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Abstract

Satellite imagery data analysis has made great strides, however still endures inertia
due to difficulty generating robust, labeled datasets for complex learners. Variation
in data and diverse tasks make it difficult to both generally crowd source to build
such datasets, and to offload this responsibility to the small number of expert anno-
tators that exist. Currently, no general machine learning methods can automatically
generate data labels in all regimes. A chief data labeling concern for remote sensing
projects is cloud mask dataset creation. Using optical satellite images requires de-
tecting accurately all clouds in any image. For many applications, automatic cloud
detection methods are not accurate enough. This thesis reformulates the problem
away from finding a single automatic algorithm to conduct annotation. We amplify
an expert annotator’s efforts with an algorithm that learns from his annotations to
more efficiently annotate datasets, and an active learning loop that force multiplies
this labeling effort. This thesis first contributes a fast, machine learning based an-
notation system and demonstrates on Sentinel-2 images its efficacy to reach, in four
clicks or less, more than 95% accuracy. To obtain these statistics, we constructed an
eclectic database of partially cloudy images and its ground truth, and evaluated its
accuracy to be greater than 98%. We then show that our fast, supervised annotation
is far more accurate than recent sophisticated cloud detectors. Next, we develop an
active learning system that employs uncertainty sampling for query selection and uses
a modified Efficient Neural Network (ENet) model as its backbone. We evaluate this
active learning system by comparing different scoring functions for the uncertainty
metric that powers query selection. We show that using this uncertainty measure-
ment, the active learning system performs better using fewer data points. Ultimately,
with a minimal number of clicks/annotations, the annotator can build a robust, large,
labeled dataset.

Thesis Supervisor: Daniela L. Rus
Title: Erna Viterbi Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Satellite imagery products, like Sentinel-2 [17] developed by the European Space

Agency, have evolved capabilities for earth observation at high resolution. The

Sentinel-2 product provides powerful and accessible spectral images empowering the

remote sensing research community. With these vast data available, researchers take

preprocessing steps to make data ready for use. Common burdens in the preprocess-

ing stage include image labeling and annotation. Due to the large sizes and visual

variance of the images in remote sensing datasets, currently, annotation is not very

accurate [68]. Occasionally, groups attempt to generate large, robust datasets via

crowd-sourcing annotation work. This can be faulty as sometimes there is poor stan-

dardization across annotators. Additionally, some annotators, afraid to give incorrect

results, provide labels when they are very confident, but neglect other instances when

they are not. Consistency issues also arise in crowd sourced work when annotators

are faced with incredibly diverse scenes - for instance, streets look different in Paris,

vs. NYC, etc., yet it is desirable for datasets to have diversity in scene colors, object

sizes, object shapes, and more. Furthermore, due to data variation and specificity,

often only experts are capable of providing reliable annotations in satellite imaging 1.

In attempt to avoid the costs incurred by large, often amateur, human annotator

tasks forces, researchers have attempted intelligent strategies based on statistics and

machine learning. Studies show, however, that there are no fixed machine learning

1Personal communication from satellite imaging experts at Centre Borelli and Kayrros, Inc.
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methods that can work in a multitude of cases to automatically annotate the data;

data varies greatly and tasks are vastly different. For example, some works have

investigated the use of unsupervised, clustering-based methods that avoid any hu-

man intervention [9, 67]. This strategy struggles, however, in that it relies on strong

measures of similarity between data which may not present itself as strongly in real

problems [68]. Other methods have instead attempted supervised classification to

achieve better classification performance [2, 20, 32, 53]. Fully convolutional networks

(FCN) elicit optimism due to their ability to extract dense features, to assimilate

context [5], and to operate on inputs of arbitrary sizes [29]. Nevertheless, these fully-

supervised strategies often require vast labeled datasets to learn from, thus bringing

the problem back full circle to employing large human-annotator task forces to pre-

pare the necessary data. Additionally, most annotation systems for deep learning

and imaging use bounding boxes; this is not optimal for making precise masks; thus,

one needs pixel-by-pixel annotations, which again necessitates human annotation in-

tervention. Ultimately, it seems this problem requires: 1) some human intervention

from expert annotators to tackle the problem of consistent, standardized datasets for

niche and diverse data, and 2) intelligent machine learning tools to force multiply

the annotator’s work to tackle the overwhelming task of labeling the vast data. This

thesis seeks to find a solution to this problem by answering the question: can you

drastically minimize the number of clicks an expert annotator makes to increase the

speed of accurate and thorough satellite image annotations?

This study will focus on the creation of cloud mask datasets, i.e., datasets con-

sisting of pixel-wise annotation bitmaps (corresponding to input images) that classify

pixels as cloud or non-cloud. In a majority of remote sensing analysis tasks, cloud

detection is a burden and a preliminary step to discriminating desired content in im-

ages. Tasks like atmospheric correction, land cover classification, change detection, or

inversion of biophysical variables first require accurate cloud detection/segmentation.

While seemingly a simple task, cloud detection is difficult over land because when

clouds are significantly larger than pixel size, it’s difficult to distinguish them from

background objects [31]. The vast shapes, sizes, and colors of clouds and earth surface

18



landscapes can be misleading, bright landscapes can be easily confused for clouds, and

additionally, semi-transparent clouds’ reflectance often resembles both cloud-like and

land-like signals [7]. Convolutional neural networks show promise in achieving high

accuracy cloud detection; however, they require cloud mask datasets. Currently, there

is a lack of high-quality labeled datasets for many of the well-known satellite products

(i.e., Sentinel-2, Landsat 8, etc.). Thus, cloud mask dataset creation for remote sens-

ing images is a compelling domain to test our primary question. Ideally, with only

a small handful of annotations per image, and by only annotating a small sample of

an entire unlabeled dataset, an expert annotator endowed with machine/algorithmic

aid can generate a robust image-cloud mask dataset.

This thesis’ work proposes a two-level system that includes a fast annotation

process for expert annotators of a small dataset, and a larger learning loop that will

subsequently learn from these data to annotate a greater corpus of data. By breaking

the system down like this, we are able to 1) focus an expert annotator’s attention

on a small subset of unique, informative instances, thus maximizing the efficiency of

annotator resources; 2) endow the annotator with a fast, efficient pixel classifier that

enables them to generate a segmentation for an entire image while only labeling a few

pixels; 3) use a separate model to extrapolate knowledge learned from annotators to

classify the larger, comprehensive dataset, and to identify further uncertain instances

to be labeled by the annotator to improve the segmentation accuracy of the dataset.

Comprehensively, with this two-level learning loop, one will be able to train a model

that can perform automatic cloud detection and annotation analysis.

1.1 Contributions

In summary, the contributions of this thesis will be as follows:

1. A fast supervised cloud mask generation process for Sentinel-2 images that

allows expert annotators to make preliminary annotations and then iterate,

adding subsequent annotations until achieving the desired cloud mask;
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Figure 1-1: Architecture of the Two-Level Active Learning Annotation Sys-
tem. Beginning with Level I, in step Ia, the oracle begins annotating a subset
of data. In step Ib, the oracle’s annotations are passed to a fast pixel classifier as
training data. The classifier then classifies all pixels in the input images, producing
cloud masks and color masks during Ic. Evaluating this output visually, the oracle
can make further annotations. This loop continues until the oracle is satisfied with
the outputted cloud masks. Once satisfied, Level II begins as the image-mask pairs
from Level I are used as input training data for ENet (step IIa). Subsequently, in
step IIb, the trained ENet model is run on the unlabeled data pool; each instance
is given an informativeness (uncertainty) score. This score is used as the metric for
the active learning query step. Seen in step IIc, images with scores in the top 10th
percentile are queried to the oracle for annotation, and a new system cycle begins.
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2. A modified ENet (efficient neural network) architecture that integrates uncer-

tainty estimation that provides a measure of uncertainty with the output which

guides the subsequent annotation steps (ultimately minimizing the total anno-

tation necessary);

3. An eclectic dataset of 1830x1830x15 (HxWxC) partially cloudy images and

corresponding cloud masks with 98% cross-validated accuracy;

4. Experimental validation of the fast mask generation process compared to auto-

matic detector algorithms; and

5. Experimental validation of an active learning system, employing the modified

ENet model and uncertainty score metrics, used to produce a dataset of cloud

mask images with high segmentation accuracy.

1.2 Organization

This thesis is organized as follows. Chapter 2 highlights the related work. Chapter

3 presents the proposed annotation process. Chapter 4 introduces Bayesian deep

learning, inference and uncertainty, the relationship with active learning acquisition

functions, and the neural network architecture. Chapter 5 discusses the satellite used,

highlights brief examination that helped clarify and guide subsequent experimental

focus, and then outlines the experimental pipelines. Chapter 6 discusses experimental

results. Lastly, in Chapter 7, this thesis summarizes this thesis’ work and capture

future work.
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Chapter 2

Related Work

2.1 Existing Annotated Cloud Datasets

There is a deficiency in comprehensive, high quality, labeled, cloud datasets. While

some datasets exist, they each have weaknesses. The 2016 Sentinel-2 Hollstein et

al. dataset [37] yields annotated polygons in Sentinel-2 images acquired over several

different sites at various dates. The polygonal cloud masks are necessarily imprecise

on the often-ragged clouds. CloudNet [46] contains 120 small images of size 224×224

pixels, all coming from a single Sentinel-2 acquisition. The cloud mask was drawn by

hand (using Adobe Photoshop and ENVI), on the True Color Image (RGB) band of

the L1C products. While the quality of this manual segmentation is good, the image

contains a lack of diversity in weather conditions, seasons, and geographies, as all

images come from a single Sentinel-2 capture.

A few datasets prove to be exceptions as they are of respectable quality. A dataset

produced in 2019 by Baetens, Desjardin and Hagolle [8], provides reference masks

for 38 Sentinel-2 scenes [12]. The dataset has six classes: low clouds, high clouds,

cloud shadows, land, water, snow. All pixels are annotated with a resolution of 60m;

upon visual inspection it appears to be of high quality. This dataset, however, lacks

scene coverage in many regions of the world. Thus, for analysis in those specific

regions with unique land cover and spectral, atmospheric conditions, researchers may

be interested in generating their own datasets. Conversely, consisting of 96 scenes,
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the Landsat 8 Cloud Cover Assessment Validation dataset, has more diversity [18].

Nevertheless, this dataset consists of frames obtained by Landsat 8 only, and as new

satellite products are released with a wider variety of bands and other spectral data,

new datasets will be desired from these more modern products.

2.2 Automatic Cloud Detectors

One approach to generate the desired cloud mask datasets could be to use existing

automatic cloud detectors. Several works attempt to use physics or statistics based

approaches instead of supervised learning approaches which require the desired la-

beled dataset to begin with. In [13], Dagobert et al. proposed an automatic cloud

detector based on the spectral parallax of pushbroom satellites such as Sentinel-2,

Landsat-8, Pléiades or RapidEye. They employ a region growing algorithm followed

by a statistical validation of regions with coherent parallax. Shin and Pollard use

Along-Track Scanning Radiometer (ATSR) in an attempt to detect clouds over seas

[64]. In a different vein, Manizade et al. [52] apply discrete correlation to binary se-

ries obtained by the slicing of the 8-12 𝜇m infrared band into 18 temperature ranges.

This enables the refinement of the cloud altitude estimation up to ±390 m. In [69],

researchers develop the FMask algorithm for Landsat 5, 7, and 8. FMask uses surface

reflectance and the brightness temperatures of the Thermal Infra-Red (TIR) Chan-

nels to detect cloudy pixels. Developed by the European Space Agency, Sen2core is a

program that processes Sentinel-2 level 2A product data. Like FMask, Sen2core is a

thresholding algorithm that takes into account reflectance levels and various band ra-

tios such as infra-red/green or near-infra-red/sand. Unlike the FMask and Sen2core

algorithms which are mono-temporal methods that process only a single image to

make detections, MAJA [31] is a method that operates on multi-temporal data and

combines the Multi-sensor Atmospheric Correction and Cloud Screening (MACCS)

and the Atmospheric and Topographic Correction methods. It is used by the French

Space Agency [7]. FMask, MAJA, and Sen2core are some of the most well-known

and used methods for achieving cloud masks, however neither is ubiquitously suc-
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cessful. Thus, users must weigh the benefits of each and scrutinize their desired use

case before using them. For example, Sen2Core has shown significant underestima-

tion in dense cloudy/shadowy areas [50]. S2cloudless is a machine learning based

detector that uses tree-based learning algorithms with XGBoost and LightGBM [70].

Showing promising results and being well accepted in research communities (as it has

been downloaded 47,000 times [58]), S2cloudless has also shown weaknesses as it has

struggled to perform well in difficult cloud covers such as those in the Amazon rain

forest [60]. In sum, we’ve seen that existing cloud detectors are not yet performant

enough to rely solely on them for the generation of the desired cloud mask datasets.

Evidently, you stumble upon a chicken and egg problem.

2.3 Cloud Annotation With A Human in the Loop

A more recent study attempts to use machine learning with a human in the loop to

build a labeled cloud dataset. In their work, Baetens et al. [7] attempt to reformu-

late the focus away from an automatic detector towards a fast annotation system for

generating cloud mask datasets. They use an active learning process, called Active

Learning Cloud Detection (ALCD), with a random forest learner to learn from an-

notations and reflect back to the annotators the most uncertain points to annotate

next. The paper proposes making annotations via clicks, instead of polygons. They

further recommend using a dilation kernel for helping to classify fuzzy edges. Both

of these strategies will be employed in our fast annotation process. ALCD, struggles,

however, in that it requires a completely non-cloudy reference image for its analysis

to be successful. This, thus, limits its usefulness in permanently cloud regions, such

as Guyana or Congo [7].

2.4 Active Learning

As stated earlier, this thesis seeks to develop a two-level system that grants the ability

to train a model that can perform automatic cloud detection and annotation analysis,
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Figure 2-1: Illustration of the pool-based active learning process [63]

enabling swift dataset creation. Centrally, the goal is to force multiply the efforts of

a single expert annotator. One strategy to achieve this is to build a system to direct

an oracle/annotator to the essential instances to label in an unlabeled dataset such

that, after only labeling some of these maximally informative instances, the model can

learn from these annotations and perform approximately as well as if it had learned

from annotations from every instance in the dataset. This goal is precisely the focus

of a methodology referred to as active learning. Using active learning, an oracle will

only have to annotate a small portion of the data; this contributes to minimizing

the total clicks/annotations the oracle must make. The arena of active learning has

substantial literature elaborating on its formulation, theory, and applications.

The primary notion of active learning is that a model can achieve better accuracy,

learning on fewer instances, if it is able to choose what data it learns from. The

active learning process is visualized in Figure: 2-1. The learning system begins with

a relatively small set of labeled training data. The machine learning model learns

from these data, and subsequently evaluates the instances in a larger unlabeled pool

of data. The active learning system then makes queries to an oracle, inquiring about
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the labels of instances which have been selected as a result of some "query frame-

work"/"activation function". After the system makes a query to the oracle, there are

no further assumptions made by the learner about the instance or its significance in

the dataset [63]. Once the annotator annotates the instance, it is added to the set of

labeled training data.

2.4.1 Query Scenarios

In this section, this thesis discusses the three main query scenarios as illustrated in

2-2.

Membership Query Synthesis

In membership query synthesis, the learner may pose queries on any instance in the

unlabeled instance input space; this includes instances that the learner generates de

novo [63]. This method is tractable and computationally efficient in problems with

infinite domains [4]. Queries generated de novo, however can cause problems. For ex-

ample, in [38] the methodology resulted in the learner generating de novo hand written

characters that were ambiguous symbols that made no sense to human annotators.

Later, however, in [42], the authors generate promising results for the membership

query synthesis methodology, employing a "robot scientist" that executes the gen-

erated de novo queries (which were biological experiments), by actually running the

experiments.

Stream-based Selective Sampling

In stream-based selective sampling, one assumes that the process of soliciting an

instance for querying is free or cheap. As a result, one can actually sample the

instances from a distribution; then a learner decides whether or not to make a query of

the instance to the oracle. In the case that the distribution is uniform, stream-based

selective sampling behaves like the membership query synthesis strategy. On the

other hand, if the distribution is not uniform, with stream-based selective sampling,
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sampled instances are guaranteed to be sensible [63].

Pool-based Sampling

Pool-based sampling, visualized in 2-1, is inspired by the notion that one can collect

large pools of unlabeled data at one time. Then, an active learning system can

select instances of interest from said pool (often assumed to be static/non-changing).

Instances may be selected in a greedy fashion or due to some acquisition function that

reflects an information measure on the instance. Pool-based sampling is our area of

focus [63].

2.4.2 Query Framework/Acquisition Functions

Query frameworks/acquisition functions are the methods of cleverly selecting in-

stances for querying in pool-based sampling. Ultimately, given a machine learning

model 𝑀 that makes predictions as a function of some input data, a data pool 𝐷𝑝𝑜𝑜𝑙,

and unlabeled inputs 𝑥 ∈ 𝐷𝑝𝑜𝑜𝑙, an acquisition function 𝑎(𝑥,𝑀) is a function of 𝑥

that the active learning system uses to decide where to query next, by finding

𝑥* = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝜖𝐷𝑝𝑜𝑜𝑙
𝑎(𝑥,𝑀).

I explore several methods to serve as this acquisition function, 𝑎(𝑥,𝑀). One

category of methodologies is a pure scoring/uncertainty based methodology. One may

select instances for which the posterior distribution evaluated at that point has the

most entropy. One could also attempt a method referred to as variation-ratios. Here,

one selects the instance whose classification with highest probability is smallest. Both

strategies evaluate lack of confidence [23]. The equations for both (hereon referred to

as entropy formula and variation ratios formula, respectively) are

H[𝑦|𝑥, 𝐷𝑡𝑟𝑎𝑖𝑛] := −
∑︀

𝑐 𝑝(𝑦 = 𝑐|𝑥, 𝐷𝑡𝑟𝑎𝑖𝑛) log 𝑝(𝑦 = 𝑐|𝑥, 𝐷𝑡𝑟𝑎𝑖𝑛),

variation-ratio[𝑥] := 1−max𝑦 𝑝(𝑦|𝑥,𝐷𝑡𝑟𝑎𝑖𝑛),
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where 𝑥 is an unlabeled input, and 𝑦 is the predicted classification that takes on value

𝑐 ("cloud", or "non-cloud").

Another category of query framework explored in this thesis takes a diversity-

based sampling, core-set approach. Ultimately with this approach, one aims to find a

minimum subset of a larger labeled dataset such that when the active learning system

learns using this smaller subset, it is "competitive over the whole dataset" [61].

The active learning work discussed thus far will be applicable for selecting image

crops from a large dataset of satellite imaging data to be annotated by an oracle.

However, active learning has also been used at a lower layer in the satellite imaging

annotation process. In [7], the same study as referenced in 2.3, the authors recog-

nize the necessity of thorough datasets of image-mask pairs for improving detection

capabilities in satellite imaging. Their analysis uses the Sentinel-2 Level 2A product

developed by the European Space Agency. The product provides users with surface

reflectance measurements and a cloud/cloud shadow mask. In [7], the authors de-

velop a program called Active Learning Cloud Detection (ALCD) to generate cloud

masks to validate the Sentinel-2 product output. Using the ALCD, an oracle (human

annotator) can label a few points via clicking on an image. Subsequently, a random

forest model is learned which produces a classification on the input image generating

a cloud mask. The oracle visually evaluates incorrect and uncertain pixels in the mask

and corrects them with further annotations. This annotation/learning loop continues

until the oracle is satisfied with the mask.

2.4.3 Further Works

Novel active learning methods have surfaced in regimes well outside of cloud segmen-

tation. In [25], the authors develop a methodology they refer to as the “farthest-first

compression” (FF-Comp). With FFC, for each active learning step, the authors use

a model-based, core-set technique to compress the dataset (inputs) based on em-

beddings derived from neural network activations. Their work performs better than

passive learning on MNIST, CIFAR-10, and CIFAR-100. In [24], the authors develop

a novel active learning strategy that uses Bayesian deep learning and an information
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Figure 2-2: The three main active learning scenarios [63]

measure (BALD) that maximizes mutual information between network predictions

and the model posterior. The BALD metric enables the active learning system to ef-

fectively select the instance with the largest variance going into the softmax activation

layer. The authors show that BALD outperforms random sampling active learning

and semi-supervised techniques on the MNIST dataset. BALD also outperforms a uni-

form acquisition strategy when applied to the ISIC 2016 melanoma diagnosis dataset.

Furthermore, BALD performs better than a network trained on the entire dataset.

This is hypothesized to be because BALD avoids selecting noisy datapoints with high

aleatoric uncertainty (discussed in more detail in 4). The authors in [43], propose

Learning Active Learning (LAL) methodologies. They show that when the classes in

the dataset are unbalanced, using entropy as the active learning acquisition metric is

sub-optimal. The paper acknowledges there are many complex factors that affect the

class distribution, and thus they use properties of the data and the classifiers to esti-

mate potential error reduction. They employ a regression model that operates on a

manifold characterized by parameters of the classifier and the datapoints, and adapts

query selection by annotating a selected datapoint in an informative classifier state.

The LAL methodologies succeed in a variety of regimes, including synthetic data,

biomedical imaging, economics, molecular biology and high energy physics. Finally,
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in the approach presented in [10], the authors reformulate the active learning problem

as one of learning in an adversarial environment. Their work strives to improve the

system’s robustness to outliers and variance due to adverse model instantiation that

greedy selection sometimes lacks. Their innovation is to stochastically select points

for labeling, where the probability simplex that defines said chance of selecting a

point, 𝑖, depends on a bounded, expected regret and the most recently observed loss.

Named, AdaProd+, this innovation outperforms uniform, entropy, and uncertainty

sampling on the ImageNet, SVHN, and CIFAR10 datasets. Ultimately, this paper’s

contribution demonstrated low regret on predictable instances, and was robust to

adversarial ones.

2.5 Uncertainty Estimation

In attempt to achieve our annotation goal, we opted to exploit a model’s under-

standing of its uncertainty in predictions to best inform an active learning process.

Uncertainty estimation is critical in machine learning systems. Often, outputs are ex-

tracted from machine learning models and assumed accurate; however these outputs

may not be [44]. For example, in a fatal 2016 incident, an assisted driving platform’s

perception system mistook a white side of a trailer for a bright sky [1]. In another

account, a perception system identified two African Americans as gorillas [30].

Uncertainty metrics often concern themselves with calibration and generalization

to domain shift. Calibration is a notion that evaluates divergence between subjective

forecasts and long-term horizon frequencies [15, 16]. Generalization to domain shift

(aka "out-of-distribution examples") implies a model can measure what it knows or

does not know [35]. A lot of work has been done to enable neural networks (NN) with

uncertainty estimation capabilities. Much of this work is in the Bayesian regime,

wherein a prior is placed over the weights of the model, and after training, the weight

posterior distribution is computed to measure predictive uncertainty. Intractability in

marginalization computation has led to several approximations, such as the Laplace

approximation [49], Markov chain Monte Carlo (MCMC) methods [54], and varia-
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tional methods [27, 48]. Bayesian NNs are often difficult to implement, however. In

[22], the authors formalize Dropout as Bayesian approximation, leading to the use

of Dropout for practical Bayesian NN implementation. Researchers have also tried

sampling across an ensemble of networks to produce uncertainty measurements, how-

ever this methodology demands great computational resources and can be difficult to

deploy and parallelize in real-time. In the end, the information gained from uncer-

tainty estimation will be the metric the active learning loop uses to inform its efficient

sampling/querying.

2.6 Segmentation and Mask Prediction

The nature of analysis task that the model in the active learning framework is faced

with, is one of segmentation, and ultimately mask prediction: the model is learning a

mapping between an input image and a cloud mask of that image. Several works have

developed novel network architectures that have pushed the state-of-the-art in this

space. In [47], the authors pioneer use of fully convolutional networks (FCNs) for end-

to-end training in image segmentation tasks. FCNs begin with an image of arbitrary

size and output a segmented image with the same size. U-Net, originally designed for

biomedical image segmentation, extended the FCN concept. U-Net is composed of

two parts: one that downsamples the input image down to features, and another that

upsamples up to the segmented image [59]. In [45], researchers develop the Feature

Pyramid Network. This architecture combines a top-down and bottom-up pathway

to join low and high resolution features. The DeepLab architectures expanded upon

this and employed atrous convolution to attain multi-scale context [11]. In general,

each of these architectures attempt to capture information about global visual con-

text to improve segmentation predictions. The state-of-the-art networks cleverly link

different regions of the image to learn relationships between the various objects in

the image [55].
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Chapter 3

Fast Supervised Cloud Mask

Generation

In this chapter, this thesis presents the first level of the annotation system. This level

consists of a fast supervised cloud mask generation process for Sentinel-2 images. First

an annotator selects cloudy pixels by clicking on the image (via an editing application

- for this thesis, we use QGIS). Then, a fast pixel classifier learns from these data and

classifies the rest of the image. Finally the annotator completes the segmentation via

a few further clicks. We employ this process first, without limitation on the number

of clicks, on an eclectic set of partially cloudy images, to generate ground truths with

98% cross-validated accuracy.

3.1 Pixel Classifiers

The choice of pixel classifiers was the chief question at hand. Four different methods

are used to classify pixels: a support vector machine (SVM), a random forest, a

mixture model with pixels as inputs, and a mixture model with a patch of pixels as

inputs. Clicks from QGIS that annotate "cloud" or "background" were first dilated

by 2 meters in radius (inspired by [7]). Subsequently, the annotations and expansions

were fed to the learner as supervised training data. For each classification method,

the following cycle was carried out after training:
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1. The classifier classifies all pixels of the input image.

2. An output mask is generated from this classification.

3. Further annotation corrects the visible errors in the output.

4. The model is trained again on the annotations.

This process continues until the annotator is satisfied with the generated output mask.

3.1.1 Support Vector Machine

A support vector machine (SVM) is a linear classifier. Using it for image segmen-

tation begets finding a margin to separate pixels into classes in color space (in the

dimension of the number of image channels used). For the support vector machine

annotation (SVMA) methodology, the 15-channel input pixels are first transformed

using a radial basis function (RBF) kernel with kernel coefficient parameter, gamma,

set to 1.0. By mapping the input vector into a higher dimensional feature space, the

RBF enhances the ability to find a separating hyper-plane. The 15 channels include

all 13 spectral bands innately provided by the Sentinel-2 product in addition to the

derivative Normalized Difference Vegetation Index (NDVI) and Normalized Differ-

ence Water Index (NDWI) indices. The SVM is then trained on these transformed

data points.

3.1.2 Random Forest

A Random Forest (RF) machine learning method is a decision tree model often used

when the classes of a dataset are unbalanced, is high dimensional data, or contains

outliers [41]. For the random forest annotation methodology (RFA) in this thesis,

each input pixel consists of all 15 channels. As with SVMA, after training on the

annotated data, the cycle above (3.1) was carried out.
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3.1.3 Bayesian Mixture Model

Mixture models have the ability to cluster pixels in (potentially high dimensional)

color space. We use a Bayesian mixture model (BMM) with a Dirichlet distribution

prior to infer an approximate posterior distribution over the parameters of a mixture

model. Using this non-parametric model, the number of parameters (pixel clusters)

is inferred from the data, thus one need not guess nor choose this value via extensive

experimentation. The model is first trained to create pixel clusters. Then, all the pix-

els annotated as cloud/non-cloud ared used to "vote" on the class of the cluster they

belonged to. The majority vote becomes the class that the cluster is assigned to. By

design, any pixel cluster from the mixture model that is not voted in the "cloud" class

is designated as "background." Like with SVMA and RFA, after training, the cycle

above is carried out to complete the Bayesian Mixture Model annotation (BMMA)

process.

3.1.4 Bayesian Mixture Model with Patches

We expand upon the BMM concept to provide textural information to the learner.

We implement BMMA for pixel patches wherein each click in QGIS is expanded to

a 𝑛 × 𝑛 patch (𝑛 ∈ {3, 5, 7}). For the original BMMA, each click is dilated and the

dilated pixels are separate observations. Now, however, this dilation is unraveled so

that each expansion around a click (let us say the click was expanded to a 3x3 dilated

patch), turns into a single feature of size 9*𝑛𝑢𝑚_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠. PCA is then run on each

patch (keeping the components comprising 98% of the variance) prior to the patch

being used as the feature vector input. Subsequently, the same cycle above (3.1) is

run to round out this process.

3.2 Ground Truth Cloud Mask Creation

To compare the discussed methods, we needed accurate ground truths. This thesis

contributes a dataset of 1830x1830x15 (HxWxC) images and corresponding cloud
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masks. The first experiment’s dataset includes 12 masks and associated images: 4

scenes with 5, 1, 4, and 2 time-series images respectively. The second and third

experiment share a dataset of 12 masks and associated images: 12 separate scenes

captured on arbitrary dates. We annotate using QGIS, a geographic information

system (QGIS) software. Only "cloud" and "background" annotations are made.

Two methods are used for generating ground truth. Following guidance from [6], 15

spectral bands are used (or at least considered).

3.2.1 Creating a First Ground Truth by Random Forest

A Random Forest is employed using all 15 channels. First, pixels selected by clicks

in the QGIS software and annotated "cloud" or "background" are dilated by 100

pixels (2 meters in radius; inspired by [6]). This is seen in 3-1a. All these annotated

points and their dilations are used as training data. After training, we employ the

model to classify all pixels in the input image and generate a cloud mask from the

pixel predictions. Cross-examining the RGB image and the mask "in progress", the

annotator makes further annotations. This process continues until reaching the most

accurate cloud mask.

An optional median blur or a morphological opening with kernel radius 2 are

used to smooth out imperfections in the image. The procedure to build a ground

truth using the RF methodology is performed twice by two different expert anno-

tators for cross-validation. The percentage error between two applications of this

same annotation process is computed as a pixel-by-pixel comparison made across the

two instances of this same ground truth generating process. The error is 𝑛𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑁𝑡𝑜𝑡𝑎𝑙𝑝𝑖𝑥𝑒𝑙𝑠

(reflected in Table 3.1).

3.2.2 Creating a Second Ground Truth by Bayesian Mixture

Model

A BMM is used to cluster pixels in color space, however not all 15 channels are used.

It was discovered that BMM using only Sentinel-2 band, B1, often provided the best
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(a) Original image with two
"cloud" clicks.

(b) The BMMA output
cloud mask.

(c) The BMMA output
color mask.

Figure 3-1: First the annotator makes annotations, as in (a). After running the BMM
method, we output the cloud mask and color mask [(b) and (c)].

output mask. Other times, the superior band(s) to use was only B11, or bands B1

and B11 together, or the RGB bands. We tested each of these band combinations to

construct the most accurate ground truth.

Color masks are used to aid the annotator. A color mask is generated by painting

every pixel in the input image that has been grouped into the same class (by the

mixture model) the same color. With this, the annotator can visualize how pixels are

clustered, see which clusters belong to clouds, and annotate accordingly. Figure 3-1

illustrates the process. After the annotators make annotations, 3-1a, they run the

BMM method, resulting in the cloud mask and color mask [3-1b and 3-1c]. Seeing

the orange region in the color mask, a cluster of pixels that does not yet have a

"cloud" annotation as it should, the annotator can subsequently annotate one of the

pixels in that region in 3-1a.

Similar to that mentioned in 3.2.1, an optional median blur or a morphological

opening with kernel radius 2 is used. A percentage error between two applications of

this same annotation process is also computed as a pixel-by-pixel comparison made

across two instances of this same BMM ground truth generating process.

We additionally compute the relative error across the two ground truth generation

methods. Table 3.1 reports first the internal relative error between generated ground

truths from two applications of BMM and RF, respectively. We next report the

external error between the ground truths generated by both methods. Since two
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Error Percentage
BMM internal 1.80%
RF internal 3.30%
BMM-RF external 4.10%

Table 3.1: Internal relative error between the generated ground truths from two
applications of the BMM and RF methods, respectively. External error between the
ground truths generated by the BMM and RF methods.

applications of BMM and RF generated two ground truth images each, computing

the error between all combinations of the outputs yielded four error percentages. We

report the average error percentage from these results.

3.3 Procedure Overview

In summary, we present the procedure for the fast supervised cloud annotation step.

After being presented with a dataset of unlabeled images, the oracle clicks annota-

tions, labeling representative pixels as cloud or non-cloud. The classifier then learns

from the annotations. For RFA and SVMA, the procedure solely looks at the anno-

tated pixels during this training step. Subsequently, for RFA and SVMA, the classifier

classifies every pixel in the input image, generating a mask that segments the image

into cloud and non-cloud partitions. For BMMA, the procedure first clusters all pixels

in the input image. Then, the annotated pixels ”vote” on the class of the cluster they

belong to, with the majority vote becoming the class the cluster is assigned to. Next,

for BMMA, the procedure assigns every pixel the same class label as that of the cluster

that the pixel belongs to, generating a cloud mask. A color mask is also made during

the BMMA procedure. This is generated by taking all pixels in the input image that

have been grouped into the same class, and painting them the same color. Finally,

for each of RFA, SVMA, and BMMA, the annotator evaluates the mask(s) visually

to decide if further annotations should be made to improve the segmentation accuracy.
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Algorithm 1: The Fast Supervised Cloud Annotation Step
Input: A dataset, 𝐷, of size 𝑛, of unlabeled data provided to the oracle for

annotation.

while Image masks have not been made or require further modification do

Annotation

Fast pixel classifier training

Whole image classification

Visual evaluation
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Chapter 4

Uncertainty of Cloud Classification:

The Active learning Step

The previous chapter discussed the use of supervised machine learning techniques,

like mixture models, random forests, and support vector machines to classify pixels

within an image. This chapter will step to a higher level in the annotation system;

instead of learning on a pixel level, learning occurs on the image level. Stepping

into this arena, we begin employing use of deep learning, artificial neural networks.

We use convolutional neural networks to learn a task that maps an input image to

a segmentation image that classifies all of the input pixels as either cloud or non-

cloud. While it can be effective, blindly taking the output mapping of a deterministic

neural network does not make use of all information that the network can provide.

One crucial datapoint lacking here is the answer to the question, "am I [the model]

uncertain about this output?" It is with this information that the model can more

cleverly exploit the data it’s learning from to successfully generalize and achieve in

its segmentation task. Ultimately, it is with this information, that the active learning

component of the system prospers.

The goal of this thesis is to minimize the number of clicks an expert annotator

makes to generate a robust dataset. Following the procedures of active learning,

the system begins by learning on only a small portion of the dataset. It then uses

its knowledge to evaluate its confidence segmenting new, unlabeled images. Sub-
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sequently, the system queries labels from an oracle on the most uncertain of these

unlabeled images. In [26], the authors show that iterating with such an active learn-

ing loop, in lieu of initially training on the entire dataset, decreases the total number

of annotations for performance convergence. The system finds the most informa-

tive subset of data that best represents requisite information for comprehending the

entire dataset. As neural networks’ failure modes are commonly out-of-distribution

domains, their predictive confidence provides a window into which instances will best

inform future decisions in these domains. Uncertainty quantification can help facili-

tate this when this measure itself is the score employed by active learning to notify

new queries [65].

There are two types of uncertainty one may want to model: aleatoric uncertainty,

and epistemic uncertainty. Aleatoric uncertainty pertains to noise intrinsic to the

dataset. For instance, a broken pressure sensor whose recordings will naturally in-

clude some random variation due to the malfunctioning recording mechanism. No

matter how much additional data is recorded, this uncertainty/error won’t be able

to be reduced. Epistemic uncertainty pertains to uncertainty in model parameters,

revealing unawareness of which model produced the data [40]. Epistemic uncertainty

can be unlocked by leveraging Bayesian Deep Learning, and will be used to inform our

active learning system. This chapter will present a modified ENet and uncertainty

scoring functions which power the active learning loop.

4.1 Bayesian Deep Learning

4.1.1 Problem Formulation

The objective of Bayesian neural networks is to learn a posterior distribution over

the model’s weights, given the data and observations: 𝑃 (W|X,Y). This posterior

represents possible model parameters given the data and observations [40]. Using

the posterior and its moments, one can capture uncertainty. The posterior can be

reformulated using Bayes Rule,
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𝑃 (W|X,Y) = 𝑃 (Y|X,W)𝑃 (W)
𝑃 (Y|X)

.

While this is simple to formulate, this is often intractable to compute in practice as

the 𝑃 (Y|X) term cannot be evaluated analytically. Researchers developed variational

inference (VI) methods to address this [27]. In VI, one uses a simpler distribution,

𝑞(W), as an approximation to achieve the predictive distribution,

𝑞(Y|X) =
∫︀
𝑃 (Y|X,W)𝑞(W)𝑑W.

In many instances, 𝑞(𝑊 ) is cleverly defined to be a part of the family of mean field

approximations, wherein there are no dependencies between the variables. 𝑞(𝑊 )

can thus be easily factorized, and these marginals are evaluated by minimizing the

Kullback–Leibler divergence with the posterior distribution. VI methods can still

suffer from computational costs [36, 56]. Dropout is an efficient method for complex

models to approximate VI.

Dropout was initially developed to improve neural networks’ generalization ca-

pabilities. One would place independent, identically distributed Bernoulli random

variables upon a network’s neurons which would govern, with some probability, if the

neuron was left "on" or "off" during training [21]. Consider that at each step, em-

ploying dropout is to sample a Bernoulli random variable for each weight, distributed

as

z(𝑤)
𝑡 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) ∀ 𝑤 𝜖 W.

When we multiply this by the networks’ nodes, it provides a stochastic sample of the

weights, as

W𝑡 = {z(𝑤)
𝑡 ·𝑤}𝑤𝜖W.

In [22], the authors show that using dropout is equivalent to sampling weights that

achieve realisations from the Bernoulli distribution. They then show that using the

dropout approximation is equivalent to minimize the Kullback-Liebler divergence be-

tween the approximation posterior and the true posterior. As a result, the predictive

posterior is determined to be
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𝑝(𝑦*|𝑥*,X, Y) ≈
∫︀
𝑝(𝑦*|𝑥*,w)𝑞(W)𝑑w ≈ 1

𝑇

∑︀𝑇
𝑡=1 𝑝(𝑦

*|𝑥*, ŵ𝑡),

where the likelihood 𝑝(𝑦*|𝑥*, ŵ𝑡) = 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙
(︁
𝑒𝑥𝑝(𝑓)/

∑︀
𝑑′ 𝑒𝑥𝑝(𝑓𝑑′)

)︁
, 𝑓 = 𝑓(𝑥, (𝑊𝑖)

𝐿
𝑖=1)

as the random output of a Bayesian neural network, and 𝑇 is the number of stochastic

runs through the network. It is this predictive posterior that grants the ability to

compute metrics for uncertainty.

4.1.2 Inference and Uncertainty

The next step after computing the predictive posterior, as discussed in 4.1.1, is to

compute uncertainty measures. With 𝑦𝑡 = 𝑓(𝑥|W𝑡) for each of the 𝑇 stochastic runs

through the network, the predictive mean can be computed via

E[Y|X] = 1
𝑇

∑︀𝑇
𝑡=0 𝑓(X|Wt).

Then, the predictive variance is computed as

Var[Y|X] = 1
𝑇

∑︀𝑇
𝑡=0 𝑓(X|Wt)

2 − E[Y|X]2.

Simply, T passes through the network are required to estimate the posterior dis-

tribution and produce its moments. It is using these moments that we construct

uncertainty measures, such as variation ratios, presented in the next section.

4.2 Uncertainty Scoring Functions

In this section, this thesis presents the uncertainty measures used as the scores in the

active learning step. The first three employ Bayesian deep learning as formulated in

section 4.1. Restated from 2.4.2, in the end, given a model, 𝑀 , and inputs, 𝑥 ∈ 𝐷𝑝𝑜𝑜𝑙,

the acquisition function in the active learning step will use these scores, 𝑎(𝑥,𝑀) to

chose which instances to query next, as

𝑥* = argmax𝑥𝜖𝐷𝑝𝑜𝑜𝑙
𝑎(𝑥,𝑀).
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4.2.1 Variation Ratios

The notion of variation ratios was discussed previously in 2.4.2 (please see this section

for the variation-ratio formula which is used as the acquisition function, 𝑎(𝑥,𝑀)). The

goal with this measure is to select the instance whose classification with the highest

probability is the smallest [19]. This ultimately measures lack of confidence. The

acquisition function, 𝑎(𝑥,𝑀), selects the instances that have the highest variation-

ratios scores.

4.2.2 Hybrid

The second uncertainty measure we attempt takes a hybrid approach. We combine

both the variation-ratio score with the predictive variance, a metric often used to

measure model uncertainty. Inspired by [40], we multiply the former and latter to

produce the hybrid score. The acquisition function, 𝑎(𝑥,𝑀), selects the instances

that have the highest hybrid scores.

4.2.3 Core-Set

Diversity in observations is what motivates the core-set approach. In [33], the au-

thors highlight that query strategies selecting just the most informative scores are

susceptible to selecting similar instances, such as consecutive images in a sequence.

This leads to an inefficient use of training resources and time. Instead, it’s desirable

to strive for diversity in the query batch. In [61], the authors formulate this goal as

a core-set selection problem: can you select a subset of instances to query such that

a model learned over this subset is competitive across all the whole dataset. They

achieve this by using the geometry of the datapoints to establish a bound between the

average loss over any subset of the dataset and the remaining data. Using this upper

bound, the problem becomes one equivalent to the k-Center problem. The k-Center

problem can be intuitively understood as seeking the 𝑏 center nodes for 𝑏 clusters

such that the maximum delta between any datapoint and its respective center node

is minimized [61].
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Algorithm 2: k-Center-Greedy
Input: data 𝑥𝑖, esisting pool 𝑠0 and a budget 𝑏 Initialize 𝑠 = 𝑠0

repeat
𝑢 = argmax𝑖𝜖[𝑛]∖𝑠 min𝑗𝜖𝑠∆(𝑥𝑖;𝑥𝑗)
𝑠 = 𝑠 ∪ {𝑢}

until |𝑠| = 𝑏+ |𝑠0|
return 𝑠 \𝑠0

In [33], the authors demonstrate use of the greedy implementation of the k-center

problem. They select the "centroid" 𝑐𝑖 according to:

𝑐𝑖 = arg max𝑥𝜖𝑋 min𝑐𝜖𝐶 𝑠(𝑥) * 𝑑(𝑥, 𝑐)

This is the acquisition function, 𝑎(𝑥,𝑀). Here, the terms are defined as follows:

• 𝑑 is the cosine similarity 𝑑𝑖𝑗 =
𝑒𝑖𝑒𝑗

||𝑒𝑖||22||𝑒𝑗 ||22
, where 𝑒 is the image embedding. This

embedding is used to formulate the image as a data point in vector space so as

to be able to compute its distance to other images. We retrieve this embedding

via the final layer of the network’s encoder 4.3.

• 𝑠 represents the uncertainty score of the sample. In this approach, the distance

metric is weighted by the uncertainty score. In this thesis, 𝑠 =
∑︀

𝑝𝑖𝑥𝑒𝑙𝑠 H(𝑝𝑐), or

total entropy, where H(𝑝𝑐) = 𝑝𝑐 log 𝑝𝑐 + (1 − 𝑝𝑐) log(1 − 𝑝𝑐), and 𝑝𝑐 represents

the probability that a pixel takes class 𝑐.

Using this greedy implementation, the uncertainty/informativeness score is 𝑠 * 𝑑.

Instances queried will be those with the highest score.

4.2.4 Evidence

The next metric for uncertainty we experiment with stems from the regime of evi-

dence. Evidence explicitly models weight uncertainties via the theory of subjective

logic. Ultimately, Dirichlet distributions are placed on class probabilities, and the net-

work’s predictions are considered subjective opinions. The network is used to learn

the function that amalgamates evidence that generates these opinions [62]. Evidence
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is valuable for uncertainty estimation because, while like using Dropout, evidential

methods can be fast, unlike Dropout, evidential methods are calibrated.

Overall, evidential learning addresses a weakness in softmax probabilities. Soft-

max tends to inflate the probability of the predicted class, due to the exponent term

used in the outputs of neural networks. The Dempster-Shafer Theory of Evidence

(DST) generalizes Bayesian theory and assigns belief masses to subsets of frames of

the powerset of propositions (e.g. a class label). These belief masses are computed

as a function of the evidence supporting a specific proposition and nothing more.

A formalization called Subjective Logic (SL) elucidates the belief assignment over

“frames of discernment” as a Dirichlet Distribution. A belief mass assignment, or a

"subjective opinion", can be formulated as a Dirichlet distribution with parameters

𝛼𝑘 = 𝑒𝑘 + 1 [62], where 𝑒 is the evidence. The parameter set of a categorical distribu-

tion, which softmax serves to output, is replaced by the parameter set of a Dirichlet

distribution. Thus, the output itself serves to parameterize a distribution over pos-

sible softmax outputs as opposed to a point estimate of said softmax outputs. To

achieve this task one must simply modify the loss function and optimize the model

using standard backpropegation.

In the end, uncertainty is computed as 𝑢 = 𝐾/𝑆. 𝑆 =
∑︀𝐾

𝑖=1 𝛼𝑖 is called Dirichlet

strength. 𝐾, is the number of "singletons" in the "frame of discernment" (in our

case, this is merely 2, as we are only dealing with class cloud and non-cloud). Thus,

for each pixel, instead of a softmax density, we have the parameters for a Dirichlet

which we can plug into the equation for 𝑢, and sum 𝑢 (uncertainty) across all pixels

to generate the uncertainty for a given image. The acquisition function, 𝑎(𝑥,𝑀),

ultimately selects the instances that have the highest uncertainty scores, 𝑢.

4.2.5 Random

The final uncertainty measure is a baseline based upon which the previously discussed

measures will be compared. This metric places an equal score on every image instance.

Using this score in the acquisition function is akin to placing a uniform distribution

over all possible points in the random pool [24].
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4.3 ENet

While the acquisition function is crucial for an active learning system implementation,

at the end of the day, the model is the subject of the learning process. It was thus

important to tactfully consider the model architecture we would use. Given that this

task is, at it’s core, a segmentation task, it made sense to consider the state-of-the art

segmentation network architectures. As discussed in 2.6, some of the most popular

include DeepLabv3+ [11], Mask R-CNN [34], and U-Net [59]. We decided it best

to experiment first with an architecture that was simpler. A simpler architecture is

easier to train and would allow us to iterate faster. Furthermore, even though the

question at hand is about minimizing the number of annotator clicks, this focus stems

from a desire to decrease the time to generate the accurate and robust dataset. A

simpler architecture would also be faster at inference time. U-Net is the simplest of

the three, and thus we decided to turn here first. We ultimately settled on ENet, a

derivative of the U-Net architecture family.

4.3.1 Motivation

ENet (literally, Efficient Neural Network) is exactly as its name implies. ENet’s au-

thors designed the network to address the problem that many segmentation networks

have been sustaining: prolonged run times due to mass floating point operations.

ENet is specifically designed for tasks which demand low latency. In our case, this

permits faster learning and inference when the model is ultimately used to help gen-

erate the cloud mask dataset. ENet is 18 times faster, requires 75 times less floating

point operations and has 79 times less parameters while achieving similar or better

accuracy than SegNet, another popular U-Net derivative [57].

4.3.2 The Network

The ENet network, detailed in 4-2, consists of 28 blocks which comprise an encoder

and then decoder framework. It adopts a notion from ResNet by employing a main

branch in addition to extension branches which are eventually merged via element-
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Figure 4-1: (a) ENet initial block. Max Pooling is performed with non-overlapping
2 × 2 windows, and the convolution has 13 filters, which sums up to 16 feature
maps after concatenation. This is heavily inspired by [66]. (b) ENet bottleneck
module. Convolution is either a regular, dilated, or full convolution (also known
as deconvolution) with 3 × 3 filters, or a 5 × 5 convolution decomposed into two
asymmetric ones [57].

wise addition. Each block (known as a "bottleneck block", see 4-1) is made up of 3

convolutional layers. The first layer consists of a 1x1 projection, used for dimension-

ality reduction. The second is the main convolutional layer. Finally, there is a 1x1

expansion layer. ENet uses batch normalization between all convolutions and uses

spatial dropout after each block for regularization. For the purposes of using dropout

to achieve a Bayesian neural network, as discussed previously in the chapter, these

dropout layers remain "on" during inference time. Consistent with the ENet paper,

the dropout probability, 𝑝, is set to 0.01 before the bottleneck 2.0, and 𝑝 = 0.1 after.

Furthermore, as in the paper, spatial dropout is used, as opposed to element-wise

dropout. Normal, element-wise dropout can suffer in computer vision applications as

early network layers may encourage learning of feature maps with strong correlation.

Spatial dropout on the other hand can achieve the same goals as normal dropout

while encouraging independence in between said feature maps [3]. 4-3 illustrates

spatial dropout.
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Figure 4-2: ENet architecture. Output sizes are given for an example input of 512 ×
512. [57]

Figure 4-3: Element wise dropout vs 2D spatial dropout [3].
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4.4 Algorithm Overview

The query selection step of the active learning system begins when a subset of the

entire dataset, data which are accompanied by annotations, 𝑑𝑖𝑛𝑖𝑡, are fed to the ENet

model, as 𝑑𝑡𝑟𝑎𝑖𝑛, for training. Subsequently, the system runs the trained model on the

rest of the unlabeled data pool, 𝑑𝑝𝑜𝑜𝑙, providing predictions for each instance. Via the

various scoring functions discussed in 4.2, each instance is given an informativeness

(uncertainty) score. We choose the instances with the top 10% highest scores, 𝑏, to

be queried to the oracle for labeling. 𝑏 is equaled to 0.1 * ||𝑑𝑝𝑜𝑜𝑙||. Once the queried

instances are annotated, these instances are added to 𝑑𝑡𝑟𝑎𝑖𝑛, and the loop begins again.

This loop continues until 𝑑𝑝𝑜𝑜𝑙 is empty, or until the mask outputs from the model

are satisfactory to the annotator.

Algorithm 3: The Active Learning Query Selection Step
Input: A dataset, 𝐷, of size 𝑛, where a subset of 𝐷, 𝑑𝑖𝑛𝑖𝑡, approximately of

size 0.01 * 𝑛, is accompanied with annotations, while the rest of the
data, 𝑑𝑝𝑜𝑜𝑙, have no labels.

Output: A trained ENet model, 𝑀
Initialize the ENet model, 𝑀
𝑑𝑡𝑟𝑎𝑖𝑛 ⇐ 𝑑𝑖𝑛𝑖𝑡
Train 𝑀 using 𝑑𝑡𝑟𝑎𝑖𝑛
while size(d𝑝𝑜𝑜𝑙)̸= 0 AND annotator desires to continue training the model
do

y* ←𝑀(𝑑𝑝𝑜𝑜𝑙); prediction
u* = ∅
for i = 1 to b do

u* ← u* ∪ 𝑎𝑟𝑔𝑚𝑎𝑥(𝑥∈𝑑𝑝𝑜𝑜𝑙,𝑦*)(𝜑( y* )); uncertainty measurement/scoring

/* Scoring function, 𝜑, chosen from among: variation-ratios,
hybrid, core-set, evidence, and random approaches. 𝑏 is
the number of instances to query each round. */

q* ⇐ annotator(u* )
𝑑𝑝𝑜𝑜𝑙 ⇐ 𝑑𝑝𝑜𝑜𝑙 ∖ u*

𝑑𝑡𝑟𝑎𝑖𝑛 ⇐ 𝑑𝑡𝑟𝑎𝑖𝑛 ∪ q*

Train 𝑀 using 𝑑𝑡𝑟𝑎𝑖𝑛
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4.5 Summary

This chapter presents the use of uncertainty sampling as the driver for the query step

in our system’s active learning loop. Recall, the active learning step in this system

is used to learn from the accurate image-mask pairs generated by the expert anno-

tator. We use active learning because previous works have shown that it can grant

the ability to achieve greater accuracy learning off of fewer samples if the network is

able to choose the instances it learns from. This amounts to less annotation work for

the annotator (ideally, a significant order of magnitude less). We turn to uncertainty,

or a model’s predictive confidence, as the informativeness measure when selecting in-

stances to query to the oracle/annotator. This decision is motivated by previous work

indicating that neural networks’ prime weaknesses are out-of-distribution instances.

We interest ourselves in measures of uncertainty like variation-ratios, a hybrid of

variation-ratios/predictive variance, a core-set metric, and evidence. We expect to

see an improvement in accuracy using these metrics as opposed to a random query

strategy or merely training without active learning altogether.
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Chapter 5

Experimental Setup

We present 3 experiments in this thesis: pixel classifier evaluation, evaluation of

the best pixel classifier with automatic detectors (both detailed in chapter 3), and

evaluating the scoring functions (detailed in chapter 4).

5.1 The Datasets

5.1.1 Pixel Classifier Evaluation

In this experiment, we used four image scenes with 5, 1, 4, and 2 time-series images

respectively. Our dataset was comprised of 12 images and associated masks. Only

”cloud” and ”background” annotations were made. A sample image scene is seen in

Figure 5-1.

5.1.2 Comparison with Automatic Detectors

In this second experiment, we used a dataset of 12 masks and associated images: 12

separate scenes captured on arbitrary dates. Again, only ”cloud” and ”background”

annotations were made. A sample image scene is seen in Figure 5-1.
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(a) Original image. (b) Cloud mask ground truth using BMM.

(c) Cloud mask ground truth using RF.
Figure 5-1: An example image scene (5-1a) and corresponding masks (generated by
BMM in 5-1a and RF in 5-1a) in the datasets from the pixel classifier evaluation and
comparison with automatic detector experiments.
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Figure 5-2: A single image scene from the dataset used in the scoring function eval-
uation experiment. Displayed is a subsample of 4 out of the 14 perturbations made
for the image. In this subsample, the perturbations only consist of contrast changes.

5.1.3 Scoring Function Evaluation

We ran this experiment on 100 Sentinel-2 image scenes of size 610 x 610; each image

consisted of 12 channels (the Sentinel-2 8A band was not available in the dataset,

however we have no reason to believe the absence of the band changes the trends of the

results). Prior to running the active learning algorithm, we conducted preprocessing.

We started with the 100 scenes (referred to as superimages) and extracted 4 non-

overlapping subimage blocks of size 305 x 305. This brought the dataset to 400

images. Each image was augmented by 4 rotations per horizontal flip orientation

(thus 8 rotation/flip augmentations total); each of these augmented images were

augmented further by 3 contrast changes. Of these 24 perturbations, 14 were selected

at random to be included in the dataset. This resulted in a 5,600 image (subimage)

dataset. Figure 5-2 displays a subsample of 4 out of the 14 perturbations made for a

single image where the only perturbation is a contrast change.
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5.2 Objectives and Evaluation Procedure

5.2.1 Pixel Classifier Evaluation

In the first experiment, we compared the different methodologies: SVMA, RFA, and

BMMA with pixel inputs, aiming to minimize the number of clicks needed to reach

a 90% and then 95% accuracy. More concretely, if the ground truth error percentage

between the two applications of the same process (BMMA or RFA) was 5%, this

meant that it had 95% precision. Thus, the target accuracy for the experiment using

a given methodology to achieve 90% accuracy relative to this ground truth (and its

respective error) meant getting 0.9 * 95% = 85.5% accuracy compared to the ground

truth. The experiment thus evaluated how many clicks were required to achieve

85.5% accuracy compared to the ground truth. In all experiments, we measured

experimental results against the first trial of the ground truth. This thesis originally

strove to annotate to achieve 99% accuracy instead of only 95% and 90%. However,

when running the experiment, it became apparent that without further optimizations

and modifications, it was not possible to get that high accuracy. Instead of continuing

with several image instances where a given methodology could not achieve the 99%

accuracy, we decided to merely stop at 95%.

We used each methodology to annotate the image and generate the best possible

cloud mask. We then compared the output mask to the ground truth. The annotator

stopped the annotation process upon reaching the 90% and then 95% goal accuracy

relative to the ground truth. Finally, we recorded the total number of clicks made.

We trained the BBMA process with pixel inputs such that each pixel only con-

sisted of one band: B1 or B11. B1 is the "coastal aerosol" band with wavelength of

approximately 0.443 µm. B11 is the SWIR band with wavelength of approximately

1.610 µm [39]. Empirically, we found that using solely these two bands resulted in the

best cloud masks. For the BMMA processes, we used a Dirichlet distribution prior

for the weights distribution.
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5.2.2 Comparison with Automatic Detectors

Next, we compared BMMA using pixel inputs and BMMA using patch inputs to exist-

ing automatic cloud detectors. As before, the BMMA process using pixel inputs used

only B1 or only B11. The BMMA process with patch inputs took the RGB channels

(B4, B3, and B2) as input. We compared against a parallax cloud detector PCD, [13],

and two cloud detectors based on the analysis of time series, GTS [28], and DTS [14].

For this comparison, we expanded the dataset to include twelve image scenes. For

each scene, there was a single image of interest and ground truths generated by 3.2.1

and 3.2.2. We completed BMMA by applying a morphological area opening. The

GTS and DTS automatic detectors took in a time-series from the given scene and

generated the cloud mask for the image of interest. The PCD method instead ran

solely on the image of interest. The Sentinel-2’s Sen2cor software [51] also provides

cloud masks of its own. We compared the cloud masks of these four methods to both

ground truths through the percentage of error score.

5.2.3 Scoring Function Evaluation

In this experiment, we explored the impact active learning has on achieving the goal

of decreasing annotation time and we identify the optimal scoring function to achieve

this. Plotting the learning curve - the evolution of the intersection over union (IoU)

- of each scoring function, we compared each of the scoring functions from 4.2 and

used the random sampling strategy, 4.2.5, as the standard upon which to compare.

The Active Learning Setup

The active learning experiment proceeded by taking 10% chunks of the dataset to

query/learn from after each iteration. Concretely, if the total number of images in

the data pool was 𝑛, the model began by learning on a random chunk that was

size 0.1 * 𝑛. At each step, the active learning system selected the top 0.1 * 𝑛 most

uncertain samples from the unlabeled data pool to get labeled by the oracle. The

system then added this data to the existing labeled data that the model would learn
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in the next iteration. There were thus 10 active learning steps (including the original

learning step on a random batch of data). In the first part of the experiment, the

entire dataset consisted of images and ground truth masks provided by the Sentinel-2

Level-2A Algorithm. Thus, when the active learning step chose images to query, the

stored masks were merely retrieved from the data store (serving as the oracle) and

these image-mask pairs were used for training. In the second part of the experiment,

while we still used the same image scenes, the masks for the training data came from

the fast supervised cloud mask generation process in 3.

Acquisition Functions

The Variation-Ratios, Hybrid, and Random approaches are relatively straightforward

and need no further specification. In 4.2.3, we highlight that the greedy implementa-

tion of the k-center problem (k-Center-Greedy) was used for the Core-Set approach.

This algorithm is detailed in 4.2.3. Additionally, to improve the speed of the D matrix

computation needed to determine the cosine similarity between every image embed-

ding vector, we cut down the dimensionality of the embeddings by averaging across

the feature maps, and we vectorized the cosine similarity computation.

For the Evidence approach, implementation consisted of changing the output layer

to the ENet network and modifying the loss function. We set the output activation

for ENet to Softplus to ensure non-negative output. Again, this output served as the

evidence vector for a Dirichlet distribution. The loss function is implemented as

ℒ𝑖(Θ) =
∑︀𝐾

𝑗=1(𝑦𝑖𝑗 − 𝑝𝑖𝑗)2 +
𝑝𝑖𝑗(1−𝑝𝑖𝑗)

(𝑆𝑖+1)
,

𝐾𝐿[𝐷(𝑝𝑖|𝛼̃𝑖)||𝐷(𝑝𝑖|1)] = log

(
Γ(

∑︀𝐾
𝑘=1 𝛼̃𝑖𝑘)

Γ(𝐾)
∏︀𝐾

𝑘=1 Γ(𝛼̃𝑖𝑘)
) +

∑︀𝐾
𝑘=1(𝛼̃𝑖𝑘 − 1)[𝜓(𝛼̃𝑖𝑘)− 𝜓(

∑︀𝐾
𝑗=1 𝛼̃𝑖𝑗)],

ℒ(Θ) =
∑︀𝑁

𝑖=1 ℒ𝑖(Θ) + 𝜆𝑡
∑︀𝑁

𝑖=1𝐾𝐿[𝐷(𝑝𝑖|𝛼𝑖)||𝐷(𝑝𝑖|⟨1, ..., 1⟩)].

𝑆 = Σ𝐾
𝑖=1(𝑒𝑖 + 1), representing Dirichlet strength. Also recall 𝛼𝑘 are the Dirichlet

parameters.
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ENet

A few intricacies were necessary in the ENet architecture for the experiment. First,

for the Variation-Ratios, Hybrid, and Core-Set approaches, dropout remained on

during inference time. This remained off, however, for the Evidence and Random

approaches. For the Core-Set approach, we added a hook to extract intermediate

features (the output features of the encoder) for the image embedding in the Core-

Set function. The system optimized the model using the Adam optimizer. We used

the same custom weighting scheme as is used in the ENet paper, 𝑤𝑐𝑙𝑎𝑠𝑠 = 1
𝑙𝑛(𝑐+𝑝𝑐𝑙𝑎𝑠𝑠)

[57].

59



60



Chapter 6

Results

In this chapter, we presents the results of our extensive experimentation. Ultimately,

this chapter sheds light on the classifier method best suited for the fast supervised

cloud annotation task and the uncertainty scoring function that elicits the best results

from the active learning step.

6.1 Pixel Classifiers

The experiment comparing pixel classifiers measured the average number of clicks/annotations

an annotator needed to achieve 90% accuracy and then 95% accuracy compared to

the ground truth. This experiment showed that the BMMA process (using pixel in-

puts) performs better than SVMA and RFA. Table 6.1 displays our two recorded

statistics. We computed the average number of clicks made across the dataset for each

methodology. On average, it took less than 1 click to achieve the desired percentage

of ground truth accuracy for BMMA, whereas it took over 2 on average for RFA

and greater than 3 for SVMA. Thus, for the fast supervised cloud annotation step,

the best classifier algorithm option is indeed a clustering based model, specifically a

BMM. Compared to using other classification algorithms, using the BMM, one can

learn from minimal clicks and generate rather accurate cloud masks.
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90% g.t. accuracy 95% g.t. accuracy
BMMA RF BMMA RF

SVM 3.8 ± 1.8 3.8 ± 1.9 4.7 ± 2.9 4.3 ± 2.8
RF 2.3 ± 0.5 2.2 ± 0.4 2.4 ± 0.7 2.3 ± 0.5
BMMA B1 1.3 ± 0.6 1.2 ± 0.6 1.4 ± 0.8 1.3 ± 0.7
BMMA
B11

1.0 ± 0.1 1.2 ± 0.6 1.1 ± 0.3 1.3 ± 0.7

Table 6.1: Average number of clicks (with standard deviation) to achieve goal percent-
age ground truth (g.t.) accuracy, relative to RF and BMM generated ground truth.
Clicks are averaged across each methodology (SVMA, RFA, BMMA using only B1,
and BMMA using only B11).

6.2 Automatic Detectors

The experiment comparing with automatic detectors measured the accuracy of each

mask generation method compared to ground truth. This accuracy is reflected as

an error percentage. This experiment shows that BMMA with pixel inputs performs

better than BMMA with patches, the existing automatic detectors, and the cloud

masks provided by Sentinel-2. Table 6.2 records the percentage error each cloud

mask generating process achieves with respect to the RF and BMM ground truths.

Unlike in experiment 1, the goal was not to get to a particular percentage accuracy

compared to ground truth, but was to get the smallest error possible. BMMA using

B1 led to the smallest error when compared to ground truth. Figure 6-1 shows sample

outputs from each of the methodologies. Thus, the BMMA process is a supervised

process that empowers an expert annotator to generate cloud masks superior to those

of powerful automatic detectors.

6.3 Adding Open Morphology

This experiment shows both the impact of the open morphology used on the best

method (BMMA using B1) and the average number of clicks needed to achieve this

superior performance. Table 6.3 records average error of BMMA using B1 with

respect to the DP and RF ground truths respectively. It also demonstrates an 1%
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Error
w.r.t RF
Ground
Truth

Error w.r.t
BMM
Ground
Truth

BMMA using channel 1 5.19% 1.56%
BMMA using channel 11 16.32% 16.08%
grompone-timeseries-v2 11.10% 13.33%
dagobert-timeseries-v2 11.09% 13.32%
parallax-cloud-detector 7.81% 9.90%
Sentinel-2 Cloud Mask 5.20% 7.70%
BMMA using RBG chan-
nels

8.61% 9.34%

BMMA using PCR and
patch size 3

8.31% 7.25%

BMMA using PCR and
patch size 5

20.23% 20.03%

BMMA using PCR and
patch size 7

22.93% 22.54%

Ground truth self-
comparison

3.30% 1.80%

Table 6.2: Percentage error each cloud mask generating process achieves with respect
to the RF and BMM ground truths. Compares the BMMA processes using only
channel 1, only channel 11, only RGB channels, and only RGB channels using patches
and PCR, to automatic detectors.
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(a) Original Image
(b) BMMA Using Only
Channel 1 Cloud Mask (c) PCD Cloud Mask

(d) GTS Cloud Mask (e) DTS Cloud Mask
(f) BMMA Using RGB
Channels Cloud Mask

(g) BMMA Using PCR and
Patch Size 3 Cloud Mask

(h) BMMA Using PCR and
Patch Size 5 Cloud Mask

(i) BMMA Using PCR and
Patch Size 7 Cloud Mask

Figure 6-1: A comparison of each of the cloud mask generators (generated by our
annotation system, b, and the other automatic detectors, c-e).

64



Error Averages
BMM
GT

without opening 2.83% ± 1.58%
with opening 1.32% ± 1.61%

RF GT without opening 4.93% ± 4.93%
with opening 4.00% ± 4.00%
Number of clicks 2.42 ± 1.00
Number of clusters 6.79 ± 0.80

Table 6.3: Average error (with standard deviation) of BMMA using B1 with respect
to the BMM and RF ground truths respectively. Averages are reported after applying
a morphological opening or without it. The average number of clicks to achieve the
reported error and the average number of clusters in the mixture model are also
recorded.

improvement when a morphological opening is used. We also recorded the average

number of annotations needed to achieve the reported error and the average number

of clusters of the mixture model. As the error reflects, we were able to get up to

around 98% accuracy with respect to the BMM ground truth and 96% with respect

to the RF ground truth. On average, the annotator made 2.42 annotations. This

means that to improve from the 95% accuracy reported in table 6.1, only about 1-2

more clicks are needed!

6.4 Query Frameworks

In this experiment that compares the uncertainty scoring functions, we reported model

loss and intersection over union (IoU) learning curves. Specifically, we plot the model

loss evaluated on the test data set versus the percentage of training data that was

used to train said model. The loss is evaluated and recorded after each active learning

step, during which the next 10% of additional training data is selected and added to

the training data batch. Said data to be added to this training batch is selected using

one of the variation ratios, hybrid, core-set, evidence, or random uncertainty scoring

functions. Figure 6-2 compares the loss learning curve of these functions. With

respect to IoU, in Figures 6-3, 6-4, and 6-5 we report, respectively, the "non-cloud"

class, "cloud" class, and mean IoU evaluated on the test data set versus the percentage
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of training data used to train said model. Each IoU is evaluated and recorded after

each active learning step. This experiment shows that the hybrid uncertainty scoring

function performs best compared to the others in our active learning task.

We first look at the reported model loss vs percentage of train data used. All

functions, except evidence, begin above 0.6 and, at some point, all converge below

0.5. The hybrid and core-set seem to converge to the lowest error, just below 0.4,

again not including the evidence function. As discussed in Chapter 4, the evidence

function comes with a unique loss function. This function differs from the cross-

entropy loss used for each of the other functions. The evidence function’s loss starts

at 0.346. and decreases only down to 0.336. We find more interesting results when

evaluating IoU.

In Figure 6-3, we see that the hybrid "non-cloud" class IoU learning curve peaks

at 50% of training data used. This is the most prominent peak of all the curves, not

including evidence, measuring approximately 0.92. This means that in the context

of classifying the "non-cloud" class, when using the hybrid uncertainty function, we

select new instances that are informative enough such that model performance peaks

after only seeing 50% of the training dataset. In this same graph, the curve for

evidence appears to be more promising, as it begins just above 0.91 and increases to

above 0.94. However, in the context of this experiment, the strength of this result

takes a different light when considering the "cloud" class IoU.

In Figure 6-4, we see that the hybrid "cloud" class IoU learning curve peaks at

50% of training data used. This is the most prominent peak of this curve, and mea-

sures approximately 0.31. This means that in the context of classifying the "cloud"

class, when using the hybrid uncertainty function, we select new instances that are

informative enough such that model performance peaks after only seeing 50% of the

training dataset. For the hybrid "cloud" class IoU learning curve, one sees clearly

that the hybrid function outperforms all others. One sees as well that the evidence

curve straggles further below the others. This informs us that, as currently designed,

the evidence approach tends to favor labeling pixels as "non-cloud" as opposed to

"cloud" when comparing against the other approaches.
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Looking at the mean IoU, in Figure 6-5 we again see a prominent peak for the

hybrid function at 50% of training data used; this peak measures in at approximately

0.62. These data tell us that the hybrid approach performs the best, and permits

us to achieve an IoU superior to all other scoring functions (even random) using

the least amount of training data. The fact that hybrid achieves this superior score

prior to the model training on the entire dataset shows that using active learning,

we can achieve better model accuracy learning on fewer instances. The fact that

the hybrid approach performs better than the random approach demonstrates that

cleverly selecting a scoring function is superior, in this active learning regime, to

selecting arbitrarily. Ultimately, these data demonstrate that by using the hybrid

scoring function as our uncertainty measurement, if an annotator employs the active

learning system, they can more easily generate a cloud mask dataset. In the case

of this experiment, instead of labeling an entire dataset today and labeling a new

batch of data in the future, they can label merely 50% of the current data, train an

ENet model and have the model label future data and achieve 0.62 mean IoU. We

believe that this number will increase significantly if we replace ENet with a superior

segmentation network and will explore this in future work.
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Figure 6-2: Model loss evaluated on the test data set vs the percentage of training data
used to train said model. Loss is evaluated and recorded after each active learning
step, during which the next 10% of additional training data is selected and added to
the training data batch. Said data to be added is cleverly selected using one of the
variation ratios, hybrid, core-set, evidence, or random uncertainty scoring functions.
The plot compares the loss learning curve of these functions.

Figure 6-3: "Non-Cloud" class IoU evaluated on the test data set vs the percentage
of training data used to train said model. IoU is evaluated and recorded after each
active learning step, during which the next 10% of additional training data is selected
and added to the training data batch. The plot compares the "non-cloud" class IoU
learning curve as a function of the variation ratios, hybrid, core-set, evidence, and
random uncertainty scoring functions.
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Figure 6-4: "Cloud" class IoU evaluated on the test data set vs the percentage of
training data used to train said model. IoU is evaluated and recorded after each
active learning step, during which the next 10% of additional training data is selected
and added to the training data batch. The plot compares the "cloud" class IoU
learning curve as a function of the variation ratios, hybrid, core-set, evidence, and
random uncertainty scoring functions.

Figure 6-5: Mean class IoU evaluated on the test data set vs the percentage of training
data used to train said model. IoU is evaluated and recorded after each active learning
step, during which the next 10% of additional training data is selected and added to
the training data batch. The plot compares the mean class IoU learning curve as a
function of the variation ratios, hybrid, core-set, evidence, and random uncertainty
scoring functions.
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Chapter 7

Conclusion

This thesis presents a fast supervised cloud mask generation process for Sentinel-

2 images that allows expert annotators to quickly generate accurate cloud masks.

Many previous pursuits focusing on the task of cloud mask generation go the route

of building automatic detectors. These algorithms, however, are not ubiquitously

successful, and thus aren’t performant enough in many tasks. Our results indicate

that by employing relatively minor human intervention (annotators) and intelligent

machine learning that force multiplies the annotator’s work, one can efficiently gen-

erate highly accurate cloud masks. This thesis attempts to generate cloud masks

using a system that learns from only a few annotations from an expert annotator,

following the application of a BMM. Using the Sentinel-2 LC1 product, we found that

using the band B1 as the sole feature works best. This annotation process has been

proven to be efficient on Sentinel-2 and its main advantage is that it uses pixel based

non-contextual classification. This is thanks to the rich spectral content of each pixel,

which seems sufficient to almost always discriminate clouds from ground.

Additionally, this thesis presents a second level to the cloud mask generation sys-

tem comprised of an active learning feedback loop. To power the active learning loop,

we contribute a modified ENet architecture that integrates uncertainty estimation.

This information provides a measure of uncertainty with the output and is ultimately

what informs the active learning query step. Intelligently querying uncertain in-

stances to be labeled by the annotator, our system learns to generate cloud masks
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for an unlabeled image data pool after training on fewer instances than a non-active

learning regime.

7.1 Lessons Learned

Working on this thesis, I learned how important it is to consider model uncertainty

in any task and use this information to improve decision making. Sometimes you can

actually become more "in the know", by understanding what you don’t know. This

work also taught me the importance of starting problem solving with simpler solutions

and iterating from there. Starting with the most complex solution from the onset can

lead to unnecessary confusion, complication, and work. Starting simpler and iterating

allows for initial, elementary discoveries that help focus attention on where more com-

plex solutions should be applied. Finally, after this thesis, I have greater appreciation

for the planning that must go into planning a deep learning experiment. Deep learn-

ing experiments are often computationally extensive and require keen use of GPU

resources. Running an experiment for the active learning process, however, involved

not only considering the model training, but also the uncertainty score computations

for the entire unlabeled data pool. This meant considering a whole set of additional

computations and data transfers. I realized that GPU resources weren’t being effi-

ciently utilized, causing the experiment to run for a very long time. I ultimately had

to conduct additional preprocessing prior to running the experiment, had to re-write

functions to use GPU computing power, and had to consider efficient CPU usage as

well.

7.2 Future Work

In the first step of our future work, we consider further optimizing and experimenting

with the evidence uncertainty scoring function approach. In works such as [65], we see

the promise of evidential methods for uncertainty measurement and deep learning.

We believe with further parameter tuning and optimizations we can improve the
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predictive ability of our model using evidential methods, which will improve the

reported IoU.

The next step in our future work would consist of training the active learning

level on the highly accurate instances generated by an expert annotator in the fast

supervised cloud mask generation process. Using this dataset and some modifica-

tions/optimizations to the network, as can be extrapolated from this thesis’ work, we

expect the result to be the realized ability to generate large and accurate cloud mask

datasets.

Even though this work contributes a modified network to be the backbone of

the active learning loop, we would consider using network architectures superior to

ENet in the image segmentation domain. One such architecture, DeepLabv3+ [11],

shows much promise from the standpoint of pure segmentation accuracy performance.

DeepLabv3+ was developed to resolve the problem of segmenting objects at multiple

scales. The authors built modules that employ atrous convolution in cascade or in

parallel to capture multi-scale context as they adopt various atrous rates. Ultimately,

as a network superior to ENet in segmentation tasks, using DeepLabv3+ seeks to

train a model to output cloud masks at even higher accuracy than ENet.

Using something like DeepLabv3+ would make the system slightly more heavy-

weight. Contrarily, we also consider consolidate this two level system for use in an

on-line setting. This effort would include retaining use of ENet or other lightweight

architectures and employing other image processing optimizations, classifier optimiza-

tions, and parallelization to increase the throughput of the system.

Lastly, in this thesis, when developing and testing the fast supervised cloud mask

generation process, using the Sentinel-2 LC1 product, we found that using solely the

RGB channels is insufficient to extend the described annotation process to satellite

images with fewer channels, e.g. Planetscope images. To tackle this, we planned to

involve more spatial information and a local textural analysis. We attempted this via

our experimentation with patches, however this proved unsatisfactory as well. Next

steps would involve other algorithms that take textural information into account, in

addition to potentially the development of new spectral indices (linear or non-linear
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combinations of existing spectral bands).
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