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Abstract

A radical spproach to quantum gravity has recently been proposed by Bombelli,
Lee, Meyer and Sorkin along lines similar to earlier proposals by ’t Hooft and
Myrheim. This proposal, that the fundamental structure underlying spacetime is a
causal set—a locally finite partially ordered set, and its motivations are described in
the Introduction and the mathematical and physical background is developed. The
connection between causal sets and the Lorentzian manifolds of general relativity is
made by way of an embedding of a causal set into a Lorentzian manifold: a mapping
f such that f(p) lies to the past of f(g) in the manifold iff p < ¢ in the causal set.
The Minkowski dimension of a causal set is the dimension of the minimal Minkowski
space into which the causal set can be embedded. This concept of dimension is
examined in the second chapter and is compared to the combinatorial dimension
of partially ordered sets. If a Lorentzian manifold is to approximate the causal set
one must require more than that the embedding preserve the causal relations: the
points should also be distributed uniformly in the manifold. In the third chapter,
starting from the model of points distributed according to the Poisson process, the
expectation values of various causal set parameters (the number of relations among
the elements of an interval, for example) are found in terms of the dimension and
curvature of the manifold. These formulae can be inverted (exactly, in the case of
Minkowski space) to define a Hausdorff or fractal (since it need not be an integer)
dimension and local curvature for an arbitrary causal set. These analytic results
are also verified by computer simulation. In the Conclusion the implications for the
quantum dynamics of causal sets are examined and directions for further work are
discussed.



I. Introduction

The work described in the following chapters concerns some mathematical questions
which have arisen in a program initiated recently as an approach to quantizing
gravity. To place it in context this chapter outlines the program (for additional
discussion see [Bombelli, Lee, Meyer and Sorkin 1987, 1988, Bombelli 1987 and
Moore 1988|) and its motivation, includes a brief review of the relevant physical and
mathematical background, and introduces the particular aspect of this approach—
namely, how spacetime dimension appears—which is investigated in the following

chapters.

Quantum gravity

There are many reasons to believe a quantum theory of gravity is either necessary
or desirable. (See, for example, the essays in [Christenson 1984].) At the level
of classical general relativity, the singularity theorems of Hawking and Penrose
(Hawking and Ellis 1973] show that under various sets of conditions on the matter
stress-energy tensor, conditions which obtain in physically reasonable situations,
Einstein’s equation predicts the formation of spacetime singularities. Thus general
relativity is incomplete; it does not provide for boundary conditions to be imposed

at these singularities. On the other hand, our most complete theories describing
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matter are quantum field theories: A¢* theory, QCD, the Weinberg-Salam model,
etc. (for a complete exposition see, e.g., [Itzykson and Zuber 1980|). Since Einstein’s
equation relates the metric of spacetime as a dynamical variable to the matter
stress-energy tensor, a completely consistent theory of gravity seems to necessitate
quantizing the gravitational field. The Einstein-Hilbert action, however, leads to
a perturbatively non-renormalizable theory. (See [Weinberg 1979| and references
therein.) The coupling constant in the theory is not dimensionless, rather it is
the square of the Planck length VGh/c3 ~ 1.616 x 10733¢m, the fundamental
length scale in the theory. At much larger scales problems can be approximated
semiclassically by quantum field theory on a curved background spacetime |Birrell
and Davies 1982|. Perhaps the most significant result obtained this way is Hawking’s
discovery of the thermal emission of quantum black holes [Hawking 1975). This
result, however, also indicates the need for a complete quantum theory: the black
hole evaporates as it emits particles and is driven toward the domain in which the

semiclassical approximation can be expected to fail.

Thus it appears that a quantum theory of gravity is necessary but that the
familiar techniques of quantum field theory do not suffice. Moreover, attempts to
obtain a renormalizable theory by modifying the Lagrangian, as in supergravity
[Freedman, van Nieuwenhuizen and Ferrara 1976, Deser and Zumino 1976, for re-
views see Jacob, ed. 1986| and higher derivative [Utiyama and DeWitt 1962, Stelle
1977, Boulware, Horowitz and Strominger 1983] theories, have not been entirely
successful. In fact, quantum gravity is in a difficult, and peculiar, situation with
respect to other scientific theories. The development of most physical theories can
be understood in terms of Taketani’s schematic evolution [Taketani 1936] wherein
a process of cognition of nature proceeds through three stages: phenomenological,

substantialistic, and essentialistic. To illustrate this process, consider strong in-



teraction physics (for a detailed history see |Green, Schwarz and Witten 1987|):
The phenomenological stage began with the observation of large numbers of hadron
resonances, including some with relatively high spin. Experiments on scattering
amplitudes in what came to be called the Regge region, small angle scattering at
high energy, led to the duality hypothesis and the Veneziano amplitude which im-
plemented it. These developments and their exploration, leading to the recognition
that the Veneziano model was really that of a relativistic string, comprised a sub-
stantialistic stage ... but not for the theory of hadrons! For at about the samnc time
as Veneziano's proposal, in 1968, new phenomena were found in the region of high
energy scattering at fixed angles. The observed scattering amplitudes were incon-
sistent with the Veneziano model but were explained in a distinct substantialistic
stage as being evidence for a quark model. Finally, with the formulation of quantum

chromodynamics, the theory of strong interactions reached the essentialistic stage.

For quantum gravity theories, by contrast, it is unclear what the phenomena
are; thus Taketani’s second and third stages are developed first and often simul-
taneously. In modifying the Lagrangian to be supersymmetric or contain higher
derivative terms, it is the condition of renormalizability (and agreement with general
relativity at large scales) which is playing the role of the phenomena; the substance
and dynamics are variants of familiar quanium field theories. Similarly, note that
with the formulation of QCD, string theory was left with neither a phenomenolog-
ical nor an essentialistic stage; although more recent developments in string theory
indicate that rather than explaining strong interactions, it may provide a gener-
alization of Yang-Mills theory and general relativity leading to a quantum theory
of gravity, the phenomena are still lacking and no essential understanding of the
underlying concepts yet exists. Another recent example is the canonical approach

using Ashtekar’s new variables [Ashtekar 1988|; again the substance has changed:



the basic variables are different and the states satisfying the quantum constraints

are found in a loop space representation.

There are, however, as yet unexplained physical phenomena which might be
addressed by a quantum theory of gravity. The smallness of the cosmological con-
stant is an immediate example; in fact, one difficulty with supergravity theories
is that they typically have an anti-de Sitter space ground state with c;)smological
constant of order one [Freund and Rubin 1980, Brietenlohner and Freedman 1982;
for an example, see also Meyer 1986, reprinted in Appendix D|. It has also been
suggested that the ultraviolet divergences in quantum field theories might be reg-
ulated by gravity (see [Isham 1984] and references therein). This has led to many
proposals for fundamentally discrete siructures underlying spacetime: regular lat-
tices in Minkowski space [Schild 1949, Coish 1959 and random lattices based on
the ideas of Regge calculus |Itzykson 1984, Lee 1985, Lehto, Nielson and Ninomiya
1986/, for example. The number of spacetime dimensions might also be predictable:
Kaluza-Klein theories introduced the idea that four is only the effective dimen-
sion of spacetime [Appelquist, Chodos and Freund, eds. 1987| and investigations
into topology change in general relativity [Geroch 1967, Tipler 1977, Yodzis 1972,
1973, Sorkin 1986a|, geons [Sorkin 1986b|, and quantum geornetry (spacetime foam)
[Wheeler 1964, Hawking 1978 have pushed this idea even further. Finally, the most
ambitious proposals aim to develop spacetime from some more fundamental sub-
stance; these include the intrinsically quantum mechanicai spin lattice [Penrose
1972b} and twistor [Penrose 1975| programs of Penrose and Finkelstein’s quantum
causal space [Finkelstein 1969, 1972, Finkelstein, Frye and Susskind 1974], the po-
tentially quantum mechanical Einstein algebras suggested by Geroch [Geroch 1972,
Yodzis 1975, and, most recently, string theory without background geometry Wit-

ten 1986, Horowitz, Lykkan, Rohm and Strominger 1986, Horowitz and Witt 1987|



as well 2s p-adic string theory [Freund and Olson 1987, 1988, Freund and Witten
1987, Volovich 1987|.

The concerns of these latter proposals are concisely summarized by Riemann’s
query |Riemann 1854}, “Why is there a spatial metric?” Given the subsequent devel-
opments in physics and difierential geometry, this should be amended to ‘spacetime’
rather than ‘spatial’ and augmented by the supplementary questions: “Why is the
metric of Lorentzian signature?” and “Why does spacetime have the topological and
differentiable structures that allow the definition of a metric field?” Our approach
is guided by these questions and informed by the mathematical results discussed

next.

Causal structure

Recall that in general relativity a spacetime is a Lorentzian manifold (M, g) [Hawk-
ing and Ellis 1973, Penrose 1972a): a connected C'*® Hausdorfl manifold M with
a globally defined nondegenerate C'>° tensor field g : ToM x T,M — R of signa-
ture (— + --- +). Such a Lorentzian metric divides the non-zerc tangent vectors at
each point P € M into three classes: X € Ty M is timelike, null, or spacelike when
g(X,X) is negative, zero, or positive, respectively. The set of null vectors in Ty M
is called the null cone at p; it disconnects the set of timelike vectors into two com-
ponents. If there is a consistent continuous choice of one of these two components
(the future-pointing timelike vectors, say) at each point p € M, the spacetime is
time-orientable. A curve in M is a smooth map from some interval of R into M, and
is called future or past directed timelike or null, or spacelike, if its tangent vector
is everywhere in the corresponding class. Two points in M are said to be timelike
related if there is a timelike curve connecting them, null related if there is not but

there is such a null curve, and spacelike related otherewise. Two points are causally
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related if they are either timelike or null related; write z € J7(y) and y € J*(z) if
there is a future directed causal (again, timelike or null) curve from z to y (write
z € I7(y) and y € I'*(z) if the curve is timelike; also I'*(z) N I~ (y) is calied the
Alexandroff neighborhood determined by z and v). By the causal structure of a
spacetime one means the specification of all these relations. The remarkable fact is
that the causal structure of a spacetime alone comes very close to determining not
only the metric but also the topology and differentiable structure. More precisely,

we have the following two theorems:

Theorem (Hawking): Let (M,g) and (M’,g') be spacetimes and suppose there is
a homeomorphism f : M — M’ such that both f and f~! preserve future directed
continuous null geodesics. Then f is a smooth conformai isometry [Hawking, King

and McCarthy 1976).

Theorem (Malament): If (M, g) and (M’,g') are past and future distinguishing
(ie, I7(z) = I~ (y) = z = y and [*(z) = Iy > z=y)and f: M > M'isa

causal isomorphism then f is a homeomorphism [Malament 1977].

Putting these two theorems together we see that if the two spacetirnes have the
same causal structure (i.e., there is a causal isomorphism between them) then the
manifolds are homeomorphic and (since the homeomorphism preserves, in partic-
ular, the future directed continuous null geodesics) hence conformally isometric:
g' = N12g for some local conformal factor 02. Thus the causal structure determines

the topology, differentiable structure, and conformal metric g/|detg|!/".

Now, a causal structure is nothing more than a partial ordering P on the points
of M. As such, it is conceptually much simpler than the tower of constructions sup-
porting the definition of a metric field, and it is natural to suppose that the metric

g should be derived from P rather than the reverse. Hawking and Malament’s



theorems show that P contains almost all tke information needed to determine
the metric; it lacks only the conformal factor |detg|‘/“ or local volume element.
To solve this problem, recall some of the possible phenomenology discussed in the
previous section: both the singularities of general relativity and the infinities of
quantum field theory suggest that spacetime may not be truly continuous. So we
implement the suggestion of [Riemann 1854 that “the reality underlying space may
be a discrete manifold;” then a finite volume of spacetime contains only a finite
number of elements, the volume being defined by the number of ‘point-events’ it

contains.

Thus the proposal is that the substance, or structure, underlying spacetime is
what Riemann might have called an ordered discrete manifold; we will refer to it as a
causal set. Macroscopic causality should arise from the confluence of order relations
a;ld the volume, or conformal factor, obtain from the number of elements; in fact all
the topological, differentiable, and geometric structures of spacetirne should derive
their ultimate expression from these characteristics of causal sets. This proposal has
been made previously without being developed to any great extent: [t Hooft 1979]
proceeded to assumne that there was a four dimensional continuum limit and thence
derived conditions on its metric, while [Myrheim 1978 gave a heuristic derivation
of the results of Hawking and Malament and suggested that spacetime geometry
arise statistically. The work described here is concerned with different issues than
those emphasized by these authors (developing further, in particular, the origin of

spacetime dimension) but the fundamental proposal is essentially the same.

Partially ordered sets

The mathematical object which we will use to implement this program is a partially

ordered set (poset): a set P with an order relation < which is reflexive (z < ),
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antisymmetric (£ <y, y < = T = y) and transitive (z <y, y < 2 = T < z).
If £ < yory < z then z and y are comparable (related); otherwise they are
incomparable (unrelated). Posets occur widely in mathematics: A typical example
is the set 2i"! of all subsets of [r| (the set of integers {1,...,n}) ordered by inclusion,
ie., A< B <= A C B as sets; this is called the binomial poset B,. Another
familiar example is the set of positive integers with the order relation 1 < j <=
i | j (¢ divides j). There is a vast modern literature on posets (see |Rival, ed. 1981,
1985, Fishburn 1985, Stanley 1986| and references therein); here we will recall only
the immediately relevant definitions and results, for the most part following the

notation and vocabulary of [Stanley 1986).

An (induced) subposet of P is a poset obtained by restricting the relation on
P to some subset of P. In particular, an interval |z,y] of P is the subposet whose
elements are {z € P: 1 < z < y}. Posets which have only finite intervals, as in
the two examples, are called locally finite posets. If an interval |z,y| contains only
the two elements z and y then y is said to cover z. The covering relations generate
the entire partial ordering under transitive closure; thus a poset is unambiguously
defined by tiie directed graph with vertices the elements in the poset and which has
a directed edge from z to y iff z is covered by y (we will sometimes refer to such
an edge, or the relation it represents, as a link). Such a graph, with the directions
indicated by drawing the vertex y above the vertex z iff z < y, is called a Hasse
diagram. Figure 1.1 shows the Hasse diagrams for B, and for the positive integers
ordered by divisibility. Both of these posets have a unique minimal element, denoted
by 0; the binomial posets also have a unique maximal element, denoted by 1. In
general, any element with no predecessors is a minimal element and any one with

no successors is a maximal element.

A subposet C C P is a chain if every pair of elements in C is comparable (such



Figure I.1: The Hasse diagram for the binomial poset B, is shown on the left; on the
right is (a portion of) the Hasse diagram for the integers ordered by divisibility. For the
integers, the minimal element is 1, the rank one elements are the primes, the rank two
elements are composites with two factors, etc.

a poset is totally ordered). The length of a finite chain is |C| - 1; the length (rank)
of P is the maximum of the lengths of the chains in P. A subposet A C P is an
antichain if every pair of elements in A is incomparable. The width of P is the
maximum cardinality of antichains in P. An order ideal is a subposet I C P with
the property that z € I, y < £ = y € I. A dual order ideal is a subposet I C P
with the property that £ € I, z <y = y € I. In finite posets every (dual) order

ideal I is generated by an antichain, namely the (minimal) maximal elements of I.

Most of these substructures of posets will aquire a physical interpretation when
the association between posets and the spacetime manifold of general relativity is
defined in the next section. Additional (more specialized) definitions will be delayed

until needed in the next chapter.

Causal sets

Using the language developed in the preceding section we may now make precise
the notion of a causal set: it is, by definition, a locally finite partially ordered
set. To relate this conception of spacetime with the classical spacetime manifold of

general relativity we impose a physical interpretation on the causal set: its elements
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are ‘events’ and the relations among them are causal relations. More precisely, we

define:

Definition: An embedding of a causal set P into a Lorentzian manifold (M,g) is

amap f: P — M which preserves relations, e, f(z) € J‘(f(y)) = rz<y.

Thus a causal set can be embedded into a spacetime manifold iff it can be realized
as a set of points with the causal relations induced by the metric. In some sense

then, the causal set is a finite approximation to the causal structure of (M, g).

The theorems of Hawking and Malament quoted earlier imply, however, that
embedding a causal set into a Lorentzian manifold approximately determines, at
most, the conformal metric; the following additional conditions must be imposed to

constrain the local conformal factor:

Definition: An embedding of P into (M, g) is faithful if the images of the elements
of P are distributed uniformly with respect to the volume form on (M,g) with
density 1 and, moreover, the characteristic volume scale on which the geometry

changes is much greater than 1.

These conditions will be made more explicit later; for the moment it s sufficient
to observe that the first allows the interpretation of number as volume while the
second preciudes the presence of large conformal factors introduced on small scales
to adjust the density. Thus it seems reasonable to expect that the existence of a
falthful embedding of P into M determines the metric almost uniquely: if there are
two mamfolds with metric into which P can be faithfully embedded, they skould
be ‘approximately isometric.’ This is our main conjecture, the Hauptvermutunyg:;
although it will not be proved here, or even stated precisely, from a mathematical

viewpoint the results on the dimension of causal sets described in the next two
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chapters may be taken as evidence supporting this conjecture (but most likely are
not steps directly toward a proof). It is worth noting that this is not an unfamiliar
situation: By studying the ring of functions on a manifold, as in the Einstein algebra
[Geroch 1972, Yodzis 1975], much of the structure can be determined; in particular
the points of the manifold can be identified as the maximal ideals in the ring. More
generally, spaces of maps from one space to another contain much of the information
about the two spaces; this is why one is interested in homotopy theory. In a related
example, as has been noted recently in connection with string theory [Bowick and
Rajeev 1987], the elements of a loop space 1 X which are reparametrization invariant
(1.e., the fixed points under the action of Diff S') are isomorphic to the point set
of X. From this point of view our goal is to determine the geometric structure of

M by studying the maps which are faithful embeddings of causal sets.

Having established this association between causal sets and spacetime mani-
folds we may assign a physical interpretation to several of the substructures defined
for posets. By definition, two elements are comparable if their embedded images are
causally related; incomparable elements have spacelike related images. An interval
corresponds to an Alexandroff neighborhood; restricting causal sets to be locally
finite means that all the Alexandroff neighborhoods have finite volume—none con-
tains an asymptotic region. If two elements are linked in a causal set then their
images under an embedding will be nearest neighbors: the Alexandroff neighbor-
hood they determine will contain the image of no other element in the causal set.
Further, a chain in P is embedded as a sequence of causally related events—there is
a causal curve passing through them. On the other hand, an antichain is embedded
as a set of spacelike related points. Finally, an order ideal corresponds to a past

set, a dual order ideal to a future set.
To this point the discussion has been purely classical, a physical interpretation
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being assigned to causal sets through faithful embeddings into spacetime manifolds.
But recall that the program is an approach to quantum gravity. As such, we expect
the description of spacetime as a causal set to be valid even in situations where the
manifold description breaks down: inside a black hole, in the very early universe, or
in topology changing processes. In general, causal sets should describe spacetime
at the Planck scale; hence the density in the definition of faithful embedding should
be 1 in natural, 1.e., Planck, units. In fact, the causal set is to be thought of as the
fundamental structure to which the spacetime manifold of general relativity is only
a large scale approximation. In a quantum ‘sum over histories’ approach a quantum
amplitude would be defined for every causal set and the spacetime manifold should
arise as the classical limit from the condition of constructive interference among
these amplitudes. Implementing such an approach requires a quantum dynamics
of causal sets, Taketani’s third stage, possibly by way of an action assigned to any
causal set. The investigation of Hausdorff dimension of causal sets leads to one

proposal for such an action; this is discussed in the concluding chapter.

From this point of view, where the causal set is the underlying structure of
spacetime, subject to quantum fluctuations, it is clear that not every causal set
which must be considered is faithfully embeddable in the four dimensional spacetime
manifold we observe. Nevertheless, at large scales the causal sets whose contribu-
tions dominate the amplitude in the sum over histories should be well approximated
by a Lorentzian manifold. In this context, consider ‘coarse graining’ a causal set
to obtain one which provides a larger scale view. Specifically, a subposet P’ is a
coarse-graining of P if there is some parameter p € [0, 1] such that the elements of
P’ are obtained by retaining each element of P with probability p. This requirement
should be interpreted as leading (most often) to coarse-grainings preserving only

those features of P which have characteristic volume scale larger than 1/p. Thus
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it might happen that a causal set which could not be faithfully embedded in any
manifold would become embeddable when coarse grained. Alternatively, even if a
causal set can be embedded faithfully in some manifold, for example a Kaluza-Klein
spacetime, coarse graining will erase the small scale structure and leave behind, in
this example at least, a causal set embeddable in a manifold of simpler effective

topology and lower dimension.

Thus we have several motivations for studying the dimension of causal sets as
defined by embeddings into Lorentzian manifolds. Aesthetically, it is desirable to
have a theory which predicts the dimension of spacetime; possibly a quantum the-
ory of gravity can do so. Further, we have the physical idea that a coarse-graining
of the causal sels whose contributions dominate the sum over histories should be
faithfully embeddable in a spacetime manifold. Moreover, determining the dimen-
sion of the manifold from an embedded causal set provides evidence in support of
the mathematical Hauptvermutung that a faithful embedding determines the metric
almost uniquely. In Chapter II we begin by studying the Minkowski dimension of
causal sets, keeping in mind the idea that an arbitrary Lorentzian manifold can be
formed by patching together small (almost) flat oper: neighborhoods. In Chapter
II1 we consider the problem more globally and define a Hausdorff dimension for
causal sets. Finally, in the Conclusion we compile the results on dimension, pro-
pose a possible action for causal sets, and outline the directions for further research.
Appendices A, B and C contain listings of the computer code used to obtain the
results in Chapter III. Appendix D contains a reprint of my paper “On the stability
of a non-supersymmetric ground state,” Class. Quantum Grav. 3 (1986) 881-887

which describes the results of some earlier graduate work.
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I1I. Minkowski Dimension

Locally, a Lorentzian manifold is approximately flat. Also, in a sinall volume, sta-
tistical fluctuations in a uniform distribution are such that the few points contained
in the volume need not be recognizably uniformly distributed. Thus we will begin
our investigation into how dimensional information is encoded in causal sets by con-
sidering the simplest possible case: embedding causal sets into Minkowski space,
namely the manifold R? with the flat Lorentz metric n of signature (— + e,

without requiring faithfullness.

Definition

It is easy to see how to embed many causal sets in Minkowski space this way.
The simple example in Figure II.1 shows how to embed a ‘diamond’ poset int»

two dimensional Minkowski space. Also, although the ‘crown’ poset of Figure I1.2

AN

Figure II.1
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/‘\\ 4 /<- N -
’,/ N - . .
Figure II.2: An embedding of the ‘crown’ poset into three dimensional Minkowski space

is indicated by the intersections of the past lightcones of the images of the elements with
a spacelike plane.

o/

cannot be embedded in two dimensions, it can be embedded in three dimensional
Minkowski space as shown. Notice that both of these examples come from binomial
posets: the ‘diamond’ is B, and the ‘crown’ is the middle two layers of B3. This

leads us to make the following conjecture.

Conjecture: The binomial poset B, can be embedded in n dimensional Minkowski

space.

But the binomial poset bears a special relation to all other posets, as expressed

by the following well known result.

Lernma II.1: A poset P with no more than n elements can always be realized as

a subposet of B,.

Proof: Label the elements in P from 1 to n. Then define a map f: P — B, by
f(i) := {7 € P:j <1}, where we are identifying the elements of B,, with subsets

of [n]. This is clearly an order preserving injection, so P is a subposet of B,.. 1

- The importance of this result is that it guarantees that if the conjecture is true
then all causal sets can be embedded in a Minkowski space of some dimension; thus

we may make the following definition.

Definition: The Minkowski dimension of a causal set is the dimension of the

lowest dimensional Minkowski space into which it can be embedded (not necessarily

16



faithfully).

The validity of this definition for all causal sets depends on the truth of the
conjecture above. Although for our immediate purposes it would suffice to accept it
as applying to exactly those causal sets which can be embedded in some Minkowski
space, the next section discusses an attempt to prove the conjecture; as it is only
partially successful the following sections take another tack, investigating the con-

nection with the combinatorial definition of poset dimension.

Embedding the binomial poset

The most natural approach to embedding B, in n dimensional Minkowski space is
to exploit the symmetries of Bp: Consider a regular n — 1 simplex. Let e),...,¢en
be vectors from its barycenter to the n vertices, normalized by e, -¢; = n — 1. For

use in the following calculations we note that
ey +---+e,=0
er-(ey+--+e)=0 = e - =-1, 1 £ ]
lley +--- + exl||? = k(n — k).
As before, since the elements of B, may be thought of as the subsets of [n], there is

a natural bijection between them and subsets of {ey,... ,en}; thus we shall embed

the element corresponding to the subset A C [r] at t4|, Tj4 Yica ti-

Set £, := 0, r; := 1. Then we may define the time coordinates recursively by
(ther — tk)2 := ks (en + oo+ ekgr) —rilen + o+ e
=2, (k+1)(n = (k+1)) +rik(n — k) = 2rerieik(n — (k + 1))
and ensure embedding by requiring
t2,1 < lIrksr(er + - + ext1) = enll®
=2 (k+)(n—(k+1)+(n—1)+ 2re41(k + 1).
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Figure I7.3: When the slope of the line is less than that of the hyperbola’s asymptote
the solution region is bounded; when it is greater the solution region is unbounded. These
graphs are for n = 6,1, = 0.25 and 0.50, respectively, with rg running irom 0 to 1.5 along
the horizontal axis.

Note that for k = 1 these conditions become

t2 =r2.2(n—2)+ (n — 1) = 2ra(n - 2)

t2 <r2.2(n—-2)+(n—-1)+2r2-2,
and will hold for any positive choice of 2.

In general, solving the defining equation for t2 . combining with the inequality
k+1

and simplifying, we find that there will be solutions iff

2repr [(k + 1) +rek(n— (k+1))] +(n—1) - t2 —rik(n — k)

2
> 2tk[r;‘:+l(k +1)(n — (k + 1)) + rik(n - k) — 2rririk(n — (k + 1))] 12,
Graphing the left hand side of this inequality as a function of ri4; gives a line;
similarly, the right hand side gives a hyperbola. Since the hyperbola is symmetric
with respect to the horizontal axis {and does not intersect it), there will be solutions
iff the curves intersect in the first or second quadrants. Figure 1.3 shows the types

of intersection that can occur.

Replacing the inequality with equality, squaring and simplifying, we obtain a
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quadratic equation for ri41:
41',2:“{[(’6 +1) + rek(n — (k + 1))]2 —t3(k+1)(n - (k+ l))}
+ 4ri41 { [(k+1)+ rik(n — (k + 1))} [(n-1) - t; —rik(n - k)]
+ 2rik(n - (k + l))ti}
+ {[(n 1) = 2 —rlk(n - ))° - arkk(n - k)R = 0.

This equation has real solutions iff the discriminant D is non-negative. After some

algebra we find
D/1662 = (k + 1)(n = (k + 1)) [(n — 1) = ¢}]"
+4k(k+ 1) (n - (k+ 1)) [(n — 1) — t§]r
+2k{2k(n = (k +1)*(n = 1) + 2(k + 1) (n — k)
(ke + ) — k) (n (k4 1) [(n— 1) + 23]
+ 4k2(k + 1)(n — k) (n — (k + 1))}
+k2(k+1)(n— k)2 (n — (k+1))rk.

This expression may be simplified by defining
€:=rik(n—k)+ (n— 1) + 2rgk — ti > 0.
Expressing t? in terms of €, we obtain
D/16t2 = —4kn?(n — (k +2))r} + (k + 1)(n — (k + 1)) €.
Tor k = 2, € = 2ran, so D = 64t2rZ(n — 1)n? which is positive definite. Thus

we can solve the quadratic equation, which becomes, after expressing t2 in terms of

To:

—r§{3(n—4)—2r2-3(n—3)+r§-2(n—3)}+2r3r2{(2n—5)—r2-2(n—2)}—rg(n—z) = 0.
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0.50 150 550 2

Figure 11.4: The values of r; and rs which satisfy the embedding condition lie inside the
region bounded by the solid curves with asymptotes at r, and ri. Inside this region the
discriminant in the solution for r4 attains its local maximum for each value of rg along
the ridge line indicated by the dotted curve. The second dotted curve, with the horizontal
asymptote, is the locus of the extraneous solutions mentioned in the text. These curves

are again plotted for n = 6.
Note that when the coefficient of r? is positive, it means that the line shown in
Figure I1.3 is steeper than the asymptote of the hyperbola, while when it is negative

the opposite is true. This coefficient when

. 3(n —3) £ /3(n —3)(n — 1)

2 2(n - 3)

so denoting the solutions to the quadratic equation in r3 by r (r2) and r3 (r2) we see

that for r5 € (0,75 ) the original inequality has solutions for r3 € (Ta—(Tz),T;-(TQ)),

while for ro € [r7,71) the solutions are r3 € (rs_(rz),oo). Figure 11.4 shows the

allowed range of r3 for each value of r2; the vertical asymptotes are at r, and r;' .
Can we continue to kK = 37 In this case
D/64t = —3n*(n — 5)r2 + (n — 4)€’
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which is positive definite only for n < 5; for n > 5 we must determine its sign in the
region shown in Figure [1.4. At a fixed value of r3 we may extremize with respect

to ro:

e a( 1) = -2(n —4) 9 2 4(n — 4)et 9, |
— | —= )= —(n—4)¢" = -2(n —4)e—1l3 = —4\n — 4)el3 —13.
3r2 6‘“% ar, 67'2 3 367'2 ’

This vanishes if € = 0 or dt3/dr2 = 0. (t3 cannot vanish.) € = 0 at the boundary of
the allowed region; by inspection D < 0 here and these are local minima for fixed
ra. Between them D attains a local maximum when Ot3/dry = 0, namely when
(n~2)(rz-2-1)
\/1-_%_-—2(n —2)+(n—1)-2rz(n-2)

+

2(r2(n—2) —r3(n—3)) —o
VrZ-3(n—3) +r2-2(n—2) - 2rprz-2(n - 3) '

Moving the second term to the left hand side, multiplying by the common denomi-
nator, squaring (Note that this introduces an extraneous solution.) and simplifying,

we obtain a quadratic expression for r, in terms of rj:
r2.2(n—-2)[2r3(n-3) - (n—2)] —r2-4r3(n—2)(n—3)(rs - 1) —r3(n—-3)(n—4) =0.

If we solve this equation for r; in terms of r3 we obtain the dotted curves in Fig-
ure IL.4; the curve running along the middle of the allowed region indicates the
loci of the local maxima for fixed r3. (The other dotted curve is the locus of the
extraneous solutions introduced when we squared the equation.) Plugging this so-
lution for r, back into the discriminant and verifying that it is negative would prove
that the discriminant is negative throughout the allowed region. This is difficult
to ao analytically, but easy numerically. Figure I1.5 shows the graph of D/64t2 as
a function of ro for various fixed values of r3; the values at the local maxima are

negative and decreasing away from the origin.

Inasmuch as one trusts numerical results, then, for n > 6 the discriminant

which occurs in the solution for r4 is negative throughout the region of allowed r
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Figure 11.5: D/64t? as a function of r, for rs = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 and 0.35.
As rs increases the descriminant becomes more negative in the allowed region (between
the local minima). These curves are plotted for n = 6; the vertical scale runs from —50
to 50.

and r3; hence there is no real solution and B,, cannot be embedded symmetrically

in n dimensional Minkowski space.

For n < 6 it is easy to obtain embeddings. Table II.1 contains a representative

solution:

Tk ti bound

1.00000 0.00000 | 3.16228
1.00000 x 107° 1.99698 2.00001
1.33252 x 107° 2.00001 2.00002
3.33217 x 10~° 2.00006 | 2.00007
6.18356 x 10~° 2.00013 | 2.00015

G W N &

Table 1.1: A representative embedding of Bs into Minkowski space. The bounds on the
times are the ones from the embedding condition given the choices of rg.
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The conclusion of this section, therefore, is that the observation that B and
Bj can be embedded in two and three dimensional Minkowski space, respectively,
can only be extended up to dimension five via symmetrical embeddings. While it is
possible that asymmetrical embeddings exist, these results at least indicate that the
conjecture of the previous section will be difficult to prove directly. Instead, in the
next section we consider the standard definition of poset dimension and determine

its relation with the Minkowski dimension.

Combinatorial dimension I
We begin with some definitions.

Definition: A total ordering of a set is a partial ordering for which the trichotomy
principle holds, i.e., every two elements are related. A total order is a (linear)
extension of a partial order if z < y in the paitial crder implies < y in the total

order (for z # y).

The basic result, first proved by [Szpilrajn 1930|, is that every partial order
admits an extension and, moreover, if z and y are unrelated in the partial order,

there is an extension in which z < y and one in which y < z.

Definition: The intersection of a collection of total orders (of a given set) is the

partial order consisting of the relations on which all the total orders agree.

An example of this is shown in Figure I1.6 where the ‘diamond’ poset is realized as
the intersection of two total orders. Dushnik and Miller used these ideas to define

poset dimension [Dushnik and Miller 1941]:

Definition: The combinatorial dimension of a partial order is the cardinality of

the smallest collection of total orders whose intersection is the partial order.
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Although this definition of dimension is purely combinatorial, it is nevertheless

related to the Minkowski dimension:

Proposition I1.2: A causal set can be embedded in two dimensional Minkowski

space iff it has combinatorial dimension at most two.

Proof: There is a geometrical interpretation of the combinatorial dimension: if the
dimension is d, choose a system of orthogonal coordinates in R? and identify the
position of an element in each total order as its corresponding coordinate. Figure
I1.7 shows the ‘diamond’ poset in R2. With this interpretation an element in the
poset precedes another element iff all of its coordinates are smaller. Thus, cross
sections of the region in which an element must lie to precede another are d — 1
simplices; so let us call the regions past lightpyramids. In two dimensions, however,
these lightpyramids are congruent to past lightcones in Minkowski space; we need
only interpret the coordinates as the null coordinates v :=t —zand v:=t + z to
obtain a Minkowski embedding from a combinatorial cne. Conversely, given a two
dimensional Minkowski embedding of any finite poset, we can adjust the images
slightly if necessary to ensure that no two have the same null coordinate (or else
widen the lightcones slightly); then the ordering in u and the ordering in v provide

the desired combinatorial realization. §
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Figure I1.8: The poset S? with a diagram demonstrating the impossibility of its having
combinatorial dimension three on the left and an explicit embedding into three dimensional
Minkowski space indicated by the intersections of the past lightcones of the images of the
elements with a spacelike plane on the right.

It is the geometrical interpretation of the combinatorial dimension which al-
lows us to make this simple connection to the Minkowski dimension. But it also
indicates how to construct a counterexample to the hypothesis that this result holds
in higher dimensions. Consider a poset with three unrelated elements: the geomet-
rical realization of their past lightpyramids in the first octant of R3 wil] form three
rectangular parallelepipeds intersecting to form a fourth. An additional element in
the poset, unrelated to the first three but succeeding elements in each of the regions
where two but not all three of them intersect, must succeed every element in the
fourth parallelepiped which is their triple intersection. But this is not the case in
three dimensional Minkowski space: see Figure II.8 for a diagram and the simple
poset (S7 in the notation of [Kelly and Trotter 1982]) which realizes this situation,

having combinatorial dimension four and M inkowski dimension three.

It is natural to conjecture at this stage that the Minkowski dimension s al-
ways less than or equal to the combinatorial dimension. Now, the combinatorial
dimension of posets has been extensively studied. (Recent surveys may be found in
(Kelly and Trotter 1982, Fishburn 1985|.) For example, the binomial poset B,, has

combinatorial dimension n [Komm 1948|. Moreover, many upper bounds for the
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combinatorial dimension of a poset have been found:
. ¢dim P < cdim P' + 1 where P’ is obtained from P by removing a single
element [Hiraguchi 1951].
. ¢dim P < 2 + cdim (P \ C) where C is a chain in P [Hiraguchi 1951].
. c¢dim P < width P [Hiraguchi 1955].
. ¢dim P < max {2,|P\ A|} where A is an antichain in P [Kimble 1973, Trotter
1975].
. ¢dim P < |P|/2 for |P| > 4 [Hiraguchi 1951].
. ¢dim P < 1 + width (P \ M) where M is the set of maximal elements of P
[Trotter 1975|.
. ¢dim P < 1+2 width (P\ A) where A # P is an antichain in P [Trotter 1974).
If it could be shown that the Minkowski dimension did not exceed the combinatorial
dimension, each of these results would imply an upper bound on the Minkowski
dimension. Alternatively, notice that the first result in this list gives an upper
bound very similar to the one we would obtain following the argument of the first
section in this chapter should the conjecture there be true: neither dimension would
be greater than the number of elements in the poset. Of course, this is a vanishingly
weak upper bound: since N points can span only N —1 dimensions in a linear space,
if a causal set can be embedded in any Minkowski space, it can be embedded in an
N — 1 dimensional one. Although our primary motivation in obtaining an upper
bound should be to show that the Minkowski dimension is well defined, one might
hope that these other upper bounds on the combinatorial dimension have analogues
as well. After all, with a 1024° Planck volume universe, this would give what is

probably the largest number of dimensions ever considered for spacetime!
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Combinatorial dimension I

As yet we have no indication that this {large) upper bound is at all relevant: we
have seen examples of causal sets of Minkowski dimension two and three (Figures
IL.3, I1.4 anc 11.8), but have not shown that any causal set has dimension greater
than three. It would be unfortunate if, in fact, all causal sets which were not planar
could be embedded in three dimensions, as is the case with graphs in Euclidean

space, for example.

There are also, however, lower bounds on the combinatorial dimension. Recall
the first upper bound on the list in the preceding section: cdim P < cdim P +1
where P’ is obtained from P by removing a single element. This is often called the
One-point Removal Theorem: removing a single element from a poset decreases its
dimension by at most one. (It is easy to see that a weaker version of this is true for
the Minkowski dimension: removing a single element cannot increase the dimension
since if a causal set is embedded, it remains embedded upon the removal.) Thus

one is led to define [Kelly and Trotter 1982}:

Definition: A poset is d-irreducible if it has combinatorial dimension d and the

removal of any element reduces its dimension.
Examples: B; is not 2-irreducible, but the ‘crown’ poset is 3-irreducible.

It is clear that any poset with combinatorial dimension at least d contains a
d-irreducible subposet: By the One-point Removal Theorem, if the elements are
removed one at a time, the dimension either decreases by one or remains the same;
removing elements until the dimension is d, then removing all elements which do not
reduce the dimension further, one obtains a d-irreducible poset. The d-irreducible

posets are thus obstructions to embedding a poset in fewer than d total orders.
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They are similar to the Kuratowski subgraphs K5 and K3 3 which prevent a graph

from being planar [Kuratowski 1936|.

More generally, this phenomenon is related to what (Kelly and Rota 1973| have
termed the critical problem of combinatorial geometry: given a set S in a projective
space P, over a finite field, find the linear subspaces V C P,, of maximum dimension
d such that VNS = 0. They conjecture that the critical exponent ¢ := n—d is deter-
mined by the nonexistence of certain obstructions and indicate the parallel between
this problem and the problem in algebraic geometry of determining the minimum
number of conditions on a hypersurface necessary to ensure that it contains a given
algebraic variety. Similarly, in a problem closer to physics, extending a cross section
over a subspace of the base space of a fibre bundle to a cross section over the entire
base space requires the vanishing of obstruction cocycles in the homotopy groups of
the fibre [Steenrod 1951]. The Gribov ambiguity [Singer 1978| and the determina-
tion of the connected components of the configuration space of a gauged nonlinear
sigma model [Percacci 1986| are instances of this problem, as are the orientability
and existence of a spin structure on a manifold {Borel and Hirzebruch 1959, Milnor
1963]. In all these problems there is some algebraic object which is related to the
obstructions: the Birkhoff (or characteristic, or chromatic) polynomial for a combi-
natorial geometry, the Hilbert polynomial in algebraic geometry, and a cohomology
class in H™(M; B(mn_1)) for extensions of fibre bundle cross sections {specifically,

the second Steifel-Whitney class in the case of spin structure).

Ideally one would develop such algebraic machinery in the case of posets. Lack-
ing that, one at least would like to be able to list exhaustively the d-irreducible
posets. We shall see a hint in the next section that some algebraic formulation may
exist for the problem of determining the Minkowski dimension of a causal set. In

the meantime, we can compile a partial list of irreducible posets. There is only one
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Figure I1.9: The seven infinite families of 3-irreducible posets: A,, E,, F,,, G,, H,, I,
and J,.

2-irreducible poset: two unrelated elements. 3-irreducible posets were discovered
by [Harzheim 1970, Baker, Fishburn and Roberts 1971, Kelly and Rival 1975|; and
the list was finally completed independently by [Kelly 1977] and by [Trotter and
Moore 1976]. The results, summarized in [Kelly and Trotter 1982], are that there
are seven infinite families and ten exceptional 3-irreducible posets (up to duality

and isomorphism); these are shown in Figures I1.9 and II.10.

Since we have seen that the combinatorial and Minkowski dimensions are re-

Jated to some extent, the natural step now is to define:

Definition: A causal set is d-irreducible if it has Minkowski dimension d and the

removal of any element reduces its dimension.

We have not proved a One-point Removal Theorem for causal sets; nevertheless

if we have a causal set with Minkowski dimension d, we know that removing an
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Figure I11.10: The ten exceptional 3-irreducible posets: B, C, D, CX,, CX:,CXs, EX,,
EXz, FX[ and FXg

element cannot increase the dimension. So we can remove, one at a time, the
elements whose removal does not reduce the Minkowski dimensjon of the causal
set. When no such elements remain the causal set is d-irreducible. This proves the

following proposition:

Proposition I1.3: A causal set with Minkowski dimension d must contain a d-

irreducible causal set.

So which are the d-irreducible causal sets? By our earlier result that Minkowski
and combinatorial dimension two are the same, there is only the same single 2-

irreducible causal set. For dimension three we have the following result:

Theorem I1.4: Every 3-irreducible causal set is a 3-irreducible poset and con-

versely.

Proof: Consider such a causal set. Removing any element reduces it to Minkowski
dimension two, and hence by Proposition I1.2, to combinatorial dimension two. But
the One-point Removal Theorem tells us that the combinatorial dimension cannot

decrease by more than one when a single element is removed. Since the original
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causal set could not have had combinatorial dimension two (else its Minkowski
dimension would also have been two), it must have had combinatorial dimension

three. Thus it was a 3-irreducible poset.

Conversely, consider a 3—irreducible poset. Since we do not have a One-point
Removal Theorem to tell us that the Minkowski dimension decreases by at most
one upon removal of a single element, it is conceivable, u priori, that this poset
has Minkowski dimension greater than three. We have, however, a complete list of
the 3-irreducible posets so we can look for an explicit embedding of each in three
dimensional Minkowski space. Inspecting Figures I1.9 and I1.10 we find that such
embeddings do exist. Thus the 3-irreducible causal sets are exactly the 3-irreducible

posets. |}

This result justifies the assertion made in the first section of this chapter that
the ‘crown’ poset could not be embedded in two dimensional Minkowski space: since

it is a 3~irreducible poset it is also a 3-irreducible causal set.

The situation for d-irreducible posets is considerably more complex when d > 4
[Paoli, Trotter and Walker 1985]. Since there are posets of each possible dimension
(the binomial posets, for example) there must be d-irreducible posets for every di-
mension. [Trotter and Ross 1982] have shown, however, that for any poset P having
combinatorial dimension d > 3 there exists a (d+ 1)-irreducible poset containing P
as a subposet. Thus d-irreducible posets for d 2 4 can be arbitrarily complicated
and a proof based on examination of cases, as above, cannot be extended to higher

dimensions.

Recall that our motivation for examining d-irreducible causal sets is to ob-
tain a lower bound on the Minkowski dimension of a causal set: if it contains a

d-irreducible causal set then it must have Minkowski dimension at least d. In par-
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ticular, we would like to know that not all causal sets have dimension less than
or equal to three (four, or ten, or twenty-six would be fine!). Now, although the
set of all d-irreducible posets for d > 4 is complicated, there are simple families of
d-irreducible posets for all d. The standard example of such a family is the set of
posets Sq C By consisting of the elements corresponding to the subsets of [d] of
sizes 1 and d — 1. S, is a d-irreducible poset [Paoli, Trotter and Walker 1985|. In
the following section we apply some geometric and topological methods to deduce

that B, also contains d-irreducible causal sets.

Irreducible causal sets

The binomial poset B, has n rank 1 elements (elements covering the minimal el-
ement). Suppose these elements are embedded in d dimensional Minkowski space.
Then their future lightcones will divide the spacetime into regions in which the other
elements must be embedded by virtue of their relations to these elements. In the
following discussion we will enumerate the regions formed and infer a lower bound
on the Minkowski dimension of By,. (The argument is closely related to computing
the Euler characteristic of a CW complex; pursuing this connection further might
lead to the purely algebraic computation of Minkowski dimension suggested in the

previous section.)

Definition: By an arrangement of n (future) lightcones in general position in d>2
dimensional Minkowski space we mean that every k < d lightcones intersect to form
a d— k dimensional variety, which we will call a conic variety, and any larger number

of lightcones has no common intersection.

What is this variety? The equations of the lightcones can be written out

explicitly in the form
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d—1
(t-t) =) (a* —=))

1=1

d—1

(t—te)? =) (2 — k)

=1

Differences of pairs of equations produce k — 1 independent linear equations which
intersect to form a d — k + 1 dimensional hyperplane, which may be spacelike; call
it H. The intersection of H with any one of these k lightcones is their common
intersection, a d — k dimensional conic variety @ lying in H (and, of course, in each
of the lightcones). For k =1, Q is a lightcone, while for K > 1, Q is a hyperboloid,

paraboloid or ellipsoid.

With this in mind, consider an arrangement of n (future) lightcones C; in
general position in d dimensions. Define Mg(n) to be the maximum number of d-
cells (i.e., regions homeomorphic to the interior of an 54-1) formed in d dimensional
Minkowski space by any n (future) lightcones. The number of d—cells formed by
Ci,...,Cp is no more than the number of d-cells formed by C,,...,Cpn_1 plus the
number of (d — 1)-cells C,, is divided into by its intersections with Cy,...,Cp_y;
define C4_;(n — 1) to be the maximum number of (d — 1)—cells formed on a d — 1
dimensional conic variety by its intersection with n — 1 other d — 1 dimensional

conics, i.e., (future) lightcones. Then

Md(n) < Md(n - 1) + Cd_l(n — 1).

In general, a d — k dimensional variety @ lying in the d — k + 1 dimensional
hyperplane H determined by k of the lightcones as described above is cut into
(d — k)—cells by its intersection with the n — k conic varieties @Q; formed by the

intersection of each of the remaining n — k lightcones with H (all of which are
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therefore translations and scalings of each other). Thus, the number of (d — k)--cells
formed on Q by Q,,...,Qn_k is no more than the number of (d — k)—cells formed
on Q by Q1,...,Qn_k—1 plus the number of (d — k — 1)—cells on Q,,_x formed by

its intersections with @,,...,Qpn_k—1, SO

Cd_k(n - k) < Cq—k(n—k - 1) + Ca—k-1(n — k — 1).

The initial conditions for this recursion are
Cq(1) =2 d>2
Cl(n) =2n + 1.

Su we obtain the numbers in the following table:

Ca(n) number of lightcones n

dim d 1 2 3 4 5 6 7 8
1 3 5 7 9 11 13 15 17
2 2 5 10 17 26 37 50 65
3 2 4 9 19 36 62 99 149
4 2 4 8 17 36 72 124 233
5 2 4 8 16 33 69 141 275
6 2 4 8 16 32 65 134 275
7 2 4 8 16 32 64 129 263

Table I1.2

which are given by

cu< (1) £ (5)

=0

Before solving the recursion relation for My(n) we must note that the case

d = 2 is special, for the intersections of lightcones here are simply single points, not
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the more general S° consisting of two points used to obtain the initial condition

Ci(n) =2n + 1. So for d = 2 we have
Mj(n) = Ma(n — 1) + n.

Applying the initial condition My{1) = 2 we may easily solve this to obtain

nin+1
Adé(n):= 1+ —j“zi——l.
For d > 3, since the initial condition My(1) = 2 is the same as for C4(1), and since
lower dimensional Minkowski space bounds do not occur in the recursion relation,

we obtain simply

Mgy(n) < Cy(n).

Thus the bounds on My{n) are as shown in Table IL3:

M,(n) number of lightcones n

dim d 1 2 3 4 S 6 7 8
2 20 47 | T 11 16 22 29 37
3 2 4 9" 19° 36° | 62 99 149
4 2 4 8 17 36 72° 134° 233
5 2 4 8 16 33 69 141 2757
6 2 4 8 16 32 65 134 275
7 2 4 8 16 32 64 129 263

Table I1.3

Hence we may deduce the following:

Theorem I1.5: The Minkowski dimension of B,, is at least as large as the minimal

(2)= 2 ()
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Figure I1.11: Three future lightcones can cut three dimensional Minkowski space into
nine distinct pieces: eight pieces are clearly present in this diagram showing the intersec-
tions of the lightcones with & spacelike plane; the ninth is the region of spacetime interior
to the middle lightcone but exterior to the other two. That this region exists is indicated
by the fact that the small circle is not entirely contained in either of the larger ones.

Proof: The n rank 1 elements in B, when embedded in d dimensional Minkowski
space, divide it into at most My(n) regions. Since By, requires at least 2" regions

to embed, we obtain this inequality. §

The bounds on Mg(n) which imply these values for d are indicated by astrices

in Table II.3.

It may seem peculiar that n future lightcones can ever cut a spacetime into
more than 2" regions. For example, can the bound of M3(3) =9 > 23 be attained?
The answer, in fact, is yes: this phenomenon is the effect of the boundary condition
Cy(n) = 2n + 1 and can be realized even in this simple case as shown in Figure
I1.11 where three future lightcones cut three dimensional Minkowski space into nine
distinct pieces. Of course, only the numbe: of regions bearing different relations to

the future lightcones is relevant and this can be no more than 2".

More relevantly, from this table we can recognize the first example we have seen
of a causal set with Minkowski dimension greater than three: Bs. In fact, there are
binomial posets which have arbitrarily large Minkowski dimension and therefore,
by Proposition IL.3, there are d-irreducible causal sets for arbitrarily large d. Since
d must be greater than n/2 to solve the inequality in Theorem IL5, the number
of elements in these d-irreducible causal sets is less than 224 = 44 A volume

grows as the d*® power of a length so we conclude that the Minkowski dimension
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of a causal set is a reasonable local characterization of the dimension. In the next
chapter we will examine what can be determined about the dimension when the

global condition of faithfullness is imposed on the embedding.
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II1. Hausdorff Dimension

Recalling the discussion in the Introduction, we expect that while the fact that a
given causal set can be embedded in a Lorentzian manifold may put a lower bound
on the dimension of the manifold as described in the last section of Chapter II, a
faithfu! embedding should be required to determine the geometrical structure. So
in this chapter we investigate how to extract the dimension of a manifold (and some

of its geometry) from a causal set which can be faithfully embedded therein.

Uniform distribution

The definition of a faithful embedding requires that the images of the elements in
the causal set be uniformly distributed in the manifold. To implement this condition
we take them to be the outcome of a stochastic process: points sprinkled uniformly
(so that the probability of finding a point in a region of finite volume depends only
on the volume of the region) and independently (so that for two disjoint regions the
probability of a finding a point in one region is independent of the the probability

of finding a point in the other) in the manifold.

If the volume of a manifold M is finite, this is just the uniform process: a

sequence of independent random variables X,,..., X, each uniformly distributed
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in the manifold. Although most of the discussion and terminology in this section
follows {Baclawski and Rota 1979], this use of ‘independent random variables’ dif-
fers slightly from the standard definition: A (continuous) random variable is usually
taken to be a function from a sample space {1 of possible outcomes, with a probabil-
ity measure defined on events, to R? such that the sets {w € 0 : X*(w) < z%;1 € [d]}
are events, denoted (X < x), for all choices of x := (z'). Two such random variables
X and X are independent if the events (X, < x;) and (X2 < x;) are independent,
fe, P((X) <x1)N (X2 <x3)) = P(Xy < x1)P(X; < X3), where P(A) denotes the
probability of the event A C Q2. If we took the X to be the coordinates of points in
the manifold for some coordinatization then these definitions would apply; as this
is artificial and unnecessary we simply take the range of the X; to be the possible
sample points themselves. Then each X, is distributed independently according to
the same probability density function fx(x) which is uniform in the sense that for

any measurable region (event) A C M,

vol[A]
vol[M]’

/A fx(X)v/—gdx =

which implies that fx(x) = 1/vol[M]. Note that this definition would fail for a

manifold of infinite volume.

Alternatively, consider the random variables obtained by transforming the X;

by the characteristic function for a region A C M:

XA(X:) '_:{1 legEA

0 otherwise.

From these we obtain a collection of random variables

Nn(4) := ) xa(Xi)
i=1

which simply count the number of the X; which fall into each region A; this col-

lection is a generalization of the usual notion of a random function—a collection of
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random variables parametrized by a single continuous parameter. Since the man-

ifold has finite volume it is easy to find the probability density function for each

(discrete) random variable N, (A):

roan-a- () (3) (-3

These randeiu variables N, (A) are estimators for the volume of A. In fact, if we

compute the expectation value of N,(A) we obtain

:n%’

so Np(A) vol[M]/n is an unbiased estimator for the volume of A, i.e., it is a random

variable whose expectation value is the parameter being estimated.

It is this alternate approach which generalizes to manifolds of infinite volume.
Let p := n/vol[M]| and consider the limit N,(A) of N,(A) as n and vol[M] become

infinite while p stays constant. A familiar computation shows that

k
. _ _ (pVOl[A]) —pvol[A]
n.VOll[lLrll—’OO P(Nn(A) - k) B k! ¢ ’
n/vol[M]|=p

which is the Poisson distribution. Thus in the infinite volume case we should prop-
erly speak of a Poisson process with density (intensity) p and take the integer
random variables N,(A) to be fundamental. From now on we will set the density
to one: the points are sprinkled with unit Planck density. Then N(A) := N,(A) is

an unbiased estimator for the volume of A:



(In fact, it is also an efficient, or minimum variance, estimator.) Thus the desired
identification oi volume with number is achieved by this model of points distributed

uniformly in the manifold.

A natural question to ask at this point is how to determine that a given embed-
ding is faithful. Although in this chapter we are primarily concerned with exactly
those causal sets which are obtained by sprinkling points uniformly in a Lorentzian
manifold (and which are thus faithfully embedded by definition), when we take a
causal set to be fundamental and ask whether a given manifold approximates it
via a faithful embedding, it is necessary to be able to test whether the distribution
of images is uniform. Such a test must, perforce, be statistical. Similar questions
arise in diverse contexts: testing random number generators for computers [Knuth
1969], analyzing aggregation in biological systems (e.g., locations of trees in a forest)
[Diggle 1983 and references therein|, and investigating the distribution of galaxies
[Neyman and Scott 1958, Blackman and Tukey 1959, Peebles 1974, 1980, Raine
1981, Hewett, Burbidge and Fang, eds. 1986|. The general procedure is to develop
some test statistic which compares a set of observations with that predicted by a

uniform distribution.

For example, along the lines of the preceding discussion, we might partition
a finite volume manifold M into regions of volume V, count the number of points
in each region to obtain a collection of observations Y := the number of regions

containing k points for k = 0,...,n := vol[ M|, and form the statistic

z": (Yy — npi/V)?
= /v

where pi denotes the probability that a region of volume V contains k points:
(A)(¥)%(1 — X)»=*. This is a chi-square statistic with n degrees of freedom (in

practice we would expect the Y for £ > V or k < V to be very small and might
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therefore choose to group some of the Y together—the recommended practice is to
make the expected values at least 5—reducing the number of degrees of freedom).
For a given set of observations we could check tables of the chi-square distribution
to determine the likelihood of its computed value; if this probability were too low

we would reject the hypothesis that the distribution was uniform.

Clearly, there are an infinite number of such tests. Each partition of the
manifold, for example, gives a different statistic; one might also generalize the
Kolmogorov-Smirnov test for continuous random variables [Knuth 1969 in various
ways: the standard in biological applications seems to be to compute distribu-
tions of distances between points [Diggle 1983] while in observational cosmology
the correlation function and its Fourier transform, the power spectrum, are pre-
ferred [Blackman and Tukey 1959, Raine 1981]. In fact, even the results we derive
later in this chapter on dimension and geometry could be turned into statistical
tests of uniformity. The important thing to remember, however, is that no statisti-
cal test can prove that a distribution is uniform—it can only assign a probability to
the observations under the assumption of uniformity; if this probability is small we
may conclude that the distribution is unlikely to be uniform, but no more. Thus a

precige formulation of the Hauptvermutung in this model must be probabilistic.

Minkowski space: uniform distributions

So let us begin by considering causal sets which arise from uniform distributions
of points in Minkowski space. These causal sets are quite different from those we
saw in Chapter II: Figures III.1 and II1.2 show the Hasse diagrams for causal sets of
50, 100 and 200 points distributed uniformly in two dimensional Minkowski space.
(Incidentally, note that each is a coarse graining of those succeeding it.) These

causal sets were produced by the Pascal program which appears in Appendix A;
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Figure II1.1: Hasse diagrams for causal sets with 50, 100 and 200 elements embedded
faithfully in two dimensional Minkowski space using the system random number generator.
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Figure II1.2: Hasse diagrams for causal sets with 50, 100 and 200 elements embedded

faithfully in two dimensional Minkowski space using procedure random.
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the points in Figure III.1 were distributed using the computer system supplied
random number generator, while those in Figure III.2 were distributed using the

procedure random listed in the program.

The chi-square test described in the previous section can be applied here to
check that these causal sets are faithfully embedded. Of course, in this case it is
really a test of the random number generator used to produce the points. But this
is worth checking as we perform computer experiments to illustrate the analytic re-
sults described later in this chapter and random number generators are notoriously
nonrandom [Knuth 1969, Press, Flannery, Teukolsky and Vetterling 1986]. The one
used in this program is a slight modification of the one given by Press, et al. im-
plementing Knuth’s recommendation. To apply the chi-square test the Alexandroff
neighborhood was partitioned into B2 smaller Alexandroff neighborhoods similar
to the original (i.e., ‘square’). Typical data are contained in Table IIL.1: this is the
case with NV = 50 points and B? = 25 regions; recall that Y; := the number of

regions containing k points.

k Yi expect
0 4 ]

1 6 | 10.0
2 7 6.9
3 4 1

4 3

5 0 8.1
6 | 1 | |

Table III.1

Notice that the Y) have been combined so that each set has an expected value of at
least 5. The chi-square statistic computed for this data has two degrees of freedom:

v = 2 and x% ~ 0.00213. Thus the results are extremely uniform; in fact, almost
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too uniform: P(x3 < 0.00201) =~ 0.01 and P(x% < 0.1026) ~ 0.05 [Abramowitz
and Stegun 1964]. For comparison, causal sets were also produced using the system

supplied random nuraber generator. The results are shown in Table III.2.

B? v program x2 system x2
N =50 25 2 0.00213* 4.83
49 2 1.72 1.28
100 2 0.0146° 3.24
N =100 49 4 4.44 3.86
100 3 2.84 1.43
196 2 0.939 0.0137*
N =200 49 5 1.07* 2.45
100 5 4.66 2.49
196 3 0.693 0.224*
400 3 1.56 0.714

Table II1.2

None of the x2? values lies outside of the 0.01 to 0.99 probability range; those
indicated by an asterisk lie outside the 0.05 to 0.95 probability range [Abramowitz
and Stegun 1964]. Thus both random number generators seem to be producing
uniform distributions (for further verification 20 independent runs were made in the
case N = 200, B% = 100; for each generator exactly 10% (i.e., 2) of the resulting
x2? values lay outside the 0.05 to 0.95 probability range); thus we may take the
resulting causal sets to be faithfully embedded. For the rest of this chapter we use

the portable random number generator in the program of Appendix A.

Minkowski space: dimension

It is natural to continue to consider causal sets arising from uniform distributions
of points inside Alexandroff neighborhoods in higher dimensional Minkowski space.

As the simplest example of the sort of calculations we will be doing, let us derive
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the following well known, but useful, result.

Lemma II1.1: In d + 1 dimensional Minkowski space the volume of an Alexandroff

neighborhood A of height T is
d+1
2V,
vol[A] = d-1 (z)

where V;_; is the volume bounded by a unit S™~!.

Proof: The volume is given by

vol[A] 1= /A J=g dx.

Since we are in Minkowski space, /—g = 1; choosing spherical polar coordinates

such that the vertices of A lie on the r = 0 axis at ¢t = 0 and ¢t = T, the integral

T/2 t
vol(A] = 2/ dt/dr Ag_ri!
0 0

v, z d+1
d+1\ 2

where A4_; is the area of a unit S¢~! and we have also used the fact that A4_, =

becomes:

dVa_. 1

Thus, if points are distributed according to a Poisson process in a manifold

oy = 22 (D),

M D A we have

so if we knew T we could estimate the dimension of the manifold by counting the
points which fall in A and then inverting this formula to find d + 1. That is, we
would determine the exponent of length with which the volume scales. This is a
familiar way to measure dimension: The d-dimensional outer measure of a set A in

some metric space is defined to be [Hurewicz and Wallman 1941, Billingsley 1965|

ma(4) := lim inf ) _(diam S;)¢,
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where the infimum extends over all countable coverings of A by closed spheres S; of
diameter less than €. It is clear that this limit (although it may be infinite) exists
since as the infimum is taken over more restricted coverings its value must increase.
Now consider how this measure of A changes with the exponent d: if m4(A) is finite

there is an e-covering {s;} for which
Z(diam s;)?® < inf Z(diam ST +1 < my(A) +1
so for d' > d
ian(diam S,-)d' < Z(diam si)d < et E(diam i) < e ~Y(mgy(A) +1)

which goes to 0 as € — 0. Thus if my(A) is finite, m4 (A) vanishes for all d' > d.
But at d = O the limit is infinite so there must be a critical point—an exponent d
at which the measure changes from co to 0. This exponent, which need not be an

integer, is the Hausdorff dimension of the set A:
Hdim A := sup{d : m4(A) = oo} = inf{d : m4(A4) = 0}.

In his original paper [Hausdorff 1919] showed that the dimension of the Cantor
set was log 2/ log 3; Besicovitch was responsible for many subsequent developments,
particularly those related to sets of points in the plane (see, for example [Besicovitch
1934, 1935, Besicovitch and Ursell 1937, Besicovitch and Taylor 1954|; most recently

[Mandelbrot 1983| has applied these ideas in the context of fractals.

It is with this definition in mind that we choose to call the dimension estimated
by solving the volume-height relation for the exponent d+1 the Hausdorff dimension
of a causal set (strictly, in the way we apply it, of an interval of a causal set). But
to do this we need to measure the height T of the Alexandroff neighborhood. The

lengths of (longest) chains in the causal set whose points lie in A are the most
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Figure II1.3

obvious measure of the height of A, so consider a chain consisting of £ points. For
any k differential volume elements dx,. .., dxy satisfying dx; C J*(dx;) for i < j,

as shown in Figure II1.3, we may define a random variable

{ 1 if 3! chain with points in dx,,...,dxx

Xldxy,.odxx] *= \ g Gtherwise.
Then
Plxax, ,....axy] = 1) = P(3! point in dx;) ... P(3! point in dx)
= dx;e” ™ . dxpe

= dx, ...dx, + higher order terins

(abusing notation slightly) since the points are independently distributed according
to the Poisson process. Now, let C, be the random variable counting the number

of chains of length £ — 1:

OPRES Z X{dx, ,...,dxy |-

dx),...,dxx

Because the xs are not independent it is difficult to write down the probability

density function for Ck; however, their expectation values still add, so

(Ch) = D Xy sonda])

dxy,...,dx

Z P(X{dx,,....dxx] = 1)

dx. ,...,dx

k
/dxl/ dxz.../ dxk
a St J* (k1)
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since (X[dx, ,....dxx)) = P(X(dx, ,....dxx] = 1) = Xy ... dXk. (We have written J T (x;)

to mean J¥(x;) N A.)

Theorem IIL.2: Letting w = (d + 1)/2 we have

(vol[A])k /T(d + 2) ol I'(w)I'(2w)
o = PR (R F (k)T ((k + Dw)

Proof: By induction. We have already proved the result for £ = 1 in the preceding

lemma. For k =1 + 1,

(C[+1) =/dx1/ dX2.../ dx;_H.
A Jt(x)) J+ ()

Since J*(x;) N A is an Alexandroff neighborhood itself, the induction hypothesis

gives

_ (voll g+ (x1))' (T(d+2)\"™"  TI(w)l(2w)
(C‘“)‘/Adx‘ ! ( 2 ) T(lw)T((l + Dw)

Using the same coordinate system as in the proof of the lemma, if x, has coordinates

(t,r,Q) then the height of J*(x,) is \/(f_ £)2 — 12, so

e L L

- g I =0T =)

vol[J*(x,)] =

where u :=t —r and v :=t + r are lightcone coordinates. Thus

I 2Wa o\ Ags
del (VOl[J+(xl)]) = ((d-l- 1)2d+1) dz X

x /OTdv /Oudu (T = u)(T - v)|* r2 1,

Replacing r by [(T — u) — (T — v)] /2 and using the binomial expansion gives

[ o) = (2t ) 2 ‘Z( g (471
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T v
X / dv(T — )l td-7-1 / du(T — u)w+7
0 0

_ 2Va_y )lAd—l T+ DA+
T\ (¢ + 1)24+1 2¢ (I+1)(d+1

)X

d—1
: d—1 1
5 E -1 d—j-1 -

J

Cd(ol[A) (-t I A1 —(lw + d)
B Z(_l)< ] >—(1w+d)+j

[+1 lw+d =0

where we have multiplied and divided by lw + d in order to apply Vandermonde’s

Theorem in the form (see, e.g., (Knuth 1973a):

s (1)

k

Doing so, then applying the identity

i f—lw -1 lw+d-1
(-1 ="
d—-1 d—1
and writing the binomial coefficients in terms of gamma functions gives

I(voll A)'T'T(d+2) TI(lw)
l+1 2 T((l+2w)

Plugging this back into the expression for (C;,) produces

(CI+1)

_ (voll4])™*! (I‘(d + 2))‘ I(w)l(2w)
l+1 2 T((+ 1)w)T((l + 2)w)

as desired.

It may seem surprising that the expression for (C) does not depend on the
height of the Alexandroff neighborhood explicitly, but only in the precise combina-
tion that appears in the volume. Of course, since k volume integrals were performed
in the derivation, it is clear whence the volume dependence arises. (The apparent

discrepancy between the pure number (Cx) and the [L|*(¢t+!) units on the right
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hand side of the expression is resolved by recalling that p = 1.) In fact, since the
volume, height and dimension are related by the result of Lemma IIl.1, even had
the height appeared we could have replaced it by its expression in terms of the other

two parameters.

Even without a random variable with explicit T dependence we may now ap-
proximate the dimension of the Minkowski space. (Since a dependence on T is there
implicitly, and also motivated our choice of random variable—the numbers of chains
of given length, we will continue to refer to this as a Hausdorff dimension.) The
simplest way to use the result of the theorem is to specialize to £ = 2, in which case

Ck is simply the number of relations among the elements of the causal set whose

images lie in A: (relations) = (vol[A|)
,I(d +2)0(w)
ar(3w)

The coefficient multiplying (vol[A])? depends only on the dimension; we denote it
by f(d) and graph this function in Figure II1.4 (f(d) is half the ‘ordering fraction’
of [Myrheim 1978|). Since (N(A)) = vol[4], given a causal set embedded in an
Alexandroff neighborhood (i.e., any interval of a causal set) we may count the
number of elements to approximate the volume, count the number of relations to

approximate the right hand side of this relation, plug them in and invert f(d) to

52



obtain an approximation for the dimension of the Minkowski space in which the

causal set can be faithfully embedded.

To check how good an approximation this procedure gives we must calculate
the variance of the measured quantity, namely C,/(vol{A])?. Recall that Var(C3) :=
(C3) — (C4)?. The second term is just the square of the result already found; to
evaluate the first term we use the definition of C; in terms of the xs:

€ =(( T xioman) )

dx; ,dx,-

=< Z X[dx.'.delx[d""'d"']>

dx; ,dx;
dxy ,dx;

= Z (X[dx.- Jduei | X [dxe dx ])
dx.~ ,dx,-
dxk ,dx,

= Z P(X[dx;,dle =1 a.nd X[dxk )dx'l = 1_)_
dx, ,dx;
dxg )dxl

Now, the xs are not independent, but the probabilities of points lying in the dxs
are, so the sum splits into four disjoint sums, over sets with:

- no coincidences: dx;,dx;,dxg,dx; all distinct,

. one coincidence, but no 3—chain: dx,; = dx only or dx; = dx; only,

- one coincidence, forming a 3-chain: dx; = dx only or dx; = dx; only,

. two coincidences: dx; = dx, and dx; = dx;.

Thus the integral expression for (C2) becomes

(C2) = /dx/ dx'/ dy/ dy’ + Z/dx/ dx’/ dy’
A J+(x) A J* (y) A J+(x) Jt(x)

y#xx'  y'#xx y'#x'
+2/dx/ dx’/ dy’+/dx/ dx’.
A Jt(x) J+ (') A J+(x)

The last two terms are immediately recognizable as 2(C3) and (C5), respectively;

the first term is just (C3)? since the forbidden coincidences have measure zero; only
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the second term is unfamiliar. But it is easily computed using the intermediate
results in the proof of Theorem II1.2:

Z/dx/ dx'/ dy' = 2/dx (vol|J*(x)])?
A Jit(x) J* (%) A

y' #x'
_ 8T'(3w)
= (O 5@+ ()

Plugging in these resuits we find

4T (3w)

Var(C2) = 2(Cs3) [W

+1 + )

Thus the variance of the measured quantity C,/(vol[A])? goes as (vol[A])~! (from
(vol[A])=* [(vol[A])® + (vol[A])?] or more precisely, from A(Cy/N2) ~ AC,/N? —
2C2AN/N® ~ ((vol|A])® + (vol[A])%)'/? (vol| A]) =2 — 2(vol[ A])? (vol[ A]) /2 (vol | A]) ~
~ (vol[A])~1/2). So for large volumes, i.e., for large N(A), the approximation to
the dimension obtained this way should be very good. Note that this result is not
peculiar to Cy; it is clear that in the corresponding calculation for C one also finds

that the variance of C/(vol[A])* goes as (vol[A])} 1.

Flat space: numerical results

Let us apply this procedure, then, to causal sets obtained by sprinkling points in
Minkowski space and verify that it reproduces the dimension of the manifold. Specif-
ically, we sprinkle pecints uniformly in an Alexandroff neighborhood of Minkowski
space, compute the relations among them, extract the resulting causal set and then
using only the information in the causal set compute a Hausdorff dimension: For
each interval [z,y| in the causal set we count the number of elements z such that
z € [z,y] and z # z,y; this is N (|z,y]). We also count the number of relations
among these elements; this is C; ([z,y|). Finally we determine the value of d such

that

C2 ([:r,y])
g = -<2l=d)
9= N (o)
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this is the Hausdorff dimension of the interval |z,y].

This algorithm is implemented by the Pascal program listed in Appendix B.
Let us first apply it to the 200 element causal set shown in Figure II1.2. This causal
set has a total of 10385 relations, leading to a value of d ~ 0.95 if we use the
information that it embeds faithfully in an Alexandroff neighborhood. Figure III.5
contains the results interval by interval: for each a dot is plotted with horizontal
coordinate N ([z,y]) and vertical coordinate the Hausdorff dimension. There is a
wide variation in the Hausdorff dimension of the smaller neighborhoods, but, as
expected, the variance decreases rapidly with increasing volume. To illustrate this
further Figure I11.6 shows the results from a causal set with 500 elements, still
in an Alexandroff neighborhood of two dimensional Minkowski space: ihe spatial
Hausdorff dimension is clearly converging to one. (In this graph and all those
following, rather than plotting a dot for each interval, for each volume a vertical line
centered at the average .Jausdorff dimension and extending one standard deviation

above and below is plotted; approximately 68% of the intervals fall into this range.)

Moving to higher dimensions, Figures II1.7 and II1.8 show the results for 500
points sprinkled uniformly in Alexandroff neighborhoods in 2 + 1 and 3 + 1 dimen-
sional Minkowski space. These causal sets display qualitatively the same behavior
as did the two dimensional examples, but the accuracy of the approximated di-
mension is decreasing with increasing dimension. This is due to the fact that f(d)
decreases rapidly so that there are fewer large intervals with which to make accurate
estimates in higher dimensions. Figures II11.9 and II1.10 are the same two cases, but
with 1000 element causal sets instead. It is clear that again the Hausdorff dimen-
sion is converging to the correct value as the volume of the intervals increases and,
moreover, that increasing the number of elements has increased the number of large

volume intervals.
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Figure II1.5: The spatial Hausdorff dimension of each interval in the 200 element causal
set of Figure II1.2 is plotted against its volume. Note the large variation at small volumes
and the convergence to dimension 1 as the volume of the interval increases.
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Figure II1.8: The spatial Hausdorff dimension is plotted as a function of volume for a 500
element causal set in 1 + 1 dimensional Minkowski space. The results for all intervals of
each volurme are averaged and plotted with error bars of one standard deviation above and
below. We see that the estimated dimension continues to improve as the volume increases.
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Figure II1.7: The spatial Hausdorff dimension is plotted as a function of volume for a
500 element causal set in 2 + 1 dimensional Minkowski space. Although the results are
converging correctly as the volume increases, they are not as good as in Figure II1.6.
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Figure II1.8: The spatial Hausdorff dimension is plotted as a function of volume for
a 500 element causal set in 3 + 1 dimensional Minkowski space. Again the results have
deteriorated; there are simply not enocugh large intervals to produce good estimates.
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a 1000 element causal set in2+1 dimens'\ona.\ Minkowsk'\ space. Increasing the size of
improv_ed the convergence of the results, 8% expec\’.ed. Compare with



4.50 .

4.00

3.50

3.00

2.50

2.00

spatial dimension

1.50

1.00 i

0.50 | .

1

50 150 250 350 450

volume of neighborhood

Figure I11.10: The spatial Hausdorff dimension is plotted as a function of volume for
a 1000 element causal set in 3 + 1 dimensioral Minkowski space. Again the results have
improved over the smaller causal set of Figure II1.8, but are not as good as the results for
the same size causal set in lower dimensions.
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[t is easy to apply this procedure to another class of flat spacetimes: Kaluza-
Klein type spacetimes obtained by making periodic identifications in spatial direc-
tions in Minkowski space. For example, consider the cylindrical spacetime formed
by taking the strip0 < z <¢,0 <t < T from two dimensional Minkowski space and
indentifying the timelike edges. Small Alexandroff neighborhoods, 1.e., those with
height no more than ¢, in this manifold are identical to those in Minkowski space.
Larger neighborhoods, however, wrap around the cylinder and are no longer simply
connected, although they are still flat. Thus we expect that at small scales the
manifold should appear to be a two dimensional Minkowski space; at intermediate
scales the cylindrical character should be identifiable; and at large scales, T >> ¢,

the manifold should appear to have only one, timelike, dimension.

The Pascal program listed in Appendix B implements the Hausdorff dimen-
sion algorithm for this case also (the parameter compact is the number of spatial
dimensions to be periodically identified). Figure III.11 shows the results for sprin-
kling 1000 points in a cylinder with circumference ¢ = 1 and height T = 10 (not in
Planck units!). The approximated dimension clearly decreases as the volume of the
intervals increases. Figure II1.12 is a closeup of the small intervals: the dimensions
of the intervals with volumes no more than 50 (= 1000/20, the volume of a maximal
simply connected Alexandroff neighborhood) are indistinguishable from the results
for two dimensiona! Minkowski space (see Figure II1.6); after 50 the dimensions be-
gin to aecrease. Thus we have an effective coarse-graining of the manifold: at small
scales the Hausdorff dimension is two, while at large scales the Hausdorff dimension
decreases and the internal dimension is seen less and less clearly. This is a Slightly
different sort of coarse graining than discussed in the Introduction; here the small
scale structure is being washed out at the larger scale while sprinkling fewer points

would have the same effect by simply missing the small scale.
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Figure III.11: The spatial Hausdorff dimension is plotted as a function of volume for
a 1000 element causal set in a cylinder with height/circumference = 10 of a fAlat 1 + 1
dimensional Kaluza-Klein spacetime. Small neighborhoods are isometric to neighborhoods
of 1 + 1 dimensional Minkowski space so they have spatial Hausdorff dimensions near 1.
Larger neighborhoods see the cylinder as more and more like a 0 + 1 dimensional flat
spacetime so as the volume increases the spatial Hausdorff dimension decreases.
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Figure I111.12: The portion of the previous graph for volumes up to 200 may be compared
with the results for 1 + 1 dimensional Minkowski space shown in Figure I111.6. Up to a
volume of 50 the results are indistinguishable; beyond 50 the neighborhoods in the Kaluza-
Klein space time are not simply connected and the effective dimension decreases.
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It is worth noting that this situation also provides our first example of geometry
captured by a faithfully embedded causal set. Although we would naively expect the
spatial dimension to be decreasing to zero as the volume of the intervals increases,
in Figure III.11 it appears to be asymptoting to some small but distinctly nonzero
value. This is in fact correct. For a cylinder C with circumference ¢ and height
T, the volume is simply ¢T and we can easily compute the expected number of

relations:

(Cq) = /Cdxvol[J*'(a:)I

[l Tl (G ]

I

Thus
(Cy) 1 ¢ c?

c2T? 2 4T  24T?°

f(d) =

For the case ¢ = 1, T = 10 this formula gives f(d) ~ 0.4746, or d ~ 0.083. There
were 474838 total relations for the casual set of Figures II1.11 and III.12, giving a
Hausdorff dimension of 0.101 which is in reasonably good agreement with the result
of this formula. So using the information that the causal set is faithfully embedded
in a cylinder, we can determine all the topology and geometry: the small intervals
show that the dimension is two, then using the formulas for the volume and the

number of relations we can solve for the circumference and height.

(Anti) de Sitter space: dimension

Given any causal set we can follow the procedure discussed in the two previous
sections and compute a Hausdorff dimension for each interval assuming, as we do
so, that the causal set can be faithfully embedded in some Minkowski space. The

results, typically, will be non-integral. We might find, as we did for the causal sets
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arising from uniform distributions of points in Minkowski space, that the dimen-
sions, nevertheless, converge toward some integral value. More likely, they will not,
varying in some simple manner as did those calculated for the cylindrical spacetime
just considered, or in some more complicated and (so far) uninterpretable manner.
Although we could choose to view each interval as approximated by some not nec-
essarily integer dimensional Minkowski space, should the causal set be faithfully
embeddable in some curved Lorentzian manifold, this would not help to determine
the true dimension of that manifold nor its geometry. So let us consider causal sets

arising from uniform distributions of points in curved manifolds.

The simplest situation is constant curvature, r.e., de Sitter or anti-de Sitter
space. In d + 1 dimensions the Riemann tensor, Ricci tensor and scalar curvature

are then
Raﬁq& = K(gaquﬁ - goz5gﬂ’1)

Rﬁs = ngp5
R=d(d+1)K
where the Gaussian curvature K is a constant, positive for de Sitter space and

negative for anti-de Sitter space. In fact, since the Einstein tensor
1 1
Rgs — ERgpa = _Ed(d - l)Kgps,

these spaces are solutions to the vaccuum Einstein equation with cosmological con-
stant A = %d(d — 1)K. The metric satisfying these conditions is conformally flat

and may be written in the form [Eisenhart 1925, Petrov 1969|:
1
ds? = 3 [—dt? + (dz')® + - + (dz?)?]

where
-_— -———2 12 « dz
0—1+4[t+(a:)+ +(:z:)].
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Given the metric we can proceed as we did in Minkowski space, computing the

volume moments of the Poisson distribution.

Lemma IIL.3: In a d + 1 dimensional Lorentzian manifold with this metric, the
volume of an Alexandroff neighborhood A conformal to one of height T in Minkowski

space is

vol[A4] =

2d 4) d+2i+1

Vd—l o (K)' Td+2i+l
4
0

where again V;_, is the volume bounded by a unit S¢-1.

Proof: The determinant of this metric is

1
detg = det —n = —g e+
o

S0

vol[A] = /a_(d+l)dx
A

T v —(d+1)
K
= l/ dv/ du (1 - —uv> Ag_rd !
2 Jo 0 4

since 0 = 1 — %uv in the coordinate system used in the proof of Theorem III.2

(again Ag_, is the area of a unit S9-1). Now,

(o ) - () ()
() (),

which converges for |%uv| < 1, t.e., for the whole domain over which this coordinate

p”qg

system is defined. Writing r as (v — u)/2 and using the binomial expansion gives

co d—1 t
vol[ ] = Ad 1 ZZ (d+z)( ) (_if) (—1)4=1-7 x
1=0j5=0
T v
x/ dv/ dy vttiyd—1-j+i
) 0
X (d+i\ [K\' Tdt2+r 4] _ d—1 1
—1 Z +1 1S Z(_l)d—gfl ]
pard ) 4 d+2i+1j=0 7 Ji+d—
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The sum over j is the same as the one which occurred in the proof of Theorem II1.2,

with lw replaced by 7, so we again simplify using Vandermonde’s Theorem to get:

Ag_y = (d+73\ (K\' TH¥+1 1 (d4i—1\""
vol[A] = —d-l-z Y (E . . A
2d < ) 4 ) d+2r+1d+:\ d-1

Vd—l oo K 1 Td+2i+l
DY Z(T) dr2iri I

Notice that we may extract the flat space result from this formula by setting

K =0, in which case only the : = 0 term in the sum contributes.

Next we compute the expected number of k-chains in this Alexandroff neigh-

borhood. Define the random variables Cy just as in flat space. Then we have:

Theorem II1.4:

Vd_]_ k 00 t 41y e(d . .
<Ck> = ( ) Z (._) T ( +l)+2(t|+---+lk)Gd(il’-'.’ik)’

1
Gy(ty,...,1) 1= - —
d(l zk) JI;[IJ(d_}_l)_i_g(“.*_. _|_,,J

T(d+i;+1)T
X :
L(i; + 1)

)"
(!J l!§d+ll Y +"'+ij+1)
F(M)—(M-i—z +---+i,~)

Proof: The proof is again by induction. Lemma II1.3 contains the result for k = 1.

Fork=1+1,

(Ciy1) = /o‘(d“)dxl/ a‘(d“)dxz.../ o~ @+ dx,
A J-(x1) J- (%)

where we are using the Alexandroff neighborhoods generated by the past lightcones

J~(x;) N A for convenience (and denoting them simply by J~(x;)). Then the
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induction hypothesis gives

(Cisi) = [ o™V ax(Cils eyl

1 T v o 3
= 5/ dv/ duo (dH)Ad—H‘d l(Cl|J~(x)nA>-
0 0

The coordinate height of the Alexandroff neighborhood J=(x) N A is 1/t —r2 =

v/ uv so expanding ¢ and r in binomial series as in the preceding proof gives

1 T v & (K \"'(d+i4
C = —A,_ d d — .

114, =0

d—

d—1
l g

J=0 ]
_ Ad_l (Vd_]_ Z 5 LN SRRER o YOO d+il+l y
- 2d 2d ) L 4 g1

LI ETEERL T

o

dl] )dl]x

oGy, 0)

)
()

TUAD(d+1)+2(5++iry,)

(+ D @d+1) +20 + - Fireg) |

X Gd(il,...,u)

() e 1

j=0 —(dT+ll+i1+---+il+l+d—j
The sum over j is the same one we have seen twice before, so again we simplify
using Vandermonde’s Theorem:

e =" (%) X (§) "

. gl
Ligeeoylitn +

T+ (d+1)+2(i++ir4)

XGd(I:l,... ] X

’ ‘)(l+1)(d+1)+2(i1+"'+il+l)
1 (l—(%z+ll+"+l[+l+d—l)
l_(i;_ll+il+...+i’+l+d d-1

=(Vd_‘>l+li (K)ilhﬁ'“ TUAD A+ 200+ +ig)

—1

X

bl ' . N
24 i1 peemitg 4 (C+1)(d+ 1) +2(0 + - +i141)
. . ) -1
d+ 114 l—(d—;tﬂ+z1+---+u+l+d . _
X ; Gd(ll,...,u).
U1 d
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Thus
Ga(ty,... 1)
I+ 1)(d+1)+ 205 + -+ t141)

« (d-l-iH.l)(l-u%——ll-Fil+"'+il+1+d)
d

Gd(ila'“,il-f-l): X

L1
_ Ga(tr,-..,u) y
(U+1)(d+1)+2(i + -+ 14)

(d+1 . .
1‘(al+z'z+1+1)r(“(z_l +’1+"'+“+l+1)
[(¢141 +1) [‘(U"'_zléﬂ) +i1+"'+il+1).

Solving this simple recursion relation gives Gg(z1,...,1k). i

With these results we can, given a causal set faithfully embedded in an Alexan-
droff neighborhood of (anti) de Sitter space, approximate the dimension of the man-
ifold. Letting Cy(A) := N(A) we have the formulae (Cx(A)) = fi(d, K;T) where
the functions fx(d, K;T) are given in Theorem III.4 for each positive integer k (al-
though for k > vol[A], (Ck(A)) < 1). Since there are three unknown parameters,
the simplest procedure is to count the number of elements in an interval C,, the
number of relations Cy, the number of 3-chains C3 and then solve the system of

equations

Cy = fl(d,K;T)

C2 = f2(d,K;T)

C3 = f3(d, K;T)
for d, K and T. The resulting dimension is analogous to the Hausdorff dimension
we computed in Minkowski space; we will retain the terminology. The Gaussian
curvature K and the height of the Alexandroff neighborhood T are also determined
by this procedure; thus we are extracting geometry as well as topology from the
causal set. Again we can verify the effectiveness of this procedure by computer
simulations: applying it to causal sets constructed to be faithfully embeddable in

constant curvature Lorentzian manifolds.
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Figure III.13: The Hasse diagram for a 200 element causal set embedded in an Alexan-
droff neighborhood of two dimensional de Sitter space with XT? = 3.9.

(Anti) de Sitter space: uniform distributions

The most straightforward way to obtain causal sets faithfully embeddable in a
curved manifold would be to define a coordinate system x for (some patch of)
the manifold, choose points x uniformly distributed with respect to the volume
form (in this patch) and then determine the causal relations among these points.
This is exactly what we did earlier to find causal sets faithfully embeddable in flat
spacetimes. With curvature present, however, both the second and the third steps
are considerably less trivial. Fortunately, in the case of constant curvature, we can
bypass most of the difficulties. Since (anti) de Sitter manifolds are conformally
flat, the causal relationship of two points is the same as that of their images under
the conformal transformation to flat space (although their proper separation is
not). Thus we need only distribute points in flat space according to the conformal
factor. As we found in the oroof of Lemma III.3 the conformal factor appears in

the volume form as o~ (¢+!). So we can apply the rejection method (Knuth 1969,
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Figure II1.14: The Hasse diagram for a 200 element causal set embedded in an Alexan-
droff neighborhood of two dimensional anti-de Sitter space with KT? = —3.9.

Press, Flannery, Teukolsky and Vetterling 1986]: Let M be the maximum value
that o~ (4+1) achieves in the Alexandroff neighborhood A of the previous section,
(1 - KT%/4)~4*D if K > 0 and 1 if K < 0. If we distribute points uniformly in
the region A x [0, M] and use their projections x into A when their last coordinate
is less than o~ (¢+1) evaluated at x, the points will clearly be distributed uniformly

with respect to the conformal factor.

This algorithm is implemented by procedure ccsprinkle in the Pascal program
listed in Appendix A. The causal relations among the resulting points can be cal-
culated using their (flat) coordinates just as in the earlier programs. A causal set
faithfully embeddable in an Alexandroff neighborhood in a two dimensional de Sit-
ter space with KT2 = 3.9 is shown in Figure III.13, while a causal set faithfully

embeddable in an Alexandroff neighborhood in a two dimensional anti-de Sitter

72



space with KT? = —3.9 is shown in Figures II1.14. Each of these causal sets has

200 elements and may be compared with the one embedded faithfully in flat space

in Figure III.1 or I11.2.

(Anti) de Sitter space: numerical results

After producing a causal set faithfully embeddable in some (anti) de Sitter
space, the Pascal program listed in Appendix C implements the procedure discussed
in the paragraph following Theorem III.4. That is, for each interval in the causal
set it counts the number of elements, relations and 3—-chains and then attempts to
solve the system of equations obtained from Theorem III.4 for d, K and T. These
equations are highly nonlinear; solving them numerically is a nontrivial problem.
The Newton Raphson method [Press, Flannery, Teukolsky and Vetterling 1986] used
in the program converges for most of the large intervals. For example, in the case
N =400,d =1+ 1 and KT? = 1.0, Figure IIL15 contains histograms for both the
converging and nonconverging neighborhoods (the one which peaks more sharply
at small volumes is for the nonconverging neighborhoods). Figure III.16 shows the
fraction of all neighborhoods at each volume which converge; here it is clear that

the best results should come from the medium to large volume neighborhoods.

The next three figures are for such a causal set faithfully embedded in an
Alexandroff neighborhood of 1 + 1 dimensional de Sitter space with KT? = 1.0.
For 400 elements this means that K = 1.438 x 103 and T =~ 2.637 x 10'. In each
case the true values are indicated by the continuous curve. Just as in Minkowski
space we see in Figure II1.17 that the Hausdorff dimension converges toward the
correct value as the size of the interval increases. In Figure II1.18 the curvature
behaves similarly (although the variance is still large enough even for the biggest

intervals that it is not clearly converging to a nonzero value) and we can see from
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Figure I11.19 that the conformal height T is being computed correctly also.

Increasing the curvature to KT? = 3.5 (for N = 400 this means that K ~
1.134 x 10~ 2 and T &~ 1.757 x 10') we obtain the graphs for the Hausdorff dimension
and curvature shown in Figures II1.20 and III.21, respectively, which indicate that
the results are still good for d = 1 + 1. Note that the curvature here is clearly

converging to a nonzero value.

For anti-de Sitter space KT? is negative and results for this case, 2till in 1 +1
dimensions, are shown in Figures I11.22 to I11.25. The first two figures are for the
case KT? = —1.0 which, for N = 400, means that K ~ —1.116 x 1073and T ~
2.994 x 10!. Again both the dimension and the curvature appear to be converging
to the correct values. To see that the negative curvature is indeed being computed
correctly, the next two figures show the results for N = 400 and K T? = —3.5 (hence
K ~ —3.190 x 1073 and T = 3.313 x 10'). For these cases the method also appears
to be providing good estimates of dimension and curvature from large intervals; the

curvature is clearly converging to a nonzero value.

As before, in the Minkowski case, we expect the results to deteriorate with in-
creasing dimension. In fact, as soon as we reach 2+ 1 dimensional de Sitter space we
face a major problem. For N = 400, 800 and even 1000, with KT? = 1.0, for most
of the neighborhoods the Newton Raphson algorithm converges to d ~ 4.6 + 1 and
negative curvature. That this is not due to a flaw in the algorithm can be checked
by computing the predicted numbers of relations and 3-chains and verifying that
the algorithm converges to the correct values of the dimension and curvature. If
these numbers are perturbed by more than about 5%, however, a solution near
4.6 + 1 with negative curvature is found. In fact, a similar, though less severe, phe-

nomenon is already present in the 1 + 1 dimensional cases just considered. Notice
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Figure 111.156: When the Newton Raphson method is used to try to solve for d, K and
T in each interval of a causal set, the method does not converge in every interval. For the
case N = 400,d =1+ 1 and KT? == 1.0 the upper curve plots the number of intervals in
which the method converges while the lower plots the number in which it fails.
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Figure I11.16: The same data as in Figure II1.15, here plotted as the fraction of all
intervals of a given volume in which the method converges. Clearly the best statistics will
be obtained from the medium to large neighborhoods.
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Figure II1.17: The spatial Hausdorff dimension is plotted as a function of volume for a
400 element causal set in a Alexandroff neighborhood of 1 + 1 dimensional de Sitter space
with KT? = 1.0. Just as in the flat case we see that the esimated dimension appears to
be converging to the correct value, large intervals providing a better estimate than smaller

ones.

17



curvature

0.040
0.030
0.020

0.010 '

- ]"l j - ‘ || IIMLJ“EI...'“Ill.l.il.".u.“II ,Il ' I' -

O
o
o
o

-0.010

—-0.020

—-0.030

—0.040

50 150 250 350

volume of neighborhood

Figure IT1.18: Here the estimated curvature for each interval in the same causal set as
in Figure II1.17 is plotted as a function of volume. The correct value of K ~ 1.438 X 1073
is indicated by the solid line; the results appear to be converging to it.
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Figure I11.19: The conformal heights estimated in the same computation as the dimen-
sions and curvatures shown in Figures III.17 and III.18, plotted as a function of volume.
The correct values are again indicated by the solid curve.
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Figure I11.20: The spatial Hausdorff dimension is plotted as a function of volume for a
400 element causal set in a Alexandroff neighborhood of 1 + 1 dimensional de Sitter space
with KT? = 3.5. Increasing the curvature does not appear to harm convergence; compare

with Figure II1.17.
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Figure II1.21: Here the estimated curvature for each interval in the same causa! set as
in Figure II1.20 is plotted as a function of volume. The correct value of K ~ 1.134 X 1072
is indicated by the solid line; it is clearer than in the case of Figure III.18 that the results
are converging to it rather than to zero.
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Figure I11.22: The spatial Hausdorff dimension is plotted as a function of volume for a
400 element causal set in a Alexandroff neighborhood of 1 + 1 dimensional anti-de Sitter
space with KT? = —1.0. Just as in the previous cases we see that the esimated dimension
appears to be converging to the correct value, large intervals providing a better estimate
than smaller ones.
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Figure II1.28: Here the estimated curvature for each interval in the same causal set as
in Figure II1.22 is plotted as a function of volume. The correct value of the curvature
K ~ —1.116 x 10~2 is indicated by the solid line; the results appear to be converging to

this vaiue.
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Figure II1.24: The spatial Hausdorff dimension is plotted as a function of volume for a
400 element causal set in a Alexandroff neighborhood of 1 + 1 dimensional anti-de Sitter
space with KT? = —3.5. Increasing the curvature does not appear to harm convergence;

compare with Figure II1.22.
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Figure II1.25: Here the estimated curvature for each interval in the same causal set as
in Figure II1.24 is plotted as a function of volume. The correct value of the curvature
K ~ —3.190 X 10~ 2 is indicated by the solid line; it is clearer than in the case of Figures
I11.18 and III.23 that the results are converging to it rather than to zero.
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in the dimension plots for anti-de Sitter space, Figures I11.22 and especially II1.24,
the isolated interval volumes with large variations occurring in the range where the
variation has decreased to a few tenths for the majority of the volu.nes. These are
caused by the presence of significant numbers of intervals at these volumes for which
the Newton Raphson algorithm converges to the ‘wrong’ value. The scatter plot
in Figure I11.26 shows this clearly for the KT?* = -3.5 case of Figures I11.24 and
II1.25. Moreover, this is not a difficulty associated only with negative curvature.
Figure I11.27 shows the analagous results for the KT? = 3.5 case of Figures I11.20
and III.21.

There is apparently some duality here, manifesting itself in nonuniqueness of
solutions to our system of equations, which should be investigated. Algebraically,
the difficulty is that the expressions for the number of elements, relations and 3-
chains, although independent, form a system of equations which is almost singular,
i.e., dependent. This indicates that one might consider using other causal set pa-
rameters: the number of links, for example, in addition to, or instead of, these
three. For our immediate purposes, however, this indicates that we must go to
considerably larger N in order to reduce the statistical fluctuations sufficiently to
converge to the correct value. A straightforward calculation of the variances in this
case (parallel to the flat case computation) would determine the necessary order
for N. As the runs described here use on the order of 10 hours of CPU time on
a VAX 3200 already, additional computer facilities seem to be required to obtain
good results. This is discussed further in the Conclusion. Nevertheless, it is clear
thzt in principle the procedure is working and that we can indeed extract numer-
ically both topological information (the dimension) and geometrical information

(the curvature) from these causal sets.
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Figure I111.26: As in Figure IIL.5, the computed dimension for each interval is plotted
against its volume as a single point. Notice that although the majority of the results cluster
near 1, there is an appreciable number at about 3.6. The presence of these intervals creates
the isolated large variations in Figure II1.24.
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Figure II1.27: For the causal set of Figures I11.20 and III.21, KT? = 3.5, the computed
dimension for each interval is plotted against its volume as a single point. Again, although
the majority of the results cluster near 1, there is an appreciable number at about 3.6 or

3.7. The presence of these intervals is particularly evident in the volume range 50-100 in
Figure III.20.
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IV. Conclusion

In the three preceding chapters we defined what is meant by causal sets and investi-
gated two notions of dimension associated with them. This Conclusion summarizes
the results, notes their possible implications for a quantum dynamics of causal sets

and suggests directions for further work.

Summarv of results

aisaraalaay Traave

Dimension is a topological property of the Lorentzian manifolds of general relativ-
ity; since any theory of quantum gravity should agree with general relativity in the
classical regime, and with the Hauptvermutung that faithful embeddings of causal
sets into Lorentian manifolds determine the manifold with metric up to “approxi-
mate isometry” in mind, it is in terms of embeddings into these manifolds that we

have defined the dimensions of a causal set.

The first notion of dimension, relevant on small scales at which a Lorentzian
manifold is approximately flat, is the Minkowski dimension—defined to be the di-
mension of the minimal Minkowski space into which a causal set can be embedded.
We found that this dimension is closely related to the combinatorial dimension of

a poset: identical in dimension 2 and with the same irreducible configurations for
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dimensions 2 and 3. We also showed that irreducible causal sets existed for arbi-
trarily large Minkowski dimension, and that there were irreducible causal sets with
sizes which grew no faster than the volume as a function of the dimension, thus

providing an effective local characterization of the dimension.

The second notion of dimension is relevant on larger scales where we can take
advantage of the requirement that the embedding be faithful, i.e., that the images
of the causal set elements be uniformly distributed in the manifold. After taking
the Poisson process to model this distribution we found that expectation values of
causal set paramenters, in particular the number of chains of a given length, depend
on the dimension of the manifold in which the Poisson process is occurring. The
Hausdorff dimension is defined to be the dimension extracted from this dependence
for intervals of a causal set. For the physically interesting (and mathematically
simple!) cases of Minkowski, de Sitter and anti-de Sitter space we obtained explicit
formulae for (Ck) in terms of the dimension, curvature and height of an Alexandroff
neighborhood. Numerical simulations confirmed these results and showed that the
Hausdorff dimension could be effectively computed. Moreover, we verified that as
expected, geometrical as well as topological quantities could be determined when
the embedding is faithful: the scalar curvature of these constant curvature manifolds
and the circumference and height of cylinders obtained by periodic identifications

of Minkowski space.

Directions for further work

From a mathematical point of view these results ran be taken as evidence support-
ing the Hauptvermutung that a faithful embedding of a causal set into a Lorentzian
manifold determines the manifold with metric up to “approximate isometry,” but

are not really steps in the direction of proving it. This is clearly an outstanding
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problem. A simplified version of this conjecture can be stated precisely, however,
and it is reasonably clear how a proof should proceed. That is, an embedding (not
necessarily faithful) of a causal set into a Lorentzian manifold is an approximation
(not necessarily a good one!) to the causal structure of the manifold and thus, as we
know from the theorems of Hawking and Malament described in the Introduction,
should approximately determine at least the topology of the manifold. “Approx-
imately” here should be taken to mean that the manifold, as a topological space,
is the limit of an inverse system of finite topological spaces (as in [Sorkin 1987})
associated with causal sets which embed in the manifold. Working through the

details of a proof of this statement may shed a little light on the general conjecture.

Several more mathematical questions arise in connection with the Minkowski
dimension of causal sets. It is hard to imagine that there are causal sets which
cannot be embedded in some Minkowski space of sufficiently large dimension. Nev-
ertheless, despite efforts by several people, there is no proof to the contrary. As
noted at the end of the first section on combinatorial dimension the largest number
of dimensions which could possibly be necessary is one less than the number of el-
ements in the causal set. Since the intersections of past lightcones with a spacelike
hypersurface are spheres, this problem is equivalent to the question of whether every
acyclic directed graph is a containment graph for some set of spheres in a Kuclidean
space of dimension no more than one less than the number of spheres. There ought
to be a geometrical combinatorics argument verifying that this is the case. This
problem might also be solved as an immediate consequence of a proof of another out-
standing conjecture about the Minkowski dimension: that the Minkowski dimension
of a causal set is never larger than its combinatorial dimension. Since determining
the combinatorial dimension of a causal set is an NP-complete problem [Garey and

Johnson 1979, such a result would have implications for the computability of the
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Minkowski dimension as well. Finally, one would also obtain an existence proof
and an upper bound if a One-point Removal Theorem were proved for Minkowski

dimension.

More concretely, the Minkowski dimension of additional causal sets should
be computed explicitly. One approach to doing so is an application of simulated
annealing [Kirkpatrick, Gelatt and Vecchi 1983|: for a given causal set P, define an
energy E := Zi>j E;; associated tc each map of P into d+ 1 dimensional Minkowski
space, where E;; vanishes if the images of i, € P have the correct causal relation.
A map with vanishing energy is an embedding, and implies an upper bound on
the Minkowski dimension of P. In addition, once phrased in this manner, there
are immediate connections with statistical mechanics. Work along these lines is in

progress.

Further numerical work could be done for the Hausdorfl dimension as well.
Running simulations with larger numbers of points NV would provide better statis-
tics, especially for larger dimensional spacetimes. Specifically, it would be nice to
see a flat five dimensional Kaluza-Klein manifold with one compactified dimension.
More significantly, in the case of constant curvature, larger N simulations are neces-
sary to reduce statistical fluctuations sufficiently to extract the correct results even
in dimension 3. Other sets of causal set parameters might also be considered, to
decrease the near singularity of the system of equations being solved. It is worth
noting in this context that the algorithms are eminently parallelizable: the ma-
trix multiplications required to compute the numbers of k-chains can be done by
computing vector dot products in parallel; moreover, the Newton Raphson solution
for the dimension and curvature can be done for each interval independently, and

therefore in parallel.
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The obvious extension of the analytic results on the Hausdorff dimension is
to more general manifolds. The case of Minkowski space demonstrates that the
dimension can really be extracted from causal set parameters, while the cases of
constant curvature space show that geometrical quantities can be extracted as well.
For a general manifold the expectation values (C) in an Alexandroff neighborhood
should be calculable by working in Riemann normal coordinates [Eisenhart 1925,
Petrov 1969 to find their dependence on the metric and its derivatives at a point of
origin in the neighborhood. In particular we would expect still to be able to extract
a Hausdorff dimension and also the scalar curvature; this might have relevance for
the quantum dynamics of causal sets—the topic which we discuss, briefly, in the

last section.

Quantum dynamics of causal sets

Recall that we envision the causal set program as an approach to quantum gravity.
The Lorentzian manifold of general relativity is then only a large scale approxi-
mation arising as the classical limit from the condition of constructive interference
among the quantum amplitudes of contributing causal sets. This means that a
quantum amplitude should be defined for every causal set in such a way that, in
situations which admit a classical general relativistic continuum solution, the causal
sets which can be faithfully embedded (possibly after coarse graining) in the con-
tinuum geometry should dominate the sum over histories, in the sense that they
have stationary phase. If we suppose that the amplitude of such a causal set is mul-
tiplicative, t.e., it is approximately the product of the amplitudes of any subcausal
sets into which the given causal set can be (macroscopically) partitioned, then the
action (which is proportional to the logarithm of the amplitude) has the form in
the continuum approximation of an integral over the manifold of a (local) scalar

density.
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In general relativity, of course, the action is fR dV . Although there are several
proposals for the amplitude of a causal set which are possibly more natural from the
point of view that causal sets are the flundamental structure (see [Bombelli 1987]),
the results of the line of investigation we have followed in the preceding ch.apters
suggest an action which corresponds to this general relativistic action. That is, to
each element of the causal set associate a scalar curvature (computed for intervals
as in the case of the constant curvature manifolds we considered in the last chapter,
or more generally, as proposed at the end of the previous section) in a way which
best fits the curvatures for the intervals used and then sum the curvatures over
the elements of the causal set. This should, in fact, be an approximation to the
Einstein-Hilbert action. Of course, there is no guarantee that with this choice of
action the causal sets faithfully embeddable in Lorentzian manifolds really dominate
a sum over histories. Nevertheless, this is a concrete proposal for the action and its

consequences can be investigated.

In fact, this action, as well as others one might define, can be investigated
numerically. For an action which is effectively computable, we would like to evaluate
S f(P)exp(%S(P|), where the sum is over all contributing causal sets P, to find
the amplitude for some quantity (operator) f(P). If large causal sets contribute
to this sum it is impractical to compute it exactly (since as N — oo the number
of posets with N elements is asymptotically proportional to gN?*/4+3N/2,N =N -1
[Kleitman and Rothschild 1975]), but we might hope to do some sort of Monte Carlo
simulation (possibly by defining real amplitudes—Euclideanizing) by summing only
over a random selection of causal sets. Alternatively, we might alsc determine the
“classical” solutions by identifying the critical points (insofar as a discrete system
has critical points) of the action (perhaps by simulated annealing) and then evaluate

the quantity f(P) for those causal sets. In particular, if f(P) were the Hausdorff
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dimension of the causal set, this would give an expectation value for the dimension
of spacetime. Thus the causal set program, with the notion of the dimension of
causal sets, may provide the opportunity to explain some of the phenomenology
we discussed in the Introduction as possibly derivable consequences of a quantum

theory of gravity.



Appendix A

The Pascal program listed here produces causal sets faithfully embedded in two
dimensional Minkowski or (anti) de Sitter space, uses the chi-square test described
in Chapter III to test the uniformity of the distribution of points and then draws
the Hasse diagram for the causal set. The function random is a modification of the
subroutine RAN3 listed in [Press, Flannery, Teukolsky and Vetterling 1986] which
is an implemention of an algorithm suggested by Knuth in [Knuth 1969]. The
procedure topsort is a modification of the Quicksort procedure given in [Graham
1980] which is again an implementation of an algorithm described by Knuth in

[Knuth 1973b).
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program cedraw(output);

const
dim = 2;
N = 200;
B=7;
KT2 = 3.9;
type
matrix = array[1..N,1..N] of integer;
pmatrix = array[1..N,1..dim] of real;

var
randlist : array[1..66) of real;
randnexti,randnextj : integer:;
X : pmatrix;
relations,links : integer := 0;
z : matrix;
bins : array[0..B-1,0..B-1] of integer;
1 : integer:
xoffset, yoffset : real;
rnd : real;
seed : integer := 1069;

function random(var initialize : boolean) : real;

const

big = 4.0e6;

seed = 1960028.C,
var

i,imod,j : integer;
a,b : real;

begin
if initialize then
begin
a = geed;
it a>=0 then
a := a - big*trunc(a/big)
else
a := big - abs(a) + big*trunc(abs(a)/big);
randlist[bb] := a;
b :=1;
for 1:=1 to b4 do
begin
imod := 21*i mod 66;
randlist(imod] := b;
b := a - b;
if b<0 then
b := b + big;
a := randlist[imod]
end;
for j:=1 to 4 do
for 1:=1 to b6 do
begin
randlist[i] := randlist[i] - randlist[1 + ((1+30) mod 65)]:
if randlist[1]1<0 then
randlist(i] := randlist[i] + big
end;
randnexti := O
=3

randnextj : 1;
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initialize := false
end;
randnexti := randnexti + 1i;
if randnexti=b66 then
randnexti := 1;
randnextj := randnextj + i;
if randnextj=66 then
randnextj := 1,
a := randlist[randnexti] - randlist(randnextjl;
if a<0 then
a := a + big:
randlist (randnexti] := a;
random := a/big
end; { random }

{procedure random(var seed : integer; var rnd : real):
fortran;}

procedure sprinkle;

var
initialize : boolean;
i,1,ubin,vbin : integer;
hold : real;

begin
bins := zero;
initialize := true;
for 1:=1 to N do
begin
for 1:=1 to dim do
begin
{random(seed,rnd) ;
x[1.1] := rnd}
x[1,1) := random(initialize)
end;
ubin := trunc(x[i,1])#B);
vbin := trunc(x[i,2]*B);
bins (ubin,vbin) := bins[ubin,vbin]) + t;
hold := x([1,2);
x(1.2] := hold + x[1,1];
x[1,1] := x[1.1] - hold
end
end; { sprinkle }

procedure ccsprinkle;

var
i.1 : integer;
r2,norm,sigma : real;
initialize : boolean;

begin
norm := 1|;
if KT2>0 then
norm := (norm - KT2/4.0)#**(-dim);
initialize := true;

i :=1;
repeat
r2 := 0;

for 1:=1 to dim do
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begin
x[1.1) := random(initialize);
if 1<dim then
r2 :=r2 + (x[1,11-0.5)**2
end;
1f (r2<x[1,dim)l**2) and (r2<(1-x[i,dim))++2) then
begin
sigma .= 1 + KT2#(r2-x(1i,dim]**2)/4.0;
sigma := sigmas#*(-dim);
if no..1*random(initialize)<=sigma then
1 =1+ 1
end
until i=N+1
end; { ccsprinkle }

procedure chisquare;

var
ubin,vbin,Ysmall,Ybig k,dof : integer;
Y : array[0..H] of integer;
remaining,counted, fraction,expect,chi2 : real;

begin
Y := zero;
for ubin:=0 to B-1 do
for vbin:=0 to B-1 do
Y[bins{ubin,vbin]] := Y[bins[ubin,vbinl] + 1;
for k:=0 to N do
vriteln(k,Y[k]);
remaining := B#B;
counted := 0;
fraction := i/remaining;
expect := remaining*((i-fraction)*=*N);
Yemall := 0;
k := 0;
dof := 0;
vhile (expect<b) or (counted<5) do
begin
Ysmall := Ysmall + Y[k];
remaining := remaining - expect;
counted := counted + expect;
expect := expect*(N-k)*fraction/((k+1)*(1-fraction));
k :=k + 1
end;
writeln(k-1,Ysmall,counted) ;
if k>0 then
begin
chi2 := ((Ysmall - counted)**2)/counted;
dof := dof + 1t
end
else
chi2 := 0;
vhile (expect>6) and (remaining-expect>6) do
begin
writeln(k,Y[k], expect);
chi2 := chi2 + ((Y[k] - expect)*+*2)/expect;
dof :a dof + 1;

remaining := remaining - expect;
expect := expect*(N-k)*fraction/((k+1)*(1-fraction));
k =k +1
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end;
write(k);
Ybig := O;
repeat
Ybig := Ybig + Y[k];
expect := expect*(N-k)*fraction/((k+1)*(i-fraction));
k =2k + 1
until k=N+1;
writeln(Ybig,remaining) ;
chi2 := chi2 + ((Ybig - remaining)*#*2)/remaining;
writeln('chi2 with ', dof,' degrees of freedom = ',chi2)
end; { chisquare }

procedure drawstart;
fortran;

procedure rescale(xoffset,yoffset : real);
fortran;

procedure postdrayw;
fortran;

procedure topsort;

var
1.j.1,first,last, ,middle,top : integer;
stack : array[1..N] of integer;
cutoff hold : real;

begin

stack[1] := t;

stack[2] := N;

top := 2;

repeat
last := stack([top];
top := top - 1;
first := stack[top];
top := top - 1;

1 := first;
repeat
j = last;

middle := (first + last) div 2:
cutoff := x[middle,dim];

repeat
vhile x[i,dim] < cutoff do
i =14 + %
while x(j.dim] > cutoff do
IR IERY
if 1 <= j then
begin
for 1:=1 to dim do
begin
hold := x[i,1];
x(1,11 := x(j.11;
x[(j.1] := hold
end;
i 1+1;
[IECI I
end
until i > j;

it first < j then
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begin
top := top + 1;
stack[top] := first;
top := top + 1;
stack[top] := j

end;

first := |
until first >= last
until top = 0O
end; { topsort }

procedure incidence;

var
1.J.1 : integer;
82 : real;
begin
zZ = zero,;

for i:=1 to N-1 do
for j:=1+1 %o N do
begin
82 := -(x[j.dim] - x([i.dim])s=2;
for 1:=1 to dim-1 do
82 := 82 + (x[],1] - x{1,1])*«2;
if 82 < 0 then

begin
relations := relations + 1;
z[1,j] =1

end

end
end; { incidence }

procedure volume;

var
i.j.k : integer;

begin
for i:=1 to N-2 do
for j:=1+2 to N do
for k:=1+1 to j-1 de
if z(k,j] = 1 then
z[§.1] := z(§.1] + z[1.k]
end; { volume }

procedure f1link(x0.y0,x1,y1 : real);
fortran;

procedure adjacency;

var
i,j : integer;
begin
for 1:=1 to N-1 do
for j:=1i+1 to N do
it (z([1,j] = 1) and (z[j.1] = 0) then
begin
flink(x[1,1) ,x(1.2].x(j.1].x(].2]);
links := links + 1
end
end; { adjacency }
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begin { csdrav }

drawstart;

writeln('sprinkling points ..
sprinkle;

{ccsprinkle;}

chisquare;
rescale(-0.600,-9.000)
vriteln('sorting points ...');
topsort;

vrite(’'ordering points ...');
incidence;

vriteln(' relations =',relations:d);
writeln('computing volumew ...

volume;

write(’'finding links ...');
adjacency;

writeln(’' links =',1links:4);
postdraw

end. { cedrav }

)

')
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Appendix B

The Pascal program listed here produces causal sets faithfully embedded in dim
dimensional Minkowski space or in a cylindrical spacetime obtained from Minkowski
space by making periodic identifications in compact number of spatial dimensions
Having produced the causal set it computes the number of elements and relations
in each interval |z,y| and inverts the formula

Ca ([=,y])

d) = '
7 (N (lz,v])*

to find the Hausdorff dimension of the interval. The results are output to a graphics

program which produces the plots shown in Chapter III.
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program reldim(input, output);

const
dim = 3;
N = 500;
compact = 1;
H=10;

type
matrix = array[1..N,1..N] of integer;
var
randlist : arrayl[i..56] of real;
randnexti,randnextj : integer;
x : array(1..N,1..dim] of real;
totalrelations : integer := 0;
totaldimension : real;
z,zT : matrix;
rd : array[1..N,1..N] of real;
F : array([0..100] of real;

function random(var initialize : boolean) : real;

const
big = 4.0e6;
geed = 1960028.0;

var
i.imod.j : integer;
a,b : real;

begin
if initialize then
begin
a := geed;
if a>=0 then
a := a - big*trunc(a/big)
else
a := big - abs(a) + bigs*trunc(abs(a)/big);
randlist [66]) := a;
b :=1;
for i:=1 to b4 do
begin
imod := 21*i mod 66;
randlist[imod] := b;
b :=a - b;
if b<O then
b := b + big:
a := randlist[imod]
end;
for j:=1 to 4 do
for 1:=1 to 66 do
begin
randlist[i] := randlist[i] - randliet[1 + ((i+30) mod 66)];
if randlist[i]<O then
randlist[1] := randlist[i] + big
end;
randnexti := O:
randnextj := 31;
initialize := false
end;
randnexti := randnexti + 1;
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if randnexti=66 then
randnexti := 1t;
randnextj := randnextj + 1;
if randnextj=b66 then
randnextj := 1;
a := randlist(randnexti] - randlist(randnextj];
if a<0 then
a := a + big;
randlist [randnexti] := a;
random := a/big
end; { random }

function Finverse(x : real) : real;

const
phi = 0.618033908Y;

var
left.right ,guess : integer;

begin
left := 0;
right := 100;
repeat
guess := trunc(left + phi=(right - left));
if F{guess]<x then
right := guess
else
left := guess
vntil right = left + 1;
Finverse := (right - (x - F[rightl)/(F[lett] - Flright]))/10
end; { Finverse }

procedure sprinkle;

var
i,1 : integer;
r2 : real;
initialize : boolean;
begin
initialize := true;
1 :=1;
repeat
ra := 0;
for 1:=1 to dim do
begin
x[1,1] := random(initialize);
if 1<dim then
r2 :=r2 + (x[1,171-0.5)+*2
end;
if compact > 0 then
begin
for l:=compact+l to dim do
x[1,1] := H*x[1.1];
1 =1 + 1
end
else
if (r2<x[i.dim]**2) and (r2<(i-x[i,dim])»*2) then
i:=1+1
until 1aN+1

end; { sprinkle }
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procedure topsort;

var
1.J.1.first,last ,middle,top : integer:
stack : array(1l..N] of integer;
cuteff hold : real;

begin

stack[1] := 1;

stack(2] := N;

top := 2;

repeat
last := stack(top);
top := top - 1;
firet := stack[top]:
top := top - 1;

1 := first;
repeat
J := last;

middle := (first + last) div 2;
cutoff := x[middle.dim];

repeat
wvhile x[i,dim] < cutoff do
1 =41 + 1,
vhile x[j.dim] > cutoff do
Ji=) -1
it i <= § then
begin
for 1:=1 to dim do
begin
hold := x[i,1];
x[1,1] := x[§,1];
x[j,1] := held
end;
=1+ 1;
=93 -1
end
until i > j;
if first < j then
begin

top := top + 1;
stack[top] := first:

top := top + 1;

stack[top] := |
end;

first :=» 1§
until first >= last

untii top = 0
end; { topsort }

procedure incidence;

var
i.J.1 : integer;
82,min,max : real;
begin
for 1:=1 to N-1 do
for j:=1+1 to N do
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begin
82 := -(x[j,dim] - x[1,dim])=«=2;
for 1:=1 to compact do
begin
min := (x[j,1] - x[1,1])+=+2;
max := (x[j,1] - x[1,1] + 1)ss2;
if min > max then
min := max:
max := (x[j,1} - x[1,1] - 1)=e2;
if min > max then
min := max;
82 := g2 + min
end;
for 1l:=compact+l to dim-1 do
82 := 82 + (x[j,1] - x[1.1])#=2;
if 82 < 0 then
begin
z[i.j] := 1;
zT[].1] := 1;
totalrelations := totalrelations + 1
end
end
end; { incidence }

procedure volume;

var
1,j.k : integer;

begin
for 1:31 to N-2 do
for j:=1+2 to N do
for k:=1+1 to j-1 do
if zT{j.k] = 1 then
zT(1,§] := 2T[1.§] + z[i,k]
end; { volume }

procedure relation;

var
i,)J.k : integer;

begin
for 1:=1 to N-2 do
for j:=1+2 to N do
if z[1,§1=1 then
for k:=i+1 to j-1 do
if z{1,k)*zT{j,k1=1 then
rd(i,§] := rdl1,j] + zT(k,}]
end; { relation }

procedure readtable:

var
infile : text:
i : integer;

begin
open(infile, 'dimcoef .dat’,0ld):
reset (infile);
for 1:=1 to 100 do

readln(infile,F[1])
end; { readtable }
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procedure scatterstart;
fortran;

procedure scatter(i,x : integer; y : real);
fortran;

procedure scatterstop;
fortran;

procedure dimension;

var
1,j.%.,npts : integer;

begin
readtable;
scatterstart;
npts := 0;
for i1:=1 to N-2 do
for j:=1+42 to N do
if rd(i,j]>0 then
begin
npts := npts + 1;
rdii,j] := Finverse(rd([1i,j1/(zT[1,]j]1**2));
acatter(1,zT([1,j],rd(1,}])
end;
for 1:=0 to N do
scatter(4.,1i,dim-1);
scatterstop;
totaldimension := Finverse(totalrelations/(Ns*N))
end; { dimension }

begin { reldim }

writeln('sprinkling points ..."');

sprinkle;

writeln(’'sorting points ...'):

topsort;

vriteln('ordering points ...');

incidence;

writeln('computing volumes ... totalvolume ', N);
volume;

writeln('computing relations ... totalrelations ‘,totalrelations);
relation;

write('computing dimensions ... totaldimension ');
dimension;

writeln(totaldimension)
end. { reldim }

108



Appendix C

The Pascal program listed here produces causal sets faithfully embedded in an
Alexandroff neighborhood of dim dimensional (anti) de Sitter space parameterized
by KT2. Having produced the causal set it computes the number of elements C},

relations C3 and 3-chains Cj in each interval and then solves the system of equations
Ci = N(d,K;T)
C2 = f2(d, K;T)
C3 = f3(d,K;T)
for d, K and T. (The function Gammaln used by procedure Gcoef to compute the
coefficients G4(1y,...,1x) in the functions fi(d, K;T) is a slight modification of the

subroutine gammln listed in [Press, Flannery, Teukolsky and Vetterling 1986].) The

results are output to a graphics program which produces the plots shown in Chapter

I11.
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program ccNR(input, output);

const
dim = 3;
N = 400;
KT2 = 1.0;
mintabled = O;
maxtabled = 100;
degree = 10;
pl = 3.141692664;
maxiterations = 100;

type
matrix = array(1..N,1..N] of integer;
var
randlist : array[i..56] of real;
randnexti,randnextj : integer;
x : array[1..N,1..dim] of real;
totalrelations : integer := O;
total3chains : integer := O;
totaldimension : real;
z,zT : matrix;
F : array(0..100] of real;
: array[mintabled..maxtabled,0..degree] of double;
G2 : array[mintabled..maxtabled,0..degree,0O..degree] of double;
G3 : array[mintabled..maxtabled,0..degree, 0. .degree,0..degree] of double;
C1,C2,C3 : integer;
Kold,Told,dold : double;
Knew,Tnew,dnew : double;
iterations : integer:
i.j.number : integer;
restart : boolean;
totaliterations : integer := O;
convergences : integer := 0;
convergencefailures : integer := 0;

function random(var initialize : boolean) : real;

const

big = 4.6e6;

seed = 1059028.0;
var

i,imod,j : integer;
a,b : real;

begin
if initialize then
begin
2 := seed;
if a>=0 then
a := a - big*trunc(a/big)
else
a := big - abs(a) + big*trunc(abs(a)/big);
randlist [66] := a;
b :=1;
for i:=1 to 64 do
begin
imod := 21%1i mod 66b;
randlist[imod] := b;
b := a - h;
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if b<0 then
b := b + big:
a := randlist [imod]
end;
for j:=1 to 4 do
for 1:=1 to bb do
begin
randlist[i] := randlist[i] - randlist([1 + ((1+30) mod 65)]:
if randlist[i]<0 then
randlist[i] := randlist([i] + big

end;
randnexti := 0;
randnextj := 31;
initialize := false

end;
randnexti := randnexti + 1;
if randnexti=66 then
randnexti := 1;
randnextj := randnextj + 1;
if randnextj=b66 then
randnextj := 1;
a := randlist(randnexti] - randlist[randnextj];
if a<0 then
a = a + big:
randlist(randnexti] := a;
random := a/big
end; { random }

function Finverse(x : real) : real;

const
phi = 0.618033988;

var
left,right ,guess : integer;

begin
left := 0;
right := 100;
repeat
guess := trunc(left + phi*(right - left));
if Flguess]<x then
right := guess
else
left := guess
until right = left + 1;
Finverse := (right - (x - F[right])/(F[left] - Flrightl))/10
end; { Finverse }

function Gammaln(x : double) : double;

consat
roottwopi = 2.506628274656;

var
z,temp,sum : double;
i : integer;
coef : array[1..6] of double;
small : boolean;
hold : double;
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begin
coef (1]
coef (2]
coef (3]
coef (4]

76.18000173;
-86.60632033;
24.014098212;
-1.231730618;
coef [6] 0.1208568003e-2;
coef [6] -0.636382e-5;
small := false;
if x<1 then
begin
small := true;
x :=1-x
end;
z :=x - 1;
temp := z + b.6;
temp := (z + 0.5)*1ln(temp) - temp;
sum := 1;
for i:=1 to 6 do
begin
z =z + 1;
endfum := sum + coef[i]/z

hold := temp + ln(roottwopi*sum);
Gammaln := hold;
if small then
Gammaln := 1ln(pi) - hold - ln(sin(pi*x));
end; { Gammaln }

procedure readtable;

var
infile : text;
1 : integer;

begin
open(infile, ‘dimcoef .dat’,o0ld);
reset (infile);
for 1:=1 to 100 do
readln(infile . F[i])
end; { readtable }

procedure Gcoef;

var
tabled,11,12,13 : integer;
d.fact,expo : double;

begin
for tabled:=mintabled to maxtabled do
begin
d := tabled/10.0;
for 11:=0 to degree do
begin
Gi[tabled,i1] := 1/(d+2*1i1+1);
for 12:=0 to degree-i1 do
begin
fact := Giftabled,11)/(2%(d+1)+2¢(11+12));
expo := Gammaln(d+i2+1)+Gammaln((d+1)/2+11+12+1);
expo := expo-Gammaln(i2+1)-Gammaln(3+*(d+1)/2+11+12);
G2([tabled,11,12] := fact+exp(expo):
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for 13:=0 to degree-11-12 do

begin
fact := G2[tabled,11,12]/(3+(d+1)+2+(11+12+13));
expo := Gammaln(d+1i3+1)+Gammaln(d+2+11+12+13);
expo := expo-Gammaln(i3+1)-Gammaln(2+(d+1)+11+12+13);
G3(tabled,i1,12,13) := fact*exp(expo)

end

end
end
end
end; { Gcoef }

procedure scatterstart;
fortran;

procedure scatter(i,x : integer; y : double);
fortran;

procedure scatterstop;
fortran;

procedure ccsprinkle;

var
i.,1 : integer;
r2,norm,sigma : real;
initialize : boolean;

begin
norm ;= 1;
if KT2>0 then
norm := (norm - KT2/4.0)#*#*(-dim);
initialize := true;

1 :=1;
repeat
r2 := 0;
for 1:=1 to dim do
begin
x[1,1] := random(initialize);
if 1<dim then
r2 :=r2 + (x[1,1]-0.6)+*2
end;
it (r2<x[i,dim}**2) and (r2<(1-x[i,dim])=**2) then
begin
sigma := 1 + KT2*(r2-x[1,dim]+**2)/4.0;
sigma := sigma**(-dim);
if norm*random(initialize)<=sigma then
i:=1+1
end
until i=N+1

end; { ccsprinkle }

procedure topsort;

var
i,j.1.firet,last middle,top : integer;
stack : array{1..N] of integer;
cutoff hold : real;

begin
stack([1] :=
stack(2] :=
top := 2;

1;
N;
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repeat
last := stack[top];
top := top - 1;
first := stack[top]:
top := top - 1;

1 := first;
repeat
j := last;

middle := (first + last) div 2;
cutoff := x[middle,dim];

repeat
vhile x[i,dim] < cutoff co
1 =1 + 1
while x[j,dim] > cutoff do
J =31
1f i <= j then
begin
for 1:=1 to dim do
begin
hold := x[1.,1];
x[1,1] := x(j.,1];
x{j,1] := hold
end;
1 =1+ 1;
y =4 -1
end
until 1 > j;
if first < j then
begin
top := top + 1;
stack[topl := first;

top := top + 1;
stack([top] := j
end;
first = 1
until first >= last
until top = 0O
end;: { topsort }

procedure incidence;

var
1,J.1 : integer:
82 : real;

begin

for i:=1 to N-1 deo
for j:=1+1 to N do
begin
82 := -(x[j.dim] - x[i,dim])»*2;
for 1:=1 to dim-1 do
82 := 82 + (x[j,1] - x[1,1])**2;
if 82 < O then
begin
z[1,)] = 1;
zT[}.1] := 1;
totalrelations := totalrelations + 1
end
end
end; { incidence }
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procedure volume:

var
i,j.k : integer;

begin
for 1:=1 to N-2 do
for j:=1+2 to N do
begin
for k:=1+1 to j-1 do
zT[1.j] := zT[1,j] + z[1,k]*zT[j.k];
total3chains := total3chains + zT[1,j]
end
end; { volume }

procedure relation;

var
i1,j.k : integer;

begin
for 1:=1 to N-2 do
for j:=1+2 to N do
if zT([1.j]>=1 then
for k:=i+1 to j-1 do
z[),1] := z{j,11 + 2[1.k}*zT(k,}]
end; { relation }

procedure threechain;

var
i,j.k : integer;

begin
for i:=1 to N-1 do
for j:=i+1 to N do
begin
zT(j.1] := 0;
if z[j.11>=1 then
for k:=i+1 to j-1 do
zT(j.1) := zT(j.1]1 + z[1,k]1*z(j, k]
end
end; { threechain }

procedure NewtonRaphson;

var
8 : double;
tabled,i1,12,i3 : integer;
51,82,53,51_K,S2_K,53_K,51_d.52_.d,83_d : double;
£1,£2,f1 K. f2 K,71_d,f2_d : double;
denom,deltak,deltad ,E : double;
outsiderange : integer;
dtemp,Ktemp.p1,p2 : double;

begin
if restart then

begin
dold :
Kold :

end;

dnew :
Knew :

Finverse(C2/(C1%%2));
0.0001

dold;
Kold;
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deltad := 0;
deltak := 0;
iterations := 0;
repeat
outaiderange := 0;
repeat
dtemp := dnew + deltad/(2+*outsiderange);
tabled := trunc(10.0%dtemp);
outsiderange := outsiderange + 1
until ((tabled<maxtabled) and (tabled>mintabled)) or {outsiderange=20) ;
dnew := dtemp;
outsiderange := O;
repeat
Ktemp := Knew + deltaK/(2+*soutsiderange);
outsiderange := outsiderange + 1
until ((Ktemp<1) and {Ktemp>-1)) or (outeiderange=20);
Knew := Ktemp;
8 := 10.0*dnew - tabled;
if tabled>=maxtabled then
begin
tabled := maxtabled - 1;
8 := 1
end ;
if tabled<mintabled then
begin
tabled := mintabled;
8 :=0
end;
if Knew>i then
Knew := 0.0001;
if Knew<-1 then
Knew := -0.0001;
81 := 0;
§2 :=
§3 :=
51 K :
82 K :
§3_K :=
§1.d :=
§2.4d :=
§3.d := 0;
for 11:=0 to degree do begin
pl := (1-8)*G1i[tabled,i1]+s+*G1[tabled+1,11];
P2 := (0.00-8)+G1i[tabled.11]+(0.01+8)*C1[tabled+1,11]);
51 := 51 + (Knew**i1)#p1;
S1_K := 81 K + 11#(Knews*s(i1-1))#p1;
81.d := §1_d + (Knews+11)#p2;
for 12:=0 to degree-ii do begin

noo

[l «NelNelNe]

o

pl := (1-8)*G2[tabled,11,12]+s*G2[tabled+1,11,.12];
p2 := (0.99-8)*G2[tabled,11,12]+(0.01+8)*G2[tabled+1,11,12);
§2 := 82 + (Knew**(11+12))+p1;

52_K :2 82K + (11+12)%(Knews*(11+12-1))+p1;

52.d := 52_d + (Knew**(11+12))+p2;

for 13:=0 to degree-i1-i2 do begin
pl := (1-8)*G3(tabled,i1,12,13]+s*G3[tabled+1,11,12,13]:
p2 := (0.99-8)*G3[tabled,11,12,13]+(0.01+8)*G3[tabled+1,11,12,13];
§3 := 83 + (Knew**(11+12+13))#p1;
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83 _K := 83_K + (11+i2+13)*(Knew**(11+12+13-1))+*p1;
83_d := 83.d + (Knew+*(11+12+13))#*p2

end
end
end;
61_d := (S1_d - S1)+*1000;
§2_d := (S2_d - $2)*1000;

§3_d := (83_d - S3)+1000;
f1 := C2*(51#%2) - (Cl#+2)+852;
£2 := C3*»(51+%#3) - (C1#»%3)=83;
f1_K := 2+C2+S1»81_K - (C1*%2)*52_K;
f2_K := 3*+C3+(S1#%2)#81_K - (C1+%3)*853 K:
£1_d := 2+C2+S1+81_d - (C1#+2)+82_d;
£2_d := 3*C3%(81**»2)*51 d - (C1+**3)*S3_d;
denom := f1_d+*f2_K - f1_K+f2_d;
deltad := (-f1«f2_K + f1_K=*£2)/denom;
deltaK := (-f1_d+f2 + £1*£2_d)/denom;
E := (£i**2) + (£2%+2);
iterations := iterations + 1;
until (E<1.0e-68) or (iterations=maxiterations);
if (iterations=maxiterations) and (E<1.0e-2) then
iterations := iterations - 1;
Tnew := S1
end; { NewtonRaphson }

begin { cchR }
writeln('sprinkling points ... totalvolume ‘', N);
ccsprinkle;
writeln('sorting points ...");
topsort;
write(’'ordering points ... ');
incidence;
writeln('totalrelations ',totalrelations);
vrite('computing volumes ... '):
volume;
writeln('total3chains ',total3chains);
writeln(’computing relations ... ');
relation;
writeln(’'computing threechains ... ');
threechain;
readtable;
Gcoef;
scatterstart;
eriteln(’'computing dimensions, curvatures ... ');
for 1:=1 to N-2 do begin
restart := true;
for j:=1+2 to N do
if zT(j.1]1>0 then begin
c1 zT(1.1]):
C2 := z{j.i];
c3 zT[j.1);
NewtonRaphson;
if iterations<maxiterations then begin
restart := false;
Kold := Knew;
dold := dnew;
totaliterations := totaliterations + iterations;
convergences := convergences + 1;
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Tnew := dnew*exp(Gammaln(dnew/2))*C1/((pi**(dnew/2))+*Tnew) ;
Tnew := ((2+*+(dnew-1))*Tnew)**(1/(dnew+1));
Knew := 4*Knew/(Tnew*=2);
scatter(1,2zT[1,j] ,dnew);
scatter(2,zT([1.}] ,Knev);
scatter(3,zT(1i,}].Tnew);
scatter(7,zT[i,}1.1.0)
end
alse begin
convergencefailures := convergencefailures + 1;
scatter(8,zT[1,j],1.0)
end
end

end;
writeln(’' convergences ', convergences);
writeln(’' convergencefailures ‘,convergencefailures);
writeln(' average iterations ‘,totaliterations/convergences);
C1 := N;
C2 := totalrelations;
C3 := total3chains;
NewtonRaphson;
writeln(' K = ', Knew,' T = ',Tnew,’ KT2 = ' ,Knew*Tnew*Tnew,' d = ', dnew);
Tnew := 0.0;
dnew := dim - 1;
for 1:=0 to degree do
Tnew := Tnew + ((KT2/4.0)*%1i)*G1[10*(dim - 1).1];
Tnew := (2*+(dnew-1))+dnew*exp(Gammaln(dnew/2))*N/((pi*+*(dnew/2))+Tnev);
Tnew := Tnew**(1/(dnew+1));
Knew := KT2/(Tnew**2);
for 1:=0 to N do begin
scatter(4,i,dnew);
scatter (6,1 ,Knew) ;
scatter(8,1i,Tnew=((i/N)+**(1/dim)))
end;
scatterstop;
writeln(’ K = ',Knew,' T = ’,Tnev,' KT2 = ' Knew*Tnew*Tnev,' d = ',dnew)
end. { cchR }
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Appendix D

This appendix contains a reprint of an earlier paper “On the stability of a non-
supersymmetric ground state,” Class. Quantum Grav. 3 (1986) 881-887 which
describes the results of the previous project I worked on, under the guidance of

Professor Daniel Z. Freedman at MIT.
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Class. Quantum Grav. 3 (1986) 881-887. Printed in Great Britain

On the stability of a non-supersymmetric ground state

David A Meyer

Deparntment of Mathematics, Massachuseits Institute of Technology, Cambridge,
Massachusetts 02139, USA

Received 2 November 1985

Abstract. We consider the gauged N =2 (simple) supersymmetric seven-dimcnsional
(d =7) supergravity theory with the scalar field potential having two critical points.
Applying a modified Witten argument reduces the question of stability to deciding if a
particular non-linear ordinary differential equation has a glebal solution. We show that it
does and that therefore the non-supersymmetric ground state is stable against arbitrary
spin-Q, spin-1 and spin-2 fluctuations.

1. Introduction

The gauged N =2 (simple) supersymmetric seven-dimensional (d =7) supergravity
theory has been constructed [1]; with a topological mass term the scalar field potential
has two critical points as shown in figure 1. In [2] the stability of the local maximum
against spin-0 and spin-2 fluctuations was investigated. The local maximum is a
supersymmetric Ads ground state and it was shown to be stable both perturbatively
and for arbitrarily large fluctuations which vanish asymptotically.

vie)

Figare 1. V(¢) has two critical points and is unbounded below. The case g/h =4/2is
shown.
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The local minimum is a non-supersymmetric state; Boucher [3] has shown how to
investigate non-perturbative stability in such cases. In this paper we show that his
approach can be used to establish the global stability of the local minimum of the
scalar field potential, despite the fact that the potential is unbounded below.

The explicit form of the potential is

V(o) =-60m’+10(m+2ha*)? (1.1)
where

m=-2ha*/5—go ' /5V2 (1.2)

o =exp(—d/V5). (1.3)

The entire Lagrangian and transformation rules are given in references [1, 2]. For our
purposes we set A,/ =0, which is consistent with its field equation. Then the bosonic
part of the gauged Lagrangian is

L=-3R =350 (Fpw) ~1(3.8) — V(d) —56ihe" " F,, A, (14)

and the transformation rules are (with bilinear fermion terms omitted)

80, = D,e, + (0" /80N2)(T, "™ —$5°TP")F, , 6.+ mT ¢, (1.5)

8A, = 1Bpe, + (a7 24V 10)T**°F, e, —/S(m + 2ha*)e,. (1.6)
The conventions are those of [1], namely

{f..r.}=24,, (1.7)

[H1#a = Pl (1.8)

Fruna=n100,Au 4 (1.9)

2. Stability of the local maximum

Mezinescu, Townsend and van Nieuwenhuizen use the standard Witten argument [4]
to show that the supersymmetric local maximum is stable for arbitrarily large spin-0
and spin-2 fluctuations. Since the proof for the local minimum is a modification of
this argument we review their work and at the same time extend it to include fluctuations
in A,

Define
E* =&'T**D,e, (2.1)
with ¢ a commuting spinor and 15,,5, = 6y, given by (1.5). Then
D.E* = D,&'"*** D¢, + £'T**D,D,¢,. (2.2)
After some algebra the second term on the rRHs of (2.2) becomes
£'T**D,D,e, = —}(G** — T**)&'T,e, - SA'T*8A, + (3/2V2)&'07T,,. J "¢, (2.3)
where J“*? is the current due to A,,,,:

J#® = 8L/ 8A,,, = D, (3o F**** + kihe**"*#741 A, ,) = D, U (2.4)
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T** is the energy-momentum tensor from the matter part of the Lagrangian in (1.4)
and 8A,; is given by (1.6). Thus, using Gauss’ theorem and equations (2.2) and (2.3),
we have

J' dz, E*"=-2 I dE,[D.&'T**D,e, -4 G** - T**)E'T e
£33 p3

—5A'T#8A,+ (3/2V2)E'0 T, 0", (2.5)

for a spacelike surface £ and its boundary ¢X. For spinors &; which approach Killing
spinors of the background at spatial infinity and for fluctuations about the background
which vanish asymptotically the integral over 3% converges. Moreover, we restrict the
class of fluctuations to those which, and insist that 15,,5, does also, vanish sufficiently
rapidly a\ spatial infinity that the integrals over Z converge for all spacelike surfaces X.

Following Freedman and Gibbons 5], we consider (2.5) for exact Killing spinors
of the background and keep only terms up to linear in the fluctuations. Then

J. dX,,Ei"=-2 j dZ, [-3(Gt - T‘,f‘)f‘l]e,-f-(3/2ﬁ)E'a§F,,,J‘,f’”e,] (2.6)
X b

where o, is the background (local maximum) value of o. Upon integration by parts
the last term becomes (for ¢X at spatial infinity)

J dz,&'oil,, D UT"" e = - I d2, D, (&'oel,e) U 2.7
I I

and
Dn(E‘o-(z)rvpei) = zmoage-‘(gavrp - gaprv)si- (2'8)

However US*** is totally antisymmetric, so this term vanishes.
Now we can rewrite (2.6) as

I dI,,,E‘,:"=J dZ, (Gt - T)E'T,e, =if'0*PEM[ K ap) (2.9)
X X

whete [4, 5], £ are constant spinors parametrising the Killing spinors &(x), a*? are
the generators of the spin representation of the isometry group of (ads);, SO(6,2),
and M[K 5] are the corresponding Killing charges, defined by

M[K]=Ld}'-,.(0‘i*—T’i‘)KA (2.10)

for a Killing vector K,. Finally we note that at spatial infinity E1" can be replaced
by E**. Hence (2.5) becomes

Ea*PeM[Kapl=2i I 43, (D,&'T**D,e,— 5A'T*8),) (2.11)
X

where we have used the equations of motion
G** =T* Jr? =0. (2.12)

Choosing a frame such that the 0 direction is normal to 2, and using a Majorana
representation (in which the spinors are real and Cly=—i, where C is the charge
conjugation matrix), we have

E'a“f,M[KA..1=—2I dZ [(T*D,e') (F*Dye,) + (D) (Doe) + 82 T80 (2.13)
I
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where a=1,...,6. Imposing a modified Witten condition
I“D,e, =0 (2.14)

(whose solutions limit to Killing spinors at spatial infinity), and taking the trace over
spinor indices on each side, we have

ETEM[Ky)=2 j dZ[(D.e")(D,e,) + 82 T8A,). (2.15)
I

Thus E = M[ K,,] is non-negative, and is zero iff 13,5, =0 = 5A,, namely in the supersym-
metric Ads background of the local maximum.

3. The modified Witten argument at the lecal minimum

For the local minimum, although (2.5) still holds (if the integrals converge) its interpre-
tation changes. Using exact Killing spinors of the background and linearising, the first
term on the rRHs no longer vanishes and the integrals do not converge, because ﬁp
does not approach the covariant derivative for the background. Hence we no longer
obtain the Killing charges in (2.9). One can modify li, and 8A,, however, and still
obtain an identity like (2.5) [3] which does produce the Killing charges.

Restricting our attention to fluctuations of the scalar and gravity fields, we proceed
as before, using (1.5) and (1.6), but leave as functions to be determined the coefficients
whose background values depend on the scalar field. That is, we define

D.=D,+fT, (3.1)

A, =(3dd+Db)e (3.2)
and let

rr = e T D, (33)
as before. Using the modified ﬁp we find

£ 0D, D,e, = ~3G* E'T e, + 53, f&'T* &, - 30 E'T e.. (3.4)
Also,

SN'TH6A, = &'[—4(26"$3,6T" —0,0"¢I*) +bI*" 3,0 +b'T*]e,  (3.5)
and

T = —3*$a b +1(3,6)g"" + V(¢)g"". (3.6)

" So a little algebra shows that

£ D,D,e, = — {G** — T**)&'T e, SX'T*8A,+(53.f + ba.9)e'T""e,
+(b*-302-3V(9))E'T e,. (3.7)

Now recall from the previous section that E** must satisfy two conditions. First,
the linearisation procedure must generate the Killing charges so that we can indeed
obtain the energy; and second, that energy must be zero in the background. (The
background is stable if the energy is positive for fluctuations.)

To zeroth (background) order:

D,Et = D& T** D6, — bl T e, +(bs—30f5-1V(o))ET"e,.  (3.8)
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This vanishes identically if and only if

D¢ =0 (3.9)
and

30/5=—1Vign). (3.10)

Note that together this is exactly th: condition that D' is the Ads covariant derivative
g y 0
for the background.
To linear order

DEY" = -G -~ Tt )é'T, ¢, +5(9,0) 8' T, — (302 +3V(p)) 8T e, (3.11)

(where again the terms involving b cancel). This will give the Killing charges if the
last two terms vanish, i.e. if

fo=df/de]|,,=0. (3.12)

Finally, we can obtain a positive energy theorem if we require the last two terms
in (3.7) to vanish to all orders, i.e.

30, f+b3,¢=0 (3.13)

b*-301*-3V(¢)=0. (3.14)
Applying the initial condition (3.10) we see that

by =0. (3.15)
Moreover, (3.13) and (3.14) can be rewritten as

b=-5f (3.16)

25 -30f*-3V(¢) =0. (3.17)

Now the problem has been reduced to finding a solution to this last ordinary differential
equation subject to the initial condition of (3.10).

4. A solution to the ODE exists

Actually we need only show that (3.17) has a solution with this initial condition. A
reasonably trivial modification of the Peano existence theorem (see, e.g., [6]) shows
that there is a solution in the neighbourhood of the initial condition. One must then
consider the possibility that the solution is not global, i.e. it blows up at some finite
value of ¢.

Let g =1/f Then the equation becomes

25g"2-30g%~1g*V(¢) =0. (4.1)

It is easy to see that non-trivial solutions to this equation have no zeros. For >0
(namely ¢ > ¢,), g'<0. In this instance (4.1) becomes

58'=-g(30+1g°V(g))"2 (4.2)

At g =0 the right-hand side of (4.2) satisfies the appropriate continuity and Lipschitz
conditions for the Picard-Lindelof theorem, so a unique solution exists. However,
8(#)=0is clearly a solution, so there is no non-trivial solution with a zero. Similarly
for f<0, g’>0 and using the positive branch. Hence the solution to (3.17) does not
blow up for finite values of ®.
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Vie)

Figure 2. The solution to (3.17) with IC at A is bounded away from f* =0 by the solution
with IC at B.

The only remaining way in which (3.17) can fail to have a solution is for the solution
curve to run into the f"(¢) =0 curve (equivalently 30f%(¢)=—V($)/2) as ¢ increases
away from ¢, (see figure 2). However, we know that the local maximum is stable.
Hence (3.17) must have a solution with initizl condition at B. In fact, we know that
the solution is given by (1.5) with A,,, =0, i.e. f=m. That this is indeed a solution
of (3.17) is easily verified. Uniqueness guarantees that the solution to (3.17) with initial
condition at A never intersects the same-branch part of this curve and hence is bounded
away from the f(¢) =0 curve.

5. Conclusions

That a global solution to (3.17) exists demonstrates the stability of the local minimum
against arbitrary spin-0 and spin-2 fluctuations. It is, in fact, unnecessary to actually
solve (3.17) (thus defining [5,, and 8A,) since merely knowing that the solution exists
guarantees that they will be defined and hence that the generalised positive energy
theorem will go through.

Another observation to be made is that this argument trivially extends to include
spin-1 fluctuations. (The inclusion of spin-1 fluctuations in the standard Witten
argument at the local maximum could have been done similarly.) For then

G* = T*(¢) = T*"(Aagy) (5.1)

rather than 0. However, to zeroth and linear order this has no effect, and since
T"*(A,p,) satisfies the dominant snergy condition (just as the energy-momentum
tensor for the electromagnetic field does) we still obtain a positive energy theorem
from (3.7). Notice that again here, to understand and apply the modified (or
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unmodified) Witten argument, it is crucial to examine the relevant identity (3.7) to
zeroth and linear orders to verify that it truly produces the energy, and then to all
orders to show that the energy is positive.
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