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Abstract

Collaborative project management involves interacting with various tasks in a shared
planning space where members add, assign, complete, and edit project-related tasks
to have a shared view of the project’s status. This process directly impacts how
individual team members select, prioritize, and organize tasks on which to focus
on a daily basis. However, such coordination and task prioritization can become
increasingly challenging for individuals working on multiple projects with big teams.
Accordingly, tasks could become at risk and eventually not be completed on time,
leading to personal or team losses in many situations. To support task-doers in
completing their tasks, we conducted a mixed-methods study focusing on Microsoft
Planner—a collaborative project management tool—to understand how users manage
their tasks in a team setting, what challenges they encounter, and their preferred
solutions. Based on the findings from a qualitative survey with 151 participants
and our Planner log data analysis, we further developed a task at risk prediction
model using various task characteristics and user actions. Our experimental results
suggest that a task at risk can be classified with high effectiveness (accuracy of 89%).
Our work provides novel insights on how users manage their tasks in team task
management tools, what challenges they face, how they perceive a task at risk, and
how tasks at risk can be modeled. Such an application can significantly improve
the user experience in such tools by providing a personal assistant that helps users
prioritize their tasks and pay attention to critical situations.

Thesis Supervisor: David R. Karger
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Figure 1-1: Microsoft Planner Snapshot. Planner has 4 main entities: plan, bucket,
task and user. Our vision is to bring user’s attention to tasks that are unlikely to be
completed successfully.

Collaboration is an essential component in communities such as organizations.

Previous research has extensively studied how people collaborate over long distances

[48, 58], in virtual environments [5, 24], and in in-person settings [48, 58], in various

fields [48, 35, 59]. In a team, collaboration is defined as working on a common goal

and sharing responsibilities between team members with mutual influence via open

communication, conflict resolution, and innovation support [15, 37, 2, 3].

1.0.1 Project Management

Project management aims to facilitate collaboration in teams [42], however, it still re-

mains challenging due to communication problems, failure to meet project objectives,
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and limited resources, which are critical factors for successful project management

[60]. Therefore, asynchronous computer-mediated collaboration tools are being de-

veloped by many companies and researchers. Such technologies have automated many

work processes and aided in project execution in remote and in-person collaborations.

1.0.2 Challenges of Team Task Management Tools

Although project and task management tools have significantly improved team col-

laboration, there have been many challenges arising from using these tools, including

integration with existing software tools and processes, lack of customization, and lack

of motivation to use the tool. Previous research on task management has spanned

multiple lines of research such as formulating a theoretical framework for task cat-

egorization [19, 36], intelligently classifying tasks such as micro-task detection [63],

estimating task time [61], predicting task difficulty [40, 31, 38], task prioritization

[65, 55], and much more. However, little is known about how task management tools

are utilized in teams day-to-day, what challenges and risks users face when using such

tools in a team project, and what can be done to facilitate task management in teams.

1.0.3 Microsoft Planner

This paper focuses on understanding how people manage their tasks day-to-day in

teams, what challenges they face, how they envision an ideal task management envi-

ronment, and how they mentally categorize and identify tasks that they are unlikely

to get done successfully on time. We focus on Microsoft Planner team task manage-

ment tool in our study as we had access to huge and diverse datasets of real teams

and projects donated by users, which could support the generalizability of our re-

sults. Microsoft Planner has 4 main entities: plan, bucket, task, and user as shown in

Fig.1-1. A plan is equivalent to a project or a team space where tasks are managed.

Inside of a plan, users can categorize their tasks into buckets. Each task has various

attributes to describe it such as priority, due date, description, checklist items, etc.

Users can assign and get assigned zero or more tasks. Our goal is to be able to identify

14



and notify users with tasks they need to pay attention to.

Our work is composed of three main stages: a qualitative study to understand

users’ perspectives, a quantitative dataset analysis to confirm and generalize quali-

tative insights and extract patterns around task management, and machine leaning

(ML) modeling of tasks that are likely to fail. This thesis is organized as follows: Sec-

tion 2 describes related work and our contributions, Section 3 describes our methods

as well as qualitative results, Section 4 describes quantitative data analysis, Section 5

formulates our prediction problem and presents our prediction results. Discussion and

Design Implications, and Conclusion are discussed in Sections 6 and 7, respectively.
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Chapter 2

Related Work

Numerous tools, methods and techniques have been studied and developed to support

collaborative task and project management. This section analyzes relevant previous

work on task and project management, and discusses various assistive studies and

applications in this domain.

2.0.1 Task & Project Management Methods & Behaviors

Various project management methods are valuable for all project types and fields [11].

As teams seek methods that are more easily adapted to their needs, agile approaches

and best practises have been gaining a lot of popularity today. For example, the

Essence specification [56] defines a framework that allows teams to describe practices

and rules (e.g. Scrum), in terms of concepts, such as checklists, states, artefacts, com-

petencies, templates, etc, to be be followed, and monitored by task management tools.

Another project management method focuses on describing collaboration phases. In

virtual teams, a 5-stage heuristic lifecycle model is described [23] with specific tasks

and topics that should be addressed by team. The 5 stages of this model are: mis-

sion preparation, activities launch, performance management, team development, and

achievements recognition. Another survey [60] shows that current project manage-

ment methods include digital management tools, decision-making techniques, risk

assessment tools, and computer models. Various methods overlap in scope and meth-
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ods, which makes selecting a suitable project management challenging. Therefore,

teams increasingly follow lightweight approaches, such as in task management tools.

A more recent qualitative study explored the features and challenges teams face in

collaboration while using a task management tool UpWave [11]. This study high-

lighted multiple challenges teams face including prioritizing and organizing projects

and tasks, task delegation in terms of task owners and due dates, dividing projects

into smaller and concrete tasks, and keeping track of time allotted to tasks. However,

this study did not explore how users manage and select their tasks on a daily basis

in teams.

2.0.2 Task & Project Management Tools

Many task management software tools support teams collaborations in various ways

such as knowledge management, coordination, information exchange, communication,

and collaborative learning [17]. In this section we examine some well-known software

tools supporting team task management, team communication, and personal and

team productivity management. Trello, Asana, Teamwork and Microsoft Planner

are all examples of tools that support online project and task management. These

tools share a common infrastructure which provides users with features such as tasks,

projects, conversations, notifications, calendars, comments, file attachments, progress

views, and dashboards. Users can create checklists, add labels and due dates, assign

tasks to people, and connect with other applications. One example of tools that

support team communication is Slack. Slack provides an open channel to organize

team conversations for a project, a topic or a team by providing various features

including direct messaging, file sharing, various privacy levels and integration with

other software. There has been a number of tools focused on team productivity

management such as Todoist and Microsoft Todo. These tools provide personal or

collaborative spaces to manage to-do lists with many other features such as setting

up tasks, collaborating on a shared task and different filtering and categorization

methods. These tools are focused on creating to-do lists unlike Microsoft Planner

which is centered around creating tasks in team plans.

18



2.0.3 Task Assistance Applications

Extensive research has been done on analyzing the task management space and build-

ing better and smarter tools to aid users in managing their tasks. We reflect on four

main lines of work: time management and planning, time estimation, task classifica-

tion, and productivity tracking.

Time management & Planning

Previous work on time management and planning has focused on finding best practices

to help people manage their time more effectively personally [1], which yielded the

development of tools to better support personal time management [6, 46] including

helping users to organize, filter, prioritize, and execute tasks. A lot of these systems

depend on intelligent scheduling systems which help individuals [25, 51] and teams

[26, 13] find time for tasks and coordinate schedules of multiple individuals. Digital

assistants such as Amazon Alexa, Google Assistant, and Microsoft Cortana also play

an important role in helping people track short time durations during their day and

create reminders to remember to perform future tasks [20] without the need of a

precise task timeframe [52].

Time Estimation

Research has shown that people usually are subject to planning fallacies [7, 29] where

they underestimate or overestimate the time taken to complete their tasks [28, 29,

32, 18] which is mainly due to wishful thinking [50] and overconfidence [45], or lack of

experience. Therefore, extensive research has been done on developing new strategies

to overcome these biases such as enumerating complex task steps [34] which could

be facilitated by assistive technologies to help structure sub-tasks. Furthermore,

event durations have been mined from search logs [21, 33] and news articles [49].

Another line of research focuses on using machine-learned models to estimate different

properties of tasks, such as task completion status [62] and task duration [61]. Other

research uses natural language to reason about temporal aspects of events such as
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duration by applying machine learning techniques [61, 47, 66, 67].

Task Classification

Prior work has established theoretical frameworks for representing tasks using a facet-

oriented approach. For example a task could be described by its goals, complexity,

assigner, assignee, interdependence, etc [36, 41]. Similar representations could inspire

the training of digital assistants to categorize tasks and help users in task prioriti-

zation, an idea which will be touched on by this study. More recently, intelligent

systems have been used to automatically classify or detect various kinds of tasks or

task attributes. Some applications have focused on supporting micro-tasking [9, 63]

with the goal of helping people utilize small amounts of time to work on quick tasks

or to progress on larger tasks. Another line of work studies and predicts different

characteristics of search tasks including complexity [8], difficulty [4], type [39] and

time sensitivity [44].

Productivity Tracking

A number of studies have worked on applying micro-productivity strategies such as

task decomposition to help people in completing personal tasks [57]. These strategies

have proven to have a positive impact on work quality [12] due to helping people

in making progress in short period of downtime. These strategies have been imple-

mented to tools spanning various domains such as writing tasks [27, 30] and software

development [64]. Another project incorporated reminders for micro-tasks into social

media [22].

2.0.4 Contributions

Prior work focused on understanding how individuals manage, organize and prioritize

their tasks individually. In this research, we focus on understanding task management

behavior of individuals in a team setting as well as learning what kinds of tasks

could fail. We then use our insights to predict tasks at risk. We make the following
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contributions with this research:

• Develop a generalizable deeper understanding of how people perform individual

task management and prioritization in teams, how task management applies to

Microsoft Planner, and how users envision an ideal task management environ-

ment through a qualitative study.

• Establish a formal Task at Risk definition based on task attributes and user ac-

tivity through our qualitative study and Microsoft Planner actions log analysis.

We find correlations between specific actions and task attributes which describe

different task facets.

• Train machine-leaned models to accurately predict if a task is at risk from 4 lev-

els of features: task-level, user-level, plan-level and bucket-level. We experiment

with different model architectures (logistic regression, sequence model, ensemble

model) and feature sets (task level, user-level, plan-level and bucket-level).

• Present implications of predicting tasks at risk. We also describe the future

directions of this work.
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Chapter 3

Qualitative Data Collection and

Analysis

To address the problem, we took a mixed approach to understand the task manage-

ment behavior of Planner users and, in the process, identify tasks that are at risk of

being incomplete soon. In particular, we took a concurrent triangulation approach

[14] in collecting and analyzing qualitative and quantitative data.

With the goal of gaining an understanding of how Planner users use task manage-

ment tools to collaborate, manage and prioritize tasks in daily basis, we conducted

an extensive survey.

3.1 Survey Participants

We recruited 151 participants from a large technology company for a detailed survey.

Of the 151 survey participants, 36% were female, 58% were male, 2% were non-binary

and 4% chose not to disclose. The median age group was 35-44 years. The majority of

participants (85%) held a bachelor’s or an advanced degree (e.g., Master’s, PhD). Our

pool of participants had a very diverse set of work roles including managers, principal

researchers, recruiters, software architects, software engineers, designers, and interns

with a median experience of 5-10 years. All participants were or had been Microsoft

Planner users. We randomly selected one third of the survey participants to be
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compensated with a $20 Starbucks gift card each. For the purpose of the reporting

the results, we labeled the participants with numbers (e.g., Participant 1 or P1).

3.2 Survey Preparation

Based on our literature review (described previously) and initial research on Planner

management tools, we prepared the survey questions. The primary goal of the survey

was to get a detailed overview of how Planner users manage their tasks on a day-to-

day basis, whether and how they use the Planner application, and finally, how they

would describe tasks that they are unlikely to get done successfully on time. The

insights from the existing work and our exploration of task management behaviors

which include studying application documentation, discussions with task management

application developers, expert scholars from the task management, productivity, and

artificial intelligence research fields, inspired four main lines of research questions

that formed the main focus of the survey: (i) how individuals manage their tasks in

general, (ii) how individuals use Microsoft Planner in task management in teams, (iii)

what the ideal management environment is, (iv) and how they would describe tasks

that they are unlikely to complete successfully on time (Tasks at Risk). The survey

had 34 questions in total, with multiple choice and free-form questions. Our survey

was approved by Microsoft’s Internal Review Board.

3.3 Data Analysis

From the survey, we collected 151 unique, complete responses. Using a grounded

theory approach [10], we took a multi-step approach to annotate and analyze the

responses. In the first annotation round, two members from the research team inde-

pendently annotated major and broader themes observed in the open-ended descrip-

tive responses. At the end of the first round of annotation, two annotators compared

all the themes that emerged in the data, discussed differences and overlapping cat-

egories, and finally agreed on a common annotation scheme. Following the same
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process, the annotators identified more detailed and specific themes under the larger

thematic categories from the first stage in the second round. Finally, they used the

final annotation schema or codebook to refine the annotations further. Following a

grounded-theory approach, it was unnecessary to compute an inter-rater reliability

score [43].

3.4 Preliminary Observations

In the following sections, we discuss the some of the major findings from the survey

data analysis.

3.4.1 Understanding Individual Task Management in Teams

Our findings from the survey highlighted two types of task management practice in

Planner: personal task management on a day-to-day basis and team task coordination

on a weekly basis. Based on the list of tasks assigned to participants by the team,

participants stated that they flesh out the details of tasks in a to-do list tool or on

paper, or block time off on their calendar in order to manage this list of tasks. One

participant mentioned that I tend to manage personal tasks in Outlook by blocking

time [P25]. Three other participants mentioned Often I rely on To-Do to surface

which Planner tasks I need to work on [P38], I rely on Outlook, To Do, or OneNote

to keep track of my day-to-day work [P48], and Honestly, I still keep an offline paper

list next to me because planner is not effective as an individual tool [P49]. These

responses emphasized Microsoft Planner’s suitability for tracking the big picture of

team progress on projects.

3.4.2 Task management in Microsoft Planner

Participants were asked to reflect on an active team plan in Microsoft Planner that

they contributed to frequently. Among the plans selected by participants, the mean

number of plan members was 7 and the median task completion rate ranged from
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25%-75%. The average task lifespan of most plans ranged between a week to a month

with 40% of responses being 2-3 weeks. Participants highlighted two main purposes

behind using Microsoft Planner in team task management: task prioritization for

personal task management, and progress communication for team task coordination.

Task Prioritization

Even though participants stated that they use external tools to break down tasks

on a day-to-day basis, they still mentioned that they use Microsoft Planner to help

them prioritize and select a task list – I use planner to remind me of what I need

to prioritize, and then I usually manually create a list for the week or day based

on that of the key items across multiple plans [P27]. Participants also described

various strategies, features and attributes that they use or look for in Planner to

help them in task prioritization and selection. One of the most popular strategies

was categorizing tasks into buckets where each bucket contains tasks with similar

characteristics. Many participants indicated that most of the time they create buckets

to describe different lines of work (e.g., modeling and evaluation), different task types

(e.g., presentations and logistics) or, progress (e.g., to-start, in-progress, and under-

review). Many participants mentioned that they rank and select tasks based on

priority, due date and effort: I triage tasks by priority, deadline, and amount of effort

needed to complete–part of my day is structured around long-term or in-depth work,

and part of it is for smaller tasks to keep everything moving [P94]. Furthermore,

many participants found some of the planner views such as the schedule view to be

helpful in tracking timeline and progress personally and with their team: I try to

organise the tasks into buckets and set as much information as possible (comments,

documents, checklists..etc). Charts will give me an idea on the progress that I’m doing

on the plan that I’m using (alone or with the team) [P42]; I like to have a Plan for

my role. Then within that Plan I create buckets to outline the parallel work streams

that make up that job. Within those buckets, I create to-do items, set priority, and

due dates. I have found the Schedule view to be helpful [P77].
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Progress Communication

Almost all participants indicated that they use Microsoft Planner for ‘managing tasks

among [their] team’, and following and communicating the big picture of the project

to the team. One participant mentioned that I use planner to keep a high-level

tracking of my tasks. Planner also helps team-members see what I’ve made progress

on. Various plan management scenarios were selected by participants to describe how

they interact with their team. Most participants indicated that they add their own

tasks to the plan, interact with their tasks by changing various attributes, and mark

their tasks completed when done. In few plans, any team member including managers

could also create, edit and assign tasks to any other member. Participants highlighted

their interest in communicating their progress to the team immediately when tasks

come up or get completed. This behavior contradicts findings from previous research

around micro-task detection in to-do lists [63], where users often mark tasks complete

in batches, regardless of completion time. This could be due to the absence of the

motivation of communicating progress to other people in personal to-do lists, which

is one of the main motives in team task management environments as found by our

study. To communicate progress, participants interact with and edit various task

attributes such as task due date, description, etc based on the current state of their

task. In particular, most participants indicated that they had changed the due dates

and descriptions of at least one task in this plan before as the task was in most cases

more complex or high-effort than what they expected, or they forgot about the task and

needed to reschedule it. This indicates that the action history on a task could provide

proxy signals to task complexity, effort needed and much more. If we can learn a

pattern from these signals, we will be able to identify these critical tasks earlier in the

process and notify the user. This raises the question of what each action in Microsoft

Planner indicates and how it is correlated to characteristics of tasks at risk, which

will be explored in the following sections.
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3.4.3 Ideal Task Management Environment

Difficulty in arranging task priorities is the top challenge participants face as they

are engaging with multiple tasks from different plans, a situation that is perceived

as overwhelming which causes tasks to slip off their mind and be forgotten, which

aligns with some of the previous findings [11]. Participants were asked to indicate

what kinds of challenges they face when managing their tasks in teams. In response,

one participant mentioned that I organize by due date and priority. The challenge

comes in where there are too many tasks feeding into my day. [P30]; Participants

also reflected on the reasons behind adding tasks to the team plan and never getting

back to them. This was mainly due to being stuck and failing to complete the task,

the task being complex or requires high-effort, or the task being no longer important.

Again, this shows that the activity of interacting with tasks could indicate progress

being done on tasks. This could be used to find patterns indicating the state of being

stuck on a complex task.

Participants described three main ways in which they envision an ideal task man-

agement environment in Microsoft Planner: (i) integrating Microsoft Planner with

their preferred individual task management tools, (ii) having more advanced task

searching and filtering methods with better visuals and views, (iii) and smart prior-

itization with reminders. As described earlier, participants reflected on two motives

behind using Microsoft Planner: task prioritization and progress communication.

Participants showed a huge interest in integrating these two aspects by connecting

planner to calendar (being able to link the task to calendar so that calendar updates

(ie changes a category) for tasks assigned to [them] personally [P25]), to-do list tools

(Associating [Planner] with Microsoft TO DO and other project plans [P53]), or email

(a great feature would be to take an email from Outlook and turn it directly into a

task [P154]). Such integration will allow participants to have a fuller picture of the

team plan status linked to their own individual prioritization space, which will aid in

the individual prioritization process. Participants also reflected on the need for both

the functionality and user interface of more advanced searching, filtering, labeling,
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categorization and linking of tasks. Some example quotes include Ability to filter

tasks. Also see the tasks in different ways visually so each person can view the same

set of tasks as they wish (i.e. on a calendar, as a list, etc.) [P23]; More metrics,

more labels, better visual organization [P44]; I wish I could connect a task to other

tasks in some sort of timeline. A ”tag” can connect tasks but I can’t 1) sort them

or 2) click on one and see the task ”flow” [P33]; Again, such features were mainly

connected to providing individuals with clearer plan status that would help them in

their own task prioritization. A significant number of participants mentioned that

having smart prioritization was something that they need - Task management should

be driven by an ”intelligent” prioritization agent that looks across the breadth of as-

signed tasks and ”tee’s up” a suggested daily work priority list based on due date,

assigned sub-task(s) and progress, etc. to each team member/individual (who can opt

in/out at any time) [P130]; I would love to see AI that can suggest things like, adding

more/missing details. Reminders that the task is getting stale. Suggestions on which

task could be completed for the day based on depth of detail score [P30].

Thus our results show that, even though participants showed interest in three kinds

of improvements mentioned above, all requested improvements were directly tied to

helping them in individual task prioritization in a team setting. When particularly

asked about being reminded of tasks at risk, 66% of participants highlighted their

interest in this feature. The majority of the remaining 34% highlighted that even

though they don’t like the computer to think for them, they would still

be interested in this feature if they could understand how the computer

calculated this risk. This shows the potential of such a feature in aiding in task

management in teams.

3.4.4 Defining Tasks at Risk

A high level definition of a task at risk was given to participants. A task at risk is a

task that has a high chance of not being completed successfully on time. Participants

were asked to think of task characteristics that shape a task at risk for them based

on this definition. In our literature review, we found that risk could be task related
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or user related. For example, task complexity is a risk factor that describes a task

characteristic whereas progress mostly depends on the task doers’ motivations and

schedule. Accordingly, we identified two main categories for identifying a task at risk:

task characteristics and characteristics of the task doers. In each category, we extract

two main themes: (i) intrinsic factors naturally describing the task or coming from

the user, and (ii) extrinsic factors coming from the external environment.

Task Characteristics

Participants mentioned a wide range of task characteristics regarding risk definition.

These characteristics can be grouped into two main classes: intrinsic and extrinsic.

Intrinsic Characteristics Intrinsic task characteristics are characteristics which

naturally describe a task without interference of task doers and regardless of other

tasks. These characteristics included task complexity, pre-defined length of the task,

task type/nature, and urgency (for example, a task mark as urgent by the assigner).

Participants stated that complex tasks, or long-term tasks are those that are most

at risk of never being completed. Especially with exploratory tasks which don’t tie

directly back to a business goal [P11]. This point was further emphasized by explaining

that typically long term or complex tasks can be vague or unstructured in nature. This

can be an issue of task quality, in that more details about the tasks need to be gathered

before the task can be properly defined [P128], and that for long term tasks, when the

due date for the task is out, it generally doesn’t get prioritized for a while and then

has to be done in a hurried manner at the end [P133]. Participants also stated that

tasks of a collaborative nature may lead to confusion about who is doing what, and if

things can’t be done in parallel, and tasks are dependent on other tasks, progress may

be slowed [P129]. Some participants indicated that urgency of a task is also another

important characteristic defining risk and that these tasks should be brought to [their]

attention as prompt action on [their] part is required [P80]. Furthermore, participants

tied task complexity and nature to their behavior on Planner. For example, many

changes in the due date or description of a task could imply that the task turned out
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to be more complex than expected and took time to flesh out.

Extrinsic Characteristics Extrinsic task characteristics are characteristics that

still describe a task but are set and changed by users assigned as the task-doer. These

include due date, priority, dependencies and assignees. The majority of participants

marked due date as the number one factor related to risk. Participants even high-

lighted that giving immediate attention to tasks with the closest deadlines also reflects

on work aptitude and proficiency [P36]. When an upcoming due date is paired with

high priority flag set by team or manager, participants thought that tasks become

particularly concerning. One participant mentioned that If something was assigned

to me (by anyone) and marked as high priority, and had an upcoming due date I’d

consider that at risk [P9]. Participants also mentioned that complicated dependencies

of a task put this task at the highest risk, specifically if paired with tighter deadlines,

multiple teams involved and with high priority [P15]. If a task has no assignee and

the due date is near, this also puts the task at a higher risk as this is the kind of tasks

the team is avoiding [P40].

Task doers Characteristics

Characteristics of the task-doers or the user-related factors that triggered the user’s

sense of risk towards a specific task. User-related factors can also be grouped into

intrinsic and extrinsic.

Intrinsic Drivers Intrinsic features are focused on user motivations that depend

on the user’s personal perception of the world without the impact of any external

factors. Participants referred to four main user intrinsic motivators: progress, effort,

cost of failure and impacting others. Participants believed that tasks that are left

idle are identified as at risk [P88]. Participants also thought that if slow progress

was accompanied by other extrinsic task characteristics such as an upcoming due

date and complex dependencies, tasks become more at risk. High effort was also

correlated to risk by participants. High effort mainly depends on the user and their
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expertise, therefore, the amount of effort on a task could vary from one user to the

other. Participants also related Impact to a task at risk. Two types of impact were

mainly mentioned: (i) consequences if a task were to fail which are mostly personal,

and (ii) impact on other team members such as blocking them on other tasks. In both

cases, participants indicated that negative impact if work is not completed indirectly

implies high risk for them.

Extrinsic Drivers Extrinsic user-related features are user motivations that come

from external triggers. Participants discussed one main extrinsic feature: important

creator or assigner of a task. For example, one participant mentioned that manager

tasks always take priority as completion is a reflection on performance [P36]. Since

the cost of failure in tasks assigned by the managers are higher, any risk of the tasks

is also higher.

Due date, progress, task complexity and task priority were the top 4 factors par-

ticipants referred to or paired together to indicate risk. One participant quoted that

‘Typically if the task is very complex, with a close due date and no progress on it.

That means the task is at risk. Due to the complexity of the task and its close due

date there is a high chance that it will not be completed or will require additional

funds or time to complete. Additionally if it is complex that also means that it might

have additional dependencies. Also because I’m not the one working on it there is a

reliance on other team members that I might not have visibility on its progress ’ [P78].

This mixture of task characteristics and user related factors inspired us to perform

quantitative analysis of user log data on four different levels: task level, user level,

bucket level and plan level. Our qualitative results greatly shaped our exploration

and risk signal search in the dataset in the next steps.
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Chapter 4

Quantitative Data Analysis

Informed by the qualitative insights, we study the task at risk definition quantita-

tively based on user action logs. We analyzed a dataset of anonymized action logs of

Microsoft Planner users around the world over a one month period from mid June,

2021 to mid July, 2021. The logs do not contain any textual content of tasks. Mi-

crosoft Planner logs span 18 different actions (each action belongs to interacting with

a specific task attribute such as description action, priority action, and so on.) Every

action has three main kinds of change type: create, modify and delete. Some actions

do not have a delete change type such as task title related actions. The actions log

contained actions performed on tasks with timestamps and other metadata including

type of action, changes based on action, etc. However, the dataset did not contain a

risk label. Based on our qualitative analysis, time is the top characteristic related to

risk, therefore using lateness of a task as an indication of risk is a good proxy signal.

In Microsoft Planner, a task is late if it passes its due date without being marked

completed.

4.1 Dataset Filtering

The dataset was filtered to include only tasks with the following criteria: 1) the task

had a set due date; 2) the task had creation action in the dataset; 3) the task was

completed (had completion action in the dataset); 4) the task had 100 or fewer actions,
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5) the task had a lifespan of 30 days or less; These criteria were developed to be able

to calculate the ground truth risk label and focus on actionable tasks only that had

concrete due dates. Points 4 and 5 were used to exclude data anomalies. Our dataset

ended with 250K+ actions with 12K+ unique tasks, 6K+ unique buckets, and 3K+

unique plans. The average number of actions of unique tasks was 19 with a standard

deviation of 6.3. The average task lifespan was 3.5 days with a standard deviation

of 1.3. The dataset had 2 classes: At Risk = False (tasks that had been completed

before due date), At Risk = True ( tasks that had been completed after due date.)

The dataset was almost balanced among the 2 classes with a class distribution of 45%

is at risk is false and 55% is at risk is true.

4.2 Quantitative Exploration

Figure 4-1: Top 6 actions types showing significant percentage differences among risk
classes

Initially, we looked for action patterns that could be correlated to task characteris-

tics indicating risk as described by qualitative results. We compared mean percentage

of various actions of tasks in both classes (at risk, safe). We also explored this on

a more granular level across time meaning we also compared the mean percentage
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of various actions of tasks per day (for all week days). The resulting plot (Fig. 4-1)

highlights the top 6 features showing a significant difference in the percentage of ac-

tions between the 2 classes. Tasks at risk showed a higher percentage of description

actions, due date actions, task ranking actions, and task bucketizing actions. In our

qualitative study, these actions were specifically related to a task being at risk as they

could indicate high task complexity (for example if description changes many times

this means the task is more complex.) This quantitatively confirms our qualitative

study results which shows the potential of using these features as signals for predict-

ing tasks at risk. Furthermore, the percentage of actions performed on Wednesdays

and Thursdays were significantly higher in tasks at risk. This could be due to rushing

to finish stale or forgotten tasks before an end-of-week deadline or report on Friday.

These kinds of tasks are also at higher risk of not being completed successfully.

4.3 Task State Feature Space

Inspired by these quantitative signals, our qualitative study results and previous

literature on task classification problems [61, 63, 53], we composed a list of 85 features

spanning 4 levels: task level (72), bucket level (4), plan level (4) and user level

(5) shown in Table 4.1. Task level features mainly describe the task history until

the current state by recording counts of various actions with high granularity on

change type and time axes (includes various actions such as description changes. For

each action, features include its change type, description deletion count, description

creation, and description modification count, etc.) This feature set also includes

number of actions per task and per day of week. User level features focus on capturing

task management style (number of actions per session, number of different views

accessed such as schedule view) and workload (number of completed actions, number

of user sessions, etc) of users assigned to the task. Finally, the plan and bucket levels

describe the activity and progress inside the plan and bucket respectively. For each

action Ai (where Ai is the ith action) on a task T in the dataset, we computed a

corresponding task state Si, describing task history from A1 to Ai. This resulted in a
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dataset with the same number of data points (each data point with 85 features) but

in a new feature space ‘Task State feature space’. We call this dataset ‘Main Dataset’

for future reference in the paper. Finally, we computed the conditional probability for

every feature given task class. We then used these probabilities to compute standard

error confidence intervals for all probabilities via bootstrapping, and find that all

differences between the conditional probabilities per class are statistically significant

with p < 0.05. We use this analysis as a validation step that there is a relationship

between the computed feature set and class labels and not for feature selection.

Table 4.1: Extended Feature List composed of 4 levels: task-level (72),
bucket-level (4), plan-level (4), and user-level (5)

Level Signal Name Description

Task-Level

General History

NumPastActions (total,

Mon, Tues, Wed, Thurs,

Fri, Sat, Sun)

Number of total actions done

since task creation till this mo-

ment. Computed for each day as

well (number of actions happened

on a Monday, etc.)

NumCategoriesActions (to-

tal, create, delete)

Number of actions of assigning la-

bels to a task. Computed for total

and for each type of action (cre-

ation of labels and deletion of la-

bels).

MeanCatCharLength Mean of number of characters of

applied labels.

MedianCatCharLength Median of number of characters

of applied labels.

StDevCatCharLength Standard deviation of number of

characters of applied labels.

Continued on next page
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Table 4.1 – continued from previous page

Level Signal Name Description

NumBucketIdActions Number of times a task’s bucket

has been changed.

NumPreviewTypeActions Number of times a task has been

viewed.

LastPreviewType The type of last view of a task

(schedule view, user view, plan

view, etc.) Presented using one-

hot-encoding.

TopPreviewType The type of highest view of a

task. Presented using one-hot-

encoding.

NumUserSchedulePreview How many times action doer has

opened schedule view.

NumPlanSchedulePreview How many times action doer has

opened plan view.

AgeInDays Number of days since creation of

a task.

NumOrderHintActions (to-

tal, create, modify)

Number of times the order of a

task has been created or changed

inside of its bucket.

OrderHintValue The current order of the task in-

side its bucket.

NumStartDateActions (to-

tal, create, modify)

Number of times start date has

been created or changed.

StartDateValue Number of days since start time

of a task.

Continued on next page
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Table 4.1 – continued from previous page

Level Signal Name Description

NumPriorityActions (total,

create, modify)

Number of times priority of a task

has been created or changed.

PriorityValue The current priority value of a

task.

NumTasksBySameCreator The number of tasks created by

the same task creator.

AssignedToSelf? Boolean indicating if the task cre-

ator was the same person as the

task assignee.

Complexity

NumUniqueInteractors Number of unique users that have

done any action related to this

task.

NumAssignmentActions

(total, create, modify,

delete)

Number of times an assignment

has been created, modified or

deleted.

NumUniqueAssignees Number of unique users assigned

to a task.

NumTitleActions (total,

create, modify)

Number of times a task title is

created or changed.

TitleCharLength The current number of characters

of the task title.

NumDescriptionActions

(total, create, modify)

Number of times a task descrip-

tion has been created or changed.

DescriptionCharLength The current number of characters

of description of the task.

NumDueDateActions (to-

tal, create, modify)

The number of times the due date

is created or changed.

Continued on next page

38



Table 4.1 – continued from previous page

Level Signal Name Description

DueDateValue The current due date of the task

as the number of days left.

NumReferencesActions (to-

tal, create, modify, delete)

Number of times attachments

have been added, modified or

deleted in the task.

MeanRefsCharLength Mean of number of characters of

attachments to the task.

MedianRefsCharLength Median of number of characters

of attachments to the task.

StDevRefsCharLength Standard deviation of number of

characters of attachments to the

task.

NumConversationActions

(total, create, modify)

Number of comments created or

changed on the task.

NumUniqueUsersInConv Number of unique users involved

in the conversation on the task.

Progress

NumChecklistActions (to-

tal, create, modify, delete)

Number of checklist items cre-

ated, changed or deleted in the

task.

NumCompChecklistActions Number of 100% completed

checklist items in the task.

NumPercentCompActions

(total, create, modify)

Number of times progress on

a task has been recorded or

changed (0%, 50%, or 100%.)

PercentCompleteValue The current progress percentage

on the task (0%, 50%, or 100%.)

Continued on next page
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Table 4.1 – continued from previous page

Level Signal Name Description

Bucket-LevelGeneral History

NumTasks Number of other tasks inside the

same bucket of this task.

NumUniqueInteractors Number of unique users interact-

ing with the bucket of this task.

NumTitleActions Number of times title of a bucket

has been created or changed.

NumOrderHintActions Number of times the order of a

bucket has been changed.

Plan-Level General History

NumTasks Number of other tasks inside the

same plan of this task.

NumCompleteTasks Number of 100% completed tasks

inside the same plan of this task.

NumUniqueInteractors Number of unique users interact-

ing with the plan of this task.

NumActions Number of total actions on the

plan of this task.

User-Level

Workload
NumCompTasksByUsrInPln Number of other tasks in this plan

100% completed by assignee of

this task.

NumOfSessionsByUser Number of times action doer logs

in to the system and interacts

with this task (a session is time-

based and can include many ac-

tions).

Management Style

NumActionsByUsrPerSess Number of other actions done by

the action doer in the session.

Continued on next page
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Table 4.1 – continued from previous page

Level Signal Name Description

NumUsrSchedViewByUsr Number of times action doer

views their personal schedule.

NumPlanSchedViewByUsr Number of times action doer

views the plan’s schedule.
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Chapter 5

Task at Risk Prediction

In this chapter, we discuss methods for training machine-learned models to accurately

predict tasks at risk from various features guided by our qualitative and quantitative

results. We begin by formulating our classification task and then we describe four

main experiments (later task stages, sequence modeling, ensemble voter and extended

feature set) and their results performed on different subsets of features and model

architectures. We describe our experiments in the following subsections. A summary

of all experiments and system architecture is shown in Fig. 5-1.

5.0.1 Problem Formulation

The goal of studying this problem is to be able to predict if a task is at risk or not and

eventually help users in prioritizing their tasks in teams by bringing tasks at risk to

their attention. We formulated this problem as a binary classification problem with

an ‘At risk’ label based on late label.

5.0.2 Data

In our first experiment we used ‘Main Dataset’ (described in section 4) after excluding

user-level, plan-level and bucket-level features. This yielded a dataset with 250K+

data points, each of dimension 72 corresponding to number of task-level features. We

call this ‘Dataset 1.’
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Our second experiment consists of 2 sub-experiments. In the first sub-experiment,

we use a modified version of ‘Dataset 1’ by describing each task as a sequence of states.

We describe in detail how we performed this modification in section 5.0.4. We refer

to this dataset as ‘Dataset 2.1.’ We then modify Dataset 2.1 by performing masking

on some of the task states for each task (details described in section 5.0.4). We then

use a random sample of this modified version as the dataset to perform the second

sub-experiment. We refer to this dataset as ‘Dataset 2.2’ before random sampling for

experiment 2.2.

Our third experiment uses multiple random samples from ‘Dataset 2.2.’

Due to data retention requirements, we lost access to the ‘Main Dataset’ which

we wanted to use to compare impact of different levels of features on prediction in

experiment 4. Therefore, we performed our fourth experiment on a different dataset of

the same structure. We followed the same filtering criteria and feature transformation

methods as performed on the ‘Main Dataset.’ We also repeated the same statistical

hypothesis test yielding consistent statistically significant results with p ¡ 0.05. We

call this dataset ‘Dataset 4.’ ‘Dataset 4’ had 101K+ actions with 2K+ unique tasks,

900+ unique buckets, and 400+ unique plans and almost the same number of actions,

task lifespan and label class distributions as the ‘Main Dataset.’ We use ‘Dataset 4’

in our fourth experiment. The final size of ‘Dataset 4’ had 101K+ * 85.

5.0.3 Experiment 1: Later Task Stages

We used ‘Dataset 1’ as is in this experiment. The simplest baseline for this experiment

(a simple model always predicting majority class At Risk = True) achieves 55%.

We used a logistic regression classifier with a 80%-20% training-testing split of the

dataset as our baseline model (We refer to this as ‘Baseline 1’ experiment.) Our

baseline achieved an accuracy of 59%. After performing error analysis, we found that

most of the failure cases corresponded to early states of tasks. We then repeated this

experiment multiple times with exactly the same initial setup except that every time

we exclude earlier task states incrementally. We do this by first excluding all task

states that happened on day 0 in a task’s life, then we exclude days 0 and 1, and so
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Figure 5-1: System Architecture and Experiments Summary

on. All results are shown in Table 5.1. Our results show that as earlier task states

are excluded the accuracy increases. This intuitively makes sense as later task states

have a richer task history and thus are more descriptive of a task. This indicates that

it might be more challenging to predict risk for small task with a short lifespan.

5.0.4 Experiment 2: Sequence Modeling

Each data point in the previously described ‘Dataset 1’ represents a state of some

task at a point in time when some action happened. Alternatively, we could describe

a task as a sequence of states with each state representing new actions happening. In

this case, a task would be a sequence of all states corresponding to all actions that

were performed on this task. Our hypothesis was that representing tasks as sequences

of states would capture more information about the development and the future of a

task. This would also allow us to leverage the powerful capabilities of deep sequence

models. We first transformed ‘Dataset 1’ used in experiment 1 into a 3D array of

dimensions (number of unique tasks * number of task actions * number of task-level

features) 12K+ * 100 * 72. We chose 100 to be the maximum threshold of number of
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Precision Recall F-1
Model Features

At
Risk
=
False

At
Risk
=
True

At
Risk
=
False

At
Risk
=
True

At
Risk
=
False

At
Risk
=
True

Accuracy

Task-Level features
+ LR

0.60 0.59 0.83 0.30 0.69 0.40 0.59

Task-Level features
+ LR (excluding
states of age 0)

0.65 0.71 0.49 0.82 0.56 0.76 0.69

Task-Level features
+ LR (excluding
states of age < 2)

0.61 0.73 0.37 0.88 0.46 0.79 0.70

Task-Level features
+ LR (excluding
states of age < 5)

0.62 0.78 0.37 0.90 0.46 0.84 0.75

Task-Level features
+ LR (excluding
states of age < 10)

0.69 0.81 0.42 0.93 0.52 0.87 0.79

Table 5.1: Results for experiment 1 (Later Task Stages)

actions of any task based on how we filtered the data initially. The majority of tasks

had less than 100 actions, however, for tasks with more 100 actions, we used the first

100 actions. Before running our experiment, we masked out all states at or after task

completion in a task sequence to prevent the model from cheating (if completion date

is less than due date, then risk = false) and making decisions without learning any

patterns from the data. We refer to this dataset as ‘Dataset 2.1.’ We then fed the

‘Dataset 2.1’ to a bidirectional LSTM model with 80%-20% as training-testing split

ratio. This model achieved 82% accuracy (experiment 2.1.) Even though this model

improved on the baseline, it is based on getting almost all sequence of states of a

task. This is not practical if early intervention is aimed for, which is very crucial to

a task being at risk.

To solve this, we modified ‘Dataset 2.1’ by masking task states in steps of 5

starting from the last task state moving towards the beginning. All masked task

states of a task are added to the dataset as new distinct data points. A step of 5 was

selected as the average number of actions per user session was 4.2 and at creation
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approximately 5 actions happen. This approach takes various task stages into account

which is more realistic. This resulted in a larger dataset with shape 250K * 100 *

72, which refer to as ‘Dataset 2.2’. Multiple random samples of 10%-12% size were

drawn from ‘Dataset 2.2’ to perform the experiment many times. All drawn samples

had an almost balanced class distribution of 55%+-2% (risk = false): 45%+-2% (risk

= true). Each sample was then fed to the same model with the same experiment

settings as the previous experiment. This experiment achieved an average of 81%

accuracy (experiment 2.2.) This result indicates that the model was able to learn a

pattern from the sequential data by learning the changes that happen to a task across

its stages and the relationship of these changes to risk.

5.0.5 Experiment 3: Ensemble Voter

To improve on the results of the previous experiment, we decided to build an ensem-

ble voter by training the same model type with random sub-samples of the data to

leverage the multiple drawn random samples in voting rather than averaging the final

accuracy, which is proven to yield better results [16]. We drew 8 random samples from

‘Dataset 2.2’ following the same approach as experiment 2.2 while also making sure all

samples are mutually exclusive. We used the first 7 samples to independently train 7

bidirectional LSTM models with the same architecture as previous experiments. We

then used the 8th dataset to train a Logistic Regression voter. All training followed

an 80%-20% training-testing split ratio. The results of this experiment are shown

in Table 5.2. This model achieved the highest accuracy of 85% with high precision,

recall and F-1 scores among our experiments so far which reflects the strength of

ensemble models in achieving better results.

5.0.6 Experiment 4: Extended Feature Set

In this experiment, we were interested in comparing the extended feature set (includ-

ing task, user, bucket and plan level features) with the task-level feature set used in

all previous experiments. For a valid comparison, we retrained a logistic regression
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Precision Recall F-1
Experiment

At
Risk
=
False

At
Risk
=
True

At
Risk
=
False

At
Risk
=
True

At
Risk
=
False

At
Risk
=
True

Accuracy

Baseline 1 0.59
Experiment 2.1 0.82
Experiment 2.2 0.81
Experiment 3 0.86 0.85 0.79 0.90 0.82 0.87 0.85
Baseline 2 0.68 0.69 0.33 0.91 0.44 0.78 0.69
Experiment 4.1 0.73 0.71 0.39 0.91 0.51 0.80 0.72
Experiment 4.2 0.90 0.89 0.91 0.88 0.90 0.88 0.89

Table 5.2: Results for all experiments

baseline with ‘Dataset 5’ which is ‘Dataset 4’ after excluding user-level, plan-level

and bucket-level features (size of 101K+ * 72.) We call this ‘Baseline 2’ experiment.

We then re-ran the baseline model on all features in ‘Dataset 4’ giving a dataset of

size 101K+ * 85 (experiment 4.1). ‘Dataset 4’ was then transformed to the 3D shape

and masked using the previous methods in experiment 3 for re-running the ensemble

voter model on the extended feature set. The final dataset size after masking was

52K * 100 * 85 (‘Dataset 6.’) Finally, we repeated the same ensemble voter experi-

ment again with ‘Dataset 6.’ We call this ‘experiment 4.2.’ All sub-experiments were

done exactly as the ones described in experiments 1, 2 and 3. All results are shown

in Table 5.2. This experiment shows that adding more signals to the feature set to

indicate the user’s workload and management style as well as ongoing activity in the

same plan and bucket is very effective as it reflects a better idea of other external

factors indicating whether a task is at risk.

Our results demonstrate that tasks at risk can be predicted with high accuracy.

Our best model uses all 4 levels of features: task, user, plan and bucket with ensemble

voting of bidirectional LSTM models. Our best model outperforms existing solutions

in literature focused on similarly formulated classification problems with accuracy of

89% [61, 63, 53, 54].
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Chapter 6

Discussion, Limitations and

Implications

Our results show that task management in teams is divided into 2 main steps: indi-

vidual task prioritization and breakdown, and team coordination. Most of the time

there is a disconnect between these 2 aspects which leads to more challenging task

prioritization and tracking. This overwhelms users and usually leads to some tasks

slipping off their mind. Our study shows that there is a considerable need for predict-

ing tasks at risk that are prone to failure due to planning fallacies, task complexity,

huge workloads, lack of attention, or much more. We also developed a task at risk

definition and representation based on our qualitative study which was confirmed by

analyzing a large-scale action logs dataset of Microsoft Planner users. This definition

is mainly based on various task attributes and facets, and user activity. We try var-

ious experimental setups to predict whether a task is at risk and we outperform our

baseline with 89% accuracy. We explored the impact of excluding early task stages,

sequence modeling of tasks, ensemble voting of multiple randomly sampled subsets

of data, and various subsets of features on the prediction task. Our best model uses

ensemble voting of multiple sequence models with the a full feature set containing

task level, user-level, plan-level and bucket-level features. We believe that appli-

cations to predicting tasks at risk in digital assistance and task management tools

would bridge the gap between managing personal task list and team task planning
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and coordination.

6.1 Generalizability of Methods

In our work, we focus on Microsoft Planner as it is simple and intuitive and we had

access to a large action logs dataset of real task management projects. We argue that

our hypotheses about task management and task at risk definition are generalizable

as we explored the problem qualitatively with a reasonable amount of participants

(151) and quantitatively by analyzing a large and diverse dataset of actual projects.

Furthermore, our dataset analysis confirmed our qualitative results and aligned with

some prior work. Our feature sets and prediction models are also interpretable and

can be applied to any task management tool with the most basic components: a task

and a user.

6.2 Entity Dependency

Our experiments focus on historical features of 4 main entities: tasks, users, plans

and buckets. However, dependencies and relations between these different entities

were not leveraged to capture a more accurate situation. We believe that capturing

these relations via heterogeneous graph neural networks could further improve the

prediction problem. For example, if a task is blocked or is a blocker to other tasks or

team mates, then this puts the task at higher risk as described by many participants

in our qualitative study ‘If I’m not making progress on a task it may be an indication

there’s an external blocker to making progress which makes it likely to be at risk.

Collaborative tasks may lead to confusion about who is doing what, and if tasks are

dependent on other tasks, progress may be slowed.’ [P29]
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6.3 User Workload and Management Style

Even though we used good proxies for approximating a user’s workload and task

management style, we believe that more accurate representations could be obtained

from the user’s calendar and email data. Calendar and email data are one of the best

pointers to a user’s workload [53] as workflows heavily depend on these tools. Due to

the lack of access to such data, we were not able to experiment with more accurate

proxies.

6.4 Risk Labeling

Based on our qualitative study, time (represented with due dates) is the top fea-

ture participants attributed to risk. Therefore, we used ‘Lateness’ as a proxy for

automatically labeling tasks at risk. Solutions such as crowd-sourced data labeling

were considered before choosing the labeling method, however, we believe that having

someone label a task that they never worked on or were involved with would yield

very inaccurate labels. Risk of a task depends on many dynamic attributes part of

which depend totally on the assignee. Therefore, we suggest that having the original

task doers label the tasks together with presenting their knowledge and expertise is

the most accurate solution for a model to learn. This also works around the problem

of task management style [63], when some users mark tasks complete in batches after

the due date. In our work, we assumed that users mark tasks complete as soon as

they complete them based on our qualitative study results. This contradicts previ-

ous findings on individual task management style [63] but reflects that individuals

behave differently in teams, where they want to immediately reflect progress and

performance.

6.5 Textual Analysis

Our previously described experiments were performed using datasets of anonymized

timestamped action logs of Microsoft Planner with no textual data. Believing that

51



text incorporates rich information that could improve the performance of our predic-

tion model [61], we collected the textual data (donated by Microsoft Employees) of

a small subset of our main actions log dataset. The new joint dataset contained 21k

data points of both textual and action logs data of tasks. We first performed data

processing to textual data (fixing contractions, removing stop words, lemmatization,

lowercasing all text, etc.) Then, we computed and analyzed TF-IDF weighted token

n-grams (1-3). Our analysis showed some difference in word occurrence between late

and non-late tasks. For example, the occurrence of words that indicate vagueness of

the nature of the task such as ‘review’ or hyperlinks is higher in Late tasks, which

aligns with previous qualitative findings. On the other hand, tasks that involve ‘cus-

tomers’ tend to be non-late. This could be due to the skewed nature of the donated

dataset as it was collected from a small number of teams inside of Microsoft that

deal with and prioritize tasks involving customers. We believe that having a fuller set

of textual data of tasks paired with action logs could yield very interesting insights

about the nature of tasks and more accurate predictions of risk.
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Chapter 7

Conclusion

Task prioritization is an important and perhaps the most challenging aspect of col-

laborative task management. Ineffective prioritization puts tasks at a risk of failure

and could eventually lead to personal or team losses if work is not done. We perform

a 3-stage study (qualitative, quantitative and ML modeling) to identify and predict

tasks at risk. Our best model suggests that tasks at risk can be identified with high

accuracy (89%). This has several implications on improving task prioritization in dig-

ital assistants and task management tools. Further work could be done to improve

our study by using textual content of tasks along with action logs. Task interdepen-

dence could also be explored and modeled using more complex models such as Graph

Neural Networks.
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