Closed Loop Control for a
Piezoelectric-Resonator-Based DC-DC Power
Converter
by
Joshua J. Piel

S.B., Electrical Engineering and Computer Science
Massachusetts Institute of Technology, 2022

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2022
(© Massachusetts Institute of Technology 2022. All rights reserved.

Author ..o
Department of Electrical Engineering and Computer Science
January 21, 2022

Certified Dy . ..o
David J. Perreault

Joseph F. and Nancy P. Keithley Professor of Electrical Engineering
Thesis Supervisor

Accepted Dy
Katrina LaCurts
Chair, Master of Engineering Thesis Committee

Closed Loop Control for a Piezoelectric-Resonator-Based
DC-DC Power Converter
by
Joshua J. Piel

Submitted to the Department of Electrical Engineering and Computer Science
on January 21, 2022, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Miniaturization of power electronics reduces their cost and increases their scope of
potential applications. Power electronics traditionally rely on magnetics for energy
storage, but magnetics are fundamentally less efficient and power dense when scaled to
small sizes. Piezoelectric resonators (PRs), which store energy in mechanical inertia
and compliance, are promising alternatives to magnetic energy storage for minia-
turized power electronics because of their high quality factors and favorable scaling
properties. Dc-dc converters relying on only a PR for energy storage have been
demonstrated to achieve high efficiency through specific behaviors including PR soft
charging, ZVS of all active switches, and all-positive instantaneous power transfer.
However, closed-loop control of PR-based dc-dc converters is necessary for them to be
practically viable. Implementation of this closed loop control is challenging because
achieving all desired high-efficiency behaviors requires simultaneous control of duty
cycle, dead time, and frequency.

This thesis presents a closed-loop control scheme for PR-based dc-dc power con-
verters that are implemented with six-stage switching sequences and two-half-bridge
topologies. The voltage regulation range of a PR-based converter can be derived
from its operating modes, referred to as switching sequences. The regulation range
is then used to conceptualize each half-bridge in the converter topology as regulating
or nonregulating. Control methods for the regulating and nonregulating half-bridges
capable of achieving all desired high-efficiency behaviors are proposed.

This thesis also presents several methods for modeling the operation of PR-based
dc-de converters, both in periodic steady state (PSS) and in dynamic operation. PSS
solutions are obtained using conservation equations associated with the switching
sequence, including strategies for both ideal solutions and solutions considering the
mechanical loss of the PR. Several methods for modeling converter dynamics are
proposed, including a linearizable state space model.

Finally, this thesis designs and implements an example PR-based dc-dc converter
and a microcontroller-based closed-loop controller. The converter is operated at 30
V to 10 V with a 0.5 W output power. The controller was verified to meet all of

the desired high efficiency behaviors, and its transient response characteristics are
evaluated.

Thesis Supervisor: David J. Perreault
Title: Joseph F. and Nancy P. Keithley Professor of Electrical Engineering

Acknowledgments

I would like to thank Jessica Boles for being an incredible mentor to me throughout
my undergraduate and graduate studies at MIT. She has pushed me to strive for
excellence with my research and I would not be where I am today without her men-
torship and guidance. I also want to thank Dave Perreault for being a great teacher,
advisor, and mentor.

[also want to thank my friends from MacGregor, Roboteam, the Power Electronics
lab, and my fellow AFROTC cadets for their support throughout my time at MIT.
I also want to thank my parents and my friends back in Virginia for helping me get
though virtual MIT.

I finally would like to thank my COVID-19 infection that delayed the submission

of my thesis by a week.

Contents

1 Introduction

2 Piezoelectric Resonators and Converter Switching Sequences
2.1 What is a Piezoelectric Resonator?
2.2 Switching Sequences
2.3 Operating Ranges

3 PR Converter Periodic Steady State Solution
3.1 State Plane Visualization
3.2 Ideal Steady State Solution
3.2.1 Switching Time Calculations
3.3 Nonideal Steady State Solution

4 PR Converter Control
4.1 Regulating and Nonregulating Half Bridges
4.2 Regulating Half Bridge Control
4.2.1 Sensed Control
4.2.2 Static Control
4.2.3 PR Inductor Current Zero Crossing Detection
4.3 Non-Regulating Half-Bridge Control

5 PR Converter Control Simulation and Modeling
5.1 Circuit and Feedback Simulation in Simulink

5.1.1 Circuit Model

19

23
23
25
30

35
35
38
40
41

45
45
49
49
23
o4
%)

5.1.2 Controller model L.
5.2 Piecewise Linear Numerical Simulation
5.3 State-Space Model
5.3.1 State Equations L.
5.3.2 Charge Transfer Quantities
5.3.3 Model Validation

PR Converter Hardware Implementation
6.1 Circuit Descriptiono

6.2 Converter Interface

Feedback Controller Hardware Implementation

7.1 Microcontroller

7.2 Gate Signal Generation oL oL
7.2.1 Static Control Configuration
7.2.2 Sensed Control Configuration

7.3 Sensing Implementationo L
7.3.1 Buffer Circuitry
7.3.2 ADC and Comparator Configuration

7.4 Zero Crossing Detector
7.4.1 Example Implementation

7.5 Code Feedback Loop

7.6 Startup

Experimental Results
8.1 Experimental Setupo

8.2 Experimental Results,

Conclusion

9.1 Future Work

73
73
75

77
7
79
80
84
86
86
90
91
94
98
100

103
103
104

111

Full Steady State Solutions 113

A.1 Ideal Steady State Solution Example Equations 113
PR Converter PCB Technical Information 115
B.1 Bill of Materials 121
B.2 PCB Header Pinout 122
Microcontroller and Sensing Circuit Bill of Materials 123
Steady State Solution Code 125
Simulink Simulation Model 147
E.1 Sensed Control Simulink Simulation 148
E.2 Static Control Simulink Simulation 151
Piecewise Linear Dynamic Simulation Code 157
State Space Dynamic Model Code 165
Microcontroller Code 171
H.1 Main Code 171
H.2 System Configuration File 210

10

List of Figures

2-1
2-2

2-4

2-5

2-6

2-7

3-1

Picture of several commercially available piezoelectric resonators.
Butterworth-Van Dyke circuit model for PRs [23].

Common-negative system considered for switching sequence enumera-

tion, illustrated with an ideal PR.

PR converter topology for switching sequence Vj,, — Vi, Zero, V.
The PR equivalent circuit as given in [23| is within the dotted lines.
Switches are labeled S1— .54 and the PR terminals are labeled v,; and
Up2. Up is the PR voltage and iy, is the current through the PR series
inductor.
Simulation of Vj, — Vi, Zero, Vi, from [4] for V;,, = 100V, V,,; = 40V,
and P,,; = 6. Numbers 1-6B designate connected/zero stages (odd)
and open stages (even). The PR parameters used are C, = 4.3nF,
C.,=14nF, L=14mH, and R=24Q.
Plot of connected stage charge transfers for V;, — V., Zero, V,,; with
Vour < %Vm. The output voltage can be regulated by trading off be-
tween ¢ and gs3.
Plot of connected stage charge transfers for V;, — V,;, Zero, V,,; with
%Vm < Vout < Vin. The output voltage can be regulated by trading off

between gz and g5.

State plane example for soft-switched sequence V,-V,.;, Zero, V,,,; with
Vin =100V, Vo, =40V, and P,,; = 6 W. Numbers 1-6B correspond

to the time-domain points indicated in Fig. 3-2.

11

26

28

29

32

33

36

3-2

3-3

4-1

4-2

4-3

4-4

Time-domain waveforms for soft-switched sequence V;,-V,.:, Zero, Vi
with V;,, = 100 V, Vo = 40 V, and P, = 6 W. vy, and vy refer to the
switch nodes between S1, S2 and S3, S4, respectively, in Figure 2-4.
Designations 1-6B correspond to the state transition points in Figure

3-1. C,=14nF, L=14mH, and R=24Q

PR converter topology for switching sequence V;,, — Vi, Zero, V.
The PR equivalent circuit as given in [23| is within the dotted lines.
Switches are labeled S1— .54 and the PR terminals are labeled v,; and
Up2. Up is the PR voltage and iy, is the current through the PR series

Inductor. L,

Simulation of V;,, — V,4, Zero, Vo, with V,,; < %Vm with V;, = 100V,
Vour = 40V, and P,,; = 6WW. The corresponding charge transfer dis-
tribution among connected stages can be seen in Figure 4-3. S1 and
S2 form the regulating half-bridge. The two-part open stage is consti-
tuted by stages 6A and 6B, and highlighted in red. S1 and S4 both
change state at the start of stage 6B, so they are designated as RP
and NP, respectively. S2 and S3 are then designated as RS and NS,
respectively. The PR parameters used are C, = 4.3nF, C, = 1.4nF,
L=14mH, and R=240.

Plot of connected stage charge transfers for V;, — V.., Zero, V,,; with
Vour < %Vm. The output voltage can be regulated by trading off be-
tween ¢; and ¢g3. S1 and S2 form the regulating half-bridge while S3
and S4 form the nonregulating half-bridge.

Plot of connected stage charge transfers for V;,, — V., Zero, V,,; with
%Vm < Vout < Vin. The output voltage can be regulated by trading off
between ¢3 and ¢5. S1 and S2 form the nonregulating half-bridge while
S3 and S4 form the regulating half-bridge.

12

37

37

46

47

48

4-5

4-7

4-8

4-9

Description of switch function and control variables during sensed con-
trol. For the switching sequence of Fig. 4-3, ZVS-controlled turn off
refers to controlling S2’s turn off to allow resonance of v, up to V;, for

ZVS of S1. . . .

Description of switch function and control variables during static con-
trol. Loss-minimization-controlled turn off refers to maintaining both
ZVS and all-positive instantaneous power transfer (to minimize circu-

lating currents). L.

Block diagram describing the feedback loops used in both sensed and
static control. Every PR cycle, the output y from the converter is
sampled at the trigger point, just before the given switch turns on.

See Table 4.1 for corresponding values of y, Ypef, and w.

Plot illustrating how the 7;, zero crossing can be detected by observing
symmetry in v,. In this example, S1’s turn on is exactly aligned with

the zero crossing, so we have t, = %tﬂ.

Plot illustrating how the 77, zero crossing can be detected by observing
symmetry in v,. In this example, S1’s turn on is misaligned with the
zero crossing and occurs late, so we have t, > %tg. The switching

period would be decreased in response to this misalignment.

4-10 Description of switch function and control variables during static non-

5-1

5-2

5-3

regulating control. Duty cycle is 50%. N Py and NSy are equal, and
both expressed as NPy. oo

Simulink circuit representation for the converter topology implement-

ing the V;,, — Vo, Zero, V,,; switching sequence.

Simulink Simulation Switch FSM. Transition conditions can be seen in

Table 5.2
Block diagram for Piecewise Linear simulation procedure.

13

50

50

o1

95

56

26

60

5-4 Plot of the “amplitude of resonance” approximation of i;, for the V;, —
Vout, Zero, Vo, switching sequence with V,,; < %V;-n. Each charge
quantity is numbered with its corresponding stage. Open stage charge
quantities are colored red. In each half period, the total charge trans-
ferred is % and the charge magnitude transferred in open stages is
O 67
5-5 Comparison of the linearized state space model to a simulation of the
PR converter with S1,, feedback. Response to V,,,q step of 1V with

parameters from Table 5.3. 72

6-1 Picture the PR converter printed circuit board. 74
6-2 Circuit schematic of the main converter topology implemented on the

prototype PCB. The PR terminals are connected to vy, and vp. . . . 74

7-1 Photo of the microcontroller connected to the prototype PR converter. 78
7-2 Static Mode 1 Switch Waveforms. Used with V;,, —V,.;, Zero, V,,; with

Veour < %V;n. The switch transition between stages 6A and 6B during

the two-part open stage occurs at the left and right edges of the plot. 82
7-3 Static Mode 2 Switch Waveforms. Used with V;,, —V,.;, Zero, V,,; with

Vour > %V}n. The switch transition between stages 6A and 6B during

the two-part open stage occurs at the left and right edges of the plot. 83
7-4 Static Sync Diagramo 84
7-5 Sensed Sync Diagram 85
7-6 Sensing buffer circuitry, implemented with a TLI74IN op amp. See

Table 7.7 for component values. 86

7-7 Sensing buffer circuitry with low-pass filter, implemented with a TLI74IN

op amp. See Table 7.7 for component values. 88
7-8 Picture of the sensing circuitry, front side. 89
7-9 Picture of the sensing circuitry, back side. 89

7-10 Block diagram describing the implementation of the ZCD using the CLB. 92
7-11 ZCD Timing Diagram 95

7-12 ZC Waveform for V,,, < 1/2V;,. Plot illustrating how the i, zero
crossing can be detected by observing symmetry in v,. In this example,
S1’s turn off is exactly aligned with the zero crossing, so we have t, = %tg. 96
7-13 ZC Waveform for V,,, > 1/2V;,. Plot illustrating how the i; zero
crossing can be detected by observing symmetry in v,. In this example,
S4’s turn off (also S1’s turn on) is exactly aligned with the zero crossing,

sowehave t, =2tg. 97

8-1 Converter load circuitry. The load resistance is 6002 when the switch is

open, and 300€2 when the switch is closed. The switch is implemented

as an IRF740 MOSFET. 104
8-2 Photo of the load circuitry used during experiments. 105
8-3 Zoomed in view of the PR waveforms vy, v,2, and v,, showing that

ZVS and soft charging are achieved with the feedback controller active.

Vin = 30V, vy = 104V, and Rypeq = 600€2. 106
8-4 Zoomed in view of the PR waveforms v,; and vy, with synchronous

rectifier control enabled. V;, = 30V, v, = 10.4V, and Rj,.q = 600€2. 107
8-5 Response to Rjoqq step from 600€2 to 3002 with V;,, = 30V and V,; =

10.4V. The peak deviation from steady state is 770mV’, or 7.5% of the

output voltage. The output voltage settles to within 2% after 14.6ms. 108
8-6 Response to Rj,qq step from 300€2 to 6002 with V;,, = 30V and V,; =

10.4V. The peak deviation from steady state is 600mV, or 5.8% of

the output voltage. The output voltage settles to within 2% of steady

state after 18.4ms.o 108

E-1 Top Level Schematic. Integrates the circuit, switch controller FSM,
and feedback loops. 148
E-2 Circuit Schematic. Implements the topology capable of realizing theV;,, —
Vout, Zero, V,, switching sequence. 148
E-3 Switch Control FSM Diagram. Implements the control conditions for
sensed control described in Chapter 5. 149

15

E-4 Startup FSM Diagram. Implements open loop switching times defined
as constants in the Simulink model explorer window.

E-5 S1,, Feedback Schematic. Implements a PI loop driving the error in

E-6 52,, Feedback Schematic. Implements a PI loop ensuring ZVS is
reached across S1. The sample and hold (S/H) block used used to
sample v, when SI turnson.

E-7 Top Level Schematic. Integrates the circuit, switch controller FSM,
and feedback loops.

E-8 Circuit Schematic. Implements the topology capable of realizing theV;,, —
Vout, Zero, V,, switching sequence.

E-9 Switch Control FSM Diagram. Implements the control conditions for
static control described in Chapter 5.

E-10 Startup FSM Diagram. Implements open loop switching times defined
as constants in the Simulink model explorer window.

E-11 S1,, (RP,, Feedback Schematic. Implements a PI loop driving the
errorin Vi, to 0.

E-12 52, (RP;) Feedback Schematic. Implements a PI loop ensuring ZVS
is reached across S1. The sample and hold (S/H) block used used to
sample v,; when S1 turns on. This is an outdated variable name and
definition, and serves the function of implementing RP; control for
ZVSof RP (S1).

E-13 Phase (RSg) Feedback Schematic. Implements a PI loop ensuring ZVS
is reached across S2. The sample and hold (S/H) block used used to
sample v,; when S2 turns on. This is an outdated variable name and
definition, and serves the function of implementing RSy control for
ZVSof RS (S2). o

E-14 T Feedback Schematic. Implements a version of the ZCD. Integrator
modules that integrate 1 are used as timers, and S/H modules are used

tocapture t, and tg.o

152

152

153

List of Tables

4.1

4.2

5.1
5.2
5.3

6.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

7.9

Control loop variables for static and sensed control for the V;, — V..,
Zero, Vo, sequence with V,,; < %V}n 52

Control loop variables for static control for the V;, — V,., Zero, V,u

sequence with %Vm < Vout < Viime o o o o o oo 52
Circuit component values in the Simulink Simulation. 61
Simulink Controller Switch Transition Conditions 63

Values used in the Piecewise Linear Simulation and the State Space

model comparison. 72
Components used in the PR dc-dc converter prototype. 75
Static Control ePWM Counter Compare Actions 80

Static control switch functions for the V;,, — Vi, Zero, V,,; sequence. 81

Static Control ePWM Mode 1 Register Configurations 82
Static Control ePWM Mode 2 Register Configurations 83
Sensed Control ePWM Counter Compare Actions 85

Sensed control switch functions for the V;, — V,, Zero, V,,; sequence. 85
Component values used in the sensing buffer and low-pass filter circuitry. 87
List of ZCD configurations for the V;, — V,., Zero, V,,; switching
sequence in the %V;n > Voue > 0 operating region, both with and
without synchronous rectifier control. 94
List of ZCD configurations for the V;, — V,, Zero, V,, switching

sequence in the Vj,, > V,,; > %Vm operating region. 97

17

8.1

8.2

8.3

B.1
B.2
B.3
B.4
B.5

Table of PR parameters for the specific APC International Part 1553
PR used during experiments. Parameters were extracted using an
impedance analyzer. L L oo 103
Feedback coefficients used to test high efficiency behaviors and nonreg-
ulating half-bridge control. 106

Feedback coefficients used to test transient response after a step in load

resistance. Lo 109
Vipsupply input 122
Vour +5 Supply inputo 122
Vour Load/Output 122
SCONLinputs o 122
SCON2 inputs 122

18

Chapter 1

Introduction

Reducing the size of power converters can make them more cost-effective and useful to
a wider range of applications. However, the use of magnetic energy storage is a major
obstacle to miniaturization. Traditional de-dc power converters utilize magnetics for
energy storage, but magnetics have fundamentally lower efficiency and power density
capabilities when scaled to small sizes [20]. Switched capacitor converters are capa-
ble of high power densities but still require magnetics to achieve voltage regulation
[13, 18, 14, 9]. Piezoelectric resonators (PRs), which store energy in mechanical com-
pliance and inertia, offer a promising alternative to magnetics for miniaturized power
conversion. Unlike magnetics, piezoelectrics have favorable efficiency and power den-
sity characteristics at small scales [12, 2, 6]. Piezoelectrics also offer planar form
factors, ease of batch fabrication, and potential for integration.

The capabilities of piezoelectric materials and piezoelectric-based power conver-
sion have been heavily in [4, 3, 2, 5| and the references therein. [4] enumerates all pos-
sible PR-based dc-dc power converters operating modes, called switching sequences,
that meet certain high efficiency behaviors and practical constraints, including output
regulation, PR soft charging, and ZVS. An experimental prototype achieving greater
than 99% efficiency is demonstrated. [4] is integral to the developments in this thesis.
[3] explores the use of piezoelectric transformers (PTs) in de-de converters. PTs are
two-port counterparts of PRs, and they are capable of providing both voltage trans-

formation and galvanic isolation. Finally, [2, 5, 6] explore in depth how the material

19

properties and geometries of PRs can be optimized to give high performance in power

electronics.

Other recent work has also successfully demonstrated PR-based dc-dc converters
[16, 6, 21] that achieve high efficiencies over a wide range of output voltages. However,
there has been relatively little investigation into closed-loop control strategies for
PR-based converters. [19] implements pulse frequency modulation, but without ZVS.
The control schemes of [16, 22| achieve ZVS, but their reliance on sensing may be
challenging to scale to high frequencies. Control of de-dc power converters based on
PTs has been studied more thoroughly. ZVS operation in magnetics-less PT-based
converters has been analyzed in [3, 17, 8, 11|, and multiple control strategies have
been proposed [1, 24, 7|. These implementations are effective in achieving ZVS and
quickly responding to transients, but they also involve complex sensing and waveform

reconstruction techniques.

Implementing closed-loop control that achieves the desired high efficiency behav-
iors is challenging because it requires elements of frequency modulation, pulse width
modulation, dead time control, and phase shift control between half-bridges. This
thesis presents a closed-loop control strategy for PR-based dc-dc converters based on
six-stage switching sequences and topologies with two half-bridges [4]. The highest-
efficiency switching sequence proposed in [4] is used as an example to demonstrate the
proposed control. This strategy conceptualizes each half-bridge as either “regulating”
or ‘non-regulating”, each of which serve different roles in maintaining the switching
sequence. The proposed scheme maintains the precise switch timing needed to achieve
the desired high-efficiency behaviors, which we validate in an experimental prototype.
It also has potential for scaling to high frequencies.

Chapter 2 summarizes the relevant information from [4] to develop switching se-
quences and operating ranges for PR-based dc-dc converters. Chapter 3 develops the
methods used to solve for the exact steady state behavior of a switching sequence,
including when PR loss is considered.

Chapter 4 proposes the main control scheme developed in this thesis. It derives

the regulating and nonregulating half-bridges, then presents two control strategies for

20

regulating half-bridges and one for non-regulating half-bridges. Finally, the specific
requirements for the example switching sequence are given. Chapter 5 then proposes
multiple methods for modeling the dynamics of the proposed control strategies.
Chapter 6 presents the design for a prototype PR-based dc-dc converter that real-
izes the example switching sequence. Chapter 7 then details the full implementation
of the feedback controller on a microcontroller including the gate signal generation,
sensing circuitry, and feedback loop computations. Finally, Chapter 8 validates the

controller experimentally.

21

22

Chapter 2

Piezoelectric Resonators and

Converter Switching Sequences

This chapter covers the basics of piezoelectric resonators and introduces switching

sequences, which are used to describe the operation of PR-based dc-dc converters.

2.1 What is a Piezoelectric Resonator?

Piezoelectric resonators (PRs) are two-terminal devices that couple electrical and
mechanical states and store energy in mechanical inertia and compliance. The piezo-
electric and inverse piezoelectric effects relate the electric displacement and voltage of
the device to mechanical stress and strain. A common material used in PRs is Lead
Zirconium Titanate (PZT), though other materials such as Lithium Niobiate are also
being investigated for use in power electronics |2, 6]. PRs can be manufactured in
different shapes and can resonate in different vibration modes. Figure 2-1 shows an
image of several different PRs, and further details about the material properties of
PRs can be found in [2].

An equivalent circuit representation of PRs is given by the Butterworth Van-
Dyke model. As illustrated in Figure 2-2, the equivalent circuit is a capacitor in
parallel with a “motional” series RLC branch. The capacitor C,, also called the static

capacitance, represents the portion of the device’s physical capacitance that does

23

Figure 2-1: Picture of several commercially available piezoelectric resonators.

not couple with the mechanical domain. The RLC branch models the mechanical
resonance properties of the device. Energy stored in the inductor L is analogous to
energy stored in mechanical inertia, energy stored in the capacitor C, is analogous
to energy stored in mechanical compliance, and the resistor models mechanical loss
to the first order. Two important quantities that will be referred to throughout this
thesis are v,, the voltage across C), and the PR terminals, and ¢z, the analogous
current flowing through the motional inductor. The PR has two relevant resonant
frequencies: the series resonant frequency and the parallel resonant frequency. The
series resonant frequency fseries, as given in Equation 2.1, is the resonant frequency

of just the motional RLC branch:

1
2w/ LC.,

The parallel resonant frequency fparaier, as given in Equation 2.2, is the frequency

fseries = (21)

at which the net reactance of the motional RLC branch resonates together with the

24

ir
N L
I
bW ——c, G v,
— R

l

Figure 2-2: Butterworth-Van Dyke circuit model for PRs [23].
parallel capacitor:

1
fparallel - —— (22)

C,Ch
2T LCerCT

2.2 Switching Sequences

Switching sequences describe the steady state operating modes of PR based dc-dc
converters. A switching sequence is a temporal sequence of different “stages”, where
each stage consists of a different way the PR’s terminals are connected (or not) within
the converter. There are two main types of stages, connected stages and open stages.
Connected stages are stages where both terminals of the PR are is connected to the
source load system in one of several ways. As illustrated in Figure 2-3, the possibilities
are +V,ue, £Vin, £ (Vin, — Vour), and Zero. Connected stages allow energy transfer
between the PR and the source-load system. A Zero stage is a special case where the
PR terminals are shorted together. Open stages are stages where the PR has one or
both nodes open circuited, and the motional branch resonates with C,. Open stages
are useful because they allow the PR to internally change v, through resonance.

[4] enumerates all switching sequences that meet the following high-efficiency be-

haviors and design constraints:

e PR Soft Charging - The PR only begins a connected stage when v, is equal to

25

bS]

“® W dpgch

|
Up1 + U —

Figure 2-3: Common-negative system considered for switching sequence enumeration,
illustrated with an ideal PR.

the voltage of the connected stage. This requires that there must be an open

stage between connected stages.

e Zero Voltage Switching (ZVS) - Switches only turn on when their drain-source

voltage is zero.

e All-Positive Instantaneous Power Transfer - The converter never sends energy

back into the source or retrieves energy from the load.

e Output Voltage Regulation - There is a continuous range of possible output

voltages that the converter can efficiently provide.

e Minimal number of stages - This produces the simplest switching sequences,

which is important for minimizing control requirements.

e Minimal active switches - This produces the simplest topological implementa-

tion, which is important for practical considerations such as cost.

As given in [4], the simplest switching sequences that achieve all of the desired
behaviors are six-stage switching sequences. There are eight suitable six-stage switch-
ing sequences, and nine possible converter topologies, each using four unidirectional-
voltage-blocking switches. There are two classes of topologies, 2+2 topologies and
3+1 topologies. 242 topologies have two half-bridges, with both PR nodes driven by
a half-bridge. 3+1 topologies have one PR node permanently fixed to the source load

26

system, while the other node can be connected in three ways. 242 topologies support
multiple possible switching sequences, while 341 topologies only support one.

Additionally, constraints must be placed on the zero-crossings of iy, to maintain
the desired high-efficiency behaviors within a given switching sequence. All-positive
instantaneous power transfer constrains the 77, polarity during connected stages. How-
ever, since zero stages do not transfer power to the source or load, 75, could potentially
have either polarity. Open stages need to either increase or decrease V,,, so they also
require a specific average i;, polarity to charge or discharge C,. To minimize circu-
lating currents in the PR, we constrain all stages to have only unidirectional current,
which forces i, zero crossings to occur on stage transitions. However, an exception is
made to achieve ZVS on 2-+2 circuit topologies, where ZVS requires one of the open
stages to be split into two parts, with the zero crossing happening between the two
parts. Some switching sequences support multiple i, zero crossing constraints, which
give different output voltage regulation ranges. This is further described in Section
2.3, and more information about i;, zero crossing constraints can be found in [4].

To develop closed-loop control for PR-based converters in this thesis, we focus on
the 6-stage sequence V-V, Zero, V., however the control concepts developed will
apply to all switching sequences that can be implemented on topologies using two half
bridges. The switching sequence is named based on its connected stage voltages in
the order they occur. All stages are numbered, starting with the first connected stage
in the switching sequence. Thus, connected stages are labelled with odd numbers,
and open stages with even numbers. V,,-V,., Zero, V,,; can be realized with the
topology shown in Fig. 2-4. Fig. 2-5 shows a time-domain plot of the switching

sequence, and the following list describes its operation during each of the six stages:

1. The PR is connected in series between the input and load, and v, = Vj;, — V.

S1 and S3 are on. i, is positive.

2. The PR is open circuited and v, resonates from V;,, — V,,; to 0. S3 is on. iy, is

positive.

3. The PR is short circuited, allowing for energy redistribution. S2 and S3 are on.

27

| | A +
v () J o o® | — S

C
+ I r 94 +
Upl + Up _ Up2 -

Figure 2-4: PR converter topology for switching sequence V;,, — V., Zero, V. The
PR equivalent circuit as given in 23] is within the dotted lines. Switches are labeled
S1— .54 and the PR terminals are labeled v),; and vps. v, is the PR voltage and iy, is
the current through the PR series inductor.

17, is entirely positive or entirely negative.

4. The PR is open circuited, and v, resonates from 0 to Vg, 52 is on. iy is

negative.

5. The PR is connected to the load, and v, = V. S2 and S4 are on. i is

negative.

6A) The PR is open circuited and resonates from V,,; to V;,, allowing for ZVS of

S1. S4 is on. iy, is negative.

6B) The PR remains open circuited, and resonates from V;,, to V;, — V. S1 is on.

17, is positive.

Stage 6, an open stage, is split into two halves (designated 6A and 6B) divided
by an ij zero crossing. v, resonates to V;, at this point to allow ZVS of S1. The
second iy, zero crossing occurs either between stages 2 and 3 or stages 3 and 4 to ensure
unidirectional current within stages, minimizing loss due to circulating current. When
the 7y, zero crossing occurs between stages 3 and 4, then S3 and S4 both act as diodes,

allowing them to be implemented passively as diodes if desired.

28

20

6B

6A

Sequence Vi,-Voui, Zero, Vo 4]

Up1

Up2

120
100 |-

| |
o e (=] o
0 Nel < N

(A) 98ejjon

—20

Time (us)
5: Simulation of V;,, — Vi, Zero, Vyy, from [4] for V;, = 100V, V,,; = 40V,

Figure 2-

6B designate connected/zero stages (odd) and open

The PR parameters used are C), = 4.3nF, C, = 1.4nF, L = 1.4mH,

6W. Numbers 1

stages (even).

and R = 2.41).

and Pout

29

2.3 Operating Ranges

Conservation of energy (CoE) and conservation of charge (CoC) are fundamental
principles that must be met for periodic steady-state (PSS) operation of a PR in a
converter, and are valuable when analyzing any power converter operating in PSS.
By analyzing the energy and charge balance constraints on the PR in steady state,
we can derive the operating range for a switching sequence that satisfies all desired
behaviors (enumerated in Section 2.2), including those necessary for high efficiency.
We refer to the charge transferred by i, during stage n as g, so the charge transferred
in stage 1 is ¢; (preserving the polarity of iz). The sum of charges over all stages

must equal 0 for charge balance on C,.:
G+et+eatau+teast+as=0 (2.3)
Since v, only changes during open stages, the sum of all open stage charges must
also equal O for charge balance on C):
2+ q+q =0 (2.4)
Thus, combining Equations 2.3 and 2.4 requires that the connected stage charges
must also balance:

¢ +q+g =0 (2.5)

The sum of connected stage energy changes must also be 0 for energy balance
over a cycle within the PR. For a general switching sequence with connected stage

voltages Vi, V3, and Vs, energy balance is given by:
Vigi + Vg3 + Vsqs = 0 (2.6)

Combining Equations 2.5 and 2.6, and using the iy polarity constraints to fix the

signs of the charges results in a range of possible V,,;. We will derive the regulation

30

range for the V,,-V,.., Zero, V,,; sequence under both possible i zero crossing con-
straints. To intuitively represent the signs of the charge quantities, we will use their
absolute values. Constraining the 7; zero crossings between stages 3 and 4 requires

q1 >0, g3 >0 and ¢5 < 0, giving:

la1| + |as| = |as] (2.7)

Similarly, constraining the iy, zero crossings between stages 2 and 3 requires ¢; > 0,

q3 < 0 and g5 < 0, giving:

l1| = las| + |as] (2.8)

The connected stage voltages are V;, — Vo, Zero, and V,,;, so to balance PR

energy:
(Vin = Vour) 1] + (0)]gs| = (Vour)[gs| (2.9)
Rearranging gives:
Vou 1
L= (2.10)
Vi 1+ lgs|

Now, we can manipulate the charge balance equations to determine the possible
regulation range. When the ¢, zero crossing occurs between stages 3 and 4, Equation
2.7 requires |q1] < |gs| and thus:

<ol (2.11)

a1
Plugging Equation 2.11 into Equation 2.10 then provides the regulation range of
Vin — Vouwt, Zero, and V,,,; with positive ¢s:

V;)ut
Vin

(2.12)

N | —

0< <

In the other case, when the 7, zero crossing occurs between stages 2 and 3, Equa-

tion 2.8 requires |q1| > |¢s| and thus:

31

~

a5

Figure 2-6: Plot of connected stage charge transfers for V;, — V,., Zero, V., with
Vour < %Vm. The output voltage can be regulated by trading off between ¢; and ¢s.

0< Jas|, <1 (2.13)

a1
Plugging Equation 2.13 into Equation 2.10 then provides the regulation range of
Vin — Vow, Zero, and V,,,; with negative ¢s:

‘/out

<
Vin

<1 (2.14)

N

Equations 2.12 and 2.14 show that V;, — V,., Zero, and V,,; is a step down
switching sequence, with different i; zero crossing constraints required depending
on whether the gain is less than or greater than % Figures 2-6 and 2-7 show how
regulation can be achieved by modulating charge proportions in each case. In these
figures, we assume the open stage charges are negligible compared to the connected

stage charges.

32

q1

~

q3 a5

Figure 2-7: Plot of connected stage charge transfers for V;, — V,, Zero, V., with
%Vm < Vour < V. The output voltage can be regulated by trading off between g3
and ¢s.

33

34

Chapter 3

PR Converter Periodic Steady State

Solution

This chapter introduces the periodic steady state (PSS) analysis techniques that
quantify exactly how a PR-based dc-dc converter operates. First, we use a state
plane visualization to understand the forms that steady state solutions can take.
Then, we present multiple methods to solve for PSS solutions, depending on whether

PR mechanical losses are ignored or considered.

3.1 State Plane Visualization

The state plane is a useful tool for visualizing how the PR’s internal states evolve over
a switching sequence. The state plane plots one state variable against another, and
state plane curves are formed by parameterizing the time domain waveforms. The
state planes we will use to capture full PSS behavior are the i; vs v, and iz vs v,
state planes. The i;, vs v, state plane is most important for understanding switching
sequence behavior. An example of a state plane can be found in Figure 3-1, and the
corresponding time domain waveforms can be found in Figure 3-2. Here, each stage
is represented by a specific straight or curved segment. Every stage’s segment has an
initial point and a final point, where a point refers to the set of state variables (v,

Uy, ir,) at that point in time.

35

ir 9 ir
‘/;n_vvoul, 2
3 1 1 3
Zero
6B 6B
4 Up 4 (%3
6A 0
5)
loa 7
out

Figure 3-1: State plane example for soft-switched sequence V;,-V,.:, Zero, V,,; with
Vin =100 V, V,,;, =40 V, and P,,; = 6 W. Numbers 1-6B correspond to the time-
domain points indicated in Fig. 3-2.

During connected stages, v, is held constant at some combination of +V,,, £V,,
and 0, which we will denote capital V,. L and C, will resonate according to Figure
3-3a/b. On the iy vs v, state plane, connected stages are represented as vertical
line segments since v, is constant, and on the 7;, vs v, state plane, connected stages
are represented with elliptical arcs (or circular arcs with appropriate normalizations),

with a center of (V}, 0).

During open stages, C),, C, and L all resonate according to Figure 3-3c. We define

the series combination of C), and C, as Ceyy:

c,C,

—_— 1
C,+C, (8:1)

Cepy =

On both the v, vs i1, and v, vs iy, state planes, open stages are represented as elliptical
(circular when normalized) arcs. The center point for these arcs on both state planes
is found to be (V}, 0), where V, is the following:

_ Cpupi + Crupy

— SpUpd T i 2
=776 (3.2)

vp; and v, are the initial values of v, and v, for that open stage. More on this

derivation can be found in [4].

36

Lout

=
2
20
—500 |- -
0 L;) 1‘0 1‘5 20

Figure 3-2: Time-domain waveforms for soft-switched sequence V-V, Zero, Vo
with V;, =100 V, V,,, =40V, and F,,; = 6 W. v,; and v, refer to the switch nodes
between S1, S2 and S3, S4, respectively, in Figure 2-4. Designations 1-6B correspond
to the state transition points in Figure 3-1. C,. = 1.4nF, L = 1.4mH, and R = 2.4()

iL iL iL
L L L
+ + +
(o C, vy Cepf__VCefs
R R%
(b)

+

Cr

46
5

(a)

Figure 3-3: Resonant circuits for (a) connected stages, (b) zero stages, and (c) open

R

()

stages.

Certain switching sequence behaviors can also be easily visualized with the state
plane. If the final point of an open stage aligns with the initial point of the following
connected stage, then PR soft charging is achieved. Additionally, if the final point
of the last stage in the sequence is the initial point of the first stage, then PSS is
achieved. Finally, i; zero crossing constraints can be visualized through a stage’s
initial or final point lying on the iy = 0 axis. We will also use the term “corner
variable” to represent a stage’s initial point. For example, the corner variables (v, 2,
Ura, ir2) refer to the initial variables of stage 2 (and equivalently the final variables
of stage 1). Corner variables will be important for setting up and solving for these

PSS solutions in later sections.

3.2 Ideal Steady State Solution

Quantifying corner variables and their exact locations on a state plane requires solving
the six-stage system for periodic steady state. By ignoring mechanical losses in the
PR (equivalently, letting R = 0), we can use the CoC and CoE equations that govern
each stage of the switching sequence to solve for the corner variables. Each stage has
a set of equations that relate its initial variables to its final variables. By equating the
final variables of every stage with the initial variables of the following stage, we can
create a system of equations that represent the switching sequence. We constrain for
PSS by requiring that the final variables of the last stage equal the initial variables
of the first stage.

Connected stages have the following CoE constraint, where v, is fixed based on
the PR’s terminal connections, the initial variables are (V,, v,;, i1;), and the final

variables are (V,, v, ip ¢):

Co(vn; — V)2 + Lit ; = Cp(vey — V,)* + Li} (3.3)

We use a capital V' in V), to indicate this quantity is not a variable but fixed by the
terminal connections, as defined by the switching sequence.

Open stages for the PR have both a CoE constraint and a CoC constraint since C),

38

now participates in the resonance with the PR’s other elements. Thus, they exhibit
the following CoE and CoC constraints, where the initial variables are (V},;, vy, i1.),

and the final variables are (V,, s, v, ir.5):

CV2i+ C V2 + Lit ;= C V2 + C V2 + Li (3.4)

Cp (Vs — Vi) = =Cr (Vioy — Vii) (3.5)

)

Each stage adds two free parameters from its corner variables, v, , and iy, ;. Note
that we assume the connected stage voltages are all known constants, meaning that V;,
and V,,; are fixed before the equations are solved. Additionally, at stage boundaries,
v, is always a known value based on the switching sequence when soft charging is
achieved. Connected stages add one constraining equation, and open stages add two
constraining equations. Therefore, a six stage sequence with three connected stages
and three open stages uses 12 independent variables with 9 equations. However,
each switching sequence also has two 77, zero crossing constraints at stage boundaries,
increasing the number of equations to 11. Switching sequences with a two-part open
stage can be equivalently represented by two consecutive open stages, and thus have 14
independent variables and 13 equations. Notably, there is one unconstrained variable
that defines a family of viable PSS solutions; this variable adjusts the output current

at a fixed V.

These equations can be solved using a numerical or analytic solver. Because the
equations are purely quadratic, the numerical solutions can be quickly calculated and
the MATLAB analytic solver is capable of producing general closed-form solutions.
An example set of equations and their solutions for the V;, — V,.;, Zero, V,,; switching
sequence with V,,; < %Vm can be found in Appendix A.1. Additionally, MATLAB

code that solves these equations can be found in Appendix D.

39

3.2.1 Switching Time Calculations

The time spent during each stage can be computed from its initial and final variables.
All stages form elliptical arcs on the state plane, and these arcs can be transformed
into circular arcs by normalizing the coordinates. Trigonometry can then be used
to compute the arc length, and finally the arc length can be scaled by the stage’s
angular frequency (open or connected) to get the time. The normalization is given
by the stage’s characteristic impedance. The characteristic impedance for connected

stages is:

L
Z0o,conn = \| 3.6
b =\ & (36)

The characteristic impedance for open stages is:

L
Cerr

(3.7)

0,0pen —

The time spent in a connected stage with initial variables (V,, v.;, ir,;) and final

variables (V),, v, s, ir f) is:
4 (i L/C (i L/C:
teonn =V LC, | t Ll =t iy — 3.8
V (” (m—%) o (vm—vp 38)

Similarly, the time spent in an open stage with initial variables (V},;, v,;, i5;) and

final variables (V, f, v f, ir f) is:

topen = / LCefs (tfml <2Lf— ”L/Ceff> —tan™! (ZLZ— ”L/Ceff>> (3.9)

Vo — Vaor Vi — Vi

Refer to [4] for more information on computing ideal switching times. Code for

computing switching times can also be found in Appendix D.

40

3.3 Nonideal Steady State Solution

A more complex computation is necessary to obtain the exact PSS solution when PR
mechanical loss, or R, is considered. A major advantage of the ideal PSS solution is
that its equations are purely offset sinusoids represented by ellipses (or circles) in the
state space and do not require time domain analysis. However, accurately computing
the energy dissipated through R requires knowledge of the current flowing through R

at every point in time, so moving the analysis to the time domain is necessary.

The time domain waveforms are computed from the circuit’s differential equations.
As a reminder, the equivalent circuit diagrams for connected and open stages can be
found in Figure 3-3. Connected stages are described by the following differential

equations:

dvr . ZL(t)
= (3.10)

di, vy(t) — v,(t) — RiL(t)
— = T (3.11)

During connected stages, v, is held constant by the switching sequence at some
voltage V,. Open stages instead have the same equations for v, and i; and the
following additional equation to describe the change in v,:

d i (t
vy __lt) (3.12)
dt Cp

Thus, both connected and open stages form a second order system of linear
constant-coefficient differential equations. The solutions of these differential equa-
tions are damped complex exponentials with the following decay rate and oscillation

frequencies:

=% (3.13)

= —a? 14
WCOTLTL LC,],_ (07 (3)
! 2 (3.15)
Wopen — — .
P LCeff

v, and v, have the same centers of resonance as described in Section 3.1. The
time-domain waveforms are second-order, so they must have two initial conditions
to be uniquely defined. These differential equations can be easily solved analytically
using MATLAB or similar software, and code that accomplishes this can be found in

Appendix D.

Now that we have the general time-domain solutions for connected and open
stages, we can construct a system of equations analogous to the CoE and CoC equa-
tions used in Section 3.2. As before, each stage adds two variables representing the
values of v, and 77, at the beginning of the stage. Now, each stage also adds another
variable t, which represents the exact time duration of that particular stage. The
equations for a stage are formed by setting the initial conditions of the general time-
domain waveforms to be the initial variables of the stage and requiring that the state

variables equal the initial variables of the following stage after ¢, time has passed.

During connected stages, only v, and ¢; resonate, so connected stages only con-
tribute two constraining equations. We denote these equations with the vector func-
tion, which depends on the current time and the stage’s initial variables. The x should

be replaced with the appropriate stage number:

— V;" conn twy V; iy Uriy { K Ur,
Cx(tx, ‘/;?72'7 UT,ia iL,i) = ’ (P L) = ! (316)

ZL,CO’VLTL(tJ}; ‘/;),iy (e ZL,i) L. f

Open stages can be represented similarly to connected stages. However, open
stages contribute three constraining equations since all three states v,, v,, and i,

participate in resonance:

42

Vip.open (ta; Vpyis Uririri) Vs
o) (tai Viis Vrin i00) = | Vyopen(ta; Voir Oriying) | = | vrg (3.17)
iLopen(te; Vs Uris iL) iL,f

We see that, just as in the ideal case, connected stages contribute one more variable
than equation, while open stages contribute an equal number of stages and equations.
A six stage sequence will have 15 equations and 18 variables. Factoring the i zero
crossing constraints brings the number of equations to 17, again leaving a single
free variable. Another set of open stage equations can also be added to represent a
two-part open stage if necessary.

These equations can only be solved numerically, and there is no general closed
form solution. Because these equations are not polynomial, and there are more total
equations, the nonideal PSS solution is much more computationally intensive to solve
than the ideal PSS solution. Numerical solvers based on Newton’s method will not
converge reliably with a random initial guess. To aid convergence and computation
time, an initial guess for the solution can be computed using the ideal PSS solution
and switching times (see Section 3.2). Code that implements and computes the

nonideal PSS solution for a general switching sequence can be found in Appendix D.

43

44

Chapter 4

PR Converter Control

In this chapter, we will propose multiple feedback control schemes for PR-based dc-
dc converters. First, we derive the main control handle for a switching sequence and
operating range by defining the regulating and nonregulating half-bridges. Then, we
present two control methods for the regulating half-bridge and one control method
for the nonregulating half-bridge. We also implement the control for the V;,, — V.,

Zero, V,,; switching sequence.

4.1 Regulating and Nonregulating Half Bridges

We can use the operating range concepts from Chapter 2.3 to get a better under-
standing of how to control PR-based dc-dc converters. We discussed that, using CoC
and CoE equations, the range of possible output voltages can be derived. We also de-
termined that by “trading off” between two specific charge quantities, we can regulate
the output voltage. By analyzing the roles of each switch in maintaining the switching
sequence, we can concretely map switch duty ratios to output voltage regulation.
We will analyze the V;,, —V,.:, Zero, V,,; switching sequence as an example. Figure
4-1 shows the circuit topology, and Figure 4-2 shows the PR and switching waveforms
for the V;,, — V,u, Zero, V,,; switching sequence with V,,,;, < %V;n. As discussed in
Chapter 2.2, S1 and S3 are on during Stage 1, S2 and S3 are on during Stage 3, and

S2 and S4 are on during Stage 5. Figure 4-3 illustrates the connected stage charge

45

| | _I_
| =LY N

V;n <t> 3 L C R 3 :: § Vout
| | +

C
e .
Upl + Up _ Up2 -

Figure 4-1: PR converter topology for switching sequence V;,, — V., Zero, V.. The
PR equivalent circuit as given in 23] is within the dotted lines. Switches are labeled
S1— .54 and the PR terminals are labeled v),; and vps. v, is the PR voltage and iy, is
the current through the PR series inductor.

transfer for the V,,; < %Vm case (neglecting open stages for clarity), and Figure 4-4
illustrates the connected stage charge transfer for the %Vm < Vow < Vi, case. For
the V. < %V}n case, we see that adjusting the duty ratio of the S1-S2 half-bridge
modulates the transition point between ¢; and g3, while the S3-S4 half-bridge’s duty
cycle is constrained by the i; zero crossings. Conversely, in the %Vm < Vour < Vin
case, the half-bridges swap roles, and the S3-S4 half-bridge duty ratio modulates the
transition between ¢3 and gs.

Based on this analysis, we define the terms “regulating half-bridge” and “nonregu-
lating half-bridge.” The regulating half-bridge is capable of modulating the proportion
of charge between two connected stages using its duty cycle, which in turn requires
a change in the output voltage to maintain energy balance. The non-regulating half-
bridge is constrained by the switching sequence’s i;, zero crossings and operates at
a fixed duty ratio (approximately 50%). This half-bridge designation can be applied
to any six-stage switching sequence (along with corresponding iy, zero crossing con-
straints) that can implemented on a topology with two half-bridges, and we will focus
on control for these types of topologies. However, the operating range analysis can
be applied to all six-stage switching sequences proposed in [4].

We name the individual switches within regulating and nonregulating half-bridges

46

Sequence Vi,-Vous, Zero, Vs [4]
6A 16B

100 |- T
80 - Upl

Up
60

120

Voltage (V)

S1 (RP) |,
(=)

$2 (RS)

S3 (NS)

S4 (NP)

0 5 10

Time (us)
Figure 4-2: Simulation of V;, — V,u, Zero, Vi, with V,,; < %Vm with V;, = 100V,
Vouwr = 40V, and P,,; = 6W. The corresponding charge transfer distribution among
connected stages can be seen in Figure 4-3. S1 and S2 form the regulating half-bridge.
The two-part open stage is constituted by stages 6A and 6B, and highlighted in red.
S1 and S4 both change state at the start of stage 6B, so they are designated as RP
and NP, respectively. S2 and S3 are then designated as RS and NS, respectively. The
PR parameters used are C), = 4.3nF, C), = 1.4nF, L = 1.4mH, and R = 2.4Q.

47

5

53 54

Figure 4-3: Plot of connected stage charge transfers for V;, — V,, Zero, V., with
Vour < %Vm. The output voltage can be regulated by trading off between ¢; and g¢s.
S1 and S2 form the regulating half-bridge while S3 and S4 form the nonregulating
half-bridge.

q3 d5

S3 54

Figure 4-4: Plot of connected stage charge transfers for V;, — V., Zero, V., with
%Vm < Vour < Vin. The output voltage can be regulated by trading off between ¢3 and
g5 S1 and S2 form the nonregulating half-bridge while S3 and S4 form the regulating
half-bridge.

48

as primary or secondary based on their relation to the switching sequence’s two-part
open stage. The regulating primary switch (RP) and the nonregulating primary
switch (NP) turn on or off at the transition point between the open stage’s two parts
(i.e., the boundary between stage 6A /6B in this example). The regulating secondary
switch (RS) and the nonregulating secondary switch (NS) are off throughout the entire
two-part open stage. This is further illustrated in Figure 4-2. For a given switching
sequence and operating mode, the physical switches S1-S4 each take the role of one
of the previously named “conceptual” switches. Throughout this chapter, we will use
the “on” subscript to refer to a switch’s on time duration and the “dt” subscript to
refer to the dead time duration preceding a switch’s on time. For example, RP,,
indicates the on time duration of the regulating primary switch, and S24 refers to

the dead time duration before S2 turns on.

4.2 Regulating Half Bridge Control

As described in Section 4.1, a switching sequence’s regulating half-bridge controls v,
with its duty cycle. However, it is not enough to control just the duty cycle; we also
need to control the dead times and switching period to achieve all of the desired high
efficiency behaviors described in Chapter 2.2. We present two control methods for
the PR converter’s regulating half-bridge, named “sensed” control and “static” control.
These general control concepts may be applied to the regulating half-bridge of most

six-stage switching sequences.

4.2.1 Sensed Control

Sensed control is a straightforward strategy in which both switches of the regulating
half-bridge are triggered on by sensed voltage measurements and their on-times are
the primary control variables. This general strategy is proposed in [22] for a switching
sequence catering to high step-down ratios. RP and RS are turned on by sensing the
PR node voltages v,; and v,2. RP is turned on when the i;, zero crossing during the

two-part open stage is detected. In the design implemented in this thesis, the zero-

49

vp-sensed
turn-on

Voltage-regulating
turn-off

7V S-controlled
turn-off

Figure 4-5: Description of switch function and control variables during sensed control.
For the switching sequence of Fig. 4-3, ZVS-controlled turn off refers to controlling
S2’s turn off to allow resonance of v, up to V;,, for ZVS of S1.

Period (T)

RPy RSa

7V S-controlled
turn-on

Voltage-regulating
turn-off

Loss-minimization
controlled turn-off

Figure 4-6: Description of switch function and control variables during static control.
Loss-minimization-controlled turn off refers to maintaining both ZVS and all-positive
instantaneous power transfer (to minimize circulating currents).

50

Yref u
+ PI Controller PR Converter

Sample
and Hold

L Trigger

Figure 4-7: Block diagram describing the feedback loops used in both sensed and
static control. Every PR cycle, the output y from the converter is sampled at the
trigger point, just before the given switch turns on. See Table 4.1 for corresponding
values of ¥, Yres, and u.

current detection relies on implementing the nonregulating half-bridge with diodes,
and sensing the voltage of the diode acting as NP (here, S4). RS is turned on when
its drain-to-source voltage is 0, achieving ZVS of RS. RP,, and RS,,, are controlled
by independent feedback loops. As illustrated in Fig. 4-5, RP,, regulates v,,; to the
desired output voltage V.,.q4, and RS,, ensures ZVS of RP and all-positive instanta-
neous power transfer for maximum efficiency. In periodic steady state, RP,, is a free
control handle for regulation, but RS,, is constrained by the switching sequence’s
desired behaviors.

For the V;, — Vo, Zero, V,; sequence with V,,; < %Vm, RP (S1) is turned on
at the start of stage 6B, where an iy zero crossing occurs. This zero crossing can
be detected by sensing v, which rises above zero when an assumed-diode at (NP)
S4 stops conducting current. This ensures that the controller’s switching signals are
synchronized to the 77, cycle, which is necessary for stable control. The error between
the measured v,,; and desired output V., drives RP,,’s (S1,,’s) feedback loop as
illustrated in Fig. 4-7 and Table 4.1.

RS (S2) is turned on at the beginning of stage 3 when v,; falls to vy, or equiva-
lently when v, falls to 0. To control N P,, (52,,) for ZVS of RP (S1), v, is measured
when the iy, zero crossing determining RP (S1) turn-on occurs. The difference be-

tween that measurement and V,, drives S2,,’s feedback loop. This is also illustrated

51

Control Control Measured Desired Trigger
Method Variable | Output (y) Value (Switch
(u) (Yref) Turn-on)
Sensed (gi’:) Vout Vema
RS, Upt Vi RP (S1)
(20n)
Rpon Vout ‘/cmd
(SLon)
Static RPy Up1 Vi RP (S1)
(S1ar)
RS Up1 Vout RS (S2)
(52at)
T ta Sts
NPy U 0 NP (S4)
(S4ar)

Values correspond to Fig. 4-7.

Table 4.1: Control loop variables for static and sensed control for the V;,, —V, ., Zero,
V,ut sequence with V,,; < %Vm.

Control

Control

Measured Desired Trigger
Method Variable | Output (y) Value (Switch
(u) (Yref) Turn-on)
R-Pon Vout ‘/cmd
(S4,0)
Static RPy Upo 0 RP(S1)
(S4ar)
RSy, Upo Vout RS(S3)
(53at)
T to >ts —
NPy ot Vi NP(ST)
(S1at)

Values correspond to Fig. 4-7.

Table 4.2: Control loop variables for static control for the V;, —

Vout, Zero, Vou
sequence with %V}n < Vour < Vip.

52

in Fig. 4-7 and Table 4.1.

4.2.2 Static Control

Voltage-sensed switching is often used in high-frequency power converters (e.g., [15,
10]), but hardware limitations constrain the upper bound for switching frequency.
Moreover, this approach is susceptible to high-frequency noise, and spurious modes
can also interfere with voltage measurements, causing erroneous switch turn-ons. To
avoid these issues, we propose static control, where the controller instead directly
controls the switching period, duty cycle, and dead times for RP and RS, rather than
inferring them with sensed RP and RS turn-ons.

RP,, is still used to regulate the output voltage as with sensed control, but in
static control, the controller has three other variables as illustrated in Figure 4-6: the

RP dead time RPy, the RS dead time RSy, and the switching period T'.

e RP,, is used to regulate v,,; and is controlled by the error between v,,; and its

desired value (Vpq)-

e RP; and RSy are controlled for ZVS of RP and RS, respectively. The cor-
responding PR node voltage is measured just before the switch turns on, and
error is computed based on the voltage required for ZVS. Specific values depend

on the switching sequence, operating range, and topology.

e T is controlled to align RP’s turn on with the iy zero crossing during the two-
part open stage using the zero crossing alignment error as discussed in Section

4.2.3.

Because the other times are fixed, a change in period amounts to a change in
RS,,. Figure 4-7, Table 4.1, and Table 4.2 describe the feedback loops for each

control variable and the specific values used for the V;, — V., Zero, V,,; sequence.

53

4.2.3 PR Inductor Current Zero Crossing Detection

Aligning the iy current zero crossing with the turn on of S1 maximizes efficiency by
preventing extra circulating currents and reverse power flow to the input. The i, zero
crossing can be detected without relying on sensing by measuring the width of the
v, resonant waveform in a two-part open stage (stages 6a and 6b in Vj,, — Vi, Zero,

Vout)- In the open-circuited PR:

dv iy,
d_tp = —ap (4.1)

Thus, 75, transitioning from negative to positive results in a local maximum for v,,
so detecting this local maximum is equivalent to detecting the desired zero crossing.
Since PRs tend to have high quality factors, v, is approximately sinusoidal during open
stages and is therefore symmetric around the local maximum. Thus, as illustrated
in Figure 4-8, two points on v, with equal voltage must be equally spaced in time
from the local maximum, and the i, zero crossing occurs temporally halfway between
these points. This geometry-based strategy can be used to estimate the temporal
location of the 77 zero crossing with respect to the switching sequence and detect
misalignment as illustrated in Fig. 4-9. This argument assumes that the switch

capacitances are negligible compared to C,, or that they are nearly equal such that

the effective capacitance in stages 6a and 6b are approximately equal.

In the V;,, — Vou, Zero, V,, sequence with V,,; < %Vm, the minimum voltage
level common to both stage 6a and 6b is V;,, — V,;, so the widest symmetric portion
of v, is enclosed by v, = Vi, — Vo. The i zero crossing can be approximated
as occurring temporally halfway between v, rising above Vj,, — v, in stage 6a and
falling back to V;, — v, at the end of stage 6b. This can be practically measured
using the point where v, rises above Vj;, — v, and the point where vy rises to vou
at the end of stage 6b. This method is much less sensitive to noise and interference
from spurious modes than the method used with sensed control since the required

comparator measurements occur where v,; and vy, have steeper slopes.

We note that this method for detecting the iy zero crossing can only be used with

54

T «— 11, Z€ro crossing
‘/in — Vout
Up
- ta
—
S1 gate I Alig‘ned!
Stage 5 Stage 6a Stage 6b Stage 1

Figure 4-8: Plot illustrating how the ¢ zero crossing can be detected by observing
symmetry in v,. In this example, S1’s turn on is exactly aligned with the zero crossing,

so we have t, = tg.

static control and is incompatible with sensed control. For sensed turn-on of S1, the
system must know the zero crossing’s temporal location as soon as the zero crossing
occurs. However, the location of the zero crossing in this proposed strategy is funda-
mentally not known until after the zero crossing occurs. (One could instantaneously
detect the zero current point by detecting the zero crossing of a differentiated version

of v,, but such a measurement is sensitive to noise.)

4.3 Non-Regulating Half-Bridge Control

For V;,,—Vous, Zero, Vi, with V4 < %Vm and the chosen topology, the non-regulating
half-bridge consists of S3 (NS) and S4 (NP) and can be implemented with diodes.
However, to achieve maximum converter efficiency, S3 and S4 may be implemented
with MOSFETs to avoid diode forward voltage drops (i.e., as "synchronous recti-
fiers"); this strategy is commonly utilized in resonant converters. We propose a
synchronous rectifier control strategy intended to accompany static control in Section
4.2.2 such that all four switch signals are generated.

As discussed in Section 4.1, the nonregulating half-bridge operates at a duty cycle
of nearly 50% since it is constrained by the i; zero crossings. Additionally, we note

that the dead times of NP and NS are approximately equal since they both occur

95

T «— 11, Z€ro crossing
‘/in — Vout
 ta
S1 gate H I Misaligned!
Stage 5 Stage 6a Stage 6b Stage 1

Figure 4-9: Plot illustrating how the ¢ zero crossing can be detected by observing
symmetry in v,. In this example, S1’s turn on is misaligned with the zero crossing
and occurs late, so we have t, > %tg. The switching period would be decreased in
response to this misalignment.

Period (7T)

NPy NPy

7ZVS-controlled

turn-on

1], Z€ro Crossing
constrained turn-off

Figure 4-10: Description of switch function and control variables during static non-
regulating control. Duty cycle is 50%. NPy and NSy are equal, and both expressed
as NPy.

after a zero crossing and transfer the same magnitude of charge into or out of C,.
The period of the nonregulating half-bridge will be the same T already determined
by regulating half-bridge control. We can also determine the phase offset of the non-
regulating half-bridge from the regulating half bridge with the two-part open stage:
either NP turns off when RP turns on, or vice versa, depending on the switching se-
quence and operating mode. Using these facts, we can fully specify the nonregulating
half bridge with just one more parameter. By convention, we choose N P, which is

controlled to achieve ZVS of NP (and consequently NS).

Figure 4-10 shows diagram describing switch functions in nonregulating half-bridge

56

control. The specific control parameters used for the sequence V;,, — V,u:, Zero, Vo

can be seen in Fig. 4-7, Table 4.1, and 4.2.

57

58

Chapter 5

PR Converter Control Simulation and

Modeling

Simulations are an important tool for testing and understanding the control meth-
ods described in Chapter 4. This chapter explores several methods for simulating
the dynamic response of the PR converter under feedback control, each with varying
degrees of accuracy and computational complexity required. The simulations are im-
plemented for the V;,, — V., Zero, V,,; switching sequence, but are easily extendable

to other switching sequences.

5.1 Circuit and Feedback Simulation in Simulink

One way to model converter dynamics is to directly simulate the PR converter circuit
and controller. There are many tools for simulating circuits, but we choose to use
Simulink over traditional SPICE simulators because Simulink allows the circuit model
to be easily connected with more general mathematical functions, allowing creation
of a controller model similar to how a physical digital converter would behave. This
method of simulation is the most general purpose because it simulates the circuit

directly, but is the most computationally expensive as a result.

59

|

§ Vout

Figure 5-1: Simulink circuit representation for the converter topology implementing
the Vi, — Vo, Zero, V,, switching sequence.

5.1.1 Circuit Model

The Simulink package “Simscape” is used to create circuit models of various physical
systems, including standard electrical circuits. Simscape allows the circuit to be
created and connected graphically, so a given PR converter topology can be easily
implemented by creating the circuit schematic accordingly. The circuit model is a
Simulink continuous time system, and waveforms of the currents and voltages can be
accessed by other parts of the model.

As in earlier sections, the PR is modeled with the Butterworth Van Dyke circuit
representation of a capacitor in parallel with a motional RLC branch. We represent
the rest of the components as follows: Switches are modeled as ideal switches with
an on-state resistance, and are in parallel with a diode and a capacitor. The input is
an ideal voltage source, and the output is a resistor with a capacitive filter. We also
added a bus capacitor between the input and output. The simplified circuit topology
can be seen in Figure 5-1, and an image as well as other specific details of the Simulink
model can be seen in Appendix E.

5.1 shows the circuit parameters used. The PR values were chosen based on

60

Component Property Value Modifiable
Cp 1.41 nF No
Cr 510 pF No
PR L 8.73 mH No
R 2.3 Q No
Closed Resistance 0.01 Q No
Switch Open Conductance | 1 x 1078 Q7! No
Threshold 0 No
Capacitance 1 pF No
Switch Parallel Capacitor Series Resistance 1x107¢ Q No
Parallel Conductance 0 Ot No
Forward Voltage 0.6 \Y No
Switch Parallel Diode On Resistance 0.3 Q No
Off Conductance 1x10% Q! No
Capacitance 1 uF No
Output Capacitor Series Resistance 1x10°¢ Q No
Parallel Conductance 0 Ot No
Capacitance 1 uF No
Bus Capacitor Series Resistance 1x107¢ Q No
Parallel Conductance 0 Q! No
Input Source DC Voltage 100 \Y Yes
Load Resistor Resistance 500 Q Yes

Table 5.1: Circuit component values in the Simulink Simulation.

impedance analyzer measurements of an APC International Part 1553 resonator. The
values for the switch, the switch parallel capacitor, and the switch parallel diode were
left as the Simulink default values. The output and bus capacitances were chosen
to keep the output voltage ripple at an acceptable level. The input voltage and and
load resistor are denoted as “modifiable” because the values can be changed while the
simulation is running to simulate transients. The other values can only be modified

before the simulation runs.

5.1.2 Controller model

To implement controllers for both sensed and static control modes, we use the control
concepts developed in Chapter 4. We used Simulink’s Stateflow systems to create a
finite state machine that generates the switch signals with appropriate timing. Each

half-bridge can be represented with a four-state finite state machine, where each state

61

Primary Turn Off
. Condition .
Primary On Primary Off
Primary Turn On Secondary Turn On
Condition Condition
Secondary Off Secondary On
Secondary Turn Off
Condition

Figure 5-2: Simulink Simulation Switch FSM. Transition conditions can be seen in
Table 5.2
transition represents a switch being toggled on or off. If we denote the two switches

as the primary and secondary switches, then the states transition as follows:
1. Primary switch turns on
2. Primary switch turns off
3. Secondary switch turns on
4. Secondary switch turns off

The pattern then repeats. The state transitions can be driven by events in the
circuit waveforms or occur after a specific amount of time has passed. Table 5.2
summarizes the state transition conditions for both sensed and static control, and a
diagram can be seen in Figure 5-2. In sensed control, the switches are turned on by
the PR voltage waveforms reaching certain points, while the on times are determined
by the controller. In static control, all of the switch on times and dead times are
determined by the controller. To start up the simulation, the FSM operates in the
static control mode, except that switching times are a fixed to a predetermined PSS
solution computed with the methods in Chapter 3. The simulation will run until PSS

is reached, then the FSM changes operation and the feedback loop begins operation.

62

’ Control Mode ‘ Transition ‘ Condition ‘

Primary Turn On When vy >=0
Sensed Control Primary Turn Off After RP,,
Regulating HB Secondary Turn On | When v,1 <= oy
Secondary Turn Off After RS,,

Primary Turn On After RPy
Static Control Primary Turn Off After RP,,
Regulating HB Secondary Turn On After RSy
Secondary Turn Off After RS,

Table 5.2: Simulink Controller Switch Transition Conditions

Continuous-time PI compensators are used to determine the switch on times from
the circuit waveforms. The output voltage is already filtered by the output capacitors,
so the output voltage error waveform can be used directly. For ZVS correction,
sample-and-hold modules are used to capture the value of the a voltage waveform just
before the corresponding switch turns on. The sampled-and-held ZVS error waveform
is then used to drive the PI compensator. For implementing the zero crossing detector,
integrators are used as timers, and the zero crossing offset error is computed every
cycle, and stored with a sample and hold. The specific Simulink block diagrams for

each of the switch on time feedback systems can be found in Appendix E.

5.2 Piecewise Linear Numerical Simulation

Another method for simulating converter dynamics involves modifying the CoE and
CoC system of equations that were used for modeling steady state operation in Chap-
ter 3.2. Rather than using the CoE and CoC equations to solve for a specific steady
state solution, they can instead be applied to a set of initial conditions to determine
the state evolution over a single PR resonant cycle, as determined by the switching
sequence. This process can then be repeated for the desired number of resonant cycles
to compute converter dynamics. This method of simulation is much faster than the
circuit simulation techniques used in Section 5.1, however its use is more limited.
This simulation implements a modified version of sensed control where only RP,,

control is used, and RS,, is automatically solved for so ZVS is perfectly reached

63

V;n - ‘/;)utu Z6T07 ‘/out

Get Initial AT |
Conditions ,’: !

S Stage 6B E

Compute S1,, i E E
Feedback Loop K ! :

," E Stage 2 E

Compute . E !
Switching Sequence [\ : :
\ : Stage 3 i

Compute B : |
Charge Transfers & \ : Stage 4 !
State Durations ‘\‘ ! :
Compute “‘ E - E
New vy - :

Figure 5-3: Block diagram for Piecewise Linear simulation procedure.

64

during the two part open stage. The evolution of the PR is based on the CoE
and CoC equations that correspond to the switching sequence. The output voltage
is represented by a resistive load with an output capacitor. Every cycle, RP,, is
computed based on the error between the current and desired output voltage. During
every iteration of the simulation, the following procedure, which is also illustrated in

Figure 5-3, is followed:

1. Compute the current RP,, based on the V,,; error.
2. Simulate the PR states across a single switching sequence using CoE and CoC.

3. Determine the connected stage charge transfers and switching times for all

stages.

4. Compute the new value of V,,; based on charge transfers and output current

draw.

5. Repeat as desired.

To simulate the switching sequence over a PR cycle, we start with the corner
variables for a predetermined stage, then compute the corner variables following every
state until we reach the starting state again, now with an updated set of corner
variables. If we choose the starting state to be one with an i zero crossing, then only
one variable is required to represent the current PR state, v,. Open stages provide two
equations, one CoE and one CoC, so the corner variables of the following connected
stage are uniquely determined. Connected stages only provide one equation, modified
CoE, so another constraint is necessary to solve for the corner variables of the following
open stage. The possible constraints are a time duration for the stage, an i; zero
crossing occurring at the end of the connected stage, or constraining for ZVS at the
end of the following open stage. At least one connected stage must use the time
duration constraint. Once the corner variables for a switching cycle or known, the
charge transfers and switching times can be computed using the same methods as

described in 3.2.

65

For a specific implementation using the V;,, — V., Zero, V,+ sequence with V,,; <

%V}n, we can use the following constraints:

Starting stage is Stage 6B

Stage 1 is constrained by time duration

Stage 3 is constrained by an ¢; zero crossing

Stage 5 is constrained by achieving ZVS at the end of stage 6A

A feedback loop based on the V,,; error computes S1,, every cycle, and the t;
can be calculated by subtracting tgg from S1,,, which is used to determine stage 1.
Stage 3 is determined using the fact that iy 4 = 0. Finally, Stage 5 and Stage 6A are
solved in parallel so that V,¢p = Vi,, ensuring exact ZVS. (An alternate simulation
could implement full sensed control by adding an additional feedback loop for S2,,
and constraining Stage 5 by taking t5 = S2,, —t3 — t4.) Figure 5-3 further illustrates
this procedure.

The following equations implement the PI compensator for S1,,, where S1,, jn: is
the integral component of S1,,, Kp is the compensator proportional coefficienct, K
is the compensator integral coefficient, 71" is the period of the current cycle, and V4

is the desired output voltage:

Slon,int = Slon,int,prev + KI x T x (Uout - ‘/cmd) ; (51)

Slon - Slon,int + KP X (Uout - ‘/cmd) ; (52>

As mentioned earlier, the output of the converter is a resistive load and a capacitive
filter, which can be represented with a single state variable. Every PR cycle, the load
resistor will draw a quantity of charge based on V,,;, and the PR will send a certain
quantity of charge based on the switching sequence. For V;,, —V,;, Zero, V,,;, charge

quantity |q1| + |gs| is sent to the output, and the change in V,,; can be computed

66

Tpfmmmme e ool

q1 q2
qe6b q3

~

q4 d6a t

Sl,,
qs

Figure 5-4: Plot of the “amplitude of resonance” approximation of i, for the V;, — V.,
Zero, V,,; switching sequence with V,,; < %Vm. Each charge quantity is numbered
with its corresponding stage. Open stage charge quantities are colored red. In each
half period, the total charge transferred is % and the charge magnitude transferred
in open stages is C,Viy,.

with the following equation, where C,,; is the output capacitance and Rj,.q is the

load resistance:

1 Vi
Mo = o (Il + e = 52) (5.3

We assume V,,; can be approximated as constant over a single PR cycle.

This procedure can then be repeated as many times as desired to simulate con-
verter dynamics. The number of PR cycles can be converted to time by storing the
period of every cycle. To simulate the effects of a V4 or Rj..q step, the value can

easily be changed at the desired point in time.

5.3 State-Space Model

Taking another approach, we can derive an approximate continuous-time state space
dynamic model by using the Amplitude of Resonance (AoR) model [4]. The AoR
model approximates the PR inductor current, i, as sinusoidal and relates the total

charge magnitude transferred via iy during the PR’s resonant cycle to the amplitude

67

of 77, which we denote I;. This is illustrated in Figure 5-4, and more details about

the AoR model can be found in [4].

A simplified dynamical state space model can be constructed for the PR converter
with two states: v,,; and I;. To derive this model, we assume that the PR is ideal,
RP,, is the only control variable, and the other switching parameters are chosen to
ensure exact ZVS, soft-charging, and all-positive instantaneous power transfer. We
also assume that 7' is a constant, which is justified because the frequency range of
a PR’s inductive region (i.e., the operating region for which ZVS can be obtained)
is relatively narrow. (This approximation is also made in other developments using
PRs, e.g., [6].) Finally, we assume that I, and v,,; are constant within a single PR

resonant period.

5.3.1 State Equations

We will now derive the state equations governing the V;,, — Vo, Zero, V,,; switching

sequence with V,,; < %Vm. Equations (5.4) and (5.5) describe the state evolution of

Vot and I
dvout _ 1 |C]1| + |(]5| . Vout (54)
dt Oout T Rload
dl 1
d_tL = m ((Vin = Vout) |@1] — Vout|q5]) (5.5)

These equations are in terms of |¢;| and |gs|, the charge quantities transferred by i,
during stages 1 and 5, respectively, and the following assumed constants: the output
capacitance C,y, the load resistance Rj..q, the PR static capacitance C,, the PR

motional inductance L, and the switching period T'.

(5.4) is derived from charge balance on the output capacitance. Every switching
period, the PR delivers the charge quantity |q1| + |¢5] to the load. Thus, the average

PR output current over a switching period is:

. 1|+ {g5
YPR,avg = % (56)

68

Additionally, the current drawn by the load is:

. Vout
Uoad = 5.7
toad Rload ()

The average current into the output capacitor is then the difference between these
two current quantities, giving an equation for the time derivative of v,,;. This ap-
proximation is valid when the output capacitor is large enough that v,,; does not
change significantly during a single PR period, and when the PR output current’s

temporal distribution across the switching period is not relevant.

(5.5) is derived from energy balance on the PR. During stage 1, the source-load
system delivers an energy quantity of AE; = (Vi — Vout)|q1] to the PR, and during
stage 5, the source-load system extracts an energy quantity of AF5 = vyu|gs| from

the PR. Thus, the time derivative of the energy stored in the PR is:

dEstored _ (‘/zn - vout)|q1| - Uout|q5|
dt T

(5.8)

Assuming the PR is ideal, we can also approximate the energy stored in the PR based
on the amplitude of resonance model. If the peak PR inductor current is I, then the

peak energy stored in the PR is approximately:

1
Estored - éL[%, (59)

The time derivative of energy can then be related to the time derivative of I by

dEstored d(%LI%) d[L
— = LI, —= 5.10
dt dt Loat (5.10)

(5.5) is then produced by combining (5.8) and (5.10). This approximation assumes
the change in energy stored in the PR capacitances is negligible compared to the

change in energy stored in the PR inductor when iy, is at its peak.

69

5.3.2 Charge Transfer Quantities

We can derive expressions for |¢1| and |gs| as functions of Iy, vgu, control handle
S1,,, and the same constants by integrating the appropriate segments of the assumed-

sinusoidal i; waveform:

TI 2
= (1o (1)) = G o
TI
|g5| = —WL — CpVin (5.12)

The charge transfer required during each open stage is determined by the switching

sequemnce.

(5.11) is derived by integrating iy, over stages 6b and 1, then subtracting the charge
transfer during stage 6b to arrive at the charge transferred in stage 1. S1 turns on
at the iy, zero crossing and is on for the full duration of stages 6b and 1, so this total
charge transfer is a direct function of S1,,. (5.12) is derived by integrating i; over
stages 4, 5, and 6a and subtracting the open stage charge transfer. Since we assume
that exact ZVS is achieved, the total open stage charge transfer in stages 4 and 6a

must resonate v, from 0 to Vj,.

5.3.3 Model Validation

The state space equations in (5.4) and (5.5) can be linearized around an operating
point to simplify their analysis. An operating point consists of an input and output
voltage, a load resistance, and a switching period. The switching period can be
calculated from the PSS solutions described in Chapter 3. The linear state space
model can then be connected in feedback with a PI compensator to model its closed-

loop behavior. The linearized equations are as follows:

70

AVt C, 1
— Vou
dt (CoutT * RloadCout> '

3 — cos (%”STO”) ~

eC I, (5.13)
+ CZT sin (%%) Slon
% = <ﬁ cos (2%510“) - QjL + 222%t> Vout
+_%?§g (5.14)
TL[L_
+ Vin — Vour ;LVOM sin (Q%STM) Slon

Code that creates the linearized state space equations and connects the system in
feedback can be found in Appendix G.

To validate the state space model, we compare it to the piecewise linear model
described in Section 5.2. Fig. 5-5 shows a comparison of the ideal simulator to
the state space model after a step in V,,,s. Both simulations used the same PR
parameters, input and output voltages, output capacitance and load resistance, and
feedback coefficients. The state space model is linearized around the starting point of
Vin and Vg, ;. These values, along with the 7" used with the state space model, can

be found in Table 5.3.

71

Parameter | Value
C, 1.41nF
C, 510pF

L 8.73mH
Vi 100
V;Jut,i 40
‘/out,f 41
C1out 111F
Rioua 244
K, 500e-6
K; .2be-6
T 13.1ps

Table 5.3: Values used in the Piecewise Linear Simulation and the State Space model
comparison.

1 . . .
0.81 1
< 061]
3
> 04} 1
0.2 —— PR Converter Simulation i
Linearized State Space Model

U i 1 i 1 i

0 0.5 1 1.5 2 2.5 3

Time (s) <1073

Figure 5-5: Comparison of the linearized state space model to a simulation of the PR
converter with S1,, feedback. Response to V,,q step of 1V with parameters from

Table 5.3.

72

Chapter 6

PR Converter Hardware

Implementation

This chapter covers an implementation of a prototype PR-based dc-dc converter. We
will discuss the circuit and its capabilities, the components used, and how to interface

with the converter.

6.1 Circuit Description

We implemented the circuit topology described in Chapter 2 on a two-layer 1-oz
copper PCB. This topology is primarily capable of realizing the V;,, — V., Zero, Vou:
switching sequence, but it also supports the V;,, Vi, — Vour, Vour switching sequence.
An image of the PCB can be found in Figure 6-1, and a schematic of the primary
converter circuitry can be found in Figure 6-2. A complete schematic, bill of materials
and board layout is shown in Appendix B. PRs can be mounted upright or laid flat on
the copper pad, depending on their size. Details of operation with a specific PR can
be found in Chapter 8. S1 and S2 are implemented with GaN FETs. S3 and S4 are
implemented with discrete diodes in parallel with GaN FETs, providing support for
both switching sequences in their full range of operation. Based on switch tolerances,
the converter supports a maximum input voltage of 400V and a maximum output

voltage of 200V.

73

Figure 6-1: Picture the PR converter printed circuit board.

S1 52

iin l_n_l _ i(yt
vl
+ T 93 +

V;n — out Vout

® °]

Figure 6-2: Circuit schematic of the main converter topology implemented on the
prototype PCB. The PR terminals are connected to v, and vp.

74

Component Value
Switches EPC2019 GaN FETs
Diodes On Semiconductor NSTA4100
Gate Drivers Texas Instruments UCC27611
Input Capacitance 45pF
Output Capacitance 115pF

Table 6.1: Components used in the PR dc-dc converter prototype.

All of the switches are driven by isolated gate drivers, allowing external gate signals
from a controller to be ground referenced. All gate drivers are tied to their respective
switch’s source node, and a boostrap diode and capacitor are used to power the S1
and S3 gate drivers. An isolated and v,,; referenced 5V supply is required to power
the S1 and S2 gate drive circuitry, and a ground referenced 5V supply is necessary to
power the S3 and S4 gate drive circuitry.

A list of important components can be found in Table 6.1.

6.2 Converter Interface

There are several plugs and header pins on the board, which allow for easy connection
of the converter to power supplies and controller circuitry. The three large plugs are
for connecting the input power supply, the isolated 5V supply for driving S1 and S2,
and the load. The header pins provide the inputs for the isolated gate signals and
the 5V power supply for S3 and S4’s gate drive circuitry. Appendix B.2 shows the

pinouts of all ports and headers on the controller.

1)

76

Chapter 7

Feedback Controller Hardware

Implementation

This chapter will cover the specifics on how the control concepts from Chapter 4 can
be implemented on a microcontroller and used to control the prototype PR-based dc-
dc converter described in Chapter 6. First, we will introduce the important features
of the microcontroller. Next, we will explore in detail how all of the hardware features
of the microcontroller can be configured to set up the control system. Finally, we will
explore the specifics of the code and how controller operation can be configured. The

full code and configuration information can be found in Appendix H.

7.1 Microcontroller

The microcontroller used is the Texas Instruments (TT) TMDSCNCD28379D Con-
trol Card paired with the TMDSHSECDOCK docking station for easy access to the
microcontroller pinout and space to add additional circuitry. An image of the mi-
crocontroller can be seen in Figure 7-1. This microcontroller was chosen because it
has most of the features needed to implement a full digital controller built in. The

relevant features are:

e 32-bit CPU with floating point arithmetic and other advanced math capabilities

7

- Microcontroller PRJ Converter

Figure 7-1: Photo of the microcontroller connected to the prototype PR converter.

200MHz clock frequency

3.3V 10

Twelve highly configurable and independent PWM outputs

Four 12-bit analog to digital converters (ADCs)

Eight configurable and high speed comparators

Four Configurable Logic Blocks (CLBs), which allow for simple custom digital

logic

The microcontroller’s PCB has a cartridge slot pinout on the bottom, meaning
that it can be easily be connected to a custom PCB, or in our case, the docking station.
The docking station was used because it makes all of the microcontroller pins easily
accessible, allowing easy prototyping, interfacing with and space for implementing
the required sensing circuitry, and reconfigurability if changes to the implementation

are required.

78

The microcontroller can be programmed using the C programming language and
TI’s C2000Ware library. The code is written using the TI Code Composer Studio
(CCS) IDE, which has built in support for C2000Ware, compiling the code, and

uploading it to the microcontroller.

7.2 Gate Signal Generation

The primary input to the PR converter are the gates of the four switches. The
enhanced Pulse Width Modulation (ePWM) modules on the microcontroller are used
to generate these gate signals with precise timing and minimal software intervention.

The ePWMs can be thought of as advanced counters that can be used to generate
an output signal with various shapes. The counters can be configured to count up,
down, or up-down (where the counter counts up then down), and will increment or
decrement the count every clock cycle. At a 200MHz clock frequency, this gives a
time resolution of 5ns. It is most convenient to use the count-up mode because it
allows the switch on-times to be most easily specified.

The ePWMs have several internal registers used for tracking and maintaining the
count. The period register sets the maximum count, which determines when the count
resets back to 0. This is used to directly set the switching frequency. The Counter
Compare registers are used to perform actions when the count reaches specific values.
This is used to set the on times of switches, and to generate signals at specific times
to trigger other hardware, like ADC measurements.

Since we need to use four ePWMs, one for each switch on the converter, we need
to ensure the gate signals are properly offset in time for correct converter operation
and to avoid issues like switch shoot-through. We can accomplish this using the sync
and phase shift features of the ePWMs. Each ePWM has a number assigned to it.
The twelve ePWMs are labelled ePWM1, ePWM2, and so on up to ePWM12. The
ePWNMs are split into four groups of three modules, and the first in each group (1, 4,
7, 10) can generate sync signals which pass to all higher numbered ePWMs. When an

ePWM receives a sync signal, it will reset its counter to its phase value. This allows

79

Counter Compare Action
CTR =0 Set Output High
CTR = CMPA Set Output Low
CTR = CMPC | ADC Start Of Conversion

Table 7.1: Static Control ePWM Counter Compare Actions

multiple ePWMs to be offset in phase from each other while ensuring they do not
drift over time.

Additionally, the ePWMs support shadowing, which means that when the ePWM
register values are changed, the values are first loaded into a second set of registers
which buffer the values until a specific condition is reached. This allows consistent
updating of the ePWM values from the code without having to worry about when
exactly the code executes relative to the ePWMs. The ePWMs are configured to load
from the shadow registers either when the count overflows or a sync signal occurs.

The following subsections detail the specific ePWM configurations necessary to
implement both static and sensed control. Each control mode has specific ways of
configuring three main aspects: the Counter Compare actions, Counter Compare
registers, and sync behaviors. Code for both static and sensed control can be found

in Appendix H.

7.2.1 Static Control Configuration

Static control uses the counter compare actions found in Table 7.1 for all ePWM
modules. Because the ePWMs are configured in count-up mode, the output will be
set high when the counter equals 0, and low when the counter later reaches CMPA.
This means the switch on-time is configured by setting CMPA to the desired value.
When the counter equals CMPC, the ePWM creates an internal signal that can trigger
an ADC module conversion. This is used to take voltage measurements at precise
points in the switching sequence.

To fully specify the output signal timing for each ePWM, we need to configure
the period, the CMPA register, and the Phase register. The five parameters available
for configuring the ePWMs are T, RP,,, RPy, RSy, and N Py. (See Chapter 4 for

80

. Physical Switch
Conceptual Switch (Vour < 1/2Vin) | (Vo > 1/2Vin)
RP ePWMI (S1) ePWM4 (S4)
RS ePWM2 (S2) ePWM3 (S3)
NP ePWM4 (S4) ePWMI (S1)
NS ePWM3 (S3) ePWM2 (S2)

Table 7.2: Static control switch functions for the V;, — V., Zero, V. sequence.

more information on these parameters.) For simplicity, we choose to align all of the
timing with one of the switch transitions at the stage 6A /6B boundary during the
two-part open stage. This allows each the timing of each half bridge to be specified
only with its own parameters and T'. Additionally, there are two possible modes that
the switch waveforms can take, and they are applicable to many sequences in [4] with
two-part open stages. Both modes are controlled identically, and only dictate the
relative offsets of the regulating and nonregulating half-bridges. In Mode 1, RP turns
on during the two part open stage (e.g., Vin — Vow, Zero, Vo with Vi, < %Vm, in
which RP is S1), and in Mode 2, RP turns off during the two part open stage (e.g.,
Vin = Vout, Zero, Ve with Vi, > V0 > %Vm, in which RP is S4). Mode 1 corresponds
to Figure 7-2 illustrates the switch waveforms in Mode 1, and Figure 7-3 illustrates

the switch waveforms in Mode 2.

The above configuration can easily be used with the V;, —V,.:, Zero, V,,; switching
sequence with both V,,; < %Vm and Vi, > %Vm. When V,,,; < %Vm, the gate signals
should be in Mode 1, and when V,,,; > %Vm the gate signals should be in Mode 2. This
is because the two half bridges exchange regulatory roles across this boundary. Table
7.2 defines what role each physical switch takes when using this switching sequence.
We chose to connect each ePWM to the correspondingly numbered physical switch
for simplicity. Because S1 always turns on during the two-part open stage, ePWM1
can be configured to always output its sync signal when its counter equals 0, ensuring

proper switch alignment.

The ePWM register values can be found in Table 7.3 for Mode 1 and in Table
7.4 for Mode 2. As mentioned earlier, CMPA is configured with the switch on-time.

Phase is configured to offset the switch turn-on points from each other appropriately.

81

| RSy RPy
= e z z S
RP RP,, | . |
Gate |7
RS : : : : :
Gate — L
NPy NPy
—: : : e B
NS
Gate
NP
Gate 5 5 5 5 ! 5 -
I I I I I I =
6B 1 2 3 T 4 5 6A pt
2

Figure 7-2: Static Mode 1 Switch Waveforms. Used with V;,, — V., Zero, V,,; with
Vour < %V;n. The switch transition between stages 6A and 6B during the two-part
open stage occurs at the left and right edges of the plot.

Switch CMPA Phase
RP RP,, 0
RS T—-RP,,— RP;; — RSy | T — RP,, — RSy
NP T/2 — NPy T/2 — NPy
NS T/2— NPy T — NPy

Table 7.3: Static Control ePWM Mode 1 Register Configurations

82

RSy

RP
Gate

RPy
ey

RP,,

RS
Gate

~

NS

NPy
e I

NPy,

Gate

NP
Gate

~

6B

i
20 3
2

i \
GA ot

Figure 7-3: Static Mode 2 Switch Waveforms. Used with V;,, — V., Zero, V,,; with
Vot > %Vm. The switch transition between stages 6A and 6B during the two-part
open stage occurs at the left and right edges of the plot.

If the switch is supposed to turn on x amount of time after the two-part open stage

switch transition, then phase should be set to T'— z. This is because when the sync

occurs, Phase is loaded into the counter. The counter will then count up to T' after

T — (T — z) = z time, causing the counter to reset to 0 and the output to be set high.

The sync mechanism is primarily used to maintain the relative timings of all of

the ePWMs. No external syncing is used or required. Since sync signals can only be

passed from lower numbered ePWMs to higher numbered ePWMs, ePWM1 is used

Switch CMPA Phase
RP RP,, RP,,
RS T — RP,, — RP;; — RSy | T — RSy
NP T/2 — NPy 0
NS T/2— NPy T/2

Table 7.4: Static Control ePWM Mode 2 Register Configurations

83

Manually configured

Automatically synced

Figure 7-4: Static Sync Diagram

as the sync signal generator. Due to the way the ePWM modules were designed,
ePWNMs 2 and 3 automatically accept the sync signal from ePWMI1, and ePWM4
needs to be specifically configured to respond to ePWM1’s sync signal. To ensure
proper alignment with the Phase configuration above, ePWM1 should be configured
to output its sync signal exactly when the switch transition during the two-part open

stage occurs. The sync signal configuration can also be seen in Figure 7-4.

7.2.2 Sensed Control Configuration

Sensed control uses the counter compare actions found in Table 7.5 for all ePWM
modules. Similarly to static control, the on-time of switches is configured by setting
the CMPA register. However, the output will only be set to high upon a sync event;
the output will remain low if no sync event occurs. The Phase register is always set
to 0, so that sync events reset the counter to 0. This allows the ePWM modules to
act in a “one-shot” mode, where they turn on for a fixed on-time upon a sync event.
By configuring the sync events to be triggered by other hardware, sensed switch turn
on can be achieved. Figure 7-5 illustrates this sync signal configuration.

Sensed control can be used with the Vj,, — V ., Zero, V,,,; switching sequence only

with V,,; < %V;n. S3 and S4 must also be implemented with diodes. Table 7.6 defines

84

External Sync External Sync

Figure 7-5: Sensed Sync Diagram

Counter Compare Action
CTR = PERIOD | Set Output Low
CTR = CMPA | Set Output Low
Sync Event Set Output High

Table 7.5: Sensed Control ePWM Counter Compare Actions

what role each physical switch takes when using this switching sequence.

Because the ePWMs are independent and triggered on-the-fly in sensed control,
some additional considerations are required. First, protection needs to be added to
prevent the ePWMs from both triggering at the same time, causing switch shoot-
through. This can be accomplished using ePWM TripZone features to shut off the
ePWNMs if shoot-through occurs and the microcontroller’s Configurable Logic Block
to enforce proper switch triggering. Additionally, the ADC measurement required for
ZVS control requires a feed-forward timing prediction. This can be accomplished by
measuring the current switching period and predicting that the period will remain
nearly constant between consecutive cycles. This method can be subject to errors

from noisy triggering and during transients.

Physical Switch
(‘/:)ut < 1/ 2‘/177,)
RP ePWMI1 (S1)
RS ePWM2 (S2)

Conceptual Switch

Table 7.6: Sensed control switch functions for the V;,, — V., Zero, V., sequence.

85

o Udiv

Figure 7-6: Sensing buffer circuitry, implemented with a TLI74IN op amp. See Table
7.7 for component values.

7.3 Sensing Implementation

The microcontroller also needs to know the current state of the PR converter to
implement the full feedback loop. To accomplish this, the three main outputs from
the PR converter, vy, vp1, and vy need to be scaled down to the 0V-3.3V range to

work properly with the ADCs and comparators on the microcontroller.

7.3.1 Buffer Circuitry

It is important that the buffer circuitry has minimal impact on the operation of the
PR converter while still being powerful enough to drive the capacitances of the ADCs
and comparators. To accomplish this, we use a buffer-connected op-amp driven by
a resistive divider to scale down the voltages from the PR converter. The positive
supply of the op-amp is +5V, and the negative supply of the op-amp is -3V. The
resistive divider was originally designed as a three way resistive divider between the
input, 0V, and +5V, which adds a fixed offset to the output of the divider. This was
intended to avoid saturation of the negative supply rail at 0V, but since the op-amp
saturated regardless, the negative supply was lowered to -3V, meaning the modified
resistive divider is no longer necessary. The circuit diagram of the buffer circuit can

be seen in Figure 7-6.

86

Component | Value

R, 180kQ2
Ry 100k2
Rs 12k

Rips 15kQ

Ripa 9.1k
CLp’l 1000pF
CLP’Q 470pF

Table 7.7: Component values used in the sensing buffer and low-pass filter circuitry.

The op-amp used is the Texas Instruments TLI74IN op-amp, which has a gain-
bandwidth product of 12MHz. This op-amp has a low output impedance suitable for
driving the microcontroller ADCs and is capable of effectively buffering the v,; and

vp2 waveforms up to 500 kHz.

The output of the resistive divider will be of the following form:

1 1 1\ /v, 5V
I - I 7.1
v (R1+R2+R3> <R1+R2) (7.1)

If the resistive connection to V5, = 45V is omitted, then the formula simplifies to

_ R
Ry +Rs '

Vdiv =

(7.2)

The sensing circuitry was initially designed to work with a maximum voltage
of 50V. The resistor values used can be found in Table 7.7. The same resistor
dividers were used for vy, vp1, and v,e so that they would have identical scales from
the perspective of the microcontroller. These resistor values give the following gain

equation:

Viin = 0.05610; + .505V (7.3)

These resistor values give a minimum voltage of .505V and a maximum of 3.31V
when V; = 50V. Additionally, the magnitudes of the resistors were made large enough
so that the power dissipation from the PR converter would be negligible. The power

drawn from each switch node is the following;:

87

+5V

Rrpo

»——o Udiv

Crp2 ——

Figure 7-7: Sensing buffer circuitry with low-pass filter, implemented with a TLI74IN
op amp. See Table 7.7 for component values.

V1 — Udiv

- (7.4)

P diss — U1
The maximum instantaneous power draw with 1} = 50V is 13mW. Actual average
power draw can be computed from the v, and vy, waveforms and Equation 7.4.

Average power draw for 30V-18V operation is approximately 4mW.

The output of the buffer for v, is further filtered to remove high frequency
noise, including switching ripple. A Sallen-Key low pass filter topology was used.
This topology is an active, second order filter, and it was designed to have a cutoff
frequency of 19.9kHz and a quality factor of \/Li This cutoff frequency is well below
the minimum switching frequency we used, or about 75kHz. A schematic of the low
pass filter buffer circuit can be seen in Figure 7-7, and the component values can be

found in Table 7.7.

Three sensing buffer circuits were implemented on the microcontroller docking
station protoboard. The buffer circuit for v,,; uses the low-pass filter buffer, while
the buffer circuits for v,; and v, do not. Figures 7-8 and 7-9 show images of the front

and back of the docking station, respectively.

88

NN N rl)'?’) -+ i‘ *
VRURSOFEEREFRRRARRREFRRRRFE

(X OO OO O OFt N O

O Ok O O
~?£ OOOOOOOOOOO
(e 0020000000
0,000 0%
: MO Lc: I
IA’)OOOOC,\DOOOOO"
) F‘O'OOV:\,‘J C

Figure 7-9: Picture of the sensing circuitry, back side.

89

00000009

00000000
0000000
20000000

["J0000000

JOOOOOO

7.3.2 ADC and Comparator Configuration

As part of the microcontroller’s analog subsystem, there are four ADCs and eight
comparator units. The ADCs and comparators are connected so that an ADC and
a comparator can both read from the same pin simultaneously. The outputs of the
three buffers for vy, vp1, and vy are connected to an ADC and comparator in this

fashion, though the comparators are only actively used for v,; and vje.

As described in Section 7.2, ADC conversions are automatically triggered at spe-
cific points within the switching cycle. To implement the ZVS correction feedback
loops, the ADCs are used to measure v, and v,e “just before” the switches turn on.
Here, we can more precisely define “just before” by starting the conversion such that
the sample and hold interval will complete one clock cycle before the ePWM turns its
switch on. The measurement of V,,; is configured to occur at the same "just before"
S1 turns on used to correct for ZVS of S1. It should be noted that where exactly the
measurement of v,,; is made is arbitrary since the waveform is heavily filtered. The
microcontroller manual indicates that, when using multiple ADCs simultaneously,
higher performance is achieved when the ADC operations overlap exactly. For this

reason, v,,;'s ADC is configured to overlap exactly with another measurement.

The comparators are used to quickly respond to the v, and v,, waveforms reach-
ing certain points. The comparator outputs are used with the Zero-Crossing Detector
in static control and to trigger switch turn-ons in sensed control. The positive ter-
minals of the comparators are connected to v, and vy, and the negative terminals
are configured to use the internal comparator DACs. These DACs allow the com-
parison voltage to be set internally with software, allowing for easy modification of
the comparator functions. Additionally, the comparators are configured to have hys-
teresis and a digital filter. The digital filter will only change the output if a certain
threshold of comparator samples are a high or low. To balance between speed and
noise elimination, we set the digital filter to use the threshold of two out of the last

three samples.

90

7.4 Zero Crossing Detector

As described in Chapter 4, the zero crossing detector (ZCD) needs to measure the
width of the two part open stage (t¢g) and the point where the switch transition
occurs (t,). A robust method to measure these two quantities is necessary for effective
frequency control of the PR converter. Since the time instances can all be represented
with either a comparator rising edge or and ePWM counter compare signal, we can
use the microcontroller’s Configurable Logic Block (CLB) to implement the ZCD.
The CLB can be used to implement custom but quite limited digital logic functions.
There are four CLB “tiles,” and each has three counter modules, three finite state
machine (FSM) modules, three input lookup tables (LUTs), and 8 output lookup
tables. Additionally, there is a high level controller (HLC) module which can be
programmed with up to 8 instructions which run after certain events are triggered.
The precise CLB configuration used to implement the ZCD can be found in Appendix
H.

To implement the ZCD, two counter modules are used as timers, and the finite
state machine modules are used to control the inputs to the counters. The counters
will increment their count every clock cycle where they are enabled. To measure
the time interval between two events, we use the finite state machines to enable
the counters when one event occurs then disable the counters when the next occurs.
Finally, the HLC will copy the final counts from the counter modules and place them
in code-accesible registers. A block diagram of the system can be seen in Figure 7-10.

There are five inputs to the ZCD:

1. Start Pulse
2. « Pulse
3. [Pulse
4. Reset Pulse

5. Latch Pulse

91

Start Pulse ——| Edge Detector

a Pulse _|—>

_Ja Input LUT — a Flip Flop Ji)-
£ Pulse —‘

L $ Input LUT — B Flip Flop _)-

Reset Pulse —

Latch Pulse —— HLC

Figure 7-10: Block diagram describing the implementation of the ZCD using the CLB.

Each pulse either comes from a comparator output or an ePWM counter compare.
These signals can be internally configured as inputs to then CLB. Comparator output
signals are necessary for determining when v, crosses a certain voltage threshold, and
will remain high for some time after triggering. ePWM counter compare pulses are
used to determine the time when a switch either turns on or turns off, and are logically
high for exactly one clock cycle.

There are two outputs: t, and tg. t, is defined as the time between the start pulse
and the a pulse, and similarly ¢z is defined as the time between the start pulse and
the B pulse. These are both measured in units of 10ns.

There are three main components of the ZCD: the input logic, the counting logic,
and the output logic. The input logic consists of an edge detector, implemented with
FSM 0, and two logical OR gates, each implemented with an input LUT. FSM 0 must
be used because the CLB has hardware limitations to prevent internal feedback loops,
and the counting logic must have access to the outputs of the input logic. The edge
detector is used to filter the start pulse, preventing the counters from erroneously
resuming after an a or § pulse. This issue only affects the start pulse, and it can
only occur when the start pulse is driven by a comparator. Through the o and

input LUTs, the o and /3 pulses are logically ORed with the reset pulse, ensuring the

92

counting logic is fully turned off in the case where the o or # pulse does not occur.

The counting logic consists of two logical flip flops, implemented using the two
remaining FSMs, and two timers, implemented using counter modules. One pair of
flip flop and timer measures ¢,, and the other measures ¢3, and each pair is identical.
Each flip flop has two inputs and 2 possible states, on and off. The « flip flop enters
the on state when it receives a logical high from the edge-filtered start pulse, and
enters the off state when it receives a logical high from the oo LUT. The f flip flop
behaves similarly, except it responds to the § LUT. The counters are configured in
count-up mode and are enabled when their respective flip flops are in the on state.
This means the counters will increment every clock cycle that the flip flops are on,
effectively timing the intervals between a start pulse and an « orf pulse. Additionally,
the counters load 0 into their accumulators upon a reset pulse.

The output logic uses the HLC to copy the current values stored in the timer
registers to the code-accessible registers. The HLC does this as a response to an
event triggered by the latch pulse.

The desired order of pulses and operation of the ZCD is as follows:

1. The start pulse occurs. Both flip flops turn on, causing both counters to start

incrementing every clock cycle.

2. The « Pulse occurs. The « flip flop turns off, causing the a counter to stop

incrementing, retaining its current value.

3. The B Pulse occurs. The (8 flip flop turns off, causing the 3 counter to stop
incrementing, retaining its current value. At this point, measurement is com-

plete.

4. The latch pulse occurs. The HLC copies the current counts from both counters

to the code accessible registers, storing the measurement.

5. The reset pulse occurs. Both flip flops are set to off and both counters are reset

to 0.

93

Pulse Standard Control Synchronous Control
U1>‘/Yin_vout U1>‘/z'n_vout
Start " (CMPSS3) " (CMPSS3)
S1 Turn On S1 Turn On
“ (ePWM1 CTR=Zero) | (ePWM1 CTR=Zero)
Up2 > Vout S3 Turn On
b (CMPSS1) (ePWM3 CTR=Zero)
Reset S2 Turn Off S2 Turn Off
(ePWM2 CTR=CMPA) | (ePWM2 CTR=CMPA)
Latch S1 Turn Off S1 Turn Off
(ePWM1 CTR=CMPA) | (ePWM1 CTR=CMPA)

Table 7.8: List of ZCD configurations for the V;,, — Vi, Zero, V,,; switching sequence
in the %Vm > V,ue > 0 operating region, both with and without synchronous rectifier
control.

Figure 7-11 shows a graphical representation of how the ZCD responds to input
signals. By convention, the « pulse occurs before the [pulse, though the operation

would be identical if the 8 pulse occurs first.

7.4.1 Example Implementation

We will use the V;,, — V,u, Zero, V,; switching sequence in both operating regions
(%Vm > Vo > 0and Vi, > Vo > %Vm) to describe how the ZCD can be appropri-
ately configured. We assume the topology and hardware configuration described in
Section 7.2.1. Recall that the purpose of the ZCD is to control the switch transition
within the two-part open stage to line up exactly with the corresponding i; zero
crossing.

For the %Vm > Vo > 0 region, the two part open stage will have the form
seen in Figure 7-12 and the pulse configuration seen in Table 7.8. The minimum
voltage common to both halves of the open stage is V},, — v, S0 we measure around
that voltage level. The starting point is when v,; reaches Vj, — voyt, and we need a
comparator to create the start pulse since this point is not tied to a switch transition.
CMPSS3 is configured to compare v, with Vj, — v44. The a pulse occurs when S1
turns on, which is when ePWM1’s counter is 0.

The B pulse occurs when vy, reaches v,,;, which is also when S3 turns on. When

94

Edge
Detector

Start
Pulse

Pulse

Pulse

Latch
Pulse

Reset
Pulse

~

v

~

~

v

~

~

Figure 7-11: ZCD Timing Diagram

95

¥

, «— 11, Z€ro crossing
Up > V;n — Vout :

(vpl > V:m_ Uout)

‘/in — Vout \

Up tﬂ
ta
S1 gate
S3 gate
Stage 5 Stage 6a Stage 6b Stage 1

Figure 7-12: ZC Waveform for V,,, < 1/2V,,. Plot illustrating how the i, zero
crossing can be detected by observing symmetry in v,. In this example, S1’s turn off
is exactly aligned with the zero crossing, so we have t, = %tﬁ.

using diodes at S3 and S4, this point is not immediately known by the controller, so a
comparator must be used. CMPSS1 is configured to compare vy, with v,,.. However,
when using synchronous rectifier control, S3’s turn on is set by ePWMS3, so we can
use when ePWM3’s counter is 0 to determine the 3 pulse. Care should be taken with
the measured data if the ZVS error at S3’s turn on is not close to 0, as this means
Up is being hard-switched instead of resonating properly, and the ZCD symmetry

assumption is no longer valid.

The exact configuration of the latch and reset signals is not as critical as the start,
«, and [pulses. The only requirements are that the latch pulse occurs after the
pulse, the reset pulse occurs after the latch pulse, and the reset pulse occurs before
the next start pulse. Under standard operation, S1 can be safely assumed to turn off
after the 8 pulse, and afterwards, S2 must turn off before v,3 can rise above V;;, —vgy;.

The Vi, > vour > %Vm region is similar to the %V;n > Vot > 0 region, except
that the two part open stage is effectively mirrored horizontally. This can be seen in
Figure 7-13, and the pulse configuration can be seen in Table 7.9. Now, the minimum
common voltage is v,,; and the start pulse is generated when S2 turns off, or when

ePWM2’s counter is CMPA. The « pulse still occurs when S1 turns on, or when

96

T 1], Z€ro crossing —,
Up < V;n — Vout
(Up2 > V;n - Uout)
‘/7,11 — Vout , tﬁ |
T S
B
S2 gate 5
S4 gate
Stage 5 Stage 6a Stage 6b Stage 1

Figure 7-13: ZC Waveform for V,,; > 1/2Vj,. Plot illustrating how the i, zero
crossing can be detected by observing symmetry in v,. In this example, S4’s turn off
(also S1’s turn on) is exactly aligned with the zero crossing, so we have t, = %tg.

Pulse Synchronous Control
Start S2 Turn Off
(ePWM2 CTR=CMPA)
S4 Turn Off
“ | (ePWMI CTR=Zero)
Up2 > ‘/zn — Vout
b (CMPSS1)
Reset S4 Turn On
(ePWM4 CTR~=Zero)
S3 Turn On
Latch | .pwM3 CTR—Zero)

Table 7.9: List of ZCD configurations for the V;,, — V,.:, Zero, V,; switching sequence
in the V;,, > V0 > %V;n operating region.

97

ePWM1’s counter is 0. The 8 pulse occurs when v,y reaches Vi, — vo,, which is
determined by CMPSS1. The latch pulse is set to when S3 turns on, which is after
the beta pulse in standard conditions. Finally, the reset pulse is when S4 turns on,

which occurs after the latch and before the start pulse when S4 turns off.

7.5 Code Feedback Loop

To complete the feedback controller, the measurements from the ADCs and the ZCD
are used to update the switching times. Discrete time PI compensators are computed
for every controllable switching time, and updated every cycle (or after a fixed amount
of cycles, which is necessary at higher frequencies). Every measurement has a desired
value, which is either a constant or based on other measurements.

The feedback code is contained within an interrupt routine which is called every

PR resonant cycle. The interrupt routine performs the following procedure:

1. Load all of the measurement data out of the ADC and ZCD registers. (Also
done while disabled)

2. Update the comparator DACs based on measurement data. (Also done while

disabled)
3. Compute the error terms for each measurement.

4. Use the error terms to compute the proportional terms and update the integral

terms.
5. Compute the new switching times from the proportional and integral terms.

6. Check to ensure the switching times do not exceed set bounds. Cap the switch-

ing times at the bounds if necessary.
7. Reconfigure the ePWM modules with the new switching times.

8. Wait for new trigger from the switching cycle.

98

First, all of the most recent ADC and ZCD data needs to be accessed to compute
the new error terms. This process is straightforward, and only requires invoking
library functions to copy the data from hardware registers. The measurement of v,
is also used to update the comparator DACs at this point in time, ensuring that
the comparators correctly respond to v, and vy, even during transients. Correct

comparator thresholds are necessary for the ZCD to function properly.

To compute the switching parameters controlled by feedback loops (RP,,, RPy,
RSy, NPy, and T'), we need the corresponding error term, integral term, and feedback
coefficients. We can compute the error terms directly from the current ADC and ZCD
measurements, along with any necessary constants. The three types of errors are v,
error, ZVS error, and zero-crossing offset error. One ADC measures the value of v,
every cycle. v, error is the difference between the currently measured v,,; and the
desired v,,;, which is a constant specified by the user or software. The remaining
ADCs measure the values of v,; and vy, just before their switches turn on. ZVS error
is the difference between these measured values and the value of the node after the
switch turns on. During connected stages, v, and v,2 can be one of three possible
voltages: Vj,, vou, and 0. As such, these are the only desired values for ZVS error.
When the desired value is vy, the currently measured value should be used. Finally,
the ZCD provides t, and tg for computing the zero crossing offset error. This error

is simply the difference of ¢, — %tg.

Once we have the error terms, we can use them to compute the new switching
parameters for this cycle, and we implement the feedback loop with discrete time
PI compensators. The switching parameters have two main terms, the proportional
term and the integral term. The proportional term is the product of the proportional
feedback coefficient and the current error term. The integral term is the product
of the integral feedback coefficient and the total sum of the error from all previous
cycles. The current error is then added to the integral term. Thus, the proportional
and integral terms can be summed to give the switching time. One consideration
is that the ePWM registers support 16 bit integers for all register fields. To have

higher precision than just 16 bits when computing switching times in the feedback

99

loop, we store switching times with signed 32-bit fixed point numbers, where the most
significant 16 bits are taken as the integer part and used to program the ePWMs.

The final step is to ensure the computed switching times do not exceed bounds
that would prevent forming a valid switching sequence for that cycle. For example,
this could occur when there is a transient with large feedback coefficients. Dead
times are configured to have minimum (D7,,;,) and maximum values (D7T},,,). These
values can be determined empirically by observing dead time lengths during normal
operation. We choose a DT,,;, to be about 5% of T' and DT,,,, to be about 22% of T.
We also bounded RP,, to have a minimum of DT,,;, and a maximum of % — DT i
This ensures that RP does not stay on past the following i;, zero crossing, and that
there is always some dead time between RP being turned on and both surrounding
iy, zero crossings. If the switching times do exceed the bounds one way or the other,
then the bound will be used instead. The integral term will also not be updated when
the bound is exceeded.

Once the switching times have been computed, they can be programmed to the
ePWMs. The ePWM shadowing feature will ensure the new switching times are
all properly loaded at the same time. The interrupt routine will now exit, and the
processor will wait for the next switching cycle to occur before running the feedback

code again.

7.6 Startup

The feedback control procedures outlined in this thesis assume that the PR converter
is already within some ‘“reasonable” state to properly make corrections to its operation.
Thus, it is necessary that the startup procedure puts the PR converter into a ‘“reason-
able” state. A simple way to accomplish this is to output predetermined switching
times initially on startup before enabling the feedback control. Upon power-up, the
specific initial switching times are used to configure the ePWMs and the initial inte-
grator values. After a fixed time interval (about 3-5 seconds is practical), the feedback

control loop will begin updating the switching times. The initial switching frequency

100

should be within the inductive region of the PR, or between its series and parallel
resonant frequencies, so that ZVS is possible and the ZCD will properly detect the
zero crossing location. The initial switching times can be estimated for the specific

PR being used using the PSS solutions described in Chapter 3.

101

102

Chapter 8

Experimental Results

In this chapter, we explore the rest of the experimental setup that was used to test

the feedback controller. Then, we will discuss the experimental results obtained.

8.1 Experimental Setup

To perform experiments, the controller described in Chapter 7 was connected to the
PR-based dc-dc converter described in Chapter 6. The converter outputs vy, vps,
and v, were connected to the inputs of the controller’s sensing buffers, and the
controller’s ePWM outputs were connected to the converter’s isolated switch inputs.
For the following experiments, we used an APC International part 1553 PR, whose
parameters can be found in Table 8.1.

The final component needed to perform experiments is a suitable load for the con-

Parameter Value
C, 1.41nF
C, 510pF
L 8.73mH
R 2.392
Series Frequency | 75.4 kHz
Parallel Frequency | 88.0 kHz

Table 8.1: Table of PR parameters for the specific APC International Part 1553 PR
used during experiments. Parameters were extracted using an impedance analyzer.

103

30052

Vout

300 X

O L 4

Figure 8-1: Converter load circuitry. The load resistance is 600€2 when the switch is
open, and 3002 when the switch is closed. The switch is implemented as an IRF740
MOSFET.

verter. We used a resistive load because it is a passive device where power dissipation
is a function of the output voltage. We also designed the load to be tapped in the
center, allowing half of the resistance to shorted out with a switch. We implemented
the switch as a discrete through-hole IRF740 MOSFET (note that this part is capable
of handling much higher powers than is necessary here, any MOSFET would work),
and applying voltage to the gate is used to change the load resistance. When the gate
is high (+5V), then the load resistance will be 300€2, and when the gate is low, the
load resistance will be 600€2. A pulldown resistor ties the gate to ground, preventing
the gate from floating when disconnected. A circuit diagram of the load can be found

in Figure 8-1, and an image of the load setup can be found in Figure 8-2.

8.2 Experimental Results

We first did an experiment to confirm that the controller is able to meet the desired
high efficiency behaviors. We used the switching sequence V;,, — Vs, Zero, V,,; with
Vour < %Vm and ran the converter with static regulating half-bridge control. The
nonregulating half-bridge was controlled passively with diodes at S3 and S4. The
feedback coefficients used were small to ensure the most stable waveform, and can
be found in Table 8.2. Figure 8-3 shows the PR converter waveforms across several
switching cycles. It is clear that the PR is being soft charged since, v, is able to

resonate exactly to the following connected stage voltage during open stages. It is

104

Figure 8-2: Photo of the load circuitry used during experiments.

105

Measure T < 21.0v A

%

PR

ZVS — T Soft e
7 ?
/

Charging
J

f
{

= 08:30

Figure 8-3: Zoomed in view of the PR waveforms v,i, v,2, and v,, showing that
ZVS and soft charging are achieved with the feedback controller active. V;, = 30V,
Vout = 10.4V, and Rj,q.q = 60052.

Feedback Loop | K, | K;
vout 0 |-10

ZVS (all) 0 | 10
ZC Offset 0 |-10

Table 8.2: Feedback coefficients used to test high efficiency behaviors and nonregu-
lating half-bridge control.

also clear that ZVS is achieved since v,1 and v,2 also resonate enough to allow S1
and S2 to turn on with 0 drain-to-source voltage.

Once we knew the regulating half-bridge control was working, we enabled nonreg-
ulating half-bridge control to confirm that we could achieve synchronous rectification
of S3 and S4, which is illustrated in Figure 8-4. The slight shift in voltage indicates
that the MOSFETSs in parallel with diodes at S3 and S4 have turned on, and the loss
from the diode forward drop is mitigated. The feedback coefficients in Table 8.2 were
also used in this experiment.

Next, we tested the response of the converter and controller system after a step

in load resistance. As described in Section 8.1, our load circuit allows steps from

106

T =« 2.0V A

Measure

Synchronous Rec-/
tifier Activation |

N
[) q =500
| 16.0V

Figure 8-4: Zoomed in view of the PR waveforms v,; and v, with synchronous
rectifier control enabled. V;,, = 30V, v, = 10.4V, and R,,,q = 600¢2.

60082 to 3002 and from 3002 to 600€2. The step was performed by changing the
gate voltage vgqe of the load MOSFET, the transient waveform was captured on the
oscilloscope by configuring it to single trigger off of an edge on vgqt.. We evaluated the
transient response based on the settling time and peak deviation of v,,;. Our goal was
to minimize the settling time, defined as the time taken for v,,; to settle within 2%
of the steady state output voltage, while keeping the peak voltage deviation within
10% of the steady state output voltage.

The response to the 600€2 -> 3002 step can be seen in Figure 8-5, with a settling
time of 14.6ms and a peak deviation of 7.5%. Likewise, the response to the 30052
-> 600€2 step can be seen in Figure 8-6, with a settling time of 18.4ms and a peak
deviation of 5.8%.

The feedback coefficients used for both load resistance step experiments can be

found in Table 8.3. These coefficients were selected using the following procedure:

1. Start with known stable feedback coefficients (see Table 8.2).

2. Increase the v,,; coefficients until control becomes unstable or no improvement

107

RIGOL H 20.0ms \ [easure D 80.0ms
R

Ugate

= 09:02

Figure 8-5: Response to Rj..q step from 6002 to 3002 with V;, = 30V and V,,; =
10.4V. The peak deviation from steady state is 770mV, or 7.5% of the output voltage.
The output voltage settles to within 2% after 14.6ms.

RIGOL H 20.0ms \ Measure

Vgate

< 08:56

Figure 8-6: Response to Rj.q step from 300€2 to 6002 with V;, = 30V and V,,; =
10.4V. The peak deviation from steady state is 600mV’, or 5.8% of the output voltage.
The output voltage settles to within 2% of steady state after 18.4ms.

108

Feedback Loop K, K;

vout -30000 | -40
ZVS (S1) 0 45
ZVS (S2) 0 10

ZC Offset -30000 | -500

Table 8.3: Feedback coefficients used to test transient response after a step in load
resistance.

in the transient response is seen.

3. Increase the ZC-offset coefficients until control becomes unstable or no improve-

ment in the transient response is seen.

4. Increase the ZVS coefficients until control becomes unstable or no improvement

in the transient response is seen.

5. Repeat until no improvement is seen.

109

110

Chapter 9

Conclusion

Creating a feedback control system for PR-based dc-dc power converters that achieves
all of the desired high efficiency behaviors is challenging because it requires aspects of
duty cycle, dead time, and frequency control. In this thesis, we derive the regulation
capabilities of six stage sequences for PR-based converters and derive the regulating
and nonregulating half-bridges. We then propose two control methods for the regulat-
ing half-bridge, sensed control and static control. We also propose a control method
for the nonregulating half bridge for use with static control. We then experimen-
tally validate the proposed control scheme with a prototype PR dc-dc converter and
a microcontroller-based feedback controller implementation. We also present several
analysis methods and models for the operation of PR-based dc-dc converters, both
steady state and dynamic.

The proposed control is advantageous because it was implemented on a microcon-
troller and only relies on voltage sensing techniques. The implementation uses only
simple feedback loops that can be easily computed on a microcontroller, and requires
only ADCs and comparators for measurements without having to sense any currents
directly. The control also successfully achieves all desired high efficiency behaviors,
PR soft charging, ZVS of all switches, and all-instantaneous power transfer, while
being capable of regulating to a range of output voltages and responding to load
resistance transients.

Piezoelectric resonators are promising alternatives to magnetic energy storage for

111

miniaturization in power electronics owing to their high quality factors and power
density capabilities. The proposed feedback control scheme is simple and robust, and
paves the way for enabling use of small and efficient PR-based dc-dc power converters

in a wide range of real world applications.

9.1 Future Work

One area for future work is an expansion of the dynamic modeling techniques dis-
cussed in Chapter 5. Currently, the modeling methods that do not rely on a direct
circuit simulation make use of heavy simplifying assumptions about the feedback con-
troller. While the models have good agreement with each other, more work needs to
be done to better model the feedback loops that are present in static control so that
more accurate predictions of the dynamic response of the converter on real hardware
can be made.

Another important area of future work will be expanding the controller to work
with higher frequency PRs. The frequency of the PR used in this thesis is in the 78-85
kHz range, while the frequencies of PRs with high power densities tend to be in the
500kHz to low MHz range. Testing with a larger and low frequency PR is acceptable
for initial validation, but some aspects of the controller may need to be changed to get
good performance at higher frequencies. First the method used for implementing ZVS
feedback loops should be revisited, since ADCs cannot make accurate measurements
when the PR waveforms change too quickly. It will be also necessary to ensure that the
gate signal generators and the zero-crossing detector have adequate time resolution
at high frequencies, since the PR is sensitive to small changes in switching times,
especially with the switching period. Finally, the controller should be implemented
on a PCB rather than relying on proto-boarded sensing circuitry and jumper wires

for connections.

112

Appendix A

Full Steady State Solutions

A.1 Ideal Steady State Solution Example Equations

This appendix presents the full set of CoC and Coe equations describing a PSS
solution for a general six-stage sequence with a two-part open stage. The switching
sequence has connected stage voltages V,, Vj, V., where v, =V, in stage 1,0, =V},
in stage 3, and v, = V_ in stage 5. It must resonate v, to V; at the start of stage 6B
during the two-part open stage to achieve ZVS. The corner variables are denoted v,
and ir,, where “2” is the stage number. The PR used has parameters C,, C,, and L.
1y, zero crossing constraints can be specified by adding the equation 7, = 0. If the
switching sequence has its two-part open stage in stage 2 or 4, the equations can be
modified or the switching sequence can be rotated so the two-part open stage is stage

6.

113

The following equations implement the PSS solution:

Co(vp1 — V)2 + Lit, = Cp(vpg — Vo)* + Lit,
Opva2 + Covly + Ligy = Op‘/f + Cvly + Lity
Cp(Vb - Va) = —C(Urs - Urz)
Cr(vrs — V2)* + Lijy = Cr(vpa — Vi)* + Lil,
Co(Vs)* + Cvly + Lit, = G V2 + Covls + Lit
Cp(Vc - Vb) = —Cr(vr5 - Ur4)
Cr(vps — V)2 + Lis s = Cr(vygq — Vo)? + Lizg,
CoVZ2 + Crvgs, + Litg, = Cp(Va)* + Crugg, + Litg,
Cp(Vd = Ve) = =C(vreb — Vrga)
GV + Crvfgy + Litg, = Cp(Va)* + Crvfy + Ly

Cp(va - Vd) = _Cr(vrl - Ur6b)

114

~N N N LS
~— N N~ N~ N~ N~ N N~ N~ N~~~

o e e
0] ot

e N e e e e s T

Ne)

= >
[
(@]

—~
—_
—_

Appendix B

PR Converter PCB Technical

Information

This appendix presents the full details of the PCB layout, schematic, bill of materials,
and PCB header pinout for the prototype PR-based dc-dc converter implemented in
this thesis.

The PCB layout files are at 3x scale. For example, a line with length 3 inches on
this document corresponds to a length of 1 inch on the actual PCB. This document
has dimensions 8.5 inch by 11 inch.

The schematic files show the schematics of both the main power conversion stage
as well as all of the gate drive circuitry used to drive the switches.

The bill of materials presents all of the parts used, along with their description.

The PCB header pinout presents the values of the individual pins for all of the
connectors and headers on the PCB. The tables are oriented in the same way as they
are present on the PCB layout, and the * corresponds to the orientation dot on the

PCB.

115

..... : ” : . o VOUT+
: e . M3 oéoo
3 . °

SCON1

Joshua Piel PRC vlo 7o

116

O O0O

00
00
00
00

00000

117

aneans | IN° aneiaro | N9
an—nr | N MmsA— | N
ano
6T020d3
00TPVSLAYEN MN _Hd
1d
an 1 €S @
w 00TYVSLAYN 610¢2d3 #
NS 2a o . -~
TAD
i m - o +
50800%0800D 2
+ ~- ~ 5 NIA
Lron 2ad 6TAD 5
. 61020d3 5 61020d3
. 2
LNOA TS mk N 1S Lhila NTA
s G0800S080D ﬁm
\|

_mDO

118

MSA

1Nn0O

A%

S08005080D

190| 0
WW

S+1NOA

OIYVSLIAEN 20404z0v0Y

o 194 ¢SAdAN
N INON
79d = ZAND TAND -
AMANV 1LNO o +NI zd A]
Nw_ AMAN m HLNOZ NI m | w Td v w |
€9d 3 434N daA [—gsaan T3 ZaaA TAdA I 9
243y 1719.200N XT98IS 5080050800
S080050800 S08020508080005080D 003
8A0 wﬂ%% Bi ano
1NOA 1NOA
N SN ND
29d = ZAND TAND - < S 14 7T
_ AMANV - 1LNO o +NI 5 _ 3 f4s| AN _ 3 9 € 5
s VTS IR san 2 o1 zaon 1aan |2 2 R
9 TTSAan Ts | ¢ T g | ® T
743y 1719.200N 5080050800 XT98IS “owoomowow\ NOOJPXZ
S0800S50800 et
1741€}0)] ¥dd
Gdd
MSA aNoS

MSA

119

DWM—
S080050800

¢d0 O00TPVSLAYGN Z0v04Z0v0Y |
¥SAAA G WW——=saan
¢dd
¢dd
aNoD
. ano
994 S ZAND TAND -
MW > 1LNO o +NI 5 | 3 zd [AY 5 _
.oqmlr>>>\| HLNO Z -NI 14 v
g o Z — z €SAdn
S9d 3 434N daA | esaan Tg Zdan TAdA I B
€434 o e NG0800D XT98IS ¢nB0DS080D
G080050800 S0 0800 -
91dO T1dado
€Tad ¢1do
anNoS aNo
aNo an NO
. aND
894 < ZAND TAND - S S =
MMV > 1LNO o +NI 5 | 3 zd A2 _ 3 9 € S
mmk|>>>\<‘m HINO Z NI = 7 1d v = 7 L 4 =
194 3 438N AN FH—psaants Zdan TAdA T 5 8 T
7434 119.200N XT98IS £030050800 NOOPXZ
G080050800 S080050800 -
6dO
0Tdo .1dD
aNo
an dn

120

B.1 Bill of Materials

Description Part # Ratings/Info

Piezo APC International | "Disc (diameter 19.8mm, thick-
790 ness 0.8mm), Material 844"

MOSFET EPC 2019 "GaN, 200V, 8.5A, BUMPED

DIE"

Diode ON Semiconductor | "SCHOTTKY, 4A, 100V, SMA-
NRVTSA4100T3G 2"

Terminal Plug Phoenix Contact | "PLUG, 4POS, STR, 5.08MM"
1757035

Terminal Header Phoenix Contact | "HDR, 4POS, VERT, 5.08MM"
1755752

Input Bus Capacitor "3x CERAMIC, 1UF, 450V, X7T,

2220"

Output Bus Capaci- "CERAMIC, 15UF, 100V, XT78S,

tor 2220"

Output Half Bridge "CERAMIC, 1000PF, 250V, COG,

Decoupling Capaci- 0805 "

tor

Inter-Bus Half "CERAMIC, 1000PF, 250V, COG,

Bridge Decoupling 0805 "

Capacitor

Gate Driver UCC27611DRVT IC GATE DRIVER 6SON

Isolator SI8620BB-B-ISR DGTL ISO 25KV GEN PURP

8SOIC

Gate Resistors

"2-4 ohm, 0402"

Decoupling Capaci-
tors

"CERAMIC, 22UF, 25V, X5R,
0805"

Bootstrap Capacitor

TCERAMIC, 22UF, 25V, X5R,
0805"

Bootstrap Diode

ST Microelectroncis

"SCHOTTKY, 200V, 2A, SMB"

STPS2200U
Boostrap Resistor "2-4 ohm, 0402"
Isolated Supply | Phoenix Contact | "PLUG, 4POS, STR, 5.08MM"
Term. Plug 1757035
Isolated Supply | Phoenix Contact | "HDR, 4POS, VERT, 5.08MM"
Term. Header 1755752
Control Terminal | FCI 67997-208HLF "HDR, VERT, 8POS, 2.54MM"
Header Pins
Standoffs "HEX STANDOFF 4-40 NYLON

1/2”"”

121

B.2 PCB Header Pinout

GND | GND | Vi, | V;

Table B.1: V;, supply input

*

‘/out + 5 ‘/out + 5 ‘/out V;mt

Table B.2: V,,; + 5 Supply input

GND

GND

‘/out

V;mt

Table B.3: V,,; Load/Output

*

NC

+5V in

GND

GND

NC

+5V in

S1in

S2 in

Table B.4: SCONT1 inputs

NC NC
+5Vin | +5V in
S3 in GND
S4 in GND

Table B.5: SCON2 inputs

122

Appendix C

Microcontroller and Sensing Circuit

Bill of Materials

This appendix presents the bill of materials for all parts used for constructing the
closed-loop controller prototype and the sensing buffer circuitry. The table includes

the part numbers as well as a description of each part’s purpose.

123

Item Qty | Description

296-46777-ND Texas Instruments Control Card | 1 Microcontroller

TMS320F28379D EVAL

296-52312-ND Texas Instruments Docking Station | 1 Microcontroller

TMDSHSECDOCK Docking Station

296-39237-5-ND IC OPAMP GP 4 CIRCUIT |5 Buffer Op-amp

14DIP

445-173244-1-ND CAP CER 4.7PF 100V COG RA- | 10 | Filter cap (not used)

DIAL

445-175548-ND CAP CER 10PF 100V COG RA- | 10 | Filter cap (not used)

DIAL

445-FA18C0G2A471JNU00-ND CAP CER 470PF | 10 Filter cap

100V COG RADIAL

445-174252-1-ND CAP CER 1000PF 250V X7R | 10 Filter cap

RADIAL

399-14094-1-ND CAP CER 0.1UF 100V X7R RA- | 10 Op-amp decoupling

DIAL cap

RS112-KIT-ND RESISTOR KIT 1-1IM 1/6W |1 Resistor kit for mak-

365PCS ing resistor divider

S910CACT-ND RES 910 OHM 1/4W 1% AXIAL | 10 | Filter resistor (not
used)

RNMF14FAD9K10CT-ND RES 9.1K OHM 1/4W | 10 Filter resistor

1% AXIAL

124

Appendix D

Steady State Solution Code

This appendix presents the MATLAB code used to compute the nonideal PSS solution
for a PR given the PR parameters (C,, C,, L, R), the input and output voltages (V;,,
Vout), the switching sequence description (“Topology” matrix, see code comments),
and the initial condition V,;. This voltage should be negative and is usually larger
in magnitude than V},, and V,,;. The script will output the full PSS solution with all
corner variables and switching times, and it will also display a state space plot of the
solution.

First, the script solves for the ideal PSS solution using the ideal PR parameters.
Then, it computes the switching times from the ideal corner variables. Next, it
creates the differential equations governing open and connected stages and solves
them symbolically in terms of their initial conditions. Then, it creates a system of
equations using the time domain waveforms to solve for the nonideal corner variables.
The ideal solution is used as the starting point in the MATLAB function vpasolve.

1 function PiezoConverterNew_ilL6B(Co, C, L, R, Vin, Vout, top, Vs)
2> %% INPUT DOCUMENTATION

1% Topology

5 % 2x6 matrix

7% 1st row - choose switching cycle in terms of Vin and Vout

s % Voltage of stage is linear combination of Vin and Vout based on

125

20

21

22

23

24

26

27

28

30

31

33

34

36

37

38

39

oo

multiplier in matrix

1st stage | 3rd stage | 5th stage | SS stage

Vin Vout | Vin Vout | Vin Vout | Vimn Vout

Example: for Vin-Vout,-Vout,Zero,Vss=Vin

[1 -1 0 -1 00 1 0]
2nd Row - current constraints
Sets current constraints

kth column is -1 if ilLk <= 0, 1 if ilLk >= 0, 0 if iLk

Example: iL1, ilL2, iL3 < 0; ilL5, iL6éa > 0; iL4, iL6b
[t 110 -1 -1 0 0]

IDEAL SOLVER

%hclear all

% Parameters

Co = 710e-12;

L .158;

C

35e-12;
R = 20;

Vin = 100;
Vout = 45;

Ceff = C*Co/(C+Co) ;

Ts

= 2*pi*sqrt (Lx*C);

Vsl_n = VUs;

v

b

= [Vin, Vout];

Voltage states

126

0

68

69

70

76

5 Va

7 Vb

= dot(V,top(1,1:2));
Vz = dot(V,top(1,3:4));
= dot(V,top(1,5:6));

Vss = dot(V,top(1,7:8));

% Variables
syms iL1 iL2 iL3 iL4 ilL5 ilL6a iL6éb vrl vr2 vr3 vr4 vrb5 vr6a vr6b a
b

vr = [vrl vr2 vr3 vrd4 vr5 vr6a vr6b];

iL

[iL1 4iL2 4iL3 iL4 ilL5 ilL6a iL6b];
assume (vrl,’real’);

assume (iL.*top(2,1:7) > 0);

fixed_i = iL(top(2,1:7)==0);

free_i iL(top(2,1:7)7=0);

free_v vr ((4-length(fixed_i)) :7);

fixed_v = vr(1:(3-length(fixed_i)));

fixed_sv = [fixed_i fixed_v];

5 dE1 = 1/2*xC*(vr2-2-vr1-2)+1/2*xL*x(iL2~2-iL1"2) ;
dE2 = 1/2*C*x(vr4-2-vr3-2)+1/2%xL*x(iL4-~2-iL3"2);

7 dE3 = 1/2*%Cx*(vr6a~2-vr5-2)+1/2*xL*x(ilL6a~2-iL5"2) ;

Eout = top(1,2)*Vout/Va*dEl+top(1,4)*Vout/Vz*dE2+top (1,6)*Vout/Vbx*

dE3;
eqns = [

% Equations

(vri1-vVa)-2 + (L/C)*iL1-2 == (vr2 - Va)~2 + (L/C)*iL2
~2,... %1

Cox(Va)~2 + Cxvr2~2 + L*ilL2~2 == Cox*xVz~2 + C*vr3~2 + Lx
iL3~2, ... % 2

Cox(Vz-Va) == -Cx(vr3 - vr2),

127

78 (vr3-Vz)~2 + (L/C)*ilL3~2 == (vrd4 - Vz)"2 + (L/C)x*ilL4-2,

% 3

79

80 Co*(Vz)~2 + Cxvr4-2 + L*ilL4~2 == Co*Vb~2 + Cxvr5-2 + Lx*
ilL6~2, ... h 4

81 Cox(Vb-Vz) == -C*(vrb5 - vr4),

83 (vr5-Vb)~2 + (L/C)*ilL5~2 == (vr6a - Vb)~2 + (L/C)*ilL6a
~2, ... % 5

84

85 CoxVb~2 + C*vr6a~2 + L*xil6a~2 == Co*(Vss)~2 + Cxvr6b~2 +
L*il6b~2, ... % 6a

86 Cox(Vss-Vb) == -C*(vr6b - vr6a),

88 CoxVss~2 + C*xvr6b~2 + L*xil6b~2 == Cox*(Va)~2 + Cxvrl~2 +
LxilL1~2, ... % 6b

89 Cox(Va-Vss) == -C*(vrl - vr6b),

90

91

92 ...% Initial conditions and constraints

93

04 vrl == Vsl_n,

95 .%-Eout/Ts == power,

96 fixed_i == 0

o8 assumptions

100 % Solve equations

01 vars = [vrl vr2 vr3 vr4d vr5 vr6a vr6b ilLl iL2 iL3 ilL4 ilL5 ilL6a iL6Db
1;

102 [svrl, svr2, svr3, svr4, svrb5, svr6a, svr6b, sill, sil2, silL3, sil4,

sil5, sil6a, silL6b] = solve (eqns,vars);

128

106

107

108

109

110

112

sSvVr [svrl,svr2,svr3,svrd,svr5,svr6a,svr6b];

sil [sill, sil2, sil3, sil4, sil5, sil6a, silL6b];

% Solve for resonant angles

thetal = atan2(norm(cross ([(svr(1)-Va),siL (1) *sqrt(L/C) ,0],[(svr(2)-
Va) ,siL (2) *sqrt (L/C) ,01)) ,dot ([(svr(1)-Va),siL (1) *sqrt(L/C) ,0],[(
svr(2)-Va),siL (2) *sqrt (L/C) ,0]1));

theta2 = atan2(norm(cross ([(Va-svr(2)),sil (2)*sqrt(L/Ceff) ,0],[(Vz-
svr (3)),siL(3) *sqrt (L/Ceff) ,0]1)) ,dot ([(Va-svr(2)),siL(2)*sqrt(L/
Ceff) ,0],[(Vz-svr(3)),siL(3)*sqrt(L/Ceff) ,0]1));

; theta3 = atan2(norm(cross ([(svr(3)-Vz),siL (3)*sqrt(L/C) ,0],[(svr(4)-

Vz),siL (4) *sqrt (L/C) ,01)) ,dot ([(svr (3)-Vz),siL (3)*sqrt (L/C) ,0], [(
svr (4) -Vz) ,siL (4) *sqrt (L/C) ,01));

theta4 = atan2(norm(cross ([(Vz-svr(4)),sil (4)*sqrt(L/Ceff) ,0],[(Vb-
svr(5)),siL(5) *sqrt (L/Ceff) ,0])) ,dot ([(Vz-svr(4)),sil (4) *sqrt (L/
Ceff) ,0],[(Vb-svr(5)),siL (5)*sqrt(L/Ceff) ,0]));

5 thetab = atan2(norm(cross ([(svr(5)-Vb),siL (5)*sqrt(L/C),0],[(svr(6)-

Vb) ,siL (6) *sqrt (L/C) ,01)) ,dot ([(svr(5)-Vb),siL (5) *sqrt (L/C) ,0], [(
svr (6)-Vb) ,siL (6) *sqrt (L/C) ,0]));

theta6a = atan2(norm(cross ([(Vb-svr(6)),siL(6)*sqrt(L/Ceff) ,0],[(Vss
-svr (7)) ,siL (7)*sqrt (L/Ceff) ,0]1)) ,dot ([(Vb-svr(6)),siLl (6) *sqrt(L/
Ceff) ,0],[(Vss-svr(7)),siL (7)*sqrt (L/Ceff) ,0]1));

7 theta6b = atan2(norm(cross ([(Vss-svr(7)),siL(7)*sqrt(L/Ceff) ,0],[(Va

-svr (1)) ,siL (1) *sqrt (L/Ceff) ,0])) ,dot ([(Vss-svr(7)),silL (7) *sqrt (L
/Ceff) ,0],[(Va-svr (1)) ,silL (1) *sqrt(L/Ceff) ,0]));

theta = [thetal,theta2,theta3,theta4,thetab,theta6a,theta6bl;
% Solve for times

t1

thetal*sqrt (LxC) ;

t2 = thetal2#*sqrt (L*xCeff);

; t3 = theta3*sqrt (L*C);

t4 = thetad*sqrt (L*xCeff);

5 t5 = thetabx*sqrt (L*C);

t6a

thetaBa*sqrt (L*Ceff) ;

t6b thetabb*sqrt (L*Ceff);

129

128

129

130

131

132

133

139

140

fnew = 1./(t1+t2+t3+t4+t5+t6a+t6b) ;

T = [t1, t2, t3, t4, t5, t6a, t6bl;

% Display

% vpa(svr)

5 % vpa(siL)
s % vpa(T)

%% LOSSY SOLVER

fprintf ("Starting non-ideal solver")

syms Vp(t) Vs(t) iL(t) VinS1 Vs0S1 iL0S1 VinS2 Vs0S2 iL0S2 CpS CsS

LSS VS RS VaS VbS VzS VssS;

5 assume ([CpS, CsS, LSS, RS] > 0);

assumeAlso ([VinS1 Vs0S1 iL0S1 VinS2 Vs0S2 iL0S2 CpS CsS LSS VS RS],

D eEedl ?)) 8
: Cp = Co;
Cs = C;

%Solve diffeq for stage 1 and 3

; hLossless

 %heqnsl = [diff(Vp,t) == 0, diff(Vs,t)

LSS - Vs/LSS];

%Lossy

130

. hcondl = [Vp(0) == VinS1, Vs(0) == VsOS1,

iL/CsS,

iL (0)

diff (iL,

iL0S1];

t)

Vp/

161

163

164

165

166

167

168

189

190

191

192

193

194

; eqns2 = [diff(Vp,t) == -iL/CpS, diff(Vs,t) == iL/CsS, diff (ilL,t)

5 stage2d

eqnsl = [diff(Vp,t) == 0, diff(Vs,t) == iL/CsS, diff (ilL, t) == Vp/
LSS - Vs/LSS - RS/LSSx*iL];

condl = [Vp(0) == VinS1, Vs (0) == Vs0S1, iL(0) == iLO0S1];

stageld = dsolve(eqnsl, condl);

w{
pretty(stagel.Vp)
pretty(stagel.Vs)
pretty(stagel.il)
hY

%Solve diffeq for stage 2 and 4

Vp/LSS-Vs/LSS-RS/LSS*iL];
cond2 = [Vp(0) == VinS2, Vs (0) == Vs0S2, iL(0) == iL0S2];

dsolve (eqns2, cond2) ;

%Rlossl = int(stageld.ilL"2*RS, t, 0, t);

7s %hRloss2 = int(stage2d.il~2*RS, t, 0, t);

i
pretty(stage2.Vp)

2> pretty(stage2.Vs)
3 pretty(stage2.il)

%}

Rlossl = int(stageld.ilL~2*RS, t, 0, t);
7 Rloss2 = int(stage2d.ilL~2*RS, t, 0, t);

VsS = [vrl vr2 vr3 vr4d vr5 vr6a vr6b]

iLS = [iL1 iL2 iL3 iL4 iL5 iL6a iL6b]
tS = sym(’t’,[1,7]);

eqns = zeros(1,18,’sym’);

131

199

210

132

95 eqns (1) = VsS(2) - subs(stageld.Vs,[VsO0S1, iLOS1, VinS1,t],[VsS(1),
iLS (1), VaS, tS(1)1);
96 eqns (2) = iLS(2) - subs(stageld.il,[VsO0S1, iLO0S1, VinS1,t],[VsS(1),
iLs (1), VaS, tS(1)1);
eqns (3) = VsS(3) - subs(stage2d.Vs,[Vs0S2, iL0S2, VinS2,t],[VsS(2),
iLs(2), VaS, tS(2)1);
eqns (4) = iLS(3) - subs(stage2d.il,[Vs0S2, iL0S2, VinS2,t],[VsS(2),
iLsS (2), VaS, tS(2)1);
eqns (5) = VzS - subs(stage2d.Vp,[Vs0S2, iL0S2, VinS2,t],[VsS(2), iLS
(2), vas, tS(2)1);
eqns (6) = VsS(4) - subs(stageld.Vs,[Vs0S1, iL0S1, VinS1,t],[VsS(3),
iLS(3), VzS, tS(3)1);
; equns (7) = iLS(4) - subs(stageld.il,[Vs0S1, iLOS1, VinS1,t],[VsS(3),
iLS(3), VzS, tS(3)1);
5 eqns (8) = VsS(5) - subs(stage2d.Vs,[Vs0S2, iL0S2, VinS2,t],[VsS(4),
iLS(4), VzS, tS(4)1);
eqns (9) = iLS(5) - subs(stage2d.il,[Vs0S2, iL0S2, VinS2,t],[VsS(4),
iLS(4), VzS, tS(4)1);
eqns (10) = VbS - subs(stage2d.Vp,[Vs0S2, iL0S2, VinS2,t],[VsS(4),
iLS(4), VzS, tS(4)1);
eqns (11) = VsS(6) - subs(stageld.Vs,[Vs0S1, iLOS1, VinS1,t],[VsS(5),
iLs(5), VbS, tS(5)1);
eqns (12) = iLS(6) - subs(stageild.il,[Vs0S1, iL0OS1, VinS1,t],[VsS(5),
iLS(5), VbS, tS(5)1);
eqns (13) = VsS(7) - subs(stage2d.Vs,[Vs0S2, iL0S2, VinS2,t],[VsS(6),
iLS(6), VbS, tS(6)1);
; eqns (14) = iLS(7) - subs(stage2d.il,[Vs0S2, iL0S2, VinS2,t],[VsS(6),
iLS(6), VbS, tS(6)1);
eqns (15) = VssS - subs(stage2d.Vp,[Vs0S2, iL0S2, VinS2,t],[VsS(6),
iLS(6), VbS, tS(6)1);

24

N}

6

~

eqns (16) =
iLs (7)
eqns (17) =
iLs (7)
eqns (18) =
iLs(7),

sfixed_i

sfixed_v

sfixed_sv

sfree_i =

sfree_v =

VsS(1) - subs(stage2d.Vs,[Vs0S2,

, VssS, tS(7)1);

iLS(1) - subs(stage2d.il,[Vs0S2,

, VssS, tS(7)1);

VaS - subs(stage2d.Vp,[Vs0S2,

VssS, tS(7)1);

siL(top(2,1:7)==0)

svr(1l:(3-length(sfixed_i)))

= [sfixed_i sfixed_v]

vpa(siL (top(2,1:7)~=0))

vpa(svr ((4-length(fixed_i)) :7))

iL0S2,

iL0S2, VinS2,t],[VsS(7),

iL0S2, VinS2,t],[VsS(7),

VinS2,t],[VsS(7),

eqns_n = subs(eqns,[CpS CsS LSS RS VaS VzS VbS VssS fixed_sv],[Co C

L R Va

symvar (eqn

guess = [s

solve_vars

out = vpasolve(eqns_n,solve_vars,b guess)

hVoltage
if in(vril,

VsO

I

else

VsO

end

if in(vr2,

Vs1

else

Vs1

Vz Vb Vss sfixed_sv])

s_n)

free_v sfree_i T]

= [free_v free_i tS]

fixed_sv)

svr (1) ;

out.vrl;

fixed_sv)

svr (2) ;

out .vr2;

133

249

250

251

264

265

266

end

if in(vr3,fixed_sv)

Vs2 svr (3) ;
else

Vs2

out .vr3;

end

; if in(vrd4,fixed_sv)

Vs3 = svr(4);
else

Vs3

out.vr4;

end

if in(vr5,fixed_sv)

Vs4 svr (5) ;
else

Vs4

out .vr5;

end

; if in(vr6a,fixed_sv)

Vs5 = svr(6);
else

Vs5

out.vrba;

end

if in(vr6b,fixed_sv)

Vsb5b svr (7) ;

76 else

Vsbb

out.vr6b;

; end

%Current
if in(iL1,fixed_sv)
iL0 = siL (1) ;

else

134

284 iLO0 = out.ilL1;

285 end

287 if in(iL2,fixed_sv)

288 il = siL (2);
289 else

290 iLLl = out.ilL2;
291 end

292

203 if in(iL3,fixed_sv)

204 iL2 = siL (3);
205 else

206 iL2 = out.ilL3;
297 end

298

200 if in(ilL4,fixed_sv)

300 ilL3 = siL (4);
301 else
302 iL3 = out.ilL4;
303 end

304

305 if in(iL5,fixed_sv)

306 ilL4 = siL (5);
307 else

308 ilL4 = out.ilL5;
309 end

310

311 if in(il6a,fixed_sv)

312 ilL5 = siL(6) ;
313 else

314 iL5 = out.ilL6a;
315 end

316

317 if in(iL6b,fixed_sv)
318 iLbb = siL (7) ;

319 else

135

320 iLbb = out.iL6b;

321 end

323 t1 = out.tl;
324 2 = out.t2;
32 t3 = out.t3;
326 t4 = out.té4;

327 t5 = out.th;

328 t6a out.t6;

320 t6b = out.t7;

331 Vs_n = [VsO, Vsl, Vs2, Vs3, Vs4, Vs5, Vs5b]
332 iL_n = [iLO, 4iL1, iL2, ilL3, iL4, iL5, iL5b]

333 t_n = [t1, t2, t3 , t4, t5, t6a, t6b]

335 EO = 1/2*Cp*xVa~2+1/2*xCs*Vs0~2+1/2*L*iL0"~2;
336 E1 = 1/2%Cp*xVa~2+1/2xCs*Vsl1~2+1/2*xL*xilL1°2;
337 E3 = 1/2%Cp*xVz~2+1/2*xCs*Vs3~2+1/2*xL*xiL3°2;
338 E4 = 1/2%Cp*Vb~2+1/2xCs*xVs4~2+1/2*xL*xilL4"~2;
330 EB = 1/2%Cp*Vb~2+1/2%xCs*xVsb~2+1/2*xL*xilL5"2;
10

341

342 %hhi

3a3 figure (1)

sa7 fplot (Va, subs(stageld.il,[VinS1, VsOS1, iLOS1, CsS, LSS, RS], [Va,
Vs0O, iLO, Cs, L, R]),[0, double(t1)])

349 hold on

350 fplot (subs(stage2d.Vp,[VinS2, Vs0S2, iL0S2, CpS, CsS, LSS, RS], [Va,
Vsi, ilL1, Cp, Cs, L, R]), subs(stage2d.il,[VinS2, Vs0S2, iL0S2,
CpS, CsS, Lss, RS], [Va, Vs1, ilL1, Cp, Cs, L, R]), [0,double(t2)
1);

351 fplot (Vz, subs(stageld.il,[VinS1, Vs0S1, iL0S1, CpS, CsS, LSS, RS],

136

366

367

368

[Vz, Vs2, il2, Cp, Cs, L, R]),[0, double(t3)])

fplot (subs(stage2d.Vp,[VinS2, Vs0S2, iL0S2, CpS, CsS, LSS, RS], [Vz,
Vs3, ilL3, Cp, Cs, L, R]), subs(stage2d.ilL,[VinS2, Vs0S2, iL0S2,
CpS, CsS, LSS, RS], [Vz, Vs3, ilL3, Cp, Cs, L, R]), [0,double(t4)
1);

fplot(Vb, subs(stageld.il,[VinS1, VsO0S1, iLOS1, CpS, CsS, LSS, RS],
[Vb, Vs4, il4, Cp, Cs, L, R]),[0, double(t5)])

fplot (subs(stage2d.Vp,[VinS2, Vs0S2, ilL0S2, CpS, CsS, LSS, RS], [Vb,
Vs, il5, Cp, Cs, L, R]), subs(stage2d.il,[VinS2, Vs0S2, iL0S2,
CpS, CsS, LSS, RS], [Vb, Vs5, iL5, Cp, Cs, L, R]), [0,double(t6a+
t6b)],’Color’,’red’);

7 hold off

figure (2)
fplot (subs(stageld.Vs,[VinS1, VsO0S1, iL0S1, CsS, LSS, RS], [Va, VsO,

iL0, Cs, L, R]), subs(stageld.il,[VinS1, Vs0S1, iLOS1, CsS, LSS,
RS1, [Va, VsO, iLO, Cs, L, R]),[0, double(t1)])

hold on

5 fplot (subs (stage2d.Vs, [VinS2, Vs0S2, iL0S2, CpS, CsS, LSS, RS], [Va,

Vsi, iL1l, Cp, Cs, L, R]), subs(stage2d.il,[VinS2, Vs0S2, iL0S2,
CpS, CsS, Lss, RS], [Va, Vsi1, ilL1, Cp, Cs, L, R]), [0,double(t2)
1)

fplot (subs (stageld.Vs,[VinS1, VsO0S1, iL0S1, CpS, CsS, LSS, RS], [Vz,

Vs2, ilL2, Cp, Cs, L, R]), subs(stageld.il,[VinS1, Vs0S1, iLOS1,
Cps, CsS, LSS, RS], [Vz, Vs2, ilL2, Cp, Cs, L, R]),[0, double(t3)
D

fplot (subs(stage2d.Vs, [VinS2, Vs0S2, iL0S2, CpS, CsS, LSS, RS], [Vz,
Vs3, ilL3, Cp, Cs, L, R]), subs(stage2d.il,[VinS2, Vs0S2, iL0S2,
CPS’ CSS’ LSS) RS] s [VZ, VSB’ 1L3: CP: CS: L, R])) [0,d0uble(t4)
1) ¢

137

369

370

381

382

383

384

385

386

387

fplot (subs(stageld.Vs,[VinS1, VsOS1, iLOS1, CpS, CsS, LSS, RS],

[Vb,

Vs4, il4, Cp, Cs, L, R]), subs(stageld.il,[VinS1, VsO0S1, ilL0OS1,

CpS, CsS, LSS, RS], [Vb, Vs4, ilL4, Cp, Cs, L, R]),[0, double(th)

D
fplot (subs(stage2d.Vs, [VinS2, Vs0S2, iL0S2, CpS, CsS, LSS, RS],

[Vb,

Vs, iL5, Cp, Cs, L, R]), subs(stage2d.il,[VinS2, Vs0S2, iL0S2,

CpS, CsS, LSS, RS], [Vb, Vs5, iL5, Cp, Cs, L, R]), [0,double(t6a+

t6b)],’Color’,’red’);

hold off

%0utput scatter plot data to csv file

5 #TOD0 - make general method for switch nodes

%»TODO - Do substitutions once so this code runs a lot faster, right

now it

%does the same substitutions repeatedly

% scatter_step = 100;

% fprintf (’Generating scatter plots\n’);

% scatterl = [subs([Va, subs(stageld.il,[VinS1, Vs0S1, iL0S1, CsS,

LSS, RS], [Va, VsO, iLO, Cs, L, R])], t, linspace(0, double(tl),

scatter_step)’) ;...

% subs ([subs (stage2d.Vp, [VinS2, Vs0S2, iL0S2, CpS, CsS, LSS,

RS

1, [Va, Vst, iL1, Cp, Cs, L, R]), subs(stage2d.il,[VinS2, VsO0S2,

iL0S2, CpS, CsS, LSS, RS], [Va, Vsl, iL1, Cp, Cs, L, RI)], t,
linspace (0,double(t2) ,scatter_step) ’) ;...
% subs ([Vz, subs(stageld.il,[VinS1, Vs0S1, iL0S1, CpS, CsS,

LSS,

RS], [Vz, Vvs2, ilL2, Cp, Cs, L, R]1)], t, linspace (0, double(t3),

scatter_step)’) ;...

% subs ([subs (stage2d.Vp, [VinS2, Vs0S2, iL0S2, CpS, CsS, LSS,

RS

1, [Vz, vVs3, ilL3, Cp, Cs, L, R]), subs(stage2d.il,[VinS2, VsO0S2,

iL0S2, CpS, CsS, LSS, RS], [Vz, Vs3, ilL3, Cp, Cs, L, RI)], t,

linspace (0,double(t4) ,scatter_step) ’) ;...

138

388 % subs ([Vb, subs(stageld.il,[VinS1, Vs0S1, iL0S1, CpS, CsS, LSS,
RS], [Vb, Vs4, il4, Cp, Cs, L, R]1)], t, linspace(0, double(t5),
scatter_step)’) ;...

389 % subs ([subs (stage2d.Vp, [VinS2, Vs0S2, iL0S2, CpS, CsS, LSS, RS
1, [Vb, Vs5, iL5, Cp, Cs, L, R]), subs(stage2d.il,[VinS2, Vs0S2,
iL0S2, CpS, CsS, LSS, RS], [Vb, Vs5, ilL5, Cp, Cs, L, RI)], t,
linspace (0,double (t6a+t6b),scatter_step) ’)];

390 %

391

302 % scatter2 = [subs([subs(stageld.Vs,[VinS1, VsO0S1, iL0S1, CsS, LSS,
RS], [Va, VsO, iLO, Cs, L, R]), subs(stageld.ilL,[VinS1, VsO0S1,
iLos1, CsS, LSS, RS], [Va, VsO, iLO, Cs, L, R])], t, linspace(O,
double (tl) ,scatter_step)’) ;...

303 % subs ([subs (stage2d.Vs, [VinS2, Vs0S2, iL0S2, CpS, CsS, LSS, RS
1, [Va, Vs1, iL1, Cp, Cs, L, R]), subs(stage2d.il,[VinS2, Vs0S2,
iL0s2, CpS, CsS, LSS, RS], [Va, Vsl, ill, Cp, Cs, L, R])], t,
linspace (0,double(t2),scatter_step) ’) ;...

304 P subs ([subs (stageld.Vs, [VinS1, VsO0S1, iL0S1, CpS, CsS, LSS, RS
1, [Vz, Vvs2, ilL2, Cp, Cs, L, R]), subs(stageld.il,[VinS1, VsO0S1,
iL0S1, CpS, CsS, LSS, RS], [Vz, Vs2, ilL2, Cp, Cs, L, RI)], t,
linspace (0, double(t3),scatter_step)’);...

305 % subs ([subs (stage2d.Vs, [VinS2, Vs0S2, iL0S2, CpS, CsS, LSS, RS
1, [Vz, Vs3, iL3, Cp, Cs, L, R]), subs(stage2d.il,[VinS2, Vs0S2,
iL0S2, CpS, CsS, LSS, RS], [Vz, Vs3, ilL3, Cp, Cs, L, RI)], t,
linspace (0,double(t4) ,scatter_step) ’) ;...

306 % subs ([subs(stageld.Vs,[VinS1, Vs0S1, iL0S1, CpS, CsS, LSS, RS
1, [Vb, Vs4, ilL4, Cp, Cs, L, R]), subs(stageld.il,[VinS1, VsOS1,
iL0S1, CpS, CsS, LSS, RS], [Vb, Vs4, il4, Cp, Cs, L, RI)], t,
linspace (0, double(t5),scatter_step)’);...

307 subs ([subs(stage2d.Vs, [VinS2, Vs0S2, iL0S2, CpS, CsS, LSS, RS
1, [Vb, Vs5, ilL5, Cp, Cs, L, R]), subs(stage2d.il,[VinS2, Vs0S2,
iL0S2, CpS, CsS, LSS, RS], [Vb, Vs5, iL5, Cp, Cs, L, RI)], t,
linspace (0,double (t6a+t6b) ,scatter_step)’)];

398

309 % scatter3 = [subs([t, subs(stageld.Vp,[VinS1, VsO0S1, iLOS1, CsS,
LSS, RS], [Va, VsO, iLO, Cs, L, R])], t, linspace(0, double(tl),

139

400

401

402

403

404

405

407

408

409

410

411

412

%

scatter_step)’) ;...
subs ([t+tl, subs(stage2d.Vp,[VinS2,
LSS, RS], [Va, Vsi, iL1l, Cp, Cs, L, R])

) ,scatter_step)’);...

subs ([t+t1+t2, subs(stageld.Vp,[VinS1, VsO0S1,

LSS, RS], [Vz, Vs2, ilL2, Cp, Cs, L, RI]

t3) ,scatter_step)’) ;...

Vs0S2,

] b

)1,

t,

t,

subs ([t+t1+t2+t3, subs(stage2d.Vp,[VinS2,

CsS, LSS, RS], [Vz, Vs3, ilL3, Cp, Cs, L,

double (t4) ,scatter_step) ’) ;...

subs ([t+t1+t2+t3+t4, subs(stageld.Vp,[VinS1,

, CsS, LSS, RS], [Vb, Vs4, ilL4, Cp, Cs,

double (t5) ,scatter_step) ’) ;...

L,

R]

iL0S2

, CpS, CsS,

linspace (0, double (t2

iL0S1,

CpS, CsS,

linspace (0, double(

Vs0S2,

)1, t,

subs ([t+t1+t2+t3+t4+t5, subs(stage2d.Vp,[VinS2,

CpS, CsS, LSS, RS], [Vb, Vs5, ilL5, Cp,

(0,double (t6a+t6b) ,scatter_step)’)];

scatter4d = [subs([t, subs(stageld.Vs,[VinS1,
LSS, RS], [Va, VsO, ilLO, Cs, L, R1)]1, t,

scatter_step)’) ;...

subs ([t+tl, subs(stage2d.Vs,[VinS2,
LSS, RsS], [Va, Vs1, ilL1, Cp, Cs, L, RI1)
) ,scatter_step)’) ;...

subs ([t+t1+t2, subs(stageld.Vs,[VinS
LSS, RS], [Vz, Vs2, ilL2, Cp, Cs, L, RI]

t3) ,scatter_step)’) ;...

Cs,

L,

Vs0S2,

I

1,
)1,

t,

Vs0S1,

t,

subs ([t+t1+t2+t3, subs(stage2d.Vs,[VinS2,

CsS, LSS, RS], [Vz, Vs3, ilL3, Cp, Cs, L,

double (t4) ,scatter_step) ’) ;...

R1)],

Vs0S1,

linspace (0,

iL0S2

iL0S2, CpS,

Vs0S1,

R])], t, linspace(O,

iL0S1, CpS

linspace (0,

Vs0S2, iL0S2,

t,

linspace

iL0S1, CsS,

double (t1),

, CpS, CsS,

linspace (0, double (t2

iL0S1,

CpS, CsS,

linspace (0, double(

Vs0S2,

iL0S2, CpS,

subs ([t+t1+t2+t3+t4, subs(stageld.Vs,[VinS1, VsOS1,

, CsS, LSS, RS], [Vb, Vs4, ilL4, Cp, Cs,

double (t5) ,scatter_step) ’) ;...

L,

R]

)1, ¢,

subs ([t+t1+t2+t3+t4+t5, subs(stage2d.Vs,[VinS2,

CpS, CsS, LSS, RS], [Vb, Vs5, iL5, Cp,

(0,double(t6a+t6b) ,scatter_step) ’)1];

140

Cs,

L,

RIDI,

R1)], t, linspace (0,

iL0S1, CpS

linspace (0,

Vs0S2, iL0S2,

t,

linspace

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

b

scatter5 = [subs([t, subs(stageld.il,[VinS1, Vs0S1, iL0S1, CsS,

LSS, RS], [Va, VsO, iLO, Cs, L, R])], t, linspace(0, double(tl),
scatter_step)’) ;...

subs ([t+tl, subs(stage2d.il,[VinS2, Vs0S2, iL0S2, CpS, CsS,
LSS, RS], [Va, Vsi, iL1, Cp, Cs, L, R]1)], t, linspace (0,double(t2
) ,scatter_step)’) ;...

subs ([t+t1+t2, subs(stageld.il,[VinS1, Vs0S1, iL0S1, CpS, CsS,
LSS, RS], [Vz, Vs2, ilL2, Cp, Cs, L, R])], t, linspace (0, double(
t3),scatter_step)’) ;...

subs ([t+t1+t2+t3, subs(stage2d.il,[VinS2, Vs0S2, iL0S2, CpS,
CsS, Lss, RS], [Vz, Vs3, ilL3, Cp, Cs, L, R])], t, linspace(O,
double (t4) ,scatter_step)’) ;...

subs ([t+t1+t2+t3+t4, subs(stageld.il,[VinS1, VsO0S1, iLO0S1, CpS
, CsS, LSS, RS], [Vb, Vs4, ilL4, Cp, Cs, L, RI)], t, linspace (O,
double (t5),scatter_step)’) ;...

subs ([t+t1+t2+t3+t4+t5, subs(stage2d.il,[VinS2, Vs0S2, iL0S2,
CpS, CsS, LSS, RS], [Vb, Vs5, il5, Cp, Cs, L, R])], t, linspace

(0,double(t6a+t6b) ,scatter_step) ’)1];

scatter6 = [subs([t, subs(top(l,1)*stageld.il,[VinS1, Vs0S1, iLOS1
, CsS, LSS, RS], [Va, VsO, iLO, Cs, L, R])], t, linspace (0,
double (tl) ,scatter_step) ’) ;...
subs ([t+t1, 0], t, linspace (0,double(t2),scatter_step)’);...
subs ([t+t1+t2, subs(top(1,3)*stageld.il,[VinS1, Vs0S1, iLOS1,
CpS, CsS, LSS, RS], [vz, Vs2, ilL2, Cp, Cs, L, RI)], t, linspace
(0, double(t3),scatter_step)’);...

subs ([t+t1+t2+t3, 0], t, linspace (0,double(t4),scatter_step)’)

subs ([t+t1+t2+t3+t4, subs(top(1l,5)*stageld.il,[VinS1, VsO0S1,
iL0S1, CpS, CsS, LSS, RS], [Vb, Vs4, il4, Cp, Cs, L, RI)]1, t,
linspace (0, double(t5),scatter_step)’);...

subs ([t+t1+t2+t3+t4+t5, 0], t, linspace(0,double(t6a+t6b),

scatter_step)’)];

scatter7 = [subs([t, -subs(top(l,2)*stageld.il,[VinS1, VsOS1,
iL0S1, CsS, LSS, RS], [Va, VsO, ilLO, Cs, L, R]1)], t, linspace (0,

141

428

429

430

431

432

433

434

435

436

438

439

440

441

442

443

444

445

b
b

double (tl),scatter_step)’) ;...
subs ([t+tl1, 0], t, linspace (0,double(t2),scatter_step)’);...
subs ([t+t1+t2, -subs(top(l,4)*stageld.il,[VinS1, VsO0S1, iLOS1,
CpS, CsS, LSS, RS], [Vz, Vs2, ilL2, Cp, Cs, L, R])], t, linspace
(0, double(t3),scatter_step)?’);...

subs ([t+t1+t2+t3, 0], t, linspace (0,double(t4),scatter_step)’)

subs ([t+t1+t2+t3+t4, -subs(top(l,6)*stageld.il,[VinS1, VsO0S1,
iL0S1, CpS, CsS, LSS, RS], [Vb, Vs4, il4, Cp, Cs, L, RI)], t,
linspace (0, double(t5),scatter_step)’);...

subs ([t+t1+t2+t3+t4+t5, 0], t, linspace (0,double(t6a+t6b),

scatter_step) ’)];

%SCATTER8 AND SCATTER9 ARE SPECIFIC TO VIN-VOUT,ZERO,VOUT
scatter8 = [subs([t, Vin], t, linspace (0, double(tl),scatter_step)
2) 5000
subs ([t+tl, Vout+subs(stage2d.Vp,[VinS2, Vs0S2, iL0S2, CpS,
CsS, LSS, RS], [Va, Vs1, iL1, Cp, Cs, L, R])], t, linspace(O,
double (t2) ,scatter_step) ’) ;...
subs ([t+t1+t2, Vout], t, linspace (0, double(t3),scatter_step)
CD) - I
subs ([t+t1+t2+t3, Voutl], t, linspace(0,double(t4),scatter_step
DP)Saoa
subs ([t+t1+t2+t3+t4, Vout], t, linspace (0, double(th),
scatter_step)’) ;...
subs ([t+t1+t2+t3+t4+t5, subs(stage2d.Vp,[VinS2, Vs0S2, iL0S2,
CpS, CsS, LSS, RS], [Vb, Vs5, ilL5, Cp, Cs, L, R])], t, linspace
(0,double(t6a) ,scatter_step)’) ;...
subs ([t+t1+t2+t3+t4+t5, Vin], t, linspace(double(t6a), double(

t6a+t6b),scatter_step)’)];
scatter9 = [subs([t, Vout], t, linspace (0, double(tl),scatter_step

)’ ;...
subs ([t+tl, Vout], t, linspace(0,double(t2),scatter_step) ’)

142

146 Y subs ([t+t1+t2, Vout], t, linspace (0, double(t3),scatter_step)
D)

447 subs ([t+t1+t2+t3, Vout-subs(stage2d.Vp,[VinS2, Vs0S2, iL0S2,
CpS, CsS, LSS, RS], [Vvz, Vs3, ilL3, Cp, Cs, L, R])], t, linspace
(0,double (t4) ,scatter_step)’);...

148 % subs ([t+t1+t2+t3+t4, 0], t, linspace(0, double(t5),
scatter_step)’) ;...

149 % subs ([t+t1+t2+t3+t4+t5, 0], t, linspace (0,double(t6a),
scatter_step)’) ;...

450 % subs ([t+t1+t2+t3+t4+t5, Vin-subs(stage2d.Vp,[VinS2, Vs0S2,
iL0sS2, CpS, CsS, LSS, RS], [Vb, Vs5, iL5, Cp, Cs, L, RI)], t,

linspace (double (t6a) ,double (t6a+t6b) ,scatter_step)’)];

153 % csvwrite ("Vpvsil.csv",double(scatterl));

454 % csvwrite ("VrvsiL.csv",double(scatter2));

455 % csvwrite ("Vpvst.csv",double(scatter3));

456 fh csvwrite ("Vrvst.csv",double(scatterd));

457 % csvwrite ("iLvst.csv",double(scatter5)) ;

458 % csvwrite ("iinvst.csv",double(scatter6));

459 % csvwrite ("ioutvst.csv",double(scatter7));

1460 % csvwrite ("Vswlvst for VIN-VOUT ZERO VOUT.csv",double(scatter8));
461 % csvwrite ("Vsw2vst for VIN-VOUT ZERO VOUT.csv",double(scatter9));
462

463

464 % }

465

166 %»This area calculates information about converter operation,

including
167 % frequency, power, efficiency, Q, for the different converter
468 % topologies. This 1is because a single state plane could represent
469 % "different" physical (ie where the power goes) operation of the
a70 % different converter types

471
472 %In each case, energy transferred/dissipated is calculated from the

473 equations and time/period is known from the time variables to

143

485

186

489

190

191

193

194

195

196

497

198

199

switch

% calculated earlier
pd = tl1+t2+t3+t4+tb+t6a+t6b;
fprintf (’PERIOD: %e\n’, pd)

fprintf (?’ FREQUENCY: %e\n\n’, 1/pd)

Eloss = zeros(1,6);

Eloss (1) = vpa(subs(Rlossl,[VinS1, VsOS1, iL0OS1, CpS, CsS, LSS, RS,

t], [Va, VsO, ilLO, Cp, Cs, L, R, t1]));

Eloss (2) = vpa(subs(Rloss2,[VinS2, Vs0S2, iL0S2, CpS, CsS, LSS, RS,

t], [Va, Vs1, ilL1, Cp, Cs, L, R, t2]1));

Eloss (3) = vpa(subs(Rlossl,[VinS1l, VsOS1, iL0OS1, CpS, CsS, LSS, RS,

t], [Vz, Vs2, ilL2, Cp, Cs, L, R, t3]));

Eloss (4) = vpa(subs(Rloss2,[VinS2, Vs0S2, iL0S2, CpS, CsS, LSS, RS,

t], [Vz, Vs3, ilL3, Cp, Cs, L, R, t4]));

Eloss (5) = vpa(subs(Rlossl,[VinS1l, VsO0S1, iLOS1, CpS, CsS, LSS, RS,

t], [Vb, Vs4, il4, Cp, Cs, L, R, t5]1));

7 Eloss (6) = vpa(subs(Rloss2,[VinS2, Vs0S2, iL0S2, CpS, CsS, LSS, RS,

t], [Vb, Vs5, ilL5, Cp, Cs, L, R, t6a+tébl));

i_int = int(stageld.il,t,0,t);

I1 = subs(i_int,[VinS1, Vs0S1, iL0S1, CpS, CsS, LSS, RS, tl, [Va,
VsO, iLO, Cp, Cs, L, R, t1]);

I3 = subs(i_int,[VinS1, VsO0S1, iLO0S1, CpS, CsS, LSS, RS, t], [Vz,
Vs2, ilL2, Cp, Cs, L, R, t3]1);

I5 = subs(i_int,[VinS1, VsO0S1, iL0S1, CpS, CsS, LSS, RS, t], [Vb,
Vs4, il4, Cp, Cs, L, R, t51);

%TOPOLOGY SPECIFIC

fprintf ("Converter Stats @ Vin = %d, Vout = %d\n",Vin,Vout)

Eout = Vout*dot(top(1,:),[0 I1 0 I3 0 I5 0 0]);

fprintf (’Eout = %e\n’, Eout);

144

500 pWr = -Eout/pd;

500 fprintf (’Power = %e\n’, pwr)

503 Es = max ([E1,E3,E5]);

500 @ = vpa(2*xpi*Es/sum(Eloss)) ;
505 fprintf (°Q = %e\n’, Q)

506

507 Et_Es = vpa(-Eout/Es);

508 fprintf (?Et/Es = %e\n’, Et_Es)
500 eff0 = Q*Et_Es/(2*pi);

510 effl

eff0/(1+eff0);
511 fprintf (PEff = %e\n\n’, effl)

513 hi

514 Eloss

516 swloss = (1/R) .*Eloss.*[.05+.4 0 .05+.4 0 .05+.4 0]
517 sum(swloss) /pd
515 sum(Eloss) /pd

519 sum(swloss+Eloss)/pd

521 vpa(-Eout/(-Eout+sum(Eloss)+sumn(swloss)))

523 hEloss
524)

527 %, TUNING PARAMETER .9546

520 fprintf (’period = %d\n’, pd/1.04e-9);

530 fprintf (?J/K total high side (tl+t6a+t6b) = %d\n’, (ti+t6a+t6b)/1.04
e-9);

531 fprintf (’high side on time (t1+t6b) = %d\n’, (t1+t6b)/1.04e-9);

532 fprintf (’low side on time (t3+t4+t5) = %d\n’, (t3+t4+t5)/1.04e-9);

533 fprintf (°0/P low side dead time(t2) = %d\n’, t2/1.04e-9);

53¢ fprintf(’Z/X high side dead time(t6) = %d\n’, t6a/1.04e-9);

145

536 for 1 = 1:length(t_n)
537 fprintf (’.param t%d = %e\n’, i, t_n(i))

538 end

540 fprintf (> \nFPGA\n’)

sa1 fprintf (’period = %d\n’, pd/1e-8);

s42 fprintf (’swl on time (tl1+t6b) = %d\n’, (tl1+t6b)/1e-8);

543 fprintf (’low side on time (t3+t4+t5) = %d\n’, (t3+t4+t5)/1e-8);

544 fprintf (’Phase/dead time = %d\n’, t2/1e-8);

546 end

547

548 function b = in(v,a)
510 b = any(v==a);

550 end

146

Appendix E

Simulink Simulation Model

This appendix presents the block diagrams and schematics used in the Simulink dy-
namic circuit simulation. Simulink projects are not code, but graphical, so this section
will display images of the various subsystems with explanations of their functions.
Implementations for sensed and static control are given. Both versions implement
simulations of the Vj,, — V., Zero, V,,; switching sequence with V,,; < %Vm. More
details can be found in Chapter 5.1. The embedded images are high resolution, so

zooming in to view the details is recommended.

147

E.1 Sensed Control Simulink Simulation

50
Rload [I[:]
nnnnnnnnn
O
vin
VpL
J -
1’
Vout_desired B
Vi oul_in
2 out
o vout_gssired
Resst in
L S1on Coniraller
3 out
Startup
3 L ——»lvpin
tartup
Ston i L w2
— vinin —
Saon_inj—— Lh
N Mo S Reset_in
PR Control Loop

Figure E-1: Top Level Schematic. Integrates the circuit, switch controller FSM, and
feedback loops.

Figure E-2: Circuit Schematic. Implements the topology capable of realizing theV;, —

Vout, Zero, V,, switching sequence.

148

Feedback_control

’S1_S2_control

fiL_in >= 0]

S2off
S1_out=0;
S2 out=0;

[after(S1on_in,sec)]

[after(S2on_in,sec)]

[Vp1_in <= Vout_in]

S2on
S1_out=0;

S2 out=1;

/83_S4_control

[Vp2_in >= Vout_in]

[iL_in <= 0]

[Vp2_in <= 0]

[iL_in >= 0]

Figure

sensed control described in Chapter 5.

Figure E-4: Startup FSM Diagram. Implements open loop switching times defined

[after(i3.sec)]

Stages_start
s

Stage3_start
s [

E-3: Switch Control FSM Diagram.

[after(i5,sec)

[after(i2 sec)]

Stagesa_start
S1_out = 0.
S2_out = 0

S3_out = 0
S4_out=1

as constants in the Simulink model explorer window.

149

—

[Startup_in==1]

[after(t6a,sec)]

Stage1 _start
B

[aftert1 sec)]

Implements the control conditions

[after(teb, sec)]

?

Vout_in

- PID(s)
EE—
3 S1on_out

Vout_desired_in

D

Reset in

Figure E-5: S1,, Feedback Schematic. Implements a PI loop driving the error in V,,,
to 0.

In<Lo> S/H

£
A

Ta
]
Y
A
T

<
o
R
5

“| PiD(s) f—(1)

S2on_out

A

2 = =

@ o IR ES = e
1~ B 5

=3

Figure E-6: 52,, Feedback Schematic. Implements a PI loop ensuring ZVS is reached
across S1. The sample and hold (S/H) block used used to sample v, when S1 turns

on.

150

E.2 Static Control Simulink Simulation

T CJ
500 n vaz_out
Rioad T O = Vel V2
2in ot e
O
vout
Lo oul
PR Carvener
i
1
e WR2_in
an_
nnnnnnnnnnnnnnnn
ot
- cut
L an Candm
fartup_
-
out
- s | Dl s sanom L
Fercd_in 2on Gt
_out
prase_in fa—
— Moo
PR Caniroi Laop
bz .
Fhasa_ou
Phase Cantraler
b

L oo

' b Parid out
in

in

in

Pericd Contralier

Figure E-7: Top Level Schematic. Integrates the circuit, switch controller FSM, and

feedback loops.

151

Tout

o @ Vout

S4in

RLoadin

2
Vp2_out

Figure E-8: Circuit Schematic. Implements the topology capable of realizing theV;, —
Vout, Zero, V,, switching sequence.

9
Feedback_control

’$1_S2_control

’S3_S4_control

[after(S1on_in,sec)]

[iL_in <= 0]

[after(phase_in-S1on_id, sec)]

[Vp2_in <= 0]
[after(S2on_in,sec)]

[iL_in>=0]

Figure E-9: Switch Control FSM Diagram. Implements the

control conditions for
static control described in Chapter 5.

152

[after(t5.sec)] after(i6asec)

[after(t6b, sec)]

Stage3_start
SLee

Stage_start

S3out=1;
$4_out =0,

[after(t3 sec)] after(t1,sc0)]

[after(t2 sec)]

Figure E-10: Startup FSM Diagram. Implements open loop switching times defined

as constants in the Simulink model explorer window.

- .

Vout error S1on

Vout_in

- PID(s)
—’
] S1on_out

Vout_desired_in

)

Reset_in

Figure E-11: S1,, (RP,, Feedback Schematic. Implements a PI loop driving the error
in ‘/out to 0.

153

L
Vpi_in + Vppk error
P In<Lo> S/H
5]
C »
Vp2_in p - S2on

(3) 'Po(s) »(1)

S2on_out

Figure E-12: S2,, (RP;) Feedback Schematic. Implements a PI loop ensuring ZVS
is reached across S1. The sample and hold (S/H) block used used to sample v,; when
S1 turns on. This is an outdated variable name and definition, and serves the function

of implementing RFP,; control for ZVS of RP (S1).

—
Vp1_in . Vp

error at S2turnon
In<Lo> S/H

_ x "

Vp2_in Phase

pucy

(3) "1 PID(s) »(1)
S2 in >4 Phase_out
@D,

Figure E-13: Phase (RSg) Feedback Schematic. Implements a PI loop ensuring ZVS
is reached across S2. The sample and hold (S/H) block used used to sample v,; when
S2 turns on. This is an outdated variable name and definition, and serves the function

of implementing RSy control for ZVS of RS (S2).

154

Yy
3

E)
In<Lo> S/H

S1turnonerror

In<Lo> S/H
£

Period

In<Lo> SiH
£

A

Period_out
Vout_in

Reset_in

Figure E-14: T Feedback Schematic. Implements a version of the ZCD. Integrator

modules that integrate 1 are used as timers, and S/H modules are used to capture ¢,

and tg.

155

156

Appendix F

Piecewise Linear Dynamic Simulation

Code

This appendix presents the MATLAB code used to compute the piecewise linear
dynamic simulation of the PR converter operating with the V;, — V..., Zero, Vo
switching sequence with V,,; < %Vm under closed-loop control. The specifiable pa-
rameters include simulation step count, PR parameters, the output capacitance C,,;
and load resistance Rjo.q, input voltage V;,, and desired output voltage V,u: desired, and
feedback coefficients K, s1,,, and K; g1,,. The script will repeatedly evaluate the CoC
and CoE equations then compute the new S1,, using feedback until the total number
of steps is reached. After running, the script will output plots of the time domain PR
waveforms and switch control values. The control uses S1,, control only, and S2,, is

automatically solved for to ensure ZVS is reached at the start of stage 6B.

%#Simulation of ideal converter cycle by cycle w/ feedback control
2 %Blows up to infinity, possibly because of rounding errors.
3 hsee model 6 for better implementation

5 simulation_length = 300000;

7 PR component values

s %1553

9 Cp = 1.41e-9;

157

10

11

Cr = 510e-12;

o
] I

2.30;

8.73e-3;

Ceff = Cp*Cr/(Cp+Cr);

Tr = sqrt(L*Cr) *2*pi;

Tar = sqrt(L*Cp*Cr/(Cp+Cr)) *2%pi;

%“Converter component values

Cout = 160e-6;

20 Rload = 600;%500;

%Desired control variables

3 Vin = 30;

%100;

Vout_desired =

Vp_pk_desired

; hstart

8.7;%40;

Vin;

Vout_start = Vout_desired;

Vp_start
Vr_start

iL0 = O0;
%Compute
Slon_int

S2on_int

K_p_Silon
K_i_Silon

K_p_S2o0on
K_i_S2on

%States

Vin;

%#Should be Vin in steady state

-210.58824;

%Should be something (negative?)

%Should be zero by current constraints

a switching cycle

= 1.861764e-06 + 1.267914e-06;

= 1.558095e-06 + 1.892829e-06 + 1.925979e-06;

= 0;%-.25 % le-6;

= -8.9728e-07;%-500 * le-6;

= 0;%.02 *x 1e-6;

= 12

* 1le-6;

158

in SS

w6 hl - Vp
a7 h2 - Vr

48 %3 - Vout

50 states = zeros(3,simulation_length);

51 states(:,1) = [Vp_start; Vr_start; Vout_start];
52

53 %Data

54 hl - Silon
55 %2

Stageltime

56 %3 S2on
57 h4 - Stage2time

58%

60 data = zeros(6,simulation_length);
61

62

63 fprintf ("Starting Simulation\n");
64

65 for 1 = l:simulation_length

67 %fprintf ("%d",1i);

69 %Voltage command step simulation

70 if i >= simulation_length/2

71 %Vout_desired = Vout_desired + 1;
72 Rload = 300;

73 end

74

75 %Setup previous states

76 Vp0 = states(1,1i);

77 Vr0 = states(2,1i);

78 Vout = states(3,i);

79

80 %Compute this cycle’s switching times from previous states
81 Slon = K_p_Slon*(states(3,1i)-Vout_desired) + Slon_int;

159

90

91

96

97

98

99

105

106

107

108

109

S2on = K_p_S2on*(states(1,i)-Vp_pk_desired) + S2on_int;

%Start computing cycle

%Stage 6b

Vp1 Vin-Vout;

Vril

Vr0 - Cp/Cr*(Vpl-VpO0);
iLl = sqrt (1/L*(Cp*Vp0~2 + Cr*Vr0~2 + L*iL0~2 - Cp*Vpl~2 - Crx*
Vr1-2));

theta6b = atan2(norm(cross ([(VpO-Vr0),iLO*xsqrt(L/Ceff) ,0],[(Vpl-
Vrl) ,iLi*sqrt (L/Ceff) ,0])),dot ([(Vp0O-Vr0),iLO*sqrt(L/Ceff) ,0],[(
Vpl-Vrl),iLl*sqrt (L/Ceff) ,0]));

t6b = thetabb*sqrt(L*xCeff);

hstage 1

stageltime = Slon-t6b;

Vp2 = Vin-Vout;

Vr2 = Vpl + iLl*sqrt(L/Cr)*sin(1/sqrt(L*Cr)*stageltime) + (Vrl-
Vpl)*cos (1/sqrt (L*Cr)*stageltime) ;

iL2 = iLl*cos(1/sqrt (L*Cr)*stageltime) - (Vrl-Vpl)x*sqrt(Cr/L)x*

sin(1/sqrt (L*Cr)*stageltime) ;

thetal = atan2(norm(cross ([(Vrl1-Vpl),iLi*sqrt(L/Cr) ,0],[(Vr2-Vp2
) ,iL2*sqrt (L/Cr) ,0])) ,dot ([(Vr1-Vpl),iLl*sqrt(L/Cr) ,0],[(Vr2-Vp2)
,iL2*sqrt (L/Cr) ,01));

t1 = thetal*sqrt (L*Cr);

hstage 2

Vp3 = 0;

Vr3 = Vr2 - Cp/Crx(Vp3-Vp2);

ilL3 = sqrt (1/L*(Cp*Vp2~2 + Cr*Vr2~2 + L*iL2°2 - Cp*Vp3~2 - Crx*
Vr3~2));

160

theta2 = atan2(norm(cross ([(Vp2-Vr2),iL2*sqrt(L/Ceff) ,0], [(Vp3-
Vr3) ,iL3*sqrt (L/Ceff) ,0])) ,dot ([(Vp2-Vr2) ,il2*sqrt(L/Ceff) ,0],[(
Vp3-Vr3),il3x*sqrt (L/Ceff) ,0]1));

t2 = theta2x*sqrt (L*Ceff);

%Stage 3
Vp4d = 0;
iL4 = O0;

Vr4 = sqrt(1/Cr*x(Cp*xVp3~2 + Cr*Vr3~2 + L*xilL3"2 - Cp*Vp4~2 - L=
iL4a~2));

theta3 = atan2(norm(cross ([(Vr3-Vp3),iL3*sqrt(L/Cr) ,0],[(Vrd-Vp4
),iL4*sqrt (L/Cr) ,0])) ,dot ([(Vr3-Vp3),iL3*sqrt(L/Cr) ,0], [(Vr4-Vp4)
,iL4*sqrt (L/Cr) ,0]));

t3 = theta3*sqrt (L*Cr);

%Stage 4

Vp5 = Vout;

Vr5 = Vr4 - Cp/Cr*(Vp5-Vp4);

il = -sqrt(1/L*x(Cp*Vp4~2 + Cr*xVr4~-2 + L*il4"2 - Cpx*xVp5~2 - Crx
Vr5-2)); %Negative on the square root since in the negative iL

region

theta4 = atan2(norm(cross ([(Vp4-Vrd),iLdx*sqrt(L/Ceff) ,0],[(Vp5-
Vr5) ,iL5*sqrt (L/Ceff) ,0])) ,dot ([(Vp4-Vr4) ,iLdx*sqrt(L/Ceff) ,0], [(
Vp5-Vr5) ,iL6*sqrt (L/Ceff) ,0]1));

t4 = thetad*sqrt (LxCeff);

%Stage 5

stagebtime = S2on - t3 - t4;
Vp6 = Vout;
Vr6 = Vout - ((Cr*Vout~2 - CpxVout~2 - Cp*Vin~2 + Cr*Vr5°2 + Lx

iL56~2 + 2*xCp*Vin*Vout - 2*xCr*Vout*Vr5)/Cr)~(1/2) + (Cp*xVin - Cpx*

161

140

141

142

144

145

146

148

149

160

161

162

Vout) /Cr;

%iL6 = -((Cp*(Vin - Vout)*(Cr*Vin - Cp*Vin - 2*Cr*x(Vout + ((Cr*
Vout~2 - Cp*Vout~2 - Cp*Vin~2 + Cr*Vr5°2 + L*xiL57°2 + 2*Cp*Vinx
Vout - 2*Cr*Vout*Vr5)/Cr)~(1/2)) + Cp*Vout + CrxVout))/(CrxL))
~(1/2);

iL6 = -sqrt(1/L*x(Cr*(Vr5-Vp5)~2 + L*ilL5°2 - Cr*(Vr6-Vp6)~2));

thetab = atan2(norm(cross ([(Vr5-Vp5),iL6*sqrt(L/Cr) ,0],[(Vr6-Vp6
) ,iL6*sqrt (L/Cr) ,0])) ,dot ([(Vr5-Vp5) ,iL6*sqrt(L/Cr) ,0],[(Vr6-Vp6)
,iL6*sqrt (L/Cr) ,01));

t5 = thetab*sqrt (L*Cr);

%Stage 6

iL_next = 0;

Vp_next = Vin;

Vr_next = Vout - ((Cr*Vout~2 - Cp*Vout~2 - Cp*Vin~2 + Cr*Vr5°2 +

L*il5~2 + 2*Cp*Vinx*Vout - 2*Cr*Voutx*Vr5)/Cr)~(1/2);

theta6a = atan2(norm(cross ([(Vp6-Vr6) ,iL6xsqrt (L/Ceff) ,0], [(
Vp_next -Vr_next) ,iL_next*sqrt (L/Ceff) ,0])),dot ([(Vp6-Vr6) ,iL6*
sqrt (L/Ceff) ,0] ,[(Vp_next-Vr_next) ,iL_next*sqrt(L/Ceff) ,0]));
t6a = thetabaxsqrt (L*xCeff);

Vp = [VpO0 Vpl Vp2 Vp3 Vp4d Vp5 Vp6 Vp_next]’;
Vr = [VrO Vrl Vr2 Vr3 Vr4 Vr5 Vr6 Vr_next]?’;
il = [iLO0 iL1 iL2 4iL3 iL4 iL5 iL6é iL_next]’;

%#Compute iout

ql = Cr*(Vr2-Vrl);
g3 = Cr*(Vr4-Vr3);
g5 = -Cr*x(Vr6-Vr5);

charge = [ql1;93;q95];

162

163

164

165

166

167

168

169

170

189

190

191

194

% Solve for times

times = [t6b;t1;t2;t3;t4;t5;t6al;
T = sum(times) ;
%Compute Vout change
Vout_next = Vout + 1/Cout*(ql + g5 - Vout/Rload*sum(times));
Slon_int = Slon_int + K_i_Slon*(states(3,i)-Vout_desired) *T;
S2on_int = S2on_int + K_i_S2on*(states(l,i)-Vp_pk_desired)*T;
%K
K = (q1+q5)/(q1+q3+q5);
states(:,i+1) = double([Vp_next; Vr_next; Vout_next]);
data(:,i+1) = [Slon;stageltime;t3+t4+t5;t5;T;K];
if any(imag(states(:,i+1)) ~= 0)
fprintf ("Bad cycle, imaginary parts\n")
break
end
end
figure (1)

plot (cumsum(data(5,1:simulation_length)),states(:,1:
simulation_length))

figure (2)

plot (cumsum(data(5,1:simulation_length)) ,data([1,3],1:

simulation_length))

2 figure (3)

plot (cumsum(data(5,1:simulation_length)) ,data(5,1:simulation_length)
)
figure (4)

163

195 plot (cumsum(data(5,1:simulation_length)) ,data(6,1:simulation_length)
)

196

o7 fprintf ("\n")

164

Appendix G

State Space Dynamic Model Code

This appendix presents the MATLAB code used to compute the linearized state
space dynamic simulation of the PR converter operating with the V;,, — V., Zero,
Vo switching sequence with V,,,; < %Vm under closed-loop control. The specifiable
parameters include PR parameters, the output capacitance C,,; and load resistance
Rioad, input voltage V;,, and desired output voltage Vi, gesirea, and feedback coeffi-
cients K, g1, and K g1,,. The control uses S1,, control only, and S2,, is automati-
cally solved for to ensure ZVS is reached at the start of stage 6B. The script defines
the state equations symbolically and differentiates them to obtain the linearized equa-
tions. The linearized equations are then used to create a MATLAB state space model,
which can be analyzed using MATLAB'’s suite of control theory functions and pro-
grams. The script will compute and plot the step response from a stem in desired

output voltage, and the model is saved for further analysis.
syms Vout IL Slon Rload
%PR component values

%1553
Cp = 1.41e-9;

Cr = 510e-12;
L = 8.73e-3;
R = 2.3;

165

10

11

Tr = sqrt (L*Cr)*2*pi;
Tar = sqrt (L*Cp*Cr/(Cp+Cr)) *2*pi;

%Converter component values
Cout = 16e-6;

Rload_bar = 600;

%Desired control variables

s Vin = 30;

Vout_desired = 8.5;

T = 12.96e-6;%12.23e-6;
Slon_bar = 3.13e-6;

ql = T*IL/(2*pi)*(1-cos (2*xpi/T*Slon)) - Cp*Vout;
g3 = T*IL/pi - Cp*Vin - qi;
g5 = T*IL/pi - Cp*Vin;

d_Vout_d_t = 1/(T*Cout) * (g1 + g5 - T*Vout/Rload);
d_IL_d_t = 1/(T*L*IL) * ((Vin-Vout)*ql - Vout*qgb);

%Fix Slon_bar for equilibrium
%eqns = subs([d_Vout_d_t;d_IL_d_t],Slon,Slon_bar);

%out = solve (eqns);

%Vout_bar = vpa(out.Vout(1));

%iL_bar = vpa(out.IL(1));

%Fix Vout_desired for equilibrium
eqns = subs([d_Vout_d_t;d_IL_d_t],[Vout,Rload],[Vout_desired,
Rload_bar]);

out = solve(eqns);
Vout_bar = Vout_desired;
Slon_bar = T-vpa(out.Slon(1));

iL_bar = vpa(out.IL(1));

166

46 %#Fix iL_bar for equilibrium
17 heqns = subs([d_Vout_d_t;d_IL_d_t],IL,18.7%1.01);

18 hout = solve(eqns);

50 %Vout_bar vpa (out.Vout (1)) ;

51 hSlon_bar vpa(out.Slon (1)) ;

54 A_converter_1 = [diff(d_Vout_d_t ,Vout), diff(d_Vout_d_t, IL);
55 diff (d_IL_d_t ,Vout), diff(d_IL_d_t,IL)];

55 A_converter_2 = subs(A_converter_1,[Vout,IL,Slon,Rload],[Vout_bar,

iL_bar, Slon_bar, Rload_bar]);

60 B_converter_1 = [diff(d_Vout_d_t,Slon), diff(d_Vout_d_t ,Rload);
61 diff (d_IL_d_t,S1lon), diff(d_IL_d_t ,Rload)];

63 B_converter_2 = subs(B_converter_1,[Vout,IL,Slon,Rload], [Vout_bar,

ilL_bar, Slon_bar, Rload_bar]);

65 C_converter_1 = [1,0];

67 C_converter_2 = subs(C_converter_1,[Vout,IL,Slon,Rload],[Vout_bar,
iL_bar, Slon_bar, Rload_bar]);
68

60 D_converter_1 = [0, 0];
71 D_converter_2 = subs(D_converter_1,[Vout,IL,Slon,Rload],[Vout_bar,

iL_bar, Slon_bar, Rload_bar]);

74 ,State space model of PR Converter
75 hInputs: Slon

76 %0utputs: Vout

167

77 hStates: Vout, IL

70 converter_state_names = {’Vout’,’IL’};

so converter_input_names = {’Slon’, ’Rload’};
s1 converter_output_names = {’Vout’};

82

s3 A_converter = double(A_converter_2);

84

¢5 B_converter = double(B_converter_2);

86

s7 C_converter = double(C_converter_2);

88

20 D_converter = double(D_converter_2);

90

91 converter_model = ss(A_converter, B_converter, C_converter,

D_converter) ;

92 converter_model.StateName converter_state_names;

93 converter_model.InputName converter_input_names;

94 converter_model.QOutputName = converter_output_names;

96 converter_model_vout = ss(A_converter, B_converter(:,1), C_converter

, D_converter(:,1));

97 converter_model_vout.StateName = converter_state_names;

98 converter_model_vout.InputName = {’Slon’};

99 converter_model_vout.OutputName = converter_output_names;
100

101 %o converter_model_rload = ss(A_converter, B_converter (:,2),

C_converter, D_converter(:,2));

102 % converter_model_rload.StateName converter_state_names;
103 % converter_model_rload.InputName = converter_input_names;

104 %, converter_model_rload.OutputName = converter_output_names;

106 hController model
107 %Basic controller, only Vout feedback
10s controller_input_names = {’Vout error’,’Rload’};

109 controller_output_names = {’Slon’,’Rload’};

168

controller_state_names = {’Vout int’};

k_p_Slon = 0;%.25 * 1le-6;

k_i_Slon = 8.9728e-06;7500 * le-6;
5 k_p_S20on = -.02 * le-6;

k_i_S2on = -12 * 1le-6;
s A_controller = O0;

B_controller = [1, 0];
C_controller = [k_i_Silon;
01;

[k_p_Sion, O;
0, 11;

D_controller

controller_model = ss(A_controller, B_controller, C_controller,

D_controller) ;

controller_model.InputName = controller_input_names;
) controller_model.OutputName = controller_output_names;
controller_model.StateName = controller_state_names;

3 hFeedback loop

plant = series (controller_model,converter_model) ;

converter_cl = feedback(plant,1,[1],[1],1);

opt = stepDataOptions(’StepAmplitude’,-300);

step (converter_cl ,opt)

169

170

Appendix H

Microcontroller Code

This appendix presents the C code used to program the TI TMDSCNCD28379D
Control Card microcontroller. The code is designed to be used with the specific
sensing circuitry and 1O described in Chapter 7, however, it can be reconfigured. The
code implements static control, but the code for initializing ePWMs in one-shot mode
is present, allowing reconfiguring the code to implement sensed control if desired.
The easily configurable aspects of the code include the switch designations (maps
RP, RS, and so on to specific ePWMs), the startup switching times, the feedback
control coefficients, the desired output voltage, and any necessary correction terms.

More information about all of these can be found in the code comments.

H.1 Main Code

//PR Controller - Sensing 3

> //Joshua Piel

3 //11-17-21

//

s //Set up for Vin-Vout,Zero,Vout or Vin,Vin-Vout,Vout where Vin >

Vout > 1/2%Vin

7 //Static control

s //Synchronous control

171

10

11

13

14

18

19

20

21

22

23

24

26

27

28

29

30

32

33

34

//Code marked with MODIFY is safe to edit to change operation.

//
HAHAHHHHAHAHAHAHBHBA RS HAHAHHHBA RS HAHAH B HBA RS R AR A H B HBA RS R AR AR BH B RS R AR A H BB RS
//
// FILE: epwm_ex12_monoshot_mode.c
//
// TITLE: Realization of Monoshot mode
//

//' \addtogroup driver_example_list

//!' <hl1>Realization of Monoshot mode</hl>

/7!

//' This example showcases how to generate monoshot PWM output based
on external

//! trigger i.e. generating just a single pulse output on receipt of
an extermnal

//' trigger. And the next pulse will be generated only when the next
trigger

//! comes. The example utilizes external synchronization and T1
action qualifier

//' event features to achieve the desired output.

/71

//!' ePWM1 is used to generate the monoshot output and ePWM2 is used
an external

//' trigger for that. No external connections are required as ePWM2A
is fed

//' as the trigger using Input X-BAR automatically.

/7!

//' ePWM1 is configured to generated a single pulse of 0.5us when
received

//' an external trigger. This is achieved by enabling the phase

synchronization

172

35

36

37

39

40

41

42

46

47

48

/7

/7!

//!
// !
// !

/7!

/7!
//!

/)
/7!
/7!
Al

/70

/7!

/7!
//
//
//

//
//
//
//

//

s //

feature and configuring EPWMxSYNCI as EXTSYNCIN1. And this
EPWMxSYNCI

is also configured as Tl event of action qualifier to set output
HIGH while

"CTR = PRD" action is used to set output LOW.

ePWM2 is configured to generate a 100 KHz signal with a duty of
1% (to
simulate a rising edge trigger) which is routed to EXTSYNCIN1

using Input XBAR.

Observe GPIO6 (EPWM4A : Monoshot Output) and GPIO2(EPWM2
External Trigger)

on oscilloscope.

\b NOTE : In the following example, the ePWM timer is still
running in a

continuous mode rather than a one-shot mode thus for more
reliable

implementation, refer to CLB based one shot PWM
implementation

demonstrated in "clb_ex17_one_shot_pwm" example

HAHAHHHHAHAHAHAH B S HAHAHAHAHHH RS H AR AR AR A SRS H AR AR AR AH RS H AR AR AR BH RS H AR AR AR RS R A HH

$TI Release: F2837xD Support Library v3.12.00.00 $

$Release Date: Fri Feb 12 19:03:23 IST 2021 $

$Copyright:

Copyright (C) 2013-2021 Texas Instruments Incorporated - http://

www.ti.com/

Redistribution and use in source and binary forms, with or

without

173

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

76

77

78

79

80

81

82

//

//
//
//
//
//
//

//

/7

//

//

//

//

//

//

//

//
//

//

//

//
//

//

//

modification, are permitted provided that the following

conditions

are met:

Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above
copyright

notice, this list of conditions and the following disclaimer in

the

documentation and/or other materials provided with the

distribution.

Neither the name of Texas Instruments Incorporated nor the
names of

its contributors may be used to endorse or promote products
derived

from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL ,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT

174

ss // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE
sa // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE .
ss // 8
s6 //
HEAHHAHHAAHRARHBAFH AR B BAFHBRH R AR H AR AR AR BHA R AR B BASH AR BB RS H AR SRR R AR SRA SRR H S 1 H

87

ss //

so // Included Files

90 //

91 #include "driverlib.h"

92 #include "device.h"

93 #include "board.h"

94 #include "clb_config.h"

95 #include "clb.h"

96

97

98

99 //Defines which ePWM fulfills which conceptual switch

o //MODIFY to fit switching sequence and setup

101 #define RP EPWM4_BASE

102 #define RS EPWM3_BASE

103 #define NP EPWM1_BASE

104 #define NS EPWM2_BASE

105

106

107 //FORWARD marks how the primary and secondary half bridges are
oriented around the open stage zero crossing

108 //If FORWARD is true, then the nonregulating primary turns off and
the regulating primary turns on at the zero crossing

109 //This is the same as "Mode 1"

110 //If FORWARD is false, then the regulating primary turns off and the
nonregulating primary turns on at the zero crossing

111 //This is the same as "Mode 2"

175

112 #define FORWARD false

16 //

117 // Function Prototypes

g //

119 void initEPWM_fixed(uint32_t);

120 void EPWM_set_timing(uint32_t, uintl6_t, uintl6_t, uintl6_t,
uint16_t);

121 void update_switches_reg(uint32_t, uint32_t, uintl6_t, uintl6_t,
uint16_t, uintl6_t);

122 void update_switches_nonreg(uint32_t, uint32_t, uintl6_t, uintlé_t,

intl6_t);

124 void configureADC(uint32_t);

126 void setupADCTriggered (uint32_t, uint32_t, ADC_SOCNumber,
ADC_Trigger , ADC_IntNumber);

128 void initCLB_ZERO_CROSSING_TIMER (uint32_t);

131 __interrupt void feedback_control_ISR();

134 void initCMPSS(uint32_t, uintl16_t, bool);

136 bool feedback_control_enabled = false;

137 bool trigger_safety_enabled = false;
130 //Startup Open Loop Switching Times
140 //MODIFY the following macros with the default switching values

141 //These can be computed using the matlab solver

143 //600 Ohm

176

144

145

146

147

148

149

160

161

162

163

164

165

166

167

168

169

170

171

176

177

178

179

//Standard

/ *

#define DEF_PERIOD 1268//12.87us*100%*.985
#define DEF_S10N 337//3.42us*100%*.985
#define DEF_S20N 668//6.78us*100%.985
#define DEF_PHASE 418//4.24us*100%.985

*/

/ *

//600 QOhm

//1553 piezo

//Standard 30V->18V

; #define

#define

s #define

#define
#define
*/

DEF_PERIOD 1290//12.87us*100%.985
DEF_RPON 369-50//3.42us*100%.985
DEF_RPDT 43+20//6.78us*100%.985
DEF_RSDT 131+50//4.24us*100%.985
DEF_NPDT 106//4.3us*100%.985

//186¢c piezo

//Standard 30V->18V

#define
#define
#define
#define

#define

/ *

DEF_PERIOD 203*2//12.87us*100%*.985
DEF_RPON 54%2//3.42us*100%.985
DEF_RPDT 20%2//6.78us*100%.985
DEF_RSDT 25%*2//4.24us*100%.985
DEF_NPDT 33%2//4.3us*100%.985

//original (30V->12V and/or 700 ohm?7)

uintl16_t period = 1275;//12.75us

uintl6_t sw2on

uintl6_t phase

*/

s uint16_t swlon = 360;//3.60us

610;//6.10us
114;//1.14us

177

180

181

186

187

189

190

191

192

193

194

195

196

197

198

199

200

201

205

206

207

208

209

211

//Default values of the integrators are the open

times

2 int32_t period_integral = ((long)DEF_PERIOD) <<16;

int32_t rpon_integral ((long)DEF_RPON) <<16;

int32_t rpdt_integral ((long)DEF_RPDT) <<16;

int32_t rsdt_integral ((long)DEF_RSDT) <<16;

int32_t npdt_integral ((long)DEF_NPDT) <<16;

//Define measurement variables as globals so they can

the debug window
uintl6_t current_vout_raw;
uintl6_t current_vpr_before_rp_raw;
uintl6_t current_vpr_before_rs_raw;

uintl6_t current_vpn_before_np_raw;

uint32_t current_vout;
uint32_t current_vpr_before_rp;
uint32_t current_vpr_before_rs;

uint32_t current_vpn_before_np;

//Defines the ADC measurement digital filter

//MODIFY to change the coefficient of the filter.
more code in the feedback loop

uint32_t alpha = 0;//65126;//Cutoff frequency at
frequency

uint32_t one_minus_alpha = 65536;//65536-65126;
//Defines ZCD outputs

uint32_t t_alpha;

uint32_t t_beta;

//Defines error variables

int32_t error_vout;

178

loop switching

Need to enable

1/10 switching

be accessed in

212 int32_t error_vpr_before_rp;

213 int32_t error_vpr_before_rs;

214 int32_t error_vpn_before_np;

215 int32_t error_zero_crossing_offset;

216

217 //Defines current switching times, which are computed by the
feedback loops every cycle

218 uintl6_t current_rpon;

219 uintl6_t current_rpdt;

220 uintl6_t current_rsdt;

221 uintl6_t current_npdt;

222 uintl6_t current_period;

225 //Defines ADC correction terms.

226 //This arises because of time inaccuracies in the ADC measurement

227 //As well as inability to perfectly measure the switch nodes for ZVS

228 //Adds a linear offset to the ZVS feedback loops to manually tune
ZVS control

220 //MODIFY based on observations to get the waveform to line up

230 //Reasonable values at 100kHZ are about plus/minus 100

231 //Extreme values were needed at 500kHz

232 int32_t VPR_BEFORE_RP_CORRECTION = 900;//850;
233 int32_t VPR_BEFORE_RS_CORRECTION = -900;//-800;
2314 int32_t VPN_BEFORE_NP_CORRECTION = -50;//-100;

235

236

237 //Defines nonregulating half bridge duty cycle deviation from 50%
238 //Arises when the 50% duty cycle approximation breaks down

230 //MODIFY to line up the nonregulating HB with both il O crossings
240 intl16_t DUTY_CORRECTION = -3%2;

241

242 //Defines a correction to the ZCD feedback loop

243 //Arises because t_alpha ends up not equalling exactly 1/2 t_beta
244 //MODIFY to line up the RP turn on (mode 1) or turn off (mode 2)

245 // with the zero crossing exactly, based on waveform observations

179

246 int32_t ZC_CORRECTION = 0;//-20;

247

248

240 //Defines the ADC levels that define OV, Vin, and the desired output
voltage

250 //MODIFY to match actual Vin and Zero, and the desired output
voltage.

251 //ADC is configured to convert OV-3V Full Scale Range into 12 bits

252 //See sensing circuit for output ranges.

253 int32_t VIN = 2930;

254 int32_t ZERO = 650;

255 int32_t DESIRED_VOUT = 2250; // Desired ADC Measurement. 2000

17.5
v

257 //
258 // FEEDBACK COEFFICIENTS

250 // MODIFY as desired to tune the dynamic response

261

262 //

263 // FAST RESPONSE RLOAD STEP

264 //

265 /*

266 int32_t K_P_S10N = -30000;//-5000;//-10000;//-1000

267 int32_t K_INT_S10N -40;//-150;//-29; //units of us/2°16, should be
negative

268

260 int32_t K_P_S20N = 0;//7000;//100;

270 int32_t K_INT_S20N 45;//3; //units of xxxx, should be positive

271

272 int32_t K_P_PHASE = 0;

273 int32_t K_INT_PHASE = 10;//should be positive

274

275 int32_t K_P_PERIOD = -30000;//-30000

276 int32_t K_INT_PERIOD = -500;//-60;//should be negative

277

180

27s int32_t K_P_S30N = O;

279 int32_t K_INT_S30N = 0;//should be positive
280 */

281

282 //

283 // STABLE(ISH?) WITH SYNCHRONOUS at 1553 for vout>1/2vin
284 [/

285

286 /*

287 int32_t K_P_VOUT = 15000;//+

288 int32_t K_INT_VOUT = 20;

289

200 int32_t K_P_ZVS = 0;//+

200 int32_t K_INT_ZVS = 10;

292

203 int32_t K_P_ZC = -5000;//-

204 int32_t K_INT_ZC = -20;

205 %/

296

297

208 [/

200 // STABLE(ISH?) WITH SYNCHRONOUS at 186 for vout>1/2vin
300 //

301 /*

302 int32_t K_P_VOUT = 5000;//+

303 int32_t K_INT_VOUT = 4;

304

305 int32_t K_P_ZVS = 0;//+

306 int32_t K_INT_ZVS = 4;

307

30s int32_t K_P_ZC = 0;//-

309 int32_t K_INT_ZC = -4;

310 */

311

312 //

313 // Working Coeffs for SYNCHRONOUS at 186 for vout>1/2vin

181

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

//

int32_t K_P_VOUT =
int32_t K_INT_VOUT

1000;//10000;//+

1;//10;

int32_t K_P_ZVS = 0;//+

int32_t K_INT_ZVS =

1;//4;

int32_t K_P_ZC = 0;//-

int32_t K_INT_ZC =

//

// SLOW RESPONSE
//

/ *

int32_t K_P_S10N =
int32_t K_INT_S10N

negative

int32_t K_P_S20N =
int32_t K_INT_S20N

int32_t K_P_PHASE =

int32_t K_INT_PHASE = 1;//should be positive

int32_t K_P_PERIOD

int32_t K_INT_PERIO

int32_t K_P_S30N =

int32_t K_INT_S30N
*/

//FEEDBACK BOUNDS

-2;//-40;

-0;//-5000;//-10000;//-1000

-0;//-150;//-29;

0;//7000;//100;

D

1;//3;

0;

//units of xxxx,

0;//-30000
= -1;//-60;//should be negative

1;//should be positive

//units of us/2°16, should be

should be positive

//Sets the minimum and maximum times deat times can be

//MODIFY to match a reasonable fraction of the current operating

182

349

360

361

362

363

364

365

366

367

368

369

370

371

372

379

380

381

period

uintl16_t DEAD_TIME_MIN 10%2;//50;

uintl6_t DEAD_TIME_MAX

44%2;//220;

//ADC measurement offset from switch turn on

//MODIFY ONLY IF NECESSARY to tell the ADC to start measuring so
that its

// sample and hold window finishes just before the switch turns on

uint16_t ADC_MEASUREMENT_DELAY = 12x%2;

//Interrupt routine trigger counter

//The interrupt will execute the feedback loop after being called
COUNT_MAX

// times, then it resets the count to O

uintl6_t interrupt_count = 0;

//MODIFY if necessary to change the feedback loop frequency

uint16_t COUNT_MAX = 5;

#define EX_ADC_RESOLUTION 12

void main(void)

{
//
// Initialize device clock and peripherals
//

Device_init () ;

//
// Disable pin locks and enable internal pull-ups.
//

Device_initGPIO () ;

183

382 //
383 // Initialize PIE and clear PIE registers. Disables CPU

interrupts.

384 //

385 Interrupt_initModule () ;

386

387 //

388 // Initialize the PIE vector table with pointers to the shell
Interrupt

389 // Service Routines (ISR).

390 //

301 Interrupt_initVectorTable () ;

392

393 //

394 // Configure ePWM1, ePWM2 GPIOs and XBAR configuration

395 //

396 Board_init () ;

397

398 //

399 // Disable sync(Freeze clock to PWM as well)

400 //

401 SysCtl_disablePeripheral (SYSCTL_PERIPH_CLK_TBCLKSYNC) ;
402

103 SysCtl_setEPWMClockDivider (SYSCTL_EPWMCLK_DIV_1);
404

05 //

406 // Initialize ePWM1 and ePWM2

407 //

408

409 initEPWM_fixed (RP);//S1

410 initEPWM_fixed (RS);//S2

411 initEPWM_fixed (NP);//S3

412 initEPWM_fixed (NS);//S4

414 EPWM_setSyncOutPulseMode (EPWM1_BASE,
EPWM_SYNC_OUT_PULSE_ON_COUNTER_ZERO) ;

184

418

442

143

144

SysCtl_setSyncInputConfig (SYSCTL_SYNC_IN_EPWM4,
SYSCTL_SYNC_IN_SRC_EPWM1SYNCOUT) ;

update_switches_reg(RP, RS, DEF_PERIOD, DEF_RPON, DEF_RPDT,
DEF_RSDT) ;

update_switches_nonreg (NP, NS, DEF_PERIOD, DEF_NPDT,
DUTY_CORRECTION) ;

//

// Enable CLB1

// Configured to time the comparator measurements used to
compute the S1 trigger offset from the zero crossing

//

initCLB_ZERO_CROSSING_TIMER (CLB1_BASE) ;

//

// Enable sync and clock to PWM

//

SysCtl_enablePeripheral (SYSCTL_PERIPH_CLK_TBCLKSYNC) ;

//

// Configure the comparators

/7

initCMPSS (CMPSS3_BASE, 1100, false);//DESIRED_VOUT, false);//
Comparator watching Vpl

initCMPSS (CMPSS1_BASE, VIN-DESIRED_VOUT+ZERO-100, false);//

Comparator watching Vp2

//

// Configure the ADC and power it up
//

configureADC (ADCA_BASE); //Vp2
configureADC (ADCB_BASE); //Vpl
configureADC (ADCD_BASE); //Vout

185

449

460

461

462

463

464

465

466

467

468

469

//Set up which ePWMs trigger which ADCs

//MODIFY as necessary to match the switching sequence

setupADCTriggered (ADCA_BASE,

ADC_TRIGGER_EPWM4 _SO0OCA,
before S4 (RP)

setupADCTriggered (ADCA_BASE,

ADC_TRIGGER_EPWM3_SO0OCA,
before S3 (RS)

setupADCTriggered (ADCB_BASE,

ADC_TRIGGER_EPWM1_SO0OCA,
before S1 (NS)

setupADCTriggered (ADCD_BASE,

ADC_TRIGGER_EPWM1_SOCA,
before S1,

consistency)

ADC_INT_NUMBER3) ;

ADC_INT_NUMBER4) ;

ADC_INT_NUMBER3) ;

ADC_INT_NUMBER3) ;

but the specific time doesn’t really matter,

2, ADC_SOC_NUMBERO ,
//Measure Vp2 just
2, ADC_SOC_NUMBER1,
//Measure Vp2 just
2, ADC_SOC_NUMBERO,
//Measure Vpl just
0, ADC_SOC_NUMBERO ,
//Measure

Vout (just

just

//Configures which interrupt (in this case ADC conversion)

// finish triggers the feedback control ISR

//MODIFY if necessary to change what portion of the cycle

// executes the feedback loop

Interrupt_register (INT_ADCA4, &feedback_control_ISR);

Interrupt_enable (INT_ADCA4) ;

//

//B4 originally

// Enable Global Interrupt (INTM) and real time interrupt (DBGM)

//
EINT;
ERTM;

GPIO_writePin (myGPIOO, 0);

//Wait for the converter to

absorb energy, and pause, allowing

186

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

501

502

503

/ *

the user to control transition to automatic

DEVICE_DELAY_US (2000006) ;

//GPI0_writePin (myGPIOO, 1);

//DEVICE_DELAY_US (100000) ;

//GPIO_writePin (myGPIOO, 1);

//Enables the feedback control after startup

feedback_control_enabled = true;

DEVICE_DELAY_US (2000006>>2) ;

//Use this GPIO pin to make a debug signal (scopeable point in

time)

GPIO_writePin (myGPIOO, 1);

//
// IDLE loop. Just sit and loop forever (optional):
//

for (DESIRED_VOUT = 1200; DESIRED_VOUT < 1800; DESIRED_VOUT +=

50)
{
DEVICE_DELAY_US (500000) ;
}
for (;;)
{

//Use this code to create repeated voltage steps

187

505 /*

506

507 for (DESIRED_VOUT = 1950; DESIRED_VOUT < 2350; DESIRED_VOUT
+= 50)

508 {

509 DEVICE_DELAY_US (500000<<2) ;

510 }

511 */

512

513 /*

514 DEVICE_DELAY_US (500000) ;

515 DESIRED_VOUT = 1200;

516 GPIO_writePin (myGPIOO, 1);

517 //GPI0_writePin (myGPIOO, O0);

518

519 DEVICE_DELAY_US (500000) ;

520 DESIRED_VOUT = 1600;

521 //GPI0_writePin (myGPIOO, 1);

522 GPIO_writePin (myGPIOO, O0);

523 */

524

525 //ADC_clearInterruptStatus (ADCA_BASE, ADC_INT_NUMBER4) ;

526 //Interrupt_clearACKGroup (INTERRUPT_ACK_GROUP10) ;

527 DEVICE_DELAY_US (500000) ;

528

529 }

530 }

533 //Configures the ePWM modules as described in thesis ch7 for static
control

53¢ void initEPWM_fixed(uint32_t epwm_base)

535 {

536 //

537 // Setting counter as 0
538 //

188

539 EPWM_setTimeBaseCounter (epwm_base, 0U);

540

541 //

542 // Configuring the counter in up mode

543 //

544 EPWM_setTimeBaseCounterMode (epwm_base, EPWM_COUNTER_MODE_UP) ;

546 //

547 // Set ePWM clock pre-scaler

548 //

549 EPWM_setClockPrescaler (epwm_base, EPWM_CLOCK_DIVIDER_1,
EPWM_HSCLOCK_DIVIDER_1);

551 //

552 // Set counting direction UP after synchronization

553 //

55 EPWM_setCountModeAfterSync (epwm_base,
EPWM_COUNT_MODE_UP_AFTER_SYNC) ;

556 //

557 // Set actions

558 //

559 EPWM_setActionQualifierAction (epwm_base, EPWM_AQ_OUTPUT_A,

EPWM_AQ_OUTPUT_HIGH, EPWM_AQ_OUTPUT_ON_TIMEBASE_ZERO);

560 EPWM_setActionQualifierAction(epwm_base, EPWM_AQ_OUTPUT_A,
EPWM_AQ_OUTPUT_LOW, EPWM_AQ_OUTPUT_ON_TIMEBASE_UP_CMPA);

561

562 //

563 // Enable ADC start of conversion triggering

564 //

565 EPWM_enableADCTrigger (epwm_base, EPWM_SOC_A);

566 EPWM_setADCTriggerSource (epwm_base, EPWM_SOC_A,
EPWM_SOC_TBCTR_U_CMPC) ;

567 EPWM_setADCTriggerEventPrescale (epwm_base, EPWM_SOC_A, 1);

568 EPWM_clearADCTriggerFlag (epwm_base, EPWM_SOC_A);

569

189

576

586

588

589

590

591

593

594

595

596

597

598

599

//

// Set up shadowing

//

EPWM_selectPeriodLoadEvent (epwm_base,
EPWM_SHADOW_LOAD_MODE_COUNTER_ZERO) ;
EPWM_setCounterCompareShadowLoadMode (epwm_base,
EPWM_COUNTER_COMPARE_A, EPWM_COMP_LOAD_ON_SYNC_CNTR_ZERO) ;
EPWM_setCounterCompareShadowLoadMode (epwm_base ,
EPWM_COUNTER_COMPARE_C, EPWM_COMP_LOAD_ON_SYNC_CNTR_ZERO) ;
EPWM_enablePhaseShiftLoad (epwm_base) ;

//Configures the ePWMs to accept an external sync and to
// act in one shot mode
//Necessary for sensed control, not used for static

//included for completeness

void initEPWM_oneshot (uint32_t epwm_base,
EPWM_DigitalCompareTripInput trigger_in,

EPWM_DigitalCompareTripInput trip_in, uintl6_t on_time)

//

// Clear the effects from fixed PWM settings

//

EPWM_setActionQualifierAction (epwm_base,
EPWM_AQ_OUTPUT_A,
EPWM_AQ_OUTPUT_NO_CHANGE ,

EPWM_AQ_QOUTPUT_ON_TIMEBASE_UP_CMPA);

EPWM_setActionQualifierAction (epwm_base,

EPWM_AQ_OUTPUT_A,
EPWM_AQ_OUTPUT_NO_CHANGE ,

190

600

601

605

606

607

608

609

610

611

EPWM_AQ_OUTPUT_ON_TIMEBASE_ZERO);

//

// Seting up Period value to produce a pulse of 0.5us
//

EPWM_setTimeBasePeriod (epwm_base, OxFFFF);

//

// Configuring the counter in up mode

//

EPWM_setTimeBaseCounterMode (epwm_base, EPWM_COUNTER_MODE_UP) ;

//

// Set ePWM clock pre-scaler

//

EPWM_setClockPrescaler (epwm_base,
EPWM_CLOCK_DIVIDER_1,
EPWM_HSCLOCK_DIVIDER_1);

//
// Configuring synchronization source as Digital Compare
// This sets the PWM to do a one shot output on DC

synchronization

//

EPWM_selectDigitalCompareTripInput (epwm_base, trigger_in,
EPWM_DC_TYPE_DCAL) ;
EPWM_setTripZoneDigitalCompareEventCondition (epwm_base,
EPWM_TZ_DC_OUTPUT_A1, EPWM_TZ_EVENT_DCXL_HIGH) ;
EPWM_enableDigitalCompareEdgeFilter (epwm_base) ;
EPWM_setDigitalCompareEdgeFilterMode (epwm_base,
EPWM_DC_EDGEFILT_MODE_RISING) ;
EPWM_setDigitalCompareEdgeFilterEdgeCount (epwm_base,
EPWM_DC_EDGEFILT_EDGECNT_1) ;
EPWM_setDigitalCompareFilterInput (epwm_base,
EPWM_DC_WINDOW_SOURCE_DCAEVT1) ;

191

629 EPWM_disableDigitalCompareBlankingWindow (epwm_base) ;

630 EPWM_setDigitalCompareEventSource (epwm_base, EPWM_DC_MODULE_A,
EPWM_DC_EVENT_1, EPWM_DC_EVENT_SOURCE_FILT_SIGNAL);

631 EPWM_enableDigitalCompareSyncEvent (epwm_base, EPWM_DC_MODULE_A) ;

632 EPWM_setDigitalCompareEventSyncMode (epwm_base, EPWM_DC_MODULE_A,
EPWM_DC_EVENT_1, EPWM_DC_EVENT_INPUT_SYNCED) ;

634 //

635 // Configuring trip source Digital Compare Event

636 // This will turn off the EPWM in that cycle for safety reasons
637 //

639 EPWM_setTripZoneAction (epwm_base, EPWM_TZ_ACTION_EVENT_DCAEVT2,
EPWM_TZ_ACTION_LOW) ;

640 EPWM_enableTripZoneSignals (epwm_base, EPWM_TZ_SIGNAL_DCAEVT2);

641 EPWM_selectDigitalCompareTripInput (epwm_base, trip_in,
EPWM_DC_TYPE_DCAH) ;

642 EPWM_setTripZoneDigitalCompareEventCondition (epwm_base,
EPWM_TZ_DC_OUTPUT_A2, EPWM_TZ_EVENT_DCXH_HIGH) ;

643 EPWM_setDigitalCompareEventSource (epwm_base, EPWM_DC_MODULE_A,
EPWM_DC_EVENT_2, EPWM_DC_EVENT_SOURCE_ORIG_SIGNAL);

644

645 //

646 // Setting phase offset as O after synchronization
647 /7

648 EPWM_setPhaseShift (epwm_base, 0U);

649

650 //

651 // Set counting direction UP after synchronization

652 //

653 EPWM_setCountModeAfterSync (epwm_base,
EPWM_COUNT_MODE_UP_AFTER_SYNC) ;

655 //
656 // Setting counter as 0
657 //

192

660

661

662

663

664

665

666

667

668

669

670

671

672

682

683

684

685

686

EPWM_setTimeBaseCounter (epwm_base, 0U);

//
// Set up shadowing
//

//EPWM_setCounterCompareShadowLoadMode (epwm_base,

EPWM_COUNTER_COMPARE_A, EPWM_COMP_LOAD_ON_CNTR_ZERO) ;

EPWM_selectPeriodLoadEvent (epwm_base,
EPWM_SHADOW_LOAD_MODE_COUNTER_ZERO) ;

//EPWM_setActionQualifierShadowLoadMode (epwm_base,

EPWM_ACTION_QUALIFIER_A, EPWM_AQ_LOAD_ON_SYNC_CNTR_ZERQO) ;

EPWM_setCounterCompareShadowLoadMode (epwm_base ,

EPWM_COUNTER_COMPARE_A, EPWM_COMP_LOAD_ON_SYNC_CNTR_ZERO) ;

//
// Set PWM output as LOW on CTR = PRD
//

EPWM_setActionQualifierAction (epwm_base

, EPWM_AQ_OUTPUT_A,

EPWM_AQ_OUTPUT_LOW, EPWM_AQ_OUTPUT_ON_TIMEBASE_PERIOD);

//
// Set PWM output as LOW on CTR = CMPA
//

EPWM_setActionQualifierAction (epwm_base

, EPWM_AQ_OUTPUT_A,

EPWM_AQ_OUTPUT_LOW, EPWM_AQ_OUTPUT_ON_TIMEBASE_UP_CMPA);

//
// Set PWM output as HIGH on T1 event
//

EPWM_setActionQualifierAction (epwm_base

, EPWM_AQ_OUTPUT_A,

EPWM_AQ_OUTPUT_HIGH, EPWM_AQ_OUTPUT_ON_T1_COUNT_UP) ;

//

// Set up counter compare with the on time

//

EPWM_setCounterCompareValue (epwm_base,

193

EPWM_COUNTER_COMPARE_A ,

on_time);

687

688 //
689 // Configure T1 trigger source as PWM SYNC signal
690 //

691 //EPWM_setActionQualifierTiTriggerSource (epwm_base,
EPWM_AQ_TRIGGER_EVENT_TRIG_EPWM_SYNCIN) ;

692 EPWM_setActionQualifierTiTriggerSource (epwm_base,
EPWM_AQ_TRIGGER_EVENT_TRIG_DCA_1);

693

694 //

695 // Enabling phase load on synchronization

696 //

697 EPWM_enablePhaseShiftLoad (epwm_base) ;

698

699 //
700 // Enable ADC start of conversion triggering
701 //
702 EPWM_enableADCTrigger (epwm_base, EPWM_SOC_A);

703 EPWM_enableDigitalCompareADCTrigger (epwm_base, EPWM_DC_MODULE_A)

704 EPWM_setADCTriggerSource (epwm_base, EPWM_SOC_A, EPWM_SOC_DCxEVT1
)

705 EPWM_setADCTriggerEventPrescale (epwm_base, EPWM_SOC_A, 1);

706 EPWM_clearADCTriggerFlag (epwm_base, EPWM_SOC_A);

707

708 //EPWM_enableInterrupt (epwm_base) ;

709 EPWM_enableTripZonelnterrupt (epwm_base,
EPWM_TZ_INTERRUPT_DCAEVT1) ;

710 //EPWM_setInterruptEventCount (epwm_base, 1);

714 //Used to update the switch time parameters.
715 //See update_switches_reg and update_switches_nonreg

716 // to get switch times in this format

194

736

-~
S

3
»

743

void EPWM_set_timing(uint32_t epwm_base, uintl6_t period,

duty, uintl6_t phase, uintl6_t adc_delay)

//

// Configuring time period of output signal as 10us

//

EPWM_setTimeBasePeriod (epwm_base, period);

/7

// Set switch on time

//

EPWM_setCounterCompareValue (epwm_base,

duty) ;

//

// Setting phase offset after synchronization

//

EPWM_setPhaseShift (epwm_base,

//

phase) ;

// Set up ADC measurement delay before turn on

//

EPWM_setCounterCompareValue (epwm_base,

adc_delay) ;

parameters

void update_switches_reg(uint32_t primary_base, uint32_t

secondary_base,

uintl6_t period,

uintl6_t primary_on,

primary_dt, uintl6_t secondary_dt)

//

// Boundaries

195

uint16_t

EPWM_COUNTER_COMPARE_A ,

EPWM_COUNTER_COMPARE_C,

2 //Configures the regulating half bridge based on feedback loop

uintl6_t

760

761

762

763

764

765

766

767

768

769

779

780

781

//

//uintl16_t dead_time_max = time_to_S3_on - time_to_S1_on;

uintl6_t dead_time_max = DEAD_TIME_MAX;

if (primary_on < DEAD_TIME_MIN)
{
primary_on = DEAD_TIME_MIN;
rpon_integral = ((long)primary_on) <<16;
}
else if (primary_on > ((period>>1) - DEAD_TIME_MIN))
{
primary_on = (period>>1) - DEAD_TIME_MIN;

rpon_integral = ((long)primary_on) <<16;

if (primary_dt < DEAD_TIME_MIN)

{
primary_dt = DEAD_TIME_MIN;
rpdt_integral = ((long)primary_dt) <<16;
}
else if (primary_dt > dead_time_max)
{
primary_dt = dead_time_max;
rpdt_integral = ((long)primary_dt) <<16;
}

if (secondary_dt < DEAD_TIME_MIN)

{
secondary_dt = DEAD_TIME_MIN;
rsdt_integral = ((long)secondary_dt) <<16;
}
else if(secondary_dt > dead_time_max)
{
secondary_dt = dead_time_max;
rsdt_integral = ((long)secondary_dt) <<16;
}

196

786

789

790

791

792

793

794

796

797

798

803

804

805

806

807

808

809

//

// Standard/Direct Control

//

//EPWM_set_timing(sl_base, period, slon, O, period-
ADC_MEASUREMENT_DELAY) ;

//EPWM_set_timing(s2_base, period, s2on, period-phase, period-
ADC_MEASUREMENT_DELAY) ;

//

// Sl-sensitive control
// Holds S2on-Sloff and S20ff ’constant’ for a given Slon step
//

if (FORWARD)
{
EPWM_set_timing (primary_base, period, primary_on, O, period

- ADC_MEASUREMENT_DELAY) ;

EPWM_set_timing (secondary_base, period, period-primary_on -
primary_dt -secondary_dt, period-primary_on-secondary_dt, period-
ADC_MEASUREMENT _DELAY) ;

3
else
{

EPWM_set_timing (primary_base, period, primary_on, primary_on
, period - ADC_MEASUREMENT_DELAY) ;

EPWM_set_timing (secondary_base, period, period-primary_on-
primary_dt -secondary_dt, period-secondary_dt, period-
ADC_MEASUREMENT _DELAY) ;

3
}

//Configures the nonregulating half bridge based on feedback loop

parameters

197

si10 void update_switches_nonreg(uint32_t primary_base, uint32_t
secondary_base, uintl6_t period, uintl6_t primary_dt, intl6_t

duty_correction)

st {

812 //

813 // Half Period Symmetric control

814 // Assumes S3on=S4on and t4=t6b

815 // Ties S4 to turn off when S1 turns on

816 //

817 //EPWM_set_timing(sl_base, period, s3on, period>>2 + s3on,
period - ADC_MEASUREMENT_DELAY) ;

818

819

820 if (primary_dt < DEAD_TIME_MIN)

821 {

822 primary_dt = DEAD_TIME_MIN;

823 npdt_integral = ((long)primary_dt) <<16;

824 }

825 else if (primary_dt > DEAD_TIME_MAX)

826 {

827 primary_dt = DEAD_TIME_MAX;

828 npdt_integral = ((long)primary_dt) <<16;

829 }

830

831

832 if (FORWARD)

833 {

834 EPWM_set_timing (primary_base, period, (period>>1)+
duty_correction-primary_dt, (period>>1)+duty_correction -
primary_dt, period - ADC_MEASUREMENT_DELAY);

835 EPWM_set_timing (secondary_base, period, (period>>1)-
duty_correction-primary_dt, period-primary_dt, period-
ADC_MEASUREMENT _DELAY) ;

836 }

837 else

838 {

198

839 EPWM_set_timing (primary_base, period, (period>>1)+
duty_correction-primary_dt, O, period - ADC_MEASUREMENT_DELAY) ;

840 EPWM_set_timing (secondary_base, period, (period>>1)-
duty_correction-primary_dt, (period>>1)-duty_correction, period-

ADC_MEASUREMENT _DELAY) ;

841 }

s12 }

843

844

8as //

846 // configureADC - Write ADC configurations and power up the ADC for
both

sa7 // ADC A and ADC B

sas [/
s49 //Configures ADCs in single ended mode and enables them

s50 void configureADC(uint32_t adcBase)

851 {

852 //

853 // Set ADCDLK divider to /4

854 //

855 ADC_setPrescaler (adcBase, ADC_CLK_DIV_4_0);

856

857 //

858 // Set resolution and signal mode (see #defines above) and load

859 // corresponding trims.

860 //

861 ADC_setMode (adcBase, ADC_RESOLUTION_12BIT, ADC_MODE_SINGLE_ENDED
)

862

863

864 //

865 // Set pulse positions to late

866 //

867 ADC_setInterruptPulseMode (adcBase, ADC_PULSE_END_OF_CONV);

868

869 //

199

// Power up the ADCs and then delay for 1 ms

//

ADC_enableConverter (adcBase) ;

//

// Delay for 1ms to allow ADC time to power up

//

DEVICE_DELAY_US (1000) ;

//Configures the ADCs to trigger a start of conversion (SO0C)

//

on a given trigger signal

333 void setupADCTriggered(uint32_t adcBase, uint32_t channel,

884

885

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

{

ADC_SOCNumber soc,

uintl6_t acqps = 10;//30;

ADC_setupSOC (adcBase,

>

soc,

ADC_Trigger trigger,

trigger , (ADC_Channel)channel,

ADC_setInterruptSource (adcBase,

ADC_enableInterrupt (adcBase,

adc_int, soc);

adc_int) ;

ADC_clearInterruptStatus (adcBase, adc_int);

//Runs the main feedback code

//Is an interrupt service routine because it is called

//

by hardware at certain points in the switching sequence.

__interrupt void feedback_control_ISR()

{

//Check if we are at the appropriate count to run

if (interrupt_count < COUNT_MAX)

{

interrupt_count ++;

200

ADC_IntNumber adc_int)

acqps)

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

925

926

else

interrupt_count =

0;

//Get current measurement values from hardware

//MODIFY ONLY IF NECESSARY the adc result registers to get

proper measurements

current_vpr_before

_rp = (uint32_t)ADC_readResult (

ADCARESULT_BASE, ADC_SOC_NUMBERO) ;

current_vpr_before

_rs = (uint32_t)ADC_readResult (

ADCARESULT_BASE, ADC_SOC_NUMBER1) ;

current_vpn_before

_np = (uint32_t)ADC_readResult (

ADCBRESULT_BASE, ADC_SOC_NUMBERO) ;

current_vout = (uint32_t)ADC_readResult (ADCDRESULT_BASE,

ADC_SOC_NUMBERO) ;

/* FIRST ORDER DISCRETE FILTER - uncomment to enable

current_vpr_before
ADC_SOC_NUMBERO) ;
current_vpr_before
ADC_SOC_NUMBER1) ;
current_vpn_before
ADC_SOC_NUMBERO) ;
current_vout_raw =

ADC_SOC_NUMBERO) ;

current_vpl_before

_np_raw

_rp_raw = ADC_readResult (ADCBRESULT_BASE,

_rs_raw = ADC_readResult (ADCBRESULT_BASE,

ADC_readResult (ADCARESULT_BASE,

ADC_readResult (ADCDRESULT_BASE,

_sl = (current_vpl_before_s1)*alpha +

current_vpl_before_sl_raw*(one_minus_alpha);

current_vpl_before_s2 = (current_vpl_before_s2)*alpha +

current_vpl_before_s2_raw#*(one_minus_alpha);

current_vp2_before_s3 = (current_vp2_before_s3)*alpha +

current_vp2_before_s3_raw*(one_minus_alpha);

current_vout = current_vout*alpha + current_vout_raw*(

one_minus_alpha);

201

927

928

930

931

932

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

current_vpl_before_sl = current_vpl_before_sl >> 16;

current_vpl_before_s2 = current_vpl_before_s2 >> 16;
current_vp2_before_s3 = current_vp2_before_s3 >> 16;
current_vout = current_vout >> 16;

*/

//Get Zero crossing detector measurements

uint32_t t_beta_raw = CLB_getRegister (CLB1_BASE,
CLB_REG_HLC_RO) ;

uint32_t t_alpha_raw = CLB_getRegister (CLB1_BASE,
CLB_REG_HLC_R1);

bool zc_valid = false;

//Ignore measurements if one or both times are O
if (t_alpha_raw > O && t_beta_raw > 0)// && t_beta_raw < 2x(

current_npdt + current_rsdt))

{
t_alpha = t_alpha_raw;
t_beta = t_beta_raw;
zc_valid = true;

}

//Update comparator DAC for comparison value of Vp2

//MODIFY if the comparator should instead listen for a
different value

// Than Vin-Vout. +Zero is added because that term will
disappear

// after the difference

// the -250 is an empirically determined offset to make the

DAC

// output the proper values. MODIFY IF NECESSARY to make
the

//comparator edges occur when they are supposed to on the
scope

CMPSS_setDACValueHigh (CMPSS1_BASE, VIN-current_vout+ZERO

202

960

961

962

963

964

965

966

967

968

969

970

972

973

974

975

977

978

979

980

981

-250) ;

//Update comparator DAC for comparison value of Vpl

//MODIFY if the comparator should instead listen for a
different value

// Than Vout. +Zero is needed with a difference because
that term will disappear

// after the difference

// the -250 is an empirically determined offset to make the

DAC

// output the proper values. MODIFY IF NECESSARY to make
the

//comparator edges occur when they are supposed to on the
scope

if (current_vout > 500)

{

CMPSS_setDACValueHigh (CMPSS3_BASE, current_vout -250) ;

¥

//0nly update switching times if the feedback control is
enabled

if (feedback_control_enabled)

{
//GPIO_writePin (myGPIOO, 1);
//GPIO_writePin (myGPIOO, 0);

//error computations

/ *
error_vout = current_vout - DESIRED_VOUT;
error_vpr_before_rp = (current_vpr_before_rp - (ZERO +

VPR_BEFORE_RP_CORRECTION)) ;

error_vpr_before_rs = -(current_vpr_before_rs - (

current_vout + VPR_BEFORE_RS_

error_vpn_before_np

CORRECTION)) ;

= -(current_vpn_before_np - (VIN +

203

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

VPN_BEFORE_NP_CORRECTION)) ;

error_zero_crossing_offset = t_alpha - (t_beta/2 +
ZC_CORRECTION) ;

*/

//Compute feedback loop errors from measurements

//MODIFY to match the switching sequence

error_vout = current_vout - DESIRED_VOUT;

error_vpr_before_rp = (current_vpr_before_rp - (ZERO +
VPR_BEFORE_RP_CORRECTION)) ;

error_vpr_before_rs = -(current_vpr_before_rs - (
current_vout + VPR_BEFORE_RS_CORRECTION));

error_vpn_before_np = -(current_vpn_before_np - (VIN +
VPN_BEFORE_NP_CORRECTION)) ;

error_zero_crossing_offset = t_alpha - (t_beta/2 +

ZC_CORRECTION) ;

//

// RHB Primary on time feedback

// Based on Vout error

//

current_rpon = (uintl6_t) ((error_vout*K_P_VOUT +
rpon_integral) >>16);

rpon_integral += error_vout*K_INT_VOUT;

//

// RHB Primary dead time feedback

// Based on Vpr error just before it turns on

//

current_rpdt = (uintl16_t) ((error_vpr_before_rp*K_P_ZVS +
rpdt_integral) >>16) ;

rpdt_integral += error_vpr_before_rp*xK_INT_ZVS;

//

204

1010 // RHB Secondary dead time feedback

1011 // Based on Vpr error just before it turmns on
1012 //
1013 current_rsdt = (uintl16_t) ((error_vpr_before_rs*K_P_ZVS +

rsdt_integral) >>16) ;
1014 rsdt_integral += error_vpr_before_rs*xK_INT_ZVS;

1015

1016 / /

1017 // Period feedback

1018 // Based on zero crossing offset time

1019 /7

1020

1021 //Attempted period control "save" if the output voltage
drops too low

1022 //Converter will get stuck outside the desired PR
frequency range for

1023 // the load resistance. This attempts to lower the
frequency to fix that

1024 //Used with the Vout > 1/2 Vin mode.

1025 //MODIFY (or remove) depending on switching sequence.
For example, this

1026 // should not be enabled for Vout < 1/2 Vin, because
that is the desired range.

1027 if (current_vout < (ZERO+VIN)/2)

1028 {

1029 period_integral += 1<<12;

1030 current_period = (uinti16_t) ((

error_zero_crossing_offset*K_P_ZC + period_integral) >>16);
1031 }
1032 else if(zc_valid)
1033 {
1034 current_period = (uinti16_t) ((
error_zero_crossing_offset*K_P_ZC + period_integral)>>16);
1035 period_integral += error_zero_crossing_offset*
K_INT_ZC;

1036 }

205

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

//

// NRHB Primary dead time feedback

// Based on Vpn error just before it turns on

//

current_npdt = (uintl16_t) ((error_vpn_before_np*K_P_ZVS +
npdt_integral) >>16) ;

npdt_integral += error_vpn_before_np*K_INT_ZVS;

//

// Update switching times for the mnext cycle

//

update_switches_reg(RP, RS, current_period, current_rpon
, current_rpdt, current_rsdt) ;

update_switches_nonreg (NP, NS, current_period,

current_npdt, DUTY_CORRECTION) ;

//GPIO_writePin (myGPIOO, 1);
//GPI0_writePin (myGPIOO, O);

//Clear the interrupt status so the interrupt can run again
//ENSURE that this matches the interrupt that triggers the

// Feedback loop code.

//ADC_clearInterruptStatus (ADCB_BASE, ADC_INT_NUMBER4) ;
//ADC_clearInterruptStatus (ADCD_BASE, ADC_INT_NUMBER3) ;
ADC_clearInterruptStatus (ADCA_BASE, ADC_INT_NUMBER4) ;
Interrupt_clearACKGroup (INTERRUPT_ACK_GROUP10) ;

206

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

//

// initCMPSS - Function to configure the high comparator of CMPSS1

//

void initCMPSS(uint32_t cmpssBase, uintl6_t threshold, bool invert)

{

//
// Enable CMPSS and configure the negative input signal to come
from
// the DAC
//
CMPSS_enableModule (cmpssBase) ;
if (invert)
{
CMPSS_configHighComparator (cmpssBase, CMPSS_INSRC_DAC |
CMPSS_INV_INVERTED) ;
}

else

CMPSS_configHighComparator (cmpssBase, CMPSS_INSRC_DAC) ;

//

// Use VDDA as the reference for the DAC and set DAC value to
midpoint for

// arbitrary reference.

//

CMPSS_configDAC (cmpssBase, CMPSS_DACREF_VDDA |
CMPSS_DACVAL_SYSCLK | CMPSS_DACSRC_SHDW) ;
CMPSS_setDACValueHigh (cmpssBase, threshold) ;

//

// Set up hysteresis

//

CMPSS_setHysteresis (cmpssBase, 1);

207

1102

1103 CMPSS_configFilterHigh (cmpssBase, 0, 3, 2);
1104

1105 CMPSS_initFilterHigh (cmpssBase) ;

1106

1107 //

1108 // Configure the output signals. Both CTRIPH and CTRIPOUTH will
be fed by

1109 // the asynchronous comparator output.

1110 //

1111 CMPSS_configOutputsHigh (cmpssBase, CMPSS_TRIP_FILTER |
CMPSS_TRIPOUT_FILTER) ;

1114 void initCLB_ZERO_CROSSING_TIMER (uint32_t clb_base)
115 {

1116 //

1117 // Enable

1118 //

1119 CLB_enableCLB(clb_base);

1122 //

1123 // Select Global input instead of local input for all CLB IN

1124 //

1125 CLB_configlocalInputMux (clb_base, CLB_INO,
CLB_LOCAL_IN_MUX_GLOBAL_IN);

1126 CLB_configLocalInputMux (clb_base, CLB_IN1,
CLB_LOCAL_IN_MUX_GLOBAL_IN);

1127 CLB_configlLocalInputMux (clb_base, CLB_IN2,
CLB_LOCAL_IN_MUX_GLOBAL_IN);

1128 CLB_configLocalInputMux (clb_base, CLB_IN3,
CLB_LOCAL_IN_MUX_GLOBAL_IN);

1129 CLB_configlocalInputMux (clb_base, CLB_IN4,
CLB_LOCAL_IN_MUX_GLOBAL_IN);

1130

208

1137

1138

1139

1140

1141

1142

1148

1149

1150

1151

//

// Configure inputs for switch turn offs and comparator signals

//

//MODIFY so that the start, alpha, and beta pulses are the

correct signals

// for the ZCD for the configured switching sequence

CLB_configGlobalInputMux(clb_base, CLB_INO,

CLB_GLOBAL_IN_MUX_EPWM2_CTR_CMPA); //tO

CLB_configGlobalInputMux (clb_base, CLB_IN1,

CLB_GLOBAL_IN_MUX_CLB_AUXSIG1); //t2

CLB_configGlobalInputMux (clb_base, CLB_IN2,

CLB_GLOBAL_IN_MUX_EPWM1_CTR_ZERO); //t1

CLB_configGlobalInputMux (clb_base, CLB_IN3,

CLB_GLOBAL_IN_MUX_EPWM4_CTR_ZERO); //Reset counters

CLB_configGlobalInputMux (clb_base, CLB_IN4,

CLB_GLOBAL_IN_MUX_EPWM3_CTR_ZERO); //Latch output (Outl = t1-tO0,

out2 = t2-t0)

//

// Configure inputs 1-4 as external, the rest are unused so tie

to the general purpose registers

//

CLB_configGPInputMux (clb_base
CLB_configGPInputMux (clb_base
CLB_configGPInputMux (clb_base
CLB_configGPInputMux (clb_base
CLB_configGPInputMux (clb_base
CLB_configGPInputMux (clb_base
CLB_configGPInputMux (clb_base

CLB_configGPInputMux (clb_base

, CLB_INO, CLB_GP_IN_MUX_EXTERNAL);

-

CLB_IN1, CLB_GP_IN_MUX_EXTERNAL) ;
CLB_IN2, CLB_GP_IN_MUX_EXTERNAL) ;

-

, CLB_IN3, CLB_GP_IN_MUX_EXTERNAL);
, CLB_IN4, CLB_GP_IN_MUX_EXTERNAL);
, CLB_IN5, CLB_GP_IN_MUX_GP_REG) ;
, CLB_IN6, CLB_GP_IN_MUX_GP_REG) ;
, CLB_IN7, CLB_GP_IN_MUX_GP_REG);

209

1159

1160

1161

1162

1163

1164

1165

1166

1167

1

//

// Configure CLB-XBAR AUXSIGO as CMPSS3.CTRIPH (Vpl rises above
Vin-Vout)

//

XBAR_setCLBMuxConfig (XBAR_AUXSIGO, XBAR_CLB_MUX04_CMPSS3_CTRIPH)

F)

XBAR_enableCLBMux (XBAR_AUXSIGO, XBAR_MUX04) ;

//

// Configure CLB-XBAR AUXSIG1 as CMPSS1.CTRIPH (Vp2 rises above
Vout)

//

XBAR_setCLBMuxConfig (XBAR_AUXSIG1, XBAR_CLB_MUX00_CMPSS1_CTRIPH)

>

XBAR_enableCLBMux (XBAR_AUXSIG1, XBAR_MUXO00);

//
// Load generated logic configuration

//
initTILE_ZERO_CROSSING (clb_base);

}
//
// End of file
//

H.2 System Configuration File

This is a “.sysconfig” file is used by the TI SysCfg tool in the CCS IDE to autogenerate
code that configures many of the hardware components, including some aspects of

the ePWMs and the CLB. It is necessary for the code in the previous section to run
properly.

VEX:

210

N

* QcliArgs

* These arguments were used when this file was generated. They will
be automatically applied on subsequent loads
* via the GUI or CLI. Run CLI with ’--help’ for additional
information on how to override these arguments.
--device "F2837xD" --package "F2837xD_176PTP" --part "
--product "C2000WARE@3.00.00.00"

F2837xD_176PTP"

* Qversions {"data":

":"1.7.0+1746"
*/

VEX:

"2021010520" ,"timestamp":"2021010520" ,"tool

,"templates":null}

* Import the modules used in this configuration.

*/

const epwm
false) ;

const epwml

const epwm2

const epwm3

const epwmé

; const epwmb

const epwmb6
const epwmxbar

e s

const epwmxbarl

false) ;

const epwmxbar2
const gpio
false) ;
const gpiol
const inputxbar
i},

const inputxbaril

false) ;

const outputxbar

{}, false);

; const outputxbaril

7 const outputxbar?2

const outputxbar3

scripting.addModule("/driverlib/epwnm. js", {},

epwm.addInstance () ;
epwm.addInstance () ;
epwm.addInstance () ;
epwm.addInstance () ;
epwm.addInstance () ;
epwm.addInstance () ;

scripting.addModule("/driverlib/epwmxbar. js",

epwmxbar .addInstance () ;

epwmxbar .addInstance () ;
scripting.addModule("/driverlib/gpio.js", {},
gpio.addInstance () ;

scripting.addModule ("/driverlib/inputxbar.js",

inputxbar.addInstance () ;

scripting.addModule ("/driverlib/outputxbar.js"
outputxbar.addInstance () ;

outputxbar.addInstance () ;

outputxbar.addInstance () ;

211

const TILE = scripting.addModule("/utilities/clb_tool/

clb_syscfg/source/TILE", {}, false);

const TILE1 = TILE.addInstance () ;
const TILE2 = TILE.addInstance () ;
VEX:

* Write custom configuration

*/

epwml .
7 epwml.
epwml .

epwml .

epwml

epwm2.
epwm2 .
epwm2 .
epwm2 .

; epwm2

epwm3.
epwm3.
epwm3.
epwm3.

epwm3.

epwmé.
epwmé.
epwmé .
epwmé .

epwmé.

epwmb .
epwmb .
epwmb .

epwmb .

useCase
uselnterfacePins
$name

epwm. $assign

.epwn.epwmaPin. $assign

$name
useCase
uselnterfacePins

epwm. $assign

.epwm.epwmaPin. $assign

$name

useCase
uselnterfacePins
epwm. $assign

epwm.epwmaPin. $assign

$name

useCase
uselnterfacePins
epwm. $assign

epwm. epwmaPin. $assign

$name
epwm. $assign
epwm.epwmaPin. $assign

epwm.epwmbPin. $assign

values to the imported modules.

"CUSTOM" ;
["EPWM#A"];
"myEPWM2" ;
"EPWM2" ;
"162";

"myEPWM1";
"CUSTOM" ;
["EPWM#A"];
"EPWM1";
THAGE ;

"myEPWM7 " ;
"CUSTOM";
["EPWM#A"];
"EPWM7 " ;
g,

"myEPWM8" ;
"CUSTOM" ;
["EPWM#A"];

"EPWM8";
ngn
"myEPWM3" ;
"EPWM3";
"164";
"165";

212

64

66

67

68

69

88

90

91

92

93

94

epwmxbarl

epwmxbarl.

epwmxbarl

epwmxbarl

epwmxbar?2.

epwmxbar?2

7 epwmxbar?2

epwmxbar?2.

epwmxbar?2

epwmxbar?2

.mux1Config

$name

.muxesUsed

.mux5Config

tripInput

.mux8Config

.mux3Config

$name

.muxesUsed

.mux7Config

gpiol.$name

gpiol.direction

gpiol.gpioPin. $assign

; inputxbarl.$name

7 inputxbarl.inputsUsed

|

5 epwm6 . $name = "myEPWM4";
epwm6 . epwm. $assign = "EPWM4";
epwm6 . epwm. epwmaPin. $assign = "166";
epwm6 . epwm . epwmbPin. $assign = "167";

"XBAR_EPWM_MUXO1_INPUTXBAR1";
"myEPWMXBARO _highside_trigger";
["XBAR_MUX05"];
"XBAR_EPWM_MUXO5_INPUTXBAR3";

"XBAR_TRIP5";
"XBAR_EPWM_MUXO08_ADCBEVT1";
"XBAR_EPWM_MUXO3_INPUTXBAR2";
"myEPWMXBAR1_lowside_trigger";
["XBAR_MUXO07"];
"XBAR_EPWM_MUXO7 _INPUTXBAR4";

"myGPIOO";
"GPIO_DIR_MODE_OUT";
"27”;

"myINPUTXBARO" ;

["inputxbarlGpio","inputxbar2Gpio",

inputxbar3Gpio","inputxbar4Gpio"];

inputxbarl.inputxbarilLock =
inputxbarl.
inputxbarl.
inputxbarl.
inputxbarl.
inputxbarl.

inputxbarl.

outputxbarl . $name

outputxbarl.outputxbar.$assign

7 outputxbarl.muxesUsed

true;
inputxbar2Lock = true;
inputxbar3Lock = true;
inputxbar4Lock = true;
inputxbar2Gpio = "GPIO6";
inputxbar3Gpio = "GPIO12";
inputxbar4Gpio = "GPIO14";

"myOUTPUTXBARO" ;

["XBAR_MUX00"];

"OUTPUTXBAR1";

213

105

106

107

outputxbarl.outputxbar.outputxbarPin.$assign

outputxbar?2. $name

> outputxbar2.mux8Config

XBAR_OUT_MUXO8_ADCBEVT1";

outputxbar2.muxesUsed

outputxbar2.outputxbar.$assign

outputxbar2.outputxbar.outputxbarPin. $assign

"TILE_SW_TRIGGER";

"el&!eO&!sl1&!sO0";

"el&!eO&!sl1&!sO0";

214

>

outputxbar3.$name = "myOUTPUTXBAR2";
TILE1l. $name =
TILE1.BOUNDARY. $name = "BOUNDARYO";
TILE1.LUT_O. $name = "LUT_O";

> TILE1.LUT_1. $name S ULAE gl g
TILE1.LUT_2.$name = "LUT_2";
TILE1.FSM_O. $name = "FSM_0";
TILE1.FSM_0.e0 = "BOUNDARY.inl";
TILE1.FSM_0O.el = "BOUNDARY.in2";

v TILE1.FSM_O.eqn_out = "0";
TILE1.FSM_0.eqn_sO = "(lel&!'e0&s0)
TILE1.FSM_0O.eqn_s1 =
TILE1.FSM_1.9$name = "FSM_1";
TILE1.FSM_1.eqn_s0 = "(lel&!e0&s0)
TILE1.FSM_1.eqn_out =B O
TILE1.FSM_1.e0 = "BOUNDARY.inO";
TILE1.FSM_1.el = "BOUNDARY.in3";

5 TILE1 .FSM_1.eqn_s1 =

; TILE1.FSM_2. $name = WESM 28

7 TILE1.COUNTER_O . $name = "COUNTER_O";
TILE1.COUNTER_1. $name = "COUNTER_1";
TILE1.COUNTER_2. $name = "COUNTER_2";
TILE1.0UTLUT_O. $name = "QUTLUT_O";
TILE1.0UTLUT_1.9$name = "QUTLUT_1"
TILE1.QOUTLUT_2. $name = "OUTLUT_2"

33 TILE1.QUTLUT_3. $name = "QUTLUT_3"

(el &

(el &

ll24ll;

"myOUTPUTXBAR1";

["XBAR_MUX04"];
"QUTPUTXBAR2" ;
l|25||;

le0)";

leQ)";

134 TILE1.QUTLUT_4. $name = "QOUTLUT_4";

135 TILE1.OQUTLUT_4.1i0 = "FSM_0.S1";

136 TILE1.0UTLUT_4.1i1 = "BOUNDARY.in4";

137 TILE1 . OUTLUT_4 . eqn = "i0&il";

138 TILE1.QUTLUT_5. $name = "OUTLUT_5";

130 TILE1.0OUTLUT_5.1i0 = "FSM_1.S81";

140 TILE1.0UTLUT_5.1i1 = "BOUNDARY.in4";

141 TILE1.0UTLUT_5.eqn = "i0&il";

142 TILE1.0QOUTLUT_6 . $name = "QUTLUT_6";

143 TILE1 . OQUTLUT_7 . $name = "OUTLUT_7";

144 TILE1 .HLC. $name = "HLC_O0";

145 TILE1.HLC.programO . $name = "HLCP_O";

146 TILE1.HLC.programl . $name = "HLCP_1";

147 TILE1 .HLC.program2 . $name = "HLCP_2";

14s TILE1.HLC.program3.$name = "HLCP_3";

149

150 TILE2 . $name = "TILE_ZERO_CROSSING";
151 TILE2 . BOUNDARY . $name = "BOUNDARY1";

152 TILE2.LUT_O. $name = "LUT_3";

153 TILE2.LUT_O.eqn = "jOo|di1";

154 TILE2.LUT_0.10 = "BOUNDARY.inl";
155 TILE2 . LUT_0.1i1 = "BOUNDARY.in3";
156 TILE2.LUT_1. $name = "LUT_4";

157 TILE2 .LUT_1.eqn = "i0li1";

158 TILE2 .LUT_1.1i0 = "BOUNDARY.in2";
150 TILE2 .LUT_1.1i1 = "BOUNDARY.in3";
160 TILE2.LUT_2.$name = DLjgar_S0g

161 TILE2.FSM_O. $name = "FSM_3";

162 TILE2.FSM_0.eO0 = "BOUNDARY.inO";
163 TILE2.FSM_0O.eqn_s1 = "Qo",;

164 TILE2.FSM_0.eqn_out = "e0&"sO";

165 TILE2.FSM_0.eqn_sO = "eO";

166 TILE2.FSM_1.$name = "FSM_4";

167 TILE2.FSM_1.eqn_out = TQWg

168 TILE2.FSM_1.eqn_sO = "(s0le0)&("el)";
160 TILE2.FSM_1.eqn_s1 =B QR

215

7o TILE2.FSM_1.e1l = "LUT_O0.0UT";

171 TILE2.FSM_1.e0 = "FSM_0.0UT";

i72 TILE2.FSM_2. $name = "FSM_5";

173 TILE2.FSM_2.eqn_out = QY

174 TILE2 .FSM_2.eqn_s0 = "(s0le0)&("el)";
175 TILE2.FSM_2.eqn_s1 = "0";

176 TILE2 .FSM_2.e0 = "FSM_0.0UT";

177 TILE2 .FSM_2 . el = "LUT_1.0UT";

17s TILE2 . COUNTER_O . $name = "COUNTER_3";

179 TILE2.COUNTER_O . model = "1";

130 TILE2.COUNTER_O.reset = "BOUNDARY.in3";
181 TILE2.COUNTER_O .modeO = "FSM_1.80";

1s2 TILE2.COUNTER_1. $name = "COUNTER_4";

g3 TILE2.COUNTER_1.reset = "BOUNDARY.in3";
12 TILE2.COUNTER_1 .model = WL

185 TILE2.COUNTER_1.modeO = "FSM_2.80";

1ss TILE2.COUNTER_2. $name = "COUNTER_5";

157 TILE2.0UTLUT_O . $name = "QUTLUT_8";

1ss TILE2.0UTLUT_1. $name = "QUTLUT_9";

10 TILE2.0UTLUT_2. $name = "OUTLUT_10";

oo TILE2.0UTLUT_3. $name = "OUTLUT_11";

191 TILE2.0UTLUT_4 . $name = "QUTLUT_12";

192 TILE2.0UTLUT_5. $name = "QOUTLUT_13";

193 TILE2.0UTLUT_6 . $name = "OUTLUT_14";

194 TILE2.0UTLUT_7 . $name = "QUTLUT_15";

195 TILE2 . HLC. $name = "HLC_1";

196 TILE2.HLC.eO = "BOUNDARY.in4";
197 TILE2 . HLC.RO_init = "OxDEADCODE";
108 TILE2 .HLC.R1_init =X EEEDBEEEMS
199 TILE2.HLC.programO . $name = "HLCP_4";

200 TILE2 . HLC.programO.instructl = "MOV C1,R1";

200 TILE2 .HLC.programO.instructO0 = "MOV CO,RO";

202 TILE2 .HLC.programl . $name = "HLCP_5";

203 TILE2.HLC.program?2. $name = "HLCP_6";

204 TILE2 .HLC.program3. $name = "HLCP_7";

216

206 [/ **

207 * Pinmux solution for unlocked pins/peripherals. This ensures that
minor changes to the automatic solver in a future

208 * version of the tool will not impact the pinmux you originally saw

These lines can be completely deleted in order to

200 * re-solve from scratch.

210 */

211 outputxbar3.outputxbar.$suggestSolution = "QUTPUTXBARS3
"

212 outputxbar3.outputxbar.outputxbarPin. $suggestSolution = "90";

217

218

Bibliography

[1]

2]

3]

4]

[5]

[6]

7]

8]

19]

J. M. Alonso, C. Ordiz, and M. A. Dalla Costa. A novel control method for
piezoelectric-transformer based power supplies assuring zero-voltage-switching
operation. IEEE Transactions on Industrial Electronics, 55(3):1085-1089, 2008.

Jessica D Boles, Joseph E Bonavia, Pedro L Acosta, Y K Ramadass, J H Lang,
and David J Perreault. Evaluating piezoelectric materials and vibration modes
for power conversion. IEEE Transactions on Power Electronics, 2022.

Jessica D Boles, Elaine Ng, Jeffrey H Lang, and David J Perreault. Dc-dc con-
verter implementations based on piezoelectric transformers. Journal of Emerging
and Selected Topics in Power Electronics, 2022.

Jessica D Boles, Joshua J Piel, and David J Perreault. Enumeration and analy-
sis of de-de converter implementations based on piezoelectric resonators. IEEE
Transactions on Power Electronics, 36(1):129-145, 2021.

Joseph E. Bonavia, Jessica D. Boles, Jeffrey H. Lang, and David J. Perreault.
Augmented piezoelectric resonators for power conversion. In 2021 IEEE 22nd
Workshop on Control and Modelling of Power Electronics (COMPEL), pages
1-8, 2021.

Weston D. Braun, Eric A. Stolt, Lei Gu, Jeronimo Segovia-Fernandez, Sombud-
dha Chakraborty, Ruochen Lu, and Juan M. Rivas-Davila. Optimized resonators
for piezoelectric power conversion. IEEE Open Journal of Power Electronics,
2:212-224, 2021.

S. Chen and C. Chen. ZVS considerations for a phase-lock control dc/dc con-
verter with piezoelectric transformer. In ITECON 2006 - 32nd Annual Conference
on IEEE Industrial Electronics, pages 2244-2248, 2006.

M. Ekhtiari, Z. Zhang, and M. A. E. Andersen. Analysis of bidirectional
piezoelectric-based converters for zero-voltage switching operation. IEEFE Trans-
actions on Power Electronics, 32(1):866-877, Jan 2017.

David M Giuliano, Matthew E D’Asaro, Jacob Zwart, and David J Perreault.
Miniaturized low-voltage power converters with fast dynamic response. IFEFE
Journal of Emerging and Selected Topics in Power FElectronics, 2(3):395-405,
2014.

219

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

Alex J. Hanson and David J. Perreault. A high-frequency power factor correction
stage with low output voltage. IEEE Journal of Emerging and Selected Topics
in Power Electronics, 8(3):2143-2155, 2020.

E. L. Horsley, A. V. Carazo, N. Nguyen-Quang, M. P. Foster, and D. A. Stone.
Analysis of inductorless zero-voltage-switching piezoelectric transformer-based
converters. IEEE Transactions on Power Electronics, 27(5):2471-2483, 2012.

Phyo Aung Kyaw, Aaron LF Stein, and Charles R Sullivan. Fundamental exami-
nation of multiple potential passive component technologies for future power elec-
tronics. IEEE Transactions on Power Electronics, 33(12):10,708-10,722, 2018.

Yutian Lei and Robert Carl Nikolai Pilawa-Podgurski. A general method for
analyzing resonant and soft-charging operation of switched-capacitor converters.
IEEE Transactions on Power Electronics, 30(10):5650-5664, 2015.

Yongjun Li, Jikang Chen, Mervin John, Ricky Liou, and Seth R Sanders. Reso-
nant switched capacitor stacked topology enabling high dc-dc voltage conversion
ratios and efficient wide range regulation. In Proc. IEEE Energy Conversion
Congress and Exposition, pages 1-7, Milwaukee, WI, USA, September 2016.

Seungbum Lim, John Ranson, David M. Otten, and David J. Perreault. Two-
stage power conversion architecture suitable for wide range input voltage. IEFEFE
Transactions on Power Electronics, 30(2):805-816, 2015.

B. Pollet, G. Despesse, and F. Costa. A new non-isolated low-power induc-
torless piezoelectric de—dc converter. IEEE Transactions on Power Electronics,
34(11):11002-11013, 2019.

M. S. Ridgaard, T. Andersen, and M. A. E. Andersen. Empiric analysis of
zero voltage switching in piezoelectric transformer based resonant converters. In

6th IET International Conference on Power Electronics, Machines and Drives
(PEMD 2012), 2012.

Christopher Schaef and Jason T Stauth. A highly integrated series—parallel
switched-capacitor converter with 12 V input and quasi-resonant voltage-mode
regulation. IEEFE Journal of Emerging and Selected Topics in Power Electronics,
6(2):456-464, 2018.

G Seo, J Shin, and B Cho. A magnetic component-less series resonant converter
using a piezoelectric transducer for low profile application. In The 2010 Inter-
national Power Electronics Conference - ECCE ASIA, pages 2810-2814, 2010.

Charles R Sullivan, Bradley A Reese, Aaron LF Stein, and Phyo Aung Kyaw.
On size and magnetics: Why small efficient power inductors are rare. In Proc.
IEEE International Symposium on 3D Power Electronics Integration and Man-
ufacturing, pages 1-23, Raleigh, NC, USA, June 2016.

220

[21]

[22]

23]

24]

M. Touhami, G. Despesse, and F. Costa. A new topology of dc-dc converter
based on piezoelectric resonator. In 2020 IEEE 21st Workshop on Control and
Modeling for Power Electronics, pages 1-7, 2020.

M. Touhami, G. Despesse, F. Costa, and B. Pollet. Implementation of con-
trol strategy for step-down dc-dc converter based on piezoelectric resonator. In
2020 22nd European Conference on Power Electronics and Applications (EPE’20
ECCE Europe), pages 1-9, 2020.

Karl S Van Dyke. The piezo-electric resonator and its equivalent network. Pro-
ceedings of the Institute of Radio Engineers, 16(6):742-764, 1928.

Z. Yang, J. Forrester, J. N. Davidson, M. P. Foster, and D. A. Stone. Reso-
nant current estimation and phase-locked loop feedback design for piezoelectric
transformer-based power supplies. IEFEE Transactions on Power Electronics,
35(10):10466-10476, 2020.

221

