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Abstract

X-ray imaging is capable of imaging the interior of objects in two and three dimensions
non-invasively, with applications in biomedical imaging, materials study, electronic inspec-
tion, and other fields. The reconstruction process can be an ill-conditioned inverse problem,
requiring regularization to obtain satisfactory reconstructions. Recently, deep learning has
been adopted for 2D and 3D reconstruction. Unlike iterative algorithms which require a
distribution that is known a priori, deep reconstruction networks can learn a prior distribu-
tion through sampling the statistical properties of the training distributions. In this thesis,
we develop a physics-assisted machine learning algorithm, a two-step algorithm for 2D and
3D reconstruction. The 2D case is studied in the context of randomized probe imaging to
retrieve quantitative phase distribution using deep k-learning framework, and 3D case is
under X-ray tomography to retrieve the structure of integrated circuit via physics-assisted
generative network. In contrast to previous efforts, our physics-assisted machine learning al-
gorithm utilizes iterative approximants derived from the physical measurements to regularize
the reconstruction with both known physical prior and the learned priors. The advantages of
using learned priors from machine learning in X-ray imaging may further enable low-photon
nanoscale imaging. Note that part of this thesis has been previously reported [1, 2].

Thesis Supervisor: George Barbastathis
Title: Professor of Mechanical Engineering
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Chapter 1

Single-frame 2D imaging

Diffractive imaging is a set of lensless imaging techniques that are used for the reconstruction

of non-periodic objects [3, 4], such as integrated circuits [5], biological proteins [6], bone

tissue [7], and more. In single-frame diffractive imaging, an incident beam illuminates an

isolated unknown sample. Object features that are comparable in size to the illumination

wavelength cause diffraction and the resulting intensity pattern is subsequently measured

on a camera. The phase retrieval algorithm then recovers the lost phase information and

reconstructs a discrete representation of the object [8, 9, 10]. For extended objects, multi-

frame measurements can be made by scanning a localized illumination across a sample, a

method known as ptychography [4, 11]. The uniqueness of the reconstruction is guaranteed

by illumination overlap between the multiple measurements, improving the reliability of the

reconstruction [12, 13].

The trade-off between single-frame and multi-frame diffractive imaging is that more mea-

surements provide more stringent constraints on object reconstruction at the expense of

longer time to acquire the data. Efforts have been made to implement ptychography with

single-shot measurements, though they come at the cost of high hardware complexity and

low information acquisition efficiency [13, 14, 15]. The search of a single-frame imaging

method that retains the reliability and flexibility of multi-frame approach continues.
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1.1 Randomized probe imaging

Randomized Probe Imaging (RPI) is a single-frame diffractive imaging method that uses

randomized light, rather than a finite support constraint, to generate a unique solution to

the phase retrieval problem [16]. The combination of randomized illumination and a band-

limiting condition on the object provides enough information in the single-frame diffraction

intensity to guarantee a unique solution up to a global additive phase factor. RPI is promis-

ing, for example, for time-dependent nanoscale X-ray imaging, since it does not introduce

any optics behind the sample, or require any alternations to the sample. It has been shown

that RPI can produce high-fidelity reconstructions using gradient descent based iterative

algorithms [16]. However, conventional iterative algorithms are computationally expensive

and typically do not exploit regularizing priors based on the statistical properties of scatter-

ing objects. As a result, it can be challenging to process large volumes of data with these

algorithms, and they can have limited performance under low-light conditions.

1.2 Deep k-learning

Here, we propose a deep learning framework – deep k-learning – which is specifically designed

to address the issues of computational load and low-light performance for far-field RPI

reconstructions. Recently, many deep learning based algorithms have been proposed to solve

phase retrieval problems, including reconstructions in tomography [17, 18, 19, 20, 21, 22,

23], ptychography [24, 25, 26, 27, 28], and holography [29, 30, 31, 32]. Compared with

conventional iterative approaches, deep learning algorithms can produce moderate quality

reconstructions with low data redundancy, high computational efficiency, and low latency [17,

24, 29]. Deep learning methods have been particularly successful under noisy, low-light

conditions [33, 34].

In most previous works, a deep neural network (DNN), typically a convolutional neural

network (CNN), is trained with examples of objects and their corresponding diffraction

patterns. The goal is to minimize the loss between the generated objects output by the
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network and the ground truth. After training, the network will have learned the direct

transformation from measurement to scattering object, implicitly incorporating the physics

of light propagation. This is known as End-to-End training, and it relies on the idea that

a learnable transfer function exists which maps the intensity measurements onto the object

domain. In contrast, deep-k-learning uses an approximated version of the object – the

output from one iteration of an iterative algorithm – as the input to the neural network.

This follows a recent thread of research that leverages approximate physical operators to

generate an input image, also referred to as the “Approximant”, which is already in the

object domain [33, 35, 36, 37, 38], generally finding significantly improved results even with

simpler neural network architectures.

The use of an approximate physical operator has three main advantages over an End-

to-End approach. First, the network no longer needs to learn the diffraction physics, which

allows for leaner and simpler network architectures. Second, weight-sharing convolutional

layers are not well suited to learning maps between the far-field and object domains. This is

because the inductive bias in a convolutional layer assumes that relationships between input

and output features are local and translationally equivariant. When mapping between far-

field and object domains, these assumptions are emphatically not true. Third, pre-trained

models and transfer learning can be applied when the network’s inputs and outputs follow

a natural image distribution, allowing for major speedups when training domain specific

models.

17
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Chapter 2

Principle of RPI for 2D imaging

2.1 The experimental geometry of RPI

The basic theory of the RPI was developed by Abe Levitan. The experimental geometry of

RPI is outlined in Figure 2-1. A randomized zone plate first focuses coherent illumination

at a wavelength 𝜆 to a focal spot. An order selecting aperture blocks unwanted higher order

diffraction from the zone plate, producing an aperture filled with a band-limited random

field at the sample plane. The randomized probe 𝑃 (𝑥, 𝑦) then interacts with a thin sample

described by a complex object function 𝑂(𝑥, 𝑦). In our work, we consider phase-only objects

𝑂(𝑥, 𝑦) = exp(𝑖𝜑(𝑥, 𝑦)) for simplicity. The resulting exit wave 𝐸(𝑥, 𝑦) = 𝑃 (𝑥, 𝑦)𝑂(𝑥, 𝑦)

propagates to the Fraunhofer plane where its intensity is measured by a charge-coupled

device (CCD) camera. The noiseless intensity measurement 𝐼0(𝑘𝑥, 𝑘𝑦) thus can be written

as

𝐼0(𝑘𝑥, 𝑘𝑦) = |F{𝑃 (𝑥, 𝑦)𝑂(𝑥, 𝑦)}|2, (2.1)

where F denotes the Fourier transform operator when the exiting wave propagates to the

far-field. In practice, measurements are also subject to various sources of corrupting noise

such as Poisson statistics with parameter 𝜆 due to the discrete nature of light and 𝒩 is the

additive Gaussian noise due to thermal fluctuations at the photoelectric detector circuitry..
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We express the noisy measurement 𝐼(𝑘𝑥, 𝑘𝑦) in the far-field as

𝐼(𝑘𝑥, 𝑘𝑦) = P{𝐼0(𝑘𝑥, 𝑘𝑦)}+ N , (2.2)

where P denotes Poisson sampling with parameter 𝜆 and N is the additive Gaussian noise.

Figure 2-1: A conceptual diagram of the layout used in an RPI experiment.

In the RPI reconstruction process, the measured single-frame diffraction intensity 𝐼(𝑘𝑥, 𝑘𝑦)

and prior knowledge of the probe wavefield 𝑃 (𝑥, 𝑦) are used to reconstruct a discrete repre-

sentation of the object 𝑂(𝑥, 𝑦). Note that the presence of randomized illumination 𝑃 (𝑥, 𝑦)

breaks the spatial shift and conjugate inversion degeneracy of the classic two dimensional

Coherent Diffractive Imaging (CDI) problem [39]. Rather than resorting to a finite support

constraint as in traditional CDI, the reconstruction process in RPI uses a band-limiting con-

straint on the object to restrict the number of free parameters and achieve sufficient data

redundancy.

Importantly, this reconstruction process is only well-posed when the diffraction pattern

contains a sufficient amount of measurements in excess of the number of independent degrees

of freedom in the object. Without additional information about the object, this leads to

an expectation that a stable reconstructions can be achieved when the highest frequency

𝑘𝑝 at which the probe has nonzero power remains larger than the frequency 𝑘𝑜 to which

the object is band-limited. Based on this analysis, it is useful to define the resolution
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ratio 𝑅 = 𝑘𝑜
𝑘𝑝

[16]. As the resolution ratio decreases, the sampling redundancy increases,

producing more stable (but lower-resolution) reconstruction. Here, we consider the role of

machine learning approaches at various values of 𝑅, ranging from low values (∼ 0.25) where

the reconstruction is extremely tightly constrained to high values (∼ 2) where, without

additional information, the problem is almost certainly ill-posed.

2.2 End-to-end phase retrieval

Convolutional neural networks are an indispensable tool for many modern computer vision

applications, such as image classification [40], objection detection [41], and neural style

transfer [42]. Many recent works have also shown that convolutional networks perform well

in solving phase retrieval problems [33, 43, 34, 44, 45, 35].

The most basic way to apply a convolutional neural network to the phase retrieval prob-

lem, which remains the basic standard, is known as the End-to-End approach. In this design,

one trains a network using the raw diffraction patterns as an input, producing as output an

estimate of the retrieved object. In our case, this output would be an estimate of the phase

of a thin, phase-only object. This works well, or at least acceptably, for many variants of

diffractive imaging based on Fresnel propagation [33, 35, 34, 46].

Considering the design of a standard convolutional network, outlined in Fig. 2-2, can

help us understand why these networks are a natural fit to Fresnel-based phase retrieval

problems.

U-style type of networks are divided into an encoding arm and a decoding arm. The

encoding arm learns to predict a representation of the scattering object in a low-dimensional

latent space based on an input diffraction pattern. The decoding arm learns to map from the

embedding manifold back to the discrete representation of the scattering object - the desired

final result. Often, skip connections are used to bypass the feature maps from the encoder

arm to the the corresponding layers in the decoders arm. This allows local information to be

transferred directly from the input to output domains, which helps preserve high frequency

structures in the reconstruction [46].
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Figure 2-2: Architecture of conventional encoder-decoder

Convolutional neural networks often work well when the relationship between the input

and output domains is fundamentally local. This is because weight-sharing convolutional

layers preserve translation equivariance [47], such that a shifted input to a layer produces

a shifted output. Because Fresnel diffraction patterns do preserve the location of features

in the scattering object, the map that must be learned to perform phase retrieval naturally

shares the same translation equivariance as the convolutional layers.

However, convolutional networks are not ideal when the input diffraction patterns are in

the far-field regime (as is the case for RPI), for two major reasons. First, the real-space to

Fourier space mapping is global. In a far-field phase retrieval such as RPI, every pixel in the

diffraction pattern includes a contribution from every pixel in the real-space object domain.

Second, the real-space to Fourier space mapping does not respect translation equivariance.

A shifted input diffraction pattern should be mapped to a version of the output object with

linear phase ramp, rather than a translated version of the corresponding output object. This

is formalized with the following inequality:
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𝑔0(𝑥+ 𝛿𝑥, 𝑦 + 𝛿𝑦) ̸= |F{𝑃 (𝑥, 𝑦)𝑂(𝑥+ 𝛿𝑥, 𝑦 + 𝛿𝑢)}|2. (2.3)
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Chapter 3

Our solution: deep k-learning

3.1 Physical operator and autoencoder with 2D Conv

The workaround we used for applying convolutional neural networks to phase retrieval in

the far-field (in this case, RPI) is to apply an approximate map from the diffraction pattern

domain to the object domain before using the neural network for the final reconstruction.

This framework is depicted in Fig.3-1. Although the approximate map cannot produce an

accurate reconstruction on its own, it creates inputs for training and inference which already

live in the same image space as the final reconstructed objects. We call this approach deep-

k-learning, because it is designed to compensate for the issues created by having input data

which are organized in k-space.

The choice of approximate mapping is clearly of crucial importance. Here, we use a single

iteration of a gradient-descent based iterative algorithm solving the following optimization

problem for a diffraction pattern 𝐼𝑖:

O+
𝑖 = argmin

O′
𝑖

L
{︀
𝐼𝑖, |F{𝑃 ×𝑂′

𝑖}|2
}︀

(3.1)

Here, 𝑂′
𝑖 is a low-fidelity estimate of the band-limited object and P is the known probe

state. The probe P is either known a priori (as for simulation), or retrieved via ptychography

measurement (as in the experiment). The output of a single step of the iterative algorithm
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when initialized with a uniform object is called the Approximant and is denoted by 𝑂*
𝑖 .

When more steps of the optimization is taken (with lower learning rate), we regard the

output as iterative reconstruction. Adam optimizer is chosen to generate Approximant and

iterative reconstruction for fair comparisons. The Approximant is then fed into a CNN based

autoencoder 𝐺w with parameters w. The training process learns a map from Approximants

to ground-truth objects, formally written as:

ŵ = argmin
W

∑︁
𝑖

L
{︀
𝑂𝑖, 𝐺w(𝑂

*
𝑖 )
}︀

(3.2)

where the optimal weights after gradient descent are ŵ, and 𝑂𝑖 is the ground truth object.

Figure 3-1: Our deep k-learning framework

The network we used is an autoencoder architecture [48], where the encoder arm whose

architecture is similar to that of EfficientNetB7 [49] to enable efficient feature extraction. The

feature pooling is built on inverted residual blocks (or MBConv), where the input and output

26



of the residual block are thin bottleneck layers as opposed to traditional residual blocks to

achieve efficient feature extraction [49, 50]. In each inverted residual block, convolutional

layers are being deployed to extract local features, and squeeze and excitation (SE) blocks

are being used to extract global features [51]. Note that the convolutional layers in our

implementation are combined with depth-wise and point-wise convolutions to reduce the

computation cost [52]. Residual connections within each block are employed to avoid the

problem of vanishing gradients [53], batch normalization is adopted to stabilize the learning

process [54], and dropout layers are used to prevent over-fitting. Down-sampling in the

encoder arm is achieved via average pooling block by block, with a pooling size of (32, 32)

in total. Therefore, the final embedded output from the encoder has a dimension of (H/32,

W/32, C), where H and W are the height and width of the input object, and C is the channel

size in the last inverted residual block. In our implementation, C is 2560.

The decoder arm is comprised of five residual up-sampling blocks with up-sampling. The

up-sampling is achieved by transposed convolution. Each up-sampling transposed convolu-

tion layer is followed by two convolution layers with same filter and kernel sizes. The scaling

factor of all the up-sampling blocks is (32, 32) in total, producing an output with the shape

(H, W, 1). Skip connections are used between encoder and decoder arms to preserve high-

frequency information [46]. The detailed network architecture can be found in our github

page.

3.2 Supervised representation and adversarial loss

Three main choices exist for the loss function L needed to train the deep k-learning frame-

work: supervised loss, representation loss, and adversarial loss. Here, we constructed a loss

function consisting of a mix of all three types. When the network is trained with a mix

of all three types, we call it generative deep k-learning. When the network is trained with

supervised loss only, we call it non-generative. The supervised loss, which directly compares

predicted ground truth objects, is the main component. In our implementation, supervised

loss was implemented as the negative Pearson correlation coefficient (NPCC) between the
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reconstructed objects and the ground truth, defined as

NPCC = −𝑟𝑋,𝑌 = −cov(𝑋, 𝑌 )

𝜎𝑋𝜎𝑌

, (3.3)

where cov is the covariance and 𝜎𝑋 , 𝜎𝑌 are the standard deviations of 𝑋 and 𝑌 , respectively.

Previous works have shown that NPCC is more effective in recovering fine features than

pixel-wise loss functions [34, 46, 55, 35]. In the context of our network, NPCC is written as:

Lnpcc(𝐺w) = E𝑂,𝑂* [−𝑟𝑂,𝐺w(𝑂*)] (3.4)

To define the representation loss, we use an ImageNet pretrained EfficientNetB0. This

representation loss is a perceptually-motivated loss which measures the mean absolute error

between the latent space representation of the reconstructed object 𝐻(𝑂+) and the em-

bedding of the ground-truth object 𝐻(𝑂). Here, 𝐻 refers to the pretrained EfficientNetB0

encoder. It may improve the reconstruction quality without changing the network archi-

tecture [56], helping the generative model to synthesize features closer to the ground truth

distribution. In our implementation, we choose L1 or mean absolute error to measure the

distance between the two distributions:

Lmae(𝐺w) = E𝑂,𝑂* [‖𝐻(𝑂)−𝐻(𝐺w(𝑂
*))‖1] (3.5)

The adversarial loss is computed with a CNN-based discriminator. Our implementation of

adversarial loss is inspired by conditional generative adversarial networks (cGANs), a particu-

lar training strategy that uses a discriminator to compete with the autoencoder/generator [57,

58, 59]. The objective of cGAN for our RPI problem can be written as follows:

Ladv(𝐺w, 𝐷
′
w) =

(︁
Eo∼po(o)

[︀
log𝐷w′(o)

]︀
+ Eo*∼po* (o*)

[︀
log(1−𝐷w′(𝐺w(o

*)))
]︀)︁

(3.6)

Now, our autoencoder becomes a generative model 𝐺 that tries to generate objects with the
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highest possible value of 𝐷(𝐺(o*))) to fool the discriminator 𝐷, as shown in the second term

of Eq. 7.4. Simultaneously, the discriminator 𝐷 tries to maximize its ability to recognize

ground truth objects as real and generated objects as fake. This component of the loss

updates the weights in the discriminator. During training, the generator and discriminator

are simultaneously updated based on their respective losses. The adversarial loss generally is

thought to help the autoencoder/generator learn the transformation of the noise within the

object Approximant to plausible features in the final reconstructed object, given the prior

of ground truth distribution 𝑂.

Finally, the total loss for the generator of our deep k-learning framework is defined as:

Ltotal = Lnpcc(𝐺w) + 𝛼× Lmae(𝐺w) + 𝛽 × argmin
𝐺w

max
𝐷w′

Ladv(𝐺w, 𝐷
′
w) (3.7)

Here, 𝛼 and 𝛽 are hyper-parameters that determine the relative weights between the three

types of learning loss. For the non-generative framework, 𝛼 and 𝛽 are set to zero.
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Chapter 4

Numerical results for 2D imaging

We conducted a set of numerical simulations to demonstrate the effectiveness of the deep k-

learning method on the RPI phase retrieval problem. We focused on the role of the resolution

ratio 𝑅 and the noise level. High resolution ratios 𝑅 and low signal regimes are particularly

interesting to study because these conditions are the most challenging scenarios for iterative

algorithms, and therefore are most likely to benefit from the added information about the

object distribution that deep-k-learning can introduce.

In our first experiment, we studied the performance of the various proposed methods

under ideal illumination conditions. We simulated an RPI experiment using 256× 256 pixel

objects defined with uniform amplitudes and phases drawn from randomly cropped ImageNet

images, scaled to a range of up to 1 radian. 4,000 training examples and 100 testing examples

were simulated, at 𝑅 = 0.5 with 104 photons per pixel in the 256× 256 pixel object. Fig. 4-

1 shows a visual comparison between the phase images reconstructed with each method.

Fig. 4-1(a) shows a set of ground truth objects selected from the testing dataset. In Fig. 4-

1(b), the corresponding Approximants are shown. We can see that the approximate map

successfully retrieves the general structures of the object, albeit at an incorrect overall scale.

Additionally, noise and artifacts are readily apparent and, when just considered as images,

the Approximants are of low quality. In contrast, Fig. 4-1(c) shows the converged results

from iterative reconstructions after 100 iterations. Visually, they look identical to the ground
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(a) ground truth phase objects (b) Approximant objects (c) iterative reconstructions

(d) non generative deep-k-learning (e) generative deep-k-learning (f) end-to-end reconstructions

Figure 4-1: Visual comparison for the phase-only object reconstruction at 𝑅 = 0.5 with
104 photons per pixel. The color bar is set to the range of the ground truth images. (a)
contains the ground truth phase-only objects, (b) contains the input Approximant with
one iteration, (c) contains the iterative reconstructions, (d) contains the non generative
deep-k-learning reconstructions, (e) contains the generative reconstructions, (f) contains the
end-to-end reconstructions.
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truth phase objects, as expected based on the ideal imaging conditions [16].

Moving to the neural network outputs, Fig. 4-1(d) shows the non generative deep k-

learning reconstructions. Drastic improvements are obvious when compared with the input

Approximants. Reconstruction are now smoother and contain fine details that were washed

out by noise in the input Approximants. However, although the results have high visual

quality, there are noticeably missing fine features when compared with ground truth and

iterative reconstructions. Fig. 4-1(e) has the generative deep-k-learning reconstructions,

although visually the difference between non-generative and generative reconstructions under

these illumination conditions is not obvious. Finally, Fig. 4-1(f) contains the output of the

end-to-end network reconstructions. These results only contain low frequency information

about the phase objects. This is not entirely unexpected, given the previous arguments

about the mismatch between convolutional neural networks and mappings between k-space

and real-space.

(a) simulation results for R from 0.25, 0.5, 1, to 2 (b) runtime comparison at different R values

Figure 4-2: Quantitative comparison between different training frameworks at different R

4.1 Performance dependency on oversampling ratio

After confirming that deep-k-learning is capable of producing moderate quality images under

ideal conditions, we studied how its performance depends on the relationship between the
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highest frequencies in the object and those in the probe. In Fig. 4-2(a) we show a quantitative

comparison of reconstruction quality at values of 𝑅 ranging from 0.25 to 2 at 104. The x-axis

represents the resolution ratio 𝑅, and the y-axis reports the MS-SSIM (Multi-scale Structural

Similarity) metric for the reconstruction quality. The reported value is the mean MS-SSIM

result over the test reconstruction set, and the error bars show the standard deviation within

the test dataset. Recall that larger values of 𝑅 describe more challenging conditions where

the features in the object are smaller when compared to the speckle size in the probe.

A total of four reconstruction methods are reported in the figure: non generative deep

k-learning, generative deep k-learning, an iterative algorithm (100 iterations), and the End-

to-End training method. Details about the data processing and network training can be

found in the Appendix. Iterative reconstructions have the best performance over the full

range of 𝑅. At 𝑅 ≤ 1, the MS-SSIM evaluations of iterative reconstructions approach 1,

as expected [16]. As 𝑅 increases beyond 1, the iterative reconstructions start to degrade.

These observations agree with previous work, as larger values of 𝑅 lower the data redundancy

in the diffraction patterns. Both variants of deep k-learning methods outperformed end-

to-end networks, although the results still underperformed the iterative reconstructions.

Reconstruction quality also degraded with 𝑅 across methods, as expected. However, the End-

to-End reconstructions’ quality plateaus at a lower value of 𝑅, regardless of the oversampling

ratio, in agreement with the visual observations.

Although the deep-k-learning reconstructions do not produce the same level of fidelity

as the iterative results, they run much faster. Fig. 4-2(b) compares the per-pattern runtime

of iterative algorithms and deep k-learning method across 𝑅. The intermediate results from

the iterative reconstructions are shown at 1, 5, and 10 iterations, and every 10 iterations

thereafter until they surpass the comparable deep-k-learning result. The strong dependence

of per-iteration runtime on 𝑅 arises because smaller values of 𝑅 require more highly textured

probes, which are stored in larger arrays. These results reveal that the deep k-learning

results have comparable quality with iterative reconstructions at around 40 to 50 iterations.

However, the computational speedup provided by deep k-learning ranges from 3x to 10x,
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depending on the value of 𝑅.

4.2 Performance dependency on low-light noise

Figure 4-3: Visual comparison for the phase-only object reconstruction for R=0.5 at low
photon imaging conditions. The colorbar is set to the range of the ground truth images.

Finally, we investigated the performance of deep-k-learning for RPI under noisy condi-

tions, where knowledge of the object’s prior statistics is the most valuable. Fig. 4-3 shows

a visual comparison for the phase images reconstructed at 𝑅 = 0.5, with illumination levels

ranging from 103 to 1 photon per object pixel. As the photon incidence rate decreases, re-

construction quality inevitably decreases as well. As expected, the iterative reconstruction

quality is strongly dependent on the photon shot noise level, with the signal quickly fading

under growing background. However, the deep-k-learning results generally retain their visual

quality even at photon rates low enough to cause the iterative method significant degrada-

tion. In the single photon case, the iterative reconstruction becomes nearly unrecognizable,

while both deep k-learning methods produce reconstructions that, while visibly degraded,
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maintain many of the general features of the object.

(a) results for R = 0.5 at low photon conditions (b) runtime comparison at low photon conditions

Figure 4-4: Quantitative comparison between different training frameworks at low photon
imaging conditions

Fig. 4-4(a) shows the quantitative comparison from the same sweep over low photon

imaging conditions, following the same format as Figure 4-2. These quantitative results

confirm the analysis from our visual inspection of Fig. 4-3. Both deep k-learning methods

are significantly more robust to Poisson noise than the iterative methods, producing recon-

structions with superior quality starting at 102 photons. As the photon number decreases

further, the gap between deep k-learning and iterative reconstruction quality grows. This

shows the effectiveness of the strong object prior embedded in the deep k-learning methods

through the training process.

Finally, in Fig. 4-4(b) we consider the runtime speedup available under high noise con-

ditions, comparing the iterative algorithm with the best variant of deep-k-learning method

at each imaging condition. Due to the feed-forward nature of deep learning, deep k-learning

takes under 10 milliseconds to produce each result, while the iterative algorithm require

around 100 milliseconds to converge, suggesting that the 10x speedup under ideal illumina-

tion is preserved, or even improved upon, under adverse, noisy conditions.

Overall, our simulation results show that deep k-learning is both faster and more robust

to Poisson corruption than the iterative algorithm. Particularly when photon levels reach
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102 photons per object pixel or lower, deep k-learning outperforms iterative algorithms in

terms of reconstruction quality with much faster computational speed.
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Chapter 5

Experimental results for 2D imaging

5.1 Experimental setting

To demonstrate that the deep k-learning approach can successfully be translated from sim-

ulation to experiment, we performed phase retrieval with deep k-learning on a large dataset

of RPI diffraction patterns collected from an optical table-top apparatus. The experimental

apparatus was constructed in collaboration with Abe Levitan. To draw test images from a

well understood distribution, we used a Spatial Light Modulator (SLM) to display 256x256

phase-only images randomly drawn and cropped from the ImageNet dataset. The experi-

mental design is diagrammed in Figure 5-1.

Polarized light was generated by passing a 635 nm laser diode source (Thorlabs CPS635F)

through a film polarizer aligned to the optic axis of the SLM. This light was then spatially

filtered by a 5 𝜇m pinhole at the focus of a beam expander to enforce spatial coherence

across the beam diameter. A randomized pattern was then imprinted on the wavefield using

a randomized zone plate with a 2 cm diameter and a 50 cm focal length, producing a focal

spot with an overall diameter of 2 mm. An adjustable iris acted as an order selecting aperture

for this diffractive optic.

The focus of the randomized zone plate was aligned to the plane of a reflective SLM

(Thorlabs EXULUS HD2) at normal incidence. The phase-only SLM consisted of pixels
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Figure 5-1: A diagram of the experimental design for our tabletop demonstration.

arranged with an 8 𝜇m pitch, each of which imprints a variable phase delay between 0 and 2𝜋

on the light field. The reflection was then separated with a non-polarizing 50/50 beamsplitter

cube placed approximately 5 degrees from normal to prevent higher order reflections from

overlapping with the primary beam on the detector. The Fourier plane was finally imaged

on a EM-CCD camera (QImaging Rolera EM-C2) with 8 𝜇m pixels, placed at the focus of

an achromatic doublet with a 50 mm focal length (Thorlabs AC254-050-A). A 992 × 992

pixel region was cropped from the detector, such that the real-space grid corresponding to

the measured slice of reciprocal space consists of 8 𝜇m pixels, aligned with the pitch of the

SLM.

5.2 Experimental reconstructions

We collected four datasets under different imaging conditions, targeting photon fluxes of 1,

10, 100, and 1000 photons per pixel in the 256x256 object. The CCD was calibrated to allow

conversion between analog-digital units (ADUs) and photon counts. A detailed summary of

the experimental measurements, including more information on the noise properties of the

detector, can be found in the Appendix. For each imaging condition, we initially collected a

ptychography dataset on a standard test image (cameraman) to calibrate our knowledge of

the probe state. Once calibrated, we collected a set of 4, 000 training and 100 test diffraction

patterns from the cropped ImageNet objects. In each case, the images were first converted

to 8-bit greyscale images, and finally displayed on the SLM such that the full 8-bit range
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Figure 5-2: Experimental reconstruction comparison between different methods under low
photon conditions. The colorbar is set to the range of the ground truth images.
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Figure 5-3: MS-SSIM comparison between deep-k-learning and iterative algorithm on differ-
ent Poisson noise corrupted imaging conditions
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corresponded to a sweep from 0 to 2𝜋 radians. Details about experimental measurements

can be found in the Appendix.

In Fig. 5-2 we show the visual comparisons of the test set between different reconstruction

algorithms under low photon conditions. These reconstructions are produced with the same

set of algorithms we studied numerically. The most visible difference between simulation

and experiment is that, while in our simulations we assumed the randomized probe focal

spot covers the entire field-of-view, in the experiments the objects are illuminated by a finite

circular probe. Thus, the edges of the object window are not illuminated by the probe and

thus do not contain any object features.

Near 103 photons/pixel, iterative reconstructions show good results in the central region,

getting more and more noisy toward the weaker edge of the probe. This is due to the spatial

variation of the illumination intensity profile. Both the non generative and generative deep

k-learning produce visually high quality reconstructions over the entire field of view of the

probe, although the networks minor artifacts are indeed introduced, especially at the lower

end of the photon incidence rates.

As we decrease the photon budget down through 100 to roughly 10 photons per object

pixel, the quality of the generative reconstructions slowly decreases while the noise rapidly

takes over and dominates the iterative results. The End-to-End model begins to diverge at

10 photons per object pixel. As we lower the signal rate further, to 1 photon per object pixel,

the reconstructions from all methods fail. To account for the disparity, it is important to

recognize that due to the presence of readout noise and other non-Poisson sources of noise,

the signal to noise ratio of these images is far lower than that of our simulated dataset at 1

photon per pixel.

Fig. 5-3 shows a numerical comparison that confirms our observations. Note that we

only include the illuminated region (the region in the center images of Fig. 5-2) when com-

puting the MS-SSIM values for each method. For iterative reconstruction, we also shift the

output pixel to compensate for a slight misalignment in our optical system. Compared with

simulation results, deep k-learning methods maintain a moderate quality level in the range
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of 0.8 under the second-to-lowest illumination conditions, while the quality of the iterative

results deteriorates as the photon number decreases. End-to-end MS-SSIM drops to near

zero starting at 10 photon per object pixel, as the pixel values of the outputs are outside

the range of the ground truth. These results suggest that the iterative algorithm is much

more prone to noise degradation than the deep-k-learning approach. Thus, deep-k-learning

emerges as a valuable alternative particularly under noisy conditions. This is because under

such noisy experimental conditions the deep k-learning algorithm is far more effective at

incorporating strong object priors to regularize the reconstructions.
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Chapter 6

Multi-frame 3D imaging via tomography

6.1 X-ray tomography

X-ray tomography is a powerful method for imaging the internal details of objects in three

dimensions non-invasively [60, 61, 62], and it has wide applications in biomedical imaging [63],

materials study [64], electronic inspection [65], and other fields. The penetrating ability of

X-rays makes it possible to obtain a series of two-dimensional Radon transforms (commonly

known as radiographs) of the object viewed from different angles [66]. After capturing

radiograph measurements, objects can be reconstructed using a three-dimensional computed

tomography algorithm.

The reconstruction process of X-ray tomography is generally an ill-conditioned inverse

problem. This is because measurements taken at a discrete number of angles can only

sparsely sample the high frequencies of the object. Therefore, full-angle measurement with

high sampling rate is preferred to best resolve the ambiguity in the inverse solution. However,

in practice, limited-angle measurement is often used due to the long time of acquiring the

full angle measurement, leaving entire sectors of the Fourier space unsampled [67, 18, 68, 69,

70, 71]. For objects or samples that are radiation-sensitive, a low photon-budget per scan

is also preferred to minimize the total exposure and potential damage, making the effect

from ill-conditioning even more severe.In such cases, an analytic reconstruction algorithm
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like filtered back projection (FBP) is inadequate as it can generate reconstructions with

noise and streak artifacts [72]. Iterative algorithms whose objective function includes a term

representing prior knowledge about the object may compensate for the deficits in Fourier

space coverage and thus often produce higher fidelity results [73]. This is understood as

regularizing the problem, i.e., reducing the space of possible solutions of the inverse problem

to a subdomain in which the object must belong [74, 75]. When prior knowledge is used in an

iterative algorithm, the optimization balances minimization of the residual of the simulated

measurements from a reconstructed object against minimization of the regularization term.

Assumed priors such as sparsity, total variation, and nonlocal similarity priors have shown

promising results for X-ray tomography [76, 77, 78]. However, without trial and error,

it is not straightforward to choose the appropriate prior and regularization weight for a

given set of objects [68]. A prior distribution may also be learned from the dataset itself

by a machine learning algorithm. Using a large amount of paired training data, a prior

can be determined through exploring the statistical properties of the training distributions,

improving the reconstruction quality. Recently, learned priors have been successfully applied

to tomography in treating the ill-conditioned inverse problem. In particular, deep learning,

a subset of machine learning that is based on artificial neural networks, achieved promising

results [67, 18, 68, 69, 70, 71]. For example, efforts have been made in using learned priors

from deep neural networks to recover boundary information [70], and to generate missing

projections with a data-consistent reconstruction method [71]. However, some works have

shown that these methods suffer from reconstruction vulnerabilities and instabilities [79, 80].

To avoid these issues, a recent thread of research leverages reconstructions from an analytic

or iterative algorithm [68, 69, 81, 23, 22], or uses a two-step deep learning strategy to

generate reconstructions that are empirically more stable and accurate [82].

6.2 Physics-assisted Generative Adversarial Network

Here, we develop a Physics-assisted Generative Adversarial Network (PGAN) for limited-

angle X-ray tomography, and demonstrate the ability of the learned prior in imaging the
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structure of 3D integrated circuits at low photon conditions. In contrast to the previous

efforts, our PGAN utilizes a maximum-likelihood estimate (MLE) with a physical prior

to compensate for the inherent ill-conditioning of the problem, especially the prevalence

of shot noise of Poisson statistics in the low-photon measurements. This physics-informed

MLE is then input to a trained deep generative model to produce improved reconstructions.

Therefore, the PGAN reconstruction is generated by leveraging knowledge of the Poisson shot

noise process in the iterative algorithm and learned prior from deep learning. To evaluate

our reconstruction method, we propose a model dubbed CircuitFaker to produce synthetic

circuits that are capable of emulating real-world integrated circuits (IC) with design rules.

The implicit correlations of the circuits constitute the prior to be assumed or to be learned for

the reconstruction algorithms. We simulate X-ray imaging using projection approximation

with consideration of attenuation only. Then, we formulate four different variants of deep

generative models, using the maximum-likelihood estimate from an iterative algorithm as

the input approximant to include the physical priors. The output of the generative models

is the reconstructions that have been regularized by the learned prior. We show that the

learned prior from the deep generative models dramatically improves the reconstruction

quality compared to maximum-likelihood estimation if the photon flux is limited. The key

result here is demonstrating that deep learning enables reductions in the total photon budget

while retaining reconstruction fidelity.

6.3 Forward model for X-ray tomography

X-ray tomography is an imaging technique to resolve a three-dimensional object non-invasively.

Its imaging system usually consists of an object holder, an objective zone plate, and a detec-

tor, and the illumination is generated from an X-ray source. The measurements are taken

from a series of rotation angles of the object of interest, where a cone-beam geometry is

generally assumed to produce the ray projection from the source point to the object, and

then from the object to the center of each detector pixel. A conceptual diagram for the

imaging system is in Fig. 6-1, here the object is a three-dimensional IC. In the absence of
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noise, the exact detection model is written as

𝑔(0) =

∫︁
𝑑𝐸 𝐷(𝐸) 𝐼(0)(𝐸)𝑒−𝛼(𝐸)𝐴𝑓 (6.1)

Here, 𝐴 is the system matrix, i.e., the distance each ray traverses from the source through

the object to a detector pixel, where each column corresponds to one sample voxel and each

row corresponds to one detector pixel over all sample rotation angles, 𝑓 is the vector of voxel

compositions of the object (dielectric or copper for IC), 𝐸 is the photon energy, 𝛼(𝐸) is

the absorption coefficient at energy 𝐸 for copper, 𝐼(0)(𝐸) is the source intensity, 𝐷(𝐸) is

the detector efficiency, 𝑔(0) is the vector of expected number of photons measured for each

of the detector pixels. Note that the exponential is applied component-wise. When the

illumination is monochromatic, Eq. 6.1 can be simplified to:

𝑔(0) = 𝑁0𝑒
−𝛼𝐴𝑓 (6.2)

where 𝑁0 is a vector containing the expected number of photons in each ray, i.e., the index of

the element corresponds to a ray. 𝐴 is the system matrix, and 𝛼 is the absorption coefficient

as before. This can be written in the form of a linear equation:

ln 𝑔(0) − ln𝑁0 = −𝛼𝐴𝑓. (6.3)

Here, the natural log is defined component-wise. In our numerical simulations, we assume

the measured photon counts are Poisson-distributed in low photon imaging.

6.4 Iterative algorithms with prior regularizer

An inverse problem is a task of resolving parameters that cannot be directly observed using

a set of measurements [83]. In the context of X-ray tomography, the task is to find a
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Figure 6-1: A conceptual diagram for our imaging system (IC as the object).

discrete representation of an object’s composition 𝑓 based on the measurements 𝑔 taken

on a digital camera at multiple angles. An analytic reconstruction algorithm such as FBP

can solve the inverse problem when the measurements are taken at full-angle and ample

illumination. However, when taking measurements with limited angles, with few photons,

or a combination of both, the FBP method is not preferred due to the noise and streak

artifacts in its reconstruction [72]. The general Wiener-Tikhonov approach [84, 85] improves

the analytic reconstruction by solving the following optimization (assuming Gaussian noise

in the measurement) iteratively:

𝑓 = argmin
𝑓

{︀
‖ − 𝛼𝐴𝑓 − ln 𝑔 + ln𝑁0‖2 + 𝛽Ψ(𝑓)

}︀
(6.4)

where 𝑓 is the inverse result, ‖ · ‖2 is the square of the ℓ2 norm, Ψ(𝑓) is the regularizer

or Bayesian prior, and 𝛽 is the regularization parameter. The optimization starts with

an assumed object, simulates a set of measurements from the assumed object, compares

the experimental and simulated measurements, and then updates the object based on the

differences. The last step also includes the discrepancy in the prior term into the computa-

tion of the update. The process continues to iterate until a certain convergence criterion is

achieved. The specific prior term Ψ(𝑓) is the key for artifact suppression and edge preser-

vation [86, 87, 88], but such preoperative information is often difficult to acquire, or even

unavailable [21]. Additionally, the value of the regularization parameter is a matter of im-

portance yet is usually obtained by trial and error.
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6.5 Deep reconstruction network with learned prior

Recently, deep learning based inversion has been proposed for X-ray tomography. The

approach, known as a deep reconstruction network, utilizes a prior distribution that is either

learned from a paired dataset consisting of pairs of ground truth and measurements of ground

truth or the deep image prior to generate high-quality reconstructions. Here, we focus on

methods with a learned prior distribution.

There are mainly two kinds of deep reconstruction networks with learned priors. The

first kind is an end-to-end approach, where a direct mapping from the measurement to the

object reconstruction is obtained by using measurement and ground truth object pairs as the

training dataset [89]. The network implicitly learns the inverse mapping and the prior Ψ(𝑓)

simultaneously. However, end-to-end deep neural networks may conflate reconstructions

whose difference lies either in or close to the null space of the system matrix, leading to

vulnerabilities and instabilities in the reconstruction [79, 80]. This leads to the second kind

of network that removes artifacts within the FBP reconstructions [90, 91, 92, 22], in which

the reconstruction is a two-step process. The first step is to use the measurement via the

FBP method to produce a noisy reconstruction, and the second step is to use a deep network

to remove the noise and artifacts within the FBP reconstruction. This way, the network only

learns the prior Ψ(𝑓) from the FBP reconstruction and ground truth object pairs without

considering the inverse mapping from measurement to object. Some works replace the FBP

algorithm in the first step using another deep reconstruction network [93, 82] to overcome

the issue of the instabilities.
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Chapter 7

Physics-assisted Generative Adversarial

Network

7.1 Physics-assisted Generative Adversarial Network

Our proposed PGAN improves upon the second kind of deep reconstruction network using the

two-step reconstruction process. Rather than an FBP reconstruction, we utilize a maximum-

likelihood estimation resulting from an iterative algorithm with physical priors to map the

measurement to an approximant object. The physical priors that we know a priori, i.e.,

the forward operator of the X-ray tomography and the Poisson corruption in low photon

measurement, are incorporated in the first step of the reconstruction. Then, a generative

model uses the learned prior Ψ(𝑓) to further improve the maximum-likelihood estimate.

Therefore, the PGAN inversion framework incorporates the known physical prior from an

iterative algorithm and the learned prior from a deep generative model, drastically improving

the reconstruction quality. The details of our algorithm are presented below.
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7.2 Maximum-likelihood estimate

The maximum-likelihood estimate is the tomographic reconstruction from an iterative algo-

rithm serving as the input to the generative model, and also the comparison baseline of the

reconstruction quality. The method produces the maximum log-likelihood reconstruction 𝑓

with a given set of tomographic measurements 𝑔 (in the number of photon counts for each

detector pixel) assuming that the measurement noise is consistent with a Poisson process.

The method was originally proposed by my collaborator Dr. Zachary Levine. The objective

is to find an optimal 𝑓 given the measurements 𝑔:

𝑓(𝑔) = argmax
𝑓 (0)

[︀
𝐿MLE(𝑔|𝑓 (0)) + Ψ(𝑓 (0))

]︀
(7.1)

𝐿MLE(𝑔|𝑓 (0)) = −
∑︁
𝑖

[︁
ln 𝑔𝑖!− 𝑔𝑖 ln 𝑔

(0)
𝑖 + 𝑔

(0)
𝑖

]︁
. (7.2)

Here 𝐿MLE is the log-likelihood under the assumption of Poisson statistics [94], Ψ is a reg-

ularization function or log of the Bayesian prior, 𝑔(0) is the simulated measurement from

a proposed object 𝑓 (0) based on Eq. 6.2,
∑︀

𝑖 sums over all individual measurements where

𝑖 indexes the measurements at different angles, ln 𝑔𝑖! takes the log of the measurement at

an angle and then factorizes the result element-wise, and 𝑓 is the optimal reconstruction

based on maximizing the log likelihood [95, 73]. In our implementation, no Bayesian prior

is included in the objective function for simplicity and clarity. The objective is maximized

using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) approach [96]. Discussion and results

including a Bayesian prior can be found in the Appendix.

7.3 Deep generative models

Our deep generative model is based on a supervised machine learning technique known as

conditional generative adversarial network (cGAN) [57]. The generative model learns a prior

distribution of the object, and then improves the 3D reconstruction from maximum-likelihood

estimation. When the available projection angles and photons per ray are limited for X-ray
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(a) simulation results for R from 0.25, 0.5, 1, to 2 (b) runtime comparison at different R values

Figure 7-1: (a) Supervised training of the generative model using pairs
(︁
𝑓, 𝑔

)︁
. (b) Testing

on pairs never used during training.

tomography, the reconstructions from the maximum-likelihood estimation contain artifacts

due to the missing cone problem. The quality of these reconstructions will eventually drop

below the acceptable threshold when the angular range or photon flux of the tomographic

measurements decreases. Based on our numerical experiments, the deep generative model

improves the noisy maximum-likelihood reconstructions resulting in output object structure

which better replicates the true object.

In GAN’s original form, the objective is to map a random vector 𝑧 to the targeted

distribution given a set of samples from the true distribution 𝑓 :

argmin
𝐺

max
𝐷

(︁
E𝑓

[︀
log𝐷(𝑓)

]︀
+ E𝑧

[︀
log

(︀
1−𝐷(𝐺(𝑧))

)︀]︀)︁
(7.3)

where 𝐺 is the generator and 𝐷 is the discriminator. Note that the log term represents the

log probability of whether the discriminator thinks the input reconstruction is realistic. The

optimization process is a competition between 𝐺 and 𝐷, where the generator tries to create

examples as realistic as possible to deceive the discriminator while the discriminator tries to

distinguish generated examples from the given true examples [97]. Therefore, the generator

tries to minimize the objective function and the discriminator tries to maximize it. The

cGAN method has achieved impressive results not only in computer vision [98], but also in

physics-related applications, including computer-generated holography [99], medical imag-
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ing [100], solving differential equations [101], and more. Conditional GAN is an extension to

the original GAN model: it modifies the original GAN by conditioning both the generator

and discriminator on some extra information about the distribution we try to synthesize.

Whereas the original GAN has a problematic instability in training [102], cGAN gives us

control over modes of the distribution to be generated.

In our case, the conditional information for the deep generative model is the noisy

maximum-likelihood approximant 𝑓 . This is the sole input to the generative model, and

we do not include the random vector. We denote the input estimate 𝑓 as the Approximant.

The training distributions are the pairs of approximant 𝑓 and ground truth 𝑓 . The objective

involving the discriminator of our generative model is formulated by modifying the original

cGAN’s objective [57], and is presented below:

argmin
𝐺

max
𝐷

E(𝑓,𝑓)
[︀
log𝐷(𝑓) + log

(︀
1−𝐷(𝐺(𝑓))

)︀]︀
(7.4)

The complete objective of our generative model, including the supervised term, can be

found in the Appendix. Through training, the generative model learns a prior via the

competition between the generator and the discriminator. When the competition reaches

the Nash equilibrium, the training process completes. We denote the output of the trained

generative model as 𝑓 . Note that the approximant 𝑓 and 𝑓 are reshaped to the voxelized

matrix representing the 3D object.

The generator in our model is a 3D autoencoder that first learns to convert an object rep-

resentation to a latent space representation using an encoder module, and then decodes the

representation back to 3D object. The discriminator is a 3D convolutional classifier that tries

to find whether the output from the generator is realistic or not (reporting a floating-point

number in the range of [0, 1]). Both generator and discriminator have convolutional kernels

that are spectrally normalized to stabilize the training process [103]. The discriminator is

updated with the generator only during training and is not needed during testing. Fig. 7-1a

shows the training process for our deep generative model, and Fig. 7-1b shows the process of

testing and inference. In total, four variants of the deep generative model are investigated,
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in particular: deep generative model (baseline model), generative model with axial atten-

tion, generative model with a scattering representation, and generative axial model with a

scattering representation. The variants alter the design of the encoding module while all

sharing the same decoding modules and discriminator architecture. Detailed architectures

can be found in the Appendix, and also in our github page [104].

The baseline generative model uses a series of cascaded 3D convolutional layers in al-

ternation with pooling layers in the encoder module to extract features from the input

reconstruction. Increasing the number of convolutional layers in the encoder can enable the

module to learn more complicated features from the input [105], capturing high-level spatial

dependencies of training objects.

Our second variant of the generative model is based on axial attention that harvests the

contextual information in the input Approximant. To build such an encoder module, we

replace some of the 3D convolution layers in the encoder of the generator with full axial

attention modules to extract or detect global features in the input reconstructions. The core

idea of this technique is to factorize the 3D self-attention into three 1D attention modules

along the height, width, and depth axis sequentially, which can reduce the computational

complexity of 3D self-attention to 𝒪(ℎ𝑤𝑧𝑚), where ℎ, 𝑤, 𝑧, are the height, width, and depth

of the input features, respectively, and 𝑚 is the local constraint constant [106]. Therefore,

axial attention is more efficient than the standard self-attention, enabling long-range and

global feature learning to overcome the limitation of locality in the convolutional kernels. In

our implementation, the local constraint is set to be the same size as the given axis, and

each axial attention has eight attention heads.

The third and fourth variants of generative models include the wavelet scattering trans-

form [107, 108] of the reconstruction as an additional input to the encoder module of the

model. A scattering representation can be produced without training, and such a rep-

resentation is capable of including features at multiple scales. When combined with the

renormalization technique, the generative model can be further conditioned on the scatter-

ing representation in generating realistic objects. In particular, after being fed to a trainable
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transformation of a fully connected layer, the wavelet representation re-scales and re-shifts

the normalized feature values from convolution or axial attention. This technique may pro-

vide supplementary features of the input Approximant into the reconstruction process of

the neural network [109], which may help the network in learning the mapping from noisy

reconstruction to noiseless reconstruction.
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Chapter 8

Evaluation methods for 3D circuits

8.1 CircuitFaker for tomographic objects

CircuitFaker is an algorithm that generates a random set of voxels with binary values re-

sembling an integrated circuit interconnect1. The synthetic circuits from CircuitFaker is

the class of artificial objects for tomographic reconstruction, and the implicit correlations in

their spatial features are the priors to be assumed or to be learned for the inverse algorithms.

A particular draw of CircuitFaker assigns a bit in each of 𝑁 = 𝑁𝑥𝑁𝑦𝑁𝑧 locations. These

locations are indexed as 𝑖ℓ = 1, ..., 𝑁ℓ, with ℓ = 1, 2, 3 for 𝑥, 𝑦, and 𝑧. All bits are initialized

to 0. In the first round, there are wire seed points for all locations (𝑖1, 𝑖2, 𝑖3) with 𝑖1, ..., 𝑖3

odd. Each seed point is set by a Bernoulli draw with probability 𝑝𝑤 of getting a 1. There are

three kinds of layers, 𝑥, 𝑦, and via layers. The 𝑥 wiring layers have index 𝑖3 = 1 mod 4. The

𝑦 wiring layers have 𝑖3 = 3 mod 4. The via layers are the others, i.e., 𝑖3 even. In the second

round, a point on an 𝑥 wiring layer to the immediate right of a point with value 1 is set to 1

with probability 𝑝𝑥. A point on a 𝑦 wiring layer immediately above in plan view a point

with a value 1 is set to 1 with probability 𝑝𝑦. Similarly, a point on a via layer immediately

above a point with a value 1 is set to 1 with probability 𝑝𝑧. In this thesis, we chose these

parameters: 𝑁𝑥 = 𝑁𝑦 = 16, 𝑁𝑧 = 8, 𝑝𝑤 = 0.75, 𝑝𝑥 = 𝑝𝑦 = 0.8, and 𝑝𝑧 = 0.5. Fig. 8-1 shows

1The CircuitFaker program was originally proposed and programmed by Dr. Zachary Levine, NIST.
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Figure 8-1: Selected 16× 16× 8 circuit from CircuitFaker. Each image is a slice of 2D layer
in the 𝑧 dimension. The value of 𝑧 increases as a raster scan of the 8 slices shown. Yellow
indicates copper and purple indicates silicon. Here, 𝑥 layers are the first (upper left) and
fifth layers (lower left) in 𝑧, 𝑦 layers are the third and seventh layers in 𝑧. Others are via
layers.

one of the generated circuits with size 16× 16× 8.

8.2 Imaging geometry for X-ray tomography

The imaging geometry is chosen to support an experimental project to perform integrated

circuit tomography with a laboratory-scale instrument [110]. Each voxel in the circuit is of

size 0.15 𝜇m × 0.15 𝜇m × 0.30 𝜇m to emulate a real-world circuit. Therefore, the total

volume of the circuit is 2.4 𝜇m × 2.4 𝜇m × 2.4 𝜇m. The detector is assumed to be in

the 𝑥-𝑧 plane at a tilt angle of 𝜙 = 0∘. The rotation axis is 𝑧. The detector is 13.44 mm

× 13.44 mm with 32 × 32 pixels of size 420 𝜇m × 420 𝜇m. The system operates with a

geometric magnification of 5000, with a source-sample distance of 10 𝜇m. There are eight

tilt angles from −30∘ to +22.5∘ with an increment of 7.5∘. There is a single source point

with a cone-beam geometry. A single ray is taken from the source point to the center of each

detector pixel. Minor corrections for variations in the source-to-detector pixel distance, the

obliquity, and the source’s Heel effect are neglected. Here, we do not use scatter corrections,

and we are restricted to a single material, namely copper, at its bulk density of 8.960 g/cm3.

Therefore, the reconstruction at each voxel ends up being a binary variable. We exploit that

to define the BER quality metric in the next section. The spectrum consists of two equally
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weighted lines at 9362 eV and 9442 eV, the Pt L𝛼 fluorescence lines. The attenuation per

voxel is about 2 % if copper is present. The exact value depends on the details of how a ray

intersects a voxel.

8.3 Bit-error-rate formulation

The bit error rate (BER) is introduced as an evaluation metric to assess the performance

of the reconstruction quality. It provides a measure of the frequency of misclassification for

binary values in the voxels in a given circuit. That is, BER is the probability of classifying a

specific voxel in a circuit to be 1 while the ground truth value for the corresponding voxel is 0

and vice versa. The procedure for computing bit error rate in this thesis is slightly modified

from the standard used in communication theory, and is as follows:

1. Compute posterior distributions 𝑝(𝑓𝑖 = 0 | 𝑓) by multiplying the probability density

functions (PDFs) 𝑝(𝑓 | 𝑓𝑖 = 0) and 𝑝(𝑓 | 𝑓𝑖 = 1) and their corresponding prior distribu-

tions (𝑝0 and 𝑝1 for 𝑓). Here, 𝑓𝑖 represents an individual voxel in the circuit.

2. Apply a threshold based on a likelihood function to classify 0 and 1, where the intersec-

tion of the distributions of 0 and 1 determines the threshold. In our implementation,

the prior likelihood functions are normal distributions.

3. Compute the error rates for 0 and 1 (𝜂0 and 𝜂1, respectively) by summing over the

misclassified region in the probability density functions.

4. Derive the expected bit error rate: 𝜂avg = 𝜂0𝑝0 + 𝜂1𝑝1.
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Chapter 9

Numerical results for 3D circuits

To demonstrate the ability of the learned prior from the generative approach, we investigate

its performance in solving ill-conditioned tomography problems. The imaging condition

is constrained to limited angle and low photon cases where the effect of ill-conditioning

becomes severe. Fig. 9-1 shows selected examples of IC reconstructions at limited-angle and

low photon conditions. The angular range is fixed at −30∘ to 22.5∘ with 7.5∘ steps for all.

Each row represents different reconstruction methods, and each column represents the same

location at the given IC distribution with a different photon budget per ray. The last row

represents the IC ground truth. Considerable improvement is visible when comparing the

maximum-likelihood reconstructions and generative reconstructions.

9.1 Limited angle and low photon tomography

The quantitative comparison of limited angle and low photon tomography is shown in Fig. 9-

2. The 𝑥 axis is the number of photons per ray in the tomographic projection which ranges

from 100 to 104. The 𝑦 axis is the averaged bit error rate of the reconstructed 3D IC test

dataset. The angular range is fixed at −30∘ to 22.5∘ with 7.5∘ steps as well. There are five

reconstructions we are comparing: reconstruction based on maximum-likelihood estimation,

and reconstruction based on the four variants of generative model. For generative models, the
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Figure 9-1: Selected examples of IC reconstructions with an angular range of −30∘ to 22.5∘.
The color scale runs from 0 to 1.

Figure 9-2: Maximum-likelihood vs. generative model reconstructions with an angular range
of −30∘ to 22.5∘.
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transition from above a single-error-per-sample to below happens between 320 to 640 photons

per ray. Each of the simulations for the generative model is done with 1800 training sets and

200 test sets, and IC data is 16×16×8 voxels. For the transition cases between 320 and 640

photons per ray, we repeat the simulation with a total of five independent synthetic sets of IC

circuits and report the means and standard errors in the plot. With 640 photons per ray, the

bit error rates from generative model reconstructions drop at least two orders of magnitude

relative to the maximum-likelihood reconstructions. In particular, the generative model with

axial attention performs the best in terms of its lower mean and standard error, reaching a

single error per sample at 400 photons per ray. We may attribute this to the application of

axial attention in capturing long-range interactions within the input. Generative models with

wavelet scattering representation show no advantage in performance. This may be due to the

small size of the input, where the additional information from the wavelet representation may

have been learned from convolutional kernels and axial-attentions. The maximum-likelihood

reconstructions reach a single error per sample when the number of photons per ray is around

5000. Therefore, in simulation, the generative models can reduce the photon budget to reach

a single error per sample by one order of magnitude.

To confirm that the improvement from the generative approach may indeed be attributed

fairly to the learned prior, we further demonstrate the quantitative comparison of limited

angle and low photon tomography on 3D objects that are not spatially correlated. These

3D objects are generated with an independent coin toss at every voxel. The probability of

being 1 (copper) is 0.5 for fair coin toss, or unfair coin toss that matches the fill fraction

for CircuitFaker generated circuits (which is 𝑝 = 0.18521, showing 1 standard deviation of

statistical uncertainty). The learned prior in these cases is the probability 𝑝 for each voxel.

Since the voxels are not spatially correlated, the learned prior from the generative model is

expected to be less effective in solving the inverse problem.

Fig. 9-3 shows the selected examples of independent 3D object reconstruction by limited

angle and low photon tomography. The imaging geometry is the same as before, where the

angular range is fixed at −30∘ to 22.5∘ with 7.5∘ steps. Each of the simulations for the
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(a) 𝑝 = 0.5 Bernoulli trial (fair coin) (b) 𝑝 = 0.18521 (unfair coin matching circuit fill
factor)

Figure 9-3: Selected examples of independent coin toss an angular range of −30∘ to 22.5∘.
The color scale runs from 0 to 1.

generative model is repeated with 1800 training sets and 200 test sets, and the independent

3D object is in 16× 16× 8 voxels as well. The improvement from the deep generative model

is less pronounced than having a circuit object.

The assumed prior (namely, Poisson noise in the measurement and that each voxel has

a value in [0, 1] with uniform probability) in our maximum-likelihood approach is now more

proper to the reconstruction object with independent voxel. Therefore, the maximum-

likelihood estimate improves. The learned prior from the deep generative model behaves

similarly to a better classification cut-off for each voxel: generative models may predict each

voxel value centered around 0 and 1 since all the 3D objects for training are binary. The

maximum-likelihood approach does not assume objects that are binary and it may produce

reconstructions with more significant variances to the mean at the same imaging condition.

9.2 Independent 3D object

Fig. 9-4 shows the quantitative comparison for independent 3D object reconstructions. The 𝑥

axis is the number of photons per ray in the tomographic projection ranging from 50 to 5000,

𝑦 axis is the averaged bit error rate of the reconstructed 3D coin toss test dataset. Fig. 9-4(a)

is the case with fair coin toss. Compared with Fig. 9-2, the required number of photons per
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(a) 𝑝 = 0.5 Bernoulli trial (fair coin) (b) 𝑝 = 0.18521 (unfair coin matching circuit fill
factor)

Figure 9-4: Results for independent coin toss at every voxel with an angular range of −30∘

to 22.5∘.

ray to achieve single-error-per-sample reduced from 5000 to the range between 320 and 400 for

maximum-likelihood estimation. This is attributed to a more proper prior than the maximum

likelihood approach assumed, which leads to a better quality than the maximum-likelihood

estimate. The generative models are slightly worse than the maximum-likelihood estimate at

lower photon cases. Limited improvements are visible as the generative models need 200 to

256 photons per ray to achieve single-error-per-sample, reducing the required total number of

photons for high-fidelity reconstruction. This is from the learned prior that provides a better

classification cut-off, and the learned cut-off only improves the reconstruction quality when

there is sufficient information for maximum-likelihood estimation. Fig. 9-4(b) is the case with

a biased coin toss that has 𝑝 = 0.18521. Compared with Fig. 9-4(a), the required number

of photons per ray for maximum-likelihood estimation to achieve single-error-per-sample is

slightly reduced to the range between 200 and 256. With a lower probability of having

copper, the 3D objects are now more sparse. Therefore, less attenuation from the copper

material leads to effectively more photons captured by the detector pixel, improving the

quality of the limited-angle measurements. Also, improvement from the generative models

is visible as the deep learning algorithms learn a better classification cut-off for each voxel.

These results confirm that the deep learning approach benefits from the learned prior: when
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the assumed prior in the iterative algorithm is not well-suited for the reconstruction object

(as for the case of circuit reconstruction), the generative models can drastically improve the

reconstruction quality. On the other hand, when the prior distribution itself is simple, and

the assumed prior matches the distribution (for the independent coin toss object), then the

generative models may only provide a marginal improvement over the iterative algorithm.
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Chapter 10

Conclusion

We have demonstrated a reliable physics-informed machine learning-based computational

imaging method that works well for Randomized Probe Imaging with 2D phase-only objects.

This method has been further extended to 3D tomographic reconstruction by replacing the

2D convolution to 3D convolution. The fully trained machine learning method is, as expected,

more computationally efficient and produces higher fidelity reconstructions. Compared with

iterative algorithm, physics-informed machine learning can reduce the photon requirement

to achieve a given error rate. We further attribute the improvement to the learned prior

by reconstructing objects created without spatial correlations. The improved resilience to

noise makes our approach attractive in situations where illumination power is limited or the

samples are sensitive to excessive radiation exposure for 2D and 3D X-ray imaging.
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Appendix A

Discussion of End-to-End RPI phase

retrieval

Let Γ .
= {𝑂𝑖, 𝐼𝑖} be the paired training dataset, 𝑃 the known randomized probe, and let 𝐺w

be a set of parameters for the deep neural network that can be trained with. The parameters

w are also commonly referred to as the “connection weights” or simply “weights” in traditional

neural network architectures. Then the end-to-end phase retrieval problem becomes that of

finding the optimal weights ŵ such that given any intensity pattern within the dataset

distribution Γ, along with the known probe P, the network can produce a generated object

𝑂+
𝑖 that is an equivalent class to the 𝑂𝑖, or formally

ŵ = argmin
W

∑︁
𝑖

L
{︀
𝑂𝑖, 𝐺w(𝐼𝑖, 𝑃 )

}︀
(A.1)

where L is the loss function that measures the discrepancy between the generated object

𝑂+
𝑖 and ground truth 𝑂𝑖. For RPI, the equivalence class is defined to be the set of all objects

which may be derived from the 𝐸𝑖(𝑥, 𝑦) by changing in the global phase. The commonly

encountered spatial shift and time-reversal symmetries in diffractive imaging systems are not

symmetries of the RPI system, due to the presence of the randomized probe [39]. For global

phase degeneracy, any complex rotation of 𝑂+
𝑖 in degree 𝜑 would result in identical far-field
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intensity pattern 𝐼𝑖, and therefore, the output 𝑂+
𝑖 of the formulation above also needs to

take those degenerate solutions into account. An alternative formulation inspired by [111]

would be

ŵ = argmin
W

∑︁
𝑖

L
{︀
𝐼𝑖, |F{𝐺w(𝐼𝑖, 𝑃 )}|2

}︀
(A.2)

Here, the problem of phase retrieval becomes equivalent to that of minimizing the loss in the

far-field domain, i.e., the spatial frequency domain. Thus, the inverse problem is indirectly

solved, with the optimization forcing the network to generate the amplitude and phase of

the exiting wave 𝐸, rather than the object 𝑂. Since the applied constraint is in the far-

field domain, the formulation would preserve the global phase degeneracy in its solution.

However, in this case, the network would learn priors based on the training distribution 𝐸,

and it would be challenging to continuously sample this distribution and capture its statistics

for testing as 𝐸 is the product of the object and randomized probe. It is easier to guarantee

that the training distributions 𝑂 follow the same statistics of the testing distribution 𝑂, as

long as training and testing datasets are both constrained to natural images with geometric

features.
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Appendix B

Network training procedure

Our proposed deep k-learning networks were implemented in Python 3.7.9 using TensorFlow

2.3.1, and trained with NVidia V100 tensor core graphics processing unit on MIT Super-

cloud [112]. The object training set was from 4,000 natural images in ImageNet, where

phases were set to be the images and amplitudes were set to be one. The (256 × 256 × 3)

ImageNet images were converted to gray-scale from the original RGB format. Therefore, the

total training object dataset is a complex matrix with dimension of (4000, 256, 256, 1). The

randomized probe P was generated based on the method in [113] given the sampling ratio

R. The far-field diffraction patterns were then numerically simulated based on the optical

setup in Figure 2-1. The approximate objects were subsequently generated via automatic

differentiation with one iteration with steepest gradient descent for each diffraction pattern,

and the loss function L here is the mean square error (MSE) on the amplitude. The iter-

ative results are from 100 iterations with 0.5 learning rate. After numerical simulation, we

normalized all of the paired training data in the Γ
.
= {𝑂𝑖, 𝑂

*
𝑖 , 𝐼𝑖} dataset between [0, 255].

This will be shown later to improve network training stability. For training, Adam opti-

mizer [114] was used with parameters 𝛽1 = 0.9 and 𝛽2 = 0.999, the initial learning rate was

2 × 10−4. The validation split was 0.1 to provide an unbiased evaluation of a model fit on

the training dataset.. The learning rate would be reduced by half when the validation loss

stops improving for 10 epochs. We set the maximum epoch to be 200, and the training will
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stop early when either the validation loss plateaus for 20 epochs or the minimal learning rate

10−8 is reached. This early-stop technique prevents the model from over-fitting. We keep the

same training parameters for all the networks, the variations of different training were i), the

training strategy (either end-to-end or deep-k-learning), ii), generative or non generative, iii),

network weights initialization (with random initial weights or ImageNet pre-trained weights

in the encoder arm), and iv) hyper-parameter 𝛽 for generative deep k-learning (𝛼 is fixed

as 1/8 to reduce the complexity of hyper-parameter grid search) in the total loss function

of the autoencoder/generator. When the network is initialized with pre-trained weights in

the encoder, the 200 epochs are completed in two steps: in the first step, we only train the

decoder of the network while the encoder is frozen with pre-trained weights; in the second

step, we unfreeze and train the entire network. This can accelerate the training for models

with pre-trained weights.

For end-to-end training, we divided each far-field diffraction pattern into multiple patches

with dimension of (256, 256, 𝐶𝑅), where 𝐶𝑅 is the number of channels that depends on the

dimension of the diffraction pattern with the given oversampling ratio R. The inputs to the

end-to-end network are the multi-patch representation of diffraction pattern concatenated

with the randomized probe that is also in multi-patch representation. This way, we can

keep the number of parameters in the end-to-end network to be roughly the same as in the

deep-k-learning framework (around 76.5 million in total parameters in both cases, not count-

ing the discriminator network and pre-trained EfficientNetB0), and makes the subsequent

performance comparison fair. Also, in the end-to-end neural network, we removed the skip

connections between encoder and decoder because of the large domain transfer in-between.
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Appendix C

Experimental procedure for RPI

measurements

Table C.1: Summary of the four sets of experimental measurements

Target photon/pixel Measured photon/pixel Averaged SNR
1000 996 6.09
100 127 2.07
10 11.9 0.375
1 1.77 0.0525

Data were collected under four different experimental imaging conditions individually.

We thank Abe Levitan for experimental collaboration. For the 10, 100, and 1000 photon per

object pixel collections, the total image intensity was modulated by extending the exposure

time, using an EM gain of 54 (corresponding to EM level of 3800 in the camera software) and

an offset level of 0. To implement the necessary range of attenuations, we chose a pinhole

size of 5𝜇m, significantly smaller than the waist of the beam emerging from the collimating

objective; and moved the pinhole away from the center to further lower photon fluxes. The

offset level for this measurement was set to 500, due to the extremely weak signal level. We

also collected 10 background images per signal level under a reproduction of the imaging

conditions, with the laser turned off.
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The number of photons per object pixel was calculated empirically by summing over the

captured diffraction signal in each image, with the mean background signal for that imaging

condition subtracted off. After multiplying by a previously calibrated conversion factor to

convert between ADUs and photon counts [115], we were able to calculate the mean number

of photons measured on the detector under the respective imaging condition.

To calculate the reported signal to noise ratios, we separated the noise contribution

into signal-dependent and signal-independent contributions. The signal-independent portion,

which included readout noise, dark current, and shot noise from background photons, was

calibrated empirically using the statistics of the dark images. Specifically, the standard

deviation of the background images was calculated in binned 8 by 8 pixel regions to produce

a low-resolution map of the empirical signal-independent noise level. We estimated the

signal-dependent contribution by assuming it is dominated by Poisson noise. Under this

assumption, the standard deviation of the signal-dependent noise can be estimated by the

square root of the measured signal (minus the mean background) at each pixel. The total

variance at each pixel is thus determined by the sum of the squares of the standard deviations

of the two contributions. The reported signal to noise ratios are defined as the ratio of the

sum of the signal image (the total power in the signal channel across the entire image) to the

sum of the calculated standard deviations due to noise (the total power in the noise channel

across the image).

At each photon incidence rate condition, we first took a 31×31 step ptychography dataset

with 75𝜇m steps in order to retrieve the probe and background states. Scanning for the pty-

chography dataset was implemented by shifting a displayed image digitally across the SLM.

Ptychographic reconstructions were performed via automatic differentiation ptychography

using the Adam algorithm, with a single probe mode and a quadratic background correc-

tion. A learning rate scheduler was used to lower the learning rate by a factor of 0.2 at

plateaus to ensure good convergence. After performing the reconstruction we displayed the

ImageNet images, upsampled so that each pixel in the image covered a 2 by 2 pixel region

on the SLM, in series to collect the RPI datasets.
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Appendix D

Maximum-likelihood estimation with a

Bayesian prior

With classical regularization, a proper Bayesian prior and its regularization weight are usually

not straightforward to choose for a given object distribution. We include an example using

a Bouman-Sauer prior to demonstrate this challenge, and also to support our choice of not

including the Bayesian prior in our maximum-likelihood estimation. We thank Dr. Zachary

Levine here for performing the simulations.

The selected Bouman-Sauer prior imposes the smoothness of the reconstruction. It is

very similar to the Total Variation (TV) prior, except Bouman-Sauer is more general [116].

Fig. D-1 shows the reconstruction quality versus the regularization weight for three imaging

conditions with limited angles. The measurements are the 200 testing dataset with 3D IC

as the tomographic object, identical to dataset that generates Fig. 9-2. Note that when the

weight is 0, the reconstruction is identical to the maximum-likelihood estimate without the

prior (our baseline in the main text). The Bouman-Sauer prior provides limited improvement

for 256 photons per ray case. Quality degradation is obvious for the cases of 1000 and 4000

photons per ray.
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Figure D-1: Maximum-likelihood reconstructions including the Bouman-Sauer prior with an
angular range of −30∘ to 22.5∘.
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Appendix E

Network details for PGAN

E.1 Network architecture

The general description of the network architecture is given in Section 7.3. The code to

generate the networks is publicly available on github [104]. Here, we include more information

about the network architecture for reproducibility.

Fig. E-1 is the detailed network architecture for the deep generative model (the genera-

tor). The overall design is based on UNet [117] to perform pixel-by-pixel prediction (for 3D

reconstruction, where the 3D object is voxelized by a 3D matrix/array). The input dimen-

sion to the model is in (16, 16, 8, 1). Four DownResBlocks encode the input Approximant

and produce a latent representation that is in dimension of (1, 1, 8, 512). Four UpResBlocks

decode the latent representation to a vector in dimension of (16, 16, 8, 64). Concatenated

skip-connections are used in between the last three DownResBlocks and the first three Up-

ResBlocks to preserve high frequency information of the input Approximant [46]. Dropout

layers are included to prevent over-fitting. The final layer of convolution reduces this vec-

tor to a final output in (16, 16, 8, 1), and a Tanh layer forces the final output to the range

between -1 and 1. The DownResBlock and UpResBlock share similar topology to the Res-

block in ResNet [118], except the use of different 3D sampling layers. Here, we implemented

downsampling and upsampling layers that only sample the dimension in height and width
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Figure E-1: Network architecture for the deep generative model (generator)

but not depth.

For the base generative model, feature extraction in the DownResBlock and UpResBlock

is achieved by 3D convolutional kernel with spectral normalization [103]. For the axial-

attention based model, feature extraction in the DownResBlock is achieved by the mixture

of 3D convolutional kernel and axial attention both with spectral normalization.

For models including the wavelet scattering transform, the wavelet representation for the

input Approximant is first produced by HarmonicScattering3D in the Kymatio pack-

age [119] with 𝐽 = 2 (maximum scale of 22), integral powers with {0.5, 1.0, 2.0, 3.0}. Then,

the batch normalization layers in the UpResBlock are replaced by conditional batch nor-

malization (CBN) layers [120, 121, 122], where the conditional information is the wavelet

representation. Note that the fully connected layers within the CBN are spectrally normal-

ized as well.

The discriminator for all the generative models is the same, with four DownResBlocks

bringing the input from dimension (16, 16, 8) to (2, 2, 1024), following with a reduce sum

operation to bring it further to a vector of (1, 1, 1024). A fully connected layer followed

thereafter to produce a floating point number for classification.
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E.2 Network training

Our proposed networks are implemented in Python 3.7.9 using TensorFlow 2.3.1, and trained

with an NVIDIA V100 tensor core graphics processing unit on MIT Supercloud [112]. An

Adam optimizer [114] is used with parameters 𝛽1 = 0.9 and 𝛽2 = 0.999. The two time-scale

update rule (TTUR) is used to stabilize the training of the generative network [123, 124],

where the initial learning rate is 10−4 for the generator and 4×10−4 for the discriminator. In

each iteration, the generator is updated four times while the discriminator is updated once.

Training sets of 1800 reconstructions are generated independently for each condition stud-

ied, except that the ground truth is common. The batch size for training is 20. An additional

200 reconstructions per condition are used for testing. The learning rate is reduced by half

when the validation loss stops improving for 5 iterations. We set the maximum number of

iterations to be 200, and the training stops early when either the validation loss plateaus

for 20 iterations, or the minimum learning rate 10−8 is reached. This early-stop technique

can prevent the model from over-fitting. The loss function for the autoencoder/generator

consists of two parts: supervised loss and adversarial loss. We choose supervised loss to be

the negative of the Pearson correlation coefficient 𝑟𝑓,𝑓 , which is defined as

𝑟𝑓,𝑓 =
cov(𝑓, 𝑓)
𝜎𝑓 𝜎𝑓

, (E.1)

where cov is the covariance and 𝜎 is the standard deviation. The total objective of training

is to find the optimal generator 𝐺opt given the Approximant 𝑓 and ground truth 𝑓 :

𝐺opt(𝑓) = argmin
𝐺

max
𝐷

E(𝑓,𝑓)
{︀
− 𝑟𝑓,𝐺(𝑓) + 𝜆

[︀
log𝐷(𝑓) + log

(︀
1−𝐷(𝐺(𝑓))

)︀]︀}︀
(E.2)

The hyper-parameter 𝜆 controls the degree of generation from input noise to features. In

our experiments, 𝜆 ranges from 1/20 to 1/26 with an incremental factor of 1/2. The loss
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function for GAN is the hinge loss [125], and is defined below:

𝐿𝐷 = mean
{︀
min{0, 1−𝐷(𝑓)}

}︀
+ mean

{︀
min{0, 1 +𝐷(𝐺(𝑓))}

}︀
𝐿𝐺 = −mean{𝐷(𝐺(𝑓))}

(E.3)

Here, 𝐿𝐺 is the loss for generator and 𝐿𝐷 is the loss for discriminator. The operator min(...)

chooses the smaller value between the two inputs. The mean is taken over the batch of the

training data.
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Appendix F

Convergence and stability of the deep

generative network

As mentioned in Section 7.3, when first proposed, GANs had an instability problem during

training. The model was easy to collapse, generating non-satisfactory results [126]. It was

since the appearance of deep convolutional generative adversarial networks (DCGAN) [123]

that researchers began making GANs more stable by improving the structure and training

skills. Later, the Wasserstein Generative Adversarial Network (WGAN) was introduced

and provided a more detailed explanation of GANs’ poor control [59]. A solution was also

proposed, i.e., imposing Lipschitz continuity, to improve the quality of generated results [59,

127]. Nowadays, there are well-known techniques to overcome the challenge in training GAN.

We summarized the techniques we used in PGAN for interested researchers.

F.1 Spectral normalization

While the WGAN approaches impose the Lipschitz continuity by gradient clipping or gra-

dient penalty to stabilize the training, spectral normalization imposes a similar constraint

by normalizing the weights within the network. This normalization technique is computa-

tionally light and easy to incorporate into existing implementations, and has been shown
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effective in many applications [128, 129, 130].

F.2 Hinge loss

Hinge loss has shown improved performance when combined with spectral normalization.

Therefore, it has become standard in recent state of the art GANs [131].

F.3 Two time-scale update rule (TTUR)

TTUR provides theoretical convergence of the GAN to a stationary local Nash equilib-

rium [124]. The core idea is to have an individual learning rate for both the discriminator

and the generator. In our implementation, we choose 4×10−4 for the discriminator and 10−4

for the generator.
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