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Abstract

Modern applications place an enormous demand on networks to deliver high through-
put and low delay. To support applications, computer networks are evolving rapidly.
Several new network environments such as datacenter and wireless networks have
emerged recently and become prominent. While bandwidth has been increasing
steadily in these network environments, they also exhibit significant variability in
network conditions. For example, the capacity of a cellular link varies with time.
Deployed congestion control solutions struggle to adapt to these variations, and their
performance is far from optimal in many environments: the feedback used by these
schemes is often imprecise or fails to capture variations in the network conditions fast
enough.

To improve performance, we need accurate and timely feedback. To this end, we
advocate designing separate feedback mechanisms tailored specifically to the nuances
of each network environment. Understanding how conditions are varying in each
environment can help us unravel what kind of information about the network condi-
tions can improve adaption to such variations. Additionally, the feedback mechanism
should be practical and only involve changes that are within the administrative and
hardware constraints of the given network environment. Following this philosophy,
this dissertation contributes separate high performance congestion control solutions
for three prominent network environments: (1) Wireless Networks; (2) Datacenter
Networks; (3) Wide-area Internet.
ABC is a simple explicit congestion control protocol for network paths with wireless
links. ABC adapts to variations in the link capacity quickly and accurately. Com-
pared to deployed schemes, ABC either achieves 50% higher throughput for similar
delays or 3× lower delays for similar throughput.
BFC is a practical per-hop per-flow flow control architecture for datacenter networks
with bursty traffic. Compared to deployed schemes, BFC responds to congestion
faster, and achieves 2.3 - 60× lower tail latency for short flows and 1.6 - 5× better
average completion time for long flows.
Nimbus proposes a new feedback mechanism, elasticity detection, to robustly charac-
terize the nature of cross-traffic competing a flow. Nimbus enables low delay conges-



tion control in the Internet without any router modifications. Compared to deployed
schemes, Nimbus achieves 40-50 ms lower delays in the Internet for similar through-
put.
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Title: Fujitsu Chair Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Mohammad Alizadeh
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Change is the only constant.

Heraclitus

1.1 Motivation

Congestion control is one of the most prominent problems in computer networking.

Early solutions for congestion control primarily focussed on solving the problem of

“congestion collapse” [73] in wide area networks (WANs). The goal was to keep the

networking running in the event of congestion. Since the 1990’s, computer networks

have undergone a tremendous transformation. This transformation necessitates that

we think of congestion control in a new light. To understand why, we need to under-

stand why and how computer networks have evolved.

New and emerging applications place immense demand on computer networks to

deliver high throughput, low latency communication. To support applications, several

new network environments have emerged recently and become prominent. Large-scale

distributed computing have lead to the development of modern datacenter networks

that connect millions of machines together. The need for high speed, low latency

mobile Internet connectivity has lead to advancements in both Wi-Fi and Cellular

networks. Even traditional WANs have transformed; we have seen a continuous in-
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Figure 1-1: Variations in link capacity for a cellular link.

crease in link speeds and an increase in heterogeneity of protocols managing the

network. These different environments differ from traditional networks in many as-

pects, but they share a common characteristics: they are highly variable. Congestion

control is challenging in such environments.

Congestion control aims to provide high throughput and low latency for data

transfers. At a high level, congestion control aims to admit as much traffic as pos-

sible into the network without causing any congestion. Typically, the sender (or the

router) continuously adjusts the transfer rate of a flow based on feedback from the

network. Feedback signals such as round trip time (RTT), packet drops, etc. provide

information about the state of the network. It is difficult to adapt the transfer rate

in modern networks with rapidly varying network conditions.

1.1.1 Modern Networks are Highly Variable

In this dissertation, we target the three most prominent, highly variable networks:

(1) Wireless networks; (2) Datacenter networks; (3) Wide-area Internet.

Wireless Networks: Unlike wired links, wireless links (both Cellular and Wi-Fi)

can exhibit great variations in link capacity over time. Within a fraction of a second,

the link capacity can double or reduce to half. These variations can occur for several

reasons. For example, if the cellular receiver is moving, then the instantaneous channel

quality can change causing variations in the link capacity. Similarly, if the number

of users competing at a cellular base station is changing, then the frequency bands
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and time slots allocated to a user can change causing variations in the link capacity.

Fig. 1-1 shows the variations in link capacity for a Verizon LTE link.

The key challenge for congestion control on such links is to adapt to variations

in the link capacity. Sending traffic below the link capacity causes underutilization

and loss of throughput. Exceeding the link capacity builds up a queue at the router,

degrading latency.

Datacenter Networks: Modern datacenters have high speed links (up to 400 Gbps).

Majority of the traffic is composed of very short flows that last only a few RTTs on

such high speed links. Cross-traffic competing with a flow can be very bursty in such

settings. The appropriate transfer rate for a flow can change significantly on RTT

timescales. Fig. 1-2 shows variations in the fairshare rate of a long running flow at

a single datacenter link when competing with cross-traffic across different linkspeeds.

The cross-traffic flow sizes are derived from an industry workload, and the average

cross-traffic load is 60%. As link speeds increase, cross-traffic flows arrive and depart

more quickly, the fairshare rate of the long flow fluctuates more significantly.

Adapting to traffic conditions quickly and limiting congestion is critical in data-

centers. In particular, datacenter operators often care about the tail latency of flows,

even a small amount of queue build up can degrade performance [41]. Further, data-

center switches often have small buffers, slow response to congestion can cause packet

drops which can be particularly expensive in such settings [150].

Wide-area Internet: The last decade has seen widespread deployment of many
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new congestion control protocols such as Cubic [63], Compound [133], BBR [36],

etc. Congestion control in the Internet is no longer governed by a single solution. A

flow on the Internet can now end-up competing with flows which are using different

congestion control protocols. The throughput and latency of the flow is not only

dependent on its own congestion control but also on the protocols used by competing

flows which are unknown to the sender.

This uncertainty and heterogeneity is a deterrent to achieving both high through-

put and low delays in the Internet. A flow can use a deployed congestion control

protocol to compete appropriately with the cross-traffic. However, the deployed pro-

tocols often fill up the buffers and incur high delays. To solve this, researchers have

proposed many “delay-controlling” protocols (e.g., Vegas [31], FAST [140], LED-BAT

[121], Copa [22]) that can provide lower delays compared to these deployed protocols.

However, the throughput of such delay-controlling protocols is dismal when competing

against deployed protocols.

Our thesis is that, to overcome the throughput-delay trade-off, congestion control

should take into account the nature of competing cross-traffic flows. The salient aspect

of this nature is cross-traffic elasticity. If the cross-traffic is elastic, i.e., it is trying to

grab more bandwidth at the bottleneck, then the sender should use a “competitive”

congestion control protocol to compete appropriately without necessarily attempting

to reduce delays. Otherwise, the sender can safely use a delay-controlling protocol to

reduce delays without worrying about losing throughput.

1.1.2 Existing Solutions are not Enough

Existing congestion control solutions are far from optimal in these highly variable

networks. There are two reasons. First, these solutions make congestion control

decisions based on feedback which is inaccurate/imprecise. Such feedback signals do

not provide all the necessary information required to adapt the transfer rate. For

example, packet drops or explicit congestion notification (ECN) [118] marks only

signal congestion and do not provide any information about the degree to which the

bottleneck link is underutilized. In wireless networks, when the link capacity opens
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up and network becomes underutilized, such signals do not provide information to

the sender on how to increase the rate and match the link capacity. Similarly, in

wide-area Internet, existing feedback mechanisms don’t provide any information on

the nature of cross-traffic that can help guide congestion control decisions. Because

of imprecise feedback, existing schemes face a trade-off in both these environments:

they either achieve low latency or high throughput but not both.

Second, typically the sender adjusts the sending rate based on feedback signals

echoed by the receiver. There is a delay of one end-to-end RTT in the feedback. In

datacenter networks, the state of the network and the appropriate sending rate can

change significantly within the feedback delay. Acting on such stale information is

particularly bad for tail latency of flows. To get around this problem, datacenter

operators often run their network at low utilization wasting usable bandwidth.

1.2 Accurate, Timely, and Practical Feedback Mech-

anisms for Congestion Control

Our thesis is that we can improve congestion control performance by using accu-

rate, timely, and practical feedback mechanisms that help adapt well to variations

in the network conditions. A one-size-fits-all mechanism that ignores the differences

in these different network environments is inefficient in many scenarios. Instead, we

advocate for separate feedback mechanisms for different environments that take into

account the variability, the hardware capabilities, and the administrative constraints

of the given environment. We consider the following related factors in designing new

feedback mechanisms:

Who can react to the feedback? Ideally, we want to leverage as much router/switch

support as possible for congestion control. However, typically only the sender can ad-

just the transfer rate of a flow. In datacenter networks, it is also feasible to control

the transfer rate at the switches.

Who can generate the feedback? In the wide-area Internet, it is challenging to
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modify the routers to generate any additional feedback at the routers. In such cases, it

is still possible to generate feedback at the sender using only end-to-end measurements

such as packet rates and delays (§1.3.3). In wireless networks, it might be possible

to modify the wireless router (e.g., the cellular base station) to generate feedback. In

datacenter networks, all the switches in the network can generate feedback.

How to communicate the feedback? An obvious first choice is for the router to

specify the feedback in the packet header itself. However, using an arbitrary number

of additional feedback bits in the packet header might not be feasible in wireless

networks. In such cases, we need to come up with parsimonious feedback signals that

fit within the existing bits allocated for feedback in the packet header. Alternatively,

in datacenter networks it is even feasible to generate out of band packets for feedback.

However, we need to be cognizant of the bandwidth and computational overhead in

communicating the feedback.

What kind of feedback mechanisms can improve performance? A good

starting point is identifying the main factors causing variations in the network con-

ditions and focusing on factors that existing schemes don’t address well (§1.1.2). In

the wide-area Internet, feedback on whether the cross-traffic is competing to grab

more bandwidth can guide congestion control decisions at the sender and reduce de-

lays. In wireless networks, explicit feedback on how to adapt to the variations in the

link capacity can improve performance. In datacenter networks with bursty traffic,

hop-by-hop per-flow congestion control – where each switch generates backpressure

feedback for flows causing congestion to throttle their transfer rates at the previous-

hop (upstream) switch – can enable faster response to congestion and reduce tail

latency.

How to compute and react to the feedback? Computing feedback often involves

using underlying information such as the queue size or the enqueue/dequeue rate at

the router, the ACK arrival rate at the sender, etc. Using the right information can

have a substantial impact on performance. For example, in wireless networks, we

show that using the dequeue rate at the router can help us compute more accurate

feedback compared to existing schemes that ignore it [81, 132]. Further, we also need
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Scheme ABC [58, 57] BFC [60] Nimbus [59]
Environment Wireless Datacenter Wide-area Internet
Variability Link capacity Cross-traffic (load) Cross-traffic (nature)
Feedback
Mechanism

Accurate, single-bit ex-
plicit feedback

Per-hop per-flow flow
control

Elasticity detection

Benefit Fast adaptation to
variations in the link
capacity

Faster response to con-
gestion

Low delay congestion
control without com-
promising throughput

Table 1.1: Dissertation overview

to take into account the capabilities of the underlying hardware. For example, per-

hop per-flow congestion control is challenging on modern datacenter switches in-part

because they have limited memory for maintaining state required to compute the

feedback.

1.3 Key Contributions

We apply the aforementioned philosophy to propose three high performance, practical

congestion control solutions for highly variable networks:

1. ABC: A simple explicit congestion controller for network paths with wireless

links.

2. BFC: A practical congestion control architecture for datacenter networks that

achieves an approximation of per-hop per-flow flow control.

3. Nimbus: A robust end-to-end technique for wide-area Internet to detect whether

the cross-traffic competing with a flow is elastic or not.

Table 1.1 presents a brief overview.

1.3.1 Accel-Brake Control (ABC)

The principal challenge for congestion control on wireless links is to track variations

in the link capacity. Congestion control protocols like Cubic [63], NewReno [66], and
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BBR [36] adjust the sending rate of a flow based on traditional feedback signals such

as ECN marks, packet drops, RTT, etc. from the network. Such protocols are good

at inferring congestion to reduce the sending rate. However, when the wireless link

capacity increases and the link becomes underutilized, these conventional feedback

signals do not reveal any information about the extent of underutilization. In such

periods, the sender has to resort to some sort of blind increase in the rate which

can degrade performance. If the rate increase is slow, the throughput suffers. But

if it overshoots the capacity, it causes large queuing delays. Using active queue

management (AQM) schemes like PIE [112] or Codel [111] at the router is also not

enough as these schemes do not provide any feedback on how to increase the rate

when the link is underutilized.

Explicit congestion control protocols like XCP [81] and RCP [132] can improve

performance by enabling the bottleneck wireless router to signal both rate increases

and decreases to the sender via packet headers. However, current explicit protocols

have two key limitations. First, existing schemes face deployment challenges as they

require multi-bit per packet feedback, and consequently major changes to the packet

header format and end-points. Next, these schemes were designed for fixed capac-

ity links and their performance is sub-optimal on time-varying links. The primary

contribution of ABC is two general techniques that overcome these limitations.

Signal rate increase and decrease using a single-bit: In ABC, the wireless

router marks each packet with an accelerate or a brake. The accel-brake marks are

echoed back to the sender via acknowledgements (ACKs). On receiving an “acceler-

ate” in an ACK, the sender increases its congestion window by one and sends out two

packets in response to the ACK. On receiving a “brake”, the sender reduces its conges-

tion window by 1 and sends nothing in response the ACK. By controlling the fraction

of packets that are marked accelerate, the ABC router can vary the sender’s rate over

a wide dynamic range: from zero to double the current window within a RTT. Such

a dynamic range allows for fast adaptation to changes in the bottleneck link capacity.

To ease deployment, ABC can reuse the existing ECN bit in the packet header for

accel-brake feedback. ABC doesn’t require any packet header modifications.
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Compute accurate feedback using the dequeue rate: Informally, the goal of

an explicit congestion control protocol is to match the rate of packets arriving at the

bottleneck router (enqueue rate) to the link capacity. Existing approaches compare

the instantaneous enqueue rate at the router to the link capacity to compute feedback.

ABC proposes a novel control loop for computing the accel-brake feedback: an ABC

router instead uses the dequeue rate of packets leaving the router. This change is

rooted in the simple observation that, dequeue rate at the router along with feedback

marked by the ABC router provides an accurate prediction of enqueue rate one RTT

in the future. Comparing this future enqueue rate to the link capacity allows for

faster convergence to the bottleneck link capacity.

Coexistence with non-ABC routers: For practicality, there is another challenge

we need to overcome. An ABC flow may encounter both ABC and non-ABC routers

on its path. For example, a Wi-Fi user’s traffic may traverse both a Wi-Fi router

(running ABC) and an ISP router (not running ABC); either router could be the

bottleneck at any given time. The ABC flow must adapt to any congestion on the

non-ABC router. To solve this, we propose a simple dual-congestion control loop

solution where the ABC sender maintains two congestion windows. 𝑤𝑎𝑏𝑐 obeys the

accel-brake feedback and tracks the available bandwidth on the ABC router. 𝑤𝑛𝑜𝑛𝑎𝑏𝑐

tracks the available bandwidth on the non-ABC router using a standard control loop

(e.g., Cubic) based on legacy feedback signals such as packet drops. The ABC sender

simply uses the minimum of the two windows.

We evaluate ABC using a Wi-Fi implementation and trace-driven emulation of

cellular links. ABC achieves 30-40% higher throughput than Cubic+Codel [111] for

similar delays, and 2.2× lower delays than BBR on a Wi-Fi path. On cellular network

paths, ABC achieves 50% higher throughput than Cubic+Codel, and 2× lower delay

than XCP for similar throughput.
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Figure 1-3: Logical switch components in per-hop, per-flow flow control.

1.3.2 Backpressure Flow Control (BFC)

Achieving low tail latency and high throughput is challenging in datacenter networks

with bursty traffic. Most deployed congestion control protocols like DCQCN [150],

HPCC [96], and DCTCP [14] adjust the sending rate based on feedback signals from

the network. Typically, it takes one RTT for the sender to learn about the congestion

and reduce its rate. Bursty traffic coupled with slow reaction can cause queue build

up and packet loss at the switches, both of which hurt tail latency.

BFC revisits the old idea of per-hop per-flow flow control. Ideally, each flow would

get its own queue at the switch. When a flow builds up a queue at the switch, the

switch generates backpressure feedback for the flow and sends it to the previous-hop

(upstream) switch. On receiving feedback, the upstream switch throttles the queue

corresponding to the flow without affecting other competing flows.

Fig. 1-3 shows the basic components of a per-hop, per-flow flow control scheme.

Per-hop control implies faster response to congestion, per-flow queue and feedback

implies no head-of-line (HoL) blocking.

However, existing per-hop per-flow flow control schemes [19, 91] are not practi-

cal on existing datacenter switches. Modern programmable switches have three key

constraints: (1) Limited memory for bookkeeping; (2) Limited queues for per-flow

control, flows might have to share a queue and incur HoL blocking; (3) Support for

only simple constant-time per-packet operations. The main contribution of BFC is a

set of three simple ideas that together achieve an approximation of per-hop per-flow

flow control on a modern programmable switch.
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Track only active flows: Existing schemes need per-flow state and dedicated queues

for all connections going through the switch. At any given time, many of these

connections might be dormant and not have any packets in the switch. In contrast,

a BFC switch only tracks state for and assigns a queue to active flows that have

packets queued at the switch. Additionally, we show that the number of active flows

is modest when the switch uses certain BFC compliant scheduling policies such as

fair queueing or shortest flow first.

Dynamically assign flows to queues: A BFC switch tracks empty queues available

at the switch. When a new flow arrives, the switch assigns it an empty queue if one is

available, otherwise the flow is assigned a queue at random. As long as the number of

active flows is less than the number of queues, no two flows share a queue and there is

no HoL blocking. In contrast, stochastically assigning flows to queues like SFQ [103]

can cause flows to share a queue even when there are empty queues available at the

switch, degrading latency.

Communicate state across switches: In BFC, each switch marks the packet

header with the current queue assignment. The subsequent switch thus knows the

queue assignment at the previous hop (upstream queue). If packets coming from

an upstream queue cause congestion at the switch, the switch simply signals the

upstream switch to throttle the upstream queue. Alternatively, the switch can track

all the flows causing congestion and signal the upstream switch the set of flows causing

congestion. The upstream switch can then perform lookups to identify and throttle

the queues associated with these flows. In contrast, communicating queue assignment

across switches allows for a simpler mechanism, the BFC switch only maintains and

updates the per-upstream queue state.

We demonstrate BFC’s feasibility by implementing it on Tofino2 [72], a state-of-

the-art P4-based programmable hardware switch. We evaluate BFC using large-scale

ns3 [5] simulations with traces from real workloads. Compared to deployed end-to-

end schemes, BFC achieves 2.3 - 60× lower tail latency for short flows and 1.6 - 5×

better average completion time for long flows.
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1.3.3 Nimbus

In the past, researchers have proposed several delay-controlling congestion control pro-

tocols to reduce delays in the Internet [31, 22, 140]. These schemes reduce their rates

as delays increase to limit queuing. Despite the advantages, these protocols haven’t

seen widespread deployment. Typically, routers in the Internet use FIFO droptail

queues that are shared by competing flows. The throughput of delay-controlling

schemes is dismal when competing against deployed buffer-filling protocols such as

Cubic [63] and NewReno [66] that must fill buffers to elicit congestion signals (packet

losses or ECN). The reason is that buffer-filling senders steadily increase their rates,

causing queuing delays to rise; in response to increasing delays, a competing delay-

controlling flow will reduce its rate. The buffer-filling flow then grabs this freed-up

bandwidth. The throughput of the delay-controlling flow plummets, but delays don’t

reduce.

Deploying AQM schemes [112, 111] or isolating flows intro separate queues [130,

103] at the router can also help achieve both low delays and high throughput. How-

ever, since such solutions require router modifications, they have not seen much adop-

tion in the Internet. Instead, we ask the following question: Given the current state

of the Internet, is it possible to achieve the benefits of delay-controlling protocols

without compromising on throughput?

We believe that additional feedback on the nature of the cross-traffic competing

with a flow can guide congestion control decisions at the sender and help answer this

question. The key challenge is to extract this information without any modifications

to the router. To this end, we propose a novel algorithm, Nimbus, that uses only

end-to-end measurements to rigorously characterize whether the cross-traffic at the

bottleneck link is elastic or not. Formally, an elastic flow adjusts its rate based on the

available bandwidth at the bottleneck link. By definition, any backlogged flow using a

congestion control protocol is elastic. By contrast, an inelastic flow’s rate is indepen-

dent of the available bandwidth. Examples include application-limited traffic (e.g.,

video streams where the available bandwidth exceeds the maximum video bitrate),
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short TCP transfers, constant bit rate traffic, etc. The cross-traffic is considered

elastic if it contains any elastic flows, otherwise, it is inelastic.

Elasticity detection can serve as a building block for low delay congestion con-

trol. When Nimbus deems cross-traffic is inelastic, the sender can safely use a delay-

controlling protocol to reduce delays without worrying about losing throughput. If

the the cross-traffic is elastic, the sender can use a standard TCP-competitive pro-

tocol like Cubic to compete appropriately against other flows without attempting to

reduce delays. Nimbus can support various delay-controlling (e.g., Vegas, Copa) and

TCP-competitive protocols (e.g., Cubic, NewReno).

Characterizing elasticity has another advantage: robustness. By definition, all

elastic cross-traffic flows respond to variations in the available bandwidth regardless of

the underlying congestion control protocol. Nimbus leverages this universal property

for robust elasticity detection. The key idea is: Modulate the sending rate to create

variations in the available bandwidth and observe if the cross-traffic responds to these

variations. The detection mechanism is not tied to the specifics of protocols or RTT of

the cross-traffic flows and is robust under a variety of network and traffic conditions.

In our experiments, Nimbus achieves at least 85% detection accuracy even when

cross-traffic is a combination of a varying number of elastic flows and highly-varying

inelastic flows, or when cross-traffic is composed of multiple elastic flows with different

RTTs and congestion control protocols.

The detection technique is composed of three components.

1. Estimate the cross-traffic rate: The sender continuously estimates the aggre-

gate rate of the cross-traffic based on end-to-end measurements of the flow’s sending

and receiving rate.

2. Tickle the cross-traffic: The sender continuously modulates the sending rate

with sinusoidal pulses at a fixed frequency (e.g., 5 Hz). These pulses create variations

in the available bandwidth at the bottleneck link. An elastic flow will respond to

these induced variations by adapting its rate. In contrast, for inelastic cross-traffic,

there will be no reaction in the cross-traffic rate.

3. Monitor cross-traffic response in the frequency domain: The sender com-
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putes a fast fourier transform (FFT) of the estimated cross-traffic rate. If the cross-

traffic rate oscillates at the pulsing frequency, then the cross-traffic rate is deemed

elastic, otherwise it is classifies as inelastic. An alternative approach might be to see

if there is an inverse correlation between the sending rate and the cross-traffic rate.

However, this approach is problematic: cross-traffic rate responds to the sending rate

variations after an RTT, calculating correlation is brittle as the cross-traffic RTT is

unknown and the cross-traffic can contain multiple flows with different RTTs.

Our results on emulated and real-world paths show that congestion control using

elasticity detection achieves throughput comparable to Cubic, but with delays that

are 50-70 ms lower when cross-traffic is inelastic.

1.3.4 Beyond this Dissertation

Many of the ideas presented in the aforementioned works go beyond congestion con-

trol in the specific network environment they were originally developed for. These

ideas are general and can serve as building blocks for congestion control in other

environments, scheduling, network monitoring, etc. For example:

• ABC’s insight on computing timely feedback using the dequeue rate also applies

to explicit congestion control in datacenter networks [96].

• BFC’s dynamic queue assignment can help switches/routers achieve a better

approximation of various scheduling policies (e.g., fair queuing) that the network

operator wants to enforce.

• Elasticity detection can be used a monitoring tool to shed light on traffic be-

haviour on Internet paths or aid selective deployment of AQM schemes on

routers with elastic traffic to reduce delays.

We also contribute a few related solutions for congestion control that are not

included in the main body of this dissertation:

CCP (Hotnets 2017 [108], SIGCOMM 2018 [109]): To ease implementation

of complex congestion control algorithms at the sender, we propose moving out the
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control functions from the datapath and placing them in a separate user space agent

which we call the congestion control plane (CCP). The datapath summarizes feedback

information about packet RTTs, losses, etc. via a well-defined interface to algorithms

running in the off-datapath CCP. The algorithms use this information to control the

datapath’s congestion window or sending rate. We leverage CCP for Nimbus’s Linux

TCP implementation which otherwise would have been cumbersome given the lack

of support for signal processing libraries in the Linux kernel datapath.

Annulus (SIGCOMM 2020 [122]): Annulus is a lightweight congestion control

scheme for flows traversing Wide Area Networks (WANs) but with senders located in a

datacenter. Such WAN flows share datacenter links with the (intra) datacenter traffic.

Typically, the WAN RTT is long and the available bandwidth at the datacenter

links varies on a shorter timescale. Traditional congestion control for WAN flows

using feedback signals that are delayed by the WAN RTT can lead to congestion and

packet drops at the datacenter switches. To solve this, Annulus revisits the idea of

dual congestion control loop mentioned earlier (§1.3.1). One control loop tracks the

available bandwidth on the WAN links. The other control loops uses direct signals

from the datacenter switches (QCN packets [9]) with shorter feedback delay to quickly

adapt to variations within the datacenter.

Bundler (EuroSys 2021 [35]): Bundler is a new kind of middlebox that is designed

for controlling a bundle of flows between two Internet sites (e.g., MIT and Harvard).

Right now, the bottleneck link typically lies somewhere in the Internet where the

network operator has no control. Bundler enforces an aggregate sending rate for the

bundle at the sender site’s middlebox (sendbox). The rate limit moves the bottleneck

to the sendbox where the network operator can now enforce various policies (e.g.,

scheduling, traffic shaping, etc.) to improve performance. To determine the aggregate

rate, Bundler uses Nimbus. If the cross-traffic competing with the bundle (at the

original bottleneck) is elastic, Bundler does not attempt to enforce any aggregate

rate as it can hurt bundle’s throughput. Otherwise, Bundler uses a delay-controlling

protocol to limit queuing in the network and move the bottleneck to the sendbox.
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1.4 Previous Papers and Organization

The chapters of this dissertation are based on the following papers:

Chapter 2 revises two papers:

1. Prateesh Goyal, Mohammad Alizadeh, Hari Balakrishnan. Rethinking Conges-

tion Control for Cellular Networks. In Proc. of ACM HotNets, 2017 [58].

2. Prateesh Goyal, Anup Agarwal, Ravi Netravali, Mohammad Alizadeh, Hari

Balakrishnan. ABC: A Simple Explicit Congestion Controller for Wireless Net-

works. In Proc. of USENIX NSDI, 2020 [58].

Chapter 3 revises: Prateesh Goyal, Preey Shah, Kevin Zhao, Mohammad Al-

izadeh, Thomas E. Anderson. Backpressure Flow Control. In Proc. of USENIX

NSDI, 2022 [60].

Chapter 4 revises: Prateesh Goyal, Akshay Narayan, Frank Cangialosi, Srinivas

Narayana, Mohammad Alizadeh, Hari Balakrishnan. Elasticity Detection: A Building

Block for Internet Congestion Control [59].
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Chapter 2

ABC: A Simple Explicit Congestion

Controller for Wireless Networks

2.1 Introduction

This chapter presents a new explicit congestion control protocol for network paths

with wireless links. Congestion control on such paths is challenging because of the

rapid time variations of the link capacity. Explicit control protocols like XCP [81] and

RCP [132] can in theory provide superior performance on such paths compared to end-

to-end [63, 66, 36, 31, 142, 146, 22, 42] or active queue management (AQM) [111, 112]

approaches (§2.2). Unlike these approaches, explicit control protocols enable the

wireless router to directly specify a target rate for the sender, signaling both rate

decreases and rate increases based on the real-time link capacity.

However, current explicit control protocols have two limitations, one conceptual

and the other practical. First, existing explicit protocols were designed for fixed-

capacity links; we find that their control algorithms are sub-optimal on time-varying

wireless links. Second, they require major changes to packet headers, routers, and

endpoints to deploy on the Internet.

Our contribution is a simple and deployable protocol, called Accel-Brake Control

(ABC), that overcomes these limitations. In ABC (§2.3), a wireless router marks each

packet with one bit of feedback corresponding to either accelerate or brake based on a
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measured estimate of the current link rate. Upon receiving this feedback via an ACK

from the receiver, the sender increases its window by one on an accelerate (sends two

packets in response to the ACK), and decreases it by one on a brake (does not send

any packet). This simple mechanism allows the router to signal a large dynamic range

of window size changes within one RTT: from throttling the window to 0, to doubling

the window.

Central to ABC’s performance is a novel control algorithm that helps routers

provide very accurate feedback on time-varying links. Existing explicit schemes like

XCP and RCP calculate their feedback by comparing the current enqueue rate of

packets to the link capacity. An ABC router, however, compares the dequeue rate

of packets from its queue to the link capacity to mark accelerates or brakes. This

change is rooted in the observation that, for an ACK-clocked protocol like ABC, the

current dequeue rate of packets at the router provides an accurate prediction of the

future incoming rate of packets, one RTT in advance. In particular, if the senders

maintain the same window sizes in the next RTT, they will send one packet for each

ACK, and the incoming rate in one RTT will be equal to the current dequeue rate.

Therefore, rather than looking at the current enqueue rate, the router should signal

changes based on the anticipated enqueue rate in one RTT to better match the link

capacity. The impact of this subtle change is particularly significant on wireless links,

since the enqueue and dequeue rates can differ significantly when the link capacity

varies.

ABC also overcomes the deployability challenges of prior explicit schemes, since it

can be implemented on top of the existing explicit congestion notification (ECN) [118]

infrastructure. We present techniques that enable ABC to co-exist with non-ABC

routers, and to share bandwidth fairly with legacy flows traversing a bottleneck ABC

router (§2.4).

We have implemented ABC on a commodity Wi-Fi router running OpenWrt [46].

Our implementation (§2.5.1) reveals an important challenge for implementing explicit

protocols on wireless links: how to determine the link rate for a user at a given time?

The task is complicated by the intricacies of the Wi-Fi MAC’s batch scheduling and
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Scheme Norm. Utilization Norm. Delay (95%)
ABC 1 (78%) 1 (242ms)
XCP 0.97 2.04

Cubic+Codel 0.67 0.84
Copa 0.66 0.85
Cubic 1.18 4.78

PCC-Vivace 1.12 4.93
BBR 0.96 2.83

Sprout 0.55 1.08
Verus 0.72 2.01

block acknowledgements. We develop a method to estimate the Wi-Fi link rate and

demonstrate its accuracy experimentally. For cellular links, the 3GPP standard [1]

shows how to estimate the link rate; our evaluation uses emulation with cellular packet

traces.

We have experimented with ABC in several wireless network settings. Our results

are:

1. In Wi-Fi, compared to Cubic+Codel, Vegas, and Copa, ABC achieves 30-40%

higher throughput with similar delays. Cubic, PCC Vivace-latency and BBR

incur 70%–6× higher 95𝑡ℎ percentile packet delay with similar throughput.

2. The results in emulation over 8 cellular traces are summarized below. Despite

relying on single-bit feedback, ABC achieves 2× lower 95𝑡ℎ percentile packet

delay compared to XCP.

3. ABC bottlenecks can coexist with both ABC and non-ABC bottlenecks. ABC

flows achieve high utilization and low queuing delays if the bottleneck router is

ABC, while switching to Cubic when the bottleneck is a non-ABC router.

4. ABC competes fairly with both ABC and non-ABC flows. In scenarios with

both ABC and non-ABC flows, the difference in average throughput of ABC

and non-ABC flows is under 5%.
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(c) Cubic+CoDel

0

5

10

15

Th
ro

ug
hp

ut
(M

bp
s)

0 5 10 15 20 25 30
Time (s)

0
500

1000
1500

Qu
eu

in
g

De
la

y 
(m

s)

(d) ABC
Figure 2-1: Performance on a emulated cellular trace — The dashed blue in the
top graph represents link capacity, the solid orange line represents the achieved throughput.
Cubic has high utilization but has very high delays (up to 1500 milliseconds). Verus has large
rate variations and incurs high delays. Cubic+CoDel reduces queuing delays significantly,
but leaves the link underutilized when capacity increases. ABC achieves close to 100%
utilization while maintaining low queuing delays (similar to that of Cubic+CoDel).

2.2 Motivation

Link rates in wireless networks can vary rapidly with time; for example, within one sec-

ond, a wireless link’s rate can both double and halve [142].1 These variations make it

difficult for transport protocols to achieve both high throughput and low delay. Here,

we motivate the need for explicit congestion control protocols that provide feedback

to senders on both rate increases and decreases based on direct knowledge of the

wireless link rate. We discuss why these protocols can track wireless link rates more

accurately than end-to-end and AQM-based schemes. Finally, we discuss deployment

challenges for explicit control protocols, and our design goals for a deployable explicit

protocol for wireless links.

1We define the link rate for a user as the rate that user can achieve if it keeps the bottleneck
router backlogged (see §2.5).
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Limitations of end-to-end congestion control: Traditional end-to-end conges-

tion control schemes like Cubic [63] and NewReno [66] rely on packet drops to infer

congestion and adjust their rates. Such schemes tend to fill up the buffer, causing

large queuing delays, especially in cellular networks that use deep buffers to avoid

packet loss [142]. Fig. 2-1a shows performance of Cubic on an LTE link, emulated us-

ing a LTE trace with Mahimahi [110]. The network round-trip time is 100 ms and the

buffer size is set to 250 packets. Cubic causes significant queuing delay, particularly

when the link capacity drops.

Recent proposals such as BBR [36], PCC-Vivace [42] and Copa [22] use RTT

and send/receive rate measurements to estimate the available link rate more accu-

rately. Although these schemes are an improvement over loss-based schemes, their

performance is far from optimal on highly-variable links. Our experiments show that

they either cause excessive queuing or underutilize the link capacity (e.g., see Fig. 2-

7). Sprout [142] and Verus [146] are two other recent end-to-end protocols designed

specifically for cellular networks. They also have difficulty tracking the link rate ac-

curately; depending on parameter settings, they can be too aggressive (causing large

queues) or too conservative (hurting utilization). For example, Fig. 2-1b shows how

Verus performs on the same LTE trace as above.

The fundamental challenge for any end-to-end scheme is that to estimate the link

capacity, it must utilize the link fully and build up a queue. When the queue is empty,

signals such as the RTT and send/receive rate do not provide information about the

available capacity. Therefore, in such periods, all end-to-end schemes must resort to

some form of “blind” rate increase. But for networks with a large dynamic range of

rates, it is very difficult to tune this rate increase correctly: if it is slow, throughput

suffers, but making it too fast causes overshoots and large queuing delays.2 For

schemes that attempt to limit queue buildup, periods in which queues go empty (and

a blind rate increase is necessary) are common; they occur, for example, following a

sharp increase in link capacity.

2BBR attempts to mitigate this problem by periodically increasing its rate in short pulses, but
our experiments show that BBR frequently overshoots the link capacity with variable-bandwidth
links, causing excessive queuing (see Appendix B.1).
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AQM schemes do not signal increases: AQM schemes like RED [49], PIE [112]

and CoDel [7] can be used to signal congestion (via ECN or drops) before the buffer

fills up at the bottleneck link, reducing delays. However, AQM schemes do not signal

rate increases. When capacity increases, the sender must again resort to a blind

rate increase. Fig. 2-1c shows how CoDel performs when the sender is using Cubic.

Cubic+CoDel reduces delays by 1 to 2 orders of magnitude compared to Cubic alone

but leaves the link underutilized when capacity increases.

Thus, we conclude that, both end-to-end and AQM-based schemes will find it

difficult to track time-varying wireless link rates accurately. Explicit control schemes,

such as XCP [81] and RCP [132] provide a compelling alternative. The router provides

multiple bits of feedback per packet to senders based on direct knowledge of the

wireless link capacity. By telling senders precisely how to increase or decrease their

rates, explicit schemes can quickly adapt to time-varying links, in principle, within

an RTT of link capacity changes.

Deployment challenges for explicit congestion control: Schemes like XCP

and RCP require major changes to packet headers, routers, and endpoints. Although

the changes are technically feasible, in practice, they create significant deployment

challenges. For instance, these protocols require new packet fields to carry multi-

bit feedback information. IP or TCP options could in principle be used for these

fields. But many wide-area routers drop packets with IP options [50], and using

TCP options creates problems due to middleboxes [67] and IPSec encryption [83].

Another important challenge is co-existence with legacy routers and legacy transport

protocols. To be deployable, an explicit protocol must handle scenarios where the

bottleneck is at a legacy router, or when it shares the link with standard end-to-end

protocols like Cubic.

Design goals: In designing ABC, we targeted the following properties:

1. Control algorithm for fast-varying wireless links: Prior explicit control algo-

rithms like XCP and RCP were designed for fixed-capacity links. We design

ABC’s control algorithm specifically to handle the rapid bandwidth variations

and packet transmission behavior of wireless links (e.g., frame batching at the
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MAC layer).

2. No modifications to packet headers: ABC repurposes the existing ECN [118]

bits to signal both increases and decreases to the sender’s congestion window.

By spreading feedback over a sequence of 1-bit signals per packet, ABC routers

precisely control sender congestion windows over a large dynamic range.

3. Coexistence with legacy bottleneck routers: ABC is robust to scenarios where

the bottleneck link is not the wireless link but a non-ABC link elsewhere on

the path. Whenever a non-ABC router becomes the bottleneck, ABC senders

ignore window increase feedback from the wireless link, and ensure that they

send no faster than their fair share of the bottleneck link.

4. Coexistence with legacy transport protocols: ABC routers ensure that ABC and

non-ABC flows share a wireless bottleneck link fairly. To this end, ABC routers

separate ABC and non-ABC flows into two queues, and use a simple algorithm

to schedule packets from these queues. ABC makes no assumptions about the

congestion control algorithm of non-ABC flows, is robust to the presence of

short or application-limited flows, and requires a small amount of state at the

router.

Fig. 2-1d shows ABC on the same emulated LTE link. Using only one bit of

feedback per packet, the ABC flow is able to track the variations in bottleneck link

closely, achieving both high throughput and low queuing delay.

2.3 Design

ABC is a window-based protocol: the sender limits the number of packets in flight

to the current congestion window. Window-based protocols react faster to the sud-

den onset of congestion than rate-based schemes [24]. On a wireless link, when the

capacity drops and the sender stops receiving ACKs, ABC will stop sending pack-

ets immediately, avoiding further queue buildup. In contrast, a rate-based protocol

would take time to reduce its rate and may queue up a large number of packets at

the bottleneck link in the meantime.
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ABC senders adjust their window size based on explicit feedback from ABC

routers. An ABC router uses its current estimate of the link rate and the queu-

ing delay to compute a target rate. The router then sets one bit of feedback in each

packet to guide the senders towards the target rate. Each bit is echoed to a sender

by a receiver in an ACK, and it signals either a one-packet increase (“accelerate”) or

a one-packet decrease (“brake”) to the sender’s congestion window.

2.3.1 The ABC Protocol

We now present ABC’s design starting with the case where all routers are ABC-

capable and all flows use ABC. We later discuss how to extend the design to handle

non-ABC routers and scenarios with competing non-ABC flows.

2.3.1.1 ABC Sender

On receiving an “accelerate” ACK, an ABC sender increases its congestion window

by 1 packet. This increase results in two packets being sent, one in response to the

ACK and one due to the window increase. On receiving a “brake,” the sender reduces

its congestion window by 1 packet, preventing the sender from transmitting a new

packet in response to the received ACK. As we discuss in §2.3.1.3, the sender also

performs an additive increase of 1 packet per RTT to achieve fairness. For ease of

exposition, let us ignore this additive increase for now.

Though each bit of feedback translates to only a small change in the congestion

window, when aggregated over an RTT, the feedback can express a large dynamic

range of window size adjustments. For example, suppose a sender’s window size is 𝑤,

and the router marks accelerates on a fraction 𝑓 of packets in that window. Over the

next RTT, the sender will receive 𝑤 · 𝑓 accelerates and 𝑤 − 𝑤 · 𝑓 brakes. Then, the

sender’s window size one RTT later will be 𝑤+𝑤𝑓 − (𝑤−𝑤𝑓) = 2𝑤𝑓 packets. Thus,

in one RTT, an ABC router can vary the sender’s window size between zero (𝑓 = 0)

and double its current value (𝑓 = 1). The set of achievable window changes for the

next RTT depends on the number of packets in the current window 𝑤; the larger 𝑤,
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the higher the granularity of control.

In practice, ABC senders increase or decrease their congestion window by the

number of newly acknowledged bytes covered by each ACK. Byte-based congestion

window modification is a standard technique in many TCP implementations [17], and

it makes ABC robust to variable packet sizes and delayed, lost, and partial ACKs.

For simplicity, we describe the design with packet-based window modifications.

2.3.1.2 ABC Router

Calculating the target rate: ABC routers compute the target rate 𝑡𝑟(𝑡) using the

following rule:
𝑡𝑟(𝑡) = 𝜂𝜇(𝑡)− 𝜇(𝑡)

𝛿
(𝑥(𝑡)− 𝑑𝑡)

+, (2.1)

where 𝜇(𝑡) is the link capacity, 𝑥(𝑡) is the observed queuing delay, 𝑑𝑡 is a pre-configured

delay threshold, 𝜂 is a constant less than 1, 𝛿 is a positive constant (in units of time),

and 𝑦+ is max(𝑦, 0). This rule has the following interpretation. When queuing delay

is low (𝑥(𝑡) < 𝑑𝑡), ABC sets the target rate to 𝜂𝜇(𝑡), for a value of 𝜂 slightly less than

1 (e.g., 𝜂 = 0.95). By setting the target rate a little lower than the link capacity, ABC

aims to trade a small amount of bandwidth for large reductions in delay, similar to

prior work [77, 15, 92]. However, queues can still develop due to rapidly changing link

capacity and the 1 RTT of delay it takes for senders to achieve the target rate. ABC

uses the second term in Equation (2.1) to drain queues. Whenever 𝑥(𝑡) > 𝑑𝑡, this

term reduces the target rate by an amount that causes the queuing delay to decrease

to 𝑑𝑡 in at most 𝛿 seconds.

The threshold 𝑑𝑡 ensures that the target rate does not react to small increases

in queuing delay. This is important because wireless links often schedule packets in

batches. Queuing delay caused by batch packet scheduling does not imply congestion,

even though it occurs persistently. To prevent target rate reductions due to this delay,

𝑑𝑡 must be configured to be greater than the average inter-scheduling time at the

router.

ABC’s target rate calculation requires an estimate of the underlying link capacity,

𝜇(𝑡). In S2.5, we discuss how to estimate the link capacity in cellular and WiFi
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(b) Enqueue
Figure 2-2: Feedback — Calculating 𝑓(𝑡) based on enqueue rate increases 95𝑡ℎ percentile
queuing delay by 2×.

networks, and we present an implementation for WiFi.

Packet marking: To achieve a target rate, 𝑡𝑟(𝑡), the router computes the fraction of

packets, 𝑓(𝑡), that should be marked as accelerate. Assume that the current dequeue

rate—the rate at which the router transmits packets— is 𝑐𝑟(𝑡). If the accelerate

fraction is 𝑓(𝑡), for each packet that is ACKed, the sender transmits 2𝑓(𝑡) packets on

average. Therefore, after 1 RTT, the enqueue rate—the rate at which packets arrive

to the router—will be 2𝑐𝑟(𝑡)𝑓(𝑡). To achieve the target rate, 𝑓(𝑡) must be chosen

such that 2𝑐𝑟(𝑡)𝑓(𝑡) is equal to 𝑡𝑟(𝑡). Thus, 𝑓(𝑡) is given by:

𝑓(𝑡) = min
{︁1

2
· 𝑡𝑟(𝑡)
𝑐𝑟(𝑡)

, 1
}︁
. (2.2)

An important consequence of the above calculation is that 𝑓(𝑡) is computed based

on the dequeue rate. Most explicit protocols compare the enqueue rate to the link

capacity to determine the feedback (e.g., see XCP [81]).

ABC uses the dequeue rate instead to exploit the ACK-clocking property of its

window-based protocol. Specifically, Equation (2.2) accounts for the fact that when

the link capacity changes (and hence the dequeue rate changes), the rate at the senders

changes automatically within 1 RTT because of ACK clocking. Fig. 2-2 demonstrates

that computing 𝑓(𝑡) based on the dequeue rate at the router enables ABC to track

the link capacity much more accurately than using the enqueue rate.

ABC recomputes 𝑓(𝑡) on every dequeued packet, using measurements of 𝑐𝑟(𝑡) and

𝜇(𝑡) over a sliding time window of length 𝑇 . Updating the feedback on every packet

allows ABC to react to link capacity changes more quickly than schemes that use
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periodic feedback updates (e.g., XCP and RCP).

Packet marking can be done deterministically or probabilistically. To limit bursti-

ness, ABC uses the deterministic method in Algorithm 1. The variable token imple-

ments a token bucket that is incremented by 𝑓(𝑡) on each outgoing packet (up to a

maximum value tokenLimit), and decremented when a packet is marked accelerate.

To mark a packet accelerate, token must exceed 1. This simple method ensures that

no more than a fraction 𝑓(𝑡) of the packets are marked accelerate.

token = 0;
for each outgoing packet do

calculate 𝑓(𝑡) using Equation (2.2);
token = min(token +𝑓(𝑡), tokenLimit);
if packet marked with accelerate then

if token > 1 then
token = token − 1;
mark accelerate;

else
mark brake;
Algorithm 1: Packet marking at an ABC router.

Multiple bottlenecks: An ABC flow may encounter multiple ABC routers on its

path. An example of such a scenario is when two smartphone users communicate

over an ABC-compliant cellular network. Traffic sent from one user to the other will

traverse a cellular uplink and cellular downlink, both of which could be the bottleneck.

To support such situations, an ABC sender should send traffic at the smallest of the

router-computed target rates along their path. To achieve this goal, each packet is

initially marked accelerate by the sender. ABC routers may change a packet marked

accelerate to a brake, but not vice versa (see Algorithm 1). This rule guarantees that

an ABC router can unilaterally reduce the fraction of packets marked accelerate to

ensure that its target rate is not exceeded, but it cannot increase this fraction. Hence

the fraction of packets marked accelerate will equal the minimum 𝑓(𝑡) along the path.

2.3.1.3 Fairness

Multiple ABC flows sharing the same bottleneck link should be able to compete fairly

with one another. However, the basic window update rule described in S2.3.1.1 is
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a multiplicative-increase/multiplicative-decrease (MIMD) strategy,3 which does not

provide fairness among contending flows (see Fig. 2-3a for an illustration). To achieve

fairness, we add an additive-increase (AI) component to the basic window update rule.

Specifically, ABC senders adjust their congestion window on each ACK as follows:

𝑤 ←

⎧⎪⎨⎪⎩𝑤 + 1 + 1/𝑤 if accelerate

𝑤 − 1 + 1/𝑤 if brake
(2.3)

This rule increases the congestion window by 1 packet each RTT, in addition to

reacting to received accelerate and brake ACKs. This additive increase, coupled with

ABC’s MIMD response, makes ABC a multiplicative-and-additive-increase/multiplicative-

decrease (MAIMD) scheme. Chiu and Jain [37] proved that MAIMD schemes converge

to fairness (see also [12]). Fig. 2-3b shows how with an AI component, competing

ABC flows achieve fairness.

To give intuition, we provide a simple informal argument for why including addi-

tive increase gives ABC fairness. Consider 𝑁 ABC flows sharing a link, and suppose

that in steady state, the router marks a fraction 𝑓 of the packets accelerate, and the

window size of flow 𝑖 is 𝑤𝑖. To be in steady state, each flow must send 1 packet on

average for each ACK that it receives. Now consider flow 𝑖. It will send 2𝑓 + 1/𝑤𝑖

packets on average for each ACK: 2𝑓 for the two packets it sends on an accelerate

(with probability 𝑓), and 1/𝑤𝑖 for the extra packet it sends every 𝑤𝑖 ACKs. There-

fore, to be in steady state, we must have: 2𝑓 + 1/𝑤𝑖 = 1 =⇒ 𝑤𝑖 = 1/(1 − 2𝑓).

This shows that the steady-state window size for all flows must be the same, since

they all observe the same fraction 𝑓 of accelerates. Hence, with equal RTTs, the

flows will have the same throughput, and otherwise their throughput will be inversely

proportional to their RTT. Note that the RTT unfairness in ABC is similar to that

of schemes like Cubic, for which the throughput of a flow is inversely proportional to

its RTT. In S2.7.5, we show experiments where flows have different RTTs.

3All the competing ABC senders will observe the same accelerate fraction, 𝑓 , on average. There-
fore, each flow will update its congestion window, 𝑤, in a multiplicative manner, to 2𝑓𝑤, in the next
RTT.
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Figure 2-3: Fairness among competing ABC flows — 5 flows with the same RTT
start and depart one-by-one on a 24 Mbit/s link. The additive-increase (AI) component
leads to fairness.

2.3.1.4 Stability Analysis

ABC’s stability depends on the values of 𝜂 and 𝛿. 𝜂 determines the target link

utilization, while 𝛿 controls how long it will take for a queue to drain. In Appendix A,

we prove the following result for a fluid model of the ABC control loop.

Theorem 1. Consider a single ABC link, traversed by 𝑁 ABC flows. Let 𝜏 be the

maximum round-trip propagation delay of the flows. ABC is globally asymptotically

stable if

𝛿 >
2

3
· 𝜏. (2.4)

Specifically, if 𝜇(𝑡) = 𝜇 for 𝑡 > 𝑡0 (i.e., the link capacity stops changing after some

time 𝑡0), the enqueue/dequeue rate and the queuing delay at the ABC router will

converge to certain values 𝑟* and 𝑥* that depend on the system parameters and the

number of flows. In all cases: 𝜂𝜇 < 𝑟* ≤ 𝜇.

This stability criterion is simple and intuitive. It states that 𝛿 should not be much

smaller than the RTT (i.e, the feedback delay). If 𝛿 is very small, ABC reacts too

forcefully to queue build up, causing under-utilization and oscillations.4 Increasing

𝛿 well beyond 2/3𝜏 improves the stability margins of the feedback loop, but hurts

responsiveness. In our experiments, we used 𝛿 = 133 ms for a propagation RTT of

100 ms.
4Interestingly, if the sources do not perform additive increase or if the additive increase is suffi-

ciently “gentle,” ABC is stable for any value of 𝛿. See the proof in Appendix A for details.
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2.4 Coexistence

An ABC flow should be robust to presence of non-ABC bottlenecks on its path and

share resources fairly with non-ABC flows sharing the ABC router.

2.4.1 Deployment with non-ABC Routers

An ABC flow can encounter both ABC and non-ABC routers on its path. For ex-

ample, a Wi-Fi user’s traffic may traverse both a Wi-Fi router (running ABC) and

an ISP router (not running ABC); either router could be the bottleneck at any given

time. ABC flows must therefore be able to detect and react to traditional congestion

signals—both drops and ECN—and they must determine when to ignore accelerate

feedback from ABC routers because the bottleneck is at a non-ABC router.

We augment the ABC sender to maintain two congestion windows, one for tracking

the available rate on ABC routers (𝑤abc), and one for tracking the rate on non-ABC

bottlenecks (𝑤nonabc). 𝑤abc obeys accelerates/brakes using Equation (2.3), while

𝑤nonabc follows a rule such as Cubic [63] and responds to drop and ECN signals.5

An ABC sender must send packets to match the lower of the two windows.Our im-

plementation mimics Cubic for the non-ABC method, but other methods could also

be emulated.

With this approach, the window that is not the bottleneck could become large. For

example, when a non-ABC router is the bottleneck, the ABC router will continually

send accelerate signals, causing 𝑤abc to grow. If the ABC router later becomes the

bottleneck, it will temporarily incur large queues. To prevent this problem, ABC

senders cap both 𝑤abc and 𝑤nonabc to 2× the number of in-flight packets.

Fig. 2-4 shows the throughput and queuing delay for an ABC flow traversing a

path with an ABC-capable wireless link and a wired link with a droptail queue. For

illustration, we vary the rate of the wireless link in a series of steps every 5 seconds.

Over the experiment, the bottleneck switches between the wired and wireless links

several times. ABC is able to adapt its behavior quickly and accurately. Depending on

5We discuss how ABC senders distinguish between accelerate/brake and ECN marks in §2.4.2.
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Figure 2-4: Coexistence with non-ABC bottlenecks — When the wired link is the
bottleneck, ABC becomes limited by 𝑤cubic and behaves like a Cubic flow. When the
wireless link is the bottleneck, ABC uses 𝑤𝑎𝑏𝑐 to achieve low delays and high utilization.

which link is the bottleneck, either 𝑤nonabc (i.e., 𝑤cubic) or 𝑤abc becomes smaller

and controls the rate of the flow. When the wireless link is the bottleneck, ABC

maintains low queuing delay, whereas the queuing delay exhibits standard Cubic

behavior when the wired link is the bottleneck. 𝑤cubic does not limit ABC’s ability

to increase its rate when the wireless link is the bottleneck. At these times (e.g.,

around the 70 s mark), as soon on 𝑤abc increases, the number of in-flight packets

and the cap on 𝑤cubic increases, and 𝑤cubic rises immediately.

2.4.2 Multiplexing with ECN Bits

IP packets have two ECN-related bits: ECT and CE. These two bits are traditionally

interpreted as follows:
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ECT CE Interpretation

0 0 Non-ECN-Capable Transport

0 1 ECN-Capable Transport ECT(1)

1 0 ECN-Capable Transport ECT(0)

1 1 ECN set

Routers interpret both 01 and 10 to indicate that a flow is ECN-capable, and routers

change those bits to 11 to mark a packet with ECN. Upon receiving an ECN mark

(11), the receiver sets the ECN Echo (ECE) flag to signal congestion to the sender.

ABC reinterprets the ECT and CE bits as follows:

ECT CE Interpretation

0 0 Non-ECN-Capable Transport

0 1 Accelerate

1 0 Brake

1 1 ECN set

ABC send all packets with accelerate (01) set, and ABC routers signal brakes by

flipping the bits to 10. Both 01 and 10 indicate an ECN-capable transport to ECN-

capable legacy routers, which will continue to use (11) to signal congestion.

With this design, receivers must be able to echo both standard ECN signals and

accelerates/brakes for ABC. Traditional ECN feedback is signaled using the ECE flag.

For ABC feedback, we repurpose the NS (nonce sum) bit, which was originally pro-

posed to ensure ECN feedback integrity [45] but has been reclassified as historic [89]

due to lack of deployment. Thus, it appears possible to deploy ABC with only simple

modifications to TCP receivers.

Deployment in proxied networks: Cellular networks commonly split TCP con-

nections and deploy proxies at the edge [137, 120]. Here, it is unlikely that any

non-ABC router will be the bottleneck and interfere with the accel-brake markings

from the ABC router. In this case, deploying ABC may not require any modifications

to today’s TCP ECN receiver. ABC senders (running on the proxy) can use either

10 or 01 to signal an accelerate, and routers can use 11 to indicate a brake. The TCP

receiver can echo this feedback using the ECE flag.
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2.4.3 Non-ABC Flows at an ABC Router

ABC flows are potentially at a disadvantage when they share an ABC bottleneck link

with non-ABC flows.6 If the non-ABC flows fill up queues and increase queuing delay,

the ABC router will reduce ABC’s target rate. To ensure fairness in such scenarios,

ABC routers isolate ABC and non-ABC packets in separate queues.

We assume that ABC routers can determine whether a packet belongs to an ABC

flow. In some deployment scenarios, this is relatively straightforward. For example, in

a cellular network deployment with TCP proxies at the edge of the network [137, 120],

the operator can deploy ABC at the proxy, and configure the base station to assume

that all traffic from the proxy’s IP address uses ABC. Other deployment scenarios

may require ABC senders to set a predefined value in a packet field like the IPv6 flow

label or the IPv4 IPID.

The ABC router assigns weights to the ABC and non-ABC queues, respectively,

and it schedules packets from the queues in proportion to their weights. In addition,

ABC’s target rate calculation considers only ABC’s share of the link capacity (which

is governed by the weights). The challenge is to set the weights to ensure that the

average throughput of long-running ABC and non-ABC flows is the same, no matter

how many flows there are.

Prior explicit control schemes address this problem using the TCP loss-rate equa-

tion (XCP) or by estimating the number of flows with Zombie Lists (RCP). Relying on

the TCP equation requires a sufficient loss rate and does not handle flows like BBR.

RCP’s approach does not handle short flows. When one queue has a large number

of short flows (and hence a low average throughput), RCP increases the weight of

that queue. However, the short flows cannot send faster, so the extra bandwidth

is taken by long-running flows in the same queue, which get more throughput than

long-running flows in the other queue (see §2.7.5 for experimental results).

To overcome these drawbacks, a ABC router measures the average rate of the 𝐾

largest flows in each queue using the Space Saving Algorithm [104], which requires

6ABC and non-ABC flows may also share a non-ABC link, but in such cases, ABC flows will
behave like Cubic and compete fairly with other traffic.
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𝒪(𝐾) space. It considers any remaining flow in either queue to be short, and it

calculates the total rate of the short flows in each queue by subtracting the rate of

the largest 𝐾 flows from the queue’s aggregate throughput. ABC uses these rate

measurements to estimate the rate demands of the flows. Using these demands, ABC

periodically computes the max-min fair rate allocation for the flows, and it sets the

weight of each of the two queues to be equal to the total max-min rate allocation of its

component flows. This algorithm ensures that long-running flows in the two queues

achieve the same average rate, while accounting for demand-limited short flows.

To estimate the demand of the flows, the ABC router assumes that the demand

for the top 𝐾 flows in each queue is X% higher than the current throughput of the

flow, and the aggregate demand for the short flows is the same as their throughput.

If a top-𝐾 flow is unable to increase its sending rate by X%, its queue’s weight will

be larger than needed, but any unfairness in weight assignment is bounded by X%.

Small values of 𝑋 limit unfairness but can slow down convergence to fairness; our

experiments use 𝑋 = 10%.

2.5 Estimating Link Rate

We describe how ABC routers can estimate the link capacity for computing the target

rate (§2.3.1.2). We present a technique for Wi-Fi that leverages the inner workings

of the Wi-Fi MAC layer, and we discuss options for cellular networks.

2.5.1 Wi-Fi

We describe how an 802.11n access point (AP) can estimate the average link rate. For

simplicity, we first describe our solution when there is a single user (client) connected

to the AP. Next, we describe the multi-user case.

We define link rate as the potential throughput of the user (i.e., the MAC address

of the Wi-Fi client) if it was backlogged at the AP, i.e., if the user never ran out

of packets at the AP. In case the router queue goes empty at the AP, the achieved

throughput will be less than the link rate.
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Challenges: A strawman would be to estimate the link rate using the physical layer

bit rate selected for each transmission, which would depend on the modulation and

channel code used for the transmission. Unfortunately, this method will overestimate

the link rate as the packet transmission times are governed not only by the bitrate, but

also by delays for additional tasks (e.g., channel contention and retransmissions [28]).

An alternative approach would be to use the fraction of time that the router queue was

backlogged as a proxy for link utilization. However, the Wi-Fi MAC’s packet batching

confounds this approach. Wi-Fi routers transmit packets (frames) in batches; a new

batch is transmitted only after receiving an ACK for the last batch. The AP may

accumulate packets while waiting for a link-layer ACK; this queue buildup does not

necessarily imply that the link is fully utilized. Thus, accurately measuring the link

rate requires a detailed consideration of Wi-Fi’s packet transmission protocols.

Understanding batching: In 802.11n, data frames, also known as MAC Proto-

col Data Units (MPDUs), are transmitted in batches called A-MPDUs (Aggregated

MPDUs). The maximum number of frames that can be included in a single batch,

𝑀 , is negotiated by the receiver and the router. When the user is not backlogged,

the router might not have enough data to send a full-sized batch of 𝑀 frames, but

will instead use a smaller batch of size 𝑏 < 𝑀 . Upon receiving a batch, the receiver

responds with a single Block ACK. Thus, at a time 𝑡, given a batch size of 𝑏 frames,

a frame size of 𝑆 bits,7 and an ACK inter-arrival time (i.e., the time between recep-

tions of consecutive block ACKs) of 𝑇𝐼𝐴(𝑏, 𝑡), the current dequeue rate, 𝑐𝑟(𝑡), may be

estimated as
𝑐𝑟(𝑡) =

𝑏 · 𝑆
𝑇𝐼𝐴(𝑏, 𝑡)

. (2.5)

When the user is backlogged and 𝑏 = 𝑀 , then 𝑐𝑟(𝑡) above will be equal to the

link capacity. However, if the user is not backlogged and 𝑏 < 𝑀 , how can the AP

estimate the link capacity? Our approach calculates 𝑇𝐼𝐴(𝑀, 𝑡), the estimated ACK

inter-arrival time if the user was backlogged and had sent 𝑀 frames in the last batch.

We estimate the link capacity, 𝜇̂(𝑡), as
7For simplicity, we assume that all frames are of the same size, though our formulas can be

generalized easily for varying frame sizes.

61



0 5 10 15 20
A-MPDU Size, x (frame)

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

In
te

r-A
CK

 T
im

e 
T I

A
(x

,t)
 (m

s)

Figure 2-5: Inter-ACK time v. batch (A-MPDU) size — Inter-ACK times for a
given batch size exhibits variation. The solid black line represents the average Inter-ACK
time. The slope of the line is 𝑆/𝑅, where 𝑆 is the frame size in bits and 𝑅 is the link rate
in bits per second.

𝜇̂(𝑡) =
𝑀 · 𝑆

𝑇𝐼𝐴(𝑀, 𝑡)
. (2.6)

To accurately estimate 𝑇𝐼𝐴(𝑀, 𝑡), we turn to the relationship between the batch

size and ACK inter-arrival time. We can decompose the ACK interval time into the

batch transmission time and “overhead” time, the latter including physically receiv-

ing an ACK, contending for the shared channel, and transmitting the physical layer

preamble [55]. Each of these overhead components is independent of the batch size.

We denote the overhead time by ℎ(𝑡). If 𝑅 is the bitrate used for transmission, the

router’s ACK inter-arrival time is

𝑇𝐼𝐴(𝑏, 𝑡) =
𝑏 · 𝑆
𝑅

+ ℎ(𝑡). (2.7)

Fig. 2-5 illustrates this relationship empirically. There are two key properties to

note. First, for a given batch size, the ACK inter-arrival times vary due to overhead

tasks. Second, because the overhead time and batch size are independent, connecting

the average values of ACK inter-arrival times across all considered batch sizes will

produce a line with slope 𝑆/𝑅. Using this property along with Equation (2.7), we

can estimate the ACK inter-arrival time for a backlogged user as
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Figure 2-6: Wi-Fi Link Rate Prediction — ABC router link rate predictions for a
user that was not backlogged and sent traffic at multiple different rates over three different
Wi-Fi links. Horizontal lines represent the true link capacity, solid lines summarize the ABC
router’s link capacity prediction (each point is an average over 30 seconds of predictions),
and the dashed slanted line represents the prediction rate caps. ABC’s link rate predictions
are within 5% of the ground truth across most sending rates (given the prediction cap).

ˆ𝑇𝐼𝐴(𝑀, 𝑡) =
𝑀 · 𝑆
𝑅

+ ℎ(𝑡)

= 𝑇𝐼𝐴(𝑏, 𝑡) +
(𝑀 − 𝑏) · 𝑆

𝑅
· (2.8)

We can then use 𝑇𝐼𝐴(𝑀, 𝑡) to estimate the link capacity with Equation (2.6). This

computation is performed for each batch transmission when the batch ACK arrives,

and passed through a weighted moving average filter over a sliding window of time 𝑇

to estimate the smoothed time-varying link rate. 𝑇 must be greater than the inter-

ACK time (up to 20 ms in Fig. 2-5); we use 𝑇 = 40 ms. Because ABC cannot exceed

a rate-doubling per RTT, we cap the predicted link rate to double the current rate

(dashed slanted line in Fig. 2-5).

To evaluate the accuracy of our link rate estimates, we transmit data to a single

client through our modified ABC router (S2.7.1) at multiple different rates over three

Wi-Fi links (with different modulation and coding schemes). Fig. 2-6 summarizes the

accuracy of the ABC router’s link rate estimates. With this method, the ABC Wi-Fi

router is able to predict link rates within 5% of the true link capacities.

Extension to multiple users. In multi-user scenarios, each receiver will negotiate
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its own maximum batch size (𝑀) with the router, and different users can have different

transmission rates. We now present two variants of our technique for (1) when the

router uses per-user queues to schedule packets of different users, and (2) when the

users share a single FIFO (first-in first-out) queue at the router.

Per-user queues. In this case each user calculates a separate link rate estimate. Recall

that the link rate for a given user is defined as the potential throughput of the user if

it was backlogged at the router. To determine the link rate for a user 𝑥, we repeat the

single-user method for the packets and queue of user 𝑥 alone, treating transmissions

from other users as overhead time. Specifically, user 𝑥 uses Equations (2.8) and (2.6)

to compute its link rate (𝜇̂𝑥(𝑡)) based on its own values of the bit rate (𝑅𝑥) and

maximum batch size (𝑀𝑥). It also computes its current dequeue rate (𝑐𝑟𝑥(𝑡)) using

Equation (2.5) to calculate the accel-brake feedback. The inter-ACK time (𝑇𝐼𝐴𝑥(𝑏, 𝑡)),

is defined as the time between the reception of consecutive block-ACKs for user 𝑥.

Thus, the overhead time (ℎ𝑥(𝑡)) includes the time when other users at the same AP

are scheduled to send packets. Fairness among different users is ensured via scheduling

users out of separate queues.

Single queue. In this case the router calculates a single aggregate link rate estimate.

The inter-ACK time here is the time between two consecutive block-ACKs, regardless

of the user to which the block-ACKs belong to. The router tries to match the ag-

gregate rate of the senders to the aggregate link rate, and uses the aggregate current

dequeue rate to calculate accel-brake feedback.

2.5.2 Cellular Networks

Cellular networks schedule users from separate queues to ensure inter-user fairness.

Each user will observe a different link rate and queuing delay. As a result, every user

requires a separate target rate calculation at the ABC router. The 3GPP cellular

standard [1] describes how scheduling information at the cellular base station can be

used to calculate per-user link rates. This method is able to estimate capacity even if

a given user is not backlogged at the base station, a key property for the target rate

estimation in Equation (2.1).
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2.6 Discussion

We discuss practical issues pertaining to ABC’s deployment.

Delayed Acks: To support delayed ACKs, ABC uses byte counting at the sender;

the sender increases/decreases its window by the new bytes ACKed. At the receiver,

ABC uses the state machine from DCTCP [14] for generating ACKs and echoing ac-

cel/brake marks. The receiver maintains the state of the last packet (accel or brake).

Whenever the state changes, the receiver sends an ACK with the new state. If the

receiver is in the same state after receiving 𝑚 packets (the number of ACKs to coa-

lesce), then it sends a delayed ACK with the current state. Our TCP implementation

and the experiments in S2.7 use delayed ACKs with 𝑚 = 2.

Lost ACKs: ABC’s window adjustment is robust to ACK losses. Consider a situa-

tion where the sender receives a fraction 𝑝 < 1 of the ACKs. If the accelerate fraction

at the router is 𝑓 , the current window of the sender is 𝑤𝑎𝑏𝑐, then in the next RTT, the

change in congestion window of the sender is 𝑓𝑝𝑤𝑎𝑏𝑐 − (1− 𝑓)𝑝𝑤𝑎𝑏𝑐 = (2𝑓 − 1)𝑝𝑤𝑎𝑏𝑐.

As a result, lost ACKs only slow down the changes in the congestion window, but

whether it increases or decreases doesn’t depend on 𝑝.

ABC routers don’t change prior ECN marks: ABC routers don’t mark accel-

brake on incoming packets that contain ECN marks set by an upstream non-ABC

router. Since packets with ECN set can’t convey accel-brake marks, they can slow

down changes in 𝑤𝑎𝑏𝑐 (similar to lost ACKs). In case the fraction of packets with

ECN set is small, then, the slow down in changes to 𝑤𝑎𝑏𝑐 will be small. If the fraction

is large, then the non-ABC router is the likely bottleneck, and the sender will not use

𝑤𝑎𝑏𝑐.

ECN routers clobbering ABC marks: An ECN router can overwrite accel-brake

marks. The ABC sender will still track the non-ABC window, 𝑤𝑛𝑜𝑛𝑎𝑏𝑐, but such marks

can slow down adjustment to the ABC window, 𝑤𝑎𝑏𝑐.

ABC on fixed-rate links: ABC can also be deployed on fixed-rate links. On such

links, its performance is similar to prior explicit schemes like XCP.
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2.7 Evaluation

We evaluate ABC by considering the following properties:

1. Performance: We measure ABC’s ability to achieve low delay and high through-

put and compare ABC to end-to-end schemes, AQM schemes, and explicit con-

trol schemes (§2.7.3).

2. Multiple bottlenecks: We test ABC in scenarios with multiple ABC bottle-

necks and mixtures of ABC and non-ABC bottlenecks (§2.7.4).

3. Fairness: We evaluate ABC’s fairness while competing against other ABC and

non-ABC flows (§2.7.5).

4. Additional considerations: We evaluate how ABC performs with application-

limited flows and different network delays. We also demonstrate ABC’s impact

on a real application’s performance (§2.7.6).

2.7.1 Prototype ABC Implementation

ABC transport: We implemented ABC endpoints in Linux as kernel modules using

the pluggable TCP API.

ABC router: We implemented ABC as a Linux queuing discipline (qdisc) kernel

module using OpenWrt, an open source operating system for embedded networked

devices [46]. We used a NETGEAR WNDR 3800 router configured to 802.11n. We

note that our implementation is portable as OpenWrt is supported on many other

commodity Wi-Fi routers.

ABC’s WiFi link rate estimation exploits the inner workings of the MAC 802.11n

protocol, and thus requires fine-grained values at this layer. In particular, the ABC

qdisc must know A-MPDU sizes, Block ACK receive times, and packet transmission

bitrates. These values are not natively exposed to Linux router qdiscs, and instead

are only available at the network driver. To bridge this gap, we modified the router to

log the relevant MAC layer data in the cross-layer socket buffer data structure (skb)

that it already maintains per packet.
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2.7.2 Experimental Setup

We evaluated ABC in both Wi-Fi and cellular network settings. For Wi-Fi, exper-

iments we used a live Wi-Fi network and the ABC router described in S2.7.1. For

cellular settings, we use Mahimahi [110] to emulate multiple cellular networks (Ver-

izon LTE, AT&T, and TMobile). Mahimahi’s emulation uses packet delivery traces

(separate for uplink and downlink) that were captured directly on those networks,

and thus include outages (highlighting ABC’s ability to handle ACK losses).

We compare ABC to end-to-end protocols designed for cellular networks (Sprout [142]

and Verus [146]), loss-based end-to-end protocols both with and without AQM (Cu-

bic [63], Cubic+Codel [111], and Cubic+PIE [112]), recently-proposed end-to-end

protocols (BBR [36], Copa [22], PCC Vivace-Latency (referred as PCC)) [42]), and

TCP Vegas [31]), and explicit control protocols (XCP [81], RCP [132] and VCP [143]).

We used TCP kernel modules for ABC, BBR, Cubic, PCC, and Vegas; for these

schemes, we generated traffic using iperf [134]. For the end-to-end schemes that are

not implemented as TCP kernel modules (i.e., Copa, Sprout, Verus), we used the

UDP implementations provided by the authors. Lastly, for the explicit control pro-

tocols (i.e., XCP, RCP, and VCP), we used our own implementations as qdiscs with

Mahimahi to ensure compatibility with our emulation setup. We used Mahimahi’s

support of Codel and Pie to evaluate AQM.

Our emulated cellular network experiments used a minimum RTT of 100 ms and

a buffer size of 250 MTU-sized packets. Additionally, ABC’s target rate calculation

(Equation (2.1)) used 𝜂 = 0.98 and 𝛿 = 133 ms. Our Wi-Fi implementation uses the

link rate estimator from §2.5, while our emulated cellular network setup assumes the

realistic scenario that ABC’s router has knowledge of the underlying link capacity [1].

2.7.3 Performance

Cellular: Fig. 2-7a and 2-7b show the utilization and 95𝑡ℎ percentile per packet delay

that a single backlogged flow achieves using each aforementioned scheme on two Ver-

izon LTE cellular link traces. ABC exhibits a better (i.e., higher) throughput/delay
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Figure 2-7: ABC vs. previous schemes on three Verizon cellular network traces
— In each case, ABC outperforms all other schemes and sits well outside the Pareto frontier
of previous schemes (denoted by the dashed lines).

tradeoff than all prior schemes. In particular, ABC sits well outside the Pareto fron-

tier of the existing schemes, which represents the prior schemes that achieve higher

throughput or lower delay than any other prior schemes.

Further analysis of Fig. 2-7a and 2-7b reveals that Cubic+Codel, Cubic+PIE,

Copa, and Sprout are all able to achieve low delays that are comparable to ABC.

However, these schemes heavily underutilize the link. The reason is that, though

these schemes are able to infer and react to queue buildups in a way that reduces

delays, they lack a way of quickly inferring increases in link capacity (a common

occurrence on time-varying wireless links), leading to underutilization. In contrast,

schemes like BBR, Cubic, and PCC are able to rapidly saturate the network (achieving

high utilization), but these schemes also quickly fill buffers and thus suffer from high

queuing delays. Unlike these prior schemes, ABC is able to quickly react to both
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Figure 2-8: 95𝑡ℎ percentile per-packet delay across 8 cellular link traces — On av-
erage, ABC achieves similar delays and 50% higher utilization than Copa and Cubic+Codel.
PCC and Cubic achieve slightly higher throughput than ABC, but incur 380% higher 95𝑡ℎ

percentile delay than ABC.

increases and decreases in available link capacity, enabling high throughput and low

delays.

We observed similar trends across a larger set of 8 different cellular network traces

(Fig. 2-8). ABC achieves 50% higher throughput than Cubic+Codel and Copa, while

only incurring 17% higher 95𝑡ℎ percentile packet delays. PCC and Cubic achieve

slightly higher link utilization values than ABC (12%, and 18%, respectively), but

incur significantly higher per-packet delays than ABC (394%, and 382%, respectively).

Finally, compared to BBR, Verus, and Sprout, ABC achieves higher link utilization

(4%, 39%, and 79%, respectively). BBR and Verus incur higher delays (183% and

100%, respectively) than ABC. Appendix B.3 shows mean packet delay over the same

conditions, and shows the same trends.
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Comparison with Explicit Protocols: Fig. 2-7 and 2-8 also show that ABC out-

performs the explicit control protocol, XCP, despite not using multi-bit per-packet

feedback as XCP does. For XCP we used 𝛼 = 0.55 and 𝛽 = 0.4, the highest per-

missible stable values that achieve the fastest possible link rate convergence. XCP

achieves similar average throughput to ABC, but with 105% higher 95𝑡ℎ percentile de-

lays. This performance discrepancy can be attributed to the fact that ABC’s control

rule is better suited for the link rate variations in wireless networks. In particular,

unlike ABC which updates its feedback on every packet, XCP computes aggregate

feedback values (𝜑) only once per RTT and may thus take an entire RTT to inform

a sender to reduce its window. To overcome this, we also considered an improved

version of XCP that recomputes aggregate feedback on each packet based on the rate

and delay measurements from the past RTT; we refer to this version as XCP𝑤 (short

for XCP wireless). As shown in Fig. 2-7 and Fig. 2-8, XCP𝑤 reduces delay compared

to XCP, but still incurs 40% higher 95𝑡ℎ percentile delays (averaged across traces)

than ABC. We also compared with two other explicit schemes, RCP and VCP, and

found that ABC consistently outperformed both, achieving 20% more utilization on

average. (Appendix B.4).

Wi-Fi: We performed similar evaluations on a live Wi-Fi link, considering both single

and multi-user scenarios. We connect senders to a WiFi router via Ethernet. Each

sender transmits data through the WiFi router to one receiver. All receivers’ packets

share the same FIFO queue at the router. In this experiment, we excluded Verus and

Sprout as they are designed specifically for cellular networks. To mimic common Wi-

Fi usage scenarios where endpoints can move and create variations in signal-to-noise

ratios (and thus bitrates), we varied the Wi-Fi router’s bitrate selections by varying

the MCS index using the Linux iw utility; we alternated the MCS index between val-

ues of 1 and 7 every 2 seconds. In Appendix B-2, we also list results for an experiment

where we model MCS index variations as Brownian motion—results show the same

trends as described below. This experiment was performed in a crowded computer lab

with contention from other Wi-Fi networks. We report average performance values

across three, 45 second runs. We considered three different ABC delay threshold (𝑑𝑡)
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Figure 2-9: Throughout and mean delay on Wi-Fi — For the multi-user scenario, we
report the sum of achieved throughputs and the average of observed 95𝑡ℎ percentile delay
across both users. We consider three versions of ABC (denoted ABC _*) for different delay
thresholds. All versions of ABC outperform all prior schemes and sit outside the pareto
frontier.

values of 20 ms, 60 ms, and 100 ms; note that increasing ABC’s delay threshold will

increase both observed throughput and RTT values.

Fig. 2-9 shows the throughput and 95𝑡ℎ percentile per-packet delay for each proto-

col. For the multi-user scenario, we report the sum of achieved throughputs and the

average 95𝑡ℎ percentile delay across all users. In both the single and multi-user sce-

narios, ABC achieves a better throughput/delay tradeoff than all prior schemes, and

falls well outside the Pareto frontier for those schemes. In the single user scenario, the

ABC configuration with 𝑑𝑡 = 100 ms achieves up to 29% higher throughput than Cu-

bic+Codel, Copa and Vegas. Though PCC-Vivace, Cubic and BBR achieve slightly
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Figure 2-10: Coexistence with non-ABC bottlenecks — ABC tracks the ideal rate
closely (fair share) and reduces queuing delays in the absence of cross traffic (white region).

higher throughput (4%) than this ABC configuration, their delay values are consider-

ably higher (67%-6×). The multi-user scenario showed similar results. For instance,

ABC achieves 38%, 41% and 31% higher average throughput than Cubic+Codel,

Copa and Vegas, respectively.

2.7.4 Coexistence with Various Bottlenecks

Coexistence with ABC bottlenecks: Fig. 2-7c compares ABC and prior protocols

on a network path with two cellular links. In this scenario, ABC tracks the bottleneck

link rate and achieves a better throughput/delay tradeoff than prior schemes, and

again sits well outside the Pareto frontier.

Coexistence with non-ABC bottlenecks: Fig. 2-10 illustrates throughput and

queuing delay values for an ABC flow traversing a network path with both an emu-

lated wireless link and an emulated 12 Mbits/s fixed rate (wired) link. The wireless

link runs ABC, while the wired link operates a droptail buffer. ABC shares the wired

link with on-off cubic cross traffic. In the absence of cross traffic (white region), the

wireless link is always the bottleneck. However, with cross traffic (yellow and grey

regions), due to contention, the wired link can become the bottleneck. In this case,
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ABC’s fair share on the wired link is half of the link’s capacity (i.e., 6 Mbit/s). If the

wireless link rate is lower than the fair share on the wired link (yellow region), the

wireless link remains the bottleneck; otherwise, the wired link becomes the bottleneck

(grey region).

The black dashed line in the top graph represents the ideal fair throughput for the

ABC flow throughout the experiment. As shown, in all regions, ABC is able to track

the ideal rate closely, even as the bottleneck shifts. In the absence of cross traffic,

ABC achieves low delays while maintaining high link utilization. With cross traffic,

ABC appropriately tracks the wireless link rate (yellow region) or achieves its fair

share of the wired link (grey region) like Cubic. In the former cross traffic scenario,

increased queuing delays are due to congestion caused by the Cubic flow on the wired

link. Further, deviations from the ideal rate in the latter cross traffic scenario can be

attributed to the fact that the ABC flow is running as Cubic, which in itself takes

time to converge to the fair share [63].

2.7.5 Fairness among ABC and non-ABC Flows

Coexistence among ABC flows: We simultaneously run multiple ABC flows on

a fixed 24 Mbits/s link. We varied the number of competing flows from 2 to 32 (each

run was 60 s). In each case, the Jain Fairness Index [78] was within 5% from the ideal

fairness value of 1, highlighting ABC’s ability to ensure fairness.

Fig. 2-11 shows the aggregate utilization and delay for concurrent flows (all flows

running the same scheme) competing on a Verizon cellular link. We varied the number

of competing flows from 1 to 16. ABC achieves similar aggregate utilization and

delay across all scenarios, and, outperforms all other schemes. For all the schemes,

the utilization and delay increase when the number of flows increases. For ABC, this

increase can be attributed to the additional packets that result from additive increase

(1 packet per RTT per flow). For other schemes, this increase is because multiple

flows in aggregate ramp-up their rates faster than a single flow.

RTT unfairness: We simultaneously ran 2 ABC flows on a 24 Mbits wired bottle-
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Figure 2-11: Coexistence among ABC flows — ABC achieves similar aggregate uti-
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schemes.
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Figure 2-12: RTT unfairness

RTT (ms) Tput (Mbps)
20 6.62
40 4.94
60 4.27
80 3.0
100 2.75
120 2.40

Table 2.1: RTT unfairness

neck. We varied the RTT of flow 1 from 20ms to 120ms. RTT of flow 2 was fixed to

20ms. Fig. 2-12 shows the ratio of the average throughput of these 2 flows (average

throughput of flow 2 / flow 1, across 5 runs) against the ratio of their RTTs (RTT of

flow 1 / flow 2). Increasing the RTT ratio increases the throughput ratio almost lin-

early and the throughput is inversely proportional to the RTT. Thus, the unfairness

is similar to existing protocols like Cubic.

Next, we simultaneously ran 6 ABC flows. The RTT of the flows vary from 20ms

to 120ms. Table 2.1 shows the RTT and the average throughput across 5 runs. Flows

with higher RTTs have lower throughput. However, note that the flow with the

highest RTT (120ms) still achieves ∼35 % of the throughput as flow with the lowest

RTT (20ms).

Coexistence with non-ABC flows: We consider a scenario where 3 ABC and 3

non-ABC (in this case, Cubic) long-lived flows share the same 96 Mbits/s bottleneck

link. In addition, we create varying numbers of non-ABC short flows (each of size 10
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Figure 2-13: Coexistence with non-ABC flows — Across all scenarios, the standard
deviation for ABC flows is small and the flows are fair to each other. Compared to RCP’s
Zombie List strategy, ABC’s max-min allocation provides better fairness between ABC and
non-ABC flows. With ABC’s strategy, the difference in average throughput of ABC and
Cubic flows is under 5%.

KB) with Poisson flow arrival times to offer a fixed average load. We vary the offered

load values, and report results across 10 runs (40 seconds each). We compare ABC’s

strategy to coexist with non-ABC flows to RPC’s Zombie list approach (§2.4.3).

Fig. 2-13 shows the mean and standard deviation of throughput for long-lived

ABC and Cubic flows. As shown in Fig. 2-13a, ABC’s coexistence strategy allows

ABC and Cubic flows to fairly share the bottleneck link across all offered load values.

Specifically, the difference in average throughput between the ABC and Cubic flows is

under 5%. In contrast, Fig. 2-13b shows that RCP’s coexistence strategy gives higher

priority to Cubic flows. This discrepancy increases as the offered load increases, with

Cubic flows achieving 17-165% higher throughput than ABC flows. The reason, as

discussed in S2.4.3, is that long-lived Cubic flows receive higher throughput than

the average throughput that RCP estimates for Cubic flows. This leads to unfairness

because RCP attempts to match average throughput for each scheme.Fig. 2-13 also

shows that the standard deviation of ABC flows is small (under 10%) across all

scenarios. This implies that in each run of the experiment, the throughput for each of

the three concurrent ABC flows is close to each other, implying fairness across ABC

flows. Importantly, the standard deviation values for ABC are smaller than those for

Cubic. Thus, ABC flows converge to fairness faster than Cubic flows do.

75



2.7.6 Additional Experiments

Perfect future capacity knowledge: We considered a variant of ABC, PK-ABC,

which knows an entire emulated link trace in advance. This experiment reflects the

possibility of resource allocation predictions at cellular base stations. Rather than

using an estimate of the current link rate to compute a target rate (as ABC does),

PK-ABC uses the expected link rate 1 RTT in the future. On the same setup as

Fig. 2-7b, PK-ABC reduces 95𝑡ℎ percentile per-packet-delays from 97 ms to 28 ms,

compared to ABC, while achieving similar utilization (∼90%).

ABC’s improvement on real applications: We evaluated ABC’s improvement

for real user-facing applications on a multiplayer interactive game, Slither.io [8]. We

loaded Slither.io using a Google Chrome browser which ran inside an emulated cel-

lular link with a background backlogged flow. We considered three schemes for the

backlogged flow: Cubic, Cubic+Codel, and ABC. Cubic fully utilizes the link, but

adds excessive queuing delays hindering gameplay. Cubic+Codel reduces queuing

delays (improving user experience in the game), but underutilizes the link. Only

ABC is able to achieve both high link utilization for the backlogged flow and low

queuing delays for the game. A video demo of this experiment can be viewed at

https://youtu.be/Dauq-tfJmyU.

ABC’s sensitivity to network latency: Thus far, our emulation experiments

have considered fixed minimum RTT values of 100 ms. To evaluate the impact that

propagation delay has on ABC’s performance, we used a modified version of the ex-

perimental setup from Fig. 2-8. In particular, we consider RTT values of 20 ms, 50

ms, 100 ms, and 200 ms. Fig. 2-14 shows that, across all propagation delays, ABC is

still able to outperform all prior schemes, again achieving a more desirable through-

put/latency trade off. ABC’s benefits persist even though schemes like Cubic+Codel

and Cubic+PIE actually improve with decreasing propagation delays. Performance

with these schemes improves because bandwidth delay products decrease, making

Cubic’s additive increase more aggressive (improving link utilization).

Application-limited flows:We created a single long-lived ABC flow that shared a
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Figure 2-14: Impact of propagation delay on performance — On a Verizon cellular
network trace with different propagation delays, ABC achieves a better throughput/delay
tradeoff than all other schemes.

cellular link with 200 application-limited ABC flows that send traffic at an aggregate

of 1 Mbit/s. Fig. 2-15 shows that, despite the fact that the application-limited flows do

not have traffic to properly respond to ABC’s feedback, the ABC flows (in aggregate)

are still able to achieve low queuing delays and high link utilization.

Impact of 𝜂: Fig. 2-16 shows the performance of ABC with various values of 𝜂 on a

Verizon cellular trace. Increasing 𝜂 increases the link utilization, but, also increases

the delay. Thus, 𝜂 presents a trade-off between throughput and delay.

2.8 Related Work

Several prior works have proposed using LTE infrastructure to infer the underlying

link capacity [144, 98, 75]. CQIC [98] and piStream [144] use physical layer infor-

mation at the receiver to estimate link capacity. However, these approaches have
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Figure 2-16: Impact of 𝜂 — Performance of ABC with various values of 𝜂 (target utiliza-
tion). 𝜂 presents a trade-off between throughput and delay. Same setup as Fig. 2-1.

several limitations that lead to inaccurate estimates. CQIC’s estimation approach

considers historical resource usage (not the available physical resources) [144], while

piStream’s technique relies on second-level video segment downloads and thus does

not account for the short timescale variations in link rate required for per-packet

congestion control. These inaccuracies stem from the opacity of the base station’s re-

source allocation process at the receiver. ABC circumvents these issues by accurately

estimating link capacity directly at the base station.

In VCP [143], router classifies congestion as low, medium, or high, and signals the

sender to either perform a multiplicative increase, additive increase, or multiplicative
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decrease in response. Unlike an ABC sender, which reacts to ACKs individually, VCP

senders act once per RTT. This coarse-grained update limits VCP’s effectiveness on

time-varying wireless paths. For instance, it can take 12 RTTs to double the window.

VCP is also incompatible with ECN, making it difficult to deploy.

In BMCC [117, 115], a router uses ADPM [20] to send link load information to the

receiver on ECN bits, relying on TCP options to relay the feedback from the receiver

to the sender. MTG proposed modifying cellular base stations to communicate the

link rate explicitly using a new TCP option [75]. Both approaches do not work with

IPSec encryption [83], and such packet modifications trigger the risk of packets being

dropped silently by middleboxes [67]. Moreover, unlike ABC, MTG does not ensure

fairness among multiple flows for a user, while BMCC has the same problem with

non-BMCC flows [115, 116].

XCP-b [10] is a variant of XCP designed for wireless links with unknown capacity.

XCP-b routers use the queue size to determine the feedback. When the queue is

backlogged, the XCP-b router calculates spare capacity using the change in queue

size and uses the same control rule as XCP. When the queue goes to zero, XCP-b

cannot estimate spare capacity, and resorts to a blind fixed additive increase. Such

blind increase can cause both under-utilization and increased delays (S2.2.)

Although several prior schemes (XCP, RCP, VCP, BMCC, XCP-b) attempt to

match the current enqueue rate to the capacity, none match the future enqueue rate

to the capacity, and so do not perform as well as ABC on time-varying links.

2.9 Conclusion

ABC is a simple new explicit congestion control protocol for time-varying wire-

less links. ABC routers use a single bit to mark each packet with “accelerate” or

“brake”, which causes senders to slightly increase or decrease their congestion win-

dows. Routers use this succinct feedback to quickly guide senders towards a desired

target rate. ABC outperforms the best existing explicit flow control scheme, XCP, but

unlike XCP, ABC does not require modifications to packet formats or user devices,
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making it simpler to deploy. ABC is also incrementally deployable: ABC can operate

correctly with multiple ABC and non-ABC bottlenecks, and can fairly coexist with

ABC and non-ABC traffic sharing the same bottleneck link. We evaluated ABC us-

ing a WiFi router implementation and trace-driven emulation of cellular links. ABC

achieves 30-40% higher throughput than Cubic+Codel for similar delays, and 2.2×

lower delays than BBR on a Wi-Fi path. On cellular network paths, ABC achieves

50% higher throughput than Cubic+Codel.
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Chapter 3

Backpressure Flow Control

3.1 Introduction

Single and multi-tenant data centers have become one of the largest and fastest grow-

ing segments of the computer industry. Data centers are increasingly dominating the

market for all types of high-end computing, including enterprise services, parallel com-

puting, large scale data analysis, fault-tolerant middleboxes, and global distributed

applications [56, 105, 18]. These workloads place enormous pressure on the data cen-

ter network to deliver, at low cost, ever faster throughput with low tail latency even

for highly bursty traffic [41, 147].

Although details vary, almost all data center networks today use a combination

of endpoint congestion control, FIFO queues at switches, and end-to-end feedback of

congestion signals like delay or explicit switch state to the endpoint control loop.1 As

link speeds continue to increase, however, the design of the control loop becomes more

difficult. First, more traffic fits within a single round trip, making it more difficult to

use feedback effectively. Second, traffic becomes increasingly bursty, so that network

load is not a stable property except over very short time scales. And third, switch

buffer capacity is not keeping up with increasing link speeds (Fig. 3-1), making it even

more challenging to handle traffic bursts. Most network operators run their networks

1In this chapter, we refer to schemes that rely on feedback signals delayed by an entire round-
trip-time as end-to-end schemes, to contrast them with hop-by-hop mechanisms.
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at very low average load, throttle long flows at far below network capacity, and even

then see significant congestion loss.

Instead, we propose a different approach. The key challenge for data center net-

works, in our view, is to efficiently allocate buffer space at congested network switches.

This becomes easier and simpler when control actions are taken per flow and per hop,

rather than end-to-end. Despite its advantages, per-hop per-flow flow control appears

to require per-flow state at each switch, even for quiescent flows [19, 91], something

that is not practical at data center scale.

Our primary contribution is to show that per-hop per-flow flow control can be

approximated with a limited amount of switch state and modest number of switch

queues, using only simple constant-time switch operations on a modern programmable

switch. Instead of all flows, we only need state and dedicated queues for active flows—

those flows with queued packets. We show that, with switch-level fair queueing or

shortest flow scheduling, the number of active flows is modest for typical data center

workloads, even in the tail of the distribution. The tradeoff is that performance can

degrade when the number of active flows exceeds the number of queues. In practice,

we advocate combining per-hop flow control with end-to-end congestion control to

avoid pathological behavior. However, to better illustrate the benefits and limitations

of our approach, our description and experiments focus on comparing pure per-hop

control with pure end-to-end control.

We have implemented our approach, Backpressure Flow Control (BFC), on Tofino2

a state-of-the-art P4-based programmable switch ASIC supporting 12.8 Tbps of switch-

ing capacity [72]. Tofino2 has 32-128 independently pausable queues at each output

port. Our implementation uses less than 10% of the dedicated stateful memory on

Tofino2. All per-packet operations are implemented entirely in the dataplane; BFC

runs at full switch capacity.

To evaluate performance, we run large-scale ns-3 [5] simulations using synthetic

traces drawn to be consistent with measured workloads from Google and Facebook

data centers [107] on an oversubscribed multi-level Clos network topology. We syn-

thetically add incast to these workloads to represent a challenging scenario for both
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end-to-end and per-hop approaches. We consider both throughput and tail latency

performance for short, medium, and long flows.

For our simulated workloads, BFC improves both latency for short flows and

throughput for long flows. Compared to a wide set of deployed end-to-end systems,

including DCTCP [14], DCQCN [150], and HPCC [96], BFC achieves 2.3 - 60× better

tail flow completion times (FCTs) for short flows, and 1.6 - 5× better average perfor-

mance for long flows. ExpressPass [38] achieves 35% better short flow tail latency,

but 17× worse average case performance for long flows. We also show that BFC per-

forms close to an idealized fair queueing system with unbounded buffers and switch

queues, but with limited queues and far smaller buffers. BFC can be combined with

other switch scheduling algorithms such as priority scheduling among traffic classes.

Unlike other receiver-driven schemes like Homa [107], BFC does not assume knowl-

edge of flow sizes and does not rely on packet spraying (which is difficult to deploy

in practice). With packet spraying, Homa outperforms BFC, but without it we show

BFC outperforms Homa and can enforce shortest remaining flow first scheduling more

accurately.

Our specific contributions are:

• A discussion of the fundamental limits of end-to-end congestion control for high

bandwidth data center networks.

• A practical protocol for per-hop per-flow flow control, called BFC, that uses a

small, constant amount of state and limited number of switch queues to achieve

near-optimal tail-latency performance for typical data center workloads.

• An implementation and proof-of-concept evaluation of BFC on a commercial

switch. To our knowledge, this is the first implementation of a per-hop per-flow

flow control scheme for a multi-Tbps switch.
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3.2 Motivation

Over the last decade, researchers and data center operators have proposed a variety of

congestion control algorithms for data centers, including DCTCP [14], Timely [106],

Swift [90], DCQCN [150], and HPCC [96]. The primary goals of these protocols are

to achieve high throughput, low tail packet delay, and high resilience to bursts and

incast traffic patterns. Operationally, these protocols rely on end-to-end feedback

loops, with senders adjusting their rates based on congestion feedback signals echoed

by the receivers. Irrespective of the type of signal (e.g., ECN marks, multi-bit INT

information [96, 85], delay), the feedback delay for these schemes is a network round-

trip time (RTT). This delay has an important role in the performance of end-to-end

schemes. In particular, senders require at least one RTT to obtain feedback, and

therefore face a hard tradeoff in deciding the starting rate of a flow. They can either

start at a high rate and risk causing congestion, or start at a low rate and risk under-

utilizing the network. Moreover, even after receiving feedback, senders can struggle to

determine the right rate if the state of the network (e.g., link utilization and queuing

delay) changes quickly compared to the RTT.

We argue that three trends are making these problems worse over time, and will

make it increasingly difficult to achieve good performance with end-to-end protocols.

Trend 1: Rapidly increasing link speed. Fig. 3-1 shows the switch capacity of

top-of-the-line data center switches manufactured by Broadcom [33, 113, 139]. Switch

capacity and link speeds have increased by a factor of 10 over the past six years with

no signs of stopping.

Trend 2: Most flows are short. Fig. 3-2 shows the byte-weighted cumulative

distribution of flow sizes for three industry data center workloads [107]: (1) All appli-

cations in a Google data center, (2) Hadoop cluster in a Facebook center, and (3) a

WebSearch workload. Each point is the fraction of all bytes sent that belong to flows

smaller than a threshold for that workload. For example, for the Google workload,

flows that are shorter than 100 KB represent nearly half of all bytes. As link speed

increases, a growing fraction of traffic belongs to flows that complete quickly relative
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Figure 3-1: Hardware trends for top-of-the-line data center switches from Broad-
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Figure 3-2: Cumulative bytes contributed by different flow sizes for three different industry
workloads. The three vertical lines show the BDP for a 10 Gbps, 40 Gbps, and 100 Gbps
network, assuming a 12 𝜇s RTT.

to the RTT. For example, most Facebook Hadoop traffic is likely to fit within one

round trip within the next decade. While some have argued that data center flows

are increasing in size [11], the trend is arguably in the opposite direction with the

growing use of RDMA for fine-grained remote memory access.

Trend 3: Buffer size is not scaling with switch capacity. Fig. 3-1 shows that

the total switch buffer size relative to its capacity has decreased by almost a factor

of 2 (from 75𝜇s to 40𝜇s) over the past six years. With smaller buffers relative to

link speed, buffers now fill up more quickly, making it more difficult for end-to-end

congestion control to manage those buffers.
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Scheme Throughput (%) 99% Queuing Delay (𝜇s)
BFC 37.3 1.2

HPCC 22.9 23.9
DCQCN 10.0 30.4

Table 3.1: For a shared 100 Gbps link, BFC achieves close to ideal throughput (40%) for
the long flow, with low tail queuing delay.

3.2.1 Limits of End-to-End Congestion Control

This combination—very fast links, short flows, and inadequate buffers —creates the

perfect storm for end-to-end congestion control protocols. Flows that complete within

one or a few RTTs (which constitute an increasingly larger fraction of traffic) either

receive no feedback, or last for so few feedback cycles that they cannot find the

correct rate [80]. For longer flows, the rapid arrival and departure of cross-traffic

creates significant fluctuations in available bandwidth at RTT timescales, making it

difficult to find the correct rate. The result is loss of throughput and large queue

buildup. Insufficient switch buffering further exacerbates these problems, leading to

packet drops or link-level pause events (PFC [141]) that spread congestion upstream.

To understand these issues, we consider an experiment with a long-lived flow

competing on a single link against cross-traffic derived from the Google, Facebook,

and WebSearch workloads. We repeat the experiment at 10, 40, and 100 Gbps, with

the average load of the cross-traffic flows set to be 60% of the link capacity in each

case. Fig. 3-3 plots the relative change in the fair-share rate of the long-lived flow over

different time intervals.2 Congestion control protocols struggle to track the fair-share

rate when it varies significantly over their feedback delay (typically an RTT). As

link speeds increase or flows become shorter, the fair-share rate changes more rapidly

(since flows arrive and finish more quickly), and hence congestion control becomes

more difficult.

Table 3.1 considers one configuration in detail, with a single long flow sharing a

100Gbps link with cross-traffic drawn from the Facebook distribution at 60% average

load. The minimum RTT (hence, feedback delay) is 8𝜇s. We consider both the

2The fair-share rate (𝑓(𝑡)) for a link of capacity 𝐶 shared by 𝑁(𝑡) flows is 𝐶/𝑁(𝑡). The relative
change in 𝑓(𝑡) over time interval 𝐼 is given by | 𝑓(𝑡+𝐼)−𝑓(𝑡)

𝑓(𝑡) |.
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Figure 3-3: Mean percent change in fair-share rate as a function of workload, delay, and
bandwidth.

single packet (99𝑡ℎ percentile) queuing delay and throughput for the long flow, for

our approach (BFC) and two end-to-end protocols (DCQCN and HPCC). BFC is

able to achieve close to the maximum possible throughput for the long-lived flow

(40%) with low tail delay, while the end-to-end protocols fall short in both respects.

3.2.2 Existing Solutions are Insufficient

There are several existing solutions that go beyond end-to-end congestion control. We

briefly discuss the most prominent of these approaches and why they are insufficient

to deal with the challenges described above.

Priority flow control (PFC). One approach to handling increased buffer occupancy

would be to use PFC, a hop-by-hop flow control mechanism.3 With PFC, if the

packets from a particular input port start building up at a congested switch (past

a configurable threshold), the switch sends a “pause” frame upstream, stopping that

input from sending more traffic until the switch has a chance to drain stored packets.

This prevents switch buffers from being overrun. Unfortunately, PFC has a side

effect: head-of-line (HoL) blocking [150]. For example, incast traffic to a single server

can cause PFC pause frames to be sent one hop upstream towards the source of the

traffic. This stops all the traffic traversing the paused link, even those flows that

3For simplicity, we focus on the case where there is congestion among the traffic at a particular
priority level.
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are destined to other uncongested egress ports. These flows will be delayed until the

packets at the congested port can be drained. Worse, as packets queue up behind a

PFC, additional PFC pause frames can be triggered at upstream hops, widening the

scope of HoL blocking.

Switch scheduling. Several efforts use switch scheduling to overcome the nega-

tive side-effects of elephant flows on the latency of short flows. These proposals

range from approximations of fair queuing (e.g., Stochastic Fair Queuing [103], Ap-

proximate Fair Queuing [123]) to scheduling policies that prioritize short flows (e.g.,

pFabric [16], QJump [61], Homa [107]). Our work is orthogonal to the choice of switch

scheduling policy, and we present results with priority scheduling and shortest flow

first. Scheduling by itself does nothing to reduce buffer occupancy; buffers can fill,

causing packet drops or HoL blocking, regardless of scheduling.

Receiver-based congestion control. Because sender-based congestion control

schemes generally perform poorly on incast workloads, some researchers have pro-

posed shifting to a scheme where the receiver prevents congestion by explicitly allo-

cating credits to senders for sending traffic. Three examples are NDP [64], pHost [51]

and Homa [107]. BFC makes fewer assumptions than these approaches. Homa, for

example, assumes knowledge of the flow size distribution and flow length, so that

it can assign flows to near-optimal priority queues; this is unavailable with today’s

TCP socket interface and not all applications know flow lengths in advance [23, 135].

Homa uses packet spraying to achieve better load balancing, so that congestion pri-

marily occurs at the last hop, where the receiver has complete visibility. However,

congestion-free operation of the core is difficult to engineer for widely deployed over-

subscribed and asymmetric networks [124, 151, 149]. Packet spraying can also cause

packet reordering, which is incompatible with high-speed end host software and hard-

ware packet handling [101, 82]. Other proposals suggest collecting credits generated

by a flow’s receiver (congestion-controlled by all switches on the flow’s path) before

sending [38]; at high link speeds, the network state changes rapidly over the feedback

delay, making it difficult for the receiver to determine the right rate for credits, similar

to sender-based protocols.
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3.2.3 Revisiting Per-hop, Per-Flow Flow Control

Our approach is inspired by work in the early 90s on hop-by-hop credit-based flow

control for managing gigabit ATM networks [19, 91]. Credit-based flow control was

also introduced by multiprocessor hardware designs of the same era [87, 95, 32]. In

these systems, each switch methodically tracks its buffer space, granting permission

to send at an upstream switch if and only if there is room in its buffer. In ATM,

packets of different flows are buffered in separate queues and are scheduled according

to the flows’ service requirements. The result is a network that has no congestion loss

by design.

An ideal realization of such a per-hop, per-flow flow control scheme has several

desirable properties:

(1) Fast reaction: When a flow starts experiencing congestion at a switch, the

upstream switch can reduce its rate within a 1-Hop RTT, instead of the end-to-end

RTT that it takes for standard congestion control schemes. Likewise, when capacity

becomes available at a switch, the upstream switch can increase its rate within a

1-Hop RTT (provided the upstream switch has packets from that flow). Assuming

a hardware implementation, the 1-hop RTT consists of the propagation latency and

the switch pipeline latency —typically 1-2 𝜇s.4 This is substantially smaller than the

typical end-to-end RTT in data centers (e.g., 10-20 𝜇s), which in addition to multiple

switch hops includes the latency at the endpoints.

(2) Buffer pooling: During traffic bursts, a per-hop per-flow flow control mechanism

throttles traffic upstream from the bottleneck. This enables the bottleneck switch to

tap into the buffers of its upstream neighbors, thereby significantly increasing the

ability of the network to absorb bursts.

(3) No HoL blocking: Unlike PFC, there is no HoL blocking or congestion spread-

ing with per-hop per-flow flow control, because switches isolate flows in different

queues and perform flow control for each of them separately.

(4) Simple control actions: Flow control decisions in a per-hop per-flow flow
4For example, a 100 m cable has a propagation latency of 500 ns, and a typical data center switch

has a pipeline latency around 500 ns [33, 26].
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control system are simpler to design and reason about than end-to-end congestion

control algorithms because: (i) whether to send or pause a flow at a switch depends

only on feedback from the immediate next-hop switch (as opposed to multiple po-

tential points of congestion with end-to-end schemes), (ii) concerns like fairness are

dealt with trivially by scheduling flows at each switch, and therefore flow control can

focus exclusively on the simpler task of managing buffer occupancy and ensuring high

utilization.

Despite these compelling properties, per-hop per-flow flow control schemes have

not been widely deployed, in part because of their high implementation complexity

and resource requirements. ATM schemes require per-connection state and large

buffers, which are not feasible in today’s data center switches. We observe, however,

that per-connection switch state is not actually required. Indeed, much of the time,

per-connection state is for flows that have no packets queued at the switch, and

therefore don’t need to be flow controlled.

We define an active flow to be a flow with one or more packets queued at the

switch. A result of queuing theory is that the number of active flows is surprisingly

small for a switch using fair queuing [86, 88]. In particular, for an M/G/1-PS (Pro-

cessor Sharing) queue with Poisson flow arrivals operating at average load 𝜌 < 1, the

number of active flows has a geometric distribution with mean 𝜌
1−𝜌

, independent of the

link speed or the flow size distribution. Even at load 𝜌 = 0.9, the expected number

of active flows is only 9. The intuition behind this fact is that a fair queued switch

will tend to process short flows quickly, completing them and keeping the number of

active flows small.

Data center network workloads are often more bursty than Poisson, leading to

longer queues and more active flows. However, the basic principle still holds. Fig. 3-4

shows the cumulative distribution of the number of active flows for a single bottleneck

link operating at different loads and link speeds, using the Google flow size distribu-

tion and (bursty) log-normal flow inter-arrival times. The upper graph assumes fair

queuing and includes a vertical bar for the number of queues per port on Tofino2.

At 100 Gbps, the number of active flows significantly exceeds the number of queues
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Figure 3-4: Number of active flows for different load, link speed, and scheduling
policy — Lines correspond to different loads. Flow sizes are from the Google distribution
with lognormal (𝜎 = 2) inter-arrival times.

only for loads above 85%, and then only modestly; importantly, the distribution is

invariant to link speed, and the trend is for faster links to have more queues. The

result holds even more strongly with shortest remaining flow first (SRF) scheduling.

By contrast, with FIFO queuing, even a single long flow can cause a large number of

small flows to back up behind it, and therefore the number of active flows is much

larger.

3.3 Design

Our goal is to design a practical system for per-hop, per-flow flow control for data

center networks. We first describe the constraints on our design (§3.3.1). We then

sketch a plausible strawman proposal that surprisingly turns out to not work well at

all (§3.3.2), and we use that as motivation for our design (§3.3.3).
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Figure 3-5: Logical switch components in per-hop, per-flow flow control.

3.3.1 Design Constraints

Fig. 3-5 shows the basic components of a per-hop, per-flow flow control scheme (per

port). (1) Mapping to physical queues: When a packet arrives at the switch, the switch

routes the packet to an egress port and maps it to a FIFO queue at that port. This

assignment of flows to queues must be consistent, that is, respect packet ordering. (2)

Backpressure module: Based on queue occupancy, the switch generates backpressure

feedback for some flows and sends it upstream. (3) Scheduler: The scheduler at each

egress port forwards packets from queues while respecting backpressure feedback from

the downstream switch.

ATM per-hop per-flow flow control systems [19, 91] roughly followed this archi-

tecture, but they would be impractical for modern data centers. First, they assumed

per-flow queues and state, but modern switches have a limited number of queues per

egress port [123, 29] and modest amounts of table memory [30, 39]. In particular, it is

not possible to maintain switch state for all live connections. Second, earlier schemes

did not attempt to minimize buffer occupancy. Instead, they sent backpressure feed-

back only when the switch was about to run out of buffers. On a buffer-constrained

switch, this can result in buffer exhaustion —buffers held by straggler flows can pre-

vent other flows from using those buffers at a later time.

Hardware assumptions. Modern data center switches have made strides towards

greater flexibility [126, 21], but they are not infinitely malleable and have real resource

constraints. We make the following assumptions based on the capabilities of Tofino2.

1. We assume the switch is programmable and supports stateful operations.Tofino2
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can maintain millions of register entries, and supports simple constant-time per-

packet operations to update the state at line rate [125].

2. The switch has a limited number of FIFO queues per egress port, meaning

that flows must be multiplexed onto queues. Tofino2 has 32/128 queues per

100/400G port. The assignment of flows to queues is programmable. The

scheduler can use deficit round-robin or priorities among queues, but packets

within a queue are forwarded in FIFO order.

3. Each queue can be independently paused and resumed without slowing down

forwarding from other queues. When we pause a queue, that pauses all of the

flows assigned to that queue. The switch can pause/resume each queue directly

within the dataplane.

3.3.2 A Strawman Proposal

We originally thought stochastic fair queuing [103] with per-queue backpressure might

meet our goals: use a hash function on the flow header to consistently assign the

packets of each flow to a randomly-chosen FIFO queue at its egress port, and pause

a queue whenever its buffer exceeds the 1-hop bandwidth-delay product (BDP). For

simplicity, use the same hash function at each switch.

This strawman needs only a small amount of state for generating the backpressure

feedback and no state for queue assignment. However, with even a modest number

of active flows, the birthday paradox implies that there is a significant chance that

any specific flow will land in an already-occupied FIFO queue. These collisions hurt

latency for two reasons: (1) The packets for the flow will be delayed behind unrelated

packets from other flows; for example, a short flow may land behind a long flow. (2)

Queue sharing can cause HoL blocking. If a particular flow is paused (because it is

congested downstream), all flows sharing the same queue will be delayed.

To prevent collisions from affecting tail latency performance, the strawman re-

quires significantly more queues than active flows. For example, at an egress port

with 𝑛 active flows, to achieve fewer than 1% collisions, we would need roughly 100𝑛

queues.
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3.3.3 Backpressure Flow Control (BFC)

Our design achieves the following properties:

Minimal HoL blocking: We assign flows to queues dynamically. As long as the

number of active flows at an egress is less than the number of queues, (with high

probability) no two flows share a queue and there is no HoL blocking. When a new

flow arrives at the switch, it is assigned to an empty queue if one is available, sharing

queues only if all are in use.

Low buffering and high utilization: BFC pauses a flow at the upstream when

the queue occupancy exceeds a small threshold. BFC’s pause threshold is set ag-

gressively to reduce buffering. With coarse pausing like PFC, pausing aggressively

hurts utilization, but BFC only pauses those flows causing congestion (except when

collisions occur). The remaining flows at the upstream can continue transmitting,

avoiding under-utilization.

Hardware feasibility: BFC does not require per-flow state, and instead uses an

amount of memory proportional to the number of physical queues in the switch. To

allow efficient lookup of the state associated with a flow, the state is stored in a flow

table, an array indexed using a hash of the flow identifier. The size of this array is set

in proportion to the number of physical queues. In our Tofino2 implementation, it

consumes less than 10% of the dedicated stateful memory. Critically, the mechanism

for generating backpressure and reacting to it is simple and the associated operations

can be implemented entirely in the dataplane at line rate.

Generality: BFC does not make assumptions about the network topology or where

congestion can occur, and does not require packet spraying like NDP [64] or Homa [107].

Furthermore, it does not assume knowledge of flow sizes or deadlines. Such informa-

tion can be incorporated into BFC’s design to improve small flow performance (see

Appendix F.1), at a cost in deployability.

Idempotent state: Because fiber packets can be corrupted in flight [151], BFC

ensures that pause and resume state is maintained idempotently, in a manner resilient

to packet loss.
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3.3.3.1 Assigning Flows to Queues

To minimize sharing of queues and HoL blocking, we dynamically assign flows to

empty queues. As long as the flow is active (has packets queued at the switch),

subsequent packets for that flow will be placed into the same FIFO queue. Each

flow has a unique 5-tuple of the source and destination addresses, port numbers, and

protocol; we call this the flow identifier (FID). BFC uses the hash of the FID to track

a flow’s queue assignment. To simplify locating an empty queue, BFC maintains a

bit map of empty queues. When the last packet in a queue is scheduled, BFC resets

the corresponding bit for that queue.

With dynamic queue assignment, a flow can be assigned to different queues at

different switches. To pause a flow, BFC pauses the queue the flow came from at the

upstream switch (called the upstream queue). The pause applies to all flows sharing

the same upstream queue with the paused flow. We describe the pause mechanism

in detail in S3.3.3.2. The packet scheduler uses deficit round robin to implement fair

queuing among the queues that are not paused.

Since there is a limited number of queues, it is possible that all queues have been

allocated when a new flow arrives, at which point HoL blocking is unavoidable. For

hardware simplicity, we assign the flow to a random queue in this case. Packets

assigned to the same queue are scheduled in FIFO order. The number of active

flows is usually small (§3.2.3), but in certain settings, such as incast, it can exceed

the number of queues. BFC’s behavior is similar to stochastic fair queuing in such

scenarios in that it incurs HoL blocking. BFC still outperforms existing protocols like

DCQCN and HPCC except in the most extreme cases (see §3.6.3, §3.6.4). Even during

a large scale incast, BFC can leverage the large number of upstream queues feeding

traffic to a bottleneck switch to (1) absorb larger bursts, and (2) limit congestion

spreading. In particular, when flows involved in an incast are spread among multiple

upstream ports, BFC assigns these flows to separate queues at those ports. As long

as the total number of flows does not exceed the total number of queues across all of

the upstream ports, BFC will not incur HoL blocking at the upstream switches. As
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the size of the network increases and the fan-in to each switch gets larger, there will

be even more queues at the upstream switches to absorb an incast, further reducing

congestion spreading.

Mechanism: To keep track of queue assignment, BFC maintains an array indexed

by the egress port of a flow and the hash of the FID. All flows that map to the same

index are assigned to the same queue. We maintain the following state per entry: the

physical queue assignment (qAssignment), and the number of packets in the queue

from the flows mapped to this entry (size). The pseudocode is as follows (we defer

switch-specific implementation issues to §3.4):

On Enqueue ( packet ) :

key = <packet . egres sPort , hash ( packet . FID)>

i f f lowTable [ key ] . s i z e == 0 :

reass ignQueue = True :

f lowTable [ key ] . s i z e += 1

i f reass ignQueue :

i f empty q av a i l a b l e at packet . eg r e s sPor t :

qAssignment = emptyQ

e l s e :

qAssignment = randomQ

flowTable [ key ] . qAssignment = qAssignment

packet . qAssignment = flowTable [ key ] . qAssignment

On Dequeue ( packet ) :

key = <packet . egres sPort , hash ( packet . FID)>

flowTable [ key ] . s i z e −= 1

In the flow table, if two flows map to the same index they will use the same queue

(collision). Since flows going through different egress ports cannot use the same

queue, the index also includes the egress port. Index collisions in the flow table can

hurt performance. These collisions decrease with the size of the table, but the flow

table cannot be arbitrarily large as the switch has a limited stateful memory. In our

design, we set the size of the flow table to 100 × the number of queues in the switch.

This ensures that if the number of flows at an egress port is less than the number of
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queues, then the probability of index collisions is less than 1%. If the number of flows

exceeds the number of queues, then the index collisions do not matter as there will

be collisions in the physical queues regardless. Tofino2 has 4096 queues in aggregate,

and hence the size of the flow table is 409,600 entries, which is less than 10% of the

switch’s dedicated stateful memory.

While using an array is not memory efficient, accessing state involves simple op-

erations. Existing solutions for maintaining flow state either involve slower control

plane operations, or are more complex [114, 25]. In the future, if the number of queues

increases substantially, we can use these solutions for the flow table; however at the

moment, the additional complexity is unnecessary.

3.3.3.2 Backpressure Mechanism

BFC pauses a flow if the occupancy of the queue assigned to that flow exceeds the

pause threshold 𝑇ℎ. To pause/resume a flow, the switch could signal the flow ID

to the upstream switch, which can then pause/resume the queue associated with the

flow. While this solution is possible in principle, it is difficult to implement on today’s

programmable switches. The challenge is that, on receiving a pause, the upstream

switch needs to perform a lookup to find the queue assigned to the flow and some

additional bookkeeping to deal with cases when a queue has packets from multiple

flows (some of which might be paused and some not).

We take a different approach. Switches directly signal to the upstream device to

pause/resume a specific queue. Each upstream switch/source NIC inserts its local

queue number in a special header field called upstreamQ. The downstream switch uses

this information to pause the queue at the upstream.

Mechanism: Recall that, in general, multiple flows can share a queue in rare

cases. This has two implications. First, we track the queue length (and not just

the flowTable.size) and use that to determine if the flow’s upstream queue should

be paused. Second, each upstream queue can, in general, have flows sending packets

to multiple queues at multiple egresses. We pause an upstream queue if any of its

flows are assigned a congested queue, and we resume when none of its flows have
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packets at a congested queue (as measured at the time the packet arrived at the

switch).

We monitor this using a Pause Counter, an array indexed by the ingress port and

the upstreamQ of a packet. The upstream queue is paused if and only if its Pause

Counter at the downstream switch is non-zero. On enqueue of a packet, if its flow is

assigned a queue that exceeds the pause threshold, we increment the pause counter

at that index by 1. When this packet (the one that exceeded 𝑇ℎ) leaves the switch

we decrement the counter by 1. Regardless of the number of flows assigned to the

upstreamQ, it will be resumed only once all of its packets that exceeded the pause

threshold (when the packet arrived) have left the switch.

On Enqueue ( packet ) :

key = <packet . ing re s sPor t , packet . upstreamQ>

i f packet . qAssignment . qLength > 𝑇ℎ :

packet . metadata . counte r Inc r = True

pauseCounter [ key ] += 1

i f pauseCounter [ key ] == 1 :

//Pause the queue at upstream

sendPause ( key )

On Dequeue ( packet ) :

key = <packet . ing re s sPor t , packet . upstreamQ>

i f packet . metadata . counte r Inc r == True :

pauseCounter [ key ] −= 1

i f pauseCounter [ key ] == 0 :

//Resume the queue at upstream

sendResume ( key )

To minimize bandwidth consumed in sending pause/resumes, we only send a pause

packet when the pause counter for an index goes from 0 to 1, and a resume packet when

it goes from 1 to 0. For reliability against pause/resume packets being dropped, we

also periodically send a bitmap of the queues that should be paused at the upstream

(using the pause counter). Additionally, the switch uses a high priority queue for

processing the pause/resume packets. This reduces the number of queues available

for dynamic queue assignment by 1, but it eliminates performance degradation due
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to delayed pause/resume packets.

The memory required for the pause counter is small compared to the flow table.

For example, if each upstream switch has 128 queues per egress port, then for a

32-port downstream switch, the pause counter is 4096 entries.

Pause threshold. BFC treats any queue buildup as a sign of congestion. BFC

sets the pause threshold 𝑇ℎ to 1-Hop BDP at the queue drain rate. Let 𝑁𝑎𝑐𝑡𝑖𝑣𝑒 be

the number of active queues at an egress, i.e. queues with data to transmit that are

not paused, 𝐻𝑅𝑇𝑇 be the 1-Hop RTT to the upstream, and 𝜇 be the port capacity.

Assuming fair queuing as the scheduling policy, the average drain rate for a queue at

the egress is 𝜇/𝑁𝑎𝑐𝑡𝑖𝑣𝑒. The pause threshold 𝑇ℎ is thus given by (𝐻𝑅𝑇𝑇 ) · (𝜇/𝑁𝑎𝑐𝑡𝑖𝑣𝑒).

When the number of active queues increases, 𝑇ℎ decreases. In asymmetric topologies,

egress ports can have different link speeds; as a result, we calculate a different pause

threshold for every egress based on its speed. Similarly, ingress ports can have different

1-Hop RTTs. Since a queue can have packets from different ingresses, we use the max

of 𝐻𝑅𝑇𝑇 across all the ingresses to calculate 𝑇ℎ. We use a pre-configured match-

action table indexed with 𝑁𝑎𝑐𝑡𝑖𝑣𝑒 and 𝜇 to compute 𝑇ℎ.

BFC does not guarantee that a flow will never run out of packets due to pausing.

First, a flow can be paused unnecessarily if it is sharing its upstream queue with other

paused flows. Second, a switch only resumes an upstream queue once all its packets

(that exceeded the pause threshold when they arrived) have left the downstream

switch. Since the resume takes an 𝐻𝑅𝑇𝑇 to take effect, a flow can run out of packets

at the downstream switch for an 𝐻𝑅𝑇𝑇 , potentially hurting utilization. However,

this scenario is unlikely— a pause only occurs when a queue builds up, typically

because multiple flows are competing for the same egress port. In this case, the other

flows at the egress will have packets to occupy the link, preventing under-utilization.

We might reduce the (small) chance of under-utilization by resuming the upstream

queue earlier, for example, when a flow’s queue at the downstream drops below 𝑇ℎ,

or more precisely, when every queue (with a flow from the same upstream queue)

drops below 𝑇ℎ. Achieving this would require extra bookkeeping, complicating the

design.
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Increasing the pause threshold would reduce the number of pause/resumes gener-

ated, but only at the expense of increased buffering (Fig. 3-7). In Appendix C, we

analyze the impact of 𝑇ℎ on under-utilization and peak buffer occupancy in a simple

model, and we show that a flow runs out of packets at most 20% of the time when

𝑇ℎ is set to 1-hop BDP. Our evaluation results show that BFC achieves much better

throughput than this worst case in practice (Table 3.1, §3.6).

Sticky queue assignment: Using upstreamQ for pausing flows poses a challenge.

Since a switch does not know the current queue assignment of a flow at the up-

stream, it uses the upstreamQ conveyed by the last packet of the flow to pause a

queue. However, if a flow runs out of packets at the upstream switch (e.g., because

it was bottlenecked at the downstream switch but not the upstream), then its queue

assignment may change for subsequent packets, causing it to temporarily evade the

pause signal sent by the downstream switch. Such a flow will be paused again when

the downstream receives packets with the new upstreamQ. The old queue will likewise

be unpaused when its last packet (that exceeded 𝑇ℎ) departs the downstream switch.

To reduce the impact of such queue assignment changes, we add a timestamp

to the flow table state, updated whenever a packet is enqueued or dequeued. A

new queue assignment only happens if the size value in the flow table is 0, and the

timestamp is older than a “sticky threshold” (i.e., the entry in the flow table has had

no packets in the switch for at least this threshold). Since with BFC’s backpressure

mechanism a flow can run out of packets for an 𝐻𝑅𝑇𝑇 , we set the sticky threshold

to a small multiple of 𝐻𝑅𝑇𝑇 (2 𝐻𝑅𝑇𝑇 ).

While sticky queue assignments reduce the chance that a backlogged flow will

change queues, it doesn’t completely eliminate it (e.g., packets from the same flow

may arrive slower than this interval due to an earlier bottleneck). Such situations are

rare, and we found that BFC performs nearly identically to an ideal (but impractical)

variant that pauses flows directly using the flow ID without sticky queue assignments.
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3.4 Tofino2 Implementation

We implemented BFC in Tofino2, a to-be-released P4-based programmable switch

ASIC with a Reconfigurable Match Table (RMT) architecture [29]. A packet in

Tofino2 first traverses the ingress pipeline, followed by the traffic manager (TM) and

finally the egress pipeline. Tofino2 has four ingress and four egress RMT pipelines.

Each pipeline has multiple stages, each capable of doing stateful packet operations.

Ingress/egress ports are statically assigned to pipelines.

Bookkeeping: The flow table and pause counter are both maintained in the ingress

pipeline. The flow table contains three values for each entry and is thus implemented

as three separate register arrays (one for each value), updated one after the other.

Multiple pipelines: The flow table is split across the four ingress pipelines, and the

size of the table in each ingress pipeline is 25 × the number of queues. During normal

operation, packets of an active flow arrive at a single ingress pipeline (same ingress

port). Since the state for a flow only needs to be accessed in a single pipeline, we

can split the flow table. However, splitting can marginally increase collisions if the

incoming flows are distributed unevenly among the ingress pipelines. Similarly, the

pause counter is split among the ingress pipelines. An ingress pipeline contains the

pause counter entries corresponding to its own ingress ports.

Gathering queue depth information: We need queue depth information in the ingress

pipeline for pausing and dynamic queue assignment. Tofino2 has an inbuilt feature

tailored for this task. The TM can communicate the queue depth information for all

the queues in the switch to all the ingress pipelines without consuming any additional

ingress cycles or bandwidth. The bitmap of empty queues is periodically updated with

this data, with a different rotating starting point per pipeline to avoid new flows from

being assigned to the same empty queue.

Communicating from egress to ingress pipeline: The enqueue operations described

earlier are executed in the ingress pipeline when a packet arrives. Dequeue operations

should happen at the egress but the bookkeeping data structures are at the ingress.

To solve this, in the egress pipeline, we mirror packets as they exit and recirculate the
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header of the mirrored packet back to the ingress pipeline it came from. The dequeue

operations are executed on the recirculated packet header.

Recirculating packets involves two constraints. First, the switch has dedicated

internal links for recirculation, but the recirculation bandwidth is limited to 12% of

the entire switch capacity. Second, the recirculated packet consumes an additional

ingress cycle. The switch has a cap on the number of packets it can process every

second (pps capacity).

Most workloads have an average packet size greater than 500 bytes [27], and

Tofino2 is designed with enough spare capacity in bandwidth and pps to handle

header recirculation for every packet for those workloads (with room to spare). If the

average packet size is much smaller, we can reduce recirculations by sampling packets

for recirculation (described in Appendix E).

Recirculation is not fundamental to BFC. For example, Tofino2 has native support

for PFC bookkeeping in the TM. Likewise, if BFC bookkeeping was implemented in

the TM, it would not need recirculation. Similarly, in switches with a disaggregated

RMT architecture [39] where the same memory can be accessed at both the ingress

and egress, there is no need for recirculation.

3.5 Discussion

Guaranteed losslessness. BFC does not guarantee losslessness. In particular, a

switch in BFC pauses an upstreamQ only after receiving a packet from it. This implies

an upstreamQ can send packets for up to an 𝐻𝑅𝑇𝑇 to the bottleneck switch before

being paused, even if the switch is congested. In certain mass incast scenarios, this

might be sufficient to trigger drops. Using credits [19, 91] could address this at the

cost of added complexity. We leave an investigation of such prospective variants of

BFC to future work. In our evaluation with realistic switch buffer sizes, BFC never

incurred drops except under a 2000-to-1 incast (§3.6.3) and even then only 0.007% of

the packets were dropped.

Deadlocks: Pushback mechanisms like PFC have been shown to be vulnerable

102



to deadlocks in the presence of cyclic buffer dependencies (CBD) or misbehaving

NICs [70, 62]. BFC NICs do not generate any backpressure and as a result cannot

cause deadlocks. Since NICs always drain, in the absence of CBD, BFC cannot have

deadlocks (see Appendix D for a formal proof). A downstream switch in BFC will

resume an upstreamQ if it drains all the packets sent by the upstreamQ. If a down-

stream is not deadlocked, it will eventually drain packets from the upstream, and as

a result, the corresponding upstream cannot be deadlocked.

To prevent CBD, we can reuse prior approaches for deadlock prevention. These

approaches can be classified into two categories. The first is to redesign routing

protocols to avoid installing routes that might cause CBD [129, 128]. The other is to

identify a subset of possible ingress/egress pairs that are provably CBD free, and only

send pause/resume along those pairs [71]. For a fat-tree topology, this would allow

up-down paths but not temporary loops or detour routes [97]. In BFC, we use the

latter approach. Given a topology, we pre-compute a match action table indexed by

the ingress and egress port, and simply elide the backpressure pause/resume signal if

it is disallowed. See Appendix D for details.

Incremental deployment: In a full deployment, BFC would not require end-to-end

congestion control. In a partial deployment, we advocate some form of end-to-end

congestion control, such as capping the number of inflight packets of a flow. A

common upgrade strategy is to upgrade switches more rapidly than server NICs. If

only switches and not NICs are running BFC, capping inflight packets prevents a

source NIC from overrunning the buffers of the first hop switch. The same strategy

can be used for upgrading one cluster’s switches before the rest of the data center [149].

In our evaluation, we show incremental deployment would have some impact on buffer

occupancy at the edge but minimal impact on performance (Appendix E).

3.6 Evaluation

We present a proof-of-concept evaluation of our Tofino2 implementation. To com-

pare performance of BFC against existing schemes, we perform large scale ns-3 [5]
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Figure 3-6: Testbed topology — The colored lines show the path for different flow
groups.

simulations.

3.6.1 Tofino2 Evaluation

Testbed: For evaluation, we were able to gain remote access to a Tofino2 switch.

Using a single switch, we created a simple multi-switch topology (Fig. 3-6) by looping

back packets from the egress port back into the switch. All the ports are 100 Gbps,

each port has 16 queues.5 The experiments include three groups of flows.

• Sender Group 1 → Switch 1 → Switch 2 → Receiver 1.

• Sender Group 2 → Switch 1 → Switch 2 → Receiver 2.

• Sender Group 3 → Switch 3 → Switch 2 → Receiver 2.

To generate traffic we use the on-chip packet generator with no end-to-end congestion

control.

Low buffering, high utilization: Fig. 3-7a shows the queue length for a flow when

two flows are competing at a link (a group 2 flow is competing with a group 3 flow

at the switch 2 → receiver 2 link). The pause threshold is shown as a horizontal

black line. BFC’s pausing mechanism is able to limit the queue length near the pause

threshold (𝑇ℎ). The overshoot from 𝑇ℎ is for two reasons. First, it takes an 𝐻𝑅𝑇𝑇

5For 100 Gbps ports, Tofino2 has 32 queues, but in loopback mode only 16 queues are available.
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Figure 3-7: Queue length and under-utilization — 2 flows are competing at a 100
Gbps link. Cell size is 176 bytes. BFC achieves high utilization and low buffering.

for the pause to take effect. Second, Tofino2 has small hardware queues after the

egress pipeline, and a pause from the downstream cannot pause packets already in

these hardware queues.

Notice that the queue length goes to 0 temporarily. Recall that a downstream

switch only resumes the upstreamQ when it has drained all the packets from the

upstreamQ that exceeded 𝑇ℎ. As a result, a flow at the downstream can run out

of packets for an 𝐻𝑅𝑇𝑇 . This can cause under-utilization when the queues for the

two flows go empty simultaneously. We repeat the above experiment but vary the

pause threshold. Fig. 3-7b shows the average queue length and the under-utilization

of the congested link. With a pause threshold of 2 𝜇s, BFC achieves close to 100%

utilization with an average queue length of 15 KB.

Queue assignment and congestion spreading: We next evaluate the impact

of queue assignment on HoL blocking and performance. We evaluate three differ-

ent queue assignment strategies with BFC’s backpressure mechanism: (1) “BFC +

single”: All flows are assigned to a single queue (similar to PFC); (2) “BFC + stochas-

tic”: Flows are assigned to queues using stochastic hashing; (3) “BFC + dynamic”:

Dynamic queue assignment as described in §3.3.3.1.

The setup consists of two group 1 flows, eight group 3 flows, and a number of group

2 flows varied between four to twenty. All flows are 1.5 MB in size. The experiment is

designed such that for group 2 and 3 flows, the bottleneck is the switch 2 → receiver
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Figure 3-8: Congestion spreading — Dynamic queue assignment reduces HoL blocking,
improving FCTs on average and at the tail.

2 link. The bottleneck for group 1 flows is the switch 1 → switch 2 link. Switch 2

will pause queues at switch 1 in response to congestion from group 2 flows. Notice

that group 1 and group 2 flows are sharing the switch 1 → switch 2 link. If a group

1 flow shares a queue with a group 2 flow (a collision), the backpressure due to the

group 2 flow can slow down the group 1 flow, causing HoL blocking and increasing

its flow completion time (FCT) unnecessarily.

Fig. 3-8 shows the average FCT for group 1 flows across four runs. The whiskers

correspond to one standard deviation in the FCT. BFC + single achieves the worst

FCT as group 1 and 2 flows always share a queue. With stochastic assignment, the

FCT is substantially lower, but the standard deviation in FCT is high. In some runs,

group 1 and 2 flows don’t share a queue and there is no HoL blocking. In other runs,

due to the stochastic nature of assignment, they do share a queue (even when there

are other empty queues), resulting in worse performance. With dynamic assignment,

BFC achieves the lowest average FCT and the best tail performance. In particular,

the standard deviation is close to 0 when the number of flows at the switch 1 →

switch 2 link (group 1 + group 2 flows) is lower than the number of queues. In

such scenarios, group 1 flows consistently incur no collisions. When the number of

flows exceed the queues, collisions are inevitable, and the standard deviation in FCT

increases.
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3.6.2 Simulation-based Evaluation

We also implemented BFC in ns-3 [5]. For DCQCN we use [6], for ExpressPass we

use [2], and for all other schemes we use [4].

3.6.2.1 Setup

Network Topology: We use a Clos topology with 128 leaf servers, 8 top of the

rack (ToR) switches and 8 Spine switches (2:1 over subscription). Each Spine switch

is connected to all the ToR switches, each ToR has 16 servers, and each server is

connected to a single ToR. All links are 100 Gbps with a propagation delay of 1 us.

The maximum end-to-end base round trip time (RTT) is 8𝜇s and the 1-Hop RTT is

2𝜇s. The switch buffer size is set to 12 MB. Relative to the ToR switch capacity of

2.4Tbps, the ratio of buffer size to switch capacity is 40𝜇s, the same as Broadcom’s

Tomahawk3 from Fig. 3-1. We use an MTU of 1KB. Unless specified otherwise,

we use Go-Back-N for retransmission, flow-level ECMP for load balancing, and the

standard shared buffer memory model implemented in existing switches [33].

Comparisons: HPCC: HPCC uses explicit link utilization information from the

switches to reduce buffer occupancy and drops/PFCs at the congested switch. We

use the parameters from the paper, 𝜂 = 0.95 and 𝑚𝑎𝑥𝑆𝑡𝑎𝑔𝑒 = 5. The dynamic PFC

threshold is set to trigger when traffic from an input port occupies more than 11% of

the free buffer (as in the HPCC paper). We use the same PFC thresholds for DCQCN

and DCTCP.

HPCC-PFC: This version replaces PFC with perfect retransmission. On a packet

drop, the switch informs the sender directly, which then retransmits the dropped

packet. We choose this (potentially impractical) strategy to provide a bound on the

performance that can be achieved using any retransmission scheme.

DCQCN: DCQCN uses ECN bits and end-to-end control to manage buffer use at the

congested switch. The ECN threshold triggers before PFC (K𝑚𝑖𝑛 = 100KB and K𝑚𝑎𝑥

= 400KB).

DCTCP: The ECN threshold is same as DCQCN. Flows start at line rate to avoid
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degradation in FCTs from slow-start.

ExpressPass: In ExpressPass, senders transmit data based on credits generated by

the receiver. These credits are rate-limited at the switches to avoid congestion. We

chose 𝛼 = 0.5, 𝑤𝑖𝑛𝑖𝑡 = 0.0625 and a credit buffer size of 16 credits. The ExpressPass

simulator does not follow a shared buffer model; instead it assumes dedicated per-port

buffers. To eliminate drops, we supplied a high per-port buffer value of 75MB. There

is no PFC.

BFC: We use 32 physical queues per port (consistent with Tofino2) and our flow

table has 76K entries. The flow table takes 400 KB of memory. We chose per-flow

fair queuing as our scheduling mechanism; all the comparison schemes strive for per-

flow fairness, thus, fair queuing provides for a just comparison.

Ideal-FQ: To understand how close BFC comes to optimal performance, we simulate

ideal fair queuing with infinite buffering at each switch. The NICs cap the in-flight

packets of a flow to 1 BDP. Note that infinite buffering is not realizable in practice;

its role is to bound how well we could possibly do.

Sensitivity to parameters: All systems were configured to achieve full throughput

for a single flow on an unloaded network. For end-to-end schemes, the choice of

parameters governs the trade-off between the performance of short flows (through

reduced queuing) and long flows (higher link utilization). We perform parameter

sensitivity analysis for HPCC, DCTCP and ExpressPass in Appendix F.2.

Performance metrics: We consider three performance metrics: (1) FCT normalized

to the best possible FCT for the same size flow, running at link rate (referred as

the FCT slowdown); (2) Overall buffer occupancy at the switch; (3) Throughput of

individual flows.

Workloads: We synthesized a trace to match the flow size distributions from the

industry workloads discussed in Fig. 3-2: (1) Aggregated workload from all appli-

cations in a Google data center; (2) a Hadoop cluster at Facebook (FB_Hadoop).

The flow arrival pattern is open-loop and follows a bursty log-normal inter-arrival

time distribution with 𝜎 = 2.6 For each flow arrival, the source-destination pair is
6Most prior work evaluates using Poisson flow arrivals [38, 107], but we use the more bursty
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Figure 3-9: Google distribution with 55% load + 5% 100-1 incast. BFC tracks the ideal
behavior, improves FCTs, and reduces buffer occupancy. For FCT slowdown, both the x
and y axis are log scaled.

derived from a uniform distribution. We consider scenarios with and without incast,

different traffic load settings, and incast ratios. Since our topology is oversubscribed,

on average links in the core (Spine-ToR) will be more congested than the ToR-leaf

server links. In our experiments, by X% load we mean X% load on the links in the

core.

3.6.2.2 Performance

Fig. 3-9 and 3-10 show our principal results. The flow sizes are drawn from the

Google distribution and the average load is set to 60% of the network capacity. For

Fig. 3-9 (but not Fig. 3-10), 5% of the traffic (on average) is from incast flows.

The incast degree is 100-to-1 and the size is 20MB in aggregate. A new incast

event starts every 500𝜇s. Since the best-case completion time for an incast is 1.6

Lognormal as it provides a more challenging case for BFC.
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Figure 3-10: FCT slowdown and buffer occupancy for Google distribution with 60% load.
For all the schemes, PFC was never triggered. Part (c) shows the CDF of active flows at a
port with and without incast, with the vertical bar showing the total number of queues per
port.

ms (20 MB/100 Gbps), multiple incasts coexist simultaneously in the network. We

report the FCT slowdowns at the average, 95th and 99th percentile, the tail buffer

occupancy (except for ExpressPass simulations which do not follow the shared buffer

model), and the fraction of time links were paused due to PFC. We report the FCT

slowdowns for the incast traffic separately in Appendix F.4.

Out of all the schemes, DCQCN is worst on latency for small flow sizes, both

at the average and the tail. Compared to DCQCN, DCTCP improves latency as it

uses per-ACK feedback instead of periodic feedback via QCN. However, the frequent

feedback is not enough, and the performance is far from optimal (Ideal-FQ). The

problem is that both DCQCN and DCTCP are slow in responding to congestion.

Since flows start at line rate, a flow can build up an entire end-to-end bandwidth-

delay product (BDP) of buffering (100 KB) at the bottleneck before there is any

possibility of reducing its rate. The problem is aggravated during incast events. The
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bottleneck switch can potentially accumulate one BDP of packets per incast flow

(10MB in aggregate for 100-to-1 incast).

Both protocols have low throughput for long flows. When capacity becomes avail-

able, a long flow may fail to ramp up quickly enough, reducing throughput and shifting

its work to busier periods where it can impact other flows. Moreover, on sudden onset

of congestion, a flow may not reduce its rate fast enough, slowing short flows.

HPCC improves on DCQCN and DCTCP by using link utilization instead of ECN

and a better control algorithm. Compared to DCQCN and DCTCP, HPCC reduces

tail latency, tail buffer occupancy, and PFC pauses (in case of incast). Compared to

BFC, however, HPCC has 5-30× worse tail latency for short flows with incast, and

2.3-3× worse without. Long flows do worse with HPCC than DCQCN and DCTCP

since HPCC deliberately targets 95% utilization and very small queues to improve

tail latency for short flows.

With ideal retransmission, HPCC performance improves, especially for short and

medium flows. However, HPCC without PFC has higher tail buffer occupancy and

suffers packet loss. Compared to BFC, overall performance is still worse for both long

and short flows.

Across all systems, ExpressPass achieves the worst throughput for long flows. In

ExpressPass, the receiver can generate unnecessary credits for an additional RTT

before learning that a flow is finished. These credits are considered “wasted” as

the sender cannot transmit packets in response, and can therefore cause link under-

utilization. Credit waste and the corresponding under-utilization increase with faster

link speeds and/or when the flow sizes get shorter (see §6.3 and §7 in [38]).

Ideal-FQ achieves lower latency than all the schemes, but its buffer occupancy

can grow to an unfeasible level.

BFC achieves the best FCTs (both average and tail) among all the schemes. With-

out incast, BFC performance closely tracks optimal. With incast, incoming flows

exhaust the number of physical queues, triggering HoL blocking and hurting tail la-

tency. This effect is largest for the smallest flows at the tail. Fig. 3-10c shows the

CDF of the number of active flows at a port. In the absence of incast, the number

111



101 102 103 104

Flow Size (KB)
1
2
4
8

16
32
64

128

FC
T 

Sl
ow

 D
ow

n

BFC
HPCC

DCQCN
Exp-Pass

(a) 55% + 5% 100-1 incast

101 102 103 104

Flow Size (KB)
1
2
4
8

16
32
64

FC
T 

Sl
ow

 D
ow

n

IdealFQ
DCTCP

HPCC-PFC

(b) 60%
Figure 3-11: FCT slowdown (99𝑡ℎ percentile) for Facebook distribution with and without
incast.

of active flows is smaller than the total queues 99% of the time, and collisions are

rare. With incast, the number of active flows increases, causing collisions. However,

the tail latency for short flows with BFC is still 5-30× better than existing schemes.

BFC also improves the performance of incast flows, achieving 2× better FCTs at the

tail compared to HPCC (see Appendix F.4).

Note that, compared to BFC and Ideal-FQ, latency for medium flows (200-1000KB)

is slightly better with existing schemes. Because they slow down long flows relative

to perfect fairness, medium flows have room to get through more quickly. Conversely,

tail slowdown is better for long flows than medium flows with BFC and Ideal-FQ.

Long flows achieve close to the long term average available bandwidth, while medium

flows are more affected by transient congestion.

Another workload: We repeated the experiment in Fig. 3-9 and Fig. 3-10 with the

Facebook distribution. Fig. 3-11 shows the 99𝑡ℎ percentile FCT slowdown. The trends

in the FCT slowdowns are similar to that of the Google distribution, except that

ExpressPass performs better since it incurs fewer wasted credits (as a percentage) for

the Facebook workload, which has larger flows. We omit other statistics presented

earlier in the interest of space, but the trends are similar to Fig. 3-9 and 3-10.

Henceforth, all the experiments use the Facebook workload.
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Figure 3-12: Average FCT slowdown for long flows, and 99𝑡ℎ percentile tail FCT slowdown
for small flows, as a function of load.

3.6.3 Stress-testing BFC

In this section we stress-test BFC under high load and large incast degree. Flow

arrivals follow a bursty log-normal distribution (𝜎 = 2). We evaluate BFC under two

different queue configurations: (1) 32 queues per port (BFC 32); (2) 128 queues per

port (BFC 128). We show the average slowdown for long flows (> 3MB) and 99𝑡ℎ

percentile slowdown for short flows (< 3KB).

Load: Fig. 3-12 shows the performance as we vary the average load from 50 to 95%

(without incast). HPCC only supports loads up to 70%. At higher loads, it becomes

unstable (the number of outstanding flows grows without bound), in part due to the

overhead of the INT header (80B per-packet). All other schemes were stable across

all load values.

At loads ≤ 80%, BFC 32 achieves both lower tail latency (Fig. 3-12b) for short

flows and higher throughput for long flows (Fig. 3-12a). The tail latency for short

flows is close to the perfect value of 1. At higher loads, flows remain queued at

the bottleneck switch for longer periods of time, raising the likelihood that we run

out of physical queues, leading to head of line blocking. This particularly hurts tail

performance for short flows as they might be delayed for an extended period if they

are assigned to the same queue as a long flow. At the very high load of 95%, the HoL

blocking degrades tail latency substantially for BFC 32. However, it still achieves

good link utilization, and the impact of collisions is limited for long flows.
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Figure 3-13: Average FCT slowdown for long flows, and 99𝑡ℎ percentile tail FCT slowdown
for small flows, as a function of incast degree.

Increasing the number of queues reduces collisions and the associated HoL block-

ing. BFC 128 achieves better tail latency for short flows at load ≥ 90%.

Incast degree: If the size of an incast is large enough, it can exhaust physical queues

and hurt performance. Fig. 3-13 shows the effect of varying the degree of incast on

performance. The average load is 60% and includes a 5% incast. The incast size is

20MB in aggregate, but we vary the degree of incast from 10 to 2000.

For throughput, both BFC 32 and BFC 128 perform well as long as the incast

degree is moderate compared to the number of queues. Both start to degrade when

the incast degree exceeds 8× the number of queues per port. Till this point, BFC can

leverage the FanIn from the larger number of upstream queues (and greater aggregate

upstream buffer space) to keep the incast from impeding unrelated traffic. As the

incast degree scales up further, BFC 32 is able to retain some of its advantage relative

to HPCC and DCTCP.

For high incast degree, the tail latency for short flows becomes worse than HPCC.

The tail is skewed by the few percent of small requests that happen to go to the same

destination as the incast. (Across the 128 leaf servers in our setup, several servers are

the target of an incast at any one time, and these also receive their share of normal

traffic.) As the incast degree increases, more small flows share physical queues with

incast flows, leading to more HoL blocking.
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3.6.4 Understanding the Limits of BFC

This section further investigates the impact of large numbers of active flows on BFC’s

performance through controlled microbenchmarks. We also show that adding a simple

end-to-end flow control mechanism on top of pure BFC helps alleviate the performance

impairments caused by large numbers of flows.

Collisions hurt performance in two ways. Consider a congested port 𝑋. First,

at 𝑋, the packets of a short flow can get stuck behind the packets of a long flow

sharing the same queue, increasing the FCT. Such performance degradation occurs

when the number of active flows exceeds the number of queues at 𝑋. Second, 𝑋

can pause an upstream queue. Unrelated flows sharing this upstream queue will get

paused even though they are not going through the congested port 𝑋 (congestion

spreading). BFC can leverage the larger number of upstream queues at the upstream

switches to limit congestion spreading (§3.3.3.1). Typically, congestion spreads only

once the number of flows at the congested port exceeds the total number of upstream

queues. As a result, in larger topologies with more upstream switches, congestion

spreading is harder to create.

To illustrate these issues, we conduct experiments on our standard topology

(§3.6.2.1) where we create different numbers of long-running elephant flows destined

to the same receiver (Receiver 𝐴). All elephant flows start at the beginning of the

experiment. We then create two groups of short flows: (1) destined to the same re-

ceiver 𝐴 (referred as “direct” mice flows), and (2) destined to a different receiver 𝐵

in the same rack as receiver 𝐴 (referred to as “indirect” mice flows). The aggregate

load for each group of mice flows is 3% of the link capacity, and the size of the mice

flows is 1 KB. Fig. 3-14 shows the median FCT slowdown for mice flows as we vary

the number of long-running flows. We show results for BFC with 32 and 128 queues,

and also IdealFQ (described in §3.6.2.1) for reference. As expected, for direct mice

flows, the FCT degrades when the number of long-running flows exceeds the number

of queues. For indirect flows, the degradation only happens when long flows exceed

8× the number of queues, since the topology has 8 spine switches connected to each
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Figure 3-14: Median FCT slowdown for mice flows in the presence of long-running flows.

ToR switch. In this case, some indirect mice flows get paused unnecessarily because

they share an upstream queue with a paused long-running flow.

Combining end-to-end congestion control with BFC: In the previous experi-

ment, each long-running flow can build up to 1 Hop-BDP of buffering before getting

paused. With 𝑁 long-running flows, in the worst case, a mice flow experiencing a

collision can get stuck behind 𝑁× 1-Hop BDP of buffering. BFC can use a sim-

ple end-to-end congestion control mechanism to reduce this buffering and limit HoL

blocking. This mechanism is helpful in scenarios with persistently large numbers of

active flows. As our evaluations showed (§3.6.3), even in workloads with high load

and occasional large-scale incast, pure BFC (with no end-to-end control) performs

well except in extreme cases.

Augmenting BFC with end-to-end control is simple. The main goal of the end-to-

end control is to prevent flows from sending an excessively large number of packets

into the network. Importantly, the end-to-end mechanism need not try to accurately

control queuing, react quickly to bursts, or achieve fairness— typical requirements

for low-latency data center congestion control protocols— since BFC already achieves

these goals.

As an example, we implemented a simple delay-based congestion control that

tries to maintain the end-to-end RTT at a certain threshold (RTT𝑇𝑎𝑟𝑔𝑒𝑡). We chose

a high RTT𝑇𝑎𝑟𝑔𝑒𝑡 value of 2.5× base RTT to avoid hurting the throughput of long

flows, exploiting the fact that it isn’t necessary to tightly control queuing in BFC.

The sender’s window (𝑤) is adjusted following Algorithm 2.
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RTT𝑇𝑎𝑟𝑔𝑒𝑡 = 2.5× Base RTT;
𝑤 =1 BDP;
for each Acknowledgement do

if RTT > RTT𝑇𝑎𝑟𝑔𝑒𝑡 then
𝑤 = 𝑤 − RTT - RTT𝑇𝑎𝑟𝑔𝑒𝑡

𝑅𝑇𝑇
else

𝑤 = 𝑤 +
RTT𝑇𝑎𝑟𝑔𝑒𝑡−𝑅𝑇𝑇

𝑅𝑇𝑇

Algorithm 2: Simple end-to-end congestion control
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Figure 3-15: 99𝑡ℎ percentile FCT slowdown when combined with congestion control. Face-
book workload, same setup as Fig. 3-11.

With the above rule, the window of a sender roughly goes from 𝑤 → 𝑤× RTT𝑇𝑎𝑟𝑔𝑒𝑡

𝑅𝑇𝑇

within an RTT. Fig. 3-14 shows the performance with this variant (BFC 32 (CC)).

The performance is close to IdealFQ in all the cases. To check if this change negatively

affected the overall behavior of BFC, we repeat the principle experiment in Fig. 3-11

(Facebook workload) with BFC 32 (CC). Fig. 3-15 shows the 99𝑡ℎ percentile FCT

slowdowns. The FCTs of long flows are similar to that of the original BFC (within

10%). However, in the presence of incast, adding congestion control improves the 99𝑡ℎ

percentile FCT of short flows and the peak buffer occupancy by 30%. While using end-

to-end congestion control can improve performance under frequent collisions (and we

advocate supplementing BFC with such a mechanism in practice), in this dissertation

we focus on BFC without any such mechanism to better understand the core benefits

and limitations of BFC in its purest form.

In Appendix F.3, we experiment with a variant of BFC where the sender labels

incast flows explicitly (similar to the potential optimization in [107]). All the incast
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Figure 3-16: FCT slowdown (99𝑡ℎ percentile) and buffer occupancy of HPCC variants,
using the setup in Fig. 3-11a.

flows at an egress port are assigned to the same queue. This frees up queues for

non-incast traffic and reduces collisions substantially under large incasts.

3.6.5 Dynamic Queue Assignment

We next consider the effect of applying BFC’s dynamic queue assignment separately

from the backpressure mechanism. For this, we modified HPCC with idealized re-

transmission (HPCC-PFC) to add stochastic fair queuing (HPCC-PFC+SFQ) and

dynamic queue assignment (HPCC-PFC+DQA). To match BFC, we use 32 physical

queues with HPCC. We repeat the experiment from Fig. 3-11a, showing tail slowdown

and buffer occupancy for the HPCC variants, BFC, and IdealFQ in Fig. 3-16.

Adding SFQ to HPCC improves short flow latency by isolating them from long

flows in different queues, but it still suffers from more collisions (and thus higher tail

latency for short flows) than DQA. DQA on its own, however, has no benefit for

long flows: since HPCC is unable to adapt to rapid changes in the number of flows

(and the fair-share rate), it is unable to fully utilize the link for long flows, even with

DQA. Moreover, both HPCC-PFC+SFQ and HPCC-PFC+DQA build deep buffers

and experience drops at the same rate as HPCC-PFC. Notice that HPCC’s lower

throughput for long flows favors short flows to such an extent that HPCC-PFC+DQA

achieves better tail latency for short flows than both BFC and IdealFQ.
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3.6.6 Additional Experiments

In this section, we present a more complete set of simulation results for BFC. We first

summarize those results, and then present them.

Priority scheduling: Data center operators often classify traffic into multiple classes

and use scheduling priorities to ensure performance for the most time-sensitive traffic.

We repeat the experiment in Fig. 3-11b but with traffic split equally among four

priority traffic classes, and show that BFC performs well in this case. See §3.6.6.1 for

details.

Spatial locality: We repeat the experiment in Fig. 3-11 with spacial locality in

source-destination pairs such that the average load on all links across the network is

same. The trends in performance are similar. See §3.6.6.2 for details.

Slow-start: We evaluate the impact of using TCP slow-start instead of starting flows

at line rate. We repeat the experiment in Fig. 3-11 and compare the original DCTCP

with slow start (DCTCP + SS) and our modified DCTCP where flows start at the line

rate. With incast, DCTCP + SS reduces buffer occupancy by reducing the intensity

of incast flows, improving tail latency. However, it also increases median FCTs by up

to 2×. Flows start at a lower rate, taking longer to ramp up to the desired rate. In

the absence of incast, it increases both the tail and median FCT for short flows. See

§3.6.6.3 for details.

Performance in asymmetric topologies: BFC makes no assumption about the

topology, link speeds and link delays. We evaluate the performance of BFC in a

multi-data-center topology. BFC achieves low FCT for flows within the data center,

and high link utilization for the inter-data-center links (see §3.6.6.4).

Dynamic vs. stochastic queue assignment in BFC: We repeat the experiment

in Fig. 3-11a but use stochastic hashing to statically assign flows to physical queue

instead. With stochastic assignment, the number of collisions in physical queues

increases, hurting FCTs (see §3.6.6.5).

Size of flow table: Reducing the size of the flow table can increase index collisions

in the flow table, potentially hurting FCTs. We repeat the experiment in Fig. 3-11a
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and evaluate the impact of size of flow table. Reducing the size partly impacts the

short flow FCTs (see §3.6.6.6).

3.6.6.1 Multiple Traffic Classes

Many data center operators allocate network traffic into a small number of priority

traffic classes to ensure that mission critical traffic is delivered with low tail latency,

while other traffic is delivered according to its quality of service needs. BFC has a

simple extension to support priority groups. To avoid priority inversion where a flow

at one priority can be stalled behind a flow of a lower priority, we assume queues at a

port are statically assigned to different priority levels. The switch performs dynamic

queue assignment for each class independently. A flow with priority 𝑋 is only assigned

to physical queues associated with that priority. Queues at the same priority level

follow fair scheduling.

Statically partitioning physical queues among traffic classes could make it more

likely for traffic within a class to run out of queues and suffer degraded performance

with collisions and HoL blocking. On the other hand, high priority traffic is prefer-

entially scheduled, leading to short queues and few active flows. Collisions will be

more likely at lower priority traffic classes, where performance is already degraded.

Priority scheduling results in rapid and extreme changes in the available rate for these

background classes. Relative to end-to-end control, per-hop backpressure can more

easily utilize rapidly changing spare capacity.

To test how BFC behaves with multiple traffic classes, we repeat the experiment

in Fig. 3-11b: Facebook workload, 60% load, and no incast. We configure the system

with 4 priority classes, each with equal load (15% each, 60% in aggregate). We

allocate physical queues evenly to each traffic class. We consider configurations with

32 and 128 queues per port (8 or 32 queues per class). We also show results for HPCC

and DCTCP. In this study, DCTCP marks packets based on per-class queueing, while

HPCC uses switch aggregates. Fig. 3-17 shows the 99𝑡ℎ percentile FCT slowdown for

different priority classes. BFC achieves good performance across all traffic classes and

flow sizes. In particular, BFC achieves up to 5× better tail latency for short flows
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Figure 3-17: Multiple traffic classes with BFC, reporting 99𝑡ℎ percentile FCT slowdown for
the Facebook workload, 60% load, and no incast.

than DCTCP. At the lowest priority level, DCTCP’s short flow tail latency converges

to that of BFC. For low priority flows, tail latency is primarily governed by time spent

waiting to be scheduled at the switch.

HPCC’s performance is somewhat anomalous. Long flows suffer priority inversion,

where long flows at high priority achieve significantly worse service than short flows

at lower priority. In HPCC, long flows back off in an attempt to keep queues empty.

The (transient) extra capacity left by such long flows can be used by short flows traffic

at all priority levels, improving performance for these short flows.

BFC has only slightly better performance with 32 vs. 8 queues per priority level,

indicating that collisions did not have much impact. For high priority traffic, the

setup is equivalent to running our experiment with just one traffic class at 15% load

and a small number of queues—even modest numbers of active queues are unlikely

at such low load. Lower priority traffic can run out of queues, but they gain the
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Figure 3-18: Impact of spatial locality. FCT slowdown (99𝑡ℎ percentile) for Facebook
distribution with and without incast.

benefit of being able to take immediate advantage when the high priority queues are

empty. In other words, work conserving behavior is more important for background

traffic than the number of queues. We acknowledge this is just one study, and there

are likely scenarios where BFC’s performance could suffer when using multiple traffic

classes.

One obvious improvement is to split queues dynamically among classes rather than

statically. But in the long run, we strongly believe that the number of queues per

port is likely to continue to grow to whatever is needed to deliver good performance.

3.6.6.2 Impact of Spatial Locality

We repeated the experiment from Fig. 3-11 with spatial locality in source-destination

pairs such that the average load on all links across the network is same. Fig. 3-18

shows the 99𝑡ℎ percentile slowdowns. The trends are similar to Fig. 3-11.

3.6.6.3 Using TCP Slow-start

We also evaluate the impact of using TCP slow-start instead of starting flows at line

rate in Figure 3-19. We compare the original DCTCP with slow start (DCTCP + SS)

with an initial window of 10 packets versus the modified DCTCP used so far (initial

window of the BDP). The setup is same as Fig. 3-11.

With incast, DCTCP + SS reduces buffer occupancy by reducing the intensity of

incast flows, improving tail latency (Fig. 3-19a). However, slow start increases the
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Figure 3-19: Impact of using slow start on median and 99th percentile tail latency FCT
slowdown, for the Facebook flow size distribution with and without incast (setup the same
as Fig. 3-11). With incast, DCTCP + SS (slow start) reduces the tail FCT, but it increases
median FCTs by up to 2 ×. In the absence of incast, DCTCP + SS increases both the tail
and median FCT for short and medium flows.

median FCT substantially (Fig. 3-19c). Flows start at a lower rate, taking longer

to ramp up to the desired rate. For applications with serially dependent flows, an

increase in median FCTs can impact the performance substantially.

In the absence of incast, slow start increases both the tail (Fig. 3-19b) and median

(Fig. 3-19d) FCT for the majority of flow sizes. In particular, short flows are still

slower than with BFC, as slow start does not remove burstiness in buffer occupancy

in the tail.

3.6.6.4 Cross Data Center Traffic

For fault tolerance, many data center applications replicate their data to nearby data

centers (e.g., to a nearby metro area). We evaluate the impact of BFC on managing
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Figure 3-20: Performance in cross data center environment where two data center are
connected by a 200 𝜇s link, for the Facebook workload (60% load) with no incast traffic.
The left figure shows the 99th percentile FCT slowdown for intra-data-center flows. The
right figure shows the average utilization of the link connecting the two data centers.

cross-data center congestion in such scenarios. We consider the ability of different

systems to achieve good throughput for the inter-data-center traffic, and we also

consider the impact of the cross-data-center traffic on tail latency of local traffic, as

the larger bandwidth-delay product means more data is in-flight when it arrives at

the bottleneck.

We created a Clos topology with 64 leaf servers, and 100Gbps links and 12 MB

switch buffers. Two gateway switches connect the data centers using a 200Gbps link

with 200𝜇s of one-way delay (i.e. the base round trip delay of the link is 400𝜇s),

or roughly equivalent to the two data centers being separated by 50 km assuming a

direct connection. The experiment consists of intra-data-center flows derived from

the Facebook distribution (60% load). Additionally, there are 20 long-lived inter-

data-center flows in both the directions.

Fig. 3-20a shows the 99th percentile tail latency in FCT slowdown for intra-data-

center flows for BFC, HPCC and DCQCN.7 Fig. 3-20b shows the average utilization

of the link connecting the two data centers (interconnect), a proxy for the aggregate

throughput of the long-lived inter-data-center flows. BFC is better for both types

of flows. With BFC, the link utilization of the wide area interconnect is close to

100%, while neither HPCC nor DCQCN can maintain the link at full utilization,
7Data center operators have developed specialized protocols for better inter-data center link

management [36]; comparing those to BFC is future work.
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even with ample parallelism. This is likely a consequence of slow end-to-end reaction

of the inter-data-center flows [122]. The congestion state on the links within a data

center is changing rapidly because of the shorter intra-data-center flows. By the

time an inter-data-center flow receives congestion feedback and adjusts its rate, the

congestion state in the network might have already changed. When capacity becomes

available, the inter-data-center flows can fail to ramp up quickly enough, hurting its

throughput.

Relative to the single data center case (cf. Fig. 3-11b), tail latency FCTs are worse

for all three protocols, but the relative advantage of BFC is maintained. Where HPCC

has better tail latency than DCQCN in the single data center case for both short and

medium-sized flows, once inter-data-center traffic is added, HPCC becomes worse

than DCQCN. With bursty workloads, on the onset of congestion, the long-lived flow

will take an end-to-end RTT to reduce its rate, and can build up to 1 BDP (or 500

KB) of buffering, hurting the tail latency of intra-data-center traffic. This has less of

an impact on DCQCN because it utilizes less of the inter-data-center bandwidth in

the first place.

In contrast, BFC reacts at the scale of the hop-by-hop RTT. Even though inter-

data-center flows have higher end-to-end RTTs, on switches within the data center,

BFC will pause/resume flows on a hop-by-hop RTT timescale (2𝜇s). As a result, with

BFC, tail latencies of intra-data-center flows are relatively unaffected by the presence

of inter-data-center flows, while the opposite is true of HPCC.

3.6.6.5 Dynamic vs. Stochastic Queue Assignment

To understand the importance of dynamically assigning flows to physical queues, we

repeated the experiment in Fig. 3-11a with a variant of BFC, BFC + Stochastic,

where we use stochastic hashing to statically assign flows to physical queues (as in

SFQ). In BFC (referred as BFC + Dynamic here), the physical queue assignment is

dynamic. To isolate the effect of changing the physical queue assignment, the pause

thresholds are the same as BFC + Dynamic.

Fig. 3-21a shows the tail latency. Compared to BFC, tail latency for BFC +
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Figure 3-21: Performance of BFC with stochastic queue assignment, for the workload in
Fig. 3-11a. BFC + Stochastic incurs more queue collisions leading to worse tail latency
especially for small flows compared to BFC + Dynamic.
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Figure 3-22: FCT slowdown (99th percentile) for BFC for different size flows as a function
of the size of the flow table (as a multiple of the number of queues in the switch). The other
experiments in the dissertation use a flow table of 100X. Further reducing the size of the
flow table hurts small flow performance.

Stochastic is much worse for all flow sizes. Without the dynamic queue assignment,

flows are often hashed to the same physical queue, triggering HoL blocking and hurting

tail latency, even when there are unoccupied physical queues. Fig. 3-21b is the CDF of

such collisions. BFC+Stochastic experiences collisions in a high fraction of cases and

flows end up being paused unnecessarily. Such flows finish later, further increasing

the number of active flows and collisions. Even with incast, the number of active

flows in BFC is smaller than the number of physical queues most of the time.
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3.6.6.6 Size of Flow Table

We repeated the experiment in Fig. 3-11a, but varied the size of the flow table (as

a function of the number of queues in the switch). The default in the rest of the

dissertation uses a flow table of 100X. Fig. 3-22 shows the tail latency as a function

of flow size, for both smaller and larger flow tables. Reducing the size of the flow

table increases the index collisions in the flow table. Each flow table collision means

that those flows are necessarily assigned to the same physical queue. Tail latency

FCTs degrade as a result, particularly for small flows and for smaller table sizes.

This experiment shows that increasing the size of the flow table would moderately

improve short flow tail latency for BFC.

3.7 Conclusion

In this chapter, we presented Backpressure Flow Control (BFC), a practical conges-

tion control architecture for data center networks. BFC provides per-hop per-flow

flow control, but with bounded state, constant-time switch operations, and careful

use of buffers. Switches dynamically assign flows to physical queues, allowing fair

scheduling among competing flows and use selective backpressure to reduce buffering

with minimal head of line blocking. Relative to existing end-to-end congestion control

schemes, BFC improves short flow tail latency and long flow utilization for networks

with high bandwidth links and bursty traffic. We demonstrate BFC’s feasibility by

implementing it on Tofino2, a state-of-art P4-based programmable hardware switch.

In simulation, compared to several deployed end-to-end schemes, BFC achieves 2.3 -

60× lower tail latency for short flows and 1.6 - 5× better average completion time for

long flows.
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Chapter 4

Elasticity Detection: A Building

Block for Internet Congestion Control

4.1 Introduction

Achieving high throughput and low delay has been a key goal of congestion control re-

search for decades. An important category of proposals is delay-controlling congestion

control protocols. To minimize delays while avoiding “bufferbloat” [54], these schemes

(e.g., Vegas [31], FAST [140], LEDBAT [121], Sprout [142], Copa [22]) reduce their

rates as delays increase, unlike buffer-filling methods like Cubic [63], NewReno [66],

and Compound [127] that must fill buffers to elicit congestion signals (packet losses or

ECN). Delay-controlling protocols offer a deployable path towards reducing queuing

delay in the Internet; unlike active queue management [112, 49] or packet scheduling

mechanisms [103, 130], they do not require changes to routers.

There is, however, a major obstacle to deploying delay-controlling protocols on

the Internet: their throughput suffers when competing against flows that compete

for bandwidth more aggressively (e.g., Cubic [63], NewReno [66], BBR [36], etc.) at

a shared bottleneck. For example, a Cubic flow steadily increases its rate in the

absence of packet loss or ECN, causing queuing delays to rise; in response to these

increasing delays, a competing delay-controlling flow will reduce its rate. The Cubic

flow then grabs this freed-up bandwidth. The throughput of the delay-controlling
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flow plummets, but delays don’t reduce.

Is it possible to achieve the benefits of a delay-controlling protocol without low-

ering throughput? In this paper, we present a practical design to achieve precisely

this goal. The key ingredient of our approach is a new method, Nimbus, to detect

whether competing traffic at a bottleneck link is elastic or not using only end-to-end

delay and rate measurements. We define a flow to be elastic if it increases its rate

when it senses that more bandwidth is available at the shared bottleneck, and de-

creases it otherwise. All other flows are inelastic. Correspondingly, the cross traffic

as a whole is elastic if it contains any elastic flows, and it otherwise inelastic.

A congestion-controlled flow backlogged at the transport layer is elastic. However,

many flows on the Internet (even congestion-controlled flows) are not backlogged;

examples include application-limited flows, short TCP flows that fit within the initial

congestion window, constant bitrate (CBR) flows, and even video streams when the

available bandwidth exceeds the maximum video bitrate. Such flows do not react to

changes in available bandwidth and are thus inelastic.

Our key observation is that when Nimbus deems cross traffic to be inelastic, the

sender can use a delay-controlling protocol to reduce delays for both the sender and

the cross traffic without worrying about losing throughput. Otherwise, it can switch

to a TCP-competitive protocol like Cubic (or whatever is considered dominant) to

compete well without attempting to reduce delays.

Elasticity is a basic property of a backlogged congestion-controlled flow and does

not depend on specifics such as its congestion control algorithm or round-trip time

(RTT). We use this property to design a robust elasticity detector. A Nimbus sender

modulates its rate with sinusoidal pulses to create small traffic fluctuations at the

bottleneck at a specific frequency (e.g., 5 Hz). It concurrently estimates the rate of

the cross traffic based on its own send and receive rates, and measures its frequency

response (FFT) to determine if the cross traffic’s rate oscillates at the same frequency.

If it does, then the sender concludes that the cross traffic contains elastic flows;

otherwise, it is inelastic.

In the future, if delay-controlling protocols become widely deployed, Nimbus might
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miss out on some opportunities to control delays when competing against delay-

controlling elastic cross-traffic flows. For example, if an elastic cross-traffic flow uses

Copa (a delay-controlling scheme), then in principle it is possible to achieve low

delay and high throughput by also running Copa (or some other protocol compatible

with Copa). However, this would require knowing the congestion control protocol

used by the cross traffic, so we could pick a compatible protocol. For instance,

simply using a delay-controlling scheme like Vegas against Copa is insufficient, as it

would lead to throughput loss. We sidestep this challenge by focusing on detecting

elasticity, which suffices to ensure no throughput loss compared to the prevalent

deployed algorithm(s). We leave detecting other properties of cross traffic (like the

congestion control protocol), which could expand the set of scenarios where we can

reduce delays, to future work.

Key results: We demonstrate the benefits of using elasticity detection for conges-

tion control with NimbusCC, a congestion controller that uses Nimbus to switch

between TCP-competitive and delay-controlling modes. We implement NimbusCC

using CCP [109] in Linux. NimbusCC can support various protocols in each mode.

We report results using Vegas, Copa (default “delay” mode), and BasicDelay (a new

method that uses our cross traffic rate estimator), as examples of delay-controlling

protocols, and Cubic and NewReno as examples of TCP-competitive protocols. Our

experimental results show that:

1. Nimbus is robust to a variety of cross traffic conditions, achieving more than

85% detection accuracy even when the cross traffic is a varying mix of inelastic

and elastic flows of different sizes, and when it includes multiple flows with

different RTTs or congestion control protocols. These results hold across a wide

range of buffer sizes, RTTs, bottleneck link rates, active queue management

(AQM) schemes, flow sizes, and fractions of cross traffic.

2. NimbusCC achieves throughput within 10% of the ideal value against elastic

traffic made up of a variable number of TCP flows, whereas Copa is 54% lower.

NimbusCC also achieves 60 ms lower mean delay than Cubic against Poisson-

distributed inelastic cross traffic.
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3. When cross traffic is modeled from a flow-size distribution measured at a WAN

link [34], NimbusCC achieves throughput comparable to Cubic and BBR, but

with 50 ms lower median delay. Copa has slightly better (5 ms) median delay

but achieves 40% lower throughput than NimbusCC and Cubic whenever cross

traffic is substantially elastic. Similar results hold when the cross traffic contains

elastic flows using different congestion control protocols.

4. On 25 Internet paths, NimbusCC achieved a throughput at least as high as

Cubic with lower delays on 60% of the paths and similar delays on the other

40%. Compared to BBR, NimbusCC’s throughput was 10% lower, but the mean

packet delay was 40–50 ms lower.

Elasticity detection is a general technique and while we explore its use in conges-

tion control, we believe it could be used to solve other problems in the future—e.g.,

for aggregate traffic control between sites [35] and in tools like speedtest to inform

users not only of the rate and delay, but also the nature of the cross traffic on par-

ticular paths (and hence whether using a different congestion control protocol could

improve throughput or delay).

4.2 Related Work

Copa [22] aims to maintain a bounded number of packets in the bottleneck queue.

Copa induces a periodic pattern of sending rate that nearly empties the queue once

every 5 RTTs. This helps Copa flows obtain an accurate estimate of the minimum

RTT and the queuing delay. In addition, Copa uses this pattern to detect the presence

of non-Copa flows: it expects the queue to be nearly empty at least once every 5 RTTs,

provided only Copa flows with similar RTTs share the bottleneck link. If this does

not occur, Copa switches to a TCP-competitive mode.

This method is sensitive to variations in cross-traffic (e.g., arrival/departure of

flows), the control protocol used by the cross-traffic flows, and even their RTTs.

For these reasons, we find that Copa suffers from both false positives (increased

delay) and, more importantly, false negatives (lower throughput) (see §4.5, §4.7.1
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and §4.7.2). Unlike Copa, Nimbus does not look for a specific pattern in the RTTs.

Instead it directly estimates elasticity by measuring whether the cross-traffic reacts

to rate fluctuations over a few seconds in the frequency domain. This method is

more robust and can be applied to any combination of TCP-competitive and delay-

controlling algorithms, whereas Copa’s approach relies on the specific dynamics of its

rate controller.

BBR [36] estimates the bottleneck bandwidth 𝑏 and minimum RTT 𝑑. It paces

traffic at 𝑏 while capping the number of in-flight packets to 2 × 𝑏 × 𝑑. To estimate

the bottleneck, BBR periodically increases its rate over 𝑏 for about one RTT and

then reduces it for the following RTT. BBR uses this sending-rate pattern to obtain

estimates of 𝑏; specifically, it tests if the observed rate exceeds the current estimate 𝑏

in the rate-increase phase. However, BBR doesn’t use these pulses to infer the nature

of cross-traffic.

PCC-Vivace [42] uses an online learning algorithm to adapt its sending rate to

maximize a utility function that incorporates the achieved rate, delay, and loss rate.

Our experiments (S4.5, S4.7.1) show that Vivace cannot achieve both low delay

with inelastic cross-traffic and compete fairly with elastic TCP flows. Compound

TCP [133] maintains both a loss-based window and a delay-based window, and trans-

mits data based on the sum of the two windows. Compound does not attempt to

switch between two modes, and therefore it incurs high queuing delays due to its

loss-based window.

4.3 Cross-traffic Estimation

We present a simple new method to estimate the total rate of cross-traffic at the

sender (§4.3.1). Then, we show how to detect whether the cross-traffic contains any

elastic flows, describing the key principles (§4.3.2) and a practical method (§4.3.3).

Figure 4-1 shows our network model and introduces some notation. A sender

communicates with a receiver over a single bottleneck link of rate 𝜇. The bottleneck

link is shared with cross-traffic, consisting of an unknown number of flows, each of
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which is either elastic or inelastic. 𝑆(𝑡) and 𝑅(𝑡) denote the time-varying sending and

receiving rates, respectively, while 𝑧(𝑡) is the total rate of the cross-traffic.

Operating regime: Our technique requires some degree of traffic persistence. The

sender must be able to create sufficient pulses and observe the impact on cross traffic

over a period of time. Thus, it is best suited for long flows. Fortunately, it is for such

transfers that delay-controlling schemes are useful, because short flows are unlikely to

cause significant queueing delay [54]. The detector is designed for a single bottleneck

link with a stable rate, and uses a link-rate estimator similar to BBR’s. When these

conditions do not hold, the detector can become inaccurate and have false positives.

Our detector conservatively classifies cross traffic as elastic in these cases (with high

likelihood, discussed in §4.6 and §4.7.3). When applied to congestion control, the

detector will thus choose a TCP-competitive mode in these scenarios. Thus, while

such false positives might cause the sender to miss out on opportunities to reduce

delay, they will not cause it to lose throughput.

Our technique is most effective when the elastic flows react on a timescale of a

few RTTs. If an elastic flow is slower to react, it can go undetected with short pulses.

By using long pulses Nimbus can detect such sluggish elastic flows but at the cost

of some congestion. Since, majority of elastic traffic on the Internet reacts on RTT

timescales (e.g., ACK-clocked flows), we use short pulses. For ease of exposition, we

describe Nimbus in the context of detecting ACK-clocked flows, but the technique

applies more generally (e.g., correctly classifying fast-reacting rate-based flows).

4.3.1 Estimating the Rate of Cross-traffic

In Fig. 4-1, the total traffic into the bottleneck queue is 𝑆(𝑡) + 𝑧(𝑡), of which the

receiver sees 𝑅(𝑡). As long as the bottleneck link is busy (i.e., its queue is not empty),

and the router treats all traffic the same way, the ratio of 𝑅(𝑡) to 𝜇 must be equal to

the ratio of 𝑆(𝑡) and the total incoming traffic, 𝑆(𝑡) + 𝑧(𝑡).1 Using this property, we

1This property holds even when the bottleneck link is dropping packets as long as the drop rate
is the same for the sender-to-receiver flow and the cross-traffic.
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Figure 4-1: Network model — The time-varying total rate of cross-traffic is 𝑧(𝑡). The
bottleneck link rate is 𝜇. The sender’s transmission rate is 𝑆(𝑡), and the rate of traffic
received by the receiver is 𝑅(𝑡).

propose the following estimator for 𝑧(𝑡):

𝑧(𝑡) = 𝜇
𝑆(𝑡)

𝑅(𝑡)
− 𝑆(𝑡). (4.1)

We estimate 𝑆(𝑡) and 𝑅(𝑡) by considering 𝑛 packets at a time:

𝑆𝑖,𝑖+𝑛 =
𝑛𝑏𝑦𝑡𝑒𝑠

𝑠𝑖+𝑛 − 𝑠𝑖
, 𝑅𝑖,𝑖+𝑛 =

𝑛𝑏𝑦𝑡𝑒𝑠

𝑟𝑖+𝑛 − 𝑟𝑖
, (4.2)

where 𝑛𝑏𝑦𝑡𝑒𝑠 is the number of bytes in the 𝑛 packets, 𝑠𝑘 is the time at which the sender

sends packet 𝑘, 𝑟𝑘 is the time at which the sender receives the ACK for packet 𝑘, and

the units of the rates are bytes per second. 𝑆(𝑡) and 𝑅(𝑡) must be measured over the

same 𝑛 packets.

The above quantities can be calculated using the timestamps of the first and the

last packet and hence are unaffected by delayed acknowledgements (delayed ACKs).

Our implementation in CCP [109] reuses the Linux kernel’s measurements of 𝑆(𝑡) and

𝑅(𝑡) over the last RTT—the same method used by the BBR implementation [84].

Like BBR [36], we use the maximum received rate to estimate 𝜇, taking care to avoid

incorrect estimates due to ACK compression.2

We have conducted several tests with various patterns of cross-traffic to evaluate

the effectiveness of this 𝑧(𝑡) estimator (including scenarios with packet drops and

delayed ACKs). The overall error is small: the 50th and 95th percentiles of the

2A variety of other techniques [68, 43, 44, 93, 74, 94, 100] could also be used to estimate 𝜇.
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Figure 4-2: Instantaneous delay measurements do not reveal elasticity — The
bottom plot shows the total queueing delay (orange) and the self-inflicted delay (green).
The experiment contains one background Cubic flow in the elastic region (30–90 s) and
CBR cross-traffic in the inelastic region (90–150 s).

relative error are 1.3% and 7.5%, respectively. Unlike prior work on estimating cross-

traffic rate [131, 76, 69], our method is in-band and does not use any probe packets;

however, it relies on the property that the sender is persistently backlogged.

4.3.2 Elasticity Detection: Principles

We now turn to designing an online estimator for a sender to determine if the cross-

traffic includes any elastic flows.3 A strawman approach might attempt to detect

elastic flows by estimating the contribution of the cross-traffic to queueing delay.

For example, the sender can estimate its own contribution to the queueing delay—

i.e., the “self-inflicted” delay—and if the total delay is significantly higher than the

self-inflicted delay, conclude that the cross-traffic is elastic.

This scheme does not work. To see why, consider the experiment in Figure 4-2,

where a Cubic flow shares a link with elastic and inelastic traffic in two separate time

periods. The self-inflicted queueing delay for the Cubic flow (green, bottom figure)

looks the same in the elastic and inelastic phases. The reason is that a flow’s share

of the queue occupancy is proportional to its throughput, which is roughly the same

in the two phases (top figure). Because the Cubic flow gets 50% of the bottleneck

link, its self-inflicted delay is roughly half of the total queueing delay always (orange,

bottom figure). This example suggests that instantaneous measurements cannot be

3Receiver participation will improve accuracy by avoiding the need to estimate 𝑅(𝑡) from ACKs
at the sender, but would be a little harder to deploy.
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Figure 4-3: Cross-traffic’s reaction to pulses — The pulses change the inter packet
spacing for cross-traffic. Elastic traffic reacts to these changes after a RTT, while inelastic
traffic does not.

used to distinguish between elastic and inelastic cross-traffic.

To detect elasticity, tickle the cross-traffic! Our method detects elasticity by

monitoring how the cross-traffic responds to induced traffic variations at the bot-

tleneck link over a period of time. The key observation is that elastic flows react

in a predictable way to rate fluctuations at the bottleneck. Consider, for example,

long-running Cubic or NewReno flows, which are ACK-clocked. For these flows, if an

ACK is delayed by a time duration 𝛿, then the next packet transmission will also be

delayed by 𝛿. Therefore changes in the rate of packet arrivals at the receiver cause

similar changes in the sending rate after one RTT via the ACKs. By contrast, the

sending rate of inelastic flows does not depend on the receive rate.

We induce changes in the inter-packet spacing of cross-traffic at the bottleneck link

by sending packets in pulses. We take the desired sending rate, 𝑆(𝑡), and alternate

between sending at rates higher and rates lower than 𝑆(𝑡), ensuring that the mean

rate is 𝑆(𝑡). Sending in such pulses (e.g., modulated on a sinusoid) changes the

inter-packet spacing of the cross-traffic departing the bottleneck link in a controlled

manner. If the cross-traffic contains elastic flows, then because of the induced changes

in the ACK clocks of those flows, their rates will react to our pulses. When we increase

our rate, the elastic cross-traffic will reduce its rate in the next RTT, and conversely.

If enough of the cross-traffic is elastic, then our sender can measure and detect these

fluctuations in the cross-traffic rate.

137



Fig. 4-3a and Fig. 4-3b compare the responses of elastic (Cubic) and inelastic

(constant bit rate) cross-traffic when the sender transmits packets in sinusoisal pulses

at frequency 𝑓𝑝 = 5 Hz. 𝑆(𝑡) is the sender’s rate and 𝑧(𝑡) is the estimated cross-traffic

rate computed using Equation (4.1). The path has a minimum RTT of 50 ms and a

buffer size of 100 ms (2× the bandwidth-delay product). The elastic flow’s sending

rate after one RTT is inversely correlated with the pulses in the sending rate, while

the inelastic flow’s sending rate is unaffected.

4.3.3 Elasticity Detection: Practice

To produce a practical method to detect cross-traffic using this idea, we must address

three challenges:

1. Pulses in the sending rate must induce a measurable change in 𝑧, but not congest

the bottleneck link.

2. Because there is natural variation in cross-traffic, and noise in 𝑧, it is not easy

to perform a robust comparison between the predicted change in 𝑧 and the

measured 𝑧.

3. Because the sender does not know the RTTs of cross-traffic flows, it does not

know when to look for the predicted response in the cross-traffic rate.

The first method we developed to solve these problems measured the cross-correlation

between 𝑆(𝑡) and 𝑧(𝑡). A cross-correlation near zero would be considered inelastic

cross-traffic, whereas a significant non-zero value would indicate elastic cross-traffic.

We found that this approach works well (with square-wave pulses) if the cross-traffic

is substantially elastic and has a similar RTT to the flow trying to detect elasticity,

but not otherwise. The trouble is that because elastic cross-traffic will react after

its RTT, 𝑆(𝑡) and 𝑧(𝑡) must be aligned using the cross-traffic’s RTT, which is not

easy to infer. Moreover, the elastic flows in the cross-traffic may have different RTTs,

making the alignment even more challenging.

From time to frequency domain: We have developed a method, Nimbus, that

overcomes the challenges stated above. It uses two ideas. First, the sender modu-
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Figure 4-4: Cross-traffic FFT for elastic and inelastic traffic — Only the FFT for
elastic traffic has a pronounced peak at 𝑓𝑝 (5 Hz).

lates its packet transmissions using sinusoidal pulses at a known frequency 𝑓𝑝, with

amplitude equal to a modest fraction (e.g., 25%) of the bottleneck link rate. These

pulses induce a noticeable change in inter-packet times at the link without causing

congestion, because the queues created in one part of the pulse are drained in the

subsequent part, and the period of the pulses is short (e.g., 𝑓𝑝 = 5 Hz). By using

short pulses, we ensure that the total burst of data sent in a pulse is a small fraction

of the typical bottleneck queue size.

Second, the sender looks for periodicity in the cross-traffic rate at frequency 𝑓𝑝,

using a frequency domain representation of the cross-traffic rates. We use the Fast

Fourier Transform (FFT) of the time series of the cross-traffic estimate 𝑧(𝑡) over a

short time interval (e.g., 5 seconds). Detecting periodicity in the frequency domain

is more robust than the time-domain, for the same reason that frequency modula-

tion provides better signal-to-noise ratio than amplitude modulation [119]: it is less

affected by variations in the cross-traffic rate and measurement noise. Further, ob-

serving the cross-traffic’s response at a known frequency, 𝑓𝑝, yields a method that is

robust to the presence of multiple elastic flows with different RTTs, and even, differ-

ent congestion control protocols, because all elastic flows (irrespective of RTT and

protocol) will exhibit rate oscillations at the frequency 𝑓𝑝. As a result, there will be

an overall response at frequency 𝑓𝑝 in the cross-traffic, equal to superposition of the

responses of the individual elastic flows at frequency 𝑓𝑝.4

4In theory, the response of flows with different RTTs may cancel each other out, but this is very
unlikely since it requires specific combinations of RTTs. We have not seen this problem occur in our
experiments (§4.7.2).
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Figure 4-5: Distribution of elasticity with varying elastic fraction of cross-traffic
— The cross-traffic consists of an elastic Cubic flow and inelastic Poisson-distributed traffic
with different rates. Completely inelastic cross-traffic has 𝜂 close to zero, while completely
elastic cross-traffic exhibits a high 𝜂. Cross-traffic with some elastic fraction also exhibits
high elasticity (𝜂 > 2).

Fig. 4-4 shows the FFT of the 𝑧(𝑡) time-series produced using Equation (4.1)

for examples of elastic and inelastic cross-traffic, respectively. Elastic cross-traffic

exhibits a pronounced peak at 𝑓𝑝 compared to the neighboring frequencies, while for

inelastic traffic the FFT magnitude is spread across many frequencies. The magnitude

of the peak depends on how much of the cross-traffic is elastic; the more elastic the

cross-traffic, the sharper the peak at 𝑓𝑝. Therefore, rather than compare the peak

at 𝑓𝑝 to a pre-determined threshold, we compare it to the magnitude of the nearby

frequencies.

We define the elasticity metric, 𝜂, as follows:

𝜂 =
|𝐹𝐹𝑇𝑧(𝑓𝑝)|

max𝑓∈(𝑓𝑝+𝜖,2𝑓𝑝−𝜖) |𝐹𝐹𝑇𝑧(𝑓)|
(4.3)

Equation (4.3) compares the magnitude of the FFT at frequency 𝑓𝑝 to the peak

magnitude in the range from just above 𝑓𝑝 to just below 2𝑓𝑝. We use 𝜖 = 0.5 Hz (with

𝑓𝑝 = 5 Hz) in our implementation. If 𝜂 is less than a threshold 𝜂𝑡ℎ𝑟𝑒𝑠ℎ(≥ 1), then the

cross-traffic is deemed inelastic; otherwise, it is elastic.

4.3.4 Setting Parameters for Elasticity Detection

Detection threshold: In practice, cross-traffic can be a mix of elastic and inelastic

flows. In such scenarios, we want our detector to be sensitive to the presence of any
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Figure 4-6: Asymmetric sinusoidal pulse — The pulse has period 𝑇 = 1/𝑓𝑝. The
positive half-sine lasts for 𝑇/4 with amplitude 𝜇/4, and the negative half-sine lasts for the
remaining duration, with amplitude 𝜇/12. The two half-sines cancel out each other over one
period.

elastic flows, since even one elastic flow can eventually grab all the link bandwidth

from a delay-controlling flow. Fig. 4-5 shows the CDF of elasticity (𝜂) as the fraction

of bytes belonging to elastic flows in the cross-traffic varies. 𝜂 varies due to variations

in the cross-traffic but its value generally increases as more of the cross-traffic becomes

elastic: the median values range from 𝜂 = 1 for purely inelastic traffic to 𝜂 = 10 for

purely elastic traffic.

The value of 𝜂𝑡ℎ𝑟𝑒𝑠ℎ dictates which type of traffic is detected more reliably. A large

𝜂𝑡ℎ𝑟𝑒𝑠ℎ will ensure that inelastic traffic is always classified correctly, but it increases the

chance that cross-traffic with a small elastic component is misclassified as inelastic

(potentially hurting throughput). With a small 𝜂𝑡ℎ𝑟𝑒𝑠ℎ, on the other hand, elastic

traffic will be classified correctly, but we may occasionally classify inelastic traffic as

elastic, losing an opportunity to reduce delays. To balance these concerns, we choose

a small fixed threshold 𝜂𝑡ℎ𝑟𝑒𝑠ℎ = 2, which in Fig. 4-5 corresponds to classifying cross-

traffic with a 25% elastic component correctly 75% of the time. We evalutate the

impact of 𝜂𝑡ℎ𝑟𝑒𝑠ℎ on congestion control performance in §4.7.2.

Pulse shaping: Rather than a pure sinusoid, we use an asymmetric sinusoidal pulse,

as shown in Fig. 4-6. In the first one-quarter of the pulse cycle, the sender adds a

half-sine of a certain amplitude (e.g., 𝜇/4) to 𝑆(𝑡); in the remaining three-quarters

of the cycle, it subtracts a half-sine with one-third of the amplitude used in the first

quarter of the cycle (e.g., 𝜇/12). The reason for this asymmetric pulse is that it

enables senders with low sending rates, 𝑆(𝑡), to generate pulses. For example, for a

peak amplitude of 𝜇/4, a sender with 𝑆(𝑡) as low as 𝜇/12 can generate the asymmetric
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pulse shown in Fig. 4-6; a symmetric pulse with the same peak rate would require

𝑆(𝑡) > 𝜇/4.

Our pulses produce an observable pattern in the FFT when the cross-traffic is

elastic. Using asymmetric sinusoidal pulses creates harmonics at multiples of the

pulse frequency 𝑓𝑝. However, these harmonics do not affect 𝜂 (see Equation (4.3)),

which only uses the FFT in the frequency band [𝑓𝑝, 2𝑓𝑝 − 𝜖).

Pulse duration: What should the duration, 𝑇 , of the pulse be? The answer depends

on two factors: first, the interval over which 𝑆 and 𝑅 are measured (with which the

sender computes 𝑧), and second, the amount of data we are able to send in excess of

the mean rate without causing congestion. If 𝑇 were smaller than the measurement

interval of 𝑆 and 𝑅, the perturbation to the cross-traffic rate during one part of the

pulse will be averaged out during the rest of the pulse, resulting in no impact on 𝑧(𝑡).

But 𝑇 cannot be too large because the sender transmits in excess of the mean rate 𝑆(𝑡)

for 𝑇/4. In particular, the size of the burst sent in a pulse is 2
𝜋
𝜇
4
𝑇
4
= 𝑇𝜇

8𝜋
≈ 0.04𝜇𝑇 .

If 𝑇 is equal to the RTT, this is 4% of the bandwidth-delay product (BDP) at the

peak. Moreover, since pulsing doesn’t increase the average sending rate, there is no

increase in the average queuing delay (§4.5).

We set 𝑇 to a large RTT value observed on the Internet, for example 𝑇 = 200 ms,

with the rationale that router buffers are typically provisioned to avoid packet losses

for one such RTT, and because our implementation measures 𝑆 and 𝑅 over one RTT.

We measure rates over one RTT because sub-RTT measurements are confounded by

burstiness in packet transmissions (e.g., caused by ACK compression [79]).

If the cross-traffic reacts slower than the pulse duration, Nimbus might misclassify

those flows. Using longer pulses could improve detection accuracy in such scenarios

but it might cause congestion. We evaluate this alternative for detecting PCC-Vivace,

a rate-based scheme (not ACK-clocked), in Appendix G.2.3.

FFT duration: Computing FFTs over a small duration allows quick responses to

changes in cross-traffic, but it increases errors due to noise. For example, natural

variations in inelastic cross-traffic over small periods can cause false peaks at 𝑓𝑝

in the FFT, resulting in a misclassification. The FFT duration also impacts the
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frequency resolution of the FFT; in particular, 𝜖 in Equation (4.3) must be larger

than 1/FFT_Duration. We choose an FFT duration of 5 seconds (corresponding to

25 pulses) and 𝜖 = 0.5 Hz to balance these concerns. In §4.7.1, we show that even

when the cross-traffic is a highly dynamic mix of inelastic and elastic flows of different

sizes, Nimbus achieves high detection accuracy and congestion control performance.

4.4 NimbusCC

NimbusCC is a congestion control system that uses mode switching. It has a TCP-

competitive mode in which the sender transmits using a TCP-competitive congestion

control algorithm (e.g., Cubic), and a delay-control mode that uses a delay-controlling

algorithm (e.g., Copa). NimbusCC switches between the two modes using our elas-

ticity detector, Nimbus.

4.4.1 Mode Switching

At any given time, NimbusCC transmits data at the time-varying rate dictated by the

congestion control algorithm running at that time. It modulates this rate with asym-

metric sinusoidal pulses (Fig. 4-6). NimbusCC uses the pulsing parameters described

in S4.3.4, calculating 𝑆 and 𝑅 over one window’s worth of packets. It computes the

FFT for the 𝑧 measurements reported in the last 5 seconds to calculate elasticity (𝜂)

using Equation (4.3), and it picks the mode by comparing 𝜂 to 𝜂𝑡ℎ𝑟𝑒𝑠ℎ = 2 (§4.3.4).

We support Cubic and NewReno for the TCP-competitive mode and Copa’s de-

fault mode and Vegas for the delay-control mode. We also implemented a simple

delay-controlling algorithm, called BasicDelay, which relies on our cross-traffic rate

estimator to calculate the spare capacity at the sender.

BasicDelay uses a typical control loop inspired by prior explicit control proto-

cols [81, 132, 57]. Let 𝑆 be the sending rate and 𝑧 be the estimated cross-traffic rate,

both measured over the last window of packets. Also, let 𝑥 be the current RTT, and

𝑥𝑚𝑖𝑛 be the minimum observed RTT. Upon receiving an ACK, BasicDelay sets its

current rate to:
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Rate← 𝑆 + 𝛼(𝜇− 𝑆 − 𝑧) + 𝛽
𝜇

𝑥
(𝑥min + 𝑑𝑡 − 𝑥), (4.4)

where 𝛼 and 𝛽 are constants smaller than 1, and 𝑑𝑡 is a target queuing delay. The

term (𝜇 − 𝑆 − 𝑧) is the sender’s estimate of the spare capacity in the last RTT.

By adding an 𝛼-fraction of the spare capacity to 𝑆(𝑡), BasicDelay tries to get closer

to the ideal rate. The second term in the above rule seeks to maintain a specified

queuing delay, 𝑑𝑡, to prevent the queue from both growing too large or going empty.

Recall that our cross-traffic estimator, Equation (4.1), requires a non-empty queue to

estimate 𝑧.

NimbusCC takes special care in initializing the rate when switching to TCP-

competitive mode. NimbusCC sets the rate (and equivalent window) to the rate

that was used 5 seconds ago because the elasticity detector takes 5 seconds (FFT

Duration) to detect elastic cross-traffic. During this time, the elastic traffic could

cause a reduction in the delay-control mode’s rate. Hence, NimbusCC resets its rate

to the rate at the beginning of the 5-second detection period.

4.4.2 Multiple NimbusCC Flows

What happens when a bottleneck is shared by multiple NimbusCC flows? If all the

NimbusCC flows pulse at the same frequency (𝑓𝑝), then they will all detect a peak

in the FFT at that frequency and stay in the TCP-competitive mode (regardless of

the other cross-traffic). Thus they will achieve the same throughput as the TCP-

competitive protocol and compete fairly with each other, but will not maintain low

delays when there is no elastic cross-traffic.

Ideally, we want all the NimbusCC flows to remain in delay-control mode when

there is no elastic cross-traffic, and use TCP competitive mode otherwise. One ap-

proach is for different NimbusCC flows to pulse at different frequencies. But this

approach cannot scale to more than a few flows, because the set of distinguishable

frequencies is limited (recall that the pulse period 𝑇 cannot be too small).

The pulser and the watchers: We propose a different approach. One of the

NimbusCC flows assumes the role of the pulser, while the others are watchers. They
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coordinate without explicit communication; in fact, each NimbusCC flow is unaware

of the identities, or even existence, of the others.

The pulser sends data by modulating its rate with asymmetric sinusoids. The

pulser uses two different frequencies, 𝑓𝑝𝑐 in TCP-competitive mode, and 𝑓𝑝𝑑 in delay-

control mode. The values of these frequencies are fixed and agreed upon beforehand;

we use 𝑓𝑝𝑐 = 5 Hz and 𝑓𝑝𝑑 = 6 Hz in our experiments.5

A watcher infers whether the pulser is pulsing at frequency 𝑓𝑝𝑐 or frequency 𝑓𝑝𝑑

by computing the FFT of its receive rate, 𝑅, at these two frequencies. It then picks

the mode corresponding to the larger peak to match the pulser’s mode. Note that

since a watcher is not pulsing, it can detect the pulser’s pulses in its own receive rate,

𝑅; i.e., it does not even need to estimate 𝑧. The pulser, on the other hand, cannot

look at its own 𝑅 to detect pulses in the cross-traffic, since it will end up detecting

its own pulses.

For multiple NimbusCC flows to maintain low delays during times when there is

no elastic cross-traffic on the link, the pulser must classify watcher traffic as inelastic.

Note that from the pulser’s perspective, the watcher flows are part of the cross-traffic;

thus, to avoid confusing the pulser, the rate of watchers must not react to the pulses of

the pulser. To achieve this goal, a watcher applies an exponentially weighted moving

average (EWMA) filter to its transmission rate before sending data. The EWMA

filter cuts off all frequencies in the sending rate that exceed min(𝑓𝑝𝑐, 𝑓𝑝𝑑).

Pulser election: A distributed and randomized election decides which flow is the

pulser and which are watchers. If a NimbusCC flow determines that there is no pulser

(by seeing that there is no peak in the FFT at the two potential pulsing frequencies),

then it decides to become a pulser with a probability proportional to its transmission

rate:
𝑝𝑖 =

𝜅𝜏

FFT Duration
× 𝑅𝑖

𝜇
. (4.5)

Each flow makes decisions periodically, e.g., every 𝜏 = 10 ms, 𝜅 is a constant, and 𝑅𝑖

is the receive rate of the 𝑖𝑡ℎ flow. This rule ensures that the expected number of flows

that become pulsers over the FFT duration is at most 𝜅. To see why, note that the
5These values are in accordance with bounds on 𝑇 and 𝑓 described in §4.4.
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expected number of pulsers is equal to the sum of the probabilities in Equation (4.5)

over all the decisions made by all flows in the FFT duration. Since
∑︀

𝑖 𝑅𝑖 ≤ 𝜇 and

each flow makes (FFT Duration/𝜏) decisions, these probabilities sum up to at most

𝜅.

It is also not difficult to show that the number of pulsers within an FFT duration

has approximately a Poisson distribution with a mean of 𝜅 [47]. Thus the probability

that after one flow becomes a pulser, a second flow also becomes a pulser before it

can detect the pulses of the first flow in its FFT measurements is 1− 𝑒−𝜅. Therefore,

𝜅 involves a tradeoff: a smaller 𝜅 will lead to fewer conflicts but will take longer to

elect a pulser. In our experiments, we use 𝜅 = 1.

For any value of 𝜅, there is a non-zero probability of more than one concurrent

pulser. In such cases, all the NimbusCC flows will stay in TCP-competitive mode:

they could miss opportunities to reduce delay but will not lose throughput relative

to the status quo. As a further optimization, if there are multiple pulsers, then each

pulser will observe that the cross-traffic has more variation than the variations it

creates with its pulses. This can be detected by comparing the magnitude of the

FFT of the cross-traffic 𝑧(𝑡) at 𝑓𝑝 with the FFT of the pulser’s receive rate 𝑅(𝑡) at

𝑓𝑝. If the cross-traffic’s FFT has a larger magnitude at 𝑓𝑝, the NimbusCC pulser

concludes that there must be multiple pulsers and switches to a watcher with a fixed

probability.

Remark: This scheme for coordinating pulsers is similar to receiver-driven layered

multicast (RLM) congestion control [102]. In RLM, a sender announces to the multi-

cast group that it is conducting a probe experiment at a higher rate, so any losses in-

curred during the experiment should not be heeded by the other senders. In contrast,

in Nimbus, there is no explicit coordination channel, and the pulsers and watchers

coordinate via their independent observations of cross-traffic patterns. The pulser

election also shares similarities with carrier sense multiple access (CSMA) protocols.

Similar to a CSMA sender, a watcher looks for the absence of any pulser (free channel)

on the shared bottleneck, and switches probabilistically to a pulser to try to avoid

multiple pulsers (collisions). However, unlike CSMA/CD or CSMA/CA protocols,
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collisions are harder to detect (and consequently rectify) in Nimbus.

4.5 Visualizing NimbusCC

We illustrate NimbusCC on a synthetic workload with time-varying cross-traffic. We

emulate a bottleneck link in Mahimahi [110], a link emulator. The network has a bot-

tleneck rate of 96 Mbit/s, a minimum RTT of 50 ms, and 100 ms (2 BDP) of buffer-

ing. We compare two mode-switching protocols, NimbusCC (Cubic+BasicDelay)

and NimbusCC (Cubic+Copa), with Cubic, BBR, Vegas, and PCC-Vivace (all from

Linux), Copa (from Copa’s authors), and Compound atop CCP (written by us).

The cross-traffic varies over time between elastic, inelastic, and a mix of the two.

We generate inelastic cross-traffic using Poisson packet arrivals at the specified mean

rate. Elastic cross-traffic uses Cubic, via iperf [134].

Fig. 4-7 shows the throughput and queuing delays for the various protocols, as

well as the correct fair-share rate. Table 4.1 summarizes the deviation from fair-share

throughput in the elastic (20–120 s) and inelastic (0–20 and 120–180 s) regions, and

the mean queuing delay in the inelastic region. The delay in the elastic region is

similar for all schemes.

Throughout the experiment, both NimbusCC variants achieve throughput close

to the fair-share rate and low (≤15 ms) queuing delays in the presence of inelastic

cross-traffic. With elastic cross-traffic, both variants switch to TCP-competitive mode

within 5 seconds and achieve close to their fair share. The delays during this period

approach the buffer size because the competing traffic is buffer-filling; the delays

return to their previous low value (15 ms) within 5 seconds after the elastic flows

complete. NimbusCC stays in the correct mode throughout the experiment, except

for one interval in the elastic period. The deviation from fair-share in the elastic

region is because Cubic is not perfectly fair to itself over short time periods.

Cubic achieves it’s fair-share rate but experiences high delays (80 ms) throughout.

BBR’s throughput is often much higher than its fair share with high delays even

against inelastic cross-traffic, which prior work has also observed [22, 65].
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Figure 4-7: Performance on a 96 Mbit/s Mahimahi link with 50 ms delay and 2 BDP
of buffering while varying the rate and type of cross-traffic as denoted at the top of the
graph. 𝑥M denotes 𝑥 Mbit/s of inelastic Poisson cross-traffic. 𝑦T denotes 𝑦 long-running
Cubic cross-flows. The solid black line indicates the correct time-varying fair-share rate that
the protocol should achieve given the cross-traffic. For each scheme, the solid line shows
throughput and the dotted line shows queuing delay. The cross-traffic contains elastic flows
from 20–120 s. For Nimbus and Copa, the red shaded regions indicate times spent in the
wrong mode (e.g., delay-controlling with elastic cross-traffic).
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Scheme Throughput Δ Throughput Δ QDelay
Elastic Inelastic Inelastic

NimbusCC −10% 0% 12ms
Cubic+BasicDelay

NimbusCC −15% −1% 14ms
Cubic+Copa

Cubic +12% 0% 78ms
BBR +61% −2% 56ms
Vegas −79% −15% 3ms
Copa −54% −19% 18ms

PCC-Vivace +61% −2% 27ms

Table 4.1: Average queuing delay (in ms) in the inelastic region, and deviation from fairshare
throughput in elastic and inelastic regions from Fig. 4-7. NimbusCC is the only scheme to
achieve close to fair-share throughput and low delays.

Vegas suffers from low throughput in the presence of elastic cross-traffic as it reacts

to packet delays.

While Copa generally uses the correct mode it frequently switches mode unnec-

essarily; Copa makes 28 switching errors in the elastic region, while NimbusCC only

switches once. In the elastic period, Copa’s frequent mode switches lower its through-

put (14 Mbit/s) compared to NimbusCC (27.5 Mbit/s) and fair-share rate (e.g., see

100–120 s). Further, by draining queues periodically, Copa incurs minor underuti-

lization against inelastic traffic (e.g., 140–160 s).

Vivace competes unfairly with elastic traffic. At times, Vivace fails to maintain

low delays against inelastic cross-traffic and incurs heavy packet loss (e.g., 160–180s).

4.6 Discussion and Limitations

Rate-based protocols: Table 4.2 summarizes how Nimbus classifies different types

of cross traffic. Recall that our method relies on the cross traffic responding to

variations induced by pulses on an RTT timescale. This is true of all ACK-clocked

protocols, which are classifed as elastic.

For BBR, recent work has showed that it is ACK-clocked when competing with

other flows [138]; Nimbus thus classifies it as elastic. We therefore find that NimbusCC
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Cross Traffic Elastic ACK-Clocked Classification
Cubic Yes Yes Elastic

NewReno Yes Yes Elastic
Copa Yes Yes Elastic
Vegas Yes Yes Elastic
BBR Yes If CWND-limited Elastic*

PCC-Vivace Yes No Inelastic*
Fixed window Yes Yes Elastic
App. limited No No Inelastic
Const. stream No No Inelastic

Table 4.2: Classification by Nimbus.

(with Cubic as the TCP-competitive protocol) achieves similar throughput to Cubic

when competing against BBR (Appendix SG.2.2).

Some rate-based protocols may not react on RTT timescales. For example, Nimbus

in its default configuration classifies PCC-Vivace as inelastic because it does not react

quickly enough to Nimbus’s pulses. Increasing the pulse duration helps Nimbus to

correctly classify such flows as elastic (Appendix G.2.3). Increasing the pulse duration

might of course also increase queuing delays. Since most elastic traffic today is ACK-

clocked, we use a small pulse duration by default. In the future, if rate-based protocols

become widely deployed, the pulse duration could be adjusted accordingly.

When assumptions do not hold: The elasticity detector assumes a single bot-

tleneck link with fixed capacity and requires an estimate of the bottleneck link rate.

We now analyze the detection algorithm in simple scenarios when either of these

assumptions are not met. We show that when assumptions break, the algorithm

classifies all traffic as elastic (with high likelihood) regardless of it’s true elasticity.

We also evaluate the performance of NimbusCC in such scenarios (see §4.7.3). As

expected, NimbusCC primarily operates in the TCP-competitive mode, achieving

similar throughput and delay as the status quo.

Error in link rate estimation: If the link rate estimate has too much error, the detector

classifies traffic as elastic even if it is inelastic. To understand why, define 𝑧(𝑡) as the

estimate of the cross traffic rate, 𝑧*(𝑡) as the actual cross traffic rate, 𝜇̂ as the estimate
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of the link rate, and 𝜇* as the actual link rate. Then, from Equation (4.1):

𝑧(𝑡) = 𝜇̂
𝑆(𝑡)

𝑅(𝑡)
− 𝑆(𝑡), 𝑧*(𝑡) = 𝜇* 𝑆(𝑡)

𝑅(𝑡)
− 𝑆(𝑡) (4.6)

Combining the equations above, we get

𝑧(𝑡) =
𝜇̂

𝜇* 𝑧
*(𝑡) +

(︀ 𝜇̂

𝜇* − 1
)︀
𝑆(𝑡) (4.7)

When the link rate estimate is inaccurate, 𝑧(𝑡) is a linear combination of the cross

traffic rate and the sending rate. As the error in the link rate estimate increases, the

contribution of the sending rate to 𝑧(𝑡) increases. Since the sending rate oscillates at

the pulse frequency, 𝑧(𝑡) also oscillates, and all cross traffic (regardless of its nature)

is classified as elastic.

Time-varying links: On time-varying links (e.g., wireless links), the elasticity detector

cannot obtain an accurate estimate of the link rate and will therefore tend to classify

traffic as elastic, for the same reason described above.

Multiple bottlenecks: In scenarios with multiple bottleneck links,6 the elasticity detec-

tor breaks, but again in a predictable way. Similar to the incorrect 𝜇 case, the cross

traffic estimate is a combination of the actual cross traffic rate and the sending rate in

such scenarios, and Nimbus will tend to classify traffic as elastic. To understand why,

consider a scenario where a NimbusCC flow is going through two bottleneck links,

with rates 𝜇*
1 and 𝜇*

2, in series. Let 𝑧*1(𝑡) and 𝑧*2(𝑡) be the cross traffic rate on the

two links respectively. Let 𝑧(𝑡) be the cross traffic estimate, and 𝜇̂ be the bottleneck

link rate estimate provided to the elasticity detection algorithm. We define 𝑅1(𝑡) and

𝑅2(𝑡) as the rate at which Link 1 and Link 2 dequeue packets from the NimbusCC

6We expect such scenarios to be rare, since congestion in the Internet typically occurs at the
network edge [99, 53].
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flow respectively. Assuming that both links are fully utilized, we have:

𝑅1(𝑡) =
𝜇*
1 · 𝑆(𝑡)

𝑧*1(𝑡) + 𝑆(𝑡)
,

𝑅2(𝑡) =
𝜇*
2 ·𝑅1(𝑡)

𝑧*2(𝑡) +𝑅1(𝑡)
=

𝜇*
1 · 𝜇*

2 · 𝑆(𝑡)
𝑧*1(𝑡) · 𝑧*2(𝑡) + 𝑧*2(𝑡) · 𝑆(𝑡) + 𝜇*

1 · 𝑆(𝑡)
. (4.8)

Since the receive rate of the NimbusCC flow is 𝑅2(𝑡), the cross traffic estimate given

by Equation (4.1) is:

𝑧(𝑡) = 𝜇̂ · 𝑆(𝑡)
𝑅2(𝑡)

− 𝑆(𝑡) = 𝜇̂ · 𝑧
*
1(𝑡) · 𝑧*2(𝑡)
𝜇*
1 · 𝜇*

2

+ 𝑆(𝑡) ·
(︂
𝜇̂ · 𝑧*2(𝑡)
𝜇*
1 · 𝜇*

2

+
𝜇̂

𝜇*
2

− 1

)︂
. (4.9)

The cross traffic estimate is thus a combination of the real cross traffic rate and the

sending rate. Since the sending rate component oscillates at the pulse frequency,

Nimbus will detect oscillations at the pulsing frequency in 𝑧(𝑡) and classify cross

traffic as elastic.

Insufficient share of the bottleneck: To generate pulses, the detector must control

a fraction of the traffic at the bottleneck link (≥ 𝜇/12). If the sender’s rate is not

high enough, NimbusCC switches to the TCP-competitive mode to safeguard against

losing throughput from misclassification. Therefore when there are a large number

of flows competing at the bottleneck, each with a tiny share of the link bandwidth,

NimbusCC is similar to the status quo. Note that in such scenarios, the cross traffic

is more likely to be elastic.

Prevalence of inelastic cross-traffic. Nimbus’s effectiveness in improving delay

on Internet paths depends on how often cross traffic is inelastic. Our experiments

on paths between different cloud regions and a small number of residential hosts

suggest that scenarios where cross traffic is inelastic might be common (§4.7.5). But

quantifying how often they occur would require a large-scale measurement study that

is beyond the scope of this paper. Our goal here is not to provide a verdict on this

question but to show plausible situations where Nimbus is useful and to characterize

its limitations.
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4.7 Evaluation

We have implemented NimbusCC using CCP [109], which provides a convenient way

to express the signal processing operations in user-space code. It uses estimates of 𝑆,

𝑅, the RTT, and packet losses from the Linux kernel every 10 ms.

We evaluate our elasticity detection method and NimbusCC. We use the Mahimahi

emulator and investigate the performance benefits (S4.7.1) of elasticity detection with

realistic workloads, its robustness (S4.7.2), and its behavior in scenarios where the

assumptions underlying the method are not met (§4.7.3) or when there are competing

flows using the detector (§4.7.4). Unless specified otherwise, the topology in these

experiments consists of a single bottleneck link with a stable link rate. Finally, we

evaluate the performance of NimbusCC on real Internet paths (S4.7.5).

4.7.1 Performance Benefits from Elasticity Detection

We evaluate the delay and throughput benefits of mode switching via elasticity de-

tection using trace-driven emulation. We generate cross traffic from an empirical

distribution of flow sizes derived from a wide-area packet trace from CAIDA [34].

This packet trace was collected at an Internet backbone router on January 21, 2016

and contains over 30 million packets recorded over 60 seconds. We generate Cubic

cross traffic flows with flow sizes drawn from this data, with flow arrival times gen-

erated by a Poisson process to offer a fixed average load to fill 50% of the link (48

Mbit/s). The experiment duration is 360 s and consists of 100,000 cross traffic flows.

The cross traffic consists of a highly dynamic mix of short and long flows, with

a heavy-tailed distribution of flow sizes, ranging from 10 KB to 100 MB (average

flow size is 22 KB). Very short flows with size less than the initial congestion window

(< 15 KB) are inelastic as they transmit all data at once and don’t react to the

fluctuations in the available bandwidth, whereas long (backlogged) flows are elastic.

The traffic trace consists of periods with a mix of elastic and inelastic cross traffic,

along with periods with only inelastic cross traffic flows. There is high churn in the

number of flows, and the cross traffic exhibits periods of high load that span from a
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few RTTs to several minutes.

We start one backlogged flow using different congestion control algorithms (Nim-

busCC, Cubic, Copa, Vegas, PCC-Vivace or BBR) and sharing a 96 Mbit/s bottleneck

link with the cross traffic flows. The propagation RTT is 50 ms and the buffer size is

1.2 Mbytes (2 bandwidth-delay products). NimbusCC uses Cubic in the TCP com-

petitive mode and BasicDelay (§4.4.1) in the delay-controlling mode. For BasicDelay

we used 𝛼 = 0.8, 𝛽 = 0.5 and 𝑑𝑡 = 12.5 ms.

NimbusCC reduces delays while achieving fair-share throughput: Fig. 4-8a

shows the distribution of per-packet RTT and Fig. 4-8b shows the deviation from

fair-share throughput (over 5-second intervals) for various schemes. NimbusCC and

Cubic achieve the lowest deviation from fair share among these schemes. NimbusCC’s

deviation profile is comparable to Cubic (note that both NimbusCC and Cubic deviate

from the fair share since Cubic is not perfectly fair to itself over short time periods).

The reason is that NimbusCC correctly switches to Cubic mode in the presence of

elastic flows. Additionally, by switching to delay-controlling mode in the absence of

elastic flows, NimbusCC achieves lower RTTs, with a median delay only 10 ms higher

than Vegas and >50 ms lower than Cubic and BBR.

Cost of incorrect mode-switching: Copa has a slightly lower median delay than

Nimbus, but at a high cost: its throughput is significantly lower than the fair-share at

the 10th and 25th percentiles (corresponding to times with significant elastic traffic).

Fig. 4-8c shows this more clearly, comparing the rates of NimbusCC and Copa during a

60-second interval. Because of the high variations in the cross traffic rate, the queuing

delay can drop below Copa’s detection threshold even in the presence of elastic flows

(e.g., due to departure of other cross flows). Copa often incorrectly operates in

its default delay-control mode against elastic cross traffic (e.g., 115–120, 130–140

s). These incorrect switches cause Copa to nearly stop sending. Since the elastic

flows competing with Copa in such periods achieve a higher throughput than the

same flows against NimbusCC (which attains the fairshare rate), they complete more

quickly, freeing up bandwidth that Copa grabs subsequently. This is why in periods

like 120–130 s, which immediately follow a low-rate period for Copa, it achieves a
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(c) Copa incorrectly switches to its default delay-control mode even when competing against
elastic traffic, unlike NimbusCC.

Figure 4-8: Performance of NimbusCC on a cross traffic workload derived from a packet
trace collected at a WAN router.

155



higher rate than NimbusCC. Also, since NimbusCC competes fairly with elastic flows

rather than yielding bandwidth, it has a slightly higher delay than Copa at the tail.

While both schemes achieve the same overall average throughput7, NimbusCC

is better suited to applications that value stable bandwidth, e.g., video streaming,

interactive web browsing, online gaming, etc. In such applications, sending at a very

low rate for several seconds when cross traffic has elastic flows is unacceptable. Note

that elastic traffic was present for only about 25% of the duration of this experiment

with Copa, which is why we see Copa under-performing only at the lower percentiles.

NimbusCC helps cross traffic. The 95th percentile flow completion time (FCT)

of cross traffic flows reduces by 3-4× compared to BBR, and 1.3× compared to Cubic

for short (≤ 15 KB) flows (Appendix G.1). In contrast, PCC-Vivace is unfair to

the background flows (positive deviation from fairshare). It grabs significantly more

bandwidth than all the other schemes and keeps the buffer near-full more than half

the time. The result is that many background flows do not complete, and their

completion times are over 100× worse than with other schemes. PCC-Vivace also

shows higher delays that any other scheme; the median delay is 90 ms higher than

NimbusCC.

Elasticity detection is accurate: To define ground truth, we note that short flows

(< 10 packets) transmit all data at once, without any rate adjustments. We thus

classify a cross traffic flow as elastic if it is larger than the initial congestion window

of 10 packets, finishing in greater than a RTT.

The top chart in Fig. 4-9 shows the fraction of bytes belonging to elastic flows

as a function of time. The bottom chart shows the output of the elasticity detector

with the dashed threshold line at 𝜂 = 2. The shading corresponds to periods when

NimbusCC is in delay-control mode. Shaded regions correlate well with the periods

when the true fraction of elastic traffic is low (e.g., < 0.3), while white regions correlate

well with periods when the elastic fraction is high. Unlike Copa, our elasticity detector

observes fluctuations in cross traffic over a period of time in the frequency domain,

7Any work-conserving scheme will achieve the same throughput in this experiment because the
cross traffic sends a fixed number of bytes.
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Figure 4-9: The elasticity metric closely tracks elastic cross traffic (ground truth measured
independently from the rate of ACK-clocked flows). Green-shaded regions indicate inelastic
periods.

and the accuracy is less susceptible to variations in the cross traffic rate. Despite the

churn in cross traffic flows, the overall accuracy of our elasticity detector is over 90%

when the fraction of the elastic traffic is high (> 30%). When the fraction of elastic

traffic is low, NimbusCC operates primarily in the delay-controlling mode. In this

case, the elastic flows in the cross traffic are relatively short. Such short elastic flows

do not last long enough to grab bandwidth from the NimbusCC flow.

Performance against different congestion control protocols: We repeat the

experiment in Fig. 4-8 but with cross traffic consisting of an equal (on average) mix of

Cubic, NewReno and BBR flows. The results are similar to the previous experiment:

NimbusCC achieves lower delays than Cubic for a similar throughput profile, while

Copa and Vegas lose throughput when cross traffic is elastic. The reason is that,

regardless of the congestion control protocol, the elastic cross traffic flows react to

Nimbus’s pulses, and can therefore be classified correctly (Appendix G.2.1).

Performance with video cross traffic: Video streams can be application-limited

(e.g., when the client playback buffer is full) or network-limited (e.g., when the client is

downloading a high-bitrate chunk) at different points in time. Therefore video traffic

can exhibit both inelastic and elastic behavior. We compare the performance of con-

gestion control algorithms running against cross traffic consisting of a 4k DASH [95]

video stream using Cubic on a 48 Mbit/s link with 50 ms RTT for 80 seconds. Fig. 4-
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Figure 4-10: Mean throughput and queuing delay (lower delay on the right) with video cross
traffic. NimbusCC achieves similar throughput as Cubic but reduces delays and performs
better than the other schemes. Copa and Vegas achieve low throughput.

10 shows the throughout and delay of the various schemes. Because of effective mode

switching, NimbusCC achieves similar throughput as Cubic at 15 ms lower delay.

Nimbus recognizes application-limited video traffic as inelastic, allowing the sender

to control delays in those cases; it rarely recognizes network-limited elastic traffic as

inelastic, so does not wrongly reduce its rate as Copa does. Note that the figure

shows the rate of a backlogged flow competing against video cross traffic; the total

link utilization with all the schemes was at least 90%.

4.7.2 Robustness of Elasticity Detection

We evaluate the robustness of Nimbus under a variety of network and traffic condi-

tions. Unless specified otherwise, we run NimbusCC as a backlogged flow on a 96

Mbit/s bottleneck link with a 50 ms propagation RTT and a 100 ms drop-tail buffer

(2 BDP). We consider three categories of synthetic cross traffic sharing the link with

NimbusCC: (i) inelastic Poisson-distributed traffic; (ii) fully elastic traffic (backlogged

NewReno flows); and (iii) an equal mix of inelastic and elastic traffic. The duration of

each experiment is 120 seconds. We evaluate accuracy: the fraction of time Nimbus

correctly detects the presence of elastic cross traffic. For each experiment, we report

the mean accuracy of the detector across 5 runs.

Impact of cross traffic RTT: We vary the cross traffic’s minimum RTT from 10

ms to 200 ms (0.2 – 4× NimbusCC’s RTT). We find that varying cross traffic RTT

does not reduce accuracy. For purely inelastic and purely elastic traffic, the accuracy
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Figure 4-11: Nimbus is robust to variations in link bandwidth and fraction of traffic con-
trolled by it. The accuracy is high even when the fraction of traffic under control is small.
Increasing pulse size increases robustness.

is more than 98% in all cases, while for mixed traffic, the accuracy is more than 85%

in all cases (a random guess would have only achieved 50%). Regardless of the cross

traffic RTT, the elastic flows respond to fluctuations created by Nimbus, generating

a peak in the cross traffic FFT at the oscillation frequency. The cross traffic’s RTT

affects the phase, but not the amplitude of the peak in the FFT.

A mix of RTTs in the cross traffic: We vary the number of elastic cross traffic

flows from 1 to 5, where the RTT of 𝑛th flow in 20 · 𝑛 ms. In case the cross traffic

contains elastic flows, all the elastic flows oscillate at Nimbus’s pulse frequency. As

a result, the sum of the rates of these elastic flows also oscillates,8 and the traffic is

correctly classified as elastic. For purely elastic and inelastic traffic, Nimbus achieves

an average accuracy of 98% across 5 runs, while for mixed traffic, the mean accuracy

is greater than 90% in all cases. In other words, heterogeneity in RTTs of cross-flows

does not degrade the accuracy of elasticity detection.

Pulse size, link rate, and offered cross traffic load: We perform a multi-

factor experiment varying Nimbus’s pulse size from 1/16 to 1/2 the link rate, the

fair share of the bottleneck link rate from 12.5%—75% (by varying the cross traffic

load), bottleneck link rates set to 96, 192, and 384 Mbit/s. The accuracy for purely

elastic cross traffic is always higher than 95%. while the average accuracy over all

the points for the other two traffic mixes is more than 90%. Fig. 4-11 shows the

8Since the RTTs are different, the elastic flows’ oscillations will differ in phase and the oscil-
lations could in theory cancel each other out leading to mis-classification, but it requires specific
combinations of RTT and is unlikely.
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Figure 4-12: Nimbus is more accurate than Copa when (i) inelastic cross traffic occupies a
large fraction of the link (left); (ii) elastic cross traffic has higher RTT than the flow’s RTT
(right).

average detection accuracy over the other two categories of cross traffic (mix + purely

inelastic). The classification accuracy is not sensitive to cross traffic load. Nimbus’s

use of asymmetric pulses enables a sender to create fluctuations in the cross traffic

even when the sending rate is low. As a result, the detection accuracy remains high

under high cross traffic load.

In general, increasing the pulse sizes improves accuracy because the elasticity

detector can create a more easily observable change in the cross traffic sending rates.

An increase in the link rate results in higher accuracy for a given pulse size and

Nimbus link share because the variance in the rates of inelastic Poisson cross traffic

reduces with increasing cross traffic sending rate, reducing the number of false peaks

in the cross traffic FFT. However, the elasticity detector has low accuracy (∼60%)

when it uses high pulse sizes and controls a low fraction of the link rate. We believe

that this is due to a quirk in the way the Linux networking stack reports round-trip

time measurements under sudden sending rate changes.

Comparison with Copa: We now compare the classification accuracy of Nimbus

with Copa. First, we generate inelastic cross traffic at different rates and measure the

accuracy. We consider both constant-bit-rate (CBR) and Poisson cross traffic.

Fig. 4-12 (left) shows that Nimbus has high accuracy in all cases, but Copa’s

accuracy drops sharply when the cross traffic occupies over 80% of the link. This

result highlights a pitfall of Copa’s approach: setting an operating mode based on

the absolute value of queueing delays is problematic. With a high inelastic cross

traffic load, Copa is unable to drain the queue quickly enough (i.e., every 5 RTTs),
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which throws off its detector. In contrast, the elasticity detector estimates elasticity

through delay variations caused by its pulses, and is more robust.

Next, we ran a backlogged NimbusCC or Copa flow competing against a back-

logged NewReno flow. We vary the RTT of the NewReno flow between 1 − 4× the

RTT of the NimbusCC/Copa flow. Fig. 4-12 (right) shows that Copa’s accuracy de-

grades as the RTT of the cross traffic increases; Nimbus’s accuracy is much higher,

dropping only slightly when the cross traffic RTT is 4× larger than NimbusCC.

An elastic cross-flow with a large RTT increases its rate slowly enough to evade

detection by Copa. Therefore, Copa drains the queue as it expects and concludes the

absence of non-Copa cross traffic. This behavior continues until the cross-flow has

grown to offer a load close to the link rate, when it starts interfering with Copa’s

queue draining. By contrast, Nimbus is more robust since it is based on the time

series of variations of the cross traffic rate. Moreover, even when the classification

accuracy for Copa is higher, it makes frequent mode-switches and is suspectible to lose

throughput against elastic traffic. Appendix G.3 shows the throughput and queueing

delay dynamics of Copa and NimbusCC.

Impact of 𝜂𝑡ℎ𝑟𝑒𝑠ℎ: We evaluate the sensitivity of Nimbus’s performance to the de-

tection threshold parameter (𝜂𝑡ℎ𝑟𝑒𝑠ℎ). We repeat the experiment in Fig. 4-8 but vary

the detection threshold from 1 to 6. Fig. 4-13 shows the performance as a function of

𝜂𝑡ℎ𝑟𝑒𝑠ℎ. 𝜂𝑡ℎ𝑟𝑒𝑠ℎ presents a performance trade-off. With a high 𝜂𝑡ℎ𝑟𝑒𝑠ℎ, Nimbus classifies

traffic as inelastic more frequently. NimbusCC operates in delay-controlling mode a

higher fraction of the time reducing delays. However, at times NimbusCC operates in

the delay-controlling mode incorrectly against elastic cross traffic, losing throughput.

This affect can be seen prominently at the lowest percentiles in the throughput pro-

file. Similarly, a small 𝜂𝑡ℎ𝑟𝑒𝑠ℎ causes NimbusCC to miss opportunities for controlling

delays against inelastic traffic, but NimbusCC doesn’t lose throughput against elastic

traffic.

Further robustness results: In Appendix G.4, we explore variations in buffer size,

RTT of the Nimbus flow, and presence of active queue management schemes, and

we show that Nimbus is robust to these settings. In Appendix G.5, we demonstrate
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Figure 4-13: Impact of 𝜂𝑡ℎ𝑟𝑒𝑠ℎ — With a high 𝜂𝑡ℎ𝑟𝑒𝑠ℎ, NimbusCC operates in delay-
controlling mode more often, reducing delays but losing throughput against elastic cross
traffic (see the 10th percentile in the throughput profile, shown in red)

the versatility of NimbusCC in supporting different combinations of algorithms for

its delay-controlling and TCP-competitive modes.

4.7.3 Performance When Assumptions Do Not Hold

The elasticity detector is designed for a single bottleneck link with stable rate and

requires the knowledge about the bottleneck link rate. What happens when these

assumptions do not hold? We compare the throughput of the NimbusCC to the

baseline TCP-competitive protocol (referred to as “status quo” in this section) and

also report the per-packet queuing delay. We evaluate the performance for two cross

traffic scenarios: (i) inelastic Poisson-distributed traffic, and (ii) fully elastic traffic

(backlogged NewReno flows). As explained in §4.6, when the assumptions break,

NimbusCC mostly classifies the cross traffic as elastic and uses the TCP-competitive
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Figure 4-14: Impact of incorrect 𝜇 — When the error is high, all the traffic is classified
as elastic and NimbusCC operates in TCP-competitive mode.

protocol, therefore achieving similar throughput to the status quo.

Error in link rate estimation: We explicitly supply an incorrect link rate estimate

to NimbusCC. We vary the error in the link rate estimate from −50% to +50% of

the real link rate value (96 Mbit/s). Fig. 4-14 reports the average results across 5

runs (120 s each). NimbusCC achieves throughput similar to status quo in all the

scenarios. The classification accuracy is high (> 95%) for elastic cross traffic in all the

cases. When the error rate is high (> 12.5%), inelastic cross traffic is also classified

as elastic and NimbusCC fails to control delays.

Performance on time-varying links: The experiment consists of a single bottle-

neck with a time-varying link rate. We model the rate of the bottleneck link as a

random walk; the rate can change by ± 20 Mbit/s every second. Table 4.3 summa-

rizes the results across 5 such traces. NimbusCC achieves throughput within 1% of

the status quo. However, the classification accuracy is low against inelastic traffic and

the queuing delay is high (though no higher than the status quo). On time-varying

links, inferring the bottleneck link rate is hard in an end-to-end manner [58, 57].

When NimbusCC’s estimate of the link rate9 differs substantially from the bottle-

neck link rate, the cross traffic estimator fails, and NimbusCC simply operates in the

TCP-competitive mode regardless of the cross traffic (§4.6). Thus, on time-varying

9We use the average bandwidth as the link rate estimate for these experiments.
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Cross Traffic Throughout Δ Q Delay Classification Accuracy
Elastic -1% 103 ms 95%

Inelastic -1% 70 ms 39%

Table 4.3: Performance on time-varying links.

Cross Traffic Cross Traffic Throughout Δ Q Delay
(Link 1) (Link 2)
Elastic Elastic -3% 146 ms

Inelastic Elastic 5% 76 ms
Elastic Inelastic -14% 91 ms

Inelastic Inelastic 0% 14 ms

Table 4.4: Performance on a topology with multiple bottlenecks.

bottleneck links NimbusCC is safe to run and will not lose throughput relative to the

status quo, but it might lose opportunities to control delays.

Multiple bottleneck links: We evaluate NimbusCC on a topology with multiple

bottleneck links. The topology consists of two links. Link 1’s bandwidth is 192 Mbit/s

and link 2’s bandwidth is 96 Mbit/s. The experiment consists of a single NimbusCC

flow going through the two links. The propagation RTT is 50ms. Each link has

either elastic or inelastic cross traffic (a cross traffic flow only traverses one of the

two links). Depending on the instantaneous rate of the cross traffic at each link, the

bottleneck could either be both links or one of the links (the bottleneck can change

within an experiment). Table 4.4 shows the throughput delta relative to status quo

and the total queuing delay across both links, averaged over 5 runs of each scenario.

NimbusCC achieves throughput comparable to the status quo (within 15%) in all the

cases. In scenarios where either of the links contained elastic cross traffic NimbusCC

stayed in the TCP-competitive mode majority of the time (> 85%). When both links

had inelastic cross traffic, NimbusCC uses the delay-controlling mode and is able to

reduce delays; note that in this case the slower link (link 2) is the bottleneck.
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Figure 4-15: Multiple competing NimbusCC flows — Multiple NimbusCC flows
achieve fair sharing of a bottleneck link (top graph). There is at most one pulser flow
at any time; identified by its rate variations. Together, the flows achieve low delays by stay-
ing in delay mode for most of the duration (bottom graph). The red background shading
shows when a NimbusCC flow was (incorrectly) in competitive mode

4.7.4 Elasticity Detection with Multiple NimbusCC Flows

Can multiple flows run elasticity detection and share a bottleneck link fairly with

each other and with cross traffic?

We run NimbusCC with Vegas as its delay-control algorithm. Fig. 4-15 demon-

strates how NimbusCC flows react as other NimbusCC flows arrive and leave (there is

no other cross traffic). Four flows arrive at a link with rate 96 Mbit/s and round-trip

time 50 ms. Each flow begins 120 s after the last one began, and lasts for 480 s.

The top half shows the rates achieved by the four flows over time. Each new flow

begins as a watcher. If the new flow detects a pulser (𝑡 = 120, 240, 360 s), it remains

a watcher. If the pulser goes away or a new flow fails to detect a pulser, one of the

watchers becomes a pulser (𝑡 = 480, 720 s). The pulser can be identified visually by

its rate variations.

The flows share the link rate equally. The bottom half of the figure shows the

achieved delays with red background shading to indicate when one of the flows is

(incorrectly) in competitive-mode. The flows maintain low RTTs and stay in delay-

mode for most of the time.
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Figure 4-16: Multiple NimbusCC flows and other cross traffic — There are 3
NimbusCC flows throughout. Cross traffic in 30-90 s is elastic and made up of 3 Cubic
flows. Cross traffic in 90-150 s is inelastic and made up of a 96 Mbit/s constant bit-rate
stream. NimbusCC flows achieve their fair share (top) while achieving low delays in the
absence of elastic cross traffic (bottom).

𝜅 Time to elect a pulser Fraction of time with multiple pulsers
0.5 19.8 s 0%
0.75 15.3 s 4.6%
1 8.0 s 9.3%

1.5 5.4 s 15.4%
2 2.7 s 29.3%

Table 4.5: Impact of 𝜅.

Fig. 4-16 demonstrates multiple NimbusCC flows switching in the presence of

cross traffic. We run three NimbusCC flows on an emulated 192 Mbit/s link with a

propagation delay of 50 ms. In the first 90 s, the cross traffic is elastic (three Cubic

flows), and for the rest of the experiment, the cross traffic is inelastic (96 Mbit/s

constant bit-rate). The top graph shows the total rate of the three NimbusCC flows,

along with a reference line for the fair-share rate of the aggregate. The graph at the

bottom shows the measured queuing delays. NimbusCC shares the link fairly with

other cross traffic, and achieves low delays by staying in the delay-controlling mode

in the absence of elastic cross traffic for most of the experiment.

Impact of 𝜅. We evaluate the impact of 𝜅 on pulser election. In the experiment

eight NimbusCC flows start simultaneously, the bottleneck link is 96 Mbits/s and the

base RTT is 50ms. We report the time it takes to elect a pulser and the fraction of

time there were multiple pulsers. Table 4.5 summarizes the average values across 20

runs (45 s each). As expected, increasing 𝜅 reduces the time to elect a pulser, but

also increases the chances of multiple pulsers being elected.
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Figure 4-17: Performance on three example Internet paths — The 𝑥 axis is inverted;
better performance is up and to the right. On paths with buffering and no drops, ((a) and
(b)), NimbusCC achieves the same throughput as BBR and Cubic but reduces delays sig-
nificantly. On paths with significant packet drops (c), Cubic suffers but NimbusCC achieves
high throughput.

4.7.5 Testing on Internet Paths

We ran NimbusCC on 25 paths between five senders and five receivers. The servers

were EC2 instances located in California, London, Frankfurt, Ireland, and Paris, all

with 10 Gbit/s links.10 The receivers were residential hosts, connected directly to the

Internet router via 1 Gbit/s ethernet links. We verified that the bottleneck in each

case was not the server’s Internet link or the ethernet access link. While we cannot

be certain, we believe that the bottleneck link on these paths was at last-hop internet

service provider.

We initiated bulk data transfers using NimbusCC, Cubic, BBR, and Vegas. We

ran one-minute experiments over five hours on each path, and measured the achieved

mean throughput and mean delay. Fig. 4-17 shows throughput and delays over three

of the paths. The 𝑥 (delay) axis is inverted; better performance is up and to the right.

NimbusCC achieves high throughput comparable to BBR in all cases, at significantly

lower delays. Cubic attains high throughput on paths with deep buffers (Fig. 4-17a

10We also ran experiments between pairs of cloud servers but we observed no congestion on any
such path.
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Figure 4-18: Paths with queuing — NimbusCC reduces the RTT compared to Cubic
and BBR (upto 50ms), at similar throughput.

and Fig. 4-17b), but not on paths with packet drops or policers (Fig. 4-17c). 11 Vegas

attains poor throughput on these paths because it does not keep the bottleneck link

busy and is unable to compete with elastic cross traffic. These trends show the utility

of elasticity detection on Internet paths: it is possible to achieve high throughput and

low delays over the Internet using delay-control algorithms with the ability to switch

to a different competitive mode when required.

Fig. 4-18 summarizes the results on paths with larger buffers. NimbusCC’s through-

put is similar to Cubic’s and 10% lower than BBR’s but with much lower delays (40–50

ms lower than BBR). NimbusCC’s lower mean delay indicates that the cross traffic

at the bottleneck link often did not contain long backlogged elastic flows. We believe

that during these periods, the cross traffic was application-limited (e.g., video streams

where the available bandwidth exceeded the maximum video bitrate). It is in such

cross-traffic scenarios that NimbusCC provides the most benefits in terms of delay

reduction while still achieving high throughput.

4.8 Conclusion

In this chapter, we showed that characterizing the elasticity of cross traffic is a useful

building block for improving congestion control. We introduced a method for detect-

ing and quantifying the elasticity of cross traffic. Our detection technique, Nimbus,

11For each path, we ran experiments in the night (when the cross traffic load was likely close to
0) and compared the throughput of Cubic and BBR. On the paths where the Cubic throughput was
lower consistently across runs, we observed frequent packet drops without much variation in RTT.
We inferred that the drops either occur at a shallow-buffered bottleneck link or a policer, both of
which are known to hurt the throughput of Cubic [48, 36].
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uses asymmetric sinusoidal pulses to modulate the sending rate and observes the fre-

quency response of the cross traffic rate, taking advantage of the property that elastic

cross traffic can be made to oscillate at a pulsing frequency set by sender. Nimbus

relies only on end-to-end rate and delay measurements and requires no changes to

the routers. We presented several experiments to demonstrate the robustness and

accuracy of our proposed method. We also showed that elasticity detection enables

transport protocols to combine the best aspects of delay-control methods while being

competitive with elastic flows when necessary. We found that our proposed meth-

ods are beneficial not only on a variety of emulated conditions that model realistic

workloads, but also on a collection of 25 real-world Internet paths.
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Chapter 5

Conclusion

In this dissertation, we present high performance, practical congestion control so-

lutions for three highly variable network environments: (1) Wireless Networks; (2)

Datacenter Networks; (3) Wide-area Internet. The key philosophy behind these so-

lutions is to design custom feedback mechanisms in each environment, that provide

accurate and timely information on how to adapt to variations in the network condi-

tions. To this end, we employ two principles in our design:

Leverage in-network support practically: By enabling routers/switches in the

network to generate or react to high granularity feedback, we can better adapt to vari-

ations in the network conditions. In past, researchers have proposed many congestion

control solutions that leverage such in-network support. Despite the advantages, most

of these solutions haven’t seen much adoption as they are hard to deploy. We make

the following contributions to overcome the deployment challenges associated with

in-network solutions.

Single-bit explicit feedback: ABC proposes a simple technique that uses only single-

bit of per-packet feedback to signal both increases and decreases to the sender’s

congestion window. Single-bit feedback can be implemented on top of the existing

ECN infrastrucutre. In contrast, existing explicit schemes use multi-bit per-packet

feedback and thus require major changes to packet headers, routers, and endpoints

for deployment.
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Practical per-hop per-flow flow control: BFC is the first practical congestion control

architecture for modern datacenter networks that achieves an approximation of per-

hop per-flow flow control. BFC overcomes the programmability limitations of modern

datacenter switches by using a limited amount of switch state, modest number of

switch queues, and only simple constant-time per-packet switch operations.

Compute feedback accurately: The exact specifics of how the feedback is calcu-

lated can make a significant impact on performance. We make the following contri-

butions to compute feedback more accurately.

Use dequeue rate to compute explicit feedback: Existing explicit schemes use the en-

queue rate at the router to determine the feedback. In contrast, an ABC router

compares the dequeue rate to the link capacity to compute the accel-brake feedback.

This change is rooted in the observation that, for an ACK-clocked protocol like ABC,

the current dequeue rate provides an accurate prediction of the future enqueue rate,

one RTT in advance. This enables the ABC sender to better adapt its rate to the

link capacity.

Elasticity detection: Nimbus is a robust end-to-end technique to rigorously charac-

terize whether the competing cross-traffic is elastic (i.e., competing to grab more

bandwidth) or not. To detect elasticity, Nimbus modulates the sending rate at a

given frequency and observes whether the cross-traffic rate responds to variations at

the same frequency. In contrast to observing cross-traffic response in the time do-

main, using frequency domain makes our mechanism robust to a variety of traffic

and network conditions. Elasticity detection enables a sender to reduce delays while

maintaining high throughput against elastic cross-traffic.

5.1 Future Work

So far, we did not consider feedback to or from applications in our design. The feed-

back mechanisms we propose are agnostic to the needs of the individual applications

in the network and only focus on the generic goal of high throughput and low latency

for all flows. For example, ABC does not take into account the fact that low packet
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latency is more crucial for video conferencing compared to a file transfer. We can

improve performance by incorporating applications in the feedback mechanism.

Feedback from applications on their communication requirements to the network

can guide congestion control or even scheduling decisions at the sender and bottleneck

links. Similarly, exposing congestion feedback from the network to an application can

help it better adapt to variations in the network conditions. For example, typically,

video conferencing applications try to infer the network conditions indirectly to adjust

the video bitrate. With explicit feedback from the network, they can better adjust

their bitrates to avoid video stalls while maintaining high utilization. We believe that

network environments with a single authority of control offer enticing opportunities

for exploring such solutions.

SLO aware scheduling for datacenters: Applications running in datacenters

often express communication requirements in the form of Service Level Objectives

(SLOs). Achieving these SLOs is one of the primary goals of the network operator.

Whether an application’s SLO can be met or not depends on a variety of factors such

as the link capacities, scheduling at the switches, traffic patterns in the network, the

SLO itself, etc. It is possible to achieve better performance for applications by taking

into account these factors.

We are currently working on such a system [148]. The key idea is to dynamically

adapt scheduling policy at the switches based on the observed traffic patterns and

SLO of the applications running in the network. In our initial evaluation, we find that

such a system with dynamic weighted fair-queueing among traffic classes can provide

performance gains over the status quo scheduling policies. Some of the questions

we are thinking about are: What are the right statistics to characterize the traffic

pattern: is it traffic load, flow size distribution, flow inter-arrival pattern, or some

combination of these? How fast can such a system adapt to the changes in the traffic

pattern? In a datacenter, what is the rate at which traffic patterns change, is the

timescale seconds or hours?

Edge computing in cellular networks: Cellular operators are increasingly deploy-

ing edge datacenters near cellular base stations to host applications such as online
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gaming. Further, to increase computation efficiency and programmability, cellular

operators are also trying to move various base station operations such as scheduling

decisions to the edge datacenters. Control over both the application servers and the

base station functionality implies that we can redesign both: (1) Scheduling at the

base station to take into account the needs of the application; (2) Applications to take

into account the available bandwidth. Such a design can potentially enable guaran-

teed performance for mission critical applications such as online machine learning

inference for self-driving cars.
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Appendix A

ABC: Stability Analysis

This appendix establishes the stability bounds for ABC’s control algorithm (Theo-

rem 1).

Model: Consider a single ABC link, traversed by 𝑁 ABC flows. Let 𝜇(𝑡) be the

link capacity at time 𝑡. As 𝜇(𝑡) can be time-varying, we define stability as follows.

Suppose that at some time 𝑡0, 𝜇(𝑡) stops changing, i.e., for 𝑡 > 𝑡0 𝜇(𝑡) = 𝜇 for some

constant 𝜇. We aim to derive conditions on ABC’s parameters which guarantee that

the aggregate rate of the senders and the queue size at the routers will converge to

certain fixed-point values (to be determined) as 𝑡→∞.

Let 𝜏 be the common round-trip propagation delay on the path for all users. For

additive increase (§2.3.1.3), assume that each sender increases its congestion window

by 1 every 𝑙 seconds. Let 𝑓(𝑡) be the fraction of packets marked accelerate, and, 𝑐𝑟(𝑡)

be the dequeue rate at the ABC router at time 𝑡. Let 𝜏𝑟 be time it takes accel-brake

marks leaving the ABC router to reach the sender. Assuming that there are no queues

other than at the ABC router, 𝜏𝑟 will be the sum of the propagation delay between

ABC router and the receiver and the propagation delay between receiver and the

senders. The aggregate incoming rate of ACKs across all the senders at time 𝑡, 𝑅(𝑡),

will be equal to the dequeue rate at the router at time 𝑡− 𝜏𝑟:

𝑅(𝑡) = 𝑐𝑟(𝑡− 𝜏𝑟). (A.1)
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In response to an accelerate, a sender will send 2 packets, and, for a brake, a sender

won’t send anything. In addition to responding to accel-brakes, each sender will also

send an additional packet every 𝑙 seconds (because of AI). Therefore, the aggregate

sending rate for all senders at time 𝑡, 𝑆(𝑡), will be

𝑆(𝑡) = 𝑅(𝑡) · 2 · 𝑓(𝑡− 𝜏𝑟) +
𝑁

𝑙

= 2𝑐𝑟(𝑡− 𝜏𝑟)𝑓(𝑡− 𝜏𝑟) +
𝑁

𝑙
. (A.2)

Substituting 𝑓(𝑡− 𝜏𝑟) from Equation (2.2), we get

𝑆(𝑡) = 𝑡𝑟(𝑡− 𝜏𝑟) +
𝑁

𝑙
. (A.3)

Let 𝜏𝑓 be the propagation delay between a sender and the ABC router, and 𝑒𝑞(𝑡) be

the enqueue rate at the router at time 𝑡. Then 𝑒𝑞(𝑡) is given by

𝑒𝑞(𝑡) = 𝑆(𝑡− 𝜏𝑓 )

= 𝑡𝑟(𝑡− (𝜏𝑟 + 𝜏𝑓 )) +
𝑁

𝑙

= 𝑡𝑟(𝑡− 𝜏) +
𝑁

𝑙
. (A.4)

Here, 𝜏 = 𝜏𝑟 + 𝜏𝑓 is the round-trip propagation delay.

Let 𝑞(𝑡) be the queue size, and, 𝑥(𝑡) be the queuing delay at time 𝑡:

𝑥(𝑡) =
𝑞(𝑡)

𝜇
.

Ignoring the boundary conditions for simplicity (𝑞(𝑡) must be ≥ 0), the queue length
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has the following dynamics:

𝑞(𝑡) = 𝑒𝑞(𝑡)− 𝜇

= 𝑡𝑟(𝑡− 𝜏) +
𝑁

𝑙
− 𝜇

=

(︂
(𝜂 − 1) · 𝜇+

𝑁

𝑙

)︂
− 𝜇

𝛿
(𝑥(𝑡− 𝜏)− 𝑑𝑡)

+,

where in the last step we have used Equation (2.1). Therefore the dynamics of 𝑥(𝑡)

can be described by:

𝑥̇(𝑡) =

(︂
(𝜂 − 1) +

𝑁

𝜇 · 𝑙

)︂
− 1

𝛿
(𝑥(𝑡− 𝜏)− 𝑑𝑡)

+

= 𝐴− 1

𝛿
(𝑥(𝑡− 𝜏)− 𝑑𝑡)

+, (A.5)

where 𝐴 =
(︁
(𝜂 − 1) + 𝑁

𝜇·𝑙

)︁
, and, A is a constant given a fixed number of flows 𝑁 .

The delay-differential equation in Equation (A.5) captures the behavior of the entire

system. We use it to analyze the behavior of the queuing delay, 𝑥(𝑡), which in

turn informs the dynamics of the target rate, 𝑡𝑟(𝑡), and enqueue rate, 𝑒𝑞(𝑡), using

Equations (2.1) and (A.4) respectively.

Stability: For stability, we consider two possible scenarios 1) 𝐴 < 0, and 2) 𝐴 ≥ 0.

We argue the stability in each case.

Case 1: 𝐴 < 0. In this case, the stability analysis is straightforward. The fixed

point for queuing delay, 𝑥*, is 0. From Equation (A.5), we get

𝑥̇(𝑡) = 𝐴− 1

𝛿
(𝑥(𝑡− 𝜏)− 𝑑𝑡)

+ ≤ 𝐴 < 0. (A.6)

The above equation implies that the queue delay will decrease at least as fast as 𝐴.

Thus, the queue will go empty in a bounded amount of time. Once the queue is

empty, it will remain empty forever, and the enqueue rate will converge to a fixed
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value. Using Equation (A.4), the enqueue rate can will converge to

𝑒𝑞(𝑡) = 𝑡𝑟(𝑡− 𝜏) +
𝑁

𝑙

= 𝜂𝜇+
𝑁

𝑙
− 𝜇

𝛿
(𝑥(𝑡− 𝜏)− 𝑑𝑡)

+

= 𝜂𝜇+
𝑁

𝑙

= (1 + 𝐴)𝜇. (A.7)

Note that 𝜂𝜇 < (1 + 𝐴)𝜇 < 𝜇. Since both the enqueue rate and the queuing delay

converge to fixed values, the system is stable for any value of 𝛿.

Case 2: 𝐴 > 0: The fixed point for the queuing delay in this case is 𝑥* = 𝐴 · 𝛿 + 𝑑𝑡.

Let ∼
𝑥(𝑡) = 𝑥(𝑡) − 𝑥* be the deviation of the queuing delay from its fixed point.

Substituting in Equation (A.5), we get

∼̇
𝑥(𝑡) = 𝐴− 1

𝛿
(
∼
𝑥(𝑡− 𝜏) + 𝐴 · 𝛿)+

= −𝑚𝑎𝑥(−𝐴, 1
𝛿

∼
𝑥(𝑡− 𝜏))

= −𝑔(∼𝑥(𝑡− 𝜏)), (A.8)

where 𝑔(𝑢) = max(−𝐴, 1
𝛿
𝑢) and 𝐴 > 0.

In [145] (Corollary 3.1), Yorke established that delay-differential equations of this

type are globally asymptotically stable (i.e., ∼
𝑥(𝑡) → 0 as 𝑡 → ∞ irrespective of the

initial condition), if the following conditions are met:

1. H1: g is continuous.

2. H2: There exists some 𝛼, s.t. 𝛼 · 𝑢2 > 𝑢𝑔(𝑢) > 0 for all 𝑢 ̸= 0.

3. H3: 𝛼 · 𝜏 < 3
2
.

The function 𝑔(·) trivially satisfies H1. H2 holds for any 𝛼 ∈ (1
𝛿
,∞). Therefore,

there exists an 𝛼 ∈ (1
𝛿
,∞) that satisfies both H2 and H3 if

1

𝛿
· 𝜏 <

3

2
=⇒ 𝛿 >

2

3
· 𝜏. (A.9)

178



This proves that ABC’s control rule is asymptotically stable if Equation (A.9) holds.

Having established that 𝑥(𝑡) converges to 𝑥* = 𝐴 · 𝛿 + 𝑑𝑡, we can again use Equa-

tion (A.4) to derive the fixed point for the enqueue rate:

𝑒𝑞(𝑡) = 𝜂𝜇+
𝑁

𝑙
− 𝜇

𝛿
(𝑥(𝑡− 𝜏)− 𝑑𝑡)

+ → 𝜇, (A.10)

as 𝑡→∞.

Note while, we proved stability assuming that the feedback delay 𝜏 is a constant

and the same value for all the senders, the proof works even if the senders have

different time-varying feedback delays (see Corollary 3.2 in [145]). The modified

stability criterion in this case is 𝛿 > 2
3
· 𝜏 *, where 𝜏 * is the maximum feedback delay

across all senders.
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Appendix B

ABC: Miscellaneous Results

B.1 BBR Overestimates the Sending Rate

Fig. B-1 shows the throughput and queuing delay of BBR on a Verizon cellular trace.

BBR periodically increases its rate in short pulses, and frequently overshoots the link

capacity with variable-bandwidth links, causing excessive queuing.

B.2 Wi-Fi Evaluation

In this experiment we use the setup from Fig. 2-9a. To emulate movement of the

receiver, we model changes in MCS index as brownian motion, with values changing

every 2 seconds. Fig. B-2 shows throughput and 95𝑡ℎ percentile per packet delay for

a number of schemes. Again, ABC outperforms all other schemes achieving better

throughput and latency trade off.

B.3 Low Delays and High Throughput

Fig. B-3 shows the mean per packet delay achieved by various schemes in the ex-

periment from Fig. 2-8. We observe the trend in mean delay is similar to that of

95𝑡ℎ percentile delay ( Fig. 2-8b). ABC achieves delays comparable to Cubic+Codel,

Cubic+PIE and Copa. BBR, PCC Vivace-latency and Cubic incur 70-240% higher
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Figure B-1: Comparison with BBR — BBR overshoots the link capacity, causing ex-
cessive queuing. Same setup as Fig. 2-1.
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Figure B-2: Throughput and 95𝑡ℎ percentile delay for a single user in WiFi —
We model changes in MCS index as bownian motion, with values changing every 2 seconds.
We limit the MCS index values to be between 3 and 7. ABC outperforms all other schemes.

mean delay than ABC.

B.4 ABC vs Explicit Control Schemes

In this section we compare ABC’s performance with explicit congestion control schemes.

We consider XCP, VCP, RCP and our modified implementation of XCP (XCP𝑤). For

XCP and XCP𝑤, we used constant values of 𝛼 = 0.55 and 𝛽 = 0.4, which the authors

note are the highest permissible stable values that achieve the fastest possible link

rate convergence. For RCP and VCP, we used the author-specified parameter values

of 𝛼 = 0.5 and 𝛽 = 0.25, and 𝛼 = 1, 𝛽 = 0.875 and 𝜅 = 0.25, respectively. Fig. B-4
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Figure B-3: Utilization and mean per-packet delay across 8 different cellular
network traces — On average, ABC achieves similar delays and 50% higher utilization
than Copa and Cubic+Codel. BBR, PCC, and Cubic achieve slightly higher throughput
than ABC, but incur 70-240% higher mean per-packet delays.

shows utilizations and mean per packet delays achieved by each of these schemes over

eight different cellular link traces. As shown, ABC is able to achieve similar through-

put as the best performing explicit flow control scheme, XCP𝑤, without using multibit

per-packet feedback. We note that XCP𝑤’s 95𝑡ℎ percentile per-packet delays are 40%

higher than ABC’s. ABC is also able to outperform RCP and VCP. Specifically, ABC

achieves 20% higher utilization than RCP. This improvement stems from the fact that

RCP is a rate based protocol (not a window based protocol)—by signaling rates, RCP

is slower to react to link rate fluctuations (Figure B-5 illustrates this behavior). ABC

also achieves 20% higher throughput than VCP, while incurring slightly higher de-

lays. VCP also signals multiplicative-increase/multiplicative-decrease to the sender.

But unlike ABC, the multiplicative increase/decrease constants are fixed. This coarse

grained feedback limits VCP’s performance on time varying links.

Fig. B-5 shows performance of ABC, RCP and XCP𝑤 on a simple time varying link.

The capacity alternated between 12 Mbit/sec and 24 Mbit/sec every 500 milliseconds.

ABC and XCP𝑤 adapt quickly and accurately to the variations in bottleneck rate,

achieving close to 100% utilization. RCP is a rate base protocol and is inherently

183



Ut
ili

za
tio

n

0

0.25

0.5

0.75

1

ABC XCP
XCP_W VCP RCP

Verizon 1 Verizon 2 TMobile 1
 ATT 1 Verizon 3 Verizon 4
TMobile 2 ATT 2 AVERAGE

(a) Utilization

95
%

ile
 D

el
ay

 (m
s)

200

400

600

800

1000

ABC XCP
XCP_W VCP RCP

Verizon 1 Verizon 2 TMobile 1
 ATT 1 Verizon 3 Verizon 4
TMobile 2 ATT 2 AVERAGE

(b) Delay
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(c) XCP𝑤

Figure B-5: Time series for explicit schemes — We vary the link capacity every 500ms
between two rates 12 Mbit/sec and 24 Mbit/sec.The dashed blue in the top graph represents
bottleneck link capacity. ABC and XCP𝑤 adapt quickly and accurately to the variations
in bottleneck rate, achieving close to 100% utilization. RCP is a rate base protocol and is
inherently slower in reacting to congestion. When the link capacity drops, RCP takes time
to drain queues and over reduces its rates, leading to under-utilization.

slower in reacting to congestion. When the link capacity drops, RCP takes time to

drain queues and over reduces its rates, leading to under-utilization.
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Appendix C

BFC: Impact of Pause Threshold

A consequence of the simplicity of BFC’s backpressure mechanism is that a flow can

temporarily run out of packets at a bottleneck switch while the flow still has packets

to send. The pause threshold (𝑇ℎ) governs the frequency of such events. Using a

simple model, we quantify the impact of 𝑇ℎ.

Consider a long flow 𝑓 bottlenecked at a switch 𝑆. To isolate the impact of the

delay in resuming, we assume that 𝑓 is not sharing a queue with other flows at 𝑆 or

the upstream switch. Let 𝜇𝑓 be the dequeue rate of 𝑓 at 𝑆, i.e., when 𝑓 has packets in

𝑆, the packets are drained at a steady rate of 𝜇𝑓 . Similarly, let 𝜇𝑓 · 𝑥 be the enqueue

rate of 𝑓 at the switch, i.e., if 𝑓 is not paused at the upstream, 𝑆 receives packets

from 𝑓 at a steady rate of 𝜇𝑓 · 𝑥. Here, 𝑥 denotes the ratio of enqueue to dequeue

rate at 𝑆. Since 𝑓 is bottlenecked at 𝑆, 𝑥 > 1.

We now derive the fraction of time in steady state that 𝑓 will not have packets in

𝑆. We show that this fraction depends only on 𝑥 and 𝑇ℎ, and is thereby referred as

𝐸𝑓 (𝑥, 𝑇ℎ).

The queue occupancy for 𝑓 will be cyclic with three phases.

• Phase 1: 𝑆 is receiving packets from 𝑓 and the queue occupancy in increasing.

• Phase 2: 𝑆 is not receiving packets from 𝑓 and the queue is draining.

• Phase 3: 𝑆 is not receiving packets from 𝑓 while the queue is empty.
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The time period for phase 1 (𝑡𝑝1) can be calculated as follows. The queue occu-

pancy at start of the phase is 0 and 𝑆 is receiving packets from 𝑓 . 𝑓 gets paused

when the queue occupancy exceeds 𝑇ℎ. The queue builds at the rate 𝜇𝑓 · 𝑥 − 𝜇𝑓

(enqueue rate - dequeue rate). The pause is triggered after 𝑇ℎ
𝜇𝑓 ·(𝑥−1)

time from the

start of the phase. Since the pause takes an 𝐻𝑅𝑇𝑇 to take effect, the queue grows

for an additional 𝐻𝑅𝑇𝑇 . 𝑡𝑝1 is therefore given by:

𝑡𝑝1 =
𝑇ℎ

𝜇𝑓 · (𝑥− 1)
+𝐻𝑅𝑇𝑇. (C.1)

The queue occupancy at the end of phase 1 is 𝑇ℎ+𝐻𝑅𝑇𝑇 ·𝜇𝑓 · (𝑥− 1). The time

period for phase 2 (𝑡𝑝2) corresponds to the time to drain the queue. 𝑡𝑝2 is given by:

𝑡𝑝2 =
𝑇ℎ+𝐻𝑅𝑇𝑇 · 𝜇𝑓 · (𝑥− 1)

𝜇𝑓

. (C.2)

At the end of phase 2, there are no packets from 𝑓 in 𝑆. As a result, 𝑆 resumes 𝑓

at the upstream. Since the resume takes an 𝐻𝑅𝑇𝑇 to take effect, the queue is empty

for an 𝐻𝑅𝑇𝑇 . Time period for phase 3 (𝑡𝑝3) is given by:

𝑡𝑝3 = 𝐻𝑅𝑇𝑇 (C.3)

Combining the equations, 𝐸𝑓 (𝑥, 𝑇ℎ) is given by:

𝐸𝑓 (𝑥, 𝑇ℎ) =
𝑡𝑝3

𝑡𝑝1 + 𝑡𝑝2 + 𝑡𝑝3

=
𝑥− 1

𝑇ℎ
𝐻𝑅𝑇𝑇 ·𝜇𝑓

· 𝑥+ (𝑥2 − 1)
. (C.4)

Notice that for a given 𝑥, 𝐸𝑓 (𝑥, 𝑇ℎ) reduces as we increase 𝑇ℎ. Increasing 𝑇ℎ,

increases the time period for phase 1 and phase 2, and the fraction of time 𝑓 runs out

of packets reduces as a result.

We now quantify the impact of pause threshold on the worst case (maximum) value

of 𝐸𝑓 (𝑥, 𝑇ℎ). Given a 𝑇ℎ, 𝐸𝑓 (𝑥, 𝑇ℎ) varies with 𝑥. When 𝑥 → 1, (𝐸𝑓 (𝑥, 𝑇ℎ) → 0,

and when 𝑥→∞, (𝐸𝑓 (𝑥, 𝑇ℎ)→ 0. The maxima occurs somewhere in between. More
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Figure C-1: Impact of pause threshold (𝑇ℎ) on the metric of worst case inefficiency. In-
creasing 𝑇ℎ reduces the maximum value for the fraction of time 𝑓 can run out of packets at
the bottleneck.

concretely, for a given value of 𝑇ℎ, the maxima occurs at 𝑥 =
√︁

𝑇ℎ
𝐻𝑅𝑇𝑇 ·𝜇𝑓

+ 1. The

maximum value (max𝑥>1 (𝐸𝑓 (𝑥, 𝑇ℎ))) is given by:

max
𝑥>1

(𝐸𝑓 (𝑥, 𝑇ℎ)) =
1(︁√︁

𝑇ℎ
𝐻𝑅𝑇𝑇 ·𝜇𝑓

+ 1
)︁2

+ 1
. (C.5)

Fig. C-1 shows how max𝑥>1 (𝐸𝑓 (𝑥, 𝑇ℎ)) changes as we increase the pause thresh-

old. As expected, increasing the pause threshold reduces max𝑥>1 (𝐸𝑓 (𝑥, 𝑇ℎ)). How-

ever, increasing the pause threshold has diminishing returns. Additionally, increasing

𝑇ℎ increases the buffering for 𝑓 (linearly).

In BFC, we set 𝑇ℎ to 1-Hop BDP at the queue drain rate, i.e., 𝑇ℎ = 𝐻𝑅𝑇𝑇 · 𝜇𝑓 .

Thereofore, the maximum value of 𝐸𝑓 (𝑥, 𝑇ℎ) is 0.2 (at 𝑥 = 2). This implies, under

our assumptions, that a flow runs out of packets at most 20% of the time due to the

delay in resuming a flow.

Note that 20% is the maximum value for 𝐸𝑓 (𝑥, 𝑇ℎ). When 𝑥 ̸= 2, 𝐸𝑓 (𝑥, 𝑇ℎ) is

lower. For example, when 𝑥 = 1.1 (i.e., the enqueue rate is 10% higher than the

dequeue rate), 𝐸𝑓 (𝑥, 𝑇ℎ) is only 7.6%.

The above analysis suggests that the worst-case under-utilization caused by delay

in resuming is 20%. Note that in practice, when an egress port is congested, there

are typically multiple flows concurrently active at that egress. In such scenarios, the

under-utilization is much less than this worst-case bound, because it is unlikely that
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all flows run out of packets at the same time. As our evaluation shows, with BFC,

flows achieve close to ideal throughput in realistic traffic scenarios (§3.6).

188



Appendix D

BFC: Deadlock Prevention

We formally prove that BFC is deadlock-free in absence of cyclic buffer dependency.

Inspired by Tagger [71], we define a backpressure graph (𝐺(𝑉,𝐸)) as follows:

1. Node in the graph (𝑉 ): A node is an egress port in a switch and can thus be

represented by the pair <switchID, egressPort>.

2. Edge in the graph (𝐸): There is a directed edge from 𝐵 → 𝐴, if a packet

can go from 𝐴 to 𝐵 in a single hop (i.e., without traversing any other nodes)

and trigger backpressure from 𝐵 → 𝐴. Edges represent how backpressure can

propagate in the topology.

We define deadlock as a situation when a node (egress port) contains a queue

that has been paused indefinitely. Cyclic buffer dependency is formally defined as the

situation when 𝐺 contains a cycle.

Theorem 2. BFC is deadlock-free if 𝐺(𝑉,𝐸) does not contain any cycles.

Proof: We prove the theorem by using contradiction.

Consider a node 𝐴 that is deadlocked. 𝐴 must contain a queue (𝐴𝑞) that has

been indefinitely paused as a result of backpressure from the downstream switch. If

all the packets sent by 𝐴𝑞 were drained from the downstream switch, then 𝐴𝑞 will get

unpaused (§3.3.3.2). There must be at least one node (𝐵) in the downstream switch

that triggered backpressure to 𝐴𝑞 but hasn’t been able to drain packets from 𝐴𝑞, i.e.,
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𝐵 is deadlocked. This implies, in 𝐺, there must be an edge from 𝐵 → 𝐴. Applying

induction, for 𝐵 there must exist another node 𝐶 (at the downstream switch of 𝐵)

that is also deadlocked (again there must be an edge from 𝐶 → 𝐵). Therefore, there

will be an infinite chain of nodes which are paused indefinitely, the nodes of the chain

must form a path in 𝐺. Since 𝐺 doesn’t have any cycles, the paths in 𝐺 can only be

of finite length, and therefore, the chain cannot be infinitely long. A contradiction,

hence proved.

Preventing deadlocks: To prevent deadlocks, given a topology, we calculate the

backpressure graph, and pre-compute the edges that should be removed so that the

backpressure graph doesn’t contain any cycles. Removing these edges thus guarantees

that there will be no deadlocks even under link failures or routing errors. To identify

the set of edges that should be removed we can leverage existing work [71].

To remove a backpressure edge 𝐵 → 𝐴, we use the simple strategy of skipping

the backpressure operation for packets coming from 𝐴 going to 𝐵 at the switch

corresponding to 𝐵.1 Note that, a switch can identify such packets locally using the

ingress and egress port of the packet. This information can be stored as a match-

action-table (indexed by the ingress and egress port) to check whether we should

execute the backpressure operations for the packet.

For Clos topologies, this just includes backpressure edges corresponding to packets

that are coming from a higher layer and going back to a higher layer (this can happen

due to rerouting in case of link failures). Note that, usually the fraction of such

packets is small (< 0.002% [71]), so forgoing backpressure for a small fraction of such

packets should hurt performance marginally (if at all).

1To remove backpressure edges in PFC, Tagger uses a more complex approach that invloves
creating new cycle free backpressure edges corresponding to the backpressure edges that should be
removed. To ensure losslessness, Tagger generates backpressure using these new cycle free edges
instead of the original backpressure edge. In our proposed solution, we forgo such requirement for
simplicity.
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Appendix E

BFC: Incremental Deployment

We repeated the experiment in Fig. 3-11a in the scenario where i) BFC is deployed

in part of the network; ii) The switch doesn’t have enough capacity to handle all the

recirculations. Fig. E-1 reports the tail FCT and buffer occupancy for these settings.

Partial deployment in the network: We first evaluate the situation when BFC

is only deployed at the switches and the sender NICs don’t respond to backpressure

signal (shown as BFC - NIC). To prevent sender NIC traffic from filling up the buffers

at the ToR, we assume a simple end-to-end congestion control strategy where the

sender NIC caps the in-flight packets for a flow to 1 end-to-end bandwidth delay

product (BDP). As expected, BFC - NIC experiences increased buffering at the ToR

(Fig. E-1b). However, the tail buffer occupancy is still below the buffer size and there

are no drops. Since all the switches are BFC enabled and following dynamic queue

assignment, the frequency of collisions and hence the FCTs are similar to the orignal

BFC.

Sampling packets to reduce recirculations: A BFC switch with an RMT archi-

tecture [30] recirculates packets to execute the dequeue operations at the ingress port.

Depending on the packet size distribution of the workload, a switch might not have

enough packet processing (pps) capacity or recirculation bandwidth to process these

recirculated packets. In such scenarios, we can reduce recirculations by sampling

packets. Sampling works as follows.
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Figure E-1: FCT slowdown (99𝑡ℎ percentile) and buffer occupancy distribution for two
BFC variants. When NICs don’t respond to backpressure (BFC - NIC), BFC experiences
moderate increased buffering. Using sampling to reduce recirculation (BFC + sampling)
has marginal impact on performance.

On a packet arrival (enqueue), sample to decide whether a packet should be re-

circulated or not. Only increment the pause counter and size in the flow table for

packets that should be recirculated. The dequeue operations remain as is and are

only executed on the recirculated packets. The size now counts the packets sampled

for recirculation and residing in the switch. While sampling reduces recirculations,

it can cause packet reordering. Recall, BFC uses size to decide when to reassign a

queue. With sampling, size can be zero even when a flow has packets in the switch.

This means a flow’s queue assignment can change when it already has packets in

the switch, causing reordering. However, sticky queue assignment should reduce the

frequency of these events (§3.3.3.2).

We now evaluate the impact of sampling on the performance of BFC (shown

as BFC + Sampling). In the experiment, the sampling frequency is set to 50%,

i.e., only 50% of the packets are recirculated. BFC + Sampling achieves nearly

identical tail latency FCT slowdowns and switch buffer occupancy as the orginal

BFC. With sampling, fewer than 0.04% of the packets were retransmitted due to

packet reordering.
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Appendix F

BFC: Miscellaneous Results

F.1 Comparison with Homa

Homa is a receiver driven data center transport that uses network priorities to achieve

an approximation of shortest-remaining-flow-first (SRF) scheduling. Homa divides

a flow’s data into unscheduled (first BDP of traffic) and scheduled categories. The

sender assigns a fixed priority level to a flow’s unscheduled bytes based on its size and

the flow size distribution of the workload. The unscheduled bytes are transmitted at

line rate. The receiver assigns priority levels to the scheduled bytes and issues grants

(credits) for them. Homa assumes per-packet spraying to ensure load balancing across

core links, and sufficient core capacity to guarantee minimal congestion in the core.

While we focus on fair queuing in this dissertation, BFC’s design is applicable to

other scheduling policies. In this section, we evaluate a variant of BFC, BFC-SRF,

that aims to approximate SRF. Flows insert their remaining size into a header field

in each packet transmitted, and the switch schedules queues in order of remaining

size of the packet at the head of the queue. Similarly to Homa, NICs also follow SRF

scheduling. We ran Homa using its OMNet++simulator [3]. The Homa simulator as-

sumes unbounded buffers at the switch. For BFC, we use a 12MB shared buffer. We

use 32 queues for both Homa and BFC. For Homa, the 32 priority levels are divided

between unscheduled and scheduled priorities based on the ratio of unscheduled and

scheduled traffic; the overcommitment level is equal to the number of scheduled pri-
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Figure F-1: FCT slowdown on an oversubscribed clos topology. With packet spraying,
Homa encounters minimal congestion in the core and outperforms other schemes.

orities [107]. We use our default topology with 128 servers and 2:1 oversubscription

at the ToR uplinks (§3.6.2.1).

Two differences between Homa and BFC-SRF are worth highlighting. First, BFC-

SRF uses flow-level ECMP rather than packet spraying for enforcing per-flow back-

pressure. Second, BFC-SRF uses dynamic queue assignment and performs SRF

scheduling directly on the switch, as opposed to Homa’s priority assignment from

the end-points. To understand the impact of these aspects separately, we also eval-

uate a variant of Homa with ECMP, and report results for IdealSRF+ECMP, an

idealized SRF scheme with unlimited queues and unbounded buffers at each switch

with ECMP load balancing.

We repeat the experiments in Fig. 3-10 and Fig. 3-11b for the Google and Facebook

workloads at 60% load (log-normal flow arrivals without incast). Fig. F-1 reports the

FCTs. Homa performs the best out of all schemes, achieving up to 2× better FCTs

for long flows. With packet spraying, flows encounter minimal congestion in the core,

and compete for bandwidth primarily at the last-hop. In contrast, ECMP is prone
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Scheme Link 95% Delay (𝜇s) 99% Delay (𝜇s)
Homa Agg-ToR 2.4 6.7
Homa ToR-Agg 2.1 6.0

Homa ECMP Agg-ToR 40.8 87.2
Homa ECMP ToR-Agg 43.7 93.3

Table F.1: Per-packet queuing delay for scheduled traffic in the core.

to path collisions [13] and flows encounter congestion in the core. Notice that a

last-hop link carries half the load of a core link (30% vs 60%) in this experiment on

average (§3.6.2.1). Since packet spraying essentially eliminates congestion on the core

links, with Homa flows experience congestion only on the last-hop links. But with

the ECMP-based schemes, flows contend at the core links (with 2× the load). As a

result, Homa even outperforms IdealSRF+ECMP. This result illustrates the benefits

of packet spraying; nevertheless, packet spraying is rarely deployed in practice because

it can cause packet reordering, increasing CPU overhead at endpoints1, and it can

hurt performance in asymmetric topologies (e.g., caused by rolling upgrades or link

failures) [136].

Among the ECMP approaches, BFC-SRF is close to IdealSRF+ECMP and Homa

is worse. In Homa, receivers have no visibility into congestion in the core and don’t

react to queue buildup in the core (though each flow limits its total in-flight data

to 1 BDP). Also, Homa’s receiver-set priorities are only based on contending flows

at the last hop, and can violate SRF scheduling when congestion occurs in the core.

Table F.1 shows that with ECMP, the scheduled traffic encounters significantly higher

queuing in the core.

Benefits of BFC’s dynamic queue assignment over Homa. BFC makes queue

assignment and scheduling decisions at the switch, based on an instantaneous view of

competing flows. In principle, this should allow BFC to more accurately approximate

SRF compared to Homa. To understand if this is actually the case, we conduct an

experiment with the same Google and Facebook workloads but with all flows destined

to a single receiver, and the senders located within the same rack as the receiver. Since

there is no traffic in the core, load balancing (ECMP vs. packet spraying) does not

1Packet reordering makes hardware offloads such as Large Receiver Offload (LRO) ineffective [52].
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Figure F-2: BFC’s dynamic queueue assignment achieves a better approximation of the
SRF scheduling policy. BFC-SRF achieves close to optimal FCTs.

matter in this case. Flow arrivals are log-normal and the load on the receiver’s link

is 60%. Fig. F-2 shows the results. BFC-SRF achieves better FCTs primarily at the

tail.

We give two examples of priority inversions in Homa which BFC avoids. First, the

Homa sender assigns priorities to unscheduled traffic based on flow size distributions

rather than using the current set of flows competing at the switch due to lack of

visibility for the first RTT. As a result with Homa, short flows (< 1 BDP) with

similar flow sizes can end up sharing unscheduled priority queues unnecessarily, even

when there are sufficient queues at the switch to assign each flow a unique queue.

Second, in Homa the unscheduled bytes of a flow are always scheduled ahead of the

scheduled bytes of competing flows. This implies that the unscheduled bytes of a new

long flow will be incorrectly scheduled ahead of the scheduled bytes of a shorter flow.

This also violates SRF and increases FCT for flows larger than a BDP.

Impact of collisions on BFC-SRF. Recall that with large incast, BFC can ex-

perience collisions. For BFC-SRF, such collisions can cause priority inversions that
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Figure F-3: FCT slowdown with 100-1 incast. Collisions in BFC-SRF can cause priority
inversions hurting FCTs

hurt FCTs. To illustrate this, we repeat the experiments in Fig. 3-9 and Fig. 3-11a

(55% load plus 5% 100-1 incast traffic). Fig. F-3 shows that the average FCT for

short flows is higher with BFC-SRF. This is because of high completion times for a

(small) fraction of short flows sharing queues with longer flows. To understand why,

consider the following situation. An incoming short flow arrives when there are no

free queues, and ends up sharing the queue with a long flow. Let’s say the remaining

size of the long flow is greater than the incast flow size (200 KB in this experiment).

In case there are competing incast flows present in other queues, the incast flows will

be scheduled ahead of this long flow. Therefore, the short flow will have to wait for

all the traffic from the incast flows to finish to make any progress. This can severely

degrade its completion time. The core of this problem is that when a port runs out

of queues, the BFC switch assigns the new flow to a queue randomly. This is fine for

fair queuing but with SRF, a more sophisticated strategy may improve performance

(e.g., assign the new flow to a queue with similar remaining flow sizes).

As explained earlier, Homa is not immune to priority inversions. Fig. F-3 shows
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that with Homa, flows with size greater than 1 BDP but less than 2 BDP have

high FCTs at the tail. This is because unscheduled bytes of the the incast flows are

incorrectly scheduled ahead of the scheduled bytes of such flows.

These experiments suggest an interesting possibility to try to get the best of both

schemes: we could combine BFC’s dynamic queue assignment for unscheduled traffic

with Homa’s grant mechanism for controlling scheduled traffic. We leave exploration

of such a design to future work.

F.2 Parameter Sensitivity for Comparison Schemes

In this section, we perform sensitivity analysis to understand the impact of parameters

on performance of HPCC, DCTCP and ExpressPass. We repeat the experiment in

Fig. 3-11b (Facebook distribution with 60% load). Fig. F-4 reports the average, 95𝑡ℎ

and 99𝑡ℎ percentile flow completion times as we vary the parameters. In general,

we observe that parameters present a trade-off between the latency of short flows

(queuing) and the throughput of long flows (link utilization).

HPCC: We vary the target utilization (𝜂) from 90 to 98%. As expected, increasing 𝜂

worsens the FCT of short flows but improves the FCT for long flows (marginally for

both), see Fig. F-4a.

DCTCP: We vary the ECN marking threshold governed by parameters 𝐾𝑚𝑖𝑛 and

𝐾𝑚𝑎𝑥. Increasing the threshold increases the queuing at the switch, which increases

FCT of short flows but improves link utilization (Fig. F-4b).

ExpressPass: Varying the credit buffer size has little impact on performance (Fig. F-

4c). We vary 𝛼, which controls how the receiver credits are generated. Reducing 𝛼

reduces “credit waste”, improving the FCT of long flows. However, it also increases

the FCT of short flows (Fig. F-4d).
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Figure F-4: Parameter sensitivity for comparison schemes — 99𝑡ℎ percentile FCT
slowdown for the Facebook workload, 60% load without incast. Sensitivity to the choice of
parameters in HPCC, DCTCP, and ExpressPass.
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Figure F-5: FCT slowdown for short and long flows as a function of incast degree. The
x axis is not to scale. By isolating incast flows, BFC + IncastLabel reduces collisions and
achieves the best performance.

F.3 Reducing Contention for Queues

To reduce contention for queues under incast, we tried a variant of BFC where the

sender labels incast flows explicitly (similar to the potential optimization in [107]).

BFC + IncastLabel assigns all the incast flows at an egress port to the same queue.

This frees up queues for non-incast traffic, reducing collisions and allowing the sched-

uler to share the link between incast and non-incast traffic more fairly.

Fig. F-5 shows the performance of BFC + IncastLabel in the same setup as Fig. 3-

13. The original BFC is shown as BFC + Flow FQ for per-flow fair queuing. BFC

+ IncastLabel achieves the best performance across all the scenarios. However, the

FCTs for incast flows is higher compared to BFC + Flow FQ (numbers not shown

here). When there are multiple incast flows at an ingress port, the incast flows are

allocated less bandwidth in aggregate compared to per-flow fair queuing.

While BFC + IncastLabel achieves great performance, it assumes the application

is able to label incast flows, and so we use a more conservative design for the main

body of our evaluation.
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F.4 Incast Flow Performance

Fig. F-6 shows the slowdown for incast flows for the Google workload used in Fig. 3-9.

The benefits of BFC for non-incast traffic do not come at the expense of worse incast

performance. Indeed, BFC improves the performance of incast flows relative to end-

to-end congestion control, because it reacts faster when capacity becomes available

at the bottleneck, reducing the percentage of time the bottleneck is unused while the

incast is active.
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Appendix G

Nimbus: Miscellaneous Results

G.1 Nimbus Helps Cross Traffic

In the setup from S4.7.1, we measure the flow completion time (FCT) of cross traffic

flows. Fig. G-1 compares the 95th percentile (p95) FCT for flows of different sizes.

The FCTs are normalized by the corresponding value for NimbusCC at each flow size

(i.e., NimbusCC is always 1).

BBR and PCC-Vivace exhibits much higher FCT at all cross traffic flow sizes

compared to the other protocols, consistent with the unfairness seen in the experiment

in §4.5.

For small flows (≤15 KB), the p95 FCT with NimbusCC and Copa are comparable

to Vegas and lower than Cubic. With NimbusCC, p95 FCT of cross traffic at higher

flow sizes are slightly lower than Cubic because of small delays in switching to TCP-

competitive mode. At all flow sizes, Vegas provides the best cross traffic flow FCTs,

but its own flow rate is dismal; Copa is more aggressive than Vegas but less than

NimbusCC, but at the expense of its own throughput (S4.7.1).
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Figure G-1: Using NimbusCC reduces the p95 FCT of cross-flows relative to BBR at all
flow sizes, and relative to Cubic for short flows. Vegas provides low cross-flow FCT, but its
own rate is low.

G.2 Cross-traffic Congestion Control Protocols

G.2.1 Multiple Elastic Flows using Different Congestion Con-

trol Protocols.

We repeat the experiment in Fig. 4-8 but with cross traffic consisting of an equal

(on average) mix of Cubic, NewReno and BBR flows. Whenever a new cross traffic

flow starts, with an equal probability it chooses one of the three congestion control

protocols. Fig. G-2 shows performance of various schemes. The results are similar

to the experiment in Fig. 4-8: NimbusCC achieves lower delays than Cubic for a

similar throughput profile, while Copa and Vegas lose throughput when cross traffic

is elastic. The reason is that, regardless of the congestion control protocol, the elastic

cross traffic flows react to Nimbus’s pulses, and can therefore be classified correctly.

G.2.2 NimbusCC & Cubic v. BBR

We now evaluate how well a NimbusCC (Cubic + BasicDelay) flow competes with a

BBR flow. In this experiment, the cross traffic is 1 BBR flow and the bottleneck link

bandwidth is 96 Mbit/s. We vary the buffer size from 0.5 BDP to 4 BDP. Fig. G-

3 shows the mean throughput of NimbusCC and Cubic flows while competing with

BBR over a 2-minute experiment. NimbusCC achieves same throughput as Cubic for

all buffer sizes.
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Figure G-2: Performance with WAN cross traffic consisting of an equal mix of Cubic,
NewReno and BBR flows. The deviation profile of NimbusCC is similar to that of Cubic,
however, NimbusCC reduces delays.

Figure G-3: NimbusCC’s performance against BBR is similar to that of Cubic—
Both NimbusCC and Cubic compete against 1 BBR flow on a 96 Mbit/s link. For various
buffer sizes, NimbusCC achieves the same throughput as Cubic.
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Figure G-4: By modifying the pulse frequency, Nimbus correctly classifies PCC-Vivace, a
rate-based elastic protocol, as elastic.

G.2.3 Elastic Flows, No ACK Clocking

Nimbus aims to detect ACK-clocked elastic flows that react quickly to changes in

available bandwidth on RTT timescales. This experiment demonstrates Nimbus’s

ability to also detect slow-reacting elastic cross traffic by tuning the pulse frequency.

We ran a NimbusCC flow against a PCC-Vivace flow on a 96 Mbit/s link with 100ms of

buffering. Fig. G-4 shows the CDF of the elasticity metric, 𝜂, for two different pulse

frequencies, 𝑓𝑝. PCC-Vivace is not ACK-clocked and does not react to Nimbus’s

pulses at 𝑓𝑝 = 5 Hz. As a result 𝜂 is below the threshold most of the time. Reducing

the pulse frequency to 2 Hz creates pulses with a longer duration. PCC-Vivace reacts

to these slower variations in available bandwidth, and is correctly classified as elastic

(𝜂 > 𝜂𝑡ℎ𝑟𝑒𝑠ℎ).

Changing the pulse frequency involves a trade-off. Increasing the pulse duration

will increase queuing delays and congestion. But if slowly-reacting elastic protocols

become widely deployed, competing with them using Nimbus for delay-control oppor-

tunities will require an increase in pulse duration.

G.3 Copa Mode Switching Errors

We explore the dynamics of NimbusCC and Copa’s mode switching in experiments

from the scenarios in S4.7.2.
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(d) NimbusCC: 80 Mbit/s CBR

Figure G-5: When the CBR traffic is low (a), Copa classifies the traffic as non buffer-filling
and is able to achieve low queuing delays. But when the CBR traffic occupies a high fraction
(c), Copa incorrectly classifies the traffic as buffer-filling, resulting in higher queuing delays.
In both the situations (b and d), the elasticity detector correctly classifies the traffic as
inelastic and NimbusCC achieves low queuing delays.

G.3.1 CBR Cross Traffic

Fig. G-5 shows throughput and delay profile for Copa and NimbusCC while competing

against inelastic CBR traffic. We consider two scenarios: (i) CBR occupies a small

fraction of the link (24 Mbits/s, 25%) and (ii) CBR occupies majority of the link (80

Mbit/s, 83%). When the CBR traffic is low (Fig. G-5a and Fig. G-5b), both Copa

and Nimbus identify it as non-buffer-filling and inelastic, respectively, and achieve

low queuing delays.

When the CBR’s share of the link is high (Fig. G-5c), Copa incorrectly classifies

the cross traffic as buffer-filling and stays in competitive mode, leading to high queuing

delays. Copa relies on a pattern of emptying queues to detect whether the cross traffic

is buffer-filling or not. However, when the rate of cross traffic is 𝑧, the fastest possible
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rate at which the queue can drain is 𝜇 − 𝑧, even if Copa reduces its rate to zero. If

the cross traffic occupies 𝑥 fraction of the link (i.e., 𝑧 = 𝑥𝜇), then

max(−𝑑𝑄

𝑑𝑡
) = 𝜇− 𝑧 = (1− 𝑥)𝜇 = (1− 𝑥)

𝐵𝐷𝑃

𝑅𝑇𝑇
. (G.1)

Hence, if the queue size exceeds 5×(1−𝑥)𝐵𝐷𝑃 , Copa won’t be able to drain the queue

in 5 RTTs, and it will mis-classify the cross traffic as buffer-filling. The queue size

can grow large due to a transient burst or if Copa incorrectly switches to competitive

mode. Once Copa is in competitive mode, it will drive the queues higher, and may

get stuck in that mode.

Nimbus doesn’t rely on emptying queues and correctly classifies cross traffic as

inelastic, achieving low delays (Fig. G-5d).

G.3.2 Elastic Cross Traffic

Fig. G-6 shows throughput and delay over time for Copa and NimbusCC while com-

peting against an elastic NewReno flow. We consider two scenarios: (1) both flows

have the same propagation RTT, and (2) the cross traffic’s propagation RTT is 4×

higher than the Copa or NimbusCC flow. When the RTTs are the same (Fig. G-6a

and Fig. G-6b), both Copa and Nimbus correctly classify the cross traffic, achieving

their fair share.

When the cross traffic RTT is higher (Fig. G-6c), NewReno ramps up its rate

slowly, causing Copa to mis-classify the traffic and achieve less than its fair share.

Here, Copa achieves 27 Mbit/s but its fair share is at least 48 Mbit/s (in fact, 77

Mbit/s considering the RTT bias). In contrast, (Fig. G-6d), Nimbus correctly clas-

sifies the cross traffic as elastic, and NimbusCC achieves its RTT-biased share of

throughput.
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(c) Copa: Cross Traffic RTT = 4 × Flow
RTT
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(d) NimbusCC: Cross Traffic RTT = 4 ×
Flow RTT

Figure G-6: Queuing delay and throughput dynamics for elastic cross traffic —
When the elastic cross traffic increases fast enough (a), Copa classifies it as buffer-filling
and is able to achieve its fair share. But when the elastic cross traffic increases slowly
(c), Copa incorrectly classifies the traffic as non-buffer-filling, achieving less than its fair
share. In both the situations (b and d), Nimbus correctly classifies the traffic as elastic and
NimbusCC achieve its fair share.
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G.4 Buffer size, RTT, and AQM

We vary the bottleneck drop-tail buffer size from 0.25 BDP to 4 BDP for three cate-

gories of cross traffic as in the earlier experiments, with propagation delays of 25 ms,

50 ms, and 75 ms. We also measured classification accuracy when the bottleneck link

implements PIE [112] at two target delays (0.25 BDP and 1 BDP) with a propagation

delay of 50 ms. With purely elastic or inelastic traffic, Nimbus has a mean accuracy

(across five runs) of 98% or more in all cases but two, while with mixed traffic, the ac-

curacy is always 85% or more. In all cases (including low accuracy ones), NimbusCC

achieves its fair-share throughput and low delays.

Now we discuss the cases with low classification accuracy. First, with shallow

buffers of size less than the product of the delay threshold 𝑥𝑡 and the bottleneck link

rate (e.g., 0.25 BDP when the round-trip time is 50 ms), Nimbus classifies all traffic

as elastic. Second, with the bottleneck link implementing PIE with small target de-

lay (e.g., corresponding to 0.25 BDP), Nimbus classifies all traffic as elastic. In both

cases, NimbusCC can incur heavy losses in delay-control mode as NimbusCC’s target

queuing delay of 0.25 BDP is comparable to the drop-tail buffer size or target delay

of PIE. These losses interfere with the cross traffic estimator leading to classification

errors (in delay-control mode). However, low accuracy does not impact the perfor-

mance of NimbusCC as it achieves its fair-share throughput and low delays (bounded

by the small buffer size for a drop-tail queue and the delay control threshold of PIE).

Further, classification accuracy decreases when Nimbus’s RTT exceeds its pulse pe-

riod. Since Nimbus’s measurements of rates are over one RTT, any oscillations over

a smaller period cannot be observed.

G.5 Using Different CC Algorithms with NimbusCC

NimbusCC can employ a variety of congestion control algorithms for its delay-controlling

and TCP-competitive modes. We have implemented Cubic, NewReno, and MulTCP [40]

as competitive-mode algorithms, and BasicDelay, Vegas, FAST [140], and COPA [22]
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(a) NewReno + BasicDelay

0

20

40

Th
ro

ug
hp

ut
(M

bp
s) Elastic Inelastic

0 25 50 75 100 125 150 175
Time (s)

0
25
50
75

100

Qu
eu

in
g

De
la

y(
m

s)

(b) Cubic + COPA

Figure G-7: NimbusCC’s versatility— NimbusCC with different combinations of delay-
controlling and TCP-competitive algorithms.

as delay-controlling algorithms. In Fig. G-7, we illustrate two combinations of delay

and competitive mode algorithms sharing a bottleneck link with synthetic elastic and

inelastic cross traffic active at different periods during the experiment. The fair-share

rate over time is shown as a reference. Both NewReno+BasicDelay (Fig. G-7a) and

Cubic+COPA (Fig. G-7b) achieve their fair-share rate while keeping the delays low

in the absence of elastic cross traffic.
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