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Abstract

Machine learning methods have been widely pervasive in the domain of drug dis-
covery, enabling more powerful and efficient models. Before deep models, modeling
molecules was largely driven by expert knowledge; and to represent the complexi-
ties of the molecular landscape, these hand-engineered rules prove insufficient. Deep
learning models are powerful because they learn the important statistical features of
the problem–but only with the correct inductive biases. We tackle this important
problem in the context of two molecular problems: representation and generation.
Canonical success of deep learning is deeply rooted in its ability to map the input do-
main into a meaningful representation space. This is especially poignant for molecular
problems, where the “right” relations between molecules is nuanced and complex.

The first part of this thesis will focus on molecular representation, in particular,
property and reaction prediction. Here, we explore a transformer-style architecture
for molecular representation, providing new tools to apply these models to graph-
structured objects. Moving away from the traditional graph neural network paradigm,
we demonstrate the efficacy of prototype networks for molecular representation, which
allows us to reason over learned property prototypes of molecules. Lastly, we look at
the molecular representations in the context of improving reaction predictions.

The second part of this thesis will focus on molecular generation, which is crucial
in drug discovery as a means to propose promising drug candidates. Here we develop a
new method for multi-property molecule generation, by first learning a distributional
vocabulary over molecular fragments. Then, using this vocabulary, we survey efficient
exploration methods over the chemical space.
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Chapter 1

Introduction

Machine learning has rapidly transformed the traditional pipeline of drug discovery,

providing new tools for each step of the process. Many problems, which traditionally

require extensive, expert domain knowledge, have been tackled through deep learning

tools, making them more efficient and cheaper. Prior cheminformatics methods use

many hand-engineered rules to model small molecules. These techniques are utilized

to address problems like property prediction, where the the task to predict the prop-

erties of a molecule such as potency. However, traditional methods that attempt to

tackle these representation problems lack the ability to generalize well due to their

inflexible nature. The transformative facet of deep learning models lies within the

models’ abilities to learn and extract the important features directly from the data.

However, this is only possible with the correct structural biases and modeling assump-

tions underlying the models. Naively applying deep methods on molecular problems

can and will limit the capacity or usefulness of the models, hampering their ability

to generalize and their usefulness in practice. Therefore, the importance of utilizing

the correct inductive biases cannot be understated.

Before the advent of deep learning methods, molecular modeling required heavy

engineering and fixed representations commonly known as quantitative structure-

activity relationship (QSAR) methods. Within these methods, fingerprint techniques

are widely popular, and can be broadly categorized into several types including

structure-based [30], topological [1], circular [8] and pharmacophore fingerprints [91].
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Some of these fingerprints like the structure-based MACCS [30] fingerprints, are highly

specific representations, consisting of an indicator function for a fixed set of predefined

structures. Other fingerprints, topological and circular, which include Morgan finger-

prints are more flexible. These fingerprints capture local topology by enumerating

paths or circular neighborhoods. However, the problem still lies within the deter-

ministic nature of the generating method: if these predefined rules do not capture

the right representation for the task, they will not work well. For instance, property

cliffs, a phenomenon in which similar molecules exhibit different properties, remain

a challenging problem for many small molecule problems. This problem is especially

poignant for molecular fingerprints, because the featurization is fixed. However, using

deep models is not a bandage for this problem either, as deep models can easily overfit

to the data, and offer poor generalization.

Therefore, it is crucial that our deep learning models incorporate the right kinds

of structural biases. Graph neural networks operate through an iterative aggrega-

tion scheme, wherein at each step, nodes aggregate information from its neighbors.

Successively, a node should incorporate more and more information about a larger

neighborhood. The node representations are eventually aggregated into a single vec-

tor representing the graph. While sometimes effective, this simple paradigm may not

always incorporate the right kind of biases for molecular tasks. For instance, this

local neighborhood aggregation can fail to capture long-range dependencies that are

important when considering properties of molecules. Even more so, perhaps aggrega-

tion on the 2-D molecular graph is not suitable for the ideal molecular representation,

and we should look at 3-D structures instead. There are many considerations for the

development of deep models for molecules, but they require the correct structure to

be effective. Fingerprint representations are simple, but they are inflexible and often

involve a lot of human-engineered rules. Deep models, on the other hand, can easily

overfit and fail to capture the correct structural representations.
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1.1 Machine Learning Applications for Drug Discov-

ery

With that in mind, I will next explain how machine learning has been used in drug dis-

covery, and my efforts to tackle these problems using more chemically-inspired models.

Drug discovery is a process consisting of several stages, and machine learning is par-

ticularly suitable for early-stage drug discovery, searching for new drug molecules.

During the discovery phase, high throughput screening (HTS) is conducted on large

libraries of molecules, which yields candidate molecules, known as hits. These hit

molecules then undergo more screening and optimization to generate a smaller set

of lead molecules. Usually, the HTS filters are quite relaxed, only testing for gen-

eral applicability, while generating lead compounds require much more scrutinized

evaluation and optimization. Once the lead compounds have been further optimized,

promising candidates are then tested on animals and later human trials.

The selection of hit and lead compounds is the ideal frontier for machine learning

methods to pave new improvements. In order to search for hit compounds, biological

assays are conducted to assess the properties for a large library of molecules. Using

machine learning, we can perform virtual screening (VS), which is to use computa-

tional tools to predict the properties instead of performing actual assays. This allows

us to speed up the screening process as well as being able to screen a much larger set of

molecules. Prior to machine learning, QSAR methods were broadly applied to virtual

screening. In its most basic form, QSAR methods use a variety of hand-engineered

descriptors, such as simple features including atom and bond counts, molecular weight

and ring information; more complex descriptors include higher-order topological fea-

tures and physicochemical properties. However, as mentioned earlier, these methods

that rely on a lot of hand-engineered features can underfit by not capturing the correct

representations, or overfit by introducing many noisy features.

Once hits are discovered, they usually need to be optimized. This is a challenging

problem because drugs need to satisfy multiple constraints in addition to their bio-

logical activity: they have to have exhibit certain properties like water-solubility or
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non-toxicity. When optimizing for one property, other properties may change, mak-

ing this a difficult combinatorial problem to solve. Often, chemists test structural

analogs [59] of hits in order to optimize these molecules. These analogs are obtained

through methods like QSAR, and usually require a lot of expert knowledge.

Machine learning tools can greatly enhance the performance of models on these

drug discovery tasks. For instance, graph neural networks have already been demon-

strated to attain state-of-the-art performances on many property prediction tasks

[144]. Perhaps on a more exciting level, machine learning methods can also generate

new molecules, instead of relying on the expert knowledge of human chemists. For in-

stance, machine learning methods can pool information from a much larger database

of drug molecules, and make more informative optimizations of molecules. But, as

these chemical problems are extremely challenging in nature, coupled with the often

noisy training data, deep models require careful design to effectively learn and gener-

alize to these domains. This is the focus of my thesis, where I will talk about how we

build models that are cognizant of chemical knowledge, and better adapt themselves

to how chemists think about these problems in practice.
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1.2 Thesis Overview

Next I will overview the layout of this thesis, which will go into detail about my

technical contributions to the field. In Chapter 2, I’ll introduce the different rep-

resentations of molecules, and new models for their improvement. In the following

chapter (Chapter 3), I will talk about another new graph neural network paradigm

that borrows ideas from prototype learning. Chapter 4 will talk about retrosynthesis,

and how we can produce accurate and diverse synthesis suggestions. Lastly, Chapter

5 will introduce a new method for molecular optimization.

Chapter 2 delves into one of the most fundamental problems of using deep learning

for drug discovery, which is representational learning of graphs. First, I will talk

about how molecules are traditionally represented, using structural hashes known as

fingerprints. Then, I will proceed to introduce how molecules can be learned in a deep

learning framework. To reason across the complex, discrete structure of molecular

graphs, we have to impose the right inductive biases. Here, I introduce how we

augment typical message-passing neural networks to improve property prediction. I

developed a new method that better captures the connectivity of the molecular graph,

where local operators commonly used in typical MPNN often prove insufficient.

In Chapter 3, I will discuss a completely different way of parameterizing the learn-

ing problem that leverages ideas from prototype learning: the key representational

step consists of comparing each input graph to a set of abstract prototypes. Typical

MPNN compute node embeddings and aggregate them using simple sum or mean

aggregation, which can potentially lose structural or semantic information. I will

introduce a new model that learns prototype point clouds, and computes optimal

transport (OT) distances to these point clouds in order to reason about the input

molecular graph. This is a general framework that can be flexibly applied to any

graph neural network, and shows good empirical performance improvements. More-

over, I show that this model has nice interpretability through the learned point clouds.

Next in Chapter 4, I will talk about a different problem in the drug discovery

pipeline, which is retrosynthesis, which is a crucial task that aims to predict which
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reactants are needed to generate a given target molecule. Traditionally, this task has

been solved using template-based approaches, which encode transformation rules as

regular expressions operating on SMILES strings and are typically extracted directly

from the available training reactions. However, these approaches greatly limits the

generalizability of the algorithms. I introduce a new method to tackle the retrosynthe-

sis problem, using novel pretraining ideas and introducing a mixture distributional

prior. This model shows better generalization than previous template-based and

template-free models, and can generate more diverse predictions, as evaluated by

human chemists.

Finally in Chapter 5, I will talk about generative modeling for molecular graphs,

which is exciting because they provide a medium for machines to do what is tradition-

ally limited to only expert human chemists. Generation of molecules has traditionally

been approached by generating atom-by-atom or using a fixed fragment vocabulary.

Shifting away from previous frameworks, my model learns a distribution of molecular

fragments, and builds molecular graphs through the addition and deletion of molec-

ular fragments from the learned distributional fragment vocabulary. This enables

the generative model to span a much larger chemical space than models with a fixed

fragment vocabulary. I further introduce a novel generation scheme for molecular

optimization which starts the search by translating from known active molecules and

store the discovered molecules as new potential initialization states for subsequent

searches.

Machine learning has greatly impacted the computational aspects of drug discov-

ery: tackling problems under-explored through traditional statistical methods. How-

ever, bland application of deep learning is often unimpressive: the models require the

correct domain-knowledge and inductive biases to work well. I show that, with the

proper modeling choices, we can greatly improve the performance and usefulness of

these models in practice.
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Chapter 2

Graph Representation

Property prediction relies on having a robust representation of the graph. The typical

models used are named Graph Neural Networks (GNN), which use iterative aggre-

gation to learn the important features from the input molecular graphs. The input

featurization often only include the most primitive features such as atom and bond

types. This is a stark departure to prior QSAR methods that utilizes hand-engineered

features. However, the typical GNN architecture that relies on local aggregation op-

erations can often miss higher-order graph information. In the context of molecular

problems, locality can prove myopic, as longer-range dependencies are important for

many biological prediction targets. To remedy this, we propose Path-Augmented

Graph Transformer Networks (PAGTN) that are explicitly built on longer-range

dependencies in graph-structured data. Our model leverages the widely-successful

transformer architecture to augment traditional graph neural networks.

2.1 Graph Neural Networks

Graph Convolution Networks (GCN) have successfully been applied to molecular

graph datasets [31, 71, 95, 65]. These “message-passing" algorithms exploit the fea-

ture locality of graphs through the usage of convolution operations [44]. However, the

convolution operator aggregates only local information, so long-range dependencies

are naturally difficult for these models to learn. In molecular graphs, many infor-
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mative structures are characterized by the paths between nodes. We propose the

Path-Augmented Graph Transformer Network (PAGTN) model that utilizes these

path features in global attention layers, resulting in a richer, more expressive model.

Specifically, our model learns a better representation of the graph in the following

ways:

Long-range dependencies In GCNs, long-range dependencies take many convo-

lution layers to learn, because feature aggregation happen only within the immediate

neighborhoods of each node. For large enough graphs, GCNs may fail to capture

these long-range dependencies entirely. Our PAGTN model can more easily capture

these dependencies because every node attends to all other nodes in the graph.

Substructures In graph problems, it is imperative for a model to pick up the

important substructures in the graph. GCN models necessitate several layers to

propagate information and learn these substructures. The advantage of our model is

that this interaction can be learned within a single layer.

Transformer architectures have triumphed over traditional recurrent and convolu-

tion models in many natural language tasks such as machine translation [131]. While

recurrent and convolution models often incorporate a single attention layer at the top

[88], it has been shown that using only these globally-connected self-attention layers

learns a much more powerful model.

Attention models on graphs have been explored in previous works. Primarily, the

Graph Attention Network [133] and its variants [48, 148, 93] aggregates information

within local neighborhoods by using attention. We emphasize that our model focuses

on the global connectivity of the nodes. Moreover, our model does not use any

complex attention mechanism across layers, but rather provides a simple framework

using the path features that works well empirically. Another proposed model, Graph

Transformer [80], uses global attention layers, but that model does not extend to

graphs in which edge and path features are important.

We test our PAGTN model against the GCN model on 7 benchmark moelcular

property prediction tasks ranging from quantum chemistry (QM7, QM8, QM9), phys-

ical chemistry (ESOL, Lipophilictiy) and biochemistry (BACE, BBBP) [139]. Each
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dataset focuses on a different property of the molecule, making composition of these

datasets highly variable. Nevertheless, our model consistently shows improved per-

formance against the GCN baseline, demonstrating that our model can learn more

powerful representations.

2.2 Path-Augmented Transformer Network

In this section, we first briefly overview the Transformer model. Then, we will go

over our contributions, describing our variant of the Transformer model that uses

path features to learn expressive representations of graphs.

The Transformer model [131], in contrast to traditional recurrent or convolution

architectures, consists of fully-connected attention layers. These models use multi-

head self-attention, which confers more flexibility for the attention module. The

attention layers are connected by position-wise feed-forward layers, with residual links

and layer normalization present at each layer.

The transformer model itself has no direct notion of relative position, so it uses po-

sitional encodings in the form of sinusoidal functions. However, this form of positional

encoding is not possible in graphs, because there is no longer a natural sequential or-

dering of the nodes. We introduce path features, which represent how two nodes

are connected. These path features influence the attention module in the network,

so that the node embeddings are globally aware. We first explain how we construct

these path features, then how they are incorporated into the attention framework.

We compute the path features between each node pair by taking the shortest path

between them. Due to cycles on graphs, these shortest paths may not be unique. For

molecular graphs, these cycles arise due to ring substructures on the graphs. Because

the edge features are consistent within a single ring or cycle, multiple paths are almost

always equivalent feature-wise; therefore, this approach is sensible for our model.

For efficiency, we truncate the path features between nodes up to a distance 𝑑

apart. We make the assumption that as the distance between two nodes increases,

the connectivity between the two nodes matter less. Therefore, this constraint puts
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Figure 2-1: Illustration of graph propagation properties for GCN (left) and our
PAGTN model (right). For the GCN, the source attention node (green) only attends
to its immediate neighbors (blue). In the PAGTN, the source attention node (green)
has connectivity information in the form of path features for its local neighborhood,
𝑑 = 2, (blue), but also attends to all other nodes (yellow).

a natural regularizer on the model. So while each node attend to all other nodes in

the graph, that node only has rich edge features for a local neighborhood.

The path features between two nodes 𝑖 → 𝑗 is a concantenation of the following

three components:

Edge features: are constructed by concatenating the individual bond features of

the shortest path between 𝑖→ 𝑗. Let 𝑏𝑘 be the bond features of the 𝑘th bond along

the path, which includes the bond type, conjugacy and ring membership (whether or

not that bond is in a ring) features. Then, the edge features are just the concatenation

of the features: [𝑏1; 𝑏2; ...; 𝑏𝑛]. Note that if 𝑛 > 𝑑, we zero out these features, and if

𝑛 < 𝑑, we pad the feature vector with zeros.

Distance: is a one-hot feature of the distance between two nodes 𝑖→ 𝑗, truncated

by 𝑑.

Ring Membership: is a one-hot feature denoting whether the node 𝑖 and node

𝑗 are in the same ring. For molecular graphs, we find that it’s also helpful to include

one-hot features for specific rings such as five/six-membered aromatic rings. Note

that this is distinct from the bond ring membership features which indicates whether

a particular bond is part of a ring.

A comparison of the information propagation properties of the network layers
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is illustrated in Figure fig. 2-1. In regular GCNs, only the direct neighborhood is

impacted–which can require many layers of computation to learn from the graph. In

our PAGTN model, every node is globally connected, which makes learning complex

dependencies easier.

Although transformer models normally use scaled dot-product attention, we found

in our experiments that an additive form of attention was easier to train and resulted

in better performance. One way we deviate from standard self-attention modules is

that we exclude the source node when computing attention for that node. The residual

links at each layer grounds the learned embedding at each layer to be representative

of the original input node.

Define x = (𝑥1, 𝑥2, ..., 𝑥𝑛) ∈ R𝑛×𝐹𝑛 as a matrix of the input node features, where

𝑛 is the number of nodes and 𝐹𝑛 is the number of node features. Similarly, let

p = (𝑝1,1, 𝑝1,2...𝑝𝑛,𝑛) ∈ R𝑛×𝑛×𝐹𝑝 be a matrix of the input pairwise path features where

𝐹𝑝 is the number of path features.

At each layer, we update the node features by computing a weighted average

using learned attention weights. Let h𝑙 = (ℎ𝑙
1, ℎ

𝑙
2, ..., ℎ

𝑙
𝑛) ∈ R𝑛×𝐹𝑚 represent the node

features at layer 𝑙, where 𝐹𝑚 is the number of model features. Note that the elements

of h0 are the linearly transformed input features (h0 = 𝑊xT). We compute 𝑠𝑙𝑖,𝑗, the

attention score of node 𝑖→ 𝑗, as:

𝑠𝑙𝑖,𝑗 = 𝑊 𝑆2

[︁
LeakyReLU

(︁
𝑊 𝑆1 [ℎ𝑙−1

𝑖 ;ℎ𝑙−1
𝑗 ; 𝑝𝑖,𝑗]

)︁]︁
(2.1)

The attention probabilities 𝑎𝑖,𝑗 are calculated as a softmax over the attention

scores. As mentioned earlier, we exclude the source node itself when computing the

attention probabilities.

𝛼𝑙
𝑖,𝑗 = softmax(𝑠𝑙𝑖,𝑗) =

exp(𝑠𝑙𝑖,𝑗)∑︀
𝑗′ ̸=𝑖 exp(𝑠

𝑙
𝑖,𝑗′)

(2.2)

Using attention probabilities, we can compute a weighted average over the node

features. Since we note the importance of path features in graphs, we define the

output features to be a function of both node and path features. Here, 𝜎 is some
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non-linear function (we use ReLU for our experiments).

ℎ𝑙
𝑖 = 𝜎

(︀
𝑊𝐻2ℎ𝑙−1

𝑖 +
∑︁
𝑗 ̸=𝑖

𝛼𝑙
𝑖,𝑗𝑊

𝐻1 [ℎ𝑙−1
𝑗 ; 𝑝𝑖,𝑗]

)︀
(2.3)

As introduced in [131], multi-head attention can often benefit the model by al-

lowing it more easily to attend to different aspects of the input data. If we split the

attention into 𝐾 heads, we can define the update rule for ℎ𝑙
𝑖 as a function of the

embeddings associated with individual heads ℎ𝑙,𝑘
𝑖 :

ℎ𝑙
𝑖 =

⃦⃦⃦
𝑘
𝜎
(︀
𝑊𝐻2,𝑘ℎ𝑙−1,𝑘

𝑖 +
∑︁
𝑗 ̸=𝑖

𝛼𝑙,𝑘
𝑖,𝑗𝑊

𝐻1,𝑘[ℎ𝑙−1,𝑘
𝑗 ; 𝑝𝑖,𝑗]

)︀
(2.4)

Here, ‖ is the concatenation operator. Empirically, we find that using multi-head

attention helps on some tasks, but not on all tasks.

Since we are interested in property prediction tasks for the molecule as a whole, we

compute a molecule embedding ℎ𝑀 by aggregating the individual node embeddings.

Here, we add a residual link to the input features, x, of the network.

ℎ𝑀 =
∑︁
𝑖

𝜎
(︁
𝑊𝑀 [ℎ𝐿

𝑖 ;𝑥𝑖]
)︁

(2.5)

We choose the sum operator to aggregate the feature embeddings, which has higher

expressive power than other classic operators [142]. The target property is predicted

using a 1-layer MLP with ℎ𝑀 as input.

2.3 Property Prediction Experiments

We test our model on 7 benchmark property prediction tasks, including quantum

mechanics (QM7, QM8, QM9), physical chemistry (ESOL, Lipophilicity) and bio-

chemistry (BACE, BBBP) [139].

We split each dataset into 10 different folds of 80:10:10 (train:validation:test)

splits, and record the average performance over the folds using the appropriate mea-

sure for each dataset. Since these datasets feature markedly different properties, we
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Table 2.1: Results comparing our PAGTN model to various baselines. The metrics
used were MAE for the quantum mechanics datasets (QM7, QM8, QM9), RMSE for
the physical chemistry datasets (ESOL, Lipophilicity), and AUC for the biochem-
istry datasets (BACE, BBBP). The bold numbers represent the model with the best
performance.

Data set # Data Metric MolNet GCN PAGTN (Local) PAGTN (Global)

QM7 6,830 MAE –1 52.4 ± 2.8 48.9 ± 3.4 47.8 ± 3.0
QM8 21,786 MAE .0143 .0105 ± .0003 .0108 ± .0003 .0102 ± .0003
QM9 133,885 MAE 2.35 2.20 ± .03 2.10 ± .04 2.07 ± .05

ESOL 1,128 RMSE .580 .587 ± .05 .592 ± .06 .554 ± .06
Lipo 4,200 RMSE .655 .578 ± .05 .592 ± .05 .572 ± .04

BACE 1,513 AUC .867 .878 ± .02 .876 ± .02 .880 ± .01
BBBP 2,039 AUC .729 .907 ± .03 .898 ± .04 .913 ± .03

tune the hyperparameters of the model for individual datasets. We compare our

transformer to several baselines, which we explain as follows.

MolNet Molecule Net [139] tested many graph-based deep learning methods as

well as more conventional methods on these property prediction datasets. We use

their top performing model for each dataset.

GCN This is a traditional graph convolution model, and here we use a similar

model to [65]. We find that this model achieves very competitive results compared

MolNet (which itself uses many different graph-based convolution models), and there-

fore is a fair baseline. GCN models can have a self-attention layer at the top, but we

find empirically that this often hurts performance so we do not include this attention

layer in our baseline.

PAGTN (Local) We include a variant of our PAGTN model, which does not

attend to nodes for which there are no path features. That is, the model masks out

nodes that are further than 𝑑 from the source attention node. We include this baseline

to show that global attention does indeed improve performance.

Our proposed model is dubbed the PAGTN (Global), which attends globally

to all nodes.

The results of the property prediction tasks can be seen from Table 2.1. We first
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Table 2.2: Results comparing the GCN and the PAGTN (Global) models on a syn-
thetic ring membership prediction task, which is to test whether or not two nodes are
in the same ring on the graph. GCN does cannot always predict this property well,
while the PAGTN can easily incorporate these features into the model.

Model Accuracy AUC

GCN 91.6 96.5
PAGTN (Global) 97.8 99.8

see that the GCN model is very comparable to those of MolNet [139]. And compared

to the GCN model, our PAGTN model achieves surperior performance in all 7 of

these property prediction tasks, illustrating the broad representational power of the

model. Furthermore, we see from the local PAGTN model that by attending globally

rather than restricting to the local neighborhood, we always see an improvement in

performance. This reveals that the global attention does indeed help the model.

To help elucidate why the PAGTN formulation is better than that of GCN, we

turn to a synthetic task. We note that certain properties such as ring membership can

prove difficult for regular graph convolution networks. To test this observation, and

to demonstrate the effectiveness of our PAGTN model, we create a synthetic dataset

by choosing a subset of 5,769 molecules from the property prediction datasets that

have at least 2 rings. For each molecule, we randomly choose 5 pairs of atoms that

are in the same ring, and 5 pairs of atoms that are in different rings. For atoms in

fused ring systems, we count two atoms in the same ring if they are in the smallest

possible ring system.

From Table 2.2, we see that the GCN fails to perfectly predict ring membership.

This is not surprising as the convolution operation has to learn to disambiguate

features of nodes in same and different rings. These subtle but important graph

features are imperative for models to fully capture the representation of the graph.

Our PAGTN naturally solves this issue, since we can incorporate these features as a

part of the network, whereas it is a lot more difficult to incorporate these features in

the local convolution model. Note that the PAGTN still does not solve the problem
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perfectly, and this is due to the fact that in highly symmetrical graphs, multiple nodes

are equivalent which leads to ambiguous ring membership as see from Figure 2-2.

Figure 2-2: The two green-circled atoms are completely symmetric, so their output
feature embeddings are equivalent. Since the ring membership prediction is made by
aggregating pairwise node features, it is impossible to tell whether any other atom is
in the same or different ring from these two atoms.

2.4 Summary

Here, I introduced our the PAGTN model that exploits the connectivity structure

of the data in its global attention mechanisms. Through the path features that

we engineer into model’s attention layers, our model better captures the complex

structures of graphs compared to GCNs. On 7 different chemical property prediction

tasks, we have shown that our PAGTN model can outperform traditional GCNs. This

is one demonstration that we need the correct inductive biases in order to achieve

better performance for molecular problems.
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Chapter 3

Prototype Learning using Optimal

Transport

When chemists reason over molecules, they are rarely doing so in isolation. In fact,

chemists often reason about molecules in the context of their repository of knowl-

edge about other familiar molecules. Here, we want to diverge from the traditional

paradigm of molecular representation, and instead suggest a new modeling perspec-

tive that better captures how we think about molecules in practice.

In fact, current graph neural network (GNN) architectures naively average or sum

node embeddings into an aggregated graph representation—potentially losing struc-

tural or semantic information. We here introduce OT-GNN, a model that computes

graph embeddings using parametric prototypes that highlight key facets of different

graph aspects. Towards this goal, we successfully combine optimal transport (OT)

with parametric graph models. Graph representations are obtained from Wasserstein

distances between the set of GNN node embeddings and “prototype” point clouds as

free parameters. Empirically, we address an inherent collapse optimization issue by

proposing a noise contrastive regularizer to steer the model towards truly exploit-

ing the OT geometry. Finally, we outperform popular methods on several molecular

property prediction tasks, while exhibiting smoother graph representations, and we

show that our new way of reasoning about molecules is both well-motivated and

interpretable.
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3.1 Prototype Learning and Optimal Transport

Recently, there has been considerable interest in developing learning algorithms for

structured data such as graphs. For example, molecular property prediction has

many applications in chemistry and drug discovery [144, 129]. Historically, graphs

were decomposed into features such as molecular fingerprints, or turned into non-

parametric graph kernels [136, 120]. More recently, learned representations via graph

neural networks (GNNs) have achieved state-of-the-art on graph prediction tasks

[32, 27, 72, 144].

Despite these successes, GNNs are often underutilized in whole graph prediction

tasks such as molecule property prediction. Specifically, GNN node embeddings are

typically aggregated via simple operations such as a sum or average, turning the

molecule into a single vector prior to classification or regression. As a result, some of

the information naturally extracted by node embeddings may be lost.

Departing from this simple aggregation step, [128] proposed a kernel function

over graphs by directly comparing non-parametric node embeddings as point clouds

through optimal transport (Wasserstein distance). Their non-parametric model yields

better empirical performance over popular graph kernels, but this idea hasn’t been

extended to the more challenging parametric case where optimization difficulties have

to be reconciled with the combinatorial aspects of OT solvers.

Motivated by these observations and drawing inspiration from prior work on pro-

totype learning, we introduce a new class of GNNs where the key representational

step consists of comparing each input graph to a set of abstract prototypes (fig. 3-1).

Our desire is to learn prototypical graphs and represent data by some form of distance

(OT based) to these prototypical graphs; however, for the OT distance computation

it suffices to directly learn the point cloud that represents each prototype, so learning

a graph structure (which would be difficult) is not necessary. In short, these proto-

types play the role of basis functions and are stored as point clouds as if they were

encoded from real graphs. Each input graph is first encoded into a set of node em-

beddings using any existing GNN architecture. The resulting embedding point cloud
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Figure 3-1: Our OT-GNN prototype model computes graph embeddings from Wasser-
stein distances between (a) the set of GNN node embeddings and (b) prototype em-
bedding sets. These distances are then used as the molecular representation (c) for
supervised tasks, e.g. property prediction. We assume that a few prototypes, e.g.
some functional groups, highlight key facets or structural features of graphs relevant
to a particular downstream task at hand. We express graphs by relating them to
these abstract prototypes represented as free point cloud parameters.

is then compared to the prototype embedding sets, where the distance between two

point clouds is measured by their Wasserstein distance. The prototypes as abstract

basis functions can be understood as keys that highlight property values associated

with different graph structural features. In contrast to previous kernel methods, the

prototypes are learned together with the GNN parameters in an end-to-end manner.

Our notion of prototypes is inspired from the vast prior work on prototype learn-

ing. In our case, prototypes are not required to be the mean of a cluster of data,

but instead they are entities living in the data embedding space that capture helpful

information for the task under consideration. The closest analogy are the centers

of radial basis function networks [18, 106], but we also inspire from learning vector

quantization approaches [74] and prototypical networks [124].

Our model improves upon traditional aggregation by explicitly tapping into the

full set of node embeddings without collapsing them first to a single vector. We

theoretically prove that, unlike standard GNN aggregation, our model defines a class

of set functions that is a universal approximator.

Introducing prototype points clouds as free parameters trained using combinato-
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rial optimal transport solvers creates a challenging optimization problem. Indeed, as

the models are trained end-to-end, the primary signal is initially available only in

aggregate form. If trained as is, the prototypes often collapse to single points, reduc-

ing the Wasserstein distance between point clouds to Euclidean comparisons of their

means. To counter this effect, we introduce a contrastive regularizer which effectively

prevents the model from collapsing, and we demonstrate its merits empirically.

Our contributions. First, we introduce an efficiently trainable class of graph

neural networks enhanced with OT primitives for computing graph representations

based on relations with abstract prototypes. Second, we train parametric graph mod-

els together with combinatorial OT distances, despite optimization difficulties. A key

element is our noise contrastive regularizer that prevents the model from collapsing

back to standard summation, thus fully exploiting the OT geometry. Third, we pro-

vide a theoretical justification of the increased representational power compared to

the standard GNN aggregation method. Finally, our model shows consistent empir-

ical improvements over previous state-of-the-art on molecular datasets, yielding also

smoother graph embedding spaces.

3.2 Preliminaries

First we go over some related work, followed by some preliminaries on basic graph

neural network architecture applicable to our model and optimal transport ideas.

Related Work on Graph Neural Networks. Graph Neural Networks were

introduced by [49] and [112] as a form of recurrent neural networks. Graph con-

volutional networks (GCN) appeared later on in various forms. [32, 4] proposed a

propagation rule inspired from convolution and diffusion, but these methods do not

scale to graphs with either large degree distribution or node cardinality. [96] defined

a GCN as a 1D convolution on a chosen node ordering. [71] also used graph convolu-

tions to generate high quality molecular fingerprints. Efficient spectral methods were

proposed by [12, 27]. [72] simplified their propagation rule, motivated from spectral

graph theory [54]. Different such architectures were later unified into the message
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passing neural networks (MPNN) framework by [45]. A directed MPNN variant was

later used to improve state-of-the-art in molecular property prediction on a wide va-

riety of datasets by [144]. Inspired by DeepSets [147], [143] propose a simplified,

theoretically powerful, GCN architecture. Other recent approaches modify the sum-

aggregation of node embeddings in the GCN architecture to preserve more information

[75, 103]. In this category there is also the recently growing class of hierarchical graph

pooling methods which typically either use deterministic and non-differentiable node

clustering [27, 61], or differentiable pooling [145, 100, 40]. However, these methods

are still strugling with small labelled graphs such as molecules where global and local

node interconnections cannot be easily cast as a hierarchical interaction. Other recent

geometry-inspired GNNs include adaptations to non-Euclidean spaces [86, 17, 5, 36],

and different metric learning on graphs [107, 6, 80], but we emphasize our novel

direction in learning prototype point clouds.

Related Work on Prototype Learning. Learning prototypes to solve machine

learning tasks started to become popular with the introducton of generalized learning

vector quantization (GLVQ) methods [74, 110]. These approaches perform classifica-

tion by assigning the class of the closest neighbor prototype to each data point, where

Euclidean distance function was the typical choice. Each class has a prototype set

that is jointly optimized such that the closest wrong prototype is moved away, while

the correct prototype is brought closer. Several extensions [53, 114, 13] introduce fea-

ture weights and parameterized input transformations to leverage more flexible and

adaptive metric spaces. Nevertheless, such models are limited to classification tasks

and might suffer from extreme gradient sparsity.

Closer to our work are the radial basis function (RBF) networks [18] that perform

classification/regression based on RBF kernel similarities to prototypes. One such

similarity vector is used with a shared linear output layer to obtain the final prediction

per each data point. Prototypes are typically set in an unsupervised fashion, e.g. via

k-means clustering, or using the Orthogonal Least Square Learning algorithm, unlike

being learned using backpropagation as in our case.

Combining non-parametric kernel methods with the flexibility of deep learning
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models have resulted in more expressive and scalable similarity functions, conveniently

trained with backpropagation and Gaussian processes [138]. Learning parametric

data embeddings and prototypes was also investigated for few-shot and zero-shot

classification scenarios [124]. Last, [29] use distances to prototypes as opposed to p.d.

kernels.

In contrast with the above line of work, our research focuses on learning para-

metric prototypes for graphs trained jointly with graph embedding functions for both

graph classification and regression problems. Prototypes are modeled as sets (point

clouds) of embeddings, while graphs are represented by sets of unaggregated node

embeddings obtained using graph neural network models. Disimilarities between pro-

totypes and graph embeddings are then quantified via set distances computed using

optimal transport. Additional challenges arise due to the combinatorial nature of

the Wasserstein distances between sets, hence our discussion on introducing the noise

contrastive regularizer.

Directed Message Passing Neural Networks (D-MPNN) We briefly remind

here of the simplified D-MPNN [25] architecture which was adapted for state-of-the-

art molecular property prediction by [144]. This model takes as input a directed

graph 𝐺 = (𝑉,𝐸), with node and edge features denoted by x𝑣 and e𝑣𝑤 respectively,

for 𝑣, 𝑤 in the vertex set 𝑉 and 𝑣 → 𝑤 in the edge set 𝐸. The parameters of

D-MPNN are the matrices {W𝑖,W𝑚,W𝑜}. It keeps track of messages m𝑡
𝑣𝑤 and

hidden states h𝑡
𝑣𝑤 for each step 𝑡, defined as follows. An initial hidden state is set to

h0
𝑣𝑤 := 𝑅𝑒𝐿𝑈(W𝑖cat(x𝑣, e𝑣𝑤)) where “cat” denotes concatenation. Then, the updates

are:

m𝑡+1
𝑣𝑤 =

∑︁
𝑘∈𝑁(𝑣)∖{𝑤}

h𝑡
𝑘𝑣, h𝑡+1

𝑣𝑤 = 𝑅𝑒𝐿𝑈(h0
𝑣𝑤 +W𝑚m

𝑡+1
𝑣𝑤 ) (3.1)

where 𝑁(𝑣) = {𝑘 ∈ 𝑉 |(𝑘, 𝑣) ∈ 𝐸} denotes 𝑣’s incoming neighbors. After 𝑇 steps of
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message passing, node embeddings are obtained by summing edge embeddings:

m𝑣 =
∑︁

𝑤∈𝑁(𝑣)

h𝑇
𝑣𝑤, h𝑣 = 𝑅𝑒𝐿𝑈(W𝑜cat(x𝑣,m𝑣)). (3.2)

A final graph embedding is then obtained as h =
∑︀

𝑣∈𝑉 h𝑣, which is usually fed to a

multilayer perceptron (MLP) for classification or regression.

Figure 3-2: We illustrate, for a given 2D point cloud, the optimal transport plan
obtained from minimizing the Wasserstein costs; 𝑐(·, ·) denotes the Euclidean distance.
A higher dotted-line thickness illustrates a greater mass transport.

Optimal Transport Geometry Optimal Transport [104] is a mathematical

framework that defines distances or similarities between objects such as probabil-

ity distributions, either discrete or continuous, as the cost of an optimal transport

plan from one to the other.

Wasserstein distance for point clouds. Let a point cloud X = {x𝑖}𝑛𝑖=1 of

size 𝑛 be a set of 𝑛 points x𝑖 ∈ R𝑑. Given point clouds X,Y of respective sizes 𝑛,𝑚,

a transport plan (or coupling) is a matrix T of size 𝑛 ×𝑚 with entries in [0, 1],

satisfying the two following marginal constraints : T1𝑚 = 1
𝑛
1𝑛 and T𝑇1𝑛 = 1

𝑚
1𝑚.

Intuitively, the marginal constraints mean that T preserves the mass from X to Y.

We denote the set of such couplings as 𝒞XY.

Given a cost function 𝑐 on R𝑑 ×R𝑑, its associated Wasserstein discrepancy is

defined as

𝒲(X,Y) = min
T∈𝒞XY

∑︁
𝑖𝑗

𝑇𝑖𝑗𝑐(x𝑖,y𝑗). (3.3)
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3.3 Optimal Transport Neural Networks

Reformulating standard architectures. The final graph embedding h =∑︀
𝑣∈𝑉 h𝑣 obtained by aggregating node embeddings is usually fed to a multilayer per-

ceptron (MLP) performing a matrix-multiplication whose i-th component is (Rh)𝑖 =

⟨r𝑖,h⟩, where r𝑖 is the i-th row of matrix R. Replacing ⟨·, ·⟩ by a distance/kernel

𝑘(·, ·) allows the processing of more general graph representations than just vectors

in R𝑑, such as point clouds or adjacency tensors.

From a single point to a point cloud. We propose to replace the aggregated

graph embedding h =
∑︀

𝑣∈𝑉 h𝑣 by the point cloud (of unaggregated node embeddings)

H = {h𝑣}𝑣∈𝑉 , and the inner-products ⟨h, r𝑖⟩ by the below written Wasserstein

discrepancy :

𝒲(H,Q𝑖) := min
T∈𝒞HQ𝑖

∑︁
𝑣𝑗

𝑇𝑣𝑗𝑐(h𝑣,q
𝑗
𝑖 ), (3.4)

where Q𝑖 = {q𝑗
𝑖}𝑗∈{1,...,𝑁},∀𝑖 ∈ {1, . . . ,𝑀} represent 𝑀 prototype point clouds

each being represented as a set of 𝑁 embeddings as free trainable parameters, and

the cost is chosen as 𝑐 = ‖ ·−·‖22 or 𝑐 = −⟨·, ·⟩. Note that both options yield identical

optimal transport plans.

Greater representational power. We formulate mathematically that this

kernel has a strictly greater representational power than the kernel corresponding to

standard inner-product on top of a sum aggregation, to distinguish between different

point clouds.

Final architecture. Finally, the vector of all Wasserstein distances in eq. (3.4)

becomes the input to a final MLP with a single scalar as output. This can then be

used as the prediction for various downstream tasks, depicted in ??.

Contrastive Regularization What would happen to 𝒲(H,Q𝑖) if all points q𝑗
𝑖

belonging to point cloud Q𝑖 would collapse to the same point q𝑖? All transport plans

would yield the same cost, giving for 𝑐 = −⟨·, ·⟩:

𝒲(H,Q𝑖) = −
∑︁
𝑣𝑗

𝑇𝑣𝑗⟨h𝑣,q
𝑗
𝑖 ⟩ = −⟨h,q𝑖/|𝑉 |⟩. (3.5)
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(a) No regularization (b) Using regularization (0.1)

Figure 3-3: 2D embeddings of prototypes and of a real molecule with and without
contrastive regularization for same random seed runs on the ESOL dataset. Both
prototypes and real molecule point clouds tend to cluster when no regularization is
used (left). For instance, the real molecule point cloud (red triangle) is much more
dispersed when regularization is applied (right) which is desirable in order to interact
with as many embeddings of each prototype as possible.

In this scenario, our proposition would simply over-parametrize the standard Eu-

clidean model.

Empirically, OT-enhanced GNNs with only the Wasserstein component sometimes

perform similarly to the Euclidean baseline in both train and validation settings, in

spite of its greater representational power. Further investigation revealed that the

Wasserstein model would naturally displace the points in each of its prototype point

clouds in such a way that the optimal transport plan T obtained by maximizing∑︀
𝑣𝑗 𝑇𝑣𝑗⟨h𝑣,q

𝑗
𝑖 ⟩ was not discriminative, i.e. many other transports would yield a

similar Wasserstein cost. Indeed, as shown in eq. (3.5), if each point cloud collapses

to its mean, then the Wasserstein geometry collaspses to Euclidean geometry. In this

scenario, any transport plan yields the same Wasserstein cost. However, partial or

local collapses are also possible and would still result in non-discriminative transport

plans, also being undesirable.

Intuitively, the existence of multiple optimal transport plans implies that the

same prototype can be representative for distinct parts of the molecule. However,

we desire that different prototypes disentangle different factors of variation such as

different functional groups.
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Contrastive regularization. To address this difficulty, we add a regularizer

which encourages the model to displace its prototype point clouds such that the

optimal transport plans would be discriminative against chosen contrastive transport

plans. Namely, consider a point cloud Y of node embeddings and let T𝑖 be an

optimal transport plan obtained in the computation of 𝒲(Y,Q𝑖). For each T𝑖,

we then build a set 𝑁𝑒𝑔(T𝑖) ⊂ 𝒞YQ𝑖
of noisy/contrastive transports. If we denote

by 𝒲T(X,Y) :=
∑︀

𝑘𝑙 𝑇𝑘𝑙𝑐(x𝑘,y𝑙) the Wasserstein cost obtained for the particular

transport T, then our contrastive regularization consists in maximizing the term:

∑︁
𝑖

log

(︃
𝑒−𝒲T𝑖 (Y,Q𝑖)

𝑒−𝒲T𝑖 (Y,Q𝑖) +
∑︀

T∈𝑁𝑒𝑔(T𝑖) 𝑒
−𝒲T(Y,Q𝑖)

)︃
, (3.6)

which can be interpreted as the log-likelihood that the correct transport T𝑖 be (as

it should) a better minimizer of 𝒲T(Y,Q𝑖) than its negative samples. This can be

considered as an approximation of log(Pr(T𝑖 | Y,Q𝑖)), where the partition function

is approximated by our selection of negative examples, as done e.g. by [94]. Its effect

is shown in fig. 3-3.

The selection of negative examples should reflect the trade-off: (i) not be too

large, for computational efficiency while (ii) containing sufficiently meaningful and

challenging contrastive samples. Details about our choice of contrastive samples are

in the experiments section. Note that replacing the set 𝑁𝑒𝑔(T𝑖) with a singleton {T}

for a contrastive random variable T lets us rewrite (eq. (3.6)) as1 ∑︀
𝑖 log 𝜎(𝒲T−𝒲T𝑖),

reminiscent of noise contrastive estimation [52].

One may speculate that it was locally easier for the model to extract valuable infor-

mation if it would behave like the Euclidean component, preventing it from exploring

other roads of the optimization landscape. To better understand this situation, con-

sider the scenario in which a subset of points in a prototype point cloud “collapses",

i.e. points become close to each other (see fig. 3-3), thus sharing similar distances to

all the node embeddings of real input graphs. The submatrix of the optimal transport

matrix corresponding to these collapsed points can be equally replaced by any other

1where 𝜎(·) is the sigmoid function.
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submatrix with the same marginals (i.e. same two vectors obtained by summing

rows or columns), meaning that the optimal transport matrix is not discriminative.

In general, we want to avoid any two rows or columns in the Wasserstein cost matrix

being proportional.

An optimization difficulty. An additional problem of point collapsing is that it is

a non-escaping situation when using gradient-based learning methods. The reason is

that gradients of all these collapsed points would become and remain identical, thus

nothing will encourage them to “separate" in the future.

Total versus local collapse. Total collapse of all points in a point cloud to its

mean is not the only possible collapse case. We note that the collapses are, in practice,

mostly local, i.e. some clusters of the point cloud collapse, not the entire point cloud.

We argue that this is still a weakness compared to fully uncollapsed point clouds due

to the resulting non-discriminative transport plans and due to optimization difficulties

discussed above.

Our experiments were conducted with ten negative samples for each correct trans-

port plan. Five of them were obtained by initializing a matrix with uniform i.i.d

entries from [0, 10) and performing around five Sinkhorn iterations [24] in order to

make the matrix satisfy the marginal constraints. The other five were obtained by

randomly permuting the columns of the correct transport plan. The latter choice has

the desirable effect of penalizing the points of a prototype point cloud Q𝑖 to collapse

onto the same point. Indeed, the rows of T𝑖 ∈ 𝒞HQ𝑖
index points in H, while its

columns index points in Q𝑖.

Complexity Backpropagating gradients through optimal transport (OT) has

been the subject of recent research investigations: [43] explain how to unroll and

differentiate through the Sinkhorn procedure solving OT, which was extended by

[113] to Wasserstein barycenters. However, more recently, [141] proposed to simply

invoke the envelop theorem [2] to support the idea of keeping the optimal transport

plan fixed during the back-propagation of gradients through Wasserstein distances.
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For the sake of simplicity and training stability, we resort to the latter procedure:

keeping T fixed during back-propagation.

In our experiments, we used the Python Optimal Transport (POT) library [37].

We noticed empirically that the Earth Mover Distance (EMD) solver yielded faster

and more accurate solutions than Sinkhorn for our datasets, because the graphs and

point clouds were small enough (< 30 elements). As such, we our final models use

EMD. Significant speed up could potentially be obtained by rewritting the POT

library for it to solve OT in batches over GPUs. In our experiments, we ran all jobs

on CPUs.

3.4 Experiments

We experiment on 4 benchmark molecular property prediction datasets [144] includ-

ing both regression (ESOL, Lipophilicity) and classification (BACE, BBBP) tasks.

These datasets cover different complex chemical properties (e.g. ESOL - water sol-

ubility, LIPO - octanol/water distribution coefficient, BACE - inhibition of human

𝛽-secretase, BBBP - blood-brain barrier penetration).

Each dataset is split randomly 5 times into 80%:10%:10% train, validation and

test sets. For each of the 5 splits, we run each model 5 times to reduce the variance

in particular data splits (resulting in each model being run 25 times). We search

hyperparameters for each split of the data, and then take the average performance

over all the splits. The hyperparameters are separately searched for each data split, so

that the model performance is based on a completely unseen test set, and that there

is no data leakage across data splits. The models are trained for 150 epochs with early

stopping if the validation error has not improved in 50 epochs and a batch size of 16.

We train the models using the Adam optimizer with a learning rate of 5e-4. For the

prototype models, we use different learning rates for the GNN and the point clouds

(5e-4 and 5e-3 respectively), because empirically we find that the gradients are much

smaller for the point clouds. The molecular datasets used for experiments here are

small in size (varying from 1-4k data points), so this is a fair method of comparison,
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and is indeed what is done in other works on molecular property prediction

Fingerprint+MLP applies a MLP over the input features which are hashed graph

structures (called a molecular fingerprint). GIN is the Graph Isomorphism Network

from [143], which is a variant of a GNN. The original GIN does not account for

edge features, so we adapt their algorithm to our setting. Next, GAT is the Graph

Attention Network from [134], which uses multi-head attention layers to propagate

information. The original GAT model does not account for edge features, so we adapt

their algorithm to our setting.

Chemprop - D-MPNN [144] is a graph network that exhibits state-of-the-art

performance for molecular representation learning across multiple classification and

regression datasets. Empirically we find that this baseline is indeed the best per-

forming, and so is used as to obtain node embeddings in all our prototype models.

Additionally, for comparison to our methods, we also add several graph pooling base-

lines. We apply the graph pooling methods, SAG pooling and TopK pooling [40],

on top of the D-MPNN for fair comparison.

Different variants of our OT-GNN prototype model are described below:

ProtoW-L2/Dot is the model that treats point clouds as point sets, and computes

the Wasserstein distances to each point cloud (using either L2 distance or (minus)

dot product cost functions) as the molecular embedding. ProtoS-L2 is a special

case of ProtoW-L2, in which the point clouds have a single point and instead of

using Wasserstein distances, we just compute simple Euclidean distances between

the aggregated graph embedding and point clouds. Here, we omit using dot product

distances since such a model is mathematically equivalent to the GNN model.

We use the the POT library [37] to compute Wasserstein distances using the Earth

Movers Distance algorithm. We define the cost matrix by taking the pairwise L2 or

negative dot product distances. We fix the transport plan, and only back-propagate

through the cost matrix for computational efficiency. Additionally, to account for

the variable size of each input graph, we multiply the OT distance between two

point clouds by their respective sizes. We next delve into further discussions of our

experimental results.
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Models ESOL
(RMSE)

Lipo
(RMSE)

BACE
(AUC)

BBBP
(AUC)

B
as

el
in

es Fingerprint+MLP .922 ± .017 .885 ± .017 .870 ± .007 .911 ± .005

GIN .665 ± .026 .658 ± .019 .861 ± .013 .900 ± .014
GAT .654 ± .028 .808 ± .047 .860 ± .011 .888 ± .015
D-MPNN .635 ± .027 .646 ± .041 .865 ± .013 .915 ± .010
D-MPNN+SAG
Pool

.674 ± .034 .720 ± .039 .855 ± .015 .901 ± .034

D-MPNN+TopK
Pool

.673 ± .087 .675 ± .080 .860 ± .033 .912 ± .032

O
ur

s

ProtoS-L2 .611 ± .034 .580 ±
.016

.865 ± .010 .918 ± .009

ProtoW-Dot (no
reg.)

.608 ± .029 .637 ± .018 .867 ± .014 .919 ± .009

ProtoW-Dot .594 ±
.031

.629 ± .015 .871 ± .014 .919 ± .009

ProtoW-L2 (no
reg.)

.616 ± .028 .615 ± .025 .870 ± .012 .920 ± .010

ProtoW-L2 .605 ± .029 .604 ± .014 .873 ±
.015

.920 ±

.010

Table 3.1: Results on the property prediction datasets. Best model is in bold, second
best is underlined. Lower RMSE and higher AUC are better. Wasserstein models
are by default trained with contrastive regularization. GIN, GAT and D-MPNN use
summation pooling which outperforms max and mean pooling. SAG and TopK graph
pooling methods are also used with D-MPNN.
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(a) ESOL D-MPNN (b) ESOL ProtoW-L2

(c) LIPO D-MPNN (d) LIPO ProtoW-L2

Figure 3-4: 2D heatmaps of T-SNE projections of molecular embeddings (before the
last linear layer) w.r.t. their associated predicted labels on test molecules. Comparing
(a) vs (b) and (c) vs (d), we can observe a smoother space of our model compared to
the D-MPNN baseline.

Regression and Classification. Results are shown in table 3.1. Our prototype

models outperform popular GNN/D-MPNN baselines on all 4 property prediction

tasks. Moreover, the prototype models using Wasserstein distance (ProtoW-L2/Dot)

achieve better performance on 3 out of 4 of the datasets compared to the prototype

model that uses only Euclidean distances (ProtoS-L2). This indicates that Wasser-

stein distance confers greater discriminative power compared to traditional aggrega-

tion methods. We also find that the baseline pooling methods perform worse than the

D-MPNN, and we attribute this to the fact that these models were originally created

for large graphs networks without edge features, not for small molecular graphs.
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(a) ESOL D-MPNN (b) ESOL ProtoW-L2

Figure 3-5: Comparison of the correlation between graph embedding distances (X
axis) and label distances (Y axis) on the ESOL dataset.

Spearman 𝜌 Pearson 𝑟
D-MPNN .424 ± .029 .393 ± .049
ProtoS-L2 .561 ± .087 .414 ± .141
ProtoW-Dot .592 ± .150 .559 ± .216
ProtoW-L2 .815 ± .026 .828 ± .020

Figure 3-6: The Spearman and Pearson correlation coefficients on the ESOL dataset
for the D−MPNN and ProtoW-L2 model w.r.t. the pairwise difference in embedding
vectors and labels.

Noise Contrastive Regularizer. Without any constraints, the Wasserstein

prototype model will often collapse the set of points in a point cloud into a single

point. As mentioned in earlier, we use a contrastive regularizer to force the model

to meaningfully distribute point clouds in the embedding space. We show 2D em-

beddings in fig. 3-3, illustrating that without contrastive regularization, prototype

point clouds are often displaced close to their mean, while regularization forces them

to nicely scatter. Quantitative results in table 3.1 also highlight the benefit of this

regularization.

Learned Embedding Space. We further examine the learned embedding space

of the best baseline (i.e. D-MPNN) and our best Wasserstein model. We claim that

our models learn smoother latent representations. We compute the pairwise difference

in embedding vectors and the labels for each test data point on the ESOL dataset.

Then, we compute two measures of rank correlation, Spearman correlation coefficient
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(𝜌) and Pearson correlation coefficient (𝑟). This is reminiscent of evaluation tasks for

the correlation of word embedding similarity with human labels [89].

Our ProtoW-L2 achieves better 𝜌 and 𝑟 scores compared to the D-MPNN model

(fig. 3-6) indicating that our Wasserstein model constructs more meaningful embed-

dings with respect to the label distribution, which can be inferred also from fig. 3-5.

Our ProtoW-L2 model, trained to optimize distances in the embedding space, pro-

duces more meaningful representations with respect to the label of interest.

Moreover, as qualitatively shown in fig. 3-4, our model provides more robust molec-

ular embeddings compared to the baseline, in the following sense: we observe that a

small perturbation of a molecular embedding corresponds to a small change in pre-

dicted property value – a desirable phenomenon that holds rarely for the baseline

D-MPNN model. Our Proto-W-L2 model yields smoother heatmaps.

What types of molecules do prototypes capture ?

To better understand if the learned prototypes offer interpretability, we examined

the ProtoW-Dot model trained with NC regularization (weight 0.1). For each of the

10 learned prototypes, we computed the set of molecules in the test set that are

closer in terms of the corresponding Wasserstein distance to this prototype than to

any other prototype. While we noticed that one prototype is closest to the majority of

molecules, there are other prototypes that are more interpretable as shown in fig. 3-7.

3.5 Summary

We propose OT-GNN: one of the first parametric graph models that leverages

optimal transport to learn graph representations. It learns abstract prototypes as free

parametric point clouds that highlight different aspects of the graph. Empirically, we

outperform popular baselines in different molecular property prediction tasks, while

the learned representations also exhibit stronger correlation with the target labels.
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Figure 3-7: The closest molecules to some particular prototypes in terms of the
corresponding Wasserstein distance. One can observe that some prototypes are closer
to insoluble molecules containing rings (Prototype 2), while others prefer more soluble
molecules (Prototype 1).
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Chapter 4

Retrosynthesis

Deep learning techniques that are widely employed for traditional tasks like NLP and

vision do not directly transfer to the more complex structure of chemical data. Here,

we explore some more chemically-motivated methods for retrosynthesis prediction.

Specifically, we propose a new model for making generalizable and diverse retrosyn-

thetic reaction predictions. Given a target compound, the task is to predict the likely

chemical reactants to produce the target. This generative task can be framed as a

sequence-to-sequence problem by using the SMILES representations of the molecules.

Building on top of the popular Transformer architecture, we propose two novel pre-

training methods that construct relevant auxiliary tasks (plausible reactions) for our

problem. Furthermore, we incorporate a discrete latent variable model into the ar-

chitecture to encourage the model to produce a diverse set of alternative predictions.

On the 50k subset of reaction examples from the United States patent literature

(USPTO-50k) benchmark dataset, our model greatly improves performance over the

baseline, while also generating predictions that are more diverse.

4.1 Introduction

Retrosynthesis is a task crucial for material and drug manufacturing [22, 23] and

aims to predict which reactants are needed to generate a given target molecule as

the main product. For instance, fig. 4-1 demonstrates that the input molecule “[N-
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Figure 4-1: An example prediction task: on the left is the input target SMILES, and
on the right are the output reactants SMILES. The input is a single molecule, while
the output is a set of molecules separated by a period (“.”).

]=[N+]=NCc1ccc(SCCl)cc1”, expressed here as a SMILES string [137], can be gen-

erated using reactants “CSc1ccc(CN=[N+]=[N-])cc1” and “ClCCl”. For decades, this

task has been solved using template-based approaches [42, 111]. Templates encode

transformation rules as regular expressions operating on SMILES strings and are typ-

ically extracted directly from the available training reactions. The primary limitation

of such templates is coverage, i.e., it is possible that none of the templates applies to

a test molecule. In order to better generalize to newer or broader chemical spaces, re-

cently developed template-free approaches cast the problem as a sequence-to-sequence

prediction task. These approaches were first explored by [84] using LSTM models; the

current state-of-the-art performance on this task uses Transformer models [82, 70].

Out-of-the-box Transformers nevertheless do not effectively generalize to rare re-

actions. For instance, model accuracy drops by 25% on reactions with 10 or fewer

representative instances in the training set. 2 Another key issue is diversity. Manu-

facturing processes involve a number of additional criteria — such as green chemistry

(having low detrimental effects on the environment). It is therefore helpful to gener-

ate a diverse collection of alternative ways of synthesizing the given target molecule.

However, predicted reactions are unlikely to encompass multiple reaction classes (see

fig. 4-2) without additional guidance. This is because the training data only provides

2To compute a subset of the data with only rare reactions, we extracted all the templates from the
entire USPTO-50k dataset, and selected the templates that occured at most 10 times. The reactions
in the test set that have these templates constitute the rare reaction subset, which is around 400
examples.
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a single reactant set for each input target, even if this is not the only valid reaction

to synthesize the target.

We extend molecular Transformers to address both of these challenges. First,

we propose a novel pre-training approach to drive molecular representations to better

retain alternative reaction possibilities. Our approach is reminiscent of successful pre-

training schemes in natural language processing (NLP) applications [28]. However,

rather than using conventional token masking methods, we adopt chemically-relevant

auxiliary tasks. Each training instance presents a single way to decompose a target

molecule into its reactants. Here, we add alternative proxy decompositions for each

target molecule by either 1) randomly removing bond types that can possibly break

during reactions, or 2) transforming the target based on templates. While neither of

these two auxiliary tasks are guaranteed to construct valid chemical reactions, they

are closely related to the task of interest. Indeed, representations trained in this

manner provide useful initializations for the actual retrosynthesis problem.

To improve the diversity of predicted reactions, we incorporate latent variables

into the generation process. Specifically, we merge the Transformer architecture with

a discrete mixture over reactions. The role of the latent variable is to encode distinct

modes that can be related to underlying reaction classes. Even though the training

data only presents one reaction for each target molecule, our model learns to associate

Figure 4-2: For the input target compound shown on the left, three possible reactant
predictions are shown on the right. Prediction 1 suggestions a heterocycle formation
reaction, while Predictions 2 and 3 both suggest substitution reactions. The only
difference between the latter two is the halide functional group (Cl vs Br) highlighted
in red. They share similar chemical properties and thus provide no additional insights
for chemists.
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each reaction with a latent class, and in the process covers multiple reaction classes

across the training set. At test time, a diverse collection of reactions is then obtained

by collecting together predictions resulting from conditioning on each latent class.

Analogous mixture models have shown promise in generating diverse predictions in

natural language translation tasks [56, 119]. We demonstrate similar gains in the

chemical context.

We evaluate our model on the benchmark USPTO-50k dataset, and compare it

against state-of-the-art template-free baselines using the Transformer model. We

focus our evaluation on top-10 accuracy, because there are many equally valuable

reaction transformations for each input target, though only one is presented in the

data. Compared to the baseline, we achieve better performance overall, with over 13%

increase in top-10 accuracy for our best model. When we create a split of the data

based on different reaction templates (a task that any template-based model would

fail on), we similarly observe a performance increase for our model. Additionally,

we demonstrate that our model outputs exhibit significant diversity through both

quantitative and human evaluations.

Template-based Models Traditional methods for retrosynthetic reaction pre-

diction use template-based models. Templates, or rules, denote the exact atom and

bond changes for a chemical reaction. [20] applies these templates for a given target

compound based on similar reactions in the dataset. Going one step further, [117]

learns the associations between molecules and templates through a neural network.

[7] uses a hierarchical network to first predict the reaction group and then the cor-

rect template for that group. However, to have the flexibility to generalize beyond

extracted rules, we explore template-free generative models.

Molecule Generation There are two different approaches to generative tasks

for molecules, demonstrated through graph and SMILES representations. The graph-

generation problem has been explored in [81] as a node-by-node generation algorithm,

but this model does not guarantee the validity of the output chemical graph. [62, 68]

improves upon this method using a junction-tree encoder-decoder that forces the

outputs to be constrained in the valid chemical space; however, these models require
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complex, structured decoders. We focus on the generative task of SMILES string

representations of the molecules, which has been explored in [78] and [47].

Pre-training Pre-training methods have been shown to vastly improve the per-

formance of Transformer models in NLP tasks without additional data supervision.

[28] use a masked language modeling objective to help their model learn effective rep-

resentations for downstream tasks. Similar pre-training methods on molecules have

been explored by [58], where they mask out atoms in molecular graphs. Meanwhile,

our work does not use a masked objective, but instead creates pre-training tasks that

are relevant to the retrosynthesis prediction problem.

4.2 Models for Retrosynthesis Prediction

Given an input target molecule, the task of retrosynthetic reaction prediction is to

output likely reactants that can form the target product. Formally, we express a

molecule as a text string via its SMILES representation, and cast our task into a

sequence-to-sequence (seq2seq) prediction problem (example shown in fig. 4-1). For

this task, the input target is always a single molecule, while the output predictions

are usually a set of more than one molecule concatenated by separators “.”.

Figure 4-3: A single molecule has many different SMILES representations. On the
left (a) is the canonical SMILES string, and on the right (b) is another SMILES string
representing in the same molecule.

To provide more intuition for this generative task, we describe some properties of
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Figure 4-4: Input target molecule (1) with two automatically generated pre-training
targets formed by breaking the bond highlighted in red. Examples (2) and (3) are
generated from the random and template-based methods respectively. The only differ-
ence is that the template-based pre-training example (3) adds an additional function
group to the molecule (blue).

SMILES strings. Each SMILES string is 1-D encoding of a 2-D molecular graph. If

the predicted SMILES does not adhere to the SMILES grammar, then a valid molec-

ular graph cannot be reconstructed. Moreover, each molecule has many equivalent

SMILES representations, as a single instance of its SMILES is just a graph traversal

starting at some arbitrary node. Therefore, two very different SMILES string can

encode the same molecule, and the model needs to be robust to the given input. One

method, proposed by [116], augments the input data with different SMILES strings

of the same input target molecule.

For our model architecture, we apply a Transformer model for the seq2seq task,

which has an encoder-decoder structure [132, 116]. The encoder maps an input se-

quence of tokens (from the SMILES string) to a sequence of continuous representa-

tions, which are then fed to the decoder to generate an output sequence of tokens

one element at a time, autoregressively. Once the model is trained, a beam search

procedure is used at inference time to find likely output sequences.

The main building block of the Transformer architecture lies in its global self-

attention layers, which are well-suited for predictions of the latent graph structure of

SMILES strings. For example, two tokens that are far apart in the SMILES string

could be close together topologically in the corresponding molecular graph. The global

connectivity of the Transformer model allows it to better leverage this information.

Additionally, since SMILES follow a rigid grammar requiring long range-dependencies,
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these dependencies can be more easily learned through global attention layers.

Despite the flexible architecture of Transformer models, we recognize that there

are ways to improve model generalization. Additionally, there is no inductive bias for

proposing diverse outputs. We propose two techniques to enhance the base molecular

Transformer model, which we describe now.

4.3 Pretraining

In the data, each input target molecule is associated with a single reaction transfor-

mation — though there are many equally good chemical reactions. Therefore, for

each input target, we construct several new prediction examples that are chemically

meaningful, and pre-train the model on these auxiliary examples. We do so without

requiring additionally data, or data supervision. The two variants of our method are

described in detail below.

Random pre-training For each input target molecule, we generate new examples

by selecting a random bond to break. The types of bonds that we consider are

acyclic single bonds, because these are the bonds most commonly broken in chemical

reactions. As we break an acyclic bond, the input molecule is necessarily broken up

into two output molecules, each being a subgraph of the input molecule. Although

the examples generated by this method do not cover the entire space of chemical

reactions (for instance some reactions do not break any bonds at all), these examples

are easy to generate and cover a diverse range of transformations.

Template-based pre-training Instead of randomly breaking bonds, we can also

use the templates extracted from the training data to create reaction examples. Each

template matches a specific pattern in the input molecule, and transforms that pattern

according to the template specifications. When the matched pattern is a single acyclic

bond, this method will generate similar outputs as the random pre-training method,

except that templates usually add additional pieces (functional groups) to the output

example.

As shown in ??, both examples are derived from the same bond broken in the input

57



Figure 4-5: An example of a template, where the exact bond changes are described
in red. The “C-N” bond (left) is broken and a “Br” atom is attached to the broken
“C” atom (right).

Figure 4-6: An example beam search; often times, the outputs of a beam search
will be very similar to each other, here only differing in a single atom for the top 3
predictions. For SMILES strings in particular, this typically leads to predictions that
belong to the same group (ie. only swapping a halide atom).

target molecule, but for the template-based example, an additional functional group

was added, matching a more realistic reaction context. On average, for a random

input molecule, there are 10 different possible examples that can be extracted from

the random pre-training method, while there are over 200 different possible examples

that can be extracted using the template-based pre-training method. However, many

of these 200 examples represent similar chemical transformations, only differing in

the type of functional group added.

More broadly speaking, we can say that the template pre-training method gener-

ates more chemically valid reactions compared to the random pre-training method.

However, the advantage of the random pre-training method is that it can break bonds

that are not represented within the templates, thereby perhaps conferring a higher

ability to generalize. As routine, the model is pre-trained on these automatically

constructed auxiliary tasks, and then used as initialization to be fine-tuned on the

actual retrosynthesis data.
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4.4 Mixture Model

Next, we tackle the problem of generating diverse predictions. As mentioned earlier,

the retrosynthesis problem is a one-to-many mapping since a target molecule can be

formed from different types of reactions. We would like the model to produce a diverse

set of predictions so that chemists can choose the most feasible and economical one

in practice. However, hypotheses generated by a vanilla seq2seq model with beam

search typically exemplifies low diversity with only minor differences in the suffix

[135]. To address this, we use a mixture seq2seq model that has shown sucess in

generating diverse machine translations to generate diverse retrosynthesis reaction

predictions [56, 119].

Specifically, given a target SMILES string 𝑥 and reactants SMILES string 𝑦, a

mixture model introduces a multinomial latent variable 𝑧 ∈ {1, · · · , 𝐾} to capture

different reaction types, and decomposes the marginal likelihood as:

𝑝(𝑦|𝑥; 𝜃) =
𝐾∑︁
𝑧=1

𝑝(𝑦, 𝑧|𝑥; 𝜃) =
𝐾∑︁
𝑧=1

𝑝(𝑧|𝑥; 𝜃)𝑝(𝑦|𝑧, 𝑥; 𝜃) (4.1)

Here, the prior 𝑝(𝑧|𝑥; 𝜃) and likelihood 𝑝(𝑦|𝑧, 𝑥; 𝜃) parameterized by 𝜃 are functions

to be learned.

We use a uniform prior 𝑝(𝑧|𝑥; 𝜃) = 1/𝐾, which is easy to implement and works

well in practice [119]. For 𝑝(𝑦|𝑧, 𝑥; 𝜃), we share the encoder-decoder network among

mixture components, and feed the embedding of 𝑧 as an input to the decoder so that

𝑦 is conditioned on it. The increase in the parameters of our model is negligible over

the baseline model.

We train the mixture model with the online hard-EM algorithm. Taking a mini-

batch of training examples {(𝑥(𝑖), 𝑦(𝑖))}𝑚𝑖=1, we enumerate all 𝐾 values of 𝑧 and com-

pute their loss, − log 𝑝(𝑦(𝑖)|𝑧, 𝑥(𝑖); 𝜃). Then, for each (𝑥(𝑖), 𝑦(𝑖)), we select the value

of 𝑧 that yields the minimum loss: 𝑧(𝑖) = argmin𝑧 − log 𝑝(𝑦(𝑖)|𝑧, 𝑥(𝑖); 𝜃), and back-

propagate through it, so only one component receives gradients per example. An

important detail for successfully training a mixture model is that dropout is turned

off in the forward passes for latent variable selection, and turned back on at back-
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propagation time for gradient regularization. Otherwise even a small amount of

dropout noise will corrupt the optimal value of 𝑧, making the selection random and

the different latent components will fail to diversify [119].

The hard selection of the latent variable forces different components to specialize

on different subsets of the data. As we shall later see in the experimental results, our

mixture model can learn to represent different reaction types in the training data and

show improved diversity over the baseline.

4.5 Experimental Setup

Data The benchmark dataset we use is a subset of the open source patent database

of chemical reactions [87]. Specifically, we use the curated 50k subset (USPTO-

50k) from [84], including the same data splits (80:10:10 for train, validation and

test). Each example reaction in this dataset is labeled with one of ten reaction

classes, which describes its transformation type, but we do not use this information

in our experiments, similar to [70]. Since we are only interested in the retrosynthesis

prediction problem, the examples are processed to remove any reagent molecules

(molecules that do not contribute atoms to the reaction).

In addition, we create a separate split of the USPTO-50k data, in which the train

and test sets are split by reaction templates. Specifically, we split the data so that

no example in the test set can be solved correctly with any templates extracted from

training data. We use the template extraction code from [21], which to the best of

our knowledge, is the only publicly available template extraction code.

Metrics: Accuracy The evaluation of retrosynthesis is challenging, because each

input target has many valid syntheses, but only one is given in the data. When the

model output does not exactly match the single solution in the data, the model is not

necessarily wrong, but simply giving a plausible alternative. Therefore, we focus on

the top-10 accuracy for our evaluation, but present all results from our experiments.

We compute the accuracies by matching the canonical SMILES strings of molecule

sets. For the mixture model, we output the top 10 predictions for each latent class,
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Table 4.1: Accuracy metrics on the USPTO-50K dataset without reaction labels. The
variations we test are data augmentation, pre-training and number of latent classes.
The highest accuracy model for each different latent model is bolded, and the highest
accuracy model overall is parenthesized.

Model Top-1 Top-2 Top-3 Top-4 Top-5 Top-10

Template [21] 37.3 - 54.7 - 63.3 74.1
SCROP [149] 43.7 - 60.0 - 65.2 68.7

N
La

te
nt

=
1 Base 42.0 52.8 57.0 59.9 61.9 65.7

Aug 44.0 55.3 60.1 63.0 65.1 69.0
Pre-train (R) 43.3 54.6 59.7 62.4 64.6 68.7
Pre-train (T) 43.5 55.6 61.5 64.8 67.4 71.3

Pre-train (R) + Aug (44.8) 57.1 62.6 65.7 67.7 71.1
Pre-train (T) + Aug 44.5 56.9 62.7 65.6 67.7 71.7

N
La

te
nt

=
2 Base 42.1 54.4 60.0 63.1 64.9 70.3

Aug 43.1 56.6 62.2 65.9 68.1 73.3
Pre-train (R) 42.5 56.1 61.8 65.4 67.7 72.9
Pre-train (T) 42.7 56.0 62.3 66.0 68.0 74.2

Pre-train (R) + Aug 43.6 (57.7) 63.7 67.3 69.6 75.2
Pre-train (T) + Aug 42.6 57.0 64.0 68.6 71.3 76.6

N
La

te
nt

=
5 Base 39.1 55.4 62.5 66.5 69.1 74.5

Aug 39.7 56.9 64.1 68.1 71.1 77.0
Pre-train (R) 39.7 55.8 63.5 67.6 70.1 76.0
Pre-train (T) 39.9 54.6 62.9 68.2 71.2 77.7

Pre-train (R) + Aug 40.2 56.7 64.9 69.6 72.4 78.4
Pre-train (T) + Aug 40.5 56.8 (65.1) (70.1) (72.8) (79.4)

and then combine those results based on likelihoods to get top 10 predictions overall.

Metrics: Diversity To measure diversity, we provide both quantitative and

human evaluations. For the former, we train a model to predict the reaction class

given the input target molecule and the predicted output. We use a typical message-

passing graph convolution network [66] to embed both the input and output molecules

(using weight-sharing) and compute the reaction embedding as a difference of the two

embeddings. This predictor is trained on the 10 reaction class labels in the USPTO-

50k dataset, and achieves 99% accuracy on the test set, so we can be fairly confident

in its ability to predict the reaction class in-domain.
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Baselines Our main baseline is the SMILES transformer (Base), adapted from

[116]. We run the same model as other recent works for this task [82, 70], and we

build on top of the Transformer implementation from OpenNMT [73]. We run abla-

tion experiments for pre-training and different mixture models to show the impact of

each approach. Random pre-training is referred to as Pre-train (R), while template-

based pre-training is referred to as Pre-train (T). For each example, we construct

up to 10 new auxiliary examples, and pre-train the model on these examples. Ad-

ditionally, following [116], we also augment the training data with variations of the

input SMILES string, referred to as Aug. That is, for each training example, we add

an extra example using a different input SMILES string, which is trained to predict

the same output reactants. This helps the model learn representations robust to the

permutation of the input SMILES string. In addition to our experiments, we include

a template-based approach from [20], and a template-free approach from [149] that

adds a syntax predictor on top of the transformer model.

Training Details We run all models with the same base configurations, to ensure

a fair comparison. The reactions are tokenized in the same manner as in [116], with

each token being a meaningful subunit of the molecule (ie. “Br" would be a single

token denoting the Bromine atom). We train each model for 500k steps with a batch

size of 4096 tokens, evaluating the performance on the validation set every 10k steps,

with the final model being chosen based on the best performance on the validation

set. We use the Adam optimizer with an initial learning rate of 2, 8k warmup steps

and noam decay. The transformer uses 8 heads with embedding size of 256, and

uses 2048 as the embedding size of the feedforward layer. We run all models with a

dropout of 0.1. For the pre-training models, we pre-train the model for 100k steps on

the pre-training task, and then switch to the actual dataset with the loaded pre-train

model.

The accuracy results of our model is shown in table 4.1. We observe that both

pre-training tasks improve over the baseline, and more so when combined with data

augmentation. This shows that our pre-training tasks help the model learn the chem-

ical reaction representational space, and are useful for the retrosynthesis prediction
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Table 4.2: Prediction accuracies when tested on our template split of the USPTO
dataset, for which any template-based model would get 0% accuracy on the test set.
We see that our template-free methods can still generalize to this test set.

Top-1 Top-2 Top-3 Top-4 Top-5 Top-10

Base Model 4.3 8.7 11.9 14.7 16.6 20.6
Best Mixture Model 5.5 9.2 12.6 15.4 17.6 26.6

Table 4.3: The left table shows the comparison of number of unique reactions pre-
dicted by the base model vs. the mixture model (holding other factors constant).
The right table shows human evaluation metrics, in which a human was asked to rate
whether the outputs of the base model or the mixture model was more diverse, or
neither.

Unique Reactions

Base Model 2.66
Mixture Model 3.32

Human Diversity

Base Model 21
Mixture Model 43

Neither 36

problem. However, interestingly, there seem to be marginal differences between the

two pre-training methods. We attribute this to the fact that both pre-training meth-

ods usually generate very similar sets of examples. Previously shown in ??, one of the

main differences of template-based pre-training is just that it adds additional func-

tional groups. But since these generated examples are not always chemically valid,

having this extra information may not prove to be very valuable.

We do note, however, that constructing additional decompositions of the input

targets does actually matter for the pre-training task. We had also experimented

with pre-training methods that only used variations of the input SMILES strings

as pre-training output targets (because each molecule has many different SMILES

representations). However, these methods did not result in the same performance

gains, because these pre-training targets do not contain much useful information for

the actual task.

Our original motivation for using a mixture model was to improve diversity, but

we observe that it also leads to an increase in performance. We try 𝑁 = {1, 2, 5} for

the number of discrete latent classes, and we see that more latent classes generally
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Figure 4-7: Heat map plotting the frequency that each latent class generates a specific
reaction class. Here, we use a mixture model with 5 latent classes, and there are 10
reaction classes of interest for this data set.

leads to higher accuracies. The top-1 accuracy does decrease slightly as the number

of latent classes increases, but we observe much higher accuracies at top-10 (increase

of 7-8%). Importantly, we note that our method of combining outputs from different

latent classes is not perfect, as the likelihoods from different latent classes are not

totally comparable. That is likely the cause of the decrease in top-1 accuracy, but

top-10 accuracies are significantly more meaningful for our problem.

Next, we show our results on a different split of the data, which is more challenging

to generalize. Using the dataset split on templates, we explore the performance of our

best mixture model with pre-training compared to the baseline with no pre-training.

As mentioned earlier, template-free models confer advantages over template-based

models, as template-based models lack the ability to generalize outside of extracted

rules. For this dataset, any template-based model would necessarily achieve 0% ac-

curacy based on construction. table 4.2 compares the performance of the different

models and we see that, although the task is challenging, we can attain substantial

accuracy of 26.6% at top-10 compared to 20.6% of the baseline. Even on this difficult
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task, we show that our model offers generalizability on the test set.

We now look at evaluations of diversity for our model. Using the reaction class

model, we predict the reaction class for every output of our models. Then, we compute

the average number of unique reaction classes, holding all other factors constant

besides varying the number of latent classes (results shown in table 4.3). The number

of unique reaction classes is 3.32 for the mixture model compared to the 2.66 for

the base model, suggesting that the mixture model predicts a more diverse cast of

outputs.

The diversity of the predictions can also be examined from an interpretability

standpoint for the latent classes of the mixture model. Using the reaction class

model, we take the 10 top predictions from each latent class, and count the number

of occurrences for each reaction class. Normalizing across reaction classes, we can see

from fig. 4-7 that each latent class learns to predict a different distribution of reaction

classes.

We also supplement our diversity results with human evaluation. For this, we

asked a senior (5+ years) PhD chemistry student to compare the outputs of the

base model versus the mixture model. To make the problem tractable for a human

chemist, we randomly select 100 different reactions from the test set and present the

top 5 predicted outputs from both the base and mixture model, where the the task

is to determine diversity based on number of different types of reactions.

The human is asked to judge diverse by comparing the number of reactions that

differ in reaction type or location of reaction on molecule. Reactions that used slightly

different precursors were considered identical, and therefore do not contribute to di-

versity (for example, protection reactions with different protection groups are consid-

ered as one type). Lastly, the evaluation was done with the correctness of the overall

reaction in mind. For this task, the human chemist chose the mixture model more

than twice as often as the base model (43 times vs 21), see table 4.3. Although not

perfect, these results exemplify that our model does generate more diverse outputs

than the baseline.

Lastly, to stress the importance of our chemically-relevant pre-training tasks, we
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also explore the performance of typical masked language model objectives. For in-

stance, [58] masks out atoms in graphs, and try to predict the masked atoms using

their contexts. Here, we try a similar experiment, masking out tokens in SMILES

strings. Specifically, we run the following pre-training experiment: we mask out ran-

dom tokens (with probability 𝑝 = 0.2), and try to decode the target molecule.

The results of these pre-training experiments can be seen in table 4.4. The top-

10 accuracy of this model is 61.6 which is worse than even the base model without

pre-training, which achieves a top-10 accuracy of 65.7. This suggests that training on

poor objectives can lead to negative transfer, in which the model is poorly initialized

and has a more difficult time optimizing on the actual data.

Table 4.4: Prediction accuracies using a masked pre-training objective; numbers for
other models taken from table 4.1 for easy comparison. The model trained with this
masked pre-training object performs worse than the baseline model, suggesting the
importance of having chemically-relevant pre-training tasks.

Top-1 Top-5 Top-10

Base 42.0 57.0 65.7
Pre-train (Mask) 38.7 57.9 61.6

Pre-train (R) 43.3 60.1 69.0
Pre-train (T) 43.5 61.5 71.3

4.6 summary

We explored the problem of making one-step retrosynthesis reaction predictions, deal-

ing with the issues of generalizability and making diverse predictions. Through pre-

training and use of mixture models, we show that our model beats state-of-the-art

methods in terms of accuracy and generates more diverse predictions. Even on a

challenging task, for which any template-based models would fail, our model still is

able to generalize to the test set.
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Chapter 5

Molecular Generation

Searching for novel molecular compounds with desired properties is an important

problem in drug discovery. Many existing frameworks generate molecules one atom

at a time. We instead propose a flexible editing paradigm that generates molecules

using learned molecular fragments—meaningful substructures of molecules. To do so,

we train a variational autoencoder (VAE) to encode molecular fragments in a coherent

latent space, which we then utilize as a vocabulary for editing molecules to explore the

complex chemical property space. Equipped with the learned fragment vocabulary,

we propose FaST, which learns a reinforcement learning (RL) policy to iteratively

translate model-discovered molecules into increasingly novel molecules while satisfying

desired properties. Empirical evaluation shows that FaST significantly improves over

state-of-the-art methods on benchmark single/multi-objective molecular optimization

tasks.

5.1 Introduction

Molecular optimization is a challenging task that is pivotal to drug discovery applica-

tions. Part of the challenge stems from the difficulty of exploration in the molecular

space: not only are there physical constraints on molecules (molecular strings/graphs

have to obey specific chemical principles), molecular property landscapes are also very

complex and difficult to characterize: small changes in the molecular space can lead
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to large deviations in the property space.

Recent fragment-based molecular generative models have shown significant em-

pirical advantages [63, 105, 140] over atom-by-atom generative models in molecular

optimization. However, they generally operate over a fixed set of fragments which

limit the generative capabilities of these models. Shifting away from previous frame-

works, we learn a distribution of molecular fragments using vector-quantized varia-

tional autoencoders (VQ-VAE) [130]. Our method builds molecular graphs through

the addition and deletion of molecular fragments from the learned distributional frag-

ment vocabulary, enabling the generative model to span a much larger chemical space

than models with a fixed fragment vocabulary. Considering atomic edits as primi-

tive actions, the idea of using fragments can be thought of as options [126, 125] as a

temporal abstraction to simplify the search problem.

We further introduce a novel sequential translation scheme designed for fragment-

based molecular optimization. We start the molecular search by translating from

known active molecules and store the discovered molecules as new potential initial-

ization states for subsequent searches; we incorporate a delete action in our model,

enabling our method to backtrack to good molecular states. Previous works opti-

mize molecules either by generating from scratch or a single translation from known

molecules, which is inefficient in finding high-quality molecules and often discovering

molecules lacking novelty/diversity. Our proposed framework addresses these defi-

ciencies since our method is (1) very efficient in finding molecules that satisfy prop-

erty constraints as the model stay close to the high-property-score chemical manifold;

and (2) able to produce highly novel molecules with our flexible learned fragment

vocabulary and a sequence of fragment-based editing.

Combining the advantage of a distributional fragment vocabulary and the se-

quential translation scheme, we propose FaST, which is realized by an RL policy

that proposes fragment addition/deletion to a given molecule. Our proposed method

can generate molecules under various objectives such as property constraints, novelty

constraints, and diversity constraints. The main contribution of this paper includes:

1. We demonstrate a way to learn distributional molecular fragment vocabulary
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through a VQ-VAE and the effectiveness of the learned vocabulary in molecular

optimization.

2. We propose a novel molecular search scheme of sequential translation, which

gradually improves the quality and novelty of generation through backtracking

and a stored frontier.

3. We implement a RL policy combining the fragment vocabulary and the sequen-

tial translation scheme that significantly outperforms state-of-the-art methods

in benchmark single/multi-objective molecular optimization tasks.

Molecular generation and optimization. Early works on molecular opti-

mization build on generative models on both SMILES/SELFIES string [46, 118, 69,

77, 99, 122], and molecular graphs [123, 85, 90, 26, 109, 92] and generate molecules

character-by-character or node-by-node. [61] generates graphs as junction trees by

considering the vocabulary as the set of atoms or predefined rings from the data; [64]

use the same atom+ring vocabulary to generate molecules by augmenting extracted

rationales of molecules.

Generating molecules with a fixed molecular fragment vocabulary is a

well-established idea in traditional drug design [34], and has been recently explored

through deep learning models [105, 140, 76, 38, 39, 79], outperforming previous atom-

level models. Recent synthesizability-aware models can also generate single-step reac-

tion [10] and molecule synthesis graphs [11] based on a fixed reactant pool. However,

the fixed fragment vocabularies used by these models, which are typically small and

predefined a priori, limit the chemical space spanned by the models. In our work,

we utilize a learned molecular fragment vocabulary, which is obtained by training

a VQ-VAE on a large set of fragments extracted from ChEMBL [41]. By sampling

fragments from the learned distribution, our model can span a much larger chemical

space than methods using a fixed vocabulary (visualized in fig. 5-3, fig. 5-4).

Sequential generation of molecules. [51, 101, 146, 150] frame the molecu-

lar optimization problem as a reinforcement learning problem, but they generate on

the atom/character level and from scratch each time, reducing the efficiency of the
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search algorithm. [67] uses a graph-to-graph translation model for property optimiza-

tion. However, it requires a large number of translation pairs to train, which often

involves expert human knowledge and is expensive to obtain. Others have used ge-

netic/evolutionary algorithms to tackle this problem [97, 98], which performs random

mutations on chemical strings. Although these methods use learned discriminators

to prune sub-optimal molecules, the random mutation process can become inefficient

in searching for good molecules under complex property constraints. [140, 38] applies

Markov Chain Monte Carlo (MCMC) sampling through editing molecules, while [76]

uses Bayesian optimization on the latent space. While there are extensive studies in

exploration strategies for RL [102, 14, 33], diversity/novelty driven molecular gen-

eration is under-explored. We train a novelty/diversity-aware RL policy to search

for novel, diverse molecules that retain desired properties. Our method initializes

searches from model-discovered molecules, which greatly improves the efficiency and

diversity of the generated molecules.

5.2 Generative Models for Molecules

Message Passing Neural Networks (MPNN) Molecules are represented as di-

rected graphs, where the atoms are the nodes and the bonds are the edges of the

graph. More formally, let 𝑥 = (𝑉,𝐸) denote a directed graph where 𝑣𝑖 ∈ 𝑉 are the

atoms, and 𝑒𝑖𝑗 ∈ 𝐸 are the edges of the graph. The network maintains hidden states

ℎ𝑡
𝑒𝑖𝑗

for each directed edge, where 𝑡 is the layer index. At each step, the hidden rep-

resentations aggregate information from neighboring nodes and edges, and captures

a larger neighborhood of atoms. Iteratively, the hidden states are updated as:

ℎ𝑡+1
𝑒𝑖𝑗 = 𝑓([ℎ0𝑒𝑖𝑗 ;

∑︁
𝑘∈𝑁(𝑣𝑖)∖{𝑣𝑗}

ℎ𝑡𝑒𝑘𝑖 ]) (5.1)

Here, 𝑓 is parameterized by RNN cells (e.g. LSTM cells [57] or GRU cells [19]),

and 𝑁(𝑣𝑖) is the set of neighbors of 𝑣𝑖. After 𝑇 steps of message-passing, the final node

embeddings ℎ𝑣𝑖 are obtained by summing their respective incoming edge embeddings:
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ℎ𝑣𝑖 = ReLU(𝑊𝑜[ℎ
0
𝑣𝑖 ;

∑︁
𝑣𝑘∈𝑁(𝑣𝑖)

ℎ𝑇𝑒𝑘𝑖 ]) (5.2)

The final node embeddings are then summed to get a graph embedding represen-

tation ℎ𝑥 =
∑︀

𝑣𝑖
ℎ𝑣𝑖 .

Vector-Quantised Variational Autoencoders (VQ-VAE) To learn useful

representations of fragments, we employ the VQ-VAE architecture [130], which maps

molecule fragment graphs to a discrete latent space through using categorical distri-

butions for the prior and posterior. The VQ-VAE defines a dictionary of 𝑘 embedding

elements, [𝑠1, 𝑠2, ...𝑠𝑘] ∈ R𝑘×𝑙. Given an input 𝑥 (here the graph for a molecular frag-

ment), let 𝑧𝑒(𝑥) ∈ R𝑑×𝑙 be the output of the encoder (a MPNN in our case). We

define 𝑙 to be the same dimension for both encoder output embeddings 𝑧𝑒(𝑥) and

dictionary embeddings 𝑠𝑖, because input 𝑧𝑞(𝑥) is computed by finding the 𝑙2 nearest

neighbor dictionary elements for each row of 𝑧𝑒(𝑥):

𝑧𝑞(𝑥)𝑖 = 𝑠𝑘,where 𝑘 = argmin
𝑗
||𝑧𝑒(𝑥)𝑖 − 𝑠𝑗 ||2 for 𝑖 = 1, . . . , 𝑑 (5.3)

This embedding scheme allows us to represent each molecular fragment using a

length 𝑑 vector, where each entry takes value from {1, . . . , 𝑘} that corresponds to the

dictionary embedding index for that row. The combinatorial vocabulary defined by

the VQ-VAE has the capacity to represent 𝑘𝑑3𝑎 distinct molecular fragments, which

lifts the constraints of a limited generative span under a fixed fragment vocabulary.

Since the discretization step does not allow for gradient flow, gradients are passed

through the network through approximating the gradient from the dictionary em-

beddings to the encoder embeddings. Additionally, there is a commitment loss that

encourages the encoder to output embeddings that are similar to those in the dictio-

nary (hence commitment). The total loss of the VAE is the following:

ℒ = log 𝑝(𝑥|𝑧𝑞(𝑥)) +
∑︁
𝑖

||sg[𝑧𝑒(𝑥)𝑖]− 𝑠𝑖𝑗 ||22 + 𝛽
∑︁
𝑖

||𝑧𝑒(𝑥)𝑖 − sg[𝑠𝑖𝑗 ]||22 (5.4)

Where 𝑠𝑖𝑗 is the closest dictionary element 𝑠𝑗 for the 𝑧𝑒(𝑥)𝑖. Additionally, 𝛽 is

a hyperparameter that controls for contribution of the commitment term, and sg
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Figure 5-1: Overview of (FaST). FaST is trained in a two-step fashion. In the first
step, we train a VQ-VAE that embeds molecular fragments. In the second step, we
train a search policy that uses the learned latent space as an action space. The
search policy starts an episode by sampling a molecule from the frontier set 𝐹 , which
consists of an initial set of starting molecules (ℐ), and good molecules discovered by
the policy (𝒞). The molecule is encoded by an MPNN, which is then used to predict
either an Add or Delete action. When the Add action is selected, the model predicts
and samples an atom as the attachment point and subsequently predicts a fragment
to attach to that atom. When the Delete action is selected, the model samples a
directed edge, indicating the molecular fragment to be deleted.

represents the stop-gradient operator.

Molecular Optimization. The goal of molecular optimization is to generate a

set of high-quality molecules 𝒞 (Constrained set) which satisfy or optimize a set of

properties 𝑃 . High novelty and diversity (detailed in section 5.4) are also desired for

de novo generation applications. We model the molecular optimization problem as

a Markov decision process (MDP), defined by the 5-tuple {𝒮,𝒜, 𝑝, 𝑟, 𝜌0}, where the

state space 𝒮 is the set of all possible molecular graphs. As an overview, our method

introduces novel designs over the action space 𝒜 and the transition model 𝑝 (??) by

utilizing a distributional fragment vocabulary, learned by a VQ-VAE. We define the

reward and initial state distribution, 𝑟 and 𝜌0 (section 5.3) accordingly for specified

tasks and to implement the proposed sequential translation generation scheme. An

illustration of our model is in fig. 5-1.
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Molecular Fragments are extracted from molecules in the ChEMBL database

[41]. For each molecule, we randomly sample fragments by extracting subgraphs

that contain ten or fewer atoms that have a single bond attachment to the rest of

the molecule. We then use a VQ-VAE to encode these fragments into a meaningful

latent space. The use of molecular fragments simplifies the search problem, while

the variable-sized fragment distribution maintains the reachability of most molecular

compounds. Because our search algorithm ultimately uses the latent representation

of the molecules as the action space, we find that using a VQ-VAE with a categorical

prior instead of the typical Gaussian prior makes RL training stable and provides

good performance gains [127, 50]. The training instability under a normal VAE with

Gaussian prior and continuous latents causes failture of the RL training. Our ablation

study also shows that the fragment samples from a VQ-VAE are more diverse than

the samples from a continuous VAE.

Encoder/Decoder We use MPNN encoders for any graph inputs, which include

both fragments for the VQ-VAE, as well as molecular states during policy learning.

The graph models are especially suitable for describing actions on the molecular

state, as they explicitly parametrize the representations of each atom and bond.

Meanwhile, the decoder architecture is a recurrent network that decodes a SELFIES

representation of a molecule. We choose a recurrent network for the decoder because

we do not need the full complexity of a graph decoder. Due to the construction

scheme, the fragments are rooted trees, and all have a single attachment point. As

our fragments are small in molecular size (≤ 10 atoms), the string grammar is simple

to learn, and we find the SELFIES decoder works well empirically.

Adding and deleting fragments as actions. At each step of the MDP, the pol-

icy network first takes the current molecular graph as input and produces a Bernoulli

distribution on whether to add or delete a fragment. Equipped with the fragment

VQ-VAE, we define the Add and Delete actions at the fragment-level:

• Fragment Addition. The addition action is characterized by (1) a probability

distribution over the atoms of the molecule: 𝑝𝑎𝑑𝑑(𝑣𝑖) = 𝜎[MLP(ℎ𝑣)], where 𝜎 is

the softmax operator. (2) Conditioned on the graph embedding ℎ𝑥 and the at-
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tachment point atom 𝑣𝑎𝑑𝑑 sampled from 𝑝𝑎𝑑𝑑, we predict a 𝑑-channel categorical

distribution 𝑝𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 = 𝜎[MLP([ℎ𝑣𝑎𝑑𝑑 ;ℎ𝑥])] ∈ R𝑑×𝑘, where each row of 𝑝𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡

sums to 1. We can then sample the discrete categorical latent 𝑧𝑎𝑑𝑑 ∈ {1, ..., 𝑘}𝑑

from 𝑝𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡. The fragment to add is then obtained by deocoding 𝑧𝑎𝑑𝑑 through

the learned frozen fragment decoder. We then assemble the decoded fragment

with the current molecular graph by attaching the fragment to the predicted

attachment point 𝑣𝑎𝑑𝑑. Note that the attachment point over the fragment is

indicated through the generated SELFIES string.

• Fragment Deletion. The deletion action acts over the directed edges of the

molecule. A probability distribution over deletable edges is computed with a

MLP: 𝑝𝑑𝑒𝑙(𝑒𝑖𝑗) = 𝜎[MLP(ℎ𝑒𝑖𝑗)]. One edge is then sampled and deleted; since

the edges are directed, the directionality specifies the the molecule to keep and

the fragment to be deleted.

With the action space 𝒜 defined as above, the transition model for the MDP

is simply 𝑝(𝑠′|𝑠, 𝑎) = 1 if applying the addition/deletion action 𝑎 to the molecule

𝑠 results in the molecule 𝑠′, and 𝑝(𝑠′|𝑠, 𝑎) = 0 otherwise. The fragment-based ac-

tion space is powerful and suitable for policy learning as it (1) is powered by the

enormous distributional vocabulary learned by the fragment VQ-VAE, thus spans a

diverse set of editing operations over molecular graphs; (2) exploits the meaningful

latent representation of fragments since the representation of similar fragments are

grouped together. These advantages greatly simplify the molecular search problem.

We terminate an episode when the molecule fails to satisfy the desired property or

when the episode exceeds ten steps.

5.3 Discover Novel Molecules through Sequential Trans-

lation

We propose sequential translation that incrementally grows the set of discovered novel

molecules and use the model-discovered molecules as starting points for further search
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episodes. This regime of starting exploration from states reached in previous episodes

was also explored under the setting of RL from image inputs [33]. More concretely, we

implement sequential translation with a reinforcement learning policy that operates

under the fragment-based action space, while using a moving initial state distribution

𝜌0, which is a distribution over molecules in the frontier set ℱ = ℐ∪𝒞. By starting new

search episodes from the frontier set – the union of the initial set and good molecules

that are discovered by the RL policy, we achieve efficient search in the chemical space

by staying close to the high-quality subspace and achieve novel molecule generation

through a sequence of fragment-based editing operations to the known molecules.

Our proposed search algorithm is detailed in section 5.3.

1: Input 𝑁 the desired number of discovered new molecules
2: Input ℐ the initial set of molecules
3: Input 𝐷 the pretrained fragment decoder of VQ-VAE
4: Input 𝐶𝑃 : 𝒮 → {0, 1} returns 1 if the input 𝑥 satisfies desired properties ◁ eq. (5.5)
5: Input 𝐶𝑁𝐷 : 𝒮 → {0, 1} returns 1 if the input 𝑥 satisfies novelty/diversity criterion ◁

eq. (5.6)
6: Let 𝒞 = ∅ be the discovered set of molecules
7: Let ℱ = ℐ ∪ 𝒞 be the frontier where search is initialized from
8: Let 𝑡 = 0 be the number of episodes
9: while |𝒞| ≤ 𝑁 do

10: Let 𝑡 = 𝑡+ 1
11: Update 𝑈𝐶𝐵(𝑥0, 𝑡)∀𝑥0 ∈ ℱ according to eq. (5.8)
12: Sample initial molecule 𝑥 = (𝑉,𝐸) from 𝑝𝑖𝑛𝑖𝑡 = 𝜎[𝑈𝐶𝐵(𝑥0, 𝑡)]∀𝑥0 ∈ ℱ
13: Let step = 0
14: while 𝐶𝑃 (𝑥) = 1 & step < T do ◁ T = 10 in our experiments
15: Encode 𝑥 with MPNN(𝑥) to get node representation ℎ𝑣, ∀𝑣 ∈ 𝑉 and graph rep-

resentation ℎ𝑥
16: Sample action type 𝑎 ∈ {ADD,DELETE} from 𝑝𝑎𝑐𝑡𝑖𝑜𝑛 = 𝜎[MLP(ℎ𝑥)]
17: if 𝑎 = ADD then
18: Sample 𝑣𝑎𝑑𝑑 from 𝑝𝑎𝑑𝑑(𝑣) = 𝜎[MLP(ℎ𝑣)] ∀𝑣 ∈ 𝑉
19: Sample fragment encoding 𝑧𝑎𝑑𝑑 from 𝑝𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 = MLP([ℎ𝑥;ℎ𝑣𝑎𝑑𝑑 ])
20: Decode fragment 𝑦 = 𝐷(𝑧𝑎𝑑𝑑)
21: Add fragment 𝑦 to molecule: 𝑥← 𝑥+ 𝑦
22: else
23: Sample 𝑒 from 𝑝𝑑𝑒𝑙(𝑒) = 𝜎[MLP(ℎ𝑒𝑖𝑗 )] ∀𝑒 ∈ 𝐸
24: Let 𝑦 be the fragment designated by 𝑒, delete fragment 𝑥← 𝑥− 𝑦

25: if 𝐶𝑃 (𝑥) = 1 & 𝐶𝑁𝐷(𝑥) = 1 then
26: 𝒞 ← 𝒞 ∪ {𝑥}
27: ℱ ← ℐ ∪ 𝒞
28: Let step← step+ 1
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Discover novel molecules and expand the frontier. Our method explores

the chemical space with a property-aware and novelty/diversity-aware reinforcement

learning policy that proposes addition/deletion modifications to the molecular state

at every environment step to optimize for the reward 𝑟. We gradually expand the

discovered set 𝒞 by adding qualified molecules found in the RL exploration within the

MDP. A molecule 𝑥 is qualified if: (1) 𝑥 satisfies the desired properties measured by

property scores

𝐶𝑃 (𝑥) =
∏︁
𝑝∈𝑃

1{score𝑝(𝑥) > threshold𝑝} (5.5)

where 𝑃 is the set of desired properties and threshold𝑝 is the score threshold for

satisfying property 𝑝. A molecule 𝑥 satisfying all desired properties has 𝐶𝑃 (𝑥) = 1

and 𝐶𝑃 (𝑥) = 0 otherwise. (2) 𝑥 is novel/diverse compared to molecules currently in

the frontier 𝐹 , measured by fingerprint similarity (detailed in section 5.4):

𝐶𝑁𝐷(𝑥) = 1{max
𝑖∈𝐼

sim(𝑥, 𝑖) < threshold𝑛𝑜𝑣} · 1{mean
𝑔∈𝐺

(sim(𝑥, 𝑔)) < threshold𝑑𝑖𝑣} (5.6)

Where sim denotes fingerprint similarity, threshold𝑛𝑜𝑣 and threshold𝑑𝑖𝑣 are prede-

fined similarity thresholds for novelty and diversity, ℐ and 𝒞 are the initial set of good

molecules and model discovered molecules as defined in previous sections. A molecule

that satisfies novelty/diversity criterion has 𝐶𝑁𝐷(𝑥) = 1 and 𝐶𝑁𝐷(𝑥) = 0 otherwise.

We use a reward of +1 for a transition that results in a molecule qualified for the

set 𝒞, and discourage the model from producing invalid molecules by adding a reward

of −0.1 for a transition that produces an invalid molecular graph 1:

𝑟(𝑥, 𝑎) = 𝐶𝑃 ([𝑥← 𝑎]) · 𝐶𝑁𝐷([𝑥← 𝑎])− 0.1 · 1([𝑥← 𝑎] invalid) (5.7)

where [𝑥 ← 𝑎] denotes the molecule resulting from editing 𝑥 with the fragment

addition/deletion action 𝑎.

Initialize search episodes from promising candidates. To bias the ini-

tial state distribution 𝜌0 to favor molecules that can derive more novel high-quality

molecules, we keep an upper-confidence-bound (UCB) score for each initial molecule

in the frontier 𝐹 . We record the number of times we initiate a search 𝑁(𝑥, 𝑡) from a
1validity is checked by the chemistry software RDKit.
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molecule 𝑥 ∈ 𝐹 , and the number of molecules qualified for adding to 𝒞 that is found

in an episode strating from 𝑥: 𝑅(𝑥, 𝑡). Here 𝑡 =
∑︀

𝑥∈𝜌0 𝑁(𝑥) is the total number of

search episodes. The UCB score of the initial molecule 𝑚 is calculated by:

𝑈𝐶𝐵(𝑥, 𝑡) =
𝑅(𝑥, 𝑡)

𝑁(𝑥, 𝑡)
+

√︁
3
2 log(𝑡+ 1)

𝑁(𝑥, 𝑡)
(5.8)

The probability of a molecule in the initialization set being sampled as the starting

point of a new episode is then computed by a softmax over the UCB scores: 𝑝𝑖𝑛𝑖𝑡(𝑥, 𝑡+

1) = exp(𝑈𝐶𝐵(𝑥,𝑡))∑︀
𝑥∈𝐼 exp(𝑈𝐶𝐵(𝑥,𝑡))

. To summarize, FaST learns a policy that (1) choose good

initial molecules to start search episodes; (2) choose to add a fragment to or delete

a subgraph from a given state (a molecule in our case); (3) choose what to add

through predicting a fragment latent embedding, or what to delete through predicting

a directed edge, and remove part of the molecular graph accordingly.

Although we present our method in this section under the most realistic multi-

objective optimization task settings (with experiments in section 5.4), our method is

easily extendable to other problem settings by modifying the constraints 𝐶𝑃 , 𝐶𝑁𝐷,

and the reward function 𝑟 accordingly.

5.4 Experiments

Datasets. We use benchmark datasets for molecular optimization, which aims to

generate ligand molecules for inhibition of two proteins: glycogen synthase kinase-3

beta (GSK3𝛽) and c-Jun N-terminal kinase 3 (JNK3). Following previous work [64,

140, 98], we adopt the same strategy of using a random forest trained on these datasets

as the oracle property predictor, and incorporate the additional factors, quantitative

estimate of drug-likeliness (QED) [9] and synthetic accessibility (SA) [35] as our

optimization objectives. Single property optimization is often a flawed task, because

the generator can overfit to the pretrained predictor and generate unsynthesizable

compounds.

Evaluation metrics. Following previous works, we evaluate our generative

model on three target metrics, success, novelty and diversity. 5,000 molecules are
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generated by the model, and the metric scores are computed as follows: Success

rate (SR) measures the proportion of generated molecules that fit the desired prop-

erties. Novelty (Nov) measures how different the generated molecules are compared

to the set of actives in the dataset (range [0, 1]), and Diversity (Div) measures how

different the generated molecules are compared to each other (range [0, 1]). PM is

the product of the three metrics above (PM = SR ·Nov ·Div).

Implementation details. We construct the initial set of molecules for our search

algorithm from the rationales extracted from [64]. These rationales are obtained

through a sampling process on the active molecules that tries to minimize the size

of the rationale subgraph, while maintaining their inhibitory properties. Rationales

for multi-property tasks (GSK3𝛽+JNK3) are extracted by combining the rationales

for single-property tasks. Initializing generation with subgraphs is commonly done

in molecular generative models such as [121] and [76]. We train the RL policy using

the Proximal Policy Optimization (PPO, [115]) algorithm. We find the RL training

robust despite both the reward function 𝑟 and the initial state distribution 𝜌0 are

non-stationary (i.e., changing during RL training).

Baseline methods. Rationale-RL [64] extracts rationales of the active molecules

and then uses RL to train a completion model that add atoms to the rationale in a

sequential manner to generate molecules satisfying the desired properties. GA+D

& JANUS [97, 98] are two genetic algorithms that use random mutations of SELF-

IES strings to generate promising molecular candidates; JANUS leverages a two-

pronged approach, accounting for mutations towards both exploration and exploita-

tion. MARS [140] uses Markov Chain Monte Carlo (MCMC) sampling to iterative

build new molecules by adding or removing fragments, and the model is trained to fit

the distribution of the active molecules. To provide a fair comparison against baselines

that do not use rationales, we additionally include a baseline MARS+Rationale

that initialize the MARS algorithm with the same starting initial rationale set used in

Rationale-RL and our method. where possible, we use the numbers from the original

corresponding paper.

Performance. The evaluation metrics are shown in table 5.1; FaST signifi-
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Figure 5-2: Comparison of the sample complexity of different methods. The x-axis is
the number of molecules searched through and the y-axis is the number of discovered
molecules, where the target is to obtain a set of 5,000 molecules that achieves SR = 1,
Nov = 1 and Div = .7. Our method (FaST) achieves the best sample complexity
with 71k molecules visited. Fast+50k and MARS+50k are their respective models
trained with the same fixed fragment vocabulary extracted from ChEMBL.
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Table 5.1: FaST outperforms all baselines on both single-property and multi-property
optimization. Error bars indicates one standard deviation, obtained from averaging
5 random seeds.

Model GSK3𝛽 GSK3𝛽+QED+SA
SR Nov Div PM SR Nov Div PM

Rationale-RL 1.00 .534 .888 .474 .699 .402 .893 .251
GA+D .846 1.00 .714 .600 .891 1.00 .628 .608
JANUS 1.00 .829 .884 .732 - - - -
MARS 1.00 .840 .718 .600 (± .04) .995 .950 .719 .680 (± .03)

MARS+Rationale .995 .804 .746 .597 (± .07) .981 .800 .807 .632 (± .07)
FaST 1.00 1.00 .905 .905 (± .000) 1.00 1.00 .861 .861 (± .001)

Model JNK3 JNK3+QED+SA
SR Nov Div PM SR Nov Div PM

Rationale-RL 1.00 .462 .862 .400 .623 .376 .865 .203
GA+D .528 .983 .726 .380 .857 .998 .504 .431
JANUS 1.00 .426 .895 .381 - - - -
MARS .988 .889 .748 .660 (± .04) .913 .948 .779 .674 (± .02)

MARS+Rationale .976 .843 .780 .642 (± .04) .634 .779 .787 .386 (± .08)
FaST 1.00 1.00 .905 .905 (± .001) 1.00 .866 .856 .741 (± .001)

Model GSK3𝛽+JNK3 GSK3𝛽+JNK3+QED+SA
SR Nov Div PM SR Nov Div PM

Rationale-RL 1.00 .973 .824 .800 .750 .555 .706 .294
GA+D .847 1.00 .424 .360 .857 1.00 .363 .311
JANUS 1.00 .778 .875 .681 1.00 .326 .821 .268
MARS .995 .753 .691 .520 (± .08) .923 .824 .719 .547 (± .05)

MARS+Rationale .976 .843 .780 .642 (± .04) .654 .687 .724 .321 (± .09)
FaST 1.00 1.00 .863 .863 (± .001) 1.00 1.00 .716 .716 (± .011)
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cantly outperforms all baselines on all tasks including both single-property and multi-

property optimization. On the most challenging task, GSK3𝛽+JNK3+QED+SA,

FaST improves upon the previous best model by over 30% in the product of the three

evaluation metrics. Our model is able to efficiently search for molecules that stay

within the constrained property space, and discover novel and diverse molecules by se-

quentially translating known and discovered active molecules. The MARS+Rationale

model, which uses the same rationales as the initialization for their search algorithm,

does not perform well compared to the original implementation, which initializes each

search with a simple “C-C" molecule.

Sample complexity comparison given performance thresholds. Another

comparison scheme is to let a model keep generating molecules until it achieves a good

candidate set under certain performance thresholds. Under this evaluation protocol,

all models will have the same or very similar performance in SR, Nov, and Div. The

metric of interest will then be the sample complexity of the algorithm: how many

molecules it requires to visit/generate to obtain a good candidate set. This places

every model under the same regime, allowing each model to generate molecules in a

novelty/diversity-aware setting. We compare FaST to Rationale-RL and MARS under

this setting in fig. 5-2, where we impose SR=1, Nov=1, Div=.7 for the candidate set.

FaST on average searched through 71k molecules in total to gather the 5k proposal

set, while Rational-RL and MARS need to search through 205k and 759k molecules

to obtain their corresponding proposal sets. Being a pretrained generative model,

Rationale-RL has a steeper slope initially but then slows down to find more good

molecules. The flexibility of our learned vocabulary and the RL search strategy lead

to the superior performance of FaST.

Optimize for different novelty/diversity metrics. The Morgan fingerprints

used for similarity comparison contain certain inductive biases. Under different ap-

plications, different novelty/diversity metrics may be of interest. To demonstrate the

viability of our model under any metrics, we train FaST using Atom Pairs (AP) fin-

gerprints [16] on the GSK3𝛽+JNK3+QED+SA task. The results, and discussion of

the different fingerprint methods, are reported in section 5.4. We find that (1) FaST
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can still find high-quality molecules that are novel and diverse, while the baseline

methods suffer a low novelty; (2) FaST trained with AP fingerprints still attains good

performance when evaluated under Morgan fingerprints but the reverse is not true.

This result shows that Novelty/diversity under AP fingerprints is a stricter criterion

to satisfy and necessitates novelty/diversity-awareness during optimization.

Diversity of generation. In addition to the fingerprint diversity metrics pre-

sented in section 5.4, we also examine functional group diversity. We extract all unique

molecular fragments of the 5,000 molecules generated for GSK3𝛽+JNK3+QED+SA

task for each model, and produce t-SNE visualization of these fragments in fig. 5-3

and fig. 5-4. In total, we extracted 1.7k unique fragments from our model outputs vs

only 1.1k unique fragments for Rational-RL and 500 unique fragments from MARS.

The visualization shows that the fragments in the molecules generated by our model

spans a much larger chemical space. This confirms the advantages of using a learned

vocabulary, compared to using a fixed set of fragments, as we are able to utilize a

much more diverse set of chemical subgraphs.

Benefit of distributional vocabulary. To investigate the benefit of using a

distributional vocabulary, instead of using the pretrained VQ-VAE, we also train our

model using a fixed vocabulary of fragments, which consists of roughly 50k unique

fragments (the same set used to pretrain the VQ-VAE). fig. 5-2 compares the per-

formance of the two models. On average, the model with fixed fragments took 122k

steps, while with VQ-VAE it only took 71k steps to find a set of 5,000 good molecules

(72% improvement). We further analyze the benefit of using discrete latents with a

VQ-VAE rather than continuous latents with a Gaussian prior VAE in the experi-

ments.

Importance of RL search. We also demonstrate the importance of our RL

search policy compared to previous sampling methods. To do so, we run MARS with

both the 50k fixed fragments and our VQ-VAE. fig. 5-2 shows the performance of using

the 50k fixed fragment vocabulary compared to the original MARS model which uses

a small 1k vocabulary. When the vocabulary is large, MARS exhibits very poor sam-

ple complexity. Additionally, we also implemented our VQ-VAE with the sampling
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FaST
Rationale-RL

Figure 5-3: This plots the t-SNE embedding of fragments from generated compounds
of our model vs. Rational-RL. The visualization shows that that our model produces
a much more diverse set of fragments, which is a proxy for functional groups appearing
in generated molecules.

strategy proposed in MARS, but this model was altogether unable to successfully

generate good candidate molecules. Therefore, we see that when the vocabulary is

more complex, we need a better search strategy, highlighting the importance of our

RL algorithm.

Vocabulary learning through VQ-VAE To evaluate the benefits of VQ-VAE

over a typical VAE trained with Gaussian priors, we train both models, and look

at the distribution of fragments. fig. 5-5 compares the t-SNE distributions of the

two models, where we sample 2,000 fragments from each model. The VAE model

has tight clusters, while the VQ-VAE model exhibits a much more diverse set of

fragments. We visualize random samples from VAE and VQ-VAE fig. 5-6, where we

see that the samples from VAE are relatively simple and generic fragments, while

samples from the VQ-VAE demonstrate diverse patterns. This is because the more

generic fragments appear more frequently in real molecules, and a Gaussian prior over

the fragment latent space would favor these fragments.

Constrained Penalized LogP To demonstrate the general applicability of our

model for any molecular optimization task, we also run our model on another con-
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FaST
MARS

Figure 5-4: This plots the t-SNE embedding of fragments from generated compounds
of our model vs. MARS. The visualization shows that that our model produces a
much more diverse set of fragments, which is a proxy for functional groups appearing
in generated molecules.

VAE Samples
VQ-VAE Samples

Figure 5-5: t-SNE of fragments sampled from a trained VAE and VQ-VAE. The
fragments sampled from the VAE are tightly clustered, showing much less diversity
compared to the fragments sampled from the VQ-VAE.

84



Figure 5-6: (a,b) Random samples from the VAE (a) and the VQ-VAE (b). “A"
denotes the attachment point for the fragment. We see that the samples from the
VAE are relatively simple. Meanwhile, the samples from the VQ-VAE are more
diverse.

strained optimization task, here optimizing for penalized octanol-water partition co-

efficients (logP) scores of ZINC [60] molecules. The penalized logP score is the logP

score penalized by synthetic accessibility and ring size. We use the exact computa-

tion in [146], where the components of the penalized logP score are normalized across

the entire 250k ZINC training set. The generated molecules are constrained to have

similar Morgan fingerprints [108] as the original molecules.

Following the same setup as previous work [67, 146, 121, 97, 76], we try to optimize

the 800 test molecules from ZINC with the lowest penalized logP scores (the initial

set ℐ). Specifically, the task is to translate these molecules into new molecules with

the Tanimoto similarity of the fingerprints constrained within 𝛿 ∈ {.4, .6}. This task

aims for optimizing a certain quantity (instead of satisfying property constraints)

and is a translation task (need to stay close to original molecules rather than finding

novel ones). To run FaST on this task, we apply the following changes to the reward

function, the qualification criterion, and the episode termination criterion, of FaST.

We denote score(𝑥) to be the penalized logP scoring function, and sim(·, ·) to be the

Tanimoto similarity between two molecules:

• reward 𝑟 = score(𝑥𝑗)− score(𝑥𝑖) for any transition from molecule 𝑥𝑖 → 𝑥𝑗

• 𝒞, the discovered set contains all explored molecules that satisfy eq. (5.5), where
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the threshold is given by the input parameter 𝛿

• We terminate an episode when the number of steps exceeds 10.

For each molecule we add to 𝐺, we keep track of its original parent (the molecule

from the 800 test molecules). After training, for each of the 800 test molecules, we

take the set of translated molecules in 𝐺, and select the one with the highest property

score.

Table 5.2: Results on the constrained penalized logP task. FaST significantly out-
perform all baselines.

Method 𝛿 = 0.4 𝛿 = 0.6
Improvement Success Improvement Success

JT-VAE [61] 0.84 ± 1.45 83.6 % 0.21 ± 0.71 46.4 %
GCPN [146] 2.49 ± 1.30 100.0 % 0.79 ± 0.63 100.0 %
DEFactor [3] 3.41 ± 1.67 85.9 % 1.55 ± 1.19 72.6 %

MolDQN [150] 3.37 ± 1.62 100 % 1.86 ± 1.21 100 %
GraphAF [121] 3.74 ± 1.25 100 % 1.95 ± 0.99 100 %
GP-VAE [76] 4.19 ± 1.30 98.9 % 2.25 ± 1.12 90.3 %
VJTNN [67] 3.55 ± 1.67 - 2.33 ± 1.17 -
GA+D [97] 5.93 ± 1.14 100 % 3.44 ± 1.09 99.8 %
FaST (Ours) 18.09 ± 8.72 100 % 8.98 ± 6.31 96.9 %

Results are shown in table 5.2; our method greatly outperforms the other baselines,

but we point out a few flaws intrinsic to the task. Because the similarity is computed

through Morgan fingerprint, which are hashes of substructures, repeatedly adding

aromatic rings can often not change the fingerprint by a lot. Nevertheless, adding

aromatic rings will linearly increase penalized logP score, which allows trivial solutions

to produce high scores for this task (see fig. 5-7). This phenomenon is noted by [97],

but they add a regularizer to constrain the generated compounds to look similar to

the reference molecules. Due to the mentioned issues, we believe this task can be

reformulated. For instance, one could use a different fingerprint method so that the

fingerprint similarity is not so easily exploited (see AP [16], MACCS [30], or ROCS
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Figure 5-7: Sample translation of our model for the constrained penalized logP task
(𝛿 = 0.6). The model generates a molecule with repeating aromatic rings; though not
realistic, this molecule achieves a high score, while having close Tanimoto similarity
using Morgan fingerprints.

[55]), or size constraints should be incorporated. Nevertheless, we provide our results

for comparison to other molecular generation methods.

In general, the task of optimizing (increasing) the penalized logP scores is not

entirely meaningful. According to Lipinski’s rule of five [83], which are widely estab-

lished rules to evaluate the druglikeness of molecules, the logP score should be lower

than 5. So an unbounded optimization of logP has little practical usability. Perhaps

a better task would be to optimize for all 5 rules in Linpinski’s rule of five which

includes constraints involving the number of hydrogen bond donors/acceptors and

molecular mass.

Different Novelty/Diversity Metrics FaST is capable of optimizing for differ-

ent novelty/diversity metrics. In this section, we compute the novelty/diversity met-

rics using atom-pair (AP) fingerprints [16]. While Morgan fingerprints have success-

fully been applied to many molecular tasks such as drug screening, it has some failure

modes [15]. Namely, Morgan fingerprints is often not informative about the size or the

shape of the molecules. These properties are better captured in AP fingerprints, as

AP fingerprints account for all atom pairs, including their pairwise distances. We run

the same experiment on the GSK3𝛽+JNK3+QED+SA task described in section 5.4,

87



but change the fingerprint from Morgan to AP for the novelty/diversity metrics. The

results are shown in table 5.3 with comparison to baselines. We observe that our

method outperform baselines by a greater margin, especially in the novelty metric.

This is not surprising because our model can explicitly optimize for any similarity

metric, while the baseline methods are not novelty/diversity-aware during training.

Interestingly, we find that optimizing for AP fingerprints also yields molecules that

score high under Morgan fingerprints for this task (but the converse is not true).

Table 5.3: Results on the GSK3𝛽+JNK3+QED+SA task using AP fingerprints in-
stead of Morgan fingerprints for novelty/diversity computation.

Method Success (SR) Novelty (Nov) Diversity (Div)
Morgan AP Morgan AP Morgan AP

Rationale-RL .750 .750 .555 .023 .706 .630
MARS .923 .733 .824 .077 .719 .644

FaST (Morgan) 1.00 1.00 1.00 .555 .716 .674
FaST (AP) 1.00 1.00 .987 .867 .675 .719

5.5 Summary

We propose a new framework for molecular optimization, which leverages a learned

vocabulary of molecular fragments to search the chemical space efficiently. We demon-

strate that FaST, which adaptively grows a set of promising molecular candidates,

can generate high-quality, novel, and diverse molecules on single-property and multi-

property optimization tasks. Ablation study shows that all components of our pro-

posed method contribute to its superior performance. The learning of a flexible vo-

cabulary is a complementary module to other research in fragment-based drug design.

Incorporating FaST to more practical drug discovery pipelines while taking synthesis

paths in mind is an exciting avenue for future work.
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Chapter 6

Conclusion

In this thesis, I looked at applying machine learning to two core problems as they re-

late to drug discovery: molecule representation and generation. Without the correct

modeling assumptions, these models fail to comprehensively capture the important

facets of the molecular problem. On the representation side, I looked at two mod-

els that relate to property prediction. Firstly, I looked at applying attention-based

transformer models for graph-structured molecular inputs. Next, I explored a new

paradigm for reasoning about molecules in the form of prototype learning. In addi-

tion to property prediction, I also talked about our methods for improving reaction

prediction, how to propose more generalizable and diverse reactions for retrosynthe-

sis. For the generation task, I delve into our new generation model that first learns

a generation vocabulary in the form of molecular fragments. Using this learned vo-

cabulary, we explore different search strategies to efficient find molecules satisfying

multi-criteria constraints.
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