dataset provided in the ASHRAE Great Energy Predictor Competition [58]. All simulation
parameters are summarized in Table 3.1. The simulation assumes the thermal load demand
introduced by setpoint adjustments can be fulfilled by the HVAC equipment. This is a fair
and necessary requirement because the setpoint schedule defined in the simulation model
is typical for normal household operations, and the perturbation and optimization steps
need to be informed by load changes from setpoint changes observed in the simulation. The
simulation period is three months from June to August. Compared with other numerical
models that use overly simplified assumptions such as a decoupled system and exclusion of
solar and non-HVAC loads, this testbed is setup to represent load response authentically to
setpoint adjustments without running simulation software1 .

The establishment of baseline loads, perturbations, and optimization verification are all
conducted using this testbed. Figure 3-2 shows simulation results of hourly loads for 10
individual zones, with two baseline cooling setpoint schedules at 24 ∘C and 25 ∘C (with a
deadband of ±0.5 ∘C) for a one-week period in the summer season. The HVAC loads peak at
different time of the day because of the zone orientation. HVAC loads also vary with outside

1For the source code of the simulation, please refer to Appendix D.
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Figure 3-1: A basic unit in simulation test bed, consisting of five zones (not drawn to scale)

Table 3.1: Model parameters for the simulation testbed

Parameters Unit Value Range
Thermal resistance (R) ∘C/kW 2.2− 2.8

Thermal capacitance (C) kWh/∘C 3.5− 4.5

Initial temperature (𝑇𝑖𝑛𝑖𝑡) ∘C 22− 27

HVAC capacity (𝑃max) kW Determined by the testbed
HVAC coefficient of performance (COP) - 2.8− 3.3

HVAC sizing factor (sf) - 1.4− 2.0

Window size 𝑚2 {4, 5, 8}
Window solar heat gain coefficient (shgc) - 0.3− 0.6

Zone orientation - {east, west, south, north, interior}
Simulation season - {heating, cooling}

Zone setpoint schedule (Tset_schedule) ∘C Pre-set by users or updated with the
perturbation optimization outputs

Zone non-HVAC loads (Qall_schedule) kW Pre-set by users

temperature, with zero loads occurring at midnight as the ambient temperature drops.

Figure 3-3 illustrates room temperature dynamics with setpoint perturbation implemen-
tation for a selected zone for a one-week period with 25 ∘C setpoint baseline. The per-
turbation ±1 ∘C schedule is generated from a uniform probability distribution. The room
temperature follows the trend of setpoint most time except during the nighttime when room
temperature drops significantly below the setpoint perturbation range due to a reduced
outdoor temperature and low occupant activity level, and no solar exposure.

In this chapter, a prediction model is not applied to the simulation aggregate baseline, so
the optimized load can be directly compared with the true simulated benchmark. The per-
turbed aggregate load is fed into a linear machine learning model. The optimization model
embedding the learned perturbation model then gives optimal control setpoints. Finally,
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Figure 3-2: Individual unit HVAC load for 10 simulated zones for a selected one-week
period, with outdoor temperature

Figure 3-3: Room temperature dynamics with setpoint perturbation schedule for a selected
zone

the optimized setpoint schedule is piped into the testbed again for validation.

3.4 Results and Discussions

3.4.1 Learning a Perturbation Model with Linear and Non-linear Algo-
rithms

Linear Model

The perturbed dataset is split into training, validation, and test sub-sets to first select
the best coefficients and tune the parameters, temperature threshold (𝜃min), m (memory).
The best tuned parameters for this dataset are 23.3 ∘C (74 ∘F) and 24-hour memory. The
selection of the parameters is based on the parameters associated with the lowest RMSE
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metric in the validation dataset (Figure 3-4).

(a) (b)

Figure 3-4: Model parameter tuning for temperature threshold (a) and memory (b) on
training and validation sets

With the tuned hyperparameters, the training RMSE is 2.63 kW, and the validation
RMSE is 2.57 kW. While normally the validation error is higher than the training error,
the fact the training and validation datasets are not entirely stationary makes the result a
little skewed. Because this linear model does not address the inherent seasonality within the
dataset (i.e. August in Austin is usually hotter than May), the average ambient temperature
and perturbed load are different for the two datasets.

Figure 3-5 presents the predicted and actual perturbed aggregate loads on the validation
dataset. The perturbed load ranges from 10 kW to 15kW for a total of 10 zones. The pre-
dicted loads follow the actual trend, despite the hours with zero loads. The major prediction
error comes from failing to capture (1) the extreme perturbed loads and (2) zero perturbed
loads. For the first source of error, it is common that linear models tend to smoothen the
predictions due to the averaging effect. The second source of error is also inevitable given
the complexity of thermal dynamics associated with perturbation schedule. For example, a
zero load could occur not only when a +1 ∘C setpoint change was implemented, but also
when no setpoint adjustment occurred but the outdoor weather was cooler, or even when
there were continuous setpoint perturbations in the same direction. Thus, a simple linear
model would not be able to capture all these scenarios.

The inaccuracies in prediction could lead to mixed effects on the following optimization
step. For example, in the cooling season, an upward setpoint adjustment decreases the total
load; if the magnitude of perturbation is underestimated by the linear model, the optimiza-
tion algorithm will make conservative decisions, meaning that the actual shifts in loads are
greater than the predicted ones, which favors the peak reduction. On the other hand, an
underestimate in perturbed loads associated with a downward setpoint adjustment may have
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Figure 3-5: Predicted and actual perturbed loads for the validation dataset

the system over-respond to the setpoint change, and therefore create a new undesired peak
load during the previous non-peak hours.

Non-linear Model

The non-linear multi-layer perceptron (a simple neural network model) predicts perturbed
load for a 4-hour horizon, so each hourly prediction is associated with its own prediction
accuracy. Figure 3-6 demonstrates the prediction RMSEs for each hourly prediction and
compares them against the memory span. Intuitively, the first-hour prediction has the
highest accuracy because it is closest to the historical information. On the other hand,
the difference of prediction accuracy among the second to the fourth hours is insignificant.
Based on the importance of each hourly prediction to the optimization problem, weights
could be assigned to each RMSE to obtain the memory that fits the model best. In this
case, we prioritize the prediction accuracy of the first hour to the rest, so any memory
ranging from 5 to 16 hours is a good candidate. We select a 12-hour memory because this
is most compatible with diurnal load patterns in reality.

Figure 3-7 shows the predicted and actual first-hour perturbed load on the validation
set, with a 12-hour memory. The first-hour prediction RMSE is approximately 1.12 kW,
and the rest around 1.23 kW. Compared with the linear model result, this is a 55% increase
in accuracy. The improvement comes from the model’s capability to capture extreme values
and more precisely predict zero loads. A more accurate perturbation prediction model could
prevent under- or over-estimation of thermal response and better inform the optimization
algorithm.
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Figure 3-6: Parameter tuning for model memory on the validation set with the neural
network model

Figure 3-7: Predicted and actual perturbed load on the validation set from the neural
network model

3.4.2 Setpoint Optimization and Validation

The optimized setpoint perturbation (𝛿𝑇 ) is used as an input to the simulation testbed
to validate its actual impact on load changes, compared to the optimized load condition
provided by the optimization algorithm. As is illustrated in Figure 3-8, the optimal 𝛿𝑃 refers
to the predicted load perturbation from the optimization algorithm, whereas validated 𝛿𝑃

is the observed response from the testbed. It is great to see the predicted and observed load
perturbations have an aligned trend. Nonetheless, there are times when loads are under-
and over- predicted by the optimization algorithm compared to the validated response.

The discrepancy between predicted and observed load perturbation causes the instability
of algorithm performance. Out of seven simulated days shown in Figure 3-9a, six days
demonstrated varying degrees of reduction in the validated aggregate peak load demand,
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Figure 3-8: Validated and optimized perturbed loads with their setpoint perturbation for a
selected week

ranging from 10% to 50%. There is one day when the peak load shifts to the beginning
of the day after optimization because the algorithm considers pre-cooling the spaces to
minimize the peak load during the daytime. While this is not ideal, the algorithm still
accomplishes load shifting to off-peak hours when grid stress is less intense. In the meantime,
we also recognize that the memory of a perturbation prediction model affects the flexibility of
optimization. With more memory of variables embedded in the algorithm, the optimization
can control and adjust the setpoints for a wider range of hours, and therefore obtains more
potential to shift and shave peak loads. Finally, besides the perturbation prediction error,
the nature of a 1R1C simulation model itself could contribute to the instability of the
method. Because the 1R1C model treats the entire space as one capacitor and one resistor,
the thermal dynamics or air and other building materials are not separately considered.
This could lead to an over-reaction of the system as both the air and building materials are
modeled to be heated up and cooled down at the same rate, which is not true. In reality,
building materials have much larger thermal capacitance and resistance than air, which can
smooth load perturbations. To address this issue, my colleague Stella Zhang has adopted
a similar three-step approach with simulations conducted in EnergyPlus that involves more
realistic modeling scenarios [86]. It presents a more predictable and consistent algorithm
performance than using a numerical model, albeit with more modeling efforts.

3.5 Future Work

To ensure a consistent optimization outcome, a 2R1C or 2R2C model could be developed
to more realistically present thermal response of space. In the meantime, realizing a non-
linear model can significantly out-perform a linear model motivates the future MIT research
team to further explore a new non-linear optimization approach. Furthermore, while this

46



(a)

(b)

Figure 3-9: Baseline, optimized, and validated aggregate loads for a selected week (a), and
a selected day (b) using the simulation testbed

three-step approach assumes a uniform setpoint perturbation across all zones, it is difficult
to reach a consensus among space users. Thus, the ability to perturb setpoints on the room
level would provide more flexibility to meet different space thermal comfort requirements.
This may involve more challenges for baseline and perturbation models to pick up room-level
signals. Finally, it is also important to learn the data requirement to train a baseline and
perturbation model such that building owners and grid utilities could recognize the capital
investment and implementation timeline before adopting this new technology. This problem
is further elaborated in Chapter 9.
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Chapter 4

Two-step GHG Emission
Minimization

4.1 Background

This chapter introduces the two-step simulation with optimization approach with Ener-
gyPlus as a room-level framework. The two-step approach is a variant of the three-step
approach discussed in Chapter 3 by combining the first two steps into one perturbed load
model. This simulation-based solution is then later implemented onsite experiment on MIT
campus, presented in Chapters 6-8.

EnergyPlus, a whole building energy simulation program developed by the U.S. De-
partment of Energy [28], has been considered the state-of-art simulation software since its
launch in 2000. Researchers have used EnergyPlus mainly for building design [68], building
load simulation [38], energy consumption analysis [32], and more recently HVAC equipment
control for efficient energy performance [87, 88, 34]. The high-order simulation algorithm
programmed and executed in the software allows researchers to obtain realistic simulation
results compared to lower-order numerical methods. Nonetheless, establishing and running
a fully parameterized model can be computationally expensive and labor intensive. To in-
tegrate a HVAC control algorithm for equipment performance improvement in a simulation
model can be even more difficult as this process requires an iterative simulation process.
Therefore, the two-step approach decouples the simulation from optimization to minimize
the engineering effort and mitigate the required knowledge about the software deployment
pipeline involved using machine learning surrogate models.

The two-step approach relies on the ability of building temperature setpoint adjustments
to lower energy consumption and GHG emission. To capture and generalize thermal response
of a given space, we train machine learning surrogate models on the simulated datasets.
The application of machine learning methods to commercial building heating and cooling
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systems is a well-studied field. These applications are broadly categorized as (a) building
energy modeling, (b) optimizing energy use [69], and (c) occupancy prediction [36]. This
project spans all three areas, with the first two being the focus of this chapter and the third
investigated by Julia Wang, my research team member. The primary contribution of the
project is experimental validation in a real building, which we have instrumented with energy
sub-meters, people counters, and other sensors. A secondary contribution is optimizing for
GHG emissions, rather than more common performance criteria such as energy consumption
and operating costs. In [36], both experimental validation and new performance criteria are
identified as important areas for future research.

4.2 Methodology

The approach involves two steps, summarized in Figure 4-1: (1) generate and learn a load
profile with a perturbed temperature setpoint schedule, and (2) optimize for reduction on
total GHG emission based on the perturbed load profile by constraining the setpoint tem-
perature schedule. Specifically, we use EnergyPlus to simulate perturbed load conditions,
with a random perturbation of either ±5 ∘C or 0 ∘C and unperturbed baseline setpoint
at 20 ∘C. This gives helpful information on load behavior under steady-state and transient
state room conditions. We then apply linear machine learning algorithms to predict the load
profile, using simulated hourly load data for training and validation. Finally we optimize for
minimal GHG emission with a convex optimization algorithm that produces the associated
hourly setpoint schedule to be fed into EnergyPlus for validation, and implemented in onsite
experiments discussed in Chapters 6-8.

Figure 4-1: Optimized 24-hour temperature setpoint prediction system
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4.2.1 EnergyPlus

EnergyPlus is employed in the design of the classroom model. The case of a medium-
sized MIT classroom, in Cambridge, MA has been used for this purpose. While there are
other energy simulation programs, EnergyPlus makes it possible to model new and complex
building technologies which cannot be modeled by other whole building energy simulation
programs. Also, EnergyPlus models can be applied to a large number of zones and whole
buildings that could be used for scaling up the results for the entire campus.

The current EnergyPlus model is designed according to the real classroom parameters
to the best of our knowledge. The corresponding modeled outputs provided information
about the load behavior under the steady-state and transient state room conditions. The
methodology used in the project has the following steps: (1) data collection about the class-
room, (2) preparation of schedules for occupancy and heating/cooling using hypothetical
or actual data (if available), (3) classroom model development for energy simulation model
in EnergyPlus, and (4) modification of weather data file required for simulation using local
Typical Meteorological Year(TMY) and Actual Meteorological(AMY) files.

Parameters used in the simulation include: general geometry of the classroom, classroom
internal loads based on a pre-determined occupancy schedule and typical teaching equipment
in classrooms, building envelope properties such as glazing area and materials, daylighting
and solar, electrical systems and equipment, HVAC systems, occupancy (currently assumed
no occupancy due to pandemic), and temperature setpoint schedule. The current setpoint
profile includes a range of perturbed setpoints, for example, ±5 ∘C. This classroom model
simulates and outputs room loads on an hourly basis for a 3-year period1.

The EnergyPlus model outputs are used as inputs to machine learning models. The
yearly simulation is split into two modes, cooling season and heating season, to facilitate
the following heating and cooling load prediction for machine learning models. For example,
only the heating mode is enabled by setting a low cooling setpoint during the heating season
and vice versa for the cooling season. In this way, only the heating load is generated during
the heating season and cooling load for the cooling season, so that the machine learning
model has a clear expectation of the prediction target during a given day.

However, this simplified method may not accurately reflect the actual room energy con-
sumption. It is likely that space can incur both cooling and heating loads in heating or
cooling seasons, depending on how room temperature is controlled. In the meantime, the
arbitrarily defined heating and cooling seasons as the simulation period neglect the existence
of shoulder seasons that have more interchanging heating and cooling loads throughout a
day. This may cause difficulties for a learning model afterwards to pick up the load trends
especially in the shoulder season.

1Model details are included in Appendix E.
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4.2.2 Machine Learning Model Exploration

This is a time-series learning task. We have experimented with several state-of-art models,
such as ARIMA, Prophet model from Facebook [79], multi-layer perceptron, and recurrent
neural network. To train and tune and validate model performance, we split data into
training, validation and test sets. For this time series training task, each set consists of a
dataset of one-year continuous simulation results. Two models are individually trained for
heating and cooling loads.

Model Features and Target

The forecasting target is the hourly heating or cooling load.

It is common knowledge that the more modeling features provided to a learning task, the
better the outcome would be. And indeed, the simulation output includes a large number
of modeling parameters that are important to load forecasting. However, we only select
the following as features considering their availability in practice: historical load condition
(𝑃 ), ambient dry-bulb temperature (𝑇𝑜𝑢𝑡), room setpoint (𝑇𝑠𝑒𝑡), change in temperature
setpoint with respect to the previous time step (𝑑𝑇𝑠𝑒𝑡(𝑡) = 𝑇𝑠𝑒𝑡(𝑡) − 𝑇𝑠𝑒𝑡(𝑡 − 1)), temporal
embedding. Specifically, we applied a sine and cosine embedding to all temporal information,
as is discussed in [40] to capture daily, weekly, and seasonal trends of rooms load condition
influenced by occupant behaviors, building schedules, and seasonality. For example, to
represent "time of day", we used [sin(𝜋(ℎ)/12), cos(𝜋(ℎ)/12)] to represent a 24 hour cyclic
nature explicitly in the learning problem. In the case of the simulation dataset, we encode
only time of day as a temporal feature. Additionally, to ensure model convergence, we scale
𝑇𝑜𝑢𝑡, 𝑇𝑠𝑒𝑡, and 𝑃 to standard normal distributions.

Teacher Forcing Training for Time Series Inputs

Teacher forcing is a widely used technique developed several decades ago for training se-
quential input data. It was originally developed for quickly and efficiently training recurrent
neural network models, used in the field of natural language processing, and later was ex-
tended to applications in other fields. The time series prediction task requires the prior
time step predicted room load to become an input to the next step load prediction. When
teacher forcing is enabled, the model uses ground truth as input (as if there was a teacher
telling the right answer), instead of the output predicted in the prior step, in the training
phase. The two training methods (Autoregressive with exogenous regressors and Multi-layer
perceptron) presented in this project also adopt this technique.
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Autoregressive with Exogenous Regressors (ARX)

A wide range of statistical methods have been developed for time series analysis, for example,
Autoregression (AR) that predicts future behaviors only with past behaviors as inputs,
Autoregressive Moving Average (ARMA) that considers the observations and residual errors,
Autoregressive Integrated Moving Average (ARIMA) that takes a differencing pre-processing
step of the sequence to make it stationary on top of ARMA model, and Seasonal ARIMAX
that considers seasonal trends and exogenous variables.

All the model variations have been explored. While domain knowledge may assert a
strong seasonality and trend in the thermal load, we find that the extra model complex-
ity introduced by "Integration," "Moving Average" or "Seasonality" terms only marginally
improves model performance. Considering the trade-off between model complexity and per-
formance, we selected ARX(6, 1) as the preferred model. The autoregressive component
includes the previous 6-hour load which has a lag of 6, and the exogenous regressors consist
of current 𝑇𝑜𝑢𝑡, 𝑇𝑠𝑒𝑡, 𝑑𝑇𝑠𝑒𝑡, and time of day which has a lag of 1.

Mathematically, an ARX(6, 1) model is defined as:

𝑦(𝑘 + 1) = 𝑎1𝑦(𝑘) + 𝑎2𝑦(𝑘 − 1) + · · ·+ 𝑎6(𝑘 − 5) + b1U(𝑘) (4.1)

where 𝑦 is the thermal load, the target output, 𝑎1, · · · , 𝑎6 are the coefficients of the autore-
gressive components, U is the exogenous vector variable, and b1 is the coefficient vector
associated with the exogenous vector variables.

Prophet Model

ARX models are interpretable and have strong forecasting performance when the lags pa-
rameters are trained well, yet they lack in capturing the non-linearities in the time-series
trends. To address those challenges, we leverage the Prophet model [79] to forecast the
hourly heating load with the outdoor temperature and setpoints as regressors. The Prophet
model is an adaptation of a decomposable time series model [44] with three time-series
components: trend, seasonality, and holidays.

𝑦(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝑒(𝑡) (4.2)

where 𝑔(𝑡) is the trend function which models non-periodic changes in the value of the
time-series, 𝑠(𝑡) represents periodic changes (e.g., weekly and yearly seasonality), and ℎ(𝑡)

represents the effects of holidays which occur on potentially irregular schedules over one
or more days. The error term 𝑒(𝑡) represents any idiosyncratic changes which are not
accommodated by the model; later we make the parametric assumption that is normally
distributed. This specification is similar to a generalized additive model (GAM) [45], a
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class of regression models with potentially non-linear smoothers applied to the regressors.
Here we use only time as a regressor but possibly several linear and non-linear functions of
time as components. Modeling seasonality as an additive component is the same approach
taken by exponential smoothing [39]. Multiplicative seasonality, where the seasonal effect
is a factor that multiplies g(t), can be accomplished through a log transform. The GAM
formulation has the advantage that it decomposes easily and accommodates new components
as necessary, for instance when a new source of seasonality is identified.

We trained a Prophet model with 𝑦(𝑡) hourly heating load, and incorporated the outdoor
temperature and heating setpoints as additional regressor. We find the model to be best
trained when the changepoint prior scale is tuned to 0.4. Prophet includes functionality for
time series cross validation to measure forecast RMSE using historical data. We specify the
initial training period as 60 days, and both the forecast horizon and the spacing between
cutoff dates as one day.

Multi-layer Perceptron (MLP)

Previous research efforts suggest that more complicated neural network models for sequential
prediction tasks, such as Recurrent Neural Nets (RNN) and its variant Long Short-Term
Memory (LSTM), are too powerful for load prediction because the training data have a
very low-dimension data structure compared to language model training inputs for which
those models were designed. Such complex model structures require a lot of computation
resources while not generating satisfying outcomes.

Therefore, we decide to use the simplest version of a neural network, a multi-layer per-
ception (MLP) to embed the non-linearity relationships among the variables. This MLP
consists of three layers of nodes: an input layer, a hidden layer, and an output layer, ac-
companied by a ReLU activation function. To encode the time series properties, the model
inputs and structures (training and validation) are structured in the same way as an ARX
model. The MLP takes in historical 24-hour load and current 𝑇𝑜𝑢𝑡, 𝑇𝑠𝑒𝑡, 𝑑𝑇𝑠𝑒𝑡, and time of
day as inputs and forecasts the load conditions for the next 24 hours.

4.2.3 Convex Optimization

After training an energy prediction model, we embed it in an optimization algorithm to
generate a temperature setpoint profile that minimizes GHG emissions. While we have
tried various types of machine learning models described in the previous section, we apply
a convex optimization model combined with the ARX(6, 1) prediction model. The problem
of minimizing cumulative GHG emissions takes the following general form:

min
𝑥∈𝒳

{𝜇⊤𝑦 | 𝑦 = 𝑓(𝑥)} (4.3)
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Figure 4-2: An illustration of a 3-layer MLP model

Here the decision variable 𝑥 ∈ R𝑛 (∘C) contains the temperature setpoints at each step
of the time horizon, 𝒳 ⊂ R𝑛 is a convex set of feasible temperature setpoint profiles, 𝜇 ∈ R𝑛

(kg/kWh) contains the GHG intensity of electricity at each time step, 𝑦 ∈ R𝑛 contains the
energy used at each time step, and 𝑓 : R𝑛×𝑚 → R𝑚 is the energy prediction model. (In this
abstract representation, the structure of 𝑓 includes the exogenous features and the model
parameters.)

Note that the optimization is conducted on a room-level that ignores the complex energy
supply (a tri-generation) system on campus. Additionally, while the algorithm takes grid
carbon intensity as a basis for optimization, the campus plant largely consumes natural gas.
Those implications are elaborated in detail in Chapter 9.

Since the selected prediction model is linear in the temperature setpoints, then the
objective function in Problem (4.3) is linear in 𝑥. In this case, Problem (4.3) is convex, as
the set 𝒳 is convex by assumption. Therefore, the problem can be solved to global optimality
in polynomial time using, e.g., interior-point methods. In our applications, the set 𝒳 can
usually be described by a system of linear inequality constraints, so Problem (4.3) reduces to
a linear program. It can therefore be solved efficiently and reliably by off-the-shelf software,
in this case the CVX (in MATLAB)/ CVXPY (in Python) package developed by Stephen
Boyd’s group at Stanford [29, 30, 14].

The optimization model outputs the next 24-hour optimal setpoint schedule based on
its best knowledge of the room and external conditions for the next day. It relies on the
predicted or known information provided by the forecasting models. For example, the grid
intensity forecast tells how clean tomorrow’s grid would become, and the room occupancy
model shows if the space is occupied during a certain period. In this study, we select one-
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day grid intensity historical 5-minute data of ISO New England from ElectricityMap2 as
predetermined values to make the results more interpretable .

The following two sets of constraints are implemented in the optimization process. First,
setpoint range. Take the heating season model as an example, heating setpoints range from
15 to 24 ∘C; when room is predicted as unoccupied, the heating setpoint should be kept
between 20 and 21 ∘C; otherwise, the range can be extended to 15 to 24 ∘C to allow for
more natural temperature drifts. Second, the rate of change of setpoints. Considering the
heating and cooling capacity from real HVAC equipment, we impose the maximal hourly
setpoint change rate as 0.5 ∘C. For heating season, this means the next time step setpoint
cannot be more than 0.5 ∘C higher than the current one (no constraint on the downward
change rate). This ensures the optimal setpoints implemented in experiments can be later
closely tracked by the HVAC equipment.

This optimization could be further modified to incorporate occupants’ thermal comfort
as the second objective in addition to GHG emission. Then the problem becomes a multi-
objective optimization framework, and depending on the importance of the two objectives,
weights are assigned to each objective respectively. To quantify thermal comfort, we could
introduce a quadratic penalty term that measures the deviation of room temperature from
the desired temperature (preferred by occupants). The multi-objective problem will be
discussed in detail in Chapter 5. The following optimization results are all based on the
setup of a single objective problem3.

4.2.4 EnergyPlus Simulation Verification

To evaluate the GHG savings from the optimal setpoint schedule, we pipe the 24-hour sched-
ule back to EnergyPlus using eppy [66], a Python based package to modify the simulation.
Then the optimized GHG is compared with the baseline GHG.

4.3 Results and Discussion

4.3.1 Machine Learning Model Performance Comparison

To evaluate and compare the model performance, we feed the model with the test set of
heating loads and compare the average Root Mean Square Error (RMSE), listed in Table
4.1. A 24-hour forecasting horizon of the three models from a selected period is shown in the
Figure 4-3. Overall, while not perfect, all three models correctly forecast general load trend.
Compared to Prophet and ARX, MLP can better capture extreme load conditions such as
peaks. ARX and Prophet share very close RMSE, around 4MJ, while MLP significantly
outperforms both, giving only 1.8MJ RMSE.

2https://app.electricitymap.org/map
3All code documentation is posted on the GitHub Repo; link is provided in Appendix D.
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Table 4.1: Model performance comparison

ARX(6,1) Prophet MLP
RMSE [MJ] 4.25 4.04 1.77

Figure 4-3: Model performance comparison on a 24-hour forecasting horizon from the test
set. Black solid line represents true load, and the dashed orange, red and blue lines are

from Prophet, ARX, and MLP models respectively.

Figure 4-4: Actual and predicted (with ARX model) hourly heating load trend in the
heating season

More complex non-linear neural networks are often expected to outperform simpler linear
models. Carefully investigating the simulation dataset, we recognize that the trends within
the data are inherently nonlinear. Figure 4-4 illustrates the predicted and actual hourly
heating load in the heating season (Oct. to Mar.) While it is expected the heating loads
would peak in Jan. that is usually associated with lowest outdoor temperature, we only
observe some seasonality in the dataset. This is determined by how the dataset is generated.
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(a)

(b)

Figure 4-5: Hourly heating energy associated with heating setpoints (a) and outdoor
temperature (b)

Recall that the first phase in this two-step approach, room setpoints are perturbed by ±5
∘C. This means the setpoint difference between two hours can range from 0 ∘C (no change
applied to the previous hour) to 10 ∘C (−5 followed by +5 or vice versa). The setpoint
perturbations disrupt the linear or quadratic relationship between setpoints and heating
load, as described in Figure 4-5a for a simulation in the heating season. While a higher
heating setpoint is associated with larger heating energy, it is still possible that a higher
setpoint can lead to zero load and a lower setpoint to a non-zero load because the load
then is driven by setpoint changes rather than setpoints themselves. In addition, the direct
relationship between ambient temperature and heating load becomes unclear, shown in
Figure 4-5b. The room could have zero load when ambient temperature is very low but the
heating setpoint just gets adjusted downward by 5 ∘C (such as the zero-load data at -10 ∘C
outdoor temperature in Figure 4-5b). All the non-linear properties introduced by setpoint
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perturbations make a non-linear model a more suitable candidate for the prediction task.

4.3.2 Optimization Results

During the optimization process, a hypothetical room occupancy schedule is fed into the
framework, along with a grid marginal operating emission rate (MOER) as an indicator for
grid carbon emission intensity. In this simulation, the room occupancy is labeled either as
0 (unoccupied) or 1 (occupied). The MOER schedule comes from a real 24-hour period
from ISO New England obtained from ElectricityMap. The optimization randomly selected
a heating day using the 2017 Boston AMY weather file as the ambient temperature.

After performing sensitivity analysis, we find that the algorithm is most sensitive to the
occupancy schedule, through the following three test trials. In each trial, we control all other
variables except for the occupancy schedule and observed the optimal setpoint schedule.
Each trial result is presented in two figures, with the top one showing the setpoints and grid
MOER and bottom one for setpoints and occupancy status.

The first test shown in Figure 4-6 examines the algorithm’s response to occupancy
changes in the form of a delta function. Aware of the occupancy schedule change, the
algorithm mandates the setpoint during the occupied period above 20 ∘C. To achieve this,
considering the constraint on ramping rate, the setpoint gradually increases starting from
midnight. This setpoint profile also validates the correctness of the embedded load predic-
tion model – it recognizes a higher heating setpoint is associated with larger room loads,
and therefore adjusts the setpoints downward during the unoccupied time to minimize total
energy and GHG emission. However, since we do not impose a setpoint ramp down rate,
it is expected that the algorithm should mandate a drastic setpoint drop after the 10th
hour when room is no longer occupied. It could have achieved a larger saving if it released
setpoint to the lowest allowed 16 ∘C immediately.

The second test scenario describes a 24-hour full occupancy room status. It is designed
to test the model’s response to varying MOER levels in the grid. A full occupancy schedule
requires the all-day setpoints constantly above 20 ∘C. Nonetheless, because the MOER
level in the specific simulation period ranges from 250 g CO2eq/kWh to 330 gCO2eq/kWh,
we would expect a load shifting strategy that preheats the room before the grid becomes
carbon intensive. Unfortunately, this is opposite to our observation. As is shown in the
Figure 4-7a, the highest setpoint occurs when the grid has the highest MOER. While the
magnitude of the change is very subtle, it shows that the model is less sensitive to MOER
and therefore may not bring pre-conditioning strategies to achieve load shifting. This can
be explained by two factors. First, the variation in ISO New England MOER is limited.
The selected MOER profile has a daily variation of approximately 30% (note that 30%
variation is not common in ISO New England market and typical variation may be below
20%), which is relatively small compared to that in California or Texas where solar and
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(a)

(b)

Figure 4-6: (a) Optimized setpoints vs. grid MOER for test case 1; (b) Optimized
setpoints vs. room occupancy status for test case 1
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(a)

(b)

Figure 4-7: (a) Optimized setpoints vs. grid MOER for test case 2; (b) Optimized
setpoints vs. room occupancy status for test case 2

wind renewable energy creates a more fluctuated grid condition. We envision that the
algorithm would pick up the MOER signals more effectively if the simulations were set in
a more fluctuated electricity market. Second, the embedded load prediction model cannot
accurately forecast load conditions due to the inherent non-linearity in the load behavior,
as is described in the previous result section. The optimal control depends on the accuracy
of the embedded model that informs the optimization algorithm of the predicted outcome
of the planned decision horizon. Consequently, a less accurate prediction model may not
capture fast changing dynamics presented in the simulation, which renders it difficult to
guide the following decision-making process.

The last test simulates a typical classroom occupancy condition – class starts in the
early morning, followed by a noon break, and ends by late afternoon. Figures 4-8a and 4-8b
demonstrate the model’s capability of handling more complicated real-life scenarios. This
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(a)

(b)

Figure 4-8: (a) Optimized setpoints vs. grid MOER for test case 3; (b) Optimized
setpoints vs. room occupancy status for test case 3

assures that the two-step approach generates a reasonable, even though not perfect, setpoint
control scheme. Next, we want to further quantify the savings from the optimal control by
piping the setpoints back to the EnergyPlus simulation and comparing the calculated GHG
emissions with the baseline condition.

4.3.3 Load Minimization Verification

In the baseline model, we set a constant setpoint at 20 ∘C, corresponding to the setpoints
designed for the occupied period. The validation model uses the optimal heating setpoints.
Using the three test cases in the previous sections, we obtained the following GHG emission
profiles shown in Figure 4-9, and a savings summary in Table 4.2.
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(a)

(b)

(c)

Figure 4-9: Validated vs. baseline GHG emissions. (a): test case 1; (b): test case 2; (c):
test case 34

All three tests share the same baseline, with a total GHG emissions of 5.38 kg of CO2

eq. throughout the 24-hour operation. All test cases manage to save emissions, from the
least 2%, to the most 45%. The amount of savings in this case depends on the occupancy
schedule. To illustrate, the second test case uses a fully occupied schedule which also requires

4Note that the room does not generate heating load during the daytime due to room plugin load and
solar load, so both validated and baseline results have zero emission. The same applies to the other test
cases.
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Table 4.2: Baseline and validated optimal GHG emission comparison

Total GHG Emission (kg) Test 1 Test 2 Test 3
Baseline 5.38 5.38 5.38

Validated Optimal 3.35 5.27 2.96
Percentage savings 37.7% 2.0% 45.0%

a minimum 20 ∘C heating setpoint throughout the day, similar to that in the baseline.
Because the model is unable to provide load shifting strategies, the baseline and optimal
solutions provide almost identical GHG emissions. On the other hand, the first and third
test cases benefit from the schedule flexibility, which allows for a lower setpoint during
the unoccupied period to save unnecessary heating loads. This result suggests that getting
knowledge of the room’s occupancy status is critical to maximizing energy saving potential.
However, we also need to acknowledge that while the simulation results are promising with
a complete and accurate forecast of future external conditions, a perfect prediction of the
future is never possible in reality. More simulation needs to be carried out to analyze the
robustness of the model, that is, model performance when the forecast is different from the
reality.

4.4 Future Work

While the convex optimization integrated with the linear energy prediction model gives
promising results, we realize this method has its own limitations. For energy prediction,
linear models are significantly less accurate than nonlinear alternatives. Such prediction
inaccuracies lead to the following optimization’s insensitivity to grid carbon level, which
disable the load shifting strategies that could otherwise achieve more GHG emission savings.
For this reason, for future work, we are considering a two-stage approach that uses both
linear and nonlinear energy prediction models. The first stage of this approach involves
solving a convex version of Problem (4.3) with a linear energy prediction model 𝑓 (ℓ) to
generate a solution 𝑥(ℓ). The second stage involves solving a nonconvex version of Problem
(4.3), with the linear model 𝑓 (ℓ) replaced by a nonlinear model 𝑓 (𝑛) in the form of neural
network models, regression trees or other advanced prediction algorithms.

While there are no guarantees that the second-stage problem can be solved to global
optimality, it can be solved locally by various gradient descent algorithms. These algorithms
can be warm-started with the first-stage solution 𝑥(ℓ). Given that warm-start, running
gradient descent on the second-stage problem should generate a solution at least as good as
𝑥(ℓ), and possibly significantly better. However, solving the second-stage problem will likely
require coding our own local optimization routine and, in particular, computing derivatives
of the nonlinear energy prediction model 𝑓 (𝑛). We are hoping that the proposed nonlinear
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models combined with a non-convex optimization approach will be able to bring about more
advanced, robust, and accurate setpoint control algorithms to be applied in a variety of
settings.
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Chapter 5

Model Predictive Control for A
Multi-objective Optimization

5.1 Background

While the previous two chapters have explored self-defined predict-and-optimize frameworks,
to minimize GHG emissions through HVAC setpoint control, this chapter seeks to adopt
a state-of-art control algorithm, model predictive control (MPC), to formulate a multi-
objective optimization problem that considers emission and cost factors with constraints on
thermal comfort and indoor air quality.

Over the past few years, researchers have analyzed the opportunities offered by imple-
menting classical control principles on HVAC. These studies reveal that the MPC technique
has the potential of improving building energy efficiency. Ma et al. [54] showed that MPC
achieves 19% energy savings in a university campus building in Berkeley. Ma et al. [53]
analyzed the economic saving potentials with MPC in the range of 16-26%. The key dif-
ference between MPC and traditional control algorithms is MPC’s predictive capacity. Its
capability of making decisions based on predicted future scenarios gives considerable power
of planning an optimized control schedule for the near future. MPC shows strength in build-
ing HVAC operation control because it can optimize building energy consumption, cost, and
GHG emission based on the predicted conditions in the electricity market. For example,
MPC can leverage opportunities such as changes in grid carbon emission intensity to strate-
gically manipulate the HVAC operation schedule, which leads to minimum operation cost
and GHG emission.

Although recent research has extensively investigated MPC used for building HVAC
system control to reduce energy consumption, not many groups have explored its application
in a multi-objective building performance optimization problem. Previous research focuses
on minimizing HVAC operation carbon footprint or energy cost, but ignores the importance
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of indoor air quality (IAQ), which plays a crucial role in indoor environmental quality (IEQ).
A common industry practice of maintaining IAQ is by providing the minimum amount of
outdoor air required by ASHRAE 62.1 Standard [18]. However, such a minimum ventilation
rate may not be sufficient to maintain a healthy IAQ especially when room occupancy is
higher than the designed occupancy. Hence, the goal of this project is to establish a multi-
objective optimization framework that minimizes GHG emission and cost associated building
HVAC system operation, while maintaining thermal comfort (defined by indoor temperature
range) and IAQ (defined by room CO2 level), based on the knowledge of occupancy schedule
and outdoor weather forecast.

5.2 Methods

To model dynamical behaviors of indoor CO2 concentration and room temperature, sys-
tem power consumption, total electricity cost, and GHG emission, we need a combined
optimization and simulation model that includes the following components.

5.2.1 Thermal Dynamics: Resistance Capacitance (RC) Network Model

The optimization is embedded with a 1R1C network model, with one capacitor, equivalent
to thermal capacitance of mass and air, and one resistor that lumps all heat transfer effect
such as conduction and convection into one process defined in Equation (5.1). Here, 𝑇𝑎

represents ambient temperature; 𝑇 is indoor air temperature that is assumed the same as
mass temperature; thermal power �̇�ℎ𝑣𝑎𝑐 is heat injected by controlled thermal equipment,
such as HVAC equipment; and thermal power �̇�𝑒 is heat injected by exogenous sources
that contribute to thermal disturbance, which may include solar radiation, heat brought by
outdoor air, and occupant and lighting load. In this model, we do not account for solar
radiation. Thermal capacitance and resistance (𝑅 and 𝐶) are properties of room building
material.

�̇�𝑐 + �̇�𝑒 = 𝐶
𝑑𝑇

𝑑𝑡
+

𝑇 − 𝑇𝑎

𝑅
(5.1)

The solution of this first-order model gives a linear representation of the system

𝑇𝑟(𝑘 + 1) = 𝑎𝑇𝑟(𝑘) + (1− 𝑎)[𝑇𝑜𝑢𝑡(𝑘) +𝑅(�̇�ℎ𝑣𝑎𝑐(𝑘) + �̇�𝑒(𝑘))] (5.2)

where
𝑎 = 𝑒−

Δ𝑡
𝑅𝐶

�̇�ℎ𝑣𝑎𝑐(𝑘) = �̇�(𝑘)𝐶𝑝,𝑎𝑖𝑟 (𝑇𝑟(𝑘)− 𝑇𝑠𝑢𝑝(𝑘))

�̇�ℎ𝑣𝑎𝑐 is calculated by multiplying recirculated air mass flowrate �̇� by specific heat
capacity of air 𝐶𝑝,𝑎𝑖𝑟, and temperature difference between room 𝑇𝑟 and supply air 𝑇𝑠𝑢𝑝,
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which is held constant at 15 ∘C. Δ𝑡 is discrete time interval. �̇�ℎ𝑣𝑎𝑐 is positive in the heating
season and negative in the cooling season.

5.2.2 Indoor Air Quality(IAQ): CO2 Mass Balance Model

CO2 concentration is a commonly-used indicator of IAQ. Outdoor air CO2 level is set at
410 ppm, whereas indoor level increases with the presence of occupants who exhale CO2.
A higher ventilation rate, or a higher exchange rate of outdoor air with indoor air, lowers
indoor CO2 level. Therefore, room CO2 dynamics can be modeled as a mass balance [23]:

𝑉
𝑑𝐶𝑟

𝑑𝑡
= �̇� 𝐶𝑜𝑢𝑡 − �̇� 𝐶𝑟 + �̇� (5.3)

where 𝑉 is volume of room, �̇� is volumetric flowrate of outdoor air into room, 𝐶𝑟 is
room CO2 concentration, and �̇� is CO2 emission rate by occupants.

The solution to Equation (5.3) is

𝐶𝑟(𝑘 + 1) = 𝑏𝐶𝑟(𝑘) + (1− 𝑏)

[︃
𝐶𝑜𝑢𝑡 +

�̇�(𝑘)

�̇� (𝑘)

]︃
(5.4)

where

𝑏 = 𝑒−𝜆Δ𝑡

and 𝜆 is Air Change Rate (1/hr), calculated as outdoor air volumetric flowrate divided
by room volume (Equation (5.5)), which represents the frequency at which indoor air gets
completely replaced by outdoor air in an hour.

𝜆 =
�̇�

𝑉
(5.5)

We treat outdoor air intake as a separate module from the heating and cooling module
to avoid non-convexity. A Dedicated Outdoor Air System (DOAS) is used to fulfill this task.
As this DOAS system is not equipped with heat recovery capacity, it brings heat flow �̇�𝑜𝑢𝑡

(part of �̇�𝑒) into room along with outdoor air:

�̇�𝑜𝑢𝑡(𝑘) = 𝜌𝑎𝑖𝑟�̇� (𝑘)𝐶𝑝,𝑎𝑖𝑟 (𝑇𝑜𝑢𝑡(𝑘)− 𝑇𝑟(𝑘)) (5.6)

5.2.3 HVAC Power Model

An HVAC power model can be decomposed into a fan power model and a heating/cooling
plant power model.

𝑃ℎ𝑣𝑎𝑐(𝑘) = 𝑃𝑓𝑎𝑛(𝑘) + 𝑃𝑝𝑙𝑎𝑛𝑡(𝑘) (5.7)
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A heating/cooling plant model further depends on multiple variables such as heat exchange
in coils, reference heat exchange rate, operation temperature, and chill water supply; a fan
power model depends on parameters such as reference air mass flowrate, static pressure and
maximum designed fan power. We apply a surrogate model developed in [24] which gener-
alizes the major HVAC power consumption behavior as a function of outdoor temperature
𝑇𝑜𝑢𝑡 and equipment load �̇�ℎ𝑣𝑎𝑐:

𝑃ℎ𝑣𝑎𝑐(𝑘) =

(︂
𝐶 +

1

𝑐𝑇𝑜𝑢𝑡(𝑘) + 𝑑

)︂
𝑄ℎ𝑣𝑎𝑐(𝑘) (5.8)

where1 C = 0.1214, c = -0.1741, and d = 8.3356.

5.2.4 Dedicated Outdoor Air System (DOAS) Power Model

We model a DOAS equipped with a variable speed drive without heat recovery. As proposed
by Englander and Norford [33], the normalized fan power 𝐻 is a function of normalized flow
𝑓 described in the following equation [24]:

𝐻(𝑘) = 1.2842𝑓3 − 1.3156𝑓2 + 10.47𝑓 (5.9)

where
𝐻(𝑘) =

𝑃𝑑𝑜𝑎𝑠

𝑃𝑟

𝑓(𝑘) =
�̇� (𝑘)

�̇�𝑟

We set 1000 W as the DOAS reference fan power 𝑃𝑟 and 0.94 𝑚3/𝑠 as reference flowrate
𝑉𝑟.

5.2.5 Grid Carbon Intensity

When optimizing total CO2 emission rate, information about local electricity grid carbon
intensity is needed. Marginal operating emission rate (MOER) serves as a widely used
indicator of grid carbon intensity. Companies such as WattTime use predictive machine
learning algorithms to extrapolate future grid MOER based on grid power demand and
supply forecast. MOER becomes higher when power demand surpasses power supply. As
regulations and policies are developed to address climate change, the electricity grid carbon
intensity has declined in recent years. However, the introduction of renewable energy sources
has made the supply side less stable, which incurs seasonal and daily MOER fluctuations.
In this model, we use historical MOER data in Massachusetts provided by WattTime [10],
sampled at a 5-min interval to calculate CO2 emission.

1We model 𝑃𝑓𝑎𝑛 in HVAC only as a function of 𝑄ℎ𝑣𝑎𝑐, and 𝑃𝑝𝑙𝑎𝑛𝑡 as a function of 𝑇𝑜𝑢𝑡 and 𝑄ℎ𝑣𝑎𝑐.
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𝐸𝑐(𝑘) = 𝑀𝑂𝐸𝑅(𝑘)(𝑃ℎ𝑣𝑎𝑐(𝑘) + 𝑃𝑑𝑜𝑎𝑠(𝑘)) (5.10)

5.2.6 Electricity Wholesales Price

The pricing mechanism works similarly as the grid emission intensity pattern. When demand
surpasses supply, electricity generated at a higher cost is brought into the market. Locational
marginal pricing (LMP) [4] is representative of electricity wholesale price. Market operators
utilize time-series algorithms to predict day-ahead LMPs with knowledge about day-ahead
power demand and supply. In this model, we use real-time LMP data from ISO New
England, sampled at a one-hour interval, to calculate energy cost.

𝑃𝑟(𝑘) = 𝐿𝑀𝑃 (𝑘)(𝑃ℎ𝑣𝑎𝑐(𝑘) + 𝑃𝑑𝑜𝑎𝑠(𝑘)) (5.11)

5.2.7 Occupancy Schedule

We hypothetically define a room schedule that resembles a typical campus room schedule.
In the case of MIT classrooms, room schedule and occupancy rate are based on course reg-
istration information. Given occupancy status, we can define room a setpoint temperature
range, room CO2 concentration limit, CO2 emission rate from occupants, heat injected by
occupants, and minimum required ventilation rate following ASHRAE Standard 62.1 [18].
(1) When room is scheduled as occupied at timestep 𝑘:

• Temperature setpoint lower bound: 𝑇𝑟,𝑙(𝑘) = 20 ∘C

• Temperature setpoint higher bound: 𝑇𝑟,ℎ(𝑘) = 27 ∘C

• CO2 concentration limit: 𝐶𝑟,ℎ = 2.7 𝑔/𝑚3 or 1500 ppm

• Target room temperature 𝑇𝑡 = 24 ∘C with a deadband of ± 0.5 ∘C

• Target room CO2 level 𝐶𝑡 = 1.8 𝑔/𝑚3 (1000 ppm) a deadband of ± 0.5 𝑔/𝑚3 (280
ppm)

A penalty will occur if the room condition goes beyond the deadbands with respect to 𝑇𝑡

and 𝐶𝑡.
(2) When room is scheduled as unoccupied at timestep 𝑘:

• Temperature setpoint lower bound: 𝑇𝑟,𝑙(𝑘) = 15 ∘C

• Temperature setpoint higher bound: 𝑇𝑟,ℎ(𝑘) = 32 ∘C

• CO2 concentration limit: 𝐶𝑟,ℎ = 3.6 𝑔/𝑚3 or 2000 ppm
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Target room temperature and CO2 concentration are not set for unoccupied room status;
neither is a penalty function.
(3) Other parameters defined:

• Lighting load density: 10 𝑊/𝑚2

• Occupant load: 100 𝑊/𝑝𝑝𝑙

• Minimum ventilation rate of air:
�̇�𝑚𝑖𝑛 = 20 𝑘𝑔/ℎ𝑟/𝑝𝑝𝑙

�̇�𝑚𝑖𝑛 = 2.6 𝑘𝑔/ℎ𝑟/𝑚2

• CO2 emission rate: 42 𝑔𝐶𝑂2/ℎ𝑟/𝑝𝑝𝑙

5.2.8 Weather Forecast

The outdoor weather condition affects room thermal performance as heat transfer processes
take place in the form of convection and conduction between outdoor air and room. In this
model, we use historical Cambridge weather data as our hypothetical weather forecast. Only
dry-bulb temperature is considered; in reality, we can easily get this information (one-day
ahead forecast) through weather forecast stations.

5.2.9 Objective and Constraints

Given the K time steps for optimization, we have the following objective function:

𝐾∑︁
1

𝑤1𝑃𝑟(𝑘) + 𝑤2𝐸𝑐(𝑘) + 𝑤3𝑃𝑡(𝑘) + 𝑤4𝑃𝐶𝑂2(𝑘) (5.12)

for 𝑘 = 1, 2, 3, ...𝐾.
where 𝑤1, 𝑤2, 𝑤3, 𝑤4 are weights of objectives corresponding to price, GHG emission, ther-
mal comfort penalty, and IAQ penalty, and

𝑃𝑡(𝑘) =
1

𝑇 2
𝑡

[max ((𝑇𝑡 − 0.5)− 𝑇𝑟(𝑘 + 1), 0) + max (𝑇𝑟(𝑘 + 1)− (𝑇𝑡 + 0.5), 0)]2 (5.13)

𝑃𝐶𝑂2(𝑘) =
1

𝐶2
𝑡

[max ((𝐶𝑡 − 0.5)− 𝐶𝑟(𝑘 + 1), 0) + max (𝐶𝑟(𝑘 + 1)− (𝐶𝑡 + 0.5), 0)]2 (5.14)

Subject to:

�̇� (𝑘) ≥ �̇�𝑚𝑖𝑛(𝑘) (5.15)

𝑇𝑟,𝑙(𝑘 + 1) ≤ 𝑇𝑟(𝑘 + 1) ≤ 𝑇𝑟,ℎ(𝑘 + 1) (5.16)

𝐶𝑟(𝑘 + 1) ≤ 𝐶𝑟,ℎ(𝑘 + 1) (5.17)
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| �̇�ℎ𝑣𝑎𝑐(𝑘 + 1)− �̇�ℎ𝑣𝑎𝑐(𝑘) |≤ 4500 (5.18)

Note that in Equations (5.13) and (5.14), both penalty values are normalized by their own
magnitude. Such a penalty mechanism would be activated only when the room is occupied.
Ideally, the CO2 concentration should not have a lower bound because IAQ becomes better
(assuming no outdoor air pollution) when more fresh air gets exchanged. The main purpose
of setting a lower bound is mainly to prevent model instability. Equation (5.18) requires
that change in energy flow between each time step should not be greater than 4500 W to
prevent equipment wear and tear.

5.3 Convex Optimization with Non-convex Simulation

The optimal control decision is reached by a combined process of simulation and optimiza-
tion. As defined in the previous section, each module simulates future room condition
𝐶𝑟(𝑘 + 1) and 𝑇𝑟(𝑘 + 1) and estimates future power consumption 𝑃 (𝑘 + 1) and carbon
emission 𝐸𝑐(𝑘+ 1) based on current room condition 𝐶𝑟(𝑘) and 𝑇𝑟(𝑘), along with scheduled
occupant activities and outdoor weather forecast. The algorithm tries to find an optimal
and executable control solution at the current stage that fulfills all constraints on future
room conditions. Therefore, the MPC algorithm requires certain knowledge about future
events. If limited information is available, the model will act in response to the near future,
similar to a greedy optimization algorithm; on the other hand, if sufficient and accurate
information is provided, the model will make more informed decisions and show a greater
level of foresight.

Because the model uses discretized solutions to dynamical systems for modeling room
thermal behavior and mass transfer, a small simulation time step is required to capture fast-
changing room dynamics. Specifically, we simulate and optimize on a five-minute interval
in an alternating fashion.

Algorithm 1: Model Predictive Control (MPC)
input: Initial room condition [𝑐𝑟, 𝑡𝑟], total step 𝑛, outlook 𝐾
init [Cr,Tr]
[Cr(1),Tr(1)] ← 𝑐𝑟, 𝑡𝑟
for 𝑖← 1 to 𝑛 do

[Q̇hvac, V̇] ← Optimize(State(i),𝐾)
[�̇�𝑜𝑝𝑡, ˙𝑉𝑜𝑝𝑡] ← [Q̇hvac(1), V̇(1)]
[Cr(𝑖+ 1),Tr(𝑖+ 1)] ← Simulate(State(i), �̇�𝑜𝑝𝑡, ˙𝑉𝑜𝑝𝑡)

end

At the beginning of this MPC algorithm (Algo. 1), room CO2 concentration and tem-
perature vectors Cr,Tr are initialized with the current room conditions 𝑐𝑟, 𝑡𝑟. Then the
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algorithm runs for a total of 𝑛 steps. In each step 𝑖, the optimization function considers a
𝐾-step outlook into the future and returns the HVAC Energy Flow Q̇hvac and Volumetric
Flow Rate V̇ which are both 𝐾-dimensional vectors corresponding to the overall optimal
decisions in the next 𝐾 steps subject to the given objective function and constraints. Then
the first decision vector [Q̇hvac(1), V̇(1)] is considered as the decision made at time 𝑖 and is
used to simulate the room CO2 concentration and temperature for the (𝑖+ 1)-th time step,
i.e., the next time step.

In the meantime, this process involves a large number of decision variables, which, if
formulated inefficiently, could consume huge computation power. As room temperature
dynamics and CO2 mass transfer are highly coupled, we introduce the following techniques
to convert this non-convex problem to a convex system. Then we use CVX [42, 41], a convex
problem solver, to optimize MPC control decision.

5.3.1 Convex Relaxation: Discretize Differential Equations

Equation (5.4), the discretized analytical solution to Equation (5.3) is highly non-convex,
as it involves multiplication of two variables: �̇� and 𝑏 that depends on �̇� . Therefore, we
directly discretize Equation (5.3) which gives an approximated change of CO2 concentration
with respect to a small time interval Δ𝑡

Δ𝐶𝑟(𝑘) =

(︃
𝜆(𝑘)𝐶𝑜𝑢𝑡 − 𝜆(𝑘)𝐶𝑟(𝑘) +

�̇�(𝑘)

𝑉

)︃
Δ𝑡 (5.19)

The approximated 𝐶𝑟 then can be calculated as:

𝐶𝑟(𝑘 + 1) = 𝐶𝑟(𝑘) + Δ𝐶𝑟(𝑘) (5.20)

5.3.2 Convex Relaxation: Small Time Interval Approximation

Note that in a simulation of K time steps, Equation (5.19) still introduces non-convexity,
as the terms 𝐶𝑟, which depends on the previous time step control decision, and 𝜆, are still
connected. Therefore, we change the dependent variable 𝐶𝑟(𝑘) to a parameter by assigning
it a constant value 𝐶𝑟(1), which is obtained from the previous simulation step. Conceptually,
we assume that the CO2 concentration of air flowing out of the room only depends on the
initial (last time step simulated) concentration, and ignore the dynamical behavior in the
next K time steps. This gives

𝐶𝑟(𝑘 + 1) = 𝐶𝑟(𝑘) +

(︃
𝜆(𝑘)𝐶𝑜𝑢𝑡 − 𝜆(𝑘)𝐶𝑟(1) +

�̇�(𝑘)

𝑉

)︃
Δ𝑡 (5.21)

We use the same method when encountering the coupling in Equations (5.2) and (5.6).
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We define the dependent variable 𝑇𝑟(𝑘) in Equation (5.6) as a constant, equal to the target
temperature 𝑇𝑡.

�̇�𝑜𝑢𝑡(𝑘) = 𝜌𝑎𝑖𝑟�̇� (𝑘)𝐶𝑝,𝑎𝑖𝑟 (𝑇𝑜𝑢𝑡(𝑘)− 𝑇𝑡) (5.22)

When the room is occupied, room temperature is optimized to reach target temperature
deadband 𝑇𝑡 − 0.5 ≤ 𝑇𝑟 ≤ 𝑇𝑡 + 0.5 with thermal comfort penalty. �̇�𝑜𝑢𝑡(𝑘) is mostly driven
by change in �̇� (𝑘). When room is unoccupied, on the other hand, �̇� (𝑘) almost follows �̇�𝑚𝑖𝑛,
which renders �̇�𝑜𝑢𝑡(𝑘) negligible.

5.3.3 Convex Relaxation: Linear Approximation

Equation (5.9) is linearized using linear approximation which gives

𝐻(𝑘) = 𝑓(𝑘) (5.23)

for 𝑓(𝑘) ∈ [0, 1].

5.4 Results and Discussion

5.4.1 Convex vs. Non-Convex Simulation Comparison

To validate the convex relaxation process, we use Algo.1 which optimizes with convex sim-
ulation and simulates with non-convex systems. Results in Figure 5-1 demonstrate that,
when the optimization horizon 𝑘 is set to 24 steps with each step being 5-minute (2 hours
ahead), both simulation methods yield comparable results in all variables of interest. This is
because the optimization and simulation takes place alternately every 5 minutes; any inac-
curacy or deviation incurred by convex approximation can be corrected in a timely manner
by running a round of non-convex simulation.

However, these convex relaxation methods restrict us from looking further into the fu-
ture, i.e. having a larger optimization horizon 𝑘, as some of them only guarantee local
approximation. With a larger horizon, we could possibly get an infeasible solution as some
of the constraints no longer hold. A stable and well-defined convex relaxation algorithm,
such as Taylor Series expansion, can address this issue.
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(a) Predicted (convex) vs. simulated (non-convex) room temperature

(b) Predicted (convex) vs. simulated (non-convex) room CO2

(c) Predicted (convex) vs. simulated (non-convex) DOAS power

(d) Predicted (convex) vs. simulated (non-convex) CO2 emission

Figure 5-1: Convex vs. non-convex simulation result comparisons
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(a) Power consumption vs. grid carbon intensity

(b) Room temperature vs. grid carbon intensity

(c) Room CO2 level vs. grid carbon intensity

Figure 5-2: MPC response to variation in grid carbon emission intensity2

2All plots begin at 7:00 am; the room starts to get occupied at 9 am (540 min) and becomes unoccupied
after 6 pm (1080 min); during the room operating hours, room occupancy rate varies according to class
schedule. The dash lines in (b) and (c) refer to the deadbands between which no penalty incurs.
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(a) Power consumption with k=1 (b) Power consumption with k=24

(c) Room temperature with k=1 (d) Room temperature with k=24

Figure 5-3: Control decision with different optimization horizons

5.4.2 Model Response

With a 2-hour optimization horizon, MPC makes predictive control decisions in response to
forecast changes in the electricity market and grid operation. Figure 5-2 shows the model
response to variation in grid carbon emission intensity. The right y axis in each figure
denotes MOER. The two horizontal dot lines in Figure 5-2b and Figure 5-2c correspond
to the thermal comfort and IAQ range respectively, within which the system will not be
penalized. When the algorithm foresees a sudden spike in grid MOER (from 800 to 850 mins
in simulation horizon), it plans to reduce power consumption in this period. To achieve this,
it decides to pre-cool the room so that room temperature and CO2 level stay close to and
even go below their corresponding lower bounds when the grid MOER is relatively low. This
ensures almost zero power consumption during MOER peak period. Consequently, room
temperature and CO2 level drift up to and could be even above upper bound when MOER
peaks. Depending on the weight assigned to each optimization objective, the algorithm
decides if it takes priority in minimizing total carbon emission or satisfying thermal and
IAQ constraints. Note that periods during which room temperature drifts up and CO2

drops down (from 650 to 700 min) are unoccupied in working hours. Thus, no penalty is
imposed on room temperature and CO2 level.
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5.4.3 Greedy Optimization vs. Optimization with Foresight

As described in the previous section, based on the availability of knowledge about the future,
MPC plans an optimal control schedule in a different manner. Take two extreme cases as
examples shown in Figure 5-3. For easy visualization, all figures are cropped to only display
the time interval between 8:30 am (500 min) to 8:00 pm (1200 min). The left two figures 5-3a
and 5-3c demonstrate the optimized power consumption and simulated room temperature
with a horizon of 𝑘 = 1 (5-min ahead). The right two figures 5-3b and 5-3d showcase results
with a horizon of 𝑘 = 24 (2-hour ahead). Other model parameters are kept the same.

In both cases, the algorithm attempts to minimize power consumption during peak
MOER period. In the case of 𝑘 = 1, power consumption only goes down by 0.2 kW and
immediately increases to 1.6 kW after the MOER peak. In the case of k=24, when foresee-
ing the sudden rise in MOER, the algorithm is able to cut off power consumption almost
perfectly. On the room temperature side, temperature is always maintained above thermal
comfort range with one-step ahead planning, whereas temperature with 2-hour planning
mostly falls into the thermal comfort band. In addition, 2-hour ahead planning shows a
more obvious pre-cooling strategy which gives the algorithm additional capacity of dealing
with MOER spikes without incurring large penalty on thermal comfort. Admittedly, in the
2-hour prediction scenario, the control decision involves more fluctuations and therefore is
more sensitive to changes in the system. To overcome this phenomenon, constraints that
control the frequency and magnitude of changes in the control decision can be imposed in
the system.

In theory, a larger horizon gives MPC more capacity in achieving load-shifting and GHG
and cost reduction goals. However, in reality, it might not be feasible to get an accurate
time-series profile forecast of certain parameters in the system. For example, except room
schedule, weather forecast, and 24-hour ahead LMPs , grid MOER forecast is only available
for two hours ahead, which limits the maximum prediction horizon.

5.4.4 Multi-objective Pareto Front

The MPC optimization involves four objectives: (1) total carbon emission, (2) total energy
cost, (3) thermal comfort, and (4) indoor air quality, of which the latter two terms are
formulated as penalty functions. We use a weighted sum method to obtain the Pareto Front
in the design space. Specifically, the four objectives are grouped into two subgroups, with
(1) and (2) being the Cost group (both economically and environmentally) and (3) and
(4) being the Performance group. Each objective is scaled to the same order of magnitude
beforehand so that the algorithm is able to react to the changes in weights. As is described
in Algo.2, a set of weights, 𝑤1 and 𝑤2, is assigned to the Cost group and Performance group
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respectively3. We use the same MPC algorithm with weights assigned to each objective,
which outputs total energy cost 𝑇𝑜𝑡𝑃𝑟, total carbon emission 𝑇𝑜𝑡𝐸𝑚𝑖𝑡, cumulative thermal
comfort penalty 𝑇𝑜𝑡𝑃𝑡, and cumulative IAQ penalty 𝑇𝑜𝑡𝑃𝐶𝑂2

.
This Pareto Front analysis is performed on the horizon of 𝑘 = 1, as shown in Figure 5-4.

It is evident that there exist trade-offs among four objectives. In general, as the penalties
are decreased with a shift of focus on optimizing performance, total carbon emission and
energy cost increase. Such a trade-off has been the subject of discussion among building
engineers and health scientists. On the one hand, building engineers and environmentalists
aim to design and develop more energy efficient and sustainable buildings; on the other hand,
building owners and dwellers would like to live in a healthy and comfortable environment.
Investigating the Pareto Front allows us to quantitatively understand this trade-off.

Specifically, in this example analysis, the impacts of improvement in IAQ and thermal
comfort on room operation cost are different. As depicted in Figures 5-4a and 5-4b, a
70% improvement in IAQ Penalty only introduces 10% increase in both carbon emission
and energy cost. On the other hand, a reduction of thermal comfort penalty by 50% in-
curs approximately 35% increase in both. Note that the result is specific to buildings in
Massachusetts only on a selected day, and model parameters (outdoor weather, occupancy
schedule, grid MOER and so on) vary hourly, daily and seasonally. If a more general conclu-
sion is needed, a whole-year analysis is required to check the impact of building performance
on operation cost. In addition, instead of lumping four objectives into two groups, more
advanced techniques can be used to explore the design space by assigning each objective
with an individual weight.

Algorithm 2: Weighted Average Pareto Front

w1 ← [0.01:0.01:0.09, 0.1:0.05:0.95]
w2 ← 1−w1

for 𝑖← 1 to len(w1) do
[Pr, Ec, Pt, PCO2 ] ← MPC([𝑐𝑟, 𝑡𝑟], 𝐾, w1(i), w2(i))
[𝑇𝑜𝑡𝑃𝑟, 𝑇 𝑜𝑡𝐸𝑚𝑖𝑡, 𝑇 𝑜𝑡𝑃𝑡, 𝑇 𝑜𝑡𝑃𝐶𝑂2

] ← [
∑︀

Pr,
∑︀

Ec,
∑︀

Pt,
∑︀

PCO2 ]
end

3Note that weights are not sampled at equal distance as each objective group has different sensitivity to
changes in weights.
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(a) IAQ penalty vs. carbon emission (b) IAQ penalty vs. power consump-
tion

(c) Thermal comfort penalty vs. car-
bon emission

(d) Thermal comfort penalty vs. power
consumption

Figure 5-4: Pareto front of multi-objective optimization

Figure 5-5: Model robustness4

4All plots begin at 0 am; the room is scheduled to become occupied at 9 am (540 min) and become
unoccupied after 6 pm (1080 min); from 11 am to 12 pm, room is scheduled to be unoccupied.
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5.4.5 Final Design Solution

As discussed in the Multi-objective Pareto Front section, the Pareto Front analysis on a
specific experiment day cannot generalize the true interactions among objectives. Connec-
tions and interactions among objectives cannot be determined without running a whole-year
simulation. In addition, multiple factors could influence the final design choice: (1) building
owners and users: whether building owners value occupant comfort more than operational
cost and environmental impact; (2) building types: whether the type of activities conducted
in the building or building function has specific requirement on room conditions; for exam-
ple, laboratories may have strict temperature control; (3) number of future horizons to look
into: whether sufficient and accurate predictions over future model parameters are readily
available.

5.4.6 Model Robustness

When running this MPC model, we use historical data as predicted model parameters,
which provides 100% knowledge into the future as a fundamental modeling assumption.
Therefore, it is necessary to examine model robustness when inaccurate information is given
to the system, which could introduce discrepancies between predicted and actual observed
room conditions. So we introduce occupants in the scheduled-unoccupied period (1 hour
before 9 am, 11 am to 12 pm, and 30 mins after 6:30 pm). Because the algorithm is
unaware of the real room occupancy status, it continues to optimize with constraints and
parameters designed for the unoccupied period. As is shown in Figure 5-5, room temperature
increases with unexpected increase in occupancy; however, in such a short time interval,
room temperature does not deviate too much from desired thermal comfort band except in
the morning when occupants might feel too cold. Among all uncertainties involved in future
scenario prediction, tracking stochastic occupant activity may be considered as the most
difficult task. To mitigate such stochastic effects on model performance, motion sensors can
be installed to track real-time occupancy density to inform the algorithm.
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Chapter 6

Experiment Setup and Design

To validate the proposed control strategies developed in simulation and optimization models,
we implement the two-step optimization method in two MIT classrooms as onsite experi-
ments where we control the room setpoints and observe the resulting load conditions. The
onsite experiment is deemed critical because we realize that some previous research either
report optimization results in simulation settings, or rely on simulation software generat-
ing baseline load as the ground truth which usually involves an uncalibrated performance
gap. The goal of this series of experiments is to control real building operations and draw
generalizable conclusions for the two-step optimization approach.

6.1 Test Room Configuration

The onsite experiments take place in Rooms 154 and 160, the two classrooms pre-selected by
the research team, in Building 66, the chemical engineering building on campus. As is shown
in Figures 6-1 and 6-3, two rooms are located on the first floor, with large windows facing
southeast. Classes are held during weekdays in the semester according to course schedules.
The maximum occupancy capacity of both rooms is approximately 40 students. The two
rooms are almost identical in terms of the room size and room HVAC equipment setup.

6.1.1 HVAC Equipment Setup and System Configuration

The two spaces have identical HVAC system configurations, both equipped with a combined
system of Variable Air Volume (VAV) with reheat, chilled beam, and fin tube radiator
(FTR), providing two-tiered conditioning. In this building, VAV supplies 100% outdoor
air, pre-conditioned by the central air handling unit (AHU). As is shown in Figure 6-2, the
supply air volume is modulated by a damper. The air goes through the heat exchanger
controlled by a reheat valve. Then the air is sent to the chilled beam system where heat
exchange takes place between chilled water and air, controlled by a cooling valve. There is
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Figure 6-1: Building 66 floor plan

a separate FTR to meet the room heating load.

The coordination between the chilled beam and VAV follows a two-step procedure. In
the cooling mode, the cooling load is first fulfilled by the chilled beam1. After the chilled
beam reaches the maximum capacity, the additional cooling load is met by the VAV box. In
the heating mode, depending on the ambient temperature, the VAV reheat and FTR may
work sequentially or in unison. The detailed control logic is included in Appendix C.

Figure 6-2 shows a Building Management System (Ecostruxture) control dashboard de-
veloped by Schneider Electric. The dashboard monitors real time system status, such as
valve positions, supply air volume, and air temperature, and allows for inputting heating
and cooling setpoint temperatures. In addition, occupancy sensors are installed in the two
rooms, providing researchers with detailed information about real-time room occupancy
status and helping validate experiment results.

6.2 Experiment Design and Methodologies

6.2.1 Control and Baseline Test Sequence Design

To accurately assess the GHG emission savings through building HVAC operations, one
would ideally need a parallel universe test, with one test implementing the optimal control
solution and the other operating as business-as-usual. While there’s no perfect parallel
universe in reality, we have considered four candidate solutions that emulate this effect.

1Note that the maximum cooling load provided by the chilled beam is approximately 30% of the design
capacity to prevent condensation. This is because the existing chilled beam is not equipped with drainage.
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Figure 6-2: Room 154 BMS control dashboard

Approach 1: Sequential Test

The first approach is to design a back-to-back experiment in one room that puts one baseline
and one optimal control test in sequence. For example, a two-day experiment during which
the first day runs as the baseline and the second day as the optimal control could serve
this purpose. Since the two experiments take place within the same space, it is certain that
the room thermal properties and thermal response are consistent. However, this approach
is more susceptible to variations of external conditions, such as the ambient temperature,
solar radiation, and occupant behaviors, that would introduce different load conditions and
make the results less comparable.

Approach 2: Parallel Test

The second option is to design a parallel test in two identical rooms. For example, a baseline
and a control test are conducted in two rooms simultaneously. In this case, Room 154 is
chosen as the experiment room, while Room 160 is kept as the baseline. The parallel test
requires the two rooms to have a high degree of similarity in room size, orientation, location
in the building, occupancy condition considering occupant loads, and HVAC equipment type
and control sequence, so that the two rooms would have identical thermal response if the
same control sequence was sent to the two controllers. To use the second approach, we
would need to first verify the similarity of thermal response of the twin classrooms, which
we will refer to as “baseline verification test.” The following section discusses the details of
a verification test and Chapter 8 concludes the validity of the test results.
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Approach 3: Scaled Predicted Baseline

The third option involves fewer restrictions on room conditions and system setups, as well
as external environment. Instead of using Room 154 or Room 160 as a direct baseline
reference, this approach investigates the consistency of the relative load changes in Room
160 and Room 154 within themselves, and adjusts the difference in Room 154 energy use
(optimal control vs. baseline), by the percentage difference in Room 160 energy use over
the two days. For example, if we observe the two rooms follow the same load trends, and
a 10% load change happens between the first and second baseline tests in Room 160, we
would scale the load of Room 154 by the same percentage as the baseline for the second
day and compare it against the optimal control load to estimate load savings. To verify the
similarity in load trend, it is critical to identify a period during which room conditions such
as occupancy and lighting remain similar to avoid disturbance. The comparison result is
presented and analyzed in Chapter 8.

Approach 4: Machine Learning Driven Baseline

The last option is to establish a virtual baseline through a predictive algorithm such as
a machine learning model. Given the room conditions and external environment will not
always be the same, which may lead to disturbances in baseline reference generation, an
accurate load prediction model could fix the gap. This approach is especially useful when the
optimal control method is scaled to the entire campus where parallel or sequential baseline
tests are no longer a viable option. However, the challenge of adopting this approach is
its high demand in prediction accuracy. The error or noise introduced from the baseline
prediction should be negligible compared to the savings, to allow for the following saving
estimation.

6.2.2 Experiment Protocol

Except for the first and last experiments conducted during the summer break and winter
break when campus are closed, the rest of experiments take place over multiple weekends
during the semester. To perform controlled experiments and exclude the effect of confound-
ing variables on the experiment results, such as occupant behaviors, we purposefully choose
weekends when occupant activity is less significant.

Over several weekend and holiday experiments, we observe room load trends with varying
degrees of control of occupant behaviors2. For some weekends, students are free to group
and self-study in the rooms without being aware of the experiment. On other weekends,
we reserve the space through the Registrar Office and put signs (attached in Appendix A)
prohibiting students entering rooms, opening connecting doors, changing blind positions, or

2The detailed experiment protocol and setup is shared in the Appendix A.
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turning on projectors. Recognizing students’ need for spacious study space especially during
the pandemic, we create room usage instructions that request students to restore experiment
conditions after their study. We also setup illuminance sensors to measure room lighting
conditions and quantify the difference in solar heat gains between the two rooms.

Each set of experiments lasts for two to three days and follows the schedules below. The
majority two-day tests follow the experiment sequence in Table 6.1a. The three-day tests
follow the schedule in Table 6.1b.

Table 6.1: Baseline and optimal control test schedule for a two-day test period (a) and a
three-day test period (b)

(a)

1st experiment day 2nd experiment day
Room 154 Baseline Optimal control
Room 160 Baseline Baseline

(b)

1st experiment day 2nd experiment day 3rd experiment day
Room 154 Baseline Optimal control Rule-based
Room 160 Baseline Baseline Rule-based

The test schedules outlined in Tables 6.1 serve multiple purposes and can be applied to
different control and baseline test approaches described in Section 6.2.1. To validate the
sequential mode, we compare the baseline and optimal control loads in Room 154 only. To
validate in parallel mode, the first day is used for validating room baseline load by comparing
thermal loads for Rooms 154 and 160. In the next day’s cross-room comparison, Room 160
serves as the baseline to Room 154, which allows for a direct comparison between the two
load profiles and calculation of the savings. To validate the scaled predictive approach,
multiple baseline tests in Room 160 and Room 154 are compared against each other to
define the load relationship. Based on the relationship, Room 154’s baseline on the second
experiment day can be predicted with information of Room 160’s load and compared with
the observed optimal control load.

The only difference between a two-day test and a three-day test is that the latter includes
a rule-based control test day. The algorithm outputs temperature setpoints only based on
the room occupancy schedules, which is a common practice in typical building operations. In
the following sections, we refer to the first-day experiment as the “twin test room validation”,
and the second day as the “optimal setpoint implementation”.

6.2.3 Data Requirement

In preparing and conducting experiments, the following data listed in Table 6.2 are collected
for analyzing heating and cooling loads in Rooms 154 and 160 @Building 66. APIs are used
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Figure 6-3: Classroom configuration

to retrieve data from various databases. Note that we don’t have electricity consumption
data on the room level.

Table 6.2: Data types and databases for experiment setup and result analysis

Data type Database Notes

BTU meter
AI Report Server
(now migrated to
Ecostruxture)

Heating and cooling loads from chilled beams
and FTR

VAV energy Clockworks
VAV related data, such as VAV supply and
return air temperatures, air flowrate, and
outdoor temperature, etc.

Occupancy Density with API Room traffic
Grid carbon
intensity

ElectricityMap
with API Real time and forecasted grid carbon intensity

Weather Oikolab with API
Historical and forecasted weather, including
parameters such as dry-bulb temperature, solar
radiation, and relative humidity, etc.

Room setpoint
control Ecostruxture Built-in dashboard to define 24-hour setpoints

for experiments

Thermal comfort
feedback AWS

Feedback from occupants regarding indoor
thermal comfort, to be integrated with future
experiments

6.2.4 Experiment One: Twin Test Room Validation

To validate that the two rooms have similar thermal response and room loads are comparable,
which is a major hypothesis in adopting a parallel baseline, multiple set of experiments are
conducted, with different room control conditions. in cooling, heating and shoulder seasons.
In most experiments, the cooling and heating setpoints are set at 72 ∘F (±0.5 ∘F) and 69
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∘F (±0.5 ∘F), respectively, in both rooms.
As is illustrated in Figure 6-3, factors that may influence the classroom loads are: (1)

lighting condition, (2) external conditions, such as shading from trees and buildings nearby,
(3) front and side door3 openings, (4) blind shading condition, and (5) projector on/off
status. Specifically, two side door openings can cause unintended heat transfer between the
adjacent rooms, and the same applies to the front door that exchanges room air with the
hallway. In addition, both rooms have one translucent and one opaque blinds to reduce solar
glaring. Occupants can lower the blind to a specific position (i.e. 0%, 25%, 50%, 75%, and
100%) at any time at their will to reduce direct solar radiation or glaring, and have more
room privacy.

6.2.5 Experiment Two: Optimal Setpoint Implementation

In the second day of the experiment, Room 154 implements the optimal setpoint schedule,
while Room 160 keeps the constant cooling and heating setpoints at 72 ∘F (±0.5 ∘F) and
69 ∘F (±0.5 ∘F) respectively.

The thermal load of the room (𝑄𝑡) is split into three portions: load (1) provided by the
VAV supply air (𝑄𝑉 𝐴𝑉 ), (2) chilled beams (𝑄𝐶𝐵), and (3) FTR (𝑄𝐹𝑇𝑅)4.

𝑄𝑡 = |𝑄𝑉 𝐴𝑉 |+ |𝑄𝐶𝐵|+ |𝑄𝐹𝑇𝑅| (6.1)

The VAV supply load can be estimated by:

𝑄𝑉 𝐴𝑉 = 𝑐𝑎𝑖𝑟�̇�𝑎𝑖𝑟Δ𝑇 = 𝑐𝑎𝑖𝑟�̇�𝑎𝑖𝑟(𝑇𝑟𝑜𝑜𝑚 − 𝑇𝑠𝑢𝑝𝑝𝑙𝑦) (6.2)

Where 𝑚𝑎𝑖𝑟 is the air mass flowrate, 𝑇𝑟𝑜𝑜𝑚 the room temperature measured by room ther-
mostats, equivalent to the return temperature assuming well-mixed condition, 𝑇𝑠𝑢𝑝𝑝𝑙𝑦 is the
supply air temperature before entering the chilled beam. These parameters are directly
measured by sensors installed inside the rooms or ducts. 𝑐𝑎𝑖𝑟 is the specific heat capacity of
air under constant pressure condition, which is 0.240 BTU/∘F-lb (1.012 J/g-K). Air density
at 60 ∘F and 1 atm is 0.0754 lb/cu-ft (1.208 kg/𝑚3).

The cooling load data from chilled beams and heating load data from FTR are directly
extracted from BTU meter database, which is estimated by calculating the heat extracted
by water through heat exchange between air and water, assuming 100% heat exchange
efficiency:

𝑄𝐶𝐵 = 𝑐𝑤�̇�𝑤Δ𝑇 = 𝑐𝑤�̇�𝑤(𝑇𝑤𝑠 − 𝑇𝑤𝑟) (6.3)

where 𝑐𝑤 is the heat capacity of water, �̇�𝑤 is the water mass flowrate, 𝑇𝑤𝑠 is the supply
3There are three doors in each room, one front door, and two connecting doors to adjacent rooms.
4The simultaneous heating and cooling (positive and negative) loads from different systems should be

added together, instead of cancelled out.
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water temperature in the pipe, and 𝑇𝑤𝑟 is the return water temperature.

6.2.6 Experiment Constraints

The differences in the actual experiment setting and the simulation require us to fine tune
our implementation strategies to ensure the results are comparable and interpretable. The
two noticeable factors that need to be addressed before implementation are (1) the setpoint
control logic and (2) the ability to track setpoint in the instrumental stage.

Dual vs. Single Setpoint Temperature Control

The test rooms adopt a dual-setpoint control that defines a lower and upper bound of
room temperature. With this control scheme, both heating and cooling setpoints can be
active in any season and any time of the day. The two setpoints form a deadband between
which the heating or cooling system remains off. This setup is different from our simulation
model where the room is controlled by a single setpoint. To illustrate, in cooling seasons,
regardless of how far the room temperature drifts below the cooling setpoint, heating will
never be triggered with a single setpoint in the simulation model. The drifting period allows
the room to be cooled down without incurring heating energy consumption and therefore
achieves load savings while pre-conditioning the space for the following day.

However, in the case of Rooms 154 and 160 with dual setpoints, both heating and cooling
equipment will be triggered anytime the room temperature does not lie in the deadband.
This has two impacts on our experiments: (1) the drifting period simulated and optimized
by the algorithm could not be reflected in the experiment as the dual setpoint will prohibit
temperature drift outside the deadband, and (2) what is worse, the purposeful drift combined
with dual setpoints will incur a higher heating and cooling energy consumption.

Ability to Track Setpoint Schedule

The simulation and optimization model relies on the hypothesis that the room load demand
can be fulfilled immediately with HVAC equipment. This has two implications. First, the
room temperature will closely follow the designed setpoint schedule. Second, the delay in
system response can be fairly neglected even when setpoint perturbations are relatively large,
i.e., 5 ∘F5.

However, such a hypothesis is not perfectly compatible with the HVAC operation in the
two rooms. On the one hand, the dual temperature setpoints create a control deadband
that allows a bigger shift in the room temperature as long as it stays within the range. The
larger the deadband, the less accurate control over room temperature we have. On the other

5Recall the two-step approach involves a 5 ∘F setpoint perturbation in simulation.
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hand, through the initial system commissioning, we identify an unexpected longer system
response time for the cooling system that significantly violates our modeling assumptions.

6.2.7 Two Optimization Framework and Targets

Given the limitations on room-level equipment control and modeling differences in optimiza-
tion framework, we have proposed two approaches to estimate GHG emission savings, first
from calculated room thermal load, and second from mid-stream load consumption from
heating and cooling energy streams. Figures 6-4 and 6-7 illustrate two setpoint control
strategies that aim to minimize their associated energy and load.

Approach 1: Optimize for Thermal Load

This approach only considers room load based on the resulting room condition and supply air
temperature from the three systems, and disregards the intermediate conditioning procedure
that may involve more energy consumption. With this approach, we assume the room
load serves as a proper reference for energy consumption, which is similar to our modeling
approach via EnergyPlus. More specifically, the proposed framework assumes the room
temperature closely follows the setpoint schedule, and it does not account for any reheating
process caused by the dual setpoints in practice.

To apply the first approach, we narrow the setpoint deadband to the minimally allowable
gap. This renders the dual setpoints to act as a single setpoint. To prevent short-cycling, we
choose to work with a 0.5 - 1 ∘F gap between cooling and heating setpoints in the experiment
room. In doing so, if everything operates correctly, the room temperature should fall within
a 0.5 - 1 ∘F band, shown in Figure 6-4, which fulfills our first modeling assumption.

Figure 6-4: [Room 154] Cooling, heating setpoints and actual room temperature for
24-hour horizon on Sep. 23. The cooling (blue) and heating (red) setpoints are set at 70

∘F and 69 ∘F respectively, and the actual room temperature is in grey.
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Figure 6-5 illustrates the adverse effect of increased energy consumption, associated with
a narrow deadband. During the experiment 24-hour period (in a cooling season), in addi-
tion to the cooling system, the heating system is triggered on to ensure room temperature
is maintained between 69 ∘F and 70 ∘F,. More specifically, the reheat valve for VAV is open
for approximately 50% time to heat up supply air to above 55 ∘F, the supply air tempera-
ture from the AHU to provide heating. We can conclude that using a narrower deadband
with a dual setpoint control to simulate a single setpoint control produces counter-effect on
experiment results. In fact, the narrower the band, the larger the energy consumption from
both heating and cooling load would become. With such a framework, minimizing energy
with perfect tracking of room temperature is inherently incompatible.

Figure 6-5: [Room 154] The valve positions of VAV reheat coil and chilled beam on Sep. 23

Approach 2: Optimize for Mid-stream Load Consumption

The second approach considers the mid-stream load consumption, that is, accounting for
both heating and cooling loads used for maintaining room temperature. Due to the dual
setpoint control, the reheat system will be triggered when room temperature is below the
heating setpoint even in the cooling season. While a constant 3 ∘F deadband in the existing
control could help reduce energy usage by creating a large band, there’s further opportunity
to fully utilize the benefits of dual setpoint control – to deploy a varying setpoint deadband.

In a constant deadband control, heating and cooling setpoints move simultaneously, as
is shown in Figure 6-6 in a heating season experiment. It is obvious that from midnight to
early morning, and evening to nighttime, the optimization algorithm intends to lower heating
setpoints to reduce heating load in a heating season. However, the constant deadband also
forces a lower cooling setpoint, which in turn demands extra load to make space colder, even
if the intention is to make the temperature float without incurring heating energy.

To overcome the unintended outcome, a slight modification to the dual setpoint creates
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Figure 6-6: [Room 154] Heating and cooling setpoints on Oct. 24 in the heating season

more potential for energy savings. As is illustrated in Figure 6-7, if we fix the cooling
setpoint and only adjust and optimize for the heating setpoint, this will avoid over-cooling
the room and allow for larger temperature fluctuations. The cooling setpoint can be chosen
based on survey results of occupants’ thermal comfort, designating the highest allowable
room temperature, in case heat injection from occupants and solar heat gains render the
space unsuitably warm. The heating setpoint, under most circumstances, will regulate the
room temperature in a heating season.

Figure 6-7: Hypothetical dual setpoint control with a varying setpoint deadband, an
example for heating season

Recall that the proposed optimization algorithm relies on the assumption of room tem-
perature closely tracking setpoints. This requirement can be fulfilled in cooling and heating
seasons because cooling and heating setpoints often dominate the temperature control in the
respective seasons even within a dual setpoint control system. For example, in the heating
season, room temperature most of the time follows heating setpoints, and cooling loads are
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not prevalent. However, we should be careful that this varying setpoint control method
may not satisfy such an assumption during the shoulder season when heating and cooling
interchanges frequently throughout a day. Additional attention needs to be taken to decide
which setpoint would be active during a specific period, to increase the flexibility for room
temperature drift in the right direction.
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Chapter 7

HVAC System Commissioning

To ensure the experiment results are reliable and replicable, commissioning of HVAC sys-
tems, hardware, and software was conducted in heating and cooling seasons. The purposes
of the tests include:

1. To understand the control sequences of three systems collaboratively in supplying
heating and cooling loads

2. To test the system’s response time and ability to track setpoint temperatures

3. To identify any other potential issues that may prohibit the completion of future
experiments

The following sections present a detailed description of the hardware and software issues;
some were fixed immediately after being identified, while others are campus-wide problems
that need to be discussed further to better serve future experimental needs and improve
building operation efficiency.

7.1 Inability to Maintain the Setpoints

Failure to track room setpoints has been observed throughout multiple test periods. An
example of an experiment on Sep. 8 in a cooling season is shown in Figure 7-1. While room
temperature is kept within the heating and cooling setpoints during most of nighttime,
a significant deviation occurs from ∼9:30am to 6pm, highlighted in red, with the room
temperature peaks at 76 ∘F in the early afternoon. This shows the limited cooling capacity
of the VAV and chilled beam systems, unable to meet the increased cooling load during the
daytime. Noticeably, such condition also happens in the adjacent Room 156. While this
challenge only occurs in the cooling season, it needs to be resolved urgently because without
the ability to track setpoints, the system would not be able to follow the designed optimal
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setpoint schedule which is our main lever to save GHG emission and energy consumption,
and therefore may not achieve the desired research outcome.

Figure 7-1: [Room 160] Setpoints and room temperature for 24-hour horizon on Sep. 8

7.2 Constant Supply Air Volume (CAV) Operations in Vari-

able Air Volume (VAV) Systems

After further investigation, we identified that the system’s failure to fulfill the required
cooling load partially comes from the altered operation of a variable air volume (VAV)
system. While the system was initially designed to provide variable air flow to meet different
load demand, it in practice operates as a Constant Air Volume (CAV) system where the
supply air volume is fixed at 450 cfm (cubic foot per min).

From our conversation with Schneider Electric, the supply air flow was initially capped
at 900 cfm and floored at 450 cfm, but they were requested to reduce the maximum air flow
to 450 cfm because occupants reported noise of equipment operation. As a result, the same
upper and lower bound of air flow render the system running as a CAV. It was revealed
from the engineering team that the 450-cfm minimal outside air flow design came from the
requirement of indoor air quality standard, or to maintain a healthy room CO2 level.

Now that VAV supply air mode has turned into a CAV operation, the flexibility of heating
and cooling load provided by supply air relies only on adjustment of the air temperature.
For example, to maximize cooling supply during the peak hours in summer, the supply air is
kept at ∼55 ∘F, the lowest possible supply air temperature provided by the air handling unit
(AHU). During the nighttime, when the cooling load is smaller, the supply air gets reheated
by a VAV reheat coil at room level. By changing the supply air temperature, rather than
supply air volume, the system keeps the room condition within a designed temperature
range.
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Note that this converting the system to a CAV took place before COVID-19, and is not
a temporary control override in response to COVID-19. However, this is neither an effective
nor energy efficient control logic. A typical VAV system would supply air at constant
temperature most time and vary supply flowrate to meet different room loads. For example,
in a cooling season, a higher cooling load incurs a larger flowrate. Since the system virtually
operates as a CAV unit, its only capacity in adjusting loads is changing the supply air
temperature through the reheat coil. On the one hand, this largely limits its cooling capacity
which is defined by the lowest supply air temperature and the fixed airflow. On the other
hand, it relies on reheat coil to heat up supply air when room cooling load is small, which
consumes additional energy. Hence, we seek to relax the flowrate constraint by extending the
minimum to 250 cfm and maximum to 700 cfm. In this way, the system gains back its original
variable flow feature, increases its capacity in adjusting room temperature, and improves the
overall energy efficiency. Nonetheless, dropping the minimal outdoor air flow may not meet
the ASHRAE 62.1 [18] indoor air quality standard. Based on the design standard, 450 cfm
outdoor air would satisfy a class size of 36 students1 and a room size of 760 ft2. Lowering
the flowrate to 250 cfm limits the system’s capability to only accommodate 16 students. We
understand the temporary control change is not ideal and recommend future experiments
holistically revisit the system design and come up with a well-rounded plan that satisfy both
experimental and practical constraints.

While this CAV issue has been resolved in the two experiment rooms, other rooms in
Building 66 and other campus buildings may face similar issues. It is not a surprise that
other campus buildings may fail to meet setpoint tracking requirements. Indeed, to ensure
the participation of most campus buildings in the setpoint adjustment, this is the first and
foremost task the team should address. Fundamentally, it is critical to understand (1) what
other buildings on campus have similar issues, (2) what happened historically that has led
to the changes in building operations, (3) how feasible it is to address such a campus-wide
issue.

7.3 Limited Cooling Capacity of Chilled Beams

Although chilled beams have been proved to provide better thermal comfort to the occupants
[67], they have a slow response rate and small cooling capacity due to design constraints.
As is shown in Figure 7-2, in the Sep. 8 experiment, the chill water valve position main-
tained at ∼30% during the peak load, even when the room temperature continues to rise
above the cooling setpoints, which implies the actual cooling capacity is only 30% of the
designed capacity. This is a common practice in mitigating condensation risks. Condensa-
tion is prevented by applying the dew-point control system that maintains the chilled water

1The two classrooms have 40 students as designed capacity
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temperature at least above the dew-point temperature of the occupied space when drainage
system is not available [70]. As a result, the chilled beam capacity is limited by its supply
air temperature that only be cooled down to near its dew point, and maximal water mass
flow rate. The reduced cooling capacity then results in a delayed system response and even
cause thermal discomfort.

Figure 7-2: [Room 160] Room and chilled beam chill water valve position on Sep. 8

In this project, the slow response time and limited cooling capacity of chilled beam
systems do not bring about too significant challenges because the thermal conditions of two
test rooms are controlled by both the VAV and chilled beams that allow for a larger load
capacity and flexibility. However, to carry out future experiments on campus, we recommend
avoiding using rooms that solely rely on chilled beam systems. The nature of the system
design may be incompatible with the setpoint control strategy.

7.4 Untraditional Control Sequence for Combined Systems

According to Francis Selvaggio, the Senior Building Management System Engineer from the
Department of Facilities (DoF), a varying combination of HVAC room-level systems have
been installed in campus buildings. The VAV with chilled beam is one of them. Other
combinations include VAV with Fan Coil Unit (FCU) and fin tube radiator (FTR), VAV
with FTR and so on. In some situations (Building 66 as an example), the VAV serves as a
dedicated outdoor air system (DOAS) that only intakes and conditions the outdoor air and
supplies it to the room level. Unlike a common DOAS that supplies a fixed amount of fresh
air based on pre-designed room occupancy condition, the VAV-enabled DOAS varies the
air supply volume depending on not only the occupancy, but also indoor temperature. For
example, in the cooling season, during the daytime when room cooling load increases, the
VAV opens up the valve and introduces more outdoor air conditioned at the central AHU that
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could otherwise be replaced by recirculated air to save energy. During the nighttime, when
room temperature drops below the heating setpoint, the supply air from VAV is reheated to
warm up the space. TO use a VAV system that supplies outdoor air to meet room setpoints
is an inefficient solution because extra cooling energy is used to condition outdoor air at
AHU, while extra heating energy is provided at room-level to reheat the space.

Notably, the aforementioned system combinations are indeed uncommon in mechanical
design and therefore require a unique control sequence to coordinate system operations from
the initial design phase. This is confirmed by Francis Selvaggio: rather than adopt standard
PID control sequences, he had to manually define the specifications to ensure the systems’
compatibility and controllability. Depending on the functions of the space and occupancy
types, he is expected to tailor the control logics to meet the needs of space users. Those
control logics may involve a combination of PID, occupancy-based, and rule-based controls
that are complicated to interpret at the first sight.

Consequently, this untraditional system configuration has obtained significant attention
during the commissioning phase and required careful analysis of the control sequence with the
help of the illustrations on the Building Management System (BMS) dashboard, mechanical
drawings, and direct conversations with the engineering and facilities management teams.
More importantly, it has become a priority for the algorithm development team to consider
those system operations factors when designing a load or GHG optimization model. The
adjustments of the experiment methods discussed in the previous section are the results
of the findings of the commissioning. To ensure more efficient execution of future pilot
experiments and applicability of the proposed solutions, we recommend selecting test rooms
with common system designs and control logics, and obtain a comprehensive understanding
of the space before designing the algorithms and implementing experiments.

7.5 Varying Supply Air Setpoint of AHU

Per industry standard, the supply air setpoints at the AHU side are kept constant at ap-
proximately 55 ∘F, which has become a major assumption in the system sizing process. In
a typical system or duct sizing, the lowest supply temperature helps define the maximal air
flow to fulfill the peak load demand in the cooling season. The calculated maximal air flow
rate, and supply air temperature, together with a safety factor (usually 150%) determines
the supply capacity. MIT campus building system sizing follows the same process.

However, MIT engineers in a previous initiative looked for ways to further optimize
energy efficiency for the AHU operation. After conducting rigorous psychometric analysis
on supply air setpoints, they decided to use a varying supply air setpoint schedule for certain
buildings on campus, including Building 66. As is explained in Figure C-1, the supply air
dry bulb setpoint is decided by the outdoor air temperature. When outdoor air is below
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52 ∘F in dry-bulb or below 55 ∘F in dew-point, the supply air setpoint at AHU should be
maintained at 65 ∘F; otherwise, 55 ∘F. While there’s no opportunity to verify the design
decision with the engineers, the hypothesis is, in doing so, the system would decrease cooling
energy consumption for chilled water. Otherwise, energy on the AHU level could be wasted
in the warmer or shoulder seasons when little cooling load is present, or even worse, when
reheat on the room level turns on to make the supply air warmer.

While this intention is understandable, it adversely impacts the system’s ability to meet
room load demand. As elaborated, AHU’s supply air temperature defines the system’s
capacity, so increasing the supply air setpoint leads to a decrease in its capacity. This
results in failure to track room setpoints. As is shown in Figure 7-3, during the daytime
(after 10am), the VAV supply air temperature is maintained near 65 ∘F because the AHU is
in the energy saving mode when outdoor temperature is low. As room temperature peaks at
noon, exceeding the cooling setpoint by almost 2 ∘F, the VAV increases supply air flowrate
to its maximal rate at 700 cfm. It takes 2 hours for the room temperature to go down below
the cooling setpoint. The limited cooling capacity resulted from a higher supply temperature
makes the system harder to respond in a timely manner. In addition, if cooling loads were
even larger with higher occupancy, the system may not be able to provide adequate cooling
load and introduce thermal discomfort. All these potential issues could be prevented if
shoulder seasons with a wider diurnal temperature range were considered when setting and
upgrading a varying setpoint policy.

Figure 7-3: [Room 160] Setpoints, room temperature (top), VAV supply air temperature
and supply air flowrates (bottom) on Nov. 9
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7.6 Frequent Oscillation of Supply Air Temperature

Another issue associated with the supply air temperature is its frequent oscillation, as is
shown in Figures 7-3 (bottom) and 7-4, in both heating and cooling seasons, we observed a
5-to-7 ∘F supply air temperature oscillation every 10 minutes independent of room equipment
reheat and cooling. So far this pattern has not been found out to be correlated with any
system design policy or building operation guidelines. While this problem does not directly
impact research outcomes, we suggest looking into the abnormal temperature oscillation
cycle.

Figure 7-4: [Room 160] VAV supply air temperature and its reheat valve position on Sep.
11. At 9:00AM - 7:00PM, supply air is not further conditioned by the chilled beam or VAV
reheat coil; the measured temperature reflects the oscillation happening at the AHU side.

7.7 Sensor Placement and Calibration Susceptible to Human

and Instrumental Errors

To monitor room thermal loads, a number of sensors2 and meters were deployed in the
two rooms and basements, including temperature sensors, flowrate meters, and occupancy
sensors, summarized in Table 7.1.

Over the two-year project period, MIT’s investment into purchasing, maintaining, and
calibrating sensors has been significant. Unfortunately, even at present, two years into the
project, we are still facing sensor installation and calibration issues that appear periodically
but cannot be fully understood and fixed. For example, the two flow meters measuring hot
water flows in the two rooms give drastically different readings when the rooms are in almost
identical situations. The relationship between the measured flowrate of hot/cold water and

2Some experiments used illuminance sensors to record solar and room lighting conditions.
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the valve position is unclear, as illustrated in Figure 7-5. A lower valve opening is not
necessarily associated with a higher flowrate; zero flow does not guarantee a zero percent
valve position. This uncorrelation may come from (1) sensor measurement error, or (2) the
operation mechanism of valves that leads to a delayed response in controlling flow.

Figure 7-5: [Room 154] FTR valve position and hot water flowrate comparison

The sensor issues could result from both human and instrumental errors. While the
former one can be prevented, the latter one is inherent to the experiment design. For
example, vibration introduced by the central AHU operation could loosen meter attachment
on the pipes, which could cause inaccurate readings.

Table 7.1: Sensors, meter types and their usages in onsite experiments3

Sensor Meter Type Usage

Temperature
sensor

Platinum Resistance
Thermometers (PRT)

Room temperature, VAV supply air temperature,
chilled water supply and return temperatures, hot
water supply and return temperatures

Flowrate sensor
U1000MKII-FM Fixed
Clamp-on, Ultrasonic
Flow Meter

VAV supply air volume, chilled and hot water
flowrates

Occupancy
sensor

Provided by Density
https:
//www.density.io/

Room occupancy count

3Meter specifications are listed in Appendix C.
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To ensure everyone’s effort is well-compensated and experiment productivity improved,
we recommend following three implementation steps for future experimental validation.
First, select meters that have an appropriate measurement range and sensitivity level. For
example, the measurement range of a flow meter should match the expected flowrate in the
hot and chilled water pipes, and the sensitivity level4 should be adjusted to prevent both
noise and information loss. Second, sensor installation and calibration should be extremely
carefully treated. The installation process should follow instructions in the user manual.
The positions of the sensors should be maintained in similar places, if possible, within the
two rooms. The units of measurement, data post-processing methods, and data transmission
channels should be examined with special attention. And finally, frequently inspecting the
measured data and promptly identifying potential measurement errors will ensure that the
sensors can be calibrated or replaced in time, which would minimize experiment repetition
and its associated wasted time and human labor.

7.8 Inconsistent Observed Thermal Response

After adjusting the minimal VAV air flow from 450 cfm to 250 cfm in Rooms 154 and 160
(reason explained in the previous section), we cross-referenced thermal loads not only in
the two test rooms, but also in Room 156, the middle room connecting 154 and 160. As is
shown in the floor plan (Figure 6-1) in Chapter 6, the room size of 156 is smaller compared
to the others. Given a smaller room size and its adjacency to Rooms 154 and 160, we
would expect Room 156’s load to be similar to, or smaller than the other two. However, we
observed that only after the adjustment of minimal supply air flowrate in Rooms 154 and
160, Room 156’s VAV cooling load has been consistently twice as much as those of 154 and
160. Take one baseline experiment weekend, shown in Figure 7-6, as an example. During
the test weekend, setpoints are identical across the three rooms. With further investigation,
we infer that Room 156’s VAV load doubles because its minimal air flow is still kept at 450
cfm, nearly two times as the minimal rates of the other two rooms, while supply and return
air temperatures in the three rooms remain similar.

This phenomenon raised a fundamental question about the room’s thermal response.
Given a similar external and internal condition, how could Room 156 have a much higher
VAV load than the other two rooms? If VAV in Room 156 supplies a constant 450 cfm
flow, how can its supply and return temperatures be the same as the others? With more
cooling supplied to Room 156, why is its thermal response observed to be the same as the
others? To figure out the answers to those questions, we need a systematic evaluation of
HVAC control sequence design and examination of sensor placement and calibration, which
should be a priority in future work.

4The minimal flowrate that can be detected by the equipment
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Figure 7-6: VAV loads of Rooms 154, 156, and 160, during the baseline experiment
weekend of Oct. 9 - Oct. 10

7.9 Unrobust Data Pipeline

As illustrated in Table 7.1, seven data types recorded by three types of sensors, with their
associated seven independent databases are not directly managed by MIT. Specifically, BTU
Meter, VAV Energy, Occupancy, and Setpoint Control are piped through platforms devel-
oped by Schneider Electric, contracted by MIT to install and maintain BMS in many campus
buildings. Grid Carbon Intensity and Weather data points rely on external parties5. Only
the Thermal Comfort Survey is fully developed and maintained by our research group.

Seeking professional services via industry partnership allows for a systematic approach
to manage campus buildings, perform fault detections, and regularly maintain the buildings.
Indeed, it is one of the very few options universities have for campus building management
in recognition of the challenges of working with large-scale building operations. However,
the cross-team communication and collaboration inevitably prevented us from updating the
system that is integrated with functions developed for the experiments in a timely manner.
It took us more than a year to fully establish this data pipeline, a period that included
frequent database breakdowns, follow-ups with the engineering team to diagnose issues, and
numerous debugging procedures. As a result, the team missed ideal testing periods in the
cooling season due to data logging and transmission issues as well as inefficiencies in the
project management, and only started experiments after 1.5 years into the project.

To prevent a similar lengthy setup process from happening again, it is recommended to
plan ahead, get an overview of the ecosystem of the MIT BMS, and efficiently communicate
with all the stakeholders to ensure the project goal and motivation are aligned. MIT is also
encouraged to develop an automated database that could collect and process different data
streams, which will drastically save manual efforts throughout the entire project execution.

5MIT’s own weather station does not forecast or collect solar data that is necessary in the experiment.
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Chapter 8

Experiment Results and Discussion

Chapter 6 points out the two phases of onsite experiments: the first phase establishes
a baseline load for the optimal control test, and the second phase performs the optimal
control test and estimates the savings relative to the baseline. It also suggests a simple
rule-based control algorithm as a benchmark for the machine-learning based control as an
additional method comparison. This chapter first addresses the setup of the two phases
and configuration of a rule-based control algorithm, followed by the critique of baseline
validation methods, and concludes with the estimated savings of energy and GHG emission
from optimal control days with respect to the baseline and rule-based control. For the rest
of the chapter, baseline refers to the days implemented with a constant 24-hour heating
and cooling setpoint schedule; optimal control refers to the active test days with optimal
setpoints output by the two-step optimization framework; and RB benchmark refers to the
days with a simple rule-based setpoint control.

8.1 Baseline, Optimal Control, and Rule-based (RB) Bench-

mark Setup

Figure 8-1 below illustrates actual room temperature, cooling setpoints, and heating set-
points from a baseline day (Nov. 25) and optimal control day (Nov. 26) in a heating season.
All data points are the real time measurement collected from the thermostats in the rooms
and systems and recorded in the Clockworks database. The first baseline day deploys a con-
stant heating setpoint at 69 ∘F and cooling setpoint at 72 ∘F1 The second optimal control
day uses a constant cooling setpoint at 76 ∘F and a varying heating setpoint schedule. The
76 ∘F cooling setpoint is pre-determined, and can be tuned based on results of the thermal
comfort survey. The heating setpoint schedule is the output of the optimization algorithm.

1The baseline setpoint schedule may be slightly different in each experiment due to hardware and software
configuration, but typically the variation is within 0.5 ∘F.
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In the baseline, the actual room temperature oscillates around 69 ∘F except for the 8-
10am period when solar heat gain introduces cooling loads. In the optimal control, room
temperature does not exactly follow the heating setpoint as heating setpoints ramp down
rapidly during the nighttime unoccupied period. This is because the room temperature
then naturally decays, driven by the conductive heat loss with ambient condition and the
convective heat loss through infiltration and minimal fresh air requirement (250cfm) from
the VAV system2. When room temperature hits an upward heating setpoint trend in the
early morning, the heating system modulates on, and the actual room temperature matches
the desired heating setpoint. This validates the heating load increment from the designed
heating setpoint ramp-up rate3 is achievable with the capacity of room heating systems
(FTR and VAV reheat). Further tests on the system capacity will allow a larger setpoint
step change, which gives more flexibility and opportunities for setpoint schedule design and
GHG savings.

Figure 8-1: [Room 154] Room temperature, heating setpoints, and cooling setpoints for
baseline (Nov. 25) and optimal control (Nov. 26) days

The RB benchmark test involves a varying heating and cooling setpoint schedule, only
based on the occupancy information4. During the unoccupied period, heating and cooling
setpoints are set at 64 ∘F and 76 ∘F respectively; during the occupied time, the range is
narrowed down to 69 ∘F and 72 ∘F, the same as the baseline test setpoints. Unlike the
optimal control algorithm that involves a constraint on setpoint change rate, the benchmark
model only adjusts setpoints immediately after the schedule changes, which leaves little time
for system response. As is observed in Figure 8-2, setpoint adjustments occur at 9am, after
which the system takes 30 minutes to reach the target room temperature (from 66.8 ∘F to

2The VAV provides a constant 250 cfm throughout the day to fulfill indoor air quality standard. The
minimum flowrate in all experiments are not determined by the actual room schedule.

3Limited to 0.5 ∘C/ 0.8 ∘F over an hour, as a constraint in optimization.
4All the occupancy schedule used in baseline, optimal control, and RB benchmark experiments are

identical. Rooms are occupied 9am-2pm, and 3pm-6pm.
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69.0 ∘F).

Figure 8-2: [Room 154] Room temperature, heating setpoints, and cooling setpoints for
RB benchmark (Nov. 29)

8.1.1 Load Calculation Example

Since the majority of experiments were performed in the heating season and heating load
calculation involves more intricacies than cooling load calculation in the cooling season, this
section provides an example of load calculation in the heating season first.

In heating seasons, load calculation for FTR and chilled beams is straightforward5. How-
ever, VAV loads need to exclude the cooling or heating load that outdoor air brings in for
air quality purposes rather than to maintain setpoints, which is unique to the system con-
figuration of the two test rooms. To illustrate, Figure 8-3 identifies the VAV airflow actively
contributing to room heating (in light blue) and cooling loads (in green), with remaining
flows labeled in yellow. Depending on the supply air temperature and room temperature,
the indoor flows can bring either heating or cooling loads into the room disregarding if rooms
actually have cooling or heating demand. For this specific experiment, the outdoor air is
first heated up by AHU to approximately 65 ∘F before being supplied into the room. If the
room temperature is higher than 65 ∘F, the air takes away heat from the room, and vice
versa. These heating and cooling loads are not considered as active loads for maintaining
room temperature, and therefore should be excluded in the thermal load calculations. To
exclude those loads, a filtering method (elaborated in Appendix B) is applied to capture all
effective airflows based on the variations in the actual supply flowrates, setpoint changes,
and observed room temperature movements. Albeit with minor errors due to the complex
relationship among the observed data points, this filtering logic allows for a relatively precise
estimation of the cooling and heating loads used in the experiment result analysis.

5The presence of cooling loads in heating seasons is due to the dual setpoint temperature control.
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Figure 8-3: [Room 154] An example of effective VAV airflow for heating and cooling

Figure 8-4 illustrates the calculated heating and cooling loads from the FTR, chilled
beam, and VAV, along with the ambient temperature. We can make a few conclusions
about the thermal response in Room 154. First, the majority of heating loads are provided
by the FTR, with the maximum load on the order of 10,000 BTU/h. Second, the timing
of the peaks of heating load from the FTR match those from the VAV reheat, which is
consistent with the sequential control logic. Third, cooling loads could occur even during
the heating season especially when massive solar heat gain is present. For example, the large
solar load during the daytime (8am-12pm) of Nov. 25 leads to room temperature increase,
drives the heating loads to zero, and triggers both chilled beam and VAV cooling.

Figure 8-4: [Room 154] Heating and cooling load profiles from FTR, chilled beam, and
VAV, and outdoor temperature for baseline (Nov.25). Heating loads are positive and

cooling loads are negative.
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In the cooling seasons, load calculations for all types of equipment are easier because the
conditioned outdoor air supplied by AHU not only serves to meet air quality requirements
but also provides space cooling.

8.2 Comparison of Baseline Estimation Methods

Four methods are proposed in Chapter 6 for establishing a reasonable baseline for Room 154
when optimal control test is conducted. They are: (1) a parallel test, (2) a sequential test,
(3) a scaled predicted baseline, and (4) a machine-learning based baseline. With more than
eight sets of experiments in heating, cooling, and shoulder seasons, we recommend the third
approach – using a scaled predicted baseline from Room 160 – because it imposes fewer
implementation hurdles and can provide the most reliable baseline. The rest of the section
evaluates the strengths and weaknesses of each method with experiments performed across
cooling, shoulder, and heating seasons.

8.2.1 Validation 1: Parallel Test

Due to differences in room solar heat gains, uncontrollable occupant behaviors, and sensor
measurement accuracy, we conclude that it is extremely challenging to use Room 160 as a
perfect baseline for Room 154. The following comparisons are conducted on three types of
loads: VAV heating and cooling, FTR heating, and chilled beam.

The VAV loads in the two rooms demonstrate above 70% load profile proximity using
Pearson correlation between two load datasets. The correlation is higher during the night-
time when solar radiation and occupancy effects become less prominent. Figures 8-5a and
8-5b illustrate load profile comparisons only considering the VAV system in the cooling and
shoulder seasons. In Figure 8-5a , both loads peaks at a similar magnitude. The base load
of Room 160 during the non-peak hours is consistently ∼50% lower than that of Room 154
while following the same trend. As Aug.18 and 19 is the first test in the series, except for
room access restriction, other external factors were not rigorously controlled, including blind,
lighting, projector, and connecting door status. To understand if the VAV load differences
are due to sensor errors or the external environmental factors, a more rigorous control over
room conditions is deemed necessary.
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(a)

(b)

Figure 8-5: Baseline cooling load (only VAV) comparison in Rooms 154 and 160 on Aug.
18 and Aug. 19 (a) in the cooling season, and on Oct. 16 and Oct. 17 (b) in a shoulder

season. Cooling load is positive, and heating load is negative6.

In the baseline experiment on Oct.16 and Oct. 17, we put signs in the rooms, requesting
students not to use the space, or to follow the instructions when they study to ensure good
experiment conditions. We also visited the site to check room conditions during the two
weekend days. Those control strategies overall managed to improve the room load similarity,
as observed in Figure 8-5b. Despite the fluctuations in Room 160’s load during the midnight
of Oct. 16, the rest of loads are either almost identical or different for explainable reasons. In
our further analysis of multiple baseline comparisons, we identify that Room 160 consistently
has a higher peak load than Room 154 does, especially in the shoulder season. While most
of variables are controlled in the follow-up tests, one important difference between the two
rooms is their location within the building and external environment, which affects the

6Detailed experiment documentation can be found in Appendix B.
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room’s solar heat gain.

To verify this hypothesis, we first walked around the building and visually inspected the
surroundings. From the below four photos (Figure 8-6) taken from the interior and exterior
of the rooms, it is obvious that in front of Room 154 stands a taller tree than Room 160,
creating more shade during the middle of the day. It partially explains the difference in
noon loads observed in October. Nonetheless, the solar condition during the cooling season
may be different as the baseline analysis on Aug. 18-19 shows Room 160 had a lower load
compared to Room 154. Hence we can further hypothesize that the difference between solar
irradiance varies across seasons because of the varying solar path within a year. A model
can be developed to simulate the annual solar condition of the rooms and generalize the
patterns.

(a) Room 154 inside (b) Room 160 inside

(c) Room 154 outside (d) Room 160 outside

Figure 8-6: Inside and outside conditions of Rooms 154 and 1607

Aside from visual inspection, illuminance and temperature sensors were deployed in
both rooms during the weekends on Nov. 20 - Nov. 21 and Nov. 25 - Nov. 27.8 The light
intensity data conform to the observed ambient environment and the shading effect. Among
the three-day test on Nov. 25 - Nov. 27 (shown in Figure 8-7), the second day is a cloudy

7All photos were taken on Oct. 19 noon, credit to Dr. Kevin Kircher.
8Sensor positions are described in Appendix A.
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day, so sunlight coming into both rooms is scarce. On the other two sunny days, Room 154
has a consistently lower average and peak light intensity. Additionally, the light intensity
of Room 154 dips during the morning period (from 9-11am) across all experiment days,
while the same behavior is not observed in the other room. Based on light intensity data,
it can be concluded that the actual solar irradiance incident on the glass panels is different
due to external shading and room locations, creating different solar loads in the two rooms
especially on sunny days.

Figure 8-7: Light intensity comparison of Room 154 and Room 160 measured from the
middle glass panel on Nov. 25 - Nov. 27

The difference in solar heat gains not only impacts VAV loads but also chilled beam
loads in summer and FTR loads in winter. However, solar heat gain is not the determining
factor in explaining differences in chilled beam and FTR loads across the rooms. As is
described in Chapter 7, the flowmeter installation and calibration have led to drastically
distinctive measurements of hot water flows passing through the FTR, making FTR loads
in Room 160 almost as five times smaller as loads in Room 154, as is presented in the
flowrate measurements for the two rooms on Nov. 25 - Nov. 27 in Figures 8-8a and 8-
8b. During the three-day period, Room 154 has a peak FTR hot water flow above 1 gpm
(gallon per minute), while Room 160’s only reaches 0.04 gpm, a factor of 25 lower. While
the supply and return water temperature difference is larger in Room 160, the total heating
load difference is still dominated by the flowrate gap. Investigating the valve positions of
both FTRs demonstrates very similar average opening positions in the two rooms. Two
hypotheses could be made based on the observations. First, the flowmeter readings in one
of the rooms (Room 160 more likely) suffers from inaccuracies due to sensor position and
its inherent sensing mechanism. From the Schneider Engineering team we learned that “if
the rooms aren’t piped identical then the readings will differ between the two preferring the
one with lower back pressure.” Second, the readings for two rooms are both correct, but
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the equipment control and commissioning are different. Because the two rooms have two
heating systems (VAV reheat and FTR), evaluating their heating loads solely from the FTR
is biased. Especially because we understand the two systems complement each other – when
load provided by one system cannot meet the demand, the other system would respond to
fulfill the load gap – we shall look at the heating loads from VAV reheat to gain a holistic
picture. We would expect that, if the two rooms indeed have comparable loads and loads
from the FTR in Room 160 is significantly lower than that in Room 154, then the heating
loads of VAV reheat in Room 160 should exceed those in Room 154. The result analysis
section shows this is observed in VAV reheat, with the exception that the VAV reheat load
in Room 160 is only twice as high as at in Room 154. Hence the total heating loads of Room
154 are still higher than those of Room 160, but in a more reasonable range.

(a)

(b)

Figure 8-8: Measured hot water flowrates through FTR in Rooms 154 (a) and 160 (b) on
Nov. 25 - Nov. 27 (heating season)

In addition to solar heat gain, the occupant behaviors also could contribute to significant
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room load behavior difference. Analyzing weekday data when different class schedules take
place, we find that room loads are largely driven by how occupants used the space. For
example, a large occupancy leads to a large heat injection; students can raise or lower the
blinds to create a visually comfortable environment; and lecturers can leave the projectors
running after leaving the classrooms. All of those factors can disrupt a baseline model in
providing the benchmark for the other room.

In brief, using a twin room as baseline reference needs further consideration and inves-
tigation. Although the two rooms share very identical room and system configurations, the
subtle difference in room location and room usage pattern has given rise to difficulty in
establishing a reliable and accurate parallel baseline. While this method may be able to
provide a straightforward evaluation, it is susceptible to large-scale implementation difficul-
ties because of the unlikelihood of identifying a pair of rooms to establish a reference for
every experiment site.

8.2.2 Validation 2: Sequential Test

A sequential baseline method uses Room 154’s first experiment day as its own baseline
for the following optimal control day to escape the challenges of establishing two identical
test rooms suggested in the parallel test. However, using the first day experiment as a true
baseline for the second day, even within the same room, is also demanding, due to the salient
load disturbance factors such as outdoor temperature and solar intensity.

Take the experiments during Nov. 25 and 26 as an example (in Figure 8-9), where the
first day is intended to serve as a true baseline for the second optimal control day. The
measured solar intensity in Figure 8-7 and real-time outdoor temperature in Figure 8-10 all
indicate that the increase in room temperature from 8am to 10am of Nov. 25 is mainly due
to the solar heat gain. This leads to a spike in cooling load and warms up the space for the
rest of the day. In contrast, the following cloudy day has very little direct solar irradiation,
so the heating load is evenly distributed throughout the day.

Differences in solar exposure during the two test days make it challenging to accurately
identify and estimate load savings. For instance, while the second day does not involve
cooling loads, it is not a result of a raised cooling setpoint (as part of our optimal control
strategy), but because there is indeed little solar load. Likewise, we cannot claim the optimal
setpoint control causes a higher peak load during 12-3pm (nearly 17,000 BTU/h) than the
baseline test with a peak load around 10,000 BTU/h in the same period. This is because
on the baseline day the construction materials of the room store thermal energy from the
sun and start to release heat as the surrounding environment becomes cooler, while on the
optimal control day the thermal storage capacity is not fully utilized, and the room needs
additional energy to heat up the space as the ambient temperature decreases.

Not only by solar load, establishing a baseline load can also be influenced by outdoor
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temperature. According to thermal transfer principals, the rate of heat transfer is related
to the temperature difference between two materials. The larger the difference, the higher
the transfer rate. In this case, considering the average indoor temperature almost constant,
the average outdoor temperature during the two test days affects the average heat exchange
rate. A colder weather leads to a faster heat loss and therefore a higher demand of heating
loads. Unfortunately, the changeable local weather has never allowed us to find the identical
weather conditions in four sets of experiments, which signifies the difficulty of obtaining an
undisturbed baseline.

Figure 8-9: [Room 154] (Same as Figure 8-1) Room temperature, heating setpoints, and
cooling setpoints for baseline (Nov. 25) and optimal control (Nov. 26) days

Consequently, our analysis capacity is limited to some small time intervals (such as
on the order of a couple of hours) when most factors are under control and aligned. For
instance, at 12am – 6am of Nov. 25 when room temperature is maintained at 69 ∘F and
outdoor temperature at around 35 ∘F, the heating load peaks at 24,000 BTU/h; on the
other hand, at 6pm – 12am of Nov. 26 when room temperature drops below 69 ∘F while the
outdoor temperature is also close to 35 ∘F, the peak load decreases to 12,500 BTU/h, with a
similar heating frequency as the previous test day. Such a 6-hour horizon analysis showcases
the success of optimal setpoint control in reducing heating loads. However, the sequential
test method is rather inefficient and unproductive, and can be subject to unpredictable
experiment constraints.
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(a)

(b)

Figure 8-10: Heating and cooling load profiles of FTR, chilled beam, and VAV, and
outdoor temperature for Room 154 baseline on Nov. 25 (a) (Same as Figure 8-4) and

optimal control on Nov. 26 (b)
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8.2.3 Validation 3: Scaled Predicted Baseline

To decouple and minimize the effects brought by room properties and external environments,
we integrate the advantages of the first two approaches and design a predictive baseline of
Room 154 based on the consistency in load behaviors between two rooms. In the two
experiment sets on Dec. 26 - Dec. 30 and Jan. 1 - Jan. 3, we conducted two baseline,
control, and RB benchmark tests in Room 154, and four baseline and two RB benchmark
tests in Room 160. Although we realize from the parallel test that the two room loads differ
from each other, if the difference is consistent, for example, by a constant factor or can be
easily correlated and interpolated, then we can predict Room 154’s baseline by adjusting
Room 160’s load on the day of Room 154’s optimal control.

All heating and cooling loads for the baseline and RB benchmark experiments are cal-
culated for a 23-hour period to exclude the load transitioning period. Because the cooling
load size is negligible in the testing period (heating season), we focus on the heating load
from the VAV reheat and FTR. As illustrated in Figures 8-11a and 8-11b, the linear corre-
lation of the 23-hour total heating loads across the two rooms are significant with 𝑅2 values
exceeding 0.999. Although this correlation test is conducted on four test days that may not
generalize future load data well, the high 𝑅2 values ensure the applicability of the model
to the optimal control days within the test period. In the meantime, we also recognize the
actual load relationship may not be linear, because of the differences in thermal response to
solar load, room occupancy status, and other external environmental factors. To illustrate,
our investigation suggests in winter Room 160 receives more solar load than Room 154 does.
A change in solar heat gain may lead to a non-linear heating and cooling load changes, and
therefore introducing non-linearity in 23-hour load sum.

Although we launched eight experiments from 2021 summer to 2021 winter, only the
last two sets of experiment data can be applied to this analysis. The constant tuning
and calibration of sensor measurements lead to different load data distribution from each
individual experiment, which makes them incomparable with each other. To further validate
this hypothesis and establish a more precise connection between the two load behaviors, more
experiments with a consistent measurement standard are required in all seasons and weather
conditions.

In the following section, we adopt this method to estimate the energy and GHG savings
by adjusting the baselines of Room 160 using the coefficients defined by the regression
equations.
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(a)

(b)

Figure 8-11: Correlation of HVAC reheat load (a) and FTR load (b) between Room 160
and Room 154

120



8.2.4 Validation 4: Machine Learning Driven Baseline

The last approach is an extension of the third one. Instead of using Room 160’s load as the
only feature for a predictive model, this method could potentially integrate all necessary
information available to form a machine learning driven baseline for Room 154. With these
features and advanced learning algorithms, the model is expected to capture all the subtle
load changes caused by solar, temperature, occupancy, or system-level conditions. However,
training an accurate learning model requires a high-quality and rich dataset that takes time
to gather. As discussed later in Chapter 9, developing a small-scale predictive model is more
difficult and needs a larger dataset than training a large-scale model. A comprehensive data
collection protocol shall be developed with future research effort to specify the type of data,
collection period, and load perturbation schedule (to provide rich information on room’s
thermal dynamics).

8.3 Optimized Setpoint Control Results

Figure 8-12: Comparisons of the average electricity carbon intensity for baseline and
optimal control tests

While the ultimate optimization target is to minimize GHG emissions, the following
analysis is conducted based on load savings, as we find the changes in total carbon emissions
are mostly driven by changes in thermal loads. Figure 8-12 compares the weighted electricity
carbon intensity of baseline and optimal control tests conducted on Nov. 20 - 21 and Nov.
25 - Nov. 27. The weighted average of carbon intensity is calculated by dividing the total
carbon emission by total electricity consumed in a designated time period. The weighted
averages on Nov. 20 and Nov. 21 tests are performed on a 7-hour period. Two optimal
control experiments are conducted on Nov. 26 and Nov. 27 following a baseline test on
Nov. 25. Weighted averages on Nov. 25 - Nov. 27 tests are calculated on a 12-hour
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(a) (b)

(c) (d)

Figure 8-13: [Room 154] VAV reheat and FTR load comparison among predicted baseline,
optimal control, and RB benchmark9

interval without solar exposure and 23-hour interval with solar exposure. The comparisons
demonstrate no significant load shifting behaviors as the weighted average carbon emissions
in the optimal control tests are very close to those in baseline tests. Two reasons can explain
this phenomenon. First, the daily grid carbon intensity profile fed into the optimization
algorithm is the same across all experiment periods, which creates little input variations in
the optimization problem. Second, this phenomenon is aligned with simulation results in
Chapter 4, which verifies the underlying optimization mechanism in this framework.

8.3.1 Load Comparison

Taking the slopes of linear regressions defined in Figures 8-11a and 8-11b, we scale Room
160’s load on the baseline days to estimate the baseline loads of Room 15410. We then can
estimate the load savings from the optimal control days and RB benchmark days. Figure
8-13 compares the loads of three types of experiments on Dec. 26 - Dec. 3011, and Jan.
1 - Jan. 3. Heating loads are separately analyzed for each system type because the meter
installation and calibration for the FTR and VAV may be different. Combining two heat

9All comparisons are based on 23-hour periods.
10Step-by-step calculation is included in Appendix B.
11No experiment data were collected on Dec. 27 due to the experiment errors.
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sources may lead to loss of critical information about the individual system. Note that all
the Predicted Baselines are not the actual observed baseline load values because those are
the days when Optimal Control and RB Benchmark experiments are performed.

On average, for Room 154, the optimal control days manage to save 30% FTR loads and
60% VAV reheat loads; the RB-benchmark days achieve a higher saving of 70% FTR loads
and 70% VAV reheat loads. (The RB Benchmark for VAV reheat on Jan. 1 (Figure 8-13c)
is higher than the Predicted Baseline. We believe the unreasonably low Predicted Baseline
is a result of prediction inaccuracy12, not a reflection of the reality, and therefore should
be treated as an outlier.) This is expected because the RB-benchmark would only adjust
setpoints according to the pre-determined occupancy schedule without pre-conditioning the
room, which contributes to the additional energy savings.

Figure 8-14: Distribution of temperature deviations of two baseline, optimal control, and
RB-benchmark experiments

However, the extra energy savings for RB benchmark come with the sacrifice of thermal
comfort. Figure 8-14 illustrates the distribution of room temperature deviations from the
desired range in the occupied hours13 for three types of experiments. The data points in the
box-plots are temperature deviations measured and recorded on a 5-minute interval. The
sum of temperature deviations based on a 46-hour period (in Table 8.1) is the highest in
the baseline test, followed by RB benchmark, and lastly the optimal control test. So are the
average temperature deviations. In addition, the distribution of deviations also differs. The
baseline tests incur fewer extreme deviations than the other two because the actual room
temperature is maintained narrowly between a 3 ∘F deadband without large fluctuations.
Optimal control tests, while introducing a wider window of room setpoints and temperature,
prevent temperature fluctuations and minimize thermal discomfort by pre-conditioning the

12The outdoor temperature on Jan. 1 was higher than any other testing days. The baseline of 160 is
predicted by the outdoor temperature with a UA value (discussed in the later section), and is further used
to predict the baseline of Room 154. So the cumulative prediction errors especially during warmer ambient
condition lead to an unreasonably extremely low baseline heating loads.

13The figure only considers non-zero values for the two test days.
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Table 8.1: Evaluation of thermal comfort for baseline, optimal control,
and RB-benchmark test days

Baseline Optimal RB Benchmark
Sum of temperature deviations (∘F) −46.91 −35.87 −40.23
Average temperature deviations (∘F) −0.49 −0.41 −0.46

space. On the other hand, the Rb-benchmark tests, while achieving the greatest savings,
cause larger temperature swings during the beginning of the day (approximately 30 minutes
before the first class of the day). By comparing heating loads and thermal comfort level, we
detect a trade-off between these two targets; a data-driven robust predicative optimization
framework provides us with a toolkit to achieve a balance between the two objectives.

8.3.2 Relationship Between Room Loads and Outdoor and Indoor Tem-
peratures

Based on thermal load calculation, the room load is proportional to the difference between
inside and outside temperatures, with conductive heat flow through the outside wall and win-
dow and convective heat flow associated with heating outdoor air brought into the building.
Adjusting heating setpoints based on the occupancy schedule manages to lower the aver-
age room temperature and therefore reduce the temperature difference in a heating season.
Figure 8-15 compares room average temperature of baseline and optimal control days in
four experiments, including both Room 154 and Room 160. We observe that average room
temperatures during optimal control tests are consistently 1 to 1.5 ∘F lower than those from
the baseline tests, which proves the feasibility of lowering room temperature with setpoint
control.

In the meantime, average room temperature is determined by not only the setpoints,
but also the ambient environment. To be specific, most of the baseline, optimal control, and
RB-benchmark experiments have almost identical setpoint schedules (Figures 8-1 and 8-2
showcases the setpoint schedules for baseline, optimal control, and benchmark as an exam-
ple), but the actual room temperature varies because a colder outdoor condition increases
the rate of heat loss with interior. To account for this factor, we plot the trend between
outdoor temperature and heating loads of the four baseline tests in Room 160 in Figure
8-16. Identical setpoint schedules are implemented in the four baseline tests, so the heating
load trends can more accurately capture the impact of outdoor temperature on the heating
loads. A linear trend can be observed between the two variables, and the slope can be used
to experimentally determine the UA value of the space. This provides critical information
about the room’s heat transfer in response to outdoor temperature changes.

Based on our limited knowledge of room’s construction and insulation materials, the
estimated UA valve of Room 160 using R-10 wall and single-pane glass properties is 340
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Figure 8-15: [Room 154] Average room temperature in baseline tests and optimal control
tests

Figure 8-16: [Room 160] Outdoor temperature vs. heating loads

BTU/h-∘F. The ballpark estimate is very close to the observed value (235.8 BTU/h-∘F)
through experiment, which gives some level of confidence that the room is properly controlled
and results are not skewed. However, it is important to note that the UA value from the
experiments includes not only conductive heat transfer but also convective heating loads
introduced by the VAV outdoor air. While a typical construction has a constant UA value
determined by the material properties, the test room may not follow this trend. We envision
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a constant UA value within a certain range of outdoor temperature, beyond which room
heat loss is dominated by the VAV outdoor air. For example, as the outdoor temperature
increases in the heating season, the rate of heating load decrease will flatten and the heating
load will approximate to a non-zero value defined by the heat loss incurred by VAV outdoor
air. This could explain the abnormally low predicted load on Jan. 1 in Figure 8-13c when the
average outdoor temperature was 48 ∘F, outside of the temperature range of the regression
analysis.

Therefore, we recognize the need for doing more controlled tests in both rooms to improve
the credibility and reliability of this important property and validate the above hypothesis,
and confirming room thermal properties by accessing detailed construction information. A
reliable UA value can facilitate future experiment result analysis by (1) providing support
for the basis of load calculation and (2) generalizing the room’s heat transfer properties for
more scaled-up experiments.

8.4 Future Work

Having witnessed all the challenges in setting up and managing experiments, we manage
to identify energy and GHG emission savings from onsite experiments with the 2-step opti-
mization framework. This over half-a-year experiment provides valuable insights into onsite
experiment preparation, hardware and software troubleshooting, effective communications
with various stakeholders, and research method design iteration based on real onsite condi-
tions. Considering practicality and feasibility, we recommend future researchers to adopt a
scaled predictive baseline for Room 154 based on Room 160’s load. The research team is
encouraged to follow or update, if necessary, experiment protocols for conducting baseline-
optimal RB-benchmark series of experiments, to ensure the validity and replicability of all
experiment results. In addition, while the experiment results are promising, the team should
pay attention to the remaining system- and control-level issues identified in Chapter 7.

Nonetheless, the linear-scaled baseline method is limited to small-scale implementation
because finding similar experimental rooms for larger space is never easy. In that regard,
we consider a machine learning driven baseline model would better fit the test purpose and
can be integrated to the next step of the project. A predictive baseline model that could
simulate what would have happened if the optimal setpoints were not executed better defines
the research results. On top of the standard features for an energy forecast model, such as
historical energy consumption rate, ambient weather condition, and temporal information,
the predictive baseline model for Room 154 can also utilize load data from Room 160 that
contains important information regarding the campus operations and student activities. So
the next step also includes developing a predictive model and testing out its capability of
“backward forecast”, and integrating it into the rest of the experiment framework.
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Chapter 9

Methods Comparison and Scalability
and Implementation Discussion

With constraints on project timeline and resources from MIT personnel for onsite test ex-
ecution, the previous chapters present three optimization frameworks and simulated and
experimented in mostly single zone conditions as a proof of concept. The three methods in
summary are: (1) a three-step predict-perturb-optimize framework, (2) a two-step predict-
optimize framework (a variant of the first approach), and (3) a model predictive control
method. As the ultimate goal is to scale up to campus- and grid-level application, this
chapter compares and contrasts the three approaches in their performance, modeling com-
plexity, data requirement, and scalability. In addition, one critical element in two machine
learning enabled methods is the high demand of prediction accuracy that is sensitive to the
scale of data (for example, room level vs. building level vs. campus level). This chapter also
addresses sensitivity analysis of machine learning model performance to gauge its impact
on implementation on a different scale. Finally, one uniqueness of MIT campus GHG emis-
sion initiative is it requires a comprehensive evaluation of the energy supply and demand
system at MIT. To optimize for the best GHG emission and energy consumption scenario,
not only do researchers consider the thermal dynamics and occupant feedback, but also the
compatibility of algorithms with existing infrastructures on a system level. The perspective
shared in this chapter serves as a grain of thought to invite future research teams to dive
into further.

9.1 Methods Comparison

9.1.1 Performance

While all three approaches demonstrate the capability to minimize GHG emission or peak
load, the MPC approach fully demonstrates load shifting strategies by pre-conditioning
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space, followed by the three-step method, while the two-step method does not apply load
shifting at all. This can be explained from two perspectives. First, the MPC is modeled
and simulated on a five-minute interval, more granularly than the other two models. The
granularity of modeling leads to its increased sensitivity to changes of external factors. On
the other hand, the other two models simulated on an hourly basis are less reactive due to
the smoothing effect. Second, the optimization model for MPC is embedded with a 1R1C
numerical model, which offers a relatively accurate prediction of room thermal performance
compared to surrogate models used in the other two optimizations. The optimized setpoint
control is heavily dependent on the amount of information and the confidence of information
the algorithm is aware of for the predicted horizon. Because machine learning models will
never produce 100% correct predictions, the optimality of control decisions can be affected
by prediction errors. Nonetheless, in reality, obtaining a resistor and a capacitor value for
establishing an MPC model requires some estimation (i.e. a surrogate model) and can never
be perfectly matched with the ground truth.

Between the three- and two- step approaches, the three-step model is more responsive
and sensitive to changes of modeling environments because it decouples perturbation from
baseline phase, which allows for an efficient system identification process. It also ensures
that a baseline surrogate model can pick up load trends easily from external signals following
a more predictable unperturbed setpoint schedule. Admittedly, the three-step approach
may suffer from loss of accuracy because errors from two separate learning models could
accumulate. The two-step approach, originally designed to minimize the error accumulation,
unfortunately has shown limited performance improvement. This is mainly because the
enormous amount of non-linear information and trends in the two-step approach makes it
strenuous for a linear model to understand. Because the algorithm is insensitive to external
environment variable changes, in both simulation and the onsite experiment sessions, we
observe the setpoints it outputs look very similar when outdoor temperatures are different.
In addition, since the optimization is conducted on a perturbed setpoint and load dataset,
its control decisions are impacted by the simulated perturbed dataset which is not aligned
with the actual load trend.

9.1.2 Modeling Complexity and Scalability

Modeling complexity largely stems from two factors: (1) creating room simulation models
that inform the optimization, and (2) establishing machine learning surrogate models. For
a real-world implementation, the three approaches involve both factors on different levels.
The two- and three- step approaches involve one or more surrogate models to generalize the
simulated loads with their associated features. The MPC approach needs to first learn the
thermal performance of a space and obtain reasonable R and C values for the 1R1C network
model by fitting a model to the observed loads.
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The two simulation methods adopted in the three approaches are (1) numerical models
(in MPC and three-step method), and (2) software simulation in EnergyPlus. Numerical
models can be relatively easily established with mathematical formulation and simplified
modeling assumptions; in this thesis, the two numerical models are generated in Python
and MATLAB. The aggregate-level model in Python enables a convenient scale-up for sim-
ulation of hundreds and thousands of zones in just a few minutes with the current coding
framework. However, the EnergyPlus involves more computational complexity. The de-
tailed modeling approach inevitably requires initialization of hundreds of parameters for a
single zone simulation, based on specifications and information from building construction,
design, and engineering. The parameter calibration process could even take more effort and
time. If expanded to campus and grid scale, the number of parameters and computation
complexity of modeling would explode, which renders the method infeasible. Therefore, we
conclude that EnergyPlus or other simulations enabled by state-of-art software is feasible
for small testbed for proof-of-concept, while numerical models, albeit with less accuracy,
provide efficient solutions for large-scale implementation. Further exploration of other more
advanced numerical models (such as the 2R2C network model) could allow us to balance
the trade-offs between model accuracy and computational complexity.

9.1.3 Data Requirement

Different methods and components of models have different data requirements, which can
be easy or difficult to fulfill in real life. The baseline learning model of the three-step
approach only requires gathering aggregate load data from a multi-zone building or a grid.
This can be easily accomplished by the existing power meters installed in the building or a
large aggregate. For MPC, to identify the appropriate R and C values, room temperature
data during a specified period need to be collected. For example, nights seem appropriate
for a decay test to get a value for C. Occupancy data, if available, can help check for load
disturbances. This can be challenging from an implementation standpoint as the researchers
would need to access the occupancy data and their activities to precisely filter out the data
of interest.

If we consider gathering baseline data as observation and process of data readily available
in the current system, then collecting perturbation data involved in the three-step approach
needs active interference of the space. Obtaining the consensus from all occupants would
not be easy, and even with building owners’ approval, its consequences and implications
need to be well thought-out.

In addition to the accessibility of datasets, their size also influences the prediction quality.
To train an equivalently good model for a single zone or a small community requires more
high-quality data than that for a large aggregate. The trend of small-scale loads can be
easily disturbed by stochastic occupant behaviors, whereas those outliers are averaged out
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in a larger community. As a result, a future scaled-up implementation is in favor of an
easier-to-train and more accurate prediction model.

9.2 Machine Learning Performance Sensitivity Analysis on

Data Scale

Closely related to the data size requirement is the model’s sensitivity to data scale. Large-
scale energy consumption (i.e. energy consumption on the order of magnitude of 100 MWh)
tends to be easier to forecast because the noise internal to the dataset is canceled out and
the trend is smoothed. Previous research efforts have focused on model performance of
large-scale forecasts, but not many have quantitatively explored the impact of data scale
itself on model performance. This often-neglected question is indeed significant to the MIT
campus, where loads are much larger than a small condo but much smaller than the grid.
Therefore, in collaboration with my colleagues, Qianqian Wan, Anne Qingyang Liu, and
Will Atkinson, we conduct a sensitivity analysis on model performance at different data
scales, from a single building to a larger group of 5-15 buildings.

9.2.1 Data

We work with cooling load time series data from MIT Campus buildings, including one
dataset for cooling loads and one for ancillary information, as outlined below.

Campus Cooling Data

Our real energy dataset focuses on cooling load (given data availability) for 52 campus
buildings, including dormitories, labs, offices, and academic buildings. The dataset begins
on January 1, 2016, and ends on April 5, 2021, though pre-2020 data is selected due to
COVID-19 irregularities. Several buildings are excluded due to data gaps, as described in
the pre-processing section.

Ancillary Data

The historical hourly Boston weather data are downloaded from Oikolab1, a weather API.
The weather data include information such as dry-bulb temperature, dew point, relative
humidity, solar radiation, rainfall, and snowfall, etc. These are potential features for time-
series models as well.

Detailed campus building information is collected from the MIT Department of Facilities
space accounting portal and the MIT Office of Sustainability DataPool, including construc-
tion year, building footprint, gross floor area, building type, and area breakdowns by room

1https://oikolab.com/
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use, etc. Specifically, the building use information could help deduct the usage schedule
and thus the periodic pattern of the cooling load. Furthermore, we extract the engineering
details from the metadata, such as construction material, air conditioning unit category (i.e.
central chilled water, building chiller unit or local package units). This helps explain the
variation among buildings. As is observed from Figures 9-1 and 9-2, campus building loads
vary in both intensity and seasonality.

Figure 9-1: Ranges of hourly cooling loads for the 38 buildings on campus after removing
buildings with outlier data2

9.2.2 Methods

Data Pre-processing

For the campus cooling load data, 21 of the 52 buildings are removed because of data
gaps (with missing or unexpectedly many zero values). The remaining 31 buildings were
optionally cleaned of outliers using a Hampel filter (24-hour window, 5 standard deviation
threshold due to data variability), which generally corrected 2-5% of data points for the
buildings without large gaps, as shown in Figure 9-2. Outlying points (in Figure 9-3) are
distributed relatively evenly, with a slight weight towards times of peak cooling in the mid-
afternoon hours and the month of June. Such a correction could help with model prediction
without too much alteration, though analyses are also performed without the correction to
test the raw data.

Model Features and Targets

We limit model features to the following for real data:

• Ambient dry-bulb temperature (𝑇𝑜𝑢𝑡) [scaled]4

2Building 46 has a “whisker” range to ∼2200 tons. Points beyond the whiskers are not necessarily outliers,
but those simply outside the limit of 1.5× the inter-quartile range.

4A standard scaler that transforms the input data to a standard normal distribution to facilitate model
training.
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Figure 9-2: Cooling load time series for the 38 buildings, plotting before (blue) and after
the Hampel correction (orange)3

3Buildings 18, 39, 6c, E25, and W79 are removed due to zero-cooling values at unexpected times (e.g.
during the cooling season), as well as Buildings 6 and 35. Other buildings that have zero-cooling values
outside of the cooling season are noted but kept, since this seasonality is expected.
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Figure 9-3: Distribution of points corrected by the Hampel filter across all buildings, by
month of year and hour of day.

• Temporal embedding with sine and cosine: time of day, day of week, month of year.

Due to occupant behavior, building schedule, and seasonality, building load demon-
strates daily, weekly and seasonal trends. Consequently, we apply a sine and cosine
embedding to all temporal information, as is discussed in [40]. For example, to repre-
sent "time of day", we use [𝑠𝑖𝑛(𝜋(ℎ)/12), 𝑐𝑜𝑠(𝜋(ℎ)/12)] to represent a 24 hour cyclic
nature explicitly in the learning problem. In the case of the simulation dataset, we
only encode time of day as a temporal feature.

We intentionally exclude 𝑇𝑠𝑒𝑡 (room temperature setpoints) and 𝑑𝑇𝑠𝑒𝑡 (change of set-
points) because it is difficult to calculate an average 𝑇𝑠𝑒𝑡 of a building containing hundreds
of thermal zones5. Additionally, the 𝑑𝑇𝑠𝑒𝑡 for individual zones within a building is relatively
constant during normal operation hours. The small perturbation and regular patterns of
𝑇𝑠𝑒𝑡 indicates they are not the control factors of cooling load.

Time Series Models

We have explored three types of forecast model structures: a simple static multi-variate
linear regression model, an ARIMA model, and a multi-layer perceptron (MLP)6. The 2017
hourly cooling dataset is used to train the model, and the performance is evaluated on the
2018 cooling load dataset.

1. Multi-variate Linear Regression (MLR) The target of the model is the HVAC
load at time 𝑡. The features involve the ambient temperature, room temperature setpoint,
and temporal information (time of day) at time 𝑡 as well as previous timesteps. This model
does not contain auto-regressive features.

5A thermal zone is defined as a space that shares the same temperature setpoint.
6MLP is a simple neural network structure.
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2. Autoregressive with Exogenous Regressors (ARX(6, 1)) Similar to the method
explored in Chapter 4, variations of the ARIMA model have been tested. Specifically, after
comparing AR, ARIMA, ARX (AR with exogenous regressors), SARIMA (ARIMA with
seasonality), and SARIMAX (ARIMA with seasonality and exogenous regressors), we find
that including ”Integration”, ”Moving Average” or ”Seasonality” only marginally improves
model performance. Considering the trade-off between model complexity and performance,
we select ARX(6, 1) as the preferred method.

3. Multi-layer Perceptron (MLP) The neural network model in this chapter has the
same structure as the one in Chapter 4. Overall, the inputs and output of the MLP follow
the ARX(6, 1) model, and the only difference is that model fitting with MLP is non-linear
whereas an ARX model is linear. It is an order-24 ARX model with order-25 exogenous
inputs (including the current time step exogenous features). The forecasting horizon is
24 hours. We adopt this nonlinear structure rather than state-of-art time-series recurrent
neural network (RNN) because RNN typically works best with high-dimensional data. In
this specific learning problem where only a few features are considered, RNN performs much
worse than a simple neural network structure.

9.2.3 Results

Performance

Model performance demonstrates the trade-off between simplicity and complexity, with neu-
ral network models outperforming AR(IMA)X, which out-performs linear regression. Root
Mean Square Error (RMSE) values are compared in Table 9.1.

Table 9.1: Model performance (RMSE) on cooling hourly load prediction of Building 66

MLR ARX(6,1) MLP
RMSE (Tons) 42.15 36.98 20.08

We have also noticed a difference in model performance in cooling vs. non-cooling
seasons. As shown in Figure 9-4, the AR (6, 1) model performs much better in the summer
cooling months than the winter non-cooling months, since the summer cooling load is much
smoother and is driven mostly by ambient climate. More specifically, the RMSE for summer
load is 7% compared to that of winter which is 50%. Given that summer cooling demand
is also higher in general, this finding supports the use of such models for predicting and
optimizing around these peak summer loads.
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(a)

(b)

Figure 9-4: Hourly cooling load prediction of Building 66 with AR (6, 1) model for heating
(a) and cooling (b) seasons

Sensitivity to Data Scale

In addition to data on Building 66, we also fit the ARX(6, 1) model on a group of buildings
with continuous and positive cooling loads in order to examine whether prediction accuracy
can change with aggregated data. Three building groups were selected:

• Building group 1: 5 buildings: 1, 5, 8, 24, 26

• Building group 2: 10 buildings: 1, 5, 8, 24, 26, 33, 36, 37, 38, 68

• Building group 3: 15 buildings: 1, 5, 8, 24, 26, 33, 36, 37, 38, 68, 66, 14, 16, 54, 56

The cooling data of all buildings in each of the three groups are summed before being
fed into the model. Examining the scaled MSE and the percentage error ((RMSE / mean)
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× 100%) of Building 66 and three building groups, we can see that overall, aggregated data
yield better predictions (the error decreases each time more buildings are included). The
scaled MSEs, unscaled RMSEs and percentage errors are summarized in Table 9.2.

Table 9.2: Summary of AR(6) model sensitivity to different prediction scales

Building MSEa RMSEb Mean % Error
Building 66 0.0492 36.98 170.66 21.67%

Building Group 1 (5 buildings) 0.0357 24.18 250.93 9.64%
Building Group 2 (10 buildings) 0.0188 76.90 957.38 8.03%
Building Group 3 (15 buildings) 0.0130 114.22 1461.59 7.82%
aScaled error with features and targets scaled by a standard scaler.
bUnscaled.

When a single building, such as Building 66 is examined, there are spikes of high cooling
load periods that are not captured by the model. The spikes can result from operational
abnormalities or special external conditions, such as building-specific use patterns or extreme
outside temperatures. The building-specific spikes disappear as data from multiple buildings
are aggregated together. On the other hand, the 15-building data show larger variation than
the 5-building data, as the temperature-related peaks of each building are amplified by each
other.

9.3 Campus Building Operations

In addition to the discussions on the methodological implications, the unique features of
the MIT campus in terms of its building functionality, residents, and a semi-independent
energy supply and sourcing system, deserve more attention when being integrated with
the proposed control strategies. The campus energy supply and demand interaction is
much more complicated than a single unit with an HVAC equipment, or a commercial and
residential building with multiple units that consume electricity and natural gas directly from
the grid. On the high level, MIT operates a tri-generation plant on campus that produces
electricity and heat at low cost. Most campus buildings are on the campus district heating
and cooling system. The following sections summarize the current campus conditions from
the perspectives of demand (users) and supply (generation plant), present a preliminary
feasibility analysis on implementing a data-driven optimal setpoint control strategy under
the current conditions, and suggest next steps to prepare for the eventual launch of the
initiative.

9.3.1 Demand Side

While it is tempting to invite more campus buildings to participate in setpoint adjustments,
creating a larger potential for energy and GHG emission savings, it is critical to recognize
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buildings have varied eligibility to be involved in this project due to hardware, software, and
human constraints. We have included five major factors in Table 9.3 from the conversations
with the Department of Facilities (DoF) and the campus leadership team to gauge the
applicability to each campus building.

Table 9.3: Five factors for evaluating the eligibility of space-/building-level participation in
the data-driven setpoint control project

Decision
factors Campus conditions and criteria Notes

BMS
availability

(1) Room-level control
(2) Compatibility with
StruxtureWare

Some other BMS platforms will
be migrated to StruxtureWare
by 2025 as planned.

HVAC
equipment
condition

(1) Age < 25 years
(2) Type: VAV, Fan coil unit
(FCU), chilled beam, FTR, and
some system combinations

CAV dual-duct and valance
units are excluded.

Space type
(1) Eligible: conference rooms,
offices, and classrooms
(2) Waitlist: dormitories and labs

-

Occupants’
response

(1) Occupant’s current level
satisfaction with building HVAC
operations

Buildings 12 and E37 are
excluded.

Others

(1) Limitations of the data-driven
approach
(2) Feasibility of integration of
other control algorithms with the
data-driven one

-

I. Availability of Building Management System (BMS)

All the setpoint control methods require buildings to have room-level BMS control; that
is, all the room conditions and setpoint controls are accessible through the BMS software.
Currently, MIT campus buildings have multiple BMS platforms, such as StruxtureWare
(the one with Building 66 experiment), Continuum, ALC, and Siemens7. At this moment,
buildings with StruxtureWare and some with Continuum and ALC are able to provide room-
level monitoring, which enables approximately 40 buildings to participate8.

7The detailed documentation of BMS for each building is included in the Appendix C.
8MIT DoF plans to migrate Continuum and ALC platforms to StruxtureWare by 2025.
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II. Conditions of HVAC Equipment

Depending on building construction time, the installed HVAC equipment may not support
the setpoint adjustment framework. The two interconnected decision factors are (1) age of
equipment and (2) type of equipment. The older buildings (i.e. constructed 100 years ago)
are installed with HVAC equipment that cannot be accurately controlled on the room-level.
In that regard, a 25-year equipment service age is the preliminary threshold recommended.

Most aged buildings on campus installed dual-duct constant air volume systems (CAV)
that supply cold and hot air (conditioned by central AHU to fixed temperatures) simultane-
ously in the two decks and mix cold and hot air to get to the desired supply air temperature.
The setpoint changes on the room level can then lead to changes in building-level hot deck
and cold deck temperature setpoints to reduce energy consumption. However, most build-
ings with dual-duct CAV systems do not support setpoint control due to their outdated
control hardware and software instrumentation. Therefore, they are not a prime target in
the future research scope.

Another system type discouraged in the project is the valance unit in the new graduate
students’ apartment9. Introduced only recently to campus, valance units are not very wel-
comed by residents due to their low air-circulation conditioning feature. While minimizing
airflow allows energy savings, the system creates a stagnant feeling and reduces the perceived
cooling by convective flow passing human skin. Based on occupants’ feedback, the campus
no longer considers valance units in new campus construction.

Other system types, such as VAV, FCU, chilled beam, and FTR are eligible, but worth
further investigation through reading control specifications and building mechanical draw-
ings, and performing commissioning experiments. For buildings that deploy combined sys-
tem types, such as chilled beam and FTR with VAV in Building 66, it is especially crucial
to understand the control logic and coordination among all systems. We highly recommend
prioritizing single-system space experimentation to multi-system buildings that require far
more attention and commissioning.

III. Type of Space

Space with various functionalities lead to different requirements on thermal comfort and in-
door environmental quality (IEQ). Lab space with the most stringent IEQ standards needs a
comprehensive evaluation of the consequences associated with setpoint and airflow changes.
Nonetheless, labs, being the most energy intensive space type, have the largest potential in
energy and GHG savings, if control methods are carefully designed and executed. Dormi-
tory, where students spend most of their time studying and resting, is also worth further
discussions. While algorithms may achieve significant savings during the unoccupied hours

9Graduate Tower at Site 4, Building E37
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in dorms, mis-prediction or optimization errors may lead to significant impacts on thermal
comfort and impose burden to building managers and administrators. On the other hand,
conference rooms, offices, and classrooms that have regular schedules and more predictable
loads are more suitable for setpoint adjustments. In the meantime, the gatherings in class-
rooms and conference rooms are not expected to last long, so setpoint adjustments would
have limited influence on space users. In case thermal discomfort occurs, space users can
immediately file a thermal comfort survey posted in the room.

IV. Response and Perception of Occupants

The perception of building occupants also plays an essential role that influences the success
of implementation in practice. Based on current knowledge, we would recommend avoiding
instrumentation in buildings whose occupants have already demonstrated dissatisfaction to-
ward the indoor environment, such as Building 12 (the Nano building), and Building E37
(Site 4 graduate dorm). To consider occupants’ response, we suggest launching a campus-
wide survey to gauge how much acceptance they have towards setpoint adjustments, and
what the research team and DoF could do to resolve their concerns and minimize imple-
mentation challenges.

V. Other Considerations

Prior to the data-driven setpoint control project, DoF initiated a series of HVAC setpoint
control upgrades to fulfill the goal set by the MIT Climate Action Plan. Specifically, a
majority of campus buildings have switched from single-setpoint control to dual-setpoint
control (with separate cooling and heating setpoints that allows for a larger HVAC operation
deadband). In the meantime, pilot occupancy-based setpoint control experiments have been
conducted in selected buildings, which demonstrate non-negligible energy savings. As is
elaborated in Chapters 4 and 6, the data-driven algorithms have been adjusted and tailored
to HVAC operation in heating and cooling seasons during the onsite experiment but may
not be well integrated with the dual-setpoint control scheme during the shoulder season. In
addition, we would like to explore how our data-driven approach can be incorporated with
the occupancy-based control to achieve further savings. We envision that all the methods
tested and validated are not independent of each other; MIT personnel should not hesitate
to create synergistic effects by integrating them appropriately, if there are ways to do so.

9.3.2 Supply Side

Besides considerations from the energy user side, the MIT campus deploys a complex energy
supply system, without investigating into which the true energy and GHG reduction goal
cannot be achieved. MIT operates a tri-generation plant, producing electricity and heat on
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natural gas. In the meantime, it sources electricity from the grid when grid electricity price
is low. This has several implications and prompts us to discuss the following questions.

I. How can the cost-based supply side Optimization fulfill a carbon reduction
objective?

The current energy procurement is based on cost optimization, whereas the proposed con-
trol methods leverage real-time grid carbon intensity for optimization. A misalignment in
optimization objective would lead to a sub-optimal GHG saving outcome. Therefore, MIT
is advised to re-evaluate and re-design the energy procurement decision model to an either
carbon-based one, or multi-objective optimization framework that considers both factors. In
addition, the existing load forecast model used for electricity procurement cost minimization
will not reflect load perturbation when setpoint adjustments are implemented. To support
load perturbation mechanisms and make an informed procurement decision, it is necessary
to train a new or upgrade the existing load forecast model with additional features (i.e.
setpoint adjustments) from building operations side.

II. How to allocate and estimate the carbon emissions associated with different
energy streams generated from a tri-generation plant?

The energy efficiency of a tri-generation plant comes from the fact that the plant makes use
of the engine heat from electricity generation to produce steam or hot water for most campus
buildings. In winter, hot water can be supplied to heating systems to provide free heating
energy. In summer, some chillers on campus run on steam to provide cooling. Currently,
MIT attributes all carbon emissions from a tri-generation plant to electricity and considers
the bi-products steam and hot water as carbon-free. This calculation framework needs to
be updated to fairly assign a carbon value to steam and hot water, reflecting the carbon
savings associated with reduced cooling and heating loads.

In addition, a decrease in electricity consumption associated with cooling load decrease
may lead to a loss of free heating energy available on campus, and therefore may require ad-
ditional energy consumption to make up for heating load requirements. To fully understand
this topic, we need to look carefully at the plant-level operation, the performance metrics
of the plant, and the consumption rate of electricity, hot water and other related energy
streams on campus. This ensures we maintain the synergies of a tri-generation plant and
make them suitable to the new operation framework.
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III. How can the control method be updated when campus heating or cooling
loads are not fulfilled by electricity?

The prototype optimization algorithm executed in the onsite experiments makes optimal
control decisions based on the grid carbon intensity. In practice, the HVAC systems in
campus buildings involve various types of energy sources that cannot be easily related to grid
carbon intensity. First, the electricity used for cooling comes largely from burning natural
gas, with others from direct procurement from the grid. Second, some campus chillers run
on electricity, while others on steam produced by burning gas. In winter, heating supply
on campus is entirely from natural gas. To implement the optimization framework, further
adjustments need to be made to reflect the complexity of the energy supply system on MIT
campus. Specifically, we need to figure out the objective of the optimization when grid
carbon intensity is irrelevant. This could be minimizing total heating loads, peak heating
load demand to maintain plant efficiency, or other factors that may fit the goal of carbon
emission reduction initiative better.
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Chapter 10

Conclusion and Future Work

This thesis explores the feasibility of three optimization-based control methods in simulation
testbeds for direct load control for a large utility company and MIT campus to regulate load
demand to achieve peak load reduction and GHG emissions savings. In addition, eight
onsite experiments are conducted to verify the effectiveness of one of the proposed control
algorithms.

10.1 Conclusion

The main contributions of the thesis include:

1. This thesis proposes and validates three optimization based control algorithms, namely
the three-step "predict-perturb-optimize" approach, the two-step "predict-optimize"
approach, and the model predictive control (MPC) method. Simulation results demon-
strate the capability of the algorithm in reducing peak load demand by 20% to 40%
and minimizing GHG emissions by 30% to 50%, while fulfilling thermal comfort and
indoor air quality requirements.

2. This thesis manages to execute onsite experiments to further validate the methods in
practice, which showcases a 30% to 60% load savings depending on the system types.
Experimental validation is uncommon and valuable in this field because hardware and
software setup can be expensive and laborious, and data collection, processing, and
interpretation could involve numerous challenges.

3. On the simulation side, the simulation testbed from Chapter 3 provides a useful and
convenient numerical based testbed for future research efforts on aggregate load de-
mand control. Although this is a 1R1C model, it integrates important parameters,
such as solar heat gain, HVAC COP, and heat transfer between zones to allow for
a more realistic but computationally efficient simulation model. It also establishes a
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pipeline where users can parametrically define their simulation scenarios, perturbation
magnitudes, and optimization targets in a sequential framework for a wide variety of
research purposes.

4. The simulation based MPC approach explored in Chapter 5 addresses a multi-objective
optimization problem that considers not only the commonly discussed targets, such as
thermal comfort, energy cost, or GHG emissions, but also indoor air quality. This MPC
model incorporates both thermal dynamical simulation and a CO2 mass balance model
combined with convex relaxation techniques, which allows for dynamical adjustment
of room setpoints and room CO2 concentration level to meet requirements on peak
load and GHG emissions.

5. On the experiment side, the thesis discusses hardware, software, and implementa-
tion issues, critiques the experiment design, and finally provides multiple feasible and
practical load saving validation methods. This includes valuable lessons learned from
onsite experiments, especially in education institutions where energy and supply sys-
tems tend to be more intricate than typical residential and commercial community.
Future researchers can refer to Chapters 6 to 9 to gain insights from the experiment
protocols, methodology design, and result analysis to make onsite experiments less
challenging and more productive.

10.2 Future Work

Notwithstanding the merit and contributions, future work can be investigated in the follow-
ing directions as an extension of the thesis:

1. On the simulation side, the thesis mainly adopts convex and linear optimization as the
setpoint control optimizer. As is noted in Chapters 3 and 4, a non-linear (non-convex)
optimizer could out-perform a linear one when the embedded surrogate non-linear
model achieves a higher prediction accuracy than a linear surrogate model. Researchers
are encouraged to integrate non-linear surrogate models with non-linear optimization
algorithms to seek larger savings on energy consumption and GHG emissions.

2. The convex relaxation method used in Chapter 5 to deal with the non-convexity of
room CO2 dynamics can be improved by using Taylor approximation method. This
ensures a more stable prediction and optimization and allows for a larger optimization
horizon to further promote model performance.

3. On the experiment side, sensor and meter calibration should obtain constant attention
as issues regarding flowmeter sensitivity level and reading differences across two test
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rooms are unresolved. It is suggested that the entire hardware and software should be
maintained robust to provide consistent readings for load saving analysis.

4. More experiments are needed to collect data points for validating the control and
experiment methods and obtaining reliable room thermal properties such as the UA
value described in Chapter 8.

5. MIT and future research teams are encouraged to establish a data pipeline that au-
tomatically collect different data streams (i.e. weather forecast, real-time occupancy
data, thermal loads, and grid carbon intensity) from various sources to streamline the
experiment setup and make the process more efficient.

6. All the methods and experiment verifications serve as proof of concept and need to
be investigated for large-scale implementation (such as on the entire MIT campus).
Choosing the suitable method for aggregate implementation is critical as it involves
in-depth analysis of the site conditions and restrictions. For example, the discussions
in Section 9.3 involve a comprehensive list of topics for MIT to think through for
materializing the savings.
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Appendix A

Experiment Protocol and Setup

A.1 Typical Weekend Test Setup1

Below is an example Experiment Checklist for Oct 23-24 weekend test, with control over
room condition, including room access, lighting, blind position, and projector following the
checklist below.
Checklist

1. Signages up on the connecting doors in Rooms 154, 156, and 160, front doors in Room
154 and 160, and near light switches2

2. Reserve the space with Registrar Office
3. Confirm with custodians to lock doors for weekends on Friday evening
4. Check room conditions (Friday evening, Saturday and Sunday mornings)

(a) Lights off
(b) All blinds down
(c) Front and connecting doors closed
(d) Projectors off

5. Signs off before 9am Monday
6. Saturday: baseline test
7. Sunday: optimization + simulation test
8. Result analysis:

(a) VAV load
(b) Chilled beam load
(c) Radiator load

For other experiments with less controlled condition, we only put signages in the rooms
requesting students to follow the instructions when using the rooms. We no longer reserve

1Depending on the experiment date, protocol may vary.
2All signages used in this and other tests are attached in Figure A.1
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the space or lock out rooms.

(a) The sign on the connecting doors (b) The sign on the door facing
hallway

(c) The sign put on the front desk to
remind space users of the

illuminance sensors in the rooms

(d) The sign on the hallway door
requesting students not to use the

space during weekends

(e) The sign for room usage instructions near
the light switches

Figure A-1: Signage examples
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A.2 Illuminance and Temperature Sensors (HOBO) Placement

The experiments on Nov. 20-21 and Nov. 25-57 deployed HOBO (illuminance and temper-
ature) sensors that monitored the solar heat gain through windows and lighting conditions.
In total six HOBO sensors were placed in the two rooms, two on the windowsills and one
on the front desk, as is illustrated in the Figures A-2a and A-2b. The two sensors lay hor-
izontally on the windowsills between the curtain blinds and the glass panels, so they were
not set up to detect the changes in the blind positions.
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(a) [Room 154] Sensor layout

(b) [Room 160] Sensor layout

Figure A-2: HOBO (illuminance and temperature) sensors placement location in Room
154 (a) and Room 160 (b)
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Appendix B

Experiment Detailed Documentation
and Results

Detailed load excel spreadsheet calculations can be download from the GitHub Repo: https:
//github.com/YuanC233/Thesis-setpoint-optimization.git

B.1 Experiment Documentation

B.1.1 Sep. 8 (Cooling Season)

Purpose

To test the feasibility of setpoint control in the two rooms (Room 154 as optimal control
and Room 160 as baseline) to minimize load and GHG emissions

Test Setup

1. Adjusted heating and cooling temperature setpoint simultaneously, 0.5 ∘F of gap (the
system does not require a minimal setpoint gap between heating and cooling)

2. Baseline experiment: Room 160; optimized control: Room 154
3. Room 160: 24-hour cooling setpoint at 69.8 ∘F; heating setpoint at 69.3 ∘F
4. Room 154: when room is occupied, cooling setpoint should be between 68.0 ∘F and

69.8 ∘F, otherwise, between 64.4 ∘F and 80.6 ∘F
5. Little instructions on room usage and control over room occupancy, lighting, or other

conditions

Results

1. Identified system control and operational issues such as VAV operating as CAV, chilled
beam limited cooling capacity, and inability to track room setpoints
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Notes

1. This experiment only provided VAV related room loads because the BTU meters for
chilled beam and FTR were not installed or calibrated yet

B.1.2 Oct. 10 – Oct. 11 (Cooling Season)

Purpose

To verify if Room 160 could serve as a baseline reference for Room 154, the critical hypothesis
for running a parallel test discussed in Chapter 6

Test Setup

1. Both rooms operated under a 3 ∘F deadband with cooling setpoint at 72.5 ∘F and
heating setpoint at 69.5 ∘F

2. The minimal air flow provided by the VAV system dropped from 450 cfm down to 250
cfm; the maximal air flow raised from 450 cfm to 700 cfm

3. Room usage instructions were provided

Results

1. Based on VAV load analysis, the two room loads demonstrated similar patterns except
during the noon time when solar exposure caused load disturbances

2. Observed the abnormality that room loads were driven by the air volume supplied by
VAV from data collected in Rooms 154, 156, and 160

Notes

1. This experiment still did not provide BTU meter data on chilled beam or FTR

B.1.3 Oct. 16 – Oct. 17 (Cooling Season)

Purpose

To continue verification of similarity of load patterns of Room 154 and Room 160, with more
rigorous room condition control

Test Setup

1. (Same as the experiment on Oct. 10 – Oct. 11) Both rooms operated under a 3 ∘F
deadband with cooling setpoint at 72.5 ∘F and heating setpoint at 69.5 ∘F

2. Students were advised not to enter the rooms during the testing period; room condi-
tions were monitored everyday
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Results

1. Even with a stricter room condition control, the VAV load Pearson correlation was
still around 70%, which indicates that the impact of solar loads is non-negligible

Notes

1. This experiment still did not provide BTU meter data on chilled beam or FTR

B.1.4 Oct. 23 – Oct. 24 (Shoulder/Heating Season)

Purpose

The first experiment that adopted a 3 ∘F deadband on the optimal control day in a shoul-
der/heating season

Test Setup

1. Oct. 23 (baseline day): Room 154 and Room 160 both deployed a constant cooling
setpoint at 69 ∘F and a constant heating setpoint at 72 ∘F

2. Oct. 24 (optimal control day): Room 154 deployed an optimized heating and cooling
setpoint schedule, while Room 160 remained in baseline mode

3. The 2-step optimization framework only output the heating setpoint schedule; because
of the constant 3 ∘F deadband, the cooling setpoint schedule also changed with the
heating setpoints; however, cooling setpoint was not a result of the optimization

Results

1. Adjusting heating and cooling setpoints simultaneously introduced larger energy con-
sumption (VAV + chilled beam + FTR) on the optimal control day, which is opposite
to our experiment goal

B.1.5 Nov. 20 – Nov. 21 (Heating Season)

Purpose

To test a varying setpoint deadband with heating setpoint defined by optimization algorithm
and cooling setpoint constant

Test Setup

1. Followed a typical two-day test schedule
2. Baseline heating setpoint: 69 ∘F (constant), cooling setpoint: 72 ∘F (constant)
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3. Optimal control heating setpoint: optimization output (varying), cooling setpoint: 76
∘F (constant)

4. Students were informed to keep classrooms in good experimental condition with sig-
nages on

5. HOBO (illuminance and temperature) sensors installed to track room lighting and
solar heat gains

Results

1. The varying setpoint deadband strategy turned out to be successful; energy savings
were identified during the night period when heating setpoints were adjusted down-
wards

Notes

1. Due to implementation issues, the optimal control experiment only started after 5pm,
so results were analyzed based on the 7-hour period

B.1.6 Nov. 25 – Nov. 27 (Heating Season)

Purpose

To validate energy savings with a varying setpoint deadband control strategy

Test Setup

1. Followed a typical two-day test schedule except that the second optimal control day
got replicated on the third day to collect more data points

2. Baseline heating setpoint: 69 ∘F (constant), cooling setpoint: 72 ∘F (constant)
3. Optimal control heating setpoint: optimization output (varying), cooling setpoint: 76

∘F (constant)
4. Students were informed to keep classrooms in good experimental condition with sig-

nages on
5. HOBO (illuminance and temperature) sensors installed to track room lighting and

solar heat gains

Results

1. Energy savings were identified, but a more systematic evaluation method was needed
because it was found out that the heating loads from FTR of the two rooms were not
comparable (different by a factor of 5)
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2. A ballpark estimation concluded an approximately 20% - 50% savings on the GHG
emissions and thermal load; however, due to the potential errors in the sensor mea-
surements, the findings were mixed and could not be generalized with confidence

Notes

1. Sensor recalibration and reinstallation was conducted after the experiment
2. Because the optimization is entirely conducted on the simulated data (without knowing

the historical room setpoints and temperature in the classrooms in reality), the back-
to-back optimal control tests would introduce inconsistent setpoint control strategy
associated with higher thermal loads. To avoid this situation, it is recommended
that a break is designed between the optimal control tests, or thermal loads are only
calculated based on a 23-hour period to exclude the transition period (usually the first
hour of the day)

B.1.7 Dec. 26 – Dec. 30 (Heating Season)

Purpose

To validate energy savings with a rule-based benchmark

Test Setup

1. Followed a typical three-day test schedule (baseline – rule-based control – optimal
control)

2. Rule-based heating setpoint (in both rooms): 64 ∘F when unoccupied and 69F when
occupied, cooling setpoint: 76 ∘F when unoccupied and 72 ∘F when occupied

3. Baseline heating setpoint: 69 ∘F (constant), cooling setpoint: 72 ∘F (constant)
4. Optimal control heating setpoint: optimization output (varying), cooling setpoint: 76

∘F (constant)
5. Students were informed to keep classrooms in good experimental condition with sig-

nages on

Results

1. After sensor recalibration, the results were more interpretable and generalizable. Op-
timal control day showed a 30% - 60% reduction in room loads, and rule-based control
showed a 70% reduction compared to the baseline.
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Notes

1. Test schedule: Dec. 26 – baseline, Dec. 27 – optimal control with implementation
errors (thus excluded from result analysis), Dec. 28 – test break, Dec. 29 – rule-based
control, Dec. 30 – optimal control

B.1.8 Jan. 1 – Jan. 3, 2022 (Heating Season)

Purpose

To repeat experiment series on Dec. 26 – Dec. 30

Test Setup

1. Same as the setup in the last experiment

Results

1. Results were similar to the ones from the last experiment, indicating this conclusion
is reproducible

Notes

1. Test schedule: Jan. 1 – rule-based control, Jan. 2 – optimal control, Jan. 3 – baseline
2. Unresolved but minor sensor issues still existed, but did not impact experiment results

B.2 Room Load Sample Calculation (Chapter 8)

B.2.1 FTR and Chilled Beams

Calculation of heating and cooling loads from FTR and chilled beams are straightforward
because those values are pre-calculated in the BTU meter database (downloaded from
EcoStruxture). All the data are recorded and calculated on a 5-minute interval.

Use the heating load of FTR (𝑄𝐹𝑇𝑅) in Room 154 as an example.
The values in the column “Rm154_HwBTU_Calculated Energy_Tr_AITr (Btu)” are cu-

mulative thermal loads from FTR. You can get hourly load by adopting a center differencing
method.

Table B.1: Sample data

Time Rm154_HwBTU_. . . (Btu)
1/3/2022 12:30 AM 37216116.00
1/3/2022 12:35 AM 37217064.00
1/3/2022 12:40 AM 37217376.00
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The hourly thermal load at 12:35 AM can be calculated by:

(Load at 12:40 AM – Load at 12:30 AM)× 6 = (37217376.00− 37216116.00)× 6

= 7560 BTU/h

The same method can be applied to cooling load from chilled beams (𝑄𝐶𝐵).

B.2.2 VAV

The VAV loads are not readily computed so they need to be manually calculated using
formula:

𝑄 = 𝑐𝑎𝑖𝑟�̇�𝑎𝑖𝑟Δ𝑇Δ𝑡 = 𝑐𝑎𝑖𝑟𝜌𝑎𝑖𝑟�̇�𝑎𝑖𝑟(𝑇𝑟𝑜𝑜𝑚 − 𝑇𝑠𝑢𝑝𝑝𝑙𝑦)× (𝑡𝑒 − 𝑡𝑠) (B.1)

Where �̇�𝑎𝑖𝑟, �̇�𝑎𝑖𝑟 refer to mass flowrate and volumetric flowrate of air supplied by VAV,
𝑇𝑟𝑜𝑜𝑚 is room temperature, 𝑇𝑠𝑢𝑝𝑝𝑙𝑦 is supply air temperature of VAV, 𝑡𝑒 and 𝑡𝑠 are the end
and start time of interest, 𝑐𝑎𝑖𝑟 and 𝜌𝑎𝑖𝑟 are specific heat capacity and density of air.

Cooling Season

In the cooling season, when the outdoor air supplied by VAV provides cooling and maintains
indoor CO2 level, the cooling load can be directly calculated using Equation (B.1).

For example:
Rm154_VAV.SaFl (CFM) = 252.0

Rm154_VAV.SaTmp (∘F) = 55.0

Rm154_Chb/FTR.RmTmp (∘F) = 72.0

𝑄𝑉 𝐴𝑉 = 𝑐𝑎𝑖𝑟𝜌𝑎𝑖𝑟�̇�𝑎𝑖𝑟(𝑇𝑟𝑜𝑜𝑚 − 𝑇𝑠𝑢𝑝𝑝𝑙𝑦)× (𝑡𝑒 − 𝑡𝑠)

= 0.240 BTU/∘F-lb× 0.0754 lb/ft3 × 252.0 ft3/min * (72.0− 55.0) ∘F× 60 min

= 4651 BTU/h

Heating Season

For the heating season, the computation is more complicated because some heating or cooling
loads provided by VAV are not intended to track setpoints, but to bring fresh air into the
space. To separate the two types of flows, a filtering algorithm is applied with the following
logic. Note that the filtering logic is not able to perfectly separate the flows because the
collected data involve uncertainties and trends that are not easily generalized with simple
logic statements.

To filter out the effective or active cooling flowrates, two conditions need to be fulfilled
simultaneously. (a) the room temperature is higher than the cooling setpoint, and (b) the
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supply air flowrate is higher than the minimal flowrate. Because of the deadband effect (the
cooling system will not be triggered immediately after the room temperature exceeds the
cooling setpoint), the actual cooling setpoint boundary defined in the filtering algorithm
may be +0.5 ∘F or +1 ∘F higher than the one in the system. Likewise, while the minimal
flowrate is kept at 250 cfm, the actual damper control may bring 270 cfm as the observed
minimal flowrate. So the flowrate cutoff should be set at any number that is reasonable (275
cfm is used in this analysis).

To filter out the effective heating flowrates, three factors need to be satisfied: (a) supply
air temperature should be above the room temperature, (b) room temperature should be
lower than the heating setpoint, and (c) the VAV reheat valve position should be open.
Again, the three cutoffs may require certain tolerance considering the measurement errors
and deadband effect.

The effective cooling and heating flowrates then can be fed into Equation (B.1) for the
respective VAV load calculation.

B.3 Predictive Baseline Load Calculation and Load Saving Es-

timation (Chapter 8)

The load saving analysis for Room 154 uses a predictive baseline with load information
from Room 160. Given the strong correlation between Room 160’s and Room 154’ heating
loads (observed in Figures 8-11), we use the slopes to scale Room 160’s baseline load on the
optimal control day of Room 154 to define the baseline load for Room 154.

To use FTR heating load as an example.

𝑄𝐹𝑇𝑅_154 = 4.69×𝑄𝐹𝑇𝑅_160 − 17403 (B.2)

On Dec. 30, Room 154 was implemented an optimal control test, while Room 160
remained as the baseline. Room 160’s baseline 𝑄𝐹𝑇𝑅 is 15364 BTU. With Equation B.2,
Room 154’s baseline 𝑄𝐹𝑇𝑅 can be predicted as 54654 BTU. As the optimal control load is
36128 BTU, the total savings on FTR load is 34%.
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Appendix C

Documentation of External Sources

C.1 Psychrometric Optimization for Supply Air Dry Bulb Set-

point for Buildings 18, E25, and 66

Figure C-1: Psychrometric optimization for supply air dry bulb setpoint for Buildings 18,
E25, and 66
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C.2 Sequence of Operations for HVAC Equipment (from DoF

and Schneider Electric)

Figure C-2: Control sequence documentation for a combine VAV, chilled beam, and FTR
in Room 154 and Room 160
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Figure C-3: Control sequence documentation for a combine VAV, chilled beam, and FTR
in Room 154 and Room 160 (continued)

161



Figure C-4: Control sequence documentation for a combine VAV, chilled beam, and FTR
in Room 154 and Room 160 (continued)
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C.3 Sensor Specifications and Documentations

C.3.1 Flowmeter Sensor: U1000MKII-FM Fixed Clamp-on, Ultrasonic
Flow Meter

Website: https://micronicsflowmeters.com/product/u1000mkii-fm-fixed-clamp-on-
ultrasonic-flow-meter/

The New ULTRAFLO U1000MKII-FM is a Fixed, clamp-on, pipe mounted, ultrasonic
flow meter, which delivers significant installation savings and non-invasive, dry servicing
benefits for pipe sizes ranging from 22 mm – 180 mm (6”) OD.

Figure C-5: Flowmeter Specifications

C.3.2 Temperature Sensors: Platinum Resistance Thermometers (PRT)

Specifications:

• −200 ∘C to +850 ∘C Temperature range

• ±0.1 ∘C Accuracy

• 100Ω at 0 ∘C Nominal resistance
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C.4 EcoStuxture Setup and Site Navigation

Access through the IP address: http://18.9.6.83/

Or desktop workstation (to contact Schneider Electric to obtain the software and license)

1. Log onto MIT VPN via Global Protect

Figure C-6: Global Protect VPN and Gateway

2. After connected, choose Gateway as “GP-BMS-Gateway”

3. Log into Workstation

(a) in username and password; this will be provided by Schneider

(b) Type in IP address

(c) Hit “LOG ON” and a dialog box will pop up to request your approval, click “Trust
Certificate”
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Figure C-7: Workstation login type

4. After login, you will see the main panel (Figure C-8)

Figure C-8: Main panel

(a) On the top right corner, click “Site Navigation”, which directs you to all the
buildings on campus whose HVAC systems are managed by the EcoStuxture
platform (Figure C-9)
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Figure C-9: Site Navigation

(b) Click the building of interest (i.e. Building 66 [M66]); the left side bar includes an
“AI” tab that is the dashboard for setpoint adjustments and heating and cooling
loads (chilled beam and FTR) data download; the right side bar allows for an
overview of all the floor plans within this building; clicking the floor plan will
lead you to the detailed one (Figure C-10)

Figure C-10: Floor plan overview, AI project dashboard

(c) The setpoint adjustment dashboard (Figure C-11) enables you to define setpoints
for the next 24 hours at one time; please read the instructions on the left carefully.

166



Note that the setpoint adjustments are applied to both heating and cooling set-
points; if a varying setpoint deadband is desired, setpoints should be controlled
and forced on the room control panel. This will be explained in the following
tutorial. The key takeaway is this dashboard will not support a constant cooling
setpoint and a changing heating setpoint or vice versa.

Figure C-11: Setpoint adjustment dashboard and BTU meter reports

(d) To obtain the BTU meter reports, click the tabs below, which leads you to the
new page (Figure C-12). Click “Hide parameters” to unfold the data selection
section. Here you can define the start and end report date or specify a date
range. Then click “Submit Form” to request the data. **IMPORTANT**: do
not jump to other pages or use any other software while requesting the data,
because this will mess up how data are written in the spreadsheet.

Figure C-12: BTU data download
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(e) After data are requested and summary shows up as Figure C-13, “select a format”
to export. Repeat the same procedure for other BTU meter data.

Figure C-13: Requested data summary

(f) To enable a constant cooling setpoint and a changing heating setpoint (our pre-
ferred control strategy in the heating season), enter the room system control page
(Figure C-14) through the floor plan, and force the cooling setpoint by clicking
on the temperature. For example, if we want a constant cooling setpoint at 76
∘F, force it at 76 ∘F. Do not force the heating setpoint. Forcing setpoints on the
room control pages overrides the setpoint adjustments in the AI page.

Figure C-14: Forcing setpoints to allow a varying setpoint deadband
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C.5 Documentation of BMS and Other Databases Availability

for Campus Buildings

Below lists the availability of building management systems and information databases of
each campus building. Detailed information can be found in the Git repository: https:

//github.com/YuanC233/Thesis-setpoint-optimization.git.
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Figure C-15: BMS and other databases availability for campus buildings

170



Figure C-16: BMS and other databases availability for campus buildings (continued)
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Figure C-17: BMS and other databases availability for campus buildings (continued)

Figure C-18: BMS and other databases availability for campus buildings (continued)
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Appendix D

Source Code

The Python and MATLAB source code for the simulations performed in Chapters 3-5 are
included in GitHub Repo: https://github.com/YuanC233/Thesis-setpoint-optimiza

tion.git
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Appendix E

Documentation of EnergyPlus
Simulation

The simulation IDF files are included in the GitHub Repo: https://github.com/YuanC23
3/Thesis-setpoint-optimization.git

E.1 Room 154 Model Parameters

Figure E-1: [Room 154] EnergyPlus Simulation model

Room dimension: 24’ × 32’ × 12’ = 7.4m × 9.7m × 3.66m
Walls

Exterior: south wall only
Interior: east, west and north walls, roof and floor (has basement) (adiabatic)
Material: M11 300mm concrete (in reality 1m thick)
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Window
Dimension: 3m × 8m
Material: single pane (low e, tinted)
Window faces 20 degrees east of due south

Schedules
Lighting schedule: max 700W
Occupancy schedule: 0 (no occupancy due to COVID)
Setpoint schedule:

• Cooling season: 4/1 – 10/15; cooling setpoint: 21.4 ∘C; heating
setpoint: 10 ∘C

• Heating season: 1/1 – 3/31, 10/16 – 12/31; heating setpoint: 21.4
∘C; cooling setpoint: 40 ∘C

HVAC
Packaged DX cooling with gas heat
Design day (.ddy file)

• Heating season: 99%
• Cooling: 1%

Others
Shading control with blinds
24’ × 32’ × 12’ = 7.4m × 9.7m × 3.66m
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