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Abstract

Global efforts to achieve affordable, universal electrification are inextricably linked to the uptake and
application of spatially explicit computational electrification planning tools. The tools automate the
delineation of potential modes of electrification (grid extension, mini-grids, and stand-alone solar
systems) across all customers, at the lowest cost. My thesis aims to expedite universal electrification
by designing a scalable and modular framework on how to leverage open-source information, to
produce granular estimates of the data needed by these planning tools. The design of the framework
is configured to the input requirements of the most data-demanding tool in the field, the Reference
Electrification Model (REM). The REM inputs modelled in my framework are the following: 1)
the geolocation and demand characteristics of residential customers, 2) the geolocation and demand
characteristics of social and productive customers, 3) the electrification status of each customer, and
4) the layout of the medium-voltage distribution network.

The framework prescribes a method, or Python model, to process and analyze existing open data
into reasonable estimates of each REM input. The source code of the Python-based framework is
available through GitHub, with directional documents on how to run each module to any region.
Built-area population datasets are used to estimate the exact geolocation of all residential and
smaller load customers (e.g., village community centers). The geolocation of non-residential loads,
or community and productive customers (e.g., markets or large industrial plants), are extracted
from the Google Maps API. To do so, the model iterates through an area-of-interest and searches
the API for the locations and operational status of each customer type. Non-residential loads are
ascribed demand patterns from t supporting literature on archetypal behaviors of larger loads. The
Falchetta et al. (2019) is used to classify each customer’s electrification status and assign them a
“tier” or level of electricity consumption. Finally, I propose leveraging the grid-design capabilities
of REM to estimate a region’s existing medium voltage distribution network when it is unavailable
through other means. To apply REM for the task, I initialize its model parameters to force an
‘all-grid-extension’ output and supply it with available a-priori information on the existing medium
voltage network. Overall, my thesis lays the foundation for a complete transition of the energy
access sector to granular, open-source modelling.

Thesis Supervisor: Ignacio J. Pérez-Arriaga
Title: Visiting Professor, Sloan School of Management
Professor, Electrical Engineering, Universidad Pontificia Comillas

Thesis Reader: James L. Kirtley Jr
Title: Professor, Electrical Engineering and Computer Science
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Chapter 1 

1. Introduction 

1.1 Setting the Scene  

Despite the technological leaps of the last several decades, large populations still lack access to 

necessities like affordable electricity, clean drinking water, or sanitation. Recognizing the scale of 

this global disparity, all United Nations Member States adopted the 2030 Agenda for 

Sustainable Development in 2015. The Agenda laid out 17 Sustainable Developmental Goals 

considered to be pre-requisites for eradicating poverty and ushering developing countries into 

modern, thriving economies. Sustainable Development Goal Seven, and the subject of this thesis, 

is the guarantee of “access to affordable, reliable, sustainable, and modern energy for all”.  

Electricity services encompass everything from the cooling of vaccines to irrigation pumping to 

the operation of commercial businesses. The global COVID-19 pandemic has highlighted the 

critical nature of electrification, as healthcare facilities struggle to meet increased healthcare 

demand with poor or unreliable power (IEA et al., 2020). The International Energy Agency 

(IEA) estimates that 759 million people lived without electricity in 2019, with 75%, or 569 

million, of the unelectrified people residing in Sub-Saharan Africa (SSA) (IEA et al., 2021). 

Despite considerable investments by public and private organizations, the energy gap has 

persisted; and at current electrification rates 660 million people will still lack access1 in 2030 

(IEA et al., 2021).  

The slow progress demonstrates the techno-economic complexity and scale of the coordination 

needed between local stakeholders, governmental institutions, private utilities, and businesses. 

 
1 (IEA et al., 2021) “Access to electricity” or “the electrification rate” refers to the share of the population 
with access to electricity over a specified time period or geographic area. It is defined as the ability of the 
end-user to consume electricity for desired services A method for measuring access to electricity (or 
energy) is defined in the World Bank’s Multi-Tier Framework (Bhatia & Angelou, 2015), discussed in 
more detail in Chapter 4.  
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Energy access initiatives should build-upon the understanding between electricity demand and 

cost of supply to ensure that electricity access and development become mutually reinforcing 

endeavors (Odarno et al., 2017). For instance, if a supply system is poorly designed it can 

constrain the productive activity of households, community facilities, and enterprises. Or if an 

area is densely populated but remote, decentralized mini-grid solutions may be more cost-

efficient but may inhibit the rapid demand growth made possible by an extension of the local 

grid. To address these challenges and trade-offs, research organizations have started to develop 

spatially explicit electrification tools to assist network planners in decision-making and budget-

allocation. The following section delves deeper into these electrification planning tools. 

1.1.1 Narrowing In: Universal Energy Access Planning  

Access to energy is lower in rural areas than in urban areas. In 2019, 21%, or 97 million, of 

urban residents and 72%, or 471 million, of rural residents in Sub-Saharan Africa lacked 

access to electricity (IEA et al., 2021). Extending the grid to rural, often remote, 

communities is usually economically unattractive and therefore these settlements mostly 

remain un-electrified (Szabó et al., 2011).  To meet energy access goals in rural areas, 

countries have begun to use hybrid solutions that pair networked systems with 

decentralized technologies. Decentralized electrification technologies include islanded grids 

(aka. mini- or micro-grids) and stand-alone solar home systems (SHS). The recent 

proliferation of off-grid solutions is largely due to the rapid cost decline of solar PV, battery 

technologies, and energy-efficient appliances. Electrification planning tools apply least-cost 

methods and GIS (Geographic Information Systems) to determine which demand points 

may be better served by grid extensions or off-grid solutions. By pairing the spatial and 

temporal dimensions to GIS data, a planner can tailor network analyses and solutions more 

heterogeneously than traditional frameworks (Khavari et al., 2021). An overview of 

available electrification planning tools is available in Chapter 2.  

This thesis will focus primarily on the challenge of providing the required input data to the 

electrification tool the presently represents the state-of-the-art in this field: the Reference 

Electrification Model, or REM.  
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REM is a computer-based optimization tool that identifies the least cost electrification plans 

that meet demand at a prescribed reliability level. The tool is designed to provide ministries 

and regulators quantitative support when formulating policies and informing developers on 

optimal locations for off-grid technologies. It can be used also by electrification planners, 

developers of off-grid solutions and others that study electrification for different purposes. 

REM stands out among other electrification tools because it provides system designs at any 

geographic scale, working at the individual customer level, employing full representations of 

each customer’s hourly demand patterns, respecting the physical laws and constraints of 

power systems, explicitly modeling reliability targets, and employing optimizations to find 

least cost combinations of electrification delivery modes (Ciller et al., 2019). To achieve this 

level of granularity REM depends on extensive input data such as the distribution and 

density of population settlements and productive facilities, electricity demand levels at the 

consumer level, energy resources availability, economic activity, distance from functional 

infrastructure (e.g., transmission and distribution network, roads, power stations), and more 

(Ciller et al., 2019).  As such, REM’s effectiveness depends heavily on credible and up-to-

date records of existing infrastructure in the area of interest. The objective of this thesis is 

to establish a scalable framework for how to cost- and time-efficiently obtain, process, and 

validate REM’s input requirements for any country.  

1.2 Motivation 

Global, regional, and national development policymakers lack critical data. Many governments 

still do not have access to adequate data related to their populations. Those that do struggle to 

maintain or afford regular updates to the data through standard methods like field surveys. This 

lack of data is particularly prevalent in the poorest and most marginalized communities, the 

very places that leaders will need to focus on if they are to achieve zero extreme poverty by 

2030 and zero emissions by 2050 (United Nations, 2017). The magnitude of the data gap is even 

larger when trying to acquire the detailed inputs required by REM. So far, applications of REM 

have hinged on established partnerships between researchers and national utilities, governmental 

agencies, or the sponsoring non-profit organizations (e.g., the World Bank). Through these 

engagements, existing data is aggregated, and surveys are conducted to impute missing data. 
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However, this process is resource intensive and limited by procedural red-tape and unpredictable 

response times. Moreover, annual collection methods and stakeholder coordination do not lend 

themselves to long-term policy or goal changes since any future re-implementation of a planning 

tool would require costly re-collection of necessary data. The same holds for wide-scale (i.e., 

multiple country) analyses which would require personal relationship formation with each 

country’s representatives. Finally, as hinted above, the data that may be available from these 

on-the-ground sources can be incomplete, unavailable in geospatial format, outdated, or exclude 

the rural populations most in need of electricity. In recent years, new open sources of data, such 

as satellite data, and new analytical approaches, such as Machine Learning (ML), have enabled 

more agile and efficient methods of data collection which can be leveraged instead of costly 

partnerships to apply REM and other electrification planning tools widely and repeatedly. Open 

datasets can also better measure progress on SDGs and increase transparency and accountability 

between citizens and their government 

1.2.1 Benefits to Open-Source Datasets  

The volume of data in the world has increased tremendously in the last few years. A large 

share of these data is passively collected by means of remote-sensing satellites and everyday 

interactions with digital products or services (e.g., mobile phones). The data is growing 

because the passive methods of gathering and storing it are inexpensive and numerous. Best 

of all, this data is ‘open’ or freely available to everyone. The data deluge is a by-product of 

the larger “open-source” movement, which aims to make software, hardware, knowledge, 

government, and education openly accessible to anyone. New insights gained from open data 

collection can complement official statistics and survey data, adding depth, timeliness, and 

nuance to information on human behaviors and experiences (United Nations, 2017). If 

applied responsibly, open data can assist governments and other stakeholders measure 

progress on SDGs and shed light on social or infrastructure disparities previously hidden 

(United Nations, 2017). Most importantly, open data increases transparency and 

accountability within governments and between them and citizens.    

The integration of open data, ML, and advancements in GIS tools solve the data collection 

bottlenecks, which have impeded the broader uptake of electrification planning tools like 
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REM. High-resolution geospatial datasets, derived from Earth Observation (EO) 

technologies, provide a range of location-specific information that may fulfill REM’s input 

requirements. The location and distribution of consumers can be estimated by the Google 

Open Building dataset. That dataset uses satellite imagery and ML algorithms to geolocate 

buildings for the entire continent of Africa (Sirko et al., 2021). Altogether, there are several 

advantages to using EO technologies, or satellites as inputs to REM.  

“First, compared to ground-based methods, the use of EO technologies, and in 

particular the use of satellites, allows the production of cost-effective data with a 

higher frequency over longer periods of time and over larger spatial extents. 

Second, EO technologies enable the collection of near real-time, objective, and 

independent data for remote and marginalized areas that have previously been 

ignored. Third, when combined with traditional data (e.g., field surveys, census 

data, demographic and socio-economic statistics), EO data (satellite imagery) 

supplement and/or enhance the quality of the information by improving its 

spatial resolution and interpretation capabilities (including better visualization).” 

Palacios-Lopez et al., 2021	
 

Open sources also provide a “control” on input data, which is useful when running REM for 

several countries at once. In other words, when trying to extract the least-cost 

electrification plan for multiple areas, the inputs are not more or less granular for any 

country or region, which ‘levels the playing field’ between data-rich and data-poor 

countries, minimizing biases in the results.  

Thus, developing a framework to run electrification planning tools on open-source data 

promises to expedite progress on SDG 7 by enabling rapid utilization at lower cost. This in 

turn mobilizes investment and speeds up the implementation process. Finally, if 

transparently designed and openly available, the framework can be audited by third parties, 

which ensures quality control and demonstrates due diligence to investors.  



 16 

1.3 Why this Framework? 

The objective of this thesis is to design and test a framework that enhances the applicability of 

REM by making it possible to obtain its inputs from open-source data, for any region, without 

costly engagements with on-the-ground partners. The computational framework applies a 

variety of open datasets and leverages Python GIS libraries to estimate (or infer) inputs of REM 

which are not currently publicly available. The list of inputs include: the geolocation and load 

profiles of households and productive facilities, the electrification status of each consumer, and 

the layout of the region’s existing Medium Voltage distribution network. Pre-acquired ground-

truth data from Rwanda and reported energy statistics are used to validate the estimates. The 

framework is built in a modular format such that improved data sources can be easily 

substituted. Moreover, though REM has traditionally been used to develop detailed 

electrification plans for whole countries, future users may prefer to run coarser analyses that 

only delineate the high-level spatial contours of immediate (or intermediate) investment plans 

for electrification in a larger region. Building modularity into the framework enables these users 

to leverage coarser datasets as inputs and avoid the long computation times of granular data. 

Finally, while the design of the framework is configured to the exact needs of REM, its emphasis 

on open-data and key attributes of electrification plans should make it applicable and effective 

at estimating inputs for any electrification planning tool. The framework is synergistic with 

broader climate goals described below.  

1.3.1 Concurrent Efforts with Climate Goals 

Unlike today’s developed nations, developing countries face paradoxical goals of achieving 

modernization as quickly as possible, while also investing and prioritizing environmental 

sustainability and global emissions reduction. In other words, they must meet the UN’s 

Sustainable Development Goals (SDGs) while simultaneously remaining on track with their 

Nationally Determined Contributions (NDCs). Cleaner technologies are often less available 

and more expensive in these regions than fossil fuel options (e.g., diesel and petroleum). In 

the case of SDG 7, electrification needs are currently met via uncoordinated efforts between 

private and public investors. As a result, researchers are unable to predict how the final 
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delineation of electrification modes, and subsequently the energy mix, will impact a 

country’s greenhouse gas emissions, local air quality, or effectiveness at meeting NDCs. My 

framework enables researchers to predict the future energy supply in a country by running 

REM with openly sourced data, equipping them with the means to put preventative policies 

in place. Several studies have also demonstrated the synergy between electrification, clean-

cooking, and regional air-quality (Maji, 2020; Dagnachew et al. 2019). Universal 

electrification can encourage uptake of cleaner cookstoves and improve local air-quality, 

reduce the emissions of climate-warming particulate matter (PM2.5), and improve the 

overall health and safety of women in households. My framework can quantify this synergy 

by running REM for a variety of policy scenarios and comparing their economic outcomes. 

1.4 Structure 

Chapter 2 discusses REM in greater detail and provides a review of other least-cost 

electrification planning tools. Chapter 2 also links the work of this thesis to complementary open 

data energy access frameworks. Next, Chapter 3 explains the design parameters considered when 

creating the framework, explicating which REM inputs must be estimated with open data and 

why. Section 2 of Chapter 3 discusses the Python implementation of the framework and how 

users are anticipated to interact with it. Chapter 4 is divided into three large sections; each 

section details a single consumer-related input. These sections include a review of available data 

sources, the framework’s proposed method for processing the raw data into REM-formatted 

inputs, and preliminary results from applying the method in Rwanda. Chapter 5 describes the 

method of estimation of a region’s medium voltage network, with a qualitative comparison 

between preliminary results from Rwanda on ground-truth data and competing open data 

sources. Finally, Chapter 6 discusses possible applications of the framework to complementary 

developmental goals and suggests future work. 
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Chapter 2 

2. Literature Review 
 

Section 2.1 introduces electrification planning models and describes their success at assisting 

governments achieve their universal electrification goals. Section 2.2 then situates the proposed 

framework (described in Chapter 3) within complementary efforts to improve the state of energy 

access through publicly available data sources.  

2.1 Electrification Planning Tools 

With the advent of cheap, modular renewables, providing access to electricity through 

distributed generation systems is increasingly common. These systems differ from a centralized 

grid by generating power much closer to the site where it is consumed. As a result, poorer, more 

remote populations (i.e., ‘last-mile’ customers) are connected faster and with fewer capital risks 

(Morrissey, 2019). There are two primary types of distributed generation (also referred to as 

‘off-grid’) systems: mini-grids (MGs) and stand-alone solar home systems (SHS). Different sizes 

of these off-grid technologies have created new opportunities to supply households with 

affordable energy. However, their integration has created challenges for electrification planners 

because planning must now involve the assessment of which technology option (GE, MG, or 

SHS) can provide energy services to each household at the lowest cost.  

The least-cost choice between off-grid technologies depends on multiple, dynamic, spatial and 

techno-economic variables. On one hand, the centralized grid generates electricity at a lower 

unit cost2 ($/kWh) than decentralized, off-grid, technologies. On the other hand, the cost of 

building out the grid to deliver electricity to customers is expensive (with or without expansion 

of the transmission network). As a result, for households which consume very small amounts of 

 
2 The unit cost of electricity ($/ kWh) is also referred to as the Levelized Cost of Electricity (LCOE). 
LCOE measures the expected revenue required to build, operate, and fuel a generator over a specified cost 
recovery period. (Energy Information Administration, 2021) 
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electricity or are remote (or both), the higher unit cost of electricity from distributed generation 

is offset by the money saved by not extending the grid. Conversely, the high cost of grid 

extension is justified in areas that are close to central infrastructure or have high demand (or 

both) (Morrissey, 2019; Szabó et al., 2011). In response to the dynamic complexity and 

magnitude of information needed to address these planning challenges, several computational 

models are used to automate the delineation of electrification technologies which achieve 

universal access to electricity at the lowest cost (Morrissey, 2019; Peña Balderrama et al., 2020). 

These computational models use region-specific, techno-economic and GIS data to group 

customers into geometric cells, calculate the Levelized Cost of Electricity (LCOE) of grid and 

off-grid alternatives, and output large-scale electrification plans (regional, country, or continent 

level) for a specified time-horizon (Ciller et al., 2019; Peña Balderrama et al., 2020).  

Notable examples of large-area, GIS-based, electrification modelling tools include the Re2nAF, 

Network Planner (NP), the Reference Electrification Model (REM) and the Open-Source Spatial 

Electrification Tool (OnSSET) (Amatya et al., 2018; Ciller et al., 2019; Mentis et al., 2015, 

2017; Ohiare, 2015; Szabó et al., 2011). Re2nAF is an open access web mapping application that 

enables geographic exploration of off-grid technologies in the African continent. It overlays 

population settlements, infrastructure features (grid network, power plants and roads) and solar 

resources indicators (kWh/m2) to provide a comparison between diesel and solar photovoltaic 

(PV) based technologies. Unlike other large-area plans, the underlying model of Re2nAF is not a 

project-customizable tool. Proceeding sections will discuss the remaining large-area modelling 

tools in greater detail. Other noteworthy literature include independent electrification studies for 

Uganda (Kaijuka, 2007), Kenya (Zeyringer et al., 2015), and Nigeria (Bertheau et al., 2016).  

2.1.1 The Network Planner 

Network Planner (NP) is an open-source model developed at Columbia University (Ohiare, 

2015). The model identifies the optimal electrification technology mix for currently unserved 

demand centers, or nodes, and maps the estimated grid extension. Households and 

productive facilities are aggregated into a single demand node (i.e., model aims to make 

decisions at the village level). NP has been used to model Kenya (Parshall et al., 2009), 

Senegal (Sanoh et al., 2012), Liberia (Modi et al., 2013), Ghana (Kemausuor et al., 2014), 
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and Nigeria (Ohiare, 2015). The necessary inputs for NP include the following: data on 

electricity costs and demand (often from local utilities), the location of existing grid 

infrastructure, population, and other socio-economic data. With this information, the NP 

model compares the cost of meeting demand in every settlement by calculating the 

respective LCOE of each of the model’s prescribed distributed energy technologies. These 

technologies are (1) off-grid, defined as a hybrid of PV and diesel generators for household 

and productive use, respectively; (2) mini-grid, defined as a diesel generator plant with low 

voltage (LV) supply for all types of demand; and (3) grid extension, sub-divided into two 

cost groupings: internal and external (Ohiare, 2015). Internal, non-transmission, costs 

comprise the cost of equipment, distribution costs, and generation costs. External costs 

entail the cost of connecting a transformer at the settlement to the closest medium voltage 

(MV) network.  

Selecting the least-cost technology involves estimating the cost of connecting a demand 

node to off-grid then mini-grid technology options. The option with the lowest cost is 

chosen and compared to only the internal costs of grid extension to the node. If the 

distributed generation is cheaper than the internal cost, it is selected. If not, the difference 

in cost determines the budget available for the external part of the grid connection costs, for 

that demand node. If the external cost is less than the difference, the settlement is grid 

connected; otherwise, the least-cost distributed energy alternative is recommended for 

electrification of the node. Parshall et al. (2009) describe the heuristic that NP uses to 

calculate the grid-extension layout.  

There are multiple limitations to the NP model. First, it fails to recompute the cost of grid 

extension for other settlements, after a nearby settlement is recommended for grid extension 

and therefore the proximity of grid infrastructure has decreased and thus the external cost 

(Morrissey, 2019). Second, while the model aims to make village-level decisions, the data in 

Parshall et al. (2009) is aggregated at the sublocation level (within an average area of 15 

km2) (Ciller et al., 2019). Finally, NP does not account for the effects of grid reliability or 

demand increases, which play an important role in grid-extension decisions in rural areas 

(Ciller et al., 2019; Morrissey, 2019).   
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2.1.2 Open-Source Spatial Electrification Tool  

The Open-Source Spatial Electrification Tool (OnSSET) is a GIS-based model developed to 

identify the least-cost electrification option between seven alternative configurations: grid 

connection; mini-grid systems with either PV, wind turbine, diesel, or small-scale 

hydropower generation; or stand-alone systems powered by either PV or diesel generators. 

OnSSET has been applied in the IEA’s energy access outlook publications (IEA, 2014, 

2017), to all of Sub-Saharan Africa (SSA) (Mentis et al., 2017), as well as the following 

countries: Ethiopia (Mentis et al., 2016), Nigeria (Mentis et al., 2015), Kenya (Moksnes et 

al., 2017), Afghanistan (Korkovelos et al., 2017), Madagascar (Kappen, 2019), Tanzania and 

Zambia (The World Bank). The model was developed by the Royal Institute of Technology 

at Stockholm (KTH).  

OnSSET is built on a gridded population density map that segments a region into evenly 

sized cells (2.5-km). The model calculates the LCOE for each technology for each cell by 

applying a least-cost model developed by Fuso-Nerini et al. (2016). Four parameters are 

considered for the LCOE calculations: (a) target level and quality of energy access 

(measured in kWh/household/year), (b) population density (measured in households/km), 

(c) distance from the closest grid connection (km) and the national cost of grid electricity 

($/kWh), and (d) local availability of renewable sources (solar, wind, and whether hydro 

potential exists within 10 km of settlements) (Fuso-Nerini et al., 2016; Mentis et al., 2015). 

Electrified cells are identified by means of using night-light datasets in combination with 

local population density, the transmission network, and the road network (Mentis et al., 

2017). Initial iterations of OnSSET assumed that a population within a certain distance 

from the high-voltage (HV) network are electrified.  

OnSSET’s tree-search algorithm traverses iteratively through each unelectrified cell and 

tests if the conditions for their connection to nearby electrified cells are fulfilled. These 

conditions are: (1) a minimum number of people live in the cell, and therefore a minimum 

demand that justifies connection to the grid, and (2) confirmation that cell connection does 

not cause the total additional MV grid length to exceed 50 km. If these conditions are 

verified, the cell status is switched to electrified. Unlike Network Planner, OnSSET stores 
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the length of the additional MV grid built by the model. Storing this length ensures that 1) 

newly electrified cells comply with the 50km limit as the grid expands, and 2) the respective 

cost increases of each additional MV line extension is measured. The cost increases 

represent the expense of building-up the generation and strengthening the centralized 

(existing) grid to meet the additional demand. The tree-search algorithm continues 

throughout the region until all cells to which the grid can be economically extended to are 

reached (Mentis et al., 2017). After which, the LCOE of each off-grid technology option is 

calculated for each of the remaining unelectrified cells and the cheapest technology is 

chosen. A limitation of OnSSET is that it does not include the grid’s current reliability 

levels in its cost comparison of off-grid and on-grid electrification. Second, OnSSET 

considers grid extension for all cells before shifting to distributed technologies, so the lowest 

cost technology is not always chosen. Rather, grid extension is chosen only if it can be 

sustained at a breakeven price, otherwise a potentially more expensive distribution 

generation is selected.     

Ultimately, the OnSSET model provides the optimal technology mix, capacity, and 

investment requirements for achieving electricity access goals under a user’s pre-defined 

time series. A notable study by Mentis et. al. (2017) produces least-cost electrification 

strategies for 44 countries across SSA (25.8 million 1 by 1 km cells) for 2030 under ten 

alternative scenarios. The ten scenarios encompass five different future electricity demand 

scenarios under both high and low diesel price scenarios. Each tier represents different levels 

of electricity services provided, starting from basic lighting to services that provide comfort, 

such as air conditioning. A major limitation to this study is that the results of each scenario 

are calculated as if each tier is homogenously applied over the continent, which is 

drastically different to reality where all five tiers are likely to co-exist in each country, and 

therefore within the whole continent. Future continent-level studies should aim to model 

demand heterogeneously at high granularity (e.g., between cells or between neighboring 

households and productive loads).  
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2.1.3 The Reference Electrification Model 

Each of the models introduced above work at the village-, settlement- (i.e., aggregated 

households), or cell-level instead of at the individual consumer level. Their network designs 

and cost-optimization processes are based on geometric considerations involving distances 

and population-based demand estimations, as opposed to power flow and electrical 

constraints. Both NP and OnSSET fail to optimize the generation design of off-grid systems 

or account for reliability constraints when delineating between electrification modes (Ciller 

et al., 2019). The Reference Electrification Model (REM) addresses these limitations in 

several ways. First, it defines and meets consumer demand at very high levels of spatial and 

temporal granularity, specifying hourly demand patterns for each individual customer. 

Second, REM meets this demand at a minimum total cost while satisfying power system 

technical constraints, as well as other user-defined constraints regarding the reliability of 

supply, generation mix, administrative requirements, or limits on modes of electrification 

(e.g., a preestablished target for grid extension) (Ciller et al., 2019). Third, REM supplies 

users with a detailed and georeferenced network layout for the prescribed grid extensions or 

mini/micro-grids, including the expected bill of materials. REM serves as both a least-cost 

electrification planning tool and a stopgap for sophisticated power flow and distribution 

network analyses.     

REM was developed by the MIT-Comillas Universal Energy Access Laboratory (UEAL). It 

has been used in the design of electrification master plans in several regions including 

Mozambique, Rwanda, Uganda, India, Kenya, Colombia, and Indonesia. However, unlike 

other planning models, REM is not open source. REM delineates between on- and off-grid 

electrification by grouping individual customers into hierarchal structures of grid extension 

and off-grid clusters; the first level of the structure contains grid-extension clusters, the 

second level contains MG clusters, and the third level contains individual, SHS customers. 

REM uses a Delaunay triangulation to obtain the potential connections among customers, 

deciding whether to group (cluster) customers based on two conflicting driving factors: 1) 

the savings in generation, operation, and management costs driven by economies of scale 

and customers’ simultaneity factors in larger MGs and 2) the increase in network costs 
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associated with grouping customers together (Ciller et al., 2019). Figure 2.1.1(a) provides an 

anecdotal example of the clustering process. In Figure 2.1.1(a), customers labeled 1 and 2 

should intuitively be electrified together, while a connection between 1 and 32 is only 

justified if economies of scale suggest aggregating all customers into one large cluster.  

Once grouped, REM obtains the least cost electrification solution for a cluster by calling the 

greenfield network-design software RNM (Reference Network Model) to create precise 

network designs for a grid extension and MG, then compare the solutions by their 

corresponding costs. RNM employs equipment from a prescribed catalog, designs networks 

that meet electrical constraints, and accounts for topological features in the considered 

region (Domingo et al., 2011). Two possible network designs are evaluated for a MG, a LV-

only network (no transformers needed) and a MV-LV network (contains MV/LV 

transformers with LV subnetworks; the least expensive design is selected when comparing 

with the grid extension option. Figure 2.1.1(c) shows examples of both types of networks. 

To determine these cost optimal combinations of SHS, MG, and grid extension clusters 

REM will simultaneously consider: 1) the layout, technical characteristics, supply costs, 

reliability, and catalog of equipment of the existing MV distribution network; and 2) the 

availability and costs of local resource generation (e.g., solar or diesel), customer preferences 

between SHSs and MGs, desired reliability levels, and potential dispatch strategies for off-

grid supply systems. Figure 2.1.1(b) shows a possible final electrification solution for the 

anecdotal example in (a), where GE1 is electrified with a grid-extension design, while the 

remaining grid-extension clusters have lower costs when electrified with OG systems that 

are consistent with the hierarchical structure. 
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Figure 2.1.1- (from Ciller et al., 2019) (a) Clustering Candidate Connections; (b) 

Final Electrification Solution; (c) Two examples of MG network layouts. 
For (c) red line signifies a MV line, blue is a LV line, generation is a green 
triangle, and MV/LV transformer are the red triangles. 

 
The final outputs of REM include the optimal groupings of individual customers into 

electrification mode clusters, the optimal generation mix and network layout for each of the 

MGs, the optimal layout for each cluster that will be connected to the grid, cost 

breakdowns, GIS files, generation and storage specifications, bill of materials, summary 

charts, georeferenced system designs. Figure 2.1.2 illustrates REM’s final electrification plan 

for Rwanda. An important distinction between REM and other planning tools is that REM 

considers two types of costs when optimizing clusters: incurred and social. Incurred costs are 

related to investment, operation, maintenance, and management activities, which can be 

directly quantified. Social costs measure the loss of utility or welfare to the end consumers 

resulting from poor service quality and potential limitations in electricity utilization 

associated with their mode of connection (Ciller et al., 2019).   
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Figure 2.1.2- REM-informed plans for Rwanda's National Electrification Strategy Plan. 

Accessed through the UEAL website.  
 

Describing REM Inputs  

Since REM operates at the individual level, accurate, ground-truth inputs are key to its 

usefulness as a network designer and optimal design planner. The key inputs that must 

be specified prior to its use are:  

1. Determining Building Locations and Building Electrification Status  

Coordinates of individual buildings and characterization of the latent load profile 

associated with each building and whether it is electrified or unelectrified.  

2. Demand Profiles for Each Type of Building/ Load 

Expected hourly demand for every building- (or load) type modeled. Each load 

archetype is defined by a unique hourly consumption trend, modeled as either a 

single power utilization pattern or linear combination of several patterns. Each 

demand pattern is characterized by several demand samples. The samples provide 

alternative consumption chronologies to account for the uncertainty in customer 
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usage, for each profile. Each demand sample specifies two consumption series: critical 

and non-critical electricity demand. The series consists of 8,670 values, one for every 

hour of the year, representing the minimum amount of demand needed to satisfy the 

customer’s load at 100%, 24 hour a day. However, since REM is not constrained to 

meet all the demand, it may choose to reduce the reliability of the electricity to 

reduce costs and avoid significantly scaling the system. The allowed scaling of the 

system is defined by the user via the “cost of non-served energy (CNSE)” for critical 

and non-critical demands. CNSE translates supply failures to social costs.  

3. Existing Distribution Network 

Grid extensions require REM to both model and interpret the existing location and 

capacity of connected MV distribution lines. Users should supply the existing MV 

network as a set of line segments, each defined by two coordinates. REM uses the 

candidate MV connection points to evaluate the network cost (and layout) of a grid-

extension solution for all consumer clusters considered. To do so, REM chooses an 

appropriate subset of representative MV points for each cluster as potential 

connection points; it then submits the problem to RNM, which is free to use any of 

the points to provide an optimized layout. Each MV segment is allocated an hourly 

reliability level and an energy price in $/kWh. The energy price accounts for 

differences in the locational price of delivering electricity (which allows users to 

translate different generation costs into the local wholesale energy costs at MV 

distribution level). Cost of delivering electricity is used to compute the cost of energy 

losses in RNM.  

4. Catalog of Components: Networks and Generation Sites.  

To accurately account for the cost and technical constraints associated with physical 

assets in the distribution network, users should supply precise technoeconomic 

parameters of the equipment to REM (and thus RNM). Examples of these 

parameters are cost and electrical features of lines and transformers. Similarly, users 

must provide a catalog of the cost and capacity of available generators (e.g., diesel 

gensets, PV panels, battery storage, charge controllers and inverters). 
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5. Cost Drivers and Financial Models 

Includes direct monetary costs and indirect societal costs associated with the 

potential electrification options. Direct costs include initial investment and on-going 

expenditures. Social costs are estimated with the CNSE (differentiated for critical 

and noncritical demands). REM imposes the CNSE as a per-kilowatt hour penalty 

for every unit of energy demand that is not supplied. This penalizing factor ensures 

that system reliability is properly accounted for, while guaranteeing that supply does 

not become prohibitively expensive as the direct monetary costs rapidly grow with 

high levels of reliability.  

6. Topography and Administrative Decisions  

REM and RNM can adjust network costs in accordance with data on local altitudes, 

ground slopes, or forbidden and penalized zones. These adjustments are penalties 

applied during network design. The penalties capture the additional costs related to 

building lines over changing altitudes or crossing forbidden or prohibitively expensive 

terrains (e.g., lakes, forests).  

7. General Electrification Criteria  

Additional parameters can be used to define overall targets of the electrification plan. 

The most important parameters refer to required levels of quality of service and the 

mix of delivery modes (i.e., grid extension, MGs, and SA systems) used to meet the 

targets. Reliability of supply is dealt with by setting minimum acceptable levels of 

quality of supply in off-grid systems and including the social CNSE in the 

optimization. 
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Comparing Least-Cost Model Input Requirements  

 

Table 2.1.3- Comparison of the required inputs for each of the large-area 
planning models.  

 
 

Table 2.1.3 compares the inputs required for the three most widely applied large-area 

least-cost electrification planning models. At first glance, OnSSET appears to require the 

most inputs to run and NP requires the least. However, because REM operates at the 

individual building level while OnSSET operates at the 1-km cell level, the same inputs 

required by both must be several magnitudes more precise for REM. This in turn makes 

assuring the quality and specify of the input datasets to REM more critical to the 

legibility and applicability of REM’s outputs. Moreover, given REM’s emphasis on 

technical feasibility and spatial distribution of demand, its outputs are more useful for 

planners especially when exploring off-grid network designs. As a result, ascertaining the 

availability and accuracy of its inputs should be of primary importance – especially when 

trying to maximize assistance to governments and private utilities in their pursuit of 

energy access by 2030.  
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2.2 Open-Access Planning Frameworks 

Several frameworks aim to streamline and standardize the use of least-cost electrification 

planning tools. The following section spotlights two frameworks in the literature that 

complement my thesis objectives. Taneja (2019) develops a qualitative framework to assess 

whether electrification efforts are successful at driving development and investment in 

developing countries. Mentis et al. (2019) describe the online open-access platform Energy 

Access Explorer (EAE), that aggregates and analyzes spatial data related to a country’s unique 

energy supply and demand attributes. The construction and lessons learned from these 

frameworks were guiding design principles for my own framework, described in Chapter 3.  

2.2.1 Qualitative Framework by Taneja, 2019 

To develop his framework, Taneja (2019), conducts a data-driven assessment on the 

substantial challenges faced by Kenya when trying to secure universal, low-cost electricity 

to its population. From his study, Taneja identifies two primary factors which can improve 

the viability of electrifying all customers in Kenya without eventual insolvency (or vast 

profit losses) of major investors and utilities. The factors are: 1) incentivizing the 

consumption of electricity by all customer types and 2) the efficient and optimal allocation 

of scarce resources, namely money. To tackle the first factor Taneja (2019) presents three 

pathways for improving electricity consumption in Kenya: 

1. Enabling rural customers to develop positive electricity habits. For example, 

improving their access to micro-financing schemes and supply chains for daily 

appliances. Appliances are likely to yield increased electricity consumption. 

Educational programs on the potential usefulness of electricity would also help 

weave consumption into the “fabric of their lives”.  

2. Developing programs that encourage and bolster local enterprises, especially in 

rural areas. Commercial and industrial customers in rural areas would benefit from 

better access to appliances, as well as gain greatly from business model support. 

Moreover, cross-subsidization of smaller (low-demand) consumers with large 

industrial customers, can make rural electrification more favorable.  
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3. Improving system reliability to build confidence in the electricity delivery of local 

distribution utilities. In response to poor grid or off-grid reliability, many customers 

“stack” energy sources (i.e., rely on multiple sources of power beyond their current 

connection). This results in redundant fees for two different electricity systems, 

draining the customers’ scarce resources (ability to pay). Improving grid reliability 

would foster better relationships with industrial customers who require consistent 

power for the operation of their services. Grid reliability also empowers local 

customers to pursue opportunities of economic growth and quality-of-life 

improvements (e.g., enables cost-effective production of often-underdeveloped small 

businesses).  

Altogether, the first half of Taneja’s report makes the strong argument that there is a direct 

social cost to no, or poor electricity reliability. There is also a direct cost benefit to grid and 

off-grid distribution companies when they guarantee more consistent services and access to 

various appliances. Of the large-area planning models, REM singularly incorporates these 

costs and benefits into its optimization function via the CNSE parameter which further 

corroborates the importance of building my framework around ensuring the frequent and 

scalable application of REM to any country.  

The second factor asks, “how can electricity planners ensure that the needs of customers are 

met while minimizing the cost of electricity, both now and in the future?” In order to 

answer this question, modelers must specify the appropriate features during the 

optimization of electrification modes. These features are: 1) considering the full slate of 

technology and productive enterprises local to a region; 2) acquiring more specific data for a 

region, especially local demand and proximity to existing supply sources; 3) promoting 

planning that enables more dynamic deployment of the different electrifying technologies, 

scaling the systems as customers demand more electricity (Taneja, 2019).  Once again, each 

of these features are modelled by REM, which emphasizes the usefulness of customizing an 

open-data framework to its inputs.   
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2.2.2 Energy Access Explorer 

The Energy Access Explorer (EAE) is an online, open source, interactive platform 

developed by researchers at the World Resources Institute. The EAE is a data aggregation 

and processing framework for analysts and decision-makers within the energy planning 

sector (e.g., rural electrification agency) to strategically plan for electrification, explore new 

markets for clean energy technologies, or invest for impact (Mentis et al., 2019). The 

platform identifies where customers are likely to be located and where there is a 

concentration of demand to support energy entrepreneurs. EAE complements large-area 

planning tools by providing a bottom-up representation of local affordability and demand. It 

also reduces the high transaction costs associated with data collection and sharing by 

serving as a database of up-to-date information.  

The Energy Access Explorer incorporates data from global, national, subnational, census, 

remote sensing, and crowdsourcing databases either publicly available, or provided by 

international and local stakeholders. The data collected includes current energy demand and 

supply. Demand is estimated with information on household demographics and data on the 

social and productive uses of electricity (e.g., mines, health care facilities…etc.). Energy 

supply is estimated via current location-specific resource availability and infrastructure 

data. The platform synthesizes this data with a multi-criteria analysis tool which produces 

four indices for geographically targeted energy planning: 1) Demand Index, 2) Supply Index, 

3) Energy Access Potential Index, and 4) Need for Assistance Index. The Energy Access 

Potential Index approximates where a population has the ability to pay for electricity and is 

close to social and productive uses of energy. The Need for Assistance Index is used to 

approximate where financial assistance is needed most; for example, areas with high 

potential to develop economically (i.e., large number of productive loads) but with low 

ability to pay. Finally, an important feature of this data aggregation platform is its 

commitment to assuring high-quality data. This is done by upholding a specific criterion for 

each of the included datasets, outlined below from Mentis et al. (2019).  

1. Credibility of the Source: Must be peer-reviewed or include comprehensive citations.  

2. Metadata: A detailed methodology is provided and clearly written. 



 33 

3. Accuracy: Data is complete and free of errors.  

4. Accessibility: Data is available in geospatial format and at high spatial resolution. 

5. Timeliness: Recent-enough to be used for decision-making.  

6. Public License: Data is public, shareable, and available for download via open 

license.  

 
  



 34 

 

Chapter 3 

3. Framework Overview and Design 

3.1 Framework Design 

3.1.1 Contextualizing the Framework 

The effectiveness of GIS based electrification plans depends largely on the availability of 

credible, and up-to-date records of existing infrastructure in areas of interest (Bazilian et 

al., 2012; Korkovelos et al., 2019). As it stands, most of these records are gatekept by the 

private or governmental institutions that produced them. As a result, planners are forced to 

enter tedious, time consuming data-sharing agreements which can hinder or slow 

electrification progress (Korkovelos et al., 2019; Mentis et al., 2015, 2017). The planners’ 

next best alternative is publicly accessible GIS data, or data (typically) produced by 

multiple organizations coordinating to find, organize, and openly redistribute gathered data. 

A noteworthy example of this is the Global Power Plant Database by the World Resource 

Institute (Global Energy Observatory et al., 2018). The frequently updated database 

contains the geolocation, generation capacity, ownership, and fuel type of 28,700 power 

plants across 164 countries. Cumulatively the data covers 80.2% of global installed capacity 

(Byers et al., 2021).  

Unfortunately, few public datasets uphold similar recordkeeping standards or scale. Instead, 

open access information can be incomplete, of unknown origin, poorly maintained, and lack 

sufficient meta data (Korkovelos et al., 2019). Moreover, open access data is mostly 

available at low spatial or temporal resolutions and thus insufficient for most electrification 

planning models (e.g., REM). Higher granularities are sometimes available, but only at a 

premium or under special agreement (i.e., time or resource consuming, again stymieing 

electrification progress). Due to the limitations of manually compiled datasets, practitioners 

have begun taking advantage of recent advancements in satellite imagery, remote sensing 
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capabilities, and machine learning to create open, high-resolution, geospatial datasets on 

global infrastructure (Adkins et al., 2017; Arderne et al., 2020; Falchetta et al., 2019; 

Korkovelos et al., 2019; Lee et al., 2019; Mentis et al., 2017; Sirko et al., 2021; Xie et al., 

2015). 

The following chapter defines a framework that makes use of both types of publicly 

available data to produce granular, better-quality information. Equipped with this 

framework, users can run REM (and its counterparts) in the absence of ground-level, 

proprietary, datasets. The result is much shorter lead times on characterizing regional 

energy infrastructure and optimal paths to meet unserved energy demand. Note that, while 

the framework should be transferable to alternative electrification planning tools, its design 

is configured specifically for REM, which is reflected in the remainder of the chapter. This 

choice is a reasonable one, since REM is the most sophisticated model presently available in 

terms of spatial, temporal and demand characterization, and thus the most data demanding 

model. 

3.1.2 Data Availability 

The extent and type of data available for a region typically varies by country. Nigeria, for 

example, is a data-rich country relative to its neighbors. Nigeria’s data density is attributed 

to recent efforts by the local Rural Electrification Agency (REA) to centralize and make 

available energy statistics and community data, which have been collected by government 

agencies, donors, and private entities via the Nigerian Energy Database. The database 

provides information on both off-grid (e.g., potential mini-grid locations) and on-grid 

infrastructure (e.g., transmission and distribution lines), roads, the location of mines, 

healthcare services, and education facilities. Inversely, information around many other sub-

Saharan African nations is often sparse and limited only to global-scale remote sensing 

datasets (e.g., Facebook’s building locations map). Chad, for example, has a national 

electrification rate of 11% and lacks any ground-data on existing infrastructure or potential 

loads (World Bank, 2019). To account for the gulf between each country’s data availability, 

the framework is designed in modular form such that each module represents a single REM 
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input, and each input can have multiple underlying data modules. Section 3.1.3 provides 

further exploration on the modular design.   

3.1.3 Specifying Framework Modules 

Examining REM’s Input Requirement 
 

Table 3.1.1- Description of the inputs necessary to run REM, their relative availability, 
and relevant open-access datasets. Cells in black do not have a single dataset that meet the 
requirement completely. 

 
 

Table 3.1.1 summarizes the minimum inputs required for a successful run of REM. For 

each input, the table provides an explanation of the data needed, classifies its data 

availability as one of four statuses, and links to a dataset that has been, or could be, 

used to fulfil the input requirement. The availability of information around each input is 

demarcated as one of the following classes: ‘Publicly Available’, ‘Available by Country’, 

‘User Specified’, or ‘None’. The classes are distinguished in the following way: 
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• Publicly Available means that at least one, publicly available, peer-reviewed dataset 

exists at the necessary resolution for all countries in SSA. In our context, peer-

reviewed refers to the demonstration of sufficient due diligence around the data’s 

quality. For instance, a guarantee that the data’s accuracy has been tested and 

reviewed by scientific (or adjacent) organizations. Or similarly that the geospatial 

data and its meta information is regularly monitored and improved over time. If 

there are open access datasets on the input data needed, but they do not meet the 

requirements stipulated above, then they are not considered ‘publicly available’. 

Similar quality standards are upheld by the Energy Access Explorer. 

• Available by Country refers to inputs which may have datasets that meet the 

‘Publicly Available’ requirements described above, but only for some countries or 

regions. Typically, the publicly available datasets which correspond to this class are 

compiled by local stakeholders and shared as part of a larger initiative or 

commitment (e.g., Nigeria’s REA database).  

o A notable endeavor that must be highlighted here is the Global Electrification 

Platform (GEP). The GEP is a multi-phase project led by the World Bank to 

standardize the use of geospatial tools for least-cost electrification planning. 

The platform provides a high-level overview of the technology mix (grid and 

off-grid) required to achieve universal access by 20303. For our context, GEP is 

most useful for its preliminary step of aggregating all public energy-related 

information, producing a summary per country via the open database 

EnergyData.Info. Their summary reduces the tedious task of ascertaining which 

data exists for a given study region.  

• User-Specified inputs can be compiled to acceptable accuracy by relying on 

assumptions from literature, nearby regions, previous experiences. In other words, 

the input can be manually created and customized by users. However, this does not 

 
3 The current form of the GEP uses KTH’s Open-Source Spatial Electrification Tool (OnSSET) to 
produce its findings. All results are based on publicly available information on demand and existing 
infrastructure.  
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mean that users and future implementations should avoid identifying alternative, 

more accurate methods of fulfilling these input requirements. For example, each 

country typically uses specific types of cables, transformers, and poles and this 

should be reflected in the equipment catalog used. The same principles apply to the 

available batteries and solar panels by the off-grid developers. However, given the 

heterogeneity between what some countries share, and others don’t, default grid 

asset types can be used in lieu of better information. Specifically, the framework 

provides a “standard” equipment catalog with cells that are left blank if they must 

vary by country (e.g., voltage levels). Depending on the purpose of the REM 

implementation this may or may not be OK. Coarser studies with little interest in 

predicting precise grid layouts can forgo the accuracy improvement of a customized 

equipment catalog.  

o Special consideration should be given to the ‘demand patterns’ input. Each 

building will correspond to a typical electricity consumption profile, or demand 

patterns. Since similar building types are likely to have similar patterns and 

can be grouped under a broad consumer archetype. Examples of these 

archetypes are similar-sized households, healthcare facilities, or schools. Users 

should be able to provide an hourly, daily, and annual pattern for each of 

these archetypes. Several studies have shown that characterizing these patterns 

at a high level of heterogeneity and granularity is necessary for electrification 

planning (Kivaisi, 2000; Lee et al., 2019; Louie & Dauenhauer, 2016; Mandelli 

et al., 2016; Riva et al., 2019). Inaccurate models of the spatial variation of 

demand increases the risk of under- or over-building of infrastructure and 

generation, as well as non-optimal delineation of off-grid regions (Alova et al., 

2021; Lee et al., 2019; Louie & Dauenhauer, 2016; Mandelli et al., 2016; 

Taneja, 2019). However, modelling demand in rural areas of SSA is made 

notoriously difficult by the innumerable confounding factors and external 

circumstances that influence consumer demand in these regions. Therefore, 

incorporating or estimating a regionally specific dataset of demand patterns for 
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all load types from publicly available information requires further study and is 

beyond the scope of this thesis. In the meantime, users should refer to previous 

studies on consumer behavior and load consumption to guide the creation of 

synthetic demand patterns (Williams et al., 2017). A good example of these 

open studies is the World Bank’s Beyond Connections report. For the report, 

the World Bank conducted multiple surveys to collect and share data on the 

energy demand and consumption behaviors of rural and urban residents in 

several SSA countries (Bhatia & Angelou, 2015). Users may also utilize data 

from nearby countries as a proxy for how consumers in their region of study 

demand and use power.  

• Inputs labelled Incompletely Available lack any existing public dataset, which 

perfectly meets the requirements of Publicly Available inputs described above. 

Building locations, for example, is often imputed with the High-Resolution 

Population Density Maps, however this dataset lacks precise coordinates of 

buildings. Nor does the dataset have any reference for the size of the building or 

its associated customer type; thus, incompletely fulfilling the input requirements. 

Exceptions may occur for inputs labelled as Incompletely Available while high-

quality public data for a single country is available, ergo users are always 

encouraged to begin by identifying the plethora and status of available 

information for their study-area. 

Moving forward, the elaboration of the framework will consider only the REM inputs 

classified as Available by Country or Incompletely Available. This expands to the 

following inputs: ‘Building Locations’, ‘Electrification Status’, ‘Types of Customers’, 

‘Existing MV Network Layout’. Note that the location of ‘Existing MV Transformers’ is 

adapted into the framework as a sub-module and elaborated on in Chapter 5. The 

framework will utilize all information that currently exists and guide users on how to 

manipulate, restructure, and append the data to fulfil each input-of-interest’s 

requirement. 
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The Modular Design 

  
Figure 3.1.2- Visual Example of how Data Types fit into the Framework. The 

following is an example of a two-data-type scenario for a single Input Module.  

 

The framework is designed to consider each input separately producing a total of five 

modules. Each input can be satisfied using different datasets, and each dataset is handled 

according to a prescribed Python model, or estimation method. Consider the ‘Existing 

MV Network Layout’ input in Table 3.1.1. Although high-voltage data on transmission 

networks and even on high voltage distribution networks are often available, medium- 

and low-voltage distribution networks data are often non-existent or unavailable 

(Arderne et al., 2020). The framework will accordingly provide alternative estimation 

methods depending on the grid assets publicly knowable for the given study region. For 

example, is the geolocation and voltage of the region’s MV to LV distribution 

transformers available? If not, then is the location of their HV to MV substations 

available? Some information is better than others, in this case MV/LV distribution 

transformer locations are preferable to HV/MV substations. The framework reflects these 

preferences by assigning an ordered rank to each ‘baseline data’ module. Here “better” 
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refers to the input-data combinations with the relatively higher validation accuracies. 

Validation methods are described later in the thesis. To demonstrate how the framework 

functions per input and collectively see Figure 3.1.2 and 3.2.1, respectively.  

The choice to make the framework modular across both the REM-input and dataset used 

was critical to guaranteeing it could be iteratively updated and expanded. Under the 

framework’s current structure, higher-resolution versions of existing datasets can 

substitute their older counterparts at the related module. Alternatively, if a new type of 

dataset is created, or if a new energy-related data imputation method is developed, either 

can be added on as a new ‘data’ module within an ‘input’ module. Or in the case of 

demand, if consumer load consumption data becomes available for SSA, then it can be 

included as additional ‘input’ module in the framework. Since the objective is to expedite 

long-term global efforts around electrification, the framework must survive the constantly 

changing paradigm of data collection and sharing.  
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3.2 Python 

3.2.1 Framework Implementation Overview 

 
Figure 3.2.1- Schematic of how all Input and Data Modules connect to meet 

REM input requirements. 
 

Figure 3.2.1 describes the final implementation of the framework. Each row is an adaptation 

of the per-module process introduced in Figure 3.2. The objective of this section is to 

explain how users should apply the framework and the considerations made to make their 

interaction seamless, scalable, and open source.  

Explaining the Framework Schematic 

 To interpret Figure 3.3, think of each yellow square (furthest left) as a ‘row’ and each 

step title (e.g., Data Type) as a ‘column’ in the overall framework. Then each row 

represents an input type, and each column represents the steps necessary to produce its 

estimate (refer to Figure 3.2 for additional context). The black horizontal lines signify 

the process to follow for the ‘best’ estimate of the desired output, or more precisely the 

method with the highest validation accuracy in my implementation. For example, two 
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lines are drawn from the Medium Voltage Network Layout square, each tracking a 

separate estimation method (theoretically there can be any number of methods, each 

with its relative accuracy and applicability). The first line is black and the second is 

grey; similarly, one is adorned a [1] and the latter a [2], respectively. Both the stepwise 

color-lightening and ascending numeric values, symbolize the reduction in accuracy 

between the processes – we can think of these as rank ordered ‘tiers’ with higher values 

translating to relatively poorer outputs. In practice, a user should only use a higher 

numbered (less accurate) Data Type when the preceding (more accurate) tier is not 

available for their specific region. Figure 3.2, which narrows in on the components of a 

single row at a time, uses a similar color and number scheme. The vertical lines are used 

to convey interconnectedness between modules, for example the need to produce a 

specific set of inputs prior to producing another.  

If a horizontal line has a dot at the end of it, then it is a connective node in the 

framework, thus the user must consider both modules at once. If a line has an arrow at 

the end, it signifies a process node – a flow of information between the former module 

and the latter. This distinction is especially important for estimation method [1] in the 

Medium Voltage Network Layout module, whereby the line-ends describe how preceding 

modules (Input Types) relate to the prescribed [1] process. Users should therefore use the 

framework (or acquire inputs) in the set-out order of rows shown in the figure. A user 

can forgo this order only in the case that some of the inputs, in the earlier or later 

modules, are already available for the specific study region being considered. To 

guarantee that later modules (which depend on earlier modules) can still be applied, 

instructions on the necessary data format of each output will be provided.  

Design Choices Made During Implementation 

During implementation of the framework the choice was made to incorporate ‘Types of 

Customers’ into the attainment of ‘Building Locations’. Building Locations was 

subsequently bisected into two-broad building types (1) households and (2) productive 

loads. This is due to the lack of semantically meaningful distinctions between buildings 

provided in current publicly available datasets. For example, information on building 
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footprint size or shape is usually only available at a premium. Households are low-voltage 

consumers with a narrow range of differing load consumption patterns. Productive loads 

include everything from small commercial businesses (consuming at the low-voltage level) 

to industrial customers such as mining companies (consuming at the medium-voltage 

level). In more advanced implementations, these broad building types can be further 

delineated into those located in rural vs. urban areas, with the presumption that rural 

loads consume power differently and less reliably. For example, rural households often 

consume outside of archetypal peak hours (between 8:00 am- 5:00 pm), using power 

mostly at night. Rural customers also tend to consume much less power than those in 

urban regions due to prohibitively expensive electricity prices. Rural households 

primarily use basic appliances like fans, radio, and lighting (Bhatia & Angelou, 2015; 

Szabó et al., 2011). I propose a work around for the lack of segmentation between rural 

and urban buildings in Section 4.3.  

3.2.2 Incorporating Python 

All processing and formatting of data happens in the Model column using Python. The 

source code is available through GitHub, with a readme.md file to support users in applying 

the framework. The choice to use Python stems from a commitment to creating an open, 

scalable, reproduceable framework. Today, Python is the industry and academic ‘gold-

standard’ for open-access implementations. As a well-documented and widely used 

programming language, Python is an ideal common interface on which future users can 

build new processing chains and audit previous implementations with. Ensuring that my 

framework is transparent is critical to assuring quality control and demonstrating adequate 

due diligence for stakeholders to trust its findings. In this way, the framework fosters open-

science and open-source coding in the field of energy access research – yielding rapid techno-

economic screening analyses and expediting the achievement of SDG7 (Korkovelos et al., 

2019).   

Each python model is set up to run independently of the other modules. Each model 

consists of three files: a functions module, a script, and a data input requirements file. All 

the data processing occurs between the function module and the main script file. The data 
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requirements file explains where to download the module’s prescribed datasets and how to 

store them locally (including the appropriate naming nomenclature). For models that have 

vertically integrated inputs (i.e., its inputs are outputs from previous modules) the data 

requirement file also describes how alternative inputs can be integrated instead. The 

description specifies the exact scale, structure, and format the data should be in. The 

supplemental instructions are necessary for contexts where a country may already have 

publicly shared the REM-input of a preceding module. The functions module is imported 

into the corresponding model’s script file. Users interact with each model by first inputting 

the country code they are interested in, e.g., ‘RWA’ for Rwanda. The model will extract the 

key country statistics that it needs to run the script and validate its output. Note, the 

framework currently runs at country-scale; therefore, if a user is interested in just a small 

region within a country, they will need to clip all output files using a Mask (geo-referenced 

vector outline) of their region-of-interest. Recall, the outputs of each model will be 

configured to meet REM input-file format requirements. Finally, a ‘requirements.txt’ file is 

provided with the framework to guarantee any user can run all Python scripts. The text file 

specifies all the packages needed to run the code and is used during the initialization of the 

Python virtual environment.  

The GitHub Repository can be accessed at: 

https://github.com/lamaoudi/OpenSourceFrameworkforLCEMs 

3.2.3 Validation Processes and Metrics 

In this thesis we use previously gathered data from a project with Rwanda to check our 

estimates against ground-truth data. However, the data is outdated in some instances and 

limited in scope, thus an imperfect benchmark. Furthermore, using a single country for 

validation does not measure the robustness of our methods across different countries. As an 

alternative to ground-truth information, the framework also employs publicly shared 

country-statistics as easy metrics to check the quality of the estimates. Further discussion 

on validation metrics will be explored in coming chapters.  
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Chapter 4 

Data Sources and Processing:  
Consumer Modules  
 
 

This Chapter looks at each Input Type module, provides an overview of useful datasets, and 

proposes a method for estimating the Input. Note that the proposed methods are not intended 

as the ‘best’ or prescribed method of imputation; only as my suggestion for producing REM 

inputs quickly and to any country in SSA (i.e., the applied data types are available across the 

region). Extensive research is being conducted elsewhere on ascertaining electrification status, 

identifying settlements and settlement types, as well as predicting grid infrastructure. Hence, 

more advanced techniques or datasets may be available to implement the framework with, 

producing more accurate outputs. Typically, these methods exist only for limited regions, require 

additional validation, or are costly to apply at scale. Therefore, the users must discern for 

themselves which parameters are higher priority: accuracy, simplicity, or speed – then choose 

the input and data modules accordingly. 

Section 4.1 covers the estimation of residential-building coordinates. The section includes a 

review of publicly accessible population and building footprint datasets and describes how to 

apply them to locate households in any study-region. Section 4.2 proposes using the Google 

Maps API to extract the coordinates of productive and community facilities. Section 4.3 looks at 

the existing literature on estimating the electrification status of buildings, and how to couple 

this information with the World Bank’s definition of five energy access tiers. The tiers are then 

used to estimate the maximum power demanded by each load-type. In each Section I compare 

the outputs of my implementation to ground-truth data from Rwanda. 

Chapter 4 should motivate how powerful open-access frameworks can be for scalable 

technoeconomic analyses in energy access and related fields. It should also re-iterate the 

importance of a modular system, given the value of substituting my implementations with better 

datasets and models as they are made available.  
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4.1 Identifying Building Locations: Households 

One of the most crucial inputs to run any electrification planning tool is the accurate knowledge 

of where people reside and at what density. This question arises for a variety of disciplines 

including public security, health policy, urban growth, vulnerability and risk assessment among 

others (Palacios-Lopez et al., 2021). Geospatial population data has also been shown to support, 

implement, and monitor more than half of the SDGs and their related indicators (Kavvada et 

al., 2020; Kuffer et al., 2020; Palacios-Lopez et al., 2021; Qiu et al., 2019). As a result, research 

on compiling and improving population data is plentiful and ongoing. The following section 

explores notable datasets and highlights how one can leverage the information to fulfill REM’s 

building coordinates requirement. The alternative Data Types enables users to apply the 

framework at their preferred granularity and scope. For example, broader continental-level 

studies may favor speed over accuracy, and therefore choose to employ coarser, smaller file-sized 

population datasets which minimize processing time.  

4.1.1 Identifying Building Locations: Households 

The following section is a comprehensive review on alternative Data Types that users can 

investigate as potential sources of building location information.  

Review of Population and Built-Area Datasets  

Population modelling historically consisted of gridded population datasets. The grid is 

comprised of spatially identical cells, where the size of the cells determines the spatial 

resolution of the data, or the land-area covered per cell.  There are several openly 

available, large-scale (continental and global) population gridded datasets, each has been 

produced using a different “top-down” dasymetric modelling approach. In other words, 

each employs its own method of disaggregating administrative unit-based official 

population counts into the grid cells (Leyk et al., 2019; Palacios-Lopez et al., 2021). Each 

of these disaggregation methods choose a different set of ancillary geospatial datasets to 

model, and in some cases restrict, the distribution of population across space (Palacios-

Lopez et al., 2021). In recent years, population grids have improved in quality, accuracy, 

and spatial resolution by the emergence of built-area datasets. Built-area datasets use 
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remote sensing techniques (optical and radar imagery) to accurately describe the extent, 

location, and characteristics of urban and built-up areas. The detected infrastructure is 

then used to accurately delineate the distribution of human settlement (Palacios-Lopez 

et al., 2021; Reed et al., 2018). Hence, population attributes (e.g., counts) are only 

assigned to areas with detected infrastructure, providing a high-resolution map of human 

settlement.  

As REM requires the explicit coordinates of buildings in its study-region, built-area 

datasets serve as suitable substitutes for ground-truth settlement information. 

Representative, publicly available, examples include: the World Settlement Footprint 2015 

(WSF-2015) map; the new WorldPop Sub-Saharan Africa gridded building dataset (coupled 

with 100-m resolution population counts); the Global Urban Footprint (GUF); the High 

Resolution Settlement Layer (HRSL), and the Global Human Settlement Layer (GHSL). I 

provide a brief review on each of these datasets for additional context to how they differ 

and might be applied: 

1. (Linard et al., 2012) WorldPop Sub-Saharan Gridded Building & Population 

Datasets; The gridded population layers are available for many (not all) SSA 

countries at 100-m, and available at a 1-km resolution for continent level density 

information. Annual population counts are available from 2000 to 2020. These 

layers use interpolation techniques which sometimes give rise to inaccurate 

population estimates, and at times infeasible values (e.g., <1) (Korkovelos et al., 

2019). Their gridded building dataset is available at 100-m resolution for 51 

countries in SSA. The underlying footprint information was not validated prior to 

compilation or processing.  

2. (Ouzounis et al., 2013) Global Human Settlement Layer (GHSL); A global 100-m 

spatial resolution built-up dataset that focuses on three primary products: built-up 

areas, population grids, and urban/rural classification. The residential population 

estimates are provided for target years 1975, 1990, 2000, and 2014, expressed as 

number of people per grid cell. Built-up areas are semi-automatically extracted from 

Landsat-8 optical imagery, collected in 2014 at a resolution of 38-m (Marconcini et 
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al., 2020; Tiecke et al., 2017a). GHSL applies CIESIN’s same census disaggregation 

method as HRSL, described in detail below. It was created by and is available 

through the European Commission’s Joint Research Center.   

3. (Esch et al., 2017, 2018) Global Urban Footprint (GUF); Available globally at 12-m 

resolution and referring to the year 2012. Generated from single-date scenes, which 

can be strongly affected by the specific acquisition conditions, hence resulting in 

misclassification errors. GUF exclusively uses optical and radar imagery, which are 

sensitive to different structures on the ground. Bare soil and sand tend to be 

misclassified as settlements in optical imagery. Complex topography areas or 

forested regions can be wrongly categorized as settlements with radar imagery.  

4. (Tiecke et al., 2017a) High-Resolution Settlement Layer (HRSL); Created in 

partnership with Facebook’s Connectivity Lab and CIESIN4. HRSL provides 

estimates of human population distribution in 140 countries at 30-m resolution (1 

arc-second) for the year 2015. The Connectivity Lab used computer vision 

techniques to classify pixel data as containing buildings or not, then CIESIN 

allocated population data from subnational census data to the settlement extents. 

The method of extracting building footprints using Machine Learning (ML) 

algorithms is described in detail below. Census unit boundaries and associated 

population estimates from the Gridded Population of the World Collection 

(GPWv4) are used. The census unit boundaries collected for GPWv4 vary by 

administrative level, number of units, average unit size, and census year for each 

country (Tiecke et al., 2017a). Since the population density values are equally 

distributed to settlements in a census unit, its usefulness increases at higher 

administrative levels (i.e., tighter districts). The HRSL has demonstrated superior 

accuracy in estimating settlements in rural areas compared to the GHSL and GUF 

datasets, shown in Figure 4.1.1 (Tiecke et al., 2017a).   

 
4 Center for International Earth Science Information Network at Columbia University  
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5. (Marconcini et al., 2020) World Settlement Footprint (WSF) 2015: A 10-m 

resolution (0.32 arc sec) global map of human settlements on Earth for the year 

2015. Validated on 900,000 ground truth samples collected by crowdsourcing 

photointerpretation, carried out in collaboration with Google. (Marconcini et al., 

2020) show that WSF-2015 outperforms the GUF and GHSL on the validation 

samples and is best at detecting very small settlements in rural regions and 

scattered suburban areas. Settlements are derived by means of 2014-2015 

multitemporal Sentinel-1 (S1) radar and Landsat-8 optical imagery. Unlike the 

GUF, WSF-2015 addresses misclassification by utilizing multitemporal optical and 

radar data. The rationale is that the temporal dynamics of human settlements over 

time are different than non-settlement classes, and therefore can be used to 

distinguish between them. Unlike its competing datasets, WSF-2015 has not 

disaggregated population data to its settlements, therefore relying on the dataset as 

a proxy for household distribution requires that the data is segmented into 

individual building footprints, or something similar. Figure 4.1.2 provides a visual 

comparison of WSF, GHSL, and GUF. 

The following list is not comprehensive, nor intended as a comparative analysis of 

publicly available population datasets. Leyk et al. provides a complete review on large-

scale gridded population products (Leyk et al., 2019). Additional resources on built-area 

datasets include (Khavari et al., 2021; Lloyd et al., 2019; Palacios-Lopez et al., 2021; 

Reed et al., 2018).  
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Figure 4.1.1- (from Tiecke et al., 2017) Qualitative comparison of GUF, GHSL, HRSL, 
and labeled ground truth data (via Missing Maps, not mapped areas are indicated in red) for a 
single region near Blantyre, Malawi. The recall values for the southern rural areas (below the lower 
dotted line, shaded in blue) are 0.04, 0.06, and 0.84 for the GUF, GHSL, and HRSL respectively.  

 

 
 

Figure 4.1.2- (from Marconcini et al., 2020) Qualitative Comparison of the WSF-
2015 against GUF and GHSL. Samples are reported for Igboland, Nigeria; Kampala, Uganda; 
Bangalore, India. Each sample is characterized by the presence of medium and large size cities, 
surrounded by very small settlements. The WSF-2015 outperforms other datasets by detecting a 
higher number of small villages and better outlining the fringes of major urban areas. The GUF 

performs equally good only in the Igboland region and not in Kampala or Bangalore. 
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Machine Learning Techniques for Building Location Estimation  

The primary alternative to using built-area population datasets for building coordinates 

is building footprint extraction. Building footprint extraction involves classifying each 

pixel of a high-resolution satellite image as either containing a building or not. Manual 

analysis of pixels remains the most accurate and precise way to carry out this method. 

Its drawback is the high cost and prohibitive time needed to compile the data. More 

importantly, since electrification planning tools are updated frequently, manual 

extraction will need to be repeated at each update, which would not allow for the wide 

application of REM, or adjacent planning tools. A notable manually labelled building 

database is OpenStreetMap (OSM). OSM provides free and open detailed building and 

street annotations through crowdsourcing: millions of participant’s conduct ground-based 

surveys and perform manual labelling on the top of aerial imagery (Ciller et al., 2019). 

However, OSM data is inconsistent and can be sparse or non-existent in rural regions of 

SSA – hence not useful in our context.  

The automatic detection of building footprints is dominated by machine learning (ML) 

computer vision techniques, namely Convolutional Neural Networks (CNNs). Previous 

work has demonstrated the success of CNNs at detecting and delineating building 

footprints from satellite imagery. Typically, semantic segmentation is first carried out to 

classify each pixel in an image as building or non-building. Then shapes and boundaries 

of individual buildings are extracted, either by layering different CNN architectures, 

contouring algorithms, or leveraging a host of other image post-processing techniques. 

Two wide-coverage datasets apply CNNs to produce high-resolution settlement datasets: 

Facebook’s HRSL and Google’s Open Buildings Dataset. HRSL produces binary labeled 

pixels at 30-m resolution (building or no building), while the Open Buildings dataset 

identifies the extents of building footprints at 50-cm resolution.  

A limitation to automatic detection methods is the reliance of their performance on 

available pixel-wise labeled training samples (Sirko et al., 2021). Without adequate 

inclusion of Africa’s diverse terrain and building types, the classification models may 

struggle to consistently detect settlements across the continent. For example, aerial 
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images of geological or vegetation features may be confused with built infrastructure, 

while buildings constructed with natural materials (or non-generic roof structures) may 

visually blend into the surrounding areas in rural or desert regions – going undetected 

(Sirko et al., 2021). The Open Buildings dataset addresses the potential misclassifications 

by curating a training set with a mix of rural, medium-density and urban in areas in 

different regions of the continent, including informal settlements in urban areas as well 

as refugee facilities. Since contiguous, densely packed, buildings were difficult to 

delineate a ‘dense building’ class was introduced. Examples of the diverse structures 

labelled are: round, thatched-roof structures (distinguished via cues like pathways and 

clearings); compounds containing dwelling places as well as smaller buildings (such as 

grain stores) (Sirko et al., 2021). The Open Buildings training set was human-annotated 

and a laborious accomplishment. Examples of its final outputs are shown in Figure 4.1.3.  

Preceding its competitor by several years, the HRSL opted against a supervised-learning 

approach, afraid of its intractability when scaling globally and the large possibility of 

accumulating errors during supervision. Instead, the HRSL employs a weakly-supervised 

learning approach by using only easy-to-get image level categorical supervision into 

training and preforming pixel-level prediction (Bonafilia et al., 2019; Tiecke et al., 

2017b). This in turn makes it less robust to heterogeneous landscapes and reduces overall 

performance of the dataset.  
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Figure 4.1.3- (from Sirko et al., 2021) Examples of the Open Buildings Dataset 

footprint extraction. A powerful, meta-component of the dataset is its “confidence score” 
assessment- which quantifies the relative accuracy of detection for a particular building. The color of 

the polygons in the figure above reflects the confidence score range: red [0.5; 0.6), yellow [0.6; 0.7), and 
green [0.7; 1.0]. Panel (f) is a good example of an instance where natural terrain is mistaken for built-

up infrastructure, fortunately most of the mis-identified footprints in (f) are marked with low 
confidence levels and can be ignored if a user applies threshold-confidence values to their 

implementation of the dataset.   

4.1.2 Applying the Framework: Rank Order Data Types 

An essential component of my framework is its incorporation of multiple Data Types, 

ranked by their respective accuracy. Given that no formal quantitative assessment was 

conducted between all the datasets listed in Section 4.1.1, I rely on the validation and 

sensitivity analyses run by each source to ascertain its data’s performance quality. To select 

the top three Data Types for the Building Coordinate input, I prioritize the following data 

characteristics: (1) high granularity, (2) broad coverage, and the availability of either (3) 

segmented building extents, or (4) population counts. Accordingly, Google’s Open Building 

Dataset, HRSL, and WSF-2015 are singled out. Recall, GUF and GHSL have been proven 
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to perform worse than the WSF-2015 and HRSL (Marconcini et al., 2020; Tiecke et al., 

2017b).   

The Open Building Dataset is ranked ‘best’ because it detects buildings at the highest 

granularity (50-cm resolution satellite imagery), provides the exact extents of building 

footprints, and couples each footprint with a meta statistic on its accuracy. And with the 

geographic heterogeneity of the Open Building’s training set, we can expect the model to 

perform consistently across the continent. This is unlike HRSL and WSF-2015 which 

struggle to discern atypical roofs or building-looking natural features (e.g., rectangular rock 

formations) and hence perform best in areas with more traditional settlement-types and 

little vegetation. The HRSL and WSF-2015 also fail to provide building extents or a formal 

count of the buildings detected within the land-area of a pixel. Instead, each dataset only 

classifies pixels as with- or without- settlement. However, unlike its competitor, the HRSL 

layers its binary classifier with the average population density of the local area – 

information which can be used to estimate building counts. As a result, even though the 

WSF-2015 is available at a higher resolution (10-m or 100-m2 vs. 30-m or 900-m2, 

respectively), the HRSL is preferred. While a user can manually overlay gridded population 

datasets with the WSF-2015 data, it adds additional post-processing steps and becomes less 

tractable for fast and easy implementations. Furthermore, the HRSL is easily downloadable 

for all countries in SSA via EnergyData.Info, with each country’s density raster being 

continually updated as CIESIN releases improved gridded population datasets. However, if 

a user prefers the higher-resolution of the WSF-2015 they can easily interchange it for 

HRSL in the coordinate extraction method outlined in Section 4.1.3.   

Figure 4.1.4 visualizes the ranked ordering between each Data Type. Because the preference 

between HRSL and WSF-2015 is not necessarily associated with higher accuracy levels and 

only the ease-of-use of dataset, the shading between [2] and [3] are identical. Keeping the 

coloring consistent eliminates any visual implication that a choice between either data type 

would sacrifice input estimation performance.  Finally, due to the modular design of my 

framework users can easily interchange between all three options if it better suits their 

study parameters.  
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Figure 4.1.4- Shortlist of Building Information Data Types. The depicted sequence is the 
preferred order by which users should choose a Data Type. The shading between [2] and [3] is 
identical since there is no implication that the latter would reduce quality of the data, only the 

ease-of-use of the data. The assumed accuracy level is inferred from each dataset’s attributes and 
not from formal quantitative assessments. 

 

4.1.3 Applying the Framework: Estimating Household Locations with the 
High-Resolution Settlement Layer   

The following section outlines how to use the HRSL dataset5 to produce the building 

coordinates input. Recall that my framework segments building types into ‘households’ and 

‘productive loads’. Productive loads encompass larger loads with unique consumption 

profiles, often associated with economic returns. Examples include health centers (ranging 

from small clinics to state hospitals), educational facilities (including universities and 

technical institutes), mines, and large industrial plants. Distinguishing between the type of 

loads and their proper spatial allocation is critical during REM’s estimation of on- and off- 

grid network layouts. Further detail on types of productive loads and their role in 

electrification planning is available in Section 4.3. Given that HRSL does not provide any 

ancillary information on the type or size of detected settlements, little can be said from its 

data on which pixels contain those larger loads. As a result, I assume all settlements by the 

HRSL are households, or low-voltage loads.     

The HRSL is available in two primary formats: a Raster file (GeoTIFF) or a CSV. In 

Raster format a pixel is non-zero only if a settlement is detected and zero everywhere else, 

 
5  The Open Buildings dataset was not utilized in this study because it was only made available recently, 

in July of 2021. 
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and the band value is set to the local population density. The CSV file provides the 

centroid of each non-zero pixel and the associated population density value. Since 

DataFrames are more tractable than images in Python, my method uses the CSV format.  

Figure 4.1.5 demonstrates the differences between both file types, by layering both on 

daytime satellite images of the Kimisagara (blue outlined) and Kigali (orange outlined) 

neighborhoods of Rwanda. Each sector’s data is marked in a different color in accordance 

with its band (population density) value. A closer look at Figure 4.1.5(c) shows how large a 

30-by-30 m area is on-the-ground and the multiple buildings (or households) that can 

reasonably occupy that area. To produce the coordinates of all households in a country, I 

first estimate the number of houses per pixel and assign each of those houses to a set of 

coordinates within the pixel.  
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Figure 4.1.5- Raster and CSV HRSL data visualized on satellite imagery of Rwanda.  Image 
(b) and (c) are closer-up perspectives of the north and west areas in image (a), respectively. The region 
outlined in blue is the Kimisigara neighborhood and the Kigali neighborhood is outlined in orange. The 

tiles are the raster image and the circular marker in the center of each tile is the CSV’s centroid 
coordinates. Color of each tile or centroid signifies the local population density. 

 

The density rasters are created by dividing the UN WPP-adjusted population count raster 

for a given target year by the land area raster. HRSL assumes equal population distribution 

per building within a census area, as a way to make no assumptions on the number of 

people per building and constrain systematic errors to one census area (Tiecke et al., 

2017a). I instead assume the density values are a reasonable approximation for the number 

of people living within a square. I also assume that the average size of a household is the 

(a) (b) 

(c) 
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same everywhere in a country, and I obtain these statistics from the Open Data for Africa6 

portal. Under these assumptions, I divide a pixel’s density value by its country’s average 

household size, round down to the nearest integer and approximate the number of houses 

within the pixel’s land-area. The number of houses per pixel will be hereon referred to as 

hhld_num.  To assign latitude and longitude coordinates to each of these houses, I apply 

the following protocol to each pixel:  

§ Extract the bounding x- and y- coordinates of the pixel, in other words the 

minimum and maximum coordinates of the orthogonal sides. Recall that x-

coordinates refer to longitudinal degrees and y-coordinates refer to latitudinal 

degrees. To extract the bounds, I use the cell size and measure the coordinates 

half a distance away in both directions from the centroid. Since the size of the 

cell may differ incrementally depending on where you are with respect to the 

equator, I suggest manually re-calculating the size of the cell per country. Also, if 

either the latitude or longitude of a pixel is negative, it will affect (flip) how you 

set the maximum and minimum values.  

§ For each direction (x- and y-): Produce a 1-dimensional array of 10 equally 

spaced coordinates (each 3-m apart), that are bounded by the pixel’s extents. 

Together the arrays create 100 unique combinations of x- and y-coordinates, 

forming a grid of 100 smaller land-areas within the pixel. I assign each house 

belonging to the pixel to one of these 100 land areas, at random. Figure 4.1.6 

provides a diagram of how each of these arrays combine to form the 10-by-10 

grid. In the diagram the digits in grey are the indices of each 1-D array. The grid 

consists of the pairs of indices which produce the respective [x-coordinate, y-

coordinate] centroid of the small land-area.  

§ Random sampling land areas: Sample an integer between [0, 10) from a uniform 

distribution. I then use the integer to index the x-coordinate array and extract a 

 
6  Open Data for Africa is a statistical data portal put together by the African Development Bank. The 

portal aggregates all statistical information and socio-economic indicators relating to African countries.   
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coordinate. I repeat the sampling process for the y-coordinate array and assign 

the house to the small land-area with that centroid.  

o Sampling x- and y- coordinates is repeated as many times as hhld_num 

evaluates to per pixel – in other words, for as many houses estimated to 

be within the pixel. If hhld_num evaluates to a value below 1 then we 

assume no household exists. 

§ Store the coordinates of each household in the same list while iterating between 

houses in a pixel and pixels in a study-region.  

 

   

Figure 4.1.6- Diagram of how a single pixel is segmented into 100 small land-
areas. 

 The green-shaded squares are examples of how the uniformly sampled values between [0, 10) 
leads to a unique pair of x- and y- array indices, which refer to a specific square (or land area) 

in the formed 10-by-10 grid.   
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Once the protocol has been applied to all pixels in the study-region, save the data as 

GeoDataFrame and export the file as a shape file. To see how well this method estimates 

the local population, I multiply the total number of households by the average household 

size and compare the estimated population count by the country’s most recent reported 

Total Population. If the estimate is far below the total population count, I recommend 

rounding up instead of rounding down hhld_num to the nearest integer. So far, my 

results show that this method overestimates the population count by approximately 15%. 

Future efforts should explore when the instances of overfitting or underfitting occur and 

propose more robust solutions. Potential questions to explore include: How does the 

following method hold up in rural, peri-urban, and urban regions? Are there drastic 

differences? Additionally, I opt for a broad statistic validation exercise because it is the 

type of data that is uniformly available for all countries. However, the exercise is 

imperfect at capturing proximal differences between ground-truth and estimated data. 

More sophisticated validation exercises are recommended if actual household data is 

available for some regions in a user’s country. Figure 4.1.7 is a summary of how to use 

HRSL (or WSF-2015) to extract building coordinates. Three additional studies propose 

methods of translating high-resolution gridded datasets to more granular settlement 

information. Korkovelos et al. (2019) outline how to process the HRSL dataset to 

provide more accurate vector type settlement layers to apply on electrification planning 

tools. Khavari et al. (2021) use open-source data to suggest a methodology that 

translates all high-resolution raster population data into vector-based population 

clusters. Fobi et al. (2021) demonstrate a data processing strategy to convert settlement 

locations from satellite imagery to estimated household locations using census-data at the 

country level. They apply and validate their strategy on Kenya.   
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Figure 4.1.7- Diagram of Building Estimation Method. The first row lists the necessary 
datasets, with the darkest square signifying the chosen Data Type for the following 

implementation of the framework. The round-edged modules represent subsequent steps in the 
method. The final blue parallelogram is the output of the process, and the final step (in green) 

signifies the validation test for the proposed method.  

 

4.1.4 Applying the Framework: Rwanda Case-Study  

Throughout this thesis Rwanda will be used as the case-study for my proposed methods. 

This is because the Universal Energy Access Lab (UEAL), which houses the REM model, 

recently completed drafting a long-term universal electrification plan for Rwanda. The 

project involved the full cooperation of public and private stakeholders in the country. As a 

result, UEAL, was afforded access to ground-validated REM inputs, which can be applied 

to test the reliability of the publicly available data sources.  
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For the task of using HRSL to identify residential buildings I run both a qualitative and 

quantitative comparison. The qualitative comparison will look how the distribution of 

buildings in pixels compares to the footprints visible on satellite imagery. It will also 

compare where the approximate buildings are relative to government-provided settlement 

locations. The quantitative comparison computes the total number of houses estimated by 

HRSL and my building distribution algorithm and multiplies it by Rwanda’s average 

household size. The computed residential population estimate is evaluated against the 

country’s total population count.  

A Qualitative Comparison  

The top-left and top-right images in Figure 4.1.8 are extracted from sparsely populated 

villages in the North-East region of Rwanda. The bottom-left and bottom-right images, 

in Figure 4.1.8, are identical and represent a small subset of the Kigali neighborhood in 

Rwanda. I chose to juxtapose these widely different landscapes to evaluate the model’s 

distribution of buildings in rural and urban locations. The green and pink squares in the 

top and bottom rows, respectively, are the raster cells of the HRSL dataset. The yellow 

circles in the squares of the top row images are the HRSL’s CSV centroid data. The pink 

circles in the top row and the blue circles in the bottom row are the outputs of the 

building estimation method described in Section 4.1.3. Studying the outputs, the model is 

much more precise in areas with low density and therefore fewer houses to distribute 

within the pixel. In some instances of the village images, the model outputs exactly 

overlay the visibly discernable building footprints. However, since a 30-by-30 m (or 900-

m2) land-area is so big, randomly assigning buildings coordinates to anywhere within it 

means that these houses will sometimes end-up nonsensically on a road or nearby plot of 

vegetation. However, the implications of this on REM’s recommended designs of the 

distribution network is likely small. For denser regions, where many buildings are 

sprinkled within the 900-m2 cell area, this effect is magnified, and buildings rarely seem 

to match what the underlying satellite image shows. However, given that these areas are 

also characterized by congruent building footprints, it would be difficult to devise a 

method that produces more ‘sensical’ results. The most accurate alternative would be the 

building footprint extraction models discussed in Section 4.1.1.  
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Figure 4.1.8- Building Estimation Method Performance in Multiple Regions of Rwanda. 
The top-left and top-right images are extracted from sparsely populated villages in the North-East 

region of Rwanda. The bottom-left and bottom-right images are of the same area of the Kigali 
neighborhood in Rwanda. 

 

Figure 4.1.9 compares the output of the model (marked by a blue dot) with both the 

original HRSL raster (pink grid), and the ground-truth data supplied by the Rwanda 

government (marked by a green-star). Zooming into closely, we see that the ground-truth 

data is a poor measure of the total number of buildings in an area. In the bottom-left 

image of Figure 4.1.9, there are multiple instances where we can visibly see more buildings 

than the green-stars indicate. It is less obvious if the model’s output accurately accounts 

for those missed buildings or slightly overestimates the number of buildings in the area. 

Overestimation is likely since population densities are adopted from coarse administrative 

data, and therefore may not be consistently representative of local population 

distributions.  
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Figure 4.1.9- Building Estimation Method Performance Compared to Ground-Truth 
Data for Medium-Sized Village in North-East Rwanda. All images correspond to the same 

area except at different zoom levels. Green stars are the ground-truth data, blue dots are the outputs 
of the model, and the pink grid is the raster of the HRSL dataset. 
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A Quantitative Comparison  

 The model’s total estimated population underestimates Rwanda’s recorded population by 

approximately 2 million people. It is unclear if this underperformance is unique to 

Rwanda or ubiquitous when applying the HRSL dataset. As a result, I suggest future 

work should run this method on all countries in SSA and plot the estimated population 

counts by the official counts. This way, researchers can observe how sensitive this model 

is to how HRSL data differs across countries, for example how the respective granularity 

at which countries report population counts might affect the applicability of population 

density values.  

Table 4.1.10- Quantitative Comparison of Rwanda Population Counts. 

Estimated Number  
of Households  

Estimated  
Population Count  

Total  
Population Count 

 
Error (%) 

3,395,081 14,598,852 12,630,000 15.6 
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4.2  Identifying Building Locations: Productive Loads  

In electrification planning we care about the location of buildings for two reasons: to know 

where individuals still lack electricity and to provide feasible, cost-effective plans on how to 

connect the buildings to power. Section 4.1 has given a thorough overview on how to locate 

people (or settlements). This section will enrich these findings by providing methodology to 

answer crucial questions about the nature of these settlements: what type of consumers the 

settlements represent, how much electricity they are going to need, and how planners should 

anticipate how their load behaviors will change over time. These parameters are especially 

critical to running REM. Unlike other electrification planning models, REM incorporates 

engineering design capabilities into its evaluation of a cost optimal electrification plan and its 

prescription of network layouts for Mini-Grids and Grid Extensions. Therefore, modelling the 

load characteristics of the identified buildings becomes crucial to the legibility and useability of 

REM’s outputs.  

In my implementation of the framework, I use building data to delineate the extent of household 

settlements and small loads. Examples of small loads are local commercial businesses, village 

community centers, or household-operated services in rural or peri-urban areas. These loads 

usually share similar consumption profiles and are always fed by low-voltage lines. Other loads 

like health centers, education facilities, mines, and large industrial consumers will have unique 

consumption patterns, require larger and more reliable amounts of electricity, and might need to 

be fed by higher voltage lines. As such, they become important to REM’s generation capacity 

studies and spatial delineation of Off-Grid (OG) and Grid Extension (GE) clusters. As shown in 

Figure 3.2.1 in Section 3, the Building Coordinates module is used as an intermediary input to 

the estimation of the MV Grid Input when the information is unavailable for a user’s study 

region. In which case, feeding REM the most correct spatial distribution of large customers is 

critical to ensuring it closely approximates the country’s existing grid.  

While my framework emphasizes distinguishing between productive and residential (or smaller) 

loads, a user may opt to skip this step if they are less concerned with modelling future capacity 

requirements and detailed grid layouts. Instead, they can randomly allocate a pre-determined 

list of customer archetypes to the settlements they detected from Section 4.1. Similarly, if the 
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user has access to the layout of the MV grid when running REM, sidestepping productive load 

estimation can also suffice. This holds only under the assumption that most large, critical loads 

are considered high-priority and profitable to the local utilities and thus likely to be already 

electrified and not relevant to the planning of network expansion to all customers. Still, 

medium-sized loads in unelectrified regions are deciding parameters in REM’s assignment of 

clusters as either sophisticated Mini-Grids (MG) or small solar-home kits (SHS). The following 

sections provide an operational background on REM, and a review of open datasets that can 

help estimate productive loads and introduces an experiment on using the Google Places API to 

supplement our building coordinates input.  

4.2.1 Background on REM: How does it consider individual building 
locations? 

The objective of REM is to determine the optimal grouping of individual customers into 

electrification clusters such that total system costs are minimized (Ciller et al., 2019). Each 

cluster is assigned one of the three electrification modes (MG, SHS, or GE). When deciding 

among the electrification modes, REM evaluates the cost of the internal network of a MG 

or a GE network that meets all prescribed technical requirements. Technical requirements 

include physical constraints of power flows, capacity sizing, a catalog of existing grid 

components, compliance with grid codes, reliability requirements, and dispatch strategies 

(Ciller et al., 2019). REM employs the Reference Network Model (RNM) to run these 

technical network-design tasks.  

RNM is a software tool for large-scale network design, which can also be applied in the 

design of the network components of micro- or mini-grids (Ciller et al., 2019; Domingo et 

al., 2011). RNM designs a quasi-optimal distribution network that meets demand 

requirements under prescribed reliability and electrical constraints, while minimizing capital 

investment costs (CAPEX) and corrective, or operational maintenance costs (OPEX). 

Electrical constraints include grid feasibility metrics like maximum allowed voltage drop 

and the maximum capacity of the system. To produce this optimal network layout, RNM 

requires the location of customers, their estimated peak power usage, the location of 

transmission substation, topological features (e.g. slope, altitudes in the terrain, forbidden or 
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penalized zones and village or other administrative boundaries), and a catalog of 

technoeconomic information (Ciller et al., 2019). Once RNM produces its optimal layout 

and the corresponding costs for a particular cluster under a specific electrification mode, 

REM proceeds with the least cost cluster design. Importantly, the quality of RNM’s design 

and cost estimates are only as good as its inputs. Hence, prioritizing the accurate 

specification of building locations, and appropriately characterizing each building as a 

particular load type is necessary for building a scalable, open-access framework that does 

not majorly compromise the outputs of REM (or similar electrification planning tools). This 

is especially true for GE clusters where customer types are more heterogenous than small 

villages composed of a (usually) standard list of load-types. Cities, on the other hand, tend 

to be more diverse and consist of unique industries and consumer preferences. As a result, I 

recommend considering productive loads separately, since it would only be to the advantage 

of the electrification planner.  

Customer Archetypes, Demand Profiles, and REM 

REM classifies customers into broad customer archetypes like ‘Secondary School’, 

‘Health Center’, or ‘Local Government Office’. The demand of each archetype is 

modelled as either a single power utilization pattern or as a linear combination of several 

consumption patterns. The demand patterns are typically estimated by considering the 

consumption of similar loads in rural regions of other countries, or by using the expected 

appliances and machinery used to estimate what demand needs will be through the day 

or year. Compiling these demand profiles is beyond the scope of the thesis, and is the 

primary subject of multiple studies in literature (Alova et al., 2021; Fabini et al., 2014; 

Fobi et al., 2021; Lee & S, 2019; Williams et al., 2017). Nonetheless, the consensus across 

this literature is that optimal electrification planning without modelling the spatial 

heterogeneity of demand will lead to misleading, often more expensive, results at the 

local level. For example, Lee & Eduardo (2019) demonstrate that modeling demand 

heterogeneity produces REM plans that are 9% less costly than modeling assuming one 

single customer type and increases the prevalence of MGs and SHSs. Consequently, 

developing a method for locating different consumer types and thus inputting spatial 

variations in demand, enables planners to accurately model the impact of settlement 
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patterns on the components of the distribution system, and avoid under- or over- 

building the local system.  

While I am not concerned with estimating energy demand, my choice to formulate a 

method to distinguish households from productive loads, and segment load types to 

buildings does support the effort of better demand characterization. I refer to REM’s 

broad customer archetypes to define the scope of non-residential loads this section should 

explore. The list includes: 

§ Community Consumers: Primary and Secondary Schools, Children Care 

Facilities; Technical Institutes and Universities; Health Centers; Government 

Offices; Large Community Spaces (e.g., Markets)  

§ Productive Consumers (aimed at economic rewards): Irrigation Sites 

(Agricultural Industry); Mining Facilities; Manufacturing or Distribution 

Factories; Large Retail Sites; Telecommunication Towers; Airports; Tourist 

Attractions (Museums, Amusement Parks…etc.) 

4.2.2 Open Data Sources and Limitations 

Open Databases and Manually Compiled Datasets   

Several existing datasets detail the location and characteristics of the customer 

archetypes listed above. These datasets are typically compiled manually, by the 

provision of governmental institutions, developmental agencies, or non-governmental 

organizations (e.g., the WHO and the World Bank), each of whom are stakeholders in 

the developmental progress of nations in SSA, encouraged to create and share these data 

types to monitor and expedite the improvement of infrastructure, sanitation, and health 

across the continent. Unfortunately, these datasets are limited to few load types, and 

vary in availability between countries. Moreover, given that these datasets are collected 

mostly by survey and engagement with on-the-ground resources, it takes exceptional 

effort to remain aware of changes on the ground, then recompile and update the data; 

therefore, they may quickly become outdated. Table 4.2.1 provides an overview of these 

publicly available datasets. The table also includes a list of databases which regularly 
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aggregate and share new data on African (or global) nations, for academic and 

developmental purposes (e.g., Open Africa). Given that our objective is to find a 

scalable, publicly available method for estimating inputs of electrification planning tools, 

a more robust and consistent approach to identifying the location of Community and 

Productive customers is preferred.  

Table 4.2.1- List of Publicly Available Datasets on Productive Customer Types.  

Category  Dataset Name, Institution  Description 
Relevant 
Publications 

Healthcare 
Facilities  

Public Health Facilities in 
Sub-Saharan Africa, World 
Health Organization (WHO) 

Geospatial inventory of 98,745	public health 
facilities, compiled from a variety of government 
and non-government sources from 50 countries 
and islands in SSA. 

(Maina et 
al., 2019) 

Healthsites.io, International 
Committee of the Red-Cross 

Global geospatial inventory representing more 
than 150,000	health facilities. OpenStreetMap 
was the primary dataset used, as well as several 
databases from trusted partners.  

(René 
Saameli et 
al., 2016) 

Large-
Scale 
Databases 
for SSA  
and other 
regions  

OpenStreetMap 
Large crowdsourcing platform that contains data 
about various infrastructure types, including 
public and private institutions. The information 
is plenty but inconsistent across the continent.  

None.  

OpenAfrica,  
Code for Africa  

Large independent repository of open data on 
the African continent.  

EnergyData.Info,  
the World Bank Group 
(WBG) 

Open data platform providing access to datasets 
and analytics that are relevant to the energy 
sector.  

Open Data Impact Map, 
Center for Open Data 
Enterprise  

Public database of organizations that use open 
data from around the world. 

Cropland 
Extent  

Global Cropland Extent 
Project, 
NASA 

Utilized 250m MODIS satellite data to map 
global production cropland extent, compiled 
over the period of 2000-2008.  

(Pittman et 
al., 2010) 

Global Food Security 
Analysis-Support Data at 
30m for the African 
Continent,	 
United States Geological 
Survey’s (USGS) 

Provides cropland extent maps at 30-m 
resolution by utilizing multiple satellite imagery 
composites and Machine Learning (for pixel-
level classification of cropland).  

(Xiong et 
al., 2017) 

Mining 
Sites 

Geospatial map of company-
owned and community-
managed mines across SSAd, 
University of Sheffield 

Identified and mapped the extent of 469 mines 
across SSA. Data is compiled form a variety of 
sources which include USGS, Google Earth, and 
other databases (e.g., Mining-atlas.com)  

(Ahmed et 
al., 2021) 

  d  No link available. Data available upon request only.  
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Google Places API for Locating Productive Load Types 

A yet unexplored source of data on the geolocation of different businesses or services 

(i.e., electricity consumers) in an area, is Google Maps. Google Maps covers over 200 

countries and territories, is updated 50 million times a day, and has 1 billion monthly 

active users. In other words, it is an expansive, global resource for geospatial data. To 

enable program developers to expand and apply the Google Maps library, the company 

created the Google Maps API with three products: Maps, Routes, and Places. The 

Google Places API lets one search for places in the same way one would type in ‘coffee-

shop’ or ‘market’ into Google Maps and get a list of nearby businesses meeting those 

keywords. With the Places API Nearby Search, a user specifies a set of search 

parameters as an HTTP request (i.e., a https:// URL), and the API returns the results 

of the search in JSON or XML notation (user specified in the ‘output’ field). The 

required search parameters are: (1) one or more descriptive keywords of the place, (2) 

the coordinates of their region of interest, (3) the desired search radius (in meters), and 

(4) an API key. The API response (results) will consist of a list of places that match the 

terms of the search and supporting information on each place. Of the information 

returned, the most useful fields for our application are the following:  

§ Geometry: Latitude and longitude coordinates of the location. 

§ Name: Human readable name of the business or establishment.  

§ Place ID: A unique textual identifier assigned to all places on the Maps API.  

§ Types: Array of keywords that describe the Place. The keywords are restricted 

to a pre-defined list of 100 place-types established by the Google Maps API.  

§ Vicinity: A simplified address for the place that usually contains the 

administrative locality it belongs to.  

The specificity and ubiquity of Google Maps makes it incredibly powerful at extracting 

information on a variety of customer types and their locations. Information from this 

service is likely the most complete and reliable than any other compiled dataset or open 

database today. However, users of this data source should begin by reviewing the Google 

Maps Platform and Terms of Service, and specifically reference Section 3.2.3(a) and (b) 
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on the storage and sharing of API results. So far, no published literature has employed 

the Google Places API for infrastructure detection. Unlike publicly available datasets 

discussed earlier in the chapter, using the API comes at a cost. To use their products, 

Google requires users to register for an API key7. Each time the registered API key is 

used to request data from the platform (e.g., we execute a URL search for nearby places) 

the user is billed. The cost is calculated by multiplying the price per use of the product 

with the number of uses in a month. Each Google Maps API product has a registered 

SKU. For this study, the product used is Places Nearby Search and it is billed at 0.0112 

USD per use. This translates to 112 USD for 1,000 uses of the product, or 1,000 

individual URL searches; and users are given 200 USD free Google Maps credit per 

month. While not inexpensive, the costs are expected to be much less than the time and 

resources needed to acquire the information by alternative means, like time-intensive 

relationships with on-the-ground stakeholders or surveyors.  

4.2.3 Applying the Framework: Rank Order Data Types 

 
Figure 4.2.2- Rank Ordered List of Community and Productive Load Data Types. 

Ranking of validation accuracy is presumed and not quantitatively measured. Google Maps API is 
more complete and thus ranked ahead of the aggregated data sources.  

 
When ranking the Data Types, I prioritized data that could be used in any region, at any 

level of specificity, and for any type of load. The only Data Type to meet all the 

requirements is the Google Places API. Data Type [2], which encompasses all the datasets 

 
7  Several online resources are available on how to set-up a Google Cloud account and obtain a unique 

API Key.  
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described in Table 4.2.1, is ranked second because it does not include information for all 

types of loads or for all regions. Data Type [3] involves the random assignment of buildings 

in REM’s clusters to pre-defined load types. Therefore, it is theoretically available for any 

country and for all loads. However, it lacks any relation to what’s happening in the country 

in real-time, therefore it necessarily is less accurate than using [2] wherever it is applicable 

and [3] overall. As such, I still recommend [1], or [2] if possible, especially if the user of the 

framework intends to also apply the information to replicating a country’s existing MV grid.  

4.2.4 Applying the Framework: Google Maps API for Load Type Identification  

My method can be separated into three steps: (1) Specifying the latitude and longitude 

coordinates for the full search area, (2) Selecting an optimal search radius, (3) Compiling 

the list of keywords to search for each load type with.  

Specifying Latitude and Longitude Coordinates for Study-Region 

The Places Nearby Search tool works by looking for places within a radial area that 

match the supplied keywords. The centroid of the area and its extent is determined by 

the user-specified spatial coordinates and search radius, respectively. To simplify the task 

of selecting coordinates that encompass the entirety of the study-region, I take advantage 

of the HRSL CSV dataset. In this way, I have the complete list of centroids of all 900 m2 

squares that demarcate my country of interest. For smaller, intra-country, regions a user 

can simply apply a vector mask of the region’s extent on the HRSL data using any GIS 

software, for example QGIS or ArcGIS, and extract only the centroids (and squares) of 

interest.  

Selecting an Optimal Search Radius 

Choosing a search radius is a non-obvious task. The computational time for running 

multiple requests on smaller search radii is much larger than the computational time 

needed to run fewer requests on larger radii. At the same time, the API returns a 

maximum of 60 places in a single request, therefore if the radius is too large then places 

that meet the search criteria but exceed the first 60 responses will be left out of the API 

results. Since the centroids in the HRSL CSV files are extracted from an original raster 
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file, we know that each coordinate is the center of equally sized, sequential squares (or 

pixels). We also know that the dimensions of the square are equal to the spatial 

resolution of the raster file (30m in our case). Figure 4.2.3(a) demonstrates the results of 

the setting the diameter of the search area equal to the length of the square (or pixel). 

The regions in red are sections of the land-area that are excluded from the search, and 

therefore places in those sections will be unaccounted for. Figure 4.2.3(b) circumscribes 

the square in a circle, which we know from geometry will have a diameter equal 

√2 × length	of	square (or 42.4m in our case). This approach will ensure no areas are 

missed but might lead to duplicate responses from adjacent pixels. Fortunately, removing 

duplicates from an array post-compilation of all API responses is very quick and easy, 

since each place has a unique textual identifier: Place ID.  

To improve the computational efficiency of the task I leverage the sparsity of several 

load types. For example, there will never be more than a few airports or mining sites in a 

country. Health centers or hospitals are also typically distributed uniformly across a 

country and therefore checking each pixel for these load types would be redundant and 

costly. As a solution I use a larger search radius and only call coordinates of every other, 

every 10, or every 100 pixels. I skip more or fewer pixels depending on how infrequently 

or frequently I expect to see the load type, respectively. The size of search radius should 

be scaled accordingly. For example, one should increase the size of the search radius 

when skipping more pixels. to guarantee all relevant loads are encapsulated. Again, it 

costs less to search a larger area than it does to make multiple, redundant API requests 

– both in money and computational time. Figure 4.2.3(c) demonstrates an example 

where every other pixel is skipped, and the search diameter is twice the size of the cell.  
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Figure 4.2.3- Visualizing How Different Search Radii Impact the Areas Encapsulated. 
Red shading indicates land-areas left out of the API search, while green indicates areas included. 

 

Compiling the List of Place Types to Search  

Google Maps classifies all its Places as 1 of 100 pre-defined ‘types’. Each ‘type’ is a one-

to-two-word identifier of a Place. In Section 4.2.2 I introduce the customer archetypes I 

want to locate. I expand and explicate this list into 18 total archetypes in Figure 4.2.4. 

Instead of searching for Places which belong to those archetypes using my own 

descriptive keywords, I decide to leverage Google’s own classification nomenclature, the 

pre-defined ‘types’, as the keyword in the URL API request. The advantage of using 

Google’s own terminology is that it eliminates the guesswork on how loads-of-interest 

were categorized internally.  

I started by exporting the list of ‘types’, provided by Google Maps, into a CSV file. I 

then manually discarded ‘types’ which were: too specific and irrelevant (e.g., ‘bookstore’ 

or ‘locksmith’), not electrified (e.g., parking lots), or not culturally consistent with the 

SSA region (e.g., RV Park). I classified each ‘type’ into one of the 18 general consumer 
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archetypes I am interested in. And will use each of these keywords when compiling the 

geolocation of all loads that fit the archetype in my region of interest. Note that when 

implementing this method, users are free to reduce the consumer archetypes or use fewer 

(e.g., only the most specific) ‘types’ in their search. Table 4.2.4 shows how I have 

distributed each of these keywords into my broader classes of customers.  

 

Table 4.2.4 Linking Consumer Load Types to Google Maps Keywords 
 

 

Final Implementation  

To compile a DataFrame of the location of all Places that encompass a single archetype, 

I search a radial area for each of its associated keyword one term at a time, loop through 

all cells and all keywords, then remove Place ID duplicates. As mentioned earlier, each 

Load Types will have an optimal search radius, whereby the protocol for setting it is: 

narrower radii for more frequent Places, and wider radii for less frequent Places. Users 
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are expected to repeat the process laid out in Figure 4.2.5 for each of the customer 

archetypes. 
 

 
Figure 4.2.5- Stepwise Process of Estimating Productive Load Locations. The first row 
lists the necessary datasets. The round-edged modules represent subsequent steps in the method. 
Indentations and shading signify embedded and groupings of code, respectively. The final blue 

parallelogram is the output of the process, and the final step (in green) signifies the validation test 
for the proposed method. The process was adapted from: 

https://towardsdatascience.com/tagged/google-places-api?p=588986c63db3 
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4.2.5 Experiment: Extracting Health Sites in Rwanda from Google Maps API   

To see how accurate using Google Places is, I conducted a small experiment comparing the 

WHO Public Health Facilities dataset with a Google Places API search for health centers. 

The keywords used to run the API search were: ['health', 'hospital', 'clinic', 'doctor', 

'medical', 'health center']. The search was limited to a small region of Kigali, Rwanda. 

Upon inspecting the results a few of the matches were unrelated (e.g., a grocery store that 

sold health products). This is easily remedied by filtering results where the first element in 

the returned “types” array does not match any of the keywords. I then plotted the results 

(see Figure 4.2.6) and found that some facilities appeared twice under slightly different 

spellings. We see this with the Cor Unum Health Center on the map in Figure 4.2.6. 

Resolving this issue is slightly more difficult since there’s no automatic way to extract 

repeated Places with different field characteristics (i.e., names). However, if instances of 

repetition are infrequent, then it is unlikely that it will drastically impact the results of 

REM as an electrification planning tool, or to replicate the MV distribution network. To 

verify if these repetitions are infrequent, future studies could search different areas for 

different load types, then plot and inspect the results.  

Altogether, the experiment shows promising results by accurately predicting the location, 

and name of all WHO health facilities. In addition, the API also returns all other health 

clinics and private practices in the area. This level of load-type-information granularity is 

uncommon for publicly available data sources and should be taken advantage of. 

Nonetheless, the proposed model must undergo further testing to discern how practical it is 

for large-scale use.  
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Figure 4.2.6- Health Centers identified by WHO and API within Kigali, Rwanda. 

Key in upper-right corner explains what each marker on the map is. Black lines represent 
Administrative Level-3 Boundaries for Rwanda in the Kigali region. The white tags call out all 

instances in which the WHO and API data aligned.   
 
 

4.3 Delineating Electrification Status  

Once the locations of productive and residential loads have been determined, the loads must be 

classified as ‘already electrified’ or ‘without electricity’. The location and characteristics of 

electrified loads will be used as an input to REM during the estimation of the existing MV grid 

layout. Unelectrified load information is used for the actual task of planning how to achieve 

universal energy access under prescribed techno-economic and reliability requirements. The size 

and distribution of all unelectrified customers in a study region informs REM how to optimally 

cluster and delineate loads between the off-grid technologies (MGs or SHS) and grid extension. 

Furthermore, accurately tracking the state of electricity access is crucial to assessing progress 

and prioritizing investments towards universal electrification. Despite this, there are only a few 

recorded approaches for electrification status estimation. The following section will provide an 



 82 

overview of these estimation methods, describe their relative advantages and disadvantages, and 

propose a scalable, open-access approach to delineating the electricity status of buildings.  

4.3.1 Data Sources & Limitations 

Nighttime Light Composites  

The single most-employed proxy for estimating electrification from openly available 

sources is nighttime light data (NTL). NTL information provide global daily 

measurements of nocturnal visible and near infrared (NIR) light; or in other words 

describes the distribution and relative brightness of all synthetically lit-up areas. It takes 

a full year of nightly observations to produce a global composite of nighttime lights, free 

of extraneous features unrelated to electric lighting (Elvidge et al., 2021). The annual 

composites are filtered against cloudy, sunlit, or moonlit data and exclude outlier pixels 

representing biomass burning, natural gas flaring, snow, or the aurora. The data is either 

available through the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi 

National Polar-orbiting Partnership satellite, at a resolution of 450-m, for the year 2012 

onwards, or its predecessor the Defense Meteorological Satellite Program - Operational 

Linescan System (DMSP-OLS), at a spatial resolution of 1-km, for the years 1992-2013.  

Previous studies have shown that NTL intensities can be used to assess residential 

energy consumption, detect power outages, monitor population fluctuations and 

migration, as well as regional GDP and income inequality (Albert et al., 2017; Elvidge et 

al., 2020; Falchetta et al., 2019). The strengths of using NTL data for electricity status 

estimation is its global coverage, frequent collection (daily), consistency of measurement 

across administrative borders, and long historical record (the VIIRS satellite has 

reported data since 2012, and its predecessor DMSP-OLS satellite has reported data 

since 1992-2013) (Correa et al., 2021). However, the data exhibit substantial noise, tend 

to overrepresent streetlights, suffer from stray light effects, can be difficult to distinguish 

from lunar illuminance, and are powerless in the face of clouds. Moreover, deep rural 

areas, even when electricity access is present, may not register any signature because of 

extremely low levels of external lighting.  
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Despite these shortcomings, several studies have worked to improve NTL’s prediction of 

electrification in developing areas. Correa (2021) showed that daily NTL composites 

combined with open-source population counts improves the detection of electrified 

regions and the generation of more accurate electricity access maps. Elvidge (2020) 

focuses on low-income regions, typically the subject of most electrification planning 

tasks, and provides evidence that indices such as the mean, variance, and lift of NTL 

irradiance can be used to assess long-term power supply growth and stability. Li (2020) 

harmonize inter-calibrated observations from the DMSP-OLS data with VIIRS data to 

produce an NTL time-series dataset. The authors believed that studying the temporal 

trends of nighttime lights could support various studies related to electricity 

consumption and urban extent dynamics. Finally, researchers within the UEAL have 

experimented with applying probabilistic graphical models (PGMs) to delineate the 

electrification status of buildings (Lee, 2018). The PGMs combined multimodal and 

multiscale features (e.g., census statistics, or satellite image features) with NTL intensity 

levels. Altogether, the body of research suggests that NTL data can be a viable method 

for electrification status estimation.  

Falchetta (2019) High-Resolution Gridded Dataset for Electrification in SSA 

Falchetta (2019) presents and validates a 1-km2 resolution gridded electricity access 

dataset that covers all Sub-Saharan Africa. As it stands, the Falchetta dataset is the 

most complete publicly available map of electricity access in the region; and therefore, 

the Data Type I apply to the framework in subsequent sections. The dataset is in 

netCDF format and characterizes energy access in one of two formats. The first gives the 

local count of people without access to electricity per grid cell (i.e., pixel), for the years 

between 2014 and 2018. The second netCDF classifies pixels where people have access to 

electricity in 2018 as 1 of 4 ‘tiers of consumption’, whereby each tier ranks residential 

electricity consumers by their expected daily energy usage. The continuous consumption 

values clustered into these tiers follow the thresholds defined by the World Bank Multi-
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Tier Framework8; where 4 signifies the highest energy usage, and 1 the least (Falchetta 

et al., 2019).  

Given the importance of the Falchetta data to my estimation of the ‘Delineation of 

Electrification Status’ Input Module, I will provide a detailed run-through of how they 

compile their gridded dataset. To classify each 1-km2 grid as electrified or unelectrified, 

for each year, the authors use the 2014-2018 VIIRS-DNB (Visible Infrared Imaging 

Radiometer Suite, Day-Night Band) stray-light corrected NTL monthly composites. The 

median value of radiance within each pixel of the VIIRS composites was calculated per 

grid cell. If the average radiance was above a minimum threshold value (0.25/0.35	78 ∙
:;!" ∙ <=!#) then the grid was considered ‘lit’ and the people within it ‘electrified’. The 

inverse applied to grids with average radiance equal to- or below- the threshold value. 

Population counts for each grid, and electricity status, was imported from the 1-km 

LandScan 2014-2017 Gridded Population Distribution dataset. Falchetta (2019) gives a 

snapshot of the estimated density of people without electricity access over Uganda in 

2018 in Figure 4.3.1.  

To classify each cell to a consumption tier, the authors first identified them as containing 

either rural or urban settlements. Both the 2017 MCD12Q1 V6 MODIS Land Cover 

Type dataset (500-m resolution) and 2017 LandScan Gridded Population dataset (1-km 

resolution) were used to distinguish between settlement types. Cells with land-cover type 

13 (indicating the existence of urban and built-up lands) and with a LandScan 

population density higher than a specific (>?ℎAB ∙ C;!") threshold are classified as 

‘urban’. If below these thresholds, the cell is identified as ‘rural’. Based on the 

distribution of quartile values of non-zero light radiance across electrified cells, four tiers 

of residential consumption were defined, with thresholds set at the median value of each 

quartile distribution. Threshold values were set separately for urban and rural cells to 

account for the strong discontinuity between the average radiances of each. For exact 

radiance values, see Table 4.3.2.  Finally, the tier data is mapped to the gridded 

 
8 World Bank Multi-Tier Framework (MTF): Formalized method to define and measure access to energy.  
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population counts to derive the share of the population with access to electricity in each 

consumption tiers. The authors retrieve household survey data from the WorldBank 

Microdata Library to validate the consumption tiers and national electricity rates from 

the ESMAP/World Bank Tracking SDG portal to validate their counts of unelectrified 

population. Overall, their model performs well on most-recent electrification data (2018) 

with an D" = 0.81 and the main discrepancies in consumption tier data are attributed to 

poor recording of residences connected to decentralized technologies.  

 
Figure 4.3.1- (from Falchetta et al., 2019) Distribution of People Without Access over 

Uganda in 2018.  Colors represent the density of people without electricity access in each 1-km2 cell. 
Administrative boundaries correspond to GADM Level-1.   

 

Table 4.3.2- (from Falchetta et al., 2019) Definition of Radiance Tiers (!" ∙
$%!" ∙ &'!#) for Electrified Areas Used to Estimate Consumption Levels.  
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Machine Learning (ML) Powered Nighttime Lights Data  

A potential augmentation to NTL composites or the Falchetta dataset is to incorporate 

additional publicly available features that might signal the use of electricity in an area. 

With new advancements in computer vision, some work has been done on applying new 

machine learning techniques to detect economic activity and poverty from Nighttime Lights 

(Jean et al., 2016; Xie et al., 2015). Jean (2016) demonstrates an inexpensive and scalable 

method to estimate consumption expenditure and asset wealth from high-resolution satellite 

imagery. The study assumes NTL intensities are a reasonable proxy for economic 

productivity and apply a three-step transfer learning model. First, they fine-tune a pre-

trained CNN to predict the nighttime light intensity corresponding to a daytime satellite 

image. Second, the model learns a non-linear mapping of how features of satellite images 

can predict the variation in nighttime lights. Finally, using the features extracted and 

survey data, the authors train a ridge-regression model to estimates cluster-level 

expenditure and assets. Whereby the subset of features that explain variation in nightlights 

are also predictive of economic outcomes. Jean (2016) was able to explain up to 75% of the 

variations in local economic outcomes, emphasizing the heterogeneity captured in NTL 

data.  

Inspired by this work I experimented with using transfer learning to predict local 

electrification access. As mentioned earlier, NTLs are poor indicators of (or proxy for) the 

availability of electricity in more remote, rural areas. This is due to customers in those 

areas consuming less power with fewer streetlights in use, therefore radiance from those 

regions is more difficult to detect. I employ Jean (2016)’s assumption that high-level 

features leaned from daytime images are indicative of nighttime lights and therefore 

economic development (or vice versa), minimizing the crucialness of NTL detectability. 

Instead, the newly inferred NTL intensities are used as better signals of electricity access 

and Falchetta (2019) radiance cut-offs can be utilized to re-classify areas as electrified or 

not.  

I train and fine-tune a convolutional neural net (specifically, a ResNet50) to classify a 1-km 

by 1-km daytime satellite images as one with high, medium, or low nightlight intensity. 
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Broad classes were used in lieu of precise prediction of radiance values because initial 

experiments showed that the ResNet50 model performed worse on regression tasks (lower 

overall validation accuracy). Daytime images classified as low intensity corresponded to 

areas below the electrified-radiance threshold defined by (Falchetta et. al, 2019), medium 

intensity images corresponded to electrified areas with rural or peri-urban settlements 

(lower tiered consumption), and high intensity images represented densely populated, 

electrified urban regions (consumption tier 4). I trained and tested the model on a subset of 

north-west India, which was characterized by widely different terrains and population 

densities. The advantage of this region is its inclusion of Delhi, a city known to be 

electrified. This is important because my experiment lacked any labels on whether the 

daytime images were electrified or not, I only used NTL radiance thresholds to make that 

assertion. Therefore, it is crucial to make this assumption on an area I have enough 

contextual information on to be able to verify whether it is or is not electrified. In this case, 

daytime images from Delhi are appropriately labelled as ‘electrified’ by means of high NTL 

intensity levels. 

Daytime images were obtained from the Google Maps API at a Zoom Level of 16 (spatial 

resolution of 2.5-m) and with size 400 by 400 pixels, which corresponds to 1 NTL pixel. To 

extract the NTL data for India only, the image was clipped by overlaying India’s 

administrative boundaries provided by GADM in QGIS. The model performed well with a 

validation accuracy of 88.9%. I inspected the final activation layer of the ResNet50 model to 

guarantee that the neural network was learning semantically meaningful features in the 

images when classifying it as one of the three NTL intensity classes. Figure 4.3.3 plots these 

activations on an example of a high intensity daytime image. Activations refer to the 

features of an image the CNN uses to classify it as one of the three classes. Figure 4.3.3 

demonstrates that the model successfully activates only regions with buildings, ignoring 

surrounding vegetation. In fact, it does this so well that it precisely activates the footprint 

of the building in the middle of this green patch. Suggesting the model is using the 

existence and extent of detected built infrastructure in a daytime image, to classify high-

intensity pixel areas (i.e., electrified areas).  
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Figure 4.3.3- Activation Features of Correctly Classified High Intensity 

Daytime image, in North-West India. 
 

The experiment confirms that CNN models can successfully and inexpensively learn useful 

infrastructure information from publicly available satellite data, then abstract this 

information to predict broad NTL intensity classes. However, its outputs are not verified 

against any ground-truth survey data and therefore I cannot verify that the inferences made 

on intensity classes corresponds accurately to electricity statuses. Therefore, additional 

validation of the model’s outputs is needed, as well as the incorporation of more diverse 

terrains to test the robustness of the model. Nonetheless, enhancing NTL data with ML-

feature learning does address some of the limitations of only using NTLs as a proxy for 

electricity status (especially for more remote, rural areas).  
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4.3.2 Applying the Framework: Rank Order Data Types 

 
Figure 4.3.4- Rank Ordered List for Electrification Status Delineation Data Types. 

Ranking of validation accuracy is presumed and not quantitatively measured.  

 
When deciding how to rank data sources on electrification status, sources that reached the 

widest number of countries, were easy to implement, and were already validated were 

ranked highest. Of all the data sources described in Section 4.3.1, only the Falchetta 

gridded electricity status dataset meets each of these requirements. Additionally, the 

layering of the NTL data with consumption tiers helps segment residential loads into 

different load-profiles. Rural residences are necessarily going to have different daily usage 

trends, different appliances, and different reliabilities than residences located in dense, 

urban cities. Consumption tiers eliminate the guesswork of which of our residential 

buildings from Section 4.1 belong to the two profile types.  

Data Type [2] has promise at improving the detection of lit-up areas (i.e., nighttime light 

radiances) by learning additional features that indicate electrical (or economic) activity. 

However, it is not out-of-the-box ready to overlay on building locations and classify each as 

electrified. Using nighttime light composites, or Data Type [3], is equivalent to the method 

used by Falchetta for its binary classification of electrified areas. The only difference is that 

the authors of Falchetta (2019) already pre-processed the NTL images to remove noise and 

non-electrical lights, then re-labelled the intensities as with or without electricity. Therefore, 

unless a user prefers to implement their own threshold values, defaulting to one of the two 

1-km2 gridded NetCDF files is preferred. The only shortcoming to Data Type [1], or 

Falchetta (2019), is its annual count of “people without electricity between 2014-2018” is 
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only useful if we know how many people in the cell do have access, otherwise we cannot 

know if the count represents 100% of the people who are settled in that cell. Therefore, if a 

user decides to use the five-year count instead of the 2018 consumption tier file, I suggest 

they pre-compute the total population number per cell and update each cell with proportion 

of the total population without electricity.  

Finally, independent endeavors aimed at producing more precise estimates can leverage the 

harmonized NTL composites (Elvidge et al., 2021; Li et al., 2020) or ML classification 

models to improve upon the Falchetta (2019) dataset. Since the Falchetta (2019) dataset 

has openly published its code online, we can simply substitute their NTL intensity inputs 

with alternative, more granular or accurate versions.    

4.3.3 Applying the Framework: Gridded Falchetta et al. Dataset for 
Electrification Status 

The following section will describe two tasks. The first task is to assign residential or 

productive loads a consumption tier, simultaneously confirming their electrification status. 

The second task will estimate the peak-power of each residential load using the World 

Bank’s Multi-Tier Framework (MTF).  

Assigning Electrification Status to All Buildings 

Fortunately, the Falchetta (2019) dataset is set-up as a grid and thus can be processed 

like an image (or raster file), with each cell analogous to a pixel. This lets me take 

advantage of Rasterio, a GDAL (Geospatial Data Abstraction Library) and NumPy-

based Python library designed to simplify raster-data processing and analysis. For 

instance, Rasterio has several built-in functions that automate the task of assigning pixel 

band values to encased points or polygons. I will explicitly refer to these functions as I 

describe my method for delineating electrification status. The assignment of tiers or the 

2018 grid’s band value to loads can be broken down into four steps, a schematic of which 

is available in Figure 4.3.5:  

1. Convert the gridded dataset from netCDF format into a GeoTIFF to make the 

file Python compatible. GeoTIFF files embed geospatial metadata into image files 



 91 

(.tiff) that describes the actual location in space each pixel in the image 

represents. The metadata includes information about the spatial extent of the 

image, the coordinate reference system9 (CRS) used to store the data, the spatial 

resolution of the image (i.e., the number of independent pixel values per unit 

length), among other geographic properties of the captured land-area.  

2. Once converted, the raster image is clipped to just the boundaries (or extent) of 

the study region. For an entire country this entails clipping the image to Level-0 

Administrative Boundaries.  

3. Read-in the ESRI shape files of each load type you want to classify, be it 

residential or otherwise, as a separate GeoDataFrame (since they must be 

handled separately). All GeoDataFrames should be reprojected to the same CRS 

as the raster image (as should the administrative boundary file) to avoid any 

misalignment of geospatial information.  

4. Apply Rasterio’s Rasterio.sample() module to sample each building 

coordinate, check the pixel in the raster image it corresponds to and output the 

pixel’s band value – in this case, the consumption tier. This value can then be 

appended as a new feature column in the GeoDataFrame. The only drawback is 

that as the number of coordinates approach multiple millions, the computation 

time of the module becomes much longer. However, users are unlikely to apply 

this method to more than 100 million buildings at once.  

Loads assigned a band value of 0.0, or no value, correspond to regions with detected 

nightlight radiances below the minimum cut-off set by the authors of the dataset. 

Therefore, these loads are assumed to be unelectrified and segmented into a separate 

GeoDataFrame as loads with tiers of 1.0 or above. To compare the results to country 

statistics, sum up the number of electrified loads then divide by the total number of 

 
9 Coordinate Reference Systems (CRS) refer to the way spatial data that represent the Earth’s 3-

dimensional surface is transformed into a 2-dimensional representation. Each CRS employ their own 
mathematical framework to perform the transformation, producing different coordinate system grids.      



 92 

loads, the ratio should approximately match the national or regional electrification 

rate.  

 
 

Figure 4.3.5- Stepwise Process of Delineating Electrification Status to Geolocated 
Loads. The first row lists the necessary datasets. The round-edged modules represent subsequent 

steps in the method. Indentations and shading signify embedded and groupings of code, respectively. 
The final blue parallelogram is the output of the process, and the final step (in green) signifies the 

validation test for the proposed methods. 
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Assigning Estimates of Peak Demand to Buildings by Consumption Tiers  

Section 4.2.1 outlined the role of the network planning model, RNM, in REM’s cost-

assessment of different electrification modes (GE, MG, SHS). One of RNM’s required 

inputs is an estimation of a customer’s peak power demand. When energy usage data is 

unavailable for a country, UEAL researchers have settled for approximations of different 

load profiles (or demanded appliances) from prior studies or similar customer types in 

nearby regions. The advantage of the Falchetta dataset is that its consumption tiers are 

broadly linked to the results of the World Bank’s MTF – specifically the Multi-Tier 

Matrix for Measure of Household Electricity Consumption (see Table 4.3.6). The MTF 

measures access to electricity based on technology-neutral multi-tiered standards where 

successive thresholds for supply attributes allow increased use of electricity appliances 

(Bhatia & Angelou, 2015). The data is acquired through multiple long-term studies 

conducted in several countries in SSA, Rwanda included. Supplementary Table A.1.1 

summarizes these key supply attributes, which include capacity, duration, reliability, 

quality, affordability, legality, and safety characteristics. Table A.1.2 describes the 

minimum capacity requirements for each tier and Table A.1.3 links this information to 

average household load per tier and their expected appliance use. I map these minimum 

supply requirements to Falchetta consumption tiers as follows: 

• Falchetta and MTF Tier 0 translates to no access to electricity.  

• Falchetta and MTF Tiers 1 and 2 corresponds to households or low-voltage 

productive and community facilities that are electrified by small decentralized 

systems, SHS or Micro-Grids.  

• Falchetta and MTF Tier 3 are households or any-sized productive and 

community facilities that are supplied by larger Mini-Grids or Grid Extension. 

• Falchetta Tier 4 corresponds to MTF Tier 4 and 5, all loads are supplied by GE.  
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Table 4.3.6- Multi-Tier Matrix for Measuring Household Electricity 
Consumption. Extracted from Beyond Connections: Energy Access Redefined (Bhatia & 
Angelou, 2015). 

 

For Residential Loads: 

I apply my mapping of Falchetta consumption tiers to MTF access tiers and extract the 

cut-off consumption values from Table 4.3.6 and A.1.3. I use these cut-off values to set a 

minimum and maximum power demand for households in each respective tier. I assume 

the cut-offs represent the lower and upper limits of the 95% confidence level of a normal 

distribution. I estimate the shape of the distribution by computing the mean and 

standard deviation, then sample randomly from the distribution to assign each 

household, in each tier, a unique peak-power value. For implementations that would 

prefer to use coarser peak power estimates, a fixed number of samples can be obtained 

from the distribution (e.g., 10) and households in that tier-class can have 1 of those X 

(10) sample values. Figure 4.3.7 are the histograms of sampling and assigning power 

estimates to each household in my Rwanda case-study.  

 
Figure 4.3.7- Normally Distributed Power Values per Tier.  
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Productive and Community Facility Loads:  

As mentioned, urban and rural productive and community facilities consume power very 

differently. We can use Falchetta’s tiers to downscale or upscale baseline load profiles 

according to which tiers these loads are classified into. Doing so would accommodate for 

the loads different supply requirements under different tiers. I downscale productive and 

community loads in Falchetta Tiers 1 and 2 by the same multiplier. The value of this 

multiplier is set to the ratio of the maximum daily consumption value in MTF Tier 3 to 

MTF Tier 2, which is equal to 1/5 (or 0.2). In keeping with this scaling method, I set 

Tier 3 loads as equal to the baseline consumption profile, and the Falchetta Tier 4 

multiplier is equal to the ratio of the average maximum daily consumption of MTF Tier 

4 and Tier 5 to MTF Tier 3, which is equal to 5.8. Recall that I assume users of the 

framework have pre-specified the baseline daily and annual consumption trends of each 

archetype of productive and community loads. While this is a strong assumption, 

demand estimation and prediction deserve independent study and as of yet no publicly 

accessible data can substitute ground-data information on how a country’s urban, peri-

urban, and rural regions consume power.  

Case Study: Rwanda Residential Building Data 

I apply my method to the residential buildings extracted in Section 4.1.4. The method 

generated an underestimation of Rwanda’s electrification rate by approximately 30% (see 

Table 4.3.8). This is likely due to Falchetta’s use of NTLs as the primary proxy for 

electrification status in a country with a large rural population. Rural areas are generally 

less detectable because they are often without street lighting. In a future iteration of the 

framework, I will experiment then employ one of the many NTL augmentations reviewed 

earlier in this section to try and improve their prediction of electricity.  

Table 4.3.8- Comparison of Estimated and Reported. Rwanda Electrification Rate 

Estimated  
Electrification Rate  

Reported  
Electrification Rate  

 
Error (%) 

26.3 37.8 -30.5% 
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For example, future work should scale the ML method of feature learning from daytime 

imagery to countries in SSA, or layer NTL radiances with additional indicators of 

electrification (e.g., transformer or substation location). Both are likely to improve 

electrification status estimation. Future studies should also include more precise 

validation methods. For example, researchers should obtain ground-confirmed gridded 

electrification status data for rural villages in multiple countries and conduct a one-to-

one comparison between it and each cell or pixel of their predicted dataset. 

In the end, the remote detection of electrification status is one of the most crucial 

components of monitoring global progress on SDG7 or achieving universal access to 

affordable electricity. Chapter 5 further motivates the critical nature of better 

electrification status delineation by evaluating its implication on the prediction of the 

extent of the MV distribution network. 

 

  



 97 

 

Chapter 5 

4. Data Sources and Processing:  
5. Distribution Network Module 

 
 
 
This chapter describes available datasets and tools capable of estimating information that may 

be missing from the medium voltage (MV) network layout of a study-region. The second half of 

the chapter introduces a small-scope sensitivity analysis of Rwanda comparing the MV network 

layout that has been estimated using REM to the existing layout. This case example uses 

validated data from the Universal Energy Access Lab (UEAL)’s recent collaboration with the 

country to produce a 2030 plan for universal electrification (referenced in Chapter 2). 

5.1 Estimating the Medium Voltage Network Layout 

The characterization of the extent, geolocation, and voltage of the MV distribution network is a 

critical and invariable component across all tools and frameworks introduced in Chapter 2. For 

context, electric grids are characterized by three primary types of infrastructure: the 

transmission network, the distribution network, and substations or transformers. The 

transmission network consists of high voltage (HV) lines (greater than 70 kV10) used for the 

bulk movement of electricity. The distribution network delineates how medium- (10 – 70kV) and 

low-voltage (LV) (<10 kV) lines distribute electricity from transmission networks to end-users. 

Substations and transformers are used to convert lines between high, medium, and low voltages. 

To decide if a consumer should be connected to a grid, a mini-grid (MG), or a solar-home 

system (SHS), accurate and up-to-date records of existing grid infrastructure are required since 

it may be more economic to connect unelectrified settlements to the national grid if they are 

near service transformers or MV lines. Most electrification planning tools have narrowed existing 

infrastructure to mean, at minimum, the MV distribution network. REM further requires users 

 
10  This is not an absolute amount since it depends on the network characteristics. In power systems with 

strong consumption densities and vast territories, like in the European Union or North America, 
transmission network is defined as the network with a voltage of 220 kV and above. 
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to define potential connection points (i.e., extensions) to the grid by supplying the location, 

reliability, and capacity of the existing MV distribution lines. Recall from Chapter 2, that each 

MV segment is assigned an energy price in $/kWh which incorporates upstream transmission 

network and generation costs as local wholesale energy costs at the MV distribution level. REM 

also allows for the hourly specification of reliability and electricity costs for each feeder, or MV 

segment (Ciller et al., 2019). As such, the final input module to my Framework is an open-

source method to extract or replicate the MV network of any country and an option to model 

the supporting upstream infrastructure (e.g., transmission and generation).  

Generation information is commonly sourced from the up-to-date and comprehensive WRI 

Global Power Plants Database, discussed in Chapter 3. High-voltage transmission and 

distribution infrastructure data have long been open and available for public access. However, 

georeferenced information on medium- and low-voltage distribution networks is often 

unavailable, inconsistent, or incomplete. The low quality (erroneous or inadequate status) of 

these distribution network datasets has a considerable impact on the results of least-cost 

electrification models, i.e., REM. The cost of extending the grid is high, and thus the distance 

between an existing settlement and the grid is a core driver of the cost in optimization models. 

Additionally, because the errors in the distribution grid datasets are more likely to exclude lines 

rather than show them, models may underestimate the extent to which the grid connections are 

the cheapest option, either biasing the results of the model toward off-grid technologies or more 

expensive buildouts of the existing grid (Morrissey, 2019). This in turns increases uncertainty 

and reduces the applicability of outputs from REM (or similar models).  

5.1.1 Data Sources and Limitations 

The existing information on MV network layouts can be broadly classified into two types. 

The first type includes crowd-sourced information, aggregated data from project archives, or 

public datasets shared by countries or utilities. The second data type includes inferred maps 

of the network from existing open data, like remote sensing or satellite imagery. This 

section focuses on the most complete and granular example of the second data type: 

gridfinder.  
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The largest global database of crowdsourced information on infrastructure is 

OpenStreetMap (OSM). Data from OSM give a sufficiently detailed picture of high-voltage 

transmission lines. In some areas, they are comprehensively traced from satellite imagery 

and ground-truth data, while in others (particularly developing countries) accuracy and 

completeness is variable, depending on whether someone has already mapped an area 

(Arderne et al., 2020). Alternatives to OSM are the compiled databases: Africa Electricity 

Grids Explorer and ECREE (Centre for Renewable Energy and Energy Efficiency) 

GeoNetwork Catalog. The Africa Electricity Grids Explorer is an online data explorer that 

records existing and planned transmission and distribution lines for the entire African 

continent and the Middle East. The data explorer serves as an updated and improved 

replacement for the Africa Infrastructure Country Diagnostic (AICD) published in 2007. 

The primary sources of the database are AICD, OSM, country utilities, the West African 

Power Pool (WAPP) GIS database, World Bank project archives, and International Bank 

for Reconstruction and Development (IBRD) maps. However, like OSM, the completeness 

and quality of the data varies country to country. Additionally, data from the AICD and 

the World Bank is often out of date – many new lines may not be included, and planned 

lines may have completely changed. Where possible, this is improved using data from other 

sources (The World Bank, 2019). The ECREE data catalog provides the existing and 

planned distribution grid network (between 11 – 33 kV) in the ECOWAS (Economic 

Community of Western Africa) region. Sources included national utilities and electrification 

agencies in the region. Whether the information for the ECOWAS region is complete and 

up to date is unclear from available documentation.  

The variable quality of these datasets is attributed to the large number of distribution 

infrastructure operators and owners required to contribute data, compared to transmission 

operators which are often single national-scale utilities. Grid infrastructure data may also 

not exist in GIS-ready formats or may be restricted from public access for security reasons. 

Finally, digitizing grid data can be prohibitively difficult. For example, due to underground 

distribution grids or small overhead line structures aerial imagery, cannot be used to detect 

or delineate on-the-ground infrastructure (Arderne et al., 2020).   
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Gridfinder is an open-source dataset, based on grid mapping work at Facebook, that uses 

monthly and annual NTL data in concert with other widely available infrastructure data to 

produce the first composite map of the global power grid (Arderne et al., 2020; Gershenson 

et al., 2019). To build this dataset, Arderne et al. (2020) begin with a custom image 

filtering process of the monthly NTL satellite imagery to identify locations with consistent 

illumination, and thus locations more likely to be producing light from electricity (referred 

to as target cells). The authors assume these locations are grid powered and output a global 

two-dimensional array of target coordinates (target cells) that must be connected by 

network lines. To estimate the layout of the electricity network, they apply a many-to-many 

variant of Dijkstra’s algorithm (shortest distance between two points) on each target cell. 

The algorithm is weighted by a cost function based on existing roads from OpenStreetMap. 

Existing grid lines from OSM are assigned a cost of 0.00; the largest roads (motorways) are 

assigned a cost of 0.10, the smaller roads (tertiary) a cost of 0.17, and the others in 

between; their threshold values are set arbitrarily as a “reasonable” strategy of preferring 

larger roads. Areas with no roads are assigned a cost of 1.00. This results in a second two-

dimensional array that represents the cost of traversing each cell between the target cells. 

The algorithm attempts to connect every location with the shortest possible distance while 

following roads (preferring larger) where possible (Arderne et al. 2020). Note, to remove 

predicted lines in remote areas, which are unlikely to be connected to the main network, 

Arderne et al. (2020) use a buffer of 100 km on the OSM data and remove all lines beyond 

that. The final output is a raster estimate of whether cells contain a medium-voltage line or 

not.  

To validate their medium-voltage results, Arderne et al. (2020) consider 16 different 

networks from 14 countries. Each represents a wide range of electricity network 

development and accessibility. Datasets for these countries were either openly available, 

accessed under special licenses for the research group, or supplied by the World Bank 

Group. The countries represented in each income group are: Australia, Netherlands, New 

Zealand, United Kingdom (High Income), Namibia (Higher Middle Income), Bolivia, Kenya, 

Nigeria, Zambia (Lower Middle Income), Burundi, Ethiopia, Malawi, Tanzania, and Uganda 
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(Low Income). To quantify model performance, observed lines were compared to lines 

produced by gridfinder in an equal-area cell grid, fitted to the electricity distribution extent 

of each validation set. 

To evaluate the performance of gridfinder I assessed two metrics: precision and accuracy. 

High precision suggests the model is correctly estimating the presence of lines, and not 

portraying a false sense of accessibility. Accuracy measures the total correct predictions over 

the total validation set, which might be skewed in areas where it is easy to predict the 

absence of lines (e.g., mountain ranges or deserts). Arderne et al. (2020) report their 

performance metrics at the cell-resolution that produced the best results, which is 26 km at 

maximum and 2 km at minimum. Validation is therefore conducted at very coarse 

resolutions, which calls into question how well the data will perform at the granular 

resolutions needed by REM. Overall, gridfinder produced accuracies between 70-80 percent 

and precision values between 60-80 percent in low-income countries; globally the average 

values were 75 percent and 76 percent respectively.  

The performance of gridfinder is better than low-quality or erroneous public datasets, but 

not good enough for individual building-level electrification plans. Their design of the 

network is based only on geometric congruity with roads and OSM data. They do not 

perform power flow or voltage drop analyses. Furthermore, by identifying electrification 

targets with only NTL data, the model is hindered by NTL’s poor detection of light in rural 

or peri-urban areas. Correa et al. (2021) improves upon gridfinder by proposing a learning 

model that improves the detection of electrified sites, validated on ground-truth data from 

Kenya. Their model uses more granular (e.g., daily) composites of NTL data and improves 

detection accuracy by up to 7% and identifies approximately 78% of electrified sites that 

were previously missed. Correa et al. (2021) also recommend supplementing NTL data with 

other publicly available grid infrastructure data, (e.g., generator or substation locations). I 

try to address each of these limitations by leveraging REM’s built-in RNM tool to design 

what the grid should look like given my estimated building locations, their respective 

demand, and the location of supporting infrastructure like HV substations and distribution 

transformers. The proposed method is outlined below, in Section 5.1.2.  
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5.1.2 Applying REM to Medium Voltage Network Estimation  

The RNM module in REM provides an unexplored method for estimating MV network 

designs. Recall, RNM designs the optimal distribution network to supply georeferenced 

customers with the electricity they demand at a prescribed level of hourly reliability. RNM 

exists as a stand-alone model and is available in two formats: Greenfield and Brownfield. 

Greenfield RNM can plan a network from scratch without any information on existing wires 

or the area network. Brownfield RNM plans expansions to an existing network, using 

current grid connections as inputs. In this section I propose leveraging the design 

capabilities of Greenfield RNM to replicate the existing network in a study region. At 

minimum, Greenfield RNM requires: 1) the geolocation and characteristics of LV, MV, and 

HV customers, 2) the geolocation and characteristics of HV-transmission to HV-distribution 

substations, and 3) a catalog of the technical and economic characteristics of the equipment. 

In this case, I supply the model with the geolocations of (presumed) electrified residential 

and productive customers, extracted in Section 4.3, their respective energy demand, and a 

country-specific network catalog. In addition, I treat any openly available information on 

the existing grid as a-priori information regarding where the grid network is most likely 

built-out, feeding the open data as inputs to RNM. An example of this a-priori data is the 

location and voltage of transformers or substations found on OpenStreetMap.  

However, a disadvantage of running RNM as a standalone model is its requirement that 

each of the inputted infrastructure types are labelled with precise technical and regional 

characteristics. Obtaining this level of detail from open sources might be infeasible or very 

uncertain. A work-around is to use RNM via REM. REM generalizes all inputted data 

regarding the grid to “potential connection points for grid extension”11, thus enabling users 

to input open grid data as non-specific supplemental information, despite being incomplete.  

 
11  MV lines and other supporting infrastructure (e.g., transformers) are represented by a set of short line 

segments in REM, each defined by two coordinates. REM uses an appropriate subset of these 
candidate MV connection points for each cluster of consumers and submits them as inputs to RNM. 
RNM is then free to use any of these points to provide an optimized distribution layout of a grid-
extension solution for the respective cluster (Ciller et al., 2019). 
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Accessing RNM through REM has several other advantages. First, it limits computational 

troubleshooting to a single interface, REM. RNM is written and initialized with the C 

programming language which might make it inaccessible to less experienced programmers. 

Second, REM allows splitting consumers into regions and running the optimization for each 

region in parallel. This breaks the design problem into several instances of RNM running at 

once, and thus reduces the overall computation time.   

We can estimate the MV network with REM by configuring the input parameters to force 

an all-grid-extension REM output. I reconfigured the REM parameters most relevant to the 

network layout as outlined below:  

• The Cost of Non-Served Energy (CNSE): Ascribing higher social costs to non-

severed energy make it more economical to electrify customers with more reliable 

technologies, i.e., grid extension. This is only true if grid distribution lines are 

initialized with high reliability levels for the specific REM case.  

• The Per-Customer Cost of Off-Grid Alternatives: Change the per-customer cost of 

stand-alone systems and mini-grids from $0 to $1,000,000 and $65 to $1,000,000, 

respectively. $1,000,000 is an arbitrary choice intended to make the electrification 

mode prohibitively expensive.  

• The Annual Management Costs for Mini-Grids:  

o The number of consumers allowed in a mini-grid was increased from 1 to 50 

and 100 to 500 for small and medium sized mini-grids, respectively. Off-grid 

clusters with less than 50 people are eliminated.  

o The annual management costs ($/year) of smaller sized mini-grids were 

increased to be comparatively more expensive than larger mini-grids (by at 

least an order of magnitude). This economically favors the construction of 

larger off-grid clusters (i.e., at least 500 customers in the cluster).  

Together these parameters should make off-grid alternatives not cost-competitive and 

produce large grid-extension clusters. Ideally a single cluster per region will emerge, 

ensuring that RNM is called only once per region and therefore is considering the optimal 

distribution network for the whole administrative area at once. Exact values for these 
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parameters will vary by the country and context of a project, therefore they are unspecified 

in this work. Furthermore, despite artificially reducing the cost of grid extension, REM’s 

cost optimal solution may still produce small clusters electrified via off-grid technologies. 

These clusters will typically make up no more than 1% of the total customers which is an 

acceptable margin of error given the uncertainty of using NTLs as a proxy for electrification 

status (by means of the Falchetta et al. dataset). In the end, I expect RNM’s techno-

economic objective function to better align with the decision making of distribution utilities 

who planned and built the existing network; more so than the predominantly geometric 

design algorithm of gridfinder.  

As REM is a proprietary software, applying it to estimate the medium voltage distribution 

network does not constitute an open-access solution for all users of the framework. As such, 

the notion of how this method would fit within the GitHub open framework, designed in 

Chapter 3, remains an ongoing discussion. Readers should accordingly interpret this section 

as an exploration on the efficacy of reproducing a country’s medium voltage network with 

REM. Future work might also consider producing an open dataset of REM’s estimates of 

the local distribution grid for all countries in Sub-Saharan Africa. The remainder of the 

section will delve into greater detail on the estimation method.    

Pre-processing the Input Data  

The minimum information needed to successfully run Greenfield RNM by means of REM 

include the following: 

1. Geolocation and Demand of HV, MV, LV Customers.  

1.1 Extract Customers and their Demands.  

REM does not allow users to differentiate between HV, MV, and LV consumers. It 

assumes all consumers are low voltage unless their demand is too high for the LV 

network wires supplied in the network catalog, in which case it would power them 

with MV or HV lines. Chapter 4.1 and 4.2 outline how to identify the building 

coordinates of LV and MV customers. These loads constitute residential, social, and 

productive customers. Each customer is linked to a customer archetype, from which 

they are assigned a peak-power-demanded value.   
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1.2 Extract Electrified Customers 

Given that we are only interested in customers connected to the grid, I assume all 

customers classified as “lit” by nighttime lights are on-the-grid. The assumption 

holds because nighttime lighting predominantly indicates streetlights, the existence 

of which is more likely correlated with larger, grid connected areas than smaller 

mini-grids or stand-alone generators. The Falchetta et al. gridded dataset, described 

in Chapter 4.3, is used to extract just the electrified, i.e., grid-connected customers 

from the results of 1.1.   

1.3 Cluster Customers  

REM can only handle a limited number of customer archetypes (i.e., customer 

demands). Therefore, to simplify the computational task, consumers of similar peak 

demands are assigned to the same cluster. Each cluster is then assigned a 

characteristic demand pattern. I apply a k-means clustering algorithm to cluster the 

electrified customers. K-means clustering partitions n similar-demand observations 

into k clusters. Each observation belongs to and takes the value of the cluster with 

the nearest mean (or centroid). To determine the optimal number of unique demand 

values, i.e., clusters, I recommend plotting a histogram of all customers’ demands 

and experimenting with different bin sizes which reduce the number of unique values 

without eliminating the heterogeneity of demand. In my experiment, elaborated on 

in Section 5.1.3, 300 clusters were used for residential loads and 300 clusters for 

social and productive loads.  

1.4 Administrative Level  

Finally, customers are distributed into the Level-2 Administrative region they are 

located within. As mentioned, distributing the customers allows for parallel runs of 

REM and produces results quicker.  

2. Open Grid Infrastructure Data.  

Overall, any data that signals to RNM where medium voltage lines are likely located 

is useful input data to REM. Users should begin by searching open databases for 
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existing infrastructure in their area of study. Of this infrastructure, information on 

distribution transformers (medium- to low- voltage transformers, in particular) is the 

most useful, as they are necessarily built along the MV lines. Other infrastructure 

types include substation locations, generation sites, HV distribution lines, and 

transmission lines. Once collected, distribution or transmission lines should be 

converted into a series line segments, or infinitesimally short line segments for point 

data (e.g., generation plants). This can be done with the Shapely library in Python. 

The coordinates at either end of the line segment should be provided to REM for all 

infrastructure types in a csv file. Recall, REM will interpret this data as “potential 

connection points” for grid extension.   

To explore how well each grid infrastructure type can predict the extent of a local 

MV distribution network, I plot data provided to the UEAL on Rwanda’s grid in 

Figure 5.1.1 and 5.1.2. Since the plotted data comes directly from local stakeholders, I 

assume it is credible and complete. For both figures I overlay the locations of different 

infrastructure types on the existing medium voltage network and the locations of 

Falchetta-Electrified Customers, which are the customers classified as electrified 

according to Falchetta et al. (2019)’s methodology. I supplement this map of Figure 

5.1.1 with ground-truth information on the location of electrified productive loads in 

Figure 5.1.2.  

While the existing MV lines do traverse all the Falchetta-Electrified Customers, they 

also extend far beyond these customers (areas). Therefore, building data masked by 

Falchetta’s classification of electrified areas will fail to characterize the expanse of the 

grid, and should not be used as the single proxy for the grid’s location. On the other 

hand, the ground-validated productive loads in Figure 5.1.2 exist in most of the areas 

where the MV grid exists, suggesting that their locations are better signals of the 

existence of a nearby distribution grid. It also suggests that improvements in 

electrification status estimation would translate to better estimates of the grid’s 

extent. Finally, the close proximity of the electrified productive loads to the 

Falchetta-Electrified Customers suggests that there is a reasonable radius for which 
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the detection of nighttime-lights highly correlates with “lights” existing a radius r 

away. To test this hypothesis, future researchers should experiment with dilations of 

the nighttime lights’ raster data. In other words, experiment with “lighting up” the 

pixels surrounding a “lit up” pixel, then observe if that method does improve 

nighttime lights’ prediction of electricity distribution. 

Comparing the predictive capability of each of the infrastructure types in Figure 5.1.1, 

the location of generation sites and substations is expectedly less informative than the 

location of MV to LV transformers. While it is difficult to obtain the location of these 

transformers from open data, it is easier and faster to request and obtain their 

location from local stakeholders than precise network line drawings. That said, the 

generation plants and substations do extend beyond the bounds of the Falchetta-

Electrified regions, and thus are still useful for signaling to RNM that it should 

expand the network beyond those regions.  
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Figure 5.1.1- Overlay of Rwanda’s Grid Infrastructure on MV Distribution 

Network and Falchetta-identified Electrified Areas.  
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Figure 5.1.2- Overlay of Rwanda’s Grid Infrastructure on its MV Distribution Network, 

Falchetta-Electrified Loads, and Ground Truth (GT)-Electrified Productive Loads.  
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3. Network Catalog  

To accurately account for the cost and technical constraints associated with the physical 

assets on the distribution network, users must supply REM with a Network Catalog. The 

catalog is expanded on in Chapter 2 and 3. Each distribution utility company or country 

uses a specific catalog of equipment (e.g., specific types of cables, transformers, poles, 

batteries and solar panels). For the most correct implementations of REM these inter-

country differences should be respected and a customized catalog should be supplied per 

region of interest. To gather this information users are encouraged to consult national 

reports on the country’s energy sector or contextual information from regional grids. For 

example, documentation by utilities in nearby countries, World Bank archives, or any 

shared data from the power pool the country might belong to.   

 

Post-Processing the Output 

Once the user has successfully configured REM to produce an all-grid-extension case and 

fed it the necessary inputs, the model will output a series of MV line segments. These 

lines are produced by RNM and represent the extension to the initial “potential 

connections” line segments. Together, they form a discontinuous and incomplete 

representation of a distribution network. To convert these disjointed lines into a 

continuous network, I utilize the Minimum Spanning Tree (MST) algorithm. MSTs have 

been previously used by UEAL researchers for designing radial power distribution 

networks. MST is an edge-weighted undirected graph that connects all the vertices 

(nodes) together, without any cycles (i.e., no closed loop) and with the minimum possible 

total edge weight (in this case cost). That is, it is a spanning tree whose sum of edge 

weights (costs) is as small as possible. In this case, all line segments (translated into 

nodes, or points) are assigned close-to-zero weights and a continuous network is 

produced. Those results are explored in the following section.  
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Final Implementation 

 
 

 
Figure 5.1.3- Stepwise Process of Estimating MV Distribution Network with REM. The 

light-blue modules represent necessary datasets. The rounded-edged darker modules represent 
subsequent steps in the method. The final blue parallelogram is the output of each sub-process. Each 
intermediary output serves as an input to REM. The final parallelogram output is the geo-referenced 

MV distribution network.  
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5.1.3 Testing the Model: Rwanda Case-Study  

As proof-of-concept, I apply my network estimation model to the country of Rwanda. To 

run the case, I use the ground-truth data on electrified social and productive loads, as well 

as the location of medium voltage to low voltage distribution transformers (a total of 2,982 

transformers) and high voltage to medium voltage substations (a total of 22 substations). 

Both the transformers and substations were converted to short MV lines segments such that 

REM considers them part of the existing distribution network. I used the location, demand, 

and electrification status of residential loads in Rwanda supplied by my framework (i.e., the 

outputs of Section 4.1 and 4.3). The network catalog used in my experiment was previously 

customized for Rwanda by members of the Universal Energy Access Lab. The results of the 

experiment are plotted in Figures 5.1.4-5.  

To test the robustness and accuracy of the model, I ideally would only use open sources as 

inputs to the case. However, the Google Maps API extraction of productive loads has yet to 

be scaled to all of Rwanda and therefore was unavailable for the experiment. Similarly, 

publicly available grid infrastructure for Rwanda only included: transmission lines, power 

plants, and HV substations. Recalling my analysis on the predictive quality of all grid 

infrastructure types, distribution transformers are the most informative on the extent of the 

distribution network. As a result, I chose to use the transformer information supplied by 

Rwanda, in lieu of the publicly available infrastructure, to observe how REM performed 

under an ‘ideal’ grid data scenario – at first. If the initial experiment is successful, future 

studies can perform a sensitivity analysis on the proposed model and feed REM all possible 

combinations of publicly available grid data. The analysis should compare the accuracy and 

precision of each run’s (i.e., data combination’s) output to the existing MV network layout.  

Nonetheless, my experiment showed very promising results. A qualitative comparison 

between the existing network and REM’s outputs in Figures 5.1.4-5 confirms that REM 

extends the grid to most areas where the existing network is located. An overlay of the 

prediction and the ground-truth data in the top map of Figure 5.1.4 highlight the low-level 

discrepancies between the two. Note that REM and other planning tools primarily use 

information on the existing grid to measure the feasibility of local grid extension, i.e., the 
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proximity of unelectrified buildings to gridlines and the cost effectiveness of building out the 

grid to supply them with energy. Hence, I expect REM’s output to be good enough for the 

scope of my framework. The bottom map of Figure 5.1.4 shows that the network is built 

out congruently with the spatial distribution of the transformers. Hence without 

transformer locations, the best guarantee that REM produces a close-enough approximation 

of the grid depends on the access to accurate data on where customers are electrified. I also 

overlay the existing distribution network with gridfinder’s prediction in Figure 5.1.6. 

Compared to REM, gridfinder, wholly underestimates the scale and extent of the existing 

grid, which likely translate to more expensive electrification planning models due to the 

presumed far-away distance between unelectrified customers and grid extension. Looking at 

the map on the right-hand-side of Figure 5.1.6, the predicted network exactly extends to 

wherever Falchetta et al., and thus NTLs, assumes customers are electrified. This 

corroborates my initial concern that gridfinder’s dependence on roads and NTLs will be 

determinantal to its accuracy and useability as a Data Type substitute in the framework.  
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Figure 5.1.4- Overlay of the REM-Predicted MV Network Layout and the 

Existing MV Network Layout and Comparison with Transformer Locations.  
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Figure 5.1.5- Side-by-Side Comparison of the Existing MV Network Layout and 

the REM Predicted Network Layout.  
 
 

 
Figure 5.1.6- Overlay of the Gridfinder Predicted MV Network Layout and the 

Existing MV Network Layout.  
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Future Improvements to the Model: 

Results in Figure 5.1.4 demonstrate the critical role distribution transformers play in 

accurately replicating the MV distribution network. Consequently, independent studies 

to develop a method for identifying distribution transformers should take precedence for 

improving REM’s prediction of the network. UEAL researchers could attempt to predict 

the location of MV to LV transformers by running Greenfield RNM separately of REM. 

For example, researchers can attempt using the geolocation and demand characteristics 

of residential and productive loads with public information on high voltage feeders (high 

voltage lines and substations) and initialize Greenfield RNM to design the medium-to-

low voltage network, which would include the location of medium-to-low voltage 

transformers. Alternatively, future experiments might simultaneously supply REM with 

local road-network data and the more widely accessible grid infrastructure (like 

substations or power plants) and test if the combination is an acceptable substitution for 

transformer data.  

Though the qualitative comparison of REM and gridfinder’s prediction was sufficient at 

highlighting which model was a better estimate of the existing grid, the approach is not 

conducive to running repeated analyses or expanding the area-of-study to multiple 

countries. Future validation methods could rasterize the files for the whole country and 

conduct a pixel-to-pixel comparison between each model output. This works by 

classifying each pixel, of each raster file (i.e., each model output) as containing a MV 

network line or not. In this way, established pixel-level comparison metrics can be 

utilized to measure the precision and accuracy of each model compared. Maximizing 

precision ensures a model is not overestimating the presence of lines and thus providing a 

false sense of accessibility. Accuracy, on the other hand, is simply a measure of the total 

correct predictions and can be misleading should there be large areas where it is easy to 

predict no MV distribution lines, e.g., extreme topographies. 

A notable example of these evaluation metrics is Intersection-Over-Union (IOU), also 

known as the Jaccard Index. To compute the IOU, one begins by counting the number 

of true-positives (pixels where the model correctly predicts a MV line), false-positives 
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(pixels where the model incorrectly predicts a MV line), and false-negatives (pixels where 

the model incorrectly predicts no line). The IOU measures how well the model predicts 

the known presence of distribution lines, disregarding any areas where the model and 

observed data agree there are no MV lines. An IOU equal to one is the most desirable for 

object detection models. In the end, quantitate validation metrics are replicable and 

scalable, thus key to ongoing sensitivity analyses on REM’s ability to predict the existing 

medium voltage network.  

5.1.4 Applying the Framework: Rank-Order Data Types 

 
Figure 5.1.7- Rank Ordered List for MV Network Layout Data Types. Ranking of 

validation accuracy is presumed and not quantitatively measured. 
   

As I rank Data Types, it is important to emphasize that applying REM, a proprietary 

software, to the estimation of the MV grid does not constitute an open-source solution to 

the following Input Type. However, if we assume the models in Chapter 4 are expanded 

upon and used as inputs to REM to reproduce the MV network for all countries in Sub-

Saharan Africa, then the results of this Chapter suggest REM will perform better than the 

Gridfinder tool and, the often incomplete, open databases. Under this assumption I rank the 

Data Types for the MV Network Layout Input Module in Figure 5.1.7.   
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Chapter 6 

6. Summary and Conclusions  
 

 

Today’s race for global vaccination against COVID-19 has brought into focus the gaping 

disparity of energy infrastructure across the developing world. Vast populations remain 

vulnerable to the disease and others due to their lack of access to reliable electricity, and thus 

adequate healthcare and vaccine refrigeration. This undeniable hinderance has reinvigorated the 

UN-SDG7 commitment to achieving affordable, universal electrification as soon as possible. 

Evidence in literature has shown that achieving this goal is inextricably linked to the uptake 

and application of spatially explicit computational electrification planning tools (Korkovelos et 

al., 2019; Szabó et al., 2013; Taneja, 2019). The tools help energy stakeholders in decision-

making and budget allocation by automating the delineation of electrification technologies (grid 

extension, mini-grids, and stand-alone solar systems) which extend to all customers at the lowest 

cost. However, the effectiveness of these tools is delimited by stakeholders’ access to credible and 

up-to-date records on the local population and present infrastructure. My thesis aims to 

overcome these data acquisition bottlenecks and expedite universal electrification, by designing a 

scalable and modular framework on how to leverage publicly available information to produce 

granular estimates of the data needed.  

To guarantee the framework is applicable to any planning tool, I chose to configure its design to 

the input requirements of the most data-demanding tool in the field, the Reference 

Electrification Model (REM). REM stands out among other planning tools because it provides 

system designs and least cost combination of electrification delivery modes at any geographic 

scale, while working at the individual customer level and respecting the physical laws, reliability, 

and constraints of power systems (Ciller et al., 2019). To achieve this level of granularity REM 

depends on extensive input data. Some of these inputs can already be imputed by peer-reviewed 

public datasets that already exist at the appropriate resolution for all countries in Sub-Saharan 

Africa (the developing countries subject to this thesis). The remaining inputs might be available 
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through open data but just for a few countries or in coarse and incomplete formats; some might 

be completely unavailable publicly. These REM inputs are the subjects of my framework and 

are the following: 1) the geolocation and demand characteristics of residential customers, 2) the 

geolocation and demand characteristics of social and productive customers, 3) the electrification 

status of each customer, and 4) the layout of the medium-voltage distribution network. Each 

module of the framework represents one of these inputs (hereon referred to as Input Types). 

Each Input Type is then allowed multiple underlying data modules (hereon referred to as Data 

Types). The Data Types are a tiered list of available datasets per input, and account for 

scenarios where more accurate and granular data is available for some but not all regions. Users 

are encouraged to utilize the highest-tiered Data Type as it is available for their area of study, 

and substitute lowered-tiers Data Types otherwise. At times coarser datatypes might be 

sufficient for a high-level use-case of the framework and be subsequently easier to download and 

process. The flexible Data Type modules enables users to make these time-saving decisions as it 

pertains to their project context.   

Since the objective is to expedite global electrification efforts, it is critical for the framework to 

survive the constantly changing paradigm of data collection and sharing. The modular design of 

the Input and Data Types ensures the framework can be iteratively updated as more 

sophisticated imputation methods and accurate public datasets are developed. Each Input 

module is prescribed a method, or Python model, to process and analyze the Data Types into 

reasonable estimates of the REM input. Defining what a “reasonable” estimate varied between 

modules but generally translated to a 10-30% margin of error between the output and the 

regional statistic it corresponded to. Figure 3.2.1 illustrates the inter-relationships between 

modules and the Python models. The source code of the Python-based framework is available 

through GitHub, with directional documents on how to run each module for any country (or 

region). By making it open-source, the framework is subject to the evaluation of modelers across 

the field and helps demonstrate adequate due-diligence to the stakeholders who might rely on 

the outputs for critical decision making. The remainder of this chapter will look separately at 

each Input Module.  

 



 120 

A. Geolocation and Demand Characteristics of Residential Customers 

I explore two Data Types for determining the explicit coordinates of buildings in a study region: 

built-area datasets and automated building footprint extraction models. Built area datasets use 

remote sensing techniques to accurately describe the extent, location, and characteristics of 

urban and built-up areas. The most promising dataset of this type was the World Settlement 

Footprint 2015 (WSF-2015); however, its collection method struggles to discern between 

congruous or irregular footprints and lacked ancillary information on the distribution of 

population across detected settlements. Automatic building footprint extraction models apply 

computer vision techniques to classify each pixel of a high-resolution satellite image as 

containing a building or not. Two datasets dominate this Data Type, Facebook’s High-

Resolution Settlement Layer (HRSL) and Google’s Open Building Dataset. The HRSL produces 

binary labeled pixels at 30-m resolution overlaid with information on the population density 

within the respective census area. The Open Buildings dataset is superior to its competitor by 

defining the extents of heterogenous building footprints at a resolution of 50-cm, however, was 

unavailable at the time of this study.  

My thesis leverages the HRSL dataset since it is more accessible than WSF-2015 and 

incorporates information on the density of the local population. Since the HRSL does not include 

meta-data on the size or building type of detected settlements I could not, with any statistical 

significance, classify the buildings as either residential or productive (larger loads associate with 

economic returns, e.g., markets or industrial facilities) customers. As a result, I make the 

overarching assumption that all settlements in the HRSL dataset are households, or ‘smaller’ 

loads. Similar assumptions were made by Fobi et al. (2021) and Korkovelos et al. (2019). 

Examples of small loads are local commercial businesses, village community centers, or 

household-operated services in rural or peri-urban areas. These loads usually share similar 

consumption profiles and are always fed by low-voltage lines. I also claim that the HRSL’s 

census-level population density information closely approximates the population count in a pixel, 

and that the average size of a household remains the same across a country. Under these 

assumptions, I propose a method to approximate the number and coordinates of households 

within all 30-by-30 m pixels in the area-of-interest.  
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To test my approximations, I run a case-study on the country of Rwanda and compute my 

model’s estimate of the total population to the country’s most recently published data on its 

population. My results showed an overestimation of the total population by 15%, or by 

approximately 2 million residential customers. This might in part be due to assuming all the 

detected buildings are households, as well as not accounting for multiple settlements per 

household. The effects of this overestimation on the final output of REM are explored 

qualitatively in Chapter 4.1 and suggest that most of the overestimation occurs in denser, urban 

regions and the model is more likely to perform accurately in rural, sparser regions. I suggest 

future work should test the quality of the approximation by applying the model on all countries 

in Sub-Saharan Africa (SSA) and observe if there is a statistically significant trend of over- or 

under estimation. Moreover, segregation of a country into different land types (e.g., rural, peri-

urban, or urban) and accordingly applying different values for the average household size might 

yield better estimates of the population in dense regions. Finally, Chapter 4.1 links to several 

studies in literature which describe alternative methods of estimating household locations from 

building footprint datasets. I suggest a formal comparison between how each of these methods 

perform and substituting the most accurate model with my prescribed estimation method in 

future iterations of the framework.  

B. Geolocation and Demand Characteristics of Social and Productive Customers 

The HRSL dataset approximates the location of residential and smaller loads which share 

similar consumption patterns. However, social (or community) and productive loads like health 

centers, education facilities, mines, or large industrial consumers have unique consumption 

patterns. These loads require larger and more reliable amounts of electricity and might need to 

be fed by medium or high voltage lines. As such, developing a method for characterizing the 

spatial variation of these customer types is necessary for REM (and other planning tools) to 

accurately evaluate the cost optimal electrification plan and distribution network layout for an 

area-of-study. I expand on REM’s pre-defined broad customer archetypes to define 18 non-

residential loads the following Input module should explore (refer to Figure 4.2.4). Several 

publicly available datasets exist for a small subset of these archetypes. The datasets are 

typically compiled manually or collected through surveys, by provision of non-governmental 
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organizations or development agencies. A notable example is the World Health Organization’s 

(WHO) geospatial inventory of 98,745 public health facilities in SSA. However, these public 

datasets only span a few load types and even fewer countries. Given that my objective is to 

produce an open-source and scalable method of estimating all REM inputs, the compiled 

datasets cannot suffice. To address this, I explore the novel use of the Google Maps API to 

extract the geolocation of different businesses, commercial services, and industries in any 

country.   

Google Maps currently covers over 200 countries and territories and is updated 50 million times 

a day. The specificity and ubiquity of Google Maps makes it incredibly powerful at extracting 

information on a variety of customer types and their locations. I propose using Maps’ Places 

Nearby Search API, whereby I specify a set of search parameters and a list of places that match 

the criteria are returned, with supplemental information like their operational status or latitude 

and longitude coordinates. While API requests are not free, I expect they are less costly than 

the time and resources needed to acquire the information through continuous, bureaucratic 

relationships with local stakeholders or surveyors. The Places Nearby Search tool works by 

looking for places that match a list of user-supplied keywords within a set radial area. The 

centroid of the area and its extent are determined by the user. I use the centroid coordinates of 

each 900-m2 pixel in the HRSL’s dataset to iteratively search through my entire area-of-study. 

Next, I assign each of the 18 non-residential customer archetypes a list of keywords extracted 

from Google Maps’ own library of terms. The terms are used by the API to store and describe 

the different types of places registered in their repository (e.g., ‘clinic’ or ‘city_hall’). Third, I 

develop a systematic methodology to infer the optimal search radius for each type of customer. 

The methodology recommends larger radii for less-frequently encountered customers, like a 

University of Industrial Factory, and a smaller radius for proliferate place types like markets or 

health centers. Altogether, my Python model iterates through each HRSL pixel and submits an 

API request for each customer archetype, one keyword at a time.  

To test the accuracy and computational efficiency of the Google Maps API search, I conducted 

a small experiment comparing the well-documented WHO Public Health Facilities dataset with 

my model’s results for an API search of “Health Center” customers. The experiment was 
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conducted on the pixels delineating a small region of Kigali. The API was successful at locating 

the WHO facilities and more, returning the location of additional smaller health clinics and 

private practices in the area. This level of granularity on load-type-information is uncommon for 

publicly available data sources and should be taken advantage of. Nonetheless, the proposed 

model must undergo further testing to discern how practical and computationally efficient it is 

at large-scale use.  

C. Electrification Status of Each Customer  

Distinguishing between which of the customers are electrified is important for two reasons. First, 

the location and characteristics of electrified loads is an intermediary input in the 

implementation of REM for the estimation of the medium voltage distribution network (when 

this data is not available), described in more detail below. Second, mapping unelectrified loads is 

necessary for all electrification planning tools to prescribe the cost optimal path to universal 

energy. Beyond planning tools, accurately and remotely tracking the state of electricity access is 

a crucial means to monitoring the progress on the UN’s seventh sustainable development goal. 

Despite its ubiquity to the energy access field, there are only few recorded approaches for the 

estimation of electrification status. Thus far the most employed proxy for electricity access is 

nighttime light data (NTL). NTL data provide global daily measurements of nocturnal visible 

and near infrared light, linked mostly to the presence and detection of streetlights. However, the 

data exhibit substantial noise and may not register any signature of electricity in deep rural 

areas because of extremely low levels of external lighting. Despite this, multiple studies have 

employed NTL intensities to asses residential energy consumption, detect power outages, 

monitor population migration, and income inequality (Albert et al., 2017; Elvidge et al., 2020; 

Falchetta et al., 2019). My thesis takes a similar stance and utilizes the NTL-based Falchetta et 

al. (2019) gridded dataset to estimate electricity access.  

Falchetta et al. (2019) presents a 1-km2 resolution gridded dataset in two formats: first as an 

annual count (for 2014 to 2018) of people without electricity per grid cell and second as a 

classification of people with electricity into one of four ‘tiers of consumption’. The classification 

of electrified customers is determined by exceeding a minimum threshold value of NTL radiance 

and is therefore vulnerable to the limitations of NTL predictability of rural energy statuses. 
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Electrified customers are then ranked into ‘tiers of consumption’ based on the distribution of 

quartile values of non-zero light radiance across their cells. The quartiles are set separately for 

urban and rural cells to account for the strong discontinuity between the average radiances of 

each. Falchetta et al. (2019) broadly links the consumption tiers to the World Bank’s Multi-Tier 

Matrix for Measure of Household Electricity Consumption, or successive thresholds of minimum 

energy demanded by a household in each tier (Bhatia & Angelou, 2015). I assign both 

residential and productive loads (from A and B, respectively) a consumption tier, simultaneously 

confirming their electrification status. I then map the World Bank’s tiered minimum demand 

levels, or supply requirements, to the Falchetta consumption tiers. From which I assign each 

electrified residential load a unique peak-power-demanded value. I do so by assuming power 

consumption per tier is distributed normally and use the per-tier cut-offs to define the lower and 

upper limits of a 95% confidence level of the distribution. Non-residential loads are ascribed 

demand patterns from their archetype’s profile, the specification of which is beyond the scope of 

this thesis and users should refer to supporting literature on archetypal behaviors of larger loads. 

The final output of this module is two DataFrames consisting of the location and demand 

characteristics (i.e., peak power demanded) of either electrified or unelectrified customers.   

A small-scale experiment on the Rwanda households extracted via the HRSL dataset showed 

that my electrification status model underestimates the national electrification rate by 30%. 

This is a large margin of error and does call into question the efficacy of using NTLs as a single 

proxy for the existence of electricity. I mostly attribute this error to undetectability of rural 

areas from this type of data and suggest multiple machine learning or computer vision 

augmentations to the NTL dataset that should be explored in the next iteration of the 

framework.  

D. Estimation of the Medium Voltage Network Layout 

Characterizing the extent, geolocation, and voltage of the medium voltage (MV) distribution 

network is a critical and invariable component across all tools and frameworks introduced in 

Chapter 2. The existing information on MV network layouts can be broadly classified into two 

types. The first Data Type includes crowd-sourced information, aggregated data from project 

archives, or public datasets shared by countries or utilities. The completeness and quality of 
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these datasets vary country to country and are often out of date, excluding new distribution 

lines or misrepresenting planned lines which have since changed. The second data type includes 

inferred maps of the network from existing open data, like remote sensing or satellite imagery. 

The most notable example, and the primary subject for comparison in my thesis, is the open 

tool gridfinder. Gridfinder is an open-source dataset that uses monthly and annual NTL data 

with other widely available infrastructure data (e.g., road networks) to produce the first 

composite map of the global power grid (Arderne et al., 2020). While the performance of 

gridfinder is better than the inconsistent quality of public datasets, it remains not good enough 

for individual building-level electrification plans (i.e., what REM requires). Arderne et al. (2020) 

designs the network based on geometric congruity with roads and OpenStreetMap grid data, no 

power flow or voltage drop analyses are made. Furthermore, by identifying electrification targets 

with only NTL data, the model is necessarily hindered by NTL’s poor detection of light in rural 

or peri-urban areas. An unexplored method for estimating MV network designs is the Reference 

Network Model (RNM) built into REM. RNM designs the optimal distribution network to 

supply georeferenced customers with the electricity they demand at a prescribed level of hourly 

reliability (Domingo et al., 2011). I propose leveraging the design capabilities of RNM (accessed 

via REM) to replicate the existing network in a study region.  

Estimating the MV network with REM can be done by configuring the input parameters to 

force an ‘all-grid-extension’ REM output. The parameters most critical to the network layout 

are the social cost of non-served energy (CNSE), the per-customer cost for off-grid alternatives, 

and the annual management costs for mini-grids. Together these parameters should make off-

grid alternatives prohibitively expensive and produce large grid-extension clusters. To run the 

‘all-grid-extension’ REM case, I supply it with the geolocations of (presumed) electrified 

residential and productive customers, their respective energy demand, and a user-provided 

country-specific network catalog. In addition, I would treat any openly available information on 

the existing grid as a-priori information on where the grid network is most likely built-out, 

feeding the open data as inputs to REM. Example of this a-priori data is the location and 

voltage of transformers or substations found on OpenStreetMap.  
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As a proof-of-concept I use ground-truth data provided by Rwanda stakeholders to see how the 

output of REM compares to the existing medium voltage network layout. To run this case, I 

also used the ground-truth data on electrified social and productive loads, as well as the location 

of medium voltage to low voltage distribution transformers. The location, demand, and 

electrification status of residential loads in Rwanda were supplied by my framework (i.e., the 

HRSL dataset). While it would be a more robust test of my framework to use just open sources 

as inputs to the case, the Google Maps API extraction of productive loads has yet to be scaled 

to all of Rwanda and therefore was unavailable for the experiment. Similarly, identifying 

transformer locations from public data is hindered by the same limitations as public sources on 

distribution layouts. Specifically, the transformer locations are incomplete and lack sufficient 

meta data on voltages. Nonetheless, my experiment showed very promising results. A qualitative 

comparison between the existing network, REM’s outputs, and gridfinder showed that REM 

extended the grid to most areas the existing network was located, and outperformed gridfinder. 

Though the lines were not exactly overlaid or identical to Rwanda’s layout, REM and other 

planning tools primarily use information on the existing grid to measure the feasibility of local 

grid extension, i.e., the proximity of unelectrified buildings to gridlines and the cost effectiveness 

of building out the grid to supply them with energy. So, I expect REM’s output to be good 

enough for the scope of my framework.  

That said, my next step will be to run a cell-by-cell comparison of all of Rwanda to compute 

how many true-positives and true-negatives are produced by REM’s RNM design module. Only 

after which can I make a final assessment on the efficacy of my model and its advantage over 

gridfinder. Finally, as REM is a proprietary software, applying it to estimate the medium 

voltage distribution network does not constitute an open-access solution for all users of the 

framework. As such, the notion of how this method would fit within the GitHub open 

framework remains an ongoing discussion.  
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Final Reflections on the Framework 

So far, all open-source frameworks in the field have needed to limit their models to coarser 

inferences, designing optimal electrification pathways at the village-, cell-, or administrative- 

level. These approaches forgo specificity for quicker implementations and higher levels of 

uncertainty. My thesis lays the foundation for a complete transition of the energy access sector 

to granular, open-source modelling. That said, ongoing work is still needed to completely 

automate the framework. A final iteration of the framework should require minimal engagement 

by users, except to define the extent of their study area. Furthermore, I have proposed multiple 

routes to developing more accurate models which estimate each Input Type. Future work should 

delve into each of these improvements and ongoing research to define the most “accurate” 

Python model. In the end, my thesis aims to first assist energy planners at fully electrifying the 

developing world, and next empower researchers with a tool to run synergistic studies on how 

electricity can change the socio-economic status and air-quality standards of these populations.   

 
 

  



 128 

Appendix 

1. Supplementary Figures   

 
Table A.1.1: (Bhatia & Angelou, 2015) Multi-Tier Matrix for Measuring Access to 
Household Electricity. Extracted from Beyond Connections: Energy Access Redefined.  
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Figure A.1.2: (Bhatia & Angelou, 2015) Minimum Requirements by Tier of Electricity 
Access. Extracted from Beyond Connections: Energy Access Redefined. 
 

 
 

 
Table A.1.3: (Bhatia & Angelou, 2015) Load levels, Indicative Electric Appliances, and 
Associated Capacity Tiers. Extracted from Beyond Connections: Energy Access Redefined. 
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