
Algorithms for Generation and Tracking of

Fast and Agile Flight Trajectories

by

Ezra Tal

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Aeronautics and Astronautics

October 31, 2021

Certified by. .
Sertac Karaman

Associate Professor of Aeronautics and Astronautics
Thesis Supervisor

Certified by. .
Russ Tedrake

Professor of Electrical Engineering and Computer Science
Thesis Committee Member

Certified by. .
Luca Carlone

Associate Professor of Aeronautics and Astronautics
Thesis Committee Member

Accepted by .
Jonathan P. How

R. C. Maclaurin Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee

2

Algorithms for Generation and Tracking of
Fast and Agile Flight Trajectories

by
Ezra Tal

Submitted to the Department of Aeronautics and Astronautics
on October 31, 2021, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

High-speed flight through cluttered environments is essential to many time-sensitive robotics
applications. It requires motion planning and flight control algorithms that enable highly
accurate maneuvering at the edge of the vehicle’s capability. These algorithms must over-
come challenges particular to fast and agile flight, such as complex dynamics effects including
significant unsteady aerodynamics and challenging conditions like post-stall and uncoordi-
nated flight. We propose trajectory generation and tracking algorithms that address these
challenges for a quadcopter aircraft and for a fixed-wing transitioning aircraft that combines
vertical take-off and landing (VTOL) with efficient forward flight.

This thesis contains several contributions. First, we show that robust control based
on incremental nonlinear dynamic inversion (INDI) enables fast and agile flight without
depending on an accurate dynamics model. Based on the INDI technique, we design a com-
prehensive quadcopter flight control algorithm that achieves accurate trajectory tracking
without relying on any vehicle aerodynamics model. Second, we show differential flatness
of a global nonlinear six-degree-of-freedom (6DOF) flight dynamics model for a tailsitter
flying wing transitioning aircraft. We leverage the flat transform to design an INDI flight
control algorithm capable of tracking agile aerobatics maneuvers that exploit the entire
flight envelope, including post-stall and sideways knife-edge flight. Third, we present a tra-
jectory generation algorithm that aims to identify the actual dynamic feasibility boundary
by efficiently combining analytical, numerical, and experimental evaluations in trajectory
optimization. Finally, we demonstrate our contributions in fast and agile flight through
elaborate experiments.

Thesis Supervisor: Sertac Karaman
Title: Associate Professor of Aeronautics and Astronautics

3

4

Acknowledgments

Conducting the research presented in this thesis has been incredibly rewarding, exciting,
and enjoyable. At the same time, it has also been a challenging experience that I could
never have completed without the guidance, encouragement, and support of many.

Before anyone else, I would like to thank my advisor, Sertac Karaman, who provided me
with the opportunity to come to MIT and work on this fascinating research. Throughout
my time at MIT, Sertac has been a tremendous source of inspiration, advice, and encourage-
ment. I want to thank the other members of my thesis committee as well, Russ Tedrake and
Luca Carlone, whose advice has been impactful in both addressing important details and
determining the high-level direction of the thesis project. I am also thankful to the thesis
readers, Scott Van Broekhoven and Murat Bronz, who have been very generous in sharing
their time and knowledge. Conversations with Murat helped shape some of the fundamental
ideas in this thesis, and his aircraft designs enabled many of the flight experiments.

The mentorship I received from Nhan Nguyen and Tal Shima before coming to MIT
has helped shape me as a researcher and motivated me to pursue doctoral studies. I am
thankful for their continuing support. I also thankfully acknowledge the guidance from
Qiping Chu, who, among other things, introduced me to incremental flight control.

The Autonomy and Embedded Robotics Accelerated (AERA) group has been a great
source of suggestions, feedback, support, friendship, and community. I am thankful to
all students and others with whom I have interacted over the years. There are too many
to list, but I do want to mention a few specifically. Gilhyun Ryou has been a wonderful
collaborator from whom I have learned a lot, and part of our joint work is included in this
thesis. Dave McCoy contributed electronics designs that were essential towards enabling the
flight experiments and helped me deal with the intricacies of real-time embedded systems
programming. The indispensable support by John Aleman came in many forms, including
assembly of the flight vehicles and countless repairs to them.

I am also thankful to many friends and colleagues in the broader LIDS, AeroAstro, and
MIT community. The friendly environment of 32-D740 always provided plenty of opportu-
nity to talk about research, and (moreso) about anything that had absolutely nothing to
do with research. My house mates, with whom I escaped Tang Hall, and my team mates in
intramural soccer (and all the other sports I attempted), who provided a welcome reprieve
from the stress and busyness of graduate school. Skiing proved another great source of
relaxation, so thanks to all who weathered the icy New England slopes with me. I also
thank my friends in other parts of the world, who kept in touch, took an interest in my
work, and provided welcome distractions.

Ultimately, none of this would have been possible without the support of my family,
to whom I owe so much. I am thankful for the encouragement from my sister, brother,
sister-in-law, and parents. My father, who taught me how to be patient and persistent and
to not give up if things do not work on the first attempt, and my mother, who taught me
the importance of taking a step back and keeping the big picture in mind.

Finally, and most importantly, I want to thank Claire. Coming to Boston, meeting you,
and having you by my side throughout this adventure have made everything so much more
meaningful. You have been a tremendous source of joy, encouragement, and support, and
I cannot wait to see what the future holds for us.

Funding support from the Office of Naval Research through grant N000141712670 and from
the Army Research Office through grant W911NF1910322 is thankfully acknowledged.

5

6

Contents

1 Introduction 15

1.1 Motivation . 15

1.2 Problem Statement . 17

1.3 Related Work . 18

1.4 Contributions . 19

1.5 Outline of This Thesis . 20

2 Accurate Tracking of Aggressive Quadrotor Trajectories Using Incremen-
tal Nonlinear Dynamic Inversion and Differential Flatness 21

2.1 Introduction . 21

2.2 Flight Dynamics Model . 24

2.3 Differential Flatness . 27

2.4 Incremental Nonlinear Dynamic Inversion 30

2.5 Trajectory-Tracking Control . 33

2.6 Response Analysis . 41

2.7 Experimental Results . 47

2.8 Summary . 53

3 Global Trajectory-Tracking Control for a Tailsitter Flying Wing in Agile
Uncoordinated Flight 55

3.1 Introduction . 55

3.2 Flight Dynamics Model . 58

3.3 Differential Flatness . 63

3.4 Trajectory-Tracking Control . 69

3.5 Estimation of Aerodynamic Parameters . 73

3.6 Experimental Results . 77

3.7 Summary . 87

4 Multi-Fidelity Black-Box Optimization for Time-Optimal Quadrotor Ma-
neuvers 89

4.1 Introduction . 89

4.2 Quadcopter Trajectory Generation . 91

4.3 Bayesian Optimization . 93

4.4 Algorithm . 96

4.5 Experimental Results . 103

4.6 Summary . 111

7

5 Aerobatic Trajectory Generation for a VTOL Fixed-Wing Aircraft Using
Differential Flatness 117
5.1 Introduction . 117
5.2 Minimization of Snap and Yaw Acceleration 119
5.3 Flatness Transform . 120
5.4 Dynamic Feasibility . 123
5.5 Aerobatic Maneuvers . 130
5.6 Multi-Fidelity Trajectory Optimization . 136
5.7 Summary . 137

6 Conclusions 141
6.1 Summary of Contributions . 141
6.2 Recommendations for Future Work . 142

8

List of Figures

1-1 Quadcoper aircraft in agile flight. 16

2-1 Quadrotor with body-fixed reference system and moment arm definitions. . 22

2-2 Position and velocity control. The blue area contains the PD control design
as described in Section 2.5.1. 33

2-3 Acceleration and attitude control. The blue area contains the INDI linear
acceleration and yaw control as described in Section 2.5.2. The green area
contains the computation of angular rate and angular acceleration references
based on differential flatness as described in Section 2.3.3. The red area
contains the attitude and angular rate control as described in Section 2.5.3.
The yellow area contains the INDI angular acceleration control as described
in Section 2.5.4. 34

2-4 Motor control and computation of filtered signals. The blue and green areas
contain the moment and thrust control (including motor speed command
saturation resolution), and the motor speed control, respectively. Both are
described in Section 2.5.5. The UAV block represents the UAV hardware,
including ESCs, motors, and sensors. The red area contains the computation
of filtered signals based on IMU and optical encoder measurements. 35

2-5 Motor (propeller removed) with optical encoder for rotational speed mea-
surement. Note the optical encoder lens on the right, and the accompanying
reflective strip on the motor hub. 39

2-6 Linearized closed-loop forward acceleration dynamics, with pitch acceleration
dynamics in blue area. 42

2-7 Simulated disturbance response using the proposed incremental controller,
and a non-incremental controller. 43

2-8 Simulated angular acceleration step response for various modeling errors us-
ing the proposed incremental controller. 44

2-9 Simulated linear acceleration tracking response for various modeling errors. 45

2-10 Simulated linear acceleration tracking response using the proposed controller
with and without jerk and snap tracking. 46

2-11 Experimental flight results for 3D trajectory. 48

2-12 Experimental flight results for 3D trajectory: forward yaw (blue), and con-
stant yaw (red). 48

2-13 Experimental flight results for roulette curve trajectory: reference trajectory
(green), proposed controller (blue), without jerk and snap tracking (red), and
with drag plate attached (magenta). 49

2-14 Quadrotor with 16 cm × 32 cm cardboard drag plate. 51

9

2-15 Estimated external disturbance force for roulette curve trajectory: proposed
controller (blue), and with drag plate attached (magenta). 52

2-16 Euclidean norm of position error for hover with disturbance force through
tensioned wire. 53

2-17 Estimated external disturbance force for hover with disturbance force through
tensioned wire. 54

2-18 Quadrotor in hover with disturbance force through tensioned wire. 54

3-1 Tailsitter flying wing aircraft. 58

3-2 Reference frame and control input conventions. 61

3-3 Rotation sequence for attitude flatness transform. 66

3-4 Overview of trajectory-tracking control architecture. 70

3-5 Forces in zero-lift reference frame based on measurements, and on analytical
and experimental estimates of aerodynamic parameters. The analytical and
experimental lines coincide in (a) and (b). 77

3-6 Experimental results for lemniscate trajectory at 6 m/s. 79

3-7 Experimental results for knife edge transitioning trajectory at 6 m/s. 81

3-8 Experimental results for circle trajectory at 7.8 m/s for coordinated flight in
(a), (c), (e), (g), and (i); and for knife edge flight (b), (d), (f), (h), and (j). . 82

3-9 Experimental results for transition on a circle with radius 3.5 m from static
hover to coordinated flight at 8 m/s (a), (c), (e), (g), and (i); and vice versa
(b), (d), (f), (h), and (j). 84

3-10 Experimental results for differential thrust turn. 85

3-11 Reference trajectories with attitude and flap deflections obtained from dif-
ferential flatness transform. 87

4-1 Overview of the proposed algorithm that models dynamic feasibility con-
straints based on simulation and flight data to efficiently find the time-
optimal trajectory. 90

4-2 Polygon graph to convert free space into a simple polygon. 101

4-3 Algorithm to generate collision-free trajectories. 101

4-4 Waypoints and feasibility maps for two-segment trajectory optimization in
the simulation environment. 104

4-5 Mean and standard deviation of relative trajectory time and smoothness for
two-segment trajectory, obtained over 20 random seeds in the simulation
environment. 105

4-6 Multi-segment trajectories with starting point and subsequent waypoints in-
dicated by green and red arrows, respectively. 106

4-7 Mean and standard deviation of relative trajectory time and smoothness for
multi-segment trajectories, obtained over 20 random seeds in the simulation
environment. 107

4-8 Average relative time allocation of initial and optimized multi-segment tra-
jectories, obtained over 20 random seeds in the simulation environment. . . 107

4-9 Speed profiles of initial and optimized multi-segment trajectories, obtained
over 20 random seeds in the simulation environment. Shading indicates stan-
dard deviation. 108

10

4-10 Mean and standard deviation of relative trajectory time and smoothness
for multi-segment trajectories, obtained over 5 random seeds in the hybrid
environment using simulation and real-world flights. 109

4-11 Average relative time allocation of initial and optimized multi-segment tra-
jectories, obtained over 5 random seeds in the hybrid environment using
simulation and real-world flights. 110

4-12 Speed profiles of initial and optimized multi-segment trajectories, obtained
over 5 random seeds in the hybrid environment using simulation and real-
world flights. Shading indicates standard deviation. 111

4-13 Initial and average optimized polytope trajectories, obtained over 20 random
seeds in the simulation environment. Shading indicates standard deviation. 112

4-14 Trajectories based on waypoints from straight-line RRT*. 112

4-15 Speed profiles and average relative time allocation of initial and optimized
polytope trajectories, obtained over 20 random seeds in the simulation envi-
ronment. Shading indicates standard deviation. 113

4-16 Mean and standard deviation of relative trajectory time and smoothness
for polytope trajectories, obtained over 20 random seeds in the simulation
environment. 114

4-17 Environment for the real-world flight experiments for Trajectory 9 (cf. Fig.
4-18). 114

4-18 Initial and average optimized polytope trajectories, obtained over 5 ran-
dom seeds in the hybrid environment using simulation and real-world flights.
Shading indicates standard deviation. 115

4-19 Speed profiles and average relative time allocation of initial and optimized
polytope trajectory, obtained over 5 random seeds in the hybrid environment
using simulation and real-world flights. Shading indicates standard deviation. 115

4-20 Mean and standard deviation of relative trajectory time and smoothness for
polytope trajectory, obtained over 5 random seeds in the hybrid environment
using simulation and real-world flights. 115

5-1 Trim for straight-and-level flight without/with force due to flap deflection. . 122

5-2 Trim for straight-and-level flight without/with parasitic drag. 122

5-3 Attitude and flap deflections for various horizontal velocities and accelera-
tions. All figures correspond to ‖a‖ = 3 m/s2 with acceleration and velocity
in the same direction. 124

5-4 Hover and forward flight with g/2 lateral acceleration. The pitch plane of
rotation is indicated by the pink disk. 125

5-5 6 m hover-to-hover trajectory with ψstart = 0 rad, ψend = π rad. Trajectory
time is 3 s, interval between poses is 0.25 s. 125

5-6 Minimum feasible time for 6 m hover-to-hover trajectory. 126

5-7 Tracking error in flight experiments 6 m hover-to-hover trajectory. Shaded
area indicates infeasibility according to differential flatness transform. . . . 127

5-8 Circular trajectory with various yaw references. 128

5-9 Tracking error in flight experiments for circular trajectory with various yaw
references. Shaded area indicates infeasibility according to differential flat-
ness transform. 128

5-10 Loop. Interval between poses is 0.7 s. 130

11

5-11 Maximum position tracking error in flight experiments for loop trajectory at
various speeds. Shaded area indicates infeasibility according to differential
flatness transform. 131

5-12 Coordinated-Knife Edge-Coordinated Flight. Interval between poses is 0.6 s. 132
5-13 Climbing turn with 1 m height difference. Interval between poses is 0.5 s. . 133
5-14 Immelmann turn. Interval between poses is 1.0 s. 134
5-15 Split S maneuver. Interval between poses is 1.0 s. 135
5-16 Differential thrust turn. Interval between poses is 1.5 s. 136
5-17 Multi-fidelity Bayesian optimization of trajectory through gates. Start and

end points are static hover, and arrows indicate velocity direction constraints. 138
5-18 Relative trajectory time and smoothness for trajectory through gates. . . . 139

12

List of Tables

2.1 Main nomenclature. The subscript ref is used to indicate elements of the
reference trajectory function and its time derivatives, as well as feedforward
variables directly obtained from the reference trajectory function. The sub-
script c is used for commanded values that are obtained from a feedback
control loop. Low-pass filtered measurements and signals obtained from such
measurements are indicated by the subscript lpf. 25

2.2 Overview of trajectory tracking controller components. 33
2.3 Trajectory tracking controller gains. 45
2.4 3D trajectory tracking performance for experiments with forward yaw and

constant yaw. 45
2.5 Roulette curve trajectory tracking performance for: (i) the proposed con-

troller; (ii) jerk and snap tracking disabled; and (iii) drag plate attached. . 46

3.1 Main nomenclature. 59
3.2 Tailsitter aircraft properties. 73
3.3 Aerodynamic force parameters. 75
3.4 Comparison of tailsitter flight control algorithms. 86
3.5 Position and yaw tracking error for proposed and baseline controllers. The

top three rows (corresponding to hover-to-hover trajectories) contain maxi-
mum values, while the bottom two rows (corresponding to periodic trajecto-
ries) contain RMS values. 88

4.1 Comparison of flight times for trajectories obtained through minimum-snap
planning with waypoint and polytope constraints, and our proposed algo-
rithm for multi-fidelity Bayesian optimization (MFBO). Final column lists
mean and standard deviation obtained over 20 random seeds in the simula-
tion environment. 110

5.1 Flat output (derivatives) for various circular trajectories with Ω = v/r. . . . 129

13

14

Chapter 1

Introduction

1.1 Motivation

Autonomous high-speed navigation through cluttered environments has been a focus of
academic robotics research in recent decades. The problem is challenging and broad as
it incorporates diverse facets of robotics, such as vehicle and electronics design, motion
planning and control, and perception and estimation. The development of comprehensive
approaches for fast and agile flight that are capable of striking demonstrations has been
inspired and popularized through both research programs and challenges, such as AlphaPilot
and the autonomous drone racing competition at IROS [35,84,91].

In addition to being of academic interest, the problem also connects to many real-
world applications in which robotic vehicles incur similar challenges. In search and rescue
operations, autonomous aircraft have the potential to quickly cover large, remote areas.
The vehicles must be able to reach, search, and exit unknown environments quickly and
safely [128]. These environments may be increasingly adversarial, e.g., due to strong winds
or dust clouds, and may include indoor locations where global positioning is not available.
This requires planning and control systems that are suitable for high-speed and agile move-
ments, but also robust against external disturbances and estimation errors. Safety is an
important aspect, because humans are present in the operational area and because the risk
of damage to the vehicle is often considered in deployment decisions [86]. Another com-
pelling example is autonomous collision avoidance, e.g., in automotive applications. Once
perception systems detect that a conflict may occur, preventative control action, e.g., brak-
ing and swerving, must be applied accurately and instantaneously. This requires control
systems that respond quickly and maneuver the vehicle outside normal operating conditions,
at the boundary of the safe configuration space [131].

The maturation of technology that enables unmanned vehicles to reliably fly fast and
agile trajectories also has the potential to offer novel commercial opportunities. Partially
autonomous rotorcraft capable of performing tasks such as videography and infrastructure
inspection are already marketed towards both consumers and public and private sector
entities1. In the near future, this technology may become more widely applied, e.g., towards
time-sensitive deliveries and fast response to medical emergencies [109,138].

A large portion of academic research on fast and agile flight focuses on rotorcraft and,
in particular, on multicopters, like the quadcopter shown in Fig. 1-1. Their relatively sim-
ple and compact design, ease of use, and capability to take-off and land vertically make

1See, e.g., https://www.skydio.com.

15

https://www.skydio.com

Figure 1-1: Quadcoper aircraft in agile flight.

multicopter aircraft an ideal research platform. When equipped with sufficient thrust-to-
weight ratio, multicopters are highly capable of fast and agile flight. This capability is
convincingly exhibited in drone racing, where remotely-operated quadcopter aircraft are
piloted through challenging, obstacle-rich courses at very high speeds2. The use of multi-
copters also has disadvantages. Most prominently, multicopters have severely limited range
and endurance when compared to fixed-wing aircraft, making them less suitable for many
real-world applications.

Transitioning aircraft have the potential to combine the vertical take-off and landing
(VTOL) and hover capabilities of rotorcraft with the speed and endurance of fixed-wing
aircraft. Specifically, tailsitter aircraft take off in vertical configuration with their rotors
pointed upward and change their attitude to transition to horizontal flight where the rotors
provide propulsion and lift is provided by the wing. Tailsitter aircraft can exceed the range
and endurance limitations typical of multicopters, without sacrificing the capability to take-
off, hover, and land in confined spaces. This combination is relevant to many applications.
For example, in search and rescue, unmanned tailsitter aircraft could quickly reach remote
locations using horizontal flight, and inspect structures or enter buildings in hovering flight.

When considering manned flight, it is well known that fixed-wing aircraft with large con-
trol surfaces and sufficient thrust are capable of performing high-speed and agile maneuvers,
e.g., in air shows, air racing, and close-range aerial battle. On the other hand, unmanned
fixed-wing aircraft are not necessarily known for their maneuverability, and research in this
direction is not nearly as expansive as for unmanned rotorcraft. However, when typically
impermissible flight conditions, such as uncoordinated and post-stall flight, are considered,
increasingly agile maneuvers become feasible. This is convincingly demonstrated in 3D aer-
obatics, where remotely-piloted fixed-wing aircraft put on dazzling performances that fully
exploit the flight envelope, including the aforementioned unconventional flight conditions 3.

2See, e.g., https://www.youtube.com/thedroneracingleague for impressive demonstrations.
3An inspiring example can be found at https://youtu.be/MNZPiDCmV9g.

16

https://www.youtube.com/thedroneracingleague
https://youtu.be/MNZPiDCmV9g

1.2 Problem Statement

In this thesis, we focus on generation and tracking of fast and agile flight trajectories for
both quadcopter and fixed-wing VTOL aircraft. We aim to achieve accurate and reliable
flight at the dynamic feasibility boundary, i.e., at the boundary of what the vehicle is phys-
ically capable of. Specifically, we are interested in the following time-optimal trajectory
generation problem:

minimize
σ, T

T

subject to σ(0) = σstart,

σ(T) = σend,

σ ∈ F ,
σ ∈ ΣT .

(1.1)

The trajectory
σ(t) = [x(t)> ψ(t)]>, (1.2)

maps time to the three-dimensional position and yaw angle of the vehicle with regard to the
world-fixed reference frame. This four-element trajectory (along with a finite number of its
derivatives) is known to fully define the state and control input trajectories of a quadcopter.
In Chapter 3, we will show that this is also the case for the tailsitter flying wing aircraft.
The constraints of (1.1) prescribe the initial and final position and yaw angle. The set F
represents geometrical constraints, e.g., the free space between obstacles or a sequence of
waypoints that must be attained. Finally, the function space ΣT is the set of all dynamically
feasible trajectories, i.e., all trajectory functions that the aircraft can accurately track over
[0, T]. The trajectory tracking problem entails following σ(t) as closely as possible, i.e.,
maintaining minimal position and yaw error with regard to this reference trajectory.

The high-speed, agile flight regime presents significant challenges that need to be ad-
dressed in both trajectory generation and tracking. For example, significant aerodynamic
forces and momenta act on the vehicle, leading to both steady-state effects, such as drag,
and unsteady effects, such as wake turbulence. In contrast, quadrotor aerodynamics can
typically be neglected completely in hover and low-speed flight. Similarly, challenging con-
ditions like stall and uncoordinated flight are typically not visited by fixed-wing aircraft,
but may be essential towards fast and agile maneuvering.

Furthermore, actuation delay and bandwidth limitations, such as the mechanical time
constant of the motors, may prove to be a limiting factor in the application of large and
fast-changing control action required for agile maneuvering. In extreme cases, battery
thermochemical dynamics may also play a role, as internal resistance causes the voltage to
drop under large currents. Consequently, very high motor speeds can only be maintained for
limited consecutive time periods. In addition to purely physical limits, we need to account
for the software and hardware limitations of other subsystems, such as state estimation. At
high speeds and accelerations, estimation performance may degrade due to phenomena like
motion blur and increased vibrations. Communication and computation delays also become
more significant, e.g., a 30 ms delay at 2 m/s corresponds to 6 cm traveled, while the same
delay at 15 m/s corresponds to 45 cm.

The resulting flight dynamics are highly complex, and their feasibility boundary cannot
conveniently be expressed, e.g., as state or input limits. Consequently, a trajectory gen-
eration algorithm that operates at the feasibility boundary must also be able to identify

17

and enforce this boundary. When it comes to trajectory tracking, an effective flight control
algorithm must either incorporate an accurate dynamics model—which may be challenging
to obtain—or be robust against model discrepancies.

In this thesis, we address these challenges pertaining to generation and tracking of fast
and agile flight trajectories through the following three research questions:

1. How can we find time-optimal trajectories on the boundary of the feasibility set?

2. How can we address the complex dynamics of fast and agile flight without relying on
extensive flight dynamics modeling?

3. How can we generate and track fast and agile maneuvers that exploit the entire flight
envelope of a VTOL fixed-wing aircraft?

1.3 Related Work

There exists a large body of academic work related to the subjects of this thesis. In this
section, we give a brief, unified overview of main areas of related work to enable the reader
to place the contributions listed in Section 1.4 into context. This overview also serves to
direct the reader to the relevant chapters where a more comprehensive overview of related
works is given.

Trajectory-tracking control for quadcopter aircraft in fast and agile flight has seen in-
creasing interest in recent years. Existing works consider various approaches to address
the aerodynamic effects that heavily influence the vehicle dynamics in this flight regime.
Control systems may employ an aerodynamics model with parameters based on data ob-
tained in bench tests [48], or in flight experiments [10, 102, 123]. Nonparametric modeling
can also be used, e.g., to obtain an estimate of unmodeled forces [120], or to directly obtain
feedforward control inputs that counteract these unmodeled forces [108]. Many existing
methods have in common that they ultimately rely on data-driven modeling of aerody-
namics. This approach may be effective, but has several downsides. Gathering flight data
can be laborious, and the resulting controller may not generalize to other vehicles or tra-
jectories. Additionally, it is challenging to accurately predict the effects of complex but
significant unsteady aerodynamics and of external disturbances, such as wind and gusts.
An alternative to model-based flight control is provided by incremental, or sensor-based,
nonlinear dynamic inversion (INDI) [2,117]. This control method directly incorporates iner-
tial measurements to only rely on local accuracy of the dynamics model, leading to improved
robustness against modeling errors and external disturbances [111]. In existing literature,
INDI has been applied for robust hovering of a quadcopter [116], but not towards tracking
of fast and agile flight trajectories. Further background on quadcopter flight control and
INDI is given in Chapter 2.

Differential flatness plays an important role in quadcopter trajectory generation and
tracking [80]. This property of a dynamics system implies the existence of a transformation
between the system state and control inputs, and a flat output and its derivatives [24, 73].
In practice, this enables quadcopter trajectory planning in the flat output space consist-
ing of the position and yaw angle [81, 101]. It also allows computation of feedforward
control inputs corresponding to output derivatives that improve tracking on agile trajec-
tories [20, 22, 23, 104]. Chapter 2 includes a more formal definition of differential flatness,
and additional related work on its application in quadcopter trajectory-tracking control.
Trajectory generation using differential flatness is described in Chapter 4 and Chapter 5.

18

When considering transitioning aircraft, flight control is complicated by the change of
dynamics between hover and forward flight. Existing flight control designs for tailsitter
aircraft address this difficulty in various ways, such as blending of separate controllers [54],
gain scheduling [50,68], or pre-planned transition maneuvers [11]. However, a global control
design is preferable when performing agile maneuvers at large angle of attack through the
transition regime [103]. Flight or wind tunnel data can be used to improve the accuracy of
the dynamics model [68, 69, 134]. However, similarly to quadcopter applications, the per-
formance of the resulting controller will depend on the quality and extent of data gathered,
and its applicability under different circumstances may be limited. This has prompted re-
cent research into more robust control designs, e.g., based on incremental control [114] or
model-free control [4]. More details and relevant work on control of transitioning aircraft
are discussed in Chapter 3.

Trajectory generation for multicopter and fixed-wing aircraft is a broad subject, and
many approaches exist. Broadly speaking, popular optimization-based algorithms can be
divided into two categories. Methods that use differential flatness to transform the opti-
mization problem to the low-dimensional flat output space [8,15,80,101]. These algorithms
are typically based on the premise that sufficiently smooth trajectories are dynamically
feasible and assess feasibility of candidate solutions decoupled from the actual trajectory
optimization. On the other hand, there are methods that incorporate high-fidelity dynam-
ics and feasibility constraints and perform trajectory optimization in the high-dimensional
state space [3, 92]. While these methods are capable of obtaining high-quality solutions,
they do impose large computational cost. We provide additional background and references
on trajectory generation for quadcopters in Chapter 4 and for fixed-wing aircraft in Chapter
5.

Ultimately, the majority of trajectory generation algorithms depend on dynamics mod-
els to determine feasibility. The resulting solutions thus depend on the accuracy of these
models, which is particularly challenging to assess in fast and agile flight, as described
in Section 1.2. Bayesian optimization with Gaussian processes provides a model-free ap-
proach to optimization of a black-box objective function [100]. An extended version of the
algorithm, called multi-fidelity Bayesian optimization, combines function evaluations from
various sources [57, 60]. It has the potential to reduce the required number of expensive
high-fidelity function evaluations, e.g., by combining simulation and physical experiments
to optimize tuning parameters of robotics controllers [72, 98]. Bayesian optimization and
relevant references are further discussed in Chapter 4.

1.4 Contributions

This thesis contains the following main contributions.

(i) We show that robust control based on incremental nonlinear dynamic inversion enables
accurate tracking of fast and agile trajectories without relying on extensive flight
dynamics modeling.

(ii) Based on (i), we present a comprehensive quadcopter flight control design that achieves
accurate tracking of fast and agile maneuvers without depending on a vehicle aerody-
namics model.

(iii) We show differential flatness of a global 6DOF flight dynamics model with aerody-
namics equations for a tailsitter flying wing transitioning aircraft.

19

(iv) Based on (i) and (iii), we present a comprehensive algorithm to control a tailsitter
flying wing aircraft in agile maneuvers that exploit the entire flight envelope, including
post-stall, uncoordinated, and other challenging flight conditions.

(v) We present an algorithm for trajectory generation at the true dynamic feasibility
boundary by combining analytical, numerical, and experimental evaluations using
multi-fidelity Bayesian optimization.

(vi) Based on (iii), we present a tailsitter flying wing trajectory generation algorithm
capable of generating aerobatics maneuvers that exploit the entire flight envelope,
including post-stall, uncoordinated, and other challenging flight conditions.

(vii) We present elaborate experimental results to demonstrate our algorithmic contribu-
tions in fast and agile flight.

In addition, we provide more detailed statements of contributions for Chapter 2 through
Chapter 5 in their respective introduction sections.

1.5 Outline of This Thesis

In this thesis, we address two problems: trajectory generation and trajectory tracking, and
we consider two types of vehicles: quadcopter and flying wing tailsitter aircraft. Chap-
ter 2 through Chapter 5 follow this division by problem and vehicle. Our approaches for
trajectory-tracking flight control of quadcopter and flying wing aircraft are detailed in Chap-
ter 2 and Chapter 3, respectively. We introduce main nomenclature for each vehicle at the
beginning of these chapters. Chapter 2 also contains background on two concepts that are
central to the work presented in this thesis, namely differential flatness and incremental
nonlinear dynamic inversion. Chapter 4 and Chapter 5 present our work on trajectory gen-
eration for quadcopter and flying wing aircraft, respectively. Finally, Chapter 6 presents
conclusions and avenues for future work.

20

Chapter 2

Accurate Tracking of Aggressive
Quadrotor Trajectories Using
Incremental Nonlinear Dynamic
Inversion and Differential Flatness

Autonomous unmanned aerial vehicles (UAVs) that can execute aggressive (i.e., high-speed
and high-acceleration) maneuvers have attracted significant attention in the past few years.
This chapter focuses on accurate tracking of aggressive quadcopter trajectories. We propose
a novel control law for tracking of position and yaw angle and their derivatives of up to
fourth order, specifically, velocity, acceleration, jerk, and snap along with yaw rate and
yaw acceleration. Jerk and snap are tracked using feedforward inputs for angular rate and
angular acceleration based on the differential flatness of the quadcopter dynamics. Snap
tracking requires direct control of body torque, which we achieve using closed-loop motor
speed control based on measurements from optical encoders attached to the motors. The
controller utilizes incremental nonlinear dynamic inversion (INDI) for robust tracking of
linear and angular accelerations despite external disturbances, such as aerodynamic drag
forces. Hence, prior modeling of aerodynamic effects is not required. We rigorously analyze
the proposed control law through response analysis, and we demonstrate it in experiments.
The controller enables a quadcopter UAV to track complex 3D trajectories, reaching speeds
up to 12.9 m/s and accelerations up to 2.1g, while keeping the root-mean-square tracking
error down to 6.6 cm, in a flight volume that is roughly 18 m by 7 m and 3 m tall. We also
demonstrate the robustness of the controller by attaching a drag plate to the UAV in flight
tests and by pulling on the UAV with a rope during hover.

This chapter is based on [125]. A video of the experiments can be found at https:

//youtu.be/K15lNBAKDCs.

2.1 Introduction

High-speed aerial navigation through complex environments has been a focus of control
theory and robotics research for decades. More recently, drone racing, in which remotely-
operated rotary-wing aircraft are piloted through challenging, obstacle-rich courses at very
high speeds, has further inspired and popularized this research direction. Development of
fully-autonomous drone racers requires accurate control of aircraft during aggressive, i.e.,

21

https://youtu.be/K15lNBAKDCs
https://youtu.be/K15lNBAKDCs

Figure 2-1: Quadrotor with body-fixed reference system and moment arm definitions.

high-speed and agile, maneuvers. At high speeds, aerodynamic drag, which is hard to
model, becomes a dominant factor. This poses an important challenge in control design.
Additionally, accurate tracking of a reference trajectory with fast-changing acceleration
requires considering its higher-order time derivatives, i.e., jerk and snap. In contrast, control
design for rotary-wing, vertical take-off and landing (VTOL) aircraft at low speeds typically
neglects both aerodynamics and higher-order derivatives.

In this chapter, we propose a novel control design for accurate tracking of aggressive
trajectories using a quadcopter aircraft, such as the one shown in Fig. 2-1. The pro-
posed controller generates feedforward control inputs based on differential flatness of the
quadcopter dynamics and uses incremental nonlinear dynamic inversion (INDI) to handle
external disturbances, such as aerodynamic drag.

Nonlinear dynamic inversion (NDI), also called feedback linearization, enables the use
of a linear control law by transforming the nonlinear dynamics into a linear input-output
map [49, 106, 113]. Although variants of NDI were quickly developed for flight control
[9,21,39,58,118], it is well known that exact dynamic inversion inherently suffers from lack of
robustness [61]. As a result, other nonlinear control methods, e.g., adaptive sliding mode [61,
70,139] and backstepping designs [27], have been considered in order to achieve robustness
in flight control. More recently, an incremental version of nonlinear dynamic inversion
has been developed [111, 112], based on earlier derivations [2, 117], which incrementally
apply control inputs based on inertial measurements. The calculation of these incremental
control updates relies only on local accuracy of the dynamics model, resulting in robustness
against modeling errors and external disturbances with proof of stability [135]. In existing
literature, the INDI technique has been applied to quadcopters for stabilization, e.g., for
robust hovering [115,116], but not for trajectory tracking.

Differential flatness, or feedback linearizability, of a dynamics system allows expressing
all state and input variables in terms of a set of flat outputs and its derivatives [24,26,73,77,
133]. In the context of flight control, this property enables reformulation of the trajectory
tracking problem as a state tracking problem [58, 74]. Specifically, it enables consideration
of higher-order derivatives of the reference trajectory through feedforward state and input

22

references, which has also been applied to control [20, 23, 104]. The quadcopter dynamics
have been shown to be differentially flat, and this property has been leveraged for both
trajectory generation and tracking [22,80,101].

Quadcopter aircraft are relatively easy to maneuver and experiment with. Arguably,
these qualities make them ideal for drone racing events. For the same reasons, they have
been heavily used as experimental platforms in robotics and control theory research since the
start of this century [37,44,59,96]. Complex trajectory tracking control systems have been
designed and demonstrated for aircraft in motion capture rooms, where the position and
the orientation of the aircraft can be obtained with high accuracy [6,19,46,82,89,132,142].
Agile maneuvers for quadcopter aircraft have also been demonstrated [81,85]. Despite being
impressive, these demonstrations have showcased complex trajectories only at relatively slow
speeds, e.g., less than 2 m/s, so that aerodynamic forces and moments may be neglected.

Increasing effort has been devoted towards tracking of agile maneuvers at higher speeds
where aerodynamic effects heavily influence the vehicle dynamics and need to be accounted
for in control design to achieve accurate trajectory tracking. Parametric models can be
used to incorporate aerodynamic force parameters, e.g., based on data obtained from bench
tests [48] or flight tests [10, 22, 51, 102, 123]. Alternatively, nonparametric methods can be
used, e.g., to experimentally learn a feedforward signal that augments a model-based nom-
inal control input [108], or to predict the unmodeled force based on the vehicle state [120].
We note that approaches that ultimately rely on (parametric or nonparametric) modeling
of the aerodynamics may suffer from several disadvantages. Methods based on flight data
require data gathering experiments and may produce controllers that do not generalize to
vehicles or trajectories other than those used for data gathering. Additionally, external
disturbances (e.g., wind and gusts) and unknown changes to the vehicle (e.g., affecting
the aerodynamic shape) may lead to degradation in model accuracy. Finally, complex but
significant aerodynamic effects, such as aerodynamic interaction between rotors, may be
highly challenging to model due to their unsteady behavior [110].

Our proposed control design takes a fundamentally different approach and relies on in-
cremental control to address the aerodynamic force and moment based on inertial measure-
ments. The authors of a recent study [122] compare our controller (with slight modifications)
to a state-of-the-art nonlinear model predictive control (NMPC) design [130]. They find
that our control design outperforms NMPC with a standard PID inner-loop controller and
conclude that robustification using INDI is more effective than drag modeling at reducing
tracking error on aggressive trajectories. When NMPC is combined with INDI inner-loop
control, it achieves similar tracking performance on dynamically feasible trajectories as our
control design. However, NMPC requires several orders of magnitude more computation
power, making it impractical for size, weight, power, and cost constrained applications, and
does not come with the convergence and stability guarantees provided by differential flat-
ness and INDI [122]. When considering dynamically infeasible trajectories, NMPC is at an
advantage due to its capability to address control saturation using online optimization with
a receding horizon. This scenario can potentially be addressed by combining our proposed
controller with an online trajectory (re)planning algorithm as well.

The main contribution of this chapter is a trajectory-tracking control design that achieves
accurate tracking during high-speed and high-acceleration maneuvers without depending on
modeling or estimation of aerodynamic drag parameters. The design exploits differential
flatness of the quadcopter dynamics to generate feedforward control terms based on the
reference trajectory and its derivatives up to fourth order, i.e., velocity, acceleration, jerk,
and snap. Modeling inaccuracies and disturbances due to aerodynamic drag are compen-

23

sated for using incremental control based on the INDI technique. This control design is
novel in the following ways. Firstly, the design incorporates direct tracking of reference
snap through accurate control of the motor speeds using optical encoders attached to each
motor. We recognize that snap is directly related to vehicle angular acceleration and thus
to the control torque acting on the quadcopter. Accurate application of torque commands
is achieved by precise closed-loop control of the motor speeds using measurements from the
optical encoders. To the best of our knowledge, the direct control over snap using motor
speed measurements is novel. In contrast, trajectory-tracking control based on body rate
inputs, e.g., using a typical inner-loop flight controller, is incapable of truly considering
reference snap. Secondly, we develop a novel INDI control design for quadcopter trajectory
tracking. Thrust and torque commands are applied incrementally for robustness against
significant external disturbances, such as aerodynamic drag, without the need to model
or estimate said disturbances. As far as we are aware, the proposed controller is the first
design that is tailored for trajectory tracking, as existing INDI flight control designs fo-
cus on state regulation, e.g., for maintaining hover under external disturbances. Thirdly,
we provide and evaluate a novel implementation of INDI angular acceleration control that
includes nonlinear computation of the control increments, as opposed to the existing im-
plementations that use inversion of linearized control effectiveness equations. Finally, we
demonstrate the proposed controller in experiments, and we rigorously analyze the benefits
of several key aspects through response analysis. In our experiments, the proposed control
law enables a unmanned aerial vehicle (UAV) to track complex 3D trajectories, reaching
speeds up to 12.9 m/s and accelerations up to 2.1g, while keeping the root-mean-square
(RMS) tracking error down to 6.6 cm, in a flight volume that is roughly 18 m long, 7 m
wide, and 3 m tall. We also demonstrate the robustness of the controller by attaching a
drag plate to the UAV in flight tests and by pulling on the UAV using a tensioned wire
during hover. The improved performance due to the tracking of reference jerk and snap
through feedforward angular velocity and angular acceleration inputs is also demonstrated,
both in theoretical analysis and in experiments.

The chapter is structured as follows: Nomenclature is presented in Table 2.1. In Section
2.2, the quadrotor dynamics model is specified. Section 2.3 gives an introduction on differ-
ential flatness and shows how it is used to formulate feedforward control inputs in terms
of the reference trajectory. Introductory background on INDI is provided in Section 2.4.
In Section 2.5, we describe the architecture of the trajectory-tracking controller, and its
individual components. Section 2.6 analyzes the robustness of INDI and the effect of the
feedforward control inputs. Finally, we present experimental results from real-life flights in
Section 2.7.

2.2 Flight Dynamics Model

We consider a 6 degree-of-freedom (DOF) quadrotor, as shown in Fig. 2-1. The unit vectors
depicted in the figure are the basis of the body-fixed reference frame and form the rotation
matrix R = [bx by bz] ∈ SO(3), which gives the transformation from the body-fixed
reference frame to the inertial reference frame. The basis of the north-east-down (NED)
inertial reference frame consists of the columns of the identity matrix [ix iy iz].

24

Table 2.1: Main nomenclature. The subscript ref is used to indicate elements of the refer-
ence trajectory function and its time derivatives, as well as feedforward variables directly
obtained from the reference trajectory function. The subscript c is used for commanded
values that are obtained from a feedback control loop. Low-pass filtered measurements and
signals obtained from such measurements are indicated by the subscript lpf.

◦ Hamilton quaternion product
[•]× cross-product matrix

a linear acceleration in inertial frame, m/s2

ab linear acceleration including gravitational acceleration
in body-fixed frame, i.e., as measured by IMU, m/s2

bx, by, bz basis vectors of body-fixed frame
f ext external disturbance force vector in inertial frame, N
g gravitational acceleration, m/s2

G1 propeller speed control effectiveness matrix
G2 propeller acceleration control effectiveness matrix
H(s) low-pass filter transfer function
ix, iy, iz standard basis vectors
j jerk in inertial frame, m/s3

J vehicle moment of inertia matrix, kg·m2

Jyy vehicle moment of inertia around by-axis, kg·m2

Jrz motor rotor and propeller moment of inertia, kg·m2

kθ, kq scalar control gains
kG linearized pitch control effectiveness, kg·m2/(rad·s)
kµz propeller torque coefficient, kg·m2/rad2

kτ propeller thrust coefficient, kg·m/rad2

K diagonal control gain matrices
lx moment arm component parallel to bx-axis, m
ly moment arm component parallel to by-axis, m
m vehicle mass, kg
m control moment vector, N·m
mext external disturbance moment vector, N·m
M(s) motor (control) dynamics transfer function
NI transfer function corresponding to non-incremental controller
p polynomial relating motor speeds to throttle inputs
q vehicle pitch rate around by-axis, rad/s
rψ yaw direction vector in inertial frame
R body-fixed to inertial frame rotation matrix
s snap in inertial frame, m/s4

S angular rate to yaw rate transformation
T total thrust, N
v velocity in inertial frame, m/s
x position in inertial frame, m
α vehicle pitch acceleration around by-axis, rad/s2

∆ modeling error parameter
ζ throttle command vector
θ vehicle pitch angle, rad
ξ normed quaternion attitude vector
ξc incremental command relative to current attitude
ξe vector of error angles in body-fixed frame
σref(t) reference trajectory function, m, rad
τ specific thrust, m/s2

τm motor dynamics time constant, s
ψ vehicle yaw angle, rad
ω deviation from hover state motor rotation speed, rad/s
ω0 hover state motor rotation speed, rad/s
ω vector of four motor rotation speeds, rad/s
Ω vehicle angular velocity in body-fixed frame, rad/s

25

The vehicle translational dynamics are given by

ẋ = v, (2.1)

v̇ = giz + τbz +m−1f ext, (2.2)

where x and v are the position and velocity in the inertial reference frame, respectively.
Equation (2.2) includes three contributions to the linear acceleration. Firstly, the gravita-
tional acceleration g in downward direction. Secondly, the specific thrust τ , which is the
ratio of the total thrust T and the vehicle mass m. Note that the thrust vector is always
aligned with the bz-axis, so that the quadrotor must pitch or roll to accelerate forward,
backward or sideways. Finally, the external disturbance force vector f ext accounts for all
other forces acting on the vehicle, such as aerodynamic drag.

The rotational dynamics are given by

ξ̇ =
1

2
ξ ◦Ω, (2.3)

Ω̇ = J−1(m + mext −Ω× JΩ), (2.4)

where Ω is the angular velocity in the body-fixed reference frame, and ξ = [ξw ξx ξy ξz]>

is the normed quaternion attitude vector, so that Rx = ξ ◦ x ◦ ξ−1 with ◦ the Hamilton
product. Note that a zero magnitude element is implied when multiplying three-element
vectors with quaternions. The matrix J is the vehicle moment of inertia tensor. The control
moment vector is indicated by m, and the external disturbance moment vector by mext.
The third term of (2.4) accounts for the conservation of angular momentum.

Each propeller axis is assumed to be aligned perfectly with the bz-axis, so that all
motor speeds are described by the four-element vector ω > 0. The total thrust T and
control moment vector in body-reference frame m are given by[

m
T

]
= G1ω

◦2 + G2ω̇, (2.5)

where ◦ indicates the Hadamard power;

G1 =

lykτ −lykτ −lykτ lykτ
lxkτ lxkτ −lxkτ −lxkτ
−kµz kµz −kµz kµz
−kτ −kτ −kτ −kτ

 , (2.6)

with lx and ly the moment arms indicated in Fig. 2-1, kτ the propeller thrust coefficient,
and kµz the propeller torque coefficient; and

G2 =

0 0 0 0
0 0 0 0
−Jrz Jrz −Jrz Jrz

0 0 0 0

 (2.7)

with Jrz the rotor and propeller moment of inertia. The second term in (2.5) represents
the control torque directly due to motor torques. Due to their relatively small moment
of inertia, the contribution of the motors to the total vehicle angular momentum may be

26

neglected.

2.3 Differential Flatness

A differentially flat system admits expression of the state and input variables in terms of
a, possibly fictitious, output and a finite number of its derivatives [24,73]. Practically, this
implies the existence of a transformation that maps any sufficiently smooth trajectory in
the output space to a state and input trajectory that satisfies the system dynamics.

2.3.1 Basics on Differentially Flat Systems

We consider a system of general nonlinear dynamics

Ẋ = f (X,u) , (2.8)

where X ∈ Rn is the state, and u ∈ Rm is the control input. For the system (2.8) to be
differentially flat, there must exist an output σ of the same dimension as u, such that we
can determine all elements of X and u from σ and a finite number of its derivatives. In
other words, if the system (2.8) with state X ∈ Rn and input u ∈ Rm is differentially flat,
there exists an output σ ∈ Rm of the form

σ = h
(
X,u, u̇, . . . ,u(p)

)
(2.9)

such that

X = α
(
σ, σ̇, . . . ,σ(q)

)
, (2.10)

u = β
(
σ, σ̇, . . . ,σ(q+1)

)
. (2.11)

The, possibly fictitious, output σ is called a flat or linearizing output. There exists a
endogeneous (i.e., only depending on the original system state and control input and their
derivatives) dynamic feedback, such that the closed-loop system is diffeomorphic to a linear
system that may be transformed to Brunovsky canonical form, as

σ
(q1+1)
1 = ν1,

... (2.12)

σ(qm+1)
m = νm,

where the subscript indicates individual elements of σ and of the linear system input ν ∈
Rm. Note that the derivative order may differ between output variables. For convenience
of notation we do not write each derivative order specifically, i.e., we denote σ(q+1) = ν.

2.3.2 Application to Trajectory Generation and Tracking

The existence of an equivalent linear system can be very useful when considering generation
and tracking of trajectories. In general, trajectory generation or motion planning, deals with
the task of finding an input trajectory u(t), such that there exists a state trajectory X(t)

27

that is a solution of the boundary value problem

X(0) = X0, (2.13)

X(T) = XT , (2.14)

subject to (2.8). For flat systems, this problem can be simplified by considering a trajectory
σ(t) in the output space. The boundary constraints then impose

X0 = α
(
σ(0), σ̇(0), . . . ,σ(q)(0)

)
, (2.15)

XT = α
(
σ(T), σ̇(T), . . . ,σ(q)(T)

)
(2.16)

on the initial and final output values. From any trajectory σ(t) that satisfies these con-
straints and is of sufficient smoothness, corresponding state and input trajectories (X(t) and
u(t), respectively) that provide a solution to the original boundary value problem can be
obtained using (2.10) and (2.11). Indeed, flatness can be seen as a nonlinear generalization
of the notion of controllability from linear system theory.

In many applications, including typical flight control systems, the control input is con-
strained, i.e., u ∈ U ⊂ Rm, leading to complicated state-dependent constraints on ν. A
practical way to address these constraints is by searching for a trajectory σ(t) that minimizes
the magnitude of ν. This approach is the basis of minimum-snap trajectory generation, de-
scribed in Section 4.2.

In reality, the open-loop control input reference trajectory uref(t) is not sufficient to
accurately track the output trajectory reference σref(t). Feedback control is needed to
counteract disturbances and other deviations. The existence of a linear equivalent system
simplifies the design of a stabilizing controller. We define the tracking error

e = σ − σref , (2.17)

and set

e(q+1) = ν − νref = −
q∑
i=0

kie
(i) (2.18)

with ki such that the polynomial

sq+1 + kqs
q + · · ·+ k1s+ k0 = 0 (2.19)

is Hurwitz stable. The tracking error then obeys exponentially stable dynamics, i.e.,

‖e(t)‖ ≤ Ce−At, (2.20)

and, by continuity, the state X converges to Xref .

2.3.3 Flatness of Quadcopter Dynamics

The quadcopter dynamics model described in Section 2.2 admits the following flat output

σref(t) = [xref(t)
> ψref(t)]

>, (2.21)

28

which consists of four output variables: the quadrotor position in the inertial reference frame
xref(t) ∈ R3, and the vehicle yaw angle ψref(t) ∈ T, where T denotes the circle group [80].
The quadcopter trajectory-tracking control problem constitutes accurate tracking of the
reference trajectory given by (2.21). Henceforward, we do not explicitly write the time
argument t everywhere.

For (2.21) to be dynamically feasible, it is required that xref is of differentiability class
C4, i.e., its first four derivatives exist and are continuous, and that ψref is of class C2.
The temporal derivatives of xref are successively the reference velocity vref , the reference
acceleration aref , the reference jerk jref , and the reference snap sref , all in the inertial
reference frame. Similarly, temporal differentiation of ψref gives the yaw rate ψ̇ref , and the
yaw acceleration ψ̈ref .

Since the quadcopter dynamics are differentially flat, we can express its state and input
as a function of σref(t) and its derivatives. This enables reformulation of the trajectory
tracking problem as a state tracking problem. In this section, we derive expressions for
the angular rate reference Ωref , and the angular acceleration reference Ω̇ref in terms of
trajectory jerk, snap, yaw rate, and yaw acceleration. These references will be applied as
feedforward inputs in the trajectory-tracking control design. Our proposed control design
also uses flatness to obtain the attitude and motor speed commands, as described in Section
2.5.

Taking the derivative of (2.2) yields the following expression for jerk:

j = τR [iz]
>
×Ω + τ̇bz, (2.22)

where [•]× indicates the cross-product matrix, and variations in the unmodeled external
force f ext are neglected. This external force consists chiefly of body drag and rotor drag [45,
76]. Both contributions can be included in the differential flatness transform [22], but the
resulting controller will depend on a vehicle-specific aerodynamics model. Instead, we forgo
modeling of the external force and use sensor-based control to directly compensate for it.
Therefore, our controller is able to handle external disturbances without depending on a
vehicle-specific model, as described in the next section.

By taking the derivative once more, the following expression for snap is found:

s = R
(
τ̈ iz + (2τ̇ + τ [Ω]×) [iz]

>
×Ω + τ [iz]

>
× Ω̇

)
. (2.23)

According to typical aerospace convention, we define yaw as the angle between ix and the
vector

rψ =
[
b1x b2x 0

]>
(2.24)

with superscripts indicating individual elements of bx. Taking the derivative of (2.24) using
Ṙ = R[Ω]×, we obtain the following expression for the yaw rate:

ψ̇ =
rψ × ṙψ

r>ψrψ
=

[
−b2x b1x

]
r>ψrψ

[
0 −b1z b1y
0 −b2z b2y

]
︸ ︷︷ ︸

S

Ω = SΩ, (2.25)

and, by the product rule, the following expression for the yaw acceleration:

ψ̈ = SΩ̇ + ṠΩ. (2.26)

29

An expression for the derivative Ṡ is omitted here for brevity but can be obtained by
applying the product rule to the expression for S given in (2.25). From (2.22) and (2.25),
we obtain the angular rate reference[

Ωref

τ̇ref

]
=

[
τR[iz]

>
× bz

S 0

]−1 [
jref

ψ̇ref

]
, (2.27)

and from (2.23) and (2.26) the angular acceleration reference[
Ω̇ref

τ̈ref

]
=

[
τR[iz]

>
× bz

S 0

]−1([
sref

ψ̈ref

]
−
[

R(2τ̇ + τ [Ω]×)[iz]
>
×Ω

ṠΩ

])
. (2.28)

Note that these expressions also contain reference signals for the first and second derivatives
of specific thrust. However, as we are unable to command the corresponding first and second
derivatives of the motor speed, these references remain unused by the controller.

2.4 Incremental Nonlinear Dynamic Inversion

INDI is a nonlinear control method that reduces dependency on an accurate dynamics model
by incrementally updating the control input. In this section, we will derive the INDI control
update and compare it to the control law obtained using regular NDI. We also propose a
modification of INDI specifically for differentially flat systems.

2.4.1 Nonlinear Dynamic Inversion

Extensive background on NDI can be found in various references, such as [49,106,113]. We
show a basic derivation of an NDI control law for a nonlinear input-affine system of the
form

Ẋ = f (X) + g (X) u, (2.29)

where X ∈ Rn denotes the state and u ∈ Rm denotes the control input, with the output
given by

σ = h (X) . (2.30)

The relative degree of the system is said to be equal to d if

LgL
n
f h(X) = 0 forn ≤ d− 2, (2.31)

LgL
d−1
f h(X) 6= 0, (2.32)

where L denotes the Lie derivative defined as

Lfh(X) =
∂h(X)

∂X
f(X), (2.33)

Lnf h(X) = LfL
n−1
f h(X). (2.34)

Successive differentiation of (2.30) gives

σ(d) = Ldf h(X) + LgL
d−1h(x)u = ν, (2.35)

30

akin to (2.12). A stabilizing feedback control can now be obtained by inversion of (2.35),
where ν can be found using the method from Section 2.3.2.

2.4.2 Incremental Control

While NDI may be an effective method for control of nonlinear systems, it can suffer from
sensitivity to model uncertainty. When applied to flight control, the model inversion de-
pends on the full dynamics model, including the aerodynamics model. At each control
update, the inputs are computed using the inverted model, and discrepancies such as un-
modeled external forces or inaccurate parameters will lead to miscalculation. Incremental
NDI addresses this lack of robustness by computing updates relative to the currently applied
control inputs. The method relies only on the gradient of the dynamics model around the
current state and control input and directly incorporates sensor measurements to account
for the effect of the currently applied control inputs.

The system is written in incremental form using the first-order Taylor series approxi-
mation

Ẋ ≈ f (X0) + g (X0,u0)︸ ︷︷ ︸
Ẋ0

+

∂

∂X
(f (X) + g (X,u))X=X0,u=u0︸ ︷︷ ︸

A0

(X−X0) +
∂

∂u
(g (X,u))X=X0,u=u0︸ ︷︷ ︸

B0

(u− u0) , (2.36)

where the subscript 0 denotes the current or recent state and control input. Note that this
approximation does not rely on input-affineness. As we will show in Section 2.5 and in
Chapter 3, we will apply INDI to control the linear and angular velocity of the aircraft.
Due to inertia, these quantities do not instantaneously change in response to changes in
respectively the applied force and moment. Hence, we assume X = X0 and neglect the
corresponding term in (2.36). Since the state is to be controlled, we set

σ = h(X) = X, (2.37)

resulting in
σ̇ = Ẋ0 + B0 (u− u0) = ν. (2.38)

The obtained incremental control law

u = u0 + B−1
0

(
ν − Ẋ0

)
(2.39)

does not depend on inversion of the global dynamics model, but instead only relies on the
local gradient B0. Any discrepancy in the model of f is counteracted, as is any unknown
state-dependent disturbance. We rewrite the system dynamics as

Ẋ = f(X) + g(X,u) + d(X)

= f̃(X) + g(X,u),
(2.40)

where d(X) represents the modeling discrepancy, consisting of unmodeled dynamics and
external disturbances. Since (2.35) depends on the assumed dynamics f , the NDI control
law may suffer from decreased performance due to the discrepancy with regard to the true

31

dynamics f̃ . In contrast, (2.39) is not affected as it does not incorporate f .

2.4.3 INDI with Nonlinear Inversion

In particular when tracking fast and agile trajectories, quick and large changes in the control
input u may be required. Unless the system is input-affine, the resulting large u− u0 may
cause a large discrepancy in the linearized dynamics equation (2.36). In this thesis, we
propose incremental controllers for quadcopter and tailsitter flying wing vehicles that avoid
any linearization and instead employ nonlinear inversion. As far as we are aware, employing
differential flatness to avoid the need to compute any Jacobian in a comprehensive INDI
flight control design is novel.

Again assuming X = X0, we have

ν − Ẋ0 = f(X) + g(X,u)− f(X0)− g(X0,u0) = g(X0,u)− g(X0,u0), (2.41)

from which we obtain the incremental control law

g(X0,u) = g(X0,u0) + ν − Ẋ0. (2.42)

The quantities on the righthand side of (2.42) are known, so what remains is the computa-
tion of u by inversion of g. In general, this function may not be invertible. However, for a
differentially flat system we can employ (2.11) to obtain the required inverse as

u = β (σ, σ̇) = β (X0, f(X0) + g(X0,u))

= β
(
X0, f(X0) + g(X0,u0) + ν − Ẋ0

)
.

(2.43)

Hence, we obtain an incremental control law with the robustness properties of INDI, but
without discrepancies due to linearization.

In this chapter, we apply the incremental control law consisting of (2.42) and (2.43)
in a cascaded control design. Specifically, INDI is used for control of both the linear and
angular accelerations, where the dynamics (2.40) are given by (2.2) and (2.4), respectively.
For the linear acceleration controller, g(X,u) represents the specific thrust vector with
u consisting of the thrust magnitude and the vehicle tilt angle (i.e., the direction of the
thrust vector); for the angular acceleration controller, g(X,u) represents the specific control
moment with u consisting of the motor speeds (which are also in part determined by the
thrust magnitude). The corresponding incremental control laws, in the form of (2.42), are
given by (2.48) and (2.59). The incremental linear and angular acceleration controllers
for the tailsitter aircraft have a similar form and are presented in Chapter 3. In the next
section, we present an intuitive derivation of the quadcopter INDI control laws based on
their practical working as implicitly estimating and counteracting the disturbance d, i.e.,
the external force or moment. While this derivation provides a complementary perspective
on INDI, the resulting control equations are equivalent to those shown above.

Application of INDI requires measurement or estimation of the (angular) acceleration
Ẋ0 and the control input u0, which may require specific attention during the design of the
control hardware and software, as described in Section 2.5 and Chapter 3. Finally, we note
that the input ν may contain both feedback and feedforward terms, as described in Section
2.3.2.

32

Table 2.2: Overview of trajectory tracking controller components.

Component Methodology Reference Output Description

Position and Velocity Control PD xref , vref , aref ac Section 2.5.1
Linear Acceleration and Yaw Control INDI ac, ψref ξc, Tc Section 2.5.2

Jerk and Snap Tracking Diff. Flatness jref , sref , ψ̇ref , ψ̈ref Ωref , Ω̇ref Section 2.3.3

Attitude and Angular Rate Control PD ξc, Ωref , Ω̇ref Ω̇c Section 2.5.3

Angular Acceleration Control INDI Ω̇c mc Section 2.5.4
Moment and Thrust Control Inversion mc, Tc ωc Section 2.5.5
Motor Speed Control Integrative ωc ζ Section 2.5.5

Kx

Kv

Ka

Acceleration and
Attitude Control

x

v

alpf

alpf

−

v

−

x

−

+

+

+

+

+

ac

jref , sref , ψref , ψ̇ref , ψ̈ref

xref +

vref +

aref +

+

Figure 2-2: Position and velocity control. The blue area contains the PD control design as
described in Section 2.5.1.

2.5 Trajectory-Tracking Control

We propose a control design to accurately track the trajectory reference (2.21). Our con-
troller consists of several components based on various methods. Table 2.2 gives an overview
of the components with their respective methodology, references, and control outputs. The
control architecture is visualized in three block diagrams. Figure 2-2 shows the outer-loop
position and velocity controller as described in Section 2.5.1. The intermediate control loop
shown in Fig. 2-3 controls linear acceleration, attitude and angular rate, and angular accel-
eration as described in Section 2.5.2, 2.5.3, and 2.5.4, respectively. Finally, vehicle moment
and thrust are directly controlled through closed-loop motor speed control in the inner loop,
shown in Fig. 2-4 and described in Section 2.5.5.

The controller utilizes a vehicle state estimate consisting of position, velocity, and at-
titude. Additionally, motor speed measurements are obtained from optical encoders, and
linear acceleration and angular rate measurements are obtained from the inertial measure-
ment unit (IMU). For the application of incremental angular acceleration control, angular
acceleration measurements are obtained by numerical differentiation of the measured angu-
lar rate. A low-pass filter (LPF) is required to alleviate the effects of noise, e.g., airframe
vibrations, on measurements obtained directly from the IMU. We denote the LPF outputs
using the subscript lpf, e.g., by Ωlpf and Ω̇lpf for the angular rate output and its derivative,
respectively. The gravity-corrected LPF acceleration output in the inertial reference frame
is obtained as follows:

alpf = (Rab + giz)lpf . (2.44)

33

−
‖
·‖

2
m

A
ttitu

d
e

In
crem

en
t

C
o
m

p
u

ta
tio

n
E

rro
r

A
n

g
le

C
o
m

p
u

ta
tio

n
K
ξ

J

J
erk

T
ra

ck
in

g
K

Ω

S
n

a
p

T
ra

ck
in

g
M

o
to

r
C

o
n
tro

l

(τ
b
z
)
lp

f

(τ
b
z
)
lp

f

+

τ
lp

f

τ
lp

f

τ
lp

f

τ̇
lp

f

τ̇
lp

f

a
lp

f

a
lp

f
−

Ω
lp

f

−

Ω
lp

f

Ω
lp

f

ξ

ξ

ξ

ξ
m

lp
f

+

Ω̇
lp

f

−

xv

a
lp

f

m
c

T
c

T
c

a
c

+
+

(τ
b
z
)
c

τ
c

ξ
c

ψ
re

f

ξ
e

+
+

Ω̇
c

+
+

jre
f

ψ̇
re

f

Ω
re

f
+

s
re

f

ψ̈
re

f

Ω̇
re

f

+
+

F
ig

u
re

2-3:
A

ccelera
tio

n
a
n

d
a
ttitu

d
e

con
trol.

T
h

e
b

lu
e

area
con

tain
s

th
e

IN
D

I
lin

ear
acceleration

an
d

yaw
con

trol
as

d
escrib

ed
in

S
ectio

n
2
.5

.2
.

T
h

e
green

a
rea

con
tain

s
th

e
com

p
u

tation
of

an
gu

lar
rate

an
d

an
gu

lar
acceleration

referen
ces

b
ased

on
d

iff
eren

tial
fl

atn
ess

a
s

d
escrib

ed
in

S
ection

2
.3

.3
.

T
h

e
red

a
rea

con
tain

s
th

e
attitu

d
e

an
d

an
gu

lar
rate

con
trol

as
d

escrib
ed

in
S

ection
2.5.3.

T
h

e
yellow

area
con

tain
s

th
e

IN
D

I
an

g
u

lar
accelera

tio
n

con
trol

as
d

escrib
ed

in
S

ection
2.5.4.

34

N
u

m
er

ic
a
l

C
o
n
tr

o
l

E
ff

ec
ti

v
en

es
s

In
v
er

si
o
n

p(
·)

∫
U

A
V

R
L

P
F

L
P

F

‖
·‖

2 2
−
k
τ

m

τ
b
z

L
P

F
(τ

b
z
) l
p
f

·◦
2

L
P

F
(ω

◦2
) l
p
f

˙
(ω

◦2
) l
p
f

G
1

L
P

F
ω̇

lp
f

G
2

+ +

m
lp

f

1 m

τ l
p
f

τ̇ l
p
f

m
c

T
c

ω
c

+

+ +

ζ
x v ξ

a
b

Ω ω

+

g
i z

+
a
lp

f

Ω
lp

f
,
Ω̇

lp
f

ω

−

ω

K
I
ω

F
ig

u
re

2-
4:

M
ot

or
co

n
tr

ol
an

d
co

m
p

u
ta

ti
on

of
fi

lt
er

ed
si

gn
al

s.
T

h
e

b
lu

e
an

d
gr

ee
n

ar
ea

s
co

n
ta

in
th

e
m

om
en

t
an

d
th

ru
st

co
n
tr

ol
(i

n
cl

u
d

in
g

m
ot

or
sp

ee
d

co
m

m
an

d
sa

tu
ra

ti
o
n

re
so

lu
ti

on
),

an
d

th
e

m
ot

or
sp

ee
d

co
n
tr

ol
,

re
sp

ec
ti

v
el

y.
B

ot
h

ar
e

d
es

cr
ib

ed
in

S
ec

ti
on

2.
5.

5.
T

h
e
U
A
V

b
lo

ck
re

p
re

se
n
ts

th
e

U
A

V
h

a
rd

w
ar

e,
in

cl
u
d

in
g

E
S

C
s,

m
ot

or
s,

an
d

se
n

so
rs

.
T

h
e

re
d

ar
ea

co
n
ta

in
s

th
e

co
m

p
u

ta
ti

on
of

fi
lt

er
ed

si
gn

al
s

b
as

ed
o
n

IM
U

an
d

op
ti

ca
l

en
co

d
er

m
ea

su
re

m
en

ts
.

35

2.5.1 PD Position and Velocity Control

Position and velocity control is based on two cascaded proportional-derivative (PD) con-
trollers. The resulting controller is mathematically equivalent to the following single ex-
pression:

ac = Kx (xref − x) + Kv (vref − v) + Ka (aref − alpf) + aref (2.45)

with K• indicating diagonal gain matrices. The subscript ref is used to indicate values
obtained directly from the reference trajectory. In contrast, the subscript c indicates com-
manded values that are computed in one of the control loops. For example, aref is obtained
directly from the reference trajectory as the second derivative of xref , while ac is computed
based on (2.45) and includes terms based on the position, velocity, and acceleration devi-
ations. The first three terms in (2.45) ensure tracking of position and velocity references,
while the final term serves as a feedforward input to ensure tracking of the reference accel-
eration. The control utilizes the inertial reference frame with — in our implementation —
identical gains for the horizontal ix- and iy-directions, but separately tuned gains for the
vertical iz-direction. The commanded acceleration is used to calculate thrust and attitude
commands, as will be shown in the next section.

2.5.2 INDI Linear Acceleration and Yaw Control

In this section, we present an intuitive derivation of the INDI linear acceleration control law
that follows the practical working of the INDI notion based on estimation of the external
force acting on the quadrotor. We arrive at control equations equivalent to those given in
Section 2.4.3.

An expression for the external force in terms of measured acceleration and specific thrust
is obtained by rewriting (2.2), as follows:

f ext = m (alpf − (τbz)lpf − giz) , (2.46)

where τ is the specific thrust calculated according to (2.5) using motor speed measurements.
Identical LPFs must be used to ensure that equal phase lag is incurred by acceleration and
thrust measurements [115]. Note that the specific thrust vector and the linear acceleration
(cf. (2.44)) are both transformed to the inertial reference frame prior to filtering. This order
is appropriate because the external force in the inertial reference frame f ext is assumed to
be slow-changing relative to the LPF dynamics, as described in Section 2.3.3. Substitution
of (2.46) into (2.2) gives the following expression for the current acceleration:

a = τbz + giz +m−1f ext

= τbz + giz +m−1 (m (alpf − (τbz)lpf − giz)) (2.47)

= τbz − (τbz)lpf + alpf .

The specific thrust vector command that results in the commanded acceleration prescribed
by (2.45) can be computed using the following incremental relation based on (2.47):

(τbz)c = (τbz)lpf + ac − alpf . (2.48)

The incremental nature of (2.48) enables the controller to achieve the commanded accel-
eration despite possible disturbances or modeling errors. If the commanded value is not
obtained immediately, the thrust and attitude commands will be incremented further in

36

subsequent control updates. This principle eliminates the need for integral action anywhere
in the control design.

The thrust magnitude command is obtained as

Tc = −m‖(τbz)c‖2 (2.49)

with the negative sign following from the definition that thrust is positive in bz-direction.
The incremental attitude command ξc represents the rotation from the current attitude to
the commanded attitude and is obtained in two steps: first, the minimum rotation to align
−bz with the thrust vector command (τbz)c is obtained; second, a rotation around bz is
added to satisfy the yaw reference ψref . For the first step, we transform the normalized
thrust vector command to the current body-fixed reference frame, as follows:

(−bz)
b
c = ξ−1 ◦ (−bz)c ◦ ξ. (2.50)

The appropriate rotation to align the current −bz with (τbz)c is then given by

ξ̄c =
̂[

1− i>z (−bz)
b
c

−iz × (−bz)
b
c

]
, (2.51)

where hat refers to quaternion normalization, i.e., ξ̂ = ξ/‖ξ‖2. For the second step, the yaw
reference normal vector is first transformed to the intermediate attitude command frame,
as follows:

n̄ψref
= (ξ ◦ ξ̄c)−1 ◦

[
sinψref − cosψref 0

]> ◦ (ξ ◦ ξ̄c). (2.52)

Next, we obtain the following rotation that makes bx coincide with the plane defined by
normal vector n̄ψref

:

ξψ =
̂[

1 0 0 −
n̄1
ψref

n̄2
ψref

]>
. (2.53)

Equation (2.53) implicitly selects between tracking of ψref and ψref +π rad based on minimiz-
ing the magnitude of rotation. Due to continuity of ψref this does not cause any unwanted
switching, but it does prevent unwanted discontinuities such as a π rad rotation around bz
to maintain yaw tracking when pitching through ±π/2 rad. Note that (2.51) and (2.53) incur
singularities if iz = (−bz)

b
c and n̄2

ψref
= 0, respectively. However, by computing the attitude

command relative to the current attitude, we move these singularities far away from the
nominal trajectory. Moreover, they are straightforwardly detected and resolved by selecting
any direction of rotation. Finally, the incremental attitude command is obtained as

ξc = ξ̄c ◦ ξψ. (2.54)

2.5.3 PD Attitude and Angular Rate Control

In this section, we describe the attitude and angular rate controller. This controller specifies
the angular rate command and is thus solely based on angular kinematics. This has two
major advantages compared to incorporating control torque or motor speeds. Firstly, the
attitude controller does not take into account any model-specific parameters, such as the
vehicle inertia matrix J. Therefore the control design avoids discrepancies due to model
mismatches and has vehicle-independent gains. Secondly, accurate torque control cognizant

37

of the external moment mext can be performed separately using sensor-based INDI, as de-
scribed in Section 2.5.4. This eliminates the need to incorporate a complicated disturbance
model in the attitude controller, which further improves controller robustness and simplicity.

The three-element angle vector ξe associated with the incremental attitude command
ξc is computed as follows:

ξe =
2 arccos ξwc√

1− ξwc ξwc

[
ξxc ξyc ξzc

]>
. (2.55)

Using these error angles, the angular acceleration command is obtained as

Ω̇c = Kξξe + KΩ (Ωref −Ωlpf) + Ω̇ref , (2.56)

where Ωref and Ω̇ref are the angular velocity and angular acceleration feedforward terms
defined in (2.27) and (2.28), respectively. The resulting attitude controller not only tracks
the attitude command but also tracks angular rate and acceleration. This enables tracking
of trajectory jerk and snap, which is essential for accurate tracking of aggressive trajectories,
as will be shown analytically in Section 2.6 and experimentally in Section 2.7. In contrast,
trajectory tracking control based on body rate inputs, e.g., using an off-the-shelf flight
controller, is incapable of truly considering reference snap, because snap corresponds to the
vehicle angular acceleration, as shown in (2.28).

2.5.4 INDI Angular Acceleration Control

Robust tracking of the angular acceleration command Ω̇c is achieved through INDI con-
trol. We rewrite (2.4) into the following expression for the external moment based on the
measured angular rate, angular acceleration, and control moment:

mext = JΩ̇lpf −mlpf + Ωlpf × JΩlpf (2.57)

with mlpf the control moment in the body-fixed reference frame, obtained from the measured
motor speeds by (2.5) and low-pass filtering. Analogous to the external force in Section
2.5.2, the external moment mext is assumed slow-changing with regard to the LPF dynamics.
Substitution of (2.57) into (2.4) then gives:

Ω̇ = J−1(m + mext −Ω× JΩ)

= J−1(m + (JΩ̇lpf −mlpf + Ωlpf × JΩlpf)−Ω× JΩ)

= Ω̇lpf + J−1(m−mlpf). (2.58)

In (2.58), it is assumed that the difference between the gyroscopic angular momentum term
and its filtered counterpart is sufficiently small to be neglected, because the term is relatively
slow-changing compared to the angular acceleration and control moment, and moreover is
second-order. By inversion of the final line, we obtain the following incremental expression
for the commanded control moment:

mc = mlpf + J
(
Ω̇c − Ω̇lpf

)
. (2.59)

38

Figure 2-5: Motor (propeller removed) with optical encoder for rotational speed measure-
ment. Note the optical encoder lens on the right, and the accompanying reflective strip on
the motor hub.

2.5.5 Inversion-Based Moment and Thrust Control, and Integrative Mo-
tor Speed Control

In Section 2.5.2 and Section 2.5.4, we have found expressions for the commanded thrust
Tc and control moment mc, respectively. Tracking of these commands requires control
of the motor speeds, as evidenced by the direct relation given in (2.5). State-of-the-art
INDI implementations for quadrotors are based on linearization of this relation and do
not accurately model transient behavior [115, 116]. Our proposed implementation is based
on a nonlinear inversion of the control effectiveness and explicitly incorporates the motor
response time constant; as such, it provides a more accurate computation of control inputs.

In order to achieve fast and accurate closed-loop motor speed control, we employ optical
encoders that measure the motor speeds. The availability of motor speed measurements
furthermore enables accurate calculation of the thrust and control moment, as required by
the INDI controller in (2.48) and (2.59). In practice, the optical encoder, shown in Fig. 2-5,
measures the motor rotational speed by detecting the passage of stripes on a reflective strip
attached to the motor hub. As such, the optical encoder provides a high-rate, accurate,
lightweight, and unintrusive manner to obtain the motor speed.

The motor speed corresponding to the commanded thrust and control moment is found
by inverting the nonlinear control effectiveness equation (2.5). In order to do so, we estimate
the effect of the motor speed command on the motor speed derivative using the following
first-order model:

ω̇ = τ−1
m (ωc − ω) (2.60)

with τm the motor dynamics time constant. After equating to the control moment and

39

thrust commands, the resulting equation,[
mc

Tc

]
= G1ω

◦2
c + τ−1

m G2(ωc − ω), (2.61)

can be solved numerically, e.g., using Newton’s method. Inversion of this nonlinear control
effectiveness relation improves the accuracy of thrust and control moment tracking, when
compared to the linearized inversion that does not consider the motor transient response as
given by (2.80).

Inversion of (2.61) may lead to infeasible, i.e., saturated, motor speed commands. We
address this first by altering the control moment around bz. Since the control effective-
ness is relatively much smaller around this axis, this is most likely to resolve the command
saturation. Moreover, it typically least affects vehicle stability and position tracking, since
rotation purely around the bz-axis does not alter the thrust vector. Let

¯
ω and ω̄ be re-

spectively the minimum and maximum feasible motor speeds, then the set of bz control
momenta — excluding Jrz contributions — that result in feasible motor speed commands
is

max

{
kµz
kτ

(
4kτ

¯
ω2 + Tc ±

(
µyc
lx
− µxc
ly

))
,

−kµz
kτ

(
4kτ ω̄

2 + Tc ±
(
µyc
lx

+
µxc
ly

))}
≤ µzc

≤ min

{
kµz
kτ

(
4kτ ω̄

2 + Tc ±
(
µyc
lx
− µxc
ly

))
,

−kµz
kτ

(
4kτ

¯
ω2 + Tc ±

(
µyc
lx

+
µxc
ly

))}
. (2.62)

If this set is non-empty, we set µzc to equal the boundary closest to the original moment
command. The motor speed command is then obtained as

ωc =

(
G−1

1

[
mc

Tc

])◦ 1
2

. (2.63)

Note that due to Jrz contributions, the actual bz control moment will not exactly be
equal to µzc . However, we still obtain the feasible control moment that is closest to the
original commanded moment, because kµz and Jrz have identical signs in (2.6) and (2.7),
respectively. If there exists no µzc that results in feasible motor commands, we consider a
reduction or limited increase in the thrust magnitude command Tc based on the reasoning
that application of thrust is only effective in the correct direction, i.e., at the correct vehicle
pitch and roll. Since adjustment of Tc results in equal magnitude shift of the constraints,
it is straightforward to verify whether there exists an acceptable value of Tc such that the
lower and upper boundaries in (2.62) coincide. If so, Tc is set to this value and µzc to the
feasible point, after which (2.63) is used to compute the motor speed commands. If not, µzc
is set to the average of the lower and upper boundaries in (2.62), and any infeasible motor
speed commands resulting from (2.63) are clipped.

Finally, the throttle vector ζ that contains the motor electronic speed control (ESC)

40

commands is obtained as follows:

ζ = p(ωc) + KIω

∫
ωc − ωdt (2.64)

with p a vector-valued polynomial function relating motor speeds to throttle inputs. This
function was obtained by regression analysis of static test data. Integral action is added to
account for changes in this relation due to decreasing battery voltage. The measured motor
speed signal ω remains unfiltered here to minimize phase lag.

2.6 Response Analysis

Incremental control and the tracking of high-order reference derivatives are two key aspects
of our control design. In this section, we theoretically verify the advantages of these features.
Namely, the improved robustness of incremental control in comparison to non-incremental
control, and the improved trajectory tracking accuracy due to the consideration of high-
order reference trajectory derivatives, i.e., jerk and snap. The purpose of this section is to
provide an intuitive understanding of how these aspects improve tracking performance. In
order to analyze the behavior of the closed-loop system, we use linearized dynamics and
control equations, as the resulting simplifications allow for easier qualitative interpretation.
However, the observations in this section also apply to the full, nonlinear dynamics and
control equations. Our findings are validated and quantitatively assessed using real-life
flights in Section 2.7.

We consider forward and pitch movement around the hover state. The subscript x indi-
cates the forward component, e.g., ax,ref = a>ref ix, and the subscript y the pitch component,
e.g., µy = m>iy. In hover condition, τ = −g, θ = 0, and Ω = 03×1, so that (2.2) and (2.4)
can be linearized to obtain

ax = −gθ +m−1fx,ext, (2.65)

Jyy q̇ = µy + µy,ext, (2.66)

where θ is the pitch angle, and Jyy is the vehicle moment of inertia about the by-axis.
Similarly, the INDI linear acceleration control law (2.48) is linearized to obtain the error
angle

−gθe = −gθlpf + ax,ref − (ax)lpf + gθ, (2.67)

where −gθlpf represents the forward component of the specific thrust vector, and (ax)lpf

represents the filtered forward acceleration as obtained by (2.44). The commanded pitch
acceleration αc is obtained by taking the pitch component of (2.56), as follows:

αc = kθθe + kq (qref − qlpf) + αref , (2.68)

where qref = − jx,ref
g and αref = − sx,ref

g by linearization of (2.27) and (2.28). The scalar
control gains kθ and kq are obtained by selecting the pitch elements from the corresponding
control gain matrices described in Section 2.5.

Next, we linearize the angular acceleration and moment control laws. The four motors
can be modeled collectively, as the system is linearized around the hover state where all
motors have identical angular speeds. The scalar value ω refers to the deviation from the
hover state motor speed ω0, or, equivalently, to half of the angular speed difference between

41

s
s

M
(s)

1s
1s

H
(s)

H
(s)

H
(s)

H
(s)

H
(s)

a
x
,re

f
-
1g

q
re

f

+

α
re

f

+

α
c

J
y
y

k
G

+
ω
c

k
G

µ
y+

1
J
y
y

α
q

θ
-g

+

a
x

ω

+

ω
lp

f

−

α
lp

f

−

q
lp

f

−

θ

+

θ
lp

f

(a
x
)
lp

f

1g
+ +

+

θ
e

k
θ

+

+
k
q

+

+

µ
y
,e
x
t

+

f
x
,e
x
t

1m

+

F
ig

u
re

2-6:
L

in
ea

rized
closed

-lo
op

forw
ard

acceleration
d

y
n

am
ics,

w
ith

p
itch

acceleration
d

y
n

am
ics

in
b

lu
e

area.

42

the front and rear motor pairs. Equating (2.59) and (2.61), and isolating the pitch channel
gives

ωc =
√

((ω0 + ω)2)lpf + Jyy(4lxkτ)−1(αc − αlpf)− ω0. (2.69)

with the factor 4 due to the number of motors. Linearization around the hover state gives

ωc = ωlpf + Jyyk
−1
G (αc − αlpf), (2.70)

with the linearized control effectiveness gain kG = 8ω0lxkτ , so that µy = kGω.
In order to analyze the robustness properties provided by the proposed incremental con-

troller, it is compared to a regular, i.e., non-incremental, controller with linearized equations
(cf. (2.67) and (2.70))

θc,NI = −
ax,ref

g
, ωc,NI =

Jyy
kG

αc, (2.71)

where αc is still given by (2.68) using θe = θc − θ, and the subscript NI is used to indicate
the non-incremental controller.

0 0.5 1 1.5 2 2.5 3 3.5 4

-0.02

0

0.02

0.04

0.06

0.08

0.1

(a) Position response to fx,ext step input.

0 0.5 1 1.5 2 2.5 3 3.5 4

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

(b) Position response to µy,ext step input.

Figure 2-7: Simulated disturbance response using the proposed incremental controller, and
a non-incremental controller.

2.6.1 Robustness against Disturbance Forces and Moments

An overview of the resulting linearized closed-loop acceleration dynamics is given in Fig.
2-6. From the blue area, we obtain the following pitch acceleration dynamics:

α

αc
(s) =

Jyyk
−1
G

M(s)
1−M(s)H(s)kGJ

−1
yy

1 + Jyyk
−1
G

M(s)
1−M(s)H(s)kGJ

−1
yy H(s)

= M(s), (2.72)

α

µy,ext
(s) =

J−1
yy

1 + H(s)M(s)
1−H(s)M(s)

= J−1
yy (1−H(s)M(s)) (2.73)

with α(s) the pitch acceleration, i.e., α(s) = sq(s) = s2θ(s). The LPF transfer function is
denoted by H(s), e.g.,

αlpf

α (s) = H(s), and the motor (control) dynamics are denoted by
M(s), i.e., ω

ωc
(s) = M(s). In (2.72), we observe that the closed-loop angular acceleration

dynamics are solely determined by the motor dynamics [115]. Hence, the aggressiveness of

43

0 0.05 0.1 0.15 0.2 0.25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 2-8: Simulated angular acceleration step response for various modeling errors using
the proposed incremental controller.

trajectories that can be tracked is theoretically limited by only the bandwidth of the motor
response. This is also the case for a non-incremental version of the controller.

The disturbance moment µy,ext is fully counteracted using incremental control based
on the two feedback loops in the blue shaded area of Fig. 2-6: the expected angular ac-
celeration from the motor speeds, i.e., kG

Jyy
ωlpf , and the measured angular acceleration αlpf ,

which includes the effects of the disturbance moment. As shown in (2.73), the counteraction
depends on H(s) and M(s) so that the ability to reject disturbances is limited by the band-
width of both the LPFs and the motors. To the contrary, in a non-incremental controller
the αlpf and ωlpf feedback loops are not present, so that α = J−1

yy µy,ext (cf. (2.73)). The
disturbance moment now propagates undamped to the attitude and position control loops,
as there is no closed-loop angular acceleration control that directly evaluates the moments
acting on the vehicle.

We obtain similar results for the disturbance force fx,ext, which is corrected for incre-
mentally using the difference between the acceleration due to thrust, i.e., −gθlpf , and the
true acceleration including the disturbance force, i.e., (ax)lpf . All in all, the proposed in-
cremental controller maintains identical nominal reference tracking performance for both
angular and linear accelerations, while achieving superior disturbance rejection of external
moments and forces when compared to the non-incremental controller.

In order to evaluate the effect of the disturbance force and moment on the position
tracking error, we close the loop around Fig. 2-6 using the position and velocity controller
given by (2.45). Figure 2-7 shows the resulting step responses for both incremental and non-
incremental control. The response was simulated using the platform-independent control
gains given in Table 2.3, a second-order Butterworth filter with cut-off frequency equal to
188.5 rad/s (30 Hz), and the first-order motor model given by (2.60) with τm set to 20 ms. It
can be seen that the proposed incremental controller is able to counteract the disturbances
and reaches zero steady-state error, while the non-incremental controller is unable to do so.
In order to null the steady-state errors due to force and moment disturbances, integral action
must be added to the non-incremental controller. This is not necessary in the case of INDI,
so that our proposed control design is able to quickly and wholly counteract disturbance

44

Table 2.3: Trajectory tracking controller gains.

Gain Value

Kx diag ([18 18 13.5])
Kv diag ([7.8 7.8 5.9])
Ka diag ([0.5 0.5 0.3])
Kξ diag ([175 175 82])
Kξ̇ diag ([19.5 19.5 19.2])

Table 2.4: 3D trajectory tracking performance for experiments with forward yaw and con-
stant yaw.

Forward yaw Constant yaw

RMS ‖x− xref‖2 [cm] 6.6 6.1
max ‖x− xref‖2 [cm] 10.8 11.9
RMS |ψ − ψref | [deg] 5.1 1.9
max |ψ − ψref | [deg] 12.8 6.4
RMS ‖v‖2 [m/s] 6.8 5.6
max ‖v‖2 [m/s] 12.9 11.3
RMS ‖a− giz‖2 [m/s2] 14.4 12.5
max ‖a− giz‖2 [m/s2] 20.8 20.0

forces and moments, while avoiding the negative effects that integral action typically has
on the tracking performance, e.g., degraded stability, and increased overshoot and settling
time.

0 0.5 1 1.5 2 2.5 3

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) Using the proposed incremental controller.

0 0.5 1 1.5 2 2.5 3

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b) Using a non-incremental controller.

Figure 2-9: Simulated linear acceleration tracking response for various modeling errors.

2.6.2 Robustness against Modeling Errors

The proposed control design requires only a few vehicle-specific parameters. Nonetheless, it
is desirable that tracking performance is maintained if inaccurate parameters are used, e.g.,
because control effectiveness data obtained from static tests may not be representative for
the entire flight envelope. The linearized control equations described above incorporate the
ratio of the moment of inertia Jyy and the linearized control effectiveness kG. We denote

45

0 0.5 1 1.5 2 2.5 3

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 2-10: Simulated linear acceleration tracking response using the proposed controller
with and without jerk and snap tracking.

Table 2.5: Roulette curve trajectory tracking performance for: (i) the proposed controller;
(ii) jerk and snap tracking disabled; and (iii) drag plate attached.

(i) (ii) (iii)

RMS ‖x− xref‖2 [cm] 9.0 16.8 7.6
max ‖x− xref‖2 [cm] 14.3 28.9 14.2
RMS ψ [deg] 1.8 5.3 12.6
max |ψ| [deg] 5.3 14.9 51.7
RMS ‖v‖2 [m/s] 3.7 4.3 3.8
max ‖v‖2 [m/s] 7.3 8.2 7.7
RMS ‖a− giz‖2 [m/s2] 14.0 15.2 14.2
max ‖a− giz‖2 [m/s2] 19.1 21.3 20.4

the values used in the controller J̄yy and k̄G, and define the modeling error ∆ such that

J̄yy

k̄G
= ∆

Jyy
kG

. (2.74)

This leads to the following pitch acceleration dynamics for the proposed incremental NDI
controller, and the non-incremental controller described above:

α

αc
(s) =

∆M(s)

(∆− 1)H(s)M(s) + 1
, (2.75)

α

αc NI
(s) = ∆M(s). (2.76)

It can be seen that the error acts as a simple gain in the non-incremental controller, leading
to an incorrect angular acceleration. On the contrary, the proposed incremental controller
compares the expected angular acceleration from the motor speeds, i.e., k̄G

J̄yy
ωlpf , to the

46

measured angular acceleration, i.e., αlpf , to implicitly correct for the modeling error. The
corresponding angular acceleration responses for several values of ∆ are shown in Fig.
2-8. The figure shows that the modeling error affects the transient response, but that
the incremental controller is able to correct for it and quickly reaches the commanded
acceleration value even for very large model discrepancies.

In order to assess the effect of modeling errors on acceleration tracking, we simulate the
time response to the following acceleration reference:

ax,ref(t) =
1

2
tanh

(
4

3
πt− 2π

)
+

1

2
, (2.77)

which is C2, i.e., the corresponding jerk and snap signals are continuous, and has boundary
conditions ax,ref(0) = jx,ref(0) = sx,ref(0) = jx,ref(3) = sx,ref(3) = 0 and ax,ref(3) = 1 m/s2.
The responses for various values of ∆ are shown in Fig. 2-9. It can be seen that the incre-
mental controller is able to accurately track the reference signal even when large modeling
errors are present. When non-incremental control is used, the tracking performance declines
more severely with growing modeling error.

2.6.3 Jerk and Snap Tracking

Jerk and snap tracking is a crucial aspect of the proposed controller design that enables
tracking of fast-changing acceleration references. It is embodied by the feedforward terms
kqs and s2 in the nominator of the acceleration response transfer function

ax
ax,ref

(s) =
M(s)

(
s2 + kqs+ kθ

)
s2 + kqH(s)M(s)s+ kθM(s)

. (2.78)

These feedforward terms add two zeros to the closed-loop transfer function. These zeros
— in combination with the LPF — act essentially as a lead compensator and help improve
the transient response of the system. Effective placement of the zeros through tuning of
kq leads to improved tracking of a rapidly changing acceleration input signal, e.g., during
aggressive flight maneuvers.

Figure 2-10 shows the simulated acceleration responses with and without jerk and snap
tracking to the reference signal defined in (2.77). It can be seen that the inclusion of jerk
and snap tracking causes a faster response, resulting in more accurate acceleration tracking.
In the next section, we show that the improvement is also achieved in practice.

2.7 Experimental Results

In this section, experimental results for high-speed, high-acceleration flight are presented.
A video of the experiments is available at https://youtu.be/K15lNBAKDCs. We evaluate
the performance of the trajectory tracking controller on two trajectories that include yaw-
ing, tight turns with acceleration up to over 2g, and high-speed straights at up to 12.9
m/s. Furthermore, we examine the effect of the feedforward inputs based on the reference
trajectory jerk and snap. We establish the independence of any model-based drag estimate
by attaching a drag-inducing cardboard plate that more than triples the frontal area of the
vehicle. Robustness against external disturbance forces is further displayed by pulling on
a string attached to the quadcopter in hover. Finally, we compare the proposed nonlinear

47

https://youtu.be/K15lNBAKDCs

5

0
-1
-2
-3
-4

-2 -5
0

-102

(a) Forward yaw.

5

0
-1
-2
-3
-4

-2 -5
0

-102

(b) Constant yaw.

Figure 2-11: Experimental flight results for 3D trajectory.

0 2 4 6 8 10

0

0.02

0.04

0.06

0.08

0.1

(a) Euclidean norm of position error.

0 2 4 6 8 10

-10

-5

0

5

10

(b) Yaw error.

0 2 4 6 8 10

0

5

10

15

(c) Euclidean norm of velocity.

0 2 4 6 8 10

0

5

10

15

20

(d) Euclidean norm of acceleration.

Figure 2-12: Experimental flight results for 3D trajectory: forward yaw (blue), and constant
yaw (red).

48

-5 0 5

-2

0

2

(a) Position.

0 5 10 15 20

0

0.1

0.2

0.3

(b) Euclidean norm of position error.

0 5 10 15 20

0

2

4

6

8

10

(c) Euclidean norm of velocity.

0 5 10 15 20

0

5

10

15

20

(d) Euclidean norm of acceleration.

Figure 2-13: Experimental flight results for roulette curve trajectory: reference trajectory
(green), proposed controller (blue), without jerk and snap tracking (red), and with drag
plate attached (magenta).

INDI angular acceleration control to its linearized counterpart.

2.7.1 Experimental Setup

Experiments were performed in an indoor flight room using the quadcopter shown in Fig.
2-1. The quadrotor body is machined out of carbon fiber composite with balsa wood core.
The propulsion system consists of T-Motor F35A ESCs and F40 Pro II Kv 2400KV motors
with Gemfan Hulkie 5055 propellers. Adjacent motors are mounted 18 cm apart. The
quadcopter is powered by a single 4S LiPo battery. Its total flying mass is 609 g.

Control computations are performed at 2000 Hz using an onboard STM32H7 400 MHz
microcontroller running custom firmware. On this platform, the total computation time of
a control update at 32-bit floating point precision is 16 µs. Linear acceleration and angular
rate measurements are obtained from an onboard Analog Devices ADIS16477-3 IMU at 2000
Hz, while position, velocity, and orientation measurements are obtained from an OptiTrack
motion capture system at 360 Hz with an average latency of 18 ms. The latency is corrected
for by propagating motion capture data using integrated IMU measurements. Motor speed
measurements are obtained from the optical encoders at approximately 5000 Hz. The
motor speed and IMU measurements are low-pass filtered using a software second-order
Butterworth filter with cutoff frequency 188.5 rad/s (30 Hz).

The platform-independent controller gains listed in Table 2.3 were used. Additionally,
the controller requires several platform-specific parameters, namely: vehicle mass m, mo-
ment of inertia J, motor time constant τm, control effectiveness matrices G1 and G2, and
the gain and polynomial fit used by the motor speed controller. We obtained control ef-
fectiveness data from static tests. In experiments, it was found that using the controller
on a different quadcopter (with different dynamic properties, inertial sensors, and propul-
sion system) required no changes to controller algorithms or gains. After updating only

49

the aforementioned platform-specific parameters, the controller performed without loss of
tracking accuracy.

2.7.2 Evaluation of Proposed Controller

In this section, we evaluate the performance of the trajectory tracking controller on two
trajectories: a 3D trajectory that includes a high-speed straight and fast turns, and a
roulette curve trajectory consisting of fast successive turns resulting in high jerk and snap.
The 3D trajectory is generated from a set of waypoints using the method described in [105].
The trajectory is flown with two yaw references: forward yaw, i.e., with the bx-axis in
the velocity direction, and constant yaw set to zero. Figure 2-11 shows the corresponding
reference trajectories, along with experimental results. The forward yaw trajectory is flown
in a slightly shorter time. Performance data for both trajectories are given in Table 2.4
and shown in Fig. 2-12. Over the forward yaw trajectory, a maximum speed of 12.9 m/s is
achieved, while the RMS tracking error is limited to 6.6 cm. The vehicle attains a maximum
proper acceleration of 20.8 m/s2 (2.12g). Similar values can be observed for the constant
yaw trajectory. The most significant difference is a reduction in yaw tracking error from an
RMS value of 5.1 deg to 1.9 deg and from a maximum value of 13 deg to 6.4 deg.

The second, roulette curve trajectory is defined as

σref(t) =

r1 cos k1t+ r2 cos k2t+ r3 sin k3t
r4 sin k1t+ r3 sin k2t+ r5 cos k3t

rz
0

 (2.79)

with r1 = 6 m, r2 = 1.8 m, r3 = 0.6 m, r4 = -2.25 m, r5 = -0.3 m, r6 = -0.45 m, k1 = 0.28
rad/s, k2 = 2.8 rad/s, k3 = 1.4 rad/s, and rz a constant offset. The trajectory, shown in Fig.
2-13(a), contains fast, successive turns. Accurate tracking is particularly demanding as it
requires fast changes in acceleration, i.e., large jerk and snap, requiring high angular rates
and angular accelerations. A single lap is traversed in 22.4 s. The position tracking error
is shown in blue in Fig. 2-13(b), and tracking performance metrics are given in the first
column of Table 2.5. Comparison of the position tracking error to the values in Table 2.4
confirms that the controller achieves consistent performance across trajectories. Due to its
arduous nature, the roulette curve trajectory is particularly suitable to expose differences in
tracking performance. Therefore, we use the trajectory defined by (2.79) to examine several
modifications in subsequent sections. In all cases, the trajectory parameters are identical
to those given above.

2.7.3 Jerk and Snap Tracking

The red curves in Fig. 2-13 correspond to our proposed control design, but with jerk and
snap tracking disabled, i.e., Ωref = Ω̇ref = 03×1. Examination of the figures shows the
significant improvement in trajectory tracking performance obtained through the tracking
of the jerk and snap feedforward terms. This observation is confirmed by comparing the first
two columns of Table 2.5. It can be seen that the RMS position tracking error increases from
9.0 cm to 16.8 cm when jerk and snap tracking are disabled. In Section 2.6, it was shown
that lead compensation provided by jerk and snap tracking results in improved performance
when tracking fast-changing acceleration commands. This effect can also be observed in

50

Figure 2-14: Quadrotor with 16 cm × 32 cm cardboard drag plate.

Fig. 2-13. It can be seen that the system response has less overshoot when jerk and snap
tracking are enabled, conform the analytical response of the linearized system.

2.7.4 Increased Aerodynamic Drag

The magenta curves in Fig. 2-13 correspond to the trajectory tracking controller as de-
scribed in this chapter, but using the quadcopter with attached drag plate. The drag plate
is a 16 cm × 32 cm cardboard plate that is attached to the bottom of the quadrotor, as
shown in Fig. 2-14. The plate more than triples the frontal surface area of the quadrotor,
and as such has a significant effect on the aerodynamic force and moment that act on the
vehicle, especially during high-speed flight, and fast pitch and yaw motion. The flight con-
troller is not adapted in any way to account for either these aerodynamic effects, or the
changes in mass and moment of inertia.

Comparison of columns (i) and (iii) in Table 2.5 shows that the drag plate does not sig-
nificantly affect position tracking performance. Yaw tracking performance is also consistent,
except when the drag plate generates an external yaw moment that causes motor speed sat-
uration and very large momentary yaw tracking error. The consistent tracking performance
demonstrates the robustness property of INDI. Controllers that depend on the estimation
of drag forces based on velocity, such as [22] and [123], may suffer from much larger loss of
tracking performance when the aerodynamic properties of the vehicle are modified. Instead
of depending on a model-based drag estimate, INDI counteracts the disturbance force and
moment by sensor-based incremental control. The controller implicitly estimates the exter-
nal force by (2.46). In Fig. 2-15, it can be seen that the drag plate has a significant effect on
the external disturbance force: its estimated magnitude is approximately tripled. In order
to counteract the greater external force, commanded thrust and vehicle pitch increase when
the drag plate is attached.

2.7.5 Nonlinear Control Effectiveness Inversion

We also compare our proposed nonlinear inversion of the control effectiveness (2.61), with
linearized INDI as presented in [116]. In the latter case, control moment and thrust com-

51

0 5 10 15 20
-5

0

5

0 5 10 15 20

-1

0

1

2

0 5 10 15 20

-2

0

2

4

Figure 2-15: Estimated external disturbance force for roulette curve trajectory: proposed
controller (blue), and with drag plate attached (magenta).

mands are tracked using linearized inversion of (2.5), as follows:

ωc = ωlpf +
(
2G1 + ∆t−1G2

)([mc −mlpf

Tc − Tlpf

]
+ ∆t−1G2B(ωc − ωlpf)

)
, (2.80)

where B is the one-sample backshift operator and ∆t is the controller update interval.
This linearized inversion does not take into account local nonlinearity of (2.5), nor does it
consider the transient response of the motors. Therefore, nonlinear inversion of (2.61) —
as described in Section 2.5.5 — theoretically results in improved tracking of the angular
acceleration command and thereby in improved trajectory tracking performance.

In experimental flights, we found that the difference between nonlinear and linearized
inversion does not lead to significant differences in tracking performance for our quadrotor
system. However, we found that the failure to properly consider the transient response of
the motors in (2.80) can be detrimental for controller performance. In particular, if the
motor time constant τm and the controller interval ∆t differ greatly, this may result in fast
yaw oscillations. Consideration of the motor time constant τm, as in (2.61), resolves this
issue.

2.7.6 Hover with Disturbance Force

For a constant σref input, i.e., hover, the controller consistently achieves sub-centimeter
position tracking error if no external disturbance is purposely applied. In this section, we
present results for hover with an external disturbance force through a tensioned wire. One
end of the wire is attached to the bottom plate of the quadrotor. We pull on the other end
of the wire to drag the vehicle away from its hover position.

In Fig. 2-16, it can be seen that the quadrotor maintains its position to within at

52

most 4 cm, while a changing disturbance force is applied through the wire. The largest
position error occurs around 10 s when an external force of approximately 3.7 N is applied.
Figure 2-17 shows the estimated external disturbance force, computed according to (2.46).
The force component in the iz-direction has a small steady-state value due to discrepancy
between true and estimated thrust. Comparison to Fig. 2-18 shows that the direction of
the estimated external disturbance force vector corresponds to the direction of the wire.
For example, at 22 s, Fig. 2-17 shows that the external force has a negative component in
the ix-direction and a positive component in the iy-direction, and in Fig. 2-18(a) the wire
is indeed tensioned in negative ix- and positive iy-direction.

2.8 Summary

In this chapter, we proposed a novel control system for the tracking of aggressive, i.e., fast
and agile, trajectories for quadrotor vehicles. Our controller tracks reference position and
yaw angle with their derivatives of up to fourth order, specifically, the position, velocity,
acceleration, jerk, and snap along with the yaw angle, yaw rate, and yaw acceleration using
incremental nonlinear dynamic inversion and differential flatness. The tracking of snap was
enabled by closed-loop control of the propeller speeds using optical encoders attached to
each motor hub. The resulting control system achieves 6.6 cm RMS position tracking error
in agile and fast flight, reaching a top speed of 12.9 m/s and acceleration of 2.1g, in an 18
m long, 7 m wide, and 3 m tall flight volume. Our analysis and experiments demonstrated
the robustness of the control design against external disturbances, making it particularly
suitable for high-speed flight where significant aerodynamic effects occur. The proposed
controller does not require any modeling or estimation of aerodynamic drag parameters.

0 10 20 30 40

0

0.01

0.02

0.03

0.04

Figure 2-16: Euclidean norm of position error for hover with disturbance force through
tensioned wire.

53

0 10 20 30 40
-4

-2

0

0 10 20 30 40

-1

0

1

0 10 20 30 40
-1

0

1

Figure 2-17: Estimated external disturbance force for hover with disturbance force through
tensioned wire.

(a) Time is 22 s. (b) Time is 28 s. (c) Time is 40 s.

Figure 2-18: Quadrotor in hover with disturbance force through tensioned wire.

54

Chapter 3

Global Trajectory-Tracking
Control for a Tailsitter Flying
Wing in Agile Uncoordinated
Flight

We propose a novel control law for accurate tracking of agile trajectories using a tailsitter
flying wing unmanned aerial vehicle (UAV) that transitions between vertical take-off and
landing (VTOL) and forward flight. Our global control formulation enables maneuvering
throughout the flight envelope, including uncoordinated flight with sideslip. We show dif-
ferential flatness of the nonlinear tailsitter dynamics with a simplified aerodynamics model.
Using the flatness transform, the proposed controller incorporates tracking of the position
reference along with its derivatives velocity, acceleration and jerk, as well as the yaw refer-
ence and yaw rate. The inclusion of jerk and yaw rate references through an angular velocity
feedforward term improves tracking of trajectories with fast-changing accelerations. The
control design is based on a simplified aerodynamics model that does not require extensive
modeling of the aircraft dynamics. By applying incremental nonlinear dynamic inversion
(INDI), the controller only depends on a local input-output relation to incrementally up-
date control inputs, resulting in robustness against modeling inaccuracies. We achieve INDI
with nonlinear dynamics inversion based on the flatness transform. The resulting control
algorithm is extensively evaluated in flight tests, where it demonstrates accurate trajectory
tracking and challenging agile maneuvers, such as sideways flight and aggressive transitions
while turning.

This chapter is based on [126]. A video of the experiments can be found at https:

//youtu.be/tGQO-6DPT1M.

3.1 Introduction

Transitioning powered-lift aircraft combine the vertical take-off and landing (VTOL) and
hover capabilities of rotorcraft with the speed and endurance of fixed-wing aircraft. Lift is
generated by a powered rotor during take-off, landing, and hover flight, while a non-rotating
wing generates lift during horizontal flight. There exist various design configurations that
achieve powered lift. An aircraft may be equipped with dedicated lift rotors that are
stopped once sufficient lift is generated by the wing. Alternatively, the orientation of the

55

https://youtu.be/tGQO-6DPT1M
https://youtu.be/tGQO-6DPT1M

rotors may be changed from horizontally spinning to propeller configuration after take-
off, like on tiltrotor and tiltwing aircraft. Tailsitter aircraft, on the other hand, rotate in
their entirety during transition, so that their rotors transition between lift generation and
propulsion based on the attitude of the vehicle.

While the large attitude envelope of tailsitter aircraft may render them less suitable
for manned flight, their relative mechanical simplicity makes them an appealing option for
unmanned aerial vehicle (UAV) applications. Tailsitter aircraft can exceed the range and
endurance limitations typical of multicopters without sacrificing the capability to take-off,
hover, and land in confined spaces. This combination is relevant to many applications.
For example, in search and rescue, unmanned tailsitter aircraft could quickly reach remote
locations using horizontal flight, and inspect structures or enter buildings in hovering flight.

A tailsitter flying wing is a tailsitter aircraft without fuselage, tail, and vertical stabiliz-
ers or control surfaces. Forgoing these structures simplifies the aerodynamic and mechanical
design of the aircraft and potentially improves performance by lowering mass and aerody-
namic drag. Due to the lack of vertical aerodynamic surfaces, flying wing aircraft often
require active directional stabilization. The fast and relatively powerful brushless motors
found on many UAVs are particularly suitable to fulfill this task through differential thrust.
By placing flaps that act as elevator and aileron, i.e., elevons, in the rotor wash, the air-
craft remains controllable throughout its flight envelope, including static hover conditions.
The reduced stability of flying wing aircraft may also result in increased maneuverability.
Specifically, the lack of vertical surfaces enables maneuvers such as fast skidding turns and
knife edge flight where the wing points in the direction of travel. In general, it permits
uncoordinated flight, where the vehicle incurs nonzero lateral velocity.

In this chapter, we propose a novel flight control algorithm that is specifically designed
for tracking of agile trajectories using the tailsitter flying wing aircraft shown in Fig. 3-1.
The proposed controller uses differential flatness to track the reference position, velocity,
acceleration, and jerk (the third derivative of position), as well as yaw angle and yaw rate.
It is based on a global formulation, without mode switching or blending, and able to exploit
the entire flight envelope, including uncoordinated flight conditions, for agile maneuvering.
We derive the controller based on a simplified aerodynamics model and apply incremental
nonlinear dynamic inversion (INDI) to achieve accurate trajectory tracking despite model
discrepancies.

We use ϕ-theory to model the aerodynamic force and moment [67]. The method captures
dominant contributions over the entire flight envelope, including post-stall and uncoordi-
nated flight conditions. The ϕ-theory model does not suffer from singularities that methods
based on the angle of attack and sideslip angle may incur around hover, where these angles
are not defined.

Differential flatness is a property of nonlinear dynamics systems that guarantees the
existence of an equivalent controllable linear system [24–26]. The state variables and control
inputs of a flat system can be expressed as the function of a (ficticious) flat output and
a finite number of its time-derivatives. Using this function, trajectories can be generated
in the flat output space and transformed to the state space for tracking control [74, 77].
This enables tracking higher-order derivatives of the output, which has been demonstrated
to improve trajectory-tracking performance in fast and agile flight [22, 23, 104, 125]. The
differential flatness property has been shown to hold for idealized aircraft dynamics [73], and
for aggressive fighter maneuvers in coordinated flight [38]. For an introductory description
of differential flatness, the reader is referred to Section 2.3.

Incremental, or sensor-based, nonlinear dynamic inversion is a version of nonlinear dy-

56

namic inversion (NDI) control that alleviates the lack of robustness associated with NDI [61]
by incrementally updating control inputs based on inertial measurements [2, 117]. Instead
of directly computing control inputs from the inverted dynamics model, it only considers
the input-output relation around the current operating point and computes the required
control increment relative to this point [111]. As such, it only relies on local accuracy of the
dynamics model and can correct for discrepancies by further incrementing control inputs in
subsequent updates. A general derivation of the INDI control law is given in Section 2.4.

Existing flight control designs for tailsitter aircraft are based on various approaches.
Blending of separate controllers [54], gain scheduling [50, 68], or pre-planned transition
maneuvers [11] can be used to handle the change of dynamics between hover and forward
flight. However, when performing agile maneuvering at large angle of attack, the aircraft
continuously enters and exits the transition regime, and it is preferable to utilize a controller
without blending or switching. A global formulation for trajectory tracking in coordinated
flight is proposed by [103]. The controller is based on numerical inversion of a global first-
principles model, but does not account for model discrepancies, leading to a systematic
pitch tracking error. Wind tunnel testing can be used to improve accuracy of the dynamics
model [69, 134]. However, building an accurate model from measurements can be a time-
consuming process that may need to be repeated if the controller is transferred to a different
vehicle.

Robustification can be used to design a performant controller that does not rely on an
accurate model of the vehicle dynamics, e.g., by using model-free control [4]. INDI has also
been leveraged for robust control of various types of transitioning aircraft, such as tiltrotor
aircraft [16, 97], and aircraft with dedicated lift rotors [65, 66, 95]. The additional control
inputs of these configurations may lead to over-actuation, requiring specific attention to
control allocation that is typically not necessary for tailsitter aircraft. On the other hand,
tailsitter aircraft operate over a more extensive attitude range and at increased angle of
attack, leading to distinct challenges in control design. Robustness of an INDI longitudinal
flight controller for tracking pre-designed transition maneuvers is shown through analysis
and simulation by [141], and an INDI attitude control design for a tailsitter with varying
fuselage shape is proposed by [137]. An exhaustive framework for INDI-based linear and
angular acceleration control of a tailsitter is presented by [114]. This work includes flight
test results, focusing on coordinated flight at small flight path angles. Our proposed control
design differs from existing INDI controllers for tailsitter aircraft in several fundamental
ways. Firstly, we present a complete INDI flight control design for agile trajectory tracking,
including aggressive maneuvers and uncoordinated flight. Secondly, we employ differential
flatness to avoid reliance on pre-designed transition maneuvers and to accomplish feedfor-
ward jerk tracking. Thirdly, flatness enables nonlinear inversion of our dynamics model,
whereas existing INDI implementations rely on local linearization to obtain inversion.

The trajectory generation algorithm by [79] utilizes differential flatness of a simplified
longitudinal dynamics model to design transitions for a quadrotor biplane. The resulting
trajectories are limited to forward motion and consider acceleration but no higher-order
derivatives. The controller by [134] employs a pre-designed constant angular velocity feed-
forward input to improve transition. Theoretically, this feedforward signal corresponds to
the acceleration rate of change, i.e., jerk. However, it is not applied beyond the pre-designed
transition maneuver.

The main contribution of this chapter is a global control design for tracking agile tra-
jectories using a flying wing tailsitter. Our proposed control design is novel in several ways.
Firstly, we derive a differential flatness transform for the tailsitter flight dynamics with

57

Figure 3-1: Tailsitter flying wing aircraft.

simplified ϕ-theory aerodynamics model. Secondly, we present a method to incorporate
jerk tracking as an angular velocity feedforward input in tailsitter control design. As far
as we are aware, this is the first tailsitter controller that achieves jerk tracking, making
it suitable to fly agile trajectories with fast-changing acceleration references. Thirdly, we
apply INDI to control a tailsitter aircraft in agile maneuvers that include large flight path
angles and uncoordinated flight conditions. Our INDI control design is based on direct
nonlinear inversion and, contrary to existing implementations, does not rely on lineariza-
tion of the dynamics for inversion. Fourthly, we detail our methodology for analytical and
experimental estimation of the ϕ-theory aerodynamic parameters used by the controller.
Finally, we demonstrate the proposed controller in extensive flight experiments reaching up
to 8 m/s in an indoor flight space measuring 18 m × 8 m. The flight experiments include
agile maneuvers, such as aggressive transitions while turning, differential thrust turning,
and uncoordinated flight. In order to explicitly show the advantages of incremental con-
trol and feedforward references, we also present an experimental comparison to a baseline
version of our proposed control design.

The chapter is structured as follows: In Section 3.2, we provide an overview of the
flight dynamics and aerodynamics model. We derive the corresponding differential flatness
transform in Section 3.3. The design of the trajectory-tracking controller is presented in
Section 3.4. Section 3.5 details our methodology for analytical and experimental estimation
of the aerodynamic parameters used by the controller. Extensive experimental flight results
are presented in Section 3.6. Table 3.1 contains the main nomenclature used in the chapter.

3.2 Flight Dynamics Model

This section provides a detailed overview of the flight dynamics model employed in our
proposed control algorithm. The algorithm, described in Section 3.4, is based on the notion
of incremental control action and therefore utilizes the dynamics model solely as a local
approximation of the flight dynamics. Unlike conventional inversion-based controllers, it
does not require a globally accurate dynamics model.

The model is employed by the incremental controller to predict (i) the change in linear

58

Table 3.1: Main nomenclature.

a linear coordinate acceleration (in world-fixed frame, unless noted otherwise), m/s2

bx, by, bz basis vectors of body-fixed frame
c propulsion and ϕ-theory aerodynamic coefficients
c̄ Buckingham π aerodynamic coefficients
f force vector (in world-fixed frame, unless noted otherwise), N
g gravitational acceleration, m/s2

ix, iy, iz standard basis vectors
j jerk in world-fixed frame, m/s3

J vehicle moment of inertia tensor, kg m2

K diagonal control gain matrix
l flap/rotor location
m vehicle mass, kg
m moment vector in body-fixed frame, Nm
q throttle input
Ri
b rotation matrix from frame b to frame i

T total thrust, N
Ti thrust by rotor i, N
v velocity (in world-fixed frame, unless noted otherwise), m/s
x position in world-fixed frame, m
ᾱ sum of zero-lift angle of attack and thrust angle, rad
α0 zero-lift angle of attack, rad
αT thrust angle, rad
αx, αy, αz basis vectors of zero-lift frame
δ sum of flap deflections, rad
δi deflection of flap i, rad
∆T differential thrust, N
θ vehicle pitch angle, rad
θ̄ zero-lift reference frame pitch angle, rad
µi torque by rotor i, Nm
ξ normed quaternion attitude vector
σref reference trajectory
φ vehicle roll angle, rad
ψ vehicle yaw angle, rad
ωi angular speed of rotor i, rad/s
Ω vehicle angular velocity in body-fixed frame, rad/s

Subscript and superscript
b body-fixed reference frame
c control command
i world-fixed reference frame, or flap/rotor index
T thrust force or moment
w wing force or moment
α zero-lift reference frame
δ flap force or moment
θ̄ intermediate control reference frame after pitch rotation
φ intermediate control reference frame after roll rotation
ψ intermediate control reference frame after yaw rotation
ext unmodeled force or moment
hpf high-pass filtered signal
lpf low-pass filtered signal
ref (derived from) reference trajectory

59

acceleration due to increments in attitude and collective thrust, and (ii) the change in an-
gular acceleration due to increments in differential thrust and flap deflections. By inversion
of these relationships, the control algorithm computes the increments required to attain
the commanded changes in linear and angular acceleration. In order to maintain analyti-
cal invertibility and avoid undue complexity, the dynamics model omits any contributions
that do not directly affect the aforementioned incremental relationships. For example, the
velocity of the aircraft relative to the atmosphere may result in a significant aerodynamic
moment. However, when compared to the fast dynamics of the motors and servos control-
ling the propellers and flaps, this moment contribution is relatively slow-changing, as it
relates to the orientation and velocity of the entire vehicle. Consequently, it is assumed to
be constant between control updates and does not need to be included in the incremental
dynamics model. It is nonetheless accounted for in the control algorithm together with other
unmodeled contributions to linear and angular acceleration through inertial measurement
feedback, as described in Section 3.4.

3.2.1 Reference Frame Conventions

Figure 3-2 depicts the world and body-fixed reference frames used in the dynamics model
and flight controller. The basis of the world-fixed north-east-down (NED) reference frame
consists of the columns of the identity matrix [ix iy iz]. We define the basis of the body-fixed
reference frame as the vectors bx, which coincides with the chord line and the wing symmetry
plane; by, which is perpendicular to this symmetry plane; and bz, which is defined to satisfy
the right-hand rule. These vectors form the rotation matrix Ri

b = [bx by bz] ∈ SO(3), which
gives the transformation from the body-fixed reference frame (indicated by the subscript
b) to the world-fixed reference frame (indicated by the superscript i). To avoid confusion
when referring to rotations in the body-fixed reference frame, we use the terms in Fig. 3-
2a irrespective of vehicle orientation. We note that the term yaw is also used to refer to
rotation around the world-fixed iz-axis in the context of the reference trajectory defined in
Section 3.3.

The zero-lift axis system, depicted in Fig. 3-2b, is obtained by rotating the body-fixed
axis system around its negative by-axis by the zero-lift angle of attack α0, which is defined
as the angle of attack for which the aircraft produces zero lift. For symmetric airfoils α0 = 0,
while most cambered airfoils have α0 < 0. Finally, the thrust angle αT is defined as the
angle of the thrust line with regard to the bx-by plane. Typically, motors are slightly tilted
down, leading to αT < 0.

3.2.2 Vehicle Equations of Motion

The vehicle translational dynamics are given by

ẋ = v, (3.1)

v̇ = giz +m−1
(
Ri
αfα + f ext

)
, (3.2)

where x and v are respectively the vehicle position and velocity in the world-fixed reference
frame, g is the gravitational acceleration, andm is the vehicle mass. The vector fα represents
the modeled aerodynamic and thrust force in the zero-lift reference frame. Any unmodeled
forces are represented by the external force vector f ext, which is defined in the world-fixed
reference frame.

60

(a) Body-fixed reference frame, control inputs,
and angular motion terminology.

(b) Zero-lift reference frame, zero-lift angle of at-
tack, and thrust angle.

Figure 3-2: Reference frame and control input conventions.

The rotational dynamics are given by

ξ̇ =
1

2
ξ ◦Ω, (3.3)

Ω̇ = J−1(m + mext −Ω× JΩ), (3.4)

where Ω is the angular velocity in the body-fixed reference frame, and ξ is the normed
quaternion attitude vector. The Hamilton quaternion product is denoted by ◦, such that
vb = Rb

iv = ξ−1 ◦ v ◦ ξ. The matrix J is the vehicle moment of inertia tensor, and m
represents the aerodynamic and thrust moment in the body-fixed reference frame. The
external moment vector mext represents unmodeled moment contributions, similar to the
force vector f ext. The final term of (3.4) accounts for the conservation of angular momentum.
We note that the term external with regard to f ext and mext refers to unmodeled force and
moment contributions, i.e., external to the model, but not necessarily due to physically
external influences, such as gusts.

3.2.3 Aerodynamic and Thrust Force and Moment

We employ ϕ-theory parametrization to model the aerodynamic force and moment [67].
This parametrization has several advantages over standard expressions for aerodynamic
coefficients. Firstly, it provides a simple global model that includes dominant contributions
over the entire flight envelope, including post-stall conditions. Our simplified model relies
on only nine scalar aerodynamic coefficients: two for the wing, two for the flaps, two for
the propellers, and three for propeller-wing interaction. Secondly, ϕ-theory parametrization
avoids the singularities that methods based on angle of attack and sideslip angle incur near
hover conditions, where these angles are undefined.

We obtain the force in the zero-lift axis system by summing contributions due to thrust,

61

flaps, and wings. The thrust force is given by

fαT =
2∑
i=1

 cos ᾱ (1− cDT)
0

sin ᾱ (cLT − 1)

Ti︸ ︷︷ ︸
fαTi

, (3.5)

where ᾱ = α0+αT , Ti is the thrust due to motor i, and the coefficients cDT and cLT represent
drag and lift due to thrust vector components in the zero-lift axis system, respectively. The
motor thrust is computed as follows:

Ti = cTω
2
i with i = 1, 2, (3.6)

where ωi ≥ 0 is the speed of motor i. The thrust coefficient cT is a function of propeller
geometry and can be obtained from bench tests using a force balance. Intuitively, cDT mostly
represents the loss of propeller efficiency due to the presence of the wing in the propwash,
while cLT represents the propwash-induced lift. Note that the lift component vanishes if
the thrust line coincides with the zero-lift axis, i.e., α0 + αT = 0. For convenience, all
aerodynamic coefficients incorporate the effects of air density. If the coefficients are applied
for flight in significantly varying conditions, their values may be recomputed using a simple
scaling with air density, as shown in Section 3.5. The force contribution by the flaps is given
by

fαδ =
2∑
i=1

−

 0
0

cδLT cos ᾱ Ti + cδLV ‖v‖i
>
x vα

 δi
︸ ︷︷ ︸

fαδi

, (3.7)

where δi is the deflection angle of flap i. The first term of (3.7), scaled with the coefficient
cδLT , is the flap lift due to the prop-wash induced airspeed. The second term, scaled with

cδLV , is the flap lift due to the airspeed along the zero-lift line. Finally, the wing force
contribution is obtained as

fαw = −

 cDV i>x vα

0

cLV i>z vα

 ‖v‖, (3.8)

where cDV and cLV are the wing drag and lift coefficients, respectively. The total force in
the zero-lift axis system is now obtained as

fα = fαT + fαδ + fαw. (3.9)

We note that (3.9) does not contain any lateral force component. Due to the lack of a
fuselage and vertical tail surface, the lateral force is relatively much smaller than the lift
and drag components. Any incurred lateral force is captured in the unmodeled force f ext,
and accounted for by the controller through accelerometer feedback, as described in Section
3.4.2.

The moment is obtained by summation of contributions due to motor thrust and torque,
and flap deflections. We ignore the wing moment due to velocity, attitude, and rotation
rates, as these state variables are relatively slow-changing compared to the motor speeds
and flap deflections. The corresponding contributions are incorporated in the unmodeled

62

moment mext and accounted for through angular acceleration feedback. The moment due
to motor thrust is given by

mT =

 lTy i
>
z Rb

α(fαT2 − fαT1)
cµT (T1 + T2)

lTy i
>
x Rb

α(fαT1 − fαT2)

 , (3.10)

where lTy is the absolute distance along by between the vehicle center of gravity and each
motor, and cµT is the pitch moment coefficient due to thrust. The moment due to motor
torque is obtained as follows:

mµ =

 cosαT
0

− sinαT

 2∑
i=1

µi, (3.11)

where µi is the motor torque around the thrust-fixed x-axis given by

µi = −(−1)icµω
2
i (3.12)

with cµ the propeller torque coefficient. The signs in (3.12) correspond to the rotation
directions as defined in Fig. 3-2b. The flap contribution to the aerodynamic moment is
given by

mδ =

 lδy cosα0 i>z (fαδ2 − fαδ1)

lδxi
>
z (fαδ1 + fαδ2)

lδy sinα0 i>z (fαδ2 − fαδ1)

 , (3.13)

where lδy is the absolute distance between the vehicle center of gravity and each flap center
along the by axis, and lδx is the distance from this axis to the aerodynamic center of both
flaps. The total aerodynamic moment can now be obtained by summing the contributions,
as follows:

m = mT + mµ + mδ. (3.14)

3.3 Differential Flatness

The purpose of our control design is to accurately track the trajectory reference

σref(t) = [xref(t)
> ψref(t)]

>, (3.15)

which consists of four elements: The vehicle position in the world-fixed reference frame
xref(t) ∈ R3, and the yaw angle ψref(t) ∈ T, where T denotes the circle group. The refer-
ence σref(t) may be provided by a pre-planned trajectory or by an online motion planning
algorithm. Henceforward, we do not explicitly write the time argument t everywhere. For
dynamic feasibility, it is required that the position reference xref is at least fourth-order
continuous, and the yaw reference ψref is at least second-order continuous, as shown in
Section 3.3.4. By taking the derivative of xref , we obtain continuous references for velocity
vref , acceleration aref , and jerk jref . Similarly, we obtain a continuous yaw rate reference
ψ̇ref from the yaw reference ψref .

Differential flatness of a nonlinear dynamics system entails the existence of an equivalent
controllable linear system via a specific type of feedback linearization. For further details
on differential flatness and its applications in general, we refer the reader to Section 2.3

63

and [24–26]. An important property of flat systems is that their state and input variables can
be directly expressed as a function of the flat output and a finite number of its derivatives.
This property is of major importance when developing trajectory generation and tracking
algorithms, as it allows one to readily obtain state and input trajectories corresponding
to an output trajectory, effectively transforming the output tracking problem into a state
tracking problem. In practice, the state trajectory can serve as a feedforward control input
that enables tracking of higher-order derivatives of the flat output. Inclusion of these
feedforward inputs improves trajectory tracking performance by reducing the phase lag in
response to rapid changes in the flat output.

In this section, we show differential flatness of the dynamics system described in Section
3.2—with some simplifications—by deriving expressions of the state and control inputs as
a function of the flat output defined by (3.15). The expression for angular velocity is used
in our trajectory-tracking controller to obtain a feedforward input based on the reference
jerk and yaw rate. Expressions for attitude and the control inputs are used for linear and
angular acceleration control, respectively.

3.3.1 Attitude and Collective Thrust

The position and velocity states are trivially obtained from (3.15). We arrive at expressions
for the attitude and collective thrust by rewriting (3.2) as

f i = m (a− giz)− f ext, (3.16)

where we assume that f ext is constant. In practice f ext may not be constant, but it is
implicitly estimated and corrected for by incremental control, as described in Section 3.4.2.
Given (3.16), the vehicle attitude and collective thrust are uniquely defined by three major
constraints:

(i) the yaw angle reference ψ,

(ii) the fact that i>y fα = 0 according to (3.5), and

(iii) the forces in the vehicle symmetry plane, i.e., i>x fα and i>z fα.

Additionally, we exploit the continuity of yaw and the fact that the collective thrust must
be non-negative.

In this section, we express the attitude using Euler angles ψ, φ, and θ in ZXY rotation
sequence. The angle symbols are also used to refer to rotation matrices between interme-
diate frames, e.g., the rotation matrix Rφ

i represents the rotations by ψ and φ. The ZXY
Euler angles form a valid and universal attitude representation that is suitable for the flat
transform because each of the angles is uniquely defined by one of the constraints, as shown
in Fig. 3-3. In order to avoid the well-known issues with Euler angles, we convert the
obtained attitude to quaternion format before it is used by the flight controller.

We define the yaw angle ψ as the angle between the world-fixed iy-axis and the projection
of the body-fixed by-axis onto the horizontal plane, i.e., the plane perpendicular to iz. While
this angle is undefined if the wingtips are pointing straight up/down (i.e., i>z by = ±1), we
avoid ambiguity by performing the yaw rotation ψiz from the identity rotation (i.e., from
Rb
i = I).

64

Next, we satisfy constraint (ii) by rotation around the yawed x-axis Ri
ψix by

φ = − atan2
(
i>y Rψ

i f i, i>z f i
)

+ kπ, (3.17)

where atan2 is the four-quadrant inverse tangent function. In the second term, k ∈ {0, 1}
is set such that by • Ri

φiy > 0, i.e., such that the obtained y-axis corresponds as closely
as possible to the current by-axis. This results in the equivalence ψ ≡ ψ + π, which
enables continuous yaw tracking through discontinuities, such as a roll maneuver where
the yaw angle instantly switches to ψ + π. Unwanted switching does not occur due to
continuity of the yaw reference. If the commanded force is entirely in the horizontal plane
and perpendicular to the yaw direction, both arguments of the tangent function are zero,
and any φ satisfies the constraint. This condition is highly unlikely to occur in actual flight,
but can be resolved in practice by setting φ to match the current direction of by as closely
as possible.

To satisfy constraint (iii), we solve (3.9) for the collective thrust T = T1 +T2 and for the
rotation angle θ̄ around the vehicle y-axis. In order to find these expressions, we assume that
the flap angles are constant and known. We can make this assumption without consequence
because of a limitation of the INDI acceleration controller. As described in Section 3.4, we
only consider the low-frequency component of the flap deflection when controlling the linear
acceleration. This slow-changing component is virtually constant between control updates.

Since the individual thrust values are still undetermined, we assume that the difference
between the steady-state flap deflections is negligible so that

δ1T1 + δ2T2 ≈
T

2
δ, (3.18)

where δ = δ1 + δ2. This assumption may be violated during sustained maneuvers or flight
with sideslip, but we have found that it typically does not lead to large discrepancies. We
substitute into (3.9) fα = Rθ̄

φf
φ and vα = Rθ̄

φv
φ with fφ = Rφ

i f
i, vφ = Rφ

i v
i. Note that θ̄

refers to the rotation from φ to the zero-lift reference frame, while θ is the rotation to the
body-fixed reference frame. We obtain the following two equalities:

cᾱ (1− cDT)T − cDV ‖v‖
(

cθ̄ i>x vφ − sθ̄ i>z vφ
)

= cθ̄ i>x fφ − sθ̄ i>z fφ, (3.19)(
sᾱ (cLT − 1)− cᾱ cδLT

δ/2

)
T − cδLV δ‖v‖

(
cθ̄ i>x vφ − sθ̄ i>z vφ

)
−

cLV ‖v‖
(

sθ̄ i>x vφ + cθ̄ i>z vφ
)

= sθ̄ i>x fφ + cθ̄ i>z fφ,
(3.20)

where c and s represent respectively cosine and sine, and ᾱ = α0 + αT . Solving (3.19) and
(3.20) for θ̄ and T gives

θ̄ = atan2
(
η
(
i>x fφ + cDV ‖v‖i

>
x vφ

)
− cδLV δ‖v‖i

>
x vφ − cLV ‖v‖i

>
z vφ − i>z fφ,

η
(
i>z fφ + cDV ‖v‖i

>
z vφ

)
− cδLV δ‖v‖i

>
z vφ + cLV ‖v‖i

>
x vφ + i>x fφ

)
+ kπ,

(3.21)

T =
1

cᾱ (1− cDT)

(
cθ̄ i>x fφ − sθ̄ i>z fφ + cDV ‖v‖

(
cθ̄ i>x vφ − sθ̄ i>z vφ

))
, (3.22)

65

(a) Yaw rotation to satisfy the
yaw reference.

(b) Roll rotation to satisfy
i>y fα = 0.

(c) Pitch rotation to attain
i>x fα and i>z fα.

Figure 3-3: Rotation sequence for attitude flatness transform.

where

η =
sᾱ (cLT − 1)− cᾱ cδLT

δ/2

cᾱ (1− cDT)
. (3.23)

is the ratio of lift and forward force due to thrust. We set k ∈ {0, 1} such that T ≥ 0. In
the unlikely event that constraint (iii) is satisfied for any θ̄, both arguments of the atan2
function equal zero and, in practice, we can set θ̄ to match the current attitude as closely
as possible. Since the angle θ̄ is the rotation to the zero-lift axis system, we use θ = θ̄+ α0

to obtain the corresponding rotation to the body-fixed reference frame.

Note that we purposely selected the ZXY rotation sequence and the definition of yaw,
such that φ and θ do not affect the satisfaction of constraint (i), and θ does not affect
the satisfaction of constraint (ii). Given that the Euler angles are uniquely defined (up to
addition of π) by the yaw reference, (3.17), and (3.21), this implies that these expressions
give the attitude as a function of σref .

3.3.2 Angular Velocity

By taking the derivative of (3.17), we obtain

φ̇ = − β̇xβz − βxβ̇z
β2
x + β2

z

, (3.24)

where βx and βz are respectively the first and second arguments of the atan2 function in
(3.17), and

β̇x = − cψ ψ̇i>x f i − sψ i>x ḟ i − sψ ψ̇i>y f i + cψ i>y ḟ i, (3.25)

β̇z = i>z ḟ i. (3.26)

The force derivative is obtained as the derivative of (3.16), as follows:

ḟ i = mj. (3.27)

We take the derivative of (3.21) to obtain

θ̇ =
σ̇xσz − σxσ̇z
σ2
x + σ2

z

, (3.28)

66

where σx and σz are respectively the first and second arguments of the atan2 function in
(3.21), and

σ̇x = η
(
i>x ḟφ + cDV τx

)
− cδLV δτx − cLV τz − i>z ḟφ, (3.29)

σ̇z = η
(
i>z ḟφ + cDV τz

)
− cδLV δτz + cLV τx + i>x ḟφ (3.30)

with

τx = ˙‖v‖i>x vφ + ‖v‖i>x v̇φ, (3.31)

τz = ˙‖v‖i>z vφ + ‖v‖i>z v̇φ (3.32)

and

˙‖v‖ =
v>a

‖v‖
, (3.33)

v̇φ = Ṙφ
i v + Rφ

i a. (3.34)

The expression for the force derivative ḟφ is similar to (3.34). In the force equations, we
assume that the flap deflection is known and that its temporal derivatives are negligible,
as described in Section 3.3.1. Finally, we obtain the angular velocity in the body-fixed
reference frame, as follows:

Ω =

 0

θ̇
0

+ Rθ
φ

 φ̇
0
0

+ Rθ
ψ

 0
0

ψ̇

 . (3.35)

3.3.3 Control Inputs

At this point, we have expressed the state variables as a function of the flat output (3.15).
To obtain an expression for the control inputs, an expression for angular acceleration is
obtained as the derivative of (3.35) and substituted into (3.4) to obtain an expression for
m. The angular acceleration can be utilized as a feedforward input corresponding to snap,
the fourth derivative of position, and yaw acceleration, as we showed for the quadcopter
in Chapter 2. However, calculation of this feedforward input significantly complicates the
controller expressions, and its benefit may be marginal given how challenging it is to perform
accurate feedforward control of the angular acceleration of a fixed-wing aircraft. Hence, we
do not incorporate the angular acceleration feedforward input in our control design. For
the sake of completeness, we still include the corresponding expressions in Section 3.3.4.

As described in Section 3.4.4, our control design obtains a moment command using
INDI. To find the corresponding control inputs, i.e., flap deflections and differential thrust
∆T = T1 − T2, we solve (3.14) for these inputs. We find an expression for the differential
thrust ∆T by equating

i>z (mT + mµ) = i>z m, (3.36)

which assumes that the contribution by i>z mδ is negligible. Due to the multiplication
with sinα0, this assumption typically does not result in significant discrepancies. Using

67

µ1 + µ2 = cµ/cT∆T , we obtain

∆T =
i>z m

lTy (cα0 cᾱ (1− cDT)− sα0 sᾱ (cLT − 1))− sαT
cµ
cT

. (3.37)

The individual thrust values are then given by

T1 =
T + ∆T

2
, T2 =

T −∆T

2
. (3.38)

After obtaining the motor speeds from (3.6), we can deduct mT and mµ from m to obtain
mδ. Finally, the flap deflections are computed by inversion of (3.13), as follows:[

δ1

δ2

]
=

[
−lδy cα0 ν1 lδy cα0 ν2

lδxν1 lδxν2

]−1 [
i>x mδ

i>y mδ

]
(3.39)

with
νi = −cδLT cos ᾱ Ti − cδLV ‖v‖i

>
x vα. (3.40)

3.3.4 Angular Acceleration

In this section, we derive an expression for the angular acceleration as a function of reference
snap, i.e., the fourth temporal derivative of position, and yaw acceleration. The transform
can be used to obtain an angular acceleration feedforward input. Along with the expressions
given in Section 3.3, it can also be used to obtain the control inputs, i.e., the motor speeds
and flap deflections, required to track a given trajectory σref(t). This second property will
be utilized in Chapter 5.

By taking the derivative of (3.24), we obtain the following expression for the roll accel-
eration

φ̈ = −

(
β̈xβz − βxβ̈z

) (
β2
x + β2

z

)
−
(
β̇xβz − βxβ̇z

)(
2βxβ̇x + 2βzβ̇z

)
(β2
x + β2

z)2 , (3.41)

where βx and βz are respectively the first and second arguments of the atan2 function
in (3.17). Their first derivatives are given by (3.25) and (3.26). We obtain the second
derivatives from these expressions as

β̈x =
(

sψ ψ̇
2 − cψ ψ̈

)
i>x f i − 2 cψ ψ̇i>x ḟ i − sψ i>x f̈ i

−
(

cψ ψ̇
2

+ sψ ψ̈
)

i>y f i − 2 sψ ψ̇i>y ḟ i + cψ i>y f̈ i,
(3.42)

β̈z = i>z f̈ i, (3.43)

where the second force derivative is a function of snap

f̈ i = ms. (3.44)

Similarly, by taking the derivative of (3.28) we obtain the pitch acceleration

θ̈ =
(σ̈xσz − σxσ̈z)

(
σ2
x + σ2

z

)
− (σ̇xσz − σxσ̇z) (2σxσ̇x + 2σzσ̇z)

(σ2
x + σ2

z)
2 , (3.45)

68

where σx and σz are respectively the first and second arguments of the atan2 function in
(3.21). Their first derivatives are given by (3.29) and (3.30), and their second derivatives
are

σ̈x = η
(
i>x f̈φ + cDV τ̇x

)
− cδLV δτ̇x − cLV τ̇z − i>z f̈φ, (3.46)

σ̈z = η
(
i>z f̈φ + cDV τ̇z

)
− cδLV δτ̇z + cLV τ̇x + i>x f̈φ (3.47)

with

τ̇x = ¨‖v‖i>x vφ + 2 ˙‖v‖i>x v̇φ + ‖v‖i>x v̈φ, (3.48)

τ̇z = ¨‖v‖i>z vφ + 2 ˙‖v‖i>z v̇φ + ‖v‖i>z v̈φ (3.49)

and

¨‖v‖ =
a>a + v>j

‖v‖
− v>a ˙‖v‖
‖v‖2

, (3.50)

v̈φ = R̈φ
i v + 2Ṙφ

i a + Rφ
i j. (3.51)

The expression for the force second derivative f̈φ is similar to (3.51). In the force equations,
we assume that the flap deflection is known and that its temporal derivatives are negligible,
as described in Section 3.3.1. We combine the roll acceleration and pitch acceleration
obtained from respectively (3.41) and (3.45) with the yaw acceleration ψ̈ to obtain the
angular acceleration in the body-fixed reference frame. We take the derivative of (3.35) to
obtain the following expression:

Ω̇ =

 0

θ̈
0

+ Ṙθ
φ

 φ̇
0
0

+ Rθ
φ

 φ̈
0
0

+ Ṙθ
ψ

 0
0

ψ̇

+ Rθ
ψ

 0
0

ψ̈

 . (3.52)

We can now find the aerodynamic and thrust moment in the body-fixed reference frame
by rewriting (3.4), as follows:

m = JΩ̇ + Ω× JΩ−mext. (3.53)

In practice, the unmodeled moment mext is implicitly estimated and corrected for by incre-
mental control, as described in Section 3.4.4. Based on the moment obtained from (3.53)
and the total thrust obtained from (3.22), the required control inputs can be calculated
using the expressions given in Section 3.3.3. Note that—since the aerodynamic and thrust
moment cannot instantaneously change—dynamic feasibility of σref requires continuity of
(3.53), and thereby at least fourth-order continuity of the position reference xref and at
least second-order continuity of the yaw reference ψref .

3.4 Trajectory-Tracking Control

Our proposed controller is designed to accurately track the dynamic position reference σref .
It consists of several components based on various control methodologies, as shown in Fig.
3-4. Each component employs a global formulation that enables seamless maneuvering
throughout the flight envelope. By separating kinematics and dynamics, we are able to

69

PD Position &
Velocity Control

Section 3.4.1

INDI Linear Ac-
celeration Control

Section 3.4.2

Diff. Flatness
Jerk & Yaw

Rate Transform
Section 3.3.2

Diff. Flatness
Force Transform

Section 3.3.1

PD Attitude
& Angular

Rate Control
Section 3.4.3

INDI Angular Ac-
celeration Control

Section 3.4.4

Diff. Flatness
Thrust & Mo-

ment Transform
Section 3.3.3

Integrative Motor
Speed Control

Section 3.4.5

ψref

jref , ψ̇ref Ωref

xref , vref , aref

ac

f ic

ξc

Tc

Ω̇c

mc

ωc

q

δc

Figure 3-4: Overview of trajectory-tracking control architecture.

employ proportional-derivative (PD) control on the translational and rotational kinematics.
Application of the resulting linear and angular acceleration commands is performed using
INDI control. INDI enables accurate control by incremental adjustment of control inputs,
based on the inverted dynamics model derived in Section 3.3. Due to its incremental
formulation, the controller only depends on local accuracy of the input-output relation,
resulting in favorable robustness against modeling errors and external disturbances. As we
will detail in this section, these errors and disturbances (i.e., f ext and mext) are implicitly
estimated and corrected for based on the difference between sensor-based and model-based
force and moment estimates. By directly incorporating linear and angular acceleration
measurements to obtain the sensor-based estimates, the controller is able to quickly and
wholly counteract errors and disturbances, without relying on integral action.

Our proposed control design uses a state estimate consisting of position x, velocity v,
and attitude ξ. Additionally, linear acceleration a and angular velocity Ω measurements
in the body-fixed reference frame are obtained from the inertial measurement unit (IMU).
Motor speeds ω and flap deflections δ are measured and utilized as well.

3.4.1 PD Position and Velocity Control

We use cascaded proportional-derivative (PD) controllers for position and velocity control,
resulting in the following expression for the acceleration command:

ac = Ri
b

(
KxRb

i (xref − x) + KvRb
i (vref − v) + KaRb

i (aref − ãlpf)
)

+ aref (3.54)

with K• indicating diagonal gain matrices. The first term of (3.54) aims to null the position
and velocity errors, while the second term is a feedforward input that ensures the accelera-
tion reference is accurately tracked. Since the vehicle has different acceleration capabilities
along its body-fixed axes, we define the control gains in the body-fixed reference frame and
transform them to the world-fixed frame for each control update.

70

The gravity-corrected linear acceleration in the world-fixed reference frame is obtained
as

alpf = (Ri
ba
b + giz)lpf , (3.55)

where lpf indicates low-pass filtering that is applied to IMU measurements to alleviate
measurement noise, e.g., due to vibrations. We follow the method by [114] and deduct
acceleration contributions due to the transient flap movements. This correction helps elimi-
nate pitch oscillations that may result from the non-minimum phase response of acceleration
to flap deflections. To isolate transient movement, we first filter the measured flap deflec-
tions using the low-pass filter and then using a high-pass filter, resulting in a band-pass
filtered signal. The low-pass filter helps to match the phase delay between accelerometer
and flap deflection measurements, and ensures that we do not (re-)introduce high-frequency
noise in the resulting acceleration signal

ãlpf = alpf −m−1Ri
αfαδhpf . (3.56)

3.4.2 INDI Linear Acceleration Control

INDI control incrementally updates the attitude and collective thrust to track the accel-
eration command ac. The controller estimates the unmodeled force f ext by comparing the
measured acceleration to the expected acceleration according to the vehicle aerodynamics
model and motor speed measurements. By rewriting (3.2), we obtain

f ext = m (ãlpf − giz)−Ri
αfαlpf , (3.57)

where, for consistency with ãlpf , low-pass filtered motor speeds and the filtered flap deflec-
tions without transient component are used in the computation of fαlpf according to (3.9).
Substitution of (3.57) into (3.2) gives

a = giz +m−1
(
Ri
αfα + f ext

)
= giz +m−1

(
Ri
αfα +

(
m (ãlpf − giz)−Ri

αfαlpf

))
= ãlpf +m−1

(
f i − f ilpf

)
.

(3.58)

Solving (3.58) for f i gives an incremental expression for the force command that corresponds
to the commanded acceleration, as follows:

f ic = m(ac − ãlpf) + f ilpf . (3.59)

This incremental control law enables the controller to achieve the commanded acceleration
despite potential modeling discrepancies and external forces, without depending on integral
action. If the commanded acceleration is not yet attained, the force command will be
adjusted further in subsequent control updates until the first term in (3.59) vanishes. Based
on the force command f ic, the commanded attitude ξc is obtained from ψref , (3.17) and
(3.21), and the collective thrust command Tc is obtained from (3.22). Note that it is through
the flatness transform described in Section 3.3 that our INDI algorithm can perform fully
nonlinear inversion, without linearization of the dynamics in (3.58) (see Section 2.4.3).
The nonlinear inversion provides more accurate control commands when large acceleration
deviations occur, such as may happen during aggressive maneuvers with quickly changing
acceleration references.

71

3.4.3 PD Attitude and Angular Rate Control

Given the extensive attitude envelope of the tailsitter vehicle, our attitude controller employs
quaternion representation to avoid kinematic singularities. The attitude error quaternion
is obtained as

ξe = ξ−1 ◦ ξc, (3.60)

and the corresponding three-element error angle vector is given by

ζe =
2 arccos ξwe√

1− ξwe ξwe

[
ξxe ξye ξze

]>
, (3.61)

where the superscript refers to individual components of ξe. The angular acceleration
command is obtained using the PD controller

Ω̇c = Kξζe + KΩ (Ωref −Ωlpf) , (3.62)

where Ωlpf is the low-pass filtered angular velocity measurement from the IMU, and Ωref

is the feedforward angular velocity reference obtained by (3.35) based on ψ̇ref and jref . By
including this feedforward jerk term, the controller improves trajectory-tracking accuracy,
especially on agile trajectories with fast-changing acceleration references.

3.4.4 INDI Angular Acceleration Control

The angular acceleration controller has a similar construction as its linear acceleration coun-
terpart described in Section 3.4.2. By rewriting (3.4), we obtain the following expression
for the unmodeled moment:

mext = JΩ̇lpf −mlpf + Ωlpf × JΩlpf , (3.63)

where Ω̇lpf is obtained by numerical differentiation of Ωlpf , and mlpf is calculated using
(3.14) and based on the low-pass filtered flap deflection and motor speed measurements.
Substitution of (3.63) into (3.4) gives

Ω̇ = J−1 (m + mext −Ω× JΩ)

= J−1
(
m +

(
JΩ̇lpf −mlpf + Ωlpf × JΩlpf

)
−Ω× JΩ

)
= Ω̇lpf + J−1 (m−mlpf) ,

(3.64)

where it is assumed that the angular momentum term is relatively slow changing, so that
the difference with its filtered version may be neglected. Solving (3.64) for m gives the
incremental control law

mc = J(Ω̇c − Ω̇lpf) + mlpf . (3.65)

Based on the commanded moment mc, the thrust and flap deflection commands can now
be calculated by (3.37) and (3.38), and (3.39), respectively. Finally, the commanded motor
speeds ωc are calculated by inversion of (3.6).

72

3.4.5 Integrative Motor Speed Control

While the flaps are controlled by servos equipped with closed-loop position control, the
propellers are driven by brushless motors that cannot directly track motor speed commands.
Instead, we use the second-order polynomial p to find the corresponding throttle input. This
function was obtained from regression analysis of static test data relating motor speed to
throttle input. We add integral action to account for changes due to the fluctuating battery
voltage, so that the throttle command that is sent to the motor electronic speed controller
(ESC) is obtained as

qi = p(ωi,c) + kIω

∫
ωi,c − ωi dt, (3.66)

where kIω is the integrator gain.

3.5 Estimation of Aerodynamic Parameters

The controller utilizes several mass, geometric, and aerodynamic properties of the vehicle.
The vehicle mass m, moment of inertia J, motor position lTy , motor incidence angle αT ,
and flap position lδy can be measured using standard methods or determined based on
the design. The propeller thrust coefficient cT , torque coefficient cµ, and throttle response
curve p are obtained using static bench tests. For a simple wing without twist, the zero-lift
angle of attack α0 is determined by the airfoil and can thus be obtained from literature or
two-dimensional analysis.

Table 3.2: Tailsitter aircraft properties.

Property Symbol Value

Airfoil lift slope c̄lα 5.73 rad-1

Wing surface area S 0.070 m2

Aspect ratio AR 4.3
Taper ratio λ 0.59
Flap chord ratio cf/c 0.5
Propeller diameter D 0.13 m
Thrust angle αT -5 π

180 rad
Monoplane circulation coefficient τ 0.14
Span efficiency factor e 0.97

What remains are the ϕ-theory aerodynamic coefficients cLV , cDV , cLT , cDT , cδLV , cδLT ,
and cµT , as well as the position of the aerodynamic center of the flaps lδx . Instead of relying
on extensive analysis (e.g., through computational fluid dynamics (CFD) or wind tunnel
tests), we initially estimate these parameters using back-of-the-envelope calculations and
then refine them using flight test data.

3.5.1 Analytical Model

We approximate the ϕ-theory coefficients based on conventional Buckingham π dimension-
less aerodynamic coefficients obtained using Prandtl’s classical lifting-line theory. In order
to avoid confusion, we use c̄ to denote the conventional Buckingham π coefficients, whereas
the ϕ-theory and propulsion coefficients used by the model described in Section 3.2 are

73

written without an overbar. The lift slope of a finite wing without twist or sweep is given
by

c̄Lα =
c̄lα

1 +
c̄lα
πAR(1 + τ)

, (3.67)

where τ is a function of the Fourier coefficients used to represent the circulation distribu-
tion [34]. In symmetric flight, small angles of attack can be approximated as

α− α0 =
i>z vα

‖v‖
. (3.68)

By substituting (3.68) into (3.67) and equating to the expression in (3.8), we obtain

1

2
ρ‖v‖2Sc̄Lα(α− α0) =

1

2
ρS

c̄lα

1 +
c̄lα
πAR(1 + τ)

i>z vα‖v‖ = cLV i>z vα‖v‖ ⇒

cLV =
1

2
ρS

c̄lα

1 +
c̄lα
πAR(1 + τ)

, (3.69)

where ρ is the air density. We note that the coefficient cLV is not dimensionless, as described
in Section 3.2.3. The drag coefficient cDV represents the force along the zero-lift axis. Since
we assume inviscid flow, this force is fully lift-induced and due to the tilting of the lift vector
with regard to the zero-lift line by

αeff = α− α0 − αi, (3.70)

where αeff is the effective angle of attack and αi is the induced angle of attack due to
downwash. The lift vector is perpendicular to the local velocity, so that its dimensionless
component along the zero-lift axis (in positive αx direction) is given by

c̄A = c̄Lαeff = c̄L(α− α0 − αi) = c̄L(α− α0)− c̄Di =

(
c̄Lα −

c̄2
Lα

πARe

)
(α− α0)2, (3.71)

where c̄Di is the induced drag coefficient and we again use small angle assumptions. The
span efficiency factor e ≤ 1 is a function of the taper ratio and aspect ratio and represents
the deviation from a perfectly elliptical lift distribution [78]. For anything but very small
aspect ratios, the factor on the righthand side of (3.71) is positive, resulting in c̄A > 0. This
means that we can expect a forward force along the zero-lift axis, especially at low speeds
where drag is dominated by the lift-induced contribution. The format of (3.71) does not
correspond to the cDV component of (3.8), since the latter is meant to model viscous drag
contributions. At the relatively low speeds that can be achieved in our indoor flight area,
viscous drag is likely small, so we leave cDV = 0 kg/m for now.

From momentum disc theory, we obtain

Ti =
πD2

4

ρ

2
v2
e,i, (3.72)

where D is the propeller diameter, ve,i is the downstream velocity of propeller i, and we as-
sume negligible upstream velocity. For simplicity, we assume that the wake of each propeller
results in a uniform velocity over a third of the corresponding semi-wing at a geometric an-
gle of attack of −αT . In reality, the flow is not uniform and significant interaction between

74

the wing and propeller may occur [62]. In order to keep the control algorithm tractable, we
neglect these effects in our dynamics model. Substituting (3.72) into the lefthand side of
(3.69) and equating to the corresponding component of (3.5) gives

−
∑
i

Ti
2

3

S

πD2
c̄Lαᾱ = −

∑
i

TicLT ᾱ⇒ cLT =
2

3

S

πD2
c̄Lα , (3.73)

where we assume small ᾱ. We set cDT = 0, similar to cDV .

Flap deflection changes the lift coefficient in two major ways: change in angle of attack
and change in airfoil camber [1]. For simplicity, we only consider the change in angle of
attack due to flap deflection, so that for small angles

1

2
ρ‖v‖2Sc̄Lα

cf
2c

∑
i

δi = cδLV ‖v‖i
>
x vα

∑
i

δi ⇒ cδLV =
1

2
ρSc̄Lα

cf
2c

=
cf
2c
cLV (3.74)

where c is the wing chord, cf is the flap chord, and the division by 2 in the righthand side
is due to the fact that each flap is attached to half of the wing. Similarly, we obtain cδLT
based on cLT , as follows

cδLT =
cf
c
cLT . (3.75)

Wing properties corresponding to the tailsitter aircraft shown in Fig. 3-1 are given in
Table 3.2. Using these values and ρ = 1.225 kg/m3 for standard sea-level conditions, we
obtain the aerodynamic parameters given in the middle column of Table 3.3. We set the
thrust pitch moment coefficient cµT to zero for now, because its analytical estimation is
complicated by the propeller-wing interaction. The flap pitch moment effectiveness lδx is
set to 0.075 m based on the location of the flap quarter-chord point.

Table 3.3: Aerodynamic force parameters.

Parameter Analytical Experimental

cLV 0.17 0.29 kg/m
cDV 0 0 kg/m
cLT 3.4 2.23
cDT 0 0
cδLV 0.041 0.18 kg/m

cδLT 1.7 1.25

3.5.2 Experimental Data

We found that our control algorithm is able to stabilize the tailsitter in flight when using
the analytically obtained aerodynamic parameters from Table 3.3. The incremental nature
of the algorithm enables the controller to compensate for discrepancies in the dynamics
model, such as inaccurate aerodynamics parameters. Despite the fact that the parameters
were obtained using small angle of attack assumptions, we found that they also enable stable
flight at large angles of attack and in static hover. A description of the experimental setup
is given in Section 3.6.1.

We use experimental data to improve our estimate of the aerodynamic parameters.
Specifically, we use the fact that the force contributions in the zero-lift reference frame

75

fαT , fαδ , and fαw are linear in the parameters. This allows us to formulate the parameter
estimation problem as a multiple linear regression. For the drag coefficients we have

i>x fα − cos ᾱ
∑
i

Ti =
[
cDV cDT

] [−i>x vα‖v‖
− cos ᾱ

∑
i Ti

]
, (3.76)

and for the lift coefficients we have

i>z fα + sin ᾱ
∑
i

Ti =
[
cLV cLT cδLV cδLT

]
−i>z vα‖v‖
sin ᾱ

∑
i Ti

−i>x vα‖v‖
∑

i δi
− cos ᾱ

∑
i δiTi

 . (3.77)

We perform a flight with coordinated turns in both directions. The flight starts from
static hover, after which the vehicle reaches speeds up to 4.5 m/s in between turns. We
estimate the forces in the zero-lift reference frame based on gravity-corrected acceleration
measurements.

The force measurements are shown in Fig. 3-5, along with estimates based on analytical
and experimental estimates of the aerodynamic parameters. Since we set both cDV and
cDT to zero, the analytical force estimate along αx, shown in Fig. 3-5a, consists solely of
the direct thrust contribution. At the beginning of the trajectory, where the vehicle is in
static hover, this analytical estimate closely matches the measured force, meaning that the
presence of the wing has no significant effect on the thrust magnitude and cDT is indeed
close to zero. As the speed increases, the measured forward force increases beyond the
analytical thrust force estimate. This may be due to (a combination of) various reasons.
The actual thrust may be underestimated because of increasing efficiency of the high-pitch
propellers as the blade angle of attack is reduced in forward flight. Another reason may
be the lift-induced forward force given by (3.71). Possibly, this forward force eclipses the
parasitic drag force acting in the opposite direction at the speeds we achieve in the indoor
flight space. Regardless of its exact cause, the increasing forward force drives us to set cDV
to zero. When flying at higher speeds, it may be possible to obtain an accurate nonzero
estimate of cDV using the regression equation. We found that, in practice, the discrepancy
in the forward force estimate has little influence on controller performance. It is closely
aligned with the thrust force and can thus be counteracted quickly and accurately by the
incremental controller. The lateral force component, shown in Fig. 3-5b, is close to zero, as
expected. The small bias in its measurement may be due to an imbalance or misalignment.
The measured and estimated force component along αz is shown in Fig. 3-5c. It can
be seen that the estimate based on the analytical parameters has a significant deviation
at increased speeds. The estimate based on the experimental regression parameters closely
matches the measurements throughout the trajectory with anR2 value of 0.97. The resulting
parameters are given in the final column of Table 3.3 and have similar order of magnitude
as the corresponding analytical parameters. The analytical underestimation of cδLV may be
because the change of camber due to flap deflection is not considered.

We also attempted to use multiple linear regression on the pitch moment i>y m to obtain
experimental estimates for cµT and lδx . This approach did not result in consistent param-
eters and good moment predictions; most likely due to significant moment contributions
that are not captured by the simplified aerodynamic model, e.g., due to airspeed, angle
of attack, and angular rates. Modeling these contributions is not required for our control

76

0 10 20 30

3

4

5

6

7

8

(a) Component along αx.

0 10 20 30

-3

-2

-1

0

1

2

3

(b) Component along αy.

0 10 20 30

-6

-5

-4

-3

-2

-1

0

1

2

3

(c) Component along αz.

Figure 3-5: Forces in zero-lift reference frame based on measurements, and on analytical
and experimental estimates of aerodynamic parameters. The analytical and experimental
lines coincide in (a) and (b).

design, which relies only on an incremental expression that relates the change in moment
to changes in differential thrust and flap deflections. However, their absence in the aerody-
namic model makes accurate estimation of cµT and lδx more difficult. We found that the
initial estimate of lδx = 0.075 m results in satisfactory pitch control, so we leave this value
unchanged. Finally, we set cµT based on the trim flap deflections in static hover, as follows:

cµT =
δ

2
lδxc

δ
LT

cos ᾱ. (3.78)

For our vehicle, we found δ/2 = −0.27 rad, resulting in cµT = −0.025 m.

The flight test results presented in Section 3.6 were obtained using the experimental
parameter estimates. We found that these parameters result in improved trajectory-tracking
performance when compared to the analytical parameters. As expected, the difference is
most significant at increased speeds where the discrepancy between the force estimates is
largest. Specifically, we found that altitude oscillations may occur due to the underestimated
cLV and cδLV analytical parameters.

3.6 Experimental Results

In this section, we evaluate controller performance on various trajectories that include
challenging flight conditions, such as large accelerations, transition on curved trajectories,
and uncoordinated flight. We also present a comparison to a baseline version of the controller
that illustrates the advantage and necessity of feedforward jerk and yaw rate tracking and
of robustification using incremental control. A video of the experiments can be found at
https://youtu.be/tGQO-6DPT1M.

3.6.1 Experimental Setup

Experiments were performed in an 18 m × 8 m indoor flight space using the tailsitter vehicle
shown in Fig. 3-1 and described in [7]. The vehicle is 3D-printed using Onyx filament with
carbon fiber reinforcement. It weighs 0.7 kg and has a wingspan of 55 cm from tip to tip.
It is equipped with two T-Motor F40 2400 KV motors with Gemfan Hulkie 5055 propellers.

77

https://youtu.be/tGQO-6DPT1M

The motor speeds are measured using optical encoders at one measurement per rotation,
i.e., at about 200 Hz in hover. MKS HV93i micro servos are used to control the flaps.
We obtain the flap deflection measurement as an analog signal by connecting a wire to the
potentiometer in the servo.

The flight control algorithm runs onboard on an STM32 microcontroller using custom
firmware. The microcontroller has a clock speed of 400 MHz and takes 25 µs to compute
a control update at 32-bit floating point precision. Accelerometer and gyroscope measure-
ments are obtained from an Analog Devices ADIS16475-3 IMU at 2000 Hz, and control
updates are performed at the same frequency. Position and attitude measurements are
provided by a motion capture tracking system at 360 Hz and sent to the vehicle over Wi-Fi
with an average latency of 18 ms.

The IMU, motor speed, and flap deflection measurements are filtered using a second-
order Butterworth low-pass filter with cutoff frequency of 15 Hz. The transient flap de-
flections are obtained by subsequent filtering using a second-order Butterworth high-pass
filter with cutoff frequency of 1 Hz. The latency of motion caption data is corrected for by
forward propagation of IMU measurements.

3.6.2 Lemniscate Trajectory

Figure 3-6 shows experimental results for tracking of a Lemniscate of Bernouilli with a
constant speed of 6 m/s. Throughout the trajectory, ψref is set perpendicular to the velocity,
leading to coordinated flight. The reference and flown trajectories over eight consecutive
laps (of 7 s each) starting at the y extreme are shown in Fig. 3-6a. It can be seen that the
tracking performance is very consistent between laps. Figure 3-6b shows that the largest
position deviation occurs at the end of the circular parts where the vehicle does not fully
maintain the reference acceleration of almost 2 g, as can be seen in Fig. 3-6d. Over the
middle part of the trajectory, the vehicle increases speed to catch up (see Fig. 3-6c), and
the position error is reduced again. Overall, the controller achieves a position tracking error
of 17 cm root mean square (RMS) with a maximum error of 33 cm.

Figure 3-6e shows the commanded and flown attitude. The attitude controller uses
quaternion representation, but to ease interpretation the figure uses the ZXY Euler angles
described in Section 3.3. For this trajectory, φ corresponds to the bank angle and reaches
almost 1 rad, which matches the acceleration nearing 2 g in Fig. 3-6d. The maximum
attitude error occurs during a small period in the turn, where the vehicle incurs a pitch
error of 6 deg. Controlling the pitch angle of a flying wing during aggressive maneuvers is
generally challenging due to the lack of an elevator, and the pitch deviation is likely the
cause of the relatively large position deviation at the exit of the turn. Overall, the controller
is able to track the dynamic attitude command well, and it maintains an attitude error of
less than 2 deg on each axis during the rest of the trajectory.

3.6.3 Knife Edge Transitioning Flight

Our proposed algorithm is able to control the vehicle in uncoordinated flight conditions
where it has significant lateral velocity. In knife edge flight, the wingtip is pointing in the
velocity direction, leading to roll instability due to the location of the center of gravity
behind the quarter span point [114]. Figure 3-7 shows experimental results for a trajectory
where ψref is set to enforce knife edge flight on one side and coordinated flight on the other
side. The results show that our controller is able to stabilize the knife edge flight condition,

78

-1

-2

-3

4

-4

10
2 5

0 0
-2

-5
-4

-10

(a) Position.

0 1 2 3 4 5 6 7

-0.2

-0.1

0

0.1

0.2

0.3

(b) Position tracking error.

0 1 2 3 4 5 6 7

5.6

5.8

6

6.2

6.4

(c) Speed.

0 1 2 3 4 5 6 7

8

10

12

14

16

18

(d) Acceleration.

0 1 2 3 4 5 6 7

-2

-1

0

1

2

(e) Attitude.

Figure 3-6: Experimental results for lemniscate trajectory at 6 m/s.

79

and that it is able to transition between knife edge and coordinated flight while at the same
time performing a 1.6 g turn.

One lap of the oval trajectory takes 6.25 s to complete at a constant speed of 6 m/s.
Referring to the view from above in Fig. 3-7a, the trajectory is flown in clockwise direction
with the straight at the top in knife edge configuration and the straight at the bottom in
coordinated flight. During each turn, the yaw reference is rotated by π/2 rad to enforce
the switch between configurations. Consequently, the coordinated flight segment is flown
in inverted orientation every other lap. Figure 3-7a shows the reference and flown position
over eight successive laps, and Fig. 3-7b and Fig. 3-7c show data corresponding to two laps
starting and ending at the transition from knife edge flight to coordinated flight in inverted
orientation. It can be seen that the reference is followed accurately during both regular
and inverted coordinated flight. Even while performing the transition from knife edge to
coordinated flight, the controller is able to track the turning trajectory. At the transition
from coordinated flight to knife edge, we see that the trajectory is shifted during transitions
from inverted orientation. This leads to a position tracking error of at most 60 cm at the
start of the knife edge segment. During transition from regular coordinated flight to knife
edge a position error of at most 25 cm is incurred.

Flight during the knife edge segment is consistent and stable, and the yaw reference is
tracked within 3 deg. In knife edge flight, the vehicle-fixed bz-axis coincides with the x-axis
of Fig. 3-7a. The position deviation along this axis is due to the fact that the acceleration
due to transient movement of the flaps is not considered in the position controller, as
described in Section 3.4.1. The changing acceleration and jerk references result in opposite
movement by the flaps at the start and end of the knife edge segment, which is why the
turn preceding the knife edge segment is too tight while the turn following it is started not
tight enough. Despite this, the controller achieves tracking of the position reference within
26 cm RMS and the yaw reference within 1.7 deg RMS.

3.6.4 Circular Trajectory

Figure 3-8 shows experimental results for tracking of a circular trajectory reference with a 3.5
m radius at a speed of 8.1 m/s. The left column of figures corresponds to coordinated flight
where the by-axis is perpendicular to the circle tangent, and the right column corresponds to
knife edge flight where the wing tip points along the tangent of the circle. Position tracking
performance is very similar between both flights. In both cases, the flown trajectory has a
slightly smaller radius than the reference, reducing the flight speed to 7.8 m/s. The RMS
position tracking error is 15 cm for both coordinated and knife edge flight. The aircraft
reaches a continuous acceleration of 2.1 g. In coordinated flight, this requires a bank angle
of 63 deg. In knife edge flight, the aircraft is rolled 14 deg towards the direction of travel
to compensate for drag and pitched over by 152 deg to provide thrust towards the circle
center. Maintaining this state requires flap deflections of 20 deg and rotor speeds of over
2000 rad/s in knife edge flight. In coordinated flight, the aircraft exploits the lift force
to achieve circular flight more efficiently and requires rotor speeds of 1800 rad/s with flap
deflections of 38 deg. In contrast to the trajectory described in Section 3.6.3, the flap
deflections are almost constant during the circular trajectory. Hence, there are no transient
accelerations caused by the flaps that are not considered in the position controller, and very
accurate trajectory tracking is achieved in knife edge flight. This shows that our controller is
not only able to stabilize the knife edge flight condition, but also attains accurate trajectory
tracking in knife edge flight at speeds close to 8 m/s.

80

-10 -5 0 5 10

-4

-2

0

2

4

(a) Position.

0 2 4 6 8 10 12

-0.4

-0.2

0

0.2

0.4

0.6

(b) Position tracking error.

0 2 4 6 8 10 12

-2

0

2

4

6

8

(c) Attitude.

Figure 3-7: Experimental results for knife edge transitioning trajectory at 6 m/s.

81

-1

-2

4

-3

-4

2

0 5

-2 0

-4
-5

(a) Position.

-1

-2

4

-3

-4

2

0 5

-2 0

-4
-5

(b) Position.

0 0.5 1 1.5 2 2.5

-0.2

-0.1

0

0.1

0.2

(c) Position tracking error.

0 0.5 1 1.5 2 2.5

-0.2

-0.1

0

0.1

0.2

(d) Position tracking error.

0 0.5 1 1.5 2 2.5

7.6

7.7

7.8

7.9

8

8.1

(e) Speed.

0 0.5 1 1.5 2 2.5

7.7

7.8

7.9

8

8.1

(f) Speed.

0 0.5 1 1.5 2 2.5

19

19.5

20

20.5

21

21.5

(g) Acceleration.

0 0.5 1 1.5 2 2.5

19.5

20

20.5

21

(h) Acceleration.

0 0.5 1 1.5 2 2.5

-4

-2

0

2

4

(i) Attitude.

0 0.5 1 1.5 2 2.5

-4

-2

0

2

4

(j) Attitude.

Figure 3-8: Experimental results for circle trajectory at 7.8 m/s for coordinated flight in
(a), (c), (e), (g), and (i); and for knife edge flight (b), (d), (f), (h), and (j).

82

3.6.5 Transitions

Figure 3-9 shows experimental results for transitions between static hover and coordinated
flight at 8 m/s on a circular trajectory with 3.5 m radius. Each transition takes 3 s at a
constant tangential acceleration of 2.7 m/s2 and is completed in 12 m. The pitch angle varies
over a range of 64 deg. While transitioning from and to hover, the controller tracks the
circle trajectory with respectively 10 cm and 15 cm RMS, and 15 cm and 24 cm maximum
position error. These maneuvers demonstrate that the controller is capable of performing
aggressive transitions while simultaneously tracking turns with significant acceleration.

To evaluate the benefits of the feedforward input based on jerk and yaw rate, we also
attempted to fly the same transitions without the angular velocity reference, i.e., with Ωref =
0 in (3.62). We found that the controller is still able to perform 3 s transitions to speeds
up to 3 m/s. However, if the target speed is increased and the corresponding tangential
acceleration exceeds 1 m/s2, the absence of the feedforward term causes large deviations
from the reference trajectory to the point where the vehicle cannot be stabilized anymore.
This confirms the benefit of jerk and yaw rate tracking when flying aggressive maneuvers.
Intuitively, the feedforward input enables the control to anticipate future accelerations by
regulating not only the forces acting on the vehicle but also their temporal derivative.
Additional experiments that show the effect of feedforward control are described in Section
3.6.7.

3.6.6 Differential Thrust Turning

Since the controller is not restricted to coordinated flight, it can perform turns without
banking. The tailsitter aircraft is particularly suitable for quick turns using yaw, because of
the absence of any vertical surfaces and the availability of relatively powerful motors. Figure
3-10 shows a fast turn that is executed using differential thrust. The reference trajectory,
entered in coordinated flight at 7 m/s, changes direction without deviating from a straight
line. The controller responds with large differential thrust and flap deflections. At the
onset of the turn, both flaps are almost fully deflected in opposite directions and the motors
produce a differential thrust of 6.1 N. This causes the aircraft to turn at a maximum rate of
650 deg/s and point in the opposite direction within half a second, while remaining within
1 m of the position reference.

3.6.7 Comparison to Baseline Controller

In order to experimentally demonstrate the advantages offered by two key aspects of our
flight control design, we compare our proposed controller to a baseline version. The baseline
controller is identical to the proposed controller, except that (i) it does not incorporate
feedforward jerk and yaw rate tracking, and (ii) it does not incrementally update the control
inputs. More concretely, we set the feedforward angular rate reference Ωref to zero in (3.62),
and we update the force and moment commands by direct inversion of (3.2) and (3.4),
respectively. These commands are thus obtained as

f ic = m (ac − giz) , (3.79)

mc = JΩ̇c + Ωlpf × JΩlpf , (3.80)

in contrast to the incremental updates (3.59) and (3.65) used in our proposed controller.
We add integral action to the attitude controller (3.62) to improve the rejection of modeling

83

-1

-2

4

-3

-4

2

0 5

-2 0

-4
-5

(a) Position.

-1

-2

4

-3

-4

2

0 5

-2 0

-4
-5

(b) Position.

0 0.5 1 1.5 2 2.5 3 3.5

-0.1

-0.05

0

0.05

0.1

0.15

(c) Position tracking error.

0 0.5 1 1.5 2 2.5 3 3.5

-0.2

-0.1

0

0.1

0.2

(d) Position tracking error.

0 0.5 1 1.5 2 2.5 3 3.5

0

2

4

6

8

10

(e) Speed.

0 0.5 1 1.5 2 2.5 3 3.5

0

2

4

6

8

10

(f) Speed.

0 0.5 1 1.5 2 2.5 3 3.5

10

12

14

16

18

20

(g) Acceleration.

0 0.5 1 1.5 2 2.5 3 3.5

10

12

14

16

18

20

(h) Acceleration.

0 0.5 1 1.5 2 2.5 3 3.5

-4

-2

0

2

(i) Attitude.

0 0.5 1 1.5 2 2.5 3 3.5

-6

-4

-2

0

2

(j) Attitude.

Figure 3-9: Experimental results for transition on a circle with radius 3.5 m from static
hover to coordinated flight at 8 m/s (a), (c), (e), (g), and (i); and vice versa (b), (d), (f),
(h), and (j).

84

-1

-2

2

-3

-4

2
00

-2
-4-2

-6

(a) Position.

0 0.5 1 1.5 2

0

1

2

3

4

5

(b) Attitude.

0 0.5 1 1.5 2

-5

0

5

10

(c) Angular velocity.

0 0.5 1 1.5 2

500

1000

1500

2000

2500

(d) Rotor speed.

0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

(e) Flap deflection.

Figure 3-10: Experimental results for differential thrust turn.

85

errors and external disturbances in the absence of incremental control updates. The baseline
attitude controller is thus given by

Ω̇c = Kξζe −KΩΩlpf + KIξ

∫
ζe dt. (3.81)

Table 3.4 gives key properties of the baseline controller, our proposed controller, and
several tailsitter control designs presented in recent literature. In order to enable compari-
son, we only include guidance and control designs that fully govern both translational and
rotational motion, i.e., we omit works that consider only hover, only longitudinal control,
only rotational control etc. Also not included are control designs for (over-actuated) aircraft
that possess actuators beyond the configuration we consider (i.e., two flaps and two rotors),
since these aircraft typically present fundamentally different challenges in control design.

Table 3.4: Comparison of tailsitter flight control algorithms.

Methodology Aerodynamic model Robustification Feedforward

Proposed INDI, and
differential flatness

Global ϕ-theory Incremental Acceleration,
jerk, and
yaw rate

Baseline Dynamic inversion Global ϕ-theory - Acceleration

Lustosa, 2017 [68] Scheduled LQR Linearized ϕ-theory - Attitude, yaw
rate (at trim
points)

Ritz, 2017 [103] Dynamic inversion
(coordinated flight)

Global first principles - Acceleration

Chiappinelli, 2018 [11] PD Control effectiveness
(moment only)

- Attitude

Smeur, 2020 [114] INDI Control effectiveness
(coordinated flight at
small flight path angle)

Incremental -

Barth, 2020 [4] Model-free control
(coordinated flight)

- Model free -

While the baseline controller lacks key aspects of our proposed control design, it is still
a state-of-the-art dynamic inversion controller based on a global aerodynamics model that
incorporates the acceleration feedforward signal. We note that none of the existing algo-
rithms listed in the table combine robust control with feedforward control inputs to the
same extent as our proposed controller. Controllers that do not incorporate any robustifi-
cation require an accurate aerodynamics model that covers the entire flight envelope or will
incur significant systematic tracking errors. Several algorithms include attitude or (equiva-
lently) acceleration feedforward inputs, but none consider reference jerk, which is essential
for accurate tracking of fast-changing accelerations. Without the angular rate feedforward
input corresponding to jerk, the derivative term of the attitude controller will counteract
the nonzero angular rate required to track a dynamic attitude reference. Finally, we note
that existing controllers are often limited to coordinated flight because of limitations of
the aerodynamic model or the control algorithm itself. In typical cruise conditions, this
limitation is not prohibitive, but when performing agile maneuvers, it restricts the usable
flight envelope, e.g., excluding knife edge flight.

In order to examine the combined and individual effects of incremental control and feed-
forward tracking, we employ two additional versions of the baseline controller: baseline+FF
includes feedforward tracking but no incremental control, while baseline+INDI includes in-

86

(a) Hover-to-hover trajectory
with π/2 rad yaw.

(b) Circle trajectory in knife edge
orientation.

(c) Coordinated flight on
lemniscate trajectory (par-
tially shown).

Figure 3-11: Reference trajectories with attitude and flap deflections obtained from differ-
ential flatness transform.

cremental control but no feedforward tracking. Table 3.5 presents tracking performance
data for the proposed and baseline controllers on the three trajectories shown in Fig. 3-11.

The hover-to-hover trajectory includes transitions and sideways flight. When flown
slowly (i.e., 5 s), the maximum acceleration of 2.3 m/s2 is similar to transition maneuvers
found in literature. All controllers track this slow trajectory with reasonable error. At low
speeds, incremental control already significantly reduces the error by accounting for unmod-
eled dynamics, while feedforward makes less difference as the angular rates remain low. As
expected, the importance of feedforward increases as the maneuver speeds up, evidenced by
a dramatic increase in tracking error for the baseline and baseline+INDI controllers. The
error growth is much smaller for the proposed and baseline+FF controllers, confirming that
jerk and yaw rate tracking is essential for accurate tracking of aggressive maneuvers. As far
as we are aware, our proposed control design is the first tailsitter controller to incorporate
these feedforward inputs to enable agile maneuvers.

The importance of feedforward is further demonstrated on the knife edge circle trajec-
tory. We found that the baseline and baseline+INDI controllers are unable to accurately
maintain knife edge orientation due to absence of the 76 deg/s yaw rate feedforward ref-
erence. As knife edge flight is inherently unstable, failing yaw control leads to an overall
failure to stabilize the vehicle. The baseline+FF controller performs much better, but—
due to the lack of incremental control—still incurs a significantly larger systematic tracking
error than the proposed controller.

The lemniscate trajectory is flown at higher speed, where the controller increasingly
relies on the aerodynamics model for accurate application of force and moment. We found
that the baseline controllers without INDI are unable to avoid crashing before the trajec-
tory speed is reached. This may be due to inaccurate aerodynamics parameters or due to
significant aerodynamic effects that are not captured by the simplified dynamics model.
The baseline+INDI controller corrects for these modeling inaccuracies, and is able to avoid
crashes. However, it incurs large tracking error—due to the lack of jerk and yaw rate
tracking—to the point that we were unable to obtain an error measurement because of
flight space size limitations.

3.7 Summary

In this chapter, we presented a control design aimed at tracking agile trajectories using a
tailsitter flying wing. We derived a flatness transform for the nonlinear tailsitter flight dy-

87

Table 3.5: Position and yaw tracking error for proposed and baseline controllers. The top
three rows (corresponding to hover-to-hover trajectories) contain maximum values, while
the bottom two rows (corresponding to periodic trajectories) contain RMS values.

‖x− xref‖2 [cm] |ψ − ψref | [deg]

‖v
re

f
‖ 2

[m
/
s]

‖a
re

f
‖ 2

[m
/
s2

]

P
ro

p
o
se

d

B
a
se

li
n
e

B
a
se

li
n
e+

F
F

B
a
se

li
n
e+

IN
D

I

P
ro

p
o
se

d

B
a
se

li
n
e

B
a
se

li
n
e+

F
F

B
a
se

li
n
e+

IN
D

I

Hover-to-hover (6 m, π/2 rad, 5 s) 3.0 2.3 7.4 41.2 31.9 17.4 1.3 21.7 13.6 8.4
Hover-to-hover (6 m, π/2 rad, 4 s) 3.7 3.5 15.5 63.0 33.8 34.9 2.0 21.5 19.8 10.1
Hover-to-hover (6 m, π/2 rad, 3 s) 4.9 6.2 23.3 >400 40.4 64.7 10.4 >25 17.4 20.6
Knife edge circle (3 m radius) 4.0 5.3 2.8 - 8.2 - 0.6 - 1.8 -
Lemniscate 6.0 9.1 16.6 - - >200 2.8 - - >25

namics with ϕ-theory aerodynamics model and formulated an angular velocity feedforward
input that enables the controller to track the reference position along with its derivatives up
to jerk. By applying INDI control, we obtain accurate trajectory tracking without relying
on a globally accurate dynamics model. The aerodynamic parameters used by the controller
were estimated based on flight data using a simple regression method, and the controller
was evaluated in extensive experiments where it achieved accurate tracking of challenging
trajectories. The advantage of robust control using INDI and the necessity of jerk and yaw
rate feedforward inputs for tracking agile maneuvers were explicitly demonstrated through
experimental comparison with a baseline version of the proposed controller.

88

Chapter 4

Multi-Fidelity Black-Box
Optimization for Time-Optimal
Quadrotor Maneuvers

We consider the problem of generating a time-optimal quadrotor trajectory for highly ma-
neuverable vehicles, such as quadrotor aircraft. The problem is challenging since the optimal
trajectory is located on the boundary of the set of dynamically feasible trajectories. This
boundary is hard to model as it involves limitations of the entire system, including complex
aerodynamic and electromechanical phenomena, in agile high-speed flight. In this chapter,
we propose a multi-fidelity Bayesian optimization framework that models the feasibility
constraints based on analytical approximation, numerical simulation, and real-world flight
experiments. By combining evaluations at different fidelities, trajectory time is optimized
while the number of costly flight experiments is kept to a minimum. The algorithm is
thoroughly evaluated for the trajectory generation problem in two different scenarios: 1)
connecting predetermined waypoints, 2) planning in obstacle-rich environments. For each
scenario, we conduct both simulation and real-world flight experiments at speeds up to
11 m/s. Resulting trajectories were found to be significantly faster than those obtained
through minimum-snap trajectory planning.

This chapter is based on joint work with Gilhyun Ryou [105]. A video of the experiments
can be found at https://youtu.be/FjCIZ5lSRg0.

4.1 Introduction

In recent years, fast navigation of autonomous vehicles has received increasing interest. For
several years an autonomous drone racing competition has been organized at IROS [84],
and last year the AlphaPilot challenge introduced a similar competition to a more general
audience [35]. Currently and in the near future, state-of-the-art algorithms in estimation
and control are reaching a level of maturity, such that the bounds of what is physically
possible with a given vehicle are approached. This presents the need for trajectory planning
algorithms that fully exploit the capabilities of the vehicle and take into account the intricate
limitations of vehicle dynamics, instead of relying on simplified models.

In this chapter, we consider the problem of generating, i.e., planning, a dynamically fea-
sible, time-optimal quadrotor trajectory. By definition, such an optimal trajectory is found
at the boundary of the set of feasible trajectories. Hence, precise knowledge of the dynamic

89

https://youtu.be/FjCIZ5lSRg0

Figure 4-1: Overview of the proposed algorithm that models dynamic feasibility constraints
based on simulation and flight data to efficiently find the time-optimal trajectory.

feasibility constraints is required to find the time optimum. This complicates the problem,
as these feasibility constraints can become highly complex in light of high-acceleration flight
and aggressive attitude changes, as required to achieve time optimality. The demanding ma-
neuvers are affected by flight dynamics, but also by hardware and software for control and
state estimation. The resulting set of non-convex feasibility constraints with memory (i.e.,
depending on present and past states and control inputs) cannot readily be incorporated
in a typical trajectory planner for two main reasons. Firstly, the feasibility constraints are
not easily expressed in a convenient way, e.g., as constraints on an admissible set of control
inputs and states. Instead, the feasibility of the trajectory must be considered in a holistic
manner. Secondly, in most scenarios, precise modeling of these constraints is only possible
through real-world experiments. As these experiments aim to seek the boundary of the
feasible set, they are risky and potentially costly and should thus be kept to a minimum.
Contrarily to this objective, many trajectory optimization schemes rely on a large number
of evaluations. These two issues form the main motivation for our algorithm, which uses
a multi-fidelity optimization technique that can approximate the system feasibility con-
straints based on a limited number of experiments. It uses a Gaussian process black-box
model to classify candidate trajectories as feasible or infeasible and is thereby able to plan
increasingly fast trajectories as the model improves. An overview of the algorithm is shown
in Fig. 4-1.

This chapter contains several contributions. Firstly, we propose an algorithm for model-
ing of quadrotor feasibility constraints and generation of time-optimal trajectories based on
Gaussian process classification. Secondly, we extend the applicability of the multi-fidelity
deep Gaussian process kernel from the regression problem to the classification problem in
order to obtain a multi-fidelity Gaussian process classification algorithm that can incorpo-
rate evaluations from analytical approximation, numerical simulation, and real-world flight
experiments. Thirdly, we design an acquisition process specifically tailored to experimental
robotics. The acquisition function takes into account the additional cost of infeasible eval-
uations, as these may pose a threat to the vehicle and its surroundings. Candidate data
points are generated using minimum-snap perturbations in order to maintain feasibility. Fi-
nally, we present an extensive evaluation of the proposed algorithm in both simulation and
real-life flight experiments at speeds up to 11 m/s. It is found that optimized trajectories

90

are significantly faster than those obtained through minimum-snap trajectory planning.
The outline of the chapter is as follows. In Section 4.2 and Section 4.3, we present the

problem definition and preliminaries on trajectory planning, and preliminaries on Bayesian
optimization, respectively. We detail our algorithm for the generation of time-optimal tra-
jectories using iterative experiments in Section 4.4. In Section 4.5, we present experimental
results from both simulation and real-world flights. Finally, we provide a summary in Sec-
tion 4.6. In this chapter, we mostly use the prevailing notation from literature on Bayesian
optimization. Consequently, the notation partly deviates from the nomenclature that was
introduced in preceding chapters.

4.2 Quadcopter Trajectory Generation

We consider the problem of planning a time-optimal quadrotor trajectory. A trajectory
p : R≥0 → R3 × T—with T the circle group—is a continuous function that maps time

to position and yaw, i.e., p(t) =
[
pr(t)

> pψ(t)
]>

. We define the following time-optimal

planning problem:
minimize

p, T
T

subject to p(0) = p̃start,

p (T) = p̃end,

p ∈ F ,
p ∈ PT ,

(4.1)

where p̃start and p̃end are respectively the start and end points, each consisting of a pre-

scribed position and yaw angle, i.e., p̃ =
[
p̃r
> p̃ψ

]> ∈ R3 × T, and F denotes the set
of trajectories that satisfy the relevant geometric constraints, e.g., for obstacle avoidance.
The function space PT is the set of all feasible trajectories, i.e., all trajectory functions that
the quadrotor can successfully track over [0, T]. Using differential flatness of the idealized
quadcopter dynamics, we know that for any feasible trajectory, pr ∈ C4 and pψ ∈ C2 over
the interval [0, T] [80]. However, more constraints should be incorporated when considering
fast and agile trajectories. Critically, the complete system including aerodynamics, sensor
and actuation hardware, and estimation and control software must be considered, instead
of solely the idealized vehicle dynamics. This is necessary because all aspects of the system
affect tracking performance during demanding maneuvers, e.g., as follows:

• Significant aerodynamic forces and momenta act on the vehicle and need to be ac-
counted for in control inputs. In contrast, vehicle aerodynamics can typically be
neglected in low-speed flight.

• State estimation errors due to delay and phase lag are exacerbated by the fast-changing
vehicle state. Moreover, sensors measurements may incur additional noise due to large
accelerations.

• Actuation delay and bandwidth limitations, such as the mechanical time constant of
the motors, inhibit tracking of fast-changing control inputs.

• Battery internal resistance causes the voltage to drop under large currents. Conse-
quently, very high motor speeds can only be maintained for limited consecutive time
periods.

91

What results is a set of non-convex feasibility constraints with memory (i.e., depending on
present and past states and control inputs). These characteristics of PT make the planning
problem hard to solve, even when using nonlinear optimization techniques such as direct
collocation or shooting methods. Additionally, it is important to note that in practice no
trajectory can be tracked perfectly due to stochastic sensing and actuation imperfections,
so the definition of PT must incorporate an error bound.

Popular methods for trajectory planning avoid the complicated feasibility constraints
by reformulating the optimization problem such that feasibility is the objective instead of
a constraint [80, 101]. In practice, this is achieved by minimizing high-order derivatives of
the trajectory function. Particularly, minimizing the fourth-order derivative of position,
i.e., snap, and the second-order derivative of yaw results in a minimization of the required
angular accelerations. This reduces trajectory agility and may thereby prevent activation
of the aforementioned feasibility constraints. Before we detail the resulting minimum-snap
optimization problem, we describe two formulations to incorporate geometric constraints
imposed by F . For certain applications, like mapping and surveillance, one may opt to define
a sequence with m − 1 intermediate waypoints, i.e., p̃ =

[
p̃start p̃1 · · · p̃m−1 p̃end

]
, to

be attained in order. The corresponding constraints take the form

p
(∑i

j=1
xj

)
= p̃i, i = 1, . . . , m− 1, (4.2)

where x =
[
x1 · · · xm

]
denotes the time allocation over trajectory segments, e.g.,

xi is the time allocated for the segment between waypoints p̃i−1 and p̃i. When planning
trajectories through obstacle-rich environments, it may be preferable to incorporate collision
avoidance constraints instead of waypoints, e.g., by utilizing a series of convex boxes to
describe the obstacle-free space [28, 127], or decomposing the obstacle-free space into a set
of convex polytopes through semi-definite programming [15]. A sequence of m obstacle-free
convex polytopes to pass through can be incorporated in the trajectory optimization as
follows:

Aip (t) ≤ bi, ∀t ∈
[∑i−1

j=1
xj ,
∑i

j=1
xj

]
, i = 1, . . . , m, (4.3)

where matrix Ai ∈ Rdi×3 and vector bi ∈ Rdi constrain the trajectory segment to be within
a polytope of di faces. The methods for construction and sequencing of these obstacle
avoidance polytopes are described in Section 4.4.4.

The minimum-snap trajectory optimization problem is given by:

minimize
p

σ(p,
∑m

i=1
xi)

subject to p(0) = p̃start,

p
(∑m

j=1
xj

)
= p̃end,

p ∈ F ,

(4.4)

where

σ(p, T) =

∫ T

0
µr

∥∥∥∥d4pr
dt4

∥∥∥∥2

+ µψ

(d2pψ
dt2

)2
dt (4.5)

with µr and µψ weighing parameters. The final constraint in (4.4) is given by either (4.2)
or (4.3). By utilizing a piecewise polynomial function to describe the trajectory, differen-
tiability constraints can be guaranteed by appropriately selecting the order of continuity

92

between segments, and the optimization problem (4.4) can be formulated as a quadratic
program [80]. In case of waypoint constraints, efficient solvers for unconstrained quadratic
programming can be used [101]. For convenience, we define the function that gives the
minimizer trajectory of (4.4) for the time allocation x as follows:

p = χ(x, F̃), (4.6)

where F̃ represents either p̃ (in case of waypoint constraints), or (p̃start, p̃end,A,b) with A
and b containing respectively all Ai and bi (in case of polytope constraints).

Minimum-snap trajectory generation algorithms employ a two-step process based on
(4.6). First, the minimum-snap trajectory for a (very large) initial guess of the total tra-
jectory time is found, as follows:

minimize
x∈Rm≥0

σ
(
χ(x, F̃), T

)
subject to T =

∑m

i=1
xi.

(4.7)

Next, the obtained time allocation is scaled down, i.e.,

minimize
η∈R>0

T

subject to T =
∑m

i=1
ηxi,

χ(ηx, F̃) ∈ PT .

(4.8)

The feasibility constraint is typically evaluated based on control inputs obtained from dif-
ferential flatness of the idealized quadrotor dynamics [80]. While this method can generate
fast, feasible trajectories, it does not attain time optimality for several reasons. Firstly, the
time allocation ratio obtained in (4.7) may not be optimal as the total trajectory time is
decreased, i.e., there may exist an alternative allocation ratio that will enable lower feasible
total trajectory time. Secondly, the method uses a simple feasibility model that fails to
consider the trajectory as a whole, as is required for a realistic feasibility check.

Our proposed algorithm searches for a time-optimal trajectory by directly addressing
the two major shortcomings of minimum-snap trajectory generation. It builds a realistic,
probabilistic feasibility constraint model that considers the trajectory as a whole, and uses
this model to find the optimal time allocation over trajectory segments.

4.3 Bayesian Optimization

Bayesian optimization, or BayesOpt, is a class of algorithms that use machine learning
techniques for solving optimization problems with black-box objective or constraint func-
tions that are expensive to evaluate. Evaluation points are selected to model the unknown
functions and approach the optimum with maximum efficiency, so that the total number
of evaluations is kept to a minimum. Within the BayesOpt framework, Gaussian process
(GP) modeling [100] is widely used to build a surrogate model that approximates the un-
known objective or constraint functions based on noisy measurements. Given data points
X = {x1, · · · ,xN} with corresponding evaluations y = {y1, · · · , yN}, GP modeling predicts
the probability P (y∗|y,x∗,X) for a test point x∗. It assumes the joint distribution over the

93

evaluations is a joint Gaussian

P (y, y∗|x∗,X) = N
([

y
y∗

] ∣∣∣∣0, [K(X,X)K(X,x∗)
K(x∗,X)K(x∗,x∗)

])
. (4.9)

P (y∗|y,x∗,X) can then be obtained by marginalizing y in (4.9). Each element of the
covariance K(X,X) is nonparametrically estimated by the corresponding data points and a
covariance kernel Kij(X,X) = k(xi,xj) with hyperparameters θ. The hyperparameters are
trained by maximizing the marginal likelihood P (y|X). As a nonparametric method, GP
can flexibly model a functional distribution, even with a small number of data points. This
functional approximation using GP is often called Kriging or Gaussian process regression.

When modeling inequality constraints, Gaussian process classification (GPC) is often
used instead of direct GP modeling. Rather than assuming a joint distribution over the
evaluations, GPC assumes a joint Gaussian distribution over the evaluations and the latent
variables f =

[
f1, · · · , fN

]
. The latent variables encode label probabilities for the evalua-

tions, which can be obtained through a mapping onto the probability domain [0, 1], e.g.,

Φ(x) =

∫ x

−∞
N (s|0, 1)ds. (4.10)

The latent variables and the hyperparameters of the kernel function are trained by maxi-
mizing the marginal likelihood function

P (y, f |X) = ΠN
i=nP (yn|fn)P (f |X)

= ΠN
n=1B(yn|Φ(fn))N (f |0,K(X,X)),

(4.11)

where B(x) is the Bernoulli likelihood used to formulate Φ(fn) as a probability distribution.
The joint GP prior assumption given by (4.9) can now be used to estimate the distribution
of f∗, which is the latent variable corresponding to the class probability y∗. The covariance
between X and a test point x∗ is modeled with the same covariance kernel, as follows

P (f , f∗|x∗,X) = N
([

f
f∗

] ∣∣∣∣0, [K(X,X)K(X,x∗)
K(x∗,X)K(x∗,x∗)

])
, (4.12)

so that the distribution of the latent variable f∗ can be estimated as

P (f∗|x∗,X,y) =

∫
P (f∗|f ,x∗,X)P (f |X,y)df . (4.13)

The resulting class probability is obtained by

P (y∗|x∗,X,y) =

∫
P (y∗|f∗)P (f∗|x∗,X,y)df∗. (4.14)

For more details on GPC and its implementation, the reader is referred to [88].

The BayesOpt acquisition function is designed to select the next evaluation point by
considering both reducing the uncertainty of the surrogate model and finding the precise
optimum of the objective function. Based on the data D obtained in previous evaluations,
the surrogate model can be trained to approximate the unknown function. Next, the ap-
proximate optimal solution can be estimated using the trained surrogate model. Each next

94

evaluation point is obtained by solving the following optimization problem:

xnext = arg max
x

α(x|D) (4.15)

where α(x|D) is the acquisition function that represents the value of an evaluation point x
given the data D. If the surrogate model approximates an unknown objective function, the
acquisition function can, for example, be based on the expected improvement of the objec-
tive function [83], the expected entropy reduction of the distribution over the location of the
solution [43,136], or the upper bound of the optimum [121]. If constraint functions are also
modeled, the acquisition function must consider the uncertainty of both objective and con-
straint function models, e.g., using the product of the expected objective improvement and
the probability of constraint satisfaction [29,32]. This approach has been extended to select
data points more efficiently utilizing the asymmetric design of the acquisition function [64]
and to incorporate constraint satisfaction into the estimation of the expected entropy re-
duction [42, 71]. In our proposed algorithm, Bayesian optimization is applied to model the
feasibility constraints of the time-optimal trajectory planning problem. Related applica-
tions can be found in literature, where the acquisition function is designed considering the
uncertainty of model feasibility functions and dynamics boundaries of control systems [5,98].

In multi-fidelity Bayesian optimization, function evaluations of different fidelities can be
combined. For instance, a rough simulation or an expert’s opinion may serve as a low-fidelity
model, while a high-accuracy simulation or real-world experiment serves as a high-fidelity
model. The key idea is that combining cheap low-fidelity evaluations with expensive high-
fidelity measurements improves overall efficiency. To incorporate information from multiple
sources, the surrogate model must be modified to combine multi-fidelity evaluations, e.g., by
using a linear transformation to describe the relationship between different fidelities [57,60].
Suppose that we have L fidelity levels, and each level is denoted by l ∈ {l1, l2, . . . , lL}, where
l1 is the level of the lowest-fidelity experiment and lL is the level of the highest-fidelity
experiment. The relationship between adjacent fidelity levels lj and lj−1 can be modeled
as

flj (x) = ρlj−1flj−1(x) + δlj (x), (4.16)

where flj (x) and flj−1(x) are the output distributions of x for lj and for lj−1, respectively.
The bias distribution δlj is independent of flj−1 , . . . , fl1 , and the constant ρlj−1 represents the
correlation between the output distributions for the two adjacent fidelity levels. This method
can be extended to include a more advanced nonlinear space-dependent transformation [14,
93]. Besides auto-regressive models, other approaches for multi-fidelity optimization exist,
e.g., utilizing the decision boundary of a support vector machine (SVM) to reduce the
search space of high-fidelity data points [18], or utilizing pairwise comparison of low-fidelity
evaluations to determine the adversarial boundary of the high-fidelity model [140].

Similar to the surrogate model, the acquisition function has to be modified to incorpo-
rate multi-fidelity evaluations. In the multi-fidelity Bayesian optimization framework, the
acquisition function not only selects the next evaluation point, but also its fidelity level, as
follows:

xnext, lnext = arg max
x,l∈{l1,...,lL}

α(x, l|D). (4.17)

The acquisition function is modified by introducing weights based on the evaluation cost at
the different fidelity levels. In practice, high-fidelity evaluations will have smaller weights
compared to low-fidelity evaluations. This makes the algorithm less likely to select high-

95

fidelity evaluations, so that the overall cost of the experiments is minimized. Common
metrics used in acquisition functions are modified in this manner, e.g., weighted expected
improvements [47], weighted expected entropy reductions [124], and weighted upper bounds
of the optimum [53]. The multi-fidelity classification problem can also be approached by
differently weighting the uncertainty reduction of the classifiers at each fidelity level [13].
Since multi-fidelity Bayesian optimization has the potential to reduce the number of expen-
sive high-fidelity experiments, it has been applied in various fields, including analog circuit
design [143], aircraft wing design [99], and control synthesis [72,98].

Although Bayesian optimization aims to contain the number of required function evalua-
tions, it may still suffer from large computation cost as the number of data points increases.
This is mainly due to inversion of a covariance matrix including all data points for uncer-
tainty quantification in the surrogate function, leading to a computational cost proportional
to the number of data points cubed. Particularly multi-fidelity Bayesian optimization may
suffer from this issue, as the number of data points can quickly increase by adding low-
fidelity evaluations. The problem is addressed by the inducing points method, which uses
a set of pseudo-data points for uncertainty quantification [40,119]. The pseudo-data points
are selected to minimize the Kullback Leibler (KL) divergence between the function pos-
terior given all data points (including the pseudo-data points), and the function posterior
given only the pseudo-data points. Since the number of pseudo-data points is much smaller
than the number of actual data points, the inducing points method can greatly improve
algorithm performance as the size of the data set increases. The method has been extended
to the classification problem [41] and applied to multi-fidelity Bayesian optimization [14],
and GPU acceleration can be used to further increase its efficiency [30].

4.4 Algorithm

Our proposed algorithm uses Bayesian optimization to efficiently minimize the total tra-
jectory time T by approximating the feasibility constraints of PT using multi-fidelity eval-
uations from various sources, such as simulation and real-world flight experiments. Unlike
typical minimum-snap trajectory planning, the algorithm maintains the ideal planning for-
mulation of (4.1) with minimum time as the objective and feasibility as a constraint. We
exploit the fact that any time allocation over the trajectory segments can be mapped to a
smooth trajectory that attains the given geometric constraints using (4.6). This enables us
to transform the problem of finding the time-optimal trajectory to the problem of finding
the optimal time allocation over segments. Therefore, we can formulate the following op-
timization problem on the finite-dimensional space Rm≥0 that is the set of all possible time
allocations:

minimize
T, x∈Rm≥0

T

subject to χ(x, F̃) ∈ PT ,

T =
∑m

i=1
xi.

(4.18)

This formulation is based on the assumption that if there exists a feasible trajectory, i.e.,
a member of the set PT , that attains geometric constraints F̃ with time allocation x,
then χ(x, F̃) ∈ PT . This assumption is reasonable, since (4.4) optimizes for feasibility (by
minimizing snap), so it is unlikely that its optimum is infeasible while there exists a feasible
trajectory subject to the same time allocation and waypoints.

96

We use Gaussian process classification to learn a surrogate model of the feasibility
constraint in (4.18). The surrogate model combines results from sequential experiments at
L fidelity levels. An experiment fl(x) evaluates the feasibility of the trajectory χ(x, F̃) at
fidelity level l, resulting in a classification y ∈ {feasible, infeasible}. Evaluations at fidelity
level l are gathered in dataset Dl = {(xi, yi)}i=1,...,Nl

, where Nl is the number of evaluations
at fidelity level l. The GPC probability model at fidelity level l, i.e., Pl(y = feasible |x), is
based on data points from fidelity levels l and lower. The overall objective is to find the
optimal time allocation that satisfies the feasibility constraint at the highest fidelity level
with sufficient confidence, i.e., PlL(y = feasible |x∗) ≥ h.

Each evaluation is selected based on the acquisition function, which considers exploration
and exploitation with the goal of maximizing the efficiency of the overall optimization pro-
cess. Based on the current trained surrogate model, it estimates the expected improvements
in objective function value and model accuracy. By iteratively improving the feasibility
model and minimizing the objective function, our algorithm searches for the time allocation
that minimizes total trajectory time. An overview of the complete algorithm is given in
Algorithm 1, and its major components are detailed in ensuing sections.

Algorithm 1: Multi-fidelity black-box optimization for
time-optimal trajectory planning

Input: Multi-fidelity experiments fl, l = l1, . . . , lL;
acquisition function α

1 Find initial solution by solving (4.8)
2 Initialize multi-fidelity dataset Dl, ∀l ∈ {l1, . . . , lL}
3 for i = 1, · · · do
4 Build the surrogate model Ml, ∀l ∈ {l1, . . . , lL}
5 Generate candidate solutions X
6 xi, li ← arg maxx∈X ,l∈{l1,...,lL} α(x, l|D)

7 yi ← fli(xi)
8 Dli ← Dli ∪ {(xi, yi)}
9 end

10 T ∗ ←
∑m

i=1 x
∗
i

11 p∗ ← χ(x∗, F̃)
Output: T ∗, p∗

4.4.1 Multi-Fidelity Constraint Model

We define the GPC-based surrogate modelM as the set of latent variables f =
[
f1, · · · , fN

]
,

the hyperparameters of covariance matrix θ, and the hyperparameters of the inducing points
m and S, such thatM = (f , θ,m,S). The inducing points method is used to accelerate the
optimization process [41]. This enables us to avoid the O(N3)—with N the number of data
points—computational complexity otherwise associated with the calculation of the inverse
covariance matrix, which is used for estimating the distribution of the latent variables,
i.e., P (f |X,y). By introducing an additional variational distribution q(u) = N (m,S), the
inducing point method approximates

P (f |X,y) ∼ q(f) :=

∫
p(f |u)q(u)du, (4.19)

97

where the hyperparameters m and S represent the mean and covariance of the inducing
points, respectively. The method uses the following variational lower bound as loss function
to determine the latent variables and the hyperparameters:

L =
N∑
n=1

Eq(fn) [log p(yn|fn)]−DKL [q(u)‖p(u)] . (4.20)

In order to utilize the multi-fidelity optimization technique, we update the definition of the
surrogate model and define the lj-fidelity surrogate model (j = 1, . . . , L) as

Mlj = {f lj , [θl1 , · · · , θlj],mlj ,Sl
j}. (4.21)

We use the multi-fidelity deep Gaussian process (MFDGP) [14] as covariance kernel func-
tion to estimate the GP prior from multiple evaluation sources. The multi-fidelity Gaussian
process has separate latent variables and inducing points f l

j
, ul

j ∼ N (mlj ,Sl
j
) for each

fidelity lj . Thus, we define the surrogate model separately for each fidelity model. How-
ever, fidelity models share the hyperparameters of the covariance kernels. Specifically, the
MFDGP models the relationship between adjacent fidelities with another Gaussian process
as

klj (x,x
′) = klj ,corr(x,x

′)(σ2
lj ,linear flj−1(x)>flj−1(x′)

+klj ,prev(flj−1(x), flj−1(x′))) + klj ,bias(x,x
′),

(4.22)

where flj−1 is the Gaussian process estimation from the preceding fidelity level, σlj ,linear
is a constant scaling the linear covariance kernel, and klj ,prev, klj ,corr and klj ,bias represent
the covariance with the preceding fidelity, the space-dependent correlation function and
the bias function, respectively. Radial basis functions are used for these kernels. Their
hyperparameters are trained by maximizing the following variational lower bound:

L =
L∑
j=1

(N
lj∑

n=1

E
q
lj

(f l
j
n)

[
log p(yl

j

n |f l
j

n)
]

−DKL

[
qlj (u

lj)‖p(ulj)
])
,

(4.23)

where Nlj denotes the number of data points in the lj-fidelity dataset Dlj , and qlj (f
lj
n) :=∫

p(f l
j

n |ul
j
)q(ul

j
)dul

j
, which is the same formulation as used in (4.20) for the hyperparam-

eters of the lj-fidelity model. Note that inferencing of data points at lj-fidelity requires
estimation of the covariance kernel at lj and lower fidelities (cf. (4.21)), while the lj-fidelity
covariance kernel is trained based on the all data points at lj and higher fidelities. We follow
the implementation of the inducing points proposed in [14], but utilize the likelihood ap-
proximation from [41] to extend the multi-fidelity kernel to the classification problem. The
overall GPC modeling is developed in the GPytorch framework with GPU acceleration [30].

4.4.2 Acquisition Function

We design the acquisition function considering both exploration to improve the surrogate
model, and exploitation to find the optimal solution. In exploration, we aim to maximize
the effectiveness of improving the surrogate model and select the most uncertain sample
near the decision boundary of the classifier [13]. Since the latent function mean approaches

98

zero at the decision boundary, this sample is found as the maximizer of

αexplore(x, l) = −|µl(x)|
σl(x)

Cl, (4.24)

where Cl reflects the cost of an evaluation at fidelity level l. We note that in practice the
feasible set is connected — feasibility of a time allocation implies feasibility of any time
allocation that is element-wise larger — so that exploration on the boundary suffices. In
exploitation, we utilize expected improvement with constraints (EIC) to quantify the ex-
pected effectiveness of a candidate data point based on the product of expected objective
improvement and the probability of feasibility [29]. We modify EIC for use in an experimen-
tal robotics application, where the cost of evaluation depends on the outcome, as attempting
infeasible experiments may pose a danger to the vehicle and its surroundings. We consider
not only the probability of success, but also the corresponding variance, as follows:

P̃l(y = 1|x) = Pl(µl(x)− βσl(x) ≥ 0|x), (4.25)

where β is a penalty on variance, and µl and σl are respectively the mean and standard devi-
ation of the posterior distribution P (f |x,D) obtained from (4.13). The resulting acquisition
function is given by

αexploit(x, l) =

{
αEI(x)P̃l(y = 1|x), if P̃l(y = 1|x) ≥ hl
0, otherwise

(4.26)

where hl is based on the cost of an infeasible evaluation. Since the objective function is
deterministic, so is the expected improvement, i.e., αEI(x) =

∑
i x̄i −

∑
i xi with x̄ the

current best solution.

Finally, we combine (4.24) and (4.26) to obtain

α(x, l) =

{
αexploit(x, l), if ∃x ∈ X s.t. αexploit(x, l) > 0

αexplore(x, l), otherwise
(4.27)

Note that exploration only occurs if exploitation is ineffective. We found that this greedy
approach works well in practice, as overly explorative searching leads to a large number of
infeasible evaluations.

In case of a discontinuous acquisition function like (4.27), Latin hypercube sampling
(LHS) is often used to generate candidate solutions of the aquisition function [121]. However,
we observe that this method may fail to generate an optimal solution because it does not
consider the correlation between adjacent time allocations. We address this by devising
a sampling-based algorithm that uses a smooth perturbation of the current best solution.
For this purpose, we extend the notion of goal-convergent exploration from [52]. This
method generates smooth trajectories by minimizing the expected sum of acceleration at
each collocation point. Instead of acceleration, we minimize the expected jerk. As time
allocation is inversely related to flight speed, this approximately minimizes the jerk of the
speed profile, and thereby the snap of the perturbation, which is favorable for maintaining
feasibility. The perturbation vector ε is found by solving the following semi-definite program:

99

minimize
Σ∈Rm×m

trace(A>AΣ)
(

= E[εA>Aε]
)

subject to ε ∼ N (0,Σ),

Σ � 0, Σii = γ,

(4.28)

where γ > 0 scales the variance of perturbations and A is the third-order finite differencing
matrix. Finally, the set of Nc candidate solutions is generated as X = {x̄� (1 + εi)}i=1,...,Nc
with εi ∼ N (0,Σ) and � the element-wise product. Candidates with negative elements are
rejected.

4.4.3 Initialization

Initial data points to build the surrogate model are generated around the trajectory found
by (4.8), which may differ between fidelity levels, as feasibility constraints differ. At fidelity
levels with low evaluation cost, data point generation is done using LHS. At fidelity levels
where this method imposes prohibitive evaluation cost, we use the fact that the initial
trajectory is on the feasibility boundary. As such, time allocations with the same ratio but
shorter total time are infeasible, while time allocations with the same ratio but larger total
time are feasible. This enables generation of data points without any additional evaluation
cost by scaling the initial trajectory.

The initial trajectory is also used for the normalization of data points. This is required
because feasibility constraints differ between the different levels of fidelity, leading to bias
in the dataset. Moreover, time allocations between trajectory segments may be at different
scales of magnitude, which may make the training process numerically unstable. To resolve
these issues, time allocation for each trajectory segment is scaled with the time allocation
of the corresponding segment in the initial trajectory at the same fidelity level.

4.4.4 Geometric Constraints

We consider two formulations to incorporate geometric constraints in the trajectory opti-
mization problem: waypoint constraints and polytope constraints. In many applications,
candidate trajectories are constrained to attain a pre-defined sequence of waypoints. By
using a piecewise polynomial trajectory representation, the optimization can be formulated
as an unconstrained quadratic program based on (4.4) and (4.2). In other scenarios, partic-
ularly when planning in obstacle-rich environments, waypoints may become an ineffective
method to avoid collisions. Convex polytopes can instead be used to constrain the trajec-
tory to the obstacle-free space without imposing waypoint restrictions. Each polynomial
trajectory segment is now constrained to a polytope, leading to the constrained quadratic
program (4.4) subject to (4.3). As described in Section 4.2, the function (4.6) that maps
time allocation and geometric constraints to the corresponding minimum-snap trajectory
can be formulated based on either waypoint constraints or polytope constraints. Hence, our
proposed algorithm for multi-fidelity Bayesian optimization can be applied to either case
without any modification.

In order to fully demonstrate the compatibility of our algorithm with polytope con-
straints, the remainder of this section details a procedure to construct such constraints. We
focus on planning in 2-D obstacle-rich environments, and use convex decomposition [56]
in combination with Dijkstra’s algorithm [17]. Major steps of the resulting algorithm to
generate the geometric constraints are shown in Fig. 4-3.

100

q1(w1)

q2(w2)

q3(w3)

q4(w4)

w1

w2

w3

w4

Figure 4-2: Polygon graph to convert free space into a simple polygon.

start
end

(a) Initial environment with
obstacles.

start
end

(b) Transform into a simple
polygon.

start
end

(c) Decompose free space
into polygons.

start
end

(d) Generate the face graph.

start
end

(e) Find the sequence of
polygons.

start
end

Initial trajectory
Final trajectory

(f) Apply multi-fidelity
optimization.

Figure 4-3: Algorithm to generate collision-free trajectories.

The free space of an environment, e.g., as shown in Fig. 4-3a, can be modeled as a
polygon with inner holes. However, its decomposition into a set of convex polygons would
be NP-hard [56]. Thus, we add bridges to transform the free space into a simple polygon,
i.e., a polygon without intersections or inner holes. To place these bridges, we model the
border of the environment and the obstacles as polygons q1, · · · , qn, and we generate a
complete graph with corresponding vertices w1, · · · , wn. Each edge in the graph is weighted
according to the minimum Euclidean distance between the corresponding obstacles. If an
edge is included in the minimum spanning tree, a bridge is placed on the shortest path
that connects the corresponding polygons. Since the bridges are added on the shortest line
between the polygons, they will not intersect polygon faces or other bridges. Figure 4-3b
shows the resulting simple polygon.

We obtain a convex decomposition of the resulting simple polygon using the method
from [56]. The pseudocode in Alg. 2 represents the procedure, and Fig. 4-3c shows the
resulting set of convex polygons. Given trajectory start and end positions, a connecting
sequence of polygons can be found by various methods. In some scenarios, such as drone
racing on a known track, the sequence of polygons can be selected manually or based on
a guiding trajectory. If this is not possible, one may find the shortest path from start

101

to end using a planning algorithm in geometrical space and select the polygon sequence
through which the resulting path passes. For our proposed algorithm, we first generate a
graph connecting the center point of each polygon and its faces, as shown in Fig. 4-3d.
The shortest path that connects the start point and end point can then be found efficiently
through combinatorial planning using Dijkstra’s algorithm [17]. Finally, the sequence of
polygons on the shortest path is selected to construct the geometric constraints, as shown
in Fig. 4-3e.

Algorithm 2: Convex polygonal decomposition

Input: A simple polygon P with vertices v1, . . . , vn
Output: Ed

1 Definition:
2 Notch vertex: vertex with a reflex interior angle
3 Visibility pair (vi, vj): set of vertices (vi, vj) such

that edge(vi, vj) does not intersect with other faces

4 Function Decomp(P):

5 Ed = ∅
6 num edges =∞
7 for Notch vertex vi do
8 for vj ∈ P where (vi, vj) is visibility pair do
9 Pi,j = subpolygon with vi, vi+1, · · · , vj

10 Pj,i = subpolygon with vj , vj+1, · · · , vi
11 Et = Decomp(Pi,j) ∪ Decomp(Pj,i)

12 if |Et| < num edges then
13 num edges = |Et|
14 |Ed| = Et ∪ {edge(vi, vj)}
15 end

16 end

17 end
18 return Ed

Let Qi = {pi,0,ni,0, · · · ,pi,di−1,ni,di−1} denote the i-th polygon, where pi,j and ni,j are
respectively the adjacent vertex and the normal vector of the j-th face, and di is the number
of faces. The corresponding polynomial trajectory segment is constrained to be within the
convex polygon by the following linear constraints:

Ai = [ni,0 · · · ni,di−1]> ,

bi =
[
n>i,0pi,0 · · · n>i,di−1pi,0

]>
,

Aip (t) ≤ bi, ∀t ∈
[∑i−1

j=1
xj ,
∑i

j=1
xj

]
.

(4.29)

For each polygonal cell, such a set of corresponding linear constraints is incorporated into
(4.4).

102

4.4.5 Levels of Fidelity

Evaluations at three different fidelity levels are used for quadrotor trajectory planning.
Low-fidelity evaluations are based on differential flatness of the quadrotor dynamics, which
enables us to transform a trajectory and its time derivatives from the output space, i.e.,
position and yaw angle with derivatives, to the state and control input space, i.e., position,
velocity, attitude, angular rate, and motor speeds [80]. The resulting reference control
input trajectory u(t) = ζ(p, t) would enable a hypothetical perfect quadcopter to track the
trajectory p. Feasibility of the control input values can be evaluated at relatively small
computational cost, and as such can serve as a cheap, cursory evaluation of trajectory
feasibility. The set of feasible trajectories at fidelity level l1 is defined as

P l1T =
{
p
∣∣∣ζ(p, t) ∈

[
u, ū

]4 ∀t ∈ [0, T]
}
, (4.30)

where u is the minimum and ū is the maximum motor speed.

Medium-fidelity evaluations are obtained using the open-source multicopter dynamics
and inertial measurement simulation from [35] with the trajectory tracking controller from
[125]. The feasible set is defined as

P l2T =
{
p
∣∣∣ ‖pr(t)− r(t)‖2 ≤ r̄ ∧ |pψ(t)− ψ(t)| ≤ ψ̄ ∀t ∈ [0, T]

}
, (4.31)

where r̄ is the maximum allowable Euclidean position tracking error, and ψ̄ is the maximum
allowable yaw tracking error. When planning in close proximity to obstacles, the vehicle
may collide with an obstacle, even when tracking the reference trajectory within the bounds
defined by (4.31). Therefore, we also exclude any trajectories that result in a collision from
the feasible set. At this fidelity level, stochastic measurement and actuation noise, motor
dynamics, and simplified aerodynamic effects are incorporated. We note that these factors
are typically unfavorable, leading to the reduction of the feasible set compared to low fidelity.
At the same time, the controller may be able to perform adequate tracking even if reference
control inputs are infeasible, so that neither feasible set is a subset of the other. In order to
account for stochastic effects, each evaluation consists of multiple simulations that all need
to succeed for a trajectory to be deemed feasible.

High-fidelity evaluations are obtained from real-world experiments using a quadcopter
and motion capture system. At this fidelity level, each evaluation incorporates dynamics
of the full system, including actuation and sensor systems, vehicle vibrations, unsteady
aerodynamics, battery performance, and estimation and control algorithms. This provides
a highly accurate assessment of feasibility, but comes at great cost as it involves actual flying
hardware and cannot be executed any faster than real-time. We use the same controller as in
simulation, and again perform multiple flights to account for stochastic effects. The feasible
set is identical to (4.31), and any trajectories resulting in a collision are again deemed
infeasible. The overall objective of the algorithm is to find the time-optimal trajectory,
subject to feasibility at the highest-fidelity model included.

4.5 Experimental Results

We present experimental results that demonstrate the operation and performance of our pro-
posed algorithm. First, we focus on a simple two-segment trajectory. Through visualization
of the corresponding two-dimensional solution space, insights in the algorithm operation,

103

particularly its acquisition function, are provided. Next, we present an extensive experi-
mental evaluation of the proposed algorithm in two scenarios. For the first scenario, we
apply the algorithm to obtain time-optimal trajectories based on a predetermined sequence
of waypoints through an environment without any obstacles. For the second scenario, we
define only start and end points and consider environments that include obstacles. We apply
the proposed algorithm including polygonal decomposition to find a time-optimal trajec-
tory that avoids the obstacles. In both scenarios, we evaluate the proposed algorithm in a
simulation environment, and in a hybrid environment including simulation and real-world
experiments.

4.5.1 Two-Segment Trajectory

In order to illustrate the operation of our proposed algorithm, we present results for the
simple two-segment trajectory shown in Fig. 4-4a. The yaw rate, velocity, acceleration,
and jerk are constrained to zero at the first waypoint. Results were obtained in the sim-
ulation environment, where we incorporate low-fidelity evaluations using reference control
input feasibility, and medium-fidelity evaluations using the multicopter simulation. For the
medium-fidelity evaluations, we set the maximum Euclidean position tracking error to 20
cm and the maximum yaw tracking error to 15 deg. To reflect the difference in evaluation
cost between evaluations, we set the parameters of the acquisition functions (4.24) and
(4.26) as Cl1 = 1 and hl1 = 0.1 corresponding to the low-fidelity evaluations, and Cl2 = 10
and hl2 = 0.4 corresponding to the medium-fidelity evaluations, and β = 3.0.

As shown in Fig. 4-4b, the low-fidelity dataset is initialized using LHS of 400 data
points, and the medium-fidelity dataset is initialized using 20 evenly scaled data points.
Given the low dimension of the two-segment time allocation, third-order finite differencing as
required by (4.28) cannot be applied. Instead, we resort to LHS for generation of candidate
solutions for the acquisition function. We run the algorithm 20 times for 50 iterations
using different random seeds. Each medium-fidelity evaluation along with preceding low-
fidelity evaluations is considered a single iteration, and the number of low-fidelity evaluations
per iteration is limited to 20. This limit is imposed to prevent the acquisition function
from selecting too many successive low-fidelity evaluations, which may otherwise occur at
iterations where the selected acquisition parameters do not behave well with the state of
the medium-fidelity surrogate model.

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

x1

x2

-1.0

-0.5

0.0

0.5

1.0

Al
tit

ud
e

[m
]

(a) Trajectory with way-
points.

0.3 5.7x1 [s]
0.1

1.8

x 2
 [s

]

low fidelity sample
high fidelity sample 0

1

fe
as

ib
ilit

y
(y

)

(b) Initial medium-fidelity feasi-
bility.

0.3 5.7x1 [s]
0.1

1.8

x 2
 [s

]

low fidelity sample
high fidelity sample
final solution 0

1

fe
as

ib
ilit

y
(y

)

(c) Final medium-fidelity feasi-
bility.

Figure 4-4: Waypoints and feasibility maps for two-segment trajectory optimization in the
simulation environment.

104

0 10 20 30 40 50
Iterations

0.980

0.985

0.990

0.995

1.000

Re
la

tiv
e

fli
gh

t t
im

e

Two-segment trajectory result

1.00

1.05

1.10

1.15

Re
la

tiv
e

sm
oo

th
ne

ss

Figure 4-5: Mean and standard deviation of relative trajectory time and smoothness for
two-segment trajectory, obtained over 20 random seeds in the simulation environment.

Figure 4-4b and Fig. 4-4c show respectively the initial and the final medium-fidelity fea-
sibility maps for one of the runs. Note that all medium-fidelity evaluations are in proximity
of the final solution, as this promising region was first found by low-fidelity evaluations. To
evaluate our algorithm, we compare the total trajectory time of the best solution at each
iteration with the trajectory time obtained by (4.8) using the same feasibility evaluation
constraints. Figure 4-5 shows a flight time improvement of approximately 2% compared to
the initial trajectory. Additionally, we compare the trajectory smoothness given by (4.5).
For this comparison, we scale the total trajectory time to the value obtained by (4.8), while
maintaining the allocation ratio found by our algorithm. Thereby, the comparison is based
solely on the difference in allocation ratio, and not affected by total trajectory time. Figure
4-5 shows that our algorithm selects time allocation ratios that result in increased snap
and yaw acceleration at the same total trajectory time. Despite this, the corresponding
trajectories are still feasible at total trajectory times smaller than the initial trajectories.
This shows that our algorithm is able to find an allocation ratio that compares favorably
to the one found by (4.7) and (4.8), and is thereby able to find feasible trajectories with
smaller total trajectory time. Indeed, we can conclude that plain snap minimization does
not result in the time-optimal trajectory. Our approach based on modeling of realistic fea-
sibility constraints converges to a quicker feasible trajectory with increased snap. While
the trajectory duration is only improved by a modest 2%, this does illustrate and validate
the rationale behind our proposed multi-fidelity trajectory optimization algorithm. In Sec-
tion 4.5.2 and Section 4.5.3, we show that larger improvements can be obtained for more
complicated multi-segment trajectories.

4.5.2 Waypoint Trajectories

Next, we apply our algorithm to the more complicated multi-segment trajectories shown in
Fig. 4-6. For each trajectory, yaw rate, velocity, acceleration, and jerk are constrained to
zero at the first and final waypoints. The trajectories range from 9 to 19 segments. Due
to the corresponding increase in dimensionality of the solution space, the minimum-jerk
perturbation given by (4.28) can now be used to generate the candidate solution set. The
scaling factor γ is set to 0.2.

We present results for all eight multi-segment trajectories using the simulation environ-
ment, which incorporates low-fidelity evaluations using reference control input feasibility
and medium-fidelity evaluations using the multicopter simulation. Additionally, we apply

105

-2 -1 0 1 2

-3
-2
-1
0
1
2
3

Trajectory 1

-0.4

-0.2

0.0

0.2

0.4

Al
tit

ud
e

[m
]

-2 -1 0 1 2

-1

0

1

Trajectory 2

-0.4

-0.2

0.0

0.2

0.4

Al
tit

ud
e

[m
]

-2 -1 0 1 2
-3
-2
-1
0
1
2
3

Trajectory 3

-1.0

-0.5

0.0

0.5

1.0

Al
tit

ud
e

[m
]

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
-3

-2

-1

0

1

2

3
Trajectory 7

-1.0

-0.5

0.0

0.5

1.0

Al
tit

ud
e

[m
]

-2 -1 0 1 2

-2

-1

0

1

2

Trajectory 4

-0.4

-0.2

0.0

0.2

0.4

Al
tit

ud
e

[m
]

-3 -2 -1 0 1 2 3

-3
-2
-1
0
1
2
3

Trajectory 5

-0.4

-0.2

0.0

0.2

0.4

Al
tit

ud
e

[m
]

-2 -1 0 1 2
-3

-2

-1

0

1

2

3
Trajectory 6

-0.4

-0.2

0.0

0.2

0.4

Al
tit

ud
e

[m
]

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3
Trajectory 8

-1.0

-0.5

0.0

0.5

1.0

Al
tit

ud
e

[m
]

Figure 4-6: Multi-segment trajectories with starting point and subsequent waypoints indi-
cated by green and red arrows, respectively.

our algorithm to a subset of three trajectories in the hybrid environment, which incorporates
medium-fidelity evaluations using the multicopter simulation and high-fidelity evaluations
using real-world flight experiments. We chose not to incorporate low-fidelity evaluations in
the hybrid environment, because their evaluation time is relatively very similar to medium-
fidelity evaluations when compared to the time of flight experiments. Consequently, they
provide less valuable data points at similar cost. In both environments, we set the pa-
rameters of the acquisition functions (4.24) and (4.26) as Clj = 1, Clj+1 = 10, hlj = 0.1,
hlj+1 = 0.4, and β = 3.0 where lj is the lowest fidelity in the environment. We set the
maximum Euclidean position tracking error to 20 cm and the maximum yaw tracking error
to 15 deg for all medium and high-fidelity evaluations.

For the experiments in the simulation environment, we initialize the surrogate model
using 1000 low-fidelity samples. The maximum amount of low-fidelity evaluations per iter-
ation is set to 50. The results in Fig. 4-7 show that the algorithm is able to significantly
reduce the trajectory time for each of the eight evaluated trajectories. The largest improve-
ment is obtained for Trajectory 3, where the flight time is reduced by 22% on average. The
optimized trajectory is feasible despite having almost four times larger snap and yaw ac-
celeration, which shows our algorithm’s capability to find faster feasible trajectories. This
is achieved by changing the time allocation ratio between trajectory segments, as shown
in Fig. 4-8. Figure 4-9 shows that the resulting trajectories have an increased speed on
most segments, but also slow down on some segments. Speed decreases often occur during
or just prior to tight turns and help maintain tracking feasibility as the speed over preced-
ing and subsequent segments is increased. This interaction between trajectory segments
is not captured by the low-fidelity control input evaluations, and demonstrates how using
multi-fidelity modeling towards a holistic approach to optimization results in faster feasible
trajectories.

In the hybrid environment, we optimize three of the waypoint trajectories shown in Fig.
4-6 based on medium-fidelity evaluations using the multicopter simulation and high-fidelity
evaluations using real-world quadrotor flight experiments. The medium-fidelity dataset
is initialized using LHS and the high-fidelity dataset using the scaling method. At each
optimization step, the acquisition function selects the type of evaluation (i.e., simulation
or real-world experiment) and updates the feasibility model based on the evaluation result.

106

0 10 20 30 40 50
Iterations

0.80

0.85

0.90

0.95

1.00

Re
la

tiv
e

fli
gh

t t
im

e

Simulation result of waypoint trajectories

Trajectory 1
Trajectory 2
Trajectory 3
Trajectory 4

Trajectory 5
Trajectory 6
Trajectory 7
Trajectory 8

0 10 20 30 40 50
Iterations

1.00

2.00

3.00

4.00

5.00

6.00

Re
la

tiv
e

sm
oo

th
ne

ss

Trajectory 1
Trajectory 2
Trajectory 3

Trajectory 4
Trajectory 5
Trajectory 6

Trajectory 7
Trajectory 8

Figure 4-7: Mean and standard deviation of relative trajectory time and smoothness for
multi-segment trajectories, obtained over 20 random seeds in the simulation environment.

-2 -1 0 1 2

-3
-2
-1
0
1
2
3

Trajectory 1

0.6

0.8

1.0

1.2

1.4

Re
la

tiv
e

tim
e

al
lo

ca
tio

n

-2 -1 0 1 2

-1

0

1

Trajectory 2

0.6

0.8

1.0

1.2

1.4

Re
la

tiv
e

tim
e

al
lo

ca
tio

n

-2 -1 0 1 2

-3
-2
-1
0
1
2
3

Trajectory 3

0.6

0.8

1.0

1.2

1.4

Re
la

tiv
e

tim
e

al
lo

ca
tio

n

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
-3

-2

-1

0

1

2

3
Trajectory 7

0.6

0.8

1.0

1.2

1.4

Re
la

tiv
e

tim
e

al
lo

ca
tio

n

-2 -1 0 1 2

-2

-1

0

1

2

Trajectory 4

0.6

0.8

1.0

1.2

1.4

Re
la

tiv
e

tim
e

al
lo

ca
tio

n

-3 -2 -1 0 1 2 3

-3
-2
-1
0
1
2
3

Trajectory 5

0.6

0.8

1.0

1.2

1.4

Re
la

tiv
e

tim
e

al
lo

ca
tio

n

-2 -1 0 1 2
-3

-2

-1

0

1

2

3
Trajectory 6

0.6

0.8

1.0

1.2

1.4

Re
la

tiv
e

tim
e

al
lo

ca
tio

n

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3
Trajectory 8

0.6

0.8

1.0

1.2

1.4

Re
la

tiv
e

tim
e

al
lo

ca
tio

n

Figure 4-8: Average relative time allocation of initial and optimized multi-segment trajec-
tories, obtained over 20 random seeds in the simulation environment.

107

0 3 6 9 12 15 18
Arc length [m]

0
1
2
3
4
5
6
7
8

No
rm

 o
f v

el
oc

ity
 [m

/s
]

Trajectory 1

0 2 4 6 8 10 12 14
Arc length [m]

0
1
2
3
4
5
6
7

No
rm

 o
f v

el
oc

ity
 [m

/s
]

Trajectory 2

0 3 6 9 12 15 18 21 24
Arc length [m]

0
1
2
3
4
5
6
7
8

No
rm

 o
f v

el
oc

ity
 [m

/s
]

Trajectory 3

0 7 14 21 28 35 42
Arc length [m]

0
2
4
6
8

10

No
rm

 o
f v

el
oc

ity
 [m

/s
]

Trajectory 7

0 3 6 9 12 15 18 21
Arc length [m]

0
1
2
3
4
5

No
rm

 o
f v

el
oc

ity
 [m

/s
]

Trajectory 4

0 6 12 18 24 30 36
Arc length [m]

0
1
2
3
4
5

No
rm

 o
f v

el
oc

ity
 [m

/s
]

Trajectory 5

0 3 6 9 12 15 18 21
Arc length [m]

0

1

2

3

4

5

No
rm

 o
f v

el
oc

ity
 [m

/s
]

Trajectory 6

0 9 18 27 36 45 54
Arc length [m]

0
1
2
3
4
5
6
7
8
9

10
11

No
rm

 o
f v

el
oc

ity
 [m

/s
]

Trajectory 8
Initial speed profile
Final speed profile

Figure 4-9: Speed profiles of initial and optimized multi-segment trajectories, obtained over
20 random seeds in the simulation environment. Shading indicates standard deviation.

The corresponding computation time varies between 5 and 10 seconds, depending on the
convergence time of the Gaussian process feasibility model. The time spent on computation
is relatively insignificant in the hybrid environment, since real-world flight experiments take
several minutes on average when including steps like battery replacement. Comparison of
Fig. 4-7 to Fig. 4-10 shows that the obtained flight time improvements are similar to those
from the simulation environment. However, Fig. 4-11 and Fig. 4-12 show time allocations
different from those obtained in simulation (cf. Fig. 4-8 and Fig. 4-9). In fact, the time
allocation ratios obtained in the simulation environment may not be feasible in flight with
the real-world vehicle, as it may behave differently than the medium-fidelity simulation.
This underlines the importance of incorporating real-world flight experiments in trajectory
optimization. At the same time, the inclusion of medium-fidelity simulation evaluations is
essential to find effective samples for high-fidelity evaluations, which enables the algorithm
to lower the number of required real-world flights. Without this feature, optimization of
the trajectories in Fig. 4-11 would be infeasible, as it amounts to search over a 9 or 10-
dimensional solution space.

The optimized trajectories in the hybrid environment show similar characteristics as
in the simulated environment. The time allocation is reduced for most segments, but also
increased for some in order to maintain feasibility. It can be seen that the vehicle decelerates
before the turns and accelerates through them. During the experiments, we observed that
entering turns with reduced speed stabilizes tracking on the remainder of the trajectory,
which can eventually reduce the overall flight time. We also found that our vehicle is
generally able to stabilize to static hover very quickly, allowing it to finish the trajectory
quite aggressively.

4.5.3 Polytope Trajectories

In this section, our proposed algorithm including convex decomposition is applied to the
planning of trajectories between start and end points in environments with obstacles, as
shown in Fig. 4-13. Velocity, acceleration, and jerk are constrained to zero at the start and
end points, and yaw and yaw rate are constrained to zero for the whole trajectory. We focus
on planning in environments with two-dimensional polygonal obstacles, and constrain the

108

0 10 20 30 40 50
Iterations

0.75

0.80

0.85

0.90

0.95

1.00

Re
la

tiv
e

fli
gh

t t
im

e

Real-world flight experiment result of waypoint trajectories

Trajectory 1
Trajectory 2
Trajectory 7

0 10 20 30 40 50
Iterations

1.00

2.00

3.00

4.00

Re
la

tiv
e

sm
oo

th
ne

ss Trajectory 1
Trajectory 2
Trajectory 7

Figure 4-10: Mean and standard deviation of relative trajectory time and smoothness for
multi-segment trajectories, obtained over 5 random seeds in the hybrid environment using
simulation and real-world flights.

height to be constant throughout each trajectory. The acquisition function hyperparameters
and the method for generating the initial candidate solution set are identical to those
described in Section 4.5.2.

We first verify the algorithm for constructing polytope constraints by comparing the
minimum-snap segment time allocations obtained from (4.7) for waypoint and polytope
constraints. The waypoint sequences are obtained using straight-line RRT*, as proposed
in [101]. For both types of constraints, the total trajectory times are scaled down according
to (4.8) based on the medium-fidelity simulation with the maximum Euclidean position
tracking error set to 20 cm and the maximum yaw tracking error set to 15 deg. The re-
sulting waypoint and polytope trajectories are shown in blue in Fig. 4-14 and Fig. 4-13,
respectively. The corresponding flight times are given in the first two columns of Table 4.1.
It can be seen that the polytope trajectories are all faster than the waypoint trajectories.
This is not surprising, as the waypoints represent stricter constraints on the trajectory ge-
ometry. As they are set without considering any vehicle model, they may inhibit finding
time-optimal trajectories when considering a dynamics model. Hence, polytope constraints
are particularly advantageous to our application. Additionally, we note that obstacle avoid-
ance is imposed throughout the reference trajectory by using polytope constraints, whereas
this is only the case at the actual waypoints for waypoint constraints. Consequently, it may
be necessary to add additional waypoints for collision avoidance, which further inhibits
trajectory optimization.

Our proposed algorithm for multi-fidelity Bayesian optimization is used to optimize the
time allocation ratio for each trajectory in Fig. 4-13 using the simulation environment,
which incorporates low-fidelity evaluations based on reference control input feasibility and

109

-2 -1 0 1 2

-2

0

2

Trajectory 1

-2 -1 0 1 2

-1

0

1

Trajectory 2

-6 -4 -2 0 2 4 6

-2

0

2

Trajectory 7

0.6

0.8

1.0

1.2

1.4

Re
la

tiv
e

tim
e

al
lo

ca
tio

n

Figure 4-11: Average relative time allocation of initial and optimized multi-segment tra-
jectories, obtained over 5 random seeds in the hybrid environment using simulation and
real-world flights.

Table 4.1: Comparison of flight times for trajectories obtained through minimum-snap
planning with waypoint and polytope constraints, and our proposed algorithm for multi-
fidelity Bayesian optimization (MFBO). Final column lists mean and standard deviation
obtained over 20 random seeds in the simulation environment.

Min-snap Min-snap MFBO (Ours)
(waypoint) (polytope)

Traj. 9 3.302 s 3.116 s 2.717 ± 0.0954 s
Traj. 10 4.490 s 3.743 s 3.538 ± 0.104 s
Traj. 11 5.637 s 5.110 s 4.704 ± 0.0706 s
Traj. 12 5.637 s 3.364 s 3.028 ± 0.0760 s

110

0 3 6 9 12 15 18
Arc length [m]

0
1
2
3
4
5
6
7

No
rm

 o
f v

el
oc

ity
 [m

/s
]

Trajectory 1

0 3 6 9 12 15
Arc length [m]

0
1
2
3
4
5
6

No
rm

 o
f v

el
oc

ity
 [m

/s
]

Trajectory 2

0 6 12 18 24 30 36 42
Arc length [m]

0

2

4

6

8

10

No
rm

 o
f v

el
oc

ity
 [m

/s
]

Trajectory 7

Initial
speed profile
Final
speed profile

Figure 4-12: Speed profiles of initial and optimized multi-segment trajectories, obtained
over 5 random seeds in the hybrid environment using simulation and real-world flights.
Shading indicates standard deviation.

medium-fidelity evaluations based on the multicopter simulation. By comparing the blue
and red lines, it can be seen that the leeway provided by the polytope constraints is exploited
to subtly adapt the trajectory geometry. The resulting decreased flight times are given in
the final column of Table 4.1. Figure 4-15 and Fig. 4-16 show the corresponding change
in speed profile and time allocation. Our proposed algorithm is able to reduce flight times
by adjusting the time allocation such that the reference trajectory is further away from
the obstacles. In practice, this means that its feasibility is less sensitive to tracking error.
Hence, the tracking error bounds can be exploited to a larger degree, before the trajectory
becomes infeasible due to an obstacle violation, resulting in faster trajectories.

In the hybrid environment, we optimize one of the polytope trajectories by incorporating
medium-fidelity evaluations based on the multicopter simulation and high-fidelity evalua-
tions based on real-world flight experiments. The real-world flights were performed in the
space shown in Fig. 4-17. Figure 4-18 shows that the trajectory geometry was significantly
adapted during the Bayesian optimization process. The resulting trajectory is further away
from the first two obstacles. Additionally, the speed is decreased in proximity of the first
obstacle, as can be seen in Fig. 4-19. Subsequent trajectory segments can now be performed
at significantly increased speed, resulting in an average flight time reduction of over 20%,
as shown in Fig. 4-20.

4.6 Summary

We presented an algorithm for the generation of dynamically-feasible time-optimal quadro-
tor trajectories based on multi-fidelity Bayesian optimization. The vehicle feasibility con-
straints are efficiently modeled by incorporating evaluations from analytical approximation,
numerical simulation, and real-world experiments in multi-fidelity Gaussian process classi-
fication. We conducted extensive evaluations through simulation and real-life experiments
for both waypoint-constrained and polytope-constrained trajectories. It was found that the
algorithm is able to generate feasible trajectories that are significantly faster than those ob-

111

10 5 0 5 10
4

2

0

2

4

start
end

Trajectory 9
Initial trajectory
Final trajectory

10 5 0 5 10
4

2

0

2

4

start

end

Trajectory 10
Initial trajectory
Final trajectory

10 5 0 5 10
4

2

0

2

4
start

end

Trajectory 11

Initial trajectory
Final trajectory

10 5 0 5 10
4

2

0

2

4

start

end

Trajectory 12

Initial trajectory
Final trajectory

Figure 4-13: Initial and average optimized polytope trajectories, obtained over 20 random
seeds in the simulation environment. Shading indicates standard deviation.

10 5 0 5 10
4

2

0

2

4

start
end

Trajectory 9

10 5 0 5 10
4

2

0

2

4

start

end

Trajectory 10

10 5 0 5 10
4

2

0

2

4
start

end

Trajectory 11

10 5 0 5 10
4

2

0

2

4

start

end

Trajectory 12

Figure 4-14: Trajectories based on waypoints from straight-line RRT*.

112

0 6 12
Arc length [m]

0
2
4
6
8

10
12

No
rm

 o
f v

el
oc

ity
 [m

/s
]

Initial speed profile
Final speed profile

start
end

0.6

0.8

1.0

1.2

1.4

Re
la

tiv
e

tim
e

al
lo

ca
tio

n

Trajectory 9

0 6 12 18 24
Arc length [m]

0
2
4
6
8

10
12
14

No
rm

 o
f v

el
oc

ity
 [m

/s
]

Initial speed profile
Final speed profile

start

end

0.6

0.8

1.0

1.2

1.4

Re
la

tiv
e

tim
e

al
lo

ca
tio

n

Trajectory 10

0 6 12 18 24 30
Arc length [m]

0
2
4
6
8

10
12

No
rm

 o
f v

el
oc

ity
 [m

/s
]

Initial speed profile
Final speed profile

start

end

0.6

0.8

1.0

1.2

1.4

Re
la

tiv
e

tim
e

al
lo

ca
tio

n

Trajectory 11

0 6 12 18
Arc length [m]

0

2

4

6

8

10

No
rm

 o
f v

el
oc

ity
 [m

/s
]

Initial speed profile
Final speed profile

start

end

0.6

0.8

1.0

1.2

1.4

Re
la

tiv
e

tim
e

al
lo

ca
tio

n

Trajectory 12

Figure 4-15: Speed profiles and average relative time allocation of initial and optimized
polytope trajectories, obtained over 20 random seeds in the simulation environment. Shad-
ing indicates standard deviation.

tained from existing minimum-snap trajectory optimization algorithms. This demonstrates
the capability of our algorithm to efficiently model the feasibility boundary and ultimately
plan faster trajectories by incorporating multi-fidelity data, including flight experiments.

113

0 10 20 30 40 50
Iterations

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Re
la

tiv
e

fli
gh

t t
im

e

Simulation result of polytope trajectories

Trajectory 9
Trajectory 10

Trajectory 11
Trajectory 12

0 10 20 30 40 50
Iterations

0.50

1.00

1.50

2.00

2.50

3.00

Re
la

tiv
e

sm
oo

th
ne

ss

Trajectory 9
Trajectory 10

Trajectory 11
Trajectory 12

Figure 4-16: Mean and standard deviation of relative trajectory time and smoothness for
polytope trajectories, obtained over 20 random seeds in the simulation environment.

Figure 4-17: Environment for the real-world flight experiments for Trajectory 9 (cf. Fig.
4-18).

114

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

4

2

0

2

4

start
end

Initial trajectory
Final trajectory

Figure 4-18: Initial and average optimized polytope trajectories, obtained over 5 random
seeds in the hybrid environment using simulation and real-world flights. Shading indicates
standard deviation.

0 6 12
Arc length [m]

0

2

4

6

8

10

No
rm

 o
f v

el
oc

ity
 [m

/s
]

Initial speed profile
Final speed profile

start
end

0.6

0.8

1.0

1.2

1.4

Re
la

tiv
e

tim
e

al
lo

ca
tio

n
Figure 4-19: Speed profiles and average relative time allocation of initial and optimized
polytope trajectory, obtained over 5 random seeds in the hybrid environment using simula-
tion and real-world flights. Shading indicates standard deviation.

0 10 20 30 40 50
Iterations

0.80

0.85

0.90

0.95

1.00

Re
la

tiv
e

fli
gh

t t
im

e

Real-world flight experiment result of polytope trajectory

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Re
la

tiv
e

sm
oo

th
ne

ss

Figure 4-20: Mean and standard deviation of relative trajectory time and smoothness for
polytope trajectory, obtained over 5 random seeds in the hybrid environment using simula-
tion and real-world flights.

115

116

Chapter 5

Aerobatic Trajectory Generation
for a VTOL Fixed-Wing Aircraft
Using Differential Flatness

In this chapter, we propose an algorithm for aerobatic trajectory generation in the flat out-
put space of a vertical take-off and landing (VTOL) fixed-wing aircraft. Existing methods
for fixed-wing aircraft trajectory generation are often based on simplified models that are
unsuitable for aerobatic trajectories. By exploiting differential flatness of the global 6DOF
tailsitter flying wing flight dynamics, our algorithm efficiently generates trajectories that
exploit the entire flight envelope, including uncoordinated and inverted flight conditions.
We present extensive analysis and experimental results to establish the suitability of the
flight dynamics model to determine the feasibility of candidate trajectories. Using our pro-
posed algorithm, we present reference trajectories and experimental results for six fast and
agile aerobatic maneuvers and a racing trajectory through a sequence of gates.

5.1 Introduction

The generation and tracking of fast and agile aircraft maneuvers have been topics of interest
in academic research. In recent years, we have seen increasingly impressive demonstrations
that keep pushing the boundary in terms of speed, acceleration etc. We observe that a
large majority of this work focuses on rotorcraft, in particular, multicopters (and to a
lesser degree unmanned helicopters) [31, 33, 81, 85]. Their simple design, lack of stability,
and typically high thrust-to-weight ratio make multicopters an ideal platform for research
into agile maneuvering. At the same time, it is well known that multicopters have several
disadvantages compared to small unmanned fixed-wing aircraft. Most notably, they are
often inefficient at increased speeds, leading to limited range and endurance.

Vertical take-off and landing (VTOL) fixed-wing aircraft can combine many of the ad-
vantages traditionally associated with either fixed-wing aircraft or rotorcraft, like multi-
copters. As described in Chapter 3, the unmanned tailsitter flying wing is capable of
efficient cruise flight where lift is produced by its wing, and at the same time possesses
many favorable qualities for fast and agile flight. The aircraft does not rely on any tilting
components but instead changes attitude in its entirety when transitioning between hover
and forward flight. Its relatively simple mechanical design—involving only a wing, two ro-
tors, and two flaps—enables lightweight construction, resulting in a high thrust-to-weight

117

ratio, especially when combined with powerful brushless motors. In addition, the absence
of a vertical tail surface reduces directional stability, which makes the aircraft more maneu-
verable and makes it easier to enter and maintain uncoordinated flight. The combination of
efficiency, speed, and agility enables aircraft with increased range and endurance to main-
tain the capability to quickly navigate cluttered environments. This versatility is relevant
to many real-world applications. For example, transitioning search and rescue aircraft can
cover large areas efficiently and closely inspect areas of particular interest. Similarly, de-
livery drones with an extended range can make time-critical deliveries without requiring a
dedicated landing area.

In this chapter, we present an algorithm for generating fast and agile trajectories for a
tailsitter flying wing aircraft. Our proposed algorithm is capable of generating aerobatics
maneuvers that exploit the entire flight envelope of the vehicle, including challenging con-
ditions, such as sideways knife edge flight and inverted flight. We make extensive use of the
differential flatness property of the tailsitter dynamics that was shown in Chapter 3.

Trajectory generation algorithms for fixed-wing aircraft often neglect the flight dynamics
and instead use kinematics models. An extension of Dubins paths can be used to find the
time-optimal trajectory with curvature constraints [12]. While accurate tracking of the
resulting paths is not dynamically feasible due to the instantaneous acceleration changes
needed to transition between straight lines and circular arcs, feedback control can be used
to maintain a tracking error that is acceptable in calm flight [90]. When considering fast
and agile flight, the aircraft dynamics and control input constraints must be considered in
trajectory generation so that the resulting trajectory is dynamically feasible. Trajectory
optimization subject to the 6DOF nonlinear flight dynamics model is computationally costly,
e.g., optimization of the 4.5 m knife edge maneuver presented by [3] takes 3–5 minutes
of computation time (using direct collocation with twelve states and five control inputs),
according to [8]. This can be partially addressed by offline computation, e.g., by using a
sampling-based planner with pre-computed maneuvers [63].

In the context of trajectory generation, differential flatness enables transformation of
trajectories from the flat output space to the state and control input space [24, 73]. This
property is widely applied towards computationally efficient trajectory generation for quad-
copters by initially generating the trajectory in the flat output space consisting of the
three-dimensional position and the yaw angle [80, 101]. Differential flatness of fixed-wing
aircraft dynamics has also been considered [73]. However, as far as we are aware, differential
flatness of a global dynamics model for a transitioning aircraft had not been shown prior to
our derivation in Chapter 3. The application of differential flatness towards trajectory gen-
eration for fixed-wing aircraft has mostly been limited to kinematics or simplified dynamics
models. Existing works consider path generation and tracking using a differentially flat
coordinated flight model [38] and aerobatics maneuvers using an aircraft kinematics model
that does not incorporate angle of attack or sideslip angle [36]. The algorithm presented
in [8] is based on the differentially flat coordinated flight model given in [38] and combines
Dubins paths with a transverse polynomial offset to obtain smooth trajectories.

Our method differs from existing flatness-based approaches for fixed-wing trajectory
generation, as it considers a global 6DOF flight dynamics model, including aerodynamics
equations. By using a global dynamics model, our method is able to generate aerobatics ma-
neuvers that exploit the entire flight envelope, enabling agile maneuvering through the stall
regime, sideways uncoordinated flight, inverted flight etc. We observe that the correspond-
ing tailsitter flatness transform that was derived in Section 3.3 resembles the well-known
quadcopter flat transform given in Section 2.3.3, in that snap and yaw acceleration roughly

118

correspond to the control inputs. Hence, reduction of snap and yaw acceleration may also
increase feasibility of tailsitter trajectories, similarly to minimum-snap trajectory generation
of quadcopter trajectories [80,101]. Potentially, this enables the application of efficient algo-
rithms for minimum-snap trajectory generation in the flat output space towards generation
of tailsitter aerobatics trajectories.

In this chapter, we show that minimum-snap trajectory generation is indeed suitable
for generation of fast and agile aerobatics trajectories for the tailsitter flying wing aircraft,
and we demonstrate tracking of these trajectories in flight experiments. The chapter con-
tains several contributions. Firstly, we propose an approach for trajectory generation for
a VTOL fixed-wing aircraft using differential flatness. As far as we are aware, this is the
first algorithm that uses differential flatness of a realistic flight dynamics model to gen-
erate fast and agile flight trajectories for a fixed-wing aircraft. Secondly, we analyze the
flatness transform derived in Chapter 3 to illustrate how differential flatness is used to gen-
erate dynamically consistent maneuvers through the transition region, without depending
on heuristics or predesigned references. Thirdly, we provide elaborate experimental results
that establish the suitability of the flat model dynamics to determine feasibility of candidate
trajectories. Fourthly, we present trajectories and experimental results for six well-known
aerobatics maneuvers, and we apply the algorithm for multi-fidelity Bayesian optimization
that was proposed in Chapter 4 to generate a time-optimal racing trajectory at the limit of
the vehicle’s capability.

The outline of this chapter is as follows. Section 5.2 presents the objective function
for minimization of snap and yaw acceleration. In Section 5.3 and Section 5.4, we analyze
the flatness transform to illustrate the flight dynamics of transition, and we present exper-
imental results to validate the capability of the flat dynamics model to predict feasibility
of candidate trajectories, respectively. Experimental results for aerobatics maneuvers and
for multi-fidelity Bayesian trajectory optimization are presented in Section 5.5 and Section
5.6, respectively.

5.2 Minimization of Snap and Yaw Acceleration

We exploit differential flatness of the global tailsitter dynamics to generate dynamically
feasible aerobatics trajectories without resorting to computationally expensive state-space
methods. Since dynamic feasibility (i.e., whether a trajectory can be accurately tracked
by the real vehicle) is determined in large part by the control input constraints, we aim
to find maneuvers for which accurate tracking requires only permissible control inputs.
The corresponding control input constraints cannot readily be enforced in the flat output
space, so we separate trajectory generation from feasibility checking. We first generate the
trajectory in the flat output space, and then check feasibility based on the corresponding
control input trajectory that is obtained through the flat transform.

In Section 3.3, we showed differential flatness of the tailsitter dynamics with the flat
output

σ(t) = [x(t)> ψ(t)]>, (5.1)

consisting of the vehicle position x and its yaw angle ψ. Upon examination of the derived
flat transform, we find that the required control inputs are directly related to the control
moment, which in turn is a function of the flat output and its derivatives up to snap and
yaw acceleration. The relation between the trajectory snap and yaw acceleration and the
required control inputs is reminiscent of the flat transform for the quadcopter dynamics,

119

making snap minimization a natural approach for trajectory generation in the flat output
space [80]. In practice, reducing the snap and yaw acceleration typically corresponds to
reducing the required control inputs, and thus to increasing the likelihood that the trajectory
is feasible.

Minimum-snap trajectory generation with waypoint constraints is formulated as follows:

minimize
σ,t

∫ T

0

∥∥∥∥d4x

dt4

∥∥∥∥2

+ µψ

(d2ψ

dt2

)2
dt

subject to σ
(∑i

j=1
tj

)
= σ̃i, i = 0, . . . , m,∑m

j=1
tj = T,

(5.2)

where µψ is a weighing parameter and T is the total trajectory time. The nonnegative vector
t represents the time allocation over the trajectory segments between the m+ 1 waypoints
σ̃ that must be attained in order. We utilize piecewise polynomial functions to describe
the trajectory, so that differentiability constraints can straightforwardly be enforced and
the optimization can be solved efficiently [101]. In order to obtain aggressive trajectories
that exploit the tailsitter’s capability to perform agile maneuvers, we first solve (5.2) with
an estimate for T based on the distance between waypoints, and then scale the resulting
time allocation t to obtain the quickest minimum-snap trajectory that is in the feasible set
given by

ΣT =
{
σ
∣∣∣u(t) ∈ U ∀t ∈ [0, T]

}
, (5.3)

where u is the control input trajectory corresponding to σ and U is the set of permissible
control inputs, i.e., a bounded set defined by the minimum and maximum allowed rotor
speeds and flap deflections.

As it is based on the widely used minimum-snap objective function, our algorithm can
be extended in many directions based on existing methods, e.g. joint minimization of snap
and total trajectory time [101], and various formulations for obstacle avoidance [15,28,127].
In Section 5.6, we combine the trajectory generation algorithm with the method presented
in Chapter 4 to optimize the time allocation t using experimental evaluations.

5.3 Flatness Transform

We use the differentially flat flight dynamics model presented in Chapter 3 to enable efficient
trajectory generation in the output space. Crucially, the flat transform (see Section 3.3)
provides a mapping from the flat output space to the state and control input space. Since it
is a bijective mapping, any agile maneuver or flight condition defined in the state space of
the 6DOF flight dynamics model can be obtained efficiently from a corresponding trajectory
in the flat output space. Consequently, trajectory generation in the flat output space by no
means limits the state-space aerobatics trajectories that can be generated.

In this section, we examine how the flatness transform provides natural solutions for
maneuvers through the transition region between hover and horizontal flight. We examine
straight-and-level flight conditions varying from hover to forward flight at the maximum
speed, forward and sideways transitions, and the transition from thrust vector tilting for
lateral acceleration in hover to banking for lateral acceleration in forward flight.

120

5.3.1 Straight-and-Level Flight

Before examining transition maneuvers, we consider straight-and-level flight without accel-

erations, i.e., v =
[
v 0 0

]>
and constant, and ψ = 0 and constant. For this symmetric

flight condition, we can simplify (3.21) and (3.22) to obtain the pitch angle with regard to
the zero-lift frame and the total thrust, as follows:

θ̄ = atan2
(
ηcDV v

2 +mg, cLV v
2 − ηmg

)
+ kπ, (5.4)

T =
1

cᾱ (1− cDT)

(
sθ̄ mg + cDV cθ̄ v2

)
, (5.5)

where

η =
sᾱ (cLT − 1)

cᾱ (1− cDT)
. (5.6)

The moment equilibrium reduces to

i>y mT + i>y mδ = cµT T + lδxi
>
z fαδ = 0, (5.7)

so that we can obtain the flap deflections as

δ

2
=

cµT T

lδx

(
cδLT cᾱ T + 2cδLV cθ̄ v2

) . (5.8)

Figure 5-1a shows the vehicle pitches down as the speed increases. As expected, the pitch
asymptotically approaches α0.

As described in Section 3.3, we utilize flatness of a simplified system where nonmini-
mum phase dynamics due to the direct force contribution of the flaps are neglected. When
combined with feedback control, this approach achieves good performance for slightly non-
minimum phase systems [39]. The method is simple and avoids the large and quickly
changing control actions that exact feedback linearization of the nonminimum phase sys-
tem may result in [129]. We note that potentially a flat output of the unsimplified dynamics
could be used to guarantee stable tracking [75]. However, this approach requires defining
the trajectory in terms of the center of oscillation instead of the vehicle center of mass,
leading to difficulty with the relatively complicated 6DOF tailsitter dynamics model.

The dashed lines in Fig. 5-1a do include the flap force contribution and were obtained
by using

η′ =
sᾱ (cLT − 1)− cµT

lδx

cᾱ (1− cDT)
(5.9)

instead of (5.6). It can be seen that this leads to increased pitch angle. In fact, we can
also observe this increase to θ > π/2 rad in hover by comparing the hover poses obtained
from the flat transform and from experiments at the start of the trajectories in the figures
in Section 5.5. More important from the perspective of trajectory planning is the effect on
the required control inputs. In Fig. 5-1b, we can see that the solid and dashed lines are
relatively close, meaning that the flap force does not have a significant impact in these flight
conditions.

The figure also shows that the required thrust decreases monotonously with increasing
speed, reflecting the efficiency of cruise flight. An initial decrease is expected due to the
reduction in lift-induced drag, but the thrust requirement should increase again at higher

121

0 5 10 15 20 25

0

0.5

1

1.5

(a) Pitch angle.

0 5 10 15 20 25

0

2

4

6

8

-0.3

-0.2

-0.1

0

(b) Control inputs.

Figure 5-1: Trim for straight-and-level flight without/with force due to flap deflection.

0 5 10 15 20 25

0

0.5

1

1.5

(a) Pitch angle.

0 5 10 15 20 25

0

2

4

6

8

-0.3

-0.2

-0.1

0

(b) Control inputs.

Figure 5-2: Trim for straight-and-level flight without/with parasitic drag.

speeds due to parasitic drag. This contribution is represented in the flight dynamics model
by the parameter cDV , which we set to zero (see Section 3.5). In order to visualize the
effect of parasitic drag, we also compute the pitch angle and control inputs using a realistic
value of cDV = 0.025 kg/m. The corresponding dashed curve in Fig. 5-2 shows an increase
in required thrust after the initial decrease, resembling a typical drag curve. Based on the
required thrust, we now obtain a maximum flight speed of 28 m/s.

The flying wing vehicle is also capable of straight-and-level knife edge flight, i.e., at
identical constant velocity but with ψ = ±π/2 rad. For this condition, the flatness transform
gives attitude and control inputs equal to hover, as the lateral aerodynamic force on the
tailless body without vertical surfaces is assumed negligible. This is a reasonably accurate
approximation of the physical behavior of the aircraft, as evidenced by the small φ angle
during the knife edge sections of the trajectory shown in Fig. 3-7. Moreover, in Section 5.4
we show that the vehicle is able to approach the theoretical maximum speed for knife edge
flight on a circular trajectory, which affirms that the lateral aerodynamic force is indeed
quite small, even at increased speeds.

5.3.2 Forward and Sideways Transitions

Figure 5-3 shows the vehicle attitude during transitions varying from forward flight to side-
ways flight at a constant acceleration of 3 m/s2, which is an aggressive transition maneuver
that can still be accurately tracked by our control algorithm, as shown in Section 3.6. In the
first column, which shows forward transition, we see decreasing pitch angle with increasing
speed. Compared to Fig. 5-1, the pitch angle is further reduced to attain the forward
acceleration required for transition. The bottom row of the figure corresponds to transition
to knife edge flight. As described in Section 5.3.1, the model does not include aerodynamic
forces in the bx and by directions. Hence the constant acceleration results in virtually con-

122

stant attitude throughout the transition. The remaining vehicle poses in the figure show
that differential flatness enables the generation of transition maneuvers in arbitrary direc-
tions. The corresponding state trajectories can be obtained from the trajectory reference
in real time through the analytical flatness transform, obviating the need for pre-planned
transition maneuvers.

5.3.3 Lateral Acceleration in Hover and Forward Flight

A major challenge in control design for transitioning vehicles is the difference between
flight phases when it comes to the mechanism for applying lateral acceleration. In hover
and knife edge flight, horizontal accelerations are mainly obtained by thrust vectoring, i.e.,
by changing the vehicle attitude to direct the rotor thrust in the appropriate horizontal
direction. Lateral acceleration is thus obtained by rotation around approximately bz. In
forward flight, lateral force is generated by tilting of the aerodynamic lift vector through
a rolling motion, chiefly around bx. This mechanism is referred to as banking. Existing
controllers may employ various strategies for the transition between rotation axes, e.g.,
gain scheduling [50] or pre-computed trim points [68].

The ZXY rotation sequence employed by the flatness transform (described in Section
3.3.1) results in a continuous transition trajectory that can be tracked without relying on
any gains or pre-computed trim points. In this rotation sequence, the angle φ determines

the orientation of the pitch axis. Simplifying its expression 3.17 for v =
[
v 0 0

]>
and

a =
[

0 a 0
]>

shows how this angle only depends on the ratio between the lateral and
vertical forces

φ = atan2 (a, g) . (5.10)

Hence, the resulting pitch plane of rotation is independent of the speed v, and it is oriented
such that in hover the pitch rotation θ ≈ π/2 results in sideways tilting of the thrust vector,
and in forward flight at higher speeds the small pitch angle θ results in banking. Both
conditions, as well as the intermediate, are depicted in Fig. 5-4. Note that the pitch plane
of rotation is identical for all three conditions.

5.4 Dynamic Feasibility

The differential flatness transform allows computation of the vehicle state and control inputs
based on the trajectory reference and its derivatives. Feasibility of the trajectory can then be
determined based on the obtained control inputs. In this section, we evaluate the suitability
of the differentially flat dynamics model presented in Section 3.3 to determine feasibility of
a candidate trajectory.

We consider two types of representative trajectories. A fast transition between static
hover at positions that are 6 m apart. This trajectory requires fast acceleration and de-
celeration of the vehicle and, at the same time, includes a yawing motion through the
transition regime. The second trajectory combines high-speed flight with high accelerations
on a circular trajectory with a yaw reference for coordinated, knife-edge, or rolling flight.

5.4.1 Hover-to-Hover Trajectory

The propulsion and aerodynamic forces acting on the tailsitter are highly dependent on
the yaw angle, so that the maximum feasible acceleration may be highly dependent on

123

F
ig

u
re

5
-3

:
A

ttitu
d

e
an

d
fl

a
p

d
efl

ection
s

for
variou

s
h

orizon
tal

velo
cities

an
d

acceleration
s.

A
ll

fi
gu

res
corresp

on
d

to
‖
a‖

=
3

m
/s

2
w

ith
a
ccelera

tio
n

an
d

velo
city

in
th

e
sam

e
d

irection
.

124

(a) v = 0 m/s. (b) v = 7.5 m/s. (c) v = 15 m/s.

Figure 5-4: Hover and forward flight with g/2 lateral acceleration. The pitch plane of rotation
is indicated by the pink disk.

Figure 5-5: 6 m hover-to-hover trajectory with ψstart = 0 rad, ψend = π rad. Trajectory
time is 3 s, interval between poses is 0.25 s.

125

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

(a) Using minimal yaw rotation.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

(b) Using opposite yaw rotation.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

(c) Minimum (a) and (b).

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Difference (a) and (c).

Figure 5-6: Minimum feasible time for 6 m hover-to-hover trajectory.

126

0 1 2 3 4 5

0

0.5

1

1.5

(a) Maximum position tracking error with and
without yaw rotation.

0 1 2 3 4 5

0

2

4

6

8

10

(b) Maximum yaw tracking error with and with-
out yaw rotation.

0 1 2 3 4 5

0

0.5

1

1.5

(c) Maximum position tracking error for opposite
yaw rotations.

0 1 2 3 4 5

0

2

4

6

8

10

(d) Maximum yaw tracking error for opposite
yaw rotations.

Figure 5-7: Tracking error in flight experiments 6 m hover-to-hover trajectory. Shaded area
indicates infeasibility according to differential flatness transform.

the yaw motion. To explore how this dependency is reflected in the dynamic feasibility of
trajectories, we compute the minimal feasible trajectory time for the 6 m hover-to-hover
trajectory with varying start and end yaw. An example trajectory is shown in Fig. 5-5.

Figure 5-6a shows results for the trajectory with yawing motion from ψstart to ψend using
the minimal rotation. It can be seen that the fastest times are achieved around ψstart =
ψend = 0 rad, which corresponds to forward coordinated flight. We observe discontinuity
along the yaw direction switching lines in Fig. 5-6a, which indicates that, in some cases, it
may be beneficial to yaw in the opposite direction. Results corresponding to the opposite
yaw direction are shown in Fig. 5-6b, and the minimum time between the two yaw directions
is shown in Fig. 5-6c. Slight discontinuities persist along the line ψstart = ψend, indicating
that, in some cases, it may be beneficial to yaw slightly more than a full rotation. In
practice, this advantage does not materialize because of the challenges posed by flight with
large angular velocities that are not captured by the dynamics model so that trajectories
with superfluous yaw rotations can be disregarded. The benefit of using the non-minimal
rotation over the minimal yaw rotation (cf. Fig. 5-6b and Fig. 5-6a) is shown in Fig. 5-6d.
For most yaw references the difference is small, meaning that the minimal rotation that is
obtained from optimization in the flat output space is (nearly) optimal. As expected, we
observe that the largest benefit occurs around |ψstart − ψend| = π rad, where the difference
between the magnitude of the two yaw rotations is smallest.

We conduct experiments for four different yaw references to compare the feasibility
boundary from Fig. 5-6 to the tracking error of the actual vehicle. Figure 5-7a and Fig.
5-7b show the tracking error for the hover-to-hover trajectory in coordinated flight without
yaw and for the same trajectory but with a π rad yaw rotation. Each point on the curves
corresponds to a flight experiment. As the trajectory time on the horizontal axis increases,
the maneuvers become less aggressive, and the tracking error decreases. The corresponding

127

(a) Coordinated. (b) Knife edge. (c) Rolling.

Figure 5-8: Circular trajectory with various yaw references.

024681012

0

0.05

0.1

0.15

(a) RMS position tracking error.

024681012

0

1

2

3

4

5

(b) RMS yaw tracking error.

Figure 5-9: Tracking error in flight experiments for circular trajectory with various yaw
references. Shaded area indicates infeasibility according to differential flatness transform.

feasibility boundaries predicted in Fig. 5-6 are indicated by the colored shading, i.e., the
shaded areas in the left of the figure correspond to infeasible trajectory times. While
only a single color is shown at a time, the infeasibility areas continue from their boundary
all the way to the vertical axis on the left. The tracking error increases at lower speeds
for the yawing trajectory than for the coordinated flight trajectory, as predicted by the
predicted feasibility boundaries. We note that these boundaries correspond to the most
aggressive trajectories that theoretically can be tracked by the given vehicle dynamics model,
neglecting practical factors such as modeling errors and imperfect state estimation and
control, so that it is expected that significant tracking error occurs before they are reached.
The coordinated flight trajectory at the feasibility boundary (2.0 s) attains a maximum
speed of 7.6 m/s within 1 s and attains a maximum acceleration of 3.1 g. It is tracked with
less than 1 m position tracking error.

To evaluate the effect of opposing yaw rotation direction, we performed flight experi-
ments for both rotation directions corresponding to the maximum of Fig. 5-6d (indicated
by the red diamond). Figure 5-7a and Fig. 5-7b show that—even for this yaw reference—
the effect of the rotation direction on the tracking error is negligible. We conjecture that,
in practice, it may be best to always use the minimum yaw rotation, which conveniently
corresponds to the minimization of the yaw derivatives of the flat output trajectory.

5.4.2 Circular Trajectory

In order to evaluate the tailsitter capability to maintain a large acceleration in high-speed
flight, we use the differential flatness transform to determine the maximum speed on a
circular trajectory with a 3 m radius. As shown in Fig. 5-8, we consider two trimmed

128

Velocity Acceleration Jerk Snap

ix iy iz ix iy iz ix iy iz ix iy iz
v 0 0 0 −Ωv 0 −Ω2v 0 0 0 Ω3v 0

(a) Position derivatives.

Coordinated Knife edge Rolling

ψ ψ̇ ψ̈ ψ ψ̇ ψ̈ ψ ψ̇ ψ̈
0 −Ω 0 π/2 −Ω 0 [0, 2π] Ω 0

(b) Yaw (derivatives).

Table 5.1: Flat output (derivatives) for various circular trajectories with Ω = v/r.

conditions, coordinated and knife edge flight, as well as a rolling/yawing motion where ψref

changes at the same rate but in the opposite direction as the circular motion. The position
and yaw derivatives for analytical evaluation of the feasibility are given in Table 5.1.

We perform experiments for all three circular trajectories at various speeds. The results
are shown in Fig. 5-9, where each point on the curves corresponds to a flight experiment.
The figure is oriented similarly to Fig. 5-7 with the most aggressive, i.e., the highest speed,
trajectories towards the left. The figure shows that the flat dynamics model predicts that
coordinated flight can be performed up to the highest speed, followed by knife edge flight,
and finally the rolling circle, which has a relatively low maximum speed. The position
tracking errors obtained from flight experiments agree with this prediction. Figure 5-9a
shows the expected increase in each position tracking error before the corresponding shaded
area is reached. In Fig. 5-9b, we see that the yaw tracking error in knife edge flight remains
very small, even at high speeds. The controller achieves this small yaw error because the
thrust vector is pointing inward the circle, almost horizontally, so that differential thrust
can be used to very effectively control yaw.

Since the aerodynamics model does not consider lateral forces on the tailless aircraft,
the speed in circular knife edge flight is mostly limited by the maximum thrust. In fact,
completely neglecting the aerodynamics and solving for the maximum speed as

vmax =

√
2cT ω̄2

r

m
(5.11)

with ω̄ the maximum motor speed, results in only a small overestimation when compared
to the maximum speed obtained from the flat transform (9.5 m/s versus 9.2 m/s). In flight
experiments, the vehicle achieves RMS position and yaw tracking errors of respectively 12.5
cm and 1.1 deg at 8 m/s. The fact that it approaches the theoretical maximum speed with
relatively small tracking error, affirms that the lateral aerodynamic force must indeed be
quite small. We also note that at least some control input margin must be maintained to
enable stabilization of the unstable knife edge condition, so that attaining the full theoretical
maximum speed is certainly impossible in practice.

Considering the comparitive results for both trajectories, we can conclude that the
differential flatness transform gives a useful qualitative prediction of the critical trajectory
time or speed where we can expect to observe a stark increase in tracking error on the real
vehicle.

129

(a) Reference with waypoints. Start and end
points are static hover, and arrows indicate ve-
locity direction constraints.

(b) Experiment.

Figure 5-10: Loop. Interval between poses is 0.7 s.

5.5 Aerobatic Maneuvers

In this section, we demonstrate how the flatness transform can generate aerobatic ma-
neuvers using relatively simple constraints, i.e., position and yaw waypoints, and—where
needed—derivative constraints at these waypoints. In particular, we show that planning in
the flat output space generates aerobatic maneuvers that exploit the full flight envelope of
the tailsitter aircraft, including post-stall and uncoordinated flight conditions. In contrast,
existing methods for fixed-wing planning in the output space rely on restrictive assumptions
such as coordinated flight and curvature limitations. State-space approaches that do con-
sider a more sophisticated dynamics model are often computationally expensive, preventing
their use in real-time applications.

In this section, we show that the generated reference trajectories for complex aerobatic
maneuvers are indeed realistic and can be tracked by the actual vehicle in flight experiments.
We are mainly interested in generating fast and agile trajectories and fly each trajectory in
proximity of the feasibility boundary, often approaching maximum motor speeds and flap
deflections. As observed in Section 5.4, this may lead to increased tracking errors. While
the tracking error in each aerobatic maneuver can be reduced by slowing down, we chose to
accept some tracking error in favor of increased aggressiveness. For experimental analysis
focusing on the tracking performance of the flight control algorithm, the reader is referred
to Section 3.6.

5.5.1 Loop

The loop trajectory shown in Fig. 5-10 consists of five waypoints (of which two coincide) on
a vertical circle with 1 m radius, and start and end points constrained to static hover. We
add tangential velocity constraints to enforce a circular path. As shown in Fig. 5-11, the

130

22.533.544.555.56

0

0.5

1

1.5

2

Figure 5-11: Maximum position tracking error in flight experiments for loop trajectory at
various speeds. Shaded area indicates infeasibility according to differential flatness trans-
form.

loop trajectory has several feasibility boundaries. When flown slowly (i.e., below 2.5 m/s),
the trajectory is feasible and flown in hover attitude with θ ≈ π/2 rad. When flown faster
(i.e., around 4.5 m/s), the vehicle performs a loop, making a full upward pitch rotation.
Intermediate speeds (i.e., around 3 m/s) are too slow to perform a loop and require the ve-
hicle to quickly pitch back down at the top of the circular segment, rendering the trajectory
infeasible due to flap deflection limits. The maximum position tracking error obtained from
flight experiments shows a stark increase in this region of infeasibility and also increases as
the infeasibility boundary at very high speed (i.e., 5.2 m/s) is approached. The trajectory
with a maximum speed of 3.8 m/s is shown in Fig. 5-10. The loop maneuver is successfully
performed in the flight experiment. The maximum position error of 71 cm is incurred when
exiting the final circular segment.

5.5.2 Knife Edge Flight

Figure 5-12 shows a straight trajectory between static hover start and end points. The
intermediate waypoints enforce a constant speed of 5 m/s and serve to transition between
flight attitudes through the yaw reference ψref . In the first of the three middle segments,
the vehicle transitions from coordinated to knife edge fight; in the second, it maintains
constant knife edge orientation; and in the third, it transitions back to coordinated flight.
Performing the transitions while maintaining straight flight at 5 m/s is challenging due to
the aerodynamic interactions between vehicle attitude, flap deflections, and rotor speeds.
As expected, the position tracking error in the flight experiment increases at the transitions.
Once knife edge orientation is reached, the position tracking error quickly reduces again.
The vehicle attitude during knife edge flight differs somewhat between the reference and
experiment trajectories. The increased pitch angle in the experiment compensates for the
neglected flap force contribution, and the small rotation towards the direction of travel
compensates for the nonzero lateral force. Finally, we note that the largest position tracking
error is incurred close to the end point. This error is mainly along the trajectory, and is
caused by delayed deceleration. The maximum path error, i.e., position error with regard
to the closest point on the trajectory line, occurs during the second transition and amounts
to 0.47 m.

131

(a) Reference with waypoints. Start and end points are static hover, and arrows indicate 5 m/s
velocity constraints.

(b) Experiment.

Figure 5-12: Coordinated-Knife Edge-Coordinated Flight. Interval between poses is 0.6 s.

5.5.3 Climbing Turn

We plan a climbing turn trajectory using four waypoints, as shown in Fig. 5-13. The start
and end points are constrained to static hover, and the two intermediate waypoints are
positioned with only a height difference. Using velocity constraints, we enforce straight
and coordinated flight at the intermediate waypoints. Hence, the entire 270 deg turn and
1 m climb occur between these two waypoints. During the turn, the reference trajectory
reaches about 90 banking angle, requires nearly the maximum motor speeds of 2500 rad/s,
and reaches a peak angular velocity of 11.3 rad/s (650 deg/s). A peak acceleration of 3 g is
required during the turn, while the acceleration and deceleration close to respectively the
start and end points reach up to 2 g. Consequently, the vehicle quickly completes the 11.3 m
trajectory in 3.1 s, despite starting and ending in static hover. In the flight experiment, we
observe that, during the turn, indeed a maximum acceleration of 3.4 g and a peak angular
velocity of 10.9 rad/s (625 deg/s) are attained. The motors briefly saturate, resulting in
some loss of altitude. Once the saturation is resolved, the vehicle quickly catches up and
reduces the position tracking error to below 20 cm before the turn is exited.

5.5.4 Immelmann Turn

The Immelmann turn is a well-known aerobatics and aerial combat maneuver that turns
the aircraft by performing a half loop followed by a half roll. We generate the trajectory
using static hover start and end points, and four intermediate waypoints to enforce constant
speed coordinated flight prior to the half loop and constant speed transition from inverted
to regular coordinated flight afterward. Similar to the loop and knife edge maneuvers
described above, we observe increased error when exiting the loop segment, increased error
during transition through uncoordinated flight orientation, and delayed deceleration towards

132

(a) Reference with waypoints. Start and end
points are static hover, and arrows indicate 5 m/s
velocity constraints.

(b) Experiment.

Figure 5-13: Climbing turn with 1 m height difference. Interval between poses is 0.5 s.

the end point. Comparison of the vehicle poses also leads to similar observations of small
differences: increased pitch to account for flap force and increased yaw in uncoordinated
flight to compensate for the nonzero lateral force. The Immelmann turn combines several
challenging aspects to exploit the expansive flight envelope of the tailsitter vehicle to a large
degree. The maneuver contains large accelerations, inverted flight, and a transition through
the entire yaw range, i.e., from ψref = 0 to ψref = ±π rad, at a peak angular rate of 10
rad/s (573 deg/s) while maintaining a linear speed of 6 m/s. Based on snap minimization
and differential flatness, the state-space trajectory and corresponding control inputs were
generated efficiently and based on only four waypoints. The flight experiment shows that
the resulting maneuver can be tracked with acceptable position error (< 0.6 m during the
maneuver itself) while approaching the feasibility boundary, as over 90% of the maximum
flap deflection is reached during the half roll.

5.5.5 Split S

The Split S maneuver, shown in Fig. 5-15, is similar to the Immelmann but performed in
opposite order. The maneuver starts the top leg in coordinated flight, then transitions to
inverted coordinated flight using the yaw reference ψref , and ends with a half loop which is
exited at the bottom in regular coordinated flight condition. The trajectory is generated
using similar waypoints as the Immelmann maneuver, albeit with opposite order and velocity
direction. The flight experiment is performed at a slightly lower speed than the Immelmann
turn (5 m/s versus 6 m/s), reducing the tracking error. The final part of the Split S
trajectory consists of a relatively long stretch of coordinated flight so that the vehicle starts
its deceleration from a more stable condition and incurs less position tracking error as it
approaches the end point. We observe a downward pitch motion during the half loop in
both the reference and experiment trajectories. By increasing the speed, we can obtain

133

(a) Reference with waypoints. Start and end points are static hover, and arrows indicate 6 m/s
velocity constraints.

(b) Experiment.

Figure 5-14: Immelmann turn. Interval between poses is 1.0 s.

134

(a) Reference with waypoints. Start and end points are static hover, and arrows indicate 5 m/s
velocity constraints.

(b) Experiment.

Figure 5-15: Split S maneuver. Interval between poses is 1.0 s.

a more traditional Split S maneuver with a positive pitch rate. However, this maneuver
requires a significantly larger flight volume.

5.5.6 Differential Thrust Turn

The differential thrust turn is an agile flight maneuver in which the vehicle transitions to
coordinated flight in the opposite direction without deviating from a straight-line trajectory.
Unlike more traditional turns, which involve turning on a circular trajectory segment, the
differential thrust turn is performed by rotating the vehicle itself using differential thrust
and flap deflections, and then applying a large collective thrust to accelerate in the opposite
direction. The behavior and performance of the trajectory-tracking flight control algorithm
during a differential thrust turn is analyzed in Section 3.6.6.

Figure 5-16 shows a differential thrust turn trajectory. The turn itself follows directly
from snap minimization based on two coinciding waypoints with opposite velocity and
yaw constraints. In the flight experiment, a peak angular rate of 8.6 rad/s (493 deg/s) is
reached during the turn. As shown in the figure, the differential flatness transform is able
to accurately predict the vehicle attitude at the midpoint of the turn.

135

(a) Reference with waypoints. Start and end points are static hover, and arrows indicate 8 m/s
velocity constraints.

(b) Experiment.

Figure 5-16: Differential thrust turn. Interval between poses is 1.5 s.

5.6 Multi-Fidelity Trajectory Optimization

In this section, we apply the algorithm for multi-fidelity Bayesian optimization that was
proposed in Chapter 4 to a tailsitter racing trajectory. The algorithm adjusts the time
allocation t over the trajectory segments based on data obtained from flight experiments.
In order to efficiently leverage flight experiments, we also incorporate feasibility evalua-
tions based on control inputs obtained from the flatness transform, i.e., using (5.3). These
evaluations serve as a low-fidelity data source and help select the most valuable candidate
trajectories to evaluate in flight experiments. In the high-fidelity experimental evaluations,
we classify a candidate trajectory as feasible if the maximum Euclidean position tracking
error is within 0.5 m, i.e.,

ΣT =
{
σref

∣∣∣‖xref(t)− x(t)‖ ≤ 0.5 m ∀t ∈ [0, T]
}
. (5.12)

We also constrain the trajectory to remain within the finite dimensions of the flight space.

The trajectory, shown in Fig. 5-17, consists of six waypoints. The start and end points
coincide and are constrained to static hover. The four intermediate waypoints are placed
at the center of four gates. Each of these waypoints is equipped with a directional velocity
constraint that enforces flight perpendicular to the gate window. Yaw is constrained so that
the first three gates are passed in coordinated flight. The final gate is smaller and must be
passed in knife edge flight.

Figure 5-17a shows the initial trajectory obtained from standard minimum-snap trajec-
tory optimization. The trajectory is on the feasibility boundary of the high-fidelity flight
experiment. Its largest position tracking error occurs right after the first gate when the
vehicle quickly decelerates. Note that we also observed relatively large tracking errors dur-

136

ing deceleration for the trajectories in Section 5.5. The optimized trajectory, shown in Fig.
5-17b, shows that the Bayesian optimization algorithm has addressed the critical point at
the first gate by reducing speed on the first trajectory segment. This enables an increase in
speed on the remaining segments so that less deceleration is needed and the tracking error
is reduced. Especially the final two segments are significantly faster. During these final
segments, the vehicle attitude is such that the large acceleration changes in ix direction are
attained by rotation around the bz axis. Attitude control around this axis relies mainly
on differential thrust of the powerful, high-bandwidth motors, so that high-snap maneuvers
can be tracked accurately. Figure 5-18 shows that the optimized trajectory has over ten
times more snap, confirming that the generated trajectory exploits the vehicle dynamics
to enable accurate tracking of more aggressive maneuvers. The figure also shows that the
optimized trajectory requires 19% less flight time, reducing the flight time from 13.7 s to
11.1 s despite traveling a significantly greater distance of 40.6 m versus 34.2 m.

5.7 Summary

In this chapter, we proposed a trajectory generation algorithm for the global 6DOF tailsitter
flying wing dynamics based on minimization of snap and yaw acceleration in the flat out-
put space. We presented theoretical and experimental analyses of the differential flatness
transform, showing how it provides natural solutions for challenging maneuvers through
the transition regime and gives a qualitative prediction of the critical trajectory time or
speed where a stark increase in tracking error can be expected on the real vehicle. Using
our proposed algorithm, we presented reference trajectories and experimental results for six
fast and agile aerobatic maneuvers. Finally, we showed that the framework for multi-fidelity
Bayesian trajectory optimization proposed in Chapter 4 can also be leveraged effectively
to incorporate experimental evaluations towards trajectory optimization for the tailsitter
vehicle.

137

(a) Initial trajectory obtained from minimum-snap trajectory generation. Interval between poses is
2.3 s.

(b) Final trajectory obtained from multi-fidelity Bayesian optimization. Interval between poses is
1.9 s.

Figure 5-17: Multi-fidelity Bayesian optimization of trajectory through gates. Start and
end points are static hover, and arrows indicate velocity direction constraints.

138

0 5 10 15 20 25 30 35 40
Iterations

0.80

0.85

0.90

0.95

1.00

Re
la

tiv
e

fli
gh

t t
im

e

0 5 10 15 20 25 30 35 40
Iterations

2

4

6

8

10

Re
la

tiv
e

sm
oo

th
ne

ss

Figure 5-18: Relative trajectory time and smoothness for trajectory through gates.

139

140

Chapter 6

Conclusions

6.1 Summary of Contributions

In this section, we summarize our contributions by revisiting the research questions posed
in Section 1.2.

1. How can we find time-optimal trajectories on the boundary of the feasibility set?

In Chapter 4, we presented an algorithm for trajectory generation at the true dynamic
feasibility boundary, i.e., fully exploiting the capabilities of the actual vehicle. The algo-
rithm, based on multi-fidelity Bayesian optimization, combines analytical, numerical, and
experimental evaluations to efficiently optimize the trajectory using a limited number flight
experiments. As far as we are aware, this is the first trajectory generation algorithm that
explicitly uses experimental evaluations to push the boundary of fast and agile flight.

2. How can we address the complex dynamics of fast and agile flight without relying on
extensive flight dynamics modeling?

In Chapter 2 and Chapter 3, we showed that robust control based on incremental nonlin-
ear dynamic inversion enables accurate tracking of fast and agile trajectories without relying
on extensive flight dynamics modeling. Our proposed control designs for quadcopter and
tailsitter flying wing aircraft rely only on local accuracy of the dynamics model, making
them robust against modeling errors and external disturbances. Despite not incorporating
any vehicle aerodynamics model, the proposed incremental quadcopter controller outper-
forms nonincremental methods that include vehicle-specific aerodynamics parameters.

3. How can we generate and track fast and agile maneuvers that exploit the entire flight
envelope of a VTOL fixed-wing aircraft?

In Chapter 3, we showed differential flatness of the flying wing tailsitter global nonlinear
6DOF flight dynamics with aerodynamics equations. We utilized the corresponding flatness
transform to derive a feedforward angular velocity input that enables our proposed control
algorithm to attain accurate tracking of agile maneuvers. In Chapter 5, we showed that the
flatness transform enables trajectory generation and tracking of aerobatics maneuvers. As
far as we are aware, this is the first time differential flatness of a global transitioning aircraft
dynamics model has been shown. Our trajectory generation and tracking algorithms for
the tailsitter flying wing are also unique in the sense that they are capable of exploiting
the entire flight envelope, including post-stall, uncoordinated, and other challenging flight
conditions.

141

6.2 Recommendations for Future Work

This section provides various avenues for future work.

6.2.1 Autonomous Flight

Our experimental results throughout this thesis are limited to the indoor motion capture
facility. It would be of interest to evaluate our flight control algorithms in outdoor flights.
Removing space constraints may enable flight at much higher speed and acceleration, so
that the proposed controllers can be evaluated over a larger portion of the flight envelope,
potentially up to the maximum airspeed. For the tailsitter, flight at increased airspeed
also reduces the angle of attack, fully transitioning to steady forward flight, which is not
possible in the constrained indoor flight space. The INDI control architecture may need to
be extended to include wind compensation by accounting for a difference in the world-fixed
velocity and the local freestream velocity, e.g., using the method proposed in [94].

Flight experiments outside the motion capture space require an alternative means of
state estimation, such as a coupled satellite and inertial navigation system. A potentially
more interesting future study would be to employ our proposed control algorithms on an
autonomous vehicle that uses on-board sensors to enable fully autonomous fast and agile
flight. In initial experiments, we have successfully flown our proposed quadcopter controller
with visual-inertial state estimation using computer-generated camera images [35,107]. Fu-
ture work may focus on elaborate autonomous flight experiments at high speeds and in
various environments, potentially using real camera imagery.

6.2.2 Incremental Control

A practical requirement of INDI is the estimation or measurement of the vehicle angular
acceleration. Implementations typically rely on differentiation and low-pass filtering of the
angular rate measurements obtained from the IMU, but more sophisticated methods exist,
e.g., predictive filtering [111] or using dedicated angular accelerometer hardware [55]. Since
large and fast-changing angular accelerations are often necessary during agile maneuvering,
research into measurement and estimation methods that reduce phase lag and transport
delay may result in improved trajectory tracking performance.

The robustness of incremental control against unmodeled external disturbances may
also be applied towards flight in tight formations. When aircraft fly close to each other,
significant aerodynamic interactions may occur. Conventional control methods may not be
able to account for the resulting forces and moments, leading to decreased performance and
risk of collisions. In preliminary tests, we found that INDI control significantly improves
hover stability in ground effect for both the quadcopter and flying wing aircraft, suggesting
that it may also provide robustness against wake effects from other aircraft.

6.2.3 Differential Flatness

The proposed trajectory-tracking control methods for quadcopter and tailsitter aircraft are
based on a similar architecture, leveraging INDI and flatness. Potentially, this architecture
could also be used to develop robust controllers for tracking fast and agile maneuvers on
other systems, such as conventional aircraft configurations or other mechanical systems that
have flat dynamics (see, e.g., [87] for a catalog of flat systems).

142

As described in Chapter 2, differential flatness enables a modification of INDI control
that avoids any linearization of the dynamics model. Additional insights into the advantages
of this modification may be obtained from further analysis and rigorous comparison to
conventional INDI on various flat systems.

6.2.4 Trajectory Generation

We note that our framework for multi-fidelity Bayesian trajectory optimization is agnostic to
the actual trajectory generation. In principle, the only requirement is the existence of a map
from a finite-dimensional parameter space to the function space of candidate trajectories. In
Chapter 4, we use minimum-snap trajectory generation because it represents a widely-used
baseline to improve upon and because the aforementioned map is conveniently provided in
terms of the time allocation vector (i.e., as (4.6)). However, a different trajectory generation
algorithm that is not constrained to polynomials may ultimately result in faster and more
agile trajectories. For example, it may be possible to use a general-purpose optimal control
solver, such as [92], and use Bayesian optimization to incorporate real-world experiments,
e.g., in order to optimize the cost function by varying the input cost between trajectory
segments.

Our current framework for Bayesian trajectory optimization considers a given set of
fixed waypoints or obstacles and thus must be retrained using new flight experiments for a
different set of trajectory constraints. Future work could focus on a more general applica-
tion of multi-fidelity Bayesian optimization. For example, an extensive set of experiments
on various trajectories and at multiple fidelities could be performed to learn a more general
transformation between surrogate models at different fidelities. Next, this general trans-
formation could be used to estimate feasibility constraints of the real vehicle on different
trajectories using only low-fidelity evaluations, e.g., using only simulation. We note that
learning such a general transformation may be challenging, and several obstacles must be re-
solved, e.g., trajectories with a different number of waypoints may originate from parameter
spaces with different dimensionality.

143

144

Bibliography

[1] John D. Anderson. Aircraft performance and design. WCB/McGraw-Hill, Boston,
1999.

[2] Barton Bacon and Aaron Ostroff. Reconfigurable flight control using nonlinear dy-
namic inversion with a special accelerometer implementation. In AIAA Guidance,
Navigation, and Control Conference and Exhibit, pages 4565–4579, 2000.

[3] Andrew J Barry, Tim Jenks, Anirudha Majumdar, Huai-Ti Lin, Ivo G Ros, Andrew A
Biewener, and Russ Tedrake. Flying between obstacles with an autonomous knife-edge
maneuver. In IEEE International Conference on Robotics and Automation (ICRA),
pages 2559–2559, 2014.

[4] Jacson MO Barth, Jean-Philippe Condomines, Murat Bronz, Jean-Marc Moschetta,
Cédric Join, and Michel Fliess. Model-free control algorithms for micro air vehicles
with transitioning flight capabilities. International Journal of Micro Air Vehicles,
12:1756829320914264, 2020.

[5] Felix Berkenkamp, Angela P. Schoellig, and Andreas Krause. Safe controller opti-
mization for quadrotors with Gaussian processes. In IEEE International Conference
on Robotics and Automation (ICRA), pages 491–496, 2016.

[6] Stefan Bieniawski, David Halaas, and John Vian. Micro-aerial vehicle flight in turbu-
lent environments: Use of an indoor flight facility for rapid design and evaluation. In
AIAA Guidance, Navigation and Control Conference and Exhibit, pages 6512–6522,
2008.

[7] Murat Bronz, Ezra Tal, Federico Favalli, and Sertac Karaman. Mission-oriented addi-
tive manufacturing of modular mini-UAVs. In AIAA Scitech 2020 Forum, page 0064,
2020.

[8] Adam Bry, Charles Richter, Abraham Bachrach, and Nicholas Roy. Aggressive flight
of fixed-wing and quadrotor aircraft in dense indoor environments. The International
Journal of Robotics Research, 34(7):969–1002, 2015.

[9] Daniel J Bugajski and Dale F Enns. Nonlinear control law with application to high
angle-of-attack flight. AIAA Journal of Guidance, Control, and Dynamics, 15(3):761–
767, 1992.

[10] Michael Burri, Janosch Nikolic, Helen Oleynikova, Markus W Achtelik, and Roland
Siegwart. Maximum likelihood parameter identification for MAVs. In IEEE
International Conference on Robotics and Automation (ICRA), pages 4297–4303,
2016.

145

[11] Romain Chiappinelli and Meyer Nahon. Modeling and control of a tailsitter UAV. In
International Conference on Unmanned Aircraft Systems (ICUAS), pages 400–409,
2018.

[12] Hamidreza Chitsaz and Steven M LaValle. Time-optimal paths for a Dubins airplane.
In IEEE Conference on Decision and Control (CDC), pages 2379–2384, 2007.

[13] Francisco Sahli Costabal, Paris Perdikaris, Ellen Kuhl, and Daniel E. Hurtado. Multi-
fidelity classification using Gaussian processes: Accelerating the prediction of large-
scale computational models. arXiv preprint arXiv:1905.03406, 2019.

[14] Kurt Cutajar, Mark Pullin, Andreas Damianou, Neil Lawrence, and Javier González.
Deep Gaussian processes for multi-fidelity modeling. arXiv preprint arXiv:1903.07320,
2019.

[15] Robin Deits and Russ Tedrake. Efficient mixed-integer planning for UAVs in clut-
tered environments. In IEEE International Conference on Robotics and Automation
(ICRA), pages 42–49, 2015.

[16] Gabriele Di Francesco and Massimiliano Mattei. Modeling and incremental nonlinear
dynamic inversion control of a novel unmanned tiltrotor. AIAA Journal of Aircraft,
53(1):73–86, 2015.

[17] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

[18] Christoph Dribusch, Samy Missoum, and Philip Beran. A multifidelity approach
for the construction of explicit decision boundaries: Application to aeroelasticity.
Structural and Multidisciplinary Optimization, 42(5):693–705, 2010.

[19] Guillaume Ducard and Raffaello D’Andrea. Autonomous quadrotor flight using
a vision system and accommodating frames misalignment. In IEEE International
Symposium on Industrial Embedded Systems (SIES), pages 261–264, 2009.

[20] Thomas Engelhardt, Thomas Konrad, Björn Schäfer, and Dirk Abel. Flatness-based
control for a quadrotor camera helicopter using model predictive control trajectory
generation. In Mediterranean Conference on Control and Automation (MED), pages
852–859, 2016.

[21] Dale F Enns, Daniel J Bugajski, Russ Hendrick, and Gunter Stein. Dynamic inversion:
An evolving methodology for flight control design. International Journal of Control,
59(1):71–91, 1994.

[22] Matthias Faessler, Antonio Franchi, and Davide Scaramuzza. Differential flatness of
quadrotor dynamics subject to rotor drag for accurate tracking of high-speed trajec-
tories. IEEE Robotics and Automation Letters, 3(2):620–626, 2018.

[23] Jeff Ferrin, Robert Leishman, Randy Beard, and Tim McLain. Differential flatness
based control of a rotorcraft for aggressive maneuvers. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2688–2693, 2011.

[24] Michel Fliess, Jean Lévine, Philippe Martin, and Pierre Rouchon. Sur les systèmes
non linéaires différentiellement plats. CR Acad. Sci. Paris, pages 619–624, 1992.

146

[25] Michel Fliess, Jean Lévine, Philippe Martin, and Pierre Rouchon. Linéarisation
par bouclage dynamique et transformations de lie-bäcklund. Comptes rendus de
l’Académie des sciences. Série 1, Mathématique, 317(10):981–986, 1993.

[26] Michel Fliess, Jean Lévine, Philippe Martin, and Pierre Rouchon. Flatness and defect
of non-linear systems: Introductory theory and examples. International Journal of
Control, 61(6):1327–1361, 1995.

[27] Emilio Frazzoli, Munther A Dahleh, and Eric Feron. Trajectory tracking control design
for autonomous helicopters using a backstepping algorithm. In American Control
Conference (ACC), pages 4102–4107, 2000.

[28] Fei Gao, William Wu, Yi Lin, and Shaojie Shen. Online safe trajectory generation
for quadrotors using fast marching method and bernstein basis polynomial. In IEEE
International Conference on Robotics and Automation (ICRA), pages 344–351, 2018.

[29] Jacob R. Gardner, Matt J. Kusner, Zhixiang Eddie Xu, Kilian Q. Weinberger,
and John P. Cunningham. Bayesian optimization with inequality constraints. In
International Conference on Machine Learning (ICML), pages 937–945, 2014.

[30] Jacob R. Gardner, Geoff Pleiss, David Bindel, Kilian Q. Weinberger, and An-
drew Gordon Wilson. GPyTorch: Blackbox matrix-matrix Gaussian process inference
with GPU acceleration. In Conference on Neural Information Processing Systems
(NeurIPS), pages 7576–7586, 2018.

[31] Vladislav Gavrilets, Emilio Frazzoli, Bernard Mettler, Michael Piedmonte, and Eric
Feron. Aggressive maneuvering of small autonomous helicopters: A human-centered
approach. The International Journal of Robotics Research, 20(10):795–807, 2001.

[32] Michael Adam Gelbart. Constrained Bayesian optimization and applications. PhD
thesis, Harvard University, 2015.

[33] Marco B Gerig. Modeling, guidance, and control of aerobatic maneuvers of an
autonomous helicopter. PhD thesis, ETH Zurich, 2008.

[34] H. Glauert. The Elements of Aerofoil and Airscrew Theory. Cambridge Science
Classics. Cambridge University Press, 1983.

[35] Winter Guerra, Ezra Tal, Varun Murali, Gilhyun Ryou, and Sertac Karaman. Flight-
Goggles: Photorealistic sensor simulation for perception-driven robotics using pho-
togrammetry and virtual reality. arXiv preprint arXiv:1905.11377, 2019.

[36] James Hall and Timothy McLain. Aerobatic maneuvering of miniature air vehicles
using attitude trajectories. In AIAA Guidance, Navigation and Control Conference
and Exhibit, page 7257, 2008.

[37] Tarek Hamel, Robert Mahony, Rogelio Lozano, and James Ostrowski. Dynamic mod-
elling and configuration stabilization for an X4-flyer. In 15th IFAC World Congress,
pages 217–222, 2002.

[38] John Hauser and Rick Hindman. Aggressive flight maneuvers. In IEEE Conference
on Decision and Control (CDC), pages 4186–4191, 1997.

147

[39] John Hauser, Shankar Sastry, and George Meyer. Nonlinear control design for
slightly non-minimum phase systems: Application to V/STOL aircraft. Automatica,
28(4):665–679, 1992.

[40] James Hensman, Nicolo Fusi, and Neil D. Lawrence. Gaussian processes for big data.
In Conference on Uncertainty in Artificial Intelligence, 2013.

[41] James Hensman, Alexander Matthews, and Zoubin Ghahramani. Scalable variational
Gaussian process classification. In International Conference on Artificial Intelligence
and Statistics, pages 351–360, 2015.

[42] José Miguel Hernández-Lobato, Michael A Gelbart, Matthew W Hoffman, Ryan P
Adams, and Zoubin Ghahramani. Predictive entropy search for Bayesian optimization
with unknown constraints. In International Conference on Machine Learning (ICML),
pages 1699–1707, 2015.

[43] José Miguel Hernández-Lobato, Matthew W. Hoffman, and Zoubin Ghahramani. Pre-
dictive entropy search for efficient global optimization of black-box functions. In
Conference on Neural Information Processing Systems (NeurIPS), pages 918–926,
2014.

[44] Gabe Hoffmann, Dev Gorur Rajnarayan, Steven L Waslander, David Dostal,
Jung Soon Jang, and Claire J Tomlin. The Stanford testbed of autonomous rotor-
craft for multi agent control (STARMAC). In Digital Avionics Systems Conference
(DASC), pages 12.E.4.1–10, 2004.

[45] Gabriel Hoffmann, Haomiao Huang, Steven Waslander, and Claire Tomlin. Quadrotor
helicopter flight dynamics and control: Theory and experiment. In AIAA Guidance,
Navigation and Control Conference and Exhibit, pages 6461–6480, 2007.

[46] Jonathan P How, Brett Behihke, Adrian Frank, Daniel Dale, and John Vian. Real-
time indoor autonomous vehicle test environment. IEEE Control Systems, 28(2):51–
64, 2008.

[47] Deng Huang, Theodore T. Allen, William I. Notz, and R. Allen Miller. Sequential krig-
ing optimization using multiple-fidelity evaluations. Structural and Multidisciplinary
Optimization, 32(5):369–382, 2006.

[48] Haomiao Huang, Gabriel M Hoffmann, Steven L Waslander, and Claire J Tomlin.
Aerodynamics and control of autonomous quadrotor helicopters in aggressive maneu-
vering. In IEEE International Conference on Robotics and Automation (ICRA), pages
3277–3282, 2009.

[49] Alberto Isidori. Nonlinear control systems. Springer, New York, 1995.

[50] Yeunduk Jung and David Hyunchul Shim. Development and application of controller
for transition flight of tail-sitter UAV. Journal of Intelligent & Robotic Systems,
65(1):137–152, 2012.

[51] Jean-Marie Kai, Guillaume Allibert, Minh-Duc Hua, and Tarek Hamel. Nonlinear
feedback control of quadrotors exploiting first-order drag effects. In 20th IFAC World
Congress, pages 8189–8195, 2017.

148

[52] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Ste-
fan Schaal. STOMP: Stochastic trajectory optimization for motion planning. In
IEEE International Conference on Robotics and Automation (ICRA), pages 4569–
4574, 2011.

[53] Kirthevasan Kandasamy, Gautam Dasarathy, Junier B. Oliva, Jeff Schneider, and
Barnabas Poczos. Multi-fidelity Gaussian process bandit optimisation. arXiv preprint
arXiv:1603.06288v4, 2016.

[54] Yijie Ke, Kangli Wang, and Ben M Chen. Design and implementation of a hybrid UAV
with model-based flight capabilities. IEEE/ASME Transactions on Mechatronics,
23(3):1114–1125, 2018.

[55] Twan Keijzer, Gertjan Looye, Q Ping Chu, and Erik-Jan Van Kampen. Design and
flight testing of incremental backstepping based control laws with angular accelerom-
eter feedback. In AIAA Scitech 2019 Forum, page 0129, 2019.

[56] J Mark Keil. Decomposing a polygon into simpler components. SIAM Journal on
Computing, 14(4):799–817, 1985.

[57] Marc C. Kennedy and Anthony O’Hagan. Predicting the output from a complex
computer code when fast approximations are available. Biometrika, 87(1):1–13, 2000.

[58] TKJ Koo and SS Sastry. Output tracking control design of a helicopter model based
on approximate linearization. In IEEE Conference on Decision and Control (CDC),
pages 3635–3640, 1998.

[59] Ilan Kroo, Fritz Prinz, Michael Shantz, Peter Kunz, Gary Fay, Shelley Cheng, Tibor
Fabian, and Chad Partridge. The Mesicopter: A miniature rotorcraft concept. Phase
II interim report. Stanford University, 2000.

[60] Loic Le Gratiet and Josselin Garnier. Recursive co-kriging model for design of
computer experiments with multiple levels of fidelity. International Journal for
Uncertainty Quantification, 4(5):365–386, 2014.

[61] Daewon Lee, H Jin Kim, and Shankar Sastry. Feedback linearization vs. adaptive
sliding mode control for a quadrotor helicopter. International Journal of Control,
Automation and Systems, 7(3):419–428, 2009.

[62] Yuchen Leng, Thierry Jardin, Murat Bronz, and Jean-Marc Moschetta. Experimental
analysis of a blown-wing configuration during transition flight. In AIAA Scitech 2020
Forum, page 1983, 2020.

[63] Joshua M Levin, Meyer Nahon, and Aditya A Paranjape. Real-time motion plan-
ning with a fixed-wing UAV using an agile maneuver space. Autonomous Robots,
43(8):2111–2130, 2019.

[64] David V Lindberg and Herbert KH Lee. Optimization under constraints by applying
an asymmetric entropy measure. Journal of Computational and Graphical Statistics,
24(2):379–393, 2015.

149

[65] Zhenchang Liu, Jie Guo, Mengting Li, Shengjing Tang, and Xiao Wang. VTOL UAV
transition maneuver using incremental nonlinear dynamic inversion. International
Journal of Aerospace Engineering, 2018:1–19, 2018.

[66] Thomas Lombaerts, John Kaneshige, Stefan Schuet, Bimal L Aponso, Kimberlee H
Shish, and Gordon Hardy. Dynamic inversion based full envelope flight control for an
eVTOL vehicle using a unified framework. In AIAA Scitech 2020 Forum, page 1619,
2020.

[67] Leandro R Lustosa, François Defaÿ, and Jean-Marc Moschetta. Global singularity-
free aerodynamic model for algorithmic flight control of tail sitters. AIAA Journal of
Guidance, Control, and Dynamics, 42(2):303–316, 2019.

[68] Leandro Ribeiro Lustosa. The ϕ-theory approach to flight control design of hybrid
vehicles. PhD thesis, ISAE-SUPAERO, 2017.

[69] Ximin Lyu, Haowei Gu, Jinni Zhou, Zexiang Li, Shaojie Shen, and Fu Zhang. Sim-
ulation and flight experiments of a quadrotor tail-sitter vertical take-off and landing
unmanned aerial vehicle with wide flight envelope. International Journal of Micro Air
Vehicles, 10(4):303–317, 2018.

[70] Tarek Madani and Abdelaziz Benallegue. Backstepping sliding mode control applied
to a miniature quadrotor flying robot. In IEEE Conference on Industrial Electronics
(IECON), pages 700–705, 2006.

[71] Alonso Marco, Dominik Baumann, Philipp Hennig, and Sebastian Trimpe. Classified
regression for Bayesian optimization: Robot learning with unknown penalties. arXiv
preprint arXiv:1907.10383, 2019.

[72] Alonso Marco, Felix Berkenkamp, Philipp Hennig, Angela P. Schoellig, Andreas
Krause, Stefan Schaal, and Sebastian Trimpe. Virtual vs. real: Trading off simu-
lations and physical experiments in reinforcement learning with Bayesian optimiza-
tion. In IEEE International Conference on Robotics and Automation (ICRA), pages
1557–1563, 2017.

[73] Philippe Martin. Contribution à l’étude des systèmes différentiellement plats. PhD
thesis, École Nationale Supérieure des Mines de Paris, 1992.

[74] Philippe Martin. Aircraft control using flatness. In IMACS/IEEE-SMC
Multiconference and CESA Symposium on Control, Optimization and Supervision,
pages 194–199, 1996.

[75] Philippe Martin, Santosh Devasia, and Brad Paden. A different look at output track-
ing: Control of a VTOL aircraft. Automatica, 32(1):101–107, 1996.

[76] Philippe Martin and Erwan Salaün. The true role of accelerometer feedback in quadro-
tor control. In IEEE International Conference on Robotics and Automation (ICRA),
pages 1623–1629, 2010.

[77] Phillipe Martin, Richard M Murray, and Pierre Rouchon. Flat systems, equivalence
and trajectory generation. Technical Report 2003.008, California Institute of Tech-
nology, 2003.

150

[78] Barnes W. McCormick. Aerodynamics, Aeronautics, and Flight Mechanics. John
Wiley & Sons, 1995.

[79] K McIntosh, JP Reddinger, D Zhao, and S Mishra. Optimal trajectory generation for
transitioning quadrotor biplane tailsitter using differential flatness. In Vertical Flight
Society Annual Forum, pages 386–389, 2021.

[80] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and con-
trol for quadrotors. In IEEE International Conference on Robotics and Automation
(ICRA), pages 2520–2525, 2011.

[81] Daniel Mellinger, Nathan Michael, and Vijay Kumar. Trajectory generation and
control for precise aggressive maneuvers with quadrotors. The International Journal
of Robotics Research, 31(5):664–674, 2012.

[82] Nathan Michael, Daniel Mellinger, Quentin Lindsey, and Vijay Kumar. The GRASP
multiple micro-UAV testbed. IEEE Robotics & Automation Magazine, 17(3):56–65,
2010.

[83] Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. The application of Bayesian
methods for seeking the extremum. Towards Global Optimisation, 2:117–129, 1978.

[84] Hyungpil Moon, Jose Martinez-Carranza, Titus Cieslewski, Matthias Faessler, Davide
Falanga, Alessandro Simovic, et al. Challenges and implemented technologies used in
autonomous drone racing. Intelligent Service Robotics, 12(2):137–148, 2019.

[85] Mark Müller, Sergei Lupashin, and Raffaello D’Andrea. Quadrocopter ball juggling.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 5113–5120, 2011.

[86] Robin Murphy. Robots for unstructured and extreme environments, 2018.

[87] Richard M Murray, Muruhan Rathinam, and Willem Sluis. Differential flatness of
mechanical control systems: A catalog of prototype systems. In ASME International
Mechanical Engineering Congress and Exposition, 1995.

[88] Hannes Nickisch and Carl Edward Rasmussen. Approximations for binary Gaussian
process classification. Journal of Machine Learning Research, 9(Oct):2035–2078, 2008.

[89] Michael Ol, Greg Parker, Gregg Abate, and Johnny Evers. Flight controls and perfor-
mance challenges for MAVs in complex environments. In AIAA Guidance, Navigation
and Control Conference and Exhibit, pages 6508–6529, 2008.

[90] Mark Owen, Randal W. Beard, and Timothy W. McLain. Implementing Dubins air-
plane paths on fixed-wing UAVs. In Kimon P. Valavanis and George J. Vachtsevanos,
editors, Handbook of Unmanned Aerial Vehicles, pages 1677–1701. Springer, 2015.

[91] Steve Paschall and Julius Rose. Fast, lightweight autonomy through an unknown
cluttered environment. In IEEE Aerospace Conference, pages 1–8, 2017.

[92] Michael A Patterson and Anil V Rao. GPOPS-II: A MATLAB software for solv-
ing multiple-phase optimal control problems using hp-adaptive Gaussian quadra-
ture collocation methods and sparse nonlinear programming. ACM Transactions on
Mathematical Software (TOMS), 41(1):1–37, 2014.

151

[93] Paris Perdikaris, Maziar Raissi, Andreas Damianou, Neil D. Lawrence, and George E.
Karniadakis. Nonlinear information fusion algorithms for data-efficient multi-fidelity
modelling. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 473(2198), 2017.

[94] Ole Pfeifle and Walter Fichter. Cascaded incremental nonlinear dynamic inversion
for three-dimensional spline-tracking with wind compensation. AIAA Journal of
Guidance, Control, and Dynamics, 44(8):1559–1571, 2021.

[95] Ole Pfeifle and Walter Fichter. Energy optimal control allocation for INDI controlled
transition aircraft. In AIAA Scitech 2021 Forum, 2021.

[96] Paul Pounds, Robert Mahony, Peter Hynes, and Jonathan M Roberts. Design of
a four-rotor aerial robot. In Australasian Conference on Robotics and Automation
(ACRA), pages 145–150, 2002.

[97] Stefan A Raab, Jiannan Zhang, Pranav Bhardwaj, and Florian Holzapfel. Proposal
of a unified control strategy for vertical take-off and landing transition aircraft con-
figurations. In AIAA Applied Aerodynamics Conference, page 3478, 2018.

[98] Akshara Rai, Rika Antonova, Franziska Meier, and Christopher G. Atkeson. Using
simulation to improve sample-efficiency of Bayesian optimization for bipedal robots.
Journal of Machine Learning Research, 20(49):1–24, 2019.

[99] Dev G. Rajnarayan. Trading risk and performance for engineering design optimization
using multifidelity analyses. PhD thesis, Stanford University, 2009.

[100] Carl Edward Rasmussen and Christopher K.I. Williams. Gaussian processes for
machine learning. The MIT Press, 2006.

[101] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments. In International Symposium
on Robotics Research (ISRR), pages 649–666. Springer, 2016.

[102] Marc Rigter, Benjamin Morrell, Robert G Reid, Gene B Merewether, Theodore
Tzanetos, Vinay Rajur, KC Wong, and Larry H Matthies. An autonomous quadrotor
system for robust high-speed flight through cluttered environments without GPS. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
5227–5234, 2019.

[103] Robin Ritz and Raffaello D’Andrea. A global controller for flying wing tailsitter
vehicles. In IEEE International Conference on Robotics and Automation (ICRA),
pages 2731–2738, 2017.

[104] G Rivera and O Sawodny. Flatness-based tracking control and nonlinear observer for
a micro aerial quadcopter. In AIP International Conference on Numerical Analysis
and Applied Mathematics (ICNAAM), pages 386–389, 2010.

[105] Gilhyun Ryou, Ezra Tal, and Sertac Karaman. Multi-fidelity black-box optimiza-
tion for time-optimal quadrotor maneuvers. The International Journal of Robotics
Research, 2021.

152

[106] Shankar Sastry. Nonlinear systems: Analysis, stability, and control. Springer-Verlag,
New York, 1999.

[107] Thomas Sayre-McCord, Winter Guerra, Amado Antonini, Jasper Arneberg, Austin
Brown, Guilherme Cavalheiro, Yajun Fang, Alex Gorodetsky, Dave McCoy, Sebastian
Quilter, et al. Visual-inertial navigation algorithm development using photorealistic
camera simulation in the loop. In IEEE International Conference on Robotics and
Automation (ICRA), pages 2566–2573, 2018.

[108] Angela P Schoellig, Fabian L Mueller, and Raffaello D’Andrea. Optimization-based
iterative learning for precise quadrocopter trajectory tracking. Autonomous Robots,
33(1):103–127, 2012.

[109] Judy E. Scott and Carlton H. Scott. Drone delivery models for medical emergencies. In
Nilmini Wickramasinghe and Freimut Bodendorf, editors, Delivering Superior Health
and Wellness Management with IoT and Analytics, pages 69–85. Springer, 2020.

[110] Dhwanil Shukla and Narayanan Komerath. Multirotor drone aerodynamic interaction
investigation. Drones, 2(4):43, 2018.

[111] S Sieberling, QP Chu, and JA Mulder. Robust flight control using incremental nonlin-
ear dynamic inversion and angular acceleration prediction. AIAA Journal of Guidance,
Control, and Dynamics, 33(6):1732–1742, 2010.

[112] P Simpĺıcio, MD Pavel, E Van Kampen, and QP Chu. An acceleration measurements-
based approach for helicopter nonlinear flight control using incremental nonlinear
dynamic inversion. Control Engineering Practice, 21(8):1065–1077, 2013.

[113] J.-J. E. Slotine and Weiping Li. Applied nonlinear control. Prentice Hall, Englewood
Cliffs, 1991.

[114] Ewoud JJ Smeur, Murat Bronz, and Guido CHE de Croon. Incremental control and
guidance of hybrid aircraft applied to a tailsitter unmanned air vehicle. AIAA Journal
of Guidance, Control, and Dynamics, 43(2):274–287, 2020.

[115] Ewoud JJ Smeur, Qiping P Chu, and Guido CHE de Croon. Adaptive incremental
nonlinear dynamic inversion for attitude control of micro air vehicles. AIAA Journal
of Guidance, Control, and Dynamics, 38(12):450–461, 2015.

[116] Ewoud JJ Smeur, Guido CHE de Croon, and Qiping P Chu. Cascaded incremen-
tal nonlinear dynamic inversion control for MAV disturbance rejection. Control
Engineering Practice, 73:79–90, 2018.

[117] P Smith. A simplified approach to nonlinear dynamic inversion based flight control.
In AIAA Atmospheric Flight Mechanics Conference, pages 4461–4469, 1998.

[118] S Antony Snell, Dale F Enns, and William L Garrard. Nonlinear inversion flight
control for a supermaneuverable aircraft. AIAA Journal of Guidance, Control, and
Dynamics, 15(4):976–984, 1992.

[119] Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-
inputs. In Conference on Neural Information Processing Systems (NeurIPS), pages
1257–1264, 2006.

153

[120] Alexander Spitzer and Nathan Michael. Inverting learned dynamics models for ag-
gressive multirotor control. In Robotics: Science and Systems (RSS), 2019.

[121] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias W Seeger.
Information-theoretic regret bounds for Gaussian process optimization in the ban-
dit setting. IEEE Transactions on Information Theory, 58(5):3250–3265, 2012.

[122] Sihao Sun, Angel Romero, Philipp Foehn, Elia Kaufmann, and Davide Scaramuzza.
A comparative study of nonlinear MPC and differential-flatness-based control for
quadrotor agile flight. arXiv preprint arXiv:2109.01365, 2021.

[123] James Svacha, Kartik Mohta, and Vijay Kumar. Improving quadrotor trajectory
tracking by compensating for aerodynamic effects. In International Conference on
Unmanned Aircraft Systems (ICUAS), pages 860–866, 2017.

[124] Shion Takeno, Hitoshi Fukuoka, Yuhki Tsukada, Toshiyuki Koyama, Motoki Shiga,
Ichiro Takeuchi, and Masayuki Karasuyama. Multi-fidelity Bayesian optimization
with max-value entropy search. arXiv preprint arXiv:1901.08275, 2019.

[125] Ezra Tal and Sertac Karaman. Accurate tracking of aggressive quadrotor trajecto-
ries using incremental nonlinear dynamic inversion and differential flatness. IEEE
Transactions on Control Systems Technology, 29(3):1203–1218, 2021.

[126] Ezra Tal and Sertac Karaman. Global trajectory-tracking control for a tailsitter flying
wing in agile uncoordinated flight. In AIAA Aviation 2021 Forum, 2021.

[127] Gao Tang, Weidong Sun, and Kris Hauser. Enhancing bilevel optimization for
UAV time-optimal trajectory using a duality gap approach. In IEEE International
Conference on Robotics and Automation (ICRA), pages 2515–2521, 2020.

[128] Teodor Tomic, Korbinian Schmid, Philipp Lutz, Andreas Domel, Michael Kassecker,
Elmar Mair, Iris Grixa, Felix Ruess, Michael Suppa, and Darius Burschka. Toward a
fully autonomous UAV: Research platform for indoor and outdoor urban search and
rescue. IEEE Robotics & Automation Magazine, 19(3):46–56, 2012.

[129] Claire Tomlin, John Lygeros, Luca Benvenuti, and Shankar Sastry. Output tracking
for a non-minimum phase dynamic CTOL aircraft model. In IEEE Conference on
Decision and Control (CDC), pages 1867–1872, 1995.

[130] Guillem Torrente, Elia Kaufmann, Philipp Foehn, and Davide Scaramuzza. Data-
driven MPC for quadrotors. IEEE Robotics and Automation Letters, 2021.

[131] Panagiotis Tsiotras and Ricardo Sanz Diaz. Real-time near-optimal feedback control
of aggressive vehicle maneuvers. In Harald Waschl, Ilya Kolmanovsky, Maarten Stein-
buch, and Luigi del Re, editors, Optimization and Optimal Control in Automotive
Systems, pages 109–129. Springer, 2014.

[132] Mario Valenti, Brett Bethke, Gaston Fiore, Jonathan How, and Eric Feron. In-
door multi-vehicle flight testbed for fault detection, isolation, and recovery. In AIAA
Guidance, Navigation, and Control Conference and Exhibit, pages 6200–6217, 2006.

154

[133] M Van Nieuwstadt, M Rathinam, and RM Murray. Differential flatness and absolute
equivalence of nonlinear control systems. SIAM Journal on Control and Optimization,
36(4):1225–1239, 1998.

[134] Sebastian Verling, Basil Weibel, Maximilian Boosfeld, Kostas Alexis, Michael Burri,
and Roland Siegwart. Full attitude control of a VTOL tailsitter UAV. In IEEE
International Conference on Robotics and Automation (ICRA), pages 3006–3012,
2016.

[135] Xuerui Wang, Erik-Jan Van Kampen, Qiping Chu, and Peng Lu. Stability analysis for
incremental nonlinear dynamic inversion control. AIAA Journal of Guidance, Control,
and Dynamics, 42(5):1116–1129, 2019.

[136] Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient Bayesian opti-
mization. In International Conference on Machine Learning (ICML), pages 3627–3635,
2017.

[137] Xinglu Xia, Muqing Yang, Gang Chen, Liang Zhang, and Jiajia Hou. Transition flight
control and simulation of a novel tail-sitter UAV with varying fuselage shape. IEEE
Access, 9:65574–65587, 2021.

[138] Jia Xu. Design perspectives on delivery drones. Report RR-1718/2-RC, RAND Cor-
poration, 2017.

[139] Rong Xu and Umit Ozguner. Sliding mode control of a quadrotor helicopter. In IEEE
Conference on Decision and Control (CDC), pages 4957–4962, 2006.

[140] Yichong Xu, Hongyang Zhang, Kyle Miller, Aarti Singh, and Artur Dubrawski. Noise-
tolerant interactive learning using pairwise comparisons. In Conference on Neural
Information Processing Systems (NeurIPS), pages 2431–2440, 2017.

[141] Yunjie Yang, Jihong Zhu, and Jiali Yang. INDI-based transitional flight control and
stability analysis of a tail-sitter UAV. In IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pages 1420–1426, 2020.

[142] Sam Zarovy, Mark Costello, Ankur Mehta, Greg Gremillion, Derek Miller, Badri
Ranganathan, J Sean Humbert, and Paul Samuel. Experimental study of gust effects
on micro air vehicles. In AIAA Atmospheric Flight Mechanics Conference, pages
7818–7844, 2010.

[143] Shuhan Zhang, Wenlong Lyu, Fan Yang, Changhao Yan, Dian Zhou, Xuan Zeng, and
Xiangdong Hu. An efficient multi-fidelity Bayesian optimization approach for analog
circuit synthesis. In ACM/IEEE Design Automation Conference (DAC), 2019.

155

	Introduction
	Motivation
	Problem Statement
	Related Work
	Contributions
	Outline of This Thesis

	Accurate Tracking of Aggressive Quadrotor Trajectories Using Incremental Nonlinear Dynamic Inversion and Differential Flatness
	Introduction
	Flight Dynamics Model
	Differential Flatness
	Incremental Nonlinear Dynamic Inversion
	Trajectory-Tracking Control
	Response Analysis
	Experimental Results
	Summary

	Global Trajectory-Tracking Control for a Tailsitter Flying Wing in Agile Uncoordinated Flight
	Introduction
	Flight Dynamics Model
	Differential Flatness
	Trajectory-Tracking Control
	Estimation of Aerodynamic Parameters
	Experimental Results
	Summary

	Multi-Fidelity Black-Box Optimization for Time-Optimal Quadrotor Maneuvers
	Introduction
	Quadcopter Trajectory Generation
	Bayesian Optimization
	Algorithm
	Experimental Results
	Summary

	Aerobatic Trajectory Generation for a VTOL Fixed-Wing Aircraft Using Differential Flatness
	Introduction
	Minimization of Snap and Yaw Acceleration
	Flatness Transform
	Dynamic Feasibility
	Aerobatic Maneuvers
	Multi-Fidelity Trajectory Optimization
	Summary

	Conclusions
	Summary of Contributions
	Recommendations for Future Work

