
Closed Loop Control for a
Piezoelectric-Resonator-Based DC-DC Power

Converter

by

Joshua J. Piel

S.B., Electrical Engineering and Computer Science
Massachusetts Institute of Technology, 2022

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 21, 2022

Certified by. .
David J. Perreault

Joseph F. and Nancy P. Keithley Professor of Electrical Engineering
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Closed Loop Control for a Piezoelectric-Resonator-Based

DC-DC Power Converter

by

Joshua J. Piel

Submitted to the Department of Electrical Engineering and Computer Science
on January 21, 2022, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Miniaturization of power electronics reduces their cost and increases their scope of
potential applications. Power electronics traditionally rely on magnetics for energy
storage, but magnetics are fundamentally less efficient and power dense when scaled to
small sizes. Piezoelectric resonators (PRs), which store energy in mechanical inertia
and compliance, are promising alternatives to magnetic energy storage for minia-
turized power electronics because of their high quality factors and favorable scaling
properties. Dc-dc converters relying on only a PR for energy storage have been
demonstrated to achieve high efficiency through specific behaviors including PR soft
charging, ZVS of all active switches, and all-positive instantaneous power transfer.
However, closed-loop control of PR-based dc-dc converters is necessary for them to be
practically viable. Implementation of this closed loop control is challenging because
achieving all desired high-efficiency behaviors requires simultaneous control of duty
cycle, dead time, and frequency.

This thesis presents a closed-loop control scheme for PR-based dc-dc power con-
verters that are implemented with six-stage switching sequences and two-half-bridge
topologies. The voltage regulation range of a PR-based converter can be derived
from its operating modes, referred to as switching sequences. The regulation range
is then used to conceptualize each half-bridge in the converter topology as regulating
or nonregulating. Control methods for the regulating and nonregulating half-bridges
capable of achieving all desired high-efficiency behaviors are proposed.

This thesis also presents several methods for modeling the operation of PR-based
dc-dc converters, both in periodic steady state (PSS) and in dynamic operation. PSS
solutions are obtained using conservation equations associated with the switching
sequence, including strategies for both ideal solutions and solutions considering the
mechanical loss of the PR. Several methods for modeling converter dynamics are
proposed, including a linearizable state space model.

Finally, this thesis designs and implements an example PR-based dc-dc converter
and a microcontroller-based closed-loop controller. The converter is operated at 30
V to 10 V with a 0.5 W output power. The controller was verified to meet all of

3

the desired high efficiency behaviors, and its transient response characteristics are
evaluated.

Thesis Supervisor: David J. Perreault
Title: Joseph F. and Nancy P. Keithley Professor of Electrical Engineering

4

Acknowledgments

I would like to thank Jessica Boles for being an incredible mentor to me throughout

my undergraduate and graduate studies at MIT. She has pushed me to strive for

excellence with my research and I would not be where I am today without her men-

torship and guidance. I also want to thank Dave Perreault for being a great teacher,

advisor, and mentor.

I also want to thank my friends from MacGregor, Roboteam, the Power Electronics

lab, and my fellow AFROTC cadets for their support throughout my time at MIT.

I also want to thank my parents and my friends back in Virginia for helping me get

though virtual MIT.

I finally would like to thank my COVID-19 infection that delayed the submission

of my thesis by a week.

5

6

Contents

1 Introduction 19

2 Piezoelectric Resonators and Converter Switching Sequences 23

2.1 What is a Piezoelectric Resonator? 23

2.2 Switching Sequences . 25

2.3 Operating Ranges . 30

3 PR Converter Periodic Steady State Solution 35

3.1 State Plane Visualization . 35

3.2 Ideal Steady State Solution . 38

3.2.1 Switching Time Calculations 40

3.3 Nonideal Steady State Solution . 41

4 PR Converter Control 45

4.1 Regulating and Nonregulating Half Bridges 45

4.2 Regulating Half Bridge Control . 49

4.2.1 Sensed Control . 49

4.2.2 Static Control . 53

4.2.3 PR Inductor Current Zero Crossing Detection 54

4.3 Non-Regulating Half-Bridge Control 55

5 PR Converter Control Simulation and Modeling 59

5.1 Circuit and Feedback Simulation in Simulink 59

5.1.1 Circuit Model . 60

7

5.1.2 Controller model . 61

5.2 Piecewise Linear Numerical Simulation 63

5.3 State-Space Model . 67

5.3.1 State Equations . 68

5.3.2 Charge Transfer Quantities 70

5.3.3 Model Validation . 70

6 PR Converter Hardware Implementation 73

6.1 Circuit Description . 73

6.2 Converter Interface . 75

7 Feedback Controller Hardware Implementation 77

7.1 Microcontroller . 77

7.2 Gate Signal Generation . 79

7.2.1 Static Control Configuration 80

7.2.2 Sensed Control Configuration 84

7.3 Sensing Implementation . 86

7.3.1 Buffer Circuitry . 86

7.3.2 ADC and Comparator Configuration 90

7.4 Zero Crossing Detector . 91

7.4.1 Example Implementation . 94

7.5 Code Feedback Loop . 98

7.6 Startup . 100

8 Experimental Results 103

8.1 Experimental Setup . 103

8.2 Experimental Results . 104

9 Conclusion 111

9.1 Future Work . 112

8

A Full Steady State Solutions 113

A.1 Ideal Steady State Solution Example Equations 113

B PR Converter PCB Technical Information 115

B.1 Bill of Materials . 121

B.2 PCB Header Pinout . 122

C Microcontroller and Sensing Circuit Bill of Materials 123

D Steady State Solution Code 125

E Simulink Simulation Model 147

E.1 Sensed Control Simulink Simulation 148

E.2 Static Control Simulink Simulation 151

F Piecewise Linear Dynamic Simulation Code 157

G State Space Dynamic Model Code 165

H Microcontroller Code 171

H.1 Main Code . 171

H.2 System Configuration File . 210

9

10

List of Figures

2-1 Picture of several commercially available piezoelectric resonators. . . 24

2-2 Butterworth-Van Dyke circuit model for PRs [23]. 25

2-3 Common-negative system considered for switching sequence enumera-

tion, illustrated with an ideal PR. 26

2-4 PR converter topology for switching sequence 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡.

The PR equivalent circuit as given in [23] is within the dotted lines.

Switches are labeled 𝑆1−𝑆4 and the PR terminals are labeled 𝑣𝑝1 and

𝑣𝑝2. 𝑣𝑝 is the PR voltage and 𝑖𝐿 is the current through the PR series

inductor. 28

2-5 Simulation of 𝑉𝑖𝑛−𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 from [4] for 𝑉𝑖𝑛 = 100𝑉 , 𝑉𝑜𝑢𝑡 = 40𝑉 ,

and 𝑃𝑜𝑢𝑡 = 6𝑊 . Numbers 1-6B designate connected/zero stages (odd)

and open stages (even). The PR parameters used are 𝐶𝑝 = 4.3nF,

𝐶𝑟 = 1.4nF, 𝐿 = 1.4mH, and 𝑅 = 2.4Ω. 29

2-6 Plot of connected stage charge transfers for 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 with

𝑉𝑜𝑢𝑡 <
1
2
𝑉𝑖𝑛. The output voltage can be regulated by trading off be-

tween 𝑞1 and 𝑞3. 32

2-7 Plot of connected stage charge transfers for 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 with
1
2
𝑉𝑖𝑛 < 𝑉𝑜𝑢𝑡 < 𝑉𝑖𝑛. The output voltage can be regulated by trading off

between 𝑞3 and 𝑞5. 33

3-1 State plane example for soft-switched sequence 𝑉𝑖𝑛-𝑉𝑜𝑢𝑡, Zero, 𝑉𝑜𝑢𝑡 with

𝑉𝑖𝑛 = 100 V, 𝑉𝑜𝑢𝑡 = 40 V, and 𝑃𝑜𝑢𝑡 = 6 W. Numbers 1-6B correspond

to the time-domain points indicated in Fig. 3-2. 36

11

3-2 Time-domain waveforms for soft-switched sequence 𝑉𝑖𝑛-𝑉𝑜𝑢𝑡, Zero, 𝑉𝑜𝑢𝑡

with 𝑉𝑖𝑛 = 100 V, 𝑉𝑜𝑢𝑡 = 40 V, and 𝑃𝑜𝑢𝑡 = 6 W. 𝑣𝑝1 and 𝑣𝑝2 refer to the

switch nodes between S1, S2 and S3, S4, respectively, in Figure 2-4.

Designations 1-6B correspond to the state transition points in Figure

3-1. 𝐶𝑟 = 1.4nF, 𝐿 = 1.4mH, and 𝑅 = 2.4Ω 37

3-3 Resonant circuits for (a) connected stages, (b) zero stages, and (c) open

stages. 37

4-1 PR converter topology for switching sequence 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡.

The PR equivalent circuit as given in [23] is within the dotted lines.

Switches are labeled 𝑆1−𝑆4 and the PR terminals are labeled 𝑣𝑝1 and

𝑣𝑝2. 𝑣𝑝 is the PR voltage and 𝑖𝐿 is the current through the PR series

inductor. 46

4-2 Simulation of 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 with 𝑉𝑜𝑢𝑡 <
1
2
𝑉𝑖𝑛 with 𝑉𝑖𝑛 = 100𝑉 ,

𝑉𝑜𝑢𝑡 = 40𝑉 , and 𝑃𝑜𝑢𝑡 = 6𝑊 . The corresponding charge transfer dis-

tribution among connected stages can be seen in Figure 4-3. S1 and

S2 form the regulating half-bridge. The two-part open stage is consti-

tuted by stages 6A and 6B, and highlighted in red. S1 and S4 both

change state at the start of stage 6B, so they are designated as RP

and NP, respectively. S2 and S3 are then designated as RS and NS,

respectively. The PR parameters used are 𝐶𝑝 = 4.3nF, 𝐶𝑟 = 1.4nF,

𝐿 = 1.4mH, and 𝑅 = 2.4Ω. 47

4-3 Plot of connected stage charge transfers for 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 with

𝑉𝑜𝑢𝑡 <
1
2
𝑉𝑖𝑛. The output voltage can be regulated by trading off be-

tween 𝑞1 and 𝑞3. S1 and S2 form the regulating half-bridge while S3

and S4 form the nonregulating half-bridge. 48

4-4 Plot of connected stage charge transfers for 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 with
1
2
𝑉𝑖𝑛 < 𝑉𝑜𝑢𝑡 < 𝑉𝑖𝑛. The output voltage can be regulated by trading off

between 𝑞3 and 𝑞5. S1 and S2 form the nonregulating half-bridge while

S3 and S4 form the regulating half-bridge. 48

12

4-5 Description of switch function and control variables during sensed con-

trol. For the switching sequence of Fig. 4-3, ZVS-controlled turn off

refers to controlling S2’s turn off to allow resonance of 𝑣𝑝 up to 𝑉𝑖𝑛 for

ZVS of S1. 50

4-6 Description of switch function and control variables during static con-

trol. Loss-minimization-controlled turn off refers to maintaining both

ZVS and all-positive instantaneous power transfer (to minimize circu-

lating currents). 50

4-7 Block diagram describing the feedback loops used in both sensed and

static control. Every PR cycle, the output 𝑦 from the converter is

sampled at the trigger point, just before the given switch turns on.

See Table 4.1 for corresponding values of 𝑦, 𝑦𝑟𝑒𝑓 , and 𝑢. 51

4-8 Plot illustrating how the 𝑖𝐿 zero crossing can be detected by observing

symmetry in 𝑣𝑝. In this example, S1’s turn on is exactly aligned with

the zero crossing, so we have 𝑡𝛼 = 1
2
𝑡𝛽. 55

4-9 Plot illustrating how the 𝑖𝐿 zero crossing can be detected by observing

symmetry in 𝑣𝑝. In this example, S1’s turn on is misaligned with the

zero crossing and occurs late, so we have 𝑡𝛼 > 1
2
𝑡𝛽. The switching

period would be decreased in response to this misalignment. 56

4-10 Description of switch function and control variables during static non-

regulating control. Duty cycle is 50%. 𝑁𝑃𝑑𝑡 and 𝑁𝑆𝑑𝑡 are equal, and

both expressed as 𝑁𝑃𝑑𝑡. 56

5-1 Simulink circuit representation for the converter topology implement-

ing the 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 switching sequence. 60

5-2 Simulink Simulation Switch FSM. Transition conditions can be seen in

Table 5.2 . 62

5-3 Block diagram for Piecewise Linear simulation procedure. 64

13

5-4 Plot of the “amplitude of resonance” approximation of 𝑖𝐿 for the 𝑉𝑖𝑛 −

𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 switching sequence with 𝑉𝑜𝑢𝑡 < 1
2
𝑉𝑖𝑛. Each charge

quantity is numbered with its corresponding stage. Open stage charge

quantities are colored red. In each half period, the total charge trans-

ferred is 𝑇𝐼𝐿
𝜋

and the charge magnitude transferred in open stages is

𝐶𝑝𝑉𝑖𝑛. 67

5-5 Comparison of the linearized state space model to a simulation of the

PR converter with 𝑆1𝑜𝑛 feedback. Response to 𝑉𝑐𝑚𝑑 step of 1V with

parameters from Table 5.3. 72

6-1 Picture the PR converter printed circuit board. 74

6-2 Circuit schematic of the main converter topology implemented on the

prototype PCB. The PR terminals are connected to 𝑣𝑝1 and 𝑣𝑝2. . . . 74

7-1 Photo of the microcontroller connected to the prototype PR converter. 78

7-2 Static Mode 1 Switch Waveforms. Used with 𝑉𝑖𝑛−𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 with

𝑉𝑜𝑢𝑡 <
1
2
𝑉𝑖𝑛. The switch transition between stages 6A and 6B during

the two-part open stage occurs at the left and right edges of the plot. 82

7-3 Static Mode 2 Switch Waveforms. Used with 𝑉𝑖𝑛−𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 with

𝑉𝑜𝑢𝑡 >
1
2
𝑉𝑖𝑛. The switch transition between stages 6A and 6B during

the two-part open stage occurs at the left and right edges of the plot. 83

7-4 Static Sync Diagram . 84

7-5 Sensed Sync Diagram . 85

7-6 Sensing buffer circuitry, implemented with a TL974IN op amp. See

Table 7.7 for component values. 86

7-7 Sensing buffer circuitry with low-pass filter, implemented with a TL974IN

op amp. See Table 7.7 for component values. 88

7-8 Picture of the sensing circuitry, front side. 89

7-9 Picture of the sensing circuitry, back side. 89

7-10 Block diagram describing the implementation of the ZCD using the CLB. 92

7-11 ZCD Timing Diagram . 95

14

7-12 ZC Waveform for 𝑉𝑜𝑢𝑡 < 1/2𝑉𝑖𝑛. Plot illustrating how the 𝑖𝐿 zero

crossing can be detected by observing symmetry in 𝑣𝑝. In this example,

S1’s turn off is exactly aligned with the zero crossing, so we have 𝑡𝛼 = 1
2
𝑡𝛽. 96

7-13 ZC Waveform for 𝑉𝑜𝑢𝑡 > 1/2𝑉𝑖𝑛. Plot illustrating how the 𝑖𝐿 zero

crossing can be detected by observing symmetry in 𝑣𝑝. In this example,

S4’s turn off (also S1’s turn on) is exactly aligned with the zero crossing,

so we have 𝑡𝛼 = 1
2
𝑡𝛽. 97

8-1 Converter load circuitry. The load resistance is 600Ω when the switch is

open, and 300Ω when the switch is closed. The switch is implemented

as an IRF740 MOSFET. 104

8-2 Photo of the load circuitry used during experiments. 105

8-3 Zoomed in view of the PR waveforms 𝑣𝑝1, 𝑣𝑝2, and 𝑣𝑝, showing that

ZVS and soft charging are achieved with the feedback controller active.

𝑉𝑖𝑛 = 30𝑉 , 𝑣𝑜𝑢𝑡 = 10.4𝑉 , and 𝑅𝑙𝑜𝑎𝑑 = 600Ω. 106

8-4 Zoomed in view of the PR waveforms 𝑣𝑝1 and 𝑣𝑝2 with synchronous

rectifier control enabled. 𝑉𝑖𝑛 = 30𝑉 , 𝑣𝑜𝑢𝑡 = 10.4𝑉 , and 𝑅𝑙𝑜𝑎𝑑 = 600Ω. 107

8-5 Response to 𝑅𝑙𝑜𝑎𝑑 step from 600Ω to 300Ω with 𝑉𝑖𝑛 = 30𝑉 and 𝑉𝑜𝑢𝑡 =

10.4𝑉 . The peak deviation from steady state is 770𝑚𝑉 , or 7.5% of the

output voltage. The output voltage settles to within 2% after 14.6𝑚𝑠. 108

8-6 Response to 𝑅𝑙𝑜𝑎𝑑 step from 300Ω to 600Ω with 𝑉𝑖𝑛 = 30𝑉 and 𝑉𝑜𝑢𝑡 =

10.4𝑉 . The peak deviation from steady state is 600𝑚𝑉 , or 5.8% of

the output voltage. The output voltage settles to within 2% of steady

state after 18.4𝑚𝑠. 108

E-1 Top Level Schematic. Integrates the circuit, switch controller FSM,

and feedback loops. 148

E-2 Circuit Schematic. Implements the topology capable of realizing the𝑉𝑖𝑛−

𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 switching sequence. 148

E-3 Switch Control FSM Diagram. Implements the control conditions for

sensed control described in Chapter 5. 149

15

E-4 Startup FSM Diagram. Implements open loop switching times defined

as constants in the Simulink model explorer window. 149

E-5 𝑆1𝑜𝑛 Feedback Schematic. Implements a PI loop driving the error in

𝑉𝑜𝑢𝑡 to 0. 150

E-6 𝑆2𝑜𝑛 Feedback Schematic. Implements a PI loop ensuring ZVS is

reached across S1. The sample and hold (S/H) block used used to

sample 𝑣𝑝 when S1 turns on. 150

E-7 Top Level Schematic. Integrates the circuit, switch controller FSM,

and feedback loops. 151

E-8 Circuit Schematic. Implements the topology capable of realizing the𝑉𝑖𝑛−

𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 switching sequence. 152

E-9 Switch Control FSM Diagram. Implements the control conditions for

static control described in Chapter 5. 152

E-10 Startup FSM Diagram. Implements open loop switching times defined

as constants in the Simulink model explorer window. 153

E-11 𝑆1𝑜𝑛 (𝑅𝑃𝑜𝑛 Feedback Schematic. Implements a PI loop driving the

error in 𝑉𝑜𝑢𝑡 to 0. 153

E-12 𝑆2𝑜𝑛 (𝑅𝑃𝑑𝑡) Feedback Schematic. Implements a PI loop ensuring ZVS

is reached across S1. The sample and hold (S/H) block used used to

sample 𝑣𝑝1 when S1 turns on. This is an outdated variable name and

definition, and serves the function of implementing 𝑅𝑃𝑑𝑡 control for

ZVS of RP (S1). 154

E-13 Phase (𝑅𝑆𝑑𝑡) Feedback Schematic. Implements a PI loop ensuring ZVS

is reached across S2. The sample and hold (S/H) block used used to

sample 𝑣𝑝1 when S2 turns on. This is an outdated variable name and

definition, and serves the function of implementing 𝑅𝑆𝑑𝑡 control for

ZVS of RS (S2). 154

E-14 𝑇 Feedback Schematic. Implements a version of the ZCD. Integrator

modules that integrate 1 are used as timers, and S/H modules are used

to capture 𝑡𝛼 and 𝑡𝛽. 155

16

List of Tables

4.1 Control loop variables for static and sensed control for the 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡,

𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 sequence with 𝑉𝑜𝑢𝑡 <
1
2
𝑉𝑖𝑛. 52

4.2 Control loop variables for static control for the 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡

sequence with 1
2
𝑉𝑖𝑛 < 𝑉𝑜𝑢𝑡 < 𝑉𝑖𝑛. 52

5.1 Circuit component values in the Simulink Simulation. 61

5.2 Simulink Controller Switch Transition Conditions 63

5.3 Values used in the Piecewise Linear Simulation and the State Space

model comparison. 72

6.1 Components used in the PR dc-dc converter prototype. 75

7.1 Static Control ePWM Counter Compare Actions 80

7.2 Static control switch functions for the 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 sequence. 81

7.3 Static Control ePWM Mode 1 Register Configurations 82

7.4 Static Control ePWM Mode 2 Register Configurations 83

7.5 Sensed Control ePWM Counter Compare Actions 85

7.6 Sensed control switch functions for the 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 sequence. 85

7.7 Component values used in the sensing buffer and low-pass filter circuitry. 87

7.8 List of ZCD configurations for the 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 switching

sequence in the 1
2
𝑉𝑖𝑛 > 𝑉𝑜𝑢𝑡 > 0 operating region, both with and

without synchronous rectifier control. 94

7.9 List of ZCD configurations for the 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 switching

sequence in the 𝑉𝑖𝑛 > 𝑉𝑜𝑢𝑡 >
1
2
𝑉𝑖𝑛 operating region. 97

17

8.1 Table of PR parameters for the specific APC International Part 1553

PR used during experiments. Parameters were extracted using an

impedance analyzer. 103

8.2 Feedback coefficients used to test high efficiency behaviors and nonreg-

ulating half-bridge control. 106

8.3 Feedback coefficients used to test transient response after a step in load

resistance. 109

B.1 𝑉𝑖𝑛 supply input . 122

B.2 𝑉𝑜𝑢𝑡 + 5 Supply input . 122

B.3 𝑉𝑜𝑢𝑡 Load/Output . 122

B.4 SCON1 inputs . 122

B.5 SCON2 inputs . 122

18

Chapter 1

Introduction

Reducing the size of power converters can make them more cost-effective and useful to

a wider range of applications. However, the use of magnetic energy storage is a major

obstacle to miniaturization. Traditional dc-dc power converters utilize magnetics for

energy storage, but magnetics have fundamentally lower efficiency and power density

capabilities when scaled to small sizes [20]. Switched capacitor converters are capa-

ble of high power densities but still require magnetics to achieve voltage regulation

[13, 18, 14, 9]. Piezoelectric resonators (PRs), which store energy in mechanical com-

pliance and inertia, offer a promising alternative to magnetics for miniaturized power

conversion. Unlike magnetics, piezoelectrics have favorable efficiency and power den-

sity characteristics at small scales [12, 2, 6]. Piezoelectrics also offer planar form

factors, ease of batch fabrication, and potential for integration.

The capabilities of piezoelectric materials and piezoelectric-based power conver-

sion have been heavily in [4, 3, 2, 5] and the references therein. [4] enumerates all pos-

sible PR-based dc-dc power converters operating modes, called switching sequences,

that meet certain high efficiency behaviors and practical constraints, including output

regulation, PR soft charging, and ZVS. An experimental prototype achieving greater

than 99% efficiency is demonstrated. [4] is integral to the developments in this thesis.

[3] explores the use of piezoelectric transformers (PTs) in dc-dc converters. PTs are

two-port counterparts of PRs, and they are capable of providing both voltage trans-

formation and galvanic isolation. Finally, [2, 5, 6] explore in depth how the material

19

properties and geometries of PRs can be optimized to give high performance in power

electronics.

Other recent work has also successfully demonstrated PR-based dc-dc converters

[16, 6, 21] that achieve high efficiencies over a wide range of output voltages. However,

there has been relatively little investigation into closed-loop control strategies for

PR-based converters. [19] implements pulse frequency modulation, but without ZVS.

The control schemes of [16, 22] achieve ZVS, but their reliance on sensing may be

challenging to scale to high frequencies. Control of dc-dc power converters based on

PTs has been studied more thoroughly. ZVS operation in magnetics-less PT-based

converters has been analyzed in [3, 17, 8, 11], and multiple control strategies have

been proposed [1, 24, 7]. These implementations are effective in achieving ZVS and

quickly responding to transients, but they also involve complex sensing and waveform

reconstruction techniques.

Implementing closed-loop control that achieves the desired high efficiency behav-

iors is challenging because it requires elements of frequency modulation, pulse width

modulation, dead time control, and phase shift control between half-bridges. This

thesis presents a closed-loop control strategy for PR-based dc-dc converters based on

six-stage switching sequences and topologies with two half-bridges [4]. The highest-

efficiency switching sequence proposed in [4] is used as an example to demonstrate the

proposed control. This strategy conceptualizes each half-bridge as either “regulating”

or “non-regulating”, each of which serve different roles in maintaining the switching

sequence. The proposed scheme maintains the precise switch timing needed to achieve

the desired high-efficiency behaviors, which we validate in an experimental prototype.

It also has potential for scaling to high frequencies.

Chapter 2 summarizes the relevant information from [4] to develop switching se-

quences and operating ranges for PR-based dc-dc converters. Chapter 3 develops the

methods used to solve for the exact steady state behavior of a switching sequence,

including when PR loss is considered.

Chapter 4 proposes the main control scheme developed in this thesis. It derives

the regulating and nonregulating half-bridges, then presents two control strategies for

20

regulating half-bridges and one for non-regulating half-bridges. Finally, the specific

requirements for the example switching sequence are given. Chapter 5 then proposes

multiple methods for modeling the dynamics of the proposed control strategies.

Chapter 6 presents the design for a prototype PR-based dc-dc converter that real-

izes the example switching sequence. Chapter 7 then details the full implementation

of the feedback controller on a microcontroller including the gate signal generation,

sensing circuitry, and feedback loop computations. Finally, Chapter 8 validates the

controller experimentally.

21

22

Chapter 2

Piezoelectric Resonators and

Converter Switching Sequences

This chapter covers the basics of piezoelectric resonators and introduces switching

sequences, which are used to describe the operation of PR-based dc-dc converters.

2.1 What is a Piezoelectric Resonator?

Piezoelectric resonators (PRs) are two-terminal devices that couple electrical and

mechanical states and store energy in mechanical inertia and compliance. The piezo-

electric and inverse piezoelectric effects relate the electric displacement and voltage of

the device to mechanical stress and strain. A common material used in PRs is Lead

Zirconium Titanate (PZT), though other materials such as Lithium Niobiate are also

being investigated for use in power electronics [2, 6]. PRs can be manufactured in

different shapes and can resonate in different vibration modes. Figure 2-1 shows an

image of several different PRs, and further details about the material properties of

PRs can be found in [2].

An equivalent circuit representation of PRs is given by the Butterworth Van-

Dyke model. As illustrated in Figure 2-2, the equivalent circuit is a capacitor in

parallel with a “motional” series RLC branch. The capacitor 𝐶𝑝, also called the static

capacitance, represents the portion of the device’s physical capacitance that does

23

Figure 2-1: Picture of several commercially available piezoelectric resonators.

not couple with the mechanical domain. The RLC branch models the mechanical

resonance properties of the device. Energy stored in the inductor 𝐿 is analogous to

energy stored in mechanical inertia, energy stored in the capacitor 𝐶𝑟 is analogous

to energy stored in mechanical compliance, and the resistor models mechanical loss

to the first order. Two important quantities that will be referred to throughout this

thesis are 𝑣𝑝, the voltage across 𝐶𝑝 and the PR terminals, and 𝑖𝐿, the analogous

current flowing through the motional inductor. The PR has two relevant resonant

frequencies: the series resonant frequency and the parallel resonant frequency. The

series resonant frequency 𝑓𝑠𝑒𝑟𝑖𝑒𝑠, as given in Equation 2.1, is the resonant frequency

of just the motional RLC branch:

𝑓𝑠𝑒𝑟𝑖𝑒𝑠 =
1

2𝜋
√
𝐿𝐶𝑟

(2.1)

The parallel resonant frequency 𝑓𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙, as given in Equation 2.2, is the frequency

at which the net reactance of the motional RLC branch resonates together with the

24

𝐶𝑝

𝑅

𝐶𝑟

𝐿

𝑖𝐿

+

−

𝑣𝑝
+

−
𝑣𝑟

Figure 2-2: Butterworth-Van Dyke circuit model for PRs [23].

parallel capacitor:

𝑓𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =
1

2𝜋
√︁

𝐿 𝐶𝑝𝐶𝑟

𝐶𝑝+𝐶𝑟

(2.2)

2.2 Switching Sequences

Switching sequences describe the steady state operating modes of PR based dc-dc

converters. A switching sequence is a temporal sequence of different “stages”, where

each stage consists of a different way the PR’s terminals are connected (or not) within

the converter. There are two main types of stages, connected stages and open stages.

Connected stages are stages where both terminals of the PR are is connected to the

source load system in one of several ways. As illustrated in Figure 2-3, the possibilities

are ±𝑉𝑜𝑢𝑡, ±𝑉𝑖𝑛, ± (𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡), and 𝑍𝑒𝑟𝑜. Connected stages allow energy transfer

between the PR and the source-load system. A 𝑍𝑒𝑟𝑜 stage is a special case where the

PR terminals are shorted together. Open stages are stages where the PR has one or

both nodes open circuited, and the motional branch resonates with 𝐶𝑝. Open stages

are useful because they allow the PR to internally change 𝑣𝑝 through resonance.

[4] enumerates all switching sequences that meet the following high-efficiency be-

haviors and design constraints:

• PR Soft Charging - The PR only begins a connected stage when 𝑣𝑝 is equal to

25

−
+𝑉𝑖𝑛 −

+ 𝑉𝑜𝑢𝑡
𝐶𝑝 𝐶𝑟

𝐿

𝑖𝐿

+ −𝑣𝑝

+ −𝑣𝑟

+

−

𝑣𝑝1

+

−

𝑣𝑝2

Figure 2-3: Common-negative system considered for switching sequence enumeration,
illustrated with an ideal PR.

the voltage of the connected stage. This requires that there must be an open

stage between connected stages.

• Zero Voltage Switching (ZVS) - Switches only turn on when their drain-source

voltage is zero.

• All-Positive Instantaneous Power Transfer - The converter never sends energy

back into the source or retrieves energy from the load.

• Output Voltage Regulation - There is a continuous range of possible output

voltages that the converter can efficiently provide.

• Minimal number of stages - This produces the simplest switching sequences,

which is important for minimizing control requirements.

• Minimal active switches - This produces the simplest topological implementa-

tion, which is important for practical considerations such as cost.

As given in [4], the simplest switching sequences that achieve all of the desired

behaviors are six-stage switching sequences. There are eight suitable six-stage switch-

ing sequences, and nine possible converter topologies, each using four unidirectional-

voltage-blocking switches. There are two classes of topologies, 2+2 topologies and

3+1 topologies. 2+2 topologies have two half-bridges, with both PR nodes driven by

a half-bridge. 3+1 topologies have one PR node permanently fixed to the source load

26

system, while the other node can be connected in three ways. 2+2 topologies support

multiple possible switching sequences, while 3+1 topologies only support one.

Additionally, constraints must be placed on the zero-crossings of 𝑖𝐿 to maintain

the desired high-efficiency behaviors within a given switching sequence. All-positive

instantaneous power transfer constrains the 𝑖𝐿 polarity during connected stages. How-

ever, since zero stages do not transfer power to the source or load, 𝑖𝐿 could potentially

have either polarity. Open stages need to either increase or decrease 𝑉𝑝, so they also

require a specific average 𝑖𝐿 polarity to charge or discharge 𝐶𝑝. To minimize circu-

lating currents in the PR, we constrain all stages to have only unidirectional current,

which forces 𝑖𝐿 zero crossings to occur on stage transitions. However, an exception is

made to achieve ZVS on 2+2 circuit topologies, where ZVS requires one of the open

stages to be split into two parts, with the zero crossing happening between the two

parts. Some switching sequences support multiple 𝑖𝐿 zero crossing constraints, which

give different output voltage regulation ranges. This is further described in Section

2.3, and more information about 𝑖𝐿 zero crossing constraints can be found in [4].

To develop closed-loop control for PR-based converters in this thesis, we focus on

the 6-stage sequence 𝑉𝑖𝑛-𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡, however the control concepts developed will

apply to all switching sequences that can be implemented on topologies using two half

bridges. The switching sequence is named based on its connected stage voltages in

the order they occur. All stages are numbered, starting with the first connected stage

in the switching sequence. Thus, connected stages are labelled with odd numbers,

and open stages with even numbers. 𝑉𝑖𝑛-𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 can be realized with the

topology shown in Fig. 2-4. Fig. 2-5 shows a time-domain plot of the switching

sequence, and the following list describes its operation during each of the six stages:

1. The PR is connected in series between the input and load, and 𝑣𝑝 = 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡.

S1 and S3 are on. 𝑖𝐿 is positive.

2. The PR is open circuited and 𝑣𝑝 resonates from 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡 to 0. S3 is on. 𝑖𝐿 is

positive.

3. The PR is short circuited, allowing for energy redistribution. S2 and S3 are on.

27

−
+𝑉𝑖𝑛

𝑖𝑖𝑛 𝑖𝑜𝑢𝑡
S1 S2

S3

S4
𝐶𝑝

𝑅𝐶𝐿

𝑖𝐿

+ −𝑣𝑝

+ −𝑣𝑟

+

−

𝑣𝑝1

+

−

𝑣𝑝2

+

−

𝑣𝑜𝑢𝑡

PR model

Figure 2-4: PR converter topology for switching sequence 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡. The
PR equivalent circuit as given in [23] is within the dotted lines. Switches are labeled
𝑆1− 𝑆4 and the PR terminals are labeled 𝑣𝑝1 and 𝑣𝑝2. 𝑣𝑝 is the PR voltage and 𝑖𝐿 is
the current through the PR series inductor.

𝑖𝐿 is entirely positive or entirely negative.

4. The PR is open circuited, and 𝑣𝑝 resonates from 0 to 𝑉𝑜𝑢𝑡. S2 is on. 𝑖𝐿 is

negative.

5. The PR is connected to the load, and 𝑣𝑝 = 𝑉𝑜𝑢𝑡. S2 and S4 are on. 𝑖𝐿 is

negative.

6A) The PR is open circuited and resonates from 𝑉𝑜𝑢𝑡 to 𝑉𝑖𝑛, allowing for ZVS of

S1. S4 is on. 𝑖𝐿 is negative.

6B) The PR remains open circuited, and resonates from 𝑉𝑖𝑛 to 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡. S1 is on.

𝑖𝐿 is positive.

Stage 6, an open stage, is split into two halves (designated 6A and 6B) divided

by an 𝑖𝐿 zero crossing. 𝑣𝑝 resonates to 𝑉𝑖𝑛 at this point to allow ZVS of S1. The

second 𝑖𝐿 zero crossing occurs either between stages 2 and 3 or stages 3 and 4 to ensure

unidirectional current within stages, minimizing loss due to circulating current. When

the 𝑖𝐿 zero crossing occurs between stages 3 and 4, then S3 and S4 both act as diodes,

allowing them to be implemented passively as diodes if desired.

28

−20

0

20

40

60

80

100

120
1 2 3 4 5 6A 6B

𝑣𝑝
𝑣𝑝1

𝑣𝑝2

V
ol

ta
ge

(V
)

Sequence 𝑉𝑖𝑛-𝑉𝑜𝑢𝑡, Zero, 𝑉𝑜𝑢𝑡 [4]

S1
S2

S3

0 5 10 15 20

Time (𝜇s)

S4

Figure 2-5: Simulation of 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 from [4] for 𝑉𝑖𝑛 = 100𝑉 , 𝑉𝑜𝑢𝑡 = 40𝑉 ,
and 𝑃𝑜𝑢𝑡 = 6𝑊 . Numbers 1-6B designate connected/zero stages (odd) and open
stages (even). The PR parameters used are 𝐶𝑝 = 4.3nF, 𝐶𝑟 = 1.4nF, 𝐿 = 1.4mH,
and 𝑅 = 2.4Ω.

29

2.3 Operating Ranges

Conservation of energy (CoE) and conservation of charge (CoC) are fundamental

principles that must be met for periodic steady-state (PSS) operation of a PR in a

converter, and are valuable when analyzing any power converter operating in PSS.

By analyzing the energy and charge balance constraints on the PR in steady state,

we can derive the operating range for a switching sequence that satisfies all desired

behaviors (enumerated in Section 2.2), including those necessary for high efficiency.

We refer to the charge transferred by 𝑖𝐿 during stage 𝑛 as 𝑞𝑛, so the charge transferred

in stage 1 is 𝑞1 (preserving the polarity of 𝑖𝐿). The sum of charges over all stages

must equal 0 for charge balance on 𝐶𝑟:

𝑞1 + 𝑞2 + 𝑞3 + 𝑞4 + 𝑞5 + 𝑞6 = 0 (2.3)

Since 𝑣𝑝 only changes during open stages, the sum of all open stage charges must

also equal 0 for charge balance on 𝐶𝑝:

𝑞2 + 𝑞4 + 𝑞6 = 0 (2.4)

Thus, combining Equations 2.3 and 2.4 requires that the connected stage charges

must also balance:

𝑞1 + 𝑞3 + 𝑞5 = 0 (2.5)

The sum of connected stage energy changes must also be 0 for energy balance

over a cycle within the PR. For a general switching sequence with connected stage

voltages 𝑉1, 𝑉3, and 𝑉5, energy balance is given by:

𝑉1𝑞1 + 𝑉3𝑞3 + 𝑉5𝑞5 = 0 (2.6)

Combining Equations 2.5 and 2.6, and using the 𝑖𝐿 polarity constraints to fix the

signs of the charges results in a range of possible 𝑉𝑜𝑢𝑡. We will derive the regulation

30

range for the 𝑉𝑖𝑛-𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 sequence under both possible 𝑖𝐿 zero crossing con-

straints. To intuitively represent the signs of the charge quantities, we will use their

absolute values. Constraining the 𝑖𝐿 zero crossings between stages 3 and 4 requires

𝑞1 > 0, 𝑞3 > 0 and 𝑞5 < 0, giving:

|𝑞1|+ |𝑞3| = |𝑞5| (2.7)

Similarly, constraining the 𝑖𝐿 zero crossings between stages 2 and 3 requires 𝑞1 > 0,

𝑞3 < 0 and 𝑞5 < 0, giving:

|𝑞1| = |𝑞3|+ |𝑞5| (2.8)

The connected stage voltages are 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, and 𝑉𝑜𝑢𝑡, so to balance PR

energy:

(𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡)|𝑞1|+ (0)|𝑞3| = (𝑉𝑜𝑢𝑡)|𝑞5| (2.9)

Rearranging gives:

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛

=
1

1 + |𝑞5|
|𝑞1|

(2.10)

Now, we can manipulate the charge balance equations to determine the possible

regulation range. When the 𝑖𝐿 zero crossing occurs between stages 3 and 4, Equation

2.7 requires |𝑞1| < |𝑞5| and thus:

1 <
|𝑞5|
|𝑞1|

< ∞ (2.11)

Plugging Equation 2.11 into Equation 2.10 then provides the regulation range of

𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, and 𝑉𝑜𝑢𝑡 with positive 𝑞3:

0 <
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛

<
1

2
(2.12)

In the other case, when the 𝑖𝐿 zero crossing occurs between stages 2 and 3, Equa-

tion 2.8 requires |𝑞1| > |𝑞5| and thus:

31

𝑖𝐿

𝑡

𝑞1 𝑞3

𝑞5

Figure 2-6: Plot of connected stage charge transfers for 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 with
𝑉𝑜𝑢𝑡 <

1
2
𝑉𝑖𝑛. The output voltage can be regulated by trading off between 𝑞1 and 𝑞3.

0 <
|𝑞5|
|𝑞1|

< 1 (2.13)

Plugging Equation 2.13 into Equation 2.10 then provides the regulation range of

𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, and 𝑉𝑜𝑢𝑡 with negative 𝑞3:

1

2
<

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛

< 1 (2.14)

Equations 2.12 and 2.14 show that 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, and 𝑉𝑜𝑢𝑡 is a step down

switching sequence, with different 𝑖𝐿 zero crossing constraints required depending

on whether the gain is less than or greater than 1
2
. Figures 2-6 and 2-7 show how

regulation can be achieved by modulating charge proportions in each case. In these

figures, we assume the open stage charges are negligible compared to the connected

stage charges.

32

𝑖𝐿

𝑡

𝑞1

𝑞3 𝑞5

Figure 2-7: Plot of connected stage charge transfers for 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 with
1
2
𝑉𝑖𝑛 < 𝑉𝑜𝑢𝑡 < 𝑉𝑖𝑛. The output voltage can be regulated by trading off between 𝑞3

and 𝑞5.

33

34

Chapter 3

PR Converter Periodic Steady State

Solution

This chapter introduces the periodic steady state (PSS) analysis techniques that

quantify exactly how a PR-based dc-dc converter operates. First, we use a state

plane visualization to understand the forms that steady state solutions can take.

Then, we present multiple methods to solve for PSS solutions, depending on whether

PR mechanical losses are ignored or considered.

3.1 State Plane Visualization

The state plane is a useful tool for visualizing how the PR’s internal states evolve over

a switching sequence. The state plane plots one state variable against another, and

state plane curves are formed by parameterizing the time domain waveforms. The

state planes we will use to capture full PSS behavior are the 𝑖𝐿 vs 𝑣𝑝 and 𝑖𝐿 vs 𝑣𝑟

state planes. The 𝑖𝐿 vs 𝑣𝑝 state plane is most important for understanding switching

sequence behavior. An example of a state plane can be found in Figure 3-1, and the

corresponding time domain waveforms can be found in Figure 3-2. Here, each stage

is represented by a specific straight or curved segment. Every stage’s segment has an

initial point and a final point, where a point refers to the set of state variables (𝑣𝑝,

𝑣𝑟, 𝑖𝐿) at that point in time.

35

1

2

3

4

5
6A

6B

𝑖𝐿

𝑣𝑝

Zero

𝑉𝑖𝑛-𝑉𝑜𝑢𝑡

𝑉𝑜𝑢𝑡

1
2

3

4

5
6A

6B

𝑖𝐿

𝑣𝑟

Figure 3-1: State plane example for soft-switched sequence 𝑉𝑖𝑛-𝑉𝑜𝑢𝑡, Zero, 𝑉𝑜𝑢𝑡 with
𝑉𝑖𝑛 = 100 V, 𝑉𝑜𝑢𝑡 = 40 V, and 𝑃𝑜𝑢𝑡 = 6 W. Numbers 1-6B correspond to the time-
domain points indicated in Fig. 3-2.

During connected stages, 𝑣𝑝 is held constant at some combination of ±𝑉𝑖𝑛, ±𝑉𝑜𝑢𝑡,

and 0, which we will denote capital 𝑉𝑝. 𝐿 and 𝐶𝑟 will resonate according to Figure

3-3a/b. On the 𝑖𝐿 vs 𝑣𝑝 state plane, connected stages are represented as vertical

line segments since 𝑣𝑝 is constant, and on the 𝑖𝐿 vs 𝑣𝑟 state plane, connected stages

are represented with elliptical arcs (or circular arcs with appropriate normalizations),

with a center of (𝑉𝑝, 0).

During open stages, 𝐶𝑝, 𝐶𝑟, and 𝐿 all resonate according to Figure 3-3c. We define

the series combination of 𝐶𝑝 and 𝐶𝑟 as 𝐶𝑒𝑓𝑓 :

𝐶𝑒𝑓𝑓 =
𝐶𝑝𝐶𝑟

𝐶𝑝 + 𝐶𝑟

(3.1)

On both the 𝑣𝑝 vs 𝑖𝐿 and 𝑣𝑟 vs 𝑖𝐿 state planes, open stages are represented as elliptical

(circular when normalized) arcs. The center point for these arcs on both state planes

is found to be (𝑉𝑜, 0), where 𝑉𝑜 is the following:

𝑉𝑜 =
𝐶𝑝𝑣𝑝,𝑖 + 𝐶𝑟𝑣𝑟,𝑖

𝐶𝑝 + 𝐶𝑟

(3.2)

𝑣𝑝,𝑖 and 𝑣𝑟,𝑟 are the initial values of 𝑣𝑝 and 𝑣𝑟 for that open stage. More on this

derivation can be found in [4].

36

0

50

100
1 2 3 4 5 6A 6B

𝑣𝑝
𝑣𝑝1

𝑣𝑝2

𝑣 𝑝
,𝑣

𝑝
1
,𝑣

𝑝
2

(V
)

−500

0

500

𝑣𝑟

𝑣 𝑟
(V

)

0 5 10 15 20

−500

0

500

𝑖𝐿

𝑖𝑖𝑛

𝑖𝑜𝑢𝑡

Time (𝜇s)

𝑖 𝐿
,𝑖

𝑖𝑛
,𝑖

𝑜𝑢
𝑡
(m

A
)

Figure 3-2: Time-domain waveforms for soft-switched sequence 𝑉𝑖𝑛-𝑉𝑜𝑢𝑡, Zero, 𝑉𝑜𝑢𝑡

with 𝑉𝑖𝑛 = 100 V, 𝑉𝑜𝑢𝑡 = 40 V, and 𝑃𝑜𝑢𝑡 = 6 W. 𝑣𝑝1 and 𝑣𝑝2 refer to the switch nodes
between S1, S2 and S3, S4, respectively, in Figure 2-4. Designations 1-6B correspond
to the state transition points in Figure 3-1. 𝐶𝑟 = 1.4nF, 𝐿 = 1.4mH, and 𝑅 = 2.4Ω

−
+𝑉𝑝

𝑅

𝐶𝑟

𝐿

𝑖𝐿

+

−
𝑣𝑟

(a)

𝑅

𝐶𝑟

𝐿

𝑖𝐿

+

−
𝑣𝑟

(b)

𝑅

𝐶𝑒𝑓𝑓

𝐿

𝑖𝐿

+

−
𝑣𝐶𝑒𝑓𝑓

(c)

Figure 3-3: Resonant circuits for (a) connected stages, (b) zero stages, and (c) open
stages.

37

Certain switching sequence behaviors can also be easily visualized with the state

plane. If the final point of an open stage aligns with the initial point of the following

connected stage, then PR soft charging is achieved. Additionally, if the final point

of the last stage in the sequence is the initial point of the first stage, then PSS is

achieved. Finally, 𝑖𝐿 zero crossing constraints can be visualized through a stage’s

initial or final point lying on the 𝑖𝐿 = 0 axis. We will also use the term “corner

variable” to represent a stage’s initial point. For example, the corner variables (𝑣𝑝,2,

𝑣𝑟,2, 𝑖𝐿,2) refer to the initial variables of stage 2 (and equivalently the final variables

of stage 1). Corner variables will be important for setting up and solving for these

PSS solutions in later sections.

3.2 Ideal Steady State Solution

Quantifying corner variables and their exact locations on a state plane requires solving

the six-stage system for periodic steady state. By ignoring mechanical losses in the

PR (equivalently, letting 𝑅 = 0), we can use the CoC and CoE equations that govern

each stage of the switching sequence to solve for the corner variables. Each stage has

a set of equations that relate its initial variables to its final variables. By equating the

final variables of every stage with the initial variables of the following stage, we can

create a system of equations that represent the switching sequence. We constrain for

PSS by requiring that the final variables of the last stage equal the initial variables

of the first stage.

Connected stages have the following CoE constraint, where 𝑣𝑝 is fixed based on

the PR’s terminal connections, the initial variables are (𝑉𝑝, 𝑣𝑟,𝑖, 𝑖𝐿,𝑖), and the final

variables are (𝑉𝑝, 𝑣𝑟,𝑓 , 𝑖𝐿,𝑓):

𝐶𝑟(𝑣𝑟,𝑖 − 𝑉𝑝)
2 + 𝐿𝑖2𝐿,𝑖 = 𝐶𝑟(𝑣𝑟,𝑓 − 𝑉𝑝)

2 + 𝐿𝑖2𝐿,𝑓 (3.3)

We use a capital 𝑉 in 𝑉𝑝 to indicate this quantity is not a variable but fixed by the

terminal connections, as defined by the switching sequence.

Open stages for the PR have both a CoE constraint and a CoC constraint since 𝐶𝑝

38

now participates in the resonance with the PR’s other elements. Thus, they exhibit

the following CoE and CoC constraints, where the initial variables are (𝑉𝑝,𝑖, 𝑣𝑟,𝑖, 𝑖𝐿,𝑖),

and the final variables are (𝑉𝑝,𝑓 , 𝑣𝑟,𝑓 , 𝑖𝐿,𝑓):

𝐶𝑝𝑉
2
𝑝,𝑖 + 𝐶𝑟𝑉

2
𝑟,𝑖 + 𝐿𝑖2𝐿,𝑖 = 𝐶𝑝𝑉

2
𝑝,𝑓 + 𝐶𝑟𝑉

2
𝑟,𝑓 + 𝐿𝑖2𝐿,𝑓 (3.4)

𝐶𝑝 (𝑉𝑝,𝑓 − 𝑉𝑝,𝑖) = −𝐶𝑟 (𝑉𝑟,𝑓 − 𝑉𝑟,𝑖) (3.5)

Each stage adds two free parameters from its corner variables, 𝑣𝑟,𝑥 and 𝑖𝐿,𝑥. Note

that we assume the connected stage voltages are all known constants, meaning that 𝑉𝑖𝑛

and 𝑉𝑜𝑢𝑡 are fixed before the equations are solved. Additionally, at stage boundaries,

𝑣𝑝 is always a known value based on the switching sequence when soft charging is

achieved. Connected stages add one constraining equation, and open stages add two

constraining equations. Therefore, a six stage sequence with three connected stages

and three open stages uses 12 independent variables with 9 equations. However,

each switching sequence also has two 𝑖𝐿 zero crossing constraints at stage boundaries,

increasing the number of equations to 11. Switching sequences with a two-part open

stage can be equivalently represented by two consecutive open stages, and thus have 14

independent variables and 13 equations. Notably, there is one unconstrained variable

that defines a family of viable PSS solutions; this variable adjusts the output current

at a fixed 𝑉𝑜𝑢𝑡.

These equations can be solved using a numerical or analytic solver. Because the

equations are purely quadratic, the numerical solutions can be quickly calculated and

the MATLAB analytic solver is capable of producing general closed-form solutions.

An example set of equations and their solutions for the 𝑉𝑖𝑛−𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 switching

sequence with 𝑉𝑜𝑢𝑡 < 1
2
𝑉𝑖𝑛 can be found in Appendix A.1. Additionally, MATLAB

code that solves these equations can be found in Appendix D.

39

3.2.1 Switching Time Calculations

The time spent during each stage can be computed from its initial and final variables.

All stages form elliptical arcs on the state plane, and these arcs can be transformed

into circular arcs by normalizing the coordinates. Trigonometry can then be used

to compute the arc length, and finally the arc length can be scaled by the stage’s

angular frequency (open or connected) to get the time. The normalization is given

by the stage’s characteristic impedance. The characteristic impedance for connected

stages is:

𝑍0,𝑐𝑜𝑛𝑛 =

√︂
𝐿

𝐶𝑟

(3.6)

The characteristic impedance for open stages is:

𝑍0,𝑜𝑝𝑒𝑛 =

√︃
𝐿

𝐶𝑒𝑓𝑓

(3.7)

The time spent in a connected stage with initial variables (𝑉𝑝, 𝑣𝑟,𝑖, 𝑖𝐿,𝑖) and final

variables (𝑉𝑝, 𝑣𝑟,𝑓 , 𝑖𝐿,𝑓) is:

𝑡𝑐𝑜𝑛𝑛 =
√︀

𝐿𝐶𝑟

(︃
𝑡𝑎𝑛−1

(︃
𝑖𝐿,𝑓
√︀
𝐿/𝐶𝑟

𝑉𝑟,𝑓 − 𝑉𝑝

)︃
− 𝑡𝑎𝑛−1

(︃
𝑖𝐿,𝑖
√︀

𝐿/𝐶𝑟

𝑉𝑟,𝑖 − 𝑉𝑝

)︃)︃
(3.8)

Similarly, the time spent in an open stage with initial variables (𝑉𝑝,𝑖, 𝑣𝑟,𝑖, 𝑖𝐿,𝑖) and

final variables (𝑉𝑝,𝑓 , 𝑣𝑟,𝑓 , 𝑖𝐿,𝑓) is:

𝑡𝑜𝑝𝑒𝑛 =
√︀

𝐿𝐶𝑒𝑓𝑓

(︃
𝑡𝑎𝑛−1

(︃
𝑖𝐿,𝑓
√︀

𝐿/𝐶𝑒𝑓𝑓

𝑉𝑝,𝑓 − 𝑉𝑟,𝑓

)︃
− 𝑡𝑎𝑛−1

(︃
𝑖𝐿,𝑖
√︀

𝐿/𝐶𝑒𝑓𝑓

𝑉𝑝,𝑖 − 𝑉𝑟,𝑖

)︃)︃
(3.9)

Refer to [4] for more information on computing ideal switching times. Code for

computing switching times can also be found in Appendix D.

40

3.3 Nonideal Steady State Solution

A more complex computation is necessary to obtain the exact PSS solution when PR

mechanical loss, or 𝑅, is considered. A major advantage of the ideal PSS solution is

that its equations are purely offset sinusoids represented by ellipses (or circles) in the

state space and do not require time domain analysis. However, accurately computing

the energy dissipated through 𝑅 requires knowledge of the current flowing through 𝑅

at every point in time, so moving the analysis to the time domain is necessary.

The time domain waveforms are computed from the circuit’s differential equations.

As a reminder, the equivalent circuit diagrams for connected and open stages can be

found in Figure 3-3. Connected stages are described by the following differential

equations:

𝑑𝑣𝑟
𝑑𝑡

=
𝑖𝐿(𝑡)

𝐶𝑟

(3.10)

𝑑𝑖𝐿
𝑑𝑡

=
𝑣𝑝(𝑡)− 𝑣𝑟(𝑡)−𝑅𝑖𝐿(𝑡)

𝐿
(3.11)

During connected stages, 𝑣𝑝 is held constant by the switching sequence at some

voltage 𝑉𝑝. Open stages instead have the same equations for 𝑣𝑟 and 𝑖𝐿 and the

following additional equation to describe the change in 𝑣𝑝:

𝑑𝑣𝑝
𝑑𝑡

= −𝑖𝐿(𝑡)

𝐶𝑝

(3.12)

Thus, both connected and open stages form a second order system of linear

constant-coefficient differential equations. The solutions of these differential equa-

tions are damped complex exponentials with the following decay rate and oscillation

frequencies:

𝛼 = − 𝑅

2𝐿
(3.13)

41

𝜔𝑐𝑜𝑛𝑛 =

√︂
1

𝐿𝐶𝑟

− 𝛼2 (3.14)

𝜔𝑜𝑝𝑒𝑛 =

√︃
1

𝐿𝐶𝑒𝑓𝑓

− 𝛼2 (3.15)

𝑣𝑝 and 𝑣𝑟 have the same centers of resonance as described in Section 3.1. The

time-domain waveforms are second-order, so they must have two initial conditions

to be uniquely defined. These differential equations can be easily solved analytically

using MATLAB or similar software, and code that accomplishes this can be found in

Appendix D.

Now that we have the general time-domain solutions for connected and open

stages, we can construct a system of equations analogous to the CoE and CoC equa-

tions used in Section 3.2. As before, each stage adds two variables representing the

values of 𝑣𝑟 and 𝑖𝐿 at the beginning of the stage. Now, each stage also adds another

variable 𝑡𝑥 which represents the exact time duration of that particular stage. The

equations for a stage are formed by setting the initial conditions of the general time-

domain waveforms to be the initial variables of the stage and requiring that the state

variables equal the initial variables of the following stage after 𝑡𝑥 time has passed.

During connected stages, only 𝑣𝑟 and 𝑖𝐿 resonate, so connected stages only con-

tribute two constraining equations. We denote these equations with the vector func-

tion, which depends on the current time and the stage’s initial variables. The 𝑥 should

be replaced with the appropriate stage number:

−→
𝐶𝑥(𝑡𝑥;𝑉𝑝,𝑖, 𝑣𝑟,𝑖, 𝑖𝐿,𝑖) =

⎡⎣𝑉𝑟,𝑐𝑜𝑛𝑛(𝑡𝑥;𝑉𝑝,𝑖, 𝑣𝑟,𝑖, 𝑖𝐿,𝑖)

𝑖𝐿,𝑐𝑜𝑛𝑛(𝑡𝑥;𝑉𝑝,𝑖, 𝑣𝑟,𝑖, 𝑖𝐿,𝑖)

⎤⎦ =

⎡⎣𝑣𝑟,𝑓
𝑖𝐿,𝑓

⎤⎦ (3.16)

Open stages can be represented similarly to connected stages. However, open

stages contribute three constraining equations since all three states 𝑣𝑝, 𝑣𝑟, and 𝑖𝐿

participate in resonance:

42

−→
𝑂𝑥(𝑡𝑥;𝑉𝑝,𝑖, 𝑣𝑟,𝑖, 𝑖𝐿,𝑖) =

⎡⎢⎢⎢⎣
𝑉𝑝,𝑜𝑝𝑒𝑛(𝑡𝑥;𝑉𝑝,𝑖, 𝑣𝑟,𝑖, 𝑖𝐿,𝑖)

𝑉𝑟,𝑜𝑝𝑒𝑛(𝑡𝑥;𝑉𝑝,𝑖, 𝑣𝑟,𝑖, 𝑖𝐿,𝑖)

𝑖𝐿,𝑜𝑝𝑒𝑛(𝑡𝑥;𝑉𝑝,𝑖, 𝑣𝑟,𝑖, 𝑖𝐿,𝑖)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑉𝑝,𝑓

𝑣𝑟,𝑓

𝑖𝐿,𝑓

⎤⎥⎥⎥⎦ (3.17)

We see that, just as in the ideal case, connected stages contribute one more variable

than equation, while open stages contribute an equal number of stages and equations.

A six stage sequence will have 15 equations and 18 variables. Factoring the 𝑖𝐿 zero

crossing constraints brings the number of equations to 17, again leaving a single

free variable. Another set of open stage equations can also be added to represent a

two-part open stage if necessary.

These equations can only be solved numerically, and there is no general closed

form solution. Because these equations are not polynomial, and there are more total

equations, the nonideal PSS solution is much more computationally intensive to solve

than the ideal PSS solution. Numerical solvers based on Newton’s method will not

converge reliably with a random initial guess. To aid convergence and computation

time, an initial guess for the solution can be computed using the ideal PSS solution

and switching times (see Section 3.2). Code that implements and computes the

nonideal PSS solution for a general switching sequence can be found in Appendix D.

43

44

Chapter 4

PR Converter Control

In this chapter, we will propose multiple feedback control schemes for PR-based dc-

dc converters. First, we derive the main control handle for a switching sequence and

operating range by defining the regulating and nonregulating half-bridges. Then, we

present two control methods for the regulating half-bridge and one control method

for the nonregulating half-bridge. We also implement the control for the 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡,

𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 switching sequence.

4.1 Regulating and Nonregulating Half Bridges

We can use the operating range concepts from Chapter 2.3 to get a better under-

standing of how to control PR-based dc-dc converters. We discussed that, using CoC

and CoE equations, the range of possible output voltages can be derived. We also de-

termined that by “trading off” between two specific charge quantities, we can regulate

the output voltage. By analyzing the roles of each switch in maintaining the switching

sequence, we can concretely map switch duty ratios to output voltage regulation.

We will analyze the 𝑉𝑖𝑛−𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 switching sequence as an example. Figure

4-1 shows the circuit topology, and Figure 4-2 shows the PR and switching waveforms

for the 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 switching sequence with 𝑉𝑜𝑢𝑡 <
1
2
𝑉𝑖𝑛. As discussed in

Chapter 2.2, S1 and S3 are on during Stage 1, S2 and S3 are on during Stage 3, and

S2 and S4 are on during Stage 5. Figure 4-3 illustrates the connected stage charge

45

−
+𝑉𝑖𝑛

𝑖𝑖𝑛 𝑖𝑜𝑢𝑡
S1 S2

S3

S4
𝐶𝑝

𝑅𝐶𝐿

𝑖𝐿

+ −𝑣𝑝

+ −𝑣𝑟

+

−

𝑣𝑝1

+

−

𝑣𝑝2

+

−

𝑣𝑜𝑢𝑡

PR model

Figure 4-1: PR converter topology for switching sequence 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡. The
PR equivalent circuit as given in [23] is within the dotted lines. Switches are labeled
𝑆1− 𝑆4 and the PR terminals are labeled 𝑣𝑝1 and 𝑣𝑝2. 𝑣𝑝 is the PR voltage and 𝑖𝐿 is
the current through the PR series inductor.

transfer for the 𝑉𝑜𝑢𝑡 <
1
2
𝑉𝑖𝑛 case (neglecting open stages for clarity), and Figure 4-4

illustrates the connected stage charge transfer for the 1
2
𝑉𝑖𝑛 < 𝑉𝑜𝑢𝑡 < 𝑉𝑖𝑛 case. For

the 𝑉𝑜𝑢𝑡 <
1
2
𝑉𝑖𝑛 case, we see that adjusting the duty ratio of the S1-S2 half-bridge

modulates the transition point between 𝑞1 and 𝑞3, while the S3-S4 half-bridge’s duty

cycle is constrained by the 𝑖𝐿 zero crossings. Conversely, in the 1
2
𝑉𝑖𝑛 < 𝑉𝑜𝑢𝑡 < 𝑉𝑖𝑛

case, the half-bridges swap roles, and the S3-S4 half-bridge duty ratio modulates the

transition between 𝑞3 and 𝑞5.

Based on this analysis, we define the terms “regulating half-bridge” and “nonregu-

lating half-bridge.” The regulating half-bridge is capable of modulating the proportion

of charge between two connected stages using its duty cycle, which in turn requires

a change in the output voltage to maintain energy balance. The non-regulating half-

bridge is constrained by the switching sequence’s 𝑖𝐿 zero crossings and operates at

a fixed duty ratio (approximately 50%). This half-bridge designation can be applied

to any six-stage switching sequence (along with corresponding 𝑖𝐿 zero crossing con-

straints) that can implemented on a topology with two half-bridges, and we will focus

on control for these types of topologies. However, the operating range analysis can

be applied to all six-stage switching sequences proposed in [4].

We name the individual switches within regulating and nonregulating half-bridges

46

−20

0

20

40

60

80

100

120
6A 6B 1 2 3 4 5 6A 6B

𝑣𝑝
𝑣𝑝1

𝑣𝑝2

V
ol

ta
ge

(V
)

Sequence 𝑉𝑖𝑛-𝑉𝑜𝑢𝑡, Zero, 𝑉𝑜𝑢𝑡 [4]

S1
(R

P
)

S2
(R

S)
S3

(N
S)

0 5 10 15 20

Time (𝜇s)

S4
(N

P
)

Figure 4-2: Simulation of 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 with 𝑉𝑜𝑢𝑡 <
1
2
𝑉𝑖𝑛 with 𝑉𝑖𝑛 = 100𝑉 ,

𝑉𝑜𝑢𝑡 = 40𝑉 , and 𝑃𝑜𝑢𝑡 = 6𝑊 . The corresponding charge transfer distribution among
connected stages can be seen in Figure 4-3. S1 and S2 form the regulating half-bridge.
The two-part open stage is constituted by stages 6A and 6B, and highlighted in red.
S1 and S4 both change state at the start of stage 6B, so they are designated as RP
and NP, respectively. S2 and S3 are then designated as RS and NS, respectively. The
PR parameters used are 𝐶𝑝 = 4.3nF, 𝐶𝑟 = 1.4nF, 𝐿 = 1.4mH, and 𝑅 = 2.4Ω.

47

𝑖𝐿

𝑡

𝑞1 𝑞3

𝑞5

S1 S2

S3 S4

Figure 4-3: Plot of connected stage charge transfers for 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 with
𝑉𝑜𝑢𝑡 <

1
2
𝑉𝑖𝑛. The output voltage can be regulated by trading off between 𝑞1 and 𝑞3.

S1 and S2 form the regulating half-bridge while S3 and S4 form the nonregulating
half-bridge.

𝑖𝐿

𝑡

𝑞1

𝑞3 𝑞5

S1 S2

S3 S4

Figure 4-4: Plot of connected stage charge transfers for 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 with
1
2
𝑉𝑖𝑛 < 𝑉𝑜𝑢𝑡 < 𝑉𝑖𝑛. The output voltage can be regulated by trading off between 𝑞3 and

𝑞5. S1 and S2 form the nonregulating half-bridge while S3 and S4 form the regulating
half-bridge.

48

as primary or secondary based on their relation to the switching sequence’s two-part

open stage. The regulating primary switch (RP) and the nonregulating primary

switch (NP) turn on or off at the transition point between the open stage’s two parts

(i.e., the boundary between stage 6A/6B in this example). The regulating secondary

switch (RS) and the nonregulating secondary switch (NS) are off throughout the entire

two-part open stage. This is further illustrated in Figure 4-2. For a given switching

sequence and operating mode, the physical switches S1-S4 each take the role of one

of the previously named “conceptual” switches. Throughout this chapter, we will use

the “𝑜𝑛” subscript to refer to a switch’s on time duration and the “𝑑𝑡” subscript to

refer to the dead time duration preceding a switch’s on time. For example, 𝑅𝑃𝑜𝑛

indicates the on time duration of the regulating primary switch, and 𝑆2𝑑𝑡 refers to

the dead time duration before S2 turns on.

4.2 Regulating Half Bridge Control

As described in Section 4.1, a switching sequence’s regulating half-bridge controls 𝑣𝑜𝑢𝑡

with its duty cycle. However, it is not enough to control just the duty cycle; we also

need to control the dead times and switching period to achieve all of the desired high

efficiency behaviors described in Chapter 2.2. We present two control methods for

the PR converter’s regulating half-bridge, named “sensed” control and “static” control.

These general control concepts may be applied to the regulating half-bridge of most

six-stage switching sequences.

4.2.1 Sensed Control

Sensed control is a straightforward strategy in which both switches of the regulating

half-bridge are triggered on by sensed voltage measurements and their on-times are

the primary control variables. This general strategy is proposed in [22] for a switching

sequence catering to high step-down ratios. RP and RS are turned on by sensing the

PR node voltages 𝑣𝑝1 and 𝑣𝑝2. RP is turned on when the 𝑖𝐿 zero crossing during the

two-part open stage is detected. In the design implemented in this thesis, the zero-

49

𝑅𝑃𝑜𝑛 𝑅𝑆𝑜𝑛

𝑣𝑝-sensed
turn-on

Voltage-regulating
turn-off

ZVS-controlled
turn-off

Figure 4-5: Description of switch function and control variables during sensed control.
For the switching sequence of Fig. 4-3, ZVS-controlled turn off refers to controlling
S2’s turn off to allow resonance of 𝑣𝑝 up to 𝑉𝑖𝑛 for ZVS of S1.

Period (𝑇)

𝑅𝑃𝑜𝑛𝑅𝑃𝑑𝑡 𝑅𝑆𝑑𝑡

ZVS-controlled
turn-on

Voltage-regulating
turn-off

Loss-minimization
controlled turn-off

Figure 4-6: Description of switch function and control variables during static control.
Loss-minimization-controlled turn off refers to maintaining both ZVS and all-positive
instantaneous power transfer (to minimize circulating currents).

50

+
− PI Controller PR Converter

Sample
and Hold

𝑢

𝑦

Trigger

𝑦𝑟𝑒𝑓

Figure 4-7: Block diagram describing the feedback loops used in both sensed and
static control. Every PR cycle, the output 𝑦 from the converter is sampled at the
trigger point, just before the given switch turns on. See Table 4.1 for corresponding
values of 𝑦, 𝑦𝑟𝑒𝑓 , and 𝑢.

current detection relies on implementing the nonregulating half-bridge with diodes,

and sensing the voltage of the diode acting as NP (here, S4). RS is turned on when

its drain-to-source voltage is 0, achieving ZVS of RS. 𝑅𝑃𝑜𝑛 and 𝑅𝑆𝑜𝑛 are controlled

by independent feedback loops. As illustrated in Fig. 4-5, 𝑅𝑃𝑜𝑛 regulates 𝑣𝑜𝑢𝑡 to the

desired output voltage 𝑉𝑐𝑚𝑑, and 𝑅𝑆𝑜𝑛 ensures ZVS of RP and all-positive instanta-

neous power transfer for maximum efficiency. In periodic steady state, 𝑅𝑃𝑜𝑛 is a free

control handle for regulation, but 𝑅𝑆𝑜𝑛 is constrained by the switching sequence’s

desired behaviors.

For the 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 sequence with 𝑉𝑜𝑢𝑡 <
1
2
𝑉𝑖𝑛, RP (S1) is turned on

at the start of stage 6B, where an 𝑖𝐿 zero crossing occurs. This zero crossing can

be detected by sensing 𝑣𝑝2, which rises above zero when an assumed-diode at (NP)

S4 stops conducting current. This ensures that the controller’s switching signals are

synchronized to the 𝑖𝐿 cycle, which is necessary for stable control. The error between

the measured 𝑣𝑜𝑢𝑡 and desired output 𝑉𝑐𝑚𝑑 drives 𝑅𝑃𝑜𝑛’s (𝑆1𝑜𝑛’s) feedback loop as

illustrated in Fig. 4-7 and Table 4.1.

RS (S2) is turned on at the beginning of stage 3 when 𝑣𝑝1 falls to 𝑣𝑜𝑢𝑡, or equiva-

lently when 𝑣𝑝 falls to 0. To control 𝑁𝑃𝑜𝑛 (𝑆2𝑜𝑛) for ZVS of RP (S1), 𝑣𝑝1 is measured

when the 𝑖𝐿 zero crossing determining RP (S1) turn-on occurs. The difference be-

tween that measurement and 𝑉𝑖𝑛 drives 𝑆2𝑜𝑛’s feedback loop. This is also illustrated

51

Control
Method

Control
Variable

(𝑢)

Measured
Output (𝑦)

Desired
Value
(𝑦𝑟𝑒𝑓)

Trigger
(Switch
Turn-on)

Sensed 𝑅𝑃𝑜𝑛

(𝑆1𝑜𝑛)
𝑣𝑜𝑢𝑡 𝑉𝑐𝑚𝑑 —

𝑅𝑆𝑜𝑛

(𝑆2𝑜𝑛)
𝑣𝑝1 𝑉𝑖𝑛 RP (S1)

Static

𝑅𝑃𝑜𝑛

(𝑆1𝑜𝑛)
𝑣𝑜𝑢𝑡 𝑉𝑐𝑚𝑑 —

𝑅𝑃𝑑𝑡

(𝑆1𝑑𝑡)
𝑣𝑝1 𝑉𝑖𝑛 RP (S1)

𝑅𝑆𝑑𝑡

(𝑆2𝑑𝑡)
𝑣𝑝1 𝑣𝑜𝑢𝑡 RS (S2)

𝑇 𝑡𝛼
1
2
𝑡𝛽 —

𝑁𝑃𝑑𝑡

(𝑆4𝑑𝑡)
𝑣𝑝2 0 NP (S4)

Values correspond to Fig. 4-7.

Table 4.1: Control loop variables for static and sensed control for the 𝑉𝑖𝑛−𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜,
𝑉𝑜𝑢𝑡 sequence with 𝑉𝑜𝑢𝑡 <

1
2
𝑉𝑖𝑛.

Control
Method

Control
Variable

(𝑢)

Measured
Output (𝑦)

Desired
Value
(𝑦𝑟𝑒𝑓)

Trigger
(Switch
Turn-on)

Static

𝑅𝑃𝑜𝑛

(𝑆4𝑜𝑛)
𝑣𝑜𝑢𝑡 𝑉𝑐𝑚𝑑 —

𝑅𝑃𝑑𝑡

(𝑆4𝑑𝑡)
𝑣𝑝2 0 𝑅𝑃 (𝑆1)

𝑅𝑆𝑑𝑡

(𝑆3𝑑𝑡)
𝑣𝑝2 𝑣𝑜𝑢𝑡 𝑅𝑆(𝑆3)

𝑇 𝑡𝛼
1
2
𝑡𝛽 —

𝑁𝑃𝑑𝑡

(𝑆1𝑑𝑡)
𝑣𝑝1 𝑉𝑖𝑛 𝑁𝑃 (𝑆1)

Values correspond to Fig. 4-7.

Table 4.2: Control loop variables for static control for the 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡

sequence with 1
2
𝑉𝑖𝑛 < 𝑉𝑜𝑢𝑡 < 𝑉𝑖𝑛.

52

in Fig. 4-7 and Table 4.1.

4.2.2 Static Control

Voltage-sensed switching is often used in high-frequency power converters (e.g., [15,

10]), but hardware limitations constrain the upper bound for switching frequency.

Moreover, this approach is susceptible to high-frequency noise, and spurious modes

can also interfere with voltage measurements, causing erroneous switch turn-ons. To

avoid these issues, we propose static control, where the controller instead directly

controls the switching period, duty cycle, and dead times for RP and RS, rather than

inferring them with sensed RP and RS turn-ons.

𝑅𝑃𝑜𝑛 is still used to regulate the output voltage as with sensed control, but in

static control, the controller has three other variables as illustrated in Figure 4-6: the

RP dead time 𝑅𝑃𝑑𝑡, the RS dead time 𝑅𝑆𝑑𝑡, and the switching period 𝑇 .

• 𝑅𝑃𝑜𝑛 is used to regulate 𝑣𝑜𝑢𝑡 and is controlled by the error between 𝑣𝑜𝑢𝑡 and its

desired value (𝑉𝑐𝑚𝑑).

• 𝑅𝑃𝑑𝑡 and 𝑅𝑆𝑑𝑡 are controlled for ZVS of RP and RS, respectively. The cor-

responding PR node voltage is measured just before the switch turns on, and

error is computed based on the voltage required for ZVS. Specific values depend

on the switching sequence, operating range, and topology.

• 𝑇 is controlled to align RP’s turn on with the 𝑖𝐿 zero crossing during the two-

part open stage using the zero crossing alignment error as discussed in Section

4.2.3.

Because the other times are fixed, a change in period amounts to a change in

𝑅𝑆𝑜𝑛. Figure 4-7, Table 4.1, and Table 4.2 describe the feedback loops for each

control variable and the specific values used for the 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 sequence.

53

4.2.3 PR Inductor Current Zero Crossing Detection

Aligning the 𝑖𝐿 current zero crossing with the turn on of S1 maximizes efficiency by

preventing extra circulating currents and reverse power flow to the input. The 𝑖𝐿 zero

crossing can be detected without relying on sensing by measuring the width of the

𝑣𝑝 resonant waveform in a two-part open stage (stages 6a and 6b in 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜,

𝑉𝑜𝑢𝑡). In the open-circuited PR:

𝑑𝑣𝑝
𝑑𝑡

= − 𝑖𝐿
𝐶𝑝

(4.1)

Thus, 𝑖𝐿 transitioning from negative to positive results in a local maximum for 𝑣𝑝,

so detecting this local maximum is equivalent to detecting the desired zero crossing.

Since PRs tend to have high quality factors, 𝑣𝑝 is approximately sinusoidal during open

stages and is therefore symmetric around the local maximum. Thus, as illustrated

in Figure 4-8, two points on 𝑣𝑝 with equal voltage must be equally spaced in time

from the local maximum, and the 𝑖𝐿 zero crossing occurs temporally halfway between

these points. This geometry-based strategy can be used to estimate the temporal

location of the 𝑖𝐿 zero crossing with respect to the switching sequence and detect

misalignment as illustrated in Fig. 4-9. This argument assumes that the switch

capacitances are negligible compared to 𝐶𝑝, or that they are nearly equal such that

the effective capacitance in stages 6a and 6b are approximately equal.

In the 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 sequence with 𝑉𝑜𝑢𝑡 < 1
2
𝑉𝑖𝑛, the minimum voltage

level common to both stage 6a and 6b is 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, so the widest symmetric portion

of 𝑣𝑝 is enclosed by 𝑣𝑝 = 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡. The 𝑖𝐿 zero crossing can be approximated

as occurring temporally halfway between 𝑣𝑝 rising above 𝑉𝑖𝑛 − 𝑣𝑜𝑢𝑡 in stage 6a and

falling back to 𝑉𝑖𝑛 − 𝑣𝑜𝑢𝑡 at the end of stage 6b. This can be practically measured

using the point where 𝑣𝑝1 rises above 𝑉𝑖𝑛 − 𝑣𝑜𝑢𝑡 and the point where 𝑣𝑝2 rises to 𝑣𝑜𝑢𝑡

at the end of stage 6b. This method is much less sensitive to noise and interference

from spurious modes than the method used with sensed control since the required

comparator measurements occur where 𝑣𝑝1 and 𝑣𝑝2 have steeper slopes.

We note that this method for detecting the 𝑖𝐿 zero crossing can only be used with

54

𝑣𝑝

𝑉𝑖𝑛 − 𝑣𝑜𝑢𝑡

𝑡𝛽
𝑡𝛼

S1 gate

Stage 5 Stage 6a Stage 6b Stage 1

𝑖𝐿 zero crossing

Aligned!

Figure 4-8: Plot illustrating how the 𝑖𝐿 zero crossing can be detected by observing
symmetry in 𝑣𝑝. In this example, S1’s turn on is exactly aligned with the zero crossing,
so we have 𝑡𝛼 = 1

2
𝑡𝛽.

static control and is incompatible with sensed control. For sensed turn-on of S1, the

system must know the zero crossing’s temporal location as soon as the zero crossing

occurs. However, the location of the zero crossing in this proposed strategy is funda-

mentally not known until after the zero crossing occurs. (One could instantaneously

detect the zero current point by detecting the zero crossing of a differentiated version

of 𝑣𝑝, but such a measurement is sensitive to noise.)

4.3 Non-Regulating Half-Bridge Control

For 𝑉𝑖𝑛−𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 with 𝑉𝑜𝑢𝑡 <
1
2
𝑉𝑖𝑛 and the chosen topology, the non-regulating

half-bridge consists of S3 (NS) and S4 (NP) and can be implemented with diodes.

However, to achieve maximum converter efficiency, S3 and S4 may be implemented

with MOSFETs to avoid diode forward voltage drops (i.e., as "synchronous recti-

fiers"); this strategy is commonly utilized in resonant converters. We propose a

synchronous rectifier control strategy intended to accompany static control in Section

4.2.2 such that all four switch signals are generated.

As discussed in Section 4.1, the nonregulating half-bridge operates at a duty cycle

of nearly 50% since it is constrained by the 𝑖𝐿 zero crossings. Additionally, we note

that the dead times of NP and NS are approximately equal since they both occur

55

𝑣𝑝

𝑉𝑖𝑛 − 𝑣𝑜𝑢𝑡

𝑡𝛽
𝑡𝛼

S1 gate

Stage 5 Stage 6a Stage 6b Stage 1

𝑖𝐿 zero crossing

Misaligned!

Figure 4-9: Plot illustrating how the 𝑖𝐿 zero crossing can be detected by observing
symmetry in 𝑣𝑝. In this example, S1’s turn on is misaligned with the zero crossing
and occurs late, so we have 𝑡𝛼 > 1

2
𝑡𝛽. The switching period would be decreased in

response to this misalignment.

Period (𝑇)

𝑁𝑃𝑑𝑡 𝑁𝑃𝑑𝑡

ZVS-controlled
turn-on

𝑖𝐿 zero crossing
constrained turn-off

Figure 4-10: Description of switch function and control variables during static non-
regulating control. Duty cycle is 50%. 𝑁𝑃𝑑𝑡 and 𝑁𝑆𝑑𝑡 are equal, and both expressed
as 𝑁𝑃𝑑𝑡.

after a zero crossing and transfer the same magnitude of charge into or out of 𝐶𝑝.

The period of the nonregulating half-bridge will be the same 𝑇 already determined

by regulating half-bridge control. We can also determine the phase offset of the non-

regulating half-bridge from the regulating half bridge with the two-part open stage:

either NP turns off when RP turns on, or vice versa, depending on the switching se-

quence and operating mode. Using these facts, we can fully specify the nonregulating

half bridge with just one more parameter. By convention, we choose 𝑁𝑃𝑑𝑡, which is

controlled to achieve ZVS of NP (and consequently NS).

Figure 4-10 shows diagram describing switch functions in nonregulating half-bridge

56

control. The specific control parameters used for the sequence 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡

can be seen in Fig. 4-7, Table 4.1, and 4.2.

57

58

Chapter 5

PR Converter Control Simulation and

Modeling

Simulations are an important tool for testing and understanding the control meth-

ods described in Chapter 4. This chapter explores several methods for simulating

the dynamic response of the PR converter under feedback control, each with varying

degrees of accuracy and computational complexity required. The simulations are im-

plemented for the 𝑉𝑖𝑛−𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 switching sequence, but are easily extendable

to other switching sequences.

5.1 Circuit and Feedback Simulation in Simulink

One way to model converter dynamics is to directly simulate the PR converter circuit

and controller. There are many tools for simulating circuits, but we choose to use

Simulink over traditional SPICE simulators because Simulink allows the circuit model

to be easily connected with more general mathematical functions, allowing creation

of a controller model similar to how a physical digital converter would behave. This

method of simulation is the most general purpose because it simulates the circuit

directly, but is the most computationally expensive as a result.

59

−
+𝑉𝑖𝑛

𝑖𝑖𝑛 𝑖𝑜𝑢𝑡

S1 S2

S3

S4
𝐶𝑝

𝑅𝐶𝐿

𝑖𝐿

+ −𝑣𝑝

+ −𝑣𝑟

+

−

𝑣𝑝1

+

−

𝑣𝑝2

+

−

𝑣𝑜𝑢𝑡𝐶𝑜𝑢𝑡

𝐶𝑏𝑢𝑠

PR model

Figure 5-1: Simulink circuit representation for the converter topology implementing
the 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 switching sequence.

5.1.1 Circuit Model

The Simulink package “Simscape” is used to create circuit models of various physical

systems, including standard electrical circuits. Simscape allows the circuit to be

created and connected graphically, so a given PR converter topology can be easily

implemented by creating the circuit schematic accordingly. The circuit model is a

Simulink continuous time system, and waveforms of the currents and voltages can be

accessed by other parts of the model.

As in earlier sections, the PR is modeled with the Butterworth Van Dyke circuit

representation of a capacitor in parallel with a motional RLC branch. We represent

the rest of the components as follows: Switches are modeled as ideal switches with

an on-state resistance, and are in parallel with a diode and a capacitor. The input is

an ideal voltage source, and the output is a resistor with a capacitive filter. We also

added a bus capacitor between the input and output. The simplified circuit topology

can be seen in Figure 5-1, and an image as well as other specific details of the Simulink

model can be seen in Appendix E.

5.1 shows the circuit parameters used. The PR values were chosen based on

60

Component Property Value Modifiable

PR

Cp 1.41 nF No
Cr 510 pF No
L 8.73 mH No
R 2.3 Ω No

Switch
Closed Resistance 0.01 Ω No
Open Conductance 1× 10−8 Ω−1 No

Threshold 0 No

Switch Parallel Capacitor
Capacitance 1 pF No

Series Resistance 1× 10−6 Ω No
Parallel Conductance 0 Ω−1 No

Switch Parallel Diode
Forward Voltage 0.6 V No
On Resistance 0.3 Ω No

Off Conductance 1× 10−8 Ω−1 No

Output Capacitor
Capacitance 1 𝜇F No

Series Resistance 1× 10−6 Ω No
Parallel Conductance 0 Ω−1 No

Bus Capacitor
Capacitance 1 𝜇F No

Series Resistance 1× 10−6 Ω No
Parallel Conductance 0 Ω−1 No

Input Source DC Voltage 100 V Yes
Load Resistor Resistance 500 Ω Yes

Table 5.1: Circuit component values in the Simulink Simulation.

impedance analyzer measurements of an APC International Part 1553 resonator. The

values for the switch, the switch parallel capacitor, and the switch parallel diode were

left as the Simulink default values. The output and bus capacitances were chosen

to keep the output voltage ripple at an acceptable level. The input voltage and and

load resistor are denoted as “modifiable” because the values can be changed while the

simulation is running to simulate transients. The other values can only be modified

before the simulation runs.

5.1.2 Controller model

To implement controllers for both sensed and static control modes, we use the control

concepts developed in Chapter 4. We used Simulink’s Stateflow systems to create a

finite state machine that generates the switch signals with appropriate timing. Each

half-bridge can be represented with a four-state finite state machine, where each state

61

Primary On Primary Off

Secondary OnSecondary Off

Primary Turn Off
Condition

Secondary Turn On
Condition

Secondary Turn Off
Condition

Primary Turn On
Condition

Figure 5-2: Simulink Simulation Switch FSM. Transition conditions can be seen in
Table 5.2

transition represents a switch being toggled on or off. If we denote the two switches

as the primary and secondary switches, then the states transition as follows:

1. Primary switch turns on

2. Primary switch turns off

3. Secondary switch turns on

4. Secondary switch turns off

The pattern then repeats. The state transitions can be driven by events in the

circuit waveforms or occur after a specific amount of time has passed. Table 5.2

summarizes the state transition conditions for both sensed and static control, and a

diagram can be seen in Figure 5-2. In sensed control, the switches are turned on by

the PR voltage waveforms reaching certain points, while the on times are determined

by the controller. In static control, all of the switch on times and dead times are

determined by the controller. To start up the simulation, the FSM operates in the

static control mode, except that switching times are a fixed to a predetermined PSS

solution computed with the methods in Chapter 3. The simulation will run until PSS

is reached, then the FSM changes operation and the feedback loop begins operation.

62

Control Mode Transition Condition

Sensed Control
Regulating HB

Primary Turn On When 𝑣𝑝2 >= 0
Primary Turn Off After 𝑅𝑃𝑜𝑛

Secondary Turn On When 𝑣𝑝1 <= 𝑣𝑜𝑢𝑡
Secondary Turn Off After 𝑅𝑆𝑜𝑛

Static Control
Regulating HB

Primary Turn On After 𝑅𝑃𝑑𝑡

Primary Turn Off After 𝑅𝑃𝑜𝑛

Secondary Turn On After 𝑅𝑆𝑑𝑡

Secondary Turn Off After 𝑅𝑆𝑜𝑛

Table 5.2: Simulink Controller Switch Transition Conditions

Continuous-time PI compensators are used to determine the switch on times from

the circuit waveforms. The output voltage is already filtered by the output capacitors,

so the output voltage error waveform can be used directly. For ZVS correction,

sample-and-hold modules are used to capture the value of the a voltage waveform just

before the corresponding switch turns on. The sampled-and-held ZVS error waveform

is then used to drive the PI compensator. For implementing the zero crossing detector,

integrators are used as timers, and the zero crossing offset error is computed every

cycle, and stored with a sample and hold. The specific Simulink block diagrams for

each of the switch on time feedback systems can be found in Appendix E.

5.2 Piecewise Linear Numerical Simulation

Another method for simulating converter dynamics involves modifying the CoE and

CoC system of equations that were used for modeling steady state operation in Chap-

ter 3.2. Rather than using the CoE and CoC equations to solve for a specific steady

state solution, they can instead be applied to a set of initial conditions to determine

the state evolution over a single PR resonant cycle, as determined by the switching

sequence. This process can then be repeated for the desired number of resonant cycles

to compute converter dynamics. This method of simulation is much faster than the

circuit simulation techniques used in Section 5.1, however its use is more limited.

This simulation implements a modified version of sensed control where only 𝑅𝑃𝑜𝑛

control is used, and 𝑅𝑆𝑜𝑛 is automatically solved for so ZVS is perfectly reached

63

Get Initial
Conditions

Compute 𝑆1𝑜𝑛
Feedback Loop

Compute
Switching Sequence

Compute
Charge Transfers &

State Durations

Compute
New 𝑣𝑜𝑢𝑡

Stage 6B

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5 &
Stage 6A

𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡

Figure 5-3: Block diagram for Piecewise Linear simulation procedure.

64

during the two part open stage. The evolution of the PR is based on the CoE

and CoC equations that correspond to the switching sequence. The output voltage

is represented by a resistive load with an output capacitor. Every cycle, 𝑅𝑃𝑜𝑛 is

computed based on the error between the current and desired output voltage. During

every iteration of the simulation, the following procedure, which is also illustrated in

Figure 5-3, is followed:

1. Compute the current 𝑅𝑃𝑜𝑛 based on the 𝑉𝑜𝑢𝑡 error.

2. Simulate the PR states across a single switching sequence using CoE and CoC.

3. Determine the connected stage charge transfers and switching times for all

stages.

4. Compute the new value of 𝑉𝑜𝑢𝑡 based on charge transfers and output current

draw.

5. Repeat as desired.

To simulate the switching sequence over a PR cycle, we start with the corner

variables for a predetermined stage, then compute the corner variables following every

state until we reach the starting state again, now with an updated set of corner

variables. If we choose the starting state to be one with an 𝑖𝐿 zero crossing, then only

one variable is required to represent the current PR state, 𝑣𝑟. Open stages provide two

equations, one CoE and one CoC, so the corner variables of the following connected

stage are uniquely determined. Connected stages only provide one equation, modified

CoE, so another constraint is necessary to solve for the corner variables of the following

open stage. The possible constraints are a time duration for the stage, an 𝑖𝐿 zero

crossing occurring at the end of the connected stage, or constraining for ZVS at the

end of the following open stage. At least one connected stage must use the time

duration constraint. Once the corner variables for a switching cycle or known, the

charge transfers and switching times can be computed using the same methods as

described in 3.2.

65

For a specific implementation using the 𝑉𝑖𝑛−𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 sequence with 𝑉𝑜𝑢𝑡 <

1
2
𝑉𝑖𝑛, we can use the following constraints:

• Starting stage is Stage 6B

• Stage 1 is constrained by time duration

• Stage 3 is constrained by an 𝑖𝐿 zero crossing

• Stage 5 is constrained by achieving ZVS at the end of stage 6A

A feedback loop based on the 𝑉𝑜𝑢𝑡 error computes 𝑆1𝑜𝑛 every cycle, and the 𝑡1

can be calculated by subtracting 𝑡6𝐵 from 𝑆1𝑜𝑛, which is used to determine stage 1.

Stage 3 is determined using the fact that 𝑖𝐿,4 = 0. Finally, Stage 5 and Stage 6A are

solved in parallel so that 𝑉𝑝,6𝐵 = 𝑉𝑖𝑛, ensuring exact ZVS. (An alternate simulation

could implement full sensed control by adding an additional feedback loop for 𝑆2𝑜𝑛

and constraining Stage 5 by taking 𝑡5 = 𝑆2𝑜𝑛 − 𝑡3 − 𝑡4.) Figure 5-3 further illustrates

this procedure.

The following equations implement the PI compensator for 𝑆1𝑜𝑛, where 𝑆1𝑜𝑛,𝑖𝑛𝑡 is

the integral component of 𝑆1𝑜𝑛, 𝐾𝑃 is the compensator proportional coefficienct, 𝐾𝐼

is the compensator integral coefficient, 𝑇 is the period of the current cycle, and 𝑉𝑐𝑚𝑑

is the desired output voltage:

𝑆1𝑜𝑛,𝑖𝑛𝑡 = 𝑆1𝑜𝑛,𝑖𝑛𝑡,𝑝𝑟𝑒𝑣 +𝐾𝐼 × 𝑇 × (𝑣𝑜𝑢𝑡 − 𝑉𝑐𝑚𝑑) ; (5.1)

𝑆1𝑜𝑛 = 𝑆1𝑜𝑛,𝑖𝑛𝑡 +𝐾𝑃 × (𝑣𝑜𝑢𝑡 − 𝑉𝑐𝑚𝑑) ; (5.2)

As mentioned earlier, the output of the converter is a resistive load and a capacitive

filter, which can be represented with a single state variable. Every PR cycle, the load

resistor will draw a quantity of charge based on 𝑉𝑜𝑢𝑡, and the PR will send a certain

quantity of charge based on the switching sequence. For 𝑉𝑖𝑛−𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡, charge

quantity |𝑞1| + |𝑞5| is sent to the output, and the change in 𝑉𝑜𝑢𝑡 can be computed

66

𝐼𝐿

𝑖𝐿

𝑡

𝑞6𝑏

𝑞1 𝑞2
𝑞3

𝑞4
𝑞5

𝑞6𝑎
𝑆1𝑜𝑛

Figure 5-4: Plot of the “amplitude of resonance” approximation of 𝑖𝐿 for the 𝑉𝑖𝑛−𝑉𝑜𝑢𝑡,
𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 switching sequence with 𝑉𝑜𝑢𝑡 <

1
2
𝑉𝑖𝑛. Each charge quantity is numbered

with its corresponding stage. Open stage charge quantities are colored red. In each
half period, the total charge transferred is 𝑇𝐼𝐿

𝜋
and the charge magnitude transferred

in open stages is 𝐶𝑝𝑉𝑖𝑛.

with the following equation, where 𝐶𝑜𝑢𝑡 is the output capacitance and 𝑅𝑙𝑜𝑎𝑑 is the

load resistance:

∆𝑉𝑜𝑢𝑡 =
1

𝐶𝑜𝑢𝑡

(︂
|𝑞1|+ |𝑞5| −

𝑉𝑜𝑢𝑡

𝑅𝑙𝑜𝑎𝑑

× 𝑇

)︂
(5.3)

We assume 𝑉𝑜𝑢𝑡 can be approximated as constant over a single PR cycle.

This procedure can then be repeated as many times as desired to simulate con-

verter dynamics. The number of PR cycles can be converted to time by storing the

period of every cycle. To simulate the effects of a 𝑉𝑐𝑚𝑑 or 𝑅𝑙𝑜𝑎𝑑 step, the value can

easily be changed at the desired point in time.

5.3 State-Space Model

Taking another approach, we can derive an approximate continuous-time state space

dynamic model by using the Amplitude of Resonance (AoR) model [4]. The AoR

model approximates the PR inductor current, 𝑖𝐿, as sinusoidal and relates the total

charge magnitude transferred via 𝑖𝐿 during the PR’s resonant cycle to the amplitude

67

of 𝑖𝐿, which we denote 𝐼𝐿. This is illustrated in Figure 5-4, and more details about

the AoR model can be found in [4].

A simplified dynamical state space model can be constructed for the PR converter

with two states: 𝑣𝑜𝑢𝑡 and 𝐼𝐿. To derive this model, we assume that the PR is ideal,

𝑅𝑃𝑜𝑛 is the only control variable, and the other switching parameters are chosen to

ensure exact ZVS, soft-charging, and all-positive instantaneous power transfer. We

also assume that 𝑇 is a constant, which is justified because the frequency range of

a PR’s inductive region (i.e., the operating region for which ZVS can be obtained)

is relatively narrow. (This approximation is also made in other developments using

PRs, e.g., [6].) Finally, we assume that 𝐼𝐿 and 𝑣𝑜𝑢𝑡 are constant within a single PR

resonant period.

5.3.1 State Equations

We will now derive the state equations governing the 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 switching

sequence with 𝑉𝑜𝑢𝑡 <
1
2
𝑉𝑖𝑛. Equations (5.4) and (5.5) describe the state evolution of

𝑣𝑜𝑢𝑡 and 𝐼𝐿:
𝑑𝑣𝑜𝑢𝑡
𝑑𝑡

=
1

𝐶𝑜𝑢𝑡

(︂
|𝑞1|+ |𝑞5|

𝑇
− 𝑣𝑜𝑢𝑡

𝑅𝑙𝑜𝑎𝑑

)︂
(5.4)

𝑑𝐼𝐿
𝑑𝑡

=
1

𝑇𝐿𝐼𝐿
((𝑉𝑖𝑛 − 𝑣𝑜𝑢𝑡) |𝑞1| − 𝑣𝑜𝑢𝑡|𝑞5|) (5.5)

These equations are in terms of |𝑞1| and |𝑞5|, the charge quantities transferred by 𝑖𝐿

during stages 1 and 5, respectively, and the following assumed constants: the output

capacitance 𝐶𝑜𝑢𝑡, the load resistance 𝑅𝑙𝑜𝑎𝑑, the PR static capacitance 𝐶𝑝, the PR

motional inductance 𝐿, and the switching period 𝑇 .

(5.4) is derived from charge balance on the output capacitance. Every switching

period, the PR delivers the charge quantity |𝑞1|+ |𝑞5| to the load. Thus, the average

PR output current over a switching period is:

𝑖𝑃𝑅,𝑎𝑣𝑔 =
|𝑞1|+ |𝑞5|

𝑇
(5.6)

68

Additionally, the current drawn by the load is:

𝑖𝑙𝑜𝑎𝑑 =
𝑣𝑜𝑢𝑡
𝑅𝑙𝑜𝑎𝑑

(5.7)

The average current into the output capacitor is then the difference between these

two current quantities, giving an equation for the time derivative of 𝑣𝑜𝑢𝑡. This ap-

proximation is valid when the output capacitor is large enough that 𝑣𝑜𝑢𝑡 does not

change significantly during a single PR period, and when the PR output current’s

temporal distribution across the switching period is not relevant.

(5.5) is derived from energy balance on the PR. During stage 1, the source-load

system delivers an energy quantity of ∆𝐸1 = (𝑉𝑖𝑛 − 𝑣𝑜𝑢𝑡)|𝑞1| to the PR, and during

stage 5, the source-load system extracts an energy quantity of ∆𝐸5 = 𝑣𝑜𝑢𝑡|𝑞5| from

the PR. Thus, the time derivative of the energy stored in the PR is:

𝑑𝐸𝑠𝑡𝑜𝑟𝑒𝑑

𝑑𝑡
=

(𝑉𝑖𝑛 − 𝑣𝑜𝑢𝑡)|𝑞1| − 𝑣𝑜𝑢𝑡|𝑞5|
𝑇

(5.8)

Assuming the PR is ideal, we can also approximate the energy stored in the PR based

on the amplitude of resonance model. If the peak PR inductor current is 𝐼𝐿, then the

peak energy stored in the PR is approximately:

𝐸𝑠𝑡𝑜𝑟𝑒𝑑 =
1

2
𝐿𝐼2𝐿 (5.9)

The time derivative of energy can then be related to the time derivative of 𝐼𝐿 by

𝑑𝐸𝑠𝑡𝑜𝑟𝑒𝑑

𝑑𝑡
=

𝑑(1
2
𝐿𝐼2𝐿)

𝑑𝑡
= 𝐿𝐼𝐿

𝑑𝐼𝐿
𝑑𝑡

(5.10)

(5.5) is then produced by combining (5.8) and (5.10). This approximation assumes

the change in energy stored in the PR capacitances is negligible compared to the

change in energy stored in the PR inductor when 𝑖𝐿 is at its peak.

69

5.3.2 Charge Transfer Quantities

We can derive expressions for |𝑞1| and |𝑞5| as functions of 𝐼𝐿, 𝑣𝑜𝑢𝑡, control handle

𝑆1𝑜𝑛, and the same constants by integrating the appropriate segments of the assumed-

sinusoidal 𝑖𝐿 waveform:

|𝑞1| =
𝑇𝐼𝐿
2𝜋

(︂
1− cos

(︂
2𝜋

𝑇
𝑆1𝑜𝑛

)︂)︂
− 𝐶𝑝𝑣𝑜𝑢𝑡 (5.11)

|𝑞5| =
𝑇𝐼𝐿
𝜋

− 𝐶𝑝𝑉𝑖𝑛 (5.12)

The charge transfer required during each open stage is determined by the switching

sequence.

(5.11) is derived by integrating 𝑖𝐿 over stages 6b and 1, then subtracting the charge

transfer during stage 6b to arrive at the charge transferred in stage 1. S1 turns on

at the 𝑖𝐿 zero crossing and is on for the full duration of stages 6b and 1, so this total

charge transfer is a direct function of 𝑆1𝑜𝑛. (5.12) is derived by integrating 𝑖𝐿 over

stages 4, 5, and 6a and subtracting the open stage charge transfer. Since we assume

that exact ZVS is achieved, the total open stage charge transfer in stages 4 and 6a

must resonate 𝑣𝑝 from 0 to 𝑉𝑖𝑛.

5.3.3 Model Validation

The state space equations in (5.4) and (5.5) can be linearized around an operating

point to simplify their analysis. An operating point consists of an input and output

voltage, a load resistance, and a switching period. The switching period can be

calculated from the PSS solutions described in Chapter 3. The linear state space

model can then be connected in feedback with a PI compensator to model its closed-

loop behavior. The linearized equations are as follows:

70

𝑑̃︂𝑉𝑜𝑢𝑡

𝑑𝑡
=−

(︂
𝐶𝑝

𝐶𝑜𝑢𝑡𝑇
+

1

𝑅𝑙𝑜𝑎𝑑𝐶𝑜𝑢𝑡

)︂̃︂𝑉𝑜𝑢𝑡

+
3− cos

(︀
2𝜋
𝑇
𝑆1𝑜𝑛

)︀
2𝜋𝐶𝑜𝑢𝑡

̃︀𝐼𝐿
+

𝐼𝐿
𝐶𝑜𝑢𝑡𝑇

sin

(︂
2𝜋

𝑇
𝑆1𝑜𝑛

)︂ ̃︂𝑆1𝑜𝑛
(5.13)

𝑑 ̃︀𝐼𝐿
𝑑𝑡

=

(︂
1

2𝜋𝐿
cos

(︂
2𝜋

𝑇
𝑆1𝑜𝑛

)︂
− 3

2𝜋𝐿
+

2𝐶𝑝𝑉𝑜𝑢𝑡

𝑇𝐿𝐼𝐿

)︂̃︂𝑉𝑜𝑢𝑡

+−𝐶𝑝𝑉𝑜𝑢𝑡
2

𝑇𝐿𝐼𝐿
2
̃︀𝐼𝐿

+
𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡

𝑇𝐿
sin

(︂
2𝜋

𝑇
𝑆1𝑜𝑛

)︂ ̃︂𝑆1𝑜𝑛
(5.14)

Code that creates the linearized state space equations and connects the system in

feedback can be found in Appendix G.

To validate the state space model, we compare it to the piecewise linear model

described in Section 5.2. Fig. 5-5 shows a comparison of the ideal simulator to

the state space model after a step in 𝑉𝑐𝑚𝑑. Both simulations used the same PR

parameters, input and output voltages, output capacitance and load resistance, and

feedback coefficients. The state space model is linearized around the starting point of

𝑉𝑖𝑛 and 𝑉𝑜𝑢𝑡,𝑖. These values, along with the 𝑇 used with the state space model, can

be found in Table 5.3.

71

Parameter Value
𝐶𝑝 1.41nF
𝐶𝑟 510pF
𝐿 8.73mH
𝑉𝑖𝑛 100
𝑉𝑜𝑢𝑡,𝑖 40
𝑉𝑜𝑢𝑡,𝑓 41
𝐶𝑜𝑢𝑡 1µF
𝑅𝑙𝑜𝑎𝑑 244Ω
𝐾𝑝 500e-6
𝐾𝑖 .25e-6
𝑇 13.1µs

Table 5.3: Values used in the Piecewise Linear Simulation and the State Space model
comparison.

Figure 5-5: Comparison of the linearized state space model to a simulation of the PR
converter with 𝑆1𝑜𝑛 feedback. Response to 𝑉𝑐𝑚𝑑 step of 1V with parameters from
Table 5.3.

72

Chapter 6

PR Converter Hardware

Implementation

This chapter covers an implementation of a prototype PR-based dc-dc converter. We

will discuss the circuit and its capabilities, the components used, and how to interface

with the converter.

6.1 Circuit Description

We implemented the circuit topology described in Chapter 2 on a two-layer 1-oz

copper PCB. This topology is primarily capable of realizing the 𝑉𝑖𝑛−𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡

switching sequence, but it also supports the 𝑉𝑖𝑛, 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑉𝑜𝑢𝑡 switching sequence.

An image of the PCB can be found in Figure 6-1, and a schematic of the primary

converter circuitry can be found in Figure 6-2. A complete schematic, bill of materials

and board layout is shown in Appendix B. PRs can be mounted upright or laid flat on

the copper pad, depending on their size. Details of operation with a specific PR can

be found in Chapter 8. S1 and S2 are implemented with GaN FETs. S3 and S4 are

implemented with discrete diodes in parallel with GaN FETs, providing support for

both switching sequences in their full range of operation. Based on switch tolerances,

the converter supports a maximum input voltage of 400V and a maximum output

voltage of 200V.

73

Figure 6-1: Picture the PR converter printed circuit board.

+

−

𝑉𝑖𝑛

𝑖𝑖𝑛 𝑖𝑜𝑢𝑡

+

−

𝑣𝑜𝑢𝑡

S1 S2

S3

S4+

−

𝑣𝑝1

𝐶𝑜𝑢𝑡

+

−

𝑣𝑝2

Figure 6-2: Circuit schematic of the main converter topology implemented on the
prototype PCB. The PR terminals are connected to 𝑣𝑝1 and 𝑣𝑝2.

74

Component Value
Switches EPC2019 GaN FETs
Diodes On Semiconductor NSTA4100

Gate Drivers Texas Instruments UCC27611
Input Capacitance 45µF

Output Capacitance 115µF

Table 6.1: Components used in the PR dc-dc converter prototype.

All of the switches are driven by isolated gate drivers, allowing external gate signals

from a controller to be ground referenced. All gate drivers are tied to their respective

switch’s source node, and a boostrap diode and capacitor are used to power the S1

and S3 gate drivers. An isolated and 𝑣𝑜𝑢𝑡 referenced 5V supply is required to power

the S1 and S2 gate drive circuitry, and a ground referenced 5V supply is necessary to

power the S3 and S4 gate drive circuitry.

A list of important components can be found in Table 6.1.

6.2 Converter Interface

There are several plugs and header pins on the board, which allow for easy connection

of the converter to power supplies and controller circuitry. The three large plugs are

for connecting the input power supply, the isolated 5V supply for driving S1 and S2,

and the load. The header pins provide the inputs for the isolated gate signals and

the 5V power supply for S3 and S4’s gate drive circuitry. Appendix B.2 shows the

pinouts of all ports and headers on the controller.

75

76

Chapter 7

Feedback Controller Hardware

Implementation

This chapter will cover the specifics on how the control concepts from Chapter 4 can

be implemented on a microcontroller and used to control the prototype PR-based dc-

dc converter described in Chapter 6. First, we will introduce the important features

of the microcontroller. Next, we will explore in detail how all of the hardware features

of the microcontroller can be configured to set up the control system. Finally, we will

explore the specifics of the code and how controller operation can be configured. The

full code and configuration information can be found in Appendix H.

7.1 Microcontroller

The microcontroller used is the Texas Instruments (TI) TMDSCNCD28379D Con-

trol Card paired with the TMDSHSECDOCK docking station for easy access to the

microcontroller pinout and space to add additional circuitry. An image of the mi-

crocontroller can be seen in Figure 7-1. This microcontroller was chosen because it

has most of the features needed to implement a full digital controller built in. The

relevant features are:

• 32-bit CPU with floating point arithmetic and other advanced math capabilities

77

PR

Microcontroller PR Converter

Figure 7-1: Photo of the microcontroller connected to the prototype PR converter.

• 200MHz clock frequency

• 3.3V IO

• Twelve highly configurable and independent PWM outputs

• Four 12-bit analog to digital converters (ADCs)

• Eight configurable and high speed comparators

• Four Configurable Logic Blocks (CLBs), which allow for simple custom digital

logic

The microcontroller’s PCB has a cartridge slot pinout on the bottom, meaning

that it can be easily be connected to a custom PCB, or in our case, the docking station.

The docking station was used because it makes all of the microcontroller pins easily

accessible, allowing easy prototyping, interfacing with and space for implementing

the required sensing circuitry, and reconfigurability if changes to the implementation

are required.

78

The microcontroller can be programmed using the C programming language and

TI’s C2000Ware library. The code is written using the TI Code Composer Studio

(CCS) IDE, which has built in support for C2000Ware, compiling the code, and

uploading it to the microcontroller.

7.2 Gate Signal Generation

The primary input to the PR converter are the gates of the four switches. The

enhanced Pulse Width Modulation (ePWM) modules on the microcontroller are used

to generate these gate signals with precise timing and minimal software intervention.

The ePWMs can be thought of as advanced counters that can be used to generate

an output signal with various shapes. The counters can be configured to count up,

down, or up-down (where the counter counts up then down), and will increment or

decrement the count every clock cycle. At a 200MHz clock frequency, this gives a

time resolution of 5ns. It is most convenient to use the count-up mode because it

allows the switch on-times to be most easily specified.

The ePWMs have several internal registers used for tracking and maintaining the

count. The period register sets the maximum count, which determines when the count

resets back to 0. This is used to directly set the switching frequency. The Counter

Compare registers are used to perform actions when the count reaches specific values.

This is used to set the on times of switches, and to generate signals at specific times

to trigger other hardware, like ADC measurements.

Since we need to use four ePWMs, one for each switch on the converter, we need

to ensure the gate signals are properly offset in time for correct converter operation

and to avoid issues like switch shoot-through. We can accomplish this using the sync

and phase shift features of the ePWMs. Each ePWM has a number assigned to it.

The twelve ePWMs are labelled ePWM1, ePWM2, and so on up to ePWM12. The

ePWMs are split into four groups of three modules, and the first in each group (1, 4,

7, 10) can generate sync signals which pass to all higher numbered ePWMs. When an

ePWM receives a sync signal, it will reset its counter to its phase value. This allows

79

Counter Compare Action
CTR = 0 Set Output High

CTR = CMPA Set Output Low
CTR = CMPC ADC Start Of Conversion

Table 7.1: Static Control ePWM Counter Compare Actions

multiple ePWMs to be offset in phase from each other while ensuring they do not

drift over time.

Additionally, the ePWMs support shadowing, which means that when the ePWM

register values are changed, the values are first loaded into a second set of registers

which buffer the values until a specific condition is reached. This allows consistent

updating of the ePWM values from the code without having to worry about when

exactly the code executes relative to the ePWMs. The ePWMs are configured to load

from the shadow registers either when the count overflows or a sync signal occurs.

The following subsections detail the specific ePWM configurations necessary to

implement both static and sensed control. Each control mode has specific ways of

configuring three main aspects: the Counter Compare actions, Counter Compare

registers, and sync behaviors. Code for both static and sensed control can be found

in Appendix H.

7.2.1 Static Control Configuration

Static control uses the counter compare actions found in Table 7.1 for all ePWM

modules. Because the ePWMs are configured in count-up mode, the output will be

set high when the counter equals 0, and low when the counter later reaches CMPA.

This means the switch on-time is configured by setting CMPA to the desired value.

When the counter equals CMPC, the ePWM creates an internal signal that can trigger

an ADC module conversion. This is used to take voltage measurements at precise

points in the switching sequence.

To fully specify the output signal timing for each ePWM, we need to configure

the period, the CMPA register, and the Phase register. The five parameters available

for configuring the ePWMs are 𝑇 , 𝑅𝑃𝑜𝑛, 𝑅𝑃𝑑𝑡, 𝑅𝑆𝑑𝑡, and 𝑁𝑃𝑑𝑡. (See Chapter 4 for

80

Conceptual Switch Physical Switch
(𝑉𝑜𝑢𝑡 < 1/2𝑉𝑖𝑛) (𝑉𝑜𝑢𝑡 > 1/2𝑉𝑖𝑛)

RP ePWM1 (S1) ePWM4 (S4)
RS ePWM2 (S2) ePWM3 (S3)
NP ePWM4 (S4) ePWM1 (S1)
NS ePWM3 (S3) ePWM2 (S2)

Table 7.2: Static control switch functions for the 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 sequence.

more information on these parameters.) For simplicity, we choose to align all of the

timing with one of the switch transitions at the stage 6A/6B boundary during the

two-part open stage. This allows each the timing of each half bridge to be specified

only with its own parameters and 𝑇 . Additionally, there are two possible modes that

the switch waveforms can take, and they are applicable to many sequences in [4] with

two-part open stages. Both modes are controlled identically, and only dictate the

relative offsets of the regulating and nonregulating half-bridges. In Mode 1, RP turns

on during the two part open stage (e.g., 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 with 𝑉𝑜𝑢𝑡 <
1
2
𝑉𝑖𝑛, in

which RP is S1), and in Mode 2, RP turns off during the two part open stage (e.g.,

𝑉𝑖𝑛−𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 with 𝑉𝑖𝑛 > 𝑉𝑜𝑢𝑡 >
1
2
𝑉𝑖𝑛, in which RP is S4). Mode 1 corresponds

to Figure 7-2 illustrates the switch waveforms in Mode 1, and Figure 7-3 illustrates

the switch waveforms in Mode 2.

The above configuration can easily be used with the 𝑉𝑖𝑛−𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 switching

sequence with both 𝑉𝑜𝑢𝑡 <
1
2
𝑉𝑖𝑛 and 𝑉𝑜𝑢𝑡 >

1
2
𝑉𝑖𝑛. When 𝑉𝑜𝑢𝑡 <

1
2
𝑉𝑖𝑛, the gate signals

should be in Mode 1, and when 𝑉𝑜𝑢𝑡 >
1
2
𝑉𝑖𝑛 the gate signals should be in Mode 2. This

is because the two half bridges exchange regulatory roles across this boundary. Table

7.2 defines what role each physical switch takes when using this switching sequence.

We chose to connect each ePWM to the correspondingly numbered physical switch

for simplicity. Because S1 always turns on during the two-part open stage, ePWM1

can be configured to always output its sync signal when its counter equals 0, ensuring

proper switch alignment.

The ePWM register values can be found in Table 7.3 for Mode 1 and in Table

7.4 for Mode 2. As mentioned earlier, CMPA is configured with the switch on-time.

Phase is configured to offset the switch turn-on points from each other appropriately.

81

𝑡𝑇
2

𝑇

RP
Gate

RS
Gate

NS
Gate

NP
Gate

6B 1 2 3 4 5 6A

𝑅𝑃𝑜𝑛

𝑅𝑆𝑑𝑡 𝑅𝑃𝑑𝑡

𝑁𝑃𝑑𝑡 𝑁𝑃𝑑𝑡

Figure 7-2: Static Mode 1 Switch Waveforms. Used with 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 with
𝑉𝑜𝑢𝑡 <

1
2
𝑉𝑖𝑛. The switch transition between stages 6A and 6B during the two-part

open stage occurs at the left and right edges of the plot.

Switch CMPA Phase
RP 𝑅𝑃𝑜𝑛 0
RS 𝑇 −𝑅𝑃𝑜𝑛 −𝑅𝑃𝑑𝑡 −𝑅𝑆𝑑𝑡 𝑇 −𝑅𝑃𝑜𝑛 −𝑅𝑆𝑑𝑡

NP 𝑇/2−𝑁𝑃𝑑𝑡 𝑇/2−𝑁𝑃𝑑𝑡

NS 𝑇/2−𝑁𝑃𝑑𝑡 𝑇 −𝑁𝑃𝑑𝑡

Table 7.3: Static Control ePWM Mode 1 Register Configurations

82

𝑡𝑇
2

𝑇

RP
Gate

RS
Gate

NS
Gate

NP
Gate

6B 1 2 3 4 5 6A

𝑅𝑃𝑜𝑛

𝑅𝑃𝑑𝑡𝑅𝑆𝑑𝑡

𝑁𝑃𝑑𝑡𝑁𝑃𝑑𝑡

Figure 7-3: Static Mode 2 Switch Waveforms. Used with 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 with
𝑉𝑜𝑢𝑡 >

1
2
𝑉𝑖𝑛. The switch transition between stages 6A and 6B during the two-part

open stage occurs at the left and right edges of the plot.

If the switch is supposed to turn on 𝑥 amount of time after the two-part open stage

switch transition, then phase should be set to 𝑇 − 𝑥. This is because when the sync

occurs, Phase is loaded into the counter. The counter will then count up to 𝑇 after

𝑇 − (𝑇 −𝑥) = 𝑥 time, causing the counter to reset to 0 and the output to be set high.

The sync mechanism is primarily used to maintain the relative timings of all of

the ePWMs. No external syncing is used or required. Since sync signals can only be

passed from lower numbered ePWMs to higher numbered ePWMs, ePWM1 is used

Switch CMPA Phase
RP 𝑅𝑃𝑜𝑛 𝑅𝑃𝑜𝑛

RS 𝑇 −𝑅𝑃𝑜𝑛 −𝑅𝑃𝑑𝑡 −𝑅𝑆𝑑𝑡 𝑇 −𝑅𝑆𝑑𝑡

NP 𝑇/2−𝑁𝑃𝑑𝑡 0
NS 𝑇/2−𝑁𝑃𝑑𝑡 𝑇/2

Table 7.4: Static Control ePWM Mode 2 Register Configurations

83

ePWM1

ePWM2

ePWM3

ePWM4

Manually configured

Automatically synced

Figure 7-4: Static Sync Diagram

as the sync signal generator. Due to the way the ePWM modules were designed,

ePWMs 2 and 3 automatically accept the sync signal from ePWM1, and ePWM4

needs to be specifically configured to respond to ePWM1’s sync signal. To ensure

proper alignment with the Phase configuration above, ePWM1 should be configured

to output its sync signal exactly when the switch transition during the two-part open

stage occurs. The sync signal configuration can also be seen in Figure 7-4.

7.2.2 Sensed Control Configuration

Sensed control uses the counter compare actions found in Table 7.5 for all ePWM

modules. Similarly to static control, the on-time of switches is configured by setting

the CMPA register. However, the output will only be set to high upon a sync event;

the output will remain low if no sync event occurs. The Phase register is always set

to 0, so that sync events reset the counter to 0. This allows the ePWM modules to

act in a “one-shot” mode, where they turn on for a fixed on-time upon a sync event.

By configuring the sync events to be triggered by other hardware, sensed switch turn

on can be achieved. Figure 7-5 illustrates this sync signal configuration.

Sensed control can be used with the 𝑉𝑖𝑛−𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 switching sequence only

with 𝑉𝑜𝑢𝑡 <
1
2
𝑉𝑖𝑛. S3 and S4 must also be implemented with diodes. Table 7.6 defines

84

Comparator 3 Comparator 1

ePWM1 ePWM4

External Sync External Sync

Figure 7-5: Sensed Sync Diagram

Counter Compare Action
CTR = PERIOD Set Output Low
CTR = CMPA Set Output Low

Sync Event Set Output High

Table 7.5: Sensed Control ePWM Counter Compare Actions

what role each physical switch takes when using this switching sequence.

Because the ePWMs are independent and triggered on-the-fly in sensed control,

some additional considerations are required. First, protection needs to be added to

prevent the ePWMs from both triggering at the same time, causing switch shoot-

through. This can be accomplished using ePWM TripZone features to shut off the

ePWMs if shoot-through occurs and the microcontroller’s Configurable Logic Block

to enforce proper switch triggering. Additionally, the ADC measurement required for

ZVS control requires a feed-forward timing prediction. This can be accomplished by

measuring the current switching period and predicting that the period will remain

nearly constant between consecutive cycles. This method can be subject to errors

from noisy triggering and during transients.

Conceptual Switch Physical Switch
(𝑉𝑜𝑢𝑡 < 1/2𝑉𝑖𝑛)

RP ePWM1 (S1)
RS ePWM2 (S2)

Table 7.6: Sensed control switch functions for the 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 sequence.

85

+

−
𝑣𝑑𝑖𝑣

𝑅3

𝑅1

𝑣1

𝑅2

+5V

+5V

−3V

Figure 7-6: Sensing buffer circuitry, implemented with a TL974IN op amp. See Table
7.7 for component values.

7.3 Sensing Implementation

The microcontroller also needs to know the current state of the PR converter to

implement the full feedback loop. To accomplish this, the three main outputs from

the PR converter, 𝑣𝑜𝑢𝑡, 𝑣𝑝1, and 𝑣𝑝2 need to be scaled down to the 0V-3.3V range to

work properly with the ADCs and comparators on the microcontroller.

7.3.1 Buffer Circuitry

It is important that the buffer circuitry has minimal impact on the operation of the

PR converter while still being powerful enough to drive the capacitances of the ADCs

and comparators. To accomplish this, we use a buffer-connected op-amp driven by

a resistive divider to scale down the voltages from the PR converter. The positive

supply of the op-amp is +5V, and the negative supply of the op-amp is -3V. The

resistive divider was originally designed as a three way resistive divider between the

input, 0V, and +5V, which adds a fixed offset to the output of the divider. This was

intended to avoid saturation of the negative supply rail at 0V, but since the op-amp

saturated regardless, the negative supply was lowered to -3V, meaning the modified

resistive divider is no longer necessary. The circuit diagram of the buffer circuit can

be seen in Figure 7-6.

86

Component Value
𝑅1 180kΩ
𝑅2 100kΩ
𝑅3 12kΩ

𝑅𝐿𝑃,1 15kΩ
𝑅𝐿𝑃,2 9.1kΩ
𝐶𝐿𝑃,1 1000pF
𝐶𝐿𝑃,2 470pF

Table 7.7: Component values used in the sensing buffer and low-pass filter circuitry.

The op-amp used is the Texas Instruments TL974IN op-amp, which has a gain-

bandwidth product of 12MHz. This op-amp has a low output impedance suitable for

driving the microcontroller ADCs and is capable of effectively buffering the 𝑣𝑝1 and

𝑣𝑝2 waveforms up to 500 kHz.

The output of the resistive divider will be of the following form:

𝑣𝑑𝑖𝑣 =

(︂
1

𝑅1

+
1

𝑅2

+
1

𝑅3

)︂−1(︂
𝑣1
𝑅1

+
5V

𝑅2

)︂
(7.1)

If the resistive connection to 𝑉2 = +5V is omitted, then the formula simplifies to

𝑣𝑑𝑖𝑣 =
𝑅3

𝑅1 +𝑅3

𝑣1 (7.2)

The sensing circuitry was initially designed to work with a maximum voltage

of 50V. The resistor values used can be found in Table 7.7. The same resistor

dividers were used for 𝑣𝑜𝑢𝑡, 𝑣𝑝1, and 𝑣𝑝2 so that they would have identical scales from

the perspective of the microcontroller. These resistor values give the following gain

equation:

𝑉𝑑𝑖𝑣 = 0.0561𝑣1 + .505V (7.3)

These resistor values give a minimum voltage of .505V and a maximum of 3.31V

when 𝑉1 = 50V. Additionally, the magnitudes of the resistors were made large enough

so that the power dissipation from the PR converter would be negligible. The power

drawn from each switch node is the following:

87

+

−𝑅3

𝑅1

𝑣1

𝑅2

+5V

+5V

−3V

𝑅𝐿𝑃,1 𝑅𝐿𝑃,2

+

−

+5V

−3V

𝐶𝐿𝑃,1

𝐶𝐿𝑃,2

𝑣𝑑𝑖𝑣

Figure 7-7: Sensing buffer circuitry with low-pass filter, implemented with a TL974IN
op amp. See Table 7.7 for component values.

𝑃𝑑𝑖𝑠𝑠 = 𝑣1
𝑣1 − 𝑣𝑑𝑖𝑣

𝑅1

(7.4)

The maximum instantaneous power draw with 𝑉1 = 50V is 13mW. Actual average

power draw can be computed from the 𝑣𝑝1 and 𝑣𝑝2 waveforms and Equation 7.4.

Average power draw for 30V-18V operation is approximately 4mW.

The output of the buffer for 𝑣𝑜𝑢𝑡 is further filtered to remove high frequency

noise, including switching ripple. A Sallen-Key low pass filter topology was used.

This topology is an active, second order filter, and it was designed to have a cutoff

frequency of 19.9kHz and a quality factor of 1√
2
. This cutoff frequency is well below

the minimum switching frequency we used, or about 75kHz. A schematic of the low

pass filter buffer circuit can be seen in Figure 7-7, and the component values can be

found in Table 7.7.

Three sensing buffer circuits were implemented on the microcontroller docking

station protoboard. The buffer circuit for 𝑣𝑜𝑢𝑡 uses the low-pass filter buffer, while

the buffer circuits for 𝑣𝑝1 and 𝑣𝑝2 do not. Figures 7-8 and 7-9 show images of the front

and back of the docking station, respectively.

88

Figure 7-8: Picture of the sensing circuitry, front side.

Figure 7-9: Picture of the sensing circuitry, back side.

89

7.3.2 ADC and Comparator Configuration

As part of the microcontroller’s analog subsystem, there are four ADCs and eight

comparator units. The ADCs and comparators are connected so that an ADC and

a comparator can both read from the same pin simultaneously. The outputs of the

three buffers for 𝑣𝑜𝑢𝑡, 𝑣𝑝1, and 𝑣𝑝2 are connected to an ADC and comparator in this

fashion, though the comparators are only actively used for 𝑣𝑝1 and 𝑣𝑝2.

As described in Section 7.2, ADC conversions are automatically triggered at spe-

cific points within the switching cycle. To implement the ZVS correction feedback

loops, the ADCs are used to measure 𝑣𝑝1 and 𝑣𝑝2 “just before” the switches turn on.

Here, we can more precisely define “just before” by starting the conversion such that

the sample and hold interval will complete one clock cycle before the ePWM turns its

switch on. The measurement of 𝑉𝑜𝑢𝑡 is configured to occur at the same "just before"

S1 turns on used to correct for ZVS of S1. It should be noted that where exactly the

measurement of 𝑣𝑜𝑢𝑡 is made is arbitrary since the waveform is heavily filtered. The

microcontroller manual indicates that, when using multiple ADCs simultaneously,

higher performance is achieved when the ADC operations overlap exactly. For this

reason, 𝑣𝑜𝑢𝑡’s ADC is configured to overlap exactly with another measurement.

The comparators are used to quickly respond to the 𝑣𝑝1 and 𝑣𝑝2 waveforms reach-

ing certain points. The comparator outputs are used with the Zero-Crossing Detector

in static control and to trigger switch turn-ons in sensed control. The positive ter-

minals of the comparators are connected to 𝑣𝑝1 and 𝑣𝑝2, and the negative terminals

are configured to use the internal comparator DACs. These DACs allow the com-

parison voltage to be set internally with software, allowing for easy modification of

the comparator functions. Additionally, the comparators are configured to have hys-

teresis and a digital filter. The digital filter will only change the output if a certain

threshold of comparator samples are a high or low. To balance between speed and

noise elimination, we set the digital filter to use the threshold of two out of the last

three samples.

90

7.4 Zero Crossing Detector

As described in Chapter 4, the zero crossing detector (ZCD) needs to measure the

width of the two part open stage (𝑡𝛽) and the point where the switch transition

occurs (𝑡𝛼). A robust method to measure these two quantities is necessary for effective

frequency control of the PR converter. Since the time instances can all be represented

with either a comparator rising edge or and ePWM counter compare signal, we can

use the microcontroller’s Configurable Logic Block (CLB) to implement the ZCD.

The CLB can be used to implement custom but quite limited digital logic functions.

There are four CLB “tiles,” and each has three counter modules, three finite state

machine (FSM) modules, three input lookup tables (LUTs), and 8 output lookup

tables. Additionally, there is a high level controller (HLC) module which can be

programmed with up to 8 instructions which run after certain events are triggered.

The precise CLB configuration used to implement the ZCD can be found in Appendix

H.

To implement the ZCD, two counter modules are used as timers, and the finite

state machine modules are used to control the inputs to the counters. The counters

will increment their count every clock cycle where they are enabled. To measure

the time interval between two events, we use the finite state machines to enable

the counters when one event occurs then disable the counters when the next occurs.

Finally, the HLC will copy the final counts from the counter modules and place them

in code-accesible registers. A block diagram of the system can be seen in Figure 7-10.

There are five inputs to the ZCD:

1. Start Pulse

2. 𝛼 Pulse

3. 𝛽 Pulse

4. Reset Pulse

5. Latch Pulse

91

Edge Detector

𝛼 Input LUT

𝛽 Input LUT

𝛼 Flip Flop

𝛽 Flip Flop

𝛼 Timer

𝛽 Timer

Start Pulse

𝛼 Pulse

𝛽 Pulse

Reset Pulse

Latch Pulse HLC

Figure 7-10: Block diagram describing the implementation of the ZCD using the CLB.

Each pulse either comes from a comparator output or an ePWM counter compare.

These signals can be internally configured as inputs to then CLB. Comparator output

signals are necessary for determining when 𝑣𝑝 crosses a certain voltage threshold, and

will remain high for some time after triggering. ePWM counter compare pulses are

used to determine the time when a switch either turns on or turns off, and are logically

high for exactly one clock cycle.

There are two outputs: 𝑡𝛼 and 𝑡𝛽. 𝑡𝛼 is defined as the time between the start pulse

and the 𝛼 pulse, and similarly 𝑡𝛽 is defined as the time between the start pulse and

the 𝛽 pulse. These are both measured in units of 10ns.

There are three main components of the ZCD: the input logic, the counting logic,

and the output logic. The input logic consists of an edge detector, implemented with

FSM 0, and two logical OR gates, each implemented with an input LUT. FSM 0 must

be used because the CLB has hardware limitations to prevent internal feedback loops,

and the counting logic must have access to the outputs of the input logic. The edge

detector is used to filter the start pulse, preventing the counters from erroneously

resuming after an 𝛼 or 𝛽 pulse. This issue only affects the start pulse, and it can

only occur when the start pulse is driven by a comparator. Through the 𝛼 and 𝛽

input LUTs, the 𝛼 and 𝛽 pulses are logically ORed with the reset pulse, ensuring the

92

counting logic is fully turned off in the case where the 𝛼 or 𝛽 pulse does not occur.

The counting logic consists of two logical flip flops, implemented using the two

remaining FSMs, and two timers, implemented using counter modules. One pair of

flip flop and timer measures 𝑡𝛼, and the other measures 𝑡𝛽, and each pair is identical.

Each flip flop has two inputs and 2 possible states, on and off. The 𝛼 flip flop enters

the on state when it receives a logical high from the edge-filtered start pulse, and

enters the off state when it receives a logical high from the 𝛼 LUT. The 𝛽 flip flop

behaves similarly, except it responds to the 𝛽 LUT. The counters are configured in

count-up mode and are enabled when their respective flip flops are in the on state.

This means the counters will increment every clock cycle that the flip flops are on,

effectively timing the intervals between a start pulse and an 𝛼 or𝛽 pulse. Additionally,

the counters load 0 into their accumulators upon a reset pulse.

The output logic uses the HLC to copy the current values stored in the timer

registers to the code-accessible registers. The HLC does this as a response to an

event triggered by the latch pulse.

The desired order of pulses and operation of the ZCD is as follows:

1. The start pulse occurs. Both flip flops turn on, causing both counters to start

incrementing every clock cycle.

2. The 𝛼 Pulse occurs. The 𝛼 flip flop turns off, causing the 𝛼 counter to stop

incrementing, retaining its current value.

3. The 𝛽 Pulse occurs. The 𝛽 flip flop turns off, causing the 𝛽 counter to stop

incrementing, retaining its current value. At this point, measurement is com-

plete.

4. The latch pulse occurs. The HLC copies the current counts from both counters

to the code accessible registers, storing the measurement.

5. The reset pulse occurs. Both flip flops are set to off and both counters are reset

to 0.

93

Pulse Standard Control Synchronous Control

Start 𝑣𝑝1 > 𝑉𝑖𝑛 − 𝑣𝑜𝑢𝑡 𝑣𝑝1 > 𝑉𝑖𝑛 − 𝑣𝑜𝑢𝑡
(CMPSS3) (CMPSS3)

𝛼
S1 Turn On S1 Turn On

(ePWM1 CTR=Zero) (ePWM1 CTR=Zero)

𝛽
𝑣𝑝2 > 𝑣𝑜𝑢𝑡 S3 Turn On
(CMPSS1) (ePWM3 CTR=Zero)

Reset S2 Turn Off S2 Turn Off
(ePWM2 CTR=CMPA) (ePWM2 CTR=CMPA)

Latch S1 Turn Off S1 Turn Off
(ePWM1 CTR=CMPA) (ePWM1 CTR=CMPA)

Table 7.8: List of ZCD configurations for the 𝑉𝑖𝑛−𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 switching sequence
in the 1

2
𝑉𝑖𝑛 > 𝑉𝑜𝑢𝑡 > 0 operating region, both with and without synchronous rectifier

control.

Figure 7-11 shows a graphical representation of how the ZCD responds to input

signals. By convention, the 𝛼 pulse occurs before the 𝛽 pulse, though the operation

would be identical if the 𝛽 pulse occurs first.

7.4.1 Example Implementation

We will use the 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 switching sequence in both operating regions

(1
2
𝑉𝑖𝑛 > 𝑉𝑜𝑢𝑡 > 0 and 𝑉𝑖𝑛 > 𝑉𝑜𝑢𝑡 >

1
2
𝑉𝑖𝑛) to describe how the ZCD can be appropri-

ately configured. We assume the topology and hardware configuration described in

Section 7.2.1. Recall that the purpose of the ZCD is to control the switch transition

within the two-part open stage to line up exactly with the corresponding 𝑖𝐿 zero

crossing.

For the 1
2
𝑉𝑖𝑛 > 𝑉𝑜𝑢𝑡 > 0 region, the two part open stage will have the form

seen in Figure 7-12 and the pulse configuration seen in Table 7.8. The minimum

voltage common to both halves of the open stage is 𝑉𝑖𝑛 − 𝑣𝑜𝑢𝑡, so we measure around

that voltage level. The starting point is when 𝑣𝑝1 reaches 𝑉𝑖𝑛 − 𝑣𝑜𝑢𝑡, and we need a

comparator to create the start pulse since this point is not tied to a switch transition.

CMPSS3 is configured to compare 𝑣𝑝1 with 𝑉𝑖𝑛 − 𝑣𝑜𝑢𝑡. The 𝛼 pulse occurs when S1

turns on, which is when ePWM1’s counter is 0.

The 𝛽 pulse occurs when 𝑣𝑝2 reaches 𝑣𝑜𝑢𝑡, which is also when S3 turns on. When

94

𝑡

Start
Pulse

𝛼
Pulse

𝛽
Pulse

Latch
Pulse

Reset
Pulse

Edge
Detector

𝛼
FF

𝛽
FF

𝛼
Counter

𝛽
Counter

𝑡𝛼

𝑡𝛽

0

0

𝑡𝛼

𝑡𝛽

0

0

Figure 7-11: ZCD Timing Diagram

95

𝑣𝑝

𝑉𝑖𝑛 − 𝑣𝑜𝑢𝑡

𝑡𝛽
𝑡𝛼

S1 gate

S3 gate

Stage 5 Stage 6a Stage 6b Stage 1

𝑖𝐿 zero crossing
𝑣𝑝 > 𝑉𝑖𝑛 − 𝑣𝑜𝑢𝑡

(𝑣𝑝1 > 𝑉𝑖𝑛 − 𝑣𝑜𝑢𝑡)

Figure 7-12: ZC Waveform for 𝑉𝑜𝑢𝑡 < 1/2𝑉𝑖𝑛. Plot illustrating how the 𝑖𝐿 zero
crossing can be detected by observing symmetry in 𝑣𝑝. In this example, S1’s turn off
is exactly aligned with the zero crossing, so we have 𝑡𝛼 = 1

2
𝑡𝛽.

using diodes at S3 and S4, this point is not immediately known by the controller, so a

comparator must be used. CMPSS1 is configured to compare 𝑣𝑝2 with 𝑣𝑜𝑢𝑡. However,

when using synchronous rectifier control, S3’s turn on is set by ePWM3, so we can

use when ePWM3’s counter is 0 to determine the 𝛽 pulse. Care should be taken with

the measured data if the ZVS error at S3’s turn on is not close to 0, as this means

𝑣𝑝2 is being hard-switched instead of resonating properly, and the ZCD symmetry

assumption is no longer valid.

The exact configuration of the latch and reset signals is not as critical as the start,

𝛼, and 𝛽 pulses. The only requirements are that the latch pulse occurs after the 𝛽

pulse, the reset pulse occurs after the latch pulse, and the reset pulse occurs before

the next start pulse. Under standard operation, S1 can be safely assumed to turn off

after the 𝛽 pulse, and afterwards, S2 must turn off before 𝑣𝑝2 can rise above 𝑉𝑖𝑛−𝑣𝑜𝑢𝑡.

The 𝑉𝑖𝑛 > 𝑣𝑜𝑢𝑡 > 1
2
𝑉𝑖𝑛 region is similar to the 1

2
𝑉𝑖𝑛 > 𝑣𝑜𝑢𝑡 > 0 region, except

that the two part open stage is effectively mirrored horizontally. This can be seen in

Figure 7-13, and the pulse configuration can be seen in Table 7.9. Now, the minimum

common voltage is 𝑣𝑜𝑢𝑡 and the start pulse is generated when S2 turns off, or when

ePWM2’s counter is CMPA. The 𝛼 pulse still occurs when S1 turns on, or when

96

𝑣𝑝

𝑉𝑖𝑛 − 𝑣𝑜𝑢𝑡 𝑡𝛽
𝑡𝛼

S2 gate

S4 gate

Stage 5 Stage 6a Stage 6b Stage 1

𝑖𝐿 zero crossing
𝑣𝑝 < 𝑉𝑖𝑛 − 𝑣𝑜𝑢𝑡

(𝑣𝑝2 > 𝑉𝑖𝑛 − 𝑣𝑜𝑢𝑡)

Figure 7-13: ZC Waveform for 𝑉𝑜𝑢𝑡 > 1/2𝑉𝑖𝑛. Plot illustrating how the 𝑖𝐿 zero
crossing can be detected by observing symmetry in 𝑣𝑝. In this example, S4’s turn off
(also S1’s turn on) is exactly aligned with the zero crossing, so we have 𝑡𝛼 = 1

2
𝑡𝛽.

Pulse Synchronous Control

Start S2 Turn Off
(ePWM2 CTR=CMPA)

𝛼
S4 Turn Off

(ePWM1 CTR=Zero)

𝛽
𝑣𝑝2 > 𝑉𝑖𝑛 − 𝑣𝑜𝑢𝑡

(CMPSS1)

Reset S4 Turn On
(ePWM4 CTR=Zero)

Latch S3 Turn On
(ePWM3 CTR=Zero)

Table 7.9: List of ZCD configurations for the 𝑉𝑖𝑛−𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 switching sequence
in the 𝑉𝑖𝑛 > 𝑉𝑜𝑢𝑡 >

1
2
𝑉𝑖𝑛 operating region.

97

ePWM1’s counter is 0. The 𝛽 pulse occurs when 𝑣𝑝2 reaches 𝑉𝑖𝑛 − 𝑣𝑜𝑢𝑡, which is

determined by CMPSS1. The latch pulse is set to when S3 turns on, which is after

the beta pulse in standard conditions. Finally, the reset pulse is when S4 turns on,

which occurs after the latch and before the start pulse when S4 turns off.

7.5 Code Feedback Loop

To complete the feedback controller, the measurements from the ADCs and the ZCD

are used to update the switching times. Discrete time PI compensators are computed

for every controllable switching time, and updated every cycle (or after a fixed amount

of cycles, which is necessary at higher frequencies). Every measurement has a desired

value, which is either a constant or based on other measurements.

The feedback code is contained within an interrupt routine which is called every

PR resonant cycle. The interrupt routine performs the following procedure:

1. Load all of the measurement data out of the ADC and ZCD registers. (Also

done while disabled)

2. Update the comparator DACs based on measurement data. (Also done while

disabled)

3. Compute the error terms for each measurement.

4. Use the error terms to compute the proportional terms and update the integral

terms.

5. Compute the new switching times from the proportional and integral terms.

6. Check to ensure the switching times do not exceed set bounds. Cap the switch-

ing times at the bounds if necessary.

7. Reconfigure the ePWM modules with the new switching times.

8. Wait for new trigger from the switching cycle.

98

First, all of the most recent ADC and ZCD data needs to be accessed to compute

the new error terms. This process is straightforward, and only requires invoking

library functions to copy the data from hardware registers. The measurement of 𝑣𝑜𝑢𝑡

is also used to update the comparator DACs at this point in time, ensuring that

the comparators correctly respond to 𝑣𝑝1 and 𝑣𝑝2, even during transients. Correct

comparator thresholds are necessary for the ZCD to function properly.

To compute the switching parameters controlled by feedback loops (𝑅𝑃𝑜𝑛, 𝑅𝑃𝑑𝑡,

𝑅𝑆𝑑𝑡, 𝑁𝑃𝑑𝑡, and 𝑇), we need the corresponding error term, integral term, and feedback

coefficients. We can compute the error terms directly from the current ADC and ZCD

measurements, along with any necessary constants. The three types of errors are 𝑣𝑜𝑢𝑡

error, ZVS error, and zero-crossing offset error. One ADC measures the value of 𝑣𝑜𝑢𝑡

every cycle. 𝑣𝑜𝑢𝑡 error is the difference between the currently measured 𝑣𝑜𝑢𝑡 and the

desired 𝑣𝑜𝑢𝑡, which is a constant specified by the user or software. The remaining

ADCs measure the values of 𝑣𝑝1 and 𝑣𝑝2 just before their switches turn on. ZVS error

is the difference between these measured values and the value of the node after the

switch turns on. During connected stages, 𝑣𝑝1 and 𝑣𝑝2 can be one of three possible

voltages: 𝑉𝑖𝑛, 𝑣𝑜𝑢𝑡, and 0. As such, these are the only desired values for ZVS error.

When the desired value is 𝑣𝑜𝑢𝑡, the currently measured value should be used. Finally,

the ZCD provides 𝑡𝛼 and 𝑡𝛽 for computing the zero crossing offset error. This error

is simply the difference of 𝑡𝛼 − 1
2
𝑡𝛽.

Once we have the error terms, we can use them to compute the new switching

parameters for this cycle, and we implement the feedback loop with discrete time

PI compensators. The switching parameters have two main terms, the proportional

term and the integral term. The proportional term is the product of the proportional

feedback coefficient and the current error term. The integral term is the product

of the integral feedback coefficient and the total sum of the error from all previous

cycles. The current error is then added to the integral term. Thus, the proportional

and integral terms can be summed to give the switching time. One consideration

is that the ePWM registers support 16 bit integers for all register fields. To have

higher precision than just 16 bits when computing switching times in the feedback

99

loop, we store switching times with signed 32-bit fixed point numbers, where the most

significant 16 bits are taken as the integer part and used to program the ePWMs.

The final step is to ensure the computed switching times do not exceed bounds

that would prevent forming a valid switching sequence for that cycle. For example,

this could occur when there is a transient with large feedback coefficients. Dead

times are configured to have minimum (𝐷𝑇𝑚𝑖𝑛) and maximum values (𝐷𝑇𝑚𝑎𝑥). These

values can be determined empirically by observing dead time lengths during normal

operation. We choose a 𝐷𝑇𝑚𝑖𝑛 to be about 5% of 𝑇 and 𝐷𝑇𝑚𝑎𝑥 to be about 22% of T.

We also bounded 𝑅𝑃𝑜𝑛 to have a minimum of 𝐷𝑇𝑚𝑖𝑛 and a maximum of 𝑇
2
−𝐷𝑇𝑚𝑖𝑛.

This ensures that RP does not stay on past the following 𝑖𝐿 zero crossing, and that

there is always some dead time between RP being turned on and both surrounding

𝑖𝐿 zero crossings. If the switching times do exceed the bounds one way or the other,

then the bound will be used instead. The integral term will also not be updated when

the bound is exceeded.

Once the switching times have been computed, they can be programmed to the

ePWMs. The ePWM shadowing feature will ensure the new switching times are

all properly loaded at the same time. The interrupt routine will now exit, and the

processor will wait for the next switching cycle to occur before running the feedback

code again.

7.6 Startup

The feedback control procedures outlined in this thesis assume that the PR converter

is already within some “reasonable” state to properly make corrections to its operation.

Thus, it is necessary that the startup procedure puts the PR converter into a “reason-

able” state. A simple way to accomplish this is to output predetermined switching

times initially on startup before enabling the feedback control. Upon power-up, the

specific initial switching times are used to configure the ePWMs and the initial inte-

grator values. After a fixed time interval (about 3-5 seconds is practical), the feedback

control loop will begin updating the switching times. The initial switching frequency

100

should be within the inductive region of the PR, or between its series and parallel

resonant frequencies, so that ZVS is possible and the ZCD will properly detect the

zero crossing location. The initial switching times can be estimated for the specific

PR being used using the PSS solutions described in Chapter 3.

101

102

Chapter 8

Experimental Results

In this chapter, we explore the rest of the experimental setup that was used to test

the feedback controller. Then, we will discuss the experimental results obtained.

8.1 Experimental Setup

To perform experiments, the controller described in Chapter 7 was connected to the

PR-based dc-dc converter described in Chapter 6. The converter outputs 𝑣𝑝1, 𝑣𝑝2,

and 𝑣𝑜𝑢𝑡 were connected to the inputs of the controller’s sensing buffers, and the

controller’s ePWM outputs were connected to the converter’s isolated switch inputs.

For the following experiments, we used an APC International part 1553 PR, whose

parameters can be found in Table 8.1.

The final component needed to perform experiments is a suitable load for the con-

Parameter Value
𝐶𝑝 1.41nF
𝐶𝑟 510pF
𝐿 8.73mH
𝑅 2.3Ω

Series Frequency 75.4 kHz
Parallel Frequency 88.0 kHz

Table 8.1: Table of PR parameters for the specific APC International Part 1553 PR
used during experiments. Parameters were extracted using an impedance analyzer.

103

300Ω

300Ω

+

−

𝑣𝑜𝑢𝑡

Figure 8-1: Converter load circuitry. The load resistance is 600Ω when the switch is
open, and 300Ω when the switch is closed. The switch is implemented as an IRF740
MOSFET.

verter. We used a resistive load because it is a passive device where power dissipation

is a function of the output voltage. We also designed the load to be tapped in the

center, allowing half of the resistance to shorted out with a switch. We implemented

the switch as a discrete through-hole IRF740 MOSFET (note that this part is capable

of handling much higher powers than is necessary here, any MOSFET would work),

and applying voltage to the gate is used to change the load resistance. When the gate

is high (+5V), then the load resistance will be 300Ω, and when the gate is low, the

load resistance will be 600Ω. A pulldown resistor ties the gate to ground, preventing

the gate from floating when disconnected. A circuit diagram of the load can be found

in Figure 8-1, and an image of the load setup can be found in Figure 8-2.

8.2 Experimental Results

We first did an experiment to confirm that the controller is able to meet the desired

high efficiency behaviors. We used the switching sequence 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 with

𝑉𝑜𝑢𝑡 < 1
2
𝑉𝑖𝑛 and ran the converter with static regulating half-bridge control. The

nonregulating half-bridge was controlled passively with diodes at S3 and S4. The

feedback coefficients used were small to ensure the most stable waveform, and can

be found in Table 8.2. Figure 8-3 shows the PR converter waveforms across several

switching cycles. It is clear that the PR is being soft charged since, 𝑣𝑝 is able to

resonate exactly to the following connected stage voltage during open stages. It is

104

Figure 8-2: Photo of the load circuitry used during experiments.

105

𝑣𝑝1

𝑣𝑝2

𝑣𝑝

ZVS
PR
Soft

Charging

Figure 8-3: Zoomed in view of the PR waveforms 𝑣𝑝1, 𝑣𝑝2, and 𝑣𝑝, showing that
ZVS and soft charging are achieved with the feedback controller active. 𝑉𝑖𝑛 = 30𝑉 ,
𝑣𝑜𝑢𝑡 = 10.4𝑉 , and 𝑅𝑙𝑜𝑎𝑑 = 600Ω.

Feedback Loop 𝐾𝑝 𝐾𝑖

𝑣𝑜𝑢𝑡 0 -10
ZVS (all) 0 10
ZC Offset 0 -10

Table 8.2: Feedback coefficients used to test high efficiency behaviors and nonregu-
lating half-bridge control.

also clear that ZVS is achieved since 𝑣𝑝1 and 𝑣𝑝2 also resonate enough to allow S1

and S2 to turn on with 0 drain-to-source voltage.

Once we knew the regulating half-bridge control was working, we enabled nonreg-

ulating half-bridge control to confirm that we could achieve synchronous rectification

of S3 and S4, which is illustrated in Figure 8-4. The slight shift in voltage indicates

that the MOSFETs in parallel with diodes at S3 and S4 have turned on, and the loss

from the diode forward drop is mitigated. The feedback coefficients in Table 8.2 were

also used in this experiment.

Next, we tested the response of the converter and controller system after a step

in load resistance. As described in Section 8.1, our load circuit allows steps from

106

𝑣𝑝1

𝑣𝑝2

Synchronous Rec-
tifier Activation

Figure 8-4: Zoomed in view of the PR waveforms 𝑣𝑝1 and 𝑣𝑝2 with synchronous
rectifier control enabled. 𝑉𝑖𝑛 = 30𝑉 , 𝑣𝑜𝑢𝑡 = 10.4𝑉 , and 𝑅𝑙𝑜𝑎𝑑 = 600Ω.

600Ω to 300Ω and from 300Ω to 600Ω. The step was performed by changing the

gate voltage 𝑣𝑔𝑎𝑡𝑒 of the load MOSFET, the transient waveform was captured on the

oscilloscope by configuring it to single trigger off of an edge on 𝑣𝑔𝑎𝑡𝑒. We evaluated the

transient response based on the settling time and peak deviation of 𝑣𝑜𝑢𝑡. Our goal was

to minimize the settling time, defined as the time taken for 𝑣𝑜𝑢𝑡 to settle within 2%

of the steady state output voltage, while keeping the peak voltage deviation within

10% of the steady state output voltage.

The response to the 600Ω -> 300Ω step can be seen in Figure 8-5, with a settling

time of 14.6ms and a peak deviation of 7.5%. Likewise, the response to the 300Ω

-> 600Ω step can be seen in Figure 8-6, with a settling time of 18.4ms and a peak

deviation of 5.8%.

The feedback coefficients used for both load resistance step experiments can be

found in Table 8.3. These coefficients were selected using the following procedure:

1. Start with known stable feedback coefficients (see Table 8.2).

2. Increase the 𝑣𝑜𝑢𝑡 coefficients until control becomes unstable or no improvement

107

𝑣𝑝1

𝑣𝑝2

𝑣𝑜𝑢𝑡

𝑣𝑔𝑎𝑡𝑒

Figure 8-5: Response to 𝑅𝑙𝑜𝑎𝑑 step from 600Ω to 300Ω with 𝑉𝑖𝑛 = 30𝑉 and 𝑉𝑜𝑢𝑡 =
10.4𝑉 . The peak deviation from steady state is 770𝑚𝑉 , or 7.5% of the output voltage.
The output voltage settles to within 2% after 14.6𝑚𝑠.

𝑣𝑝1

𝑣𝑝2

𝑣𝑜𝑢𝑡

𝑣𝑔𝑎𝑡𝑒

Figure 8-6: Response to 𝑅𝑙𝑜𝑎𝑑 step from 300Ω to 600Ω with 𝑉𝑖𝑛 = 30𝑉 and 𝑉𝑜𝑢𝑡 =
10.4𝑉 . The peak deviation from steady state is 600𝑚𝑉 , or 5.8% of the output voltage.
The output voltage settles to within 2% of steady state after 18.4𝑚𝑠.

108

Feedback Loop 𝐾𝑝 𝐾𝑖

𝑣𝑜𝑢𝑡 -30000 -40
ZVS (S1) 0 45
ZVS (S2) 0 10
ZC Offset -30000 -500

Table 8.3: Feedback coefficients used to test transient response after a step in load
resistance.

in the transient response is seen.

3. Increase the ZC-offset coefficients until control becomes unstable or no improve-

ment in the transient response is seen.

4. Increase the ZVS coefficients until control becomes unstable or no improvement

in the transient response is seen.

5. Repeat until no improvement is seen.

109

110

Chapter 9

Conclusion

Creating a feedback control system for PR-based dc-dc power converters that achieves

all of the desired high efficiency behaviors is challenging because it requires aspects of

duty cycle, dead time, and frequency control. In this thesis, we derive the regulation

capabilities of six stage sequences for PR-based converters and derive the regulating

and nonregulating half-bridges. We then propose two control methods for the regulat-

ing half-bridge, sensed control and static control. We also propose a control method

for the nonregulating half bridge for use with static control. We then experimen-

tally validate the proposed control scheme with a prototype PR dc-dc converter and

a microcontroller-based feedback controller implementation. We also present several

analysis methods and models for the operation of PR-based dc-dc converters, both

steady state and dynamic.

The proposed control is advantageous because it was implemented on a microcon-

troller and only relies on voltage sensing techniques. The implementation uses only

simple feedback loops that can be easily computed on a microcontroller, and requires

only ADCs and comparators for measurements without having to sense any currents

directly. The control also successfully achieves all desired high efficiency behaviors,

PR soft charging, ZVS of all switches, and all-instantaneous power transfer, while

being capable of regulating to a range of output voltages and responding to load

resistance transients.

Piezoelectric resonators are promising alternatives to magnetic energy storage for

111

miniaturization in power electronics owing to their high quality factors and power

density capabilities. The proposed feedback control scheme is simple and robust, and

paves the way for enabling use of small and efficient PR-based dc-dc power converters

in a wide range of real world applications.

9.1 Future Work

One area for future work is an expansion of the dynamic modeling techniques dis-

cussed in Chapter 5. Currently, the modeling methods that do not rely on a direct

circuit simulation make use of heavy simplifying assumptions about the feedback con-

troller. While the models have good agreement with each other, more work needs to

be done to better model the feedback loops that are present in static control so that

more accurate predictions of the dynamic response of the converter on real hardware

can be made.

Another important area of future work will be expanding the controller to work

with higher frequency PRs. The frequency of the PR used in this thesis is in the 78-85

kHz range, while the frequencies of PRs with high power densities tend to be in the

500kHz to low MHz range. Testing with a larger and low frequency PR is acceptable

for initial validation, but some aspects of the controller may need to be changed to get

good performance at higher frequencies. First the method used for implementing ZVS

feedback loops should be revisited, since ADCs cannot make accurate measurements

when the PR waveforms change too quickly. It will be also necessary to ensure that the

gate signal generators and the zero-crossing detector have adequate time resolution

at high frequencies, since the PR is sensitive to small changes in switching times,

especially with the switching period. Finally, the controller should be implemented

on a PCB rather than relying on proto-boarded sensing circuitry and jumper wires

for connections.

112

Appendix A

Full Steady State Solutions

A.1 Ideal Steady State Solution Example Equations

This appendix presents the full set of CoC and Coe equations describing a PSS

solution for a general six-stage sequence with a two-part open stage. The switching

sequence has connected stage voltages 𝑉𝑎, 𝑉𝑏, 𝑉𝑐, where 𝑣𝑝 = 𝑉𝑎 in stage 1,𝑣𝑝 = 𝑉𝑏

in stage 3, and 𝑣𝑝 = 𝑉𝑐 in stage 5. It must resonate 𝑣𝑝 to 𝑉𝑑 at the start of stage 6B

during the two-part open stage to achieve ZVS. The corner variables are denoted 𝑣𝑟𝑥

and 𝑖𝐿𝑥, where “𝑥” is the stage number. The PR used has parameters 𝐶𝑝, 𝐶𝑟, and 𝐿.

𝑖𝐿 zero crossing constraints can be specified by adding the equation 𝑖𝑙𝑥 = 0. If the

switching sequence has its two-part open stage in stage 2 or 4, the equations can be

modified or the switching sequence can be rotated so the two-part open stage is stage

6.

113

The following equations implement the PSS solution:

𝐶𝑟(𝑣𝑟1 − 𝑉𝑎)
2 + 𝐿𝑖2𝐿1 = 𝐶𝑟(𝑣𝑟2 − 𝑉𝑎)

2 + 𝐿𝑖2𝐿2 (A.1)

𝐶𝑝𝑉
2
𝑎 + 𝐶𝑟𝑣

2
𝑟2 + 𝐿𝑖2𝐿2 = 𝐶𝑝𝑉

2
𝑏 + 𝐶𝑣2𝑟3 + 𝐿𝑖2𝐿3 (A.2)

𝐶𝑝(𝑉𝑏 − 𝑉𝑎) = −𝐶(𝑣𝑟3 − 𝑣𝑟2) (A.3)

𝐶𝑟(𝑣𝑟3 − 𝑉𝑧)
2 + 𝐿𝑖2𝐿3 = 𝐶𝑟(𝑣𝑟4 − 𝑉𝑏)

2 + 𝐿𝑖2𝐿4 (A.4)

𝐶𝑝(𝑉𝑏)
2 + 𝐶𝑟𝑣

2
𝑟4 + 𝐿𝑖2𝐿4 = 𝐶𝑝𝑉

2
𝑐 + 𝐶𝑟𝑣

2
𝑟5 + 𝐿𝑖2𝐿5 (A.5)

𝐶𝑝(𝑉𝑐 − 𝑉𝑏) = −𝐶𝑟(𝑣𝑟5 − 𝑣𝑟4) (A.6)

𝐶𝑟(𝑣𝑟5 − 𝑉𝑐)
2 + 𝐿𝑖2𝐿5 = 𝐶𝑟(𝑣𝑟6𝑎 − 𝑉𝑐)

2 + 𝐿𝑖2𝐿6𝑎 (A.7)

𝐶𝑝𝑉
2
𝑐 + 𝐶𝑟𝑣

2
𝑟6𝑎 + 𝐿𝑖2𝐿6𝑎 = 𝐶𝑝(𝑉𝑑)

2 + 𝐶𝑟𝑣
2
𝑟6𝑏 + 𝐿𝑖2𝐿6𝑏 (A.8)

𝐶𝑝(𝑉𝑑 − 𝑉𝑐) = −𝐶𝑟(𝑣𝑟6𝑏 − 𝑣𝑟6𝑎) (A.9)

𝐶𝑝𝑉
2
𝑑 + 𝐶𝑟𝑣

2
𝑟6𝑏 + 𝐿𝑖2𝐿6𝑏 = 𝐶𝑝(𝑉𝑎)

2 + 𝐶𝑟𝑣
2
𝑟1 + 𝐿𝑖2𝐿1 (A.10)

𝐶𝑝(𝑉𝑎 − 𝑉𝑑) = −𝐶𝑟(𝑣𝑟1 − 𝑣𝑟6𝑏) (A.11)

114

Appendix B

PR Converter PCB Technical

Information

This appendix presents the full details of the PCB layout, schematic, bill of materials,

and PCB header pinout for the prototype PR-based dc-dc converter implemented in

this thesis.

The PCB layout files are at 3x scale. For example, a line with length 3 inches on

this document corresponds to a length of 1 inch on the actual PCB. This document

has dimensions 8.5 inch by 11 inch.

The schematic files show the schematics of both the main power conversion stage

as well as all of the gate drive circuitry used to drive the switches.

The bill of materials presents all of the parts used, along with their description.

The PCB header pinout presents the values of the individual pins for all of the

connectors and headers on the PCB. The tables are oriented in the same way as they

are present on the PCB layout, and the * corresponds to the orientation dot on the

PCB.

115

Joshua Piel PRC v1

SCON2

SCON1

VIN

VOUT

VOUT+5

116

117

E
P
C
20
19

E
P
C
20
19

N
R
V
T
S
A
41
00

N
R
V
T
S
A
41
00

C
08
05
C
08
05

C
08
05
C
08
05

N
R
V
T
S
A
41
00

C
08
05
C
08
05

R
04
02
R
04
02

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

E
P
C
20
19

E
P
C
20
19

N
R
V
T
S
A
41
00

C
08
05
C
08
05

R
04
02
R
04
02

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

1P$1 2 P$2*3

S
1

S
2

D
1

D
2

C
D
1

C
D
3

C
D
2

V
D
D

1

IN
-

2

IN
+

3

GND 7

V
R
E
F

6

O
U
T
H

5

O
U
T
L

4

V
D
D

1

IN
-

2

IN
+

3

GND 7

V
R
E
F

6

O
U
T
H

5

O
U
T
L

4

V
D
D
1

1

A
1

2

A
2

3

G
N
D
1

4

V
D
D
2

8

B
1

7

B
2

6

G
N
D
2

5

V
D
D
1

1

A
1

2

A
2

3

G
N
D
1

4

V
D
D
2

8

B
1

7

B
2

6

G
N
D
2

5

R
G
1

R
G
2

R
G
3

R
G
4

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

D
B
1

C
B
1

R
B
1

- 3*2+1*2

- 3*2+1*2

- 3*2+1*2

C
D
6

C
D
7

C
D
4

C
D
5

C
D
8

S
3

S
4

V
D
D

1

IN
-

2

IN
+

3

GND 7

V
R
E
F

6

O
U
T
H

5

O
U
T
L

4

V
D
D

1

IN
-

2

IN
+

3

GND 7

V
R
E
F

6

O
U
T
H

5

O
U
T
L

4

V
D
D
1

1

A
1

2

A
2

3

G
N
D
1

4

V
D
D
2

8

B
1

7

B
2

6

G
N
D
2

5

V
D
D
1

1

A
1

2

A
2

3

G
N
D
1

4

V
D
D
2

8

B
1

7

B
2

6

G
N
D
2

5

R
G
7

R
G
8

R
G
5

R
G
6

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

D
B
2

C
B
2

R
B
2

C
D
11

C
D
12

C
D
9

C
D
10

C
D
13

C
D
17

C
D
16

C
D
14

C
D
15

C
D
19

IN
IN

G
N
D

G
N
D
1*
4

IN
IN

G
N
D

G
N
D
1*
4

V
D

V
D

V
D

V
D

V
D

V
D

V
IN

G
N
D

G
N
DG
N
D G
N
D

G
N
D

G
N
DG
N
D G
N
D

G
N
D

G
N
D

G
N
D

G
N
D

G
N
D

G
N
D

V
D
D
S
1

V
D
D
S
1V
S
W

V
S
W

V
S
W

V
S
W

V
S
W

V
S
W

V
D
D
S
2

V
D
D
S
2

V
O
U
T

V
O
U
T

V
O
U
T

V
O
U
T

V
O
U
T

V
O
U
T

S
1

S
1

S
2

S
2

V
R
E
F
1

V
R
E
F
2

S
3

S
3

S
4

S
4

V
R
E
F
3

V
R
E
F
4

V
D
D
S
3

V
D
D
S
3

V
D
D
S
3

V
D
D
S
4

V
D
D
S
4

Piezo

U
C
C
27
61
1

U
C
C
27
61
1

S
I8
61
x

S
I8
61
x

2x
4C
O
N

+ -

V
O
U
T
+
5

+ -

V
IN

+ -

V
O
U
T

U
C
C
27
61
1

U
C
C
27
61
1

S
I8
61
x

S
I8
61
x

2x
4C
O
N

118

E
P
C
20
19

E
P
C
20
19

N
R
V
T
S
A
41
00

N
R
V
T
S
A
41
00

C
08
05
C
08
05

C
08
05
C
08
05

N
R
V
T
S
A
41
00

C
08
05
C
08
05

R
04
02
R
04
02

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

E
P
C
20
19

E
P
C
20
19

N
R
V
T
S
A
41
00

C
08
05
C
08
05

R
04
02
R
04
02

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

1P$1 2 P$2*3

S
1

S
2

D
1

D
2

C
D
1

C
D
3

C
D
2

V
D
D

1

IN
-

2

IN
+

3

GND 7

V
R
E
F

6

O
U
T
H

5

O
U
T
L

4

V
D
D

1

IN
-

2

IN
+

3

GND 7

V
R
E
F

6

O
U
T
H

5

O
U
T
L

4

V
D
D
1

1

A
1

2

A
2

3

G
N
D
1

4

V
D
D
2

8

B
1

7

B
2

6

G
N
D
2

5

V
D
D
1

1

A
1

2

A
2

3

G
N
D
1

4

V
D
D
2

8

B
1

7

B
2

6

G
N
D
2

5

R
G
1

R
G
2

R
G
3

R
G
4

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

D
B
1

C
B
1

R
B
1

- 3*2+1*2

- 3*2+1*2

- 3*2+1*2

C
D
6

C
D
7

C
D
4

C
D
5

C
D
8

S
3

S
4

V
D
D

1

IN
-

2

IN
+

3

GND 7

V
R
E
F

6

O
U
T
H

5

O
U
T
L

4

V
D
D

1

IN
-

2

IN
+

3

GND 7

V
R
E
F

6

O
U
T
H

5

O
U
T
L

4

V
D
D
1

1

A
1

2

A
2

3

G
N
D
1

4

V
D
D
2

8

B
1

7

B
2

6

G
N
D
2

5

V
D
D
1

1

A
1

2

A
2

3

G
N
D
1

4

V
D
D
2

8

B
1

7

B
2

6

G
N
D
2

5

R
G
7

R
G
8

R
G
5

R
G
6

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

D
B
2

C
B
2

R
B
2

C
D
11

C
D
12

C
D
9

C
D
10

C
D
13

C
D
17

C
D
16

C
D
14

C
D
15

C
D
19

IN
IN

G
N
D

G
N
D
1*
4

IN
IN

G
N
D

G
N
D
1*
4

V
D

V
D

V
D

V
D

V
D

V
D

V
IN

G
N
D

G
N
DG
N
D G
N
D

G
N
D

G
N
DG
N
D G
N
D

G
N
D

G
N
D

G
N
D

G
N
D

G
N
D

G
N
D

V
D
D
S
1

V
D
D
S
1V
S
W

V
S
W

V
S
W

V
S
W

V
S
W

V
S
W

V
D
D
S
2

V
D
D
S
2

V
O
U
T

V
O
U
T

V
O
U
T

V
O
U
T

V
O
U
T

V
O
U
T

S
1

S
1

S
2

S
2

V
R
E
F
1

V
R
E
F
2

S
3

S
3

S
4

S
4

V
R
E
F
3

V
R
E
F
4

V
D
D
S
3

V
D
D
S
3

V
D
D
S
3

V
D
D
S
4

V
D
D
S
4

Piezo

U
C
C
27
61
1

U
C
C
27
61
1

S
I8
61
x

S
I8
61
x

2x
4C
O
N

+ -

V
O
U
T
+
5

+ -

V
IN

+ -

V
O
U
T

U
C
C
27
61
1

U
C
C
27
61
1

S
I8
61
x

S
I8
61
x

2x
4C
O
N

119

E
P
C
20
19

E
P
C
20
19

N
R
V
T
S
A
41
00

N
R
V
T
S
A
41
00

C
08
05
C
08
05

C
08
05
C
08
05

N
R
V
T
S
A
41
00

C
08
05
C
08
05

R
04
02
R
04
02

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

E
P
C
20
19

E
P
C
20
19

N
R
V
T
S
A
41
00

C
08
05
C
08
05

R
04
02
R
04
02

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

C
08
05
C
08
05

1P$1 2 P$2*3

S
1

S
2

D
1

D
2

C
D
1

C
D
3

C
D
2

V
D
D

1

IN
-

2

IN
+

3

GND 7

V
R
E
F

6

O
U
T
H

5

O
U
T
L

4

V
D
D

1

IN
-

2

IN
+

3

GND 7

V
R
E
F

6

O
U
T
H

5

O
U
T
L

4

V
D
D
1

1

A
1

2

A
2

3

G
N
D
1

4

V
D
D
2

8

B
1

7

B
2

6

G
N
D
2

5

V
D
D
1

1

A
1

2

A
2

3

G
N
D
1

4

V
D
D
2

8

B
1

7

B
2

6

G
N
D
2

5

R
G
1

R
G
2

R
G
3

R
G
4

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

D
B
1

C
B
1

R
B
1

- 3*2+1*2

- 3*2+1*2

- 3*2+1*2

C
D
6

C
D
7

C
D
4

C
D
5

C
D
8

S
3

S
4

V
D
D

1

IN
-

2

IN
+

3

GND 7

V
R
E
F

6

O
U
T
H

5

O
U
T
L

4

V
D
D

1

IN
-

2

IN
+

3

GND 7

V
R
E
F

6

O
U
T
H

5

O
U
T
L

4

V
D
D
1

1

A
1

2

A
2

3

G
N
D
1

4

V
D
D
2

8

B
1

7

B
2

6

G
N
D
2

5

V
D
D
1

1

A
1

2

A
2

3

G
N
D
1

4

V
D
D
2

8

B
1

7

B
2

6

G
N
D
2

5

R
G
7

R
G
8

R
G
5

R
G
6

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

D
B
2

C
B
2

R
B
2

C
D
11

C
D
12

C
D
9

C
D
10

C
D
13

C
D
17

C
D
16

C
D
14

C
D
15

C
D
19

IN
IN

G
N
D

G
N
D
1*
4

IN
IN

G
N
D

G
N
D
1*
4

V
D

V
D

V
D

V
D

V
D

V
D

V
IN

G
N
D

G
N
DG
N
D G
N
D

G
N
D

G
N
DG
N
D G
N
D

G
N
D

G
N
D

G
N
D

G
N
D

G
N
D

G
N
D

V
D
D
S
1

V
D
D
S
1V
S
W

V
S
W

V
S
W

V
S
W

V
S
W

V
S
W

V
D
D
S
2

V
D
D
S
2

V
O
U
T

V
O
U
T

V
O
U
T

V
O
U
T

V
O
U
T

V
O
U
T

S
1

S
1

S
2

S
2

V
R
E
F
1

V
R
E
F
2

S
3

S
3

S
4

S
4

V
R
E
F
3

V
R
E
F
4

V
D
D
S
3

V
D
D
S
3

V
D
D
S
3

V
D
D
S
4

V
D
D
S
4

Piezo

U
C
C
27
61
1

U
C
C
27
61
1

S
I8
61
x

S
I8
61
x

2x
4C
O
N

+ -

V
O
U
T
+
5

+ -

V
IN

+ -

V
O
U
T

U
C
C
27
61
1

U
C
C
27
61
1

S
I8
61
x

S
I8
61
x

2x
4C
O
N

120

B.1 Bill of Materials

Description Part # Ratings/Info
Piezo APC International

790
"Disc (diameter 19.8mm, thick-
ness 0.8mm), Material 844"

MOSFET EPC 2019 "GaN, 200V, 8.5A, BUMPED
DIE"

Diode ON Semiconductor
NRVTSA4100T3G

"SCHOTTKY, 4A, 100V, SMA-
2"

Terminal Plug Phoenix Contact
1757035

"PLUG, 4POS, STR, 5.08MM"

Terminal Header Phoenix Contact
1755752

"HDR, 4POS, VERT, 5.08MM"

Input Bus Capacitor "3x CERAMIC, 1UF, 450V, X7T,
2220"

Output Bus Capaci-
tor

"CERAMIC, 15UF, 100V, X7S,
2220"

Output Half Bridge
Decoupling Capaci-
tor

"CERAMIC, 1000PF, 250V, C0G,
0805 "

Inter-Bus Half
Bridge Decoupling
Capacitor

"CERAMIC, 1000PF, 250V, C0G,
0805 "

Gate Driver UCC27611DRVT IC GATE DRIVER 6SON
Isolator SI8620BB-B-ISR DGTL ISO 2.5KV GEN PURP

8SOIC
Gate Resistors "2-4 ohm, 0402"
Decoupling Capaci-
tors

"CERAMIC, 22UF, 25V, X5R,
0805"

Bootstrap Capacitor "CERAMIC, 22UF, 25V, X5R,
0805"

Bootstrap Diode ST Microelectroncis
STPS2200U

"SCHOTTKY, 200V, 2A, SMB"

Boostrap Resistor "2-4 ohm, 0402"
Isolated Supply
Term. Plug

Phoenix Contact
1757035

"PLUG, 4POS, STR, 5.08MM"

Isolated Supply
Term. Header

Phoenix Contact
1755752

"HDR, 4POS, VERT, 5.08MM"

Control Terminal
Header Pins

FCI 67997-208HLF "HDR, VERT, 8POS, 2.54MM"

Standoffs "HEX STANDOFF 4-40 NYLON
1/2"""

121

B.2 PCB Header Pinout

GND GND 𝑉𝑖𝑛 𝑉𝑖𝑛

*

Table B.1: 𝑉𝑖𝑛 supply input

*

𝑉𝑜𝑢𝑡 + 5 𝑉𝑜𝑢𝑡 + 5 𝑉𝑜𝑢𝑡 𝑉𝑜𝑢𝑡

Table B.2: 𝑉𝑜𝑢𝑡 + 5 Supply input

GND

GND

𝑉𝑜𝑢𝑡

* 𝑉𝑜𝑢𝑡

Table B.3: 𝑉𝑜𝑢𝑡 Load/Output

*

NC +5V in GND GND

NC +5V in S1 in S2 in

Table B.4: SCON1 inputs

NC NC *

+5V in +5V in

S3 in GND

S4 in GND

Table B.5: SCON2 inputs

122

Appendix C

Microcontroller and Sensing Circuit

Bill of Materials

This appendix presents the bill of materials for all parts used for constructing the

closed-loop controller prototype and the sensing buffer circuitry. The table includes

the part numbers as well as a description of each part’s purpose.

123

Item Qty Description
296-46777-ND Texas Instruments Control Card
TMS320F28379D EVAL

1 Microcontroller

296-52312-ND Texas Instruments Docking Station
TMDSHSECDOCK

1 Microcontroller
Docking Station

296-39237-5-ND IC OPAMP GP 4 CIRCUIT
14DIP

5 Buffer Op-amp

445-173244-1-ND CAP CER 4.7PF 100V C0G RA-
DIAL

10 Filter cap (not used)

445-175548-ND CAP CER 10PF 100V C0G RA-
DIAL

10 Filter cap (not used)

445-FA18C0G2A471JNU00-ND CAP CER 470PF
100V C0G RADIAL

10 Filter cap

445-174252-1-ND CAP CER 1000PF 250V X7R
RADIAL

10 Filter cap

399-14094-1-ND CAP CER 0.1UF 100V X7R RA-
DIAL

10 Op-amp decoupling
cap

RS112-KIT-ND RESISTOR KIT 1-1M 1/6W
365PCS

1 Resistor kit for mak-
ing resistor divider

S910CACT-ND RES 910 OHM 1/4W 1% AXIAL 10 Filter resistor (not
used)

RNMF14FAD9K10CT-ND RES 9.1K OHM 1/4W
1% AXIAL

10 Filter resistor

124

Appendix D

Steady State Solution Code

This appendix presents the MATLAB code used to compute the nonideal PSS solution

for a PR given the PR parameters (𝐶𝑝, 𝐶𝑟, 𝐿, 𝑅), the input and output voltages (𝑉𝑖𝑛,

𝑉𝑜𝑢𝑡), the switching sequence description (“Topology” matrix, see code comments),

and the initial condition 𝑉𝑟1. This voltage should be negative and is usually larger

in magnitude than 𝑉𝑖𝑛 and 𝑉𝑜𝑢𝑡. The script will output the full PSS solution with all

corner variables and switching times, and it will also display a state space plot of the

solution.

First, the script solves for the ideal PSS solution using the ideal PR parameters.

Then, it computes the switching times from the ideal corner variables. Next, it

creates the differential equations governing open and connected stages and solves

them symbolically in terms of their initial conditions. Then, it creates a system of

equations using the time domain waveforms to solve for the nonideal corner variables.

The ideal solution is used as the starting point in the MATLAB function vpasolve.

1 function PiezoConverterNew_iL6B(Co , C, L, R, Vin , Vout , top , Vs)

2 %% INPUT DOCUMENTATION

3

4 % Topology

5 % 2x6 matrix

6 %

7 % 1st row - choose switching cycle in terms of Vin and Vout

8 % Voltage of stage is linear combination of Vin and Vout based on

125

9 % multiplier in matrix

10 %

11 % 1st stage | 3rd stage | 5th stage | SS stage

12 % Vin Vout | Vin Vout | Vin Vout | Vin Vout

13 %

14 % Example: for Vin -Vout ,-Vout ,Zero ,Vss=Vin

15 % [1 -1 0 -1 0 0 1 0]

16 %

17 % 2nd Row - current constraints

18 % Sets current constraints

19 % kth column is -1 if iLk <= 0, 1 if iLk >= 0, 0 if iLk == 0

20 %

21 % Example: iL1 , iL2 , iL3 < 0; iL5 , iL6a > 0; iL4 , iL6b = 0

22 % [1 1 1 0 -1 -1 0 0]

23

24

25

26

27 %% IDEAL SOLVER

28

29 %clear all

30

31 % % Parameters

32 % Co = 710e-12;

33 % L = .158;

34 % C = 35e-12;

35 % R = 20;

36 % Vin = 100;

37 % Vout = 45;

38 Ceff = C*Co/(C+Co);

39 Ts = 2*pi*sqrt(L*C);

40 Vs1_n = Vs;

41

42 V = [Vin , Vout];

43

44 % Voltage states

126

45 Va = dot(V,top (1 ,1:2));

46 Vz = dot(V,top (1 ,3:4));

47 Vb = dot(V,top (1 ,5:6));

48 Vss = dot(V,top (1 ,7:8));

49

50 % Variables

51 syms iL1 iL2 iL3 iL4 iL5 iL6a iL6b vr1 vr2 vr3 vr4 vr5 vr6a vr6b a

b

52

53

54 vr = [vr1 vr2 vr3 vr4 vr5 vr6a vr6b];

55 iL = [iL1 iL2 iL3 iL4 iL5 iL6a iL6b];

56 assume(vr1 ,’real’);

57 assume(iL.*top (2 ,1:7) > 0);

58

59 fixed_i = iL(top (2 ,1:7) ==0);

60 free_i = iL(top (2 ,1:7) ~=0);

61 free_v = vr((4- length(fixed_i)):7);

62 fixed_v = vr(1:(3- length(fixed_i)));

63 fixed_sv = [fixed_i fixed_v];

64

65 dE1 = 1/2*C*(vr2^2-vr1 ^2) +1/2*L*(iL2^2-iL1 ^2);

66 dE2 = 1/2*C*(vr4^2-vr3 ^2) +1/2*L*(iL4^2-iL3 ^2);

67 dE3 = 1/2*C*(vr6a^2-vr5 ^2) +1/2*L*(iL6a^2-iL5 ^2);

68 Eout = top(1,2)*Vout/Va*dE1+top(1,4)*Vout/Vz*dE2+top(1,6)*Vout/Vb*

dE3;

69

70 eqns = [

71 % Equations

72

73 (vr1 -Va)^2 + (L/C)*iL1^2 == (vr2 - Va)^2 + (L/C)*iL2

^2,... % 1

74 ...

75 Co*(Va)^2 + C*vr2^2 + L*iL2^2 == Co*Vz^2 + C*vr3^2 + L*

iL3^2, ... % 2

76 Co*(Vz-Va) == -C*(vr3 - vr2), ...

127

77 ...

78 (vr3 -Vz)^2 + (L/C)*iL3^2 == (vr4 - Vz)^2 + (L/C)*iL4^2,

... % 3

79 ...

80 Co*(Vz)^2 + C*vr4^2 + L*iL4^2 == Co*Vb^2 + C*vr5^2 + L*

iL5^2, ... % 4

81 Co*(Vb-Vz) == -C*(vr5 - vr4), ...

82 ...

83 (vr5 -Vb)^2 + (L/C)*iL5^2 == (vr6a - Vb)^2 + (L/C)*iL6a

^2, ... % 5

84 ...

85 Co*Vb^2 + C*vr6a^2 + L*iL6a^2 == Co*(Vss)^2 + C*vr6b^2 +

L*iL6b^2, ... % 6a

86 Co*(Vss -Vb) == -C*(vr6b - vr6a), ...

87 ...

88 Co*Vss^2 + C*vr6b^2 + L*iL6b^2 == Co*(Va)^2 + C*vr1^2 +

L*iL1^2, ... % 6b

89 Co*(Va-Vss) == -C*(vr1 - vr6b), ...

90 ...

91 ...

92 ...% Initial conditions and constraints

93 ...

94 vr1 == Vs1_n , ...

95 ...%-Eout/Ts == power ,...

96 fixed_i == 0 ...

97];

98 assumptions

99

100 % Solve equations

101 vars = [vr1 vr2 vr3 vr4 vr5 vr6a vr6b iL1 iL2 iL3 iL4 iL5 iL6a iL6b

];

102 [svr1 , svr2 , svr3 , svr4 , svr5 , svr6a , svr6b , siL1 , siL2 , siL3 , siL4 ,

siL5 , siL6a , siL6b] = solve(eqns ,vars);

103

104

105

128

106 svr = [svr1 ,svr2 ,svr3 ,svr4 ,svr5 ,svr6a ,svr6b];

107 siL = [siL1 , siL2 , siL3 , siL4 , siL5 , siL6a , siL6b];

108

109

110 % Solve for resonant angles

111 theta1 = atan2(norm(cross ([(svr(1)-Va),siL (1)*sqrt(L/C) ,0],[(svr (2)-

Va),siL(2)*sqrt(L/C) ,0])),dot([(svr(1)-Va),siL (1)*sqrt(L/C) ,0],[(

svr (2)-Va),siL(2)*sqrt(L/C) ,0]));

112 theta2 = atan2(norm(cross ([(Va-svr(2)),siL (2)*sqrt(L/Ceff) ,0],[(Vz-

svr (3)),siL(3)*sqrt(L/Ceff) ,0])),dot([(Va -svr (2)),siL (2)*sqrt(L/

Ceff) ,0],[(Vz -svr(3)),siL (3)*sqrt(L/Ceff) ,0]));

113 theta3 = atan2(norm(cross ([(svr(3)-Vz),siL (3)*sqrt(L/C) ,0],[(svr (4)-

Vz),siL(4)*sqrt(L/C) ,0])),dot([(svr(3)-Vz),siL (3)*sqrt(L/C) ,0],[(

svr (4)-Vz),siL(4)*sqrt(L/C) ,0]));

114 theta4 = atan2(norm(cross ([(Vz-svr(4)),siL (4)*sqrt(L/Ceff) ,0],[(Vb-

svr (5)),siL(5)*sqrt(L/Ceff) ,0])),dot([(Vz -svr (4)),siL (4)*sqrt(L/

Ceff) ,0],[(Vb -svr(5)),siL (5)*sqrt(L/Ceff) ,0]));

115 theta5 = atan2(norm(cross ([(svr(5)-Vb),siL (5)*sqrt(L/C) ,0],[(svr (6)-

Vb),siL(6)*sqrt(L/C) ,0])),dot([(svr(5)-Vb),siL (5)*sqrt(L/C) ,0],[(

svr (6)-Vb),siL(6)*sqrt(L/C) ,0]));

116 theta6a = atan2(norm(cross ([(Vb-svr(6)),siL (6)*sqrt(L/Ceff) ,0],[(Vss

-svr(7)),siL (7)*sqrt(L/Ceff) ,0])),dot ([(Vb-svr(6)),siL (6)*sqrt(L/

Ceff) ,0],[(Vss -svr (7)),siL (7)*sqrt(L/Ceff) ,0]));

117 theta6b = atan2(norm(cross ([(Vss -svr(7)),siL (7)*sqrt(L/Ceff) ,0],[(Va

-svr(1)),siL (1)*sqrt(L/Ceff) ,0])),dot ([(Vss -svr(7)),siL (7)*sqrt(L

/Ceff) ,0],[(Va-svr(1)),siL(1)*sqrt(L/Ceff) ,0]));

118

119 theta = [theta1 ,theta2 ,theta3 ,theta4 ,theta5 ,theta6a ,theta6b];

120 % Solve for times

121 t1 = theta1*sqrt(L*C);

122 t2 = theta2*sqrt(L*Ceff);

123 t3 = theta3*sqrt(L*C);

124 t4 = theta4*sqrt(L*Ceff);

125 t5 = theta5*sqrt(L*C);

126 t6a = theta6a*sqrt(L*Ceff);

127 t6b = theta6b*sqrt(L*Ceff);

129

128

129 fnew = 1./(t1+t2+t3+t4+t5+t6a+t6b);

130 T = [t1, t2, t3 , t4 , t5, t6a , t6b];

131

132

133 % Display

134 % vpa(svr)

135 % vpa(siL)

136 % vpa(T)

137

138

139

140 %% LOSSY SOLVER

141 fprintf (" Starting non -ideal solver ")

142

143 syms Vp(t) Vs(t) iL(t) VinS1 Vs0S1 iL0S1 VinS2 Vs0S2 iL0S2 CpS CsS

LSS VS RS VaS VbS VzS VssS;

144

145 assume ([CpS , CsS , LSS , RS] > 0);

146 assumeAlso ([VinS1 Vs0S1 iL0S1 VinS2 Vs0S2 iL0S2 CpS CsS LSS VS RS],

’real’);

147

148 Cp = Co;

149 Cs = C;

150

151

152

153

154 %Solve diffeq for stage 1 and 3

155

156 %Lossless

157 %eqns1 = [diff(Vp,t) == 0, diff(Vs,t) == iL/CsS , diff(iL , t) == Vp/

LSS - Vs/LSS];

158 %cond1 = [Vp(0) == VinS1 , Vs(0) == Vs0S1 , iL(0) == iL0S1];

159

160 %Lossy

130

161 eqns1 = [diff(Vp,t) == 0, diff(Vs,t) == iL/CsS , diff(iL , t) == Vp/

LSS - Vs/LSS - RS/LSS*iL];

162 cond1 = [Vp(0) == VinS1 , Vs(0) == Vs0S1 , iL(0) == iL0S1];

163 stage1d = dsolve(eqns1 , cond1);

164

165 %{

166 pretty(stage1.Vp)

167 pretty(stage1.Vs)

168 pretty(stage1.iL)

169 %}

170

171

172 %Solve diffeq for stage 2 and 4

173 eqns2 = [diff(Vp,t) == -iL/CpS , diff(Vs ,t) == iL/CsS , diff(iL,t) ==

Vp/LSS -Vs/LSS -RS/LSS*iL];

174 cond2 = [Vp(0) == VinS2 , Vs(0) == Vs0S2 , iL(0) == iL0S2];

175 stage2d = dsolve(eqns2 , cond2);

176

177 %Rloss1 = int(stage1d.iL^2*RS, t, 0, t);

178 %Rloss2 = int(stage2d.iL^2*RS, t, 0, t);

179

180 %{

181 pretty(stage2.Vp)

182 pretty(stage2.Vs)

183 pretty(stage2.iL)

184 %}

185

186 Rloss1 = int(stage1d.iL^2*RS, t, 0, t);

187 Rloss2 = int(stage2d.iL^2*RS, t, 0, t);

188

189 VsS = [vr1 vr2 vr3 vr4 vr5 vr6a vr6b]

190 iLS = [iL1 iL2 iL3 iL4 iL5 iL6a iL6b]

191 tS = sym(’t’ ,[1,7]);

192

193 eqns = zeros(1,18,’sym’);

194

131

195 eqns (1) = VsS (2) - subs(stage1d.Vs ,[Vs0S1 , iL0S1 , VinS1 ,t],[VsS(1),

iLS (1), VaS , tS(1)]);

196 eqns (2) = iLS (2) - subs(stage1d.iL ,[Vs0S1 , iL0S1 , VinS1 ,t],[VsS(1),

iLS (1), VaS , tS(1)]);

197

198 eqns (3) = VsS (3) - subs(stage2d.Vs ,[Vs0S2 , iL0S2 , VinS2 ,t],[VsS(2),

iLS (2), VaS , tS(2)]);

199 eqns (4) = iLS (3) - subs(stage2d.iL ,[Vs0S2 , iL0S2 , VinS2 ,t],[VsS(2),

iLS (2), VaS , tS(2)]);

200 eqns (5) = VzS - subs(stage2d.Vp ,[Vs0S2 , iL0S2 , VinS2 ,t],[VsS(2), iLS

(2), VaS , tS(2)]);

201

202 eqns (6) = VsS (4) - subs(stage1d.Vs ,[Vs0S1 , iL0S1 , VinS1 ,t],[VsS(3),

iLS (3), VzS , tS(3)]);

203 eqns (7) = iLS (4) - subs(stage1d.iL ,[Vs0S1 , iL0S1 , VinS1 ,t],[VsS(3),

iLS (3), VzS , tS(3)]);

204

205 eqns (8) = VsS (5) - subs(stage2d.Vs ,[Vs0S2 , iL0S2 , VinS2 ,t],[VsS(4),

iLS (4), VzS , tS(4)]);

206 eqns (9) = iLS (5) - subs(stage2d.iL ,[Vs0S2 , iL0S2 , VinS2 ,t],[VsS(4),

iLS (4), VzS , tS(4)]);

207 eqns (10) = VbS - subs(stage2d.Vp ,[Vs0S2 , iL0S2 , VinS2 ,t],[VsS(4),

iLS (4), VzS , tS(4)]);

208

209 eqns (11) = VsS (6) - subs(stage1d.Vs ,[Vs0S1 , iL0S1 , VinS1 ,t],[VsS(5),

iLS (5), VbS , tS(5)]);

210 eqns (12) = iLS (6) - subs(stage1d.iL ,[Vs0S1 , iL0S1 , VinS1 ,t],[VsS(5),

iLS (5), VbS , tS(5)]);

211

212 eqns (13) = VsS (7) - subs(stage2d.Vs ,[Vs0S2 , iL0S2 , VinS2 ,t],[VsS(6),

iLS (6), VbS , tS(6)]);

213 eqns (14) = iLS (7) - subs(stage2d.iL ,[Vs0S2 , iL0S2 , VinS2 ,t],[VsS(6),

iLS (6), VbS , tS(6)]);

214 eqns (15) = VssS - subs(stage2d.Vp ,[Vs0S2 , iL0S2 , VinS2 ,t],[VsS(6),

iLS (6), VbS , tS(6)]);

215

132

216 eqns (16) = VsS (1) - subs(stage2d.Vs ,[Vs0S2 , iL0S2 , VinS2 ,t],[VsS(7),

iLS (7), VssS , tS(7)]);

217 eqns (17) = iLS (1) - subs(stage2d.iL ,[Vs0S2 , iL0S2 , VinS2 ,t],[VsS(7),

iLS (7), VssS , tS(7)]);

218 eqns (18) = VaS - subs(stage2d.Vp ,[Vs0S2 , iL0S2 , VinS2 ,t],[VsS(7),

iLS (7), VssS , tS(7)]);

219

220 sfixed_i = siL(top (2 ,1:7) ==0)

221 sfixed_v = svr (1:(3 - length(sfixed_i)))

222 sfixed_sv = [sfixed_i sfixed_v]

223

224 sfree_i = vpa(siL(top (2 ,1:7) ~=0))

225 sfree_v = vpa(svr((4- length(fixed_i)):7))

226

227

228 eqns_n = subs(eqns ,[CpS CsS LSS RS VaS VzS VbS VssS fixed_sv],[Co C

L R Va Vz Vb Vss sfixed_sv])

229

230 symvar(eqns_n)

231

232 guess = [sfree_v sfree_i T]

233 solve_vars = [free_v free_i tS]

234

235 out = vpasolve(eqns_n ,solve_vars ,guess)

236

237 %Voltage

238 if in(vr1 ,fixed_sv)

239 Vs0 = svr(1);

240 else

241 Vs0 = out.vr1;

242 end

243

244 if in(vr2 ,fixed_sv)

245 Vs1 = svr(2);

246 else

247 Vs1 = out.vr2;

133

248 end

249

250 if in(vr3 ,fixed_sv)

251 Vs2 = svr(3);

252 else

253 Vs2 = out.vr3;

254 end

255

256 if in(vr4 ,fixed_sv)

257 Vs3 = svr(4);

258 else

259 Vs3 = out.vr4;

260 end

261

262 if in(vr5 ,fixed_sv)

263 Vs4 = svr(5);

264 else

265 Vs4 = out.vr5;

266 end

267

268 if in(vr6a ,fixed_sv)

269 Vs5 = svr(6);

270 else

271 Vs5 = out.vr6a;

272 end

273

274 if in(vr6b ,fixed_sv)

275 Vs5b = svr(7);

276 else

277 Vs5b = out.vr6b;

278 end

279

280 %Current

281 if in(iL1 ,fixed_sv)

282 iL0 = siL(1);

283 else

134

284 iL0 = out.iL1;

285 end

286

287 if in(iL2 ,fixed_sv)

288 iL1 = siL(2);

289 else

290 iL1 = out.iL2;

291 end

292

293 if in(iL3 ,fixed_sv)

294 iL2 = siL(3);

295 else

296 iL2 = out.iL3;

297 end

298

299 if in(iL4 ,fixed_sv)

300 iL3 = siL(4);

301 else

302 iL3 = out.iL4;

303 end

304

305 if in(iL5 ,fixed_sv)

306 iL4 = siL(5);

307 else

308 iL4 = out.iL5;

309 end

310

311 if in(iL6a ,fixed_sv)

312 iL5 = siL(6);

313 else

314 iL5 = out.iL6a;

315 end

316

317 if in(iL6b ,fixed_sv)

318 iL5b = siL(7);

319 else

135

320 iL5b = out.iL6b;

321 end

322

323 t1 = out.t1;

324 t2 = out.t2;

325 t3 = out.t3;

326 t4 = out.t4;

327 t5 = out.t5;

328 t6a = out.t6;

329 t6b = out.t7;

330

331 Vs_n = [Vs0 , Vs1 , Vs2 , Vs3 , Vs4 , Vs5 , Vs5b]

332 iL_n = [iL0 , iL1 , iL2 , iL3 , iL4 , iL5 , iL5b]

333 t_n = [t1, t2 , t3 , t4, t5 , t6a , t6b]

334

335 E0 = 1/2*Cp*Va ^2+1/2* Cs*Vs0 ^2+1/2*L*iL0 ^2;

336 E1 = 1/2*Cp*Va ^2+1/2* Cs*Vs1 ^2+1/2*L*iL1 ^2;

337 E3 = 1/2*Cp*Vz ^2+1/2* Cs*Vs3 ^2+1/2*L*iL3 ^2;

338 E4 = 1/2*Cp*Vb ^2+1/2* Cs*Vs4 ^2+1/2*L*iL4 ^2;

339 E5 = 1/2*Cp*Vb ^2+1/2* Cs*Vs5 ^2+1/2*L*iL5 ^2;

340

341

342 %%{

343 figure (1)

344

345

346

347 fplot(Va , subs(stage1d.iL ,[VinS1 , Vs0S1 , iL0S1 , CsS , LSS , RS], [Va,

Vs0 , iL0 , Cs , L, R]) ,[0, double(t1)])

348

349 hold on

350 fplot(subs(stage2d.Vp ,[VinS2 , Vs0S2 , iL0S2 , CpS , CsS , LSS , RS], [Va,

Vs1 , iL1 , Cp , Cs, L, R]), subs(stage2d.iL ,[VinS2 , Vs0S2 , iL0S2 ,

CpS , CsS , LSS , RS], [Va, Vs1 , iL1 , Cp, Cs , L, R]), [0,double(t2)

]);

351 fplot(Vz , subs(stage1d.iL ,[VinS1 , Vs0S1 , iL0S1 , CpS , CsS , LSS , RS],

136

[Vz , Vs2 , iL2 , Cp, Cs , L, R]) ,[0, double(t3)])

352

353 fplot(subs(stage2d.Vp ,[VinS2 , Vs0S2 , iL0S2 , CpS , CsS , LSS , RS], [Vz,

Vs3 , iL3 , Cp , Cs, L, R]), subs(stage2d.iL ,[VinS2 , Vs0S2 , iL0S2 ,

CpS , CsS , LSS , RS], [Vz, Vs3 , iL3 , Cp, Cs , L, R]), [0,double(t4)

]);

354 fplot(Vb , subs(stage1d.iL ,[VinS1 , Vs0S1 , iL0S1 , CpS , CsS , LSS , RS],

[Vb , Vs4 , iL4 , Cp, Cs , L, R]) ,[0, double(t5)])

355 fplot(subs(stage2d.Vp ,[VinS2 , Vs0S2 , iL0S2 , CpS , CsS , LSS , RS], [Vb,

Vs5 , iL5 , Cp , Cs, L, R]), subs(stage2d.iL ,[VinS2 , Vs0S2 , iL0S2 ,

CpS , CsS , LSS , RS], [Vb, Vs5 , iL5 , Cp, Cs , L, R]), [0,double(t6a+

t6b)],’Color ’,’red’);

356

357 hold off

358

359 figure (2)

360

361 fplot(subs(stage1d.Vs ,[VinS1 , Vs0S1 , iL0S1 , CsS , LSS , RS], [Va , Vs0 ,

iL0 , Cs, L, R]), subs(stage1d.iL ,[VinS1 , Vs0S1 , iL0S1 , CsS , LSS ,

RS], [Va, Vs0 , iL0 , Cs, L, R]) ,[0, double(t1)])

362

363

364 hold on

365 fplot(subs(stage2d.Vs ,[VinS2 , Vs0S2 , iL0S2 , CpS , CsS , LSS , RS], [Va,

Vs1 , iL1 , Cp , Cs, L, R]), subs(stage2d.iL ,[VinS2 , Vs0S2 , iL0S2 ,

CpS , CsS , LSS , RS], [Va, Vs1 , iL1 , Cp, Cs , L, R]), [0,double(t2)

]);

366 fplot(subs(stage1d.Vs ,[VinS1 , Vs0S1 , iL0S1 , CpS , CsS , LSS , RS], [Vz,

Vs2 , iL2 , Cp , Cs, L, R]), subs(stage1d.iL ,[VinS1 , Vs0S1 , iL0S1 ,

CpS , CsS , LSS , RS], [Vz, Vs2 , iL2 , Cp, Cs , L, R]) ,[0, double(t3)

])

367

368 fplot(subs(stage2d.Vs ,[VinS2 , Vs0S2 , iL0S2 , CpS , CsS , LSS , RS], [Vz,

Vs3 , iL3 , Cp , Cs, L, R]), subs(stage2d.iL ,[VinS2 , Vs0S2 , iL0S2 ,

CpS , CsS , LSS , RS], [Vz, Vs3 , iL3 , Cp, Cs , L, R]), [0,double(t4)

]);

137

369 fplot(subs(stage1d.Vs ,[VinS1 , Vs0S1 , iL0S1 , CpS , CsS , LSS , RS], [Vb,

Vs4 , iL4 , Cp , Cs, L, R]), subs(stage1d.iL ,[VinS1 , Vs0S1 , iL0S1 ,

CpS , CsS , LSS , RS], [Vb, Vs4 , iL4 , Cp, Cs , L, R]) ,[0, double(t5)

])

370 fplot(subs(stage2d.Vs ,[VinS2 , Vs0S2 , iL0S2 , CpS , CsS , LSS , RS], [Vb,

Vs5 , iL5 , Cp , Cs, L, R]), subs(stage2d.iL ,[VinS2 , Vs0S2 , iL0S2 ,

CpS , CsS , LSS , RS], [Vb, Vs5 , iL5 , Cp, Cs , L, R]), [0,double(t6a+

t6b)],’Color ’,’red’);

371

372

373 hold off

374

375 %Output scatter plot data to csv file

376 %TODO - make general method for switch nodes

377 %TODO - Do substitutions once so this code runs a lot faster , right

now it

378 %does the same substitutions repeatedly

379

380 % scatter_step = 100;

381 %

382 % fprintf(’Generating scatter plots\n’);

383 %

384 % scatter1 = [subs([Va , subs(stage1d.iL ,[VinS1 , Vs0S1 , iL0S1 , CsS ,

LSS , RS], [Va , Vs0 , iL0 , Cs , L, R])], t, linspace(0, double(t1),

scatter_step)’);...

385 % subs([subs(stage2d.Vp ,[VinS2 , Vs0S2 , iL0S2 , CpS , CsS , LSS , RS

], [Va , Vs1 , iL1 , Cp , Cs, L, R]), subs(stage2d.iL ,[VinS2 , Vs0S2 ,

iL0S2 , CpS , CsS , LSS , RS], [Va , Vs1 , iL1 , Cp , Cs, L, R])], t,

linspace(0,double(t2),scatter_step)’);...

386 % subs([Vz , subs(stage1d.iL ,[VinS1 , Vs0S1 , iL0S1 , CpS , CsS , LSS ,

RS], [Vz, Vs2 , iL2 , Cp, Cs , L, R])], t, linspace(0, double(t3),

scatter_step)’);...

387 % subs([subs(stage2d.Vp ,[VinS2 , Vs0S2 , iL0S2 , CpS , CsS , LSS , RS

], [Vz , Vs3 , iL3 , Cp , Cs, L, R]), subs(stage2d.iL ,[VinS2 , Vs0S2 ,

iL0S2 , CpS , CsS , LSS , RS], [Vz , Vs3 , iL3 , Cp , Cs, L, R])], t,

linspace(0,double(t4),scatter_step)’);...

138

388 % subs([Vb , subs(stage1d.iL ,[VinS1 , Vs0S1 , iL0S1 , CpS , CsS , LSS ,

RS], [Vb, Vs4 , iL4 , Cp, Cs , L, R])], t, linspace(0, double(t5),

scatter_step)’);...

389 % subs([subs(stage2d.Vp ,[VinS2 , Vs0S2 , iL0S2 , CpS , CsS , LSS , RS

], [Vb , Vs5 , iL5 , Cp , Cs, L, R]), subs(stage2d.iL ,[VinS2 , Vs0S2 ,

iL0S2 , CpS , CsS , LSS , RS], [Vb , Vs5 , iL5 , Cp , Cs, L, R])], t,

linspace(0,double(t6a+t6b),scatter_step) ’)];

390 %

391 %

392 % scatter2 = [subs([subs(stage1d.Vs ,[VinS1 , Vs0S1 , iL0S1 , CsS , LSS ,

RS], [Va, Vs0 , iL0 , Cs, L, R]), subs(stage1d.iL ,[VinS1 , Vs0S1 ,

iL0S1 , CsS , LSS , RS], [Va, Vs0 , iL0 , Cs, L, R])], t, linspace(0,

double(t1),scatter_step) ’);...

393 % subs([subs(stage2d.Vs ,[VinS2 , Vs0S2 , iL0S2 , CpS , CsS , LSS , RS

], [Va , Vs1 , iL1 , Cp , Cs, L, R]), subs(stage2d.iL ,[VinS2 , Vs0S2 ,

iL0S2 , CpS , CsS , LSS , RS], [Va , Vs1 , iL1 , Cp , Cs, L, R])], t,

linspace(0,double(t2),scatter_step)’);...

394 % subs([subs(stage1d.Vs ,[VinS1 , Vs0S1 , iL0S1 , CpS , CsS , LSS , RS

], [Vz , Vs2 , iL2 , Cp , Cs, L, R]), subs(stage1d.iL ,[VinS1 , Vs0S1 ,

iL0S1 , CpS , CsS , LSS , RS], [Vz , Vs2 , iL2 , Cp , Cs, L, R])], t,

linspace(0, double(t3),scatter_step) ’);...

395 % subs([subs(stage2d.Vs ,[VinS2 , Vs0S2 , iL0S2 , CpS , CsS , LSS , RS

], [Vz , Vs3 , iL3 , Cp , Cs, L, R]), subs(stage2d.iL ,[VinS2 , Vs0S2 ,

iL0S2 , CpS , CsS , LSS , RS], [Vz , Vs3 , iL3 , Cp , Cs, L, R])], t,

linspace(0,double(t4),scatter_step)’);...

396 % subs([subs(stage1d.Vs ,[VinS1 , Vs0S1 , iL0S1 , CpS , CsS , LSS , RS

], [Vb , Vs4 , iL4 , Cp , Cs, L, R]), subs(stage1d.iL ,[VinS1 , Vs0S1 ,

iL0S1 , CpS , CsS , LSS , RS], [Vb , Vs4 , iL4 , Cp , Cs, L, R])], t,

linspace(0, double(t5),scatter_step) ’);...

397 % subs([subs(stage2d.Vs ,[VinS2 , Vs0S2 , iL0S2 , CpS , CsS , LSS , RS

], [Vb , Vs5 , iL5 , Cp , Cs, L, R]), subs(stage2d.iL ,[VinS2 , Vs0S2 ,

iL0S2 , CpS , CsS , LSS , RS], [Vb , Vs5 , iL5 , Cp , Cs, L, R])], t,

linspace(0,double(t6a+t6b),scatter_step) ’)];

398 %

399 % scatter3 = [subs([t, subs(stage1d.Vp ,[VinS1 , Vs0S1 , iL0S1 , CsS ,

LSS , RS], [Va , Vs0 , iL0 , Cs , L, R])], t, linspace(0, double(t1),

139

scatter_step)’);...

400 % subs([t+t1 , subs(stage2d.Vp ,[VinS2 , Vs0S2 , iL0S2 , CpS , CsS ,

LSS , RS], [Va , Vs1 , iL1 , Cp , Cs, L, R])], t, linspace(0,double(t2

),scatter_step) ’);...

401 % subs([t+t1+t2 , subs(stage1d.Vp ,[VinS1 , Vs0S1 , iL0S1 , CpS , CsS ,

LSS , RS], [Vz , Vs2 , iL2 , Cp , Cs, L, R])], t, linspace(0, double(

t3),scatter_step)’);...

402 % subs([t+t1+t2+t3, subs(stage2d.Vp ,[VinS2 , Vs0S2 , iL0S2 , CpS ,

CsS , LSS , RS], [Vz, Vs3 , iL3 , Cp, Cs, L, R])], t, linspace(0,

double(t4),scatter_step) ’);...

403 % subs([t+t1+t2+t3+t4, subs(stage1d.Vp ,[VinS1 , Vs0S1 , iL0S1 , CpS

, CsS , LSS , RS], [Vb , Vs4 , iL4 , Cp , Cs , L, R])], t, linspace(0,

double(t5),scatter_step) ’);...

404 % subs([t+t1+t2+t3+t4+t5, subs(stage2d.Vp ,[VinS2 , Vs0S2 , iL0S2 ,

CpS , CsS , LSS , RS], [Vb, Vs5 , iL5 , Cp, Cs , L, R])], t, linspace

(0,double(t6a+t6b),scatter_step) ’)];

405 %

406 % scatter4 = [subs([t, subs(stage1d.Vs ,[VinS1 , Vs0S1 , iL0S1 , CsS ,

LSS , RS], [Va , Vs0 , iL0 , Cs , L, R])], t, linspace(0, double(t1),

scatter_step)’);...

407 % subs([t+t1 , subs(stage2d.Vs ,[VinS2 , Vs0S2 , iL0S2 , CpS , CsS ,

LSS , RS], [Va , Vs1 , iL1 , Cp , Cs, L, R])], t, linspace(0,double(t2

),scatter_step) ’);...

408 % subs([t+t1+t2 , subs(stage1d.Vs ,[VinS1 , Vs0S1 , iL0S1 , CpS , CsS ,

LSS , RS], [Vz , Vs2 , iL2 , Cp , Cs, L, R])], t, linspace(0, double(

t3),scatter_step)’);...

409 % subs([t+t1+t2+t3, subs(stage2d.Vs ,[VinS2 , Vs0S2 , iL0S2 , CpS ,

CsS , LSS , RS], [Vz, Vs3 , iL3 , Cp, Cs, L, R])], t, linspace(0,

double(t4),scatter_step) ’);...

410 % subs([t+t1+t2+t3+t4, subs(stage1d.Vs ,[VinS1 , Vs0S1 , iL0S1 , CpS

, CsS , LSS , RS], [Vb , Vs4 , iL4 , Cp , Cs , L, R])], t, linspace(0,

double(t5),scatter_step) ’);...

411 % subs([t+t1+t2+t3+t4+t5, subs(stage2d.Vs ,[VinS2 , Vs0S2 , iL0S2 ,

CpS , CsS , LSS , RS], [Vb, Vs5 , iL5 , Cp, Cs , L, R])], t, linspace

(0,double(t6a+t6b),scatter_step) ’)];

412 %

140

413 % scatter5 = [subs([t, subs(stage1d.iL ,[VinS1 , Vs0S1 , iL0S1 , CsS ,

LSS , RS], [Va , Vs0 , iL0 , Cs , L, R])], t, linspace(0, double(t1),

scatter_step)’);...

414 % subs([t+t1 , subs(stage2d.iL ,[VinS2 , Vs0S2 , iL0S2 , CpS , CsS ,

LSS , RS], [Va , Vs1 , iL1 , Cp , Cs, L, R])], t, linspace(0,double(t2

),scatter_step) ’);...

415 % subs([t+t1+t2 , subs(stage1d.iL ,[VinS1 , Vs0S1 , iL0S1 , CpS , CsS ,

LSS , RS], [Vz , Vs2 , iL2 , Cp , Cs, L, R])], t, linspace(0, double(

t3),scatter_step)’);...

416 % subs([t+t1+t2+t3, subs(stage2d.iL ,[VinS2 , Vs0S2 , iL0S2 , CpS ,

CsS , LSS , RS], [Vz, Vs3 , iL3 , Cp, Cs, L, R])], t, linspace(0,

double(t4),scatter_step) ’);...

417 % subs([t+t1+t2+t3+t4, subs(stage1d.iL ,[VinS1 , Vs0S1 , iL0S1 , CpS

, CsS , LSS , RS], [Vb , Vs4 , iL4 , Cp , Cs , L, R])], t, linspace(0,

double(t5),scatter_step) ’);...

418 % subs([t+t1+t2+t3+t4+t5, subs(stage2d.iL ,[VinS2 , Vs0S2 , iL0S2 ,

CpS , CsS , LSS , RS], [Vb, Vs5 , iL5 , Cp, Cs , L, R])], t, linspace

(0,double(t6a+t6b),scatter_step) ’)];

419 %

420 % scatter6 = [subs([t, subs(top(1,1)*stage1d.iL ,[VinS1 , Vs0S1 , iL0S1

, CsS , LSS , RS], [Va , Vs0 , iL0 , Cs , L, R])], t, linspace(0,

double(t1),scatter_step) ’);...

421 % subs([t+t1 , 0], t, linspace(0,double(t2),scatter_step)’);...

422 % subs([t+t1+t2 , subs(top(1,3)*stage1d.iL ,[VinS1 , Vs0S1 , iL0S1 ,

CpS , CsS , LSS , RS], [Vz, Vs2 , iL2 , Cp, Cs , L, R])], t, linspace

(0, double(t3),scatter_step) ’);...

423 % subs([t+t1+t2+t3, 0], t, linspace(0,double(t4),scatter_step) ’)

;...

424 % subs([t+t1+t2+t3+t4, subs(top(1,5)*stage1d.iL ,[VinS1 , Vs0S1 ,

iL0S1 , CpS , CsS , LSS , RS], [Vb , Vs4 , iL4 , Cp , Cs, L, R])], t,

linspace(0, double(t5),scatter_step) ’);...

425 % subs([t+t1+t2+t3+t4+t5, 0], t, linspace(0,double(t6a+t6b),

scatter_step)’)];

426 %

427 % scatter7 = [subs([t, -subs(top(1,2)*stage1d.iL ,[VinS1 , Vs0S1 ,

iL0S1 , CsS , LSS , RS], [Va, Vs0 , iL0 , Cs, L, R])], t, linspace(0,

141

double(t1),scatter_step) ’);...

428 % subs([t+t1 , 0], t, linspace(0,double(t2),scatter_step)’);...

429 % subs([t+t1+t2 , -subs(top(1,4)*stage1d.iL ,[VinS1 , Vs0S1 , iL0S1 ,

CpS , CsS , LSS , RS], [Vz, Vs2 , iL2 , Cp, Cs , L, R])], t, linspace

(0, double(t3),scatter_step) ’);...

430 % subs([t+t1+t2+t3, 0], t, linspace(0,double(t4),scatter_step) ’)

;...

431 % subs([t+t1+t2+t3+t4, -subs(top(1,6)*stage1d.iL ,[VinS1 , Vs0S1 ,

iL0S1 , CpS , CsS , LSS , RS], [Vb , Vs4 , iL4 , Cp , Cs, L, R])], t,

linspace(0, double(t5),scatter_step) ’);...

432 % subs([t+t1+t2+t3+t4+t5, 0], t, linspace(0,double(t6a+t6b),

scatter_step)’)];

433 %

434 %

435 % %SCATTER8 AND SCATTER9 ARE SPECIFIC TO VIN -VOUT ,ZERO ,VOUT

436 % scatter8 = [subs([t, Vin], t, linspace(0, double(t1),scatter_step)

’);...

437 % subs([t+t1 , Vout+subs(stage2d.Vp ,[VinS2 , Vs0S2 , iL0S2 , CpS ,

CsS , LSS , RS], [Va, Vs1 , iL1 , Cp, Cs, L, R])], t, linspace(0,

double(t2),scatter_step) ’);...

438 % subs([t+t1+t2 , Vout], t, linspace(0, double(t3),scatter_step)

’);...

439 % subs([t+t1+t2+t3, Vout], t, linspace(0,double(t4),scatter_step

)’);...

440 % subs([t+t1+t2+t3+t4, Vout], t, linspace(0, double(t5),

scatter_step)’);...

441 % subs([t+t1+t2+t3+t4+t5, subs(stage2d.Vp ,[VinS2 , Vs0S2 , iL0S2 ,

CpS , CsS , LSS , RS], [Vb, Vs5 , iL5 , Cp, Cs , L, R])], t, linspace

(0,double(t6a),scatter_step) ’);...

442 % subs([t+t1+t2+t3+t4+t5, Vin], t, linspace(double(t6a), double(

t6a+t6b),scatter_step)’)];

443 %

444 % scatter9 = [subs([t, Vout], t, linspace(0, double(t1),scatter_step

)’);...

445 % subs([t+t1 , Vout], t, linspace(0,double(t2),scatter_step) ’)

;...

142

446 % subs([t+t1+t2 , Vout], t, linspace(0, double(t3),scatter_step)

’);...

447 % subs([t+t1+t2+t3, Vout -subs(stage2d.Vp ,[VinS2 , Vs0S2 , iL0S2 ,

CpS , CsS , LSS , RS], [Vz, Vs3 , iL3 , Cp, Cs , L, R])], t, linspace

(0,double(t4),scatter_step) ’);...

448 % subs([t+t1+t2+t3+t4, 0], t, linspace(0, double(t5),

scatter_step)’);...

449 % subs([t+t1+t2+t3+t4+t5, 0], t, linspace(0,double(t6a),

scatter_step)’);...

450 % subs([t+t1+t2+t3+t4+t5, Vin -subs(stage2d.Vp ,[VinS2 , Vs0S2 ,

iL0S2 , CpS , CsS , LSS , RS], [Vb , Vs5 , iL5 , Cp , Cs, L, R])], t,

linspace(double(t6a),double(t6a+t6b),scatter_step)’)];

451 %

452 %

453 % csvwrite (" VpvsiL.csv",double(scatter1));

454 % csvwrite (" VrvsiL.csv",double(scatter2));

455 % csvwrite ("Vpvst.csv",double(scatter3));

456 % csvwrite ("Vrvst.csv",double(scatter4));

457 % csvwrite ("iLvst.csv",double(scatter5));

458 % csvwrite (" iinvst.csv",double(scatter6));

459 % csvwrite (" ioutvst.csv",double(scatter7));

460 % csvwrite (" Vsw1vst for VIN -VOUT ZERO VOUT.csv",double(scatter8));

461 % csvwrite (" Vsw2vst for VIN -VOUT ZERO VOUT.csv",double(scatter9));

462

463

464 %}

465

466 %This area calculates information about converter operation ,

including

467 % frequency , power , efficiency , Q, for the different converter

468 % topologies. This is because a single state plane could represent

469 % "different" physical (ie where the power goes) operation of the

470 % different converter types

471

472 %In each case , energy transferred/dissipated is calculated from the

473 % equations and time/period is known from the time variables to

143

switch

474 % calculated earlier

475

476 pd = t1+t2+t3+t4+t5+t6a+t6b;

477 fprintf(’PERIOD: %e\n’, pd)

478 fprintf(’FREQUENCY: %e\n\n’, 1/pd)

479

480 Eloss = zeros (1,6);

481 Eloss (1) = vpa(subs(Rloss1 ,[VinS1 , Vs0S1 , iL0S1 , CpS , CsS , LSS , RS,

t], [Va , Vs0 , iL0 , Cp , Cs, L, R, t1]));

482 Eloss (2) = vpa(subs(Rloss2 ,[VinS2 , Vs0S2 , iL0S2 , CpS , CsS , LSS , RS,

t], [Va , Vs1 , iL1 , Cp , Cs, L, R, t2]));

483 Eloss (3) = vpa(subs(Rloss1 ,[VinS1 , Vs0S1 , iL0S1 , CpS , CsS , LSS , RS,

t], [Vz , Vs2 , iL2 , Cp , Cs, L, R, t3]));

484

485 Eloss (4) = vpa(subs(Rloss2 ,[VinS2 , Vs0S2 , iL0S2 , CpS , CsS , LSS , RS,

t], [Vz , Vs3 , iL3 , Cp , Cs, L, R, t4]));

486 Eloss (5) = vpa(subs(Rloss1 ,[VinS1 , Vs0S1 , iL0S1 , CpS , CsS , LSS , RS,

t], [Vb , Vs4 , iL4 , Cp , Cs, L, R, t5]));

487 Eloss (6) = vpa(subs(Rloss2 ,[VinS2 , Vs0S2 , iL0S2 , CpS , CsS , LSS , RS,

t], [Vb , Vs5 , iL5 , Cp , Cs, L, R, t6a+t6b]));

488

489 i_int = int(stage1d.iL ,t,0,t);

490 I1 = subs(i_int ,[VinS1 , Vs0S1 , iL0S1 , CpS , CsS , LSS , RS, t], [Va ,

Vs0 , iL0 , Cp , Cs, L, R, t1]);

491 I3 = subs(i_int ,[VinS1 , Vs0S1 , iL0S1 , CpS , CsS , LSS , RS, t], [Vz ,

Vs2 , iL2 , Cp , Cs, L, R, t3]);

492 I5 = subs(i_int ,[VinS1 , Vs0S1 , iL0S1 , CpS , CsS , LSS , RS, t], [Vb ,

Vs4 , iL4 , Cp , Cs, L, R, t5]);

493

494 %TOPOLOGY SPECIFIC

495 fprintf (" Converter Stats @ Vin = %d, Vout = %d\n",Vin ,Vout)

496

497 Eout = Vout*dot(top(1,:) ,[0 I1 0 I3 0 I5 0 0]);

498 fprintf(’Eout = %e\n’, Eout);

499

144

500 pwr = -Eout/pd;

501 fprintf(’Power = %e\n’, pwr)

502

503 Es = max([E1 ,E3 ,E5]);

504 Q = vpa (2*pi*Es/sum(Eloss));

505 fprintf(’Q = %e\n’, Q)

506

507 Et_Es = vpa(-Eout/Es);

508 fprintf(’Et/Es = %e\n’, Et_Es)

509 eff0 = Q*Et_Es /(2*pi);

510 eff1 = eff0 /(1+ eff0);

511 fprintf(’Eff = %e\n\n’, eff1)

512

513 %{

514 Eloss

515

516 swloss = (1/R).* Eloss .*[.05+.4 0 .05+.4 0 .05+.4 0]

517 sum(swloss)/pd

518 sum(Eloss)/pd

519 sum(swloss+Eloss)/pd

520

521 vpa(-Eout/(-Eout+sum(Eloss)+sum(swloss)))

522

523 %Eloss

524 %}

525

526

527 %TUNING PARAMETER .9546

528

529 fprintf(’period = %d\n’, pd/1.04e-9);

530 fprintf(’J/K total high side (t1+t6a+t6b) = %d\n’, (t1+t6a+t6b)/1.04

e-9);

531 fprintf(’high side on time (t1+t6b) = %d\n’, (t1+t6b)/1.04e-9);

532 fprintf(’low side on time (t3+t4+t5) = %d\n’, (t3+t4+t5)/1.04e-9);

533 fprintf(’O/P low side dead time(t2) = %d\n’, t2 /1.04e-9);

534 fprintf(’Z/X high side dead time(t6) = %d\n’, t6a /1.04e-9);

145

535

536 for i = 1: length(t_n)

537 fprintf(’.param t%d = %e\n’, i, t_n(i))

538 end

539

540 fprintf(’\nFPGA\n’)

541 fprintf(’period = %d\n’, pd/1e-8);

542 fprintf(’sw1 on time (t1+t6b) = %d\n’, (t1+t6b)/1e-8);

543 fprintf(’low side on time (t3+t4+t5) = %d\n’, (t3+t4+t5)/1e-8);

544 fprintf(’Phase/dead time = %d\n’, t2/1e-8);

545

546 end

547

548 function b = in(v,a)

549 b = any(v==a);

550 end

146

Appendix E

Simulink Simulation Model

This appendix presents the block diagrams and schematics used in the Simulink dy-

namic circuit simulation. Simulink projects are not code, but graphical, so this section

will display images of the various subsystems with explanations of their functions.

Implementations for sensed and static control are given. Both versions implement

simulations of the 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 switching sequence with 𝑉𝑜𝑢𝑡 <
1
2
𝑉𝑖𝑛. More

details can be found in Chapter 5.1. The embedded images are high resolution, so

zooming in to view the details is recommended.

147

E.1 Sensed Control Simulink Simulation

Figure E-1: Top Level Schematic. Integrates the circuit, switch controller FSM, and

feedback loops.

Figure E-2: Circuit Schematic. Implements the topology capable of realizing the𝑉𝑖𝑛−

𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 switching sequence.

148

Figure E-3: Switch Control FSM Diagram. Implements the control conditions for

sensed control described in Chapter 5.

Figure E-4: Startup FSM Diagram. Implements open loop switching times defined

as constants in the Simulink model explorer window.

149

Figure E-5: 𝑆1𝑜𝑛 Feedback Schematic. Implements a PI loop driving the error in 𝑉𝑜𝑢𝑡

to 0.

Figure E-6: 𝑆2𝑜𝑛 Feedback Schematic. Implements a PI loop ensuring ZVS is reached

across S1. The sample and hold (S/H) block used used to sample 𝑣𝑝 when S1 turns

on.

150

E.2 Static Control Simulink Simulation

Figure E-7: Top Level Schematic. Integrates the circuit, switch controller FSM, and

feedback loops.

151

Figure E-8: Circuit Schematic. Implements the topology capable of realizing the𝑉𝑖𝑛−

𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡 switching sequence.

Figure E-9: Switch Control FSM Diagram. Implements the control conditions for

static control described in Chapter 5.

152

Figure E-10: Startup FSM Diagram. Implements open loop switching times defined

as constants in the Simulink model explorer window.

Figure E-11: 𝑆1𝑜𝑛 (𝑅𝑃𝑜𝑛 Feedback Schematic. Implements a PI loop driving the error

in 𝑉𝑜𝑢𝑡 to 0.

153

Figure E-12: 𝑆2𝑜𝑛 (𝑅𝑃𝑑𝑡) Feedback Schematic. Implements a PI loop ensuring ZVS

is reached across S1. The sample and hold (S/H) block used used to sample 𝑣𝑝1 when

S1 turns on. This is an outdated variable name and definition, and serves the function

of implementing 𝑅𝑃𝑑𝑡 control for ZVS of RP (S1).

Figure E-13: Phase (𝑅𝑆𝑑𝑡) Feedback Schematic. Implements a PI loop ensuring ZVS

is reached across S2. The sample and hold (S/H) block used used to sample 𝑣𝑝1 when

S2 turns on. This is an outdated variable name and definition, and serves the function

of implementing 𝑅𝑆𝑑𝑡 control for ZVS of RS (S2).

154

Figure E-14: 𝑇 Feedback Schematic. Implements a version of the ZCD. Integrator

modules that integrate 1 are used as timers, and S/H modules are used to capture 𝑡𝛼

and 𝑡𝛽.

155

156

Appendix F

Piecewise Linear Dynamic Simulation

Code

This appendix presents the MATLAB code used to compute the piecewise linear

dynamic simulation of the PR converter operating with the 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜, 𝑉𝑜𝑢𝑡

switching sequence with 𝑉𝑜𝑢𝑡 <
1
2
𝑉𝑖𝑛 under closed-loop control. The specifiable pa-

rameters include simulation step count, PR parameters, the output capacitance 𝐶𝑜𝑢𝑡

and load resistance 𝑅𝑙𝑜𝑎𝑑, input voltage 𝑉𝑖𝑛 and desired output voltage 𝑉𝑜𝑢𝑡,𝑑𝑒𝑠𝑖𝑟𝑒𝑑, and

feedback coefficients 𝐾𝑝,𝑆1𝑜𝑛 and 𝐾𝑖,𝑆1𝑜𝑛 . The script will repeatedly evaluate the CoC

and CoE equations then compute the new 𝑆1𝑜𝑛 using feedback until the total number

of steps is reached. After running, the script will output plots of the time domain PR

waveforms and switch control values. The control uses 𝑆1𝑜𝑛 control only, and 𝑆2𝑜𝑛 is

automatically solved for to ensure ZVS is reached at the start of stage 6B.

1 %Simulation of ideal converter cycle by cycle w/ feedback control

2 %Blows up to infinity , possibly because of rounding errors.

3 %see model 6 for better implementation

4

5 simulation_length = 300000;

6

7 %PR component values

8 %1553

9 Cp = 1.41e-9;

157

10 Cr = 510e-12;

11 L = 8.73e-3;

12 R = 2.30;

13

14 Ceff = Cp*Cr/(Cp+Cr);

15 Tr = sqrt(L*Cr)*2*pi;

16 Tar = sqrt(L*Cp*Cr/(Cp+Cr))*2*pi;

17

18 %Converter component values

19 Cout = 160e-6;

20 Rload = 600;%500;

21

22 %Desired control variables

23 Vin = 30;%100;

24 Vout_desired = 8.7;%40;

25 Vp_pk_desired = Vin;

26

27

28 %start

29 Vout_start = Vout_desired;

30 Vp_start = Vin; %Should be Vin in steady state

31 Vr_start = -210.58824; %Should be something (negative ?) in SS

32 iL0 = 0; %Should be zero by current constraints

33

34 %Compute a switching cycle

35 S1on_int = 1.861764e-06 + 1.267914e-06;

36 S2on_int = 1.558095e-06 + 1.892829e-06 + 1.925979e-06;

37

38 K_p_S1on = 0;% -.25 * 1e-6;

39 K_i_S1on = -8.9728e-07;% -500 * 1e-6;

40

41 K_p_S2on = 0;%.02 * 1e-6;

42 K_i_S2on = 12 * 1e-6;

43

44

45 %States

158

46 %1 - Vp

47 %2 - Vr

48 %3 - Vout

49

50 states = zeros(3, simulation_length);

51 states (:,1) = [Vp_start; Vr_start; Vout_start];

52

53 %Data

54 %1 - S1on

55 %2 - Stage1time

56 %3 - S2on

57 %4 - Stage2time

58 %

59

60 data = zeros(6, simulation_length);

61

62

63 fprintf (" Starting Simulation\n");

64

65 for i = 1: simulation_length

66

67 %fprintf ("%d",i);

68

69 %Voltage command step simulation

70 if i >= simulation_length /2

71 %Vout_desired = Vout_desired + 1;

72 Rload = 300;

73 end

74

75 %Setup previous states

76 Vp0 = states(1,i);

77 Vr0 = states(2,i);

78 Vout = states(3,i);

79

80 %Compute this cycle ’s switching times from previous states

81 S1on = K_p_S1on *(states(3,i)-Vout_desired) + S1on_int;

159

82 S2on = K_p_S2on *(states(1,i)-Vp_pk_desired) + S2on_int;

83

84 %Start computing cycle

85

86 %Stage 6b

87 Vp1 = Vin -Vout;

88 Vr1 = Vr0 - Cp/Cr*(Vp1 -Vp0);

89 iL1 = sqrt (1/L*(Cp*Vp0^2 + Cr*Vr0^2 + L*iL0^2 - Cp*Vp1^2 - Cr*

Vr1 ^2));

90

91 theta6b = atan2(norm(cross ([(Vp0 -Vr0),iL0*sqrt(L/Ceff) ,0],[(Vp1 -

Vr1),iL1*sqrt(L/Ceff) ,0])),dot ([(Vp0 -Vr0),iL0*sqrt(L/Ceff) ,0],[(

Vp1 -Vr1),iL1*sqrt(L/Ceff) ,0]));

92 t6b = theta6b*sqrt(L*Ceff);

93

94

95 %stage 1

96 stage1time = S1on -t6b;

97

98 Vp2 = Vin -Vout;

99 Vr2 = Vp1 + iL1*sqrt(L/Cr)*sin(1/ sqrt(L*Cr)*stage1time) + (Vr1 -

Vp1)*cos (1/ sqrt(L*Cr)*stage1time);

100 iL2 = iL1*cos(1/ sqrt(L*Cr)*stage1time) - (Vr1 -Vp1)*sqrt(Cr/L)*

sin (1/ sqrt(L*Cr)*stage1time);

101

102 theta1 = atan2(norm(cross ([(Vr1 -Vp1),iL1*sqrt(L/Cr) ,0],[(Vr2 -Vp2

),iL2*sqrt(L/Cr) ,0])),dot([(Vr1 -Vp1),iL1*sqrt(L/Cr) ,0],[(Vr2 -Vp2)

,iL2*sqrt(L/Cr) ,0]));

103 t1 = theta1*sqrt(L*Cr);

104

105

106 %stage 2

107 Vp3 = 0;

108 Vr3 = Vr2 - Cp/Cr*(Vp3 -Vp2);

109 iL3 = sqrt (1/L*(Cp*Vp2^2 + Cr*Vr2^2 + L*iL2^2 - Cp*Vp3^2 - Cr*

Vr3 ^2));

160

110

111 theta2 = atan2(norm(cross ([(Vp2 -Vr2),iL2*sqrt(L/Ceff) ,0],[(Vp3 -

Vr3),iL3*sqrt(L/Ceff) ,0])),dot ([(Vp2 -Vr2),iL2*sqrt(L/Ceff) ,0],[(

Vp3 -Vr3),iL3*sqrt(L/Ceff) ,0]));

112 t2 = theta2*sqrt(L*Ceff);

113

114

115 %Stage 3

116 Vp4 = 0;

117 iL4 = 0;

118 Vr4 = sqrt (1/Cr*(Cp*Vp3^2 + Cr*Vr3^2 + L*iL3^2 - Cp*Vp4^2 - L*

iL4 ^2));

119

120 theta3 = atan2(norm(cross ([(Vr3 -Vp3),iL3*sqrt(L/Cr) ,0],[(Vr4 -Vp4

),iL4*sqrt(L/Cr) ,0])),dot([(Vr3 -Vp3),iL3*sqrt(L/Cr) ,0],[(Vr4 -Vp4)

,iL4*sqrt(L/Cr) ,0]));

121 t3 = theta3*sqrt(L*Cr);

122

123 %Stage 4

124 Vp5 = Vout;

125 Vr5 = Vr4 - Cp/Cr*(Vp5 -Vp4);

126 iL5 = -sqrt (1/L*(Cp*Vp4^2 + Cr*Vr4^2 + L*iL4^2 - Cp*Vp5^2 - Cr*

Vr5 ^2)); %Negative on the square root since in the negative iL

region

127

128 theta4 = atan2(norm(cross ([(Vp4 -Vr4),iL4*sqrt(L/Ceff) ,0],[(Vp5 -

Vr5),iL5*sqrt(L/Ceff) ,0])),dot ([(Vp4 -Vr4),iL4*sqrt(L/Ceff) ,0],[(

Vp5 -Vr5),iL5*sqrt(L/Ceff) ,0]));

129 t4 = theta4*sqrt(L*Ceff);

130

131 %Stage 5

132 stage5time = S2on - t3 - t4;

133

134 Vp6 = Vout;

135 Vr6 = Vout - ((Cr*Vout^2 - Cp*Vout^2 - Cp*Vin^2 + Cr*Vr5^2 + L*

iL5^2 + 2*Cp*Vin*Vout - 2*Cr*Vout*Vr5)/Cr)^(1/2) + (Cp*Vin - Cp*

161

Vout)/Cr;

136 %iL6 = -((Cp*(Vin - Vout)*(Cr*Vin - Cp*Vin - 2*Cr*(Vout + ((Cr*

Vout^2 - Cp*Vout^2 - Cp*Vin^2 + Cr*Vr5^2 + L*iL5^2 + 2*Cp*Vin*

Vout - 2*Cr*Vout*Vr5)/Cr)^(1/2)) + Cp*Vout + Cr*Vout))/(Cr*L))

^(1/2);

137 iL6 = -sqrt (1/L*(Cr*(Vr5 -Vp5)^2 + L*iL5^2 - Cr*(Vr6 -Vp6)^2));

138

139 theta5 = atan2(norm(cross ([(Vr5 -Vp5),iL5*sqrt(L/Cr) ,0],[(Vr6 -Vp6

),iL6*sqrt(L/Cr) ,0])),dot([(Vr5 -Vp5),iL5*sqrt(L/Cr) ,0],[(Vr6 -Vp6)

,iL6*sqrt(L/Cr) ,0]));

140 t5 = theta5*sqrt(L*Cr);

141

142 %Stage 6

143 iL_next = 0;

144 Vp_next = Vin;

145 Vr_next = Vout - ((Cr*Vout^2 - Cp*Vout^2 - Cp*Vin^2 + Cr*Vr5^2 +

L*iL5^2 + 2*Cp*Vin*Vout - 2*Cr*Vout*Vr5)/Cr)^(1/2);

146

147 theta6a = atan2(norm(cross ([(Vp6 -Vr6),iL6*sqrt(L/Ceff) ,0],[(

Vp_next -Vr_next),iL_next*sqrt(L/Ceff) ,0])),dot([(Vp6 -Vr6),iL6*

sqrt(L/Ceff) ,0],[(Vp_next -Vr_next),iL_next*sqrt(L/Ceff) ,0]));

148 t6a = theta6a*sqrt(L*Ceff);

149

150

151

152 Vp = [Vp0 Vp1 Vp2 Vp3 Vp4 Vp5 Vp6 Vp_next]’;

153 Vr = [Vr0 Vr1 Vr2 Vr3 Vr4 Vr5 Vr6 Vr_next]’;

154 iL = [iL0 iL1 iL2 iL3 iL4 iL5 iL6 iL_next]’;

155

156 %Compute iout

157 q1 = Cr*(Vr2 -Vr1);

158 q3 = Cr*(Vr4 -Vr3);

159 q5 = -Cr*(Vr6 -Vr5);

160

161 charge = [q1;q3;q5];

162

162

163 % Solve for times

164 times = [t6b;t1;t2;t3;t4;t5;t6a];

165 T = sum(times);

166

167 %Compute Vout change

168 Vout_next = Vout + 1/Cout*(q1 + q5 - Vout/Rload*sum(times));

169

170 S1on_int = S1on_int + K_i_S1on *(states(3,i)-Vout_desired)*T;

171 S2on_int = S2on_int + K_i_S2on *(states(1,i)-Vp_pk_desired)*T;

172

173 %K

174 K = (q1+q5)/(q1+q3+q5);

175

176 states(:,i+1) = double ([Vp_next; Vr_next; Vout_next]);

177

178 data(:,i+1) = [S1on;stage1time;t3+t4+t5;t5;T;K];

179

180 if any(imag(states(:,i+1)) ~= 0)

181 fprintf ("Bad cycle , imaginary parts\n")

182 break

183 end

184

185

186 end

187

188 figure (1)

189 plot(cumsum(data (5,1: simulation_length)),states (:,1:

simulation_length))

190 figure (2)

191 plot(cumsum(data (5,1: simulation_length)),data ([1 ,3],1:

simulation_length))

192 figure (3)

193 plot(cumsum(data (5,1: simulation_length)),data (5,1: simulation_length)

)

194 figure (4)

163

195 plot(cumsum(data (5,1: simulation_length)),data (6,1: simulation_length)

)

196

197 fprintf ("\n")

164

Appendix G

State Space Dynamic Model Code

This appendix presents the MATLAB code used to compute the linearized state

space dynamic simulation of the PR converter operating with the 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡, 𝑍𝑒𝑟𝑜,

𝑉𝑜𝑢𝑡 switching sequence with 𝑉𝑜𝑢𝑡 <
1
2
𝑉𝑖𝑛 under closed-loop control. The specifiable

parameters include PR parameters, the output capacitance 𝐶𝑜𝑢𝑡 and load resistance

𝑅𝑙𝑜𝑎𝑑, input voltage 𝑉𝑖𝑛 and desired output voltage 𝑉𝑜𝑢𝑡,𝑑𝑒𝑠𝑖𝑟𝑒𝑑, and feedback coeffi-

cients 𝐾𝑝,𝑆1𝑜𝑛 and 𝐾𝑖,𝑆1𝑜𝑛 . The control uses 𝑆1𝑜𝑛 control only, and 𝑆2𝑜𝑛 is automati-

cally solved for to ensure ZVS is reached at the start of stage 6B. The script defines

the state equations symbolically and differentiates them to obtain the linearized equa-

tions. The linearized equations are then used to create a MATLAB state space model,

which can be analyzed using MATLAB’s suite of control theory functions and pro-

grams. The script will compute and plot the step response from a stem in desired

output voltage, and the model is saved for further analysis.

1 syms Vout IL S1on Rload

2

3 %PR component values

4 %1553

5 Cp = 1.41e-9;

6 Cr = 510e-12;

7 L = 8.73e-3;

8 R = 2.3;

9

165

10 Tr = sqrt(L*Cr)*2*pi;

11 Tar = sqrt(L*Cp*Cr/(Cp+Cr))*2*pi;

12

13 %Converter component values

14 Cout = 16e-6;

15 Rload_bar = 600;

16

17 %Desired control variables

18 Vin = 30;

19 Vout_desired = 8.5;

20

21 T = 12.96e-6;%12.23e-6;

22 S1on_bar = 3.13e-6;

23

24 q1 = T*IL/(2*pi)*(1-cos (2*pi/T*S1on)) - Cp*Vout;

25 q3 = T*IL/pi - Cp*Vin - q1;

26 q5 = T*IL/pi - Cp*Vin;

27

28 d_Vout_d_t = 1/(T*Cout) * (q1 + q5 - T*Vout/Rload);

29 d_IL_d_t = 1/(T*L*IL) * ((Vin -Vout)*q1 - Vout*q5);

30

31 %Fix S1on_bar for equilibrium

32 %eqns = subs([d_Vout_d_t;d_IL_d_t],S1on ,S1on_bar);

33 %out = solve(eqns);

34

35 %Vout_bar = vpa(out.Vout (1));

36 %iL_bar = vpa(out.IL(1));

37

38 %Fix Vout_desired for equilibrium

39 eqns = subs([d_Vout_d_t;d_IL_d_t],[Vout ,Rload],[Vout_desired ,

Rload_bar]);

40 out = solve(eqns);

41

42 Vout_bar = Vout_desired;

43 S1on_bar = T-vpa(out.S1on (1));

44 iL_bar = vpa(out.IL(1));

166

45

46 %Fix iL_bar for equilibrium

47 %eqns = subs([d_Vout_d_t;d_IL_d_t],IL ,18.7*1.01);

48 %out = solve(eqns);

49

50 %Vout_bar = vpa(out.Vout (1));

51 %S1on_bar = vpa(out.S1on (1));

52

53

54 A_converter_1 = [diff(d_Vout_d_t ,Vout), diff(d_Vout_d_t ,IL);

55 diff(d_IL_d_t ,Vout), diff(d_IL_d_t ,IL)];

56

57

58 A_converter_2 = subs(A_converter_1 ,[Vout ,IL ,S1on ,Rload],[Vout_bar ,

iL_bar , S1on_bar , Rload_bar]);

59

60 B_converter_1 = [diff(d_Vout_d_t ,S1on), diff(d_Vout_d_t ,Rload);

61 diff(d_IL_d_t ,S1on), diff(d_IL_d_t ,Rload)];

62

63 B_converter_2 = subs(B_converter_1 ,[Vout ,IL ,S1on ,Rload],[Vout_bar ,

iL_bar , S1on_bar , Rload_bar]);

64

65 C_converter_1 = [1,0];

66

67 C_converter_2 = subs(C_converter_1 ,[Vout ,IL ,S1on ,Rload],[Vout_bar ,

iL_bar , S1on_bar , Rload_bar]);

68

69 D_converter_1 = [0, 0];

70

71 D_converter_2 = subs(D_converter_1 ,[Vout ,IL ,S1on ,Rload],[Vout_bar ,

iL_bar , S1on_bar , Rload_bar]);

72

73

74 %State space model of PR Converter

75 %Inputs: S1on

76 %Outputs: Vout

167

77 %States: Vout , IL

78

79 converter_state_names = {’Vout’,’IL’};

80 converter_input_names = {’S1on’, ’Rload ’};

81 converter_output_names = {’Vout’};

82

83 A_converter = double(A_converter_2);

84

85 B_converter = double(B_converter_2);

86

87 C_converter = double(C_converter_2);

88

89 D_converter = double(D_converter_2);

90

91 converter_model = ss(A_converter , B_converter , C_converter ,

D_converter);

92 converter_model.StateName = converter_state_names;

93 converter_model.InputName = converter_input_names;

94 converter_model.OutputName = converter_output_names;

95

96 converter_model_vout = ss(A_converter , B_converter (:,1), C_converter

, D_converter (:,1));

97 converter_model_vout.StateName = converter_state_names;

98 converter_model_vout.InputName = {’S1on’};

99 converter_model_vout.OutputName = converter_output_names;

100

101 % converter_model_rload = ss(A_converter , B_converter (:,2),

C_converter , D_converter (:,2));

102 % converter_model_rload.StateName = converter_state_names;

103 % converter_model_rload.InputName = converter_input_names;

104 % converter_model_rload.OutputName = converter_output_names;

105

106 %Controller model

107 %Basic controller , only Vout feedback

108 controller_input_names = {’Vout error ’,’Rload’};

109 controller_output_names = {’S1on’,’Rload’};

168

110 controller_state_names = {’Vout int’};

111

112 k_p_S1on = 0;%.25 * 1e-6;

113 k_i_S1on = 8.9728e-06;%500 * 1e-6;

114

115 k_p_S2on = -.02 * 1e-6;

116 k_i_S2on = -12 * 1e-6;

117

118 A_controller = 0;

119

120 B_controller = [1, 0];

121

122 C_controller = [k_i_S1on;

123 0];

124

125 D_controller = [k_p_S1on , 0;

126 0, 1];

127

128 controller_model = ss(A_controller , B_controller , C_controller ,

D_controller);

129 controller_model.InputName = controller_input_names;

130 controller_model.OutputName = controller_output_names;

131 controller_model.StateName = controller_state_names;

132

133 %Feedback loop

134 plant = series(controller_model ,converter_model);

135 converter_cl = feedback(plant ,1 ,[1] ,[1] ,1);

136

137 opt = stepDataOptions(’StepAmplitude ’ ,-300);

138 step(converter_cl ,opt)

169

170

Appendix H

Microcontroller Code

This appendix presents the C code used to program the TI TMDSCNCD28379D

Control Card microcontroller. The code is designed to be used with the specific

sensing circuitry and IO described in Chapter 7, however, it can be reconfigured. The

code implements static control, but the code for initializing ePWMs in one-shot mode

is present, allowing reconfiguring the code to implement sensed control if desired.

The easily configurable aspects of the code include the switch designations (maps

RP, RS, and so on to specific ePWMs), the startup switching times, the feedback

control coefficients, the desired output voltage, and any necessary correction terms.

More information about all of these can be found in the code comments.

H.1 Main Code

1 //PR Controller - Sensing 3

2 // Joshua Piel

3 //11-17-21

4 //

5

6 //Set up for Vin -Vout ,Zero ,Vout or Vin ,Vin -Vout ,Vout where Vin >

Vout > 1/2* Vin

7 // Static control

8 // Synchronous control

171

9

10 //Code marked with MODIFY is safe to edit to change operation.

11

12

13

14 //

###

15 //

16 // FILE: epwm_ex12_monoshot_mode.c

17 //

18 // TITLE: Realization of Monoshot mode

19 //

20 //! \addtogroup driver_example_list

21 //! <h1>Realization of Monoshot mode </h1>

22 //!

23 //! This example showcases how to generate monoshot PWM output based

on external

24 //! trigger i.e. generating just a single pulse output on receipt of

an external

25 //! trigger. And the next pulse will be generated only when the next

trigger

26 //! comes. The example utilizes external synchronization and T1

action qualifier

27 //! event features to achieve the desired output.

28 //!

29 //! ePWM1 is used to generate the monoshot output and ePWM2 is used

an external

30 //! trigger for that. No external connections are required as ePWM2A

is fed

31 //! as the trigger using Input X-BAR automatically.

32 //!

33 //! ePWM1 is configured to generated a single pulse of 0.5us when

received

34 //! an external trigger. This is achieved by enabling the phase

synchronization

172

35 //! feature and configuring EPWMxSYNCI as EXTSYNCIN1. And this

EPWMxSYNCI

36 //! is also configured as T1 event of action qualifier to set output

HIGH while

37 //! "CTR = PRD" action is used to set output LOW.

38 //!

39 //! ePWM2 is configured to generate a 100 KHz signal with a duty of

1% (to

40 //! simulate a rising edge trigger) which is routed to EXTSYNCIN1

using Input XBAR.

41 //!

42 //! Observe GPIO6 (EPWM4A : Monoshot Output) and GPIO2(EPWM2 :

External Trigger)

43 //! on oscilloscope.

44 //!

45 //!

46 //! \b NOTE : In the following example , the ePWM timer is still

running in a

47 //! continuous mode rather than a one -shot mode thus for more

reliable

48 //! implementation , refer to CLB based one shot PWM

implementation

49 //! demonstrated in "clb_ex17_one_shot_pwm" example

50 //

51 //

52 //

###

53 // $TI Release: F2837xD Support Library v3 .12.00.00 $

54 // $Release Date: Fri Feb 12 19:03:23 IST 2021 $

55 // $Copyright:

56 // Copyright (C) 2013 -2021 Texas Instruments Incorporated - http ://

www.ti.com/

57 //

58 // Redistribution and use in source and binary forms , with or

without

173

59 // modification , are permitted provided that the following

conditions

60 // are met:

61 //

62 // Redistributions of source code must retain the above copyright

63 // notice , this list of conditions and the following disclaimer.

64 //

65 // Redistributions in binary form must reproduce the above

copyright

66 // notice , this list of conditions and the following disclaimer in

the

67 // documentation and/or other materials provided with the

68 // distribution.

69 //

70 // Neither the name of Texas Instruments Incorporated nor the

names of

71 // its contributors may be used to endorse or promote products

derived

72 // from this software without specific prior written permission.

73 //

74 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS

75 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT

76 // LIMITED TO , THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR

77 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

COPYRIGHT

78 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT , INDIRECT ,

INCIDENTAL ,

79 // SPECIAL , EXEMPLARY , OR CONSEQUENTIAL DAMAGES (INCLUDING , BUT NOT

80 // LIMITED TO , PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

USE ,

81 // DATA , OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY

82 // THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT LIABILITY , OR

TORT

174

83 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE

84 // OF THIS SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

85 // $

86 //

###

87

88 //

89 // Included Files

90 //

91 #include "driverlib.h"

92 #include "device.h"

93 #include "board.h"

94 #include "clb_config.h"

95 #include "clb.h"

96

97

98

99 // Defines which ePWM fulfills which conceptual switch

100 // MODIFY to fit switching sequence and setup

101 #define RP EPWM4_BASE

102 #define RS EPWM3_BASE

103 #define NP EPWM1_BASE

104 #define NS EPWM2_BASE

105

106

107 // FORWARD marks how the primary and secondary half bridges are

oriented around the open stage zero crossing

108 //If FORWARD is true , then the nonregulating primary turns off and

the regulating primary turns on at the zero crossing

109 //This is the same as "Mode 1"

110 //If FORWARD is false , then the regulating primary turns off and the

nonregulating primary turns on at the zero crossing

111 //This is the same as "Mode 2"

175

112 #define FORWARD false

113

114

115

116 //

117 // Function Prototypes

118 //

119 void initEPWM_fixed(uint32_t);

120 void EPWM_set_timing(uint32_t , uint16_t , uint16_t , uint16_t ,

uint16_t);

121 void update_switches_reg(uint32_t , uint32_t , uint16_t , uint16_t ,

uint16_t , uint16_t);

122 void update_switches_nonreg(uint32_t , uint32_t , uint16_t , uint16_t ,

int16_t);

123

124 void configureADC(uint32_t);

125

126 void setupADCTriggered(uint32_t , uint32_t , ADC_SOCNumber ,

ADC_Trigger , ADC_IntNumber);

127

128 void initCLB_ZERO_CROSSING_TIMER(uint32_t);

129

130

131 __interrupt void feedback_control_ISR ();

132

133

134 void initCMPSS(uint32_t , uint16_t , bool);

135

136 bool feedback_control_enabled = false;

137 bool trigger_safety_enabled = false;

138

139 // Startup Open Loop Switching Times

140 // MODIFY the following macros with the default switching values

141 //These can be computed using the matlab solver

142

143 //600 Ohm

176

144 // Standard

145 /*

146 #define DEF_PERIOD 1268//12.87 us *100*.985

147 #define DEF_S1ON 337//3.42 us *100*.985

148 #define DEF_S2ON 668//6.78 us *100*.985

149 #define DEF_PHASE 418//4.24 us *100*.985

150 */

151

152 /*

153 //600 Ohm

154 //1553 piezo

155 // Standard 30V->18V

156 #define DEF_PERIOD 1290//12.87 us *100*.985

157 #define DEF_RPON 369 -50//3.42 us *100*.985

158 #define DEF_RPDT 43+20//6.78 us *100*.985

159 #define DEF_RSDT 131+50//4.24 us *100*.985

160 #define DEF_NPDT 106//4.3 us *100*.985

161 */

162

163 //186c piezo

164 // Standard 30V->18V

165 #define DEF_PERIOD 203*2// 12.87 us *100*.985

166 #define DEF_RPON 54*2//3.42us *100*.985

167 #define DEF_RPDT 20*2//6.78us *100*.985

168 #define DEF_RSDT 25*2//4.24us *100*.985

169 #define DEF_NPDT 33*2//4.3us *100*.985

170

171

172 /*

173 // original (30V->12V and/or 700 ohm ??)

174 uint16_t period = 1275;//12.75 us

175 uint16_t sw1on = 360;//3.60 us

176 uint16_t sw2on = 610;//6.10 us

177 uint16_t phase = 114;//1.14 us

178 */

179

177

180

181 // Default values of the integrators are the open loop switching

times

182 int32_t period_integral = ((long)DEF_PERIOD) <<16;

183 int32_t rpon_integral = ((long)DEF_RPON) <<16;

184 int32_t rpdt_integral = ((long)DEF_RPDT) <<16;

185 int32_t rsdt_integral = ((long)DEF_RSDT) <<16;

186 int32_t npdt_integral = ((long)DEF_NPDT) <<16;

187

188

189 // Define measurement variables as globals so they can be accessed in

the debug window

190 uint16_t current_vout_raw;

191 uint16_t current_vpr_before_rp_raw;

192 uint16_t current_vpr_before_rs_raw;

193 uint16_t current_vpn_before_np_raw;

194

195 uint32_t current_vout;

196 uint32_t current_vpr_before_rp;

197 uint32_t current_vpr_before_rs;

198 uint32_t current_vpn_before_np;

199

200 // Defines the ADC measurement digital filter

201 // MODIFY to change the coefficient of the filter. Need to enable

more code in the feedback loop

202 uint32_t alpha = 0;// 65126;// Cutoff frequency at 1/10 switching

frequency

203 uint32_t one_minus_alpha = 65536; // 65536 -65126;

204

205 // Defines ZCD outputs

206 uint32_t t_alpha;

207 uint32_t t_beta;

208

209

210 // Defines error variables

211 int32_t error_vout;

178

212 int32_t error_vpr_before_rp;

213 int32_t error_vpr_before_rs;

214 int32_t error_vpn_before_np;

215 int32_t error_zero_crossing_offset;

216

217 // Defines current switching times , which are computed by the

feedback loops every cycle

218 uint16_t current_rpon;

219 uint16_t current_rpdt;

220 uint16_t current_rsdt;

221 uint16_t current_npdt;

222 uint16_t current_period;

223

224

225 // Defines ADC correction terms.

226 //This arises because of time inaccuracies in the ADC measurement

227 //As well as inability to perfectly measure the switch nodes for ZVS

228 //Adds a linear offset to the ZVS feedback loops to manually tune

ZVS control

229 // MODIFY based on observations to get the waveform to line up

230 // Reasonable values at 100kHZ are about plus/minus 100

231 // Extreme values were needed at 500 kHz

232 int32_t VPR_BEFORE_RP_CORRECTION = 900;//850;

233 int32_t VPR_BEFORE_RS_CORRECTION = -900;// -800;

234 int32_t VPN_BEFORE_NP_CORRECTION = -50;// -100;

235

236

237 // Defines nonregulating half bridge duty cycle deviation from 50%

238 // Arises when the 50% duty cycle approximation breaks down

239 // MODIFY to line up the nonregulating HB with both iL 0 crossings

240 int16_t DUTY_CORRECTION = -3*2;

241

242 // Defines a correction to the ZCD feedback loop

243 // Arises because t_alpha ends up not equalling exactly 1/2 t_beta

244 // MODIFY to line up the RP turn on (mode 1) or turn off (mode 2)

245 // with the zero crossing exactly , based on waveform observations

179

246 int32_t ZC_CORRECTION = 0;// -20;

247

248

249 // Defines the ADC levels that define 0V, Vin , and the desired output

voltage

250 // MODIFY to match actual Vin and Zero , and the desired output

voltage.

251 //ADC is configured to convert 0V-3V Full Scale Range into 12 bits

252 //See sensing circuit for output ranges.

253 int32_t VIN = 2930;

254 int32_t ZERO = 650;

255 int32_t DESIRED_VOUT = 2250; // Desired ADC Measurement. 2000 = 17.5

V

256

257 //

258 // FEEDBACK COEFFICIENTS

259 // MODIFY as desired to tune the dynamic response

260

261

262 //

263 // FAST RESPONSE RLOAD STEP

264 //

265 /*

266 int32_t K_P_S1ON = -30000;// -5000;// -10000;// -1000

267 int32_t K_INT_S1ON = -40;// -150;// -29; //units of us/2^16, should be

negative

268

269 int32_t K_P_S2ON = 0;//7000;//100;

270 int32_t K_INT_S2ON = 45;//3; // units of xxxx , should be positive

271

272 int32_t K_P_PHASE = 0;

273 int32_t K_INT_PHASE = 10;// should be positive

274

275 int32_t K_P_PERIOD = -30000;// -30000

276 int32_t K_INT_PERIOD = -500;// -60;// should be negative

277

180

278 int32_t K_P_S3ON = 0;

279 int32_t K_INT_S3ON = 0;// should be positive

280 */

281

282 //

283 // STABLE(ISH?) WITH SYNCHRONOUS at 1553 for vout >1/2 vin

284 //

285

286 /*

287 int32_t K_P_VOUT = 15000;//+

288 int32_t K_INT_VOUT = 20;

289

290 int32_t K_P_ZVS = 0;//+

291 int32_t K_INT_ZVS = 10;

292

293 int32_t K_P_ZC = -5000;//-

294 int32_t K_INT_ZC = -20;

295 */

296

297

298 //

299 // STABLE(ISH?) WITH SYNCHRONOUS at 186 for vout >1/2 vin

300 //

301 /*

302 int32_t K_P_VOUT = 5000;//+

303 int32_t K_INT_VOUT = 4;

304

305 int32_t K_P_ZVS = 0;//+

306 int32_t K_INT_ZVS = 4;

307

308 int32_t K_P_ZC = 0;//-

309 int32_t K_INT_ZC = -4;

310 */

311

312 //

313 // Working Coeffs for SYNCHRONOUS at 186 for vout >1/2 vin

181

314 //

315

316 int32_t K_P_VOUT = 1000; // 10000;//+

317 int32_t K_INT_VOUT = 1;//10;

318

319 int32_t K_P_ZVS = 0;//+

320 int32_t K_INT_ZVS = 1;//4;

321

322 int32_t K_P_ZC = 0;//-

323 int32_t K_INT_ZC = -2;// -40;

324

325 //

326 // SLOW RESPONSE

327 //

328 /*

329 int32_t K_P_S1ON = -0;// -5000;// -10000;// -1000

330 int32_t K_INT_S1ON = -0;// -150;// -29; //units of us/2^16, should be

negative

331

332 int32_t K_P_S2ON = 0;//7000;//100;

333 int32_t K_INT_S2ON = 1;//3; // units of xxxx , should be positive

334

335 int32_t K_P_PHASE = 0;

336 int32_t K_INT_PHASE = 1;// should be positive

337

338 int32_t K_P_PERIOD = 0;// -30000

339 int32_t K_INT_PERIOD = -1;// -60;// should be negative

340

341 int32_t K_P_S3ON = 0;

342 int32_t K_INT_S3ON = 1;// should be positive

343 */

344

345

346 // FEEDBACK BOUNDS

347 //Sets the minimum and maximum times deat times can be

348 // MODIFY to match a reasonable fraction of the current operating

182

period

349 uint16_t DEAD_TIME_MIN = 10*2;//50;

350 uint16_t DEAD_TIME_MAX = 44*2;//220;

351

352 //ADC measurement offset from switch turn on

353 // MODIFY ONLY IF NECESSARY to tell the ADC to start measuring so

that its

354 // sample and hold window finishes just before the switch turns on

355 uint16_t ADC_MEASUREMENT_DELAY = 12*2;

356

357

358 // Interrupt routine trigger counter

359 //The interrupt will execute the feedback loop after being called

COUNT_MAX

360 // times , then it resets the count to 0

361 uint16_t interrupt_count = 0;

362 // MODIFY if necessary to change the feedback loop frequency

363 uint16_t COUNT_MAX = 5;

364

365

366

367 #define EX_ADC_RESOLUTION 12

368

369

370 void main(void)

371 {

372 //

373 // Initialize device clock and peripherals

374 //

375 Device_init ();

376

377 //

378 // Disable pin locks and enable internal pull -ups.

379 //

380 Device_initGPIO ();

381

183

382 //

383 // Initialize PIE and clear PIE registers. Disables CPU

interrupts.

384 //

385 Interrupt_initModule ();

386

387 //

388 // Initialize the PIE vector table with pointers to the shell

Interrupt

389 // Service Routines (ISR).

390 //

391 Interrupt_initVectorTable ();

392

393 //

394 // Configure ePWM1 , ePWM2 GPIOs and XBAR configuration

395 //

396 Board_init ();

397

398 //

399 // Disable sync(Freeze clock to PWM as well)

400 //

401 SysCtl_disablePeripheral(SYSCTL_PERIPH_CLK_TBCLKSYNC);

402

403 SysCtl_setEPWMClockDivider(SYSCTL_EPWMCLK_DIV_1);

404

405 //

406 // Initialize ePWM1 and ePWM2

407 //

408

409 initEPWM_fixed(RP);//S1

410 initEPWM_fixed(RS);//S2

411 initEPWM_fixed(NP);//S3

412 initEPWM_fixed(NS);//S4

413

414 EPWM_setSyncOutPulseMode(EPWM1_BASE ,

EPWM_SYNC_OUT_PULSE_ON_COUNTER_ZERO);

184

415 SysCtl_setSyncInputConfig(SYSCTL_SYNC_IN_EPWM4 ,

SYSCTL_SYNC_IN_SRC_EPWM1SYNCOUT);

416

417 update_switches_reg(RP , RS, DEF_PERIOD , DEF_RPON , DEF_RPDT ,

DEF_RSDT);

418 update_switches_nonreg(NP, NS , DEF_PERIOD , DEF_NPDT ,

DUTY_CORRECTION);

419

420

421 //

422 // Enable CLB1

423 // Configured to time the comparator measurements used to

compute the S1 trigger offset from the zero crossing

424 //

425 initCLB_ZERO_CROSSING_TIMER(CLB1_BASE);

426

427 //

428 // Enable sync and clock to PWM

429 //

430 SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_TBCLKSYNC);

431

432

433 //

434 // Configure the comparators

435 //

436 initCMPSS(CMPSS3_BASE , 1100, false);// DESIRED_VOUT , false);//

Comparator watching Vp1

437 initCMPSS(CMPSS1_BASE , VIN -DESIRED_VOUT+ZERO -100, false);//

Comparator watching Vp2

438

439 //

440 // Configure the ADC and power it up

441 //

442 configureADC(ADCA_BASE); //Vp2

443 configureADC(ADCB_BASE); //Vp1

444 configureADC(ADCD_BASE); //Vout

185

445

446 //Set up which ePWMs trigger which ADCs

447 // MODIFY as necessary to match the switching sequence

448 setupADCTriggered(ADCA_BASE , 2, ADC_SOC_NUMBER0 ,

ADC_TRIGGER_EPWM4_SOCA , ADC_INT_NUMBER3); // Measure Vp2 just

before S4 (RP)

449 setupADCTriggered(ADCA_BASE , 2, ADC_SOC_NUMBER1 ,

ADC_TRIGGER_EPWM3_SOCA , ADC_INT_NUMBER4); // Measure Vp2 just

before S3 (RS)

450 setupADCTriggered(ADCB_BASE , 2, ADC_SOC_NUMBER0 ,

ADC_TRIGGER_EPWM1_SOCA , ADC_INT_NUMBER3); // Measure Vp1 just

before S1 (NS)

451 setupADCTriggered(ADCD_BASE , 0, ADC_SOC_NUMBER0 ,

ADC_TRIGGER_EPWM1_SOCA , ADC_INT_NUMBER3); // Measure Vout (just

before S1, but the specific time doesn ’t really matter , just

consistency)

452

453 // Configures which interrupt (in this case ADC conversion)

454 // finish triggers the feedback control ISR

455 // MODIFY if necessary to change what portion of the cycle

456 // executes the feedback loop

457 Interrupt_register(INT_ADCA4 , &feedback_control_ISR);

458 Interrupt_enable(INT_ADCA4);//B4 originally

459

460

461 //

462 // Enable Global Interrupt (INTM) and real time interrupt (DBGM)

463 //

464 EINT;

465 ERTM;

466

467 GPIO_writePin(myGPIO0 , 0);

468

469

470

471 //Wait for the converter to absorb energy , and pause , allowing

186

the user to control transition to automatic

472 DEVICE_DELAY_US (2000006);

473

474 // GPIO_writePin(myGPIO0 , 1);

475

476

477 // DEVICE_DELAY_US (100000);

478

479 // GPIO_writePin(myGPIO0 , 1);

480

481 // Enables the feedback control after startup

482 feedback_control_enabled = true;

483

484 DEVICE_DELAY_US (2000006 > >2);

485

486 //Use this GPIO pin to make a debug signal (scopeable point in

time)

487 GPIO_writePin(myGPIO0 , 1);

488

489

490

491 //

492 // IDLE loop. Just sit and loop forever (optional):

493 //

494

495 /*

496 for(DESIRED_VOUT = 1200; DESIRED_VOUT < 1800; DESIRED_VOUT +=

50)

497 {

498 DEVICE_DELAY_US (500000);

499 }

500 */

501

502 for (;;)

503 {

504 //Use this code to create repeated voltage steps

187

505 /*

506

507 for(DESIRED_VOUT = 1950; DESIRED_VOUT < 2350; DESIRED_VOUT

+= 50)

508 {

509 DEVICE_DELAY_US (500000 < <2);

510 }

511 */

512

513 /*

514 DEVICE_DELAY_US (500000);

515 DESIRED_VOUT = 1200;

516 GPIO_writePin(myGPIO0 , 1);

517 // GPIO_writePin(myGPIO0 , 0);

518

519 DEVICE_DELAY_US (500000);

520 DESIRED_VOUT = 1600;

521 // GPIO_writePin(myGPIO0 , 1);

522 GPIO_writePin(myGPIO0 , 0);

523 */

524

525 // ADC_clearInterruptStatus(ADCA_BASE , ADC_INT_NUMBER4);

526 // Interrupt_clearACKGroup(INTERRUPT_ACK_GROUP10);

527 DEVICE_DELAY_US (500000);

528

529 }

530 }

531

532

533 // Configures the ePWM modules as described in thesis ch7 for static

control

534 void initEPWM_fixed(uint32_t epwm_base)

535 {

536 //

537 // Setting counter as 0

538 //

188

539 EPWM_setTimeBaseCounter(epwm_base , 0U);

540

541 //

542 // Configuring the counter in up mode

543 //

544 EPWM_setTimeBaseCounterMode(epwm_base , EPWM_COUNTER_MODE_UP);

545

546 //

547 // Set ePWM clock pre -scaler

548 //

549 EPWM_setClockPrescaler(epwm_base , EPWM_CLOCK_DIVIDER_1 ,

EPWM_HSCLOCK_DIVIDER_1);

550

551 //

552 // Set counting direction UP after synchronization

553 //

554 EPWM_setCountModeAfterSync(epwm_base ,

EPWM_COUNT_MODE_UP_AFTER_SYNC);

555

556 //

557 // Set actions

558 //

559 EPWM_setActionQualifierAction(epwm_base , EPWM_AQ_OUTPUT_A ,

EPWM_AQ_OUTPUT_HIGH , EPWM_AQ_OUTPUT_ON_TIMEBASE_ZERO);

560 EPWM_setActionQualifierAction(epwm_base , EPWM_AQ_OUTPUT_A ,

EPWM_AQ_OUTPUT_LOW , EPWM_AQ_OUTPUT_ON_TIMEBASE_UP_CMPA);

561

562 //

563 // Enable ADC start of conversion triggering

564 //

565 EPWM_enableADCTrigger(epwm_base , EPWM_SOC_A);

566 EPWM_setADCTriggerSource(epwm_base , EPWM_SOC_A ,

EPWM_SOC_TBCTR_U_CMPC);

567 EPWM_setADCTriggerEventPrescale(epwm_base , EPWM_SOC_A , 1);

568 EPWM_clearADCTriggerFlag(epwm_base , EPWM_SOC_A);

569

189

570 //

571 // Set up shadowing

572 //

573 EPWM_selectPeriodLoadEvent(epwm_base ,

EPWM_SHADOW_LOAD_MODE_COUNTER_ZERO);

574 EPWM_setCounterCompareShadowLoadMode(epwm_base ,

EPWM_COUNTER_COMPARE_A , EPWM_COMP_LOAD_ON_SYNC_CNTR_ZERO);

575 EPWM_setCounterCompareShadowLoadMode(epwm_base ,

EPWM_COUNTER_COMPARE_C , EPWM_COMP_LOAD_ON_SYNC_CNTR_ZERO);

576 EPWM_enablePhaseShiftLoad(epwm_base);

577

578 }

579

580

581 // Configures the ePWMs to accept an external sync and to

582 // act in one shot mode

583 // Necessary for sensed control , not used for static

584 // included for completeness

585

586 void initEPWM_oneshot(uint32_t epwm_base ,

EPWM_DigitalCompareTripInput trigger_in ,

EPWM_DigitalCompareTripInput trip_in , uint16_t on_time)

587 {

588 //

589 // Clear the effects from fixed PWM settings

590 //

591 EPWM_setActionQualifierAction(epwm_base ,

592 EPWM_AQ_OUTPUT_A ,

593 EPWM_AQ_OUTPUT_NO_CHANGE ,

594

EPWM_AQ_OUTPUT_ON_TIMEBASE_UP_CMPA);

595

596 EPWM_setActionQualifierAction(epwm_base ,

597 EPWM_AQ_OUTPUT_A ,

598 EPWM_AQ_OUTPUT_NO_CHANGE ,

599

190

EPWM_AQ_OUTPUT_ON_TIMEBASE_ZERO);

600

601 //

602 // Seting up Period value to produce a pulse of 0.5us

603 //

604 EPWM_setTimeBasePeriod(epwm_base , 0xFFFF);

605

606 //

607 // Configuring the counter in up mode

608 //

609 EPWM_setTimeBaseCounterMode(epwm_base , EPWM_COUNTER_MODE_UP);

610

611 //

612 // Set ePWM clock pre -scaler

613 //

614 EPWM_setClockPrescaler(epwm_base ,

615 EPWM_CLOCK_DIVIDER_1 ,

616 EPWM_HSCLOCK_DIVIDER_1);

617

618 //

619 // Configuring synchronization source as Digital Compare

620 // This sets the PWM to do a one shot output on DC

synchronization

621 //

622

623 EPWM_selectDigitalCompareTripInput(epwm_base , trigger_in ,

EPWM_DC_TYPE_DCAL);

624 EPWM_setTripZoneDigitalCompareEventCondition(epwm_base ,

EPWM_TZ_DC_OUTPUT_A1 , EPWM_TZ_EVENT_DCXL_HIGH);

625 EPWM_enableDigitalCompareEdgeFilter(epwm_base);

626 EPWM_setDigitalCompareEdgeFilterMode(epwm_base ,

EPWM_DC_EDGEFILT_MODE_RISING);

627 EPWM_setDigitalCompareEdgeFilterEdgeCount(epwm_base ,

EPWM_DC_EDGEFILT_EDGECNT_1);

628 EPWM_setDigitalCompareFilterInput(epwm_base ,

EPWM_DC_WINDOW_SOURCE_DCAEVT1);

191

629 EPWM_disableDigitalCompareBlankingWindow(epwm_base);

630 EPWM_setDigitalCompareEventSource(epwm_base , EPWM_DC_MODULE_A ,

EPWM_DC_EVENT_1 , EPWM_DC_EVENT_SOURCE_FILT_SIGNAL);

631 EPWM_enableDigitalCompareSyncEvent(epwm_base , EPWM_DC_MODULE_A);

632 EPWM_setDigitalCompareEventSyncMode(epwm_base , EPWM_DC_MODULE_A ,

EPWM_DC_EVENT_1 , EPWM_DC_EVENT_INPUT_SYNCED);

633

634 //

635 // Configuring trip source Digital Compare Event

636 // This will turn off the EPWM in that cycle for safety reasons

637 //

638

639 EPWM_setTripZoneAction(epwm_base , EPWM_TZ_ACTION_EVENT_DCAEVT2 ,

EPWM_TZ_ACTION_LOW);

640 EPWM_enableTripZoneSignals(epwm_base , EPWM_TZ_SIGNAL_DCAEVT2);

641 EPWM_selectDigitalCompareTripInput(epwm_base , trip_in ,

EPWM_DC_TYPE_DCAH);

642 EPWM_setTripZoneDigitalCompareEventCondition(epwm_base ,

EPWM_TZ_DC_OUTPUT_A2 , EPWM_TZ_EVENT_DCXH_HIGH);

643 EPWM_setDigitalCompareEventSource(epwm_base , EPWM_DC_MODULE_A ,

EPWM_DC_EVENT_2 , EPWM_DC_EVENT_SOURCE_ORIG_SIGNAL);

644

645 //

646 // Setting phase offset as 0 after synchronization

647 //

648 EPWM_setPhaseShift(epwm_base , 0U);

649

650 //

651 // Set counting direction UP after synchronization

652 //

653 EPWM_setCountModeAfterSync(epwm_base ,

EPWM_COUNT_MODE_UP_AFTER_SYNC);

654

655 //

656 // Setting counter as 0

657 //

192

658 EPWM_setTimeBaseCounter(epwm_base , 0U);

659

660 //

661 // Set up shadowing

662 //

663 // EPWM_setCounterCompareShadowLoadMode(epwm_base ,

EPWM_COUNTER_COMPARE_A , EPWM_COMP_LOAD_ON_CNTR_ZERO);

664 EPWM_selectPeriodLoadEvent(epwm_base ,

EPWM_SHADOW_LOAD_MODE_COUNTER_ZERO);

665 // EPWM_setActionQualifierShadowLoadMode(epwm_base ,

EPWM_ACTION_QUALIFIER_A , EPWM_AQ_LOAD_ON_SYNC_CNTR_ZERO);

666 EPWM_setCounterCompareShadowLoadMode(epwm_base ,

EPWM_COUNTER_COMPARE_A , EPWM_COMP_LOAD_ON_SYNC_CNTR_ZERO);

667

668 //

669 // Set PWM output as LOW on CTR = PRD

670 //

671 EPWM_setActionQualifierAction(epwm_base , EPWM_AQ_OUTPUT_A ,

EPWM_AQ_OUTPUT_LOW , EPWM_AQ_OUTPUT_ON_TIMEBASE_PERIOD);

672

673 //

674 // Set PWM output as LOW on CTR = CMPA

675 //

676 EPWM_setActionQualifierAction(epwm_base , EPWM_AQ_OUTPUT_A ,

EPWM_AQ_OUTPUT_LOW , EPWM_AQ_OUTPUT_ON_TIMEBASE_UP_CMPA);

677

678 //

679 // Set PWM output as HIGH on T1 event

680 //

681 EPWM_setActionQualifierAction(epwm_base , EPWM_AQ_OUTPUT_A ,

EPWM_AQ_OUTPUT_HIGH , EPWM_AQ_OUTPUT_ON_T1_COUNT_UP);

682

683 //

684 // Set up counter compare with the on time

685 //

686 EPWM_setCounterCompareValue(epwm_base , EPWM_COUNTER_COMPARE_A ,

193

on_time);

687

688 //

689 // Configure T1 trigger source as PWM SYNC signal

690 //

691 // EPWM_setActionQualifierT1TriggerSource(epwm_base ,

EPWM_AQ_TRIGGER_EVENT_TRIG_EPWM_SYNCIN);

692 EPWM_setActionQualifierT1TriggerSource(epwm_base ,

EPWM_AQ_TRIGGER_EVENT_TRIG_DCA_1);

693

694 //

695 // Enabling phase load on synchronization

696 //

697 EPWM_enablePhaseShiftLoad(epwm_base);

698

699 //

700 // Enable ADC start of conversion triggering

701 //

702 EPWM_enableADCTrigger(epwm_base , EPWM_SOC_A);

703 EPWM_enableDigitalCompareADCTrigger(epwm_base , EPWM_DC_MODULE_A)

;

704 EPWM_setADCTriggerSource(epwm_base , EPWM_SOC_A , EPWM_SOC_DCxEVT1

);

705 EPWM_setADCTriggerEventPrescale(epwm_base , EPWM_SOC_A , 1);

706 EPWM_clearADCTriggerFlag(epwm_base , EPWM_SOC_A);

707

708 // EPWM_enableInterrupt(epwm_base);

709 EPWM_enableTripZoneInterrupt(epwm_base ,

EPWM_TZ_INTERRUPT_DCAEVT1);

710 // EPWM_setInterruptEventCount(epwm_base , 1);

711

712 }

713

714 //Used to update the switch time parameters.

715 //See update_switches_reg and update_switches_nonreg

716 // to get switch times in this format

194

717 void EPWM_set_timing(uint32_t epwm_base , uint16_t period , uint16_t

duty , uint16_t phase , uint16_t adc_delay)

718 {

719 //

720 // Configuring time period of output signal as 10us

721 //

722 EPWM_setTimeBasePeriod(epwm_base , period);

723

724 //

725 // Set switch on time

726 //

727 EPWM_setCounterCompareValue(epwm_base , EPWM_COUNTER_COMPARE_A ,

duty);

728

729

730 //

731 // Setting phase offset after synchronization

732 //

733 EPWM_setPhaseShift(epwm_base , phase);

734

735 //

736 // Set up ADC measurement delay before turn on

737 //

738 EPWM_setCounterCompareValue(epwm_base , EPWM_COUNTER_COMPARE_C ,

adc_delay);

739 }

740

741

742 // Configures the regulating half bridge based on feedback loop

parameters

743 void update_switches_reg(uint32_t primary_base , uint32_t

secondary_base , uint16_t period , uint16_t primary_on , uint16_t

primary_dt , uint16_t secondary_dt)

744 {

745 //

746 // Boundaries

195

747 //

748 // uint16_t dead_time_max = time_to_S3_on - time_to_S1_on;

749 uint16_t dead_time_max = DEAD_TIME_MAX;

750

751 if (primary_on < DEAD_TIME_MIN)

752 {

753 primary_on = DEAD_TIME_MIN;

754 rpon_integral = ((long)primary_on) <<16;

755 }

756 else if(primary_on > ((period >>1) - DEAD_TIME_MIN))

757 {

758 primary_on = (period >>1) - DEAD_TIME_MIN;

759 rpon_integral = ((long)primary_on) <<16;

760 }

761

762 if(primary_dt < DEAD_TIME_MIN)

763 {

764 primary_dt = DEAD_TIME_MIN;

765 rpdt_integral = ((long)primary_dt) <<16;

766 }

767 else if(primary_dt > dead_time_max)

768 {

769 primary_dt = dead_time_max;

770 rpdt_integral = ((long)primary_dt) <<16;

771 }

772

773 if(secondary_dt < DEAD_TIME_MIN)

774 {

775 secondary_dt = DEAD_TIME_MIN;

776 rsdt_integral = ((long)secondary_dt) <<16;

777 }

778 else if(secondary_dt > dead_time_max)

779 {

780 secondary_dt = dead_time_max;

781 rsdt_integral = ((long)secondary_dt) <<16;

782 }

196

783

784 //

785 // Standard/Direct Control

786 //

787 // EPWM_set_timing(s1_base , period , s1on , 0, period -

ADC_MEASUREMENT_DELAY);

788 // EPWM_set_timing(s2_base , period , s2on , period -phase , period -

ADC_MEASUREMENT_DELAY);

789

790 //

791 // S1-sensitive control

792 // Holds S2on -S1off and S2off ’constant ’ for a given S1on step

793 //

794

795 if(FORWARD)

796 {

797 EPWM_set_timing(primary_base , period , primary_on , 0, period

- ADC_MEASUREMENT_DELAY);

798 EPWM_set_timing(secondary_base , period , period -primary_on -

primary_dt -secondary_dt , period -primary_on -secondary_dt , period -

ADC_MEASUREMENT_DELAY);

799 }

800 else

801 {

802 EPWM_set_timing(primary_base , period , primary_on , primary_on

, period - ADC_MEASUREMENT_DELAY);

803 EPWM_set_timing(secondary_base , period , period -primary_on -

primary_dt -secondary_dt , period -secondary_dt , period -

ADC_MEASUREMENT_DELAY);

804 }

805 }

806

807

808

809 // Configures the nonregulating half bridge based on feedback loop

parameters

197

810 void update_switches_nonreg(uint32_t primary_base , uint32_t

secondary_base , uint16_t period , uint16_t primary_dt , int16_t

duty_correction)

811 {

812 //

813 // Half Period Symmetric control

814 // Assumes S3on=S4on and t4=t6b

815 // Ties S4 to turn off when S1 turns on

816 //

817 // EPWM_set_timing(s1_base , period , s3on , period >>2 + s3on ,

period - ADC_MEASUREMENT_DELAY);

818

819

820 if(primary_dt < DEAD_TIME_MIN)

821 {

822 primary_dt = DEAD_TIME_MIN;

823 npdt_integral = ((long)primary_dt) <<16;

824 }

825 else if(primary_dt > DEAD_TIME_MAX)

826 {

827 primary_dt = DEAD_TIME_MAX;

828 npdt_integral = ((long)primary_dt) <<16;

829 }

830

831

832 if(FORWARD)

833 {

834 EPWM_set_timing(primary_base , period , (period >>1)+

duty_correction -primary_dt , (period >>1)+duty_correction -

primary_dt , period - ADC_MEASUREMENT_DELAY);

835 EPWM_set_timing(secondary_base , period , (period >>1)-

duty_correction -primary_dt , period -primary_dt , period -

ADC_MEASUREMENT_DELAY);

836 }

837 else

838 {

198

839 EPWM_set_timing(primary_base , period , (period >>1)+

duty_correction -primary_dt , 0, period - ADC_MEASUREMENT_DELAY);

840 EPWM_set_timing(secondary_base , period , (period >>1)-

duty_correction -primary_dt , (period >>1)-duty_correction , period -

ADC_MEASUREMENT_DELAY);

841 }

842 }

843

844

845 //

846 // configureADC - Write ADC configurations and power up the ADC for

both

847 // ADC A and ADC B

848 //

849 // Configures ADCs in single ended mode and enables them

850 void configureADC(uint32_t adcBase)

851 {

852 //

853 // Set ADCDLK divider to /4

854 //

855 ADC_setPrescaler(adcBase , ADC_CLK_DIV_4_0);

856

857 //

858 // Set resolution and signal mode (see #defines above) and load

859 // corresponding trims.

860 //

861 ADC_setMode(adcBase , ADC_RESOLUTION_12BIT , ADC_MODE_SINGLE_ENDED

);

862

863

864 //

865 // Set pulse positions to late

866 //

867 ADC_setInterruptPulseMode(adcBase , ADC_PULSE_END_OF_CONV);

868

869 //

199

870 // Power up the ADCs and then delay for 1 ms

871 //

872 ADC_enableConverter(adcBase);

873

874 //

875 // Delay for 1ms to allow ADC time to power up

876 //

877 DEVICE_DELAY_US (1000);

878 }

879

880

881 // Configures the ADCs to trigger a start of conversion (SOC)

882 // on a given trigger signal

883 void setupADCTriggered(uint32_t adcBase , uint32_t channel ,

ADC_SOCNumber soc , ADC_Trigger trigger , ADC_IntNumber adc_int)

884 {

885 uint16_t acqps = 10;//30;

886

887 ADC_setupSOC(adcBase , soc , trigger , (ADC_Channel)channel , acqps)

;

888 ADC_setInterruptSource(adcBase , adc_int , soc);

889 ADC_enableInterrupt(adcBase , adc_int);

890 ADC_clearInterruptStatus(adcBase , adc_int);

891 }

892

893

894 //Runs the main feedback code

895 //Is an interrupt service routine because it is called

896 // by hardware at certain points in the switching sequence.

897 __interrupt void feedback_control_ISR ()

898 {

899

900 //Check if we are at the appropriate count to run

901 if(interrupt_count < COUNT_MAX)

902 {

903 interrupt_count ++;

200

904 }

905 else

906 {

907 interrupt_count = 0;

908

909 //Get current measurement values from hardware

910 // MODIFY ONLY IF NECESSARY the adc result registers to get

proper measurements

911 current_vpr_before_rp = (uint32_t)ADC_readResult(

ADCARESULT_BASE , ADC_SOC_NUMBER0);

912 current_vpr_before_rs = (uint32_t)ADC_readResult(

ADCARESULT_BASE , ADC_SOC_NUMBER1);

913 current_vpn_before_np = (uint32_t)ADC_readResult(

ADCBRESULT_BASE , ADC_SOC_NUMBER0);

914 current_vout = (uint32_t)ADC_readResult(ADCDRESULT_BASE ,

ADC_SOC_NUMBER0);

915

916 /* FIRST ORDER DISCRETE FILTER - uncomment to enable

917 current_vpr_before_rp_raw = ADC_readResult(ADCBRESULT_BASE ,

ADC_SOC_NUMBER0);

918 current_vpr_before_rs_raw = ADC_readResult(ADCBRESULT_BASE ,

ADC_SOC_NUMBER1);

919 current_vpn_before_np_raw = ADC_readResult(ADCARESULT_BASE ,

ADC_SOC_NUMBER0);

920 current_vout_raw = ADC_readResult(ADCDRESULT_BASE ,

ADC_SOC_NUMBER0);

921

922 current_vp1_before_s1 = (current_vp1_before_s1)*alpha +

current_vp1_before_s1_raw *(one_minus_alpha);

923 current_vp1_before_s2 = (current_vp1_before_s2)*alpha +

current_vp1_before_s2_raw *(one_minus_alpha);

924 current_vp2_before_s3 = (current_vp2_before_s3)*alpha +

current_vp2_before_s3_raw *(one_minus_alpha);

925 current_vout = current_vout*alpha + current_vout_raw *(

one_minus_alpha);

926

201

927 current_vp1_before_s1 = current_vp1_before_s1 >> 16;

928 current_vp1_before_s2 = current_vp1_before_s2 >> 16;

929 current_vp2_before_s3 = current_vp2_before_s3 >> 16;

930 current_vout = current_vout >> 16;

931 */

932

933 //Get Zero crossing detector measurements

934 uint32_t t_beta_raw = CLB_getRegister(CLB1_BASE ,

CLB_REG_HLC_R0);

935 uint32_t t_alpha_raw = CLB_getRegister(CLB1_BASE ,

CLB_REG_HLC_R1);

936 bool zc_valid = false;

937

938 // Ignore measurements if one or both times are 0

939 if (t_alpha_raw > 0 && t_beta_raw > 0)// && t_beta_raw < 2*(

current_npdt + current_rsdt))

940 {

941 t_alpha = t_alpha_raw;

942 t_beta = t_beta_raw;

943

944 zc_valid = true;

945 }

946

947 // Update comparator DAC for comparison value of Vp2

948 // MODIFY if the comparator should instead listen for a

different value

949 // Than Vin -Vout. +Zero is added because that term will

disappear

950 // after the difference

951 // the -250 is an empirically determined offset to make the

DAC

952 // output the proper values. MODIFY IF NECESSARY to make

the

953 // comparator edges occur when they are supposed to on the

scope

954 CMPSS_setDACValueHigh(CMPSS1_BASE , VIN -current_vout+ZERO

202

-250);

955

956

957 // Update comparator DAC for comparison value of Vp1

958 // MODIFY if the comparator should instead listen for a

different value

959 // Than Vout. +Zero is needed with a difference because

that term will disappear

960 // after the difference

961 // the -250 is an empirically determined offset to make the

DAC

962 // output the proper values. MODIFY IF NECESSARY to make

the

963 // comparator edges occur when they are supposed to on the

scope

964 if(current_vout > 500)

965 {

966 CMPSS_setDACValueHigh(CMPSS3_BASE , current_vout -250);

967 }

968

969

970 //Only update switching times if the feedback control is

enabled

971 if(feedback_control_enabled)

972 {

973 // GPIO_writePin(myGPIO0 , 1);

974 // GPIO_writePin(myGPIO0 , 0);

975

976 //error computations

977 /*

978 error_vout = current_vout - DESIRED_VOUT;

979 error_vpr_before_rp = (current_vpr_before_rp - (ZERO +

VPR_BEFORE_RP_CORRECTION));

980 error_vpr_before_rs = -(current_vpr_before_rs - (

current_vout + VPR_BEFORE_RS_CORRECTION));

981 error_vpn_before_np = -(current_vpn_before_np - (VIN +

203

VPN_BEFORE_NP_CORRECTION));

982 error_zero_crossing_offset = t_alpha - (t_beta /2 +

ZC_CORRECTION);

983 */

984

985 // Compute feedback loop errors from measurements

986 // MODIFY to match the switching sequence

987 error_vout = current_vout - DESIRED_VOUT;

988 error_vpr_before_rp = (current_vpr_before_rp - (ZERO +

VPR_BEFORE_RP_CORRECTION));

989 error_vpr_before_rs = -(current_vpr_before_rs - (

current_vout + VPR_BEFORE_RS_CORRECTION));

990 error_vpn_before_np = -(current_vpn_before_np - (VIN +

VPN_BEFORE_NP_CORRECTION));

991 error_zero_crossing_offset = t_alpha - (t_beta /2 +

ZC_CORRECTION);

992

993

994

995 //

996 // RHB Primary on time feedback

997 // Based on Vout error

998 //

999 current_rpon = (uint16_t)((error_vout*K_P_VOUT +

rpon_integral) >>16);

1000 rpon_integral += error_vout*K_INT_VOUT;

1001

1002 //

1003 // RHB Primary dead time feedback

1004 // Based on Vpr error just before it turns on

1005 //

1006 current_rpdt = (uint16_t)((error_vpr_before_rp*K_P_ZVS +

rpdt_integral) >>16);

1007 rpdt_integral += error_vpr_before_rp*K_INT_ZVS;

1008

1009 //

204

1010 // RHB Secondary dead time feedback

1011 // Based on Vpr error just before it turns on

1012 //

1013 current_rsdt = (uint16_t)((error_vpr_before_rs*K_P_ZVS +

rsdt_integral) >>16);

1014 rsdt_integral += error_vpr_before_rs*K_INT_ZVS;

1015

1016 //

1017 // Period feedback

1018 // Based on zero crossing offset time

1019 //

1020

1021 // Attempted period control "save" if the output voltage

drops too low

1022 // Converter will get stuck outside the desired PR

frequency range for

1023 // the load resistance. This attempts to lower the

frequency to fix that

1024 //Used with the Vout > 1/2 Vin mode.

1025 // MODIFY (or remove) depending on switching sequence.

For example , this

1026 // should not be enabled for Vout < 1/2 Vin , because

that is the desired range.

1027 if (current_vout < (ZERO+VIN)/2)

1028 {

1029 period_integral += 1<<12;

1030 current_period = (uint16_t)((

error_zero_crossing_offset*K_P_ZC + period_integral) >>16);

1031 }

1032 else if(zc_valid)

1033 {

1034 current_period = (uint16_t)((

error_zero_crossing_offset*K_P_ZC + period_integral) >>16);

1035 period_integral += error_zero_crossing_offset*

K_INT_ZC;

1036 }

205

1037

1038

1039 //

1040 // NRHB Primary dead time feedback

1041 // Based on Vpn error just before it turns on

1042 //

1043 current_npdt = (uint16_t)((error_vpn_before_np*K_P_ZVS +

npdt_integral) >>16);

1044 npdt_integral += error_vpn_before_np*K_INT_ZVS;

1045

1046 //

1047 // Update switching times for the next cycle

1048 //

1049 update_switches_reg(RP , RS , current_period , current_rpon

, current_rpdt , current_rsdt);

1050 update_switches_nonreg(NP, NS , current_period ,

current_npdt , DUTY_CORRECTION);

1051

1052 // GPIO_writePin(myGPIO0 , 1);

1053 // GPIO_writePin(myGPIO0 , 0);

1054 }

1055

1056 }

1057

1058

1059 //Clear the interrupt status so the interrupt can run again

1060 // ENSURE that this matches the interrupt that triggers the

1061 // Feedback loop code.

1062

1063

1064 // ADC_clearInterruptStatus(ADCB_BASE , ADC_INT_NUMBER4);

1065 // ADC_clearInterruptStatus(ADCD_BASE , ADC_INT_NUMBER3);

1066 ADC_clearInterruptStatus(ADCA_BASE , ADC_INT_NUMBER4);

1067 Interrupt_clearACKGroup(INTERRUPT_ACK_GROUP10);

1068

1069 }

206

1070

1071

1072 //

1073 // initCMPSS - Function to configure the high comparator of CMPSS1

1074 //

1075 void initCMPSS(uint32_t cmpssBase , uint16_t threshold , bool invert)

1076 {

1077 //

1078 // Enable CMPSS and configure the negative input signal to come

from

1079 // the DAC

1080 //

1081 CMPSS_enableModule(cmpssBase);

1082 if(invert)

1083 {

1084 CMPSS_configHighComparator(cmpssBase , CMPSS_INSRC_DAC |

CMPSS_INV_INVERTED);

1085 }

1086 else

1087 {

1088 CMPSS_configHighComparator(cmpssBase , CMPSS_INSRC_DAC);

1089 }

1090

1091 //

1092 // Use VDDA as the reference for the DAC and set DAC value to

midpoint for

1093 // arbitrary reference.

1094 //

1095 CMPSS_configDAC(cmpssBase , CMPSS_DACREF_VDDA |

CMPSS_DACVAL_SYSCLK | CMPSS_DACSRC_SHDW);

1096 CMPSS_setDACValueHigh(cmpssBase , threshold);

1097

1098 //

1099 // Set up hysteresis

1100 //

1101 CMPSS_setHysteresis(cmpssBase , 1);

207

1102

1103 CMPSS_configFilterHigh(cmpssBase , 0, 3, 2);

1104

1105 CMPSS_initFilterHigh(cmpssBase);

1106

1107 //

1108 // Configure the output signals. Both CTRIPH and CTRIPOUTH will

be fed by

1109 // the asynchronous comparator output.

1110 //

1111 CMPSS_configOutputsHigh(cmpssBase , CMPSS_TRIP_FILTER |

CMPSS_TRIPOUT_FILTER);

1112 }

1113

1114 void initCLB_ZERO_CROSSING_TIMER(uint32_t clb_base)

1115 {

1116 //

1117 // Enable

1118 //

1119 CLB_enableCLB(clb_base);

1120

1121

1122 //

1123 // Select Global input instead of local input for all CLB IN

1124 //

1125 CLB_configLocalInputMux(clb_base , CLB_IN0 ,

CLB_LOCAL_IN_MUX_GLOBAL_IN);

1126 CLB_configLocalInputMux(clb_base , CLB_IN1 ,

CLB_LOCAL_IN_MUX_GLOBAL_IN);

1127 CLB_configLocalInputMux(clb_base , CLB_IN2 ,

CLB_LOCAL_IN_MUX_GLOBAL_IN);

1128 CLB_configLocalInputMux(clb_base , CLB_IN3 ,

CLB_LOCAL_IN_MUX_GLOBAL_IN);

1129 CLB_configLocalInputMux(clb_base , CLB_IN4 ,

CLB_LOCAL_IN_MUX_GLOBAL_IN);

1130

208

1131

1132

1133 //

1134 // Configure inputs for switch turn offs and comparator signals

1135 //

1136 // MODIFY so that the start , alpha , and beta pulses are the

correct signals

1137 // for the ZCD for the configured switching sequence

1138 CLB_configGlobalInputMux(clb_base , CLB_IN0 ,

CLB_GLOBAL_IN_MUX_EPWM2_CTR_CMPA); //t0

1139 CLB_configGlobalInputMux(clb_base , CLB_IN1 ,

CLB_GLOBAL_IN_MUX_CLB_AUXSIG1); //t2

1140 CLB_configGlobalInputMux(clb_base , CLB_IN2 ,

CLB_GLOBAL_IN_MUX_EPWM1_CTR_ZERO); //t1

1141 CLB_configGlobalInputMux(clb_base , CLB_IN3 ,

CLB_GLOBAL_IN_MUX_EPWM4_CTR_ZERO); //Reset counters

1142 CLB_configGlobalInputMux(clb_base , CLB_IN4 ,

CLB_GLOBAL_IN_MUX_EPWM3_CTR_ZERO); //Latch output (Out1 = t1 -t0,

out2 = t2 -t0)

1143

1144

1145

1146 //

1147 // Configure inputs 1-4 as external , the rest are unused so tie

to the general purpose registers

1148 //

1149 CLB_configGPInputMux(clb_base , CLB_IN0 , CLB_GP_IN_MUX_EXTERNAL);

1150 CLB_configGPInputMux(clb_base , CLB_IN1 , CLB_GP_IN_MUX_EXTERNAL);

1151 CLB_configGPInputMux(clb_base , CLB_IN2 , CLB_GP_IN_MUX_EXTERNAL);

1152 CLB_configGPInputMux(clb_base , CLB_IN3 , CLB_GP_IN_MUX_EXTERNAL);

1153 CLB_configGPInputMux(clb_base , CLB_IN4 , CLB_GP_IN_MUX_EXTERNAL);

1154 CLB_configGPInputMux(clb_base , CLB_IN5 , CLB_GP_IN_MUX_GP_REG);

1155 CLB_configGPInputMux(clb_base , CLB_IN6 , CLB_GP_IN_MUX_GP_REG);

1156 CLB_configGPInputMux(clb_base , CLB_IN7 , CLB_GP_IN_MUX_GP_REG);

1157

1158

209

1159

1160 //

1161 // Configure CLB -XBAR AUXSIG0 as CMPSS3.CTRIPH (Vp1 rises above

Vin -Vout)

1162 //

1163 XBAR_setCLBMuxConfig(XBAR_AUXSIG0 , XBAR_CLB_MUX04_CMPSS3_CTRIPH)

;

1164 XBAR_enableCLBMux(XBAR_AUXSIG0 , XBAR_MUX04);

1165

1166 //

1167 // Configure CLB -XBAR AUXSIG1 as CMPSS1.CTRIPH (Vp2 rises above

Vout)

1168 //

1169 XBAR_setCLBMuxConfig(XBAR_AUXSIG1 , XBAR_CLB_MUX00_CMPSS1_CTRIPH)

;

1170 XBAR_enableCLBMux(XBAR_AUXSIG1 , XBAR_MUX00);

1171

1172

1173 //

1174 // Load generated logic configuration

1175 //

1176 initTILE_ZERO_CROSSING(clb_base);

1177

1178 }

1179 //

1180 // End of file

1181 //

H.2 System Configuration File

This is a “.sysconfig” file is used by the TI SysCfg tool in the CCS IDE to autogenerate

code that configures many of the hardware components, including some aspects of

the ePWMs and the CLB. It is necessary for the code in the previous section to run

properly.

1 /**

210

2 * These arguments were used when this file was generated. They will

be automatically applied on subsequent loads

3 * via the GUI or CLI. Run CLI with ’--help’ for additional

information on how to override these arguments.

4 * @cliArgs --device "F2837xD" --package "F2837xD_176PTP" --part "

F2837xD_176PTP" --product "C2000WARE@3 .00.00.00"

5 * @versions {"data ":"2021010520" ," timestamp ":"2021010520" ," tool

":"1.7.0+1746" ," templates ":null}

6 */

7

8 /**

9 * Import the modules used in this configuration.

10 */

11 const epwm = scripting.addModule("/driverlib/epwm.js", {},

false);

12 const epwm1 = epwm.addInstance ();

13 const epwm2 = epwm.addInstance ();

14 const epwm3 = epwm.addInstance ();

15 const epwm4 = epwm.addInstance ();

16 const epwm5 = epwm.addInstance ();

17 const epwm6 = epwm.addInstance ();

18 const epwmxbar = scripting.addModule("/driverlib/epwmxbar.js",

{}, false);

19 const epwmxbar1 = epwmxbar.addInstance ();

20 const epwmxbar2 = epwmxbar.addInstance ();

21 const gpio = scripting.addModule("/driverlib/gpio.js", {},

false);

22 const gpio1 = gpio.addInstance ();

23 const inputxbar = scripting.addModule("/driverlib/inputxbar.js",

{}, false);

24 const inputxbar1 = inputxbar.addInstance ();

25 const outputxbar = scripting.addModule("/driverlib/outputxbar.js",

{}, false);

26 const outputxbar1 = outputxbar.addInstance ();

27 const outputxbar2 = outputxbar.addInstance ();

28 const outputxbar3 = outputxbar.addInstance ();

211

29 const TILE = scripting.addModule("/utilities/clb_tool/

clb_syscfg/source/TILE", {}, false);

30 const TILE1 = TILE.addInstance ();

31 const TILE2 = TILE.addInstance ();

32

33 /**

34 * Write custom configuration values to the imported modules.

35 */

36 epwm1.useCase = "CUSTOM";

37 epwm1.useInterfacePins = ["EPWM#A"];

38 epwm1.$name = "myEPWM2";

39 epwm1.epwm.$assign = "EPWM2";

40 epwm1.epwm.epwmaPin.$assign = "162";

41

42 epwm2.$name = "myEPWM1";

43 epwm2.useCase = "CUSTOM";

44 epwm2.useInterfacePins = ["EPWM#A"];

45 epwm2.epwm.$assign = "EPWM1";

46 epwm2.epwm.epwmaPin.$assign = "160";

47

48 epwm3.$name = "myEPWM7";

49 epwm3.useCase = "CUSTOM";

50 epwm3.useInterfacePins = ["EPWM#A"];

51 epwm3.epwm.$assign = "EPWM7";

52 epwm3.epwm.epwmaPin.$assign = "4";

53

54 epwm4.$name = "myEPWM8";

55 epwm4.useCase = "CUSTOM";

56 epwm4.useInterfacePins = ["EPWM#A"];

57 epwm4.epwm.$assign = "EPWM8";

58 epwm4.epwm.epwmaPin.$assign = "6";

59

60 epwm5.$name = "myEPWM3";

61 epwm5.epwm.$assign = "EPWM3";

62 epwm5.epwm.epwmaPin.$assign = "164";

63 epwm5.epwm.epwmbPin.$assign = "165";

212

64

65 epwm6.$name = "myEPWM4";

66 epwm6.epwm.$assign = "EPWM4";

67 epwm6.epwm.epwmaPin.$assign = "166";

68 epwm6.epwm.epwmbPin.$assign = "167";

69

70 epwmxbar1.mux1Config = "XBAR_EPWM_MUX01_INPUTXBAR1";

71 epwmxbar1.$name = "myEPWMXBAR0_highside_trigger";

72 epwmxbar1.muxesUsed = ["XBAR_MUX05"];

73 epwmxbar1.mux5Config = "XBAR_EPWM_MUX05_INPUTXBAR3";

74

75 epwmxbar2.tripInput = "XBAR_TRIP5";

76 epwmxbar2.mux8Config = "XBAR_EPWM_MUX08_ADCBEVT1";

77 epwmxbar2.mux3Config = "XBAR_EPWM_MUX03_INPUTXBAR2";

78 epwmxbar2.$name = "myEPWMXBAR1_lowside_trigger";

79 epwmxbar2.muxesUsed = ["XBAR_MUX07"];

80 epwmxbar2.mux7Config = "XBAR_EPWM_MUX07_INPUTXBAR4";

81

82 gpio1.$name = "myGPIO0";

83 gpio1.direction = "GPIO_DIR_MODE_OUT";

84 gpio1.gpioPin.$assign = "27";

85

86 inputxbar1.$name = "myINPUTXBAR0";

87 inputxbar1.inputsUsed = ["inputxbar1Gpio","inputxbar2Gpio","

inputxbar3Gpio","inputxbar4Gpio"];

88 inputxbar1.inputxbar1Lock = true;

89 inputxbar1.inputxbar2Lock = true;

90 inputxbar1.inputxbar3Lock = true;

91 inputxbar1.inputxbar4Lock = true;

92 inputxbar1.inputxbar2Gpio = "GPIO6";

93 inputxbar1.inputxbar3Gpio = "GPIO12";

94 inputxbar1.inputxbar4Gpio = "GPIO14";

95

96 outputxbar1.$name = "myOUTPUTXBAR0";

97 outputxbar1.muxesUsed = ["XBAR_MUX00"];

98 outputxbar1.outputxbar.$assign = "OUTPUTXBAR1";

213

99 outputxbar1.outputxbar.outputxbarPin.$assign = "24";

100

101 outputxbar2.$name = "myOUTPUTXBAR1";

102 outputxbar2.mux8Config = "

XBAR_OUT_MUX08_ADCBEVT1";

103 outputxbar2.muxesUsed = ["XBAR_MUX04"];

104 outputxbar2.outputxbar.$assign = "OUTPUTXBAR2";

105 outputxbar2.outputxbar.outputxbarPin.$assign = "25";

106

107 outputxbar3.$name = "myOUTPUTXBAR2";

108

109 TILE1.$name = "TILE_SW_TRIGGER";

110 TILE1.BOUNDARY.$name = "BOUNDARY0";

111 TILE1.LUT_0.$name = "LUT_0";

112 TILE1.LUT_1.$name = "LUT_1";

113 TILE1.LUT_2.$name = "LUT_2";

114 TILE1.FSM_0.$name = "FSM_0";

115 TILE1.FSM_0.e0 = "BOUNDARY.in1";

116 TILE1.FSM_0.e1 = "BOUNDARY.in2";

117 TILE1.FSM_0.eqn_out = "0";

118 TILE1.FSM_0.eqn_s0 = "(!e1&!e0&s0) | (e1 & !e0)";

119 TILE1.FSM_0.eqn_s1 = "e1&!e0&!s1&!s0";

120 TILE1.FSM_1.$name = "FSM_1";

121 TILE1.FSM_1.eqn_s0 = "(!e1&!e0&s0) | (e1 & !e0)";

122 TILE1.FSM_1.eqn_out = "0";

123 TILE1.FSM_1.e0 = "BOUNDARY.in0";

124 TILE1.FSM_1.e1 = "BOUNDARY.in3";

125 TILE1.FSM_1.eqn_s1 = "e1&!e0&!s1&!s0";

126 TILE1.FSM_2.$name = "FSM_2";

127 TILE1.COUNTER_0.$name = "COUNTER_0";

128 TILE1.COUNTER_1.$name = "COUNTER_1";

129 TILE1.COUNTER_2.$name = "COUNTER_2";

130 TILE1.OUTLUT_0.$name = "OUTLUT_0";

131 TILE1.OUTLUT_1.$name = "OUTLUT_1";

132 TILE1.OUTLUT_2.$name = "OUTLUT_2";

133 TILE1.OUTLUT_3.$name = "OUTLUT_3";

214

134 TILE1.OUTLUT_4.$name = "OUTLUT_4";

135 TILE1.OUTLUT_4.i0 = "FSM_0.S1";

136 TILE1.OUTLUT_4.i1 = "BOUNDARY.in4";

137 TILE1.OUTLUT_4.eqn = "i0&i1";

138 TILE1.OUTLUT_5.$name = "OUTLUT_5";

139 TILE1.OUTLUT_5.i0 = "FSM_1.S1";

140 TILE1.OUTLUT_5.i1 = "BOUNDARY.in4";

141 TILE1.OUTLUT_5.eqn = "i0&i1";

142 TILE1.OUTLUT_6.$name = "OUTLUT_6";

143 TILE1.OUTLUT_7.$name = "OUTLUT_7";

144 TILE1.HLC.$name = "HLC_0";

145 TILE1.HLC.program0.$name = "HLCP_0";

146 TILE1.HLC.program1.$name = "HLCP_1";

147 TILE1.HLC.program2.$name = "HLCP_2";

148 TILE1.HLC.program3.$name = "HLCP_3";

149

150 TILE2.$name = "TILE_ZERO_CROSSING";

151 TILE2.BOUNDARY.$name = "BOUNDARY1";

152 TILE2.LUT_0.$name = "LUT_3";

153 TILE2.LUT_0.eqn = "i0|i1";

154 TILE2.LUT_0.i0 = "BOUNDARY.in1";

155 TILE2.LUT_0.i1 = "BOUNDARY.in3";

156 TILE2.LUT_1.$name = "LUT_4";

157 TILE2.LUT_1.eqn = "i0|i1";

158 TILE2.LUT_1.i0 = "BOUNDARY.in2";

159 TILE2.LUT_1.i1 = "BOUNDARY.in3";

160 TILE2.LUT_2.$name = "LUT_5";

161 TILE2.FSM_0.$name = "FSM_3";

162 TILE2.FSM_0.e0 = "BOUNDARY.in0";

163 TILE2.FSM_0.eqn_s1 = "0";

164 TILE2.FSM_0.eqn_out = "e0&~s0";

165 TILE2.FSM_0.eqn_s0 = "e0";

166 TILE2.FSM_1.$name = "FSM_4";

167 TILE2.FSM_1.eqn_out = "0";

168 TILE2.FSM_1.eqn_s0 = "(s0|e0)&(~e1)";

169 TILE2.FSM_1.eqn_s1 = "0";

215

170 TILE2.FSM_1.e1 = "LUT_0.OUT";

171 TILE2.FSM_1.e0 = "FSM_0.OUT";

172 TILE2.FSM_2.$name = "FSM_5";

173 TILE2.FSM_2.eqn_out = "0";

174 TILE2.FSM_2.eqn_s0 = "(s0|e0)&(~e1)";

175 TILE2.FSM_2.eqn_s1 = "0";

176 TILE2.FSM_2.e0 = "FSM_0.OUT";

177 TILE2.FSM_2.e1 = "LUT_1.OUT";

178 TILE2.COUNTER_0.$name = "COUNTER_3";

179 TILE2.COUNTER_0.mode1 = "1";

180 TILE2.COUNTER_0.reset = "BOUNDARY.in3";

181 TILE2.COUNTER_0.mode0 = "FSM_1.S0";

182 TILE2.COUNTER_1.$name = "COUNTER_4";

183 TILE2.COUNTER_1.reset = "BOUNDARY.in3";

184 TILE2.COUNTER_1.mode1 = "1";

185 TILE2.COUNTER_1.mode0 = "FSM_2.S0";

186 TILE2.COUNTER_2.$name = "COUNTER_5";

187 TILE2.OUTLUT_0.$name = "OUTLUT_8";

188 TILE2.OUTLUT_1.$name = "OUTLUT_9";

189 TILE2.OUTLUT_2.$name = "OUTLUT_10";

190 TILE2.OUTLUT_3.$name = "OUTLUT_11";

191 TILE2.OUTLUT_4.$name = "OUTLUT_12";

192 TILE2.OUTLUT_5.$name = "OUTLUT_13";

193 TILE2.OUTLUT_6.$name = "OUTLUT_14";

194 TILE2.OUTLUT_7.$name = "OUTLUT_15";

195 TILE2.HLC.$name = "HLC_1";

196 TILE2.HLC.e0 = "BOUNDARY.in4";

197 TILE2.HLC.R0_init = "0xDEADC0DE";

198 TILE2.HLC.R1_init = "0xFEEDBEEF";

199 TILE2.HLC.program0.$name = "HLCP_4";

200 TILE2.HLC.program0.instruct1 = "MOV C1 ,R1";

201 TILE2.HLC.program0.instruct0 = "MOV C0 ,R0";

202 TILE2.HLC.program1.$name = "HLCP_5";

203 TILE2.HLC.program2.$name = "HLCP_6";

204 TILE2.HLC.program3.$name = "HLCP_7";

205

216

206 /**

207 * Pinmux solution for unlocked pins/peripherals. This ensures that

minor changes to the automatic solver in a future

208 * version of the tool will not impact the pinmux you originally saw

. These lines can be completely deleted in order to

209 * re -solve from scratch.

210 */

211 outputxbar3.outputxbar.$suggestSolution = "OUTPUTXBAR3

";

212 outputxbar3.outputxbar.outputxbarPin.$suggestSolution = "90";

217

218

Bibliography

[1] J. M. Alonso, C. Ordiz, and M. A. Dalla Costa. A novel control method for
piezoelectric-transformer based power supplies assuring zero-voltage-switching
operation. IEEE Transactions on Industrial Electronics, 55(3):1085–1089, 2008.

[2] Jessica D Boles, Joseph E Bonavia, Pedro L Acosta, Y K Ramadass, J H Lang,
and David J Perreault. Evaluating piezoelectric materials and vibration modes
for power conversion. IEEE Transactions on Power Electronics, 2022.

[3] Jessica D Boles, Elaine Ng, Jeffrey H Lang, and David J Perreault. Dc-dc con-
verter implementations based on piezoelectric transformers. Journal of Emerging
and Selected Topics in Power Electronics, 2022.

[4] Jessica D Boles, Joshua J Piel, and David J Perreault. Enumeration and analy-
sis of dc-dc converter implementations based on piezoelectric resonators. IEEE
Transactions on Power Electronics, 36(1):129–145, 2021.

[5] Joseph E. Bonavia, Jessica D. Boles, Jeffrey H. Lang, and David J. Perreault.
Augmented piezoelectric resonators for power conversion. In 2021 IEEE 22nd
Workshop on Control and Modelling of Power Electronics (COMPEL), pages
1–8, 2021.

[6] Weston D. Braun, Eric A. Stolt, Lei Gu, Jeronimo Segovia-Fernandez, Sombud-
dha Chakraborty, Ruochen Lu, and Juan M. Rivas-Davila. Optimized resonators
for piezoelectric power conversion. IEEE Open Journal of Power Electronics,
2:212–224, 2021.

[7] S. Chen and C. Chen. ZVS considerations for a phase-lock control dc/dc con-
verter with piezoelectric transformer. In IECON 2006 - 32nd Annual Conference
on IEEE Industrial Electronics, pages 2244–2248, 2006.

[8] M. Ekhtiari, Z. Zhang, and M. A. E. Andersen. Analysis of bidirectional
piezoelectric-based converters for zero-voltage switching operation. IEEE Trans-
actions on Power Electronics, 32(1):866–877, Jan 2017.

[9] David M Giuliano, Matthew E D’Asaro, Jacob Zwart, and David J Perreault.
Miniaturized low-voltage power converters with fast dynamic response. IEEE
Journal of Emerging and Selected Topics in Power Electronics, 2(3):395–405,
2014.

219

[10] Alex J. Hanson and David J. Perreault. A high-frequency power factor correction
stage with low output voltage. IEEE Journal of Emerging and Selected Topics
in Power Electronics, 8(3):2143–2155, 2020.

[11] E. L. Horsley, A. V. Carazo, N. Nguyen-Quang, M. P. Foster, and D. A. Stone.
Analysis of inductorless zero-voltage-switching piezoelectric transformer-based
converters. IEEE Transactions on Power Electronics, 27(5):2471–2483, 2012.

[12] Phyo Aung Kyaw, Aaron LF Stein, and Charles R Sullivan. Fundamental exami-
nation of multiple potential passive component technologies for future power elec-
tronics. IEEE Transactions on Power Electronics, 33(12):10,708–10,722, 2018.

[13] Yutian Lei and Robert Carl Nikolai Pilawa-Podgurski. A general method for
analyzing resonant and soft-charging operation of switched-capacitor converters.
IEEE Transactions on Power Electronics, 30(10):5650–5664, 2015.

[14] Yongjun Li, Jikang Chen, Mervin John, Ricky Liou, and Seth R Sanders. Reso-
nant switched capacitor stacked topology enabling high dc-dc voltage conversion
ratios and efficient wide range regulation. In Proc. IEEE Energy Conversion
Congress and Exposition, pages 1–7, Milwaukee, WI, USA, September 2016.

[15] Seungbum Lim, John Ranson, David M. Otten, and David J. Perreault. Two-
stage power conversion architecture suitable for wide range input voltage. IEEE
Transactions on Power Electronics, 30(2):805–816, 2015.

[16] B. Pollet, G. Despesse, and F. Costa. A new non-isolated low-power induc-
torless piezoelectric dc–dc converter. IEEE Transactions on Power Electronics,
34(11):11002–11013, 2019.

[17] M. S. Rßdgaard, T. Andersen, and M. A. E. Andersen. Empiric analysis of
zero voltage switching in piezoelectric transformer based resonant converters. In
6th IET International Conference on Power Electronics, Machines and Drives
(PEMD 2012), 2012.

[18] Christopher Schaef and Jason T Stauth. A highly integrated series–parallel
switched-capacitor converter with 12 V input and quasi-resonant voltage-mode
regulation. IEEE Journal of Emerging and Selected Topics in Power Electronics,
6(2):456–464, 2018.

[19] G Seo, J Shin, and B Cho. A magnetic component-less series resonant converter
using a piezoelectric transducer for low profile application. In The 2010 Inter-
national Power Electronics Conference - ECCE ASIA, pages 2810–2814, 2010.

[20] Charles R Sullivan, Bradley A Reese, Aaron LF Stein, and Phyo Aung Kyaw.
On size and magnetics: Why small efficient power inductors are rare. In Proc.
IEEE International Symposium on 3D Power Electronics Integration and Man-
ufacturing, pages 1–23, Raleigh, NC, USA, June 2016.

220

[21] M. Touhami, G. Despesse, and F. Costa. A new topology of dc-dc converter
based on piezoelectric resonator. In 2020 IEEE 21st Workshop on Control and
Modeling for Power Electronics, pages 1–7, 2020.

[22] M. Touhami, G. Despesse, F. Costa, and B. Pollet. Implementation of con-
trol strategy for step-down dc-dc converter based on piezoelectric resonator. In
2020 22nd European Conference on Power Electronics and Applications (EPE’20
ECCE Europe), pages 1–9, 2020.

[23] Karl S Van Dyke. The piezo-electric resonator and its equivalent network. Pro-
ceedings of the Institute of Radio Engineers, 16(6):742–764, 1928.

[24] Z. Yang, J. Forrester, J. N. Davidson, M. P. Foster, and D. A. Stone. Reso-
nant current estimation and phase-locked loop feedback design for piezoelectric
transformer-based power supplies. IEEE Transactions on Power Electronics,
35(10):10466–10476, 2020.

221

