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Abstract

𝑘d-trees are widely used in parallel databases to support efficient neighborhood and
similarity queries. Supporting parallel updates to 𝑘d-trees is therefore an important
operation. In this paper, we present BDL-tree, a parallel, batch-dynamic implemen-
tation of a 𝑘d-tree that allows for efficient parallel 𝑘-NN queries over dynamically
changing point sets. BDL-trees consist of a log-structured set of 𝑘d-trees which can
be used to efficiently insert or delete batches of points in parallel with polylogarithmic
depth. Specifically, given a BDL-tree with 𝑛 points, each batch of 𝐵 updates takes
𝑂(𝐵 log2 (𝑛+𝐵)) amortized work and 𝑂(log (𝑛+𝐵) log log (𝑛+𝐵)) depth (parallel
time). We provide an optimized multicore implementation of BDL-trees. Our op-
timizations include parallel cache-oblivious 𝑘d-tree construction and parallel bloom
filter construction.

Our experiments on a 36-core machine with two-way hyper-threading using a va-
riety of synthetic and real-world datasets show that our implementation of BDL-tree
achieves a self-relative speedup of up to 34.8× (28.4× on average) for batch inser-
tions, up to 35.5× (27.2× on average) for batch deletions, and up to 46.1× (40.0× on
average) for 𝑘-nearest neighbor queries. In addition, it achieves throughputs of up to
14.5 million updates/second for batch-parallel updates and 6.7 million queries/second
for 𝑘-NN queries. We compare to two baseline 𝑘d-tree implementations and demon-
strate that BDL-trees achieve a good tradeoff between the two baseline options for
implementing batch updates.

Thesis Supervisor: Julian Shun
Title: Associate Professor
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Chapter 1

Introduction

Nearest neighbor search is used in a wide range of applications, such as in databases,

machine learning, data compression, and cluster analysis. One popular data structure

for supporting 𝑘-nearest neighbor (𝑘-NN) search in low dimensional spatial data is

the 𝑘d-tree, originally developed by Bentley [7], as it efficiently builds a recursive

spatial partition over point sets.

There has been a significant body of work (e.g., [7, 8, 9, 3, 4, 15, 36, 37, 32]) devoted

to developing better 𝑘d-tree variants, both in terms of parallelization and spatial

heuristics. However, none of these approaches tackle the problem of parallelizing

batched updates, which is important given that many real-world data sets are being

frequently updated. In particular, in a scenario where the set of points is being

updated in parallel, existing approaches either become imbalanced or require full

rebuilds over the new point set. The upper tree in Figure 1-1 shows the baseline

approach that simply rebuilds the 𝑘d-tree on every insert and delete, maintaining

perfect spatial balance but adding overhead to the update operations. On the other

hand, the lower tree in Figure 1-1 shows the other baseline approach, which never

rebuilds and instead only inserts points into the existing spatial partition and marks

deleted points as tombstones. This gives fast updates at the cost of potentially skewed

spatial partitions.

Procopiuc et al. [32] tackled the problem of a dynamically changing point set with

their Bkd-Tree, a data structure for maintaining spatial balance in the face of batched

13
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Insert (5, 5), (7, 7)

Figure 1-1: Difference in baseline update strategies when the 2-dimensional points
(5, 5) and (7, 7) are inserted into a spatial-median 𝑘d-tree initially constructed on the
points (1, 1) and (3, 3). The internal nodes are labeled with the splitting dimension
and the coordinate of the split in that dimension. Baseline 1 rebuilds the 𝑘d-tree on
every insertion and deletion, while baseline 2 does not rebuild the tree and instead
inserts points into the existing spatial partition.

updates. However, it was developed for the external memory case and is not parallel.

Similarly, Agarwal et al. [3] developed a dynamic cache-oblivious 𝑘d-tree, but it was

not parallel and did not support batch-dynamic operations.

We adapt these approaches and develop BDL-tree, a new parallel, in-memory

𝑘d-tree-based data structure that supports batch-dynamic operations (in particular,

batch construction, insertion, and deletion) as well as exact 𝑘-NN queries. BDL-trees

consist of a set of exponentially growing 𝑘d-trees and perform batched updates in

parallel. This structure can be seen in Figure 1-2. Just as in the Bkd-tree and cache-

oblivious tree, our tree structure consists of a small buffer region followed by exponen-

tially growing static 𝑘d-trees. Inserts are performed by rebuilding the minimum num-

ber of trees necessary to maintain fully constructed static trees. Deletes are performed

on the underlying trees, and we rebuild the trees whenever they drop to below half

of their original capacity. Our use of parallelism, batched updates, and our approach

to maintaining balance after deletion are all distinct from the previous trees that we

draw inspiration from. We show that given a BDL-tree with 𝑛 points, each batch of 𝐵

14



Buffer Static Trees

● construction
● deletion
● knn

Static vEB-layout 
kd-tree methods:

● construction
● insertion
● deletion
● knn

BDL-Tree methods:

BDL-Tree 

Static vEB-layout 
kdtree

Figure 1-2: Logarithmic method used in BDL-tree, with 𝑁𝑠 underlying static 𝑘d-trees
and a buffer 𝑘d-tree of size 𝑋.

updates takes 𝑂(𝐵 log2 (𝑛+𝐵)) amortized work and 𝑂(log (𝑛+𝐵) log log (𝑛+𝐵))

depth (parallel time). As part of our work, we develop, to our knowledge, the first

parallel algorithm for the construction of cache-oblivious 𝑘d-trees. Our construction

algorithm takes 𝑂(𝑛 log 𝑛) work and 𝑂(log 𝑛 log log 𝑛) depth. In addition, we imple-

ment parallel bloom filters to improve the performance of batch updates in practice.

We also present a cache-efficient method for performing 𝑘-NN queries in BDL-tree.

We show theoretically that BDL-trees have strong asymptotic bounds on the work

and depth of its operations.

We experimentally evaluate BDL-trees by designing a set of benchmarks to com-

pare its performance against the two baseline approaches described above, which

we implemented using similar optimizations. First, we perform scalability tests for

each of the four main operations, construction, batch insertion, batch deletion, and

𝑘-NN in order to evaluate the scalability of our data structure on many cores. On

a 36-core machine with two-way hyper-threading, we find that our data structure

achieves self-relative speedups of up to 35.4× (30.0× on average) for construction,

up to 35.0× (28.3× on average) for batch insertion, up to 33.1× (28.5× on aver-

age) for batch deletion, and up to 46.1× (40.0× on average) for full 𝑘-NN. The

largest dataset we test consists of 321 million 3-dimensional points. Then, we de-

sign a set of benchmarks that perform a mixed set of updates and queries in or-

15



der to better understand the performance of BDL-trees in realistic scenarios. We

find that, when faced with a mixed set of batch operations, BDL-trees consistently

outperforms the two baselines and presents the best option for such a mixed dy-

namic setting. Our source code implementing BDL-trees is publicly available at

https://github.com/rahulyesantharao/batch-dynamic-kdtree.
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Chapter 2

Preliminaries

2.1 𝑘d-tree

The 𝑘d-tree, first proposed by Bentley [7], is a binary tree data structure that arranges

and holds spatial data to speed up spatial queries. Given a set 𝑃 of 𝑛 𝑑-dimensional

points, the 𝑘d-tree is a balanced binary tree where each node represents a bounding

box of a subset of the input points. The root node represents all of the points (and

thus the tightest bounding box that includes all the points in 𝑃 ). Each non-leaf node

holds a splitting dimension and splitting value that splits its bounding box into two

halves using an axis-aligned hyperplane in the splitting dimension. Each child node

represents the points in one of the two halves. This recursive splitting stops when

the nodes hold some small constant number of points—these nodes are the leaves and

directly represent the points.

2.1.1 𝑘-NN Search using the 𝑘d-tree

Given a query coordinate 𝑞, a 𝑘-NN query finds the 𝑘 nearest neighbors of 𝑞 amongst

elements of the 𝑘d-tree by performing a pruned search on the tree [22]. The canonical

approach is to traverse the tree while inserting points in the current node into a buffer

that maintains only the 𝑘 nearest neighbors encountered so far. Then, entire subtrees

can be pruned during the traversal based on the distance of the 𝑘-th nearest neighbor

17



found so far.

2.1.2 Dual-Tree 𝑘-NN

Besides the canonical approach explained above, there has been a lot of prior work

on “dual-tree" approaches [16, 15, 24, 29], which provide speedups on serial batched

𝑘-NN queries. In particular, the dual-tree approach involves building a second 𝑘d-tree

over the set of query points, and then exploring the two trees simultaneously in order

to exploit the spatial partitioning provided by the 𝑘d-tree structure and reduce the

overall work required to perform the search. This approach was theoretically very

well-suited to our logarithmic tree structure because we have several individual 𝑘d-

trees over which we would like to perform a 𝑘-NN search for the same set of query

points. We can perform all of the searches with only a single tree built over the set

of query points. We parallelized and tested this dual-tree approach in our work.

2.2 Batch-Dynamic Data Structures

The concept of a parallel batch-dynamic data structure has become popular in recent

years [35, 18] as an important paradigm due to the availability of large (dynamic)

datasets undergoing rapid changes. The idea is to batch together operations of a

single type and perform them as a single batched update, rather than one at a time.

This approach offers two benefits. First, from a usability perspective, it is often the

case (especially in applications with a lot of data) that operations on a data structure

can be grouped into phases or batches of a single type, so this restriction in the

usage of the data structure does not significantly limit the usefulness of the data

structure. Secondly, from a performance perspective, batching together operations of

a single type allows us to group together the involved work and derive significantly

more parallelism than otherwise might have been possible (while also avoiding the

concurrency issues that might arise with batching together operations of varying

types).

18



2.3 Baselines

In order to benchmark and test the performance of BDL-trees, we implement two

parallel baseline 𝑘d-trees that use opposite strategies for providing batch-dynamism.

In particular, the first baseline 𝑘d-tree simply rebuilds the tree after every batch

insertion and batch deletion. With this approach, the tree is able to maintain a fully

balanced structure in the face of a dynamically changing dataset, enabling consistently

high performance for 𝑘-NN queries. This comes at the cost of reduced performance

for updates. The second baseline 𝑘d-tree never rebuilds the tree and simply maintains

the initial spatial partition, inserting points into and deleting points from the existing

structure. This allows for extremely fast batch insertions and deletions, but could

potentially lead to a skewed structure and cause reduced 𝑘-NN performance. The

difference between these two baselines is graphically demonstrated in Figure 1-1. We

demonstrate experimentally that BDL-tree achieves a balanced tradeoff between these

two baseline options for batch-dynamic parallel 𝑘d-trees on which we are performing

𝑘-NN queries. It outperforms both in the dynamic setting where 𝑘-NN queries and

batched updates are all being used.

2.4 Logarithmic Method

The logarithmic method [8, 9] for converting static data structures into dynamic ones

is a very general idea. At a high level, the idea is to partition the static data structure

into multiple structures with exponentially growing sizes (powers of 2). Then, inserts

are performed by only rebuilding the smallest structure necessary to account for the

new points. In the specific case of the 𝑘d-tree, a set of 𝑁𝑠 static 𝑘d-trees is allocated,

with capacities in the set [20, 21, . . . , 2𝑁𝑠−1], as well as an extra buffer tree with size

20. Then, when an insert is performed, the insert cascades up from the buffer tree,

rebuilding into the first empty tree with all the points from the lower trees. If desired,

the sizes of all of the trees can be multiplied by a buffer size 𝑋, which is some constant

that is tuned for performance. This structure is illustrated in Figure 1-2. In the figure,
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all of the trees shown are full; one can imagine that the tree with size 23𝑋 is empty,

so the next insert would cause the buffer and trees 0, 1, and 2 to cascade up to it.

2.5 Computational Model

We use the standard work-depth model [14, 27] for multicore algorithms to analyze

theoretical efficiency. The work of an algorithm is the total number of operations

used and the depth is the length of the longest sequential dependence (i.e., the

parallel running time). An algorithm with work 𝑊 and depth 𝐷 can be executed on

𝑝 processors in 𝑊/𝑝+𝑂(𝐷) expected time [13]. Our goal is to come up with parallel

algorithms that have low work and depth.

2.5.1 Parallel Primitives

We use the following parallel primitives in our algorithms.

• Prefix sum takes as input a sequence of values [𝑎1, 𝑎2, . . . , 𝑎𝑛], an associative

binary operator ⊕, and an identity 𝑖, and returns the sequence [𝑖, 𝑎1, (𝑎1 ⊕
𝑎2), ..., (𝑎1 ⊕ 𝑎2 ⊕ · · · ⊕ 𝑎𝑛−1)] as well as the overall sum of the elements. Prefix

sum can be implemented in 𝑂(𝑛) work and 𝑂(log 𝑛) depth [27].

• Partition takes an array 𝐴, a predicate function 𝑓 , and a partition value 𝑝 and

outputs a new array such that all the values 𝑎 ∈ 𝐴, 𝑎 < 𝑝 appear before all the

values 𝑎 ∈ 𝐴, 𝑎 ≥ 𝑝. Partition can be implemented in 𝑂(𝑛) work and 𝑂(log 𝑛)

depth [27].

• Median partition takes 𝑛 elements and a comparator and partitions the ele-

ments based on the median value in 𝑂(𝑛) work and 𝑂(log 𝑛 log log 𝑛) depth [27].
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Chapter 3

Related Work

Numerous tree data structures for spatial search have been proposed in the litera-

ture, including the 𝑘d-tree [7], quadtree [20], ball tree [30], cover tree [10], and the

R-tree [25]. Among them, the 𝑘d-tree is a well-known data structure proposed by

Bentley [7] in 1975. It is simple and yet can handle many types of queries efficiently.

Bentley showed that the 𝑘d-tree incurs 𝑂(log 𝑛) time for insertion and deletion of

random nodes, and logarithmic average query time was observed in practice. The

data structure has been extensively studied in the parallel setting. Shevtsov [33] et

al. proposed fast construction algorithms for the 𝑘d-tree for ray tracing, by using bin-

ning techniques to distribute the workload among parallel processors. Agarwal [4] et

al. proposed parallel algorithms for a series of spatial trees, including the 𝑘d-tree un-

der the massively parallel communication (MPC) model. Wehr and Radkowski [36]

proposed fast sorting-based algorithms for constructing 𝑘d-trees on the GPU. Zell-

mann [37] proposed algorithms for CPUs and GPUs for 𝑘d-trees used in graphics

rendering.

The idea of decomposing a data structure into a logarithmic number of structures

for the sake of dynamism has been proposed and used in many different scenarios.

Bentley [8, 9] first proposed dynamic structures for decomposable search problems.

Specifically, he proposed general methods for converting static data structures into

dynamic ones with logarithmic multiplicative overhead in cost, using a set of static

data structures with sizes given by increasing powers of two. This is a very impor-
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tant idea, because 𝑘d-trees are generally packed into memory by their construction

(both for convenience and for better memory utilization and locality) [7], so inserting

into a 𝑘d-tree is generally a difficult problem. Beyond the memory issues, however,

the more fundamental issue with inserting into a 𝑘d-tree is that inserts can cause

imbalance in the tree, which is built according to an original set of points. Thus, too

many inserts can cause the tree to become very imbalanced and cause queries to slow

down. Agarwal et al. [4] designed cache-oblivious data structures for orthogonal range

searching using ideas from the log-structured tree. This was the first application of

the van Emde Boas layout [17], which was originally proposed for the cache-oblivious

B-tree [6], to the 𝑘d-tree structure. This is a natural application because the layout

itself can be applied to any balanced binary tree structure to achieve cache-oblivious

traversals. Procopiuc et al. [32] proposed and implemented the Bkd-Tree, which uses

the logarithmic method [8, 9] to maintain a balanced, dynamic 𝑘d-tree in external

memory. O’Neil et al. [31] proposed the log-structured merge (LSM) tree, an efficient

file indexing data structure that supports efficient dynamic inserts and deletes in sys-

tems with multiple storage hierarchies. Specifically, batches of updates are cascaded

over time, from faster storage media to slower ones. A parallel version of the LSM tree

has been implemented [34] by dividing the key-space independently across cores, and

processing it in a data-parallel fashion. Our work, on the other hand, proposes a par-

allel batch-dynamic 𝑘d-tree, where each batch of updates can be processed efficiently

in parallel, while supporting efficient 𝑘-NN queries.

We have recently discovered that, concurrent with our work, Dobson and Blel-

loch [19] developed the zd-tree, a data structure that also supports parallel batch-

dynamic updates and 𝑘-NN queries. Their insight is to modify the basic 𝑘d-tree

structure by sorting points based on their Morton ordering and splitting at each level

based on a bit in the Morton ordering. For 𝑘-NN queries, they provide a root-based

method, which is the traditional top-down 𝑘-NN search algorithm and is what we

implement, as well as a leaf-based method, which directly starts from the leaves and

searches up for nearest neighbors. The leaf-based method works and is faster when

the query points are points in the dataset, as it saves the downward traversal to
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search for the query points. They prove strong work and depth bounds for construc-

tion, batch updates, and 𝑘-NN queries assuming data sets with bounded expansion

constant and bounded ratio. Without these assumptions, however, our bounds would

be at least as good as theirs.

In Dobson and Blelloch’s implementation, they optimize 𝑘-NN queries by pre-

sorting the query points using the Morton ordering to improve cache locality. Their

algorithm assumes that there is a maximum bounding box where all future data will

fit into, while our algorithm does not make this assumption. Their implementation

discretizes the double coordinates into 64-bit integers in order to perform Morton

sort on them. As a result, they can only use at most 64/𝑑 bits for each of the 𝑑 di-

mensions. Directly extending the implementation to higher dimensions would either

lead to larger leaf sizes or using larger-width coordinates for the Morton sort, either

of which could add overheads. Their experiments consider only 2D and 3D datasets,

while we test on higher dimensional datasets as well. For 2D and 3D datasets, the

running times that they report seem to be in the same ballpark as our times (their

𝑘-NN queries for constructing the 𝑘-NN graph are much faster than ours due to the

presorting described above), after adjusting for number of processors and dataset

sizes, but it would be interesting future work to experimentally compare the codes

on the same platform and datasets, including higher-dimensional ones. It would also

be interesting to integrate some of their optimizations into our code, and to combine

the approaches to build a log-structured version of the zd-tree.

23



24



Chapter 4

BDL-tree Algorithms

In this chapter, we introduce BDL-tree, a parallel batch-dynamic 𝑘d-tree implemented

using the logarithmic method [8, 9] (discussed in Section 2.4). BDL-trees build on

ideas from the Bkd-Tree by Procopiuc et al. [32] and the cache-oblivious 𝑘d-tree by

Agarwal et al. [3]. The structure is depicted in Figure 1-2.

We implement the underlying 𝑘d-trees in an BDL-tree as nodes in a contiguous

memory array, where the root node is the first element in the array. The 𝑘d-trees

are built using the van Emde Boas (vEB) [5, 17, 3] recursive layout. Agarwal [3] et

al. show that this memory layout can be used with 𝑘d-trees to make traversal cache-

oblivious, although dynamic updates on a single tree become very complex. However,

in the logarithmic method, the underlying 𝑘d-trees themselves are static, and so we

are able to sidestep the complexity of cache-oblivious updates on these trees and

benefit from the improved cache performance of the vEB layout. For the buffer region

of the BDL-tree, we use a regular 𝑘d-tree, laid out like a binary-heap in memory

(i.e., nodes are in a contiguous array, and the children of index 𝑖 are 2𝑖, 2𝑖 + 1).

We will discuss the key parallel algorithms that we used in our implementation:

construction, deletion, and 𝑘-NN on the underlying individual 𝑘d-trees (Section 4.1)

and construction, insertion, deletion, and 𝑘-NN on BDL-tree (Section 4.2). Note that

we do not need to support insertions on individual 𝑘d-trees, because our BDL-tree

simply rebuilds the necessary 𝑘d-trees upon insertions. We use subscript S to denote

algorithms on the underlying 𝑘d-trees, and subscript L to denote algorithms on the
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Algorithm 1 Parallel vEB-layout 𝑘d-tree Construction
Input: Point Set 𝑃
Output: 𝑘d-tree over 𝑃 , laid out with the vEB layout on a contiguous memory

array of size 2|𝑃 | − 1.
1: procedure BuildvEBS(𝑃 )
2: Allocate 2|𝑃 | − 1 nodes in contiguous memory. The tree nodes will be laid

out in this space.
3: BuildvEBRecursiveS(𝑃 , 0, 0, ⌊log(|𝑃 |)⌋+1, bottom)
4: procedure BuildvEBRecursiveS(𝑄, 𝑖𝑑𝑥, 𝑐, 𝑙, 𝑡)

𝑖𝑑𝑥: current node index in the memory array
𝑐: current dimension to split on
𝑙: number of levels to build
𝑡: whether we are building the top or bottom of a tree

5: If we hit the base case 𝑛 = 1, then we construct a node at 𝑖𝑑𝑥. If 𝑡 is top,
then we perform a parallel median partition on 𝑄 in dimension 𝑐 and record this
split as an internal node. Otherwise, we create a leaf node that represents the
points in 𝑄.

6: Compute 𝑙𝑏 =
⌈︀⌈︀

𝑙+1
2

⌉︀⌉︀
and 𝑙𝑡 = 𝑙 − 𝑙𝑏 (vEB layout).

7: Recursively build the top half of the tree with BuildvEBRecursiveS(𝑄,
𝑖𝑑𝑥, 𝑐, 𝑙𝑡, top).

8: Compute 𝑖𝑑𝑥𝑏 = 𝑖𝑑𝑥+ 2𝑙𝑡 − 1 as the offset where the top half of the tree was
just laid out.

9: Construct the 2𝑙𝑡 lower subtrees in parallel with BuildvEBRecursiveS(𝑄𝑖,
𝑖𝑑𝑥𝑖, (𝑐+𝑛𝑡) mod 𝑑, 𝑙𝑏, 𝑡) where 𝑄𝑖 is the subarray of points that are held by the
parent of this subtree and 𝑖𝑑𝑥𝑖 is the index at which this subtree is to be placed
(precomputed with a parallel prefix sum).

full logarithmic data structure.

4.1 Single-Tree Parallel Algorithms

4.1.1 Parallel vEB Construction

The algorithm for parallel construction of the cache-oblivious 𝑘d-tree is shown in

Algorithm 1. The function itself is recursive, and so the top level BuildvEBS function

allocates space on line 2 and calls the recursive function BuildvEBRecursiveS.

Refer to Figure 4-1 for a graphical representation of this construction.

The recursive function BuildvEBRecursiveS maintains state with 5 parame-

ters: a point set 𝑄, a node index 𝑖𝑑𝑥, a splitting dimension 𝑐, the number of levels to

26



y=2.5

x=0.5 x=2.5

y=5.5

x=4.5 x=6.5

x=3.5

(0,0) (1,1) (2,2) (3,3) (4,4) (5,5) (6,6) (7,7)

idx=0

idx=1 idx=2

idx=11

idx=10 idx=13idx=7idx=4

idx=12 idx=14 idx=15idx=5 idx=6 idx=8 idx=9

top recursive call bottom recursive calls, in parallel

Figure 4-1: Constructing a vEB 𝑘d-tree in parallel over 8 2-dimensional points. Note
that the top 3 nodes are placed before the remaining 4 bottom subtrees are built in
parallel.

build 𝑙, and whether it is building the top or bottom of the tree (indicated by 𝑡). On

line 5, we check for the base case—if the number of levels to build is 1, then we have

to construct a node. If this is the top of a tree, then this node will be an internal

node, so we perform a parallel median partition in dimension 𝑐 and save it as an

internal node. On the other hand, if this is the bottom of the tree, we construct a leaf

node that holds all the points in 𝑄. Lines 6–9 form the recursive step. In accordance

with the exponential layout [3], we have to first construct the top “half" of the tree

and then the bottom “half". Therefore, on line 6, we compute the number of levels 𝑙𝑏

in the bottom portion as the hyperceiling1 of 𝑙+1
2

and the remaining number of levels

𝑙𝑡 in the top portion of the tree as 𝑙 − 𝑙𝑏. On line 7, we recursively build the top

half of the tree. Then, on line 8, we note that because the top half of the tree is a

complete binary tree with 𝑙𝑡 levels, it will use 2𝑙𝑡 − 1 nodes. Therefore, we compute

𝑖𝑑𝑥𝑏 = 𝑖𝑑𝑥+2𝑙𝑡 −1, the node index where the bottom half of the tree should start be-

cause the trees are laid out consecutively in memory. Finally, on line 9, we construct

each of the 2𝑙𝑡 subtrees that fall under the top half of the tree, each with 𝑙𝑏 levels.

Each of these trees falls into a distinct segment of memory in the array, and so we

can perform this construction in parallel across all of the subtrees by precomputing

the starting index 𝑖𝑑𝑥𝑖 for each of the 2𝑙𝑡 subtrees.

1The hyperceiling of 𝑛, denoted as ⌈⌈𝑛⌉⌉ is the smallest power of 2 that is greater than or equal
to 𝑛, i.e., 2⌈log𝑛⌉.
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We trace this process on an example in Figure 4-1, in which BuildvEBS is called

on a set 𝑃 of 8 points. This spawns a call to BuildvEBRecursiveS(𝑃 [0 : 8], 0,

0, 4, bottom). On line 6, we will compute 𝑙𝑏 = 2 and 𝑙𝑡 = 2, and on line 7, we

spawn a recursive call to BuildvEBRecursiveS(𝑃 [0 : 8], 0, 0, 2, top). This

call is shown as the solid box around the top 3 nodes in Figure 4-1. In this call,

we will hit one further level of recursion before laying out the 3 nodes in indices 0,

1, 2. Then, the original recursive call will proceed to line 8, where it will compute

𝑖𝑑𝑥𝑏 = 3 as the index to begin laying out the 2𝑙𝑡 = 4 bottom subtrees. Finally, on

line 9, we will precompute that the starting indices for the 4 bottom subtrees are

(𝑖𝑑𝑥0, 𝑖𝑑𝑥1, 𝑖𝑑𝑥2, 𝑖𝑑𝑥3) = (3, 6, 9, 12). This results in 4 parallel recursive calls, shown

in the 4 lower dashed boxes in Figure 4-1. Each of these recursive calls internally has

one more level of recursion to lay out their 3 nodes.

Theorem 1. The cache-oblivious 𝑘d-tree with a vEB layout can be constructed over

𝑛 points in 𝑂(𝑛 log 𝑛) work and 𝑂(log 𝑛 log log 𝑛) depth.

Proof. The work bound is obtained by observing that there are 𝑂(log 𝑛) levels in the

fully-constructed tree, and the median partition at each level takes 𝑂(𝑛) work, giving

a total of 𝑂(𝑛 log 𝑛) work. For the depth bound, at each recursive step we first build

an upper tree with size 𝑂(
√
𝑛), and then construct the lower trees in parallel, each

with size 𝑂(
√
𝑛). Further, we use an 𝑂(log 𝑛)-depth prefix sum to compute 𝑖𝑑𝑥𝑖 at

every level except the base case and an 𝑂(log 𝑛 log log 𝑛)-depth median partition in

the base case. Overall, this results in 𝑂(log 𝑛 log log 𝑛) depth.

After the vEB-layout 𝑘d-tree is constructed, it can be queried as a regular 𝑘d-

tree—the only difference is the physical layout of the nodes in memory. The cor-

rectness of this recursive algorithm can be seen through induction on the number of

levels. In particular, we form two inductive hypotheses:

• BuildvEBRecursiveS(𝑄, 𝑖𝑑𝑥, 𝑐, 𝑙, top) creates a contiguous, fully-balanced

binary tree with 𝑙 levels rooted at memory location 𝑖𝑑𝑥. Furthermore, this

binary tree consists of internal 𝑘d-tree nodes that equally split the point set 𝑄

in half at each level.
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• BuildvEBRecursiveS(𝑄, 𝑖𝑑𝑥, 𝑐, ⌈log |𝑄|⌉+1, bottom) creates a contiguous

𝑘d-tree with 𝑙 levels rooted at memory location 𝑖𝑑𝑥.

The base cases, with 𝑙 = 1, for these inductive hypotheses are explicitly given on line

5. Then, the inductive step follows easily by noting that the definition of hyperceiling

implies that the recursive calls on line 9 are all sized such that 𝑙𝑏 = ⌈log |𝑄|𝑖⌉+ 1.

4.1.2 Parallel Regular Construction

Algorithm 2 Parallel 𝑘𝑑-Tree Construction
Input: Point Set 𝑃
Output: 𝑘d-tree over 𝑃 , laid out with a binary-heap layout on a contiguous

memory space of size 2|𝑃 | − 1.
1: procedure BuildS(𝑃 )
2: Allocate 2|𝑃 | − 1 nodes in contiguous memory. The tree nodes will be laid

out in this space.
3: BuildRecursiveS(𝑃 , 0, 0)
4: procedure BuildRecursiveS(𝑄, 𝑖𝑑𝑥, 𝑐)

𝑖𝑑𝑥: current node index
𝑐: current dimension to split on

5: If we hit the base case |𝑄| = 1, then we construct a leaf node to represent 𝑄
at the current index and return.

6: Otherwise, perform a parallel median partition on 𝑄 in dimension 𝑐. Then,
place an internal node at the current index to represent this split.

7: Compute 𝑚𝑒𝑑 = |𝑄|/2. Then, construct the left and right subtrees in parallel
with

BuildRecursiveS(𝑄[: |𝑄|/2], 2𝑖𝑑𝑥+ 1, (𝑐+ 1) mod 𝑑)
BuildRecursiveS(𝑄[|𝑄|/2 :], 2𝑖𝑑𝑥+ 2, (𝑐+ 1) mod 𝑑)

The algorithm for parallel construction of a regular 𝑘d-tree is shown in Algo-

rithm 2. The function itself is recursive, and so the top level BuildS function allocates

space on line 2 and calls the recursive BuildRecursiveS.

The recursive function BuildRecursiveS maintains state with 3 parameters:

the set of points 𝑄, the current node 𝑖𝑑𝑥, and the current splitting dimension 𝑐.

On line 5, we check the base case where only a single point is left in 𝑄—in this

case, we construct a leaf node at 𝑖𝑑𝑥 to represent 𝑄 and return. Lines 6–7 represent
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Algorithm 3 Parallel 𝑘𝑑-Tree Deletion
Input: Point Set 𝑃

1: procedure EraseS(𝑃 )
2: EraseRecursiveS(𝑃 , 0)
3: procedure EraseRecursiveS(𝑄, 𝑖𝑑𝑥)

𝑖𝑑𝑥: current node index
4: If the current node is a leaf node, mark any points in the leaf node that are

also in 𝑄 as deleted. If all of the points in the current leaf are deleted, return
NULL. Otherwise, return the current 𝑖𝑑𝑥.

5: Otherwise, perform a parallel partition on 𝑄 around the split represented by
the current node. Let 𝑄𝑙, 𝑄𝑟 be the resulting left and right arrays, respectively,
after the partition.

6: Then, recurse on the children in parallel with EraseRecursiveS(𝑄𝑙, 𝑖𝑑𝑥𝑙),
EraseRecursiveS(𝑄𝑟, 𝑖𝑑𝑥𝑟), where 𝑖𝑑𝑥𝑙 and 𝑖𝑑𝑥𝑟 are the IDs of the left and
right children, respectively.

7: If neither of the recursive calls return NULL, reset the left and right children
to be the results of these calls and return the current node. If both of the recursive
calls return NULL, return NULL. If one of the recursive calls returns NULL and
the other does not, return the non-NULL node.

the recursive case. First, on line 6, we perform a parallel median partition of 𝑄 in

dimension 𝑐 and construct an internal node to represent this splitting plane. Then,

on line 7, we construct the left and right subtrees in parallel.

Theorem 2. The regular 𝑘d-tree with a binary heap-style layout can be constructed

over 𝑛 points in 𝑂(𝑛 log 𝑛) work and 𝑂(log2 𝑛 log log 𝑛) depth.

Proof. We can see the work bound by noting that there are log 𝑛 levels in the fully-

constructed tree, and the median partition at each level takes 𝑂(𝑛) work, giving a

total of 𝑂(𝑛 log 𝑛) work. For the depth, note that there are 𝑂(log 𝑛) levels, and the

depth at each level is 𝑂(log 𝑛 log log 𝑛) for the median partition, resulting in an overall

depth of 𝑂(log2 𝑛 log log 𝑛).

4.1.3 Parallel Deletion

The algorithm for parallel deletion from a single 𝑘d-tree is shown in Algorithm 3. The

function itself is recursive, so the top level EraseS calls the subroutine EraseRecursiveS

on the root node on line 2.
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The recursive function EraseRecursiveS acts on one node at a time, represented

by the index 𝑖𝑑𝑥. On line 4, it checks for the base case—if the current node is a leaf

node, it simply performs a linear scan to mark any points in the leaf node that are

also in 𝑄 as deleted. Then, it returns NULL if the entire leaf was emptied; otherwise,

it returns the current node 𝑖𝑑𝑥. Lines 5–7 represent the recursive case. First, on line

5, we perform a parallel partition of 𝑄 around the current node’s splitting hyperplane.

We refer to the lower partition as 𝑄𝑙 and the upper partition as 𝑄𝑟. On line 6, we

recurse on the left and right subtrees in parallel, passing 𝑄𝑙 to the left subtree and

𝑄𝑟 to the right. Finally, line 7 updates the tree structure. We always ensure that

every node has 2 children in order to flatten any unnecessary tree traversal. The

return value of EraseRecursiveS indicates the node that should take the place of

𝑖𝑑𝑥 in the tree (potentially the same node)—a return value of NULL indicates that

the entire subtree rooted at 𝑖𝑑𝑥 was removed. So, if both the left and right child

are removed, then we can remove the current node as well by returning NULL. On

the other hand, if neither the left or right child are removed, then the subtree is still

intact, and we simply reset the left and right child pointers of the current node and

return the current node 𝑖𝑑𝑥, indicating that it was not removed. Finally, if exactly

one of the children was removed, then we remove the current node as well and let

the remaining child connect directly to its grandparent—in this way, we remove an

unnecessary internal splitting node. We do this by simply returning the non-NULL

child, signaling that it will take the place of the current node in the 𝑘d-tree.

Theorem 3. Deleting a batch of 𝐵 points from a single 𝑘d-tree constructed over 𝑛

points can be done in 𝑂(𝐵 log 𝑛) work and 𝑂(log𝐵 log 𝑛) depth in the worst case.

Proof. We can see the work bound by noting that each of the 𝐵 points traverse down

𝑂(log 𝑛) levels as part of the algorithm. For the depth, note that in the worst-case

the parallel partition at each level operates over 𝑂(𝐵) points at each level. Because

parallel partition has logarithmic depth, this would result in a worst-case 𝑂(log𝐵)

depth at each of the 𝑂(log 𝑛) levels, giving the overall depth of 𝑂(log𝐵 log 𝑛).
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4.1.4 Data-Parallel 𝑘-NN

Algorithm 4 Data-Parallel 𝑘𝑑-Tree 𝑘-NN
Input: Point Set 𝑃 , int 𝑘
Output: An array of arrays of the 𝑘 nearest neighbors of each point in 𝑃 .

1: procedure knn(𝑃 )
2: Allocate a 𝑘-NN buffer 𝑏𝑢𝑓𝑝 and Call KnnSinglePoint(0, 𝑝, 𝑘, 𝑏𝑢𝑓𝑝) in

parallel over all 𝑝 ∈ 𝑃 .
3: procedure knnSinglePoint(𝑖𝑑𝑥, 𝑝, 𝑘, 𝑏𝑢𝑓)
4: If the current node is a leaf, add all points in the leaf to the 𝑏𝑢𝑓𝑝 and return.
5: Otherwise, recurse on the child 𝑐 that 𝑝 falls within based on the current

splitting plane.
6: After the recursive call returns, if 𝑏𝑢𝑓𝑝 does not yet have 𝑘 points, simply add

all the points in the subtree of 𝑐’s sibling, 𝑠.
7: On the other hand, if 𝑏𝑢𝑓𝑝 has 𝑘 points, obtain the current radius estimate

and call knnPrune on 𝑠.
8: procedure knnPrune(𝑖𝑑𝑥, 𝑝, 𝑘, 𝑏𝑢𝑓 , 𝑟𝑎𝑑)
9: Call the box centered on 𝑝 with side lengths 2 · 𝑟𝑎𝑑 the query box.

10: Compute the box intersection of query box with the bounding box of the
current node 𝑖𝑑𝑥.

11: If the boxes are disjoint, return immediately - there are no potential closer
neighbors in the subtree.

12: If the query box entirely contains the bounding box, add all the points in the
subtree to 𝑏𝑢𝑓 - any of these points could potentially be a closer neighbor.

13: If the boxes otherwise overlap, recurse on the left and right children of 𝑖𝑑𝑥 if
it is an internal node. Otherwise, add all of its points to 𝑏𝑢𝑓 .

We execute our 𝑘-NN searches in a data-parallel fashion by parallelizing across all

of the query points in a batch. The 𝑘-NN search for each point is executed serially.

We implement a “𝑘-NN buffer", a data structure that maintains a list of the current 𝑘-

nearest neighbors and provide quick insert functionality to test and insert new points

if they are closer than the existing set. The data structure maintains an internal

buffer of size 2𝑘. To insert a point, it simply adds that point to the end of the buffer.

If the buffer is filled up, then it uses a serial selection algorithm to partition the

buffer around the 𝑘-th nearest element and clears out the remaining 𝑘 elements. This

achieves a serial amortized 𝑂(1) runtime (because the selection partition step is 𝑂(𝑘)

and is only performed for every 𝑘 insertions).

To implement batched 𝑘-NN on the 𝑘d-tree, we perform a 𝑘-NN search for each
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individual point in parallel across all the points. We now describe the 𝑘-NN method

(kNNS) for a single point 𝑝. We first allocate a 𝑘-NN buffer for the point. Then, we

recursively descend through the 𝑘d-tree searching for the leaf that 𝑝 falls into. When

we find this leaf, we add all of the points in the leaf to the 𝑘-NN buffer. Then, as

the recursion unfolds, we check whether the 𝑘-NN buffer has 𝑘 points. If it does not,

we add all the points in the sibling of the current node to the 𝑘-NN buffer to try to

fill up the buffer with nearby points as quickly as possible to improve our estimate

of the 𝑘-th nearest neighbor. Otherwise, we use the current distance of the 𝑘-th

nearest neighbor to prune subtrees in the tree. In particular, if the bounding box

of the current subtree is entirely contained within the distance of the 𝑘-th nearest

neighbor, we add all points in the subtree to the 𝑘-NN buffer. If the bounding box is

entirely disjoint, then we prune the subtree. Finally, if they intersect, we recurse on

the subtree. The pseudocode for this structure is shown in Algorithm 4.

Theorem 4. For a constant 𝑘, 𝑘-NN queries over a batch of 𝐵 points can be per-

formed over a single 𝑘d-tree containing 𝑛 points in worst-case 𝑂(𝐵𝑛) work and worst-

case 𝑂(𝑛) depth.

Proof. In the worst-case, we have to search the entire tree, of size 𝑂(𝑛), resulting in

total work of 𝑂(𝐵𝑛) (due to the amortized 𝑂(1) insert cost for 𝑘-NN buffers) and

depth of 𝑂(𝑛), as the queries are done in parallel over the batch, but each search is

serial.

As noted by Bentley [7] and Friedman et al. [22], the work for a single nearest-

neighbor query on a 𝑘d-tree is empirically found to be logarithmic in 𝑛, so the ex-

perimental runtime and scalability are much better than suggested by the worst-case

bounds.

4.2 Batch-Dynamic Parallel Algorithms

This section describes our algorithms for supporting batch-dynamic updates on BDL-

trees.
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Algorithm 5 Parallel BDL-tree Batch Insertion
Input: Point Set 𝑃

1: procedure InsertL(𝑃 )
2: Build an integer bitmask 𝐹 that represents the static trees within the loga-

rithmic tree structure that are currently filled using 1’s, and the trees that are
empty using 0’s.

3: Compute 𝐹𝑛𝑒𝑤 = 𝐹 + |𝑃 |
𝑋

, where 𝑋 is the buffer tree size. This is the new
bitmask of trees that should be filled.

4: Based on the difference between 𝐹 and 𝐹𝑛𝑒𝑤, determine which trees should be
combined into larger trees.

5: Gather the relevant points and construct all the new trees in parallel using
BuildvEBS (or BuildS for the buffer tree).

4.2.1 Parallel Insertion

Insertions are performed in the style of the logarithmic method [8, 9], with the goal of

maintaining the minimum number of full trees within BDL-tree. Thus, upon inserting

a batch 𝐵 of points, we rebuild larger trees if it is possible using the existing points

and the newly inserted batch. This is implemented as shown in Algorithm 5, and

depicted in Figure 4-2.

First, on line 2, we build a bitmask 𝐹 of the current set of full static trees in the

logarithmic structure. Then, on line 3, because the buffer 𝑘d-tree has size 𝑋, we can

add |𝑃 |/𝑋 to 𝐹 to compute a new bitmask 𝐹𝑛𝑒𝑤 of full trees that would result if we

added |𝑃 | points to the tree structure. As an implementation detail, note that we first

add |𝑃 | mod 𝑋 points to the buffer 𝑘d-tree—if we fill up the buffer 𝑘d-tree, then we

gather the 𝑋 points from it and treat them as part of 𝑃 , effectively increasing the size

of 𝑃 by 𝑋. Then, on line 4, taking the bitwise difference between these two bitmasks

gives the set of trees that should be consolidated into new larger trees—specifically,

any tree that is set in 𝐹𝑛𝑒𝑤 but not in 𝐹 must be constructed from trees that are set

in 𝐹 but not in 𝐹𝑛𝑒𝑤. After determining which trees should be combined into new

trees, on line 5 we construct all the new trees in parallel—in parallel for each new

tree to be constructed, we deconstruct and gather all the points from trees that are

being combined into it and then we construct the new tree over these points and any

additional required points from 𝑃 using Algorithm 1.
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(a) Static tree 0 is full.
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(b) Static tree 1 is full and buffer tree has 1
point.
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(c) Static trees 0 and 1 are full and buffer tree
has 2 points.

1
Buffer
Tree Static Trees

F = 100

0 1 2

(d) Static tree 2 is full and buffer tree has 1
point.

Figure 4-2: A BDL-tree in various configurations with 𝑋 > 2; starting from (a),
inserting 𝑋 + 1 points gives (b), then inserting 𝑋 + 1 points gives (c), and then
inserting 𝑋 − 1 points gives (d).

Refer to Figure 4-2 for an example of this insertion method (suppose for this

example that 𝑋 > 2). In Figure 4-2a, the BDL-tree contains 𝑋 points, giving a

bitmask of 𝐹 = 1 (because only the smallest tree is in use). If we insert 𝑋+1 points,

then we put one node in the buffer tree and compute 𝐹𝑛𝑒𝑤 = 1 + 𝑋
𝑋

= 2, and so we

have to deconstruct static tree 0 and build static tree 1, as shown in Figure 4-2b.

Then, if we insert 𝑋 + 1 points again, then we again put one point in the buffer tree

and compute 𝐹𝑛𝑒𝑤 = 2 + 𝑋
𝑋

= 3, and so we simply construct tree 0 on the 𝑋 new

points (leaving tree 1 intact), as seen in Figure 4-2c. Finally, if we then insert 𝑋 − 1

points, we note that this would fill the buffer up, so we take 1 point from the buffer

and insert 𝑋 points; then, 𝐹𝑛𝑒𝑤 = 3 + 𝑋
𝑋

= 4, and so we deconstruct trees 0, 1 and

construct tree 2, as seen in Figure 4-2d.
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Algorithm 6 Parallel BDL-tree Batch Deletion
Input: Point Set 𝑃

1: procedure EraseL(𝑃 )
2: In parallel, delete 𝑃 from each of the underlying trees which is nonempty by

calling EraseS(𝑃 ) on each of these trees.
3: In parallel, gather the points from any trees that drop to below half of their

original capacity into a set 𝑅.
4: Call InsertL(𝑅) to reinsert these points into the log-tree structure.

4.2.2 Parallel Deletion

When deleting a batch of points, the goal is to maintain balance within the subtrees.

Thus, if any subtree decreases to less than half of its full capacity, we move all the

points down to a smaller subtree in order to maintain balance. As seen in Algorithm 6,

this is implemented as a three-step process.

On line 2, we call a parallel bulk erase subroutine on each of the individual trees

in parallel in order to actually erase the points from the trees. On line 3, we scan the

trees in parallel and collect the points from all trees which have been depleted to less

than half of their original capacity. Finally, on line 4, we use the InsertL routine to

reinsert these points into the structure.

Theorem 5. Given an BDL-tree that was created using only batch insertions and dele-

tions, each batch of 𝐵 updates takes 𝑂(𝐵 log2 (𝑛+𝐵)) amortized work and

𝑂(log (𝑛+𝐵) log log (𝑛+𝐵)) depth, where 𝑛 is the number of points in the tree before

applying the updates.

Proof. We first argue the work for only performing insertions starting from an empty

BDL-tree. In the worst case, points are added to the structure one by one. Then,

similarly to the analysis by Bentley [8], the total work incurred is given by noting

that the number of times the 𝑖’th tree is rebuilt when inserting 𝑚 points one by one is

𝑂(2log𝑚−𝑖). Then, summing the total work gives 𝑂(
∑︀log𝑚

𝑖=0 2𝑖𝑖2log𝑚−𝑖) = 𝑂(𝑚 log2𝑚),

where we use the work bound from Theorem 1. After inserting a batch of size 𝐵,

we have 𝑛 + 𝐵 points in the BDL-tree, and so the amortized work for the batch

is 𝑂(𝐵 log2(𝑛 + 𝐵)). Now, if deletions occurred prior to a batch insertion, and the
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Algorithm 7 Data-Parallel BDL-tree 𝑘-NN
Input: Point Set 𝑆
Output: An array of arrays of the 𝑘 nearest neighbors of each point in 𝑆.

1: procedure kNNL(𝑆)
2: Allocate a 𝑘-NN buffer for each of the points in 𝑆.
3: For each nonempty tree in the BDL-tree, in serial, call the parallel subroutine

kNNS(𝑆) on the individual tree, passing the same set of buffers.
4: After all of the individual kNNS calls are complete, gather and return the

results from the 𝑘-NN buffers.

current BDL-tree has 𝑛 points, there still must have been 𝑛 previous insertions (since

we started with an empty data structure), and so the work of this batch can still be

amortized against those 𝑛 insertions. We now argue the depth bound. When a batch

inserted into the tree, the points from smaller trees can be gathered in worst-case

𝑂(log (𝑛+𝐵)) depth (if all the points must be rebuilt) and the rebuilding process

takes worst case 𝑂(log (𝑛+𝐵) log log (𝑛+𝐵)) depth, using the result from Theo-

rem 1.

The initial step of deleting the batch of points from each of the underlying 𝑘d-trees

incurs 𝑂(𝐵 log2 𝑛) work (there are 𝑂(log 𝑛) 𝑘d-trees, each taking work 𝑂(𝐵 log 𝑛))

and depth 𝑂(log𝐵 log 𝑛). Then, collecting the points that need to be reinserted can be

done in worst-case depth 𝑂(log (𝑛+𝐵)) and the reinsertion takes

𝑂(log (𝑛+𝐵) log log (𝑛+𝐵)) depth, from before. Overall, the depth is

𝑂(log (𝑛+𝐵) log log (𝑛+𝐵)). The amortized work for reinserting points in trees

that are less than half full is 𝑂(𝐵 log2 𝑛), as every point we reinsert can be charged

to a deletion of another point, either from this batch or from a previous batch. This

is because for a tree that is half full, there must be at least as many deletions from

the tree as the number of points remaining in the tree.

4.2.3 Data-Parallel 𝑘-NN

In the data-parallel 𝑘-NN implementation given in Algorithm 7, we parallelize over

the set of points given to search for nearest neighbors. First, on line 2, we allocate

a 𝑘-NN buffer for each of the points in 𝑆. Then, for each of the non-empty trees in
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BDL-tree, we call the data-parallel 𝑘-NN subroutine on the individual tree, passing

in the set 𝑆 of points and the set of 𝑘-NN buffers. Because we reuse the same set of

𝑘-NN buffers for each underlying 𝑘-NN call, we eventually end up with the 𝑘-nearest

neighbors across all of the individual trees for each point in 𝑆.

Theorem 6. For a constant 𝑘, 𝑘-NN queries over a batch of 𝐵 points over the 𝑛

points in the BDL-tree can be performed in 𝑂(𝐵𝑛) work and 𝑂(𝑛) depth.

Proof. These bounds follow directly from the bounds of the underlying individual 𝑘-

NN calls. The 𝑘-NN routine on the 𝑖’th underlying tree, with size 𝑛𝑖, has worst-case

work 𝑂(𝐵𝑛𝑖) and depth 𝑂(𝑛𝑖). Summing over all 𝑖 gives the bounds.

4.2.4 Parallel Dual-Tree 𝑘-NN

We also implement a parallel version of the dual-tree 𝑘-NN algorithm [16, 24, 15, 29].

As discussed in Section 2.1.2, this is well-suited in theory for our data structure

because we have several individual 𝑘d-trees over which we would like to perform a

𝑘-NN search for the same set of query points. To implement this, we build a single

𝑘d-tree over the set of query points. Then, we perform a parallel dual-tree 𝑘-NN

search on each of the underlying trees in order. The pseudocode for this algorithm

in the single-tree case is given in [29]. We modify this work in two ways. First, we

parallelize this algorithm by parallelizing the recursive traversal calls on the subtrees.

Then, we perform this parallel dual-tree 𝑘-NN search on each of the underlying trees

in order, one at a time, rather than simply performing it on a single tree. We tested

this approach experimentally but found that it did not perform as well as the data-

parallel approaches discussed above.
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Chapter 5

Implementation and Optimizations

In this chapter, we describe implementation details and optimizations that we devel-

oped to speed up the BDL-tree in practice.

5.1 Parallel Bloom Filter

The bloom filter is a probabilistic data structure for testing set membership, which

can give false positive matches but no false negative matches [12]. When erasing a

batch of points from the BDL-tree, we need to potentially search for every point to

be deleted within every individual underlying 𝑘d-tree. To mitigate this overhead, we

use a bloom filter to prefilter points to be erased from each individual 𝑘d-tree that

definitely are not contained within it. Specifically, we implemented a parallel bloom

filter and added one to each individual 𝑘d-tree within the BDL-tree to track the

points in that individual 𝑘d-tree. Before erasing an input batch from each individual

𝑘d-tree, we filter the batch with that 𝑘d-tree’s bloom filter. This optimization adds

some overhead to the construction and insertion subroutines, but provides significant

benefits for the delete subroutine. To mitigate some of this overhead, we construct

the bloom filters only when they are needed, rather than during construction.
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5.2 Data-Parallel 𝑘-NN Structure

We tested three different variants of the data-parallel 𝑘-NN search in order to de-

termine the best parallelization scheme. Each scheme consists of 2 nested for loops;

one over the input points and one over the individual 𝑘d-trees. In the first variant,

the outer loop is over the points and the inner loop is over the 𝑘d-trees. We only

parallelize the outer loop, so we perform a 𝑘-NN search over all the trees for each

point in parallel. In the second variant, we switch the loop order, so the outer loop

is over the 𝑘d-trees and the inner loop is over points. We parallelize both the inner

and outer loops, so we perform a 𝑘-NN search over each of the trees in a data-parallel

fashion (i.e., search for the nearest neighbors of each point in parallel), but we also

parallelize over the trees. In this case, because our 𝑘-NN buffer is not thread-safe,

for each point we have to allocate a separate buffer for each tree and combine the

results at the end, which adds some extra overhead. In the third variant, described in

Section 4.2.3, the outer loop is over the 𝑘d-trees and the inner loop is over points, but

in contrast to the second scheme, we only parallelize the inner loop over points. So,

we perform a data-parallel 𝑘-NN over each of the individual 𝑘d-trees, one at a time.

We found that the second scheme gives the most parallelism, but the third scheme

has the fastest end-to-end running time, both serially and in parallel. This is due to

better cache locality of the third method—each tree is completely processed before

moving on to the next one. One other optimization we used in this third scheme was

to process the underlying trees in order from largest to smallest. We experimentally

found that the data-parallel 𝑘-NN search scaled better on large trees, and so this gave

better radius estimates earlier (as opposed to processing the trees from smallest to

largest).

5.3 Dual-Tree 𝑘-NN

When implementing the parallel dual-tree 𝑘-NN, we implemented and benchmarked

three different variants. In the scheme presented in Section 4.2.4, we build a single
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query 𝑘d-tree over all of the input points, and then perform a parallel dual-tree 𝑘-

NN search on each of the underlying trees one at a time. However, we can also

parallelize this search, performing the dual-tree 𝑘-NN on all the trees in parallel.

This requires some modifications to our data structures. First off, because the 𝑘-

NN buffers are not thread-safe, we have to allocate separate 𝑘-NN buffers for each

individual tree and combine the results to a single set of 𝑘 nearest neighbors at the

end. In addition, in the dual-tree 𝑘-NN algorithm [16, 24, 15, 29], every node in the

query tree tracks a radius field representing the current radius of the 𝑘-NN search

of all points in the subtree rooted at that node. We can enable parallelism across

the individual dual-tree 𝑘-NN searches either by making this field atomic, so that

all the searches share a single radius estimate, or by making this field an array, so

that each search has a separate radius estimate. Overall, this gives three different

variations on the parallel dual-tree 𝑘-NN: the one presented in Section 4.2.4 (referred

to as “non-atomic" because the radius estimate is stored as a non-atomic double),

an “atomic" variant (using an atomic double for the radius estimate), and an “array"

variant (using a double array to store the radius estimates). We found that overall,

parallelizing across the trees with both the “atomic" and “array" approaches led to

decreased performance and scalability due to the associated overheads and cache-

behavior, as seen in Section 6.5.3.

5.4 𝑘-NN Pruning Strategies

In implementing the 𝑘-NN approaches described above, we experimented with various

different approaches as to how exactly to prune the trees while traversing. Specifically,

we experimented with two different pruning options.

The first option applied to both the data-parallel and dual-tree 𝑘-NN approaches.

When performing a 𝑘-NN traversal (both the dual-tree and data-parallel approaches),

there are decisions to be made as to when we should update the current radius

estimate. The tradeoff to make is that updating the radius estimate adds work

overhead (as we must sort our current buffer of 𝑘 nearest neighbors), but it could
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potentially provide a tighter radius to more aggressively prune subtrees. So, we

experimented with two different choices. In the first choice, we update the radius

estimate every time we recurse down into a new subtree. In the second choice, we

only update the radius estimate once each time we step up one recursion level in the

overall traversal (i.e. at the start of each subtree traversal). In practice, we found

that the second option was generally slightly faster, so we used this approach.

The second pruning variant we experimented with only applied to the data-parallel

𝑘-NN. As described in Section 4.1.4, when we are unrolling the traversal recursion

and we have not yet found 𝑘 neighbors, we simply add all the points in the sibling of

the current node to the 𝑘-NN buffer in order to quickly find a 𝑘-th nearest neighbor

estimate. Instead of doing this, we could also recurse on the sibling and be more

careful with this process; this will theoretically provide a benefit with larger sibling

nodes. In practice, we found that this approach either did not provide any benefit or

caused a slight slowdown. This is due to the fact that this portion of the code is only

executed rarely and very near to the leaves, where the subtrees are all very small. As

a result, the overhead of pruning is higher than simply adding all the nodes to the

𝑘-NN buffer.

5.5 Parallel Splitting Heuristic

We implemented two different splitting heuristics for our 𝑘d-trees: splitting by object

median and splitting by spatial median. Object median refers to a true median—

at each split, we split around the median of the coordinates of the points in that

dimension. On the other hand, for spatial median, we compute the average of the

minimum and maximum of the coordinates of the points in the current dimension and

use this as the splitting hyperplane. The spatial median is faster to compute, but

leads to potentially less balanced trees as it is not strictly splitting the points in half

at every level. We implement the object median with a parallel in-place sort [27, 11]

and we implement the spatial median in two steps. First, we perform two parallel

prefix sums, using min(), max() as the predicate functions, to compute the minimum
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and maximum of the values, respectively. Then, we compute the spatial median as

the average of these values and perform a parallel partition around this value.

5.6 Buffer Tree

We tested a simple linear array to serve as the buffer “tree" in the BDL-tree, rather

than using a small 𝑘d-tree, but this severely impacted 𝑘-NN performance, as the 𝑘-

NN work on a linear array scales as the product of the size of the array and the size of

the query point set. It did, however, provide minor improvements in update speeds.

Ultimately, this was not enough to offset the impact on 𝑘-NN performance.

5.7 Coarsening

We introduced a number of optimizations that were controlled by tunable parameters

in our implementation. One key optimization was the coarsening of leaves, in which

we let each leaf node represent up to 16 points rather than 1. This reduces the amount

of space needed for node pointers and also improves cache locality when traversing the

tree, as the points in a leaf node are stored contiguously. A second key optimization

was the coarsening of the serial base cases of our algorithms, in which we switch from

a parallel algorithm to a serial version for recursive cases involving subtrees with less

than 1000 points in order to mitigate the overhead of spawning new threads. A third

parameter was the buffer tree size, which we set to 1024. One coarsening optimization

that we did not have time to attempt was to coarsen the 𝑘-NN recursion to stop above

the leaves, rather than on the leaves. This could potentially provide benefits if the

overhead of an extra level of recursion was larger than simply naively looping over a

slightly larger subtree.
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Chapter 6

Experiments

We designed a set of experiments to investigate the performance and scalability of

BDL-tree and compare it to the two baselines described earlier.

1. B1 is a baseline described in Section 2.3, where the 𝑘d-tree is rebuilt on each

batch insertion and deletion in order to maintain balance. This allows for

improved query performance (as the tree is always perfectly balanced) at the

cost of slowing down dynamic operations.

2. B2 is another baseline described in Section 2.3. It inserts points directly into

the existing tree structure without recalculating spatial splits. This results in

very fast inserts and deletes at the cost of potentially skewed trees (which would

slow down query performance).

3. BDL is our BDL-tree described in Section 4. It represents a tradeoff between

batch update performance and query performance. By maintaining a set of

balanced trees, it is able to achieve good performance on updates without sac-

rificing the quality of the spatial partition.

We use the following set of experiments to measure the scalability of BDL-tree

and compare its performance characteristics to the baselines.

1. Construction (Section 6.1): construct the tree over a dataset.
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2. Insertion (Section 6.2.1): insert fixed-size batches of points into an empty tree

until the entire dataset is inserted.

3. Deletion (Section 6.3.1): delete fixed-size batches of points from a tree con-

structed over the entire dataset until the entire dataset is deleted.

4. 𝑘-NN (Section 6.4.1): find the 𝑘-nearest neighbors of all the points in the dataset

(i.e., compute the 𝑘-NN graph of the dataset).

We also designed the following microbenchmarks in order to better explore the

design tradeoffs that BDL-tree makes when compared to the baselines.

1. Varying Batch Size (Sections 6.2.2 and 6.3.2): we vary the batch size of the

operations used to fully insert or delete the point set to measure the impact of

batch size on throughput.

2. Varying 𝑘 after Batched Inserts (Section 6.4.2): we build a tree using a set

of batched insertions and then measure the 𝑘-NN search performance with a

range of 𝑘 values to measure the impact of 𝑘 on throughput and the impact of

dynamic updates on 𝑘-NN performance.

3. Mixed Insert, Delete, and 𝑘-NN Searches (Section 6.4.3): we perform a series

of batch updates (insertions and deletions) interspersed with 𝑘-NN queries to

measure the performance of the data structures over time.

We run all of the experiments over BDL-tree and the two baselines. In addition,

for the scalability and batch size experiments, we also compare the object median

and spatial median splitting heuristics described in Section 5.5.

The experiments are all run on an AWS c5.18xlarge instance with 2 Intel Xeon

Platinum 8124M CPUs (3.00 GHz), for a total of 36 two-way hyper-threaded cores

and 144 GB RAM. Our experiments use all hyper-threads unless specified otherwise.

We compile our benchmarks with the g++ compiler (version 9.3.0) with the -O3 flag,

and use ParlayLib [11] for parallelism. All reported running times are the medians of

3 runs, after one extra warm-up run for each experiment.
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We run the experiments over 9 datasets, consisting of 6 synthetic datasets and

3 real-world datasets. We use two types of synthetic datasets. The first is Uni-

form (U), consisting of points distributed uniformly at random inside a bounding

hyper-cube with side length
√
𝑛, where 𝑛 is the number of points. The second is Vi-

sualVar (V), a clustered dataset with variable-density, produced by Gan and Tao’s

generator [23]. The generator produces points by performing a random walk in a local

region, but jumping to random locations with some probability. For each of these two

types, we generate them in 2D, 5D, and 7D, and for 10,000,000 points. We also use

3 real-world datasets: 10D-H-1M [2, 26] is a 10-dimensional dataset consisting of

928,991 points of home sensor data; 16D-C-4M [1, 21] is a 16-dimensional dataset

consisting of 4,208,261 points of chemical sensor data; and 3D-C-321M [28] is a 3-

dimensional dataset consisting of 321,065,547 points of astronomy data. Due to time

constraints, we only ran experiments on 3D-C-321M using BDL-tree in parallel to

demonstrate that BDL-tree can scale to large datasets.

6.1 Construction

In this benchmark, we measure the time required to construct a tree over each of

the datasets. The results using an object median splitting heuristic are shown in

Table 6.1a and the results using a spatial median splitting heuristic are shown in

Table 6.1b. Figure 6-1a shows the scalability of the throughput on the 10M points

7D Uniform dataset.

As we can see from the results, BDL achieves similar or better performance both

serially and in parallel than both B1 and B2, and has similar or better scalability than

both. With the object median splitting heuristic, it achieves up to 34.8× speedup,

with an average speedup of 28.4×. We also note that the single-threaded runtimes

are faster with the spatial-median splitting heuristic than with the object median

splitting heuristic. This is expected, because spatial median only involves splitting

points at each level compared with finding the median for object-median, hence it

is less expensive to compute; however, we also note that the scalability for spatial
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1 36h
B1 B2 BDL B1 B2 BDL

2D-U-10M 20.6s 16.3s 14.4s 0.5s (40.0x) 3.7s (4.5x) 0.4s (34.5x)
2D-V-10M 20.5s 16.2s 14.2s 0.5s (40.3x) 3.6s (4.5x) 0.4s (34.8x)
5D-U-10M 23.3s 20.8s 16.3s 0.7s (35.2x) 4.8s (4.3x) 0.5s (30.3x)
5D-V-10M 22.8s 20.2s 15.8s 0.7s (34.9x) 4.6s (4.4x) 0.5s (29.2x)
7D-U-10M 27.0s 24.0s 17.1s 0.8s (33.0x) 5.4s (4.4x) 0.6s (27.5x)
7D-V-10M 26.2s 23.2s 16.5s 0.8s (33.5x) 5.3s (4.4x) 0.6s (26.6x)
10D-H-1M 1.5s 1.5s 2.8s 0.1s (23.7x) 0.5s (3.4x) 0.1s (23.8x)
16D-C-4M 13.5s 14.5s 11.0s 0.5s (25.2x) 3.8s (3.8x) 0.5s (20.4x)
3D-C-321M – – – – – 20.4s

(a) Object median.

1 36h
B1 B2 BDL B1 B2 BDL

2D-U-10M 10.7s 2.3s 5.3s 0.5s (23.8x) 1.6s (1.4x) 0.4s (13.5x)
2D-V-10M 10.9s 2.5s 5.5s 0.5s (22.8x) 1.7s (1.5x) 0.4s (13.5x)
5D-U-10M 13.7s 3.4s 6.7s 0.8s (18.0x) 2.3s (1.5x) 0.6s (10.7x)
5D-V-10M 14.4s 4.0s 7.1s 0.8s (17.4x) 2.6s (1.5x) 0.7s (10.3x)
7D-U-10M 16.8s 4.4s 7.1s 1.0s (17.2x) 2.9s (1.5x) 0.8s (9.3x)
7D-V-10M 17.3s 5.2s 8.3s 1.0s (16.9x) 3.3s (1.6x) 0.9s (9.2x)
10D-H-1M 1.4s 0.8s 3.2s 0.1s (11.0x) 0.5s (1.6x) 0.2s (15.9x)
16D-C-4M 10.0s 5.3s 7.3s 0.7s (14.0x) 3.0s (1.8x) 0.7s (10.2x)
3D-C-321M – – – – – 20.8s

(b) Spatial median.

Table 6.1: Construction times (seconds) for a single thread (1) and 36 cores with
hyper-threading (36h). The self-relative speedup for each implementation and dataset
is shown in parentheses.

median is lower because there is less work to distribute among parallel threads.

6.2 Insertion

In this benchmark, we measure the performance of our batch insertion implementation

as compared to the baselines. We split this experiment into two separate benchmarks,

one to measure the full scalability and performance of our implementation, and one

to measure the impact of varying batch sizes.
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(b) 10% (1M points) Batch Insertion.
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Figure 6-1: Plot of throughput (operations per second) of batch operations over
thread count for both object and spatial median implementations for the 7D-U-10M
dataset.
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6.2.1 Scalability

In this benchmark, we measure the time required to insert 10 batches each containing

10% of the points in the dataset into an initially empty tree for each of our two

baselines as well as our BDL-tree. The results using object median and spatial median

splitting heuristics are shown in Tables 6.2a, 6.2b, respectively. Figure 6-1b shows

the scalability of the throughput on the 10M points 7D Uniform dataset.

We see that B2 achieves the best performance on batched inserts—this is due

to the fact that it does not perform any extra work to maintain balance and simply

directly inserts points into the existing spatial structure. BDL achieves the second-

best performance—this is due to the fact that it does not have to rebuild the entire

tree on every insert, but amortizes the rebuilding work across the batches. Finally,

B1 has the worst performance, as it must fully rebuild on every insertion. Similar

to construction, we note that the spatial median heuristic performs better in the

serial case but has lower scalability. With the object median splitting heuristic, BDL

achieves parallel speedup of up to 35.5×, with an average speedup of 27.2×.

6.2.2 Batch Size

In this benchmark, we measure the performance of our batch insertion implementation

as the size of the batch varies from 1M points to 5M points. We repeatedly perform

batched inserts of the specified size until the entire dataset has been inserted. We

provide plots of the results for the 2D Uniform, 2D VisualVar, 7D Uniform,

and 7D VisualVar datasets in Figures 6-2a 6-2b, 6-2c, 6-2d, respectively. The first

striking result is that the throughput decreases for B2 as the batch size increases,

while the throughput increases for B1 and BDL. This is due to the fact that the

work that B2 performs increases as the batch size grows—it has to do more work

to compute spatial splits over larger batches, whereas for small batches it quickly

computes the upper spatial splits on the first batch and never recomputes them.

As a result, B2 has best throughput at smaller batch sizes, but the worst at large

batch sizes. For B1 and BDL, note that the throughput increases as the batch
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1 36h
B1 B2 BDL B1 B2 BDL

2D-U-10M 86.1s 5.9s 24.8s 2.2s (39.5x) 0.6s (10.1x) 0.7s (35.4x)
2D-V-10M 86.1s 5.9s 24.4s 2.2s (39.6x) 0.6s (10.2x) 0.7s (35.5x)
5D-U-10M 97.9s 7.6s 29.2s 2.9s (33.6x) 0.9s (8.7x) 1.0s (30.3x)
5D-V-10M 94.5s 7.5s 28.1s 2.8s (33.2x) 0.9s (8.8x) 1.0s (29.3x)
7D-U-10M 109.7s 8.8s 33.0s 3.5s (31.1x) 1.1s (8.1x) 1.2s (26.9x)
7D-V-10M 106.1s 8.7s 31.7s 3.5s (30.7x) 1.1s (8.2x) 1.2s (25.6x)
10D-H-1M 7.9s 0.7s 1.7s 0.4s (22.1x) 0.1s (5.7x) 0.1s (16.3x)
16D-C-4M 66.2s 5.5s 21.1s 3.0s (22.2x) 0.9s (6.4x) 1.1s (18.3x)
3D-C-321M – – – – – 20.7s

(a) Object median.

1 36h
B1 B2 BDL B1 B2 BDL

2D-U-10M 32.5s 4.9s 5.2s 1.2s (26.1x) 0.4s (11.9x) 0.6s (9.2x)
2D-V-10M 33.9s 5.0s 5.8s 1.4s (24.0x) 0.5s (10.2x) 0.6s (9.2x)
5D-U-10M 40.7s 6.1s 8.8s 2.3s (17.5x) 0.7s (9.4x) 1.1s (8.1x)
5D-V-10M 44.5s 6.7s 10.0s 2.8s (15.6x) 0.8s (8.0x) 1.2s (8.0x)
7D-U-10M 48.1s 7.0s 11.2s 3.1s (15.6x) 0.8s (8.5x) 1.5s (7.4x)
7D-V-10M 52.6s 7.6s 12.5s 3.7s (14.4x) 1.0s (7.8x) 1.6s (7.6x)
10D-H-1M 6.3s 0.9s 1.3s 0.6s (10.2x) 0.2s (3.8x) 0.2s (6.6x)
16D-C-4M 42.9s 6.0s 12.9s 3.6s (11.8x) 1.0s (5.9x) 1.5s (8.5x)
3D-C-321M – – – – – 15.7s

(b) Spatial median.

Table 6.2: Batch insertion times (seconds) for a single thread (1) and 36 cores with
hyper-threading (36h). The self-relative speedup for each implementation and dataset
is shown in parentheses. We insert batches of 10% of each dataset, starting from an
empty tree until the entire dataset has been inserted.
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(b) Insertions on 2D-V-10M.
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(c) Insertions on 7D-U-10M.
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(d) Insertions on 7D-V-10M.

Figure 6-2: Plot of throughput (operations per second) of batch insertions vs. batch
size for the 2D-U-10M, 2D-V-10M, 7D-U-10M, and 7D-V-10M datasets.
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size increases. This is due to the fact that each insert has an associated overhead

of recomputing spatial partitions, and so the larger the batch size, the fewer times

this overhead is paid. For larger batch sizes, BDL has the best throughput among

the three implementations for object median. This is again due to the fact that it

amortizes the work across inserts, rather than having to recompute spatial splits over

the entire dataset at each insert. Finally, note that in most cases, the spatial median

heuristic has a better throughput than its object median counterpart, as it takes less

work to compute.

6.3 Deletion

In this benchmark, we measure the performance of our deletion implementation as

compared to the baselines. Similar to the insertion experiment, we split this experi-

ment into two separate benchmarks, one to measure the scalability and performance

of our implementation, and one to measure the impact of varying batch size.

6.3.1 Scalability

In this benchmark, we measure the time required to delete 10 batches each containing

10% of the points in the dataset from an initially full tree for each of our two baselines

as well as the BDL-tree. The results using an object median splitting heuristic are

shown in Table 6.3a and the results using a spatial median splitting heuristic are

shown in Table 6.3b. Figure 6-1c shows the scalability of the throughput on the 10M

point 7D Uniform dataset.

We observe that B2 has vastly superior performance—it does almost no work

other than tombstoning the deleted points so it is extremely efficient. Next, we see

that BDL has the second-best performance, as it amortizes the rebuilding across the

batches, rather than having to rebuild across the entire point set for every delete.

Finally, B1 has the worst performance as it rebuilds on every delete. With the object

median splitting heuristic, BDL achieves parallel speedup of up to 33.1×, with an

average speedup of 28.5×.
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(a) Deletions on 2D-U-10M.
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(b) Deletions on 2D-V-10M.
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(c) Deletions on 7D-U-10M.
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(d) Deletions on 7D-V-10M.

Figure 6-3: Plot of throughput (operations per second) of batch deletions vs. batch
size for the 2D-U-10M, 2D-V-10M, 7D-U-10M, and 7D-V-10M datasets.
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1 36h
B1 B2 BDL B1 B2 BDL

2D-U-10M 114.0s 1.1s 29.2s 2.7s (43.0x) 0.1s (10.4x) 0.9s (33.0x)
2D-V-10M 114.2s 1.1s 29.0s 2.7s (43.0x) 0.1s (10.5x) 0.9s (33.1x)
5D-U-10M 130.2s 2.2s 40.1s 3.5s (37.2x) 0.2s (9.1x) 1.4s (28.1x)
5D-V-10M 127.0s 2.2s 39.3s 3.5s (36.8x) 0.2s (9.1x) 1.4s (27.8x)
7D-U-10M 146.7s 3.0s 37.3s 4.1s (36.0x) 0.3s (8.9x) 1.4s (27.0x)
7D-V-10M 144.4s 3.0s 36.9s 4.1s (35.6x) 0.3s (8.9x) 1.4s (27.2x)
10D-H-1M 24.7s 0.2s 21.9s 1.0s (24.7x) 0.0s (5.6x) 0.8s (28.5x)
16D-C-4M 74.8s 2.9s 33.1s 2.7s (27.4x) 0.3s (8.6x) 1.4s (23.6x)
3D-C-321M – – – – – 17.3s

(a) Object median.

1 36h
B1 B2 BDL B1 B2 BDL

2D-U-10M 70.2s 1.3s 30.2s 1.8s (38.8x) 0.1s (11.8x) 1.1s (26.3x)
2D-V-10M 71.7s 1.5s 30.7s 2.0s (36.0x) 0.1s (10.7x) 1.2s (25.4x)
5D-U-10M 82.9s 2.3s 29.2s 2.9s (28.9x) 0.2s (9.6x) 1.2s (23.9x)
5D-V-10M 85.9s 2.9s 29.6s 3.4s (25.4x) 0.3s (9.0x) 1.3s (22.2x)
7D-U-10M 97.1s 3.2s 38.2s 3.6s (27.1x) 0.3s (9.4x) 1.8s (21.4x)
7D-V-10M 100.8s 3.9s 38.3s 4.2s (24.0x) 0.4s (8.8x) 1.8s (20.9x)
10D-H-1M 27.6s 0.4s 22.1s 1.1s (25.1x) 0.1s (4.8x) 0.8s (26.2x)
16D-C-4M 60.5s 4.0s 32.5s 3.3s (18.3x) 0.5s (8.8x) 1.7s (19.5x)
3D-C-321M – – – – – –

(b) Spatial median.

Table 6.3: Batch deletion times (seconds) for a single thread (1) and 36 cores with
hyper-threading (36h). The self-relative speedup for each implementation and dataset
is shown in parentheses. We delete batches of 10% of each dataset, starting from a
full tree until the entire dataset has been deleted.
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6.3.2 Batch Size

In this benchmark, we measure the performance of our batch deletion implementation

as the size of the batched update varies from 1M points to 5M points. We provide

plots of the results for the 2D Uniform, 2D VisualVar, 7D Uniform, and 7D

VisualVar datasets in Figures 6-3a 6-3b, 6-3c, 6-3d, respectively. We note again

that B2 consistently has the highest throughput, with BDL in second and B1 with

the lowest throughput. Furthermore, the throughput of B1 and BDL increases as

the batch size increases; this is true for the same reasons as with insertions. For B2,

we observe consistent throughput across batch sizes.

6.4 Data-Parallel 𝑘-NN

In this benchmark, we measure the performance and scalability of our 𝑘-NN imple-

mentation as compared to the baselines. We split this into three separate experiments.

6.4.1 Scalability

In this experiment, we measure the scalability of the 𝑘-NN operation after construct-

ing each data structure over the entire dataset (in a single batch). The results using

an object median splitting heuristic are shown in Table 6.4a and the results using

a spatial median splitting heuristic are shown in Table 6.4b. Figure 6-1d shows the

scalability of the throughput on the 10M point 7D Uniform dataset. With the object

median heuristic, BDL achieves a parallel speedup of up to 46.1×, with an average

speedup of 40.0×.

The results show that B1 and B2 have similar performance (B2 is slightly faster

due to implementation differences). Furthermore, they are both faster than BDL-

tree. This is to be expected, because the 𝑘-NN operation is performed directly over

the tree after it is constructed over the entire dataset in a single batch. Thus, both

baselines will consist of fully balanced trees and will be able to perform very efficient

𝑘-NN queries. On the other hand, BDL consists of a set of balanced trees, which
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1 36h
B1 B2 BDL B1 B2 BDL

2D-U-10M 34.9s 11.9s 64.5s 0.6s (57.2x) 0.3s (40.3x) 1.5s (43.1x)
2D-V-10M 37.2s 12.7s 67.0s 0.7s (57.0x) 0.3s (40.7x) 1.5s (43.7x)
5D-U-10M 302.3s 178.0s 339.4s 6.3s (47.6x) 3.5s (51.4x) 8.6s (39.4x)
5D-V-10M 109.5s 64.1s 145.8s 2.1s (51.1x) 1.2s (52.7x) 3.2s (46.1x)
7D-U-10M 1520.0s 1239.4s 1621.6s 44.3s (34.3x) 34.1s (36.4x)52.9s (30.7x)
7D-V-10M 133.6s 86.3s 173.1s 2.8s (48.1x) 1.7s (50.7x) 4.0s (43.8x)
10D-H-1M 5.3s 5.5s 11.9s 0.1s (54.5x) 0.1s (50.5x) 0.3s (45.8x)
16D-C-4M 464.4s 612.2s 468.3s 16.5s (28.1x) 16.1s (38.1x)17.3s (27.1x)
3D-C-321M– – – – – 15.6s

(a) Object median.

1 36h
B1 B2 BDL B1 B2 BDL

2D-U-10M 33.6s 13.0s 69.9s 0.6s (55.6x) 0.3s (40.0x) 1.6s (44.9x)
2D-V-10M 35.7s 13.5s 72.7s 0.6s (56.8x) 0.3s (39.5x) 1.6s (44.9x)
5D-U-10M 348.8s 216.7s 503.1s 6.7s (52.2x) 4.0s (54.1x) 9.6s (52.2x)
5D-V-10M 103.1s 65.2s 174.2s 2.0s (52.8x) 1.4s (45.4x) 3.5s (49.5x)
7D-U-10M 2142.0s 1494.0s 2804.0s 45.5s (47.1x) 36.7s (40.7x)57.3s (48.9x)
7D-V-10M 116.9s 81.3s 203.1s 2.3s (50.5x) 1.7s (48.0x) 4.1s (49.3x)
10D-H-1M 5.7s 4.7s 15.5s 0.1s (54.6x) 0.1s (45.2x) 0.3s (47.3x)
16D-C-4M 606.7s 557.0s 623.4s 19.9s (30.5x) 11.9s (47.0x)20.4s (30.5x)
3D-C-321M– – – – – 17.4s

(b) Spatial median.

Table 6.4: 𝑘-NN times (seconds) for a single thread (1) and 36 cores with hyper-
threading (36h). The self-relative speedup for each implementation and dataset is
shown in parentheses. We use 100% of dataset except for 3D-C-321M, which was run
with 10% of the dataset because the full 𝑘-NN results could not fit in memory.

adds overhead to the 𝑘-NN operation, as it must be performed separately on each of

these individual trees. However, as the next two benchmarks show, BDL provides

superior performance in the case of a mixed set of dynamic batch inserts and deletes

interspersed with 𝑘-NN queries.

6.4.2 Effect of Varying 𝑘

In this experiment, we benchmark the throughput of the 𝑘-NN operation on 36 cores

with hyper-threading as 𝑘 varies from 2 to 11. For all three trees, we perform the
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(a) 𝑘-NN on 2D-V-10M.

𝑘-NN operation after building the tree from a set of batch insertions, with a batch size

of 5% of the dataset, until the entire dataset is inserted. The results are shown for the

2D VisualVar dataset in Figure 6-4a, for the 7D Uniform dataset in Figure 6-4b,

and for the 7D VisualVar dataset in Figure 6-4c. In all three cases, we see that B1

has the best 𝑘-NN performance, followed closely by BDL. B2 has significantly worse

performance—this is because the construction of the tree was performed with a set

of batch insertions, rather than a single construction over the entire dataset, the tree

ends up imbalanced and the 𝑘-NN query performance suffers.

6.4.3 Mixed Operations

In this final experiment, we measure the 𝑘-NN and overall performance of the trees as a

mixed set of batch insertions, batch deletions, and batch 𝑘-NN queries are performed.

In particular, we perform a set of 20 batch insertions, each consisting of 5% of the

dataset, into the tree. After every 5 batch insertions, we perform a 𝑘-NN query with

𝑘 = 5 (over the entire dataset) to measure the current query performance. Then,

we perform a set of 15 batch deletes, each consisting of a random 5% of the dataset

(with no repeats). After every 5 batch deletes, we again perform a 𝑘-NN (𝑘 = 5)
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Figure 6-4: Plots of 𝑘-NN throughput (operations per second) vs. 𝑘 using all 36h cores
with hyperthreading, for the 2D-V-10M and 7D-U-10M, and 7D-V-10M datasets.
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1 36h
BDL-object BDL-spatial BDL-object BDL-spatial

2D-U-10M 53.3s 47.0s 4.3s (12.3x) 2.7s (17.2x)
2D-V-10M 56.0s 53.3s 5.1s (11.1x) 2.5s (21.1x)
5D-U-10M 383.2s 346.2s 19.7s (19.4x) 17.3s (20.0x)
5D-V-10M 116.1s 100.9s 8.8s (13.1x) 8.8s (11.4x)
7D-U-10M 2365.8s 2172.9s 100.2s (23.6x) 96.4s (22.5x)
7D-V-10M 160.3s 132.8s 14.7s (10.9x) 17.1s (7.8x)
10D-H-1M 24.7s 19.2s 2.1s (12.0x) 1.7s (11.1x)
16D-C-4M 419.6s 467.0s 21.1s (19.9x) 28.5s (16.4x)

Table 6.5: Dual-Tree 𝑘-NN Scalability

query. Overall, there are 7 𝑘-NN queries. We thus split the experiment into 7 distinct

sections, demarcated by the 𝑘-NN queries. For each section (labeled as INS0, INS1,

INS2, INS3, DEL0, DEL1, DEL2), we measure the 𝑘-NN runtime as well as the time

for the 5 batched insertion/deletion operations. The results are shown for the 2D

VisualVar dataset in Figure 6-5a and for the 5d Uniform dataset in Figure 6-5b

(we observed similar results for other datasets). The 𝑥-axis shows the 7 sections, and

the 𝑦-axis shows the time for each of these sections. There are two lines for each

tree—a dashed line indicating just the 𝑘-NN times at each section, and a solid line

indicating the total time for the batched update and 𝑘-NN.

In the Uniform case, we see that B2 performs the worst overall, due almost

entirely to its poor 𝑘-NN performance after batched updates. Note that the batched

updates themselves contribute minimally to the total runtime of this baseline—they

are very fast but cause significant imbalance in the tree structure, leading to degraded

query performance. B1 has the best raw 𝑘-NN query time, but its overall runtime is

the second worst, as the batched updates are quite expensive (in order to maintain the

balance that results in fast query times). Finally, BDL represents the best tradeoff

between dynamic batch updates and 𝑘-NN performance. In particular, it has the best

total runtime after every operation. The results are quite similar for the VisualVar

case, except that we note that B1 has the overall worst runtime, due to very expensive

updates.
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(a) Batch updates and 𝑘-NN queries on 2D-V-10M.
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Figure 6-5: Plots of running times (seconds) of updates and queries vs. progressive
batch updates on the tree using all 36 cores with hyper-threading, for the 2D-V-
10M and 7D-U-10M datasets. “knn” represents the 𝑘-NN query performance after
cumulative updates on the trees and “total” represents the combined running time of
both updates and queries since the previous batch.
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6.5 Dual-Tree 𝑘-NN

In addition to the data-parallel approach discussed above, we also implemented 𝑘-NN

based on the dual-tree traversal proposed by March et al. [29]. While we found our

dual-tree 𝑘-NN for BDL was faster on a single-thread due to more efficient pruning,

it was not as scalable as other 𝑘-NN approaches and thus did not perform as well in

parallel. This provides a promising direction to explore in the future, as we hope it

could be possible to derive more parallelism with more work. Similarly to the other

experiments, we ran both scalability experiments and tested the effect of varying 𝑘

on this approach.

6.5.1 Scalability

We first tested the performance of the dual-tree 𝑘-NN in the single core and multicore

settings. The results are shown in Table 6.5. Note that, when compared to the

regular 𝑘-NN results, dual-tree 𝑘-NN is almost always faster in the single-core case,

indicating that this approach does in fact yield benefits in terms of efficient pruning

and traversal. This is a confirmation of the theoretical and experimental results from

prior work on serial dual-tree 𝑘-NN traversals. However, it displays lower scalability

at 36 cores and thus has worse multicore performance. This is due to worse pruning

behavior, as the traversal of the tree in parallel is not able to share tightening radius

bounds as efficiently and thus explores more of the tree than it does in the serial case.

6.5.2 Effect of Varying 𝑘

We also tested the effect of varying 𝑘 with 36 hyperthreaded cores to observe the

performance characteristics of the dual-tree 𝑘-NN implementation. The results for

this experiment are seen in the “BDL-dualtree" line in the graphs in Figures 6-4a, 6-

4b, 6-4c. We notice the same result as before — the dual-tree 𝑘-NN for BDL has a

lower throughput than the data-parallel 𝑘-NN for BDL in the multicore setting. For

this experiment, however, we also tested a dual-tree 𝑘-NN approach on B1 — the

results are seen in the same figures in the line labeled “B1-dualtree". We notice some
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Figure 6-6: Plots of running times (seconds) of the three different dual-tree 𝑘-NN
implementations on the BDL-tree on all 6 synthetic datasets using all 36 cores with
hyper-threading.

promising results here – in particular, the “B1-dualtree" line in Figures 6-4a, 6-4b is

very similar to the “B1-object" line, suggesting that the multicore performance of the

dual-tree approach for a single tree is similar to the data-parallel 𝑘-NN performance.

Future work could be focused on performance engineering this approach in order to

achieve similar levels of parallelism to the data-parallel 𝑘-NN.

6.5.3 Different Implementations of Radius

As mentioned in Section 5.3, we tested several different implementations of the dual-

tree 𝑘-NN when developing this approach. In order to compare these three variants,

we ran a full 𝑘-NN (𝑘 = 5) with each of the implementations on each of the 6

synthetic datasets. The results are shown in Figure 6-6. It is clear from these results

that the non-atomic radius implementation was consistently the best, as mentioned

before. This is due to the poor cache performance induced by exploring multiple

trees in parallel, the overheads of atomic updates, and the decrease in shared radius
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estimates due to parallelism.

67



68



Chapter 7

Conclusion

We have presented the BDL-tree, a parallel batch-dynamic 𝑘d-tree which supports

batched construction, insertions, deletions, and 𝑘-NN queries. We show that our data

structure has strong theoretical work and depth bounds. Furthermore, our experi-

ments show that the BDL-tree achieves good parallel speedup and presents a useful

tradeoff between two baseline implementations. In particular, it delivers the best per-

formance in a dynamic setting involving batched updates to the underlying dataset

interspersed with 𝑘-NN queries. Future work includes exploring further splitting

heuristics, vectorized operations and other performance engineering, and supporting

more query types.
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