
Optimization Theory and Machine Learning
Practice: Mind the Gap

by
Jingzhao Zhang

B.S., University of California, Berkeley(2016)
M.S. Massachusetts Institute of Technology (2019)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2022
c○ Massachusetts Institute of Technology 2022. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

November 30, 2021
Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suvrit Sra
Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor
Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ali Jadbabaie
JR East Professor of Engineering

Department of Civil and Environmental Engineering
Institute for Data, Systems and Society

Thesis Supervisor
Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science

Chair, Department Committee on Graduate Students



2



Optimization Theory and Machine Learning Practice: Mind

the Gap

by

Jingzhao Zhang

Submitted to the Department of Electrical Engineering and Computer Science
on November 30, 2021, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Machine learning is a technology developed for extracting predictive models from
data so as to be able to generalize predictions to unobserved data. The process of
selecting a good model based on a known dataset requires optimization. In particular,
an optimization procedure generates a variable in a constraint set to minimize an
objective. This process subsumes many machine learning pipelines including neural
network training, which will be our main testing ground for theoretical analyses in
this thesis.

Among different kinds of optimization algorithms, gradient methods have become
the dominant algorithms in deep learning due to their scalability to high dimensions
and their natural bound to backpropagation. However, despite the popularity of
gradient-based algorithms, our understanding of such algorithms in a machine learn-
ing context from a theory perspective seems far from sufficient. On one hand, within
the current theory framework, most upper and lower bounds are closed, and the theory
problems seem solved. On the other hand, the theoretical analyses hardly generate
empirically faster algorithms than those found by practitioners. In this thesis, we
review the theoretical analyses of gradient methods, and point out the discrepancy
between theory and practice. We then provide an explanation for why the mismatch
happens and propose some initial solutions by developing theoretical analyses driven
by empirical observations.
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Chapter 1

Introduction and Outline

In this thesis, we aim to identify, study and reduce the gap between optimization exist-

ing theory and machine learning practice. We start by first zooming out and thinking

about the historical context of optimization. We hope to convince the readers that

the mismatch between theory and experiments existed in various forms throughout

the development of optimization and has motivated the discovery of beautiful ideas

and results. Hence, this problem can lead to promising future work and practical

impact. We will conclude the chapter by outlining the contents of this thesis.

Although the focus of this thesis is addressing the gap between modern optimiza-

tion theory and machine learning practice, we would like to take a detour and look

at the history of optimization. We will see through this history to provide a better

context that the theory results were not done under a single complexity framework,

but instead theory and practice are interleaved and can facilitate the development of

one another. We believe that such a view may shed light on how we could reduce the

mismatch between machine learning experiments and known theoretical results. A

fraction of the information below is extracted from a talk given by Stephan Wright

at OPTML seminar1.

Optimization means finding a feasible variable to minimize an objective function.

Therefore, in a more general sense, optimization subsume many canonical theoretical

computer science problems, including shortest-path, max-flow, SAT, traveling sales-

1https://www.youtube.com/watch?v=hZmHcalwJLA
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man problem, Hamiltonian path, etc. Hence, early optimization analysis stemmed

from theoretical computer science. It studies the number of operations performed by

a Turing machine and focuses on bit complexity.

Bit complexity studies the number of operations required to solve a problem that

is encoded in an integer number of bits. Therefore, early in 1960s, one major question

for the continuous optimization community was whether a linear program is solvable

in number of operations that are polynomial in the linear program’s definition. Hence

researchers only aimed for linear (i.e., exponential) convergence rates of the objective

suboptimality. At that time, simplex method [Dantzig, 1990] was widely adopted

for its good empirical performance. However in 1972, Klee and Minty [1972] showed

that simplex method is not a polynomial time algorithm. Soon, Karmarkar [1984]

proposed the famous ellipsoid method and showed that linear programming can be

solved in (pseudo)polynomial time.

At this time, the mismatch between theory and practice already happened. Sim-

plex, despite being theoretically slow, was observed to be much faster than the el-

lipsoid method. Such a discrepancy motivated the design of interior point meth-

ods [Khachiyan, 1980]. These methods enjoy both good empirical performances and

theoretical guarantees. Later, interior points method also became the major approach

to solving constrained nonlinear problems.

The inconsistency between theory and real-world linear problems not only moti-

vated the design of interior point methods, but also altered the framework used for

analysis. As the original P vs NP complexity hierarchy is inherently connected to

combinatorics, doing analysis under this framework on continuous problems incurs

extra complications. Furthermore, researchers also found that an exponential time

algorithm may not necessarily be slower than a polynomial time algorithm in practice.

Consequently, a new framework known as oracle complexity [Nemirovskii et al., 1983]

was proposed and sublinear (i.e., polynomial convergence) rates became acceptable.

The oracle complexity framework studies the number of oracle calls required to

achieve a target convergence measure. Oracles are generally computation bottlenecks

in optimization such as function value or gradient evaluations. Oracle complexity
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abstracts away many details and allows researchers to focus on reducing the cost of

the computationally expensive subprocedures. As oracle complexity also allows for

elegant and rigorous theory, it became the mainstream framework for optimization

theory and remains so to this day.

1.1 Optimization in the machine learning context

Though the analysis framework has not changed, optimization problems today are

very different from those thirty years ago. With the rise of data science and machine

learning, optimization algorithms become essential components of AI applications.

One important modern optimization problem is neural network training. Neural

networks are the state of art models in many data-driven tasks, and have become one

of the most important engines behind the rapid progress of machine learning. In par-

ticular, over past two decades, model performance has beaten human performance in

many applications, including image classification, text understanding, speech recog-

nition, games etc, and neural networks are an essential building block for all of these

models.

The power of neural networks lies in their strong expressive power. In particular,

with millions and billions of parameters, the neural network architecture can almost

approximate any function encountered in practice when enough data point is given.

However, the huge number of parameters also makes neural network training com-

putationally expensive. The cost of training a state of the art model from scratch

could already be several hundred million dollars in 2020. For this reason, researchers

care much about finding an optimization algorithm that can accelerate training in a

memory efficient manner.

Among different optimization algorithms, gradient based algorithms are the most

widely adopted in deep learning applications for a few reasons. First, gradient meth-

ods scale to high dimensional problems better than than zeroth order methods that

only use function value information. Second, unlike higher order methods, the mem-

ory complexity of gradient methods is also only linear in the number of parameters.
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Furthermore, neural networks permits backpropagation, and can evaluate gradient

efficiently. Therefore, over the past years, our understanding of gradient methods

in neural network training has improved greatly on the experimental side. Tech-

niques such as momentum, adaptive step sizes, normalization have been discovered

to accelerate and stabilize neural network training.

Great progress was also made on the theory side. Many new gradient based

algorithms were developed under the dominant framework and proven to be minimax

optimal under both deterministic and stochastic settings. These algorithms utilize

beautiful ideas such as variance reduction, Nesterov’s acceleration, restart and local

regularization. The convergence criteria studied involve function suboptimality, first-

order stationarity and second-order stationarity. Aside from convergence rate, many

analyses also focus on the study benign properties of neural network loss landscape.

Since neural network training is inherently a nonconvex problem that in general can

be NP-hard, much research effort provides explanation for why first order methods

can find good solutions. Explanations include that all saddle points are strict saddle

points, model being over-parametrized, etc.

However, despite all the progress in optimization research, the development of

theory and practice seems to be proceeding in different directions. For example, the-

oretically optimal algorithms do not always yield good empirical performance. We

will discuss this aspect in more detail in Chapter 2. On the other hand, many tech-

niques are known to improve experimental convergence rates. Examples include batch

normalization, heavy-ball style momentum and adaptive step sizes. However, though

these techniques were discovered based on high level motivations, formal proofs of

acceleration are in general still missing.

The goal of this thesis is to identify the theory-practice mismatch and to provide

an explanation for why the mismatch happens in modern machine learning setups.

After understanding why most of the theory results do not apply to neural network

training, we will propose a fix that can unify theory and practice. We will provide

initial analysis under a new framework and show how that can lead to better algorithm

designs.
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1.2 Outline

Closing the gap between theory and practice requires huge efforts way beyond the

limit of one PhD program. However, we hope that in this thesis, we could provide

a clear description of the problem. We will introduce ideas drawn from experiments

and show how these empirical ideas can benefit theoretical analysis.

In particular, we will start in Chapter 2 by reviewing the current complexity anal-

ysis. After examining the formal definition of convergence rates, we will understand

the conditions under which “optimal algorithms” remain optimal. We will then move

forward to describe the mismatch between theory and practice. In particular, we will

show that there is limited theory on why fast empirical algorithms are fast, whereas

theoretically fast algorithms are usually slow in practice.

Once we understand the definitions of complexity and the meaning of “minimax

optimal algorithms", we can move to investigate the cause of inconsistency between

empirical observations and theoretical predictions. In particular,we provide four con-

crete examples in the next four chapters. They examine the smoothness, bounded

variance, differentiability and optimality conditions in real world experiments and

discuss how they can result in unexpected behaviors that defies known theory.

In Chapter 3, we start by analyzing a simple but popular technique used in prac-

tice known as gradient clipping. Gradient clipping is crucial in many deep learning

tasks such as deep reinforcement learning and language modeling, and can speed up

convergence several times. However, there is yet limited explanation for why clipping

can be faster than vanilla gradient descent. In this chapter, we show that if the ob-

jective function is not globally smooth but has a more relaxed smoothness condition,

then gradient clipping can be arbitrarily faster than vanilla gradient descent.

In Chapter 4, we provide empirical and theoretical evidence that a heavy-tailed

distribution of the noise in stochastic gradients is one cause of SGD’s poor perfor-

mance. Instead, we provide the first tight upper and lower convergence bounds for

adaptive gradient methods under heavy-tailed noise. Further, we demonstrate how

gradient clipping plays a key role in addressing heavy-tailed gradient noise. Subse-
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quently, we show how clipping can be applied in practice by developing an adaptive

coordinate-wise clipping algorithm (ACClip) and demonstrate its better performance

on large-scale tasks.

In Chapter 5, we focus on complexity analysis for nonsmooth nonconvex func-

tions. In practice, neural networks with ReLU activations not only do not have

global smoothness constants, but can also be nondifferentiable. Motivated by this,

we provide the first non-asymptotic analysis for finding stationary points of nons-

mooth, nonconvex functions. In particular, we study the class of Hadamard semi-

differentiable functions, perhaps the largest class of nonsmooth functions for which

the chain rule of calculus holds.

In Chapter 6, we examine the applicability of the existing theoretical analyses,

and focus on a major disconnect between deep learning practice and optimization

theory. Specifically, we provide numerical evidence that in large-scale neural network

training (ImageNet + ResNet and WT103 + TransformerXL), the weight variables

do not converge to stationary points where the gradient of the loss function van-

ishes. Remarkably, however, despite the oscillatory behavior of the variables due to

non-stationarity, we observe that the loss function converges. Inspired by this obser-

vation, we propose a perspective based on the theory of dynamical systems to prove

convergence to an invariant measure that explains this phenomenon. We further

discuss how this perspective can better align the theory with empirical observations.

The above chapters provided a few concrete examples on how the gap between

theory and practice can be identified, analyzed, and reduced. In Chapter 7, we discuss

several implications of these ideas. We will finally conclude this thesis by elaborating

on a few future directions.
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Chapter 2

Convergence of optimization

algorithms: Theory vs practice

In this chapter, we aim to provide a more detailed description of the mismatch between

modern optimization theory and neural network training practices. To do so , we will

start by introducing the oracle complexity framework. This framework was first

systematically discussed by Nemirovski and Yudin [1983] and is still the dominant

framework (see Nesterov [2013] for a textbook introduction). Under this framework,

great progress was made in recent years. Optimal algorithms and convergence rates

have been developed in most setups.

After presenting some of the recent theoretical progress, we will then move on to

explain how these results conflicts with many interesting empirical observations. We

will identify the mismatch between neural network training and the oracle complexity

framework, and then suggest potential solutions and explanations.

2.1 A brief overview of complexity theory in opti-

mization

In this section, we will go over the definition of oracle complexity in optimization.

By doing so, we hope to identify the critical conditions under which the theoretical
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convergence results hold for gradient based algorithms. A large part of this chapter

is based on the textbook [Nesterov, 2013]. Some notations are from Carmon et al.

[2017]. The following definitions are standard and can be found in any introductory

text. We add them here for clarity of presentation.

We start by briefly reviewing the formulation of optimization problems. Let 𝑥 be

a vector in R𝑑. Let 𝑓 : R𝑑 → R be the objective function. We would like to choose 𝑥

in order to solve the following minimization problem,

min 𝑓(𝑥) s.t. 𝑥 ∈ 𝒮, (2.1)

where 𝒮 ⊆ R𝑑 denotes the feasible set and encodes problem constraints. This problem

formulation covers a large number of applications in machine learning and operations

research. We will now define some properties of the objective that will be used later.

Definition 2.1.1. A set 𝒮 ∈ R𝑑 is convex if for all 𝑥, 𝑦 ∈ 𝒮, 𝜆 ∈ [0, 1],

𝜆𝑥+ (1− 𝜆)𝑦 ∈ 𝒮.

The definition can be interpreted in a geometrical way that the line segment

between any two points of 𝒮 is contained in 𝒮. Based on this notion, we can define

the convexity of a real valued function.

Definition 2.1.2. A function 𝑓 : 𝒳 → R is convex if it has a convex epigraph,

epi(𝑓) = {(𝑥, 𝑦)|𝑥 ∈ 𝒳 , 𝑦 ≥ 𝑓(𝑥)}.

For simplicity, we assume throughout this thesis that there is a global minimum

𝑥*. Convexity also leads to a few equivalent definitions if 𝑓(𝑥) is continuously differ-

entiable. Please see [Nesterov, 2013] for proofs.

Lemma 2.1.1. A function continuously differentiable 𝑓 is convex if and only if for

all 𝑥, 𝑦 in R𝑑, and 𝛼 in [0, 1) one of the following holds,

1. 𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩,
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2. 𝑓(𝛼𝑥+ (1− 𝛼)𝑦) ≤ 𝛼𝑓(𝑥) + (1− 𝛼)𝑓(𝑦),

3. ⟨∇𝑓(𝑥)−∇𝑓(𝑦), 𝑥− 𝑦⟩ ≥ 0.

Based on the above definition, we can define 𝜇-strong convexity to quantify the

strength of convexity.

Definition 2.1.3. A continuously differentiable function 𝑓 is 𝜇-strongly convex if for

all 𝑥, 𝑦 ∈ R𝑑, 𝜇 ≥ 0,

𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩+
𝜇

2
‖𝑥− 𝑦‖2.

To further ease analysis, we very often bound the variation of the function 𝑓 by

bounding the Lipschitz constant of its gradient.

Definition 2.1.4. A differentiable function 𝑓(𝑥) is 𝐿-smooth if for all 𝑥, 𝑦 in R𝑑,

‖∇𝑓(𝑥)−∇𝑓(𝑦)‖ ≤ 𝐿‖𝑥− 𝑦‖.

With the above definitions, we could conveniently add assumptions to the objec-

tive function class of interest. We are now ready to define algorithms and complexity

in the next subsection.

2.1.1 Gradient methods and oracle complexity

For ease of presentation and understanding, in this section we focus on complexity

definition in the convex case. The complexity definitions in the nonconvex case are

similar. We will discuss those counterparts later in this thesis.

Throughout this thesis, we will study the oracle complexity of first order opti-

mization algorithms. In particular, a first order optimization algorithm has access

to a gradient oracle that takes in a point 𝑥 and returns the function value and the

(potentially stochastic) gradient evaluated at 𝑥, (𝑓(𝑥),∇𝑓(𝑥)). An iterative algo-

rithm generates a sequence of points {𝑥𝑘}𝑘≥0 based on the feedback from oracle calls.
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Following [Nesterov, 2013], we focus on iterative algorithms satisfying

𝑥𝑘 ∈ 𝑥0 + Lin{∇𝑓(𝑥0), ...,∇𝑓(𝑥𝑘−1)}, for 𝑘 ≥ 1, (2.2)

where Lin denotes the linear span. We denote an algorithm by 𝒜 which is determined

by the mappings 𝒜𝑘 from previous oracle calls to the next point in the sequence, i.e.

𝑥𝑘+1 = 𝒜𝑘(𝑥0,∇𝑓(𝑥0), ..., 𝑥𝑘,∇𝑓(𝑥𝑘)).

Now we are ready to define iteration complexity. Denote by 𝒜[𝑓, 𝑥0] the sequence of

points {𝑥𝑘} generated by algorithm 𝒜 with function 𝑓 starting from 𝑥0.

The complexity in the convex case is measured in terms of function suboptimality.

Let the convergence rate for a particular objective 𝑓 be defined as,

𝑇𝜖({𝑥𝑘}𝑘∈Z+ , 𝑓) = inf{𝑁 ∈ Z+ | 𝑓(𝑥𝑁)− 𝑓(𝑥*) ≤ 𝜖}, (deterministic)

𝑇𝜖({𝑥𝑘}𝑘∈Z+ , 𝑓) = inf
{︁
𝑁 ∈ Z+|Prob( 𝑓(𝑥𝑁)− 𝑓(𝑥*) ≤ 𝜖) ≥ 1

2

}︁
. (stochastic)

Then the complexity of algorithm 𝒜 on function class ℱ is defined as the worst

convergence rate

𝑇 (𝒜,ℱ) = sup
𝑓∈ℱ

𝑇𝜖(𝒜[𝑓, 𝑥0], 𝑓).

To provide a concrete example, we take a close look at the gradient descent algo-

rithm. Let ℱ𝜇,𝐿 denote the class of functions that are differentiable, 𝐿-smooth and

𝜇−strongly convex. Consider the following gradient descent update,

𝑥𝑘+1 = 𝑥𝑘 −
1

𝐿
∇𝑓(𝑥). (2.3)

Then by smoothness and strong convexity (see Thm 2.1.15 in Nesterov [2013] for
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details), one can show that

𝑓(𝑥𝑘)− 𝑓 * ≤ 𝐿

2

(︂
𝐿

𝜇+ 𝐿

)︂2𝑘

‖𝑥0 − 𝑥*‖2.

Therefore, the iteration complexity of gradient descent (2.3) for minimizing functions

in the 𝜇−strongly convex and 𝐿−smooth function class ℱ𝜇,𝐿 is of order𝒪(𝐿
𝜇

log(𝐿‖𝑥0−𝑥*‖
𝜖

)).

The definitions and examples above provided upper bounds for convergence rates.

Next, we discuss the minimax optimality of an algorithm. To do so, we need to

understand lower bounds in addition to upper bounds.

2.1.2 Optimal gradient methods

As discussed in Section 2.1.1, we know that gradient descent (GD) has iteration

complexity 𝒪(𝐿
𝜇

log(1
𝜖
)). One natural question is whether this rate can be improved.

To answer such question, we care about the lower bounds for the class of first order

methods defined below

𝑇lower(ℱ) = inf
𝒜

sup
𝑓∈ℱ

𝑇𝜖(𝒜[𝑓, 𝑥0], 𝑓).

We say an algorithm 𝒜 is minimax optimal if there exists a global constant 𝐶 such

that

𝑇 (𝒜,ℱ) ≤ 𝐶𝑇𝑙𝑜𝑤𝑒𝑟(ℱ).

In other words, an algorithm is minimax optimal if it matches best worst case com-

plexity up to a constant factor. To prove an algorithm is minimax optimal, one needs

to first construct strong lower bounds. Nemirovski and Yudin [1983] proves a lower

bound on oracle complexity for convex optimization problems.

Theorem 2.1.2 (Nemirovski and Yudin [1983]). There exists a function 𝑓 ∈ ℱ𝜇,𝐿

such that no first order algorithm satisfying the linear span property can achieve faster

rate than 𝒪(
√︁

𝐿
𝜇

log(1
𝜖
)).
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This shows that the gradient descent rate may not be optimal. Soon Nesterov

closed the gap in Nesterov [1983] by proposing an accelerated algorithm now known

as Nesterov’s accelerated gradient descent (NAG).

𝑦𝑘+1 = 𝑥𝑘 − 𝛼∇𝑓(𝑥𝑘) (2.4)

𝑥𝑘+1 = (1 + 𝛽)𝑦𝑘+1 − 𝛽𝑦𝑘.

With this algorithm, Nesterov[Nesterov, 1983] proved the following result.

Theorem 2.1.3. Let 𝑓 be 𝜇−strongly convex and 𝐿−smooth, then NAG defined in

(2.4) with parameter choice 𝛼 = 1
𝐿
, 𝛽 =

√
𝑄−1√
𝑄+1

satisfies

𝑓(𝑦𝑘)− 𝑓(𝑥*) ≤ 𝜇+ 𝐿

2
‖𝑥0 − 𝑥*‖2 exp(−𝑘−1√

𝑄
).

This implies that the iteration complexity of NAG for 𝜇−strongly convex, 𝐿−smooth

functions is 𝒪(
√︁

𝐿
𝜇

log(1
𝜖
)).

With the above two theorems, we see that NAG is a minimax optimal algorithm

for optimizing the ℱ𝜇,𝐿 function class. In fact, NAG is also an optimal algorithm for

the class of convex 𝐿−smooth functions. The rates are summarized in Table 2.1.

We have now defined oracle complexity and introduced the notion of optimal

algorithms through Nesterov’s accelerated gradient method. We notice that the oracle

complexity framework is very powerful. With reasonable assumptions, this framework

could motivate researchers to design elegant algorithms and close upper and lower

bounds for convergence rates (i.e., the bounds are same up to constant scaling).

However, we also realize that despite its intuitive definition, the optimality statement

is critically conditioned on the assumptions on the oracle, function class, algorithm

class and worst case performance. We will elaborate on these aspects in later chapters.

2.1.3 A short note on optimal algorithms in various cases

The recent literature of optimization upper and lower bounds is vast. Here we present

a small subset that is more relevant to our arguments. We focus on common setups
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Gradient descent Nesterov’s method Lower bound

Smooth & Convex 𝒪(𝐿
𝜖
) 𝒪( 𝐿√

𝜖
) 𝒪( 𝐿√

𝜖
)

Smooth & strongly convex 𝒪(𝐿
𝜇

log(1
𝜖
)) 𝒪(

√︁
𝐿
𝜇

log(1
𝜖
)) 𝒪(

√︁
𝐿
𝜇

log(1
𝜖
))

Table 2.1: Iteration complexities of GD and NAG with and without strong convexity.

where upper and lower bounds are closed. We do not intend to do a literature review

but aim to provide a few resources for readers to start the exploration and to show

that rates are closed for most common setups. All the cases below have closed bounds.

We first define two extensions beyond the deterministic gradient setup we de-

scribed in the previous section. The first one is the stochastic setup. In this setup,

an oracle instead of returning the exact gradient, it maps an variable 𝑥 to a stochastic

gradient 𝑔(𝑥) such that the stochastic gradient is unbiased with bounded variance.

E[𝑔(𝑥)] = ∇𝑓(𝑥),

E[‖𝑔(𝑥)−∇𝑓(𝑥)‖2] ≤ 𝜎2.

The second setup is known as the finite sum setup, where the objective function

can be decomposed into 𝑛 components,

𝑓(𝑥) = 1
𝑛

∑︀𝑛
𝑖=1 𝑓𝑖(𝑥).

Here, when one makes an oracle call, the oracle instead of giving a full gradient, can

return the gradient evaluated for any single function 𝑓𝑖(𝑥). When each component

function 𝑓𝑖 corresponds to the loss from one data point, this problem becomes the

empirical risk minimization problem from machine learning, and it has hence attracted

great research attention. Consequently, many optimal algorithms are known.

The above two setups, along with the deterministic setup are the most standard

setups for gradient oracle. We will discuss below that within these setups, optimal

algorithms are known for most common function classes.
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Convex and Lipschitz Functions In this case, the function is not necessarily

differentiable and but its subgradient can always be evaluated. The optimal rates

are well understood and achieved by standard subgradient descent algortihms. More

details can be found in Nesterov’s textbook [Nesterov, 2013]. Interestingly, the rates

for both the deterministic case and the stochastic case are the same, except that the

optimality measure is different. No better results are known in the finite sum setting

beyond reducing the finite sum problem to stochastic or deterministic problems, as to

exploit finite sum structure, all known algorithms require smoothness of component

functions.

Convex and Smooth Optimal algorithms in the deterministic setting are discussed

in the previous section. In the stochastic setup, when the objective function is strongly

convex, optimal upper bounds can be found in [Ghadimi and Lan, 2012], whereas one

short proof of lower bound can be found in [Agarwal et al., 2009]. When the function

is not strongly convex, lower bound can be established by setting the strong convexity

constant to be 𝜖 dependent. Upper bounds are achieved by SGD. In the finite sum

setup, some of the methods that closed the rate are [Allen-Zhu, 2017, Lin et al., 2015].

The corresponding lower bounds can be found in [Agarwal and Bottou, 2015] for the

strongly convex case, and in [Woodworth and Srebro, 2016] for the convex case.

Nonconvex smooth The gradient descent algorithm was shown to be optimal in

[Carmon et al., 2017] for the deterministic case, whereas the SGD algorithm was

shown to be optimal in [Arjevani et al., 2019]. When the Hessian is further Lipschitz,

faster rates can be achieved by cubic-regularized Newton’s method [Nesterov and

Polyak, 2006], which was also proven to be optimal in [Carmon et al., 2017]. In

the stochastic case, higher order smoothness does not seem to help. In the finite

sum setting, tight upper and lower bounds can be found in [Fang et al., 2018a] and

[Arjevani et al., 2019] respectively.

The above results conclude the standard convex and nonconvex setups. Other

more specialized topics include min-max optimization problems, distributed/federated
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learning problems, composite problems, second order stationarity, Geometric opti-

mization etc. We refrain ourselves from further summaries, and will now get back to

our main story line.

Figure 2-1: Numerically estimated convergence rate for Nesterov’s method (upper
row) and heavyball method (lower row) from [Lessard et al., 2016]. The black solid
line denotes the numerical approach (known as LMI) used to estimate convergence
rates. We can see that Nesterov’s method has better convergence properties.
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2.2 Theory vs neural network training

We have seen that significant progress had been made along the oracle complexity

framework. New algorithms and rates were discovered. Minimax optimal rates are

known in most common setups. These theoretical results are reasonably predictive of

their performance in synthetic problems such as optimizing quadratic losses. However,

up till now, optimal algorithms are not quite optimal in training neural networks.

Neural network training is naturally an optimization problem, and often entails

solving the problem below:

min
𝜃
𝑓(𝜃) :=

1

𝑛

𝑛∑︁
𝑖=1

ℓ(𝜃, 𝑥𝑖) + 𝛾(𝜃),

where {𝑥1, 𝑥2, · · · , 𝑥𝑛} denotes the dataset, 𝜃 denotes neural network parameters and

𝛾 denotes a regularization function such as 𝐿2 norm regularization. It is worth noting

that neural network training also cares about generalization performance in addition

to optimization. However, generalization gap is beyond the scope of thesis. Admit-

tedly, the interaction between optimization and generalization may be one source of

the gap between the theory and practice. We leave that as a future direction and

instead focus on optimization for now, which alone already has many mysteries.

Due to the natural optimization formulation of neural network training and the

availability of gradient evaluations through back-propagation, one might expect that

the powerful theorems for gradient based optimization algorithms can help improve

the practice. However, as we will see theory results do not match with neural network

experiments. We give a few concrete examples below.

2.2.1 Theory in practice

In this section, we show how some positive theory results fail to improve neural

network practice. A great number of optimal algorithms utilizes two ideas: Nesterov’s

momentum and variance reduction. Nesterov’s momentum can improve upon gradient

descent for convex problems. Variance reduction can speed up SGD for solving finite-
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sum problems. We will discuss the performance of these two ideas in practice.

As we have shown, Nesterov’s momentum accelerated gradient descent in multiple

settings. The convergence rate of heavyball momentum, however, is only known

to accelerate quadratic problems. In other cases, the theoretical rates do not even

match that of gradient descent [Ghadimi et al., 2014, Yang et al., 2016]. There are

also evidence that heavyball may not be stable for general strongly convex functions

beyond quadratics (e.g. see Figure 2-1)

However, despite this gap between Nesterov’s momentum and heavyball momen-

tum in theory, there is limited difference in their empirical performances. Sutskever

et al. [2013] compared the two on smaller models that show Nesterov’s momentum is

slightly better. A more modern work [Choi et al., 2019] showed that for larger scale

experiments, the difference between Nesterov’s momentum and heavyball momentum

is indistinguishable.

A second example is variance reduction. Variance reduction techniques were mo-

tivated by finite sum problems that subsume empirical risk minimization problems.

Variance reduction is specifically designed to reduce noise in stochastic gradients, and

it has generated a vast body of literature. However, despite its theoretical success,

it struggles to improve practical performance (see Figure 2-2). Defazio and Bottou

[2018] presented a thorough set of experiments and explanations.

In summary, many optimal gradient based algorithms were designed, yet these

algorithms did not become popular in neural network training. Instead, as we will

see in the next section, the dominant algorithms are those motivated by practice and

with suboptimal theoretical properties.

2.2.2 Practice in theory

Deep learning experiments have led theoretical understandings for long. Many em-

pirically fast techniques still lack rigorous theoretical understandings. In particular,

within the current theoretical framework, it is very challenging to rigorously justify

the effectiveness of many heuristics such as batch normalization, adaptive step sizes,

learning rate warm up, etc.
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Figure 2-2: The figure from [Defazio and Bottou, 2018] showed that variance reduction
methods fail to accelerate large scale neural network training despite great efforts.

We give two examples in this category. The first example is batch normalization.

Batch normalization [Ioffe and Szegedy, 2015] was introduced to speed up neural

network training. Its original motivation was to reduce covariance shift. Later, San-

turkar et al. [2018] rebutted the intuition with numerical measurements and observed

that batch normalization reduces the nonsmoothness of the loss landscape. Up to

the author’s knowledge, there is no follow up work that explains why batch norm can

encourage smoothness, and how we could further accelerate training.

The second example is the ADAM optimizer. ADAM was proposed by Kingma

and Ba [2014] and has been the most widely used optimizer since then. However, it

was pointed later by Reddi et al. [2019] that the original ADAM proof was incorrect

and ADAM can be divergent (see Figure 2-3). Yet, such finding does not stop re-

searchers from using ADAM. Though later work was able to fix the proof of ADAM

with different parameter choice and tricks, the rate has never been better than the

vanilla SGD.
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Figure 2-3: The figure from [Reddi et al., 2019] showed that the average regret of
ADAM doesn’t converge to zero even for convex losses.

2.2.3 Closing the gap

We have now seen the mismatch between theory and practice. In particular, we no-

ticed that with the fast progress in both experimental and theoretical understandings

of gradient methods, the gap between the two fields has become even larger. Under-

standing why this gap exists and how we could adjust theoretical analysis to reduce

the gap will be the main focus in the rest of this thesis.

Before we dive into the concrete detailed discussions, we hope to provide a high

level intuition for our approach to this problem. Ideally, mathematical derivations

can never be wrong. The hint to why mismatch happens lies in the explicit or implicit

assumptions made for defining oracle complexity. In the rest of this thesis, we will

see how theoretical optimality critically depends on some assumptions that does not

hold in practice. We will also propose new analysis and algorithms that help close

the gap between theory and practice.
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Chapter 3

Relaxed Smoothness and Gradient

Clipping

In this chapter, we start a journey by examining one condition on which many the-

oretical analysis are based on: global smoothness. We want to understand how well

this condition holds in neural network training and whether it can help explain the

gap between theory and machine learning practice. Interestingly, we observe that

gradient smoothness demonstrates significant variability along the training trajec-

tory of deep neural networks. Further, this smoothness positively correlates with the

gradient norm, and contrary to standard assumptions in the literature, it can grow

with the norm of the gradient. These empirical observations limit the applicability of

existing theoretical analyses of algorithms that rely on a fixed bound on smoothness.

These observations motivate us to introduce a novel relaxation of gradient smoothness

that is weaker than the commonly used Lipschitz smoothness assumption. Under the

new condition, we prove that two popular methods, namely, gradient clipping and

normalized gradient, converge arbitrarily faster than gradient descent with fixed step-

size. We further explain why such adaptively scaled gradient methods can accelerate

empirical convergence and verify our results empirically in popular neural network

training settings.
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3.1 Introduction

We study optimization algorithms for neural network training and aim to resolve the

mystery of why adaptive methods converge fast. Specifically, we study gradient-based

methods for minimizing a differentiable nonconvex function 𝑓 : R𝑑 → R, where 𝑓(𝑥)

can potentially be stochastic, i.e., 𝑓(𝑥) = E𝜉[𝐹 (𝑥, 𝜉)]. Such choices of 𝑓 cover a wide

range of problems in machine learning, and their study motivates a vast body of

current optimization literature.

A widely used (and canonical) approach for minimizing 𝑓 is the (stochastic) gra-

dient descent (GD) algorithm. Despite its simple form, GD often achieves superior

empirical [Wilson et al., 2017] performances and theoretical [Carmon et al., 2017]

guarantees. However, in many tasks such as reinforcement learning and natural lan-

guage processing (NLP), adaptive gradient methods (e.g., Adagrad [Duchi et al.,

2011], ADAM [Kingma and Ba, 2014], and RMSProp [Tieleman and Hinton, 2012])

outperform SGD. Despite their superior empirical performance, our understanding

of the fast convergence of adaptive methods is limited. Previous analysis has shown

that adaptive methods are more robust to variation in hyper-parameters [Ward et al.,

2018] and adapt to sparse gradients [Duchi et al., 2011]. However, in practice, the gra-

dient updates are dense, and even after extensively tuning the SGD hyperparameters,

it still converges much slower than adaptive methods in NLP tasks.

We analyze the convergence of clipped gradient descent and provide an explanation

for its fast convergence. Even though gradient clipping is a standard practice in

tasks such as language models [e.g. Merity et al., 2018, Gehring et al., 2017, Peters

et al., 2018], it lacks a firm theoretical grounding. Goodfellow et al. [2016], Pascanu

et al. [2013, 2012] discuss the gradient explosion problem in recurrent models and

consider clipping as an intuitive workaround. We formalize this intuition and prove

that clipped GD can converge arbitrarily faster than fixed-step gradient descent. This

result is shown to hold under a novel smoothness condition that is strictly weaker than

the standard Lipschitz-gradient assumption pervasive in the literature. Hence our

analysis captures many functions that are not globally Lipschitz smooth. Importantly,
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the proposed smoothness condition is derived on the basis of extensive NLP training

experiments, which are precisely the same type of experiments for which adaptive

gradient methods empirically perform superior to gradient methods.

By identifying a new smoothness condition through experiments and then using it

to analyze the convergence of adaptively-scaled methods, we reduce the following gap

between theory and practice. On one hand, powerful techniques such as Nesterov’s

momentum and variance reduction theoretically accelerate convex and nonconvex

optimization. But, at least for now, they seem to have limited applicability in deep

learning [Defazio and Bottou, 2018]. On the other hand, some widely used techniques

(e.g., heavy-ball momentum, adaptivity) lack theoretical acceleration guarantees. We

suspect that a major reason here is the misalignment of the theoretical assumptions

with practice. Our work demonstrates that the concept of acceleration critically relies

on the problem assumptions and that the standard global Lipschitz-gradient condition

may not hold in the case of some applications and thus must be relaxed to admit a

wider class of objective functions.

In light of the above background, we will later show in this section:

� Inspired and supported by neural network training experiments, we introduce a

new smoothness condition that allows the local smoothness constant to increase

with the gradient norm. This condition is strictly weaker than the pervasive

Lipschitz-gradient assumption.

� We provide a convergence rate for clipped GD under our smoothness assumption

(Theorem 3.4.1).

� We prove an upper-bound (Theorem 3.4.3) and a lower-bound (Theorem 3.4.2)

on the convergence rate of GD under our relaxed smoothness assumption. The

lower-bound demonstrates that GD with fixed step size can be arbitrarily slower

than clipped GD.

� We provide upper bounds for stochastic clipped GD (Theorem 3.4.4) and SGD

(Theorem 3.4.5). Again, stochastic clipped GD can be arbitrarily faster than SGD

with a fixed step size.
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We support our proposed theory with realistic neural network experiments. First,

in the state of art LSTM language modeling (LM) setting, we observe the function

smoothness has a strong correlation with gradient norm (see Figure 3-2). This aligns

with the known fact that gradient clipping accelerates LM more effectively compared

to computer vision (CV) tasks. Second, our experiments in CV and LM demonstrate

that clipping accelerates training error convergence and allows the training trajectory

to cross non-smooth regions of the loss landscape. Furthermore, gradient clipping

can also achieve good generalization performance even in image classification (e.g.,

95.2% test accuracy in 200 epochs for ResNet20 on Cifar10). Please see Section 3.5

for more details.

3.2 A More General Relaxed Smoothness Condition

In this section, we motivate and develop a relaxed smoothness condition that is weaker

(and thus, more general) than the usual global Lipschitz smoothness assumption. We

start with the traditional definition of smoothness.

3.2.1 Function smoothness (Lipschitz gradients)

Recall that 𝑓 denotes the objective function that we want to minimize. We say that

𝑓 is 𝐿-smooth if

‖∇𝑓(𝑥)−∇𝑓(𝑦)‖ ≤ 𝐿‖𝑥− 𝑦‖, for all 𝑥, 𝑦 ∈ R𝑑. (3.1)

For twice differentiable functions, condition (3.1) is equivalent to ‖∇2𝑓(𝑥)‖ ≤ 𝐿,∀𝑥 ∈

R𝑑. This smoothness condition enables many important theoretical results. For

example, Carmon et al. [2017] show that GD with ℎ = 1/𝐿 is up to a constant

optimal for optimizing smooth nonconvex functions.

But the usual 𝐿-smoothness assumption (3.1) also has its limitations. Assuming

existence of a global constant 𝐿 that upper bounds the variation of the gradient is

very restrictive. For example, simple polynomials such as 𝑓(𝑥) = 𝑥3 break the as-
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sumption. One workaround is to assume that 𝐿 exists in a compact region, and either

prove that the iterates do not escape the region or run projection-based algorithms.

However, such assumptions can make 𝐿 very large and slow down the theoretical

convergence rate. In Section 3.4, we will show that a slow rate is unavoidable for

gradient descent with fixed step size, whereas clipped gradient descent can greatly

improve the dependency on 𝐿.

The above limitations force fixed-step gradient descent (which is tailored to Lip-

schitz smooth functions) to converge slowly in many tasks. In Figure 3-1, we plot

the estimated function smoothness at different iterations during training neural net-

works. We find that function smoothness varies greatly at different iterations. From

Figure 3-1, we further find that local smoothness positively correlates with the full

gradient norm, especially in the language modeling experiment. A natural question

is:

Can we find a fine-grained smoothness condition under which we can de-

sign theoretically and empirically fast algorithms at the same time?

To answer this question, we introduce a relaxed smoothness condition in the next

section, which is developed on the basis of extensive experiments— Figure 3-1 provides

an illustrative example.

Figure 3-1: Gradient norm vs local gradient Lipschitz constant on a log-scale along the
training trajectory for AWD-LSTM [Merity et al., 2017] on PTB dataset. The colorbar
indicates the number of iterations during training. More experiments can be found in Sec-
tion 3.5. Experiment details are in Appendix.
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3.2.2 A new relaxed smoothness condition

We observe strong positive correlation between function smoothness and gradient

norm in language modeling experiments (Figure 3-1(a)). This observation leads us

to propose the following smoothness condition that allows local smoothness to grow

with function gradients.

Definition 3.2.1. A second order differentiable function 𝑓 is (𝐿0, 𝐿1)-smooth if

‖∇2𝑓(𝑥)‖ ≤ 𝐿0 + 𝐿1‖∇𝑓(𝑥)‖. (3.2)

Definition 3.2.1 strictly relaxes the usual (and widely used) 𝐿-smoothness. There

are two ways to interpret the relaxation: First, when we focus on a compact region,

we can balance the constants 𝐿0 and 𝐿1 such that 𝐿0 ≪ 𝐿 while 𝐿1 ≪ 𝐿. Second,

there exist functions that are (𝐿0, 𝐿1)-smooth globally, but not 𝐿-smooth. Hence the

constant 𝐿 for 𝐿-smoothness gets larger as the compact set increases but 𝐿0 and 𝐿1

stay fixed. An example is given in Lemma 3.2.1.

Remark 3.2.1. It is worth noting that we do not need the Hessian operator norm and

gradient norm to necessarily satisfy the linear relation (3.2). As long as these norms

are positively correlated, gradient clipping can be shown to achieve faster rate than

fixed step size gradient descent. We use the linear relationship (3.2) for simplicity of

exposition.

Lemma 3.2.1. Let 𝑓 be the univariate polynomial 𝑓(𝑥) =
∑︀𝑑

𝑖=1 𝑎𝑖𝑥
𝑖. When 𝑑 ≥ 3,

then 𝑓 is (𝐿0, 𝐿1)-smooth for some 𝐿0 and 𝐿1 but not 𝐿-smooth.

Proof. The first claim follows from lim𝑥→∞

⃒⃒⃒
𝑓 ′(𝑥)
𝑓 ′′(𝑥)

⃒⃒⃒
= lim𝑥→−∞

⃒⃒⃒
𝑓 ′(𝑥)
𝑓 ′′(𝑥)

⃒⃒⃒
= ∞. The

second claim follows by the unboundedness of 𝑓 ′′(𝑥).

3.2.3 Smoothness in neural networks

We saw that our smoothness condition relaxes the traditional smoothness assumption

and is motivated empirically (Figure 3-1). Below we develop some intuition for this
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phenomenon. We conjecture that the proposed positive correlation results from the

common components in expressions of the gradient and the Hessian. We illustrate

the reasoning behind this conjecture by considering an ℓ-layer linear network with

quadratic loss—a similar computation also holds for nonlinear networks.

The 𝐿2 regression loss of a deep linear network is ℒ(𝑌, 𝑓(𝑋)) := ‖𝑌−𝑊ℓ · · ·𝑊1𝑋‖2,

where 𝑌 denotes labels, 𝑋 denotes the input data matrix, and 𝑊𝑖 denotes the weights

in the 𝑖th layer. By [Kawaguchi, 2016][Lemma 4.3], we know that

∇vec(𝑤𝑖)ℒ(𝑌, 𝑓(𝑋)) = ((𝑊ℓ · · ·𝑊𝑖+1)⊗ (𝑊𝑖−1 · · ·𝑊2𝑊1𝑋)𝑇 )𝑇 vec(𝑓(𝑋)− 𝑌 ),

where vec(·) flattens a matrix in R𝑚×𝑛 into a vector in R𝑚𝑛; ⊗ denotes the Kronecker

product. For constants 𝑖, 𝑗 such that ℓ ≥ 𝑗 > 𝑖 > 0, the second order derivative

∇vec(𝑤𝑗)∇vec(𝑤𝑖)ℒ(𝑌, 𝑓(𝑋)) =

((𝑊ℓ · · ·𝑊𝑖+1)⊗ (𝑊𝑖−1 · · ·𝑊2𝑊1𝑋)𝑇 )𝑇 ((𝑊ℓ · · ·𝑊𝑗+1)⊗ (𝑊𝑗−1 · · ·𝑊2𝑊1𝑋)𝑇 )+

((𝑊𝑗−1 · · ·𝑊𝑖+1)⊗ (𝑊𝑖−1 · · ·𝑊2𝑊1𝑋))(𝐼 ⊗ ((𝑓(𝑋)− 𝑌 )𝑊ℓ · · ·𝑊𝑗+1)).

When 𝑗 = 𝑖, the second term equals 0. Based on the above expressions, we notice that

the gradient norm and Hessian norm may be positively correlated due to the following

two observations. First, the gradient and the Hessian share many components such

as the matrix product of weights across layers. Second, if one naively upper bounds

the norm using Cauchy-Schwarz, then both upper-bounds would be monotonically

increasing with respect to ‖𝑊𝑖‖ and ‖𝑓(𝑋) − 𝑌 ‖. Consequently, the gradient norm

and the smoothness constant might be positively correlated for neural networks.

3.3 Problems setup and algorithms

In this section, we state the optimization problems and introduce gradient based al-

gorithms for them that work under the new smoothness condition (3.2). Convergence

analysis follows in Section 3.4.
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Recall that we wish to solve the nonconvex optimization problem min𝑥∈R𝑑 𝑓(𝑥).

Since in general this problem is intractable, following common practice we also seek

an 𝜖-stationary point, i.e., a point 𝑥 such that ‖∇𝑓(𝑥)‖ ≤ 𝜖. Furthermore, we make

the following assumptions to regularize the function class studied and subsequently

provide nonasymptotic convergence rate analysis.

Assumption 3.3.1. The function 𝑓 is lower bounded by 𝑓 * > −∞.

Assumption 3.3.2. The function 𝑓 is twice differentiable.

Assumption 3.3.3 ((𝐿0, 𝐿1)-smoothness). The function 𝑓 is (𝐿0, 𝐿1)-smooth, i.e.,

there exist positive constants 𝐿0 and 𝐿1 such that ‖∇2𝑓(𝑥)‖ ≤ 𝐿0 +𝐿1‖∇𝑓(𝑥)‖—see

condition (3.2).

The first assumption is standard. Twice differentiability in Assumption 3.3.2

can relaxed to first-order differentiability by modifying the definition of (𝐿0, 𝐿1)-

smoothness as

lim sup
𝛿→0⃗

‖∇𝑓(𝑥)−∇𝑓(𝑥+𝛿)‖
‖𝛿‖ ≤ 𝐿1‖∇𝑓(𝑥)‖+ 𝐿0.

The above inequality implies ∇𝑓(𝑥) is locally Lipschitz, and hence almost everywhere

differentiable. Therefore, all our results can go through by handling the integrations

more carefully. But to avoid complications and simplify exposition, we assume that

the function is twice differentiable.

To further relax the global assumptions, by showing that GD and clipped GD are

monotonically decreasing in function value, we require the above assumptions to hold

just in a neighborhood determined by the sublevel set 𝒮1 for a given initialization 𝑥0,

where

𝒮 := {𝑥 | ∃ 𝑦 such that 𝑓(𝑦) ≤ 𝑓(𝑥0), and ‖𝑥− 𝑦‖ ≤ 1}. (3.3)

1The constant “1” in the expression (3.3) is arbitrary and can be replaced by any fixed positive
constant.
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3.3.1 Gradient descent algorithms

In this section, we review a few well-known variants of gradient based algorithms that

we analyze. We start with the ordinary gradient descent with a fixed step size 𝜂,

𝑥𝑘+1 = 𝑥𝑘 − 𝜂∇𝑓(𝑥𝑘). (3.4)

This algorithm (more precisely, its stochastic version) is widely used in neural network

training. Many modifications of it have been proposed to stabilize or accelerate

training. One such technique of particular importance is clipped gradient descent,

which performs the following updates:

𝑥𝑘+1 = 𝑥𝑘 − ℎ𝑐∇𝑓(𝑥𝑘), where ℎ𝑐 := min{𝜂𝑐, 𝛾𝜂𝑐
‖∇𝑓(𝑥)‖}. (3.5)

Another algorithm that is less common in practice but has attracted theoretical in-

terest is normalized gradient descent. The updates for normalized GD method can

be written as

𝑥𝑘+1 = 𝑥𝑘 − ℎ𝑛∇𝑓(𝑥𝑘), where ℎ𝑛 := 𝜂𝑛
‖∇𝑓(𝑥)‖+𝛽

. (3.6)

The stochastic version of the above algorithms replaced the gradient with a stochastic

estimator.

We note that Clipped GD and NGD are almost equivalent. Indeed, for any given

𝜂𝑛 and 𝛽, if we set 𝛾𝜂𝑐 = 𝜂𝑛 and 𝜂𝑐 = 𝜂𝑛/𝛽, then we have

1
2
ℎ𝑐 ≤ ℎ𝑛 ≤ 2ℎ𝑐.

Therefore, clipped GD is equivalent to NGD up to a constant factor in the step

size choice. Consequently, the nonconvex convergence rates in Section 3.4 and Sec-

tion 3.4.2 for clipped GD also apply to NGD. We omit repeating the theorem state-

ments and the analysis for conciseness.
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3.4 Theoretical analysis

In this section, we analyze the oracle complexities of GD and clipped GD under our

relaxed smoothness condition. All the proofs are in the Section 3.7.

Since we are analyzing the global iteration complexity, let us recall the formal

definition being used. We follow the notation from [Carmon et al., 2017]. For a

deterministic sequence {𝑥𝑘}𝑘∈N, define the complexity of {𝑥𝑘}𝑘∈N for a function 𝑓 as

𝑇𝜖({𝑥𝑡}𝑡∈N, 𝑓) := inf{𝑡 ∈ N|‖∇𝑓(𝑥𝑡)‖ ≤ 𝜖}. (3.7)

For a random process {𝑥𝑘}𝑘∈N, we define the complexity of {𝑥𝑘}𝑘∈N for function 𝑓 as

𝑇𝜖({𝑥𝑡}𝑡∈N, 𝑓) := inf
{︁
𝑡 ∈ N|Prob(‖∇𝑓(𝑥𝑘)‖ ≥ 𝜖 for all 𝑘 ≤ 𝑡) ≤ 1

2

}︁
. (3.8)

In particular, if the condition is never satisfied, then the complexity is ∞. Given

an algorithm 𝐴𝜃, where 𝜃 denotes hyperparameters such as step size and momentum

coefficient, we denote 𝐴𝜃[𝑓, 𝑥0] as the sequence of (potentially stochastic) iterates

generated by 𝐴 when operating on 𝑓 with initialization 𝑥0. Finally, we define the

iteration complexity of an algorithm class parameterized by 𝑝 hyperparameters, 𝒜 =

{𝐴𝜃}𝜃∈R𝑝 on a function class ℱ as

𝒩 (𝒜,ℱ , 𝜖) := inf
𝐴𝜃∈𝒜

sup
𝑥0∈R𝑑,𝑓∈ℱ

𝑇𝜖(𝐴𝜃[𝑓, 𝑥0], 𝑓). (3.9)

The definition in the stochastic setting simply replaces the expression (3.7) with the

expression (3.8). In the rest of the paper, “iteration complexity” refers to the quantity

defined above.

3.4.1 Convergence in the deterministic setting

In this section, we present the convergence rates for GD and clipped GD under de-

terministic setting. We start by analyzing the clipped GD algorithm with update

defined in equation (3.5).
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Theorem 3.4.1. Let ℱ denote the class of functions that satisfy Assumptions 3.3.1,

3.3.2, and L-smoothness in set 𝒮 defined in (3.3). Recall 𝑓 * is a global lower bound for

function value. With 𝜂𝑐 = 1
10𝐿0

, 𝛾 = min{ 1
𝜂𝑐
, 1
10𝐿1𝜂𝑐

}, we can prove that the iteration

complexity of clipped GD (Equation 3.5) is upper bounded by

20𝐿0(𝑓(𝑥0)− 𝑓 *)

𝜖2
+

20 max{1, 𝐿2
1}(𝑓(𝑥0)− 𝑓 *)

𝐿0

.

The proof of Theorem 3.4.1 is included in Appendix 3.7.1.

Now, we discuss the convergence of vanilla GD. The standard GD is known to

converge to first order 𝜖-stationary points in 𝒪((𝐿(𝑓(𝑥0) − 𝑓 *))𝜖−2) iterations for

(𝐿, 0)−smooth nonconvex functions. By Theorem 1 of Carmon et al. [2017], this rate

is up to a constant optimal.

However, we will show below that gradient descent is suboptimal under our re-

laxed (𝐿0, 𝐿1)-smoothness condition. In particular, to prove the convergence rate

for gradient descent with fixed step size, we need to permit it to benefit from an

additional assumption on gradient norms.

Assumption 3.4.1. Given an initialization 𝑥0, we assume that

𝑀 := sup{‖∇𝑓(𝑥)‖ | 𝑥 such that 𝑓(𝑥) ≤ 𝑓(𝑥0)} <∞.

This assumption is in fact necessary, as our next theorem reveals.

Theorem 3.4.2. Let ℱ be the class of objectives satisfying Assumptions 3.3.1, 3.3.2,

3.3.3, and 3.4.1 with fixed constants 𝐿0 ≥ 1, 𝐿1 ≥ 1, 𝑀 > 1. The iteration complexity

for the fixed-step gradient descent algorithms parameterized by step size ℎ is at least

𝐿1𝑀(𝑓(𝑥0)− 𝑓 * − 5𝜖/8)

8𝜖2(log𝑀 + 1)
.

The proof can be found in Appendix 3.7.2.

Remark 3.4.1. Theorem 1 of Carmon et al. [2017] and Theorem 3.4.2 together show

that gradient descent with a fixed step size cannot converge to an 𝜖-stationary point
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faster than Ω ((𝐿1𝑀/ log(𝑀) + 𝐿0)(𝑓(𝑥0)− 𝑓 *)𝜖−2). Recall that clipped GD algo-

rithm converges as 𝒪
(︀
𝐿0(𝑓(𝑥0)− 𝑓 *)𝜖−2 + 𝐿2

1(𝑓(𝑥0)− 𝑓 *)𝐿−1
0

)︀
. Therefore, clipped

GD can be arbitrarily faster than GD when 𝐿1𝑀 is large, or in other words, when

the problem has a poor initialization.

Below, we provide an iteration upper bound for the fixed-step gradient descent

update (3.4).

Theorem 3.4.3. Suppose assumptions 3.3.1, 3.3.2, 3.3.3 and 3.4.1 hold in set 𝒮

defined in (3.3). If we pick parameters such that ℎ = 1
(2(𝑀𝐿1+𝐿0))

, then the iteration

complexity of GD with a fixed step size defined in Algorithm 3.4 is upper bounded by

4(𝑀𝐿1 + 𝐿0)(𝑓(𝑥0)− 𝑓 *)𝜖−2.

Please refer to Appendix 3.7.3 for the proof. Theorem 3.4.3 shows that gradient

descent with a fixed step size converges in 𝒪((𝑀𝐿1 + 𝐿0)(𝑓(𝑥0)− 𝑓 *)/𝜖2) iterations.

This suggests that the lower bound in Remark 3.4.1 is tight up to a log factor in 𝑀 .

3.4.2 Convergence in the stochastic setting

In the stochastic setting, we assume GD and clipped GD have access to an unbiased

stochastic gradient ∇𝑓(𝑥) instead of the exact gradient ∇𝑓(𝑥). For simplicity, we

denote 𝑔𝑘 = ∇𝑓(𝑥𝑘) below. To prove convergence, we need the following assumption.

Assumption 3.4.2. There exists 𝜏 > 0, such that ‖∇𝑓(𝑥) − ∇𝑓(𝑥)‖ ≤ 𝜏 almost

surely.

Bounded noise can be relaxed to sub-gaussian noise if the noise is symmetric.

Furthermore, up to our knowledge, this is the first stochastic nonconvex analysis of

adaptive methods that does not require the gradient norm ‖∇𝑓(𝑥)‖ to be bounded

globally.

The main result of this section is the following convergence guarantee for stochastic

clipped GD (based on the stochastic version of the update (3.5)).
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Theorem 3.4.4. Let Assumptions 3.3.1–3.3.3 and 3.4.2 hold globally with 𝐿1 > 0.

Let ℎ = min
{︀

1
16𝜂𝐿1(‖𝑔𝑘‖+𝜏)

, 𝜂
}︀

where 𝜂 = min
{︀

1
20𝐿0

, 1
128𝐿1𝜏

, 1√
𝑇

}︀
. Then we can show

that iteration complexity for stochastic clipped GD after update (3.5) is upper bounded

by

∆ max

{︂
128𝐿1

𝜖
,
4∆

𝜖4
,
80𝐿0 + 512𝐿1𝜏

𝜖2

}︂
,

where ∆ = (𝑓(𝑥0)− 𝑓 * + (5𝐿0 + 2𝐿1𝜏)𝜏 2 + 9𝜏𝐿2
0/𝐿1).

In comparison, we have the following upper bound for ordinary SGD.

Theorem 3.4.5. Let Assumptions 3.3.1–3.3.3, and 3.4.2 hold globally with 𝐿1 > 0.

Let ℎ = min
{︀

1√
𝑇
, 1
𝐿1(𝑀+𝜏)

}︀
. Then the iteration complexity for the stochastic version

of GD (3.4) is upper bounded by

(︀
𝑓(𝑥0)− 𝑓 * + (5𝐿0 + 4𝐿1𝑀)(𝑀 + 𝜏)2

)︀2
𝜖−4.

We do not know of a lower bound for this algorithm. However, the deterministic

lower bound in Theorem 3.4.2 is still valid, though probably loose. Therefore, the

convergence of SGD still requires additional assumption and can again be arbitrarily

slower compared to clipped SGD when 𝑀 is large.

3.5 Experiments
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(a) Step size 30, with clipping.
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(b) Step zie 2, w/o clipping.
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(c) Step size 2, with clipping.

Figure 3-2: Gradient norm vs smoothness on log scale for LM training. The dot color
indicates the iteration number. Darker ones correspond to earlier iterations. Note that the
spans of 𝑥 and 𝑦 axis are not fixed.
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(a) SGD with momentum. (b) Step size 1, w/o clipping. (c) Step size 5, with clipping.

Figure 3-3: Gradient norm vs smoothness on log scale for ResNet20 training. The dot color
indicates the iteration number.

In this section, we summarize our empirical findings on the positive correlation

between gradient norm and local smoothness. We then show that clipping accelerates

convergence during neural network training. Our experiments are based on two tasks:

language modeling and image classification. We run language modeling on the Penn

Treebank (PTB) dataset with AWD-LSTM models [Merity et al., 2018]2. We train

ResNet20 [He et al., 2016] on the Cifar10 dataset [Krizhevsky and Hinton, 2009].

Details about the smoothness estimation and experimental setups are in Zhang et al.

[2019a].

First, our experiments test whether the local smoothness constant increases with

the gradient norm, as suggested by the relaxed smoothness conditions defined in (3.2)

(Section 3.2). To do so, we evaluate both quantities at points generated by the

optimization procedure. We then scatter the local smoothness constants against the

gradient norms in Figure 3-2 and Figure 3-3. Note that the plots are on a log-scale.

We notice that the correlation exists in the default training procedure for language

modeling (see Figure 3-2a) but not in the default training for image classification (see

Figure 3-3a). This difference aligns with the fact that gradient clipping is widely

used in language modeling but is less popular in ResNet training, offering empirical

support to our theoretical findings.

We further investigate the cause of correlation. The plots in Figures 3-2 and 3-3

show that correlation appears when the models are trained with clipped GD and large

learning rates. We propose the following explanation. Clipping enables the training
2Part of the code is available at https://github.com/JingzhaoZhang/

why-clipping-accelerates
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ferent optimization parameters.
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(c) Training loss of ResNet20 with
different optimization parameters.
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(d) Test accuracy of ResNet20 with
different optimization parameters.

Figure 3-4: Training and validation loss obtained with different training methods for
LSTM and ResNet training. The validation loss plots the cross entropy. The training
loss additionally includes the weight regularization term. In the legend, ‘lr30clip0.25’
denotes that clipped SGD uses step size 30 and that the 𝐿2 norm of the stochastic
gradient is clipped by 0.25. In ResNet training, we threshold the stochastic gradient
norm at 0.25 when clipping is applied.

trajectory to stably traverse non-smooth regions. Hence, we can observe that gradient

norms and smoothness are positively correlated in Figures 3-2a and 3-3c. Without

clipping, the optimizer has to adopt a small learning rate and stays in a region where

local smoothness does not vary much, otherwise the sequence diverges, and a different

learning rate is used. Therefore, in other plots of Figures 3-2 and 3-3, the correlation

is much weaker.

As positive correlations are present in both language modeling and image classifi-

cation experiments with large step sizes, our next set of experiments checks whether

clipping helps accelerate convergence as predicted by our theory. From Figure 3-4,
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we find that clipping indeed accelerates convergence. Because gradient clipping is

a standard practice in language modeling, the LSTM models trained with clipping

achieve the best validation performance and the fastest training loss convergence as

expected. For image classification, surprisingly, clipped GD also achieves the fastest

convergence and matches the test performance of SGD+momentum. These plots

show that clipping can accelerate convergence and achieve good test performance at

the same time.

3.6 Additional related work on accelerating gradient

methods

Variance reduction. Many efforts have been made to accelerate gradient-based

methods. One elegant approach is variance reduction e.g. [Schmidt et al., 2013, John-

son and Zhang, 2013, Defazio et al., 2014, Bach and Moulines, 2013, Xiao and Zhang,

2014, Gong and Ye, 2014, Fang et al., 2018a, Zhou et al., 2018]. This technique aims

to solve stochastic and finite sum problems by averaging the noise in the stochastic

oracle via utilizing the smoothness of the objectives.

Momentum methods. Another line of work focuses on achieving acceleration with

momentum. Polyak [1964] showed that momentum can accelerate optimization for

quadratic problems; later, Nesterov [1983] designed a variation that provably ac-

celerate any smooth convex problems. Based on Nesterov’s work, much theoretical

progress was made to accelerate different variations of the original smooth convex

problems e.g.[Ghadimi and Lan, 2016, 2012, Beck and Teboulle, 2009, Shalev-Shwartz

and Zhang, 2014, Jin et al., 2017, Carmon et al., 2018, Lin et al., 2015, Nesterov, 2012].

Adaptive step sizes. The idea of varying step size in each iteration has long been

studied. Armijo [1966] proposed the famous backtracking line search algorithm to

choose step size dynamically. Polyak [1987] proposed a strategy to choose step size

based on function suboptimality and gradient norm. More recently, Duchi et al. [2011]

designed the Adagrad algorithm that can utilize the sparsity in stochastic gradients.
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Since 2018, there has been a surge in studying the theoretical properties of adap-

tive gradient methods. One starting point is [Reddi et al., 2019], which pointed

out that ADAM is not convergent and proposed the AMSGrad algorithm to fix the

problem. Ward et al. [2018], Li and Orabona [2018] prove that Adagrad converges to

stationary point for nonconvex stochastic problems. Zhou et al. [2018] generalized the

result to a class of algorithms named Padam. Zou and Shen [2018], Staib et al. [2019],

Chen et al. [2018], Zhou et al. [2018], Agarwal et al. [2018], Zhou et al. [2018], Zou

and Shen [2018] also studied different interesting aspects of convergence of adaptive

methods. In addition, Levy [2016] showed that normalized gradient descent may have

better convergence rate in presence of injected noise. However, the rate comparison

is under dimension dependent setting. Hazan et al. [2015] studied the convergence of

normalized gradient descent for quasi-convex functions.

3.7 Proofs

3.7.1 Proof of Theorem 3.4.1

We start by proving a lemma that is repeatedly used in later proofs. The lemma

bounds the gradient in a neighborhood of the current point by Grönwall’s inequality

(integral form).

Lemma 3.7.1. Given 𝑥 such that 𝑓(𝑥) ≤ 𝑓(𝑥0), for any 𝑥+ such that ‖𝑥+ − 𝑥‖ ≤

min{1/𝐿1, 1}, we have ‖∇𝑓(𝑥+)‖ ≤ 4(𝐿0/𝐿1 + ‖∇𝑓(𝑥)‖).

Remark 3.7.1. Note that the constant “1” comes from the definition of 𝒮 in (3.3).

If Assumption 3.3.3 holds globally, then we do not need to constrain ‖𝑥+ − 𝑥‖ ≤ 1.

This version will be used in Theorem 3.4.4.

Proof. Let 𝛾(𝑡) be a curve defined below,

𝛾(𝑡) = 𝑡(𝑥+ − 𝑥) + 𝑥, 𝑡 ∈ [0, 1].
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Then we have

∇𝑓(𝛾(𝑡)) =

∫︁ 𝑡

0

∇(2)𝑓(𝛾(𝜏))(𝑥+ − 𝑥)𝑑𝜏 +∇𝑓(𝛾(0)).

By Cauchy-Schwarz’s inequality, we get

‖∇𝑓(𝛾(𝑡))‖ ≤ ‖𝑥+ − 𝑥‖
∫︁ 𝑡

0

‖∇(2)𝑓(𝛾(𝜏))‖𝑑𝜏 + ‖∇𝑓(𝑥)‖

≤ 1

𝐿1

∫︁ 𝑡

0

(𝐿0 + 𝐿1‖∇𝑓(𝛾(𝜏))‖)𝑑𝜏 + ‖∇𝑓(𝑥)‖.

The second inequality follows by Assumption ??. Then we can apply the integral

form of Grönwall’s inequality and get

‖∇𝑓(𝛾(𝑡))‖ ≤ 𝐿0

𝐿1

+ ‖∇𝑓(𝑥)‖+

∫︁ 𝑡

0

(︂
𝐿0

𝐿1

+ ‖∇𝑓(𝑥)‖
)︂

exp(𝑡− 𝜏)𝑑𝜏.

The Lemma follows by setting 𝑡 = 1.

Proof of the theorem 3.4.1

We parameterize the path between 𝑥𝑘 and its updated iterate 𝑥𝑘+1 as follows:

𝛾(𝑡) = 𝑡(𝑥𝑘+1 − 𝑥𝑘) + 𝑥𝑘,∀𝑡 ∈ [0, 1].

Since 𝑥𝑘+1 = 𝑥𝑘 − ℎ𝑘∇𝑓(𝑥𝑘), using Taylor’s theorem, the triangle inequality, and

Cauchy-Schwarz, we obtain

𝑓(𝑥𝑘+1) ≤ 𝑓(𝑥𝑘)− ℎ𝑘‖∇𝑓(𝑥𝑘)‖2 +
‖𝑥𝑘+1 − 𝑥𝑘‖2

2

∫︁ 1

0

‖∇2𝑓(𝛾(𝑡))‖𝑑𝑡.

Since

ℎ𝑘 ≤
𝛾𝜂

‖∇𝑓(𝑥)‖
≤ min

{︂
1

‖∇𝑓(𝑥)‖
,

1

𝐿1‖∇𝑓(𝑥𝑘)‖

}︂
,
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we know by Lemma 3.7.1

‖∇𝑓(𝛾(𝑡)‖ ≤ 4(𝐿0

𝐿1
+ ‖∇𝑓(𝑥)‖).

Then by Assumption ??, we obtain the “descent inequality”:

𝑓(𝑥𝑘+1) ≤ 𝑓(𝑥𝑘)− ℎ𝑘‖∇𝑓(𝑥𝑘)‖2 +
5𝐿0 + 4𝐿1‖∇𝑓(𝑥𝑘)‖

2
‖∇𝑓(𝑥𝑘)‖2ℎ2𝑘.

Therefore, as long as ℎ𝑘 ≤ 1/(5𝐿0 + 4𝐿1‖∇𝑓(𝑥𝑘)‖) (which follows by our choice of

𝜂, 𝛾), we can quantify the descent to be

𝑓(𝑥𝑘+1) ≤ 𝑓(𝑥𝑘)− ℎ𝑘‖∇𝑓(𝑥𝑘)‖2

2
.

When ‖∇𝑓(𝑥𝑘)‖ ≥ 𝐿0/𝐿1, we have

ℎ𝑘‖∇𝑓(𝑥𝑘)‖2

2
≥ 𝐿0

20 max{1, 𝐿2
1}
.

When 𝜖 ≤ ‖∇𝑓(𝑥𝑘)‖ ≤ 𝐿0/𝐿1, we have

ℎ𝑘‖∇𝑓(𝑥𝑘)‖2

2
≥ ‖∇𝑓(𝑥𝑘)‖2

20𝐿0

≥ 𝜖2

20𝐿0

.

Therefore,

𝑓(𝑥𝑘+1) ≤ 𝑓(𝑥𝑘)−min

{︂
𝐿0

20 max{1, 𝐿2
1}
,
𝜖2

20𝐿0

}︂
.

Assume that 𝜖 ≤ ‖∇𝑓(𝑥𝑘)‖ for 𝑘 ≤ 𝑇 iterations. By doing a telescopic sum, we get

𝑇−1∑︁
𝑘=0

𝑓(𝑥𝑘+1)− 𝑓(𝑥𝑘) ≤ −𝑇 min

{︂
𝐿0

20 max{1, 𝐿2
1}
,
𝜖2

20𝐿0

}︂
.

Rearranging we get

𝑇 ≤ 20𝐿0(𝑓(𝑥0)− 𝑓 *)

𝜖2
+

20 max{1, 𝐿2
1}(𝑓(𝑥0)− 𝑓 *)

𝐿0

.
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3.7.2 Proof of Theorem 3.4.2

We will prove a lower bound for the iteration complexity of GD with fixed step size.

The high level idea is that if GD converges for all functions satisfying the assumptions,

then the step size needs to be small. However, this small step size will lead to very

slow convergence for another function.

Recall that the fixed step size GD algorithm is parameterized by the scalar: step

size ℎ. First, we show that when ℎ > 2 log(𝑀)+2
𝑀𝐿1

,

sup
𝑥0∈R𝑑,
𝑓∈ℱ

𝑇𝜖(𝐴ℎ[𝑓, 𝑥0], 𝑓) =∞

We start with a function that grows exponentially. Let 𝐿1 > 1,𝑀 > 1 be fixed

constants. Pick the initial point 𝑥0 = (log(𝑀) + 1)/𝐿1. Let the objective be defined

as follows,

𝑓(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑒−𝐿1𝑥

𝐿1𝑒
, for 𝑥 < − 1

𝐿1
,

𝐿1𝑥2

2
+ 1

2𝐿1
, for 𝑥 ∈ [− 1

𝐿1
, 1
𝐿1

],

𝑒𝐿1𝑥

𝐿1𝑒
, for 𝑥 > 1

𝐿1
.

We notice that the function satisfies the assumptions with constants

𝐿0 = 1, 𝐿1 > 1, 𝑀 > 1. (3.10)

When ℎ > 2𝑥0/𝑀 , we would have |𝑥1| > |𝑥0|. By symmetry of the function and

the super-linear growth of the gradient norm, we know that the iterates will diverge.

Hence, in order for gradient descent with a fixed step size ℎ to converge, ℎ must be

small enough. Formally,

ℎ ≤ 2𝑥0
𝑀

=
2 log(𝑀) + 2

𝑀𝐿1

.
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Second, we show that when ℎ ≤ 2 log(𝑀)+2
𝑀𝐿1

,

sup
𝑥0∈R𝑑,
𝑓∈ℱ

𝑇𝜖(𝐴ℎ[𝑓, 𝑥0], 𝑓) ≥ ∆𝐿1𝑀/(4𝜖2(log𝑀 + 1))

Now, let’s look at a different objective that grows slowly.

𝑓(𝑥) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−2𝜖(𝑥+ 1) + 5𝜖

4
, for 𝑥 < −1,

𝜖
4
(6𝑥2 − 𝑥4), for 𝑥 ∈ [−1, 1],

2𝜖(𝑥− 1) + 5𝜖
4
, for 𝑥 > 1.

This function is also second order differentiable and satisfies the assumptions with

constants in (3.10). If we set 𝑥0 = 1 + ∆/𝜖 for some constant ∆ > 0, we know

that 𝑓(𝑥0) − 𝑓 * = 2∆ + 5𝜖/4. With the step size choice ℎ ≤ (2 log𝑀 + 2)/(𝑀𝐿1),

we know that in each step, 𝑥𝑘+1 ≥ 𝑥𝑘 − (4𝜖(log𝑀 + 1))/(𝐿1𝑀). Therefore, for

𝑘 ≤ ∆𝐿1𝑀/(4𝜖2(log𝑀 + 1)),

‖∇𝑓(𝑥𝑘)‖ = 2𝜖.

After combining these two points, we proved the theorem by definition (5.5).

3.7.3 Proof of Theorem 3.4.3

We start by parametrizing the function value along the update,

𝑓(𝛾(𝑡)) := 𝑓(𝑥𝑘 − 𝑡ℎ∇𝑓(𝑥𝑘)), 𝑡 ∈ [0, 1].

Note that with this parametrization, we have 𝛾(0) = 𝑥𝑘, 𝛾(1) = 𝑥𝑘+1. Now we would

like to argue that if 𝑓(𝑥𝑘) ≤ 𝑓(𝑥0), then ‖∇𝑓(𝑥(𝑡))‖ ≤ 𝑀,∀𝑡 ≤ 1. Assume by

contradiction that this is not true. Then there exists 𝜖 > 0, 𝑡 ∈ [0, 1] such that

‖∇𝑓(𝑥(𝑡))‖ ≥ 𝑀 + 𝜖. Since 𝜖 can be made arbitrarily small below a threshold, we
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assume 𝜖 < 𝑀 . Denote

𝑡* = inf{𝑡 | ‖∇𝑓(𝑥(𝑡))‖ ≥𝑀 + 𝜖}.

The value 𝑡* exists by continuity of ‖∇𝑓(𝑥(𝑡))‖ as a function of 𝑡. Then we know

by Assumption 3.4.1 that 𝑓(𝑥(𝑡*)) > 𝑓(𝑥𝑘). However, by Taylor expansion, we know

that

𝑓(𝑥(𝑡*)) ≤ 𝑓(𝑥𝑘)− 𝑡ℎ‖∇𝑓(𝑥𝑘)‖2 + (𝑡ℎ)2‖∇𝑓(𝑥𝑘)‖2
∫︁ 𝑡

0

‖∇(2)𝑓(𝑥(𝜏))‖𝑑𝜏

≤ 𝑓(𝑥𝑘)− 𝑡ℎ‖∇𝑓(𝑥𝑘)‖2 + (𝑡ℎ)2‖∇𝑓(𝑥𝑘)‖2(𝐿1(𝑀 + 𝜖) + 𝐿0)

≤ 𝑓(𝑥𝑘).

The last inequality follows by ℎ = 1/(2(𝑀𝐿1 + 𝐿0)). Hence we get a contradiction

and conclude that for all 𝑡 ≤ 1, ‖∇𝑓(𝑥(𝑡))‖ ≤ 𝑀 . Therefore, following the above

inequality and Assumption ??, we get

𝑓(𝑥𝑘+1) ≤ 𝑓(𝑥𝑘)− ℎ‖∇𝑓(𝑥𝑘)‖2 + ℎ2
𝐿1𝑀 + 𝐿0

2
‖∇𝑓(𝑥𝑘)‖2

≤ 𝑓(𝑥𝑘)− 𝜖2

4(𝑀𝐿1 + 𝐿0)
.

The conclusion follows by the same argument as in Theorem 3.4.1 via a telescopic

sum over 𝑘.

3.7.4 Proof of Theorem 3.4.4

Recall that we set the following parameters

ℎ𝑘 = min

{︂
1

16𝜂𝐿1(‖𝑔𝑘‖+ 𝜏)
, 𝜂

}︂
𝜂 = min

{︂
1

20𝐿0

,
1

128𝐿1𝜏
,

1√
𝑇

}︂
(3.11)
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Similar to proof of Theorem 3.4.1, we have

E[𝑓(𝑥𝑘+1)|] ≤𝑓(𝑥𝑘)− E[ℎ𝑘⟨𝑔𝑘,∇𝑓(𝑥𝑘)⟩] +
5𝐿0 + 4𝐿1‖∇𝑓(𝑥𝑘)‖

2
E[ℎ2𝑘‖𝑔𝑘‖2] (3.12)

≤𝑓(𝑥𝑘)− E[ℎ𝑘⟨𝑔𝑘,∇𝑓(𝑥𝑘)⟩] +
5𝐿0 + 4𝐿1‖∇𝑓(𝑥𝑘)‖

2
E[ℎ2𝑘(‖∇𝑓(𝑥𝑘)‖2

+ ‖𝑔𝑘 −∇𝑓(𝑥𝑘)‖2 + 2⟨∇𝑓(𝑥𝑘), 𝑔𝑘 −∇𝑓(𝑥𝑘)⟩)]

≤𝑓(𝑥𝑘) + E[−ℎ𝑘 +
5𝐿0 + 4𝐿1‖∇𝑓(𝑥𝑘)‖

2
ℎ2𝑘]‖∇𝑓(𝑥𝑘)‖2

+ E[ℎ𝑘(−1 + (5𝐿0 + 4𝐿1‖∇𝑓(𝑥𝑘)‖)ℎ𝑘)⟨∇𝑓(𝑥𝑘), 𝑔𝑘 −∇𝑓(𝑥𝑘)⟩]

+
5𝐿0 + 4𝐿1‖∇𝑓(𝑥𝑘)‖

2
E[ℎ2𝑘(‖𝑔𝑘 −∇𝑓(𝑥𝑘)‖2)].

First we show (5𝐿0+4𝐿1‖∇𝑓(𝑥𝑘)‖)ℎ𝑘 ≤ 1
2
. This follows by 5𝐿0ℎ𝑘 ≤ 1

4
, ℎ𝑘4𝐿1‖∇𝑓(𝑥𝑘)‖ ≤

ℎ𝑘4𝐿1(‖𝑔𝑘‖+ 𝜏) ≤ 1
4
. Substitute in (3.14) and we get

E[𝑓(𝑥𝑘+1)|] ≤𝑓(𝑥𝑘) + E[−3ℎ𝑘
4

]‖∇𝑓(𝑥𝑘)‖2 (3.13)

+ E[−ℎ𝑘⟨∇𝑓(𝑥𝑘), 𝑔𝑘 −∇𝑓(𝑥𝑘)⟩]⏟  ⏞  
𝑇1

+ E[(5𝐿0 + 4𝐿1‖∇𝑓(𝑥𝑘)‖)ℎ2𝑘⟨∇𝑓(𝑥𝑘), 𝑔𝑘 −∇𝑓(𝑥𝑘)⟩]⏟  ⏞  
𝑇2

+
5𝐿0 + 4𝐿1‖∇𝑓(𝑥𝑘)‖

2
E[ℎ2𝑘(‖𝑔𝑘 −∇𝑓(𝑥𝑘)‖2)]⏟  ⏞  
𝑇3

.

Then we bound 𝑇1, 𝑇2, 𝑇3 in Lemma 3.7.2,3.7.3,3.7.4 and get

E[𝑓(𝑥𝑘+1)|] ≤𝑓(𝑥𝑘) + E[−ℎ𝑘
4

]‖∇𝑓(𝑥𝑘)‖2 (3.14)

+ (5𝐿0 + 2𝐿1𝜏)𝜂2𝜏 2 + 9𝜂2𝜏𝐿2
0/𝐿1.

Rearrange (3.14) and do a telescopic sum, we get

E[
∑︁
𝑘≤𝑇

ℎ𝑘
4
‖∇𝑓(𝑥𝑘)‖2] ≤ 𝑓(𝑥0)− 𝑓 * + 𝜂2𝑇 ((5𝐿0 + 2𝐿1𝜏)𝜏 2 + 9𝜏𝐿2

0/𝐿1)

≤ 𝑓(𝑥0)− 𝑓 * + ((5𝐿0 + 2𝐿1𝜏)𝜏 2 + 9𝜏𝐿2
0/𝐿1).
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Furthermore, we know

ℎ𝑘‖∇𝑓𝑘‖2 = min{𝜂, 1

16𝐿1(‖∇𝑓𝑘‖+ 𝜏)
}‖∇𝑓𝑘‖2

≥ min{𝜂, 1

32𝐿1‖∇𝑓𝑘‖
,

1

32𝐿1𝜏
}‖∇𝑓𝑘‖2

≥ min{𝜂, 1

32𝐿1‖∇𝑓𝑘‖
}‖∇𝑓𝑘‖2.

Hence along with 𝜂 ≤ 𝑇−1/2, we get

E

[︃∑︁
𝑘≤𝑇

min

{︂
𝜂‖∇𝑓𝑘‖2,

‖∇𝑓𝑘‖
32𝐿1

}︂]︃
≤ 𝑓(𝑥0)− 𝑓 * + ((5𝐿0 + 2𝐿1𝜏)𝜏 2 + 9𝜏𝐿2

0/𝐿1).

Let 𝒰 = {𝑘|𝜂‖∇𝑓𝑘‖2 ≤ ‖∇𝑓𝑘‖
16𝐿1
}, we know that

E

[︃∑︁
𝑘∈𝒰

𝜂‖∇𝑓𝑘‖2
]︃
≤ 𝑓(𝑥0)− 𝑓 * + ((5𝐿0 + 2𝐿1𝜏)𝜏 2 + 9𝜏𝐿2

0/𝐿1),

and

E

[︃∑︁
𝑘∈𝒰𝑐

‖∇𝑓𝑘‖
32𝐿1

]︃
≤ 𝑓(𝑥0)− 𝑓 * + ((5𝐿0 + 2𝐿1𝜏)𝜏 2 + 9𝜏𝐿2

0/𝐿1).

Therefore,

E[min
𝑘
‖∇𝑓(𝑥𝑘)‖] ≤ E

[︃
min

{︃
1

|𝒰|
∑︁
𝑘∈𝒰

‖∇𝑓𝑘‖,
1

|𝒰 𝑐|
∑︁
𝑘∈𝒰𝑐

‖∇𝑓𝑘‖

}︃]︃

≤ E

[︃
min

{︃√︃
1

|𝒰|
∑︁
𝑘∈𝒰

‖∇𝑓𝑘‖2,
1

|𝒰 𝑐|
∑︁
𝑘∈𝒰𝑐

‖∇𝑓𝑘‖

}︃]︃

≤ max

{︃√︃
𝑓(𝑥0)− 𝑓 * + ((5𝐿0 + 2𝐿1𝜏)𝜏 2 + 9𝜏𝐿2

0/𝐿1)

√
𝑇 + 20𝐿0 + 128𝐿1𝜏

𝑇
,

(𝑓(𝑥0)− 𝑓 * + (5𝐿0 + 2𝐿1𝜏)𝜏 2 + 9𝜏𝐿2
0/𝐿1)

64𝐿1

𝑇

}︃
.

The last inequality follow by the fact that either |𝒰| ≥ 𝑇/2 or |𝒰 𝑐| ≥ 𝑇/2. This
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implies that E[min𝑘≤𝑇 ‖∇𝑓(𝑥𝑘)‖] ≤ 2𝜖 when

𝑇 ≥ ∆ max
{︁128𝐿1

𝜖
,
4∆

𝜖4
,
80𝐿0 + 512𝐿1𝜏

𝜖2

}︁
,

where ∆ = (𝑓(𝑥0)− 𝑓 * + (5𝐿0 + 2𝐿1𝜏)𝜏 2 + 9𝜏𝐿2
0/𝐿1). By Markov inequality,

P{min
𝑘≤𝑇
‖∇𝑓(𝑥𝑘)‖ ≤ 𝜖} ≥ 1

2
.

The theorem follows by the definition in (5.5).

Technical lemmas

Lemma 3.7.2.

E[−ℎ𝑘⟨∇𝑓(𝑥𝑘), 𝑔𝑘 −∇𝑓(𝑥𝑘)⟩] ≤ 1

4
E[ℎ𝑘]‖*‖∇𝑓(𝑥𝑘)2.

Proof. By unbiasedness of 𝑔𝑘 and the fact that 𝜂 is a constant, we have

E[−ℎ𝑘⟨∇𝑓(𝑥𝑘), 𝑔𝑘 −∇𝑓(𝑥𝑘)⟩] = E[(𝜂 − ℎ𝑘)⟨∇𝑓(𝑥𝑘), 𝑔𝑘 −∇𝑓(𝑥𝑘)⟩]

= E[(𝜂 − ℎ𝑘)⟨∇𝑓(𝑥𝑘), 𝑔𝑘 −∇𝑓(𝑥𝑘)⟩1{‖𝑔𝑘‖≥ 1
16𝐿1𝜂

−𝜏}]

≤ 𝜂‖*‖∇𝑓(𝑥𝑘)E[‖𝑔𝑘 −∇𝑓(𝑥𝑘)‖1{‖𝑔𝑘‖≥ 1
16𝐿1𝜂

−𝜏}]

≤ 𝜂‖∇𝑓(𝑥𝑘)‖232𝐿1E[ℎ𝑘]𝜏.

The second last inequality follows by ℎ𝑘 ≤ 𝜂 and Cauchy-Schwartz inequality. The

last inequality follows by

‖∇𝑓(𝑥𝑘)‖ ≥ ‖𝑔𝑘‖ − 𝜏 =
1

16𝐿1ℎ𝑘
− 2𝜏 ≥ 1

16𝐿1ℎ𝑘
− 1

32𝐿1𝜂
≥ 1

32𝐿1ℎ𝑘
. (3.15)

The equality above holds because ℎ𝑘 = 1
16𝜂𝐿1(‖𝑔𝑘‖+𝜏)

. The lemma follows by 32𝜂𝐿1𝜏 ≤

1/4.
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Lemma 3.7.3.

E[(5𝐿0 + 4𝐿1‖∇𝑓(𝑥𝑘)‖)ℎ2𝑘⟨∇𝑓(𝑥𝑘), 𝑔𝑘 −∇𝑓(𝑥𝑘)⟩] ≤ 9𝜂2𝜏𝐿2
0/𝐿1 +

1

8
E[ℎ𝑘]‖∇𝑓(𝑥𝑘)‖2.

Proof. When ‖∇𝑓(𝑥𝑘)‖ ≥ 𝐿0/𝐿1,

E[(5𝐿0 + 4𝐿1‖∇𝑓(𝑥𝑘)‖)ℎ2𝑘⟨∇𝑓(𝑥𝑘), 𝑔𝑘 −∇𝑓(𝑥𝑘)⟩] ≤9𝐿1‖∇𝑓(𝑥𝑘)‖E[ℎ2𝑘]‖∇𝑓(𝑥𝑘)‖𝜏

≤1

8
E[ℎ𝑘]‖∇𝑓(𝑥𝑘)‖2.

The last inequality follows by (3.11).

When ‖∇𝑓(𝑥𝑘)‖ ≤ 𝐿0/𝐿1,

E[(5𝐿0 + 4𝐿1‖∇𝑓(𝑥𝑘)‖)ℎ2𝑘⟨∇𝑓(𝑥𝑘), 𝑔𝑘 −∇𝑓(𝑥𝑘)⟩] ≤9𝜂2𝜏𝐿2
0/𝐿1.

Lemma 3.7.4.

5𝐿0 + 4𝐿1‖∇𝑓(𝑥𝑘)‖
2

E[ℎ2𝑘(‖𝑔𝑘 −∇𝑓(𝑥𝑘)‖2)] ≤ (5𝐿0 + 2𝐿1𝜏)𝜂2𝜏 2 +
1

8
‖∇𝑓(𝑥𝑘)‖2E[ℎ𝑘].

Proof. When ‖∇𝑓(𝑥𝑘)‖ ≥ 𝐿0/𝐿1 + 𝜏 , we get

5𝐿0 + 4𝐿1‖∇𝑓(𝑥𝑘)‖
2

E[ℎ2𝑘(‖𝑔𝑘−∇𝑓(𝑥𝑘)‖2)] ≤ 5𝐿1‖∇𝑓(𝑥𝑘)‖2E[ℎ𝑘]𝜂𝜏 ≤ 1

8
‖∇𝑓(𝑥𝑘)‖2E[ℎ𝑘].

The first inequality follows by ℎ𝑘 ≤ 𝜂 and ‖𝑔𝑘 −∇𝑓(𝑥𝑘)‖ ≤ 𝜏 ≤ ‖∇𝑓(𝑥𝑘)‖.The last

inequality follows by (3.11).

When ‖∇𝑓(𝑥𝑘)‖ ≤ 𝐿0/𝐿1 + 𝜏 , we get

5𝐿0 + 4𝐿1‖∇𝑓(𝑥𝑘)‖
2

E[ℎ2𝑘(‖𝑔𝑘 −∇𝑓(𝑥𝑘)‖2)] ≤ (5𝐿0 + 2𝐿1𝜏)𝜂2𝜏 2.
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3.7.5 Proof of Theorem 3.4.5

Similar to proof of Theorem 3.4.1, we have

E[𝑓(𝑥𝑘+1)|] ≤𝑓(𝑥𝑘)− E[ℎ𝑘⟨𝑔𝑘,∇𝑓(𝑥𝑘)⟩] +
5𝐿0 + 4𝐿1‖∇𝑓(𝑥𝑘)‖

2
E[ℎ2𝑘‖𝑔𝑘‖2]

≤𝑓(𝑥𝑘)− 1√
𝑇
‖*‖∇𝑓(𝑥𝑘)2 +

5𝐿0 + 4𝐿1𝑀(𝑀 + 𝜏)2

2𝑇
.

Sum across 𝑘 ∈ {0, ..., 𝑇 − 1} and take expectations, then we can get

0 ≤𝑓(𝑥0)− E[𝑓(𝑥𝑇 )]− 1√
𝑇

𝑇∑︁
𝑘=1

E
[︀
‖*‖∇𝑓(𝑥𝑘)2

]︀
+

5𝐿0 + 4𝐿1𝑀(𝑀 + 𝜏)2

2
.

Rearrange and we get

1

𝑇

𝑇∑︁
𝑘=1

E
[︀
‖*‖∇𝑓(𝑥𝑘)2

]︀
≤ 1√

𝑇

(︂
𝑓(𝑥0)− 𝑓 * +

5𝐿0 + 4𝐿1𝑀(𝑀 + 𝜏)2

2

)︂
.

By Jensen’s inequality,

1

𝑇

𝑇∑︁
𝑘=1

E[‖*‖∇𝑓(𝑥𝑘)] ≤

√︃
1√
𝑇

(︂
𝑓(𝑥0)− 𝑓 * +

5𝐿0 + 4𝐿1𝑀(𝑀 + 𝜏)2

2

)︂
.

By Markov inequality,

P

{︃
1

𝑇

𝑇∑︁
𝑘=1

[︀
‖*‖∇𝑓(𝑥𝑘)2

]︀
>

2√
𝑇

(︂
𝑓(𝑥0)− 𝑓 * +

5𝐿0 + 4𝐿1𝑀(𝑀 + 𝜏)2

2

)︂}︃
≤ 0.5.

The theorem follows by the definition in (5.5) and Jensen’s inequality.
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Chapter 4

The Role of Nosie Distribution in

Gradient Methods

One mystery in neural network experiments is about when to use Adam and when to

use SGD. Researchers found that these two most popular optimizers do not dominate

one another. In this chapter, we aim to investigate this problem by looking at the

noise distribution of the stochastic gradients.

In particular, we examine the properties of the oracle calls and show that in

practice adaptive steps can be faster due to the existence of heavy-tailed noise. While

stochastic gradient descent (SGD) is still the de facto algorithm in deep learning,

adaptive methods like Clipped SGD/Adam have been observed to outperform SGD

across important tasks, such as attention models. The settings under which SGD

performs poorly in comparison to adaptive methods are not well understood yet.

We provide empirical and theoretical evidence that a heavy-tailed distribution of the

noise in stochastic gradients is one cause of SGD’s poor performance. We provide the

first tight upper and lower convergence bounds for adaptive gradient methods under

heavy-tailed noise.
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4.1 Introduction

Stochastic gradient descent (SGD) is the canonical algorithm for training neural net-

works [Robbins and Monro, 1951]. SGD iteratively updates model parameters in the

negative gradient direction and seamlessly scales to large-scale settings. Though a

well-tuned SGD outperforms adaptive methods [Wilson et al., 2017] in many tasks

including ImageNet classification (see Figure 4-1a), certain tasks necessitate the use

of adaptive variants of SGD (Adagrad, ADAM, etc), which employ adaptive learning

rates. For instance, consider training an attention model [Vaswani et al., 2017] using

BERT [Devlin et al., 2018]. Figure 4-1e shows that in spite of extensive hyperparam-

eter tuning, SGD converges much slower than Adam during BERT training.

In this work, we provide one explanation for why adaptivity can facilitate con-

vergence with theoretical and empirical evidence. The significant hint that initializes

our work comes from the distribution of the stochastic gradients. For ImageNet, the

norms of the mini-batch gradients are typically quite small and well concentrated

around their mean. On the other hand, the mini-batch gradient norms for BERT

take a wide range of values and are sometimes much larger than their mean value.

More formally, while the distribution of the stochastic gradients in ImageNet is well

approximated by a Gaussian, the distribution for BERT seems to be heavy-tailed.

Such observation leads us to the question: does adaptivity stabilize optimization un-

der heavy-tailed noise?

We provide a positive answer to the above question by performing both theoretical

and empirical studies of the convergence of optimization methods under heavy-tailed

noise. In this setting, some of the stochastic gradients are much larger than the mean

and can excessively influence the updates of SGD. This makes SGD unstable and leads

to its poor performance. A natural strategy to stabilize the updates is to clip the

magnitude of the stochastic gradients. We prove that indeed it is sufficient to ensure

convergence even under heavy-tailed noise. Based on the analysis, we then motivate

the design of a novel algorithm (ACClip) that outperforms ADAM on BERT related

tasks.
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4.2 Related work on noise in neural networks

Noise in neural network. There has been little study of the actual stochastic

gradient noise distributions in neural network training. To our knowledge, Şimşekli

et al. [2019a], Nguyen et al. [2019], Şimşekli et al. [2019b] start the topic and observe

heavy tailed noise in network training. Our work differs in two important ways: First,

we treat the noise as a high dimensional vector, while [Şimşekli et al., 2019b] treat

deviations in each coordinate as scaler noises to estimate tail index. Hence, we observe

that the example given in [Şimşekli et al., 2019b] is well-concentrated when viewed as

a random vector. This is also confirmed by Panigrahi et al. [2019]. More details can

be found in our publication [Zhang et al., 2019c] Second, we focus on convergence of

optimization algorithm, the previously mentioned works focus on Langevin dynamics

and escaping saddle points. The convergence rate given in [Nguyen et al., 2019] is

for global Hölder-continuous functions, which restricts the function variations and

excludes examples like quadratic functions. Our analysis instead provides the first

convergence rates under the standard L-smoothness setting. Further, Gorbunov et al.

[2020] studies accelerated first order methods under less concentrated noise, however,

there “heavy-tailedness” refers to non-sub-Gaussianity.

4.3 Heavy-tailed noise in stochastic gradients

To gain intuition about the difference between SGD and adaptive methods, we start

our discussion with the study of noise distributions of stochastic gradient that arise

during neural network training. In particular, we focus on noise distributions while

training two popular deep learning models — BERT and ResNet. Note that BERT

and ResNet are typically trained with Adam and SGD (with momentum) respectively

and can thus, provide insights about difference between these optimizers.

We first investigate the distribution of the gradient noise norm ‖𝑔 − ∇𝑓(𝑥)‖ in

the aforementioned neural network models, where 𝑔 is the stochastic gradient com-

puted from a minibatch sample. In particular, we fix the model at initialization
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Figure 4-1: (a) Validation loss for ResNet50 trained on ImageNet. SGD momentum
outperforms Adam. (b) Histogram of sampled gradient noise for ResNet50 on Im-
ageNet dataset. (c) Histogram of samples from a sum of squared Gaussians. (d)
Estimated variance of the stochastic gradient for Resnet50. (e)Validation loss for
BERT pretraining. Although hyperparameters for SGD are finetuned, a large per-
formance gap is still observed between SGD and Adam. (f) Histogram of sampled
gradient nosie for BERT on Wikipedia+Books dataset. (g) Histogram of samples
from a sum of squared 𝛼-stable random variables. (h) Estimated variance of the
stochastic gradient for BERT model. 64



without doing any updates. We then iterate through the dataset to compute the

noise norm for each minibatch. Figure 4-1 (b) and (f) show these distributions for

ResNet50 on ImageNet and BERT on the Wikipedia and books dataset at model

initialization respectively. For comparison, we plot distributions of a normalized sum

of squared Gaussians, a well-concentrated distribution, and a Levy-𝛼-stable distribu-

tion, a heavy-tailed distribution, in Figure 4-1 (c) and (g) respectively. We observe

that the noise distribution for BERT appears heavy-tailed, while that of ResNet50

is well-concentrated. Results for noise distributions at other stages of training are

displayed in Figure 4-2.

To support this observation, in Figure 4-1 (d) and (h) we further show the em-

pirical variance of stochastic gradients with respect to the sample size used in the

estimation. The results highlight that while the corresponding estimator converges

for ImageNet, the empirical variance does not converge in BERT training even as the

sample size approaches 107.

From the obeservation that the noise can be heavy-tailed, we hypothesize that this

is one major aspect that determines the performance of SGD and adaptive methods.

In the rest of the chapter, we argue and provide evidence that adaptive methods can

be faster than SGD in scenarios where heavy-tailed noise distributions arise. More

experiment details can be found in Section 4.6.

4.4 Convergence of gradient methods under heavy-

tailed noise

In this section we study the performance of SGD and adaptive methods under heavy-

tailed noise. More precisely, we analyze algorithms of the following form

𝑥𝑘+1 = 𝑥𝑘 − 𝜂𝑘𝑔𝑘, (4.1)

where 𝑥𝑘 represent the current parameters, 𝜂𝑘 is the step size and 𝑔𝑘 is the stochastic

(mini-batch) gradient evaluated at 𝑥𝑘. We show that if the stochasticity in the gra-
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dient 𝑔𝑘 is heavy-tailed, it is critical for the step sizes to be adaptive, i.e., 𝜂𝑘 must

depend on the observed gradients. We propose to use one such algorithm GClip and

prove that it obtains optimal convergence rates.

Heavy-tailed noise. Neural network training can be seen as minimizing a differ-

entiable stochastic function 𝑓(𝑥) = E𝜉[𝑓(𝑥, 𝜉)], where 𝑓 : R𝑑 → R can be potentially

nonconvex and 𝜉 represents the mini-batches. At each iteration, we assume access to

an unbiased stochastic gradient E[𝑔(𝑥)] = ∇𝑓(𝑥, 𝜉) corresponding to the parameters

𝑥, mini-batch 𝜉. We also need to bound how much noise is present in our stochastic

gradients. In lieu of the usual bounded variance assumption, we use

Assumption 4.4.1 (Bounded 𝛼−moment). There exists positive real numbers

𝛼 ∈ (1, 2] and 𝐺 > 0 such that for all 𝑥, E[‖𝑔(𝑥) −∇𝑓(𝑥)‖𝛼] ≤ 𝜎𝛼. We say noise is

heavy-tailed if 𝛼 < 2.

The above assumption with 𝛼 = 2 corresponds to the standard variance bound,

but in general is weaker. It is indeed possible (e.g., Pareto or 𝛼-stable Levy random

variables) for the variance of 𝑔(𝑥) to be unbounded, while simultaneously satisfying

assumption 4.4.1 for 𝛼 < 2. One should note that even if the variance may not

actually be infinite in practice, it might be too large to be practically useful. All our

analyses and insights carry over to this setting as well.

The possibility that the variance is unbounded has a profound impact on the

optimization process.

Remark 4.4.1 (Nonconvergence of SGD). Consider the function 𝑓(𝑥) = 𝑥2/2 with

noise satisfying E[‖𝑔(𝑥) − ∇𝑓(𝑥)‖𝛼] = 𝜎𝛼 for 𝛼 < 2, and E[‖𝑔(𝑥) − ∇𝑓(𝑥)‖2] =

∞. Then, for any positive constants 𝜂𝑘 that do not depend on 𝑔𝑘, we have that

E[‖∇𝑓(𝑥𝑘)‖2] =∞.

Proof. we denote the stochastic gradient 𝑔𝑘 := 𝑔(𝑥𝑘) = ∇𝑓(𝑥𝑘) + 𝜉𝑘 = 𝑥𝑘 + 𝜉𝑘,

where 𝜉𝑘 ∈ R𝑑 is a random variable with E‖𝜉‖2 = ∞,E‖𝜉‖𝛼 = 𝜎𝛼,E[𝜉] = 0⃗. Then,

E[‖∇𝑓(𝑥𝑘+1)‖2] = E[‖𝑥𝑘+1‖2] = E‖𝑥𝑘 − 𝜂𝑘𝑔𝑘‖2 = E‖𝑥𝑘 − 𝜂𝑘(𝑥𝑘 + 𝜉)‖2 = E‖(1 −

𝜂𝑘)𝑥𝑘− 𝜂𝑘𝜉‖2 = E‖(1− 𝜂𝑘)𝑥𝑘‖2− 2(1− 𝜂𝑘)𝜂𝑘𝑥
⊤
𝑘 E[𝜉] + 𝜂2𝑘E‖𝜉‖2 ≥ 𝜂2𝑘E‖𝜉‖2 =∞. Note
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Table 4.1: Error bounds. (𝑓(𝑥) − 𝑓 * for convex functions, ‖∇𝑓(𝑥)‖ for nonconvex
functions) after 𝑘 iterations: Define 𝛼-moment as E[‖𝑔(𝑥) − ∇𝑓(𝑥)‖𝛼] ≤ 𝜎𝛼 (As-
sump 4.4.1) in the smooth nonconvex case and E[‖𝑔(𝑥)‖𝛼] ≤ 𝐺𝛼 (Assump 4.4.3) in
the strongly case. In the standard setting (𝛼 = 2), GClip recovers the optimal rates.
For heavy-tailed noise (𝛼 ∈ (1, 2)), GClip converges both for convex (Thm 4.4.2)
and non-convex functions (Thm 4.4.1). We also show matching lower-bounds for all
𝛼 ∈ (1, 2] proving the optimality of clipping methods (Thm 4.4.3).

Strongly Convex Function Non-Convex Function

Heavy-tailed noise Standard noise Heavy-tailed noise Standard noise
(𝛼 ∈ (1, 2)) (𝛼 ≥ 2) (𝛼 ∈ (1, 2)) (𝛼 ≥ 2)

SGD N/A 𝒪
(︀
𝑘−1
)︀

N/A 𝒪
(︀
𝑘−

1
4

)︀
GClip 𝒪

(︀
𝑘

−(𝛼−1)
𝛼

)︀
𝒪
(︀
𝑘−1
)︀

𝒪
(︀
𝑘

−(𝛼−1)
3𝛼−2

)︀
𝒪
(︀
𝑘−

1
4

)︀
LowerBound Ω

(︀
𝑘

−(𝛼−1)
𝛼

)︀
Ω
(︀
𝑘−1
)︀

Ω
(︀
𝑘

−(𝛼−1)
3𝛼−2

)︀
Ω
(︀
𝑘−

1
4

)︀
that this holds for any fixed 𝜂𝑘 > 0 even if allowed to depend on the statistics of the

noise distribution (such as 𝜎 or 𝛼).

The issue is that SGD is easily influenced by a single-stochastic gradient, which

could be very large and incorrect. A simple strategy to circumvent this issue is to use a

biased clipped stochastic gradient estimator. This allows us to circumvent the problem

of unbounded variance and ensures optimal convergence rates even under heavy-tailed

noise. Our results are summarized in Table 4.1, and all proofs are relegated to the

Appendices.

4.4.1 Convergence of Clipped Methods

A simple clipping strategy is to globally clip the norm of the update to threshold 𝜏𝑘:

𝑥𝑘+1 = 𝑥𝑘 − 𝜂𝑘 min
{︀

𝜏𝑘
‖𝑔𝑘‖

, 1
}︀
𝑔𝑘 , 𝜏𝑘 ∈ R≥0 (GClip)

We refer to this strategy as GClip (Global Clip), as opposed to coordinate-wise clip-

ping which we discuss later. We first state the rates for smooth non-convex functions.

Theorem 4.4.1 (Non-convex convergence). Suppose that 𝑓 is 𝐿-smooth and that

the stochastic gradients satisfy Assumption 4.4.1 for 𝛼 ∈ (1, 2]. Let {𝑥𝑘} be the
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iterates of GClip with parameters 𝜂 = min{ 1
4𝐿
, 1
𝐿(12𝜎)𝛼/(𝛼−1) ,

(︀
𝑓0

𝜎2𝐾

)︀ 𝛼
3𝛼−2

⧸︀
𝐿

2𝛼−2
3𝛼−2} and

𝜏 = 𝜎(𝜂𝐿)−1/𝛼. Then for 𝐹0 := 𝑓(𝑥0)− 𝑓 *,

1

𝐾

𝐾∑︁
𝑘=1

E[min{‖∇𝑓(𝑥𝑘)‖, ‖∇𝑓(𝑥𝑘)‖2}] ≤ 20𝑓0 max{4𝐿
𝐾
, 𝐿(12𝜎)

𝛼/(𝛼−1)

𝐾
, 𝐿

2𝛼−2
3𝛼−2

(︀
𝐹0

𝐾𝜎2

)︀ 2(𝛼−1)
3𝛼−2 } .

Remark 4.4.2. When ‖∇𝑓(𝑥𝑘)‖ ≤ 𝜖≪ 1, then ‖∇𝑓(𝑥𝑘)‖2 ≪ ‖∇𝑓(𝑥𝑘)‖. Hence the

dominant term on the left hand side of the rate above is ‖∇𝑓(𝑥𝑘)‖2. The right hand

side is easily observed to be 𝒪(𝐾
− 2(𝛼−1)

3𝛼−2
). Together, this implies a convergence rate

of E‖∇𝑓(𝑥)‖ ≤ 𝒪(𝐾
− (𝛼−1)

3𝛼−2
).

We prove improved rates of convergence for non-smooth strongly-convex functions

in a bounded domain. Before stating the theorem, we list our assumptions and

definitions below,

Here we describe some of the formal assumptions which were previously skipped.

We define the standard notion of smoothness.

Assumption 4.4.2 (𝐿-smoothness). 𝑓 is 𝐿-smooth, i.e. there exist a positive

constants 𝐿 such that ∀𝑥, 𝑦, 𝑓(𝑦) ≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩+ 𝐿
2
‖𝑦 − 𝑥‖2 .

We only need the smoothness assumption for non-convex functions.

For strongly-convex optimization, instead of bounding the noise, we assume that

the stochastic oracle has bounded moment.

Assumption 4.4.3 (𝜇-strong-convexity). There exists positive real numbers 𝛼 ∈

(1, 2] and 𝐺 > 0 such that for all 𝑥, E[‖𝑔(𝑥)‖𝛼] ≤ 𝐺𝛼.

Note that the above assumption implies a uniform bound on gradient norm. Such

bound is necessary for nonsmooth strongly convex problems, as one can no longer

factor out the gradient norm using the smoothness assumption. See for example,

Rakhlin et al. [2011].

Assumption 4.4.4 (𝜇-strong-convexity). 𝑓 is 𝜇-strongly convex, if there exist

positive constants 𝜇 such that ∀𝑥, 𝑦,

𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩+
𝜇

2
‖𝑦 − 𝑥‖2.
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The strong convexity assumption and the bounded gradient assumption implicitly

implies that the domain is bounded. However, the domain diameter is not used

explicitly in the proof. The projected clipped gradient descent follows exactly the

same argument and the fact that orthogonal projections contract distances.

𝑥𝑘+1 = 𝑥𝑘 − 𝜂𝑘 min
{︀

𝜏𝑘
‖𝑔𝑘‖

, 1
}︀
𝑔𝑘 , 𝜏𝑘 ∈ R≥0. (proj-GClip)

We are now ready to state the theorem.

Theorem 4.4.2 (Strongly-convex convergence). Suppose that the stochastic gra-

dients satisfy Assumption 4.4.3 for 𝛼 ∈ (1, 2]. Let {𝑥𝑘} be the iterates of pro-

jected GClip (proj-GClip) with clipping parameter 𝜏𝑘 = 𝐺𝑘𝛼−1 and steps-size 𝜂𝑘 =

4
𝜇(𝑘+1)

. Define the output to be a 𝑘-weighted combination of the iterates: �̄�𝑘 =∑︀𝑘
𝑗=1 𝑗𝑥𝑗−1/(

∑︀𝑘
𝑗=1 𝑗) . Then the output �̄�𝑘 satisfies:

E[𝑓(�̄�𝑘)]− 𝑓(𝑥⋆) ≤ 16𝐺2

𝜇(𝑘+1)2(𝛼−1)/𝛼 .

The rates of convergence for the strongly convex and non-convex cases in Theo-

rem 4.4.2 and Theorem 4.4.1 exactly match those of the usual SGD rates (𝒪(1/
√
𝑘) for

convex and 𝒪(𝑘−
1
4 ) for non-convex) when 𝛼 = 2 and gracefully degrade for 𝛼 ∈ (1, 2].

As we will next show, both the strongly convex rates and non-convex rates of GClip

are in fact optimal for every 𝛼 ∈ (1, 2].

4.4.2 Theoretic lower bounds

We prove that the rates obtained with GClip are optimal up to constants. First, we

show a strong lower-bound for the class of convex functions with stochastic gradients

satisfying E[|𝑔(𝑥)|𝛼] ≤ 1. This matches the upper bounds of Theorems 4.4.2 and 4.5.1

for strongly-convex functions, showing that the simple clipping mechanism of GClip

is (up to constants) information theoretically optimal, providing a strong justification

for its use.
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Theorem 4.4.3. For any 𝛼 ∈ (1, 2] and any (possibly randomized) algorithm 𝒜,

there exists a problem 𝑓 which is 1-strongly convex and 1-smooth (𝜇 = 1 and 𝐿 = 1),

and stochastic gradients which satisfy Assumptions 4.4.3 with 𝐺 ≤ 1 such that the

output 𝑥𝑘 of the algorithm 𝒜 after processing 𝑘 stochastic gradients has an error

E[𝑓(𝑥𝑘)]− 𝑓(𝑥⋆) ≥ Ω
(︀

1
𝑘2(𝛼−1)/𝛼

)︀
.

Next, we examine non-convex functions.

Theorem 4.4.4. Given any 𝛼 ∈ (1, 2], smoothness constant 𝐿, and (possibly ran-

domized) algorithm 𝒜, there exists a constant 𝑐1 and an 𝐿-smooth function 𝑓 with

stochastic gradients satisfying Assumption 4.4.1 for any given 𝜎 ≥ 𝑐1
√︀

(𝑓(0)− 𝑓 *)𝐿

such that the output 𝑥𝑘 of the algorithm 𝒜 after processing 𝑘 stochastic gradients has

an error

E[‖∇𝑓(𝑥𝑘)‖] ≥ Ω
(︀

1
𝑘(𝛼−1)/(3𝛼−2)

)︀
.

Theorem 4.4.4, proven in Appendix 4.7.7, extends the recent work of [Arjevani

et al., 2019, Theorem 1] to heavy-tailed noise. Here, the lower-bound matches the

upper-bound in Theorem 4.4.1 up to constants, proving its optimality.

4.5 Faster Optimization with Adaptive Coordinate-

wise Clipping

The previous section showed that adaptive step sizes (which depend on the gradients)

are essential for convergence under heavy-tailed noise, and also showed that GClip

provides the optimal rates. There are of course other adaptive methods such as Adam

that employ not only the current gradients but also all past gradients to adaptively

set coordinate-wise step-sizes. In this section, we study why coordinate-wise clipping

may yield even faster convergence than GClip, and show how to modify GClip to

design an Adaptive Coordinate-wise Clipping algorithm (ACClip).
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4.5.1 Coordinate-wise clipping

The first technique we use is applying coordinate-wise clipping instead of global clip-

ping. We had previously assumed a global bound on the 𝛼-moment of the norm (or

variance) of the stochastic gradient is bounded by 𝜎. However, 𝜎 might be hiding

some dimension dependence 𝑑. We show a more fine-grained model of the noise in

order to tease out this dependence.

Assumption 4.5.1 (Coordinate-wise 𝛼 moment). Denote {𝑔𝑖(𝑥)} to be the

coordinate-wise stochastic gradients for 𝑖 ∈ [𝑑]. We assume there exist constants

{𝐵𝑖} ≥ 0 and 𝛼 ∈ (1, 2] such that E[|*| 𝑔𝑖(𝑥)𝛼] ≤ 𝐵𝛼
𝑖 .

For convenience, we denote 𝐵 = [𝐵1;𝐵2; · · · ;𝐵𝑑] ∈ R𝑑, ‖𝐵‖𝑎 = (
∑︀
𝐵𝑎

𝑖 )1/𝑎. Under

this more refined assumption, we can show the following corollary:

Corollary 4.5.1 (GClip under coordinate-wise noise). Suppose we run GClip

under Assumption 4.5.1 to obtain the sequence {𝑥𝑘}. If 𝑓 is 𝜇-strongly convex, with

appropriate step-sizes and averaging, the output �̄�𝑘 satisfies

E[𝑓(�̄�𝑘)]− 𝑓(𝑥⋆) ≤ 16𝑑‖𝐵‖2𝛼
𝜇(𝑘+1)2(𝛼−1)/𝛼 .

Thus, the convergence of GClip can have a strong dependence on 𝑑, which for

large-scale problems might be problematic. We show next that using coordinate-wise

clipping removes this dependency:

CClip(𝜏𝑘,𝑚𝑘) = min
{︀

𝜏𝑘
|𝑚𝑘|

, 1
}︀
𝑚𝑘 , 𝜏𝑘 ∈ R𝑑

≥0 . (CClip)

Theorem 4.5.1 (CClip under coordinate-wise noise). Suppose we run CClip

under the Assumption of 4.5.1 with 𝜏𝑘 = 𝐵𝑘𝛼−1 to obtain the sequence {𝑥𝑘}. Then,

if 𝑓 is 𝜇-strongly convex, with appropriate step-sizes and averaging, the output �̄�𝑘

satisfies
E[𝑓(�̄�𝑘)]− 𝑓(𝑥⋆) ≤ 16‖𝐵‖22

𝜇(𝑘+1)2(𝛼−1)/𝛼 .

Note that ‖𝐵‖2 ≤ ‖𝐵‖𝛼. CClip has a worst-case convergence independent of 𝑑

under the coordinate-wise noise model. Similar comparison between GClip and CClip
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can be done for non-convex conditions too, but we skip for conciseness. Though we

only compare upper-bounds here, when the noise across coordinates is independent

the upper bounds may be tight (see Lemma 4.7.4).
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(b) Development of noise distribution during ResNet50 training on ImageNet.

Figure 4-2: The distribution of gradient noise is non-stationary during BERT training,
while it remains almost unchanged for ResNet training on ImageNet.

4.5.2 Online moment estimation

We now present the second technique that is motivated by our observation in Figure 4-

2. There, the distribution of gradient noise at the beginning of different epochs

is shown during training for BERT with Wikipedia (top) as well as ResNet with

ImageNet (bottom). The result highlights that the noise distribution is not only

heavy-tailed, but also non-stationary during BERT training and becomes increasingly

more concentrated. In contrast, for the ResNet model the noise distribution remains

mostly unchanged.

Since the scale of the noise changes drastically during training for BERT model and

our theoretical analysis suggest that we should clip proportional to the noise level, we

propose to use an exponential moving average estimator to estimate the moment and

clip the gradient accordingly (line 4,5 of Alg 1). This, combined with the momentum
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Algorithm 1 ACClip.
1: 𝑥,𝑚𝑘 ← 𝑥0, 0
2: for 𝑘 = 1, ·, 𝑇 do
3: 𝑚𝑘 ← 𝛽1𝑚𝑘−1 + (1− 𝛽1)𝑔𝑘
4: 𝜏𝛼𝑘 ← 𝛽2𝜏

𝛼
𝑘−1 + (1− 𝛽2)|𝑔𝑘|𝛼

5: 𝑔𝑘 ← min
{︀

𝜏𝑘
|𝑚𝑘|+𝜖

, 1
}︀
𝑚𝑘

6: 𝑥𝑘 ← 𝑥𝑘−1 − 𝜂𝑘𝑔𝑘
return 𝑥𝐾 , where random variable 𝐾 is supported on {1, · · · , 𝑇}.

term leads to our proposed ACClip algorithm in Algorithm 1. On a high level, the

algorithm applies clipping to the momentum term, where the clipping threshold is

proportional to the estimated moment using an exponential moving average. From our

experiment, we found the conservative choice of 𝛼 = 1 leads to the best performance.

4.6 Experiments

In this section, we first verify the effect of coordinate-wise clipping and moment

estimation introduced in Section 4.5. We then perform extensive evaluations of AC-

Clip on BERT pre-training and fine-tuning tasks and demonstrate its advantage over

Adam in Section 4.6.2. Finally, we start with a few more experiments on the noise

distribution in neural network training.

4.6.1 From GClip to ACClip

In this section we instantiate the argument in Section 4.5 with a set of experiments.

As seen in Figure 4-3b, global clipping improves the vanilla SGD algorithm but is still

far from the ADAM baseline. We apply two techniques (coordinate-wise clipping and

online moment estimation) onto the clipped SGD algorithm analyzed in Section 4.4.

We use a set of experiments on Transformer-XL training to demonstrate the effect of

each technique.

Experiment setup. We train a 6-layer Transformer-XL model [Dai et al., 2019a]

on PTB dataset as a proof of concept. Our main experiments will be on BERT

pretraining and finetuning described in Section 4.6.2. We adapt the author’s github
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Figure 4-3: (a) Performance of different algorithms for training a toy transformer-
XL model described in Section 4.5. (b) Train and (c) validation loss for BERT𝑏𝑎𝑠𝑒

pretraining with the sequence length of 128. While there remains a large gap between
non-adaptive methods and adaptive methods, clipped SGD momentum achieves faster
convergence compared to standard SGD momentum. The proposed algorithm for
adaptive coordinate-wise clipping (ACClip) achieves a lower loss than Adam.

repo1, and replace the number of layers of the base model by 6. We then select the

PTB data as input and set the maximum target length to be 128. The results are

shown in Figure 4-3b.

Observations. From Figure 4-3b, we can tell that global clipping (orange curve)

indeed speeds up vanilla SGD but is still much worse compared to the ADAM base-

line provided by the code base. After replacing global clipping with coordinate-wise

clipping, we see that the performance is already comparable to the ADAM baseline.

Finally, after using the moment estimation to determine the clipping threshold, we

are able to achieve faster convergence than ADAM.

4.6.2 Performance of ACClip for BERT experiments

We now evaluate the empirical performance of our proposed ACClip algorithm on

BERT pre-training as well fine-tuning using the SQUAD v1.1 dataset. As a baseline,

we use Adam optimizer and the same training setup as in the BERT paper [Devlin

et al., 2018]. For ACClip, we set 𝜏 = 1, learning rate = 1e-4, 𝛽1 = 0.9, 𝛽2 = 0.99, 𝜖 =

1e-5 and weight decay = 1e-5. We compare both setups on BERT models of three

different sizes, BERTbase with 6 and 12 layers as well as BERTlarge with 24 layers.

1https://github.com/kimiyoung/transformer-xl/tree/master/pytorch
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Figure 4-3b and 4-3c shows the loss for pretraining BERTbase using SGD with

momentum, GClip, Adam and ACClip. The learning rates and hyperparameters for

each method have been extensively tuned to provide best performance on validation

set. However, even after extensive tuning, there remains a large gap between (clipped)

SGD momentum and adaptive methods. Furthermore, clipped SGD achieves faster

convergence as well as lower final loss compared to standard SGD. Lastly, the proposed

optimizer ACClip achieves a lower loss than the Adam. Table 4.2 further shows that

ACClip achieves lower loss and higher masked-LM accuracy for all model sizes.

Next, we evaluate ACClip on the SQUAD v1.1 fine-tuning task. We again follow

the procedure outlined in [Devlin et al., 2018] and present the results on the Dev

set in Table 4.3. Both for F1 as well as for exact match, the proposed algorithm

outperforms Adam on all model sizes. The experimental results on BERT pretraining

and fine-tuning indicate the effectiveness of the proposed algorithm.

Table 4.2: BERT pretraining: Adam vs ACClip. Compared to Adam, the
proposed ACClip algorithm achieves better evaluation loss and Masked LM accuracy
for all model sizes.

BERT Base 6 layers BERT Base 12 layers BERT Large 24 layers

Val. loss Accuracy Val. loss Accuracy Val. loss Accuracy

Adam 1.907 63.45 1.718 66.44 1.432 70.56

ACClip 1.877 63.85 1.615 67.16 1.413 70.97

Table 4.3: SQUAD v1.1 dev set: Adam vs ACClip. The mean and standard
deviation of F1 and exact match score for 5 runs. The first row contains results
reported from the original BERT paper, which are obtained by picking the best ones
out of 10 repeated experiments.

BERT Base 6 layers BERT Base 12 layers BERT Large 24 layers

EM F1 EM F1 EM F1

Adam (Devlin et al., 2018) 80.8 88.5 84.1 90.9

Adam 76.85± 0.34 84.79± 0.33 81.42± 0.16 88.61± 0.11 83.94± 0.19 90.87± 0.12

ACClip 78.07 ± 0.24 85.87 ± 0.13 81.62 ± 0.18 88.82 ± 0.10 84.93 ± 0.29 91.40 ± 0.15
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Figure 4-4: Distribution of gradient noise norm in Attention and ResNet models on
two data sources: Wikipedia and synthetic Gaussian. The heavy-tailed noise pattern
results from the interaction of both model architecture as well as data distribution.

4.6.3 Noise Patterns in BERT and ImageNet Training

In our initial analysis in Figure 4-1, we observe that training an attention model

on Wikipedia leads to heavy-tailed noise whereas training a ResNet on ImageNet

data leads to well-concentrated noise. Here, we aim to disentangle the effect that

model architecture and training data have on the shape of gradient noise. To this

end, we measure the distribution of the gradient noise norm in an Attention and a

ResNet model on both Wikipedia and synthetic Gaussian data. We used BERTbase

as the Attention model, and the ResNet is constructed by removing the self-attention

modules within the transformer blocks. Gaussian synthetic data is generated by

replacing the token embedding layer with normalized Gaussian input. The resulting

noise histograms are shown in Figure 4-4. The figure shows that the Attention model

leads to heavy-tailed noise independently of input data. For the ResNet model, we

observe that Gaussian input leads to Gaussian noise, whereas Wikipedia data leads

to be heavy-tailed noise. We thus conclude that the heavy-tailed noise pattern results
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from both the model architecture as well as the data distribution.

4.7 Appendix

We focus on (GClip) under stochastic gradients which satisfy Assumption 4.4.1.

Lemma 4.7.1. For any 𝑔(𝑥) suppose that assumption 4.4.1 holds with 𝛼 ∈ (1, 2].

Then the estimator 𝑔 := min
{︀

𝜏𝑘
‖𝑔𝑘‖

, 1
}︀
𝑔𝑘 from (GClip) with global clipping parameter

𝜏 ≥ 0 satisfies:

E
[︀
‖𝑔(𝑥)‖2

]︀
≤ 𝐺𝛼𝜏 2−𝛼 and ‖E[𝑔(𝑥)]−∇𝑓(𝑥)‖2 ≤ 𝐺2𝛼𝜏−2(𝛼−1) .

Proof. First, we bound the variance.

E[‖𝑔(𝑥)‖2] = E[‖𝑔(𝑥)‖𝛼‖𝑔(𝑥)‖2−𝛼].

By the fact that 𝑔(𝑥) ≤ 𝜏 , we get

E[‖𝑔(𝑥)‖2] = E[‖𝑔(𝑥)‖𝛼𝜏 2−𝛼] ≤ 𝐺𝛼𝜏 2−𝛼.

Next, we bound the bias,

‖E[𝑔(𝑥)]−∇𝑓(𝑥)‖ = ‖E[𝑔(𝑥)− 𝑔(𝑥)]‖

≤ E[‖𝑔(𝑥)− 𝑔(𝑥)‖] = E[‖𝑔(𝑥)− 𝑔(𝑥)‖1{|𝑔(𝑥)|≥𝜏}]

≤ E
[︀
‖𝑔(𝑥)‖1{|𝑔(𝑥)|≥𝜏}

]︀
≤ E[‖𝑔(𝑥)‖𝛼]𝜏−(𝛼−1).

The last inequality follows by Markov inequality.

As we increase the clipping parameter 𝜏 , note that the variance (the first term

in Lemma 4.7.1) increases while the bias (which is the second term) decreases. This

way, we can carefully trade-off the variance of our estimator against its bias, thereby

ensuring convergence of the algorithm.
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4.7.1 Non-convex Rates (Proof of Theorem 4.4.1)

The lemma in the previous section can be readily used in the nonsmooth strongly

convex setting. However, we need a variant of Lemma 4.7.1 in the smooth case.

Lemma 4.7.2. For any 𝑔(𝑥) suppose that assumption 4.4.1 holds with 𝛼 ∈ (1, 2]. If

‖∇𝑓(𝑥)‖ ≤ 𝜏/2, then the estimator 𝑔 := min{1, 𝜏/‖𝑔𝑘‖}𝑔𝑘 from (GClip) with global

clipping parameter 𝜏 ≥ 0 satisfies:

E
[︀
‖𝑔(𝑥)‖2

]︀
≤ 2‖∇𝑓(𝑥)‖2 + 4𝜎𝛼𝜏 2−𝛼 and ‖E[𝑔(𝑥)]−∇𝑓(𝑥)‖2 ≤ 4𝜎2𝛼𝜏−2(𝛼−1) .

Proof. First, we bound the variance.

E[‖𝑔(𝑥)‖2] ≤ E[2‖∇𝑓(𝑥)‖2 + 2‖∇𝑓(𝑥)− 𝑔(𝑥)‖2]

≤ E[2‖∇𝑓(𝑥)‖2 + 2‖∇𝑓(𝑥)− 𝑔(𝑥)‖𝛼(2𝜏)2−𝛼]

≤ 2‖∇𝑓(𝑥)‖2 + 4𝜏 2−𝛼E[‖∇𝑓(𝑥)− 𝑔(𝑥)‖𝛼]

≤ 2‖∇𝑓(𝑥)‖2 + 4𝜏 2−𝛼𝜎𝛼.

The expectation is taken with respect to the randomness in noise. The second last

inequality follows by the following fact: for any vector 𝑣 ∈ R𝑑 such that ‖𝑣‖ ≥ 𝜏 ,

‖∇𝑓(𝑥)‖ ≤ 𝜏/2 implies that ‖∇𝑓(𝑥)− 𝑣‖ ≥ ‖∇𝑓(𝑥)− 𝜏𝑣
‖𝑣‖‖.

Next, we bound the bias,

‖E[𝑔(𝑥)]−∇𝑓(𝑥)‖ = ‖E[𝑔(𝑥)− 𝑔(𝑥)]‖

= E[|‖𝑔(𝑥)‖ − 𝜏 |1{‖𝑔(𝑥)‖>𝜏}]

≤ E[‖𝑔(𝑥)−∇𝑓(𝑥)‖1{‖𝑔(𝑥)‖>𝜏}]

≤ E[‖𝑔(𝑥)−∇𝑓(𝑥)‖1{‖𝑔(𝑥)−∇𝑓(𝑥)‖>𝜏/2}]

≤ E[‖𝑔(𝑥)−∇𝑓(𝑥)‖𝛼](𝜏/2)1−𝛼 ≤ 2𝜎𝛼𝜏 1−𝛼.

The last inequality follows by Markov inequality.

Next, we need a subprocedure at the end proof of Lemma 2 from Cutkosky and
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Mehta [2020].

Lemma 4.7.3 (Lemma 2 in Cutkosky and Mehta [2020]). For any vector 𝑣 ∈ R𝑑,

⟨𝑣/‖𝑣‖,∇𝑓(𝑥)⟩ ≥ ‖∇𝑓(𝑥)‖
3
− 8‖𝑣−∇𝑓(𝑥)‖

3
.

Finally, we are ready to show the proof.

At each iteration, we consider two cases, either ‖∇𝑓(𝑥𝑘)‖ < 𝜏/2 or ‖∇𝑓(𝑥𝑘)‖ ≥

𝜏/2.

Case 1: ‖∇𝑓(𝑥𝑘)‖ < 𝜏/2 For simplicity, we denote 𝑔𝑘 = min{1, 𝜏/‖𝑔𝑘‖}𝑔𝑘 and the

bias 𝑏𝑘 = E[𝑔𝑘]−∇𝑓(𝑥𝑘). By Assumption 4.4.2, we have

𝑓(𝑥𝑘) ≤ 𝑓(𝑥𝑘−1) + ⟨∇𝑓(𝑥𝑘−1),−𝜂𝑘𝑔𝑘−1⟩+
𝜂2𝑘−1𝐿

2
‖𝑔𝑘−1‖2

≤ 𝑓(𝑥𝑘−1)− 𝜂𝑘−1‖∇𝑓(𝑥𝑘−1)‖2 − 𝜂𝑘−1⟨∇𝑓(𝑥𝑘−1), 𝑏𝑘−1⟩+
𝜂2𝑘−1𝐿

2
‖𝑔𝑘−1‖2

≤ 𝑓(𝑥𝑘−1)− 𝜂𝑘−1‖∇𝑓(𝑥𝑘−1)‖2 − 𝜂𝑘−1⟨∇𝑓(𝑥𝑘−1), 𝑏𝑘−1⟩+
𝜂2𝑘−1𝐿

2
‖𝑔𝑘−1‖2

≤ 𝑓(𝑥𝑘−1)− 𝜂𝑘−1‖∇𝑓(𝑥𝑘−1)‖2 +
𝜂𝑘−1

2
‖*‖∇𝑓(𝑥𝑘−1)

2 +
𝜂𝑘−1

2
‖𝑏𝑘−1‖2 +

𝜂2𝑘−1𝐿

2
‖𝑔𝑘−1‖2 .

Here the last step used the AM-GM inequality. Then, taking expectation in both

sides and using Lemma 4.7.2 gives

E[𝑓(𝑥𝑘)|𝑥𝑘−1] ≤ 𝑓(𝑥𝑘−1)− (
𝜂𝑘−1

2
− 𝜂𝐿)‖*‖∇𝑓(𝑥𝑘−1)

2 + 2𝜂2𝑘−1𝐿𝜎
𝛼𝜏 2−𝛼 +

2𝜂𝑘𝜎
2𝛼

𝜏 2𝛼−2

≤ 𝑓(𝑥𝑘−1)−
𝜂𝑘−1

4
‖*‖∇𝑓(𝑥𝑘−1)

2 + 2𝜂2𝑘−1𝐿𝜎
𝛼𝜏 2−𝛼 +

2𝜂𝑘−1𝜎
2𝛼

𝜏 2𝛼−2
.

In the last step we used {𝜂𝑘 = 𝜂 ≤ 1
4𝐿
}.

Case 2: ‖∇𝑓(𝑥𝑘)‖ > 𝜏/2 Recall 𝑔𝑘 = min{1, 𝜏/‖𝑔𝑘‖}𝑔𝑘. Denote 𝑝 = P{‖𝑔𝑘‖ ≤ 𝜏}.

Hence we know that
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E[⟨∇𝑓(𝑥𝑘), 𝑔𝑘⟩] = E[
‖∇𝑓(𝑥𝑘)‖2

𝜏
1{‖𝑔𝑘‖≤𝜏}] + E[⟨𝑔𝑘/‖𝑔𝑘‖,∇𝑓(𝑥𝑘)⟩1{‖𝑔𝑘‖≥𝜏}]

≥ 𝑝‖∇𝑓(𝑥𝑘)‖2

𝜏
+ E[

‖∇𝑓(𝑥)‖
3

1{‖𝑔𝑘‖≥𝜏}] + E[
8‖𝑔𝑘 −∇𝑓(𝑥)‖

3
]

≥ 𝑝‖∇𝑓(𝑥𝑘)‖2

𝜏
+ (1− 𝑝)‖∇𝑓(𝑥)‖

3
+

8𝜎

3

≥ ‖∇𝑓(𝑥𝑘)‖
3

+
8𝜎

3
≥ ‖∇𝑓(𝑥𝑘)‖

6
.

The second inequality used Lemma 4.7.3. The third inequality and fourth inequality

used that ‖∇𝑓(𝑥)‖ ≥ 𝜏/2 ≥ 8𝜎. By Assumption 4.4.2, we have

E[𝑓(𝑥𝑘)] ≤ 𝑓(𝑥𝑘−1) + E[⟨∇𝑓(𝑥𝑘−1),−𝜂𝑘𝑔𝑘⟩] +
𝜂2𝑘𝐿

2
𝜏 2

≤ 𝑓(𝑥𝑘−1)− 𝜂𝑘‖∇𝑓(𝑥𝑘−1)‖/6 + 𝜂2𝑘𝐿𝜏‖∇𝑓(𝑥𝑘−1)‖ ≤ 𝑓(𝑥𝑘−1)− 𝜂𝑘‖∇𝑓(𝑥𝑘−1)‖/12.

The last inequality follows by 1
𝐿(12𝜎)𝛼/(𝛼−1) , 𝜏 = 𝜎

(𝐿𝜂)
1
𝛼

implies that 𝜂𝐿𝜏 ≤ 1
12

.

Combining the two cases, we have the inequality below,

E[𝑓(𝑥𝑘)|𝑥𝑘−1] ≤ 𝑓(𝑥𝑘−1)−
𝜂

12
min{‖*‖∇𝑓(𝑥𝑘−1)

2, ‖*‖∇𝑓(𝑥𝑘−1)}+ 2𝜂2𝐿𝜎𝛼𝜏 2−𝛼 +
2𝜂𝜎2𝛼

𝜏 2𝛼−2
.

Rearrange and sum the terms above for some fixed step-size and threshold {𝜏𝑘 =

𝜏} to get

1

𝐾

𝐾∑︁
𝑘=1

E
[︀
min{‖∇𝑓(𝑥𝑘−1)‖2, ‖∇𝑓(𝑥𝑘−1)‖}

]︀
≤ 4

𝜂𝐾
(𝑓(𝑥0)− E[𝑓(𝑥𝐾)]) + 8𝜂𝐿𝜎𝛼𝜏 2−𝛼 + 8

𝜎2𝛼

𝜏 2𝛼−2

≤ 4

𝜂𝐾
(𝑓(𝑥0)− 𝑓 ⋆)⏟  ⏞  

𝑇1

+ 8𝜂𝐿𝜎𝛼𝜏 2−𝛼 +
8𝜎2𝛼

𝜏 2𝛼−2⏟  ⏞  
𝑇2

.

Since we use a threshold 𝜏 = 𝜎

(𝐿𝜂)
1
𝛼
, we can simplify 𝑇2 as

𝜂𝐿𝜎𝛼𝜏 2−𝛼 +
𝜎2𝛼

𝜏 2𝛼−2
=

2𝜎2𝛼

𝜏 2𝛼−2
= 2𝜎2(𝜂𝐿)

2𝛼−2
𝛼 .
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Denote 𝑓0 = 𝑓(𝑥0) − 𝑓 ⋆ to ease notation. Then, adding 𝑇2 back to 𝑇1 and using

a step-size 𝜂 ≤
[︀(︀

𝑓0
𝐺2𝐾

)︀ 𝛼
3𝛼−2

⧸︀
𝐿

2𝛼−2
3𝛼−2

]︀
we get

𝑇1 + 𝑇2 ≤
4𝑓0
𝜂𝐾

+ 16𝐺2(𝜂𝐿)
2𝛼−2

𝛼 =
20𝑓0
𝜂𝐾

≤ 20𝑓0
𝐾

max{4𝐿,𝐿(12𝜎)𝛼/(𝛼−1), 𝐿
2𝛼−2
3𝛼−2

⧸︀(︀ 𝑓0
𝐺2𝐾

)︀ 𝛼
3𝛼−2}.

This proves the statement of the theorem.

4.7.2 Strongly-Convex Rates (Proof of Theorem 4.4.2)

For simplicity, we denote 𝑔𝑘 = min
{︀

𝜏𝑘
‖𝑔𝑘‖

, 1
}︀
𝑔𝑘 and the bias 𝑏𝑘 = E[𝑔𝑘]−∇𝑓(𝑥𝑘). Then

we can iteratively bound the distance as follows,

‖𝑥𝑘 − 𝑥*‖2 = ‖𝑥𝑘−1 − 𝜂𝑘𝑔𝑘−1 − 𝑥*‖2

= ‖𝑥𝑘−1 − 𝑥*‖2 − 2𝜂𝑘⟨𝑥𝑘−1 − 𝑥*,∇𝑓(𝑥𝑘−1)⟩

− 2𝜂𝑘⟨𝑥𝑘−1 − 𝑥*, 𝑏𝑘−1⟩+ 𝜂2𝑘‖𝑔𝑘−1‖2

≤ (1− 𝜇𝜂𝑘)‖𝑥𝑘−1 − 𝑥*‖2 − 2𝜂𝑘(𝑓(𝑥𝑘−1)− 𝑓 *))

+ 2𝜂𝑘(
𝜇

4
‖𝑥𝑘−1 − 𝑥*‖2 +

4

𝜇
‖*‖𝑏𝑘2) + 𝜂2𝑘‖𝑔𝑘−1‖2.

Rearrange and we get

𝑓(𝑥𝑘−1)− 𝑓 * ≤ 𝜂−1
𝑘 − 𝜇/2

2
‖𝑥𝑘−1 − 𝑥*‖2 −

𝜂−1
𝑘

2
‖𝑥𝑘 − 𝑥*‖2 +

4

𝜇
‖𝑏𝑘‖2 +

𝜂𝑘
2
‖𝑔𝑘−1‖2.

After taking expectation and apply the inequality from Lemma 4.7.1, we get

E[𝑓(𝑥𝑘−1)]− 𝑓 * ≤ E
[︂
𝜂−1
𝑘 − 𝜇/2

2
‖𝑥𝑘−1 − 𝑥*‖2 −

𝜂−1
𝑘

2
‖𝑥𝑘 − 𝑥*‖2

]︂
+ 4𝐺2𝛼𝜏 2−2𝛼𝜇−1 + 𝜂𝑘𝐺

𝛼𝜏 2−𝛼/2.
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Then take 𝜂𝑘 = 4
𝜇(𝑘+1)

, 𝜏𝑘 = 𝐺𝑘
1
𝛼 and multiply both side by 𝑘, we get

𝑘E[𝑓(𝑥𝑘−1)]− 𝑓 * ≤ 𝜇

8
E
[︀
𝑘(𝑘 − 1)‖𝑥𝑘−1 − 𝑥*‖2 − 𝑘(𝑘 + 1)‖𝑥𝑘 − 𝑥*‖2

]︀
+ 8𝐺2𝑘

2−𝛼
𝛼 𝜇−1.

Notice that
∑︀𝐾

𝑘=1 𝑘
2−𝛼
𝛼 ≤

∫︀ 𝐾+1

0
𝑘

2−𝛼
𝛼 𝑑𝑘 ≤ (𝐾 + 1)2/𝛼. Sum over 𝑘 and we get

∑︀𝐾
𝑘=1 𝑘E[𝑓(𝑥𝑘−1)]− 𝑓 * ≤ 𝜇

8
E
[︀
−𝑇 (𝑇 + 1)‖𝑥𝑇 − 𝑥*‖2

]︀
+ 8𝐺2(𝐾 + 1)

2
𝛼𝜇−1.

Devide both side by 𝐾(𝐾+1)
2

and we get

2

𝐾(𝐾 + 1)

∑︀𝐾
𝑘=1 𝑘E[𝑓(𝑥𝑘−1)]− 𝑓 * ≤ 8𝐺2𝐾−1(𝐾 + 1)

2−𝛼
𝛼 𝜇−1.

Notice that for 𝐾 ≥ 1, 𝐾−1 ≤ 2(𝐾 + 1)−1. We have

2

𝐾(𝐾 + 1)

∑︀𝐾
𝑘=1 𝑘E[𝑓(𝑥𝑘−1)]− 𝑓 * ≤ 16𝐺2(𝐾 + 1)

2−2𝛼
𝛼 𝜇−1.

The theorem then follows by Jensen’s inequality.

4.7.3 Effect of coordinate-wise moment bound

We now examine how the rates would change if we replace Assumption 4.4.3 with

Assumption 4.5.1.

4.7.4 Convergence of GClip (proof of Corollary 4.5.1)

We now look at(GClip) under assumption 4.5.1.

The proof of both the convex and non-convex rates following directly from the

following Lemma.
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Lemma 4.7.4. For any 𝑔(𝑥) suppose that assumption 4.5.1 with 𝛼 ∈ (1, 2]. Then

suppose we have a constant upper-bound

E[‖*‖𝑔(𝑥)𝛼] ≤ 𝐷 .

Then 𝐷 satisfies

𝑑
𝛼
2
−1‖𝐵‖𝛼𝛼 ≤ 𝐷 ≤ 𝑑𝛼/2‖𝐵‖𝛼𝛼.

Proof. Note that the function (·)𝛼/2 is concave for 𝛼 ∈ (1, 2]. Using Jensen’s inequality

we can rewrite as:

𝐷 ≥ E[‖*‖𝑔(𝑥)𝛼] = 𝑑𝛼/2E

⎡⎣(︃1

𝑑

𝑑∑︁
𝑖=1

|𝑔(𝑥)(𝑖)|2
)︃𝛼/2

⎤⎦ ≥ 𝑑𝛼/2−1E

[︃
𝑑∑︁

𝑖=1

|𝑔(𝑥)(𝑖)|𝛼
]︃
.

Since the right hand-side can be as large as 𝑑
𝛼
2
−1‖𝐵‖𝛼𝛼, we have our first inequality.

On the other hand, we also have an upper bound below:

E[‖*‖𝑔(𝑥)𝛼] = E

⎡⎣(︃ 𝑑∑︁
𝑖=1

|𝑔(𝑥)(𝑖)|2
)︃𝛼/2

⎤⎦ ≤ E
[︂(︁
𝑑(

𝑑
max
𝑖=1

𝑔(𝑥)(𝑖))2
)︁𝛼/2]︂

≤ E
[︁
𝑑𝛼/2(

𝑑
max
𝑖=1

𝑔(𝑥)(𝑖))𝛼
]︁
≤ E

[︃
𝑑𝛼/2

𝑑∑︁
𝑖=1

(𝑔(𝑥)(𝑖))𝛼
]︃
≤ 𝑑𝛼/2

𝑑∑︁
𝑖=1

𝐵𝛼
𝑖

where ‖𝐵‖𝛼𝛼 =
∑︀𝑑

𝑖=1𝐵
𝛼
𝑖 . Thus, we have shown that

𝑑
𝛼
2
−1‖𝐵‖𝛼𝛼 ≤ E[‖*‖𝑔(𝑥)𝛼] ≤ 𝑑𝛼/2‖𝐵‖𝛼𝛼 .

We know that Jensen’s inequality is tight when all the co-ordinates have equal values.

This means that if the noise across the coordinates is linearly correlated the lower

bound is tighter, whereas the upper bound is tighter if the coordinates depend upon

each other in a more complicated manner or are independent of each other.

Substituting this bound on 𝐺 in Theorems 4.4.2 and 4.4.1 gives us our corollaries.
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4.7.5 Convergence of CClip (Proof of Theorem 4.5.1)

The proof relies on the key lemma which captures the bias-variance trade off under

the new noise-assumption and coordinate-wise clipping.

Lemma 4.7.5. For any 𝑔(𝑥) suppose that assumption 4.5.1 with 𝛼 ∈ (1, 2] holds.

Denote 𝑔𝑖 to be 𝑖𝑡ℎ component of 𝑔(𝑥), ∇𝑓(𝑥)𝑖 to be 𝑖𝑡ℎ component of ∇𝑓(𝑥). Then the

estimator 𝑔(𝑥) = [𝑔1; · · · ; 𝑔𝑑] from (CClip) with clipping parameter 𝜏 = [𝜏1; 𝜏2; · · · ; 𝜏𝑑]

satisfies:

E
[︀
‖𝑔𝑖‖2

]︀
≤ 𝐵𝛼

𝑖 𝜏
2−𝛼
𝑖 and ‖E[𝑔𝑖]−∇𝑓(𝑥)𝑖‖2 ≤ 𝐵2𝛼

𝑖 𝜏
−2(𝛼−1)
𝑖 .

Proof. Apply Lemma 4.7.1 to the one dimensional case in each coordinate.

Proof of Theorem 4.5.1. Theorem 4.4.2 For simplicity, we denote 𝑔𝑘 = 𝜂𝑘𝑔(𝑥𝑘) and

the bias 𝑏𝑘 = E[𝑔𝑘]−∇𝑓(𝑥𝑘).

‖𝑥𝑘 − 𝑥*‖2 = ‖𝑥𝑘−1 − 𝜂𝑘𝑔𝑘−1 − 𝑥*‖2

= ‖𝑥𝑘−1 − 𝑥*‖2 − 2𝜂𝑘⟨𝑥𝑘−1 − 𝑥*,∇𝑓(𝑥𝑘−1)⟩

− 2𝜂𝑘⟨𝑥𝑘−1 − 𝑥*, 𝑏𝑘−1⟩+ 𝜂2𝑘‖𝑔𝑘−1‖2

≤ (1− 𝜇𝜂𝑘)‖𝑥𝑘−1 − 𝑥*‖2 − 2𝜂𝑘(𝑓(𝑥𝑘−1)− 𝑓 *))

+ 2𝜂𝑘(
𝜇

4
‖𝑥𝑘−1 − 𝑥*‖2 +

4

𝜇
‖*‖𝑏𝑘2) + 𝜂2𝑘‖𝑔𝑘−1‖2.

Rearrange and we get

𝑓(𝑥𝑘−1)− 𝑓 * ≤ 𝜂−1
𝑘 − 𝜇/2

2
‖𝑥𝑘−1 − 𝑥*‖2 −

𝜂−1
𝑘

2
‖𝑥𝑘 − 𝑥*‖2 +

4

𝜇
‖𝑏𝑘‖2 +

𝜂𝑘
2
‖𝑔𝑘−1‖2.

After taking expectation and apply the inequality from Lemma 4.7.1, we get

E[𝑓(𝑥𝑘−1)]− 𝑓 * ≤ E
[︂
𝜂−1
𝑘 − 𝜇/2

2
‖𝑥𝑘−1 − 𝑥*‖2 −

𝜂−1
𝑘

2
‖𝑥𝑘 − 𝑥*‖2

]︂
+
∑︀𝑑

𝑖=1 4𝐵2𝛼
𝑖 𝜏 2−2𝛼

𝑖 𝜇−1 + 𝜂𝑘𝐺
𝛼𝜏 2−𝛼

𝑖 /2.
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Then take 𝜂𝑘 = 4
𝜇(𝑘+1)

, 𝜏𝑖 = 𝐵𝑖𝑘
1
𝛼 and multiply both side by 𝑘, we get

𝑘E[𝑓(𝑥𝑘−1)]− 𝑓 * ≤ 𝜇

8
E
[︀
𝑘(𝑘 − 1)‖𝑥𝑘−1 − 𝑥*‖2 − 𝑘(𝑘 + 1)‖𝑥𝑘 − 𝑥*‖2

]︀
+ 8

∑︀𝑑
𝑖=1𝐵

2
𝑖 𝑘

2−𝛼
𝛼 𝜇−1.

Notice that
∑︀𝐾

𝑘=1 𝑘
2−𝛼
𝛼 ≤

∫︀ 𝐾+1

0
𝑘

2−𝛼
𝛼 𝑑𝑘 ≤ (𝐾 + 1)2/𝛼. Sum over 𝑘 and we get

∑︀𝐾
𝑘=1 𝑘E[𝑓(𝑥𝑘−1)]− 𝑓 * ≤ 𝜇

8
E
[︀
−𝑇 (𝑇 + 1)‖𝑥𝑇 − 𝑥*‖2

]︀
+ 8

∑︀𝑑
𝑖=1𝐵

2
𝑖 𝑘

2−𝛼
𝛼 𝜇−1.

Devide both side by 𝐾(𝐾+1)
2

and we get

2

𝐾(𝐾 + 1)

∑︀𝐾
𝑘=1 𝑘E[𝑓(𝑥𝑘−1)]− 𝑓 * ≤ 8

∑︀𝑑
𝑖=1𝐵

2
𝑖 𝑘

2−𝛼
𝛼 𝜇−1.

Notice that for 𝐾 ≥ 1, 𝐾−1 ≤ 2(𝐾 + 1)−1. We have

2

𝐾(𝐾 + 1)

∑︀𝐾
𝑘=1 𝑘E[𝑓(𝑥𝑘−1)]− 𝑓 * ≤ 16

∑︀𝑑
𝑖=1𝐵

2
𝑖 𝑘

2−𝛼
𝛼 𝜇−1.

The theorem then follows by Jensen’s inequality.

4.7.6 Lower Bound (Proof of Theorem 4.4.3)

We consider the following simple one-dimensional function class parameterized by 𝑏:

min
𝑥∈[0,1/2]

{︀
𝑓𝑏(𝑥) = 1

2
(𝑥− 𝑏)2

}︀
, for 𝑏 ∈ [0, 1/2] . (4.2)

Also suppose that for 𝛼 ∈ (1, 2] and 𝑏 ∈ [0, 1/2] the stochastic gradients are of the

form:

𝑔(𝑥) ∼ ∇𝑓𝑏(𝑥) + 𝜒𝑏 ,E[𝑔(𝑥)] = ∇𝑓𝑏(𝑥) , and E[|𝑔(𝑥)|𝛼] ≤ 1 . (4.3)
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Note that the function class (4.2) has 𝜇 = 1 and optimum value 𝑓𝑏(𝑏) = 0, and the

𝛼-moment of the noise in (4.3) satisfies 𝐺 = 𝐵 ≤ 1. Thus, we want to prove the

following:

Theorem 4.7.6. For any 𝛼 ∈ (1, 2] there exists a distribution 𝜒𝑏 such that the

stochastic gradients satisfy (4.3). Further, for any (possibly randomized) algorithm 𝒜,

define 𝒜𝑘(𝑓𝑏 + 𝜒𝑏) to be the output of the algorithm 𝒜 after 𝑘 queries to the stochastic

gradient 𝑔(𝑥). Then:

max
𝑏∈[0,1/2]

E[𝑓𝑏(𝒜𝑘(𝑓𝑏 + 𝜒𝑏))] ≥ Ω

(︂
1

𝑘2(𝛼−1)/𝛼

)︂
.

Our lower bound construction is inspired by Theorem 2 of ?. Let𝒜𝑘(𝑓𝑏+𝜒𝑏) denote

the output of any possibly randomized algorithm 𝒜 after processing 𝑘 stochastic

gradients of the function 𝑓𝑏 (with noise drawn i.i.d. from distribution 𝜒𝑏). Similarly,

let 𝒟𝑘(𝑓𝑏 + 𝜒𝑏) denote the output of a deterministic algorithm after processing the 𝑘

stochastic gradients. Then from Yao’s minimax principle we know that for any fixed

distribution ℬ over [0, 1/2],

min
𝒜

max
𝑏∈[0,1/2]

E𝒜[E𝜒𝑏
𝑓𝑏(𝒜𝑘(𝑓𝑏 + 𝜒𝑏))] ≥ min

𝒟
E𝑏∼ℬ[E𝜒𝑏

𝑓𝑏(𝒟𝑘(𝑓𝑏 + 𝜒𝑏))] .

Here we denote E𝒜 to be expectation over the randomness of the algorithm 𝒜 and

E𝜒𝑏
to be over the stochasticity of the the noise distribution 𝜒𝑏. Hence, we only have

to analyze deterministic algorithms to establish the lower-bound. Further, since 𝒟𝑘

is deterministic, for any bijective transformation ℎ which transforms the stochastic

gradients, there exists a deterministic algorithm �̃� such that �̃�𝑘(ℎ(𝑓𝑏+𝜒𝑏)) = 𝒟𝑘(𝑓𝑏+

𝜒𝑏). This implies that for any bijective transformation ℎ(·) of the gradients:

min
𝒟

E𝑏∼ℬ[E𝜒𝑏
𝑓𝑏(𝒟𝑘(𝑓𝑏 + 𝜒𝑏))] = min

𝒟
E𝑏∼ℬ[E𝜒𝑏

𝑓𝑏(𝒟𝑘(ℎ(𝑓𝑏 + 𝜒𝑏)))] .

In this rest of the proof, we will try obtain a lower bound for the right hand side

above.

We now describe our construction of the three quantities to be defined: the prob-
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lem distribution ℬ, the noise distribution 𝜒𝑏, and the bijective mapping ℎ(·). All

of our definitions are parameterized by 𝛼 ∈ (1, 2] (which is given as input) and by

𝜖 ∈ (0, 1/8] (which represents the desired target accuracy). We will pick 𝜖 to be a fixed

constant which depends on the problem parameters (e.g. 𝑘) and should be thought

of as being small.

∙ Problem distribution: ℬ picks 𝑏0 = 2𝜖 or 𝑏1 = 𝜖 at random i.e. 𝜈 ∈ {0, 1} is

chosen by an unbiased coin toss and then we pick

𝑏𝜈 = (2− 𝜈)𝜖 . (4.4)

∙ Noise distribution: Define a constant 𝛾 = (4𝜖)1/(𝛼−1) and 𝑝𝜈 = (𝛾𝛼 − 2𝜈𝛾𝜖).

Simple computations verify that 𝛾 ∈ (0, 1/2] and that

𝑝𝜈 = (4𝜖)
𝛼

𝛼−1 − 2𝜈(4𝜖𝛼)
1

𝛼−1 = (4− 2𝜈)(4𝜖𝛼)
1

𝛼−1 ∈ (0, 1) .

Then, for a given 𝜈 ∈ {0, 1} the stochastic gradient 𝑔(𝑥) is defined as

𝑔(𝑥) =

⎧⎪⎨⎪⎩𝑥−
1
2𝛾

with prob. 𝑝𝜈 ,

𝑥 with prob. 1− 𝑝𝜈 .
(4.5)

To see that we have the correct gradient in expectation verify that

E[𝑔(𝑥)] = 𝑥− 𝑝𝜈
2𝛾

= 𝑥− 𝛾𝛼−1

2
+ 𝜈𝜖 = 𝑥− (2− 𝜈)𝜖 = 𝑥− 𝑏𝜈 = ∇𝑓𝑏𝜈 (𝑥) .

Next to bound the 𝛼 moment of 𝑔(𝑥) we see that

E[|𝑔(𝑥)|𝛼] ≤ 𝛾𝛼
(︂
𝑥− 1

2𝛾

)︂𝛼

+ 𝑥𝛼 ≤ 1

2
+

1

2
= 1 .

The above inequality used the bounds that 𝛼 ≥ 1, 𝑥 ∈ [0, 1/2], and 𝛾 ∈ (0, 1/2].

Thus 𝑔(𝑥) defined in (4.5) satisfies condition (4.3).

∙ Bijective mapping: Note that here the only unknown variable is 𝜈 which only
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affects 𝑝𝜈 . Thus the mapping is bijective as long as the frequencies of the events

are preserved. Hence given a stochastic gradient 𝑔(𝑥𝑖) the mapping we use is:

ℎ(𝑔(𝑥𝑖)) =

⎧⎪⎨⎪⎩1 if 𝑔(𝑥𝑖) = 𝑥𝑖 − 1
2𝛾
,

0 otherwise.
(4.6)

Given the definitions above, the output of algorithm 𝒟𝑘 is thus simply a function of

𝑘 i.i.d. samples drawn from the Bernoulli distribution with parameter 𝑝𝜈 (which is

denoted by Bern(𝑝𝜈)). We now show how achieving a small optimization error implies

being able to guess the value of 𝜈.

Lemma 4.7.7. Suppose we are given problem and noise distributions defined as in

(4.4) and (4.5), and an bijective mapping ℎ(·) as in (4.6). Further suppose that there

is a deterministic algorithm 𝒟𝑘 whose output after processing 𝑘 stochastic gradients

satisfies

E𝑏∼ℬ[E𝜒𝑏
𝑓𝑏(𝒟𝑘(ℎ(𝑓𝑏 + 𝜒𝑏)))] < 𝜖2/64 .

Then, there exists a deterministic function �̃�𝑘 which given 𝑘 independent samples of

Bern(𝑝𝜈) outputs 𝜈 ′ = �̃�𝑘(Bern(𝑝𝜈)) ∈ {0, 1} such that

P
[︁
�̃�𝑘(Bern(𝑝𝜈)) = 𝜈

]︁
≥ 3

4
.

Proof. Suppose that we are given access to 𝑘 samples of Bern(𝑝𝜈). Use these 𝑘 samples

as the input ℎ(𝑓𝑏 + 𝜒𝑏)) to the procedure 𝒟𝑘 (this is valid as previously discussed),

and let the output of 𝒟𝑘 be 𝑥(𝜈)𝑘 . The assumption in the lemma states that

E𝜈

[︂
E𝜒𝑏

⃒⃒⃒
𝑥
(𝜈)
𝑘 − 𝑏𝜈

⃒⃒⃒2]︂
<
𝜖2

32
, which implies that E𝜒𝑏

⃒⃒⃒
𝑥
(𝜈)
𝑘 − 𝑏𝜈

⃒⃒⃒2
<
𝜖2

16
almost surely.

Then, using Markov’s inequality (and then taking square-roots on both sides) gives

P
[︁⃒⃒⃒
𝑥
(𝜈)
𝑘 − 𝑏𝜈

⃒⃒⃒
≥ 𝜖

2

]︁
≤ 1

4
.
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Consider a simple procedure �̃�𝑘 which outputs 𝜈 ′ = 0 if 𝑥(𝜈)𝑘 ≥ 3𝜖
2
, and 𝜈 ′ = 1

otherwise. Recall that |𝑏0 − 𝑏1| = 𝜖 with 𝑏0 = 2𝜖 and 𝑏1 = 𝜖. With probability 3
4
,⃒⃒⃒

𝑥
(𝜈)
𝑘 − 𝑏𝜈

⃒⃒⃒
< 𝜖

2
and hence the output 𝜈 ′ is correct.

Lemma 4.7.7 shows that if the optimization error of 𝒟𝑘 is small, there exists a

procedure �̃�𝑘 which distinguishes between the Bernoulli distributions with parameters

𝑝0 and 𝑝1 using 𝑘 samples. To argue that the optimization error is large, one simply

has to argue that a large number of samples are required to distinguish between

Bern(𝑝0) and Bern(𝑝1).

Lemma 4.7.8. For any deterministic procedure �̃�𝑘(Bern(𝑝𝜈)) which processes 𝑘 sam-

ples of Bern(𝑝𝜈) and outputs 𝜈 ′

P[𝜈 ′ = 𝜈] ≤ 1

2
+

√︁
𝑘(4𝜖)

𝛼
𝛼−1 .

Proof. Here it would be convenient to make the dependence on the samples explicit.

Denote (𝜈)
𝑘 =

(︁
𝑠
(𝜈)
1 , . . . , 𝑠

(𝜈)
𝑘

)︁
∈ {0, 1}𝑘 to be the 𝑘 samples drawn from Bern(𝑝𝜈) and

denote the output as 𝜈 ′ = �̃�(
(𝜈)
𝑘 ). With some slight abuse of notation where we use

the same symbols to denote the realization and their distributions, we have:

P
[︁
�̃�(

(𝜈)
𝑘 ) = 𝜈

]︁
=

1

2
P
[︁
�̃�(

(1)
𝑘 ) = 1

]︁
+

1

2
P
[︁
�̃�(

(0)
𝑘 ) = 0

]︁
=

1

2
+

1

2
E
[︁
�̃�(

(1)
𝑘 )− �̃�(

(0)
𝑘 )
]︁
.

Next using Pinsker’s inequality we can upper bound the right hand side as:

E
[︁
�̃�(

(1)
𝑘 )− �̃�(

(0)
𝑘 )
]︁
≤ |*| �̃�(

(1)
𝑘 )− �̃�(

(0)
𝑘 )𝑇𝑉 ≤

√︂
1

2
KL
(︁
�̃�
(︁
(1)
𝑘

)︁
, �̃�
(︁
(0)
𝑘

)︁)︁
,

where |·|𝑇𝑉 denotes the total-variation distance and KL(·, ·) denotes the KL-divergence.

Recall two properties of KL-divergence: i) for a product measures defined over the

same measurable space (𝑝1, . . . , 𝑝𝑘) and (𝑞1, . . . , 𝑞𝑘),

KL((𝑝1, . . . , 𝑝𝑘), (𝑞1, . . . , 𝑞𝑘)) =
𝑘∑︁

𝑖=1

KL(𝑝𝑖, 𝑞𝑖) ,
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and ii) for any deterministic function �̃�,

KL(𝑝, 𝑞) ≥ KL(�̃�(𝑝), �̃�(𝑞)) .

Thus, we can simplify as

P
[︁
�̃�(

(𝜈)
𝑘 ) = 𝜈

]︁
≤ 1

2
+

√︂
𝑘

8
KL(Bern(𝑝1),Bern(𝑝0))

≤ 1

2
+

√︃
𝑘

8

(𝑝0 − 𝑝1)2
𝑝0(1− 𝑝0)

≤ 1

2
+

√︃
𝑘(𝛾𝜖)2

4𝛾𝛼

=
1

2
+

√︁
𝑘(4(2−1/𝛼)𝜖)

𝛼
𝛼−1 .

Recalling that 𝛼 ∈ (1, 2] gives us the statement of the lemma.

If we pick 𝜖 to be

𝜖 =
1

16𝑘(𝛼−1)/𝛼
,

we have that
1

2
+

√︁
𝑘(4𝜖)

𝛼
𝛼−1 <

3

4
.

Given Lemmas 4.7.7 and 4.7.8, this implies that for the above choice of 𝜖,

E𝑏∼ℬ[E𝜒𝑏
𝑓𝑏(𝒟𝑘(ℎ(𝑓𝑏 + 𝜒𝑏)))] ≥ 𝜖2/64 =

1

214𝑘2(𝛼−1)/𝛼
.

This finishes the proof of the theorem. Note that the readability of the proof was

prioritized over optimality and it is possible to obtain significantly better constants.

4.7.7 Non-convex Lower Bound (Proof of Theorem 4.4.4)

The proof is based on the proof of Theorem 1 in Arjevani et al. [2019]. The only

difference is that we assume bounded 𝛼−moment of the stochastic oracle instead
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of bounded variance as in the original proof. We refer readers to Arjevani et al.

[2019] for more backgrounds and intuitions. For convenience, we study the stochastic

setting (𝐾 = 1 in Arjevani et al. [2019]) instead of batched setting. We denote

a 𝑑−dimensional vector 𝑥 as, 𝑥 = [𝑥(1); ...;𝑥(𝑑)]. Let support(𝑥) denote the set of

coordinates where 𝑥 is nonzero, i.e.

support(𝑥) = {𝑖 ∈ [𝑑]|𝑥(𝑖) ̸= 0} ⊆ [𝑑].

Denote prog𝛽(𝑥) as the highest index whose entry is 𝛽−far from zero.

prog𝛽(𝑥) = max{𝑖 ∈ [𝑑]||𝑥(𝑖)| > 𝛽} ∈ [𝑑].

Note that the function prog𝛽( · ) is decreasing in 𝛽. The function we use to prove the

theorem is the same as in ??. We denote

𝑓𝑑(𝑥) = −Ψ(1)Φ(𝑥(1)) +
𝑑∑︁

𝑖=2

(︀
Ψ(−𝑥(𝑖−1))Φ(−𝑥(𝑖))−Ψ(𝑥(𝑖−1))Φ(𝑥(𝑖))

)︀
, where

Ψ(𝑥) =

⎧⎪⎨⎪⎩0, 𝑥 ≤ 1/2

exp(1− 1
(2𝑥−1)2

), 𝑥 > 1/2

,Φ(𝑥) =
√
𝑒

∫︁ 𝑥

−∞
𝑒−

𝑡2

2 𝑑𝑡.

The above function satisfies the following important properties,

Lemma 4.7.9 (Lemma 2 in Arjevani et al. [2019]). The function 𝑓𝑑 satisfies the

following properties,

1. 𝑓𝑑(0)− inf𝑥 𝑓𝑑(𝑥) ≤ 12𝑑.

2. 𝑓𝑑 is 𝐿0-smooth, where 𝐿0 = 152.

3. For all 𝑥, ‖∇𝑓𝑑(𝑥)‖∞ ≤ 23.

4. For all 𝑥, prog0(∇𝑓𝑑(𝑥)) ≤ prog 1
2
(𝑥) + 1

5. For all 𝑥, if prog1(𝑥) < 𝑑, then ‖∇𝑓𝑑(𝑥)‖2 ≥ 1.
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We also define the stochastic oracle 𝑔𝑑(𝑥) as below

𝑔𝑑(𝑥)(𝑖) =

(︂
1 + 1

{︁
𝑖 = prog 1

4
(𝑥) + 1

}︁(︂𝑧
𝑝
− 1

)︂)︂
𝜕

𝜕𝑥(𝑖)
𝑓𝑑(𝑥)

where 𝑧 ∼ Bernoulli(𝑝). The stochasticity of 𝑔𝑑(𝑥) is only in the (prog 1
4
(𝑥) + 1)th

coordinate. It is easy to see that 𝑔𝑑(𝑥) is a probability-𝑝 zero chain as in [?, Definition

2] i.e. it satisfies

P
(︁
∃𝑥, s.t. prog0(𝑔𝑑(𝑥)) = prog 1

4
(𝑥) + 1

)︁
≤ 𝑝,

P
(︁
∃𝑥, s.t. prog0(𝑔𝑑(𝑥)) > prog 1

4
(𝑥) + 1

)︁
= 0.

The second claim is because prog𝛽( · ) is decreasing in 𝛽 and

prog 1
4
(∇𝑓𝑑(𝑥)) ≤ prog0(∇𝑓𝑑(𝑥)) ≤ prog 1

2
(𝑥) + 1 ≤ prog 1

4
(𝑥) + 1 .

The first claim is because if 𝑧 = 0, then we explicitly set the (prog 1
4
(𝑥) + 1)th coor-

dinate to 0. The stochastic gradient additionally has bounded 𝛼-moment as we next

show.

Lemma 4.7.10. The stochastic oracle above is an unbiased estimator of the true

gradient, and for any 𝛼 ∈ (1, 2]

E[‖𝑔𝑑(𝑥)‖𝛼] ≤ 2‖∇𝑓𝑑(𝑥)‖𝛼 + 23𝛼 2

𝑝𝛼−1
.

Proof. The unbiased-ness is easy to verify. For the bounded 𝛼-moment, observe that

only the (prog 1
4

+ 1)-th coordinate is noisy and differs by a factor of ( 𝑧
𝑝
− 1). Hence,

92



we have

E[‖𝑔𝑑(𝑥)‖𝛼] ≤ 2‖∇𝑓𝑑(𝑥)‖𝛼 + 2E[‖𝑔𝑑(𝑥)−∇𝑓𝑑(𝑥)‖𝛼]

≤ 2‖∇𝑓𝑑(𝑥)‖𝛼 + ‖∇𝑓𝑑(𝑥)‖𝛼∞E
[︂
|𝑧
𝑝
− 1|𝛼

]︂
≤ 2‖∇𝑓𝑑(𝑥)‖𝛼 + ‖∇𝑓𝑑(𝑥)‖𝛼∞

𝑝(1− 𝑝)𝛼 + (1− 𝑝)𝑝𝛼

𝑝𝛼

≤ 2‖∇𝑓𝑑(𝑥)‖𝛼 + 23𝛼 2

𝑝𝛼−1

The first inequality followed from Jensen’s inequality and the convexity of ‖ · ‖𝛼 for

𝛼 ∈ (1, 2]:

‖𝑢+ 𝑣‖𝛼 ≤ 4‖𝑢+𝑣
2
‖𝛼 ≤ 2(‖𝑢‖𝛼 + ‖𝑣‖𝛼) for any 𝑢, 𝑣 .

Now we are ready to prove Theorem 4.4.4. Given accuracy parameter 𝜖, subop-

timality ∆ = 𝑓(0) − 𝑓 *, smoothness constant 𝐿, and bounded 𝛼−moment 𝐺𝛼, we

define

𝑓(𝑥) =
𝐿𝜆2

152
𝑓𝑑(

𝑥

𝜆
),

where 𝜆 = 304𝜖
𝐿

and 𝑑 = ⌊ Δ𝐿
7296𝜖2

⌋. Then,

𝑔(𝑥) =
𝐿𝜆

152
𝑔𝑑(𝑥/𝜆) = 2𝜖𝑔𝑑(𝑥/𝜆).

Using Lemma 4.7.10, we have

E[‖𝑔(𝑥)‖𝛼] ≤ 8𝜖𝛼‖∇𝑓𝑑(𝑥)‖𝛼 +
5000𝜖𝛼

𝑝𝛼−1

When 𝐺 ≥ 4
√

∆𝐿, we can set 𝑝 = (5000𝜖)
𝛼

𝛼−1

(𝐺−4
√
Δ𝐿)

𝛼
𝛼−1

and get E[‖𝑔(𝑥)‖𝛼] ≤ 𝐺𝛼.

Let 𝑥𝑘 be the output of any zero-respecting algorithm 𝒜. By [?, Lemma 1], we

know that with probability at least 1/2, prog1(𝑥𝑘) ≤ prog0(𝑥𝑘) < 𝑑 for all 𝑘 ≤ (𝑑−1)
2𝑝

.
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Now applying Lemma 4.7.9.5, we have that for all 𝑘 ≤ (𝑑−1)
2𝑝

:

E[‖∇𝑓(𝑥𝑘)‖] ≥ 1

2

𝐿𝜆

152
E[1‖∇𝑓𝑑(𝑥𝑘/𝜆)‖ | {prog1(𝑥𝑘) < 𝑑}] ≥ 𝜖 .

Therefore, E‖∇𝑓(𝑥𝑘)‖ ≥ 𝜖, for all 𝑘 ≤ (𝑑−1)
2𝑝

= (𝐺−4
√
Δ𝐿)

𝛼
𝛼−1Δ𝐿

7296×5000
𝛼

𝛼−1 𝜖
2+ 𝛼

𝛼−1
= 𝑐(𝛼)(𝐺 −

4
√

∆𝐿)
𝛼

𝛼−1 ∆𝐿𝜖−
3𝛼−2
𝛼−1 . By eliminating 𝜖, we can rewrite this in terms of 𝑘. Finally,

the techniques from [?, Theorem 3] show how to lift lower-bounds for zero-respecting

algorithms to any randomized method.
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Chapter 5

Non-differentiable, nonconvex

Optimization

The definition of gradient requires the function of interest to be differentiable. How-

ever, as we discussed in Chapter 2,“gradient” methods can be generalized to sub-

gradient methods in nondifferentiable convex problems and still achieve reasonable

convergence rates. One natural question following this observation could be: can

convergence analysis also be done for nonconvex nondifferentiable functions?

Studying this problem is also interesting from deep learning perspective, as many

neural networks adopt ReLU as the activation function, and hence the training objec-

tive is nondifferentiable. Motivated by this, we study the effect of non-differentiablility

on complexity analysis. We provide the first non-asymptotic analysis [Zhang et al.,

2020b] for finding stationary points of nonsmooth, nonconvex functions. In particu-

lar, we study the class of Hadamard semi-differentiable functions, perhaps the largest

class of nonsmooth functions for which the chain rule of calculus holds. We will also

discuss how this analysis could relate to the gap between optimization analysis and

deep learning experiments.
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5.1 Introduction

Gradient based optimization underlies most of machine learning and it has attracted

tremendous research attention over the years. While non-asymptotic complexity anal-

ysis of gradient based methods is well-established for convex and smooth nonconvex

problems, little is known for nonsmooth nonconvex problems. We summarize the

known rates (black) in Table 5.1 based on the references [Nesterov, 2018, Carmon

et al., 2017, Arjevani et al., 2019].

Table 5.1: When the problem is nonconvex and nonsmooth, finding a 𝜖-stationary
point is intractable, see Theorem 5.5.2. Thus we introduce a refined notion,
(𝛿, 𝜖)-stationarity, and provide non-asymptotic convergence rates for finding (𝛿, 𝜖)-
stationary point.

Deterministic rates Convex Nonconvex

L-smooth 𝒪(𝜖−0.5) 𝒪(𝜖−2)

L-Lipschitz 𝒪(𝜖−2) �̃�(𝜖−3𝛿−1)

Stochastic rates Convex Nonconvex

L-smooth 𝒪(𝜖−2) 𝒪(𝜖−4)

L-Lipschitz 𝒪(𝜖−2) �̃�(𝜖−4𝛿−1)

Within the nonsmooth nonconvex setting, recent research results have focused

on asymptotic convergence analysis [Benaïm et al., 2005, Kiwiel, 2007, Majewski

et al., 2018, Davis et al., 2018, Bolte and Pauwels, 2019]. Despite their advances,

these results fail to address finite-time, non-asymptotic convergence rates. Given the

widespread use of nonsmooth nonconvex problems in machine learning, a canonical

example being deep ReLU neural networks, obtaining a non-asymptotic convergence

analysis is an important open problem of fundamental interest.

We tackle this problem for nonsmooth functions that are Lipschitz and direc-

tionally differentiable. This class is rich enough to cover common machine learning

problems, including ReLU neural networks. Surprisingly, even for this seemingly re-

stricted class, finding an 𝜖-stationary point, i.e., a point �̄� for which 𝑑(0, 𝜕𝑓(�̄�)) ≤ 𝜖,

is intractable. In other words, no algorithm can guarantee to find an 𝜖-stationary
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point within a finite number of iterations.

This intractability suggests that, to obtain meaningful non-asymptotic results, we

need to refine the notion of stationarity. As we will see later.

5.1.1 Related Work

Asymptotic convergence for nonsmooth nonconvex functions. Benaïm et al.

[2005] study the convergence of subgradient methods from a differential inclusion per-

spective; Majewski et al. [2018] extend the result to include proximal and implicit

updates. Bolte and Pauwels [2019] focus on formally justifying the back propagation

rule under nonsmooth conditions. In parallel, Davis et al. [2018] proved asymptotic

convergence of subgradient methods assuming the objective function to be Whit-

ney stratifiable. The class of Whitney stratifiable functions is broader than regular

functions studied in [Majewski et al., 2018], and it does not assume the regularity

inequality (see Lemma 6.3 and (51) in [Majewski et al., 2018]). Another line of

work [Mifflin, 1977, Kiwiel, 2007, Burke et al., 2018] studies convergence of gradient

sampling algorithms. These algorithms assume a deterministic generalized gradient

oracle. Our methods draw intuition from these algorithms and their analysis, but are

non-asymptotic in contrast.

Structured nonsmooth nonconvex problems. Another line of research in

nonconvex optimization is to exploit structure: Duchi and Ruan [2018], Drusvyatskiy

and Paquette [2019], Davis and Drusvyatskiy [2019] consider the composition struc-

ture 𝑓 ∘𝑔 of convex and smooth functions; Bolte et al. [2018], Zhang et al. [2018], Beck

and Hallak [2020] study composite objectives of the form 𝑓 + 𝑔 where one function is

differentiable or convex/concave. With such structure, one can apply proximal gra-

dient algorithms if the proximal mapping can be efficiently evaluated. However, this

usually requires weak convexity, i.e., adding a quadratic function makes the function

convex, which is not satisfied by several simple functions, e.g., −|𝑥|.
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5.2 Preliminaries

In this section, we set up the notion of generalized directional derivatives that will

play a central role in our analysis. Throughout the chapter, we assume that the

nonsmooth function 𝑓 is 𝐿-Lipschitz continuous (more precise assumptions on the

function class are outlined in Section 5.2.3).

5.2.1 Generalized gradients

We start with the definition of generalized gradients, following [Clarke, 1990], for

which we first need:

Definition 5.2.1. Given a point 𝑥 ∈ R𝑑, and direction 𝑑, the generalized direc-

tional derivative of 𝑓 is defined as

𝑓 ∘(𝑥; 𝑑) := lim sup
𝑦→𝑥,𝑡↓0

𝑓(𝑦+𝑡𝑑)−𝑓(𝑦)
𝑡

.

Definition 5.2.2. The generalized gradient of 𝑓 is defined as

𝜕𝑓(𝑥) := {𝑔 | ⟨𝑔, 𝑑⟩ ≤ 𝑓 ∘(𝑥, 𝑑), ∀𝑑 ∈ R𝑑}.

We recall below the following basic properties of the generalized gradient, see

e.g., [Clarke, 1990] for details.

Proposition 5.2.1 (Properties of generalized gradients).

1. 𝜕𝑓(𝑥) is a nonempty, convex compact set. For all vectors 𝑔 ∈ 𝜕𝑓(𝑥), we have

‖𝑔‖ ≤ 𝐿.

2. 𝑓 ∘(𝑥; 𝑑) = max{⟨𝑔, 𝑑⟩ | 𝑔 ∈ 𝜕𝑓(𝑥)}.

3. 𝜕𝑓(𝑥) is an upper-semicontinuous set valued map.

4. 𝑓 is differentiable almost everywhere (as it is 𝐿-Lipschitz); let conv(·) denote
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the convex hull, then

𝜕𝑓(𝑥) = conv
(︀{︀
𝑔|𝑔 = lim

𝑘→∞
∇𝑓(𝑥𝑘), 𝑥𝑘 → 𝑥

}︀)︀
.

5. Let 𝐵 denote the unit Euclidean ball. Then,

𝜕𝑓(𝑥) = ∩𝛿>0 ∪𝑦∈𝑥+𝛿𝐵 𝜕𝑓(𝑦).

6. For any 𝑦, 𝑧, there exists 𝜆 ∈ (0, 1) and 𝑔 ∈ 𝜕𝑓(𝜆𝑦 + (1 − 𝜆)𝑧) such that

𝑓(𝑦)− 𝑓(𝑧) = ⟨𝑔, 𝑦 − 𝑧⟩.

5.2.2 Directional derivatives

Since general nonsmooth functions can have arbitrarily large variations in their “gra-

dients,” we must restrict the function class to be able to develop a meaningful com-

plexity theory. We show below that directionally differentiable functions match this

purpose well.

Definition 5.2.3. A function 𝑓 is called directionally differentiable in the sense

of Hadamard (cf. [Sova, 1964, Shapiro, 1990]) if for any mapping 𝜙 : R+ → 𝑋 for

which 𝜙(0) = 𝑥 and lim𝑡→0+
𝜙(𝑡)−𝜙(0)

𝑡
= 𝑑, the following limit exists:

𝑓 ′(𝑥; 𝑑) = lim
𝑡→0+

1
𝑡
(𝑓(𝜙(𝑡))− 𝑓(𝑥)). (5.1)

In the rest of the chapter, we will say a function 𝑓 is directionally differentiable

if it is directionally differentiable in the sense of Hadamard at all 𝑥.

This directional differentiabilility is also referred to as Hadamard semidifferentia-

bility in [Delfour, 2019]. Notably, such directional differentiability is satisfied by most

problems of interest in machine learning. It includes functions such as 𝑓(𝑥) = −|𝑥|

that do not satisfy the so-called regularity inequality (equation (51) in [Majewski

et al., 2018]). Moreover, it covers the class of semialgebraic functions, as well as

o-minimally definable functions (see Lemma 6.1 in [Coste, 2000]) discussed in [Davis
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et al., 2018]. Currently, we are unaware whether the notion of Whitney stratifia-

bility (studied in some recent works on nonsmooth optimization) implies directional

differentiability.

A very important property of directional differentiability is that it is preserved

under composition.

Lemma 5.2.1 (Chain rule). Let 𝜑 be Hadamard directionally differentiable at 𝑥, and

𝜓 be Hadamard directionally differentiable at 𝜑(𝑥). Then the composite mapping 𝜓∘𝜑

is Hadamard directionally differentiable at 𝑥 and

(𝜓 ∘ 𝜑)′𝑥 = 𝜓′
𝜑(𝑥) ∘ 𝜑′

𝑥.

A proof of this lemma can be found in [Shapiro, 1990, Proposition 3.6]. As a

consequence, any neural network function composed of directionally differentiable

functions, including ReLU/LeakyReLU, is directionally differentiable.

Directional differentiability also implies key properties useful in the analysis of

nonsmooth problems. In particular, it enables the use of (Lebesgue) path integrals

as follows.

Lemma 5.2.2. Given any 𝑥, 𝑦, let 𝛾(𝑡) = 𝑥+ 𝑡(𝑦−𝑥), 𝑡 ∈ [0, 1]. If 𝑓 is directionally

differentiable and Lipschitz, then

𝑓(𝑦)− 𝑓(𝑥) =

∫︁
[0,1]

𝑓 ′(𝛾(𝑡); 𝑦 − 𝑥)𝑑𝑡.

The following important lemma further connects directional derivatives with gen-

eralized gradients.

Lemma 5.2.3. Assume that the directional derivative exists. For any 𝑥, 𝑑, there

exists 𝑔 ∈ 𝜕𝑓(𝑥) s.t. ⟨𝑔, 𝑑⟩ = 𝑓 ′(𝑥; 𝑑).
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5.2.3 Nonsmooth function class of interest

Throughout the chapter, we focus on the set of Lipschitz, directionally differentiable

and bounded (below) functions:

ℱ(∆, 𝐿) := {𝑓 |𝑓 is 𝐿-Lipschitz;

𝑓 is directionally differentiable;

𝑓(𝑥0)− inf
𝑥
𝑓(𝑥) ≤ ∆}, (5.2)

where a function 𝑓 : R𝑛 → R is 𝐿−Lipschitz if

|𝑓(𝑥)− 𝑓(𝑦)| ≤ 𝐿‖𝑥− 𝑦‖, ∀ 𝑥, 𝑦 ∈ R𝑛.

As indicated previously, ReLU neural networks with bounded weight norms are in-

cluded in this function class.

5.3 Stationary points and oracles

We now formally define our notion of stationarity and discuss the intractability of

the standard notion. Afterwards, we formalize the optimization oracles and define

measures of complexity for algorithms that use these oracles.

5.3.1 Stationary points

With the generalized gradient in hand, commonly a point is called stationary if 0 ∈

𝜕𝑓(𝑥) [Clarke, 1990]. A natural question is, what is the necessary complexity to

obtain an 𝜖-stationary point, i.e., a point 𝑥 for which

min{‖𝑔‖ | 𝑔 ∈ 𝜕𝑓(𝑥)} ≤ 𝜖.

It turns out that attaining such a point is intractable. In particular, there is no finite

time algorithm that can guarantee 𝜖-stationarity in the nonconvex nonsmooth setting.
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We make this claim precise in our first main result.

Theorem 5.3.1. Given any algorithm 𝒜 that accesses function value and generalized

gradient of 𝑓 in each iteration, for any 𝜖 ∈ [0, 1) and for any finite iteration 𝑇 , there

exists 𝑓 ∈ ℱ(∆, 𝐿) such that the sequence {𝑥𝑡}𝑡∈[1,𝑇 ] generated by 𝒜 on the objective

𝑓 does not contain any 𝜖-stationary point with probability more than 1
2
.

A key ingredient of the proof is that an algorithm 𝒜 is uniquely determined by

{𝑓(𝑥𝑡), 𝜕𝑓(𝑥𝑡)}𝑡∈[1,𝑇 ], the function values and gradients at the query points. For any

two functions 𝑓1 and 𝑓2 that have the same function values and gradients at the same

set of queried points {𝑥1, ..., 𝑥𝑡}, the distribution of the iterate 𝑥𝑡+1 generated by 𝒜

is identical for 𝑓1 and 𝑓2. However, due to the richness of the class of nonsmooth

functions, we can find 𝑓1 and 𝑓2 such that the set of 𝜖-stationary points of 𝑓1 and 𝑓2

are disjoint. Therefore, the algorithm cannot find a stationary point with probability

more than 1
2

for both 𝑓1 and 𝑓2 simultaneously. Intuitively, such functions exist

because a nonsmooth function could vary arbitrarily—e.g., a nonsmooth nonconvex

function could have constant gradient norms except at the (local) extrema, as happens

for a piecewise linear zigzag function. Moreover, the set of extrema could be of

measure zero. Therefore, unless the algorithm lands exactly in this measure-zero set,

it cannot find any 𝜖-stationary point.

Theorem 5.3.1 suggests the need for rethinking the definition of stationary points.

Intuitively, even though we are unable to find an 𝜖-stationary point, one could hope

to find a point that is close to an 𝜖-stationary point. This motivates us to adopt the

following more refined notion:

Definition 5.3.1. A point 𝑥 is called (𝛿, 𝜖)-stationary if

𝑑(0, 𝜕𝑓(𝑥+ 𝛿𝐵)) ≤ 𝜖,

where 𝜕𝑓(𝑥 + 𝛿𝐵) := conv(∪𝑦∈𝑥+𝛿𝐵𝜕𝑓(𝑦)) is the Goldstein 𝛿-subdifferential, intro-

duced in [Goldstein, 1977].

Note that if we can find a point 𝑦 at most distance 𝛿 away from 𝑥 such that 𝑦 is
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𝜖-stationary, then we know 𝑥 is (𝛿, 𝜖)-stationary. However, the contrary is not true.

In fact, Shamir [2020] shows that finding a point that is 𝛿 close to an 𝜖−stationary

point requires exponential dependence on the dimension of the problem.

At first glance, Definition 5.3.1 appears to be a weaker notion since if 𝑥 is 𝜖-

stationary, then it is also a (𝛿, 𝜖)-stationary point for any 𝛿 ≥ 0, but not vice versa.

We show that the converse implication indeed holds, assuming smoothness.

Proposition 5.3.1. The following statements hold:

1. 𝜖-stationarity implies (𝛿, 𝜖)-stationarity for any 𝛿 ≥ 0.

2. If 𝑓 is smooth with an 𝐿-Lipschitz gradient and if 𝑥 is ( 𝜖
3𝐿

, 𝜖
3
)-stationary, then

𝑥 is also 𝜖-stationary, i.e.

𝑑
(︀
0, 𝜕𝑓

(︀
𝑥+ 𝜖

3𝐿
𝐵
)︀)︀
≤ 𝜖

3
=⇒ ‖∇𝑓(𝑥)‖ ≤ 𝜖.

Consequently, the two notions of stationarity are equivalent for differentiable func-

tions. It is then natural to ask: does (𝛿, 𝜖)-stationarity permit a finite time analysis?

The answer is positive, as we will show later, revealing an intrinsic difference be-

tween the two notions of stationarity. Besides providing algorithms, in Theorem 5.5.2

we also prove an Ω(𝛿−1) lower bound on the dependency of 𝛿 for algorithms that can

only access a generalized gradient oracle.

We also note that (𝛿, 𝜖)-stationarity behaves well as 𝛿 ↓ 0.

Lemma 5.3.2. The set 𝜕𝑓(𝑥+ 𝛿𝐵) converges as 𝛿 ↓ 0 as

lim
𝛿↓0

𝜕𝑓(𝑥+ 𝛿𝐵) = 𝜕𝑓(𝑥).

Lemma 5.3.2 enables a straightforward routine for transforming non-asymptotic

analyses for finding (𝛿, 𝜖)-stationary points to asymptotic results for finding 𝜖-stationary

points. Indeed, assume that a finite time algorithm for finding (𝛿, 𝜖)-stationary points

is provided. Then, by repeating the algorithm with decreasing 𝛿𝑘, (e.g., 𝛿𝑘 = 1/𝑘),

any accumulation points of the repeated algorithm is an 𝜖-stationary point with high

probability.

103



5.3.2 Gradient Oracles

We assume that our algorithm has access to a generalized gradient oracle in the

following manner:

Assumption 5.3.1. Given 𝑥, 𝑑, the oracle O(𝑥, 𝑑) returns a function value 𝑓𝑥, and

a generalized gradient 𝑔𝑥,

(𝑓𝑥, 𝑔𝑥) = O(𝑥, 𝑑),

such that

1. In the deterministic setting, the oracle returns

𝑓𝑥 = 𝑓(𝑥), 𝑔𝑥 ∈ 𝜕𝑓(𝑥) satisfying ⟨𝑔𝑥, 𝑑⟩ = 𝑓 ′(𝑥, 𝑑).

2. In the stochastic finite-variance setting, the oracle only returns a stochastic

gradient 𝑔 with E[𝑔] = 𝑔𝑥, where 𝑔𝑥 ∈ 𝜕𝑓(𝑥) satisfies ⟨𝑔𝑥, 𝑑⟩ = 𝑓 ′(𝑥, 𝑑). More-

over, the variance E[‖𝑔−𝑔𝑥‖2] ≤ 𝜎2 is bounded. In particular, no function value

is accessible.

We remark that one cannot generally evaluate the generalized gradient 𝜕𝑓 in

practice at any point where 𝑓 is not differentiable. When the function 𝑓 is not

directionally differentiable, one needs to incorporate gradient sampling to estimate

𝜕𝑓 [Burke et al., 2002]. Our oracle queries only an element of the generalized gradient

and is thus weaker than querying the entire set 𝜕𝑓 . Still, finding a vector 𝑔𝑥 such

that ⟨𝑔𝑥, 𝑑⟩ equals the directional derivative 𝑓 ′(𝑥, 𝑑) is non-trivial in general. Yet,

when the objective function is a composition of directionally differentiable functions,

such as ReLU neural networks, and if a closed form directional derivative is available

for each function in the composition, then we can find the desired 𝑔𝑥 by appealing to

the chain rule in Lemma 5.2.1. This property justifies our choice of oracles.

104



5.3.3 Algorithm class and complexity measures
An algorithm 𝐴 maps a function 𝑓 ∈ ℱ(∆, 𝐿) to a sequence of points {𝑥𝑘}𝑘≥0 in R𝑛.

We denote 𝐴(𝑘) to be the mapping from previous 𝑘 iterations to 𝑥𝑘+1. Each 𝑥𝑘 can

potentially be a random variable, due to the stochastic oracles or algorithm design.

Let {ℱ𝑘}𝑘≥0 be the filtration generated by {𝑥𝑘} such that 𝑥𝑘 is adapted to ℱ𝑘. Based

on the definition of the oracle, we assume that the iterates follow the structure

𝑥𝑘+1 = 𝐴(𝑘)(𝑥1, 𝑔1, 𝑓1, 𝑥2, 𝑔2, 𝑓2, ..., 𝑥𝑘, 𝑔𝑘, 𝑓𝑘), (5.3)

where (𝑓𝑘, 𝑔𝑘) = O(𝑦𝑘, 𝑑𝑘), and the point 𝑦𝑘 and direction 𝑑𝑘 are (stochastic) functions

of the iterates 𝑥1, . . . , 𝑥𝑘. For a random process {𝑥𝑘}𝑘∈N, we define the complexity of

{𝑥𝑘}𝑘∈N for a function 𝑓 as the value

𝑇𝛿,𝜖({𝑥𝑡}𝑡∈N, 𝑓) :=

inf
{︀
𝑡 ∈ N | Prob{𝑑(0, 𝜕𝑓(𝑥+ 𝛿𝐵)) ≥ 𝜖

for all 𝑘 ≤ 𝑡} ≤ 1
3

}︀
.

(5.4)

Let 𝐴[𝑓, 𝑥0] denote the sequence of points generated by algorithm 𝐴 for function 𝑓 .

Then, we define the iteration complexity of an algorithm class 𝒜 on a function class

ℱ as

𝒩 (𝒜,ℱ , 𝜖, 𝛿) := inf
𝐴∈𝒜

sup
𝑓∈ℱ

𝑇𝛿,𝜖(𝐴[𝑓, 𝑥0], 𝑓). (5.5)

At a high level, (5.5) is the minimum number of oracle calls required for a fixed

algorithm to find a (𝛿, 𝜖)-stationary point with probability at least 2/3 for all functions

is class ℱ .

5.4 Deterministic Setting

For optimizing 𝐿-smooth functions, a crucial inequality is

𝑓
(︀
𝑥− 1

𝐿
∇𝑓(𝑥)

)︀
− 𝑓(𝑥) ≤ − 1

2𝐿
‖∇𝑓(𝑥)‖2. (5.6)
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In other words, either the gradient is small or the function value decreases suf-

ficiently along the negative gradient. However, when the objective function is non-

smooth, this descent property is no longer satisfied. Thus, defining an appropriate

descent direction is non-trivial. Our key innovation is to solve this problem via ran-

domization.

More specifically, in our algorithm, Interpolated Normalized Gradient Descent

(Ingd ), we derive a local search strategy to find the descent direction at an iterate

𝑥𝑡. The vector 𝑚𝑡,𝑘 plays the role of descent direction and we sequentially update it

until the condition

𝑓(𝑥𝑡,𝑘)− 𝑓(𝑥𝑡) < −
𝛿‖𝑚𝑡,𝑘‖

4
, (descent condition)

is satisfied. To connect with the descent property (5.6), observe that when 𝑓 is

smooth, with 𝑚𝑡,𝑘 = ∇𝑓(𝑥𝑡) and 𝛿 = ‖𝑚𝑡,𝑘‖/𝐿, (descent condition) is the same as

(5.6) up to a factor 2. This connection motivates our choice of descent condition.

When the descent condition is satisfied, the next iterate 𝑥𝑡+1 is obtained by taking

a normalized step from 𝑥𝑡 along the direction 𝑚𝑡,𝑘. Otherwise, we stay at 𝑥𝑡 and

continue the search for a descent direction. We raise special attention to the fact that

inside the 𝑘-loop, the iterates 𝑥𝑡,𝑘 are always obtained by taking a normalized step

from 𝑥𝑡. Thus, all the inner iterates 𝑥𝑡,𝑘 have distance exactly 𝛿 from 𝑥𝑡.

To update the descent direction, we incorporate a randomized strategy. We ran-

domly sample an interpolation point 𝑦𝑡,𝑘+1 on the segment [𝑥𝑡, 𝑥𝑡,𝑘] and evaluate the

generalized gradient 𝑔𝑡,𝑘+1 at this random point 𝑦𝑡,𝑘+1. Then, we update the descent

direction as a convex combination of 𝑔𝑡,𝑘+1 and the previous direction 𝑚𝑡,𝑘. Due to

lack of smoothness, the violation of the descent condition does not directly imply that

𝑔𝑡,𝑘+1 is small. Instead, the projection of the generalized gradient is small along the

direction 𝑚𝑡,𝑘 on average. Hence, with a proper linear combination, the random inter-

polation allows us to guarantee the decrease of ‖𝑚𝑡,𝑘‖ in expectation. This reasoning

allows us to derive the non-asymptotic convergence rate in high probability.

Theorem 5.4.1. In the deterministic setting and with Assumption 5.3.1(a), the Ingd
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Algorithm 2 Interpolated Normalized Gradient Descent

1: Initialize 𝑥1 ∈ R𝑑

2: for 𝑡 = 1, 2, ..., 𝑇 do
3: while ‖𝑚𝑡,𝐾‖ > 𝜖 do
4: Call oracle ∼,𝑚𝑡,1 = O(𝑥𝑡, 0⃗)
5: for 𝑘 = 1, ..., 𝐾 do
6: 𝑥𝑡,𝑘 = 𝑥𝑡 − 𝛿 𝑚𝑡,𝑘

‖𝑚𝑡,𝑘‖
7: if ‖𝑚𝑡,𝑘‖ ≤ 𝜖 then
8: Terminate the algorithm and return 𝑥𝑡
9: else if 𝑓(𝑥𝑡,𝑘)− 𝑓(𝑥𝑡) < − 𝛿‖𝑚𝑡,𝑘‖

4
then

10: Break while-loop
11: Set 𝑥𝑡+1 = 𝑥𝑡,𝑘 and 𝑡← 𝑡+ 1
12: else
13: Sample 𝑦𝑡,𝑘+1 uniformly from [𝑥𝑡, 𝑥𝑡,𝑘]
14: Call oracle ∼, 𝑔𝑡,𝑘+1 = O(𝑦𝑡,𝑘+1,−𝑚𝑡,𝑘)

15: Update 𝑚𝑡,𝑘+1 = 𝛽𝑡,𝑘𝑚𝑡,𝑘 + (1− 𝛽𝑡,𝑘)𝑔𝑡,𝑘+1 with 𝛽𝑡,𝑘 =
4𝐿2−‖𝑚𝑡,𝑘‖2
4𝐿2+2‖𝑚𝑡,𝑘‖2

16: Return 𝑥𝑡 such that ‖𝑚𝑡,𝐾‖ ≤ 𝜖

algorithm with parameters 𝐾 = 48𝐿2

𝜖2
and 𝑇 = 4Δ

𝜖𝛿
finds a (𝛿, 𝜖)-stationary point for

function class ℱ(∆, 𝐿) with probability 1− 𝛾 using at most

192∆𝐿2

𝜖3𝛿
log

(︂
4∆

𝛾𝛿𝜖

)︂
oracle calls.

Since we introduce random sampling for choosing the interpolation point, even

in the deterministic setting we can only guarantee a high probability result. The

detailed proof is deferred to Appendix 5.7.4.

A sketch of the proof is as follows. Since ‖𝑥𝑡,𝑘−𝑥𝑡‖ = 𝛿 for any 𝑘, the interpolation

point 𝑦𝑡,𝑘 is inside the ball 𝑥𝑡 + 𝛿𝐵. Hence 𝑚𝑡,𝑘 ∈ 𝜕𝑓(𝑥𝑡 + 𝛿𝐵) for any 𝑘. In other

words, as soon as ‖𝑚𝑡,𝑘‖ ≤ 𝜖 (line 7), the reference point 𝑥𝑡 is (𝛿, 𝜖)-stationary. If

this is not true, i.e., ‖𝑚𝑡,𝑘‖ > 𝜖, then we check whether (descent condition) holds, in

which case

𝑓(𝑥𝑡,𝑘)− 𝑓(𝑥𝑡) < −
𝛿‖𝑚𝑡,𝑘‖

4
< −𝜖𝛿

4
.

Knowing that the function value is lower bounded, this can happen at most 𝑇 = 4Δ
𝜖𝛿

times. Thus, for at least one 𝑥𝑡, the local search inside the while-loop is not broken

107



by the descent condition. Finally, given that ‖𝑚𝑡,𝑘‖ > 𝜖 and the descent condition is

not satisfied, we show that

E[‖𝑚𝑡,𝑘+1‖2] ≤
(︂

1− E[‖𝑚𝑡,𝑘‖2]
3𝐿2

)︂
E[‖𝑚𝑡,𝑘‖2].

This implies that E[‖𝑚𝑡,𝑘‖2] follows a decrease of order 𝑂(1/𝑘). Hence with 𝐾 =

𝑂(1/𝜖2), we are guaranteed to find ‖𝑚𝑡,𝑘‖ ≤ 𝜖 with high probability.

Remark 5.4.1. If the problem is smooth, the descent condition is always satis-

fied in one iteration. Hence the global complexity of our algorithm reduces to

𝑇 = 𝑂(1/𝜖𝛿). Due to the equivalence of the notions of stationarity (Prop. 5.3.1),

with 𝛿 = 𝑂(𝜖/𝐿), our algorithm recovers the standard 𝑂(1/𝜖2) convergence rate for

finding an 𝜖-stationary point. In other words, our algorithm can adapt to the smooth-

ness condition.

5.5 Stochastic Setting

In the deterministic setting one of the key ingredients used Ingd is to check whether

the function value decreases sufficiently. However, evaluating the function value can

be computationally expensive, or even infeasible in the stochastic setting. For exam-

ple, when training neural networks, evaluating the entire loss function requires going

through all the data, which is impractical. As a result, we do not assume access to

function value in the stochastic setting and instead propose a variant of Ingd that

only relies on gradient information.

One of the challenges of using stochastic gradients is the noisiness of the gradi-

ent evaluation. To control the variance of the associated updates, we introduce a

parameter 𝑞 into the normalized step size:

𝜂𝑡 =
1

𝑝‖𝑚𝑡‖+ 𝑞
.

A similar strategy is used in adaptive methods like AdaGrad or ADAM to prevent

instability. Here, we show that the constant 𝑞 allows us to control the variance of
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Algorithm 3 Stochastic Ingd (𝑥1, 𝑝, 𝑞, 𝛽, 𝑇,𝐾)

1: Initialize 𝑥1 ∈ R𝑑.
2: Call oracle 𝑔(𝑥1) = O(𝑥1, 0⃗) and set 𝑚1 = 𝑔(𝑥1).
3: for 𝑡 = 1, 2, ..., 𝑇 do
4: Update 𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝑡𝑚𝑡 with 𝜂𝑡 = 1

𝑝‖𝑚𝑡‖+𝑞
.

5: Sample 𝑦𝑡+1 uniformly from [𝑥𝑡, 𝑥𝑡+1]
6: Call oracle 𝑔(𝑦𝑡+1) = O(𝑦𝑡+1,−𝑚𝑡)
7: Update 𝑚𝑡+1 = 𝛽𝑚𝑡 + (1− 𝛽)𝑔(𝑦𝑡+1)

8: Randomly sample 𝑖 uniformly from {1, ..., 𝑇}.
9: Update 𝑖 = max{𝑖−𝐾, 1}

10: Return 𝑥𝑖.

𝑥𝑡+1 − 𝑥𝑡. In particular, it implies the bound

E[‖𝑥𝑡+1 − 𝑥𝑡‖2] ≤
𝐺2

𝑞
,

where 𝐺2 := 𝐿2 + 𝜎2 is a trivial upper-bound on the expected norm of any sampled

gradient 𝑔.

Another substantial change (relative to Ingd ) is the removal of the explicit local

search, since the stopping criterion can now no longer be tested without access to

the function value. Instead, one may view 𝑥𝑡−𝐾+1, . . . , 𝑥𝑡−1, 𝑥𝑡 as an implicit local

search with respect to the reference point 𝑥𝑡−𝐾 . In particular, we show that when

the direction 𝑚𝑡 has a small norm, then 𝑥𝑡−𝐾 is a (𝛿, 𝜖)-stationary point, but not 𝑥𝑡.

This discrepancy explains why we output 𝑥𝑡−𝐾 instead of 𝑥𝑡.

In the deterministic setting, the direction 𝑚𝑡,𝑘 inside each local search is guar-

anteed to belong to 𝜕𝑓(𝑥𝑡 + 𝛿𝐵). Hence, controlling the norm of 𝑚𝑡,𝑘 implies the

(𝛿, 𝜖)-stationarity of 𝑥𝑡. In the stochastic case, however, we have two complica-

tions. First, only the expectation of the gradient evaluation satisfies the membership

E[𝑔(𝑦𝑘)] ∈ 𝜕𝑓(𝑦𝑘). Second, the direction 𝑚𝑡 is a convex combination of all the pre-

vious gradients 𝑔(𝑦1), . . . , 𝑔(𝑦𝑡), with all coefficients being nonzero. In contrast, we

use a re-initialization in the deterministic setting. We overcome these difficulties and

their ensuing subtleties to finally obtain the following complexity result:

Theorem 5.5.1. In the stochastic setting, with Assumption 5.3.1(b), the Stochastic-
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Ingd algorithm (Algorithm 3) with parameters 𝐺 =
√
𝐿2 + 𝜎2, 𝛽 = 1 − 𝜖2

64𝐺2 , 𝑝 =

64𝐺2 ln(16𝐺/𝜖)
𝛿𝜖2

, 𝑞 = 4𝐺𝑝, 𝐾 = 𝑝𝛿, 𝑇 = 216𝐺3Δ ln(16𝐺/𝜖)
𝜖4𝛿

max{1, 𝐺𝛿
8Δ
} ensures

1

𝑇

𝑇∑︁
𝑡=1

E[‖𝑚𝑡‖] ≤
𝜖

4
.

In other words, the number of gradient calls to achieve a (𝛿, 𝜖)−stationary point is

upper bounded by �̃�
(︁

𝐺3Δ
𝜖4𝛿

)︁
.

For readability, the constants in Theorem 5.5.1 have not been optimized. The

high level idea of the proof is to relate E[𝜂𝑡‖𝑚𝑡‖2] to the function value decrease

𝑓(𝑥𝑡)− 𝑓(𝑥𝑡+1), and then to perform a telescopic sum.

We would like to emphasize the use of the adaptive step size 𝜂𝑡 and the momentum

term 𝑚𝑡+1. These techniques arise naturally from our goal to find a (𝛿, 𝜖)-stationary

point. The step size 𝜂𝑡 helps us ensure that the distance moved is at most 1
𝑝
, and

hence we are certain that adjacent iterates are close to each other. The momentum

term 𝑚𝑡 serves as a convex combination of generalized gradients, as postulated by

Definition 5.3.1.

Further, even though the parameter 𝐾 does not directly influence the updates of

our algorithm, it plays an important role in understanding our algorithm. Indeed, we

show that

𝑑 (E[𝑚𝑡|𝑥𝑡−𝐾 ], 𝜕𝑓(𝑥𝑡−𝐾 + 𝛿𝐵)) ≤ 𝜖

16
.

In other words, the conditional expectation E[𝑚𝑡|𝑥𝑡−𝐾 ] is approximately in the 𝛿-

subdifferential 𝜕𝑓(𝑥𝑡−𝐾 + 𝛿𝐵) at 𝑥𝑡−𝐾 . This relationship is non-trivial.

On one hand, by imposing 𝐾 ≤ 𝛿𝑝, we ensure that 𝑥𝑡−𝐾+1, . . . , 𝑥𝑡 are inside the

𝛿-ball of center 𝑥𝑡−𝐾 . On the other hand, we guarantee that the contribution of 𝑚𝑡−𝐾

to 𝑚𝑡 is small, providing an appropriate upper bound on the coefficient 𝛽𝐾 . These

two requirements help balance the different parameters in our final choice. Details of

the proof may be found in Appendix 5.7.5.

Recall that we do not access the function value in this stochastic setting, which is

a strength of the algorithm. In fact, we can show that our 𝛿−1 dependence is tight,
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when the oracle has only access to generalized gradients.

Theorem 5.5.2 (Lower bound on 𝛿 dependence). Let 𝒜 denote the class of algorithms

defined in Section 5.3.2 and ℱ(∆, 𝐿) denote the class of functions defined in Equation

(5.2). Assume 𝜖 ∈ (0, 1) and 𝐿 = 1. Then the iteration complexity is lower bounded

by Δ
8𝛿

if the algorithm only has access to generalized gradients.

The proof is inspired by Theorem 1.1.2 in Nesterov [2018]. We show that unless

more than Δ
8𝛿

different points are queried, we can construct two different functions in

the function class that have gradient norm 1 at all the queried points, and the sta-

tionary points of both functions are Ω(𝛿) away. For more details, see Appendix 5.7.6.

This theorem also implies the negative result for finite time analyses that we

showed in Theorem 5.3.1. Indeed, when an algorithm finds an 𝜖-stationary point, the

point is also a (𝛿, 𝜖)-stationary for any 𝛿 > 0. Thus, the iteration complexity must

be at least lim𝛿→0
Δ
8𝛿

= +∞, i.e., no finite time algorithm can guarantee to find an

𝜖-stationary point.

Before moving on to the experimental section, we would like to make several

comments related to different settings. First, since the stochastic setting is strictly

stronger than the deterministic setting, the stochastic variant Stochastic-INGD is ap-

plicable to the deterministic setting too. Moreover, the analysis can be extended to

𝑞 = 0, which leads to a complexity of 𝒪(1/𝜖3𝛿). This is the same as the deterministic

algorithm. However, the stochastic variant does not adapt to the smoothness condi-

tion. In other words, even if the function is differentiable, we will not obtain a faster

convergence rate. In particular, if the function is smooth, by using the equivalence of

the types of stationary points, Stochastic-INGD finds an 𝜖-stationary point in 𝒪(1/𝜖5)

while standard SGD enjoys a 𝒪(1/𝜖4) convergence rate. We do not know whether

a better convergence result is achievable, as our lower bound does not provide an

explicit dependency on 𝜖; we leave this as a future research direction.
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Figure 5-1: Learning curve of SGD, ADAM and Ingd on training ResNet 20 on
CIFAR10.

5.6 Experiments

In this section, we evaluate the performance of our proposed algorithm Stochastic Ingd

on image classification tasks.

We train the ResNet20 [He et al., 2016] model on the CIFAR10 [Krizhevsky and

Hinton, 2009] classification dataset. The dataset contains 50k training images and

10k test images in 10 classes.

We implement Stochastic Ingd in PyTorch with the inbuilt auto differentiation

algorithm Paszke et al. [2017]. We remark that except on the kink points, the auto

differentiation matches the generalized gradient oracle, which justifies our choice. We

benchmark the experiments with two popular machine learning optimizers, SGD with

momentum and ADAM Kingma and Ba [2014]. We train the model for 100 epochs
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with the standard hyper-parameters from the Github repository1:

∙ For SGD with momentum, we initialize the learning rate as 0.1, momentum as

0.9 and reduce the learning rate by 10 at epoch 50 and 75. The weight decay

parameter is set to 5 · 10−4.

∙ For ADAM, we use constant the learning rate 10−3, betas in (0.9, 0.999), and

weight decay parameter 10−6 and 𝜖 = 10−3 for the best performance.

∙ For Stochastic-Ingd , we use 𝛽 = 0.9, 𝑝 = 1, 𝑞 = 10, and weight decay parameter

5× 10−4.

The training and test accuracy for all three algorithms are plotted in Figure 5-1. We

observe that Stochastic-Ingd matches the SGD baseline and outperforms the ADAM

algorithm in terms of test accuracy. The above results suggests that the experimental

implications of our algorithm could be interesting, but we leave a more systematic

study as future direction.

5.7 Proofs

5.7.1 Proof of Lemma 5.2.2

Proof. Let 𝑔(𝑡) = 𝑓(𝑥+ 𝑡(𝑦− 𝑥)) for 𝑡 ∈ [0, 1], then 𝑔 is 𝐿‖𝑦− 𝑥‖-Lipschitz implying

that 𝑔 is absolutely continuous. Thus from the fundamental theorem of calculus

(Lebesgue), 𝑔 has a derivative 𝑔′ almost everywhere, and the derivative is Lebesgue

integrable such that

𝑔(𝑡) = 𝑔(0) +

∫︁ 𝑡

0

𝑔′(𝑠)𝑑𝑠.

Moreover, if 𝑔 is differentiable at 𝑡, then

𝑔′(𝑡) = lim
𝛿𝑡→0

𝑔(𝑡+ 𝛿𝑡)− 𝑔(𝑡)

𝛿𝑡
= lim

𝛿𝑡→0

𝑓(𝑥+ (𝑡+ 𝛿𝑡)(𝑦 − 𝑥))− 𝑓(𝑥+ 𝑡(𝑦 − 𝑥))

𝛿𝑡

= 𝑓 ′(𝑥+ 𝑡(𝑦 − 𝑥), 𝑦 − 𝑥).

1https://github.com/kuangliu/pytorch-cifar
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Since this equality holds almost everywhere, we have

𝑓(𝑦)− 𝑓(𝑥) = 𝑔(1)− 𝑔(0) =

∫︁ 1

0

𝑔′(𝑡)𝑑𝑡 =

∫︁ 1

0

𝑓 ′(𝑥+ 𝑡(𝑦 − 𝑥), 𝑦 − 𝑥)𝑑𝑡.

5.7.2 Proof of Lemma 5.2.3

Proof. For any 𝜙(𝑡) = 𝑥 + 𝑡𝑑 as given in Definition 5.2.3, let 𝑡𝑘 → 0. Denote 𝑥𝑘 =

𝜙(𝑡𝑘), 𝛿𝑘 = ‖𝑥𝑘 − 𝑥‖ → 0. By Proposition 1.6, we know that there exists 𝑔𝑘,𝑗 ∈

∪𝑦∈𝑥+𝛿𝑘𝐵𝜕𝑓(𝑦) such that

𝑓(𝑥𝑘)− 𝑓(𝑥) = ⟨𝑔𝑘,𝑗, 𝑥𝑘 − 𝑥⟩.

By the existence of directional derivative, we know that

lim
𝑘→∞
⟨𝑔𝑘,𝑗, 𝑑⟩ = lim

𝑘→∞

⟨𝑔𝑘,𝑗, 𝑡𝑘𝑑⟩
𝑡𝑘

= 𝑓 ′(𝑥, 𝑑),

and 𝑔𝑘,𝑗 is in a bounded set with norm less than L. The Lemma follows by the fact that

any accumulation point of 𝑔𝑘,𝑗 is in 𝜕𝑓(𝑥) due to upper-semicontinuity of 𝜕𝑓(𝑥).

5.7.3 Proof of Lemmas in Algorithm Complexity

Proof of Theorem 5.3.1

Our proof strategy is similar to Theorem 1.1.2 in Nesterov [2013], where we use the

resisting strategy to prove lower bound. Given a one dimensional function 𝑓 , let

𝑥𝑘, 𝑘 ∈ [1, 𝐾] be the sequence of points queried in ascending order instead of query

order. We assume without loss of generality that the initial point is queried and is

an element of {𝑥𝑘}𝐾𝑘=0 (otherwise, query the initial point first before proceeding with

the algorithm).
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Then we define the resisting strategy: always return

𝑓(𝑥) = 0, and ∇𝑓(𝑥) = 𝐿,

If we can prove that for any set of points 𝑥𝑘, 𝑘 ∈ [1, 𝐾], there exists two functions

such that they satisfy the resisting strategy 𝑓(𝑥𝑘) = 0, and ∇𝑓(𝑥𝑘) = 𝐿, 𝑘 ∈ [1, 𝐾],

and that the two functions do not share any common stationary points, then we know

no randomized/deterministic can return an 𝜖−stationary points with probability more

than 1/2 for both functions simultaneously. In other word, no algorithm that query

𝐾 points can distinguish these two functions. Hence we proved the theorem following

the definition of complexity in (5.5) with 𝛿 = 0.

All we need to do is to show that such two functions exist in the Lemma below.

Lemma 5.7.1. Given a finite sequence of real numbers {𝑥𝑘}𝑘∈[1,𝐾] ∈ R, there is a

family of functions 𝑓𝜃 ∈ ℱ(∆, 𝐿) such that for any 𝑘 ∈ [1, 𝐾],

𝑓𝜃(𝑥𝑘) = 0 and ∇𝑓𝜃(𝑥𝑘) = 𝐿

and for 𝜖 sufficiently small, the set of 𝜖-stationary points of 𝑓𝜃 are all disjoint, i.e

{𝜖-stationary points of 𝑓𝜃1} ∩ {𝜖-stationary points of 𝑓𝜃2} = ∅ for any 𝜃1 ̸= 𝜃2.

Proof. Up to a permutation of the indices, we could reorder the sequence in the

increasing order. WLOG, we assume 𝑥𝑘 is increasing. Let 𝛿 = min{min𝑥𝑖 ̸=𝑥𝑗
{|𝑥𝑖 −

𝑥𝑗|}, Δ𝐿 }. For any 0 < 𝜃 < 1/2, we define 𝑓𝜃 by

𝑓𝜃(𝑥) = −𝐿(𝑥− 𝑥1 + 2𝜃𝛿) for 𝑥 ∈ (−∞, 𝑥1 − 𝜃𝛿]

𝑓𝜃(𝑥) = 𝐿(𝑥− 𝑥𝑘) for 𝑥 ∈
[︂
𝑥𝑘 − 𝜃𝛿,

𝑥𝑘 + 𝑥𝑘+1

2
− 𝜃𝛿

]︂
𝑓𝜃(𝑥) = −𝐿(𝑥− 𝑥𝑘+1 + 2𝜃𝛿) for 𝑥 ∈

[︂
𝑥𝑘 + 𝑥𝑘+1

2
− 𝜃𝛿, 𝑥𝑘+1 − 𝜃𝛿

]︂
𝑓𝜃(𝑥) = 𝐿(𝑥− 𝑥𝐾) 𝑥 ∈ [𝑥𝐾 + 𝜃𝛿,+∞).

It is clear that 𝑓𝜃 is directional differentiable at all point and ∇𝑓𝜃(𝑥𝑘) = 𝐿. Moreover,
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the minimum 𝑓 *
𝜃 = −𝐿𝜃𝛿 ≥ −∆. This implies that 𝑓𝜃 ∈ ℱ(∆, 𝐿). Note that ∇𝑓𝜃 = 𝐿

or −𝐿 except at the local extremum. Therefore, for any 𝜖 < 𝐿 the set of 𝜖-stationary

points of 𝑓𝜃 are exactly

{𝜖-stationary points of 𝑓𝜃} = {𝑥𝑘−𝜃𝛿 | 𝑘 ∈ [1, 𝐾]}∪
{︂
𝑥𝑘 + 𝑥𝑘+1

2
− 𝜃𝛿 | 𝑘 ∈ [1, 𝐾 − 1]

}︂
,

which is clearly distinct for different choice of 𝜃.

Proof of Proposition 5.3.1

Proof. When 𝑥 is ( 𝜖
3𝐿
, 𝜖
3
) stationary, we have 𝑑(0, 𝜕𝑓(𝑥 + 𝜖

3𝐿
𝐵)) ≤ 𝜖

3
. By definition,

we could find 𝑔 ∈ conv(∪𝑦∈𝑥+ 𝜖
3𝐿

𝐵∇𝑓(𝑦)) such that ‖𝑔‖ ≤ 2𝜖/3. This means, there

exists 𝑥1, · · · , 𝑥𝑘 ∈ 𝑥+ 𝜖
3𝐿
𝐵, and 𝛼1, · · · , 𝛼𝑘 ∈ [0, 1] such that 𝛼1 + · · ·+ 𝛼𝑘 = 1 and

𝑔 =
𝑘∑︁

𝑖=1

𝛼𝑖∇𝑓(𝑥𝑖)

Therefore

‖∇𝑓(𝑥)‖ ≤ ‖𝑔‖+ ‖∇𝑓(𝑥)− 𝑔‖

≤ 2𝜖

3
+

𝑘∑︁
𝑖=1

𝛼𝑖‖∇𝑓(𝑥)−∇𝑓(𝑥𝑘)‖

≤ 2𝜖

3
+

𝑘∑︁
𝑖=1

𝛼𝑖𝐿‖𝑥− 𝑥𝑘‖

≤ 2𝜖

3
+

𝑘∑︁
𝑖=1

𝛼𝑖𝐿
𝜖

3𝐿
= 𝜖.

Therefore, 𝑥 is an 𝜖-stationary point in the standard sense.

Proof of Lemma 5.3.2

Proof. First, we show that the limit exists. By Lipschitzness and Jensen inequality,

we know that 𝜕𝑓(𝑥+ 𝛿𝑘+1𝐵) lies in a bounded ball with radius 𝐿. For any sequence

of {𝛿𝑘} with 𝛿𝑘 ↓ 0, we know that 𝜕𝑓(𝑥+ 𝛿𝑘+1𝐵) ⊆ 𝜕𝑓(𝑥+ 𝛿𝑘𝐵). Therefore, the limit
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exists by the monotone convergence theorem.

Next, we show that lim𝛿↓0 𝜕𝑓(𝑥 + 𝛿𝐵) = 𝜕𝑓(𝑥). For one direction, we show that

𝜕𝑓(𝑥) ⊆ lim𝛿↓0 𝜕𝑓(𝑥+ 𝛿𝐵). This follows by Proposition 1.5 and the fact that

∪𝑦∈𝑥+𝛿𝐵𝜕𝑓(𝑦) ⊆ conv(∪𝑦∈𝑥+𝛿𝐵𝜕𝑓(𝑦)) = 𝜕𝑓(𝑥+ 𝛿𝐵).

Next, we show the other direction lim𝛿↓0 𝜕𝑓(𝑥+ 𝛿𝐵) ⊆ 𝜕𝑓(𝑥). By upper semicon-

tinuity, we know that for any 𝜖 > 0, there exists 𝛿 > 0 such that

∪𝑦∈𝑥+𝛿𝐵𝜕𝑓(𝑦) ⊆ 𝜕𝑓(𝑥) + 𝜖𝐵.

Then by convexity of 𝜕𝑓(𝑥) and 𝜖𝐵, we know that their Minkowski sum 𝜕𝑓(𝑥) + 𝜖𝐵

is convex. Therefore, we conclude that for any 𝜖 > 0, there exists 𝛿 > 0 such that

𝜕𝑓(𝑥+ 𝛿𝐵) = conv(∪𝑦∈𝑥+𝛿𝐵𝜕𝑓(𝑦)) ⊆ 𝜕𝑓(𝑥) + 𝜖𝐵.

5.7.4 Proof of Theorem 5.4.1

Before we prove the theorem, we first analyze how many times the algorithm iterates

in the while loop.

Lemma 5.7.2. Let 𝐾 = 48𝐿2

𝜖2
. Given 𝑡 ∈ [1, 𝑇 ],

E[‖𝑚𝑡,𝐾‖2] ≤
𝜖2

16
,

where for convenience of analysis, we define 𝑚𝑡,𝑘 = 0 for all 𝑘 > 𝑘0 if the 𝑘-loop

breaks at (𝑡, 𝑘0). Consequently, for any 𝛾 < 1, with probability 1 − 𝛾, there are at

most 𝑙𝑜𝑔(1/𝛾) restarts of the while loop at the 𝑡-th iteration.

Proof. Let F𝑡,𝑘 = 𝜎(𝑦𝑡,1, · · · , 𝑦𝑡,𝑘+1), then 𝑥𝑡,𝑘,𝑚𝑡,𝑘 ∈ F𝑡,𝑘. We denote 𝐷𝑡,𝑘 as the event
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that 𝑘-loop does not break at 𝑥𝑡,𝑘, i.e. ‖𝑚𝑡,𝑘‖ > 𝜖 and 𝑓(𝑥𝑡,𝑘)− 𝑓(𝑥𝑡) > − 𝛿‖𝑚𝑡,𝑘‖
4

. It

is clear that 𝐷𝑡,𝑘 ∈ F𝑡,𝑘.

Let 𝛾(𝜆) = (1 − 𝜆)𝑥𝑡 + 𝜆𝑥𝑡,𝑘, 𝜆 ∈ [0, 1]. Note that 𝛾′(𝜆) = 𝑥𝑡,𝑘 − 𝑥𝑡 = −𝛿 𝑚𝑡,𝑘

‖𝑚𝑡,𝑘‖
.

Since 𝑦𝑡,𝑘+1 is uniformly sampled from line segment [𝑥𝑡, 𝑥𝑡,𝑘], we know

E[⟨𝑔𝑡,𝑘+1, 𝑥𝑡,𝑘 − 𝑥𝑡⟩|F𝑡,𝑘] =

∫︁ 1

0

𝑓 ′(𝛾(𝑡), 𝑥𝑡,𝑘 − 𝑥𝑡)𝑑𝑡 = 𝑓(𝑥𝑡,𝑘)− 𝑓(𝑥𝑡),

where the second equality comes from directional differentiability. Since 𝑥𝑘+1 − 𝑥𝑘 =

−𝛿 𝑚𝑡,𝑘

‖𝑚𝑡,𝑘‖
, we know that

E[⟨𝑔𝑡,𝑘+1,𝑚𝑡,𝑘⟩|F𝑡,𝑘] = −‖𝑚𝑡,𝑘‖
𝛿

(𝑓(𝑥𝑡,𝑘)− 𝑓(𝑥𝑡)). (5.7)

By construction 𝑚𝑡,𝑘+1 = 𝛽𝑚𝑡,𝑘 + (1−𝛽)𝑔𝑡,𝑘+1 under 𝐷𝑡,𝑘 ∩ · · · ∩𝐷𝑡,1, and 𝑚𝑡,𝑘+1 = 0

otherwise. Therefore,

E[‖𝑚𝑡,𝑘+1‖2|F𝑡,𝑘]

=E[‖𝛽𝑚𝑡,𝑘 + (1− 𝛽)𝑔𝑡,𝑘+1‖21{𝐷𝑡,𝑘∩···∩𝐷𝑡,1}|F𝑡,𝑘]

≤
(︀
𝛽2‖𝑚𝑡,𝑘‖2 + (1− 𝛽)2𝐿2 + 2𝛽(1− 𝛽)E[⟨𝑔𝑡,𝑘+1,𝑚𝑡,𝑘⟩|F𝑡,𝑘]

)︀
1{𝐷𝑡,𝑘∩···∩𝐷𝑡,1}

≤𝛽2‖𝑚𝑡,𝑘‖2 + (1− 𝛽)2𝐿2 − 2𝛽(1− 𝛽)
‖𝑚𝑡,𝑘‖
𝛿

(𝑓(𝑥𝑡,𝑘)− 𝑓(𝑥𝑡))1{𝐷𝑡,𝑘∩···∩𝐷𝑡,1}

≤𝛽2‖𝑚𝑡,𝑘‖2 + (1− 𝛽)2𝐿2 + 2𝛽(1− 𝛽)
‖𝑚𝑡,𝑘‖2

4
,

where in the third line, we use the fact 𝛽,𝐷𝑡,𝑘 ∩ · · · ∩𝐷𝑡,1 ∈ F𝑡,𝑘; in the fourth line we

use the fact under 𝐷𝑡,𝑘, 𝑓(𝑥𝑡,𝑘) − 𝑓(𝑥𝑡) ≥ − 𝛿‖𝑚𝑡,𝑘‖
4

. The last equation is a quadratic

function with respect to 𝛽, which could be rewritten as

ℎ(𝛽) = 𝛽2(
‖𝑚𝑡,𝑘‖2

2
+ 𝐿2)− 2𝛽(𝐿2 − ‖𝑚𝑡,𝑘‖2

4
) + 𝐿2.

It achieves the minimum at 𝛽 =
4𝐿2−‖𝑚𝑡,𝑘‖2
4𝐿2+2‖𝑚𝑡,𝑘‖2

, which belongs to F𝑡,𝑘. Since ‖𝑚𝑡,𝑘‖ ≤ 𝐿,

we have

ℎ* =
𝐿2

𝐿2 +
‖𝑚𝑡,𝑘‖2

2

‖𝑚𝑡,𝑘‖2 ≤
(︂

1− ‖𝑚𝑡,𝑘‖2

3𝐿2

)︂
‖𝑚𝑡,𝑘‖2.
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Therefore,

E[‖𝑚𝑡,𝑘+1‖2]

=E[E[‖𝑚𝑡,𝑘+1‖2|F𝑡,𝑘]]

≤E
[︂(︂

1− ‖𝑚𝑡,𝑘‖2

3𝐿2

)︂
‖𝑚𝑡,𝑘‖2

]︂
≤
(︂

1− E[‖𝑚𝑡,𝑘‖2]
3𝐿2

)︂
E[‖𝑚𝑡,𝑘‖2],

where the last inequality follows from Jensen’s inequality under the fact that the

function 𝑥→ (1−𝑥/3𝐿2)𝑥 is concave. Now consider the sequence 𝑣𝑘 = E[‖𝑚𝑡,𝑘‖2]/𝐿2 ∈

[0, 1], we get

𝑣𝑘+1 ≤ 𝑣𝑘 − 𝑣2𝑘/3 =⇒ 1

𝑣𝑘+1

≥ 1

𝑣𝑘 − 𝑣2𝑘/3
≥ 1

𝑣𝑘
+

1

3
.

Knowing that 𝑣1 ≤ 1, we therefore have

𝑣𝑘 ≤
3

𝑘 + 2
.

When 𝐾 > 48𝐿2

𝜖2
, we have E[‖𝑚𝑡,𝐾‖2] ≤ 𝜖2

16
. Therefore, by Markov inequality,

𝒫{‖𝑚𝑡,𝐾‖ ≥ 𝜖} ≤ 1/4. In other words, the while-loop restarts with probability at

most 1/4. Therefore, with probability 1− 𝛾, there are at most log(1/𝛾) restarts.

Now we are ready to prove the main theorem.

Proof of Theorem 5.4.1. We notice that 𝑚𝑡,𝑘 is always a convex combinations of gen-

eralized gradients within the 𝛿 ball of 𝑥𝑘, i.e.

𝑚𝑡,𝑘 ∈ 𝜕𝑓(𝑥𝑡 + 𝛿𝐵) = conv(∪𝑦∈𝑥𝑡+𝛿𝐵𝜕𝑓(𝑦)).

Therefore, if at any 𝑡, 𝑘, ‖𝑚𝑡,𝑘‖ ≤ 𝜖, then the corresponding 𝑥𝑡 is a (𝛿, 𝜖) approximate

stationary point. To show that our algorithm always find a ‖𝑚𝑡,𝑘‖ ≤ 𝜖, we need

to control the number of times the descent condition is satisfied, which breaks the

while-loop without satisfying ‖𝑚𝑡,𝑘‖ ≤ 𝜖. Indeed, when the descent condition holds,
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we have

𝑓(𝑥𝑡,𝑘)− 𝑓(𝑥𝑡) ≤ −
𝛿‖𝑚𝑡,𝑘‖

4
< −𝛿𝜖

4
,

where we use the fact ‖𝑚𝑡,𝑘‖ > 𝜖, otherwise, the algorithm already terminates. Conse-

quently, there are at most 4Δ
𝛿𝜖
− 1 = 𝑇 − 1 iterations that the descent condition holds.

As a result, for at least one 𝑡 , the while-loop ends providing a (𝛿, 𝜖) approximate

stationary point.

By Lemma 5.7.2, we know that with probability 1− 𝛾𝛿𝜖
4Δ

, the 𝑡-th iteration termi-

nates in log( 4Δ
𝛾𝛿𝜖

) restarts. Consequently, with probability 1−𝛾, the algorithm returns

a (𝛿, 𝜖) approximate stationary point using

192∆𝐿2

𝜖3𝛿
log

(︂
4∆

𝛾𝛿𝜖

)︂
oracle calls.

5.7.5 Proof of Theorem 5.5.1

Stochastic INGD has convergence guarantee as stated in the next theorem.

Theorem 5.7.3. Under the stochastic Assumption 5.3.1, the Stochastic INGD al-

gorithm in Algorithm 3 with parameters 𝛽 = 1 − 𝜖2

64𝐺2 , 𝑝 = 64𝐺2 ln(16𝐺/𝜖)
𝛿𝜖2

, 𝑞 = 4𝐺𝑝,

𝑇 = 216𝐺3Δ ln(16𝐺/𝜖)
𝜖4𝛿

max{1, 𝐺𝛿
8Δ
}, 𝐾 = 𝑝𝛿 has algorithm complexity upper bounded by

216𝐺3∆ ln(16𝐺/𝜖)

𝜖4𝛿
max{1, 𝐺𝛿

8∆
} = �̃�

(︂
𝐺3∆

𝜖4𝛿

)︂
.

Proof. First, we are going to show that

1

𝑇

𝑇∑︁
𝑡=1

E[‖𝑚𝑡‖] ≤ 𝜖/4. (5.8)

From construction of the descent direction, we have

‖𝑚𝑡+1‖2 = (1− 𝛽)2‖𝑔(𝑦𝑡+1)‖2 + 2𝛽(1− 𝛽)⟨𝑔(𝑦𝑡+1),𝑚𝑡⟩+ 𝛽2‖𝑚𝑡‖2. (5.9)
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Multiply both side by 𝜂𝑡 and sum over 𝑡, we get

0 = (1− 𝛽)2
𝑇∑︁
𝑡=1

𝜂𝑡‖𝑔(𝑦𝑡+1)‖2⏟  ⏞  
i

+2𝛽(1− 𝛽)
𝑇∑︁
𝑡=1

⟨𝑔(𝑦𝑡+1), 𝜂𝑡𝑚𝑡⟩⏟  ⏞  
ii

+
𝑇∑︁
𝑡=1

𝜂𝑡(−‖𝑚𝑡+1‖2 + 𝛽2‖𝑚𝑡‖2)⏟  ⏞  
iii

.

(5.10)

We remark that at each iteration, we have two randomized/stochastic procedure:

first we draw 𝑦𝑡+1 randomly between the segment [𝑥𝑡, 𝑥𝑡+1], second we draw a stochas-

tic gradient at 𝑦𝑡+1. For convenience of analysis, we denote 𝒢𝑡 as the sigma field gen-

erated by 𝑔(𝑦𝑡), and 𝒴𝑡 as the sigma field generated by 𝑦𝑡. Clearly, 𝒢𝑡 ⊂ 𝒴𝑡+1 ⊂ 𝒢𝑡+1.

By definition 𝜂𝑡 is determined by 𝑚𝑡, which is further determined by 𝑔𝑡. Hence, the

vectors 𝑚𝑡, 𝜂𝑡 and 𝑥𝑡+1 are 𝒢𝑡-measurable.

Now we analyze each term one by one.

Term i: This term can be easily bound by

E[𝜂𝑡‖𝑔(𝑦𝑡+1)‖2] ≤
1

𝑞
E[‖𝑔(𝑦𝑡+1)‖2] =

1

𝑞
E[E[‖𝑔(𝑦𝑡+1)‖2|Y𝑡+1]] ≤

𝐺2

𝑞
. (5.11)

Term ii: Note that 𝜂𝑡𝑚𝑡 = 𝑥𝑡 − 𝑥𝑡+1, we have

E[⟨𝑔(𝑦𝑡+1), 𝜂𝑡𝑚𝑡⟩ | 𝒢𝑡] = E[E[⟨𝑔(𝑦𝑡+1), 𝑥𝑡 − 𝑥𝑡+1⟩ | 𝒴𝑡+1]| 𝒢𝑡]

= E[𝑓 ′(𝑦𝑡+1;𝑥𝑡 − 𝑥𝑡+1)| 𝒢𝑡]

=

∫︁
[0,1]

𝑓 ′(𝑥𝑡+1 + 𝜆(𝑥𝑡 − 𝑥𝑡+1);𝑥𝑡 − 𝑥𝑡+1)𝑑𝜆

= 𝑓(𝑥𝑡)− 𝑓(𝑥𝑡+1),

where the second line we use the property of the oracle given in Assumption 1(b).

Thus by taking the expectation, we have

𝑇∑︁
𝑡=1

E[⟨𝑔(𝑦𝑡+1), 𝜂𝑡𝑚𝑡⟩] = E[𝑓(𝑥1)− 𝑓(𝑥𝑇+1)] ≤ ∆.

Term iii: we would like to develop a telescopic sum for the third term, however
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this is non-trivial since the stepsize 𝜂𝑡 is adaptive. Extensive algebraic manipulation

is involved.

𝑇∑︁
𝑡=1

𝜂𝑡(−‖𝑚𝑡+1‖2 + 𝛽2‖𝑚𝑡‖2)

=
𝑇∑︁
𝑡=1

−‖𝑚𝑡+1‖2

𝑝‖𝑚𝑡‖+ 𝑞
+ 𝛽2

𝑇∑︁
𝑡=1

‖𝑚𝑡‖2

𝑝‖𝑚𝑡‖+ 𝑞

=
𝑇∑︁
𝑡=1

(︂
−‖𝑚𝑡+1‖2

𝑝‖𝑚𝑡‖+ 𝑞
+
‖𝑚𝑡+1‖2

𝑝‖𝑚𝑡+1‖+ 𝑞

)︂
−

𝑇∑︁
𝑡=1

‖𝑚𝑡+1‖2

𝑝‖𝑚𝑡+1‖+ 𝑞
+ 𝛽2

𝑇∑︁
𝑡=1

‖𝑚𝑡‖2

𝑝‖𝑚𝑡‖+ 𝑞

=
𝑇∑︁
𝑡=1

𝑝‖𝑚𝑡+1‖2(‖𝑚𝑡‖ − ‖𝑚𝑡+1‖)
(𝑝‖𝑚𝑡‖+ 𝑞)(𝑝‖𝑚𝑡+1‖+ 𝑞)

+ 𝛽2 ‖𝑚1‖2

𝑝‖𝑚1‖+ 𝑞
+ (𝛽2 − 1)

𝑇+1∑︁
𝑡=2

‖𝑚𝑡‖2

𝑝‖𝑚𝑡‖+ 𝑞
. (5.12)

The first equality follows by 𝜂𝑡 = 1
𝑝‖𝑚𝑡‖+𝑞

. The second equality subtract and add the

same terms ‖𝑚𝑡+1‖2
𝑝‖𝑚𝑡+1‖+𝑞

. The last equality regroups the terms. We now prove the first

term in (5.12) admits the following upper bound:

𝑝‖𝑚𝑡+1‖2(‖𝑚𝑡‖ − ‖𝑚𝑡+1‖)
(𝑝‖𝑚𝑡‖+ 𝑞)(𝑝‖𝑚𝑡+1‖+ 𝑞)

≤ (1− 𝛽)
‖𝑚𝑡+1‖2

𝑝‖𝑚𝑡+1‖+ 𝑞
+

(1− 𝛽)𝑝‖𝑔(𝑦𝑡+1)‖
𝑞

‖𝑚𝑡‖2

𝑝‖𝑚𝑡‖+ 𝑞
.

(5.13)

Note that if ‖𝑚𝑡+1‖ ≥ ‖𝑚𝑡‖ then the inequality trivially holds. Thus, we only need

to consider the case when ‖𝑚𝑡+1‖ ≤ ‖𝑚𝑡‖. By triangle inequality,

‖𝑚𝑡‖ − ‖𝑚𝑡+1‖ ≤ ‖𝑚𝑡 −𝑚𝑡+1‖ = (1− 𝛽)‖𝑚𝑡 − 𝑔(𝑦𝑡+1)‖

≤ (1− 𝛽)(‖𝑚𝑡‖+ ‖𝑔(𝑦𝑡+1)‖).

Therefore, substitue the above inequality into lefthand side of (5.13) and regroup the

fractions,
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𝑝‖𝑚𝑡+1‖2(‖𝑚𝑡‖ − ‖𝑚𝑡+1‖)
(𝑝‖𝑚𝑡‖+ 𝑞)(𝑝‖𝑚𝑡+1‖+ 𝑞)

≤ 𝑝‖𝑚𝑡+1‖2(1− 𝛽)(‖𝑚𝑡‖+ ‖𝑔(𝑦𝑡+1)‖)
(𝑝‖𝑚𝑡‖+ 𝑞)(𝑝‖𝑚𝑡+1‖+ 𝑞)

= (1− 𝛽)
‖𝑚𝑡+1‖2

𝑝‖𝑚𝑡+1‖+ 𝑞

𝑝‖𝑚𝑡‖
𝑝‖𝑚𝑡‖+ 𝑞

+
(1− 𝛽)𝑝‖𝑔(𝑦𝑡+1)‖

𝑝‖𝑚𝑡‖+ 𝑞

‖𝑚𝑡+1‖2

𝑝‖𝑚𝑡+1‖+ 𝑞

≤ (1− 𝛽)
‖𝑚𝑡+1‖2

𝑝‖𝑚𝑡+1‖+ 𝑞
+

(1− 𝛽)𝑝‖𝑔(𝑦𝑡+1)‖
𝑞

‖𝑚𝑡‖2

𝑝‖𝑚𝑡‖+ 𝑞
,

where the last step we use the fact that ‖𝑚𝑡+1‖ ≤ ‖𝑚𝑡‖ and the function 𝑥 →

𝑥2/(𝑝𝑥 + 𝑞) is increasing on R+. Now, taking expectation on both sides of (5.13)

yields

E
[︂
𝑝‖𝑚𝑡+1‖2(‖𝑚𝑡‖ − ‖𝑚𝑡+1‖)
(𝑝‖𝑚𝑡‖+ 𝑞)(𝑝‖𝑚𝑡+1‖+ 𝑞)

]︂
≤ (1− 𝛽)E

[︂
‖𝑚𝑡+1‖2

𝑝‖𝑚𝑡+1‖+ 𝑞

]︂
+
𝑝(1− 𝛽)

𝑞
E
[︂
‖𝑔(𝑦𝑡+1)‖

‖𝑚𝑡‖2

𝑝‖𝑚𝑡‖+ 𝑞

]︂
= (1− 𝛽)E

[︂
‖𝑚𝑡+1‖2

𝑝‖𝑚𝑡+1‖+ 𝑞

]︂
+
𝑝(1− 𝛽)

𝑞
E
[︂
E [‖𝑔(𝑦𝑡+1)‖|𝒢𝑡]

‖𝑚𝑡‖2

𝑝‖𝑚𝑡‖+ 𝑞

]︂
≤ (1− 𝛽)E

[︂
‖𝑚𝑡+1‖2

𝑝‖𝑚𝑡+1‖+ 𝑞

]︂
+
𝑝(1− 𝛽)𝐺

𝑞
E
[︂
‖𝑚𝑡‖2

𝑝‖𝑚𝑡‖+ 𝑞

]︂
≤ (1− 𝛽)E

[︂
‖𝑚𝑡+1‖2

𝑝‖𝑚𝑡+1‖+ 𝑞

]︂
+
𝛽(1− 𝛽)

2
E
[︂
‖𝑚𝑡‖2

𝑝‖𝑚𝑡‖+ 𝑞

]︂
,

where the third inequality follows by the fact that E[‖𝑔(𝑦𝑡+1‖|𝒢𝑡] ≤
√
𝐿2 + 𝜎2 and

the last inequality follows from our choice of parameters ensuring 𝑝𝐺/𝑞 ≤ 𝛽/2. Now
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we are ready to proceed the telescopic summing. Summing up over 𝑡 and yields

𝑇∑︁
𝑡=1

E
[︀
𝜂𝑡(−‖𝑚𝑡+1‖2 + 𝛽2‖𝑚𝑡‖2)

]︀
≤ (1− 𝛽)

𝑇∑︁
𝑡=1

E
[︂
‖𝑚𝑡+1‖2

𝑝‖𝑚𝑡+1‖+ 𝑞

]︂
+
𝛽 − 𝛽2

2

𝑇∑︁
𝑡=1

E
[︂
‖𝑚𝑡‖2

𝑝‖𝑚𝑡‖+ 𝑞

]︂

+ 𝛽2E
[︂
‖𝑚1‖2

𝑝‖𝑚1‖+ 𝑞

]︂
+ (𝛽2 − 1)

𝑇+1∑︁
𝑡=2

E
[︂
‖𝑚𝑡‖2

𝑝‖𝑚𝑡‖+ 𝑞

]︂

=
𝛽2 + 𝛽

2
E
[︂
‖𝑚1‖2

𝑝‖𝑚1‖+ 𝑞

]︂
+
𝛽2 − 𝛽

2

𝑇+1∑︁
𝑡=2

E
[︂
‖𝑚𝑡‖2

𝑝‖𝑚𝑡‖+ 𝑞

]︂

= 𝛽2E
[︂
‖𝑚1‖2

𝑝‖𝑚1‖+ 𝑞

]︂
+
𝛽2 − 𝛽

2

𝑇+1∑︁
𝑡=1

E
[︂
‖𝑚𝑡‖2

𝑝‖𝑚𝑡‖+ 𝑞

]︂

≤ 𝛽2𝐺2

𝑞
+
𝛽2 − 𝛽

2

𝑇+1∑︁
𝑡=1

E
[︂
‖𝑚𝑡‖2

𝑝‖𝑚𝑡‖+ 𝑞

]︂
.

The first inequality uses (5.13). The third line and the foruth line regroup the

terms. The last line follows by 𝑝‖𝑚1‖+ 𝑞 ≥ 𝑞 and E[‖𝑚1‖2] ≤ 𝐺2.

Combine all term i, ii and iii in (5.10) yields

𝛽 − 𝛽2

2

𝑇+1∑︁
𝑡=1

E
[︂
‖𝑚𝑡‖2

𝑝‖𝑚𝑡‖+ 𝑞

]︂
≤ 2𝛽(1− 𝛽)E[𝑓(𝑥1)− 𝑓(𝑥𝑇+1)] +

𝛽2𝐺2

𝑞
+ 𝑇 (1− 𝛽)2

𝐺2

𝑞
.

Multiply both sides by 2𝑞
𝑇 (𝛽−𝛽2)

to obtain

1

𝑇

𝑇∑︁
𝑡=1

E
[︂

𝑞‖𝑚𝑡‖2

𝑝‖𝑚𝑡‖+ 𝑞

]︂
≤ 4𝑞∆

𝑇
+

2𝛽𝐺2

𝑇 (1− 𝛽)
+

2(1− 𝛽)𝐺2

𝛽
. (5.14)

We may assume 𝜖 ≤ 𝐺, otherwise any 𝑥𝑡 is a (𝛿, 𝜖)-stationary point. Then by

choosing 𝛽 = 1− 𝜖2

64𝐺2 , 𝑝 = 64𝐺2 ln(16𝐺/𝜖)
𝛿𝜖2

, 𝑞 = 256𝐺3 ln(16𝐺/𝜖)
𝛿𝜖2

, 𝑇 = 216𝐺3Δ ln(16𝐺/𝜖)
𝜖4𝛿

max{1, 𝐺𝛿
8Δ
},

have

1

𝑇

𝑇∑︁
𝑡=1

E
[︂

4𝐺‖𝑚𝑡‖2

‖𝑚𝑡‖+ 4𝐺

]︂
≤ 𝜖2

17
. (5.15)

Note that the function 𝑥 → 𝑥2/(𝑥 + 4𝐺) is convex, thus by Jensen’s inequality, for
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any 𝑡, we have

4𝐺E [‖𝑚𝑡‖]2

E[‖𝑚𝑡‖] + 4𝐺
≤ E

[︂
4𝐺‖𝑚𝑡‖2

‖𝑚𝑡‖+ 4𝐺

]︂
. (5.16)

Let us denote

𝑚𝑎𝑣𝑔 =
1

𝑇

𝑇∑︁
𝑡=1

E [‖𝑚𝑡‖] ,

then again by Jensen’s inequality,

4𝐺𝑚2
𝑎𝑣𝑔

𝑚𝑎𝑣𝑔 + 4𝐺
≤ 1

𝑇

𝑇∑︁
𝑡=1

4𝐺E [‖𝑚𝑡‖]2

E[‖𝑚𝑡‖] + 4𝐺
≤ 𝜖2

17

Solving the quadratic inequality with respect to 𝑚𝑎𝑣𝑔 and using 𝜖 ≤ 𝐺, we have

1

𝑇

𝑇∑︁
𝑡=1

E [‖𝑚𝑡‖] ≤
𝜖

4
.

In contrast to the smooth case, we cannot directly conclude from this inequality

since 𝑚𝑡 is not the gradient at 𝑥𝑡. Indeed, it is the convex combination of all previous

stochastic gradients. Therefore, we still need to find a reference point such that 𝑚𝑡

is approximately in the 𝛿-subdifferential of the reference point. Note that

𝑚𝑡 =
𝑡∑︁

𝑖=𝑡−𝐾+1

𝛼𝑖𝑔(𝑦𝑖) + 𝛽𝐾𝑚𝑡−𝐾

Intuitively, when 𝐾 is sufficiently large, the contribution of the last term in 𝑚𝑡 is

negligible. In which case, we could deduce 𝑚𝑡 is approximately in 𝜕𝑓(𝑥𝑡−𝐾 + 𝛿𝐵).

More precisely, with 𝛽 = 1− 𝜖2

64𝐺2 , as long as 𝐾 ≥ 64𝐺2

𝜖2
ln(16𝐺

𝜖
), we have

𝛽𝐾 ≤ 𝜖

16𝐺
.

This is a simple analysis result using the fact that ln(1−𝑥) ≤ −𝑥. Then by Assump-

tion on the oracle, we know that E[𝑔(𝑦𝑖)|Y𝑖] ∈ 𝜕𝑓(𝑦𝑖) and ‖𝑦𝑖 − 𝑥𝑡−𝐾‖ ≤ 𝐾
𝑝
≤ 𝛿 for
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any 𝑖 ∈ [𝑡−𝐾 + 1, 𝑡]. Thus,

E[𝑔(𝑦𝑖)|𝑥𝑡−𝐾 ] ∈ 𝜕𝑓(𝑥𝑡−𝐾 + 𝛿𝐵).

Consequently, the convex combination

1∑︀
𝛼𝑖

𝑡∑︁
𝑖=𝑡−𝐾+1

𝛼𝑖E[𝑔(𝑦𝑖)|𝑥𝑡−𝐾 ] ∈ 𝜕𝑓(𝑥𝑡−𝐾 + 𝛿𝐵).

Note that
∑︀
𝛼𝑖 = 1− 𝛽𝐾 , the above inclusion could be rewritten as

1

1− 𝛽𝐾
(E[𝑚𝑡|𝑥𝑡−𝐾 ]− 𝛽𝐾𝑚𝑡−𝐾) ∈ 𝜕𝑓(𝑥𝑡−𝐾 + 𝛿𝐵).

This implies that conditioned on 𝑥𝑡−𝐾

𝑑(0, 𝜕𝑓(𝑥𝑡−𝐾 + 𝛿𝐵)) ≤ 1

1− 𝛽𝐾

(︀
‖E[𝑚𝑡 | 𝑥𝑡−𝐾 ]‖+ 𝛽𝐾‖𝑚𝑡−𝐾‖

)︀
≤ 1

1− 𝛽𝐾

(︀
E[‖𝑚𝑡‖|𝑥𝑡−𝐾 ] + 𝛽𝐾‖𝑚𝑡−𝐾‖

)︀
.

Therefore, by taking the expectation,

E[𝑑(0, 𝜕𝑓(𝑥𝑡−𝐾 + 𝛿𝐵))] ≤ 1

1− 𝛽𝐾

(︀
E[‖𝑚𝑡‖] + 𝛽𝐾𝐺

)︀
≤ 1

1− 1
16

(E[‖𝑚𝑡‖] +
𝜖

16
) =

16

15
E[‖𝑚𝑡‖] +

𝜖

15
.

Finally, averaging over 𝑡 = 1 to 𝑇 yields,

1

𝑇

𝑇∑︁
𝑡=1

E[𝑑(0, 𝜕𝑓(𝑥𝑡−𝐾 + 𝛿𝐵))] ≤ 16

15𝑇

𝑇∑︁
𝑡=1

E[‖𝑚𝑡‖] +
𝜖

15
≤ 𝜖

3
.

When 𝑡 < 𝐾, 𝜕𝑓(𝑥𝑡−𝐾 + 𝛿𝐵) simply means 𝜕𝑓(𝑥1 + 𝛿𝐵). As a result, if we ran-

domly out put 𝑥max{1,𝑡−𝐾} among 𝑡 ∈ [1, 𝑇 ], then with at least probability 2/3, the

𝛿-subdifferential set contains an element with norm smaller than 𝜖. To achieve 1− 𝛾

probability result for arbitrary 𝛾, it suffices to repeat the algorithm log(1/𝛾) times.
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5.7.6 Proof of Theorem 5.5.2

Proof. The proof idea is similar to Proof of Theorem 5.3.1. Since the algorithm does

not have access to function value, our resisting strategy now always returns

∇𝑓(𝑥) = 1.

If we can prove that for any set of points 𝑥𝑘, 𝑘 ∈ [1, 𝐾], 𝐾 ≤ Δ
8𝛿

, there exists two one

dimensional functions such that they satisfy the resisting strategy ∇𝑓(𝑥𝑘) = 1, 𝑘 ∈

[1, 𝐾], and that the two functions do not have two stationary points that are 𝛿 close to

each other, then we know no randomized/deterministic can return an (𝛿, 𝜖)−stationary

points with probability more than 1/2 for both functions simultaneously. In other

words, no algorithm that query 𝐾 points can distinguish these two functions. Hence

we proved the theorem following the definition of complexity in (5.5).

From now on, let 𝑥𝑘, 𝑘 ∈ [1, 𝐾] be the sequence of points queried after sorting in

ascending order. Below, we construct two functions such that ∇𝑓(𝑥𝑘) = 1, 𝑘 ∈ [1, 𝐾],

and that the two functions do not have two stationary points that are 𝛿 close to each

other. Assume WLOG that 𝑥𝑘 are ascending. First, we define 𝑓 : R→ R as follows:

𝑓(𝑥0) = 0,

𝑓 ′(𝑥) = −1 if 𝑥 ≤ 𝑥1 − 2𝛿,

𝑓 ′(𝑥) = 1 if exists 𝑖 ∈ [𝐾] such that |𝑥− 𝑥𝑖| ≤ 2𝛿,

𝑓 ′(𝑥) = −1 if exists 𝑖 ∈ [𝐾] such that 𝑥 ∈ [𝑥𝑖 + 2𝛿,
𝑥𝑖 + 𝑥𝑖+1

2
],

𝑓 ′(𝑥) = 1 if exists 𝑖 ∈ [𝐾] such that 𝑥 ∈ [
𝑥𝑖 + 𝑥𝑖+1

2
, 𝑥𝑖+1 − 2𝛿],

𝑓 ′(𝑥) = 1 if 𝑥 ≥ 𝑥𝐾 + 2𝛿

It is clear that this function satisfies the resisting strategy. It also has stationary

points that are at least 4𝛿 apart. Therefore, simply by shifting the function by 1.5𝛿,
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we get the second function.

The only thing left to check is that sup𝑘 𝑓(𝑥𝑘)− inf𝑥 𝑓(𝑥) ≤ ∆. By construction,

we note that the value from 𝑥𝑖 to 𝑥𝑖+1 is non decreasing and increase by at most 4𝛿

sup
𝑘
𝑓(𝑥𝑘)− 𝑓(𝑥0) ≤ 4𝛿𝐾 ≤ ∆/2. (5.17)

We further notice that the global minimum of the function is achieved at 𝑥0−2𝛿, and

𝑓(𝑥0 − 2𝛿) = −2𝛿 ≤ 4𝛿𝐾 ≤ ∆/2. Combined with (5.17), we get,

sup
𝑘
𝑓(𝑥𝑘)− inf

𝑥
𝑓(𝑥) ≤ ∆. (5.18)
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Chapter 6

Gradient Descent May Not Converge

in Large Scale Applications

It is a well-known fact that nonconvex optimization is computationally intractable

in the worst case. As a result, many theoretical analyses of optimization algorithms

such as gradient descent often focus on local convergence to stationary points where

the gradient norm is zero or negligible, and hope that the result can generalize to

neural network experiments.

In this chapter, we examine the whether the convergence to stationary points is

related to the convergence of neural network training. Specifically, we provide nu-

merical evidence that in large-scale neural network training, such as in ImageNet +

ResNet, and WT103 + TransformerXL models, the Neural Network weight variables

do not converge to stationary points where the gradient of the loss function vanishes.

Remarkably, however, we observe that while weights do not converge to stationary

points, the value of the loss function converges. Inspired by this observation, we

propose a new perspective based on ergodic theory of dynamical systems. We prove

convergence of the distribution of weight values to an approximate invariant measure

(without smoothness and assumptions) that explains how the training loss can stabi-

lize without weights necessarily converging to stationary points. We further discuss

how this perspective can better align the theory with empirical observations.
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6.1 Introduction

It would not be controversial to claim that there currently exists a wide gulf be-

tween theoretical investigations of convergence to stationary points for non-convex

optimization problems of the form

min
𝜃
𝑓(𝜃), (6.1)

and the empirical performance of popular algorithms used in deep learning practice.

Due to the intrinsic intractability of general nonconvex problems, theoretical analysis

of nonconvex optimization problems is often focused on the rates of convergence

of gradient norm ‖∇𝑓(𝜃)‖ instead of the suboptimality 𝑓(𝜃) − min𝜃 𝑓(𝜃). The vast

theoretical literature on optimization for machine learning has documented the recent

progress in this area. In particular, optimal gradient-based algorithms and rates have

been identified in various nonconvex settings, including deterministic, stochastic and

finite-sum problems [Carmon et al., 2017, Arjevani et al., 2019, Fang et al., 2018b].

In addition to theoretical interests in such problems, a practical motivation for

such convergence analyses is to improve the convergence rate of large-scale optimiza-

tion methods as they are used in machine learning practice, especially in training

deep neural networks. As neural network models allow for efficient gradient evalua-

tions, gradient-based algorithms have been the dominant methods to tune network

parameters. Naturally, great effort was dedicated to theoretical understandings of

gradient-based optimizers.

However, despite the fast progress on the theory side for gradient-based algo-

rithms, the convergence analysis has had a limited impact on real-world neural net-

work training. Despite many theoretical and empirical advances, the gap between

theory and practice is as wide as ever. As an example, consider the variance reduc-

tion technique. Even though variance reduction theoretically accelerates convergence,

recent empirical evidence in [Defazio and Bottou, 2018] suggests that it may be ineffec-

tive in speeding up neural network training. On the other extreme, ADAM [Kingma

and Ba, 2014] is among the most popular algorithms in neural network training, yet
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its theoretical convergence was proven to be incorrect [Reddi et al., 2019]. Despite

dubious theoretical properties, ADAM is as popular as ever.

Our goal in this chapter is to address a very specific part of this theory-practice

divide by providing an explanation for the ineffectiveness of theoretical convergence

rates to stationarity in neural network training. First, we provide evidence that in

many real-world experiments (e.g. ImageNet, Wiki103) where the model does not

overfit the data, gradient-based optimization methods do not converge to stationary

points as theory predicts. This mismatch questions the applicability of one of the key

pillars of optimization theory as applied to neural network training. The reason for

such a surprising divide is that most optimization analyses for deep learning either

assume smoothness directly which leads to convergence to stationary points using

classical analysis, or prove smoothness and fast convergence by relying explicitly

on overparametrization. However, our empirical investigations reveal that the key

premise of the theory — pointwise convergence to a fixed point — may not happen

at all in practice.

Motivated by this observation, we aim to answer the following question in the

rest of this chapter: how should one define and analyze convergence of gradient-

based optimization, when the training loss seems to converge yet the gradient does not

converge to 0?

We propose a new lens through which one should view convergence: rather than

convergence of weights, we postulate that the convergence should be viewed in terms

of invariant measures as used in the ergodic theory of dynamical systems. Using

classical results from this literature, we then show how this new perspective can

be consistent with some recent curious findings in neural network training, such as

relaxed smoothness [Zhang et al., 2019b] and edge of stability [Cohen et al., 2021,

Wu et al., 2018] phenomena. More concretely, our contributions are summarized as

follows,

∙ We empirical verify through ResNet training and transformer-XL training in

a wide range of applications that the iterates do not converge to a stationary

point as existing theory predicts.
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∙ We propose the invariant measure perspective from dynamical systems theory

to explain why the training loss can converge without the iterates converging

to a stationary point.

∙ Most importantly, we show that our theorems on diminishing gain of the loss

without vanishing of the gradient apply to neural network training even without

standard global Lipschitzness or smoothness assumptions.

∙ We discuss how our observations relate to interesting phenomena such as decay

of function values, edge of stability, and relative smoothness.

6.1.1 Related work

Many recent results inspired us to investigate the oscillatory behavior of neural net-

work training. One line of works is on the empirical investigations of neural network

reproducibility. In [Henderson et al., 2017], the authors analyze the stability of policy

reward in reinforcement learning and found large variations. In [Madhyastha and

Jain, 2019], the authors study the instability for interpretation mechanisms. In [Bho-

janapalli et al., 2021], the authors found that though image classification has rela-

tively stable classification accuracy, the actual prediction on individual images has

large variations. We learned from recent studies [Cohen et al., 2021, Zhang et al.,

2019b, 2020a] that previous analysis assumptions on noise and smoothness not only

have large variations but also adapt to the step size choice. These observations mo-

tivate us to rethink the convergence proofs used in classical optimization analysis.

In addition, a few very recent results reported similarly large oscillations in Cifar10

training [Li et al., 2020, Kunin et al., 2021, Lobacheva et al., 2021], though the au-

thors focus on SDE approximation or batch normalization. Our work instead focuses

on the connection to nonconvex optimization theorems. Specifically we show that

at the end of training when training loss has converged, even the full batch gradient

norm does not converge to zero.

On the theory side, two lines of work are closely related to this chapter. One line

of work studies the non-convergence of dynamics of algorithms in games or multiob-
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jective optimization [Hsieh et al., 2019, Cheung and Piliouras, 2019, Papadimitriou

and Piliouras, 2019, Letcher, 2020, Flokas et al., 2020]. Another models the SGD

dynamics via Langevin dynamics [Cheng et al., 2020, Li et al., 2020, Gurbuzbalaban

et al., 2021]. Our work differs from these works in that we do not look for global

mixing, and do not focus on settings where additional noise needs to be injected.

6.2 Motivating examples

In this section, we provide some initial experimental results and show that the tra-

ditional notion of convergence for nonconvex functions does not really occur in deep

neural network training. Our experiments are based on one of the most popular train-

ing schemes, where we trained ResNet101 on ImageNet 1 More experiments can be

found later in Section 6.6.

To explain the quantities of interest, we first define our notation. Let 𝑆 =

{(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 be the dataset. We use 𝑓(𝑥, 𝜃) to denote the neural network function

with model parameter 𝜃 and data input 𝑥. We use ℓ to denote the loss function

such as cross-entropy after softmax. We would like to investigate the evolution of the

following quantities during training. At iteration 𝑘, we evaluate

Loss: 𝐿𝑆(𝜃𝑘) := 1
𝑁

∑︀𝑁
𝑖=1 ℓ(𝑓(𝑥𝑖, 𝜃𝑘), 𝑦𝑖),

Grad norm: ‖∇𝐿𝑆(𝜃𝑘)‖2 := ‖ 1
𝑁

∑︀𝑁
𝑖=1

𝜕
𝜕𝜃
ℓ(𝑓(𝑥𝑖, 𝜃𝑘), 𝑦𝑖)‖2,

Noise: 𝜎(𝜃𝑘) :=

√︁
1
𝑁

∑︀𝑁
𝑖=1 ‖∇𝐿𝑆(𝜃𝑘)− 𝜕

𝜕𝜃
ℓ(𝑓(𝑥𝑖, 𝜃𝑘), 𝑦𝑖)‖22,

Sharpness: ‖∇2𝐿𝑆(𝜃𝑘)‖op := ‖ 1
𝑁

∑︀𝑁
𝑖=1

𝜕2

𝜕𝜃2
ℓ(𝑓(𝑥𝑖, 𝜃𝑘), 𝑦𝑖)‖op, (6.2)

where ‖·‖2 is the standard vector ℓ2 norm and ‖·‖op is the induced matrix spectral

norm.

We then show how the trajectory of weights evolves for the standard training

schedule, i.e., the learning rate starts at 0.1 and is decayed by a factor of 10 every 30

1We used the procedure from GitHub repository https://github.com/jiweibo/ImageNet, and
were able to reproduce the original paper’s result [He et al., 2016] up to 1% validation accuracy.
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Figure 6-1: The quantities of interest (6.2) vs epoch for the default training schedule
of ImageNet+ResNet101 experiment.

epochs. Evolution of the quantities is plotted in Figure 6-1. We make the following

immediate observations:

∙ Within each period where the step size is held constant, the change in loss

converges to 0.

∙ The gradient norm does not converge to 0 despite the fact that the loss function

converges. In fact, the gradient norm is not significantly smaller than that at

the start of the optimization.

∙ The noise level (in the stochastic gradient) increases during training.

The above observations suggest that there is a major gap between theory and

practice. Much of the research on nonconvex optimization has focused on the con-

vergence rate of gradient norms under a bounded-smoothness, bounded-noise setup.

Faster algorithms are designed under this guidance. However, in practice, we find

that the convergence of the training loss does not require the convergence of gradient

norms. This may be the reason why techniques such as variance reduction or local

regularization combined with Nesterov-momentum have had limited practical use,

despite their massive theoretical popularity.

6.2.1 Different learning rates and training schedules

One immediate question following the observation in Figure 6-1 is whether the ob-

served phenomenon holds solely for a particular stage-wise learning rate, which is not

very common in theoretical analysis. In this subsection, we show that this cannot be
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the reason and that the gradient norm does not converge to zero for any learning rate

schedule. In particular, we run the same ResNet101 model on the ImageNet dataset

just as before, except that we use a constant learning rate across all 90 epochs of

training. The quantities are summarized in Figure 6-2. A quick glance at the plots

verifies that gradient norm does not converge to 0 in any of the experiments. We fur-

ther notice that a smaller learning rate leads to larger gradient norm, larger stochastic

gradient noise intensity, and larger sharpness as observed in [Cohen et al., 2021]. We

will further discuss the implications of these observations later in the chapter.
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Figure 6-2: The quantities of interest (6.2) vs epoch for the constant learning
rate training schedule in ImageNet experiments. The learning rate is set to be
0.1, 0.01, 0.001 from the top row downwards. All models are trained for 90 epochs.
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Figure 6-3: The estimated stats vs epoch for the constant learning rate 𝜂 = 0.01
training schedule with total 300 epochs.
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As the loss curves in the last two rows of Figure 6-2 are still decreasing, we continue

the second row experiment (step size 𝜂 = 0.01) for 300 epochs and present the result

in Figure 6-3.

The above experiments show that in ImageNet+ResNet101 experiment, iterates

of the weights do not converge to stationary points. In the next section, we test

whether this phenomenon is an artifact of the data set and architecture and try to

see if this also happens in other datasets and architectures.

6.2.2 Transformer XL experiments

We run Transformer-XL training on WT103 dataset for the language modeling task

following the implementation of the original authors [Dai et al., 2019b]. Our training

procedure is exactly the same as the official code, except that we reduce the number

of attention layers for the baseline model from 6 to 4 so that the batch size fits in our

GPU memory. Aside from training with a cosine learning rate schedule with initial

learning rate 𝜂 = 0.00025, we also experimented with different constant learning rates.

The result is summarized in Figure 6-4.

We found that the observations made before also apply to transformer XL training.

In particular, the gradient norm is not going to 0, and even not decreasing over the

training. Furthermore, smaller step size also leads to larger gradient norm.

6.2.3 Refuted hypotheses and potential causes

With the above experiments, we can already exclude the following explanations on

why gradient norm does not converge to zero.

1. The large gradient norm is due to the fact that the step size is not small enough

or the model is not trained long enough.

2. This phenomenon is restricted to the particular ResNet + ImageNet combina-

tion.

3. The step size decreased too fast before the gradient norm could converge.
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Figure 6-4: The estimated stats vs epoch for the transformer XL training. The
learning rate is set to be cosine learning rate with 𝜂 = 0.00025 in the first row. The
learning rates are constant learning rates with 𝜂 = 0.00005, 0.0001, 0.00025 from the
second row downwards.
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4. The large gradient norm is due to numerical or estimation error.

The first conjecture is excluded by comparing the experiment in Figure 6-3 against

the experiments in the first two rows of Figure 6-2. We find that after running longer

with a smaller step size, though the training loss dropped significantly, the gradient

norm did not decrease at all. This confirms that even the qualitative theoretical results

(let alone the quantitative convergence rates) on when gradient norm gets smaller from

canonical optimization analyses are not applicable to neural network training.

The second conjecture is refuted by our TransformerXL [Dai et al., 2019a] exper-

iment in Section 6.2.2. We see that this phenomenon in TransformerXL training is

even more evident.

The third conjecture is refuted by comparing the experiment in Figure 6-3 against

the experiments in the last two row of Figure 6-2. We see that longer training with

larger constant step size also does not solve the problem.

The fourth conjecture is refuted due to our estimation precision discussed in later

Section 6.6.2 with additional experimental details. We also observed that in our

Cifar10 experiment in section 6.6.1, the gradient norm can indeed go to zero.

In the following sections, we attempt to provide a notion of convergence from

the theory of dynamical systems. Our proposed explanation is that only the time

average of the training loss converges, while the gradient norm is nonzero due to

nonsmoothness, and that the actual weight iterates keep oscillating. Before diving

into the theorem, we provide a conceptual explanation through a synthetic experiment

in the next section.

6.3 An explanatory experiment

The curious phenomenon discussed above is not limited to neural network training. In

what follows we present a simple synthetic example to illustrate the intuition behind

the convergence behavior to unstable cycles rather than stationary points.

To this end, we simulate gradient descent on the objective function 𝑓(𝜃1, 𝜃2) =

100 sin 𝜃1 sin 𝜃2 whose smoothness and Lipschitzness parameters are both 𝐿𝑓 = 100.
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Figure 6-5: Synthetic experiment. The learning rate is set to be 0.01 and 0.04 for the
first and second row respectively. Column I: the whole trajectory in 2000 iterations,
where the scatter points correspond to iterates and the color of a point represents
which iteration it is at; Column II: training loss and average training loss vs iteration,
where the average is taken over iterations; Column III: gradient norm and average
gradient norm vs iteration.

It is well known that gradient descent with a learning rate 𝜂 < 2/𝐿𝑓 = 0.02 provably

converges to stationary points for such a smooth function. As shown in the first row

of Figure 6-5, the iterates converge to a fixed point very fast with 𝜂 = 0.01, which

also implies the convergence of both training loss and gradient norm. Moreover,

the gradient norm converges to zero, which means a stationary point is reached at

convergence.

However, when 𝜂 > 2/𝐿𝑓 , which is often the case for neural network training,

gradient descent no longer converges to stationary points as shown in the second row

of Figure 6-5 with 𝜂 = 0.04. During the last 500 iterations, the iterates only take

values around a few points and keep oscillating among them. As a result, the training

loss and gradient norm also oscillate and do not converge in the usual sense. However,

the oscillation among these points follows some periodic pattern. If we collect all

the iterates during a long enough training process, their empirical distribution will

converge to a discrete distribution over those fixed points. As a result, the empirical

distributions of the training losses and gradient norms at these iterates also converge.

Then if we take an average of the training losses or gradient norms over time, it must

converge to the expected value of the corresponding empirical distribution, as shown
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in the last two images in Figure 6-5. However, although the average gradient norm

converges, the convergence value can not be zero in presence of oscillation, as gradient

descent makes no updates if the gradient is zero.

The above example shows that the key to function value convergence could be

that a time average rather than a spatial average is taken in evaluating the function

loss. In fact, we could verify this intuition through the example below. Recall that in

ImageNet training, the plotted training loss is a moving average of previous iterations.

In the left plot of Figure 6-6 we instead plot the training loss of the last 50 epochs

in the experiment shown in Figure 6-3 and see that the variation across iterations

is quite large considering the learning rate is 0.01 and the gradient norm is about

0.6. On the right plot, we show the last a few iterations of transformerXL training

(see section 6.6 for more details) and observe even larger oscillations. Furthermore,

even in Cifar10 experiments, both Li et al. [2020], Lobacheva et al. [2021] show very

strong periodic divergence in training loss when the number of training epoch is huge

(> 1000 epochs).
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Figure 6-6: (Left) The training loss vs epochs with a constant learning rate 𝜂 = 0.01
in the last 50 epochs of the 300-epoch ImageNet experiment. (Right) The training
loss vs epochs with a constant learning rate 𝜂 = 0.01 in the last iterations of the
2-million step transformerXL experiment.

Therefore, we see that the loss looks smooth because the oscillation is much smaller

than the long-term loss decrease due to optimization. However, the variation is non-

trivial considering the step size and gradient norm. Hence, the convergence only hap-

pens in the time average sense. With this intuition, we are now ready to present a

more rigorous characterization of the phenomenon.
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6.4 Convergence beyond stationary points

We have seen that even though the per-iteration loss does not converge, the time

average with a long enough window size can converge. In this section, we provide a

simple mathematical analysis to explain why that happens. In particular, we prove

that the change in training loss evaluated as a time average converges to 0 for neural

networks. Our analysis is motivated by, and closely follows the proof of the celebrated

Krylov-Bogolyubov theorem on invariant measures. As a result, we refer to our

interpretation as the invariant measure perspective.

Our key insight is that that the convergence of the training loss occurs in a time-

average sense. To see this, consider the following dynamical system

𝜃𝑡+1 = 𝐹 (𝜃𝑡).

The time average naturally leads to the following notion of empirical measure:

𝜇𝑘 := 1
𝑘

∑︀𝑘
𝑡=1 𝛿𝜃𝑡 , (6.3)

where 𝛿𝜃 denotes the Dirac measure supported on the value 𝜃, i.e., 𝛿𝜃(𝐴) = 1 if and

only if 𝜃 ∈ 𝐴, and {𝜃1, 𝜃2, · · · } are the sequence of iterates generated by the dynamical

system.

With this notation, we can conveniently write the time average of a scalar function

𝜑 : 𝒳 → R as

𝜇𝑘(𝜑) = E𝜃∼𝜇𝑘
[𝜑(𝜃)]. (6.4)

In this chapter, we focus on the case when the dynamic system 𝐹 (𝜃𝑡) denotes the

SGD update, i.e.,

𝐹 (𝜃𝑡) = 𝜃𝑡 − 𝜂𝑔(𝜃𝑡),

where 𝑔(𝜃𝑡) denotes the stochastic gradient and 𝜂 denotes the step size.
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6.4.1 Invariant Measures

We say a measure 𝜇 is an invariant measure for the map 𝐹 : 𝒳 → 𝒳 if for any

measurable set 𝐴

𝜇(𝐴) = 𝜇(𝐹−1(𝐴)) =

∫︁
𝜃

1{𝐹 (𝜃)∈𝐴}𝑑𝜇(𝜃),

where 𝐹−1(𝐴) = {𝜃|𝐹 (𝜃) ∈ 𝐴}. Notice that if 𝐹 is a stochastic update, then this

should be read as

𝜇(𝐴) = 𝜇(𝐹−1(𝐴)) =

∫︁
𝜃

P{𝐹 (𝜃) ∈ 𝐴}𝑑𝜇(𝜃). (6.5)

Invariance of measure is closely related to convergence of function values when

𝜃 ∼ 𝜇 is sampled from an invariant probability measure. In such a scenario, for any

continuous function 𝜑, the function value does not change after one update,

E𝜃∼𝜇[𝜑(𝜃)] = E𝜃∼𝜇[𝜑(𝐹 (𝜃))].

In other words, the function value does not change in expectation. Motivated by this

observation, we state the following theorem:

Theorem 6.4.1 (convergence of function values). Consider a continuous scalar func-

tion 𝜑 : 𝒳 → R. Assume that the update map 𝐹 has the property that 𝜑 ∘ 𝐹 : 𝒳 →

[−𝑀,𝑀 ] has a bounded value for any 𝜃 ∈ 𝒳 , then with probability 1 − 𝛿 over the

randomness of 𝐹 ,

|E𝜃∼𝜇𝑛 [𝜑(𝜃)− 𝜑(𝐹 (𝜃))]| = 𝒪
(︂

log(1/𝛿)√
𝑛

)︂
. (6.6)

Proof. The proof can be found in Appendix 6.7.1.

The above theorem shows that for a stochastic dynamical system, any bounded

scalar function when evaluated on the empirical measure has vanishing updates as

the number of iterations goes to infinity. We will later see how this relates to the
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vanishing gain of training loss in neural network training.

The tightness of the 1/
√
𝑛 dependence in the above theorem easily follows by

considering a stochastic map 𝐹 such that 𝐹 (𝜃) distributes uniformly over 𝒳 for any

𝜃. However, the tightness of the dependence on 𝑛 is less clear when 𝐹 is deterministic.

We show below that even for maps on a compact set, the window size 𝑛 in the time-

average has to tend to infinity for the sequence to converge.

Lemma 6.4.2. For any positive integer 𝑛, there exists a 1−Lipschitz objective func-

tion 𝑓 and a positive value 𝒪(1/𝑛) such that the update 𝐹 (𝜃) = 𝜃 − ∇𝑓(𝜃) has a

compact invariant set, and the sequence of time average with a window size 𝑛 starting

at iteration 𝑡, 𝑀𝑡 = 1
𝑛

∑︀𝑡+𝑛−1
𝑖=𝑡 𝑓(𝜃𝑖) does not converge and

lim sup
𝑡→∞

|𝑀𝑡 −𝑀𝑡−1| ≥ 𝒪(1/𝑛) > 0.

Proof. The proof can be found in Appendix 6.7.2.

The above result suggests that even for gradient descent update, the per-iteration

loss function value E𝜃𝑡 [𝜑(𝜃𝑡)] may not converge unless the function value is evaluated as

time average 𝜇𝑡(𝜑). The step size can be chosen arbitrarily but the exact dependence

between step size 𝜂 and window size 𝑛 and the sequence difference lim sup𝑡→∞ |𝑀𝑡 −

𝑀𝑡−1| requires further investigation.

We also note the fact that the update vanishes to zero does not imply that the

limit lim𝑡→∞ 𝜇𝑡(𝜑) exists. In fact, an explicit counterexample as stated below.

Theorem 6.4.3 (Yoccoz). There exists a dynamic system with deterministic contin-

uous map 𝐹 : 𝒳 → 𝒳 on a compact set and a scalar function 𝜑 ∈ 𝐶∞, such that

sequence 1
𝑛

∑︀
𝑘≤𝑛 𝜑(𝜃𝑘) has no limit, where 𝜃𝑘+1 = 𝐹 (𝜃𝑘).

Proof. See the original note in [Yoccoz].

Given the above negative result, we provide the following theorem to conclude

this section.
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Theorem 6.4.4 (convergence of distribution). Assume that 𝐹 maps a compact set

𝒳 to itself. Then the empirical distribution has a subsequence converging weakly to

an ergodic distribution. In other words, there exists an invariant distribution 𝜇, and

a subsequence of positive integers {𝑛𝑘}𝑘∈Z such that

𝜇𝑛𝑘
→𝑤 𝜇. (6.7)

The proof of the above theorem is similar to the proof for the Krylov-Bogolyubov

theorem. We include the proof in Appendix 6.7.3 for completeness. Note that since

the iterates may not have a limit, only subsequence convergence is possible. We

note that the above two theorems do not make use of the gradient descent structure.

Whether the dynamic system resulting from gradient descent has exactly the same

property is left as a challenging future problem.

With the above results, we are now ready to prove the vanishing property of the

update of training loss in neural network training.

6.4.2 Vanishing change in training loss of neural networks

We are now ready to provide a theoretical analysis to prove the vanishing gain of

training losses in neural network training, and thus explain how the training loss can

stabilize even when the norm of the loss function gradient is non-zero . Our analysis

is distinct from previous ones in the literature in that it does not assume global

Lipschitzness or smoothness, does not rely on bounded noise assumptions, and it

does not require perfectly fitting the data as in Neural tangent kernel (NTK) models

or mean-field style arguments. The downside of this generality is that we only prove

convergence of function values and do not make any comments on local or global

optimality or generalization. We believe that remains to be done here and we have

just scratched the surface.

In order to start the discussion, we define the following 𝐿-layer deep neural network
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𝑓(𝑥, 𝜃), where 𝑥 is the input and 𝜃 = (𝑊0, . . . ,𝑊𝐿−1) is the network weights:

𝑥0 = 𝑥,

𝑥𝑙+1 = 𝜎𝑙+1(𝑊𝑙𝑥𝑙), 𝑙 = 0, . . . 𝐿− 1 (6.8)

𝑓(𝑥, 𝜃) = 𝑥𝐿,

where 𝜎𝑙 is a coordinate-wise activation function (e.g., ReLU or sigmoid). In practice,

the last layer usually does not use any activation function so 𝜎𝐿 is the identity map-

ping. We do not consider pooling layers, convolutional layers, or skip connections for

now and it should be easy to extend our analysis to these settings. Iteration (6.8)

does not include batch normalization layers which we will analyze later in this section.

Given a training dataset 𝑆 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1, the empirical training loss is defined as

𝐿𝑆(𝜃) := 1
𝑁

∑︀𝑁
𝑖=1 ℓ(𝑓(𝑥𝑖, 𝜃), 𝑦𝑖),

where ℓ : R𝑑 × [𝑑] → R is a loss function and we assume ‖𝑥𝑖‖2 ≤ 1. The network

is trained by SGD with weight decay, which is equivalent to running SGD on the

following regularized loss

𝐿𝛾
𝑆(𝜃) := 𝐿𝑆(𝜃) +

𝛾

2
‖𝜃‖22,

where ‖𝜃‖2 denotes the ℓ2 norm of vectorized 𝜃. We will focus on the most widely

used loss function for classification tasks, the cross-entropy after softmax, defined as

follows.

ℓ(𝑥, 𝑦) = 𝑥𝑦 − log
(︁∑︀𝑑

𝑗=1 𝑒
𝑥𝑗

)︁
, (6.9)

which has the following properties that we will use later.

Lemma 6.4.5. The cross-entropy after softmax loss ℓ : R𝑑× [𝑑]→ R defined in (6.9)

satisfies

1. If max𝑖 𝑥𝑖 −min𝑖 𝑥𝑖 ≤ 𝑐, we have ℓ(𝑥, 𝑦) ≤ 𝑐+ log 𝑑 for any 𝑦 ∈ [𝑑].
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2. ℓ(𝑥, 𝑦) is 𝑐ℓ Lipschitz w.r.t. 𝑥 for some numerical constant 𝑐ℓ.

Next, we make the following assumption for the activation function. It holds for

most activation functions including ReLU and tanh.

Assumption 6.4.1. Each activation function 𝜎𝑙 is (sub)-differentiable and 𝑐𝜎 coordinate-

wise Lipschitz for some numerical constant 𝑐𝜎 > 0. Also assume 𝜎𝑙(0) = 0.

Now we can prove the vanishing gain of the function values.

Theorem 6.4.6. Suppose 𝜃 is initialized within the compact set 𝐶𝑤 := {(𝑊0, . . . ,𝑊𝐿−1) :

‖𝑊𝑙‖op ≤ 𝑤} for some 𝑤 ≤ (𝛾/𝑐ℓ𝑐
𝐿
𝜎 )1/(𝐿−2). Then the iterate 𝜃𝑘 for every 𝑘 lies in

𝐶𝑤 and the empirical measure generated by SGD with a stepsize 𝜂 ≤ 1/𝛾 satisfies

E𝜃∼𝜇𝑛 [𝐿𝑆(𝜃)− 𝐿𝑆(𝐹 (𝜃))] = 𝒪( 1√
𝑛
).

We notice that the initialization choice may not always hold in practice, espe-

cially when there is batch normalization design. We further note that similar to the

above theorem, all (piece-wise) continuous scalar functions including the noise norm

are bounded by compactness, and hence should stabilize after long enough training.

However, in the third column of Figure 6-2, the noise norm does not really converge.

To explain this observation, we propose the following theorem that studies neural

networks with batch normalization.

For simplicity of analysis, we assume the last layer is one of the layers with batch

normalization. For a vector 𝑥, we use 𝑥2, |𝑥| and
√
𝑥 to denote its coordinate-wise

square, absolute value, and square root respectively. In the 𝑙-th layer, if it uses batch

normalization, given a batch ℬ = {(𝑥𝑖, 𝑦𝑖)}𝑚𝑖=1 sampled from some distribution 𝒫ℬ,

batch normalization makes the following transformation from {𝑥𝑖𝑙−1}𝑖∈ℬ to {𝑥𝑖𝑙}𝑖∈ℬ:

𝜇ℬ,𝑙−1 = 1
𝑚

∑︀
𝑖∈ℬ 𝑥

𝑖
𝑙−1, 𝜎2

ℬ,𝑙−1 = 1
𝑚

∑︀
𝑖∈ℬ
(︀
𝑥𝑖𝑙−1 − 𝜇ℬ,𝑙−1

)︀2
,

�̂�𝑖𝑙 =
𝑥𝑖
𝑙−1−𝜇ℬ,𝑙−1√
𝜎2
ℬ,𝑙−1+𝜖

, 𝑥𝑖𝑙 = 𝑎𝑙 · �̂�𝑖𝑙 + 𝑏𝑙,
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where 𝑎𝑙 and 𝑏𝑙 are the scale and shift parameters to be trained. We also use SGD

with weight decay to train the network.

Theorem 6.4.7 (With batch normalization). Suppose the parameter of batch nor-

malization layer 𝑎𝐿 is initialized within the compact set |𝑎𝐿| ≤ 2
√
𝑚/𝛾. Then the

empirical measure generated by SGD with 𝜂 ≤ 1/𝛾 satisfies

E𝜃∼𝜇𝑛,ℬ∼𝒫ℬ [𝐿ℬ(𝜃)− 𝐿ℬ(𝐹 (𝜃))] = 𝒪( 1√
𝑛
).

We have shown in this section how the expected change of the training loss in per

iterate update converges to zero for neural network training without any smoothness

or Lipschitzness assumptions. One weakness of our analysis is that the limit of the

training loss may not exist. However, we are not sure whether or when in real-world

experiments this happens, due to some recent research on how the loss could further

improve or even diverge in extra long training epochs (> 500 epochs) [Liu et al., 2019,

Li et al., 2020, Wightman et al., 2021].

Another caveat is that our gain is measured in terms of empirical measure instead

of the last iterate distribution. On the theory side, it is very easy to construct

nonconverging last iterate distribution by inducing some periodic loops. On the

practice side, we believe that further efforts in understanding last iteration stability

are required.

In the next section, by utilizing the structures of stochastic gradient descent, we

see some interesting implications if we assume that the iterates are from a distribution

when the change in training loss is zero.

6.5 Implications of the invariant measure theorem

While we have taken the first step, simply showing that the change in training loss

converges to zero may not be interesting enough. In particular, up to now, the

analysis in the previous section has not explained when and why the function value
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could decrease. In this section, we look at implications of the invariant measure

perspective from a different angle. We assume that the iterates already come from a

distribution where the per step change is zero

E𝜃∼𝜇𝑘
[𝐿𝑆(𝜃)− 𝐿𝑆(𝐹 (𝜃))] = 0,

and see what it implies in real world experiments.

6.5.1 Decreasing stepsize leads to smaller objective values

One well-known observation in neural network training is that when the training

loss plateaus, reducing the learning rate can further reduce the objective. This phe-

nomenon can be proved in theory if the function has globally bounded noise and

smoothness constant. However, as we showed that the smoothness and noise level

changes adversarially to the step size. In this section, we provide a partial explana-

tion on when a smaller step size can decrease the function value. In particular, we

consider the neural network setup introduced in Section 6.4.2. We make the following

assumption:

Assumption 6.5.1. The neural network is second order differentiable though may

not necessarily have bounded smoothness.

Then we could prove that reducing the step size by enough ratio would result in

a decrease in function value.

Theorem 6.5.1. Consider the stochastic gradient update 𝐹 : 𝒳 → 𝒳 on a compact

set defined as 𝐹 (𝜃) = 𝜃 − 𝜂𝑔(𝜃) for a fixed step size 𝜂 > 0. Let 𝜇 be the invariant

distribution such that E𝐹,𝜃∼𝜇[𝐿𝑆(𝜃)] = E𝐹,𝜃∼𝜇[𝐿𝑆(𝐹 (𝜃))]. If 𝜇 is not supported on

stationary points (i.e. E𝜃∼𝜇[‖∇𝑓(𝜃)‖22] > 0), then there exists a small enough 𝑐 ∈

(0, 1) such that for any positive step size 𝜂′ < 𝑐𝜂, the update 𝐹 ′(𝜃) = 𝜃 − 𝜂′𝑔(𝜃) will

lead to a smaller function value, i.e.

E𝐹 ′,𝜃∼𝜇[𝐿𝑆(𝐹 ′(𝜃))] < E𝜃∼𝜇[𝐿𝑆(𝜃)].
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Proof. See Appendix 6.7.7.

The above theorem states that once the change in loss vanishes, by selecting a

smaller step size, one could further reduce the loss. This reflects the observation

in Figure 6-1. The challenge in the proof is that reducing the step size might lead

to worse smoothness that is too large for the step size, and hence may increase the

training objective. To prove the theorem, we draw intuition from the proofs of [Zhang

et al., 2020b] and consider the line integral as an expectation. We then apply Markov

inequality to control the level of variation caused by nonsmoothness.

6.5.2 Connections to edge-of-stability and relaxed smoothness

We now provide an informal discussion on how the invariant measure prospective can

give insight to the edge-of-stability observation and relaxed smoothness phenomenon.

Our argument will be informal and heuristic, and somewhat speculative. We be-

lieve a rigorous analysis is both interesting and challenging and leave them as future

directions.

We start from the equation in the proof of the previous theorem in Appendix 6.7.7:

E𝜃,𝑔[‖∇𝐿𝑆(𝜃)‖22] = E𝜃,𝑔

[︂
𝜂

∫︁ 1

0

∫︁ 1

0

⟨∇𝐿𝑆(𝜃)− 𝑔(𝜃),∇2𝐿𝑆(𝛾𝜃,𝑔(𝑡𝜏𝜂))𝑔(𝜃)⟩𝑑𝑡𝑑𝜏
]︂
,

where 𝑔(𝜃) is the stochastic gradient and 𝛾𝜃,𝑔(𝜃)(𝑟) = 𝜃 − 𝑟𝑔(𝜃) denotes the line

segment. Clearly, both sides are positive. We boldly extract an equation

Grad2 = 𝜂Σℒ𝐺, (6.10)

where Grad denotes the gradient norm, Σ denotes the noise norm, ℒ denotes the

sharpness and𝐺 denotes the square root of the second moment of stochastic gradients.

This is of course very rough, and is only true when we replace the inner product on

the right hand side with its Cauchy-Schwartz upper bound, yet it has some interesting

connection to the following two observations.

First, we recall the edge-of-stability framework [Cohen et al., 2021], which observes
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that the actual smoothness constant during training neural network has an inverse

relation to step size. This is true from the above equation if we hold Grad, 𝜂,Σ, 𝐺

constant.

Second, in another work [Zhang et al., 2019b], the authors identified a positive

correlation between the gradient norm and the smoothness constant. This relation

can also be extracted from the equation if all other quantities are held constant.

In fact, as we observe that in practice, the relation between the sharpness and

step size is not a direct inverse but indeed has some negative correlation. Therefore,

we believe by studying the property of the equilibrium, one could understand why

many counter-intuitive behaviors could happen.

6.6 Additional experiments details

In this section, we add some additional experiments and experimental details that

supplement the results in Section 6.2. We showed that the observed phenomenon

happens in large scale tasks. To supplement the result, we briefly comment on how

smaller dataset presents different behavior by taking Cifar experiment as an example.

In the end, we will discuss some experimental details on how the quantities in (6.2)

are estimated.
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Figure 6-7: The estimated stats vs epoch for Cifar10 training. The learning rate
starts at 0.1 and decay by a factor of 10 at epoch 100 and epoch 150.
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6.6.1 Cifar10 Experiment

In this section, we show how noise, gradient norm and training loss evolve in Cifar10

with ResNet training. Our training procedure is based on the implementation2. The

key result is demonstrated in Figure 6-7. We observe that in this case, the gradient

norm indeed converges to 0. In fact, this is expected, as for cross entropy loss, the

train loss could bound the gradient norm when weights are bounded.

The implications of the above observations are many. First, this separation behav-

ior between small overfitting model on Cifar10 and larger model on ImageNet shows

that the study of overparametrization and convergenece to stationary point may still

be true in many cases. However, we should be careful that these analysis does not

apply to larger models that do not overfit the data. Second, this shows that the SDE

modeling in [Li et al., 2020, Lobacheva et al., 2021] can also be valid. It also shows

that our work studies a problem of a different nature (non-zero grad norm).

6.6.2 Estimating the statistics

Here we provide additional details on how the values in (6.2) are estimated. Notice

that these quantities are defined using all 𝑁 data points in the entire dataset, which

is too large in practice. Therefore, we use a random batch 𝑚 < 𝑁 to estimate

the quantities. For training loss, gradient norm, and noise norm, the estimation is

straight-forward.

By Jensen’s inequality, the estimated norms would be larger than the true value.

However, the value should converge as the sampled batch size 𝑚 converges to the total

data number 𝑁 . We show in Figure 6-8 and Figure 6-9 how these estimator values

converge in practice. Based on these plots, we select the batch size to be 1.6×105 for

ImageNet training and the token size to be 9 × 105 for the WT103 training. These

sample sizes give a high enough precision level for making the observations in previous

sections. Note that the estimated smoothness for the ImageNet experiment has very

large variations, and hence we didn’t make many comments on that plot throughout

2https://github.com/kuangliu/pytorch-cifar
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this chapter.
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Figure 6-8: The estimated stats vs batch size for ImageNet training.
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Figure 6-9: The estimated stats vs batch size for WT103 training.

6.7 Proofs

6.7.1 Proof of Theorem 6.4.1

Proof. By the fact that 𝜑 ∘ 𝐹 : 𝒳 → R has bounded value [−𝑀,𝑀 ], we can denote

the subgaussian norm at 𝜃 as

𝜎(𝜃) = inf{𝜎 > 0|P(‖𝜑(𝐹 (𝜃))− E[𝜑(𝐹 (𝜃))]‖ ≥ 𝑡) ≤ 2𝑒−𝑡2/2𝜎2}.

In fact, ∀𝜃, 𝜎(𝜃) ≤ 𝑀 < ∞. Hence, we can further denote the upperbound on the

sub-Gaussian norm as

𝜎 = sup
𝜃
𝜎(𝜃).
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Then we consider two distributions. One is the empirical distribution of a sampled

trajectory,

𝜇𝑛 =
1

𝑛

𝑛∑︁
𝑡=1

𝛿𝜃𝑡 .

The other one is the pushforward distribution 𝜇𝑘(𝐹−1) as defined in (6.5). Then,

E𝜃∼𝜇𝑛 [𝜑(𝜃)− 𝜑(𝐹 (𝜃))] =
1

𝑛

𝑛∑︁
𝑡=1

𝜑(𝜃𝑡)−
1

𝑛

𝑛∑︁
𝑡=1

𝜑(𝐹 (𝜃𝑡))

=
1

𝑛
(𝜑(𝜃0)− 𝜑(𝐹 (𝜃𝑛))) +

1

𝑛

𝑛∑︁
𝑡=1

𝜑(𝜃𝑡)− 𝜑(𝐹 (𝜃−1))

= 𝒪
(︂

1

𝑛

)︂
+

1

𝑛

𝑛∑︁
𝑡=1

𝜑(𝜃𝑡)− 𝜑(𝐹 (𝜃𝑡−1)).

Then the claim follows by applying Hoeffding’s inequality on the second term.

6.7.2 Proof of Lemma 6.4.2

Proof. First, we construct a function

𝑓(𝜃) =

⎧⎪⎨⎪⎩−
1

𝑛+1
𝜃 𝜃 ≤ 0,

𝑛
𝑛+1

𝜃 𝜃 > 0.

(6.11)

We notice that if 𝜃0 = 0.2
𝑛+1

, then 𝜃𝑘 = −1 + 𝑘−0.8
𝑛+1

, 𝑘 ≤ 𝑛 and 𝜃0, 𝜃1, 𝜃2...𝜃𝑛 is periodic

with period 𝑛 + 1. We further notice that within a period 𝜃1, ..., 𝜃𝑛+1, the function

values are distinct, and |𝑓(𝜃0) − 𝑓(𝜃1)| ≥ 0.5. Therefore, for any 𝑛 > 0, there exists

a 𝑡 > 𝑛 such that

|𝑀𝑡 −𝑀𝑡−1| =
1

𝑛
|𝑓(𝜃𝑡+𝑛−1)− 𝑓(𝜃𝑡−1)| ≥

1

2𝑛
.
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6.7.3 Proof of Theorem 6.4.4

Proof. Since 𝒳 is a compact metric space, we can find a dense countable set of the

family of continuous functions 𝐶(𝒳 ), denoted as {𝜑1, 𝜑2...}. Since 𝒳 is compact, we

have that 𝜇𝑘(𝜑𝑗) exists for any 𝑘, 𝑗. Therefore, by the diagonal argument, there exists

a subsequence {𝑛𝑘}𝑘 such that for all 𝑗 = 1, 2, ...,

lim
𝑘→∞

1

𝑛𝑘

∑︁
𝑙≤𝑛𝑘

𝜑𝑗(𝜃𝑙) = 𝐽(𝜑𝑗).

Then by denseness of the set {𝜑1, 𝜑2...}, we know that the above limit also exists for

any 𝜑 ∈ 𝐶(𝒳 ). Denote the functional as

𝐽(𝜑) = lim
𝑘→∞

1

𝑛𝑘

∑︁
𝑙≤𝑛𝑘

𝜑(𝜃𝑙). (6.12)

Since 𝐽 is obviously linear and bounded, there exist a unique probability measure 𝜑

such that 𝐽(𝜑) = 𝜇(𝜑).

The invariance of 𝜇 follows by the fact that for any continuous 𝜑,

lim
𝑘→∞
|E𝜃∼𝜇𝑘

[𝜑(𝜃)− 𝜑(𝐹 (𝜃))] | = lim
𝑘→∞

1

𝑛𝑘

∑︁
𝑙≤𝑛𝑘

𝜑(𝜃𝑙)−
1

𝑛𝑘

∑︁
𝑙≤𝑛𝑘

𝜑(𝐹 (𝜃𝑙))

= lim
𝑘→∞

1

𝑛𝑘

∑︁
𝑙≤𝑛𝑘

𝜑(𝜃𝑙)−
1

𝑛𝑘

∑︁
𝑙≤𝑛𝑘

𝜑(𝜃𝑙+1)

+ lim
𝑘→∞

1

𝑛𝑘

∑︁
𝑙≤𝑛𝑘

𝜑(𝜃𝑙+1)−
1

𝑛𝑘

∑︁
𝑙≤𝑛𝑘

𝜑(𝐹 (𝜃𝑙))

= lim
𝑘→∞

1

𝑛𝑘

(𝜑(𝜃1)− 𝜑(𝜃𝑛𝑘+1))

+ lim
𝑘→∞

1

𝑛𝑘

∑︁
𝑙≤𝑛𝑘

(𝜑(𝜃𝑙+1)− 𝜑(𝐹 (𝜃𝑙)))→ 0. (6.13)

In the last line, the first term goes to zero by boundedness of function value on the

compact set. The second term goes to zero by noticing that the sequence

𝑀𝑛 =
1

𝑛

∑︁
𝑙≤𝑛

(𝜑(𝜃𝑙+1)− 𝜑(𝐹 (𝑥𝑙))
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is a martingale sequence. By the fact that each the induced martingale difference

sequence has uniformly bounded sub-Gaussian norm, we can apply Hoeffding’s in-

equality and know that 𝑀𝑛 converge in probability to 0, which implies convergence

in distribution.

6.7.4 Proof of Lemma 6.4.5

Proof.

1. Let 𝑥𝑚 = (max𝑖 𝑥𝑖 + min𝑖 𝑥𝑖)/2 and define 𝑧𝑖 = 𝑥𝑖 − 𝑥𝑚. We know |𝑧𝑖| ≤ 𝑐/2.

Then we have

|ℓ(𝑥, 𝑦)| =
⃒⃒⃒
𝑧𝑦 + 𝑥𝑚 − log

(︁∑︀𝑑
𝑗=1 𝑒

𝑧𝑗+𝑥𝑚

)︁⃒⃒⃒
=
⃒⃒⃒
𝑧𝑦 − log

(︁∑︀𝑑
𝑗=1 𝑒

𝑧𝑗

)︁⃒⃒⃒
≤𝑐/2 + log

(︀
𝑑𝑒𝑐/2

)︀
=𝑐+ log 𝑑.

2. As ℓ is differentiable, it suffices to bound its gradient norm. For any fixed

1 ≤ 𝑘 ≤ 𝑑, we have

𝜕ℓ(𝑥, 𝑦)

𝜕𝑥𝑘
= 𝛿𝑦,𝑘 −

𝑒𝑥𝑘∑︀𝑑
𝑗=1 𝑒

𝑥𝑗
.

Then we can bound

‖𝜕ℓ(𝑥, 𝑦)

𝜕𝑥
‖2 =

√︂∑︀𝑑
𝑘=1

(︁
𝜕ℓ(𝑥,𝑦)
𝜕𝑥𝑘

)︁2
≤

⎯⎸⎸⎸⎷1 +

∑︀𝑑
𝑘=1 𝑒

2𝑥𝑘(︁∑︀𝑑
𝑗=1 𝑒

𝑥𝑗

)︁2
≤
√

2.
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6.7.5 Proof of Theorem 6.4.6

Proof. Denote 𝜌 = 𝑤𝑐𝜎. Then it is easy to show that within 𝐶𝑤, we have ‖𝑥𝑙‖2 ≤ 𝜌𝑙

for every 𝑙. We define 𝑧𝑙+1 = 𝑊𝑙𝜃𝑙 and thus 𝑥𝑙 = 𝜎𝑙(𝑧𝑙). For any mini-batch ℬ =

{(𝑥𝑖, 𝑦𝑖)}𝑚𝑖=1, we can bound the gradient norm of the loss.

⃒⃒⃒⃒
𝜕𝐿ℬ

𝜕𝑊𝑙

⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒ 1

𝑚

∑︁
𝑖∈ℬ

𝑥𝑖𝑙(∇𝑥ℓ(𝑥
𝑖
𝐿, 𝑦

𝑖))⊤𝐷
(𝑖)
𝐿

(︃
𝐿−1∏︁
𝑠=𝑙+1

𝑊𝑠𝐷
(𝑖)
𝑠

)︃⃒⃒⃒⃒
⃒ ≤ 𝑐ℓ𝑐𝜎𝜌

𝐿−1 ≤ 𝛾𝑤,

where we define 𝐷(𝑖)
𝑙 = Diag(𝜎′

𝑙(𝑧
𝑖
𝑙 )). By the SGD rule, we have

𝑊 𝑘+1
𝑙 =(1− 𝜂𝛾)𝑊 𝑘

𝑙 − 𝜂
𝜕𝐿ℬ

𝜕𝑊𝑙

.

Choosing 𝜂 ≤ 1/𝛾, if ‖𝑊 𝑘
𝑙 ‖op ≤ 𝑤, we also have

‖𝑊 𝑘+1
𝑙 ‖op ≤ (1− 𝜂𝛾)𝑤 + 𝜂𝛾𝑤 ≤ 𝑤.

By induction on 𝑘, the iterates of SGD optimizing the above objective always lie in

𝐶𝑤 if the stepsize satisfies 𝜂 ≤ 1/𝛾. Then we have ‖𝑥𝑖𝐿‖2 ≤ 𝜌𝐿 and can bound that

for any 𝑘

|𝐿𝑆(𝜃𝑘)| ≤ log 𝑑+ 𝑐ℓ‖𝑥𝑖𝐿‖2 ≤ log 𝑑+

(︂
𝛾

𝑐ℓ𝑐2𝜎

)︂𝐿/(𝐿−2)

.

The claim then follows by applying Theorem 6.4.1.

6.7.6 Proof of Theorem 6.4.7

Proof. We first show that the coordinates of �̂�𝑖𝐿 are bounded.

⃒⃒
�̂�𝑖𝐿
⃒⃒

=

⃒⃒
𝑥𝑖𝐿−1 − 𝜇ℬ,𝐿−1

⃒⃒√︁
1
𝑚

∑︀
𝑖∈ℬ
(︀
𝑥𝑖𝐿−1 − 𝜇ℬ,𝐿−1

)︀2
+ 𝜖
≤
√
𝑚.
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As in Theorem 6.4.6, we show that during the training process, 𝑎𝐿 always satisfies

|𝑎𝐿| ≤ 2
√
𝑚/𝛾. Note that

⃒⃒⃒⃒
𝜕𝐿ℬ

𝜕𝑎𝐿

⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒ 1

𝑚

∑︁
𝑖∈ℬ

�̂�𝑖𝐿 · ∇𝑥ℓ(𝑥
𝑖
𝐿, 𝑦

𝑖)

⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒ 1

𝑚

∑︁
𝑖∈ℬ

𝑑∑︁
𝑘=1

(�̂�𝑖𝐿)𝑘

(︃
𝛿𝑦,𝑘 −

𝑒(𝑥
𝑖
𝐿)𝑘∑︀𝑑

𝑗=1 𝑒
(𝑥𝑖

𝐿)𝑗

)︃⃒⃒⃒⃒
⃒

≤max
𝑖∈ℬ

⃒⃒⃒⃒
⃒(�̂�𝑖𝐿)𝑦 −

∑︀𝑑
𝑘=1(�̂�

𝑖
𝐿)𝑘𝑒

(𝑥𝑖
𝐿)𝑘∑︀𝑑

𝑗=1 𝑒
(𝑥𝑖

𝐿)𝑗

⃒⃒⃒⃒
⃒

≤2
√
𝑚.

Therefore if
⃒⃒
𝑎𝑘𝐿
⃒⃒
≤ 2
√
𝑚/𝛾, we have

⃒⃒
𝑎𝑘+1
𝐿

⃒⃒
=

⃒⃒⃒⃒
(1− 𝜂𝛾)𝑎𝑘𝐿 − 𝜂

𝜕𝐿ℬ

𝜕𝑎𝑙

⃒⃒⃒⃒
≤ (1− 𝜂𝛾) · 2

√
𝑚/𝛾 + 2𝜂

√
𝑚 ≤ 2

√
𝑚/𝛾.

Then by induction, the above is true for every 𝑘. By Lemma 6.4.5, we have for every

𝑘

𝐿ℬ(𝜃𝑘) ≤ 4𝑚/𝛾 + log 𝑑.

Then the training loss |𝐿ℬ(𝜃𝑘)| ≤ 4𝑚/𝛾+log 𝑑 is bounded during the training process

if the stepsize satisfies 𝜂 ≤ 1/𝛾. The theorem follows by applying Theorem 6.4.1.

6.7.7 Proof of Theorem 6.5.1

Proof. For simplicity, we denote

𝑓(𝜃) := 𝐿𝑆(𝜃),

𝛿 := E𝜃∼𝜇[‖∇𝑓(𝜃)‖22] > 0.
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By compactness of 𝒳 , we could denote the following quantities:

𝐺 = sup
𝜃∈𝒳
‖𝑔(𝜃)‖2 <∞,

𝑀2 = sup
𝜃,𝜁∈𝒳

E𝑧∼unif[𝜃,𝜁][‖∇2𝑓(𝑧)− E𝑧′∼unif[𝜃,𝜁][∇2𝑓(𝑧′)]‖2op] <∞,

Σ = sup
𝜃∈𝒳
‖𝑔(𝜃)−∇𝑓(𝜃)‖2 <∞.

For clarity, note that for any function 𝑓 : 𝒳 → R𝑑,

E𝑧∼unif[𝜃,𝜁][𝑓(𝑧)] =

∫︁ 1

0

𝑓(𝑡𝜃 + (1− 𝑡)𝜁)𝑑𝑡.

Therefore, we have that for any 𝑐 ∈ (0, 1)

∫︁ 1

0

‖∇2𝑓(𝑐𝑡𝜃 + (1− 𝑐𝑡)𝜁)− E𝑧∼unif[𝜃,𝜁][∇2𝑓(𝑧)]‖2op𝑑𝑡

=
1

𝑐

∫︁ 𝑐

0

‖∇2𝑓(𝑡𝜃 + (1− 𝑡)𝜁)− E𝑧∼unif[𝜃,𝜁][∇2𝑓(𝑧)]‖2op𝑑𝑡

≤1

𝑐
E𝑧∼unif[𝜃,𝜁][‖∇2𝑓(𝑧)− E𝑧′ [∇2𝑓(𝑧′)]‖2op].

Therefore, by Jensen’s inequality, we have

∫︁ 1

0

‖∇2𝑓(𝑐𝑡𝜃 + (1− 𝑐𝑡)𝜁)− E𝑧∼unif[𝜃,𝜁][∇2𝑓(𝑧)]‖op𝑑𝑡 ≤
√︂
𝑀2

𝑐
. (6.14)

By applying Taylor expansion twice we get the following equations,

E𝜃,𝐹 [𝑓(𝜃)− 𝑓(𝐹 (𝜃))] = E𝜃,𝑔[𝑓(𝜃)− 𝑓(𝜃 − 𝜂𝑔(𝜃))]

= E𝜃,𝑔[−𝜂
∫︁ 1

0

⟨𝑔(𝜃),∇𝑓(𝛾𝜃,𝑔(𝜃)(𝜂𝑡))⟩𝑑𝑡]

= E𝜃,𝑔[−𝜂‖∇𝑓(𝜃)‖22 + 𝜂

∫︁ 1

0

⟨𝑔(𝜃)−∇𝑓(𝜃),∇𝑓(𝛾𝜃,𝑔(𝜃)(𝜂𝑡))⟩𝑑𝑡]

= E𝜃,𝑔[−𝜂‖∇𝑓(𝜃)‖22 + 𝜂

∫︁ 1

0

⟨𝑔(𝜃)−∇𝑓(𝜃),∇𝑓(𝛾𝜃,𝑔(𝜃)(𝜂𝑡))−∇𝑓(𝜃)⟩𝑑𝑡]

= E𝜃,𝑔[−𝜂‖∇𝑓(𝜃)‖22 − 𝜂2
∫︁ 1

0

∫︁ 1

0

⟨𝑔(𝜃)−∇𝑓(𝜃),∇2𝑓(𝛾𝜃,𝑔(𝑡𝜏𝜂))𝑔(𝜃)⟩𝑑𝑡𝑑𝜏 ].

158



where 𝛾𝜃,𝑔(𝜃)(𝑟) = 𝜃 − 𝑟𝑔(𝜃) denotes the line segment.

By invariance of the function value, we get that

E𝜃,𝑔[−𝜂‖∇𝑓(𝜃)‖22 − 𝜂2
∫︁ 1

0

∫︁ 1

0

⟨𝑔(𝜃)−∇𝑓(𝜃),∇2𝑓(𝛾𝜃,𝑔(𝑡𝜏𝜂))𝑔(𝜃)⟩𝑑𝑡𝑑𝜏 ] = 0

=⇒ E𝜃,𝑔[‖∇𝑓(𝜃)‖22] = E𝜃,𝑔[𝜂

∫︁ 1

0

∫︁ 1

0

⟨∇𝑓(𝜃)− 𝑔(𝜃),∇2𝑓(𝛾𝜃,𝑔(𝑡𝜏𝜂))𝑔(𝜃)⟩𝑑𝑡𝑑𝜏 ].

Therefore we have that

E𝜃,𝐹 ′ [𝑓(𝜃)− 𝑓(𝐹 ′(𝜃))]

=E𝜃,𝑔[−𝑐𝜂‖∇𝑓(𝜃)‖22 − 𝑐2𝜂2
∫︁ 1

0

∫︁ 1

0

⟨𝑔(𝜃)−∇𝑓(𝜃),∇2𝑓(𝛾𝜃,𝑔(𝑡𝜏𝜂))𝑔(𝜃)⟩𝑑𝑡𝑑𝜏 ]

≤𝑐𝜂
(︂
−𝛿 + 𝑐Σ𝐺

√︁
𝑀
𝑐

)︂
,

where in the last line we used (6.14). The claim follows by setting 𝑐 small enough.
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Chapter 7

Conclusions and Future Work

7.1 Summary

We will conclude this thesis by first reviewing what we have discussed. We start in

Chapter 2 by introducing the oracle complexity framework of optimization analysis

and by doing this, we can have an accurate interpretation of theoretical convergence

rates. With the knowledge of theoretical results for optimization algorithms, we

then move on to identify the mismatch between neural network experiments and

optimization theory.

Once we described the different behaviors between theory predictions and neural

network experiments, we aim to address why the gap exists and how we could improve

the analysis in the next chapters. We do so by examining a few key assumptions in

the theory analysis, including those on function class, oracle, and optimality measure.

The first approach we take is to study the smoothness assumption. We show

in Chapter 7 that instead of bounding the smoothness with a global constant, the

empirical observation suggests that maybe the smoothness can be better modeled

by a gradient norm dependent function. Interestingly, we found that this model can

justify the faster convergence of gradient clipping, which is a very popular empirical

technique.

The second perspective we provide is to analyze the property of stochastic gradient

oracles. In particular, we found that the better performance of Adam against SGD is
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correlated with the existence of heavy-tailed stochastic noises. We show that in the

more noisy settings, SGD suffers from the problem more than ADAM and may not

converge. We further developed a new optimizer based on this intuition and improve

over the ADAM on Bert related training tasks.

In the next project, we become more pedantic and try to address the question:

“what theory can we develop if we do not ignore the fact neural networks can be non-

differentiable?” We provide the first nonasymptotic analysis for the set of Lipschitz,

potentially nondifferentiable, nonconvex functions. We achieve this by defining a new

optimality measure and utilize ideas from adaptive step size and momentum.

In the last project, we identified a key gap between optimization theory and

deep learning practice,namely, that during training with (stochastic) gradient descent,

weights do not converge to stationary points of the loss function. Our numerical

experiments reveal that this phenomenon cannot be eliminated by using a smaller

learning rate or more training epochs. We further show that this is prevalent in

applications from image classification to language modeling tasks. Using dynamical

systems theory, we show that the convergence of training loss is only in the time

average sense and that per iteration oscillation, though small compared to the long

term trend, is significant compared to the step size, confirming the oscillation of

iterates.

We hope that the perspectives and experiments in this thesis could provide re-

searchers with additional insights and inspire efforts down the path of practice-driven

theory research. However, we am well aware that this theis up till to is limited and

far from the ultimate goal—to construct theorems that can guide practice. We will

discuss some possible ideas and directions in the next chapter.

7.2 Discussions and future directions

The fact that theory and practice has a gap is well acknowledged in the machine

learning community. However, compared to the vastly expanding conference publi-

cations(Neurips accepted list increased by 3 times over five years), there has been
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limited research effort in trying to describe the mismatch and pinpoint the potential

causes. I believe that I have just scratched the surface and much work remains to be

done. We list some potential future directions below.

7.2.1 Adaptive algorithms and nonstationary system

The role of estimating moment with an moving average could need better understand-

ing. In particular, one idea is to view RMSProp as a clipping algorithm and prove

its convergence under shifting noise. The update for RMSProp can be written with

effective step-sizes ℎrms and ℎclip respectively as below:

𝑥𝑘+1 = 𝑥𝑘 − 𝛼

𝜖+
√

𝛽2𝑣𝑘+(1−𝛽2)|𝑔𝑘|2
𝑔𝑘 =: 𝑥𝑘 − ℎAdam𝑔𝑘 , and

𝑥𝑘+1 = 𝑥𝑘 − 𝜂𝑘 min
{︀

𝜏𝑘
|𝑔𝑘|
, 1
}︀
𝑔𝑘 =: 𝑥𝑘 − ℎclip𝑔𝑘.

Given any set of parameters for RMSProp, if we set the parameters for ACClip as

𝜂𝑘 = 2𝛼
𝜖+

√
𝛽2𝑣𝑘

and 𝜏𝑘 = 𝜖+
√
𝛽2𝑣𝑘√

1−𝛽2
,

then 1
2
ℎclip ≤ ℎAdam ≤ 2ℎclip. Thus, RMSProp can be seen as clipping where 𝜏𝑘 is

set using
√
𝑣𝑘, which estimates E[|𝑔𝑘|2]1/2, and a correspondingly decreasing step-size.

An analysis of RMSprop (and Adam) by viewing them as adaptive clipping methods

is a great direction for future work.

7.2.2 Different smoothness conditions

In chapter 3, we showed that different smoothness condition would motivate the design

of different optimal algorithms. Though our proposed smoothness condition relaxes

the usual Lipschitz assumption, it is unclear if there is an even better condition that

also matches the experimental observations while also enabling a clean theoretical

analysis. Second, we only study convergence of clipped gradient descent. Studying

the convergence properties of other techniques such as momentum, coordinate-wise

learning rates (more generally, preconditioning), and variance reduction is also inter-
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esting. Finally, the most important question is: “can we design fast algorithms based

on relaxed conditions that achieve faster convergence in neural network training?”

Our experiments regarding the smoothness esitmation also have noteworthy im-

plications. First, though advocating clipped gradient descent in ResNet training

is not a main point of this work, it is interesting to note that gradient descent and

clipped gradient descent with large step sizes can achieve a similar test performance as

momentum-SGD. Second, we learned that the performance of the baseline algorithm

can actually beat some recently proposed algorithms. Therefore, when we design or

learn about new algorithms, we need to pay extra attention to check whether the

baseline algorithms are properly tuned.

7.2.3 Nonconvex nondifferentiable problems

Our results in Chapter 5 provide the first non-asymptotic analysis of nonconvex opti-

mization algorithms in the general Lipschitz continuous setting. Yet, they also open

further questions. The first question is whether the current dependence on 𝜖 in our

complexity bound is optimal. A future research direction is to try to find provably

faster algorithms or construct adversarial examples that close the gap between upper

and lower bounds on 𝜖. Second, the rate we obtain in the deterministic case requires

function evaluations and is randomized, leading to high probability bounds. Can

similar rates be obtained by an algorithm oblivious to the function value? Another

possible direction would be to obtain a deterministic convergence result. More spe-

cialized questions include whether one can remove the logarithmic factors from our

bounds. Aside from the above questions on the rate, we can take a step back and

ask high-level questions. Are there better alternatives to the current definition of

(𝛿, 𝜖)-stationary points? One should also investigate whether everywhere directional

differentiability is necessary.

In addition to the open problems listed above, our work uncovers another very

interesting observation. In the standard stochastic, nonconvex, and smooth setting,

stochastic gradient descent is known to be theoretically optimal [Arjevani et al., 2019],

while widely used practical techniques such as momentum-based and adaptive step
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size methods usually lead to worse theoretical convergence rates. In our proposed

setting, momentum and adaptivity naturally show up in algorithm design, and become

necessary for the convergence analysis. Hence we believe that studying optimization

under more relaxed assumptions may lead to theorems that can better bridge the

widening theory-practice divide in optimization for training deep neural networks,

and ultimately lead to better insights for practitioners.

7.2.4 Neural network training as a dynamic system

We took the first step in providing an invariant measure perspective according to

which instead of analyzing a single trajectory of weights during training we study

whether distribution of values that the weights take under the action of the gradient-

based algorithms converge to an invariant measure. More specifically, we showed that

the empirical measure has a subsequence that converges to an invariant measure and

provide a negative example from [Yoccoz] that shows the sequence of distributions

itself may not converge. An open question we left unanswered is whether the sequence

itself can converge when the dynamical system follows a fixed step size update. A

more interesting question for this research is to characterize the invariant measure

and the conditions under which it may be unique, as well as to study convergence

rate by exploiting more of the structure from neural network and gradient updates.

Our result only proves that that for multilayer perceptron, the weights under the

action of the gradient update stay within a compact invariant set. Yet, we did not

analyze the dependence of function properties (such as smoothness) on the initializa-

tion and optimizer hyperparameters. Understanding the dependence may naturally

lead to better understanding and better algorithms. Another interesting question for

future research would be to investigate the properties of the invariant measure and

training loss as a function of the stepsize.
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7.3 Concluding words

I feel fortunate to be able to run real-world experiments as a theory student, and to

be able to read and examine theory as an engineer. I hope to close this thesis by citing

the starting words from the average case analysis of simplex method from Spielman

and Teng [2009], which the authors attribute to Professor Donald E. Knuth: “My ex-

periences also strongly confirmed my previous opinion that the best theory is inspired

by practice and the best practice is inspired by theory.”
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