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Abstract

Resonances are everywhere. They have different manifestations and are used in many
applications. In this work, we study multiple systems making use of resonances, with
numbers ranging “from one to infinity.”

First, we derive single-frequency bounds for the surface-enhanced Raman scattering
(SERS) where resonant nanostructures are used to enhance the Raman signal. These
bounds are shape independent and only function of the material constants and the sep-
aration distance from the Raman molecule. They can be evaluated analytically or by
simple numerical integration.

We then present analytical design criteria for multi-resonant filters in strongly coupled
systems where standard approaches (such as coupled mode theory or network synthesis)
are not adequate. For this, we develop a quasi-normal mode theory (QNMT) of the
scattering matrix that enforces the fundamental constraints of energy conservation and
reciprocity even for truncated sums. As an example of application, we design microwave
metasurface filters with various orders, bandwidths and types (such elliptic or Chebyshev).

For systems making use of a large number of resonances over a large bandwidth (such
as light trapping in solar cells), and in particular for metaparticle arrays, we present
approximate frequency/angle-averaged absorption enhancement bounds in the radiative
transfer regime and apply the results to ocean buoy energy extraction. Our results, which
match full-wave simulations, enable us to propose and quantify approaches to increase
performance through careful particle design and/or using external reflectors.

Finally, we study single-mode lasing stability in periodic systems where a full contin-
uum of modes should be taken into account in the nonlinear regime above threshold. In
particular, we show that, under the right conditions, single-mode lasing is still possible
in an infinite periodic structure, with practical limitations arising from boundary effects
and manufacturing inaccuracies. Examples of band-edge (1d) and bound-in-continuum
(2d) mode lasing are presented.

Thesis Supervisor: Steven G. Johnson
Title: Professor of Applied Mathematics and Physics
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Chapter 1

Introduction

1.1 Generalities

Resonances are everywhere. They appear in a vast number of natural phenomena and
engineering problems. They are associated with a universal behaviour for any system
that tends to “oscillate” at a given rate and for a given amount of time. These two
properties give a universal description of the corresponding “resonance” in terms of a
resonant frequency (oscillation rate) and a decay rate. Consider for example a simple
playground swing (basically a pendulum) that is being pushed at a periodic rate. It
should be obvious that in order to achieve a maximum swinging amplitude, you need to
wait for the swing to a finish a full cycle before pushing it again, otherwise, if you do it too
soon or too late, you will face resistance. The maximal response is then obtained when
the “driving” frequency matches the “natural” frequency at which the system oscillates
when left on its own. This is the resonant effect. If you neglect any friction in your swing,
then every time you push the system, the oscillation amplitudes simply add up and you
can obtain an infinite response. In practice, losses give the system its finite (but still
enhanced) response.

While the swing system is a simple example, resonances have in fact a more general
mathematical definition for an arbitrary operator and are an object of study in operator
theory [12, 13]. The quantity that oscillates can be anything, which makes the resonant
behaviour a universal phenomenon occurring in many areas of physics. First examples
are usually encountered when studying a simple electrical resonator circuit (the oscillating
quantity being the electric charge) or a mass-spring mechanical resonator (the oscillating
quantity being the mass displacement). It is in general noted in undergraduate classes that
these systems obey exactly the same mathematical equations, and particular emphasis is

23



given to the equivalence between certain physical parameters describing the two systems.
This equivalence in fact extends to many more systems which exhibit the same behaviour
and can be practically described by similar equations. While the exact derivation of how
to obtain the simplified resonant equations from a more complete (“microscopic”) physical
description may depend on the specific physics in play, it may not matter much since effec-
tive parameters can be directly extracted from the system’s general response. Figure 1-1
shows multiple examples from modern physics with manifestations of the resonant effect.
Regardless of the physics involved, all these systems exhibit the well-known Lorentzian-
shaped resonant spectrum, with a maximum response at the resonant frequency, and a
finite width associated with a loss factor.

 

Figure 1-1: Examples of a single resonance behaviour in many areas of physics. They
all show the universal Lorentzian response ∝ 1/ [(𝜔 − Ω)2 + Γ2]. Left: Measurement of
the Higgs boson mass based on the ATLAS experiment involving high-energy particles
collisions at the CERN Large Hadron Collider [1]. Middle: Mechanical resonator using
a single-walled carbon nanotube [2]. Right: Microwave resonator used to achieve highly
sensitive electron spin resonance (ESR) spectroscopy [3].

This universal response is actually a simple manifestation of the presence of a single
resonance in the system. But this is only the tip of the iceberg, as resonances (yes,
when you have many of them) can have a lot of other manifestations in different settings
and configurations. In this work, we will explore resonances “from one to infinity”, as
demonstrated in several problems in physics and engineering.

While resonances appear in any wave scattering system, we will be mainly concerned
with applications to modern electromagnetics and photonics (even though we also study
an ocean wave energy problem in Chapter 5). In particular, there has been a recent
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increased interest in designing novel systems, in order to improve the electromagnetic re-
sponse, which is greatly motivated by both recent micro- and nano-fabrication techniques
allowing for a wider range of geometries to be fabricated, as well as modern computational
techniques with the ability to analyze and numerically simulate increasingly complex sys-
tems. We will study four different problems, where the number of resonances involved
progressively increases from one to infinity. The problems are relatively independent, but
there are interesting interconnections that we highlight at multiple points. This means
that the different chapters can, in principle, be read independently. Each chapter starts
with a section “On resonances” that gives a high-level overview of the problem under
consideration and the way in which resonances are involved. These sections can be read
successively, without having to read the full chapter. As such, they can be seen as a
storyline describing the flow of our work. In the next section, we give a brief overview of
the different problems explored in this work. Most of the results have been published in
journals as enumerated in the “Related publications” above.

1.2 Overview

◇ Loss in resonance: Bounding surfaced-enhanced Raman scatter-

ing (Chapter 2)

The large response of a system at resonance makes it particularly useful to enhance
signals. However, the maximum response is fundamentally limited by absorption losses
which are inherent to the materials used. In recent works, analytical bounds, based
on optimization under energy-conservation constraints, were reported for various linear
problems and quantify the fundamental limitations imposed by materials losses [5]. Here,
we extend earlier bounds to a nonlinear process: Raman scattering.

Surface-enhanced Raman scattering (SERS) is a common method developed to over-
come the low efficiency of conventional Raman spectroscopy. In SERS, the chemicals of
interest are placed in the vicinity of a scatterer, typically a textured surface or collection
of nanoparticles, which acts as an antenna that both concentrates the incoming pump
field at the Raman material’s location and enhances the radiated Stokes signal emitted
by the Raman material, thereby increasing the collected signal.

Optimized structures with various shapes have been studied, but no study thus far
has looked at the possibility of an upper limit to the enhancement achievable in SERS.
In our work [14], we find fundamental upper bounds on the Raman enhancement for
arbitrary-shaped scatterers, depending only on its material constants and the separation
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distance from the molecule. Our method is based on decomposing the process into two
linear problems (concentration of the incident field on the molecule and a dipole emission
at the Raman-shifted frequency) and then bounding each term separately. According
to our metric, silver is optimal in visible wavelengths while aluminum is better in the
near-UV region. Our general analytical bound scales as the volume of the scatterer and
the inverse sixth power of the distance to the active molecule. Tighter bounds can be
computed by simple numerical integration. We also compare the bounds to the actual
performance of simple structures (spheres and bowties). Numerical computations show
that such geometries fall short of the bounds, suggesting further design opportunities for
future improvement. While the bounds can be reached in the quasistatic limit, both the
bounds and the actual performance increase with the scatterer’s volume and further shape
optimization is required to get closer to the limits for large scatterers.

Motivated by the results from the bounds and in collaboration with others, we perform
freeform shape optimization (“topology optimization”, TO) of the total Raman enhance-
ment and obtain surprising structures ∼ 60× better than optimized coupled-sphere or
bowtie [15]. Such results are a proof-of-concept of Raman TO in 2d systems, and the
significant enhancements suggest promising results for future improvements in practical
3d Raman sensing.

◇ Few resonances: Quasi-normal mode theory for filter design

(Chapters 3 and 4)

High-order (multi-resonance) filters are ubiquitous components in many wave physics
systems. Typical design methods are based on independently tuning multiple distinct
components, as in circuit theory where we can identify separate elements. Such standard
methods are restricted to a specific wavelength regime (quasi-static for circuits [16]) or
to systems with weakly coupled components (as in coupled mode theory [17]). Here we
provide the missing universal methodology that is based on the final resonances of the
global system.

It is known that the complex resonances of an open system are associated with the
poles of its 𝑆-matrix, which describes the scattering response. A complete description of
𝑆 requires the knowledge of additional coupling coefficients, which we do using a theory
that is consistent with the physical constraints of energy conservation and reciprocity [18].
We then use this formulation to show that high-order filters with full transmission require
couplings with specific unitary ratios [19]. While it is known that “peaks” of the scattering
response correspond to resonant frequencies, we further show that its “zeros” are deter-
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mined by the relative signs of the couplings. This gives direct criteria to design high-order
filters with specific placement of transmission peaks and zeros.

As an example of application, we consider the problem of designing metasurface fil-
ters. Microwave frequency selective surfaces (FSS) are two-dimensional periodic metal-
dielectric arrays exhibiting specific frequency-dependent transmission or reflection un-
der planewave excitation [20]. Such FSSs are usually used to implement spatial (wave)
filters for communication antennas, radars, radomes, lenses etc. An important design
challenge in frequency-selective metasurfaces is the ability to obtain specific high-order
filter responses using their strongly inter-coupled subwavelength resonances, attempted
usually through multilayer FSSs. When the filter-design optimization problem is formu-
lated directly in terms of matching a desired transmission spectrum, it can face severe
numerical challenges such as poor local optima (due to the highly oscillatory transmis-
sion spectrum) and stringent constraints for stop- and pass-band transmission (leading to
“stiff” optimization problems with slow convergence). It would be then advantageous to
use the analytically-defined “optimal” (or ideal standard) filters already known in signal-
processing theory, and characterized by various rational transfer functions with specified
poles and zeros [16]. Our method, described earlier, gives a nice framework to design such
standard filters using the resonant modes of the global system. We successfully apply
our procedure to computationally design microwave metasurface filters precisely match-
ing standard filters of various orders, bandwidths and types, especially optimal elliptic
filters, which were demonstrated mostly approximately in the past.

◇ Many resonances: From solar cells to ocean buoys (Chapter 5)

In certain problems where a wide frequency bandwidth is considered, a large number
of resonances is typically involved. This for example the case of light trapping in solar
cells, where the use of surface texturing increases the efficiency of thin-film cells through
total internal reflection. In this work, we are actually motivated by a different problem
involving similar physics: arrays of buoys designed to extract energy from ocean waves [8].
In this case, wave energy converters (WEC) (or buoys) are designed to extract energy from
ocean waves through a mechanical oscillating movement. When placing the buoys near
each other in an array, the total energy extracted from the array may exceed the energy
extracted from individual buoys due to multiple scattering effects. Previous numerical-
optimization works showed promising results through the design of buoy positions [8,21].
While most previous work focused on numerical optimization, the question we are trying
to answer in this work is more general and concerns any array of scattering “metaparticles”:
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given the absorbing and scattering properties of an individual metaparticle, is there a limit
on the total enhancement and how can it be reached?

One of the most influential theoretical results for solar-cell design has been the ray-
optical Yablonovitch limit [22,23], which provides a bound to how much surface texturing
can enhance the performance of an absorbing film averaged over a broad bandwidth and
angular range. However, the Yablonovitch limit cannot be applied to all metaparticle
arrays since it requires an effective-medium approximation, which is only accurate for
either dilute weakly interacting dipolar particles or for strongly interacting particles with
sufficiently subwavelength separation. Other known limits bound the absorption at every
wavelength [24], but they tend to be loose when considering large bandwidths since coher-
ent effects average out [25]. Here, we show that general limits, including the well-known
Yablonovitch result in solar cells, arise from reciprocity conditions. The use of reciprocity
for arrays of particles described by the radiative-transfer equation (RTE) leads us to a
corrected diffusion model from which we derive our main result: an analytical predic-
tion of optimal array absorption that closely matches exact simulations for both random
and optimized arrays under angle and frequency averaging. This result also enables us
to propose and quantify approaches to increase performance through careful particle de-
sign and/or using external reflectors. We show, in particular, that the use of membranes
(which act as as external reflectors leading to total internal reflection, as in solar cells!)
on the water’s surface allows substantial enhancement.

◇ Infinity of resonances: The periodic laser problem (Chapter 6)

Since the first introduction of the distributed-feedback (DFB) laser, the use of the
“distributed feedback” mechanism in periodic structures enabled novel lasers with en-
hanced functionality and improved performance. Applications range from the well-known
photonic-crystal surface-emitting lasers (PCSELs) to more recent lasing action in plas-
monic arrays or based on bound-in-continuum (BiC) states. While such lasers have at-
tracted considerable attention due to their ability to maintain a stable single-mode over a
large surface area, instabilities have been observed in large enough finite periodic lasers.
Here, we address a fundamental question for periodic lasers: does stable single-mode las-
ing exist in an infinite periodic structure, or does it inherently require the boundaries of
a finite structure to stabilize?

At first glance, it may seem that stability is unlikely: any resonance in a periodic
system is in fact part of a continuum of resonances at different Bloch wavevectors with
arbitrarily close lasing thresholds, and this seems to violate typical assumptions for stable
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lasing. However, we show that single-mode lasing is possible even in infinite periodic
structures for range of powers above threshold, by applying a Bloch adaptation of linear-
stability analysis to the full nonlinear Maxwell–Bloch equations [26]. Using perturbation
theory, we also obtain a simple condition for stability near threshold of low-loss resonances:
the sign of the laser detuning from the gain frequency should match the sign of the band
curvature at threshold. Our result is particularly relevant to multiple recent studies of
novel lasers.
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Chapter 2

Loss in resonance: Bounding
surfaced-enhanced Raman scattering

1

2.1 On resonances

Resonances are intuitively characterized by a substantial increase of the output in a given
system, making it particularly useful for “enhancement” effects in many applications. This
can be seen in the most simple, yet very useful, second-order linear differential system
below, modelling for example the response 𝑥(𝑡) of a damped oscillator due to an external
excitation 𝑓(𝑡):

𝑑2𝑥

𝑑𝑡2
+ 2Γ

𝑑𝑥

𝑑𝑡
+ Ω2𝑥 = 𝑓, (2.1)

where Ω represents the natural frequency of the system and Γ represents a loss factor
(damping). For a harmonic excitation 𝑓 = 𝐹𝑒−𝑖𝜔𝑡, the response of the system is given by
the transfer function:

𝐻(𝜔) =
𝑥

𝑓
=

1

−𝜔2 + Ω2 − 2𝑖𝜔Γ
=

1

2Ω0

[︂
− 1

𝜔 − (Ω0 − 𝑖Γ)
+

1

𝜔 − (−Ω0 − 𝑖Γ)

]︂
, (2.2)

where Ω2
0 = Ω2 − Γ2. Note that 𝐻(𝜔) has poles at 𝜔0 = Ω0 − 𝑖Γ and −𝜔*

0. These
correspond to the complex resonances of this system and will be discussed in more details
in Chapter 3.

For a small enough loss factor Γ, 𝐻(𝜔) has a resonant behaviour and reaches a maxi-

1Our work on this topic was published in Ref. 14 and Ref. 15 and presented in Ref. 27.
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mum amplitude at 𝜔𝑚 =
√
Ω2 − 2Γ2 where we have:

|𝐻(𝜔𝑚)|2 =
1

4Γ2Ω2
0

, (2.3)

The maximal response of the system can then be made arbitrary large for arbitrary small
loss factor Γ, highlighting the enhancement effect we mentioned earlier.

While this system is deceptively simple, it still captures the universal behaviour of res-
onant effects. It is not only that Eq. (2.1) describes simple systems in different physical
settings (e.g. mechanical oscillator, RLC circuit...), but the results are, at least qualita-
tively, general for arbitrary operators. We can in fact substitute the simple second-order
differential operator in Eq. (2.1) with an arbitrary operator and make a similar analysis.
In this case, 𝜔0 represents the pole of the “inverse” of the new operator2 and its value can
usually be directly obtained by solving an adequate eigenproblem. This is expected to be
true only locally (around the resonant frequency) as long as no other poles are present
nearby in the complex 𝜔-plane. In such case, Eq. (2.1) can be a good approximation
describing the behaviour of the system. In a general scenario with multiple resonances, a
higher-dimensional operator should rather be used in order to obtain an adequate simpli-
fied model including all the relevant poles of the system. This problem will be discussed
in more details in Chapter 3.

In this chapter, we are concerned with the limitations imposed by losses on enhance-
ment in electromagnetic and photonic systems. Such systems are described by Maxwell’s
equations which can be written in the operator form:

𝑑𝜓

𝑑𝑡
= Θ𝜓 + 𝜑, 𝜓 =

(︃
E

H

)︃
, Θ =

(︃
0 1

𝜖
∇×

− 1
𝜇
∇× 0

)︃
, 𝜑 =

(︃
−j/𝜖

0

)︃
, (2.4)

along with the conditions ∇ · 𝜖E = 0 and ∇ · 𝜇H = 0 for 𝜖 = 𝜖0𝜖𝑟 and 𝜇 = 𝜇0𝜇𝑟, where E

(resp. H) is the electric (resp. magnetic) field, j is the current density, 𝜖0 (resp. 𝜇0) is the
dielectric constant (resp. magnetic permeability) of free space, and 𝜖𝑟 (resp. 𝜇𝑟) is the
dielectric constant (resp. permeability) of the medium. The speed of light 𝑐 in free space
is then given by 𝑐2 = 1/𝜖0𝜇0. For nonmagnetic materials, which are mostly considered
here, we have 𝜇𝑟 = 1.

This equation describes the electromagnetic field response to external excitation (e.g.,
a dipole source or incident planewave). A very large number of applications are concerned

2Technically, it is a pole of a response function of the system, such as the Green’s function or the
scattering matrix. In operator theory, for a linear operator 𝐴, it is defined as the pole of the resolvent
𝑅(𝜆) = (𝐴− 𝜆𝐼)−1.
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with designing structures or cavities, namely finding an appropriate 𝜖(𝑟) (by choosing the
optimal geometry and materials) in order to optimize a given output (e.g. scattering,
absorption or extinction cross section, or local density of states, see Appendix-A). Reso-
nances are associated with self-sustained solutions of the problem (𝜑 = 0), therefore they
correspond to complex eigenvalues of the operator (−𝑖𝜔𝜓 = Θ𝜓) with outgoing boundary
conditions. In electromagnetic problems, Γ = −Im(𝜔) = Γr + Γnr can be decomposed
into a radiative part Γr (losses due to radiation outside the scattering structure) and
non-radiative part Γnr (losses due to absorption inside the material). While we can easily
design systems with small Γr [28], the total Γ and thus the maximal enhancement [e.g.,
Eq. (2.3)] is fundamentally limited by absorption losses.

Absorption losses are directly related to the imaginary part of materials’ susceptibility
𝜒 (= 𝜖 − 1). Previous work derived fundamental bounds on quantities of interest in
scattering and emission problems (e.g. cross section or local density of states) for arbitrary
shapes, given only the materials [5,29,30]. These bounds depend on a material figure given
by |𝜒|2/Im𝜒, thus quantifying the limits imposed by absorption in the material (i.e., Im𝜒).
In this chapter, we derive upper limits to surface-enhanced Raman scattering (SERS)
[described in the next section] for arbitrary periodic and aperiodic shapes, extending
these earlier bounds on linear light emission to a nonlinear process (Fig. 2-1). We also
show that existing designs such as bowtie antennas are typically far from the theoretical
optimum.

Earlier work indeed showed that the efficiency of a single light emitter scales as
|𝜒|2/Im𝜒 for a material with susceptibility 𝜒 [5], but we find that the Raman bounds
scale as the cube of this [Eq. (2.31)] because they result from nonlinear composition of
a light concentration bound (in which an incident planewave is concentrated on the Ra-
man molecule) and a light emission bound similar to the previous local densoty of states
(LDOS) bounds. The concentration part of our bound [∼ |𝜒|4/ (Im𝜒)2] may also be ap-
plicable to many other problems involving light focusing [31, 32]. For periodic surfaces,
one can gain an additional enhancement to concentration from the contribution of other
periods, but we show that there is a trade-off and that the largest benefits (for a single
Raman molecule) seem to arise from optimizing individual scatterers. We obtain both
analytical formulas within general design regions as well as semi-analytical bounds involv-
ing numerical integration for more specific spatial configurations, and we compare typical
structures to these bounds. For structures constrained to lie within a subwavelength
spherical volume, we show that spherical particles are nearly optimal in the quasistatic
regime. For structures that are allowed to extend into larger volumes, we find that sim-
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ple geometries such as bowtie antennas [33–35] are far from our upper limits, suggesting
exciting opportunities for improvement in future designs. In particular, using topology
optimization based inverse design, we obtain surprising structures maximizing the Ra-
man enhancement. These optimization results shed light to what extent our bounds are
achievable.

2.2 Surface-enhanced Raman scattering

Surface-enhanced Raman scattering (SERS) [36–42] was developed to overcome the low
efficiency of conventional Raman spectroscopy, as the very small Raman cross-section
of most chemicals results in Raman radiation typically on the order of 0.001% of the
power of the pump signal [36]. In SERS, the chemicals of interest are placed in the
vicinity of a scatterer, typically a surface or collection of nanoparticles, which acts as
an antenna that both concentrates the incoming pump field at the Raman material’s
location and enhances the radiated Stokes signal emitted by the Raman material [43,
44], thereby increasing the collected signal. Charge-transfer mechanisms also lead to a
chemical enhancement, although their contribution is smaller than the electromagnetic
enhancement effect [45, 46]. Many different materials and antenna geometries have been
used for SERS measurements: metals such as silver, gold, or copper, and dielectrics such
as silicon carbide or indium tin oxide, were implemented in various shapes such as spheres,
triangular prisms, or disks. Several studies have optimized SERS substrates over one or
two parameters [47–51]. Others have used topology optimization yet only to optimize
the concentration of the incident field [52, 53]. Efficiencies up to 12 orders of magnitude
larger than that of traditional Raman spectroscopy have been demonstrated, allowing for
detection levels down to the single molecule [39, 40] and opening up applications in the
fields of biochemistry, forensics, food safety, threat detection, and medical diagnostics.

However, to the best of our knowledge, no study thus far has looked at the possibility
of an upper limit to the enhancement achievable in SERS, and it is therefore not known
whether current SERS substrates possess much room for improvement. To investigate the
existence of such a bound, a key point is to notice that the process can be decomposed
into two linear problems [54]: concentration of the incident field on the molecule and a
dipole emission at the Raman-shifted frequency, as is described in more details below.
Upper bounds on the power radiated by a dipole near a scatterer of arbitrary shape
were already obtained in Ref. 5. Given only the material susceptibility 𝜒, this is an
upper limit for the LDOS for any possible geometric shape in a given region of space
near the emitter. The bounding method is based on optimizing the quantity of interest
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under energy-conservation constraints, using the fact that extinction (linear in the induced
fields) is larger than absorption (quadratic in the induced fields). This method has been
successfully applied to various other problems [29, 30]. Here, we apply this method to
obtain a bound on local field concentration enhancement, again for any possible shape
given only the material and the bounding volume. Combined with the LDOS limit, we
then obtain a bound on the Raman enhancement. We also obtain a second bound for
the concentration problem using reciprocity in the case of a periodic structure (we use a
similar approach in Chapter 5 to relate the Yablonovitch limit for solar cells to the LDOS
enhancement). By comparing the two concentration bounds as a function of the period,
we obtain a tighter bound for periodic structures.

2.3 Derivation of bounds

 
Scatterer 
𝜒(𝜔)	

Incoming field 
𝐄𝐢𝐧𝐜	

Radiated field 

Concentrated field 
𝐄𝐬𝐜𝐚+𝐄𝐢𝐧𝐜	

at frequency 𝜔𝑝  

at frequency 𝜔𝑝  

at frequency 𝜔𝑟  

Raman molecule 

Figure 2-1: Schematics of the SERS configuration under study. The pump field is incident
onto a scatterer, near which lies the Raman-active chemical. Upon interaction with the
pump field, thus material behaves as a dipole emitting a Raman-shifted field. The Raman
field interacts with the scatterer and is emitted to the far-field.

In order to derive a bound on the Raman enhancement, we consider the configuration
represented in Fig. 2-1. An incident “pump” planewave Einc is scattered by the nanostruc-
ture, leading to a near-field enhancement. A Raman-active molecule close to the structure
then acquires a dipole moment proportional to the enhanced field, p = 𝛼RE where 𝛼R

is the Hermitian (usually real-symmetric) Raman polarizability tensor [54]. The power
radiated by the dipole in the far field at the Raman frequency is our quantity of interest
and is given by 𝑃 = |𝛼RE|2𝑃p where 𝑃p is the power radiated by a unit-vector dipole
p̂ = 𝛼RE/|𝛼RE|. 𝑃p can be related to the (electric) LDOS through 𝜌p =

2𝜖0𝑛2
𝑏

𝜋𝜔2 𝑃p where 𝑛𝑏
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is the index of the background medium [55, 56]. We note that typically LDOS is defined
as the sum of 𝜌p over three orthogonal directions, so that in our notation, the back-
ground LDOS is equal to 𝜌𝑏 = 𝑛3

𝑏𝜔
2/6𝜋2𝑐3 (see Appendix A). The Raman enhancement

(compared to the background) is then equal to:

𝑞 =
|𝛼RE|2𝜌p

‖𝛼R‖2|Einc|2𝜌𝑏
, (2.5)

where ‖.‖ is the induced norm (which gives an upper bound on the magnitude of p̂ for
any E orientation [57]). We see that the enhancement comes from two parts: LDOS
enhancement (𝑞rad = 𝜌p/𝜌𝑏) and local field enhancement (𝑞loc = |𝛼RE|2/‖𝛼R‖2|Einc|2).
To bound the total efficiency, we need to bound both contributions.

2.3.1 LDOS enhancement

A bound on LDOS enhancement due to scattering by lossy structures can be obtained
starting from a result of Ref. 5: the maximum LDOS enhancement near a scatterer with
susceptibility 𝜒, in a background with Green’s function G, is given by:

𝑞rad =
𝜌p
𝜌𝑏

≤ 1 +
3𝜋𝑛2

𝑏

2𝑘3
|𝜒|2
Im𝜒

∫︁
𝑉

|Gp̂|2 , (2.6)

where the integration is carried over the volume of the scatterer and 𝑘 the wavenumber
in the background medium. Since the direction of p = 𝛼RE is also to be optimized, we
can then obtain a bound using:∫︁

𝑉

|Gp̂|2 = (𝛼RE)
†

|𝛼RE|

(︂∫︁
𝑉

G†G

)︂
𝛼RE

|𝛼RE|
≤ |||GUR|||2 :=

⃦⃦⃦⃦∫︁
𝑉

UR
†G†GUR

⃦⃦⃦⃦
, (2.7)

where the columns of UR – a 3 × rank(𝛼R) matrix – are the orthonormal principle axes
of 𝛼R with non-zero Raman polarizability. If 𝛼R is invertible we simply obtain |||G|||2.
On the other hand, if the Raman polarization is along a fixed axis p̂ we obtain |||Gp̂|||2.
Details for the computation of the induced norm are given in subsection 2.3.3.

2.3.2 Local field enhancement

We now obtain a bound on local field concentration by using the same method as in Ref. 5
while working with a suitable figure of merit. This bound applies to scatterers of any shape
and scales with the volume of the scatterer. (The focusing of thin parabolic mirrors and
lenses provides an example of concentration scaling with volume.) For periodic structures,
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since there is finite power incident on each unit cell (and a periodic set of foci), we obtain
a second bound that scales as the unit-cell area.

Single-point focusing (volume-scaling bound)

Let x0 be the position of the Raman-active molecule and Esca be the scattered field.
For Eq. (2.5), we want to bound |𝛼RE(x0)|2 where E = Esca + Einc is the total field.
Recall that the scattered field is given by Esca(x0) =

∫︀
𝑉
G(x0,x)P where P = 𝜒E is the

polarization current (Appendix-A, Ref. 58). As explained in Ref. 5, the fields are subject
to:

Im
∫︁
𝑉

E†P ≤ Im
∫︁
𝑉

E†
incP , (2.8)

which simply states that absorption is smaller than extinction. For a given unit vector ê,
maximizing |ê†𝛼REsca(x0)|2 under the constraint (2.8) is equivalent to:

max
P

⟨P,AP⟩ subject to ⟨P,P⟩ ≤ 𝛼Re⟨b,P⟩ , (2.9)

where 𝛼 = |𝜒|2/Im𝜒, AP = ⟨a,P⟩a, a = G*𝛼Rê, b = 𝑖Einc and ⟨X,Y⟩ =
∫︀
𝑉
X†Y. The

optimum of Eq. (2.8) must satisfy the KKT conditions [59,60]:

AP+ 𝜆(P− 𝛼

2
b) = 0 , ⟨P,P⟩ − 𝛼Re⟨b,P⟩ = 0 , (2.10)

where 𝜆 = − ⟨a,P⟩
𝛽

. The first equation can be written as P = 𝛼
2
b − 1

𝜆
⟨a,P⟩a = 𝛼

2
b + 𝛽

2
a.

The second equation then leads to |𝛽||a| = 𝛼|b|. Since 𝜆 ∈ R, then ⟨a,b⟩
𝛽

∈ R. From this
we have 𝛽 = ±𝛼 |b|⟨a,b⟩

|a||⟨a,b⟩| . We finally conclude that the optimal value of ⟨P,AP⟩ is equal
to:

𝛼2

4
(|⟨a,b⟩|+ |a||b|)2 ≤ 𝛼2|a|2|b|2 . (2.11)

If we plug in the physical quantities, we get:

|ê†𝛼REsca(x0)|2 ≤
(︂ |𝜒|2

Im𝜒

)︂2 ∫︁
𝑉

|Einc|2
∫︁
𝑉

|G*𝛼Rê|2 . (2.12)

A bound on the norm of 𝛼REsca is then obtained similarly to the LDOS result in sub-
section 2.3.1 using |||.|||. A simpler bound can be obtained using a spectral decomposition
𝛼R = URdRUR

† where dR is a rank(𝛼R) × rank(𝛼R) diagonal matrix with entries equal
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to the nonzero eigenvalues of 𝛼R. In particular, for ê in the column space of 𝛼R, we have:∫︁
𝑉

|G*𝛼Rê|2 ≤ |||G*𝛼RUR|||2 = |||G*URdR|||2 ≤ |||G*UR|||2‖dR‖2 = |||GU*
R|||2‖𝛼R‖2 .

(2.13)

We then conclude by the triangle inequality [57]:

𝑞loc ≤
(︂
1 +

|𝜒|2
Im𝜒

|||GU*
R|||

√
𝑉

)︂2

. (2.14)

For large enhancement (𝑞loc ≫ 1), the bound is simply given by the second term squared
and the material’s figure of merit for the concentration bound is the square of the usual
factor |𝜒|2/Im𝜒 from previous works [5]. Essentially, this arises because concentration
involves coupling to two electromagnetic waves: the incoming planewave and the dipole
field. The usual material’s metric thus comes into play two times. This also explains the
presence of the volume of the scatterer (from the coupling with the planewave) and of the
integral of the Green’s function (from the coupling with the dipole). Identical scalings
are also found in the exact results for a quasistatic plasmonic sphere as we show later in
subsection 2.4.1.

Periodic-array focusing (area-scaling bound)

In practice, wafer-scale microfabrication techniques favor the manufacturing of repeating
patterns over large areas rather than single, isolated structures. Moreover, periodic struc-
tures may offer increased SERS performances thanks to interference effects. While the
previous bound is still valid for periodic structures by using the periodic Green’s function,
we can also use reciprocity to relate the local field enhancement to LDOS enhancement
and obtain a bound that scales as the surface area of the unit cell. For this, we study
a 2d-periodic structure with unit-cell surface area 𝑆 and (b1,b2) the reciprocal lattice
vectors orthogonal to ẑ [61]. We consider the scattering (resp. emission) problem with
Es

inc = 𝑒𝑖k·xEinc (resp. j = −𝑖𝜔𝛿x0 ê, with −k‖ Bloch boundary-conditions, where the
subscript ‖ refers to the component perpendicular to ẑ). We can write the outgoing fields
in the far field as:

Ee,s
out =

∑︁
𝑛,𝑚

𝑇 𝑒,𝑠
nm𝑒

𝑖x·ke,s
nm êe,s

nm, He,s
out = −

∑︁
𝑛,𝑚

𝑇 𝑒,𝑠
nm𝑒

𝑖x·ke,s
nm

ke,s
nm × êe,s

nm

𝜔𝜇0

, (2.15)
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where |ke,s
nm| = 𝑘, ks,e

‖ = ±(k‖ + 𝑛b1 + 𝑚b2) and êe,s
nm · ke,s

nm = 0. We take 𝑘𝑧 ≥ 0 (with
𝑘nm,𝑧 ≥ 0 for 𝑧 > 0 and 𝑘nm,𝑧 ≤ 0 for 𝑧 < 0).

From reciprocity [62], we have:∫︁
𝑆

(Es ×Hs − Ee ×Hs) · n̂𝑑𝑆 = 𝑖𝜔 ê · Es(x0) , (2.16)

where Es and Ee are the total fields (Es = Es
out + Ee

inc and Ee = Ee
out).

The integration around the lateral boundary is cancelled due to boundary conditions.
We only need to compute the surface integral in the far-field. For |𝑧| large enough, we
integrate over the cross section 𝑆𝑧:

𝜔𝜇0

∫︁
𝑆𝑧

Ee
out ×Hs

out · ŝ𝑑𝑆 = −
∑︁

𝑛,𝑚,𝑘,𝑙

∫︁
𝑆𝑧

𝑇 𝑒
𝑛,𝑚𝑇

𝑠
𝑘,𝑙𝑒

𝑖x·(ke
nm+ks

kl) êenm × (ks
kl × êskl) · ẑ 𝑑𝑆

= 𝑆
∑︁
𝑛𝑚

𝑇 𝑒
𝑛,𝑚𝑇

𝑠
𝑛,𝑚𝑒

−2𝑖𝑘nm,𝑧𝑧 [(êenm · êsnm)k
s
nm − (êenm · ks

nm)ê
s
nm] · ẑ

= 𝑆
∑︁
𝑛𝑚

𝑇 𝑒
𝑛,𝑚𝑇

𝑠
𝑛,𝑚𝑘nm,𝑧𝑒

−2𝑖𝑘nm,𝑧𝑧 [(êenm · êsnm)− 2(êsnm · ẑ)(êenm · ẑ)]

= 𝜔𝜇0

∫︁
𝑆𝑧

Ee
out ×He

out · ŝ 𝑑𝑆 . (2.17)

The last equality comes from the symmetry of the equation with respect to 𝑒/𝑠, and the
second to last comes from ks

nm = 𝑘nm,𝑧ẑ− (ke
nm − 𝑘nm,𝑧ẑ).

For 𝑧 < 0, we also have:

𝜔𝜇0

∫︁
𝑆𝑧

Ee
out×Hs

inc ·ẑ 𝑑𝑆 = 𝑆𝑇 𝑒
00[𝑘𝑧ê

e
00 ·Einc−�����(êe00 · k)(Einc ·ẑ)] = 𝑆𝑇 𝑒

00𝑘𝑧ê
e
00Einc . (2.18)

Similarly, we find
∫︀
𝑆𝑧
Es

inc ×He
out · ẑ = −

∫︀
𝑆𝑧
Ee

out ×Hs
inc · ẑ. On the other hand,∫︁

𝑆−𝑧

Es
inc×He

out · ẑ =

∫︁
𝑆−𝑧

Ee
out×Hs

inc · ẑ = 𝑆𝑇 𝑒
00𝑘𝑧ê

e
00 · [Einc−2(Einc · ẑ)ẑ]𝑒2𝑖𝑘𝑧𝑧 . (2.19)

By replacing all integrals in Eq. (2.16), we conclude:

ê · Es(x0) =
2𝑖𝑆𝜖

𝑘
Te

00 · Einc cos 𝜃 (2.20)

where we noted Te
00 = 𝑇 𝑒

00ê
e
00 and 𝜃 the incidence angle with respect to ẑ. This equation

simply relates the field’s component ê ·Es(x0) due to an incident plane wave 𝑒𝑖k·xEinc to
the far-field component along −k of the field created by a unit vector dipole ê placed at

39



x0 (where the problem in the unit-cell is −k‖ Bloch-periodic).
Using this relation, we can now bound the amplitude of 𝛼RE using:

|ê†𝛼RE(x0)|2
‖𝛼R‖2|Einc|2

≤ 4𝑆2𝜖2 cos2 𝜃

𝑘2
|Tp

00|2 ≤
4𝑆2𝜖2 cos 𝜃

𝑘2

∑︁
𝑛𝑚

|Tp
nm|2

𝑘𝑛𝑚,𝑧

𝜔𝜇0

𝜔𝜇0

𝑘

=
4𝑆𝜖2 cos 𝜃

𝑘2
𝜔𝜇0

𝑘
Re
∫︁
𝑆+∞

Ep ×Hp* · ẑ 𝑑𝑆 ≤ 8𝑆𝜖2 cos 𝜃
𝜔𝜇0

𝑘3
𝑃p , (2.21)

where we recall that 𝑃p is the total power radiated by the dipole p̂. The first inequality is
based on Cauchy-Schwartz [57] while the second one states that the power emitted along
−k (∝ |Tp

00|2) is smaller than the total power emitted in the +ẑ direction, which is then
smaller than the total radiated power 𝑃p. The inequalities used in Eq. (2.21) will be tight
(equalities) if 𝜔 is smaller than the first-order diffraction frequency (so that all the power
is in Tp

00 [61]) and in the absence of radiated field in the opposite direction (the structure
should completely “block” the unit-cell’s surface). Now using the previous LDOS bound
[Eqs. (2.6–2.7)], we conclude:

𝑞loc ≤
2𝑆𝑘2 cos 𝜃

3𝜋

[︂
𝜌per
𝑏,p

𝜌𝑏
+

3𝜋𝑛2
𝑏

2𝑘3
|𝜒|2
Im𝜒

|||GperU*
R|||2
]︂
, (2.22)

where 𝜌per
𝑏,p is the polarized periodic LDOS related to the power radiated by a dipole p and

Gper is the free-space Bloch-periodic Green’s function. If only one diffraction channel is
supported (for example, when the period 𝑎 is smaller than 𝜆/2), we have:

𝜌per
𝑏,p =

𝜌per
𝑏

2

(︃
1− |p̂†k̂+|2 + |p̂†k̂−|2

2

)︃
≤ 𝜌per

𝑏

2
=

𝑛𝑏

2𝜋𝑐𝑆 cos 𝜃
(2.23)

where 𝜌per
𝑏 is the total periodic LDOS (sum of 𝜌per

𝑏,p over three orthogonal directions) and
k± = −k0‖ ± 𝑘0𝑧ẑ (directions of far-field emission). In this case, Eq. (2.22) becomes:

𝑞loc ≤ 2 +
𝑆𝑛2

𝑏 cos 𝜃

𝑘

|𝜒|2
Im𝜒

|||GperU*
R|||2 . (2.24)

The constant factor of 2 simply reflects the enhancement in the case of a perfect back-
reflector and in absence of any resonant structure.

2.3.3 Induced norm of the integral of the Green’s function

Before combining the previous results to obtain final Raman bounds, we show how to
compute the induced norm of the integral of the Green’s function. Recall that [58] (with
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𝑘0 being the free-space wavenumber):

G =
𝑘20𝑒

𝑖𝑘𝑟

4𝜋𝑟

[︂(︂
1 +

𝑖

𝑘𝑟
− 1

(𝑘𝑟)2

)︂
1+

(︂
−1− 3𝑖

𝑘𝑟
+

3

(𝑘𝑟)2

)︂
r̂r̂+
]︂
, (2.25)

so that:

G†G =
𝑘40

16𝜋2𝑟2

[︂(︂
1− 1

(𝑘𝑟)2
+

1

(𝑘𝑟)4

)︂
1+

(︂
−1 +

5

(𝑘𝑟)2
+

3

(𝑘𝑟)4

)︂
r̂r̂†
]︂
= 𝑎(𝑟)1+ 𝑏(𝑟)r̂r̂†.

(2.26)

If the structure has two mirror symmetry planes orthogonal to x̂, ŷ or ẑ, the non-diagonal
terms of

∫︀
𝑉
G†G are zero, and we obtain:

|||G|||2 = ‖
∫︁
𝑉

G†G‖ =

∫︁
𝑉

𝑎(𝑟) + max
𝑗

∫︁
𝑉

𝑏(𝑟)
𝑥2𝑗
𝑟2
. (2.27)

We can obtain finite analytical expression by integrating over simple geometries and only
considering the near-field terms (∝ 1/𝑟6). For spherical shell of polar angle 𝜃 separated
from the Raman molecule by a small distance 𝑑, we have:∫︁

𝑉

𝑑𝑉

𝑟6
=

2𝜋(1− cos 𝜃)

3𝑑3
,

∫︁
𝑉

𝑑𝑉

𝑟6
𝑧2

𝑟2
=

2𝜋(1− cos3 𝜃)

9𝑑3
,

∫︁
𝑉

𝑑𝑉

𝑟6
𝑥2

𝑟2
=
𝜋(8− 9 cos 𝜃 + cos 3𝜃)

36𝑑3
.

(2.28)
So |||G|||2𝑛4

𝑏 is equal to:

1

24𝜋𝑑3
(︀
2− cos 𝜃 − cos3 𝜃

)︀ [︁
0 ≤ 𝜃 ≤ 𝜋

2

]︁
,

1

192𝜋𝑑3
(16− 17 cos 𝜃 + cos 3𝜃)

[︁𝜋
2
≤ 𝜃 ≤ 𝜋

]︁
.

(2.29)
For a half-plane, we have:∫︁

𝑉

𝑑𝑉

𝑟6
=

𝜋

6𝑑3
,

∫︁
𝑉

𝑑𝑉

𝑟6
𝑧2

𝑟2
=

𝜋

9𝑑3
,

∫︁
𝑉

𝑑𝑉

𝑟6
𝑥2

𝑟2
=

𝜋

36𝑑3
, (2.30)

so that |||G|||2𝑛4
𝑏 = 1/32𝜋𝑑3.

2.3.4 Raman enhancement

The bound for the Raman enhancement 𝑞 = 𝑞loc(𝜔𝑃 )𝑞rad(𝜔𝑅) is now simply obtained by
multiplying the previous bounds [Eqs. (2.6–2.7) and Eq. (2.14)]:
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𝑞 ≤
(︂
1 +

|𝜒𝑝|2
Im𝜒𝑝

|||G𝑝U
*
R|||

√
𝑉

)︂2(︂
1 +

3𝜋𝑛2
𝑏

2𝑘3𝑟

|𝜒𝑟|2
Im𝜒𝑟

|||G𝑟UR|||2
)︂

≈ 3𝜋𝑛2
𝑏

2𝑘3𝑟

|𝜒𝑟|2
Im𝜒𝑟

(︂ |𝜒𝑝|2
Im𝜒𝑝

)︂2

𝑉 |||G𝑟UR|||2|||G𝑝U
*
R|||2 ,

(2.31)

where the subscripts 𝑝 and 𝑟 denote the pump and Raman frequencies at which the
variables are evaluated. The second line is obtained in the case of large enhancement.

If we now assume that the tensor 𝛼R is isotropic and consider simple structures en-
closing the scatterer and separated from the Raman-active molecule by a small distance
𝑑, we obtain analytical bounds by considering the lowest order term in 𝑑 and neglecting
far-field terms:

𝑞 .
3𝜋

2𝑛6
𝑏

𝛽2 𝑉

𝑘3𝑟𝑑
6

|𝜒𝑟|2
Im𝜒𝑟

(︂ |𝜒𝑝|2
Im𝜒𝑝

)︂2

, (2.32)

where 𝛽 is a geometrical factor equal to 1/6𝜋 for a full sphere, 1/12𝜋 for a half-sphere,
and 1/32𝜋 for a half-plane (see subsection 2.3.3). This fundamental limit scales as 𝑉/𝑑6

(compared to 1/𝑑3 for LDOS). 1/𝑑6 is related to both the radiation of the dipole and the
coupling to it, while 𝑉 is due to the planewave coupling. In practice, the Raman frequency
shift is small enough so that the bounds do not change much when the expressions are
simply evaluated at the same (pump or Raman) frequency. In this case, the bound is
simply proportional to (|𝜒|2/Im𝜒)3. This material figure of merit can be used to compare
the optimal performance of different materials and is shown in Fig. 2-2. We note that
silver (Ag) has the highest bound at visible wavelengths but is outperformed by aluminum
(Al) in the near-UV region.

The bound of Eq. (2.31) is also valid for a periodic structure after substituting the
appropriate periodic Green’s function, which can be integrated numerically, for the con-
centration enhancement term (Raman molecules emit incoherently, so the radiation en-
hancement is not periodic). Near-field coupling from adjacent unit cells causes the periodic
Green’s function to increase as the period shrinks so that the maximal bound is obtained
for the smallest possible period. However, comparison with the area-scaling bound ob-
tained using Eq. (2.24) shows that this bound isn’t tight for small periods. For strong
scattering and emission, this area-scaling bound is given by:

𝑞 .
3𝜋𝑆 cos 𝜃

2𝑘𝑝𝑘3𝑟

|𝜒𝑝|2
Im𝜒𝑝

|𝜒𝑟|2
Im𝜒𝑟

⃒⃒⃒⃒ ⃒⃒
Gper

𝑝 U*
R

⃒⃒⃒⃒ ⃒⃒2|||G𝑟UR|||2 . (2.33)

By neglecting the Raman frequency shift, this new bound is now proportional to
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Figure 2-2: Comparison of the metric (|𝜒|2/Im𝜒)3 for conventional metals used in SERS
[4].

(|𝜒|2/Im𝜒)2 and scales as the surface area of the unit cell instead of the volume of the scat-
terer. We can actually see that this area-scaling limit is the same as the volume-scaling
one [Eq. (2.31)] when using an effective volume equal to:

𝑉eff =
𝑆 cos 𝜃

𝑘𝑝𝑛2
𝑏

Im𝜒𝑝

|𝜒𝑝|2
. (2.34)

This area-scaling bound highlights the fact that for a periodic structure, only a fraction
of the actual volume of the scatterer (proportional to the projected unit-cell area) is
effectively “used” in the scattering. As explained in more detail below, combining the
volume-scaling and area-scaling bounds leads to a tighter bound with different behavior
as a function of the period.

2.3.5 Bound for a randomly oriented Raman molecule

We can also obtain a bound assuming a randomly oriented Raman molecule. We use ⟨.⟩
to denote the average over the random orientation of the molecule. We can then obtain
a bound using:
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⟨𝑞⟩ ≤
(︂
1 +

3𝜋𝑛2
𝑏

2𝑘3𝑟

|𝜒𝑟|2
Im𝜒𝑟

|||G𝑟|||2
)︂
⟨𝑞𝑙𝑜𝑐⟩ =

(︂
1 +

3𝜋𝑛2
𝑏

2𝑘3𝑟

|𝜒𝑟|2
Im𝜒𝑟

|||G𝑟|||2
)︂

tr(𝛼†
𝑅𝛼𝑅)|E|2/3

‖𝛼𝑅‖2|Einc|2

≤ tr(𝛼†
𝑅𝛼𝑅)

3‖𝛼𝑅‖2
(︂
1 +

3𝜋𝑛2
𝑏

2𝑘3𝑟

|𝜒𝑟|2
Im𝜒𝑟

|||G𝑟|||2
)︂(︂

1 +
|𝜒𝑝|2
Im𝜒𝑝

|||G𝑝|||
√
𝑉

)︂2

(2.35)

2.4 Geometric results

2.4.1 Concentration enhancement for a plasmonic sphere

We start by computing the concentration enhancement for a plasmonic sphere in the
quasistatic limit and comparing it to our bound. In this regime, a plane wave with
amplitude Einc incident upon a sphere excites a dipole moment p = 𝛼𝑉Einc , where the
polarizability 𝛼 is given by:

𝛼 =
3(𝜖− 1)

𝜖+ 2
=

1

1/3 + 𝜒−1
. (2.36)

On resonance Re𝜒−1 = −1
3
, such that 𝛼𝑚𝑎𝑥 = 1/Im𝜒−1 = |𝜒|2/Im𝜒. The field at a

distance 𝑑 from the sphere of radius 𝑅 is given by:

Esca =
1

4𝜋

[︂
3n̂(n̂ · p)− p

(𝑑+𝑅)3

]︂
, (2.37)

where n̂ is the unit vector along the line from the dipole to the measurement point. The
amplitude of the field is maximum when n̂ is along p giving:

Esca =
p

2𝜋(𝑑+𝑅)3
. (2.38)

Putting all this together, the maximum field concentration outside the sphere at the
plasmon frequency is given by:

|Esca|2 =
1

4𝜋2

1

(𝑑+𝑅)6

(︂ |𝜒|2
Im𝜒

)︂2

𝑉 2|Einc|2 . (2.39)

This analytical expression includes all the same factors as our bound on the concentrated
field, with |||G𝑟|||2 to be compared to the factor 𝑉/4𝜋2(𝑑+𝑅)6.

We can easily check that the performance of the sphere reaches the bound in the limit
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Figure 2-3: Ratio of the analytical value of of |Escat|2 given by Eq. (2.39) to the volume-
scaling bound given by Eq. (2.14), for Ag spheres of different radii at the resonant fre-
quency of Ag. Inset: Comparison of the analytical value (full lines) and the bound (dashed
lines) for the same Ag spheres.

of small radius, in particular we can use:

1

(𝑑+𝑅)6
≤ 1

𝑟6
≤ 1

(𝑑−𝑅)6
,
𝑥2

𝑟2
≤ 𝑅2

(𝑑−𝑅)2
,
𝑦2

𝑟2
≤ 𝑅2

(𝑑−𝑅)2
,
(𝑑−𝑅)2

(𝑑+𝑅)2
≤ 𝑧2

𝑟2
≤ 1 ,

(2.40)
where 𝑧 is the coordinate along the axis relating the sphere’s center and the molecule. We
then obtain:

1

𝑉

∫︁
𝑉

𝑑𝑉

𝑟6
−−−→
𝑅→0

1

𝑑6
,
1

𝑉

∫︁
𝑉

𝑥2𝑑𝑉

𝑟8
−−−→
𝑅→0

0,
1

𝑉

∫︁
𝑉

𝑦2𝑑𝑉

𝑟8
−−−→
𝑅→0

0,
1

𝑉

∫︁
𝑉

𝑧2𝑑𝑉

𝑟8
−−−→
𝑅→0

1

𝑑6
.

(2.41)
We then conclude that |||G𝑟|||2 ≈ 𝑉/4𝜋2𝑑6 for 𝑅 ≪ 𝑑 and that the dipole-sphere perfor-
mance reaches the upper bound in this limit.

2.4.2 Isolated structures - Numerical simulation

We now compare our bounds to exact numerical simulations. For this, the performance
of specific structures, assuming an isotropic Raman tensor 𝛼R and a background medium
of air, was evaluated using scuff-em, an open-source implementation of the boundary-
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element method [63,64]. Two simulations were performed for each structure: a scattering
simulation to evaluate the field concentration at the Raman material’s location, and an
emission simulation to evaluate the radiative LDOS (example in Fig. 2-4). The actual
performance of each structure can then be compared to its volume-specific bound by
carrying the integration over the volume of the structure [in the expression of |||G𝑟|||2 in
Eq. (2.31)], and to a shape-independent bound by carrying the integration over simple
geometric structures encompassing the structure [Eq. (2.32)].

Figure 2-4: Simulation results and corresponding bounds for a Ag sphere of radius 10 nm
and distance to emitter 20 nm. (a) Near-field enhancement with bound from main text.
(b) LDOS with bound from [5].

We simulated two of the most common nanostructures used in SERS: triangular prisms
used in a bowtie configuration, and a sphere. In subsection 2.4.1, we saw that the sphere’s
enhancement reaches the bound in the limit 𝑅 ≪ 𝑑 ≪ 𝜆, so we selected here a radius
of 10 nm and a distance of 20 nm. While in practice molecules are located at various
distances from the scatterer, with smaller separation distances yielding a higher absolute
enhancement, 20 nm corresponds to the maximum performance-to-bound ratio for the
selected sphere radius (Fig. 2-3). All simulated structures were made of silver, which is
the best-performing Raman material at visible frequencies (Fig. 2-2) and also satisfies
the resonance condition for 𝜒, unlike e.g. gold. The geometry of the triangles was taken
from [65], with a gap set at 40 nm to readily compare with the sphere results. We included
a shape-independent bound by considering the exterior of a spherical shell (entire space
minus a sphere of radius 𝑑), and using the largest volume of all structures, that of the
4-triangle bowtie. The results in Fig. 2-5 show that all structures fall short of the shape-
independent bound by several orders of magnitude. The performances of bowties also lie
far from their shape-specific limits. Only the sphere approaches its bound, at frequencies
greater than the plasma frequency of silver.
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Figure 2-5: Raman enhancement bounds (dashed lines) and actual performances (full
lines) for common SERS Ag structures. The distance to the emitter is 𝑑 = 20 nm for all
structures. The sphere has a radius of 10 nm. The triangles have a side of 160 nm, height
of 30 nm, and tip curvature of 16 nm. The incident field’s polarization is aligned with the
sphere-emitter and triangle-emitter direction.

Finally, it is worth noting that smaller structures get easily closer to the bound com-
pared to larger structures. As we saw in the example of the electrostatic sphere (subsection
2.4.1), the ratio between the actual performance and the bound goes to zero as the radius
𝑅 increases for a fixed 𝑑. While both the bound and the actual performance increase with
the volume, further shape optimization is required to get closer to the limits for large
structures.

2.4.3 Periodic structures - Numerical simulation

To investigate the potential enhancement due to periodicity, we compared the bounds for a
single sphere and for a square lattice of similar spheres. We have seen that our Raman limit
can be applied to periodic structures by using either of our two bounds on the near-field
enhancement: Eq. (2.14) with the corresponding periodic Green’s function, or Eq. (2.24).
We thus only needed to compare the near-field enhancement bounds (Fig. 2-6). The two
approaches for the periodic bound yield different geometrical dependencies. The limit of
Eq. (2.14) scales with the volume of the scatterer, kept constant here, and the integral
of the periodic Green’s function, which decreases towards the non-periodic value as the
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period increases. The integral of the periodic Green’s function also appears in the limit
of Eq. (2.24), yet alongside a factor scaling as the area of the unit cell which reduces the
bound for small periods. These behaviors, expected to hold for any scatterer, are indeed
observed in Fig. 2-6 for arrays of spheres. The actual limit is given by the smaller of the
two bounds resulting in different regions in the graph as the period is varied. For periods
larger than that of point P (given by Eq. (2.34) for large enhancement), the volume-
scaling bound is limiting because of the reduced interactions between the scatterers of
the array. For smaller periods, the performance of the array is limited by the area-scaling
bound since the intensity received by each sphere is reduced. Between points Q and
Q’, this causes the periodic limit to be smaller than the single-sphere limit. Maximum
enhancement due to periodicity is still to be found at the smallest possible period, where
increased interactions between the scatterers dominate the decrease in incident intensity
received by each unit cell.

 

R 

a 

d 

d 

P 

Q Single Area-scaling 

Volume-scaling 
Q' 

Figure 2-6: Near-field enhancement bounds for an isolated Ag sphere (bottom right
schematics) and a square array of Ag spheres with varying period 𝑎 (top right schematics).
The region on top of the solid red and yellow lines indicates forbidden field-concentration
values for the periodic case. The spheres have a radius 𝑅 = 12 nm, and the emitter is
located 𝑑 = 20 nm away from their surface along the lattice axis. The incident field’s
polarization is aligned with the sphere-emitter direction and 𝜆 = 350 nm. In the large-
enhancement limit, the area-scaling and volume-scaling bounds always intersect at a point,
denoted P, where the period equals

√︀
𝑘𝑝[𝑉 |𝜒|2/ [Im𝜒 cos 𝜃]. Inset: map of the position of

points P, Q, and Q’ as a function of sphere radius and lattice period, for 𝑑 = 20 nm.
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2.5 Topology optimization

2.5.1 Numerical results

Encouraged by results from bounds, we also performed freeform shape optimization
(“topology optimization", TO) to maximize Raman enhancement as discussed in details
in Ref. 15. The Raman scattering process is modeled as described in the previous sec-
tion using two sequentially-coupled frequency-domain electromagnetic simulations. In
particular, the system is first excited by an incident planewave at the pump frequency.
Afterwards, the Raman molecule is modeled as a dipole source at the Raman-shifted
frequency (with dipole moment given by the polarizability tensor 𝛼R multiplied by the
electric field obtained in the first simulation) which then allows to compute the total emit-
ted power. Simulations are for two-dimensional (2d) structures with in-plane polarization
[Fig. 2-7(a)].

 (a) (b) 

Figure 2-7: (a) A sketch of the Raman scattering design problem where a Raman molecule
(blue) in air background is surrounded by the design domain Ω𝐷 (gray) and excited by
an incident planewave (green). Optimization maximizes the total emitted power (red)
through Γ𝑜𝑢𝑡. Distance separating the molecule and the structure is fixed at 10 nm. The
outside radius of the optimization domain Ω𝐷 is fixed at 100 nm. Results presented
here assume a zero Raman frequency shift. (b) Raman enhancement as a function of
wavelength, for a molecule placed at the center of different silver nanostructures (dark
blue dot) relative to a molecule placed in free space. A topology-optimized structure
(blue), a bowtie antenna (red) and coupled-cylinder antenna (black) are considered, all
designed to maximize enhancement at 532 nm.

The use of density-based topology optimization operates by introducing a continu-
ous design field to control the physical material distribution, enabling the use of adjoint
sensitivity analysis and gradient-based optimization algorithms to efficiently solve design
problems with potentially billions of design degrees of freedom. Hence, the approach pro-

49



vides near-unlimited design freedom, with a computational complexity dominated by the
solution of the Maxwell equations, utilizing mature finite-element techniques [15].

Solutions are presented in Fig 2-7-b, where topology optimization results are also
compared to reference geometries (coupled triangles and discs). Reference structures
are parameter-optimized (through the radius of the discs and through the tip-angle and
the side length of the triangles) to maximize performance at the targeted wavelength
(532 nm). We see that topology optimization leads to a surprising structure that fully
encloses the molecule and that, in some sense, is a fusion of different features tailored to
enhance either focusing or emission [15]. The TO structure has a maximum enhancement
of ≈ 8 · 105, which is 60× larger than bowtie-antenna enhancement (≈ 1.3 · 105) and
2.6 ·103× larger than coupled-discs enhancement (≈ 3 ·102). These extreme enhancement
results, serve as a proof-of-concept suggesting promising improvements for practical 3d
structures. Topology optimization has also been used to optimize focusing and radiation
enhancements separately, showing the need to optimize both processes simultaneously [15].

2.5.2 Comparison with bounds

When compared to the fundamental upper bounds presented in Sec. 2.3, we find that
the TO structure optimized for radiation comes to within a factor of 4 of the radiation
bound. This is a reasonable difference that can be attributed to the length-scale imposed
during optimization as well as simplifications leading to the bound. On the other hand,
the TO structure optimized for focusing is ∼ 600 smaller than the bound. This suggests
that the upper limit may not be tight, in the sense that it may be difficult to achieve
optimal coupling to both far-field and near-field, as is required by the focusing bound.
The discrepancy may also be due to the fact that the outside radius of the domain Ω𝐷

was kept fixed in the optimization. In fact, the focusing bound rather suggests the need of
a large volume for a good coupling to the planewave. This can for example be seen in the
area-scaling bound for periodic structures where we obtained a (|𝜒|2/Im𝜒)2 dependence
due to the finite incident power per unit cell. A similar dependence on the material
metric has indeed been noticed in optimized (non-periodic) structures where the outside
radius of Ω𝐷 was fixed (Fig. 2-8-right). In general, it remains an open problem, for future
theoretical and numerical investigations, to understand practical limitations related to
the near-field focusing problem.

Finally, we note that the optimized structures follow the ‘volume-scaling’ (i.e., area-
scaling for this 2d problem) predicted from the bounds (Fig. 2-8-left).
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Figure 2-8: Left: Raman enhancement as a function of Ω𝐷 area. Structures optimized
for three different radii of Ω𝐷, equal to 50 nm, 75 nm, and 100 nm. Right: Raman
enhancement as a function of |𝜒|2/Im𝜒 for different materials.

2.6 Conclusion

The upper bounds presented in this chapter allow a simple estimate of optimal Raman
enhancement for arbitrary scatterers. Such bounds include all electromagnetic effects and
depend only on the material susceptibility and the separation distance from the molecule.
Our analysis of periodic bounds shows the presence of different optimality regions as
function of periodicity. While the use of an array can lead to a worse performance for
intermediate values of the period, improvement may be still expected for very small peri-
ods. In general, the results show that there is still much room for improvement for large
scatterers through further shape optimization. In particular, very promising results using
topology optimization of 2d structures with substantial enhancement compared to simple
structures have been obtained.
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Chapter 3

Few resonances 1: Quasi-normal mode
theory (QNMT)

1

3.1 On resonances

As briefly discussed in Sec. 2.1, resonances can give a lot of information about the be-
haviour of a given a system. But how are they defined in general? And what information
can we extract from them?

A resonance corresponds to a sustained response of the system. It is a solution that
does not, in principle, require an external excitation. Defined this way, a resonance
corresponds to a solution of the eigenproblem −𝑖𝜔𝜓 = Θ𝜓 [from Eq. 2.4]2 with an outgoing
boundary condition. Such boundary condition can be implemented either directly, for
example using the Sommerfield radiation condition 𝑟 (𝜕𝑟 − 𝑖𝑘)𝜓 → 0 for 𝑟 → ∞ (𝑘 is
the wavenumber in surrounding medium), or using a perfectly matched layer (PML) [66,
67] that acts as an absorbing layer leading to an attenuated field, which can then be
terminated by a simple boundary condition such as Dirichlet (field is zero at the outside
boundary). The PML is equivalent to a complex coordinate stretching, also called spectral
deformation [12].

The rigorous relation between the operator and the corresponding eigenvalues requires
a spectral theory analysis [12, 13]. The spectrum of an operator corresponds to the set
of complex numbers 𝑠 for which Θ− 𝑠 is not invertible. For finite dimensional operators,
this can only happen if Θ has an eigenvalue [ker (Θ− 𝑠) ̸= {0}]. For infinite dimensional

1Our work on this topic was published in Ref. 18.
2Note that this can also be written using only the electric field [∇× 1

𝜇∇×E = (𝜔/𝑐)2𝜖E] or magnetic
field [∇× 1

𝜖∇×H = (𝜔/𝑐)2𝜇H] [61]. An appropriate scalar product should to be used.
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operators, this is not always true. In such case, the spectrum can be decomposed into
a discrete (the set of eigenvalues) and essential (the rest) spectrum [12]. In physics,
the essential spectrum is usually called the “continuum” and matches the real axis (for
Maxwell’s equations) or the positive real axis (for the Schrödinger equation). One of the
most important results of spectral theory is the spectral theorem, mostly known in the
finite dimensional case allowing to diagonalize the operator using an appropriate basis,
and generalized for bounded self-adjoint operators [68].

The resonances of open systems, as defined above, are actually not part of the spec-
trum. In fact, since the eigenvalues are complex, the corresponding “eigenvectors” describe
fields that exponentially diverge outside the scatterer3 and cannot be normalized, so they
are not part of the Hilbert space. This why resonant modes in open systems are called
“quasi-normal modes” (QNMs) [69]. Resonances can instead be rigorously defined us-
ing the Aguilar-Balslev-Combes-Simon theory [12]. In particular, we need to define new
spectrally-deformed operators, obtained by applying a spectral deformation (aka PML)
to the original operator. The essential spectrum of these new operators, originally on the
real axis, is then rotated inside the complex plane, unveiling complex eigenvalues (where
the corresponding eigenvectors now describe fields that decay outside the scatterer due to
the absorbing PML layer). These eigenvalues are part of the spectrum of the deformed
operators and define the resonances (or QNMs) of the original operator (for example, see
Ref. 70 and Chapter 16 of Ref. 12 for more details). Of course, it is expected that these
resonances do not depend on the details of the spectral deformation. Later on, and even
though it is a clear abuse of notation, we will equivalently use the words “resonances”,
“quasi-normal modes” or “eigenfrequencies”/“eigenfields” to refer to such solutions, since
all these terms are used in the literature.

While the previous discussion gives some background and definitions related to res-
onances, we still need to know how we can benefit from the knowledge of resonances in
practice. At the most simple level, we can assume that we only have a small number of
effective degrees of freedom, each one related to a resonance 𝜔𝑛 of the system and de-
scribed by a scalar amplitude 𝑎𝑛 representing the modal contribution of the corresponding
eigenfield. We would then like to be able to write simple equations [as in Eq. (2.1)] to
describe the evolution of the system (i.e., evolution of the coefficients 𝑎𝑛 as well as their
relation to observable physical quantities). In photonics, a very well-known such set of

3For example, in a one dimensional problem, an outgoing planewave 𝑒𝑖𝜔|𝑥|/𝑐 exponentially diverges for
complex 𝜔 = 𝑖𝑠, as causality and passivity require 𝜔 to be in the lower complex half plane. Physically,
the divergence is due to that fact that, upon excitation of the system, the energy ends up leaking far
from the scatterer, so the corresponding field has an increasing-amplitude profile.
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equations is based on the coupled mode theory (CMT) [17,71], or equivalently the state-
space representation in diagonal canonical form in circuit theory [72]. As expected, such
equations not only require the knowledge of the resonances 𝜔𝑛 (QNM eigenfrequencies),
but are also based on other coupling coefficients that need to be estimated. In this chap-
ter, we present a systematic procedure to compute the coupling coefficients and extract
the scattering matrix of a given system based on the sole knowledge of the QNMs (eigen-
frequencies and eigenfields). Our method is based on imposing physical constraints on
the final scattering matrix, thus further reducing the degrees of freedom of CMT-like
equations. This approach is reminiscent of Heisenberg’s program, that never quite mate-
rialized, and that aimed to determine the scattering matrix for quantum field interactions
by imposing general constraints on 𝑆 such as unitarity, causality and analyticity [73–75].
In the next section, we give a brief overview on the scattering problem and the different
QNM-based models present in the literature and summarize our novel results presented
in this chapter.

3.2 Overview

Scattering phenomena in all areas of wave physics are well described by the universal
𝑆-matrix operator, which relates ingoing and outgoing modes amplitudes. As the res-
onant (quasi-normal) modes of a system heavily determine its scattering response and
coincide with the poles of 𝑆, numerous works [6, 76–79] have focused on expressing 𝑆 as
an expansion over QNMs, calculated via eigensolvers. In this chapter, we present the first
such QNM theory (QNMT) for multiport lossless scatterers that simultaneously satisfies
all fundamental physical constraints of reciprocity, energy conservation and time-domain
realness even for the practical case of a small truncated QNM set (in contrast to previous
formulations [6,78]) and without the need for the intricate normalization of the divergent
QNMs [78,79]. Weak absorption or gain can then be easily incorporated as a perturbation.
Furthermore, by explicitly separating a slowly varying effective-background response 𝐶,
we provide a novel additional formula for 𝑆, approximate but very convenient to design
Fano-scattering systems [80] such as even-order elliptic filters (see Chapter 4). This 𝐶
is calculated without resorting to any type of fitting [17, 78, 81] and without having to
choose a specific background scattering medium [79]: we simply use a subset of low-𝑄
modes of the entire system. We then build useful intuition for how various low-𝑄-mode
configurations shape the background 𝐶. We demonstrate the accuracy of our QNMT
for plane-wave incidence on several electromagnetic (microwave and photonic, 2-port and
4-port) metasurfaces. In particular, we solve a nonlinear eigenproblem with a complex
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Bloch wavevector to calculate 𝑆 with QNMT for a fixed angle of incidence (instead of a
fixed transverse wavevector [78]).

As explained earlier, the resonant modes of open physical systems are often called
quasi-normal modes (QNM) as they are not square-integrable and exponentially diverge
outside the resonator. They can allow a fast approximate solution for scattering and
emission problems [69, 82–84] while providing physical understanding and good spectral
accuracy around sharp resonances, in contrast to direct numerical methods using fre-
quency/time discretization. The system 𝑆-matrix quantifies such problems and its poles
coincide with the QNM eigenvalues. For lossless 1-port systems, the numerator of the
scalar 𝑆 is trivial, since its zeros simply coincide with the conjugates of the poles [73],
while loss can be simply treated either by perturbation or by directly computing the
zeros [76, 85]. In the general multiport case, based on a pole expansion of 𝑆, QNMT
is usually concerned with identifying the pole residues/coefficients and any additional
background. One approach computes frequency-dependent expansion coefficients from
the exact field equations via volume integrals involving the QNMs and the excitation
field to achieve good accuracy [79, 82]. Other QNMT formulations identify frequency-
independent residues to obtain a reduced-order model, with the advantage of simplicity
and easier interpretation [77, 78]. Most of these approaches require normalization of the
QNMs, which, due to their far-field divergence, can be accomplished only by intricate
techniques with increased computational complexity [86]. To avoid normalization, a new
phenomenological approach was proposed in Ref. 6, starting from the coupled mode theory
(CMT) equations [17,71] and changing basis to the QNMs (a rather confusing approach,
as the uncoupled orthonormalized modes required by CMT are ambiguous for arbitrary
scatterers). However, for lossless reciprocal systems, these existing formulations do not
guarantee energy conservation for a small truncated expansion, but presumably only in
the infinite limit. While QNMTs with frequency-dependent expansion coefficients are
expected to converge faster towards satisfying this important physical constraint, those
with constant residues exhibit large errors for a practical small number of QNMs (Ref. 78
mentions that they violate energy conservation visibly even with 301 modes and we show
examples where Ref. 6 violates it by 50% with few modes). In this chapter, we consider
an 𝑆-matrix expansion over the QNMs and directly derive conditions for it to satisfy the
necessary physical constraints. We calculate the QNM-to-ports coupling matrix 𝐷 from
simple surface integrals of the fields without need for QNM-normalization, and then fine-
tune 𝐷 to prioritize and impose these conditions. In this way, rather than being fixed from
the field equations, the expansion parameters are adjusted as more modes are included in
order to enforce reciprocity and energy conservation for any finite sum. The final result is
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a simple equation for 𝑆 [Eq. (3.10)] using only the eigenfrequencies and the fine-tuned 𝐷
[Eq. (3.17)] (Sec. 3.3). We confirm the improved accuracy of our QNMT using 2-port and
4-port electromagnetic metasurface examples, and with excitation of both normally and
obliquely incident plane waves. For the latter, most previous approaches [78] imposed a
fixed incidence transverse wavevector (𝑘⊥ = 𝜔sin𝜃/𝑐), so that the angle 𝜃 changed with
frequency 𝜔 (given the constant wave speed 𝑐). Instead, QNMT can be used to compute
𝑆(𝜔) for fixed 𝜃 by evaluating the relevant QNMs involving eigenfrequency-dependent
complex Bloch wavevectors, formulated as a generalized linear eigenproblem in Ref. 87
(Sec. 3.4).

In addition to providing a fast computational tool, QNMT (like CMT) has the ad-
vantage of offering a simple analytical model for gaining physical insight into resonant
systems and for designing practical resonant devices. One interesting example is the case
of Fano resonant shapes [80] emerging from the interplay between a high-𝑄 resonance
and a slowly varying background response, useful for sensors and filters. This background
scattering is usually described by a separate matrix 𝐶, which previous works have almost
always estimated only by fitting it a posteriori to the total 𝑆, either with a polyno-
mial approximation [78] or an effective averaged structure [17, 81]. Recently, an exact
volume-integral formula was alternatively derived by factoring out a choice of physical
background [79] (but may require further development to handle certain boundary con-
ditions, such as perfect electric conductors in electromagnetism). While it is understood
that this background is related to the low-𝑄 modes of the actual structure, a detailed
systematic prescription to compute it directly from them and its relation to the final 𝑆
are lacking. In Sec. 3.5, we extend our QNMT to non-trivial direct-scattering pathways,
by showing that a slowly varying 𝐶 can be calculated with our general recipe using only
the system low-𝑄 modes and by placing the high-𝑄 modes into a different matrix 𝑆, in
order to then obtain a good approximation 𝑆 = 𝑆𝐶 [Eq. (3.23)]. We then analyze simple
low-𝑄 pole configurations corresponding to different physical interpretations of 𝐶, such as
a desired background transmission or group delay. Finally, we demonstrate this additional
formulation for the electromagnetic-metasurface examples mentioned above.

3.3 Quasi-Normal Mode Theory

3.3.1 Formulation

We consider a general scattering problem of an arbitrary linear time-independent scatterer,
coupled to incoming (excited) and outgoing (scattered) radiation via several physical linear
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ports. At the frequency 𝜔 of excitation, the scatterer has a total of 𝑃 “coupling port-
modes” (CPM) of radiation, which can be either single propagating modes of 𝑃 different
physical ports or several propagating modes of fewer ports (while all other port-modes
are either evanescent, or of incompatible symmetry, or their coupling is simply too small
at 𝜔). Let CPM 𝑝 propagate with wavevector k𝑝(𝜔) and field 𝜑𝑝(𝜔, r) = 𝜑

⊥
𝑝 (𝜔, r

⊥
𝑝 )𝑒

𝑖𝑘𝑝𝑟𝑝 ,
separable in the propagation (𝑟𝑝) and transverse (r⊥𝑝 ⊥ k𝑝) coordinates. In the most
common case of reciprocal lossless physical ports, the CPMs at 𝜔 are orthogonal under the
standard (conjugated) “power” inner product (a cross-sectional overlap surface integral)
and can be normalized to carry unit power

⟨︀
𝜑⊥

𝑝 |𝜑⊥
𝑞

⟩︀
= 𝛿𝑝𝑞 [71]. Then, for the 𝑃 pairs

of incident and scattered CPM waves, if the vectors s+ and s− denote respectively their
amplitudes at specific reference cross-sections 𝑟𝑝 = 𝑧𝑝 of their physical ports, |𝑠±𝑝|2 equals
the power carried by the ±𝑝 wave, s†±s± is the net incident/scattered power, and the
system scattering matrix 𝑆 at these reference cross-sections is defined by s− = 𝑆 s+.

Since the scattering system is open (coupled to radiation), its Hamiltonian 𝐻 is non-
Hermitian, so it supports a set of resonant modes [with resonant frequencies 𝜔𝑛 and fields
𝜓𝑛 (r) namely 𝐻 (𝑖𝜔𝑛)𝜓𝑛 = 𝑖𝜔𝑛𝜓𝑛]. Causality and stability [88] imply that the system
response is analytic in the upper half of the complex 𝜔-plane, namely 𝜔𝑛 must lie in the
lower half plane. 𝜓𝑛 are linearly independent but quasi-normal and non-orthogonal under
the standard (conjugated) “energy” inner product (a volume integral). However, when the
system is reciprocal, 𝐻 is complex-symmetric, so its QNMs are orthogonal under the non-
conjugated inner product {𝜓𝑛|𝜓𝑙} = 0 for 𝑛 ̸= 𝑙 [82, 89]. We consider 𝑁 such modes,
whose normalization we leave unspecified, and denote by the diagonal matrix Ω their
complex frequencies and by the vector a their amplitudes upon excitation. Moreover,
it is usually assumed there are also pathways other than the resonant QNMs for direct
scattering of input to output CPM waves, through the background medium without the
scatterer, quantified by a separate scattering matrix 𝐶 [17, 71].

The part of the scattered field not due to direct pathways (sQ
− = s− − 𝐶s+) can

be written outside the scatterer as an expansion over the complete set of port modes
(propagating CPMs and evanescent). QNMT makes the approximation that it can be
written also within the volume 𝑉 of the scatterer as a linear combination of the 𝑁 QNMs
(an assumption also used in CMT [17]):

FQ
scat =

⎧⎪⎪⎨⎪⎪⎩
𝑃∑︀

𝑝=1

𝑠Q
−𝑝(𝜔)𝜑

⊥
𝑝 (𝜔, r

⊥
𝑝 )𝑒

𝑖𝑘𝑝(𝑟𝑝−𝑧𝑝)+evan.; r /∈ 𝑉

𝑁∑︀
𝑛=1

𝑎𝑛(𝜔)𝜓𝑛(r); r ∈ 𝑉.

(3.1)
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Figure 3-1: A 2-port scattering system with important QNMT parameters. At excitation
frequency 𝜔, the coupling port-modes (CPMs) with transverse fields 𝜑⊥

𝑝 have input and
output amplitudes respectively 𝑠±𝑝, related by the 𝑆-matrix through 𝑠− = 𝑆𝑠+. The
open scattering system supports quasi-normal modes (QNMs) with complex frequencies
𝜔𝑛 and fields 𝜓𝑛, which have amplitudes 𝑎𝑛 upon excitation. The CPM-to-QNM coupling
coefficients are 𝐷𝑝𝑛, with ratios 𝜎𝑛 = 𝐷2𝑛/𝐷1𝑛. Imposing realness, unitarity, and symme-
try constraints on 𝑆 allows us to compute it as a function of only 𝜔𝑛 and 𝜎𝑛 [Eq. (3.10)].
Optionally, by separating low-𝑄 modes 𝜓𝐶

𝑛 , we can also construct a slowly-varying back-
ground matrix 𝐶, which can give a physical intuition about the scattering response and
help in specific scattering designs.

By inserting the second line into the exact equation for the field inside the scatterer
and by mode-matching the two lines on the cross-section 𝑧′𝑝 where the 𝑝-port meets the
scatterer boundary, one respectively gets the final two QNMT equations, which, with
exp (−𝑖𝜔𝑡) notation, takes the form (for a rigorous derivation see, e.g., Ref. 79):

−𝑖 (𝜔 − Ω) a = 𝐾𝑡s+

s− − 𝐶s+ = 𝐷a,
(3.2)

where
𝐷𝑝𝑛(𝜔) = 𝑒𝑖𝑘𝑝(𝑧𝑝−𝑧′𝑝)

⟨︀
𝜑⊥

𝑝 (𝜔, r
⊥
𝑝 )|𝜓𝑛(r

⊥
𝑝 )
⟩︀
𝑧′𝑝

(3.3)

and 𝑧𝑝 − 𝑧′𝑝 is the distance of the 𝑝-port reference cross-section from the boundary of
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the scatterer. This 𝑧′𝑝 cross-section choice for the calculation of the 𝐷 overlaps is further
justified in the subsection 3.5.3. The 𝑃 × 𝑁 matrices 𝐾 and 𝐷 quantify the couplings
of the QNMs to the input and output CPM waves respectively, and they are generally
frequency dependent. Eqs. (3.2) with Ω diagonal (also known as state-space representation
in diagonal canonical form in circuit theory [72]) constitute the basis of QNMT and their
solution for the scattering matrix 𝑆 is given by

𝑆 = 𝐶 −𝐷(𝑖𝜔 − 𝑖Ω)−1𝐾𝑡. (3.4)

Although a general 𝐶 (𝜔) was included in Eqs. (3.2,3.4) to align with literature, we
rely on the presumed completeness of the resonant QNMs to stipulate that each incident
CPM wave is scattered to other CPMs only due to resonances. Therefore, for now, we
take 𝐶 as a diagonal phase matrix. Later, we will show that, indeed, low-𝑄 QNMs can be
combined to write a general effective background 𝐶 (𝜔); in particular, a fully-transmissive
𝐶 comes from a zero-frequency mode with an infinite radiative rate (Sec. 3.5.2).

Shifts of ports’ reference cross-sections

When 𝑆(𝜔) is a meromorphic function, it is useful to employ the Weierstrass factorization
theorem and arguments from causality to write 𝑆 using a “proper” rational function. The
Weierstrass factorization theorem [90] in fact states that a “meromorphic” function (ana-
lytic except for poles) can be factorized into a non-zero analytic function (an exponential)
and a rational function (zeros and poles). If 𝑆(𝜔) is meromorphic, an exponential phase
factor can then be factored out of each term as 𝑆𝑝𝑞(𝜔) = 𝑒𝑖𝜙𝑝𝑞(𝜔)𝑆 ′

𝑝𝑞(𝜔), with 𝑆 ′
𝑝𝑞 a “proper”

rational function (degree of numerator polynomial not larger than degree of denominator,
so finite as 𝜔 → ∞) and 𝜙𝑝𝑞 an analytic function that we assume corresponds to a real
phase shift for real frequencies. Similarly to the approach in Ref. 73, the combination of
Phragmén-Lindelöf theorem (giving |𝑒𝑖𝜙𝑝𝑞(𝜔)| ≤ 1 in the upper-half complex plane) and
Čebotarev theorem shows that 𝜙𝑝𝑞 has to be a linear (= 𝜏𝑝𝑞𝜔 with 𝜏𝑝𝑞 ≥ 0, since the
constant term can be added to 𝑆 ′

𝑝𝑞).
When the system is lossless and reciprocal, unitarity and symmetry of 𝑆 com-

bine to 𝑆*(𝜔)𝑆(𝜔) = 𝐼. The off-diagonal 𝑝𝑞 term can be expanded as
∑︀

𝑟 𝑆
*
𝑝𝑟𝑆𝑟𝑞 =∑︀

𝑟 𝑒
−𝑖(𝜏𝑝𝑟−𝜏𝑟𝑞)𝜔𝑆 ′*

𝑝𝑟𝑆
′
𝑟𝑞 = 0. Since this has to be true for all real 𝜔, all the phase terms in

the sum must be the same, namely 𝜏𝑝𝑟 − 𝜏𝑟𝑞 = 𝜃𝑝𝑞 for each 𝑟. Specifically, for 𝑟 = 𝑝 and
𝑟 = 𝑞, we get 𝜏𝑝𝑝 − 𝜏𝑝𝑞 = 𝜏𝑝𝑞 − 𝜏𝑞𝑞 ⇔ 𝜏𝑝𝑞 = (𝜏𝑝𝑝 + 𝜏𝑞𝑞) /2. Therefore, the 𝑆 matrix can be
written as 𝑆 = 𝑒𝑖𝜏𝜔𝑆 ′𝑒𝑖𝜏𝜔 with a diagonal 𝜏 matrix with real positive elements.

Eq. (3.4) then implies that 𝐶(𝜔) = 𝑒𝑖2𝜏𝜔𝐶 ′, 𝐷(𝜔) = 𝑒𝑖𝜏𝜔𝐷′ and 𝐾(𝜔) = 𝑒𝑖𝜏𝜔𝐾 ′, where
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𝐶 ′ is a diagonal constant phase matrix that can be taken equal to −𝐼 (as we justify later
and is often used in CMT [71]) without loss of generality, and 𝐷′, 𝐾 ′ are now constant
matrices.

This is the case for CPMs with fields transverse to their direction of propagation
(𝜑𝑝 · k𝑝 = 0), such as plane waves or dual-conductor TEM microwave modes, which will
be the focus of our work. They have 𝑘𝑝 = 𝜔/𝑐𝑝 (where 𝑐𝑝 the wave velocity) and 𝜑⊥

𝑝 (r
⊥
𝑝 )

independent of 𝜔, so Eq. (3.3) suggests that 𝐷𝑝𝑛(𝜔) = 𝐷′
𝑝𝑛𝑒

𝑖𝜔(𝑧𝑝−𝑧′𝑝)/𝑐𝑝 with 𝐷′
𝑝𝑛 in fact

constant. Thus, in all structures simulated in this work, we remove this linear phase to
compute 𝑆 ′, referenced at the new port cross-sections 𝑧′𝑝 on the scatterer boundary. In
practice, 𝜏𝑝𝑝 may be slightly larger from (𝑧𝑝− 𝑧′𝑝)/𝑐𝑝, adding a small constant group delay
just to the phases of 𝑆, so it is of no concern for applications dependent only on their
amplitudes, such as amplitude filters.

Therefore, hereafter we drop the ′ and consider 𝑆 to be such a proper rational function
that can be decomposed as

𝑆 = −[𝐼 +𝐷(𝑖𝜔 − 𝑖Ω)−1𝐾𝑡] ⇔ 𝑆𝑝𝑞 = −𝛿𝑝𝑞 −
𝑁∑︁

𝑛=1

𝐷𝑝𝑛𝐾𝑞𝑛

𝑖𝜔 − 𝑖𝜔𝑛

. (3.5)

For other types of CPMs, 𝑆(𝜔) may not be meromorphic, for example when higher-
order CPMs have a cutoff frequency, which appears as a branch-point [and frequency
dependent 𝐷′(𝜔), 𝐾 ′(𝜔)]. Similarly to previous QNMT formulations with constant coef-
ficients, such systems are not investigated in this work.

Normalization independence

Recall that measurable physical quantities (such as the 𝑆-matrix) do not depend on the
choice of normalization for the QNM amplitudes a. For example, it is easily seen from the
QNMT Eqs. (3.2) that, for the fixed normalization of s±, two different sets (𝑎𝑛, 𝐾𝑞𝑛, 𝐷𝑝𝑛)

and
(︀
𝑎′𝑛, 𝐾

′
𝑞𝑛, 𝐷

′
𝑝𝑛

)︀
scale as 𝑎′𝑛/𝑎𝑛 = 𝐾 ′

𝑞𝑛/𝐾𝑞𝑛 = 𝐷𝑝𝑛/𝐷
′
𝑝𝑛, hence 𝑆𝑝𝑞 in Eq. (3.5) is

unchanged. Thus an overall scaling factor can be chosen arbitrarily for each QNM.
For some physical quantities analytically computed via the QNM fields (such as the

Green’s function), this normalization independence is typically ensured by dividing with
the volume-integral norm {𝜓𝑛|𝜓𝑛} of these fields. However, since they are non-integrable,
regularizing this norm is a procedure that adds complexity (e.g. choice of method and
dependence on outgoing boundary condition) [86] to the QNMT formulations based only
on calculations from the field equations [77–79]. In contrast, as highlighted in Ref. 6
and we show also later, this phenomenological (relying on physical constraints) QNMT
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formulation does not require such norm evaluation, so it is much simpler.

3.3.2 Physical constraints

We now proceed by imposing constraints on 𝑆, based on the physical properties of the
system.

Realness

For many physical systems, real input fields lead to real output fields so that the system
response 𝑆(𝑡) must also be real. In frequency domain, this realness of 𝑆 is stated as
𝑆*(𝑖𝜔) = 𝑆(−𝑖𝜔*). For such systems, the same relation holds for their Hamiltonian 𝐻

satisfying 𝐻 (𝑖𝜔)𝜓 = 𝑖𝜔𝜓, so every QNM solution (𝜔𝑛, 𝜓𝑛) is paired with another QNM
(𝜔𝑛′ , 𝜓𝑛′) = (−𝜔*

𝑛, 𝜓*
𝑛). Similarly, the CPMs satisfy 𝜑*

𝑝(𝜔) = 𝜑𝑝(−𝜔*) ⇒ 𝜑⊥*
𝑝 = 𝜑⊥

𝑝 .
Eq. (3.3) thus shows that 𝐷𝑝𝑛′ = 𝐷*

𝑝𝑛. Then, to satisfy 𝑆*(𝑖𝜔) = 𝑆(−𝑖𝜔*), Eq. (3.5)
requires also 𝐾𝑝𝑛′ = 𝐾*

𝑝𝑛. Note, 𝑆 realness implies that not only poles but also zeros
of any 𝑆𝑝𝑞 appear in pairs (𝜔𝑜,−𝜔*

𝑜), and that 𝑆𝑝𝑞 is a rational function of 𝑖𝜔 with
real coefficients. Note that our QNMT is still applicable to systems that do not satisfy
realness4, where simply the QNMs included in the 𝑆-expansion do not appear in pairs.

Energy conservation

In absence of absorption or gain, energy conservation implies that the 𝑆 matrix is unitary
(s†+s+ = s†−s− ⇔ 𝑆†𝑆 = 𝐼) [71]. We can use this to find a relation between 𝐾 and 𝐷.

From Eq. (3.5), namely 𝑆 = −𝐼 −𝐷𝑑𝐾𝑡, where 𝑑 = (𝑖𝜔 − 𝑖Ω)−1:

𝑆†𝑆 = 𝐼 +𝐾*𝑑†𝐷† +𝐷𝑑𝐾𝑡 +𝐾*𝑑†𝐷†𝐷𝑑𝐾𝑡. (3.6)

We compute the coefficient (𝑝, 𝑞) of this matrix. The second and third terms are equal
to: ∑︁

𝑛

𝐾*
𝑝𝑛𝐷

*
𝑞𝑛

𝑖(𝜔 − 𝜔*
𝑛)

−
∑︁
𝑛

𝐷𝑝𝑛𝐾𝑞𝑛

𝑖(𝜔 − 𝜔𝑛)
. (3.7)

The final term, after decomposing into simple elements through 1
𝑖(𝜔−𝜔𝑛)𝑖(𝜔−𝜔*

𝑙 )
=

1
𝑖(𝜔𝑛−𝜔*

𝑙 )
[ 1
𝑖(𝜔−𝜔𝑛)

− 1
𝑖(𝜔−𝜔*

𝑙 )
] and relabelling indices (𝑛 and 𝑙), becomes:

∑︁
𝑟,𝑛,𝑙

𝐾*
𝑝𝑙𝐷

*
𝑟𝑙𝐷𝑟𝑛𝐾𝑞𝑛

𝑖(𝜔 − 𝜔*
𝑙 )𝑖(𝜔 − 𝜔𝑛)

=

4The resonances of the Schrödinger equation do not appear in pairs in the 𝜔 = 𝐸/~ plane.
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=
∑︁
𝑛

𝐾𝑞𝑛

𝑖(𝜔 − 𝜔𝑛)

∑︁
𝑙

𝐾*
𝑝𝑙

∑︀
𝑟𝐷𝑟𝑛𝐷

*
𝑟𝑙

𝑖(𝜔𝑛 − 𝜔*
𝑙 )

−
∑︁
𝑛

𝐾*
𝑝𝑛

𝑖(𝜔 − 𝜔*
𝑛)

∑︁
𝑙

𝐾𝑞𝑙

∑︀
𝑟𝐷𝑟𝑙𝐷

*
𝑟𝑛

𝑖(𝜔𝑙 − 𝜔*
𝑛)
. (3.8)

In order to impose 𝑆†𝑆 = 𝐼 for every 𝜔, necessary and sufficient conditions are given
by 𝐾*𝑀 = 𝐷 and 𝐾𝑀 𝑡 = 𝐷*, with 𝑀𝑛𝑙 =

∑︀
𝑝 𝐷𝑝𝑙𝐷

*
𝑝𝑛

𝑖(𝜔𝑙−𝜔*
𝑛)

. The two relations are actually
equivalent, since 𝑀 =𝑀 †, and can be rewritten as 𝐾𝑡 =𝑀−1𝐷†.

From this, we conclude that a necessary and sufficient condition for unitarity is given
by

𝐾 = 𝐷* (︀𝑀 𝑡
)︀−1 , with 𝑀𝑛𝑙 =

∑︀𝑃
𝑝=1𝐷𝑝𝑙𝐷

*
𝑝𝑛

𝑖𝜔𝑙 − 𝑖𝜔*
𝑛

=𝑀*
𝑙𝑛, (3.9)

thus 𝑆 can be written as

𝑆 = −
[︀
𝐼 +𝐷(𝑖𝜔 − 𝑖Ω)−1𝑀−1𝐷†]︀ . (3.10)

— Realness — We now show that this Eq. (3.9) choice of 𝐾 satisfies the realness
requirement. Including negative-frequency modes with 𝐷𝑝𝑛′ = 𝐷*

𝑝𝑛, we can write 𝑀 =(︃
𝐴 𝐵

𝐵* 𝐴*

)︃
(where 𝐴 = 𝐴† and 𝐵 = 𝐵𝑡, so that 𝑀 = 𝑀 †). Now, consider matrices 𝐴,

𝐵̃ such that
(︁
𝐴 𝐵̃

)︁
𝑀 =

(︁
𝐼 0

)︁
; then, by directly substituting 𝑀 , we can immediately

show that we also have
(︁
𝐵̃* 𝐴*

)︁
𝑀 =

(︁
0 𝐼

)︁
, so 𝑀−1 =

(︃
𝐴 𝐵̃

𝐵̃* 𝐴*

)︃
. Finally, from

𝐾 = 𝐷* (𝑀 𝑡)
−1, we conclude that 𝐾𝑝𝑛′ = 𝐾*

𝑝𝑛.

— Normalization independence — Next, we rearrange Eq. (3.10) to show that 𝑆
is fully and uniquely determined by the resonant frequencies 𝜔𝑛 and the ratios 𝜎𝑟,𝑝𝑛 =

𝐷𝑝𝑛/𝐷𝑟𝑛𝑛, for some chosen port 𝑟𝑛 for each mode 𝑛 (for example, we can simply take
𝑟𝑛 = 1). Let 𝐷𝑟 be a 𝑁 ×𝑁 diagonal matrix, with elements 𝐷𝑟,𝑛𝑛 = 𝐷𝑟𝑛𝑛. Then, denote
by 𝜎𝑟 = 𝐷𝐷−1

𝑟 the 𝑟-scaled 𝑃 ×𝑁 coupling matrix (naturally, 𝜎𝑟,𝑟𝑛𝑛 = 1 for all 𝑛). Now,
by inserting 𝐼 twice in Eq. (3.10), the scattering matrix 𝑆 from can be rewritten as

𝑆 = −𝐼 −𝐷(𝑖𝜔 − 𝑖Ω)−1𝑀−1𝐷†

= −𝐼 −𝐷
(︀
𝐷−1

𝑟 𝐷𝑟

)︀
(𝑖𝜔 − 𝑖Ω)−1𝑀−1

[︁
𝐷†

𝑟

(︀
𝐷−1

𝑟

)︀†]︁
𝐷†

= −𝐼 − 𝜎𝑟(𝑖𝜔 − 𝑖Ω)−1𝑀−1
𝑟 𝜎†

𝑟, (3.11)
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where

𝑀𝑟 =
(︀
𝐷−1

𝑟

)︀†
𝑀𝐷−1

𝑟 ⇔𝑀𝑟,𝑛𝑙 =
1

𝐷*
𝑟𝑛𝑛

∑︀
𝑝𝐷𝑝𝑙𝐷

*
𝑝𝑛

𝑖𝜔𝑙 − 𝑖𝜔*
𝑛

1

𝐷𝑟𝑙𝑙

=
1 +

∑︀
𝑝 ̸=𝑟𝑛

𝜎𝑟,𝑝𝑙𝜎
*
𝑟,𝑝𝑛

𝑖𝜔𝑙 − 𝑖𝜔*
𝑛

. (3.12)

These two equations show that, for a lossless system, 𝑆 in Eq. (3.10) can be fully computed
using only the resonant frequencies Ω and the ratios 𝜎𝑟 of modal coupling among different
ports, independently of the overall scaling factors in 𝐷.

Reversely, we also show that 𝑆 uniquely determines Ω and 𝜎𝑟. In particular, for two
different sets {Ω, 𝜎𝑟}, {Ω′, 𝜎′

𝑟} such that 𝑆{Ω,𝜎𝑟} = 𝑆{Ω′,𝜎′
𝑟}, we see from Eq. (3.11) that

Ω = Ω′ and
𝜎𝑟,𝑝𝑛

[︀
𝜎𝑟𝑀

−1
𝑟

]︀*
𝑞𝑛

= 𝜎′
𝑟,𝑝𝑛

[︀
𝜎′
𝑟𝑀

′−1
𝑟

]︀*
𝑞𝑛
. (3.13)

For 𝑝 = 𝑟𝑛, we have [𝜎𝑟𝑀
−1
𝑟 ]𝑞𝑛 = [𝜎′

𝑟𝑀
′−1
𝑟 ]𝑞𝑛. Then, for any 𝑝, Eq. (3.13) again gives

𝜎𝑟,𝑝𝑛 = 𝜎′
𝑟,𝑝𝑛.

This proves that 𝑆 is fully and uniquely determined by the resonant frequencies 𝜔𝑛

and the ratios 𝜎𝑟,𝑝𝑛 = 𝐷𝑝𝑛/𝐷𝑟𝑛𝑛. These quantities can be readily calculated using any
appropriate eigenmode solver, where 𝐷𝑝𝑛 is determined by the surface integral in Eq. (3.3)
and the ratios 𝜎𝑟,𝑝𝑛 remove the 𝜓𝑛-normalization-dependent scaling-factor. Therefore, as
promised, 𝑆 in Eq. (3.10) does not require computing the volume-integral norms of the
QNMs. Note also that, as more modes are included, the residue coefficients automatically
update themselves through 𝑀 in order to satisfy energy conservation for the entire set, in
contrast to other formulations based on the exact field equations, where these residues are
cosntant [78, 79]. Finally, Eq. (3.9) is different from the usual CMT expression of energy
conservation 𝐷†𝐷 = 2 |Im {Ω}|, associated with modes orthonormal under the standard
“energy” inner product, which does not hold for QNMs.

Reciprocity

Reciprocity implies that the 𝑆 matrix is symmetric (𝑆 = 𝑆𝑡) [71]. From Eq. (3.5), we can
see that this is equivalent to having

𝐾𝑝𝑛

𝐷𝑝𝑛

=
𝐾𝑞𝑛

𝐷𝑞𝑛

⇔ 𝐾 = 𝐷Λ, (3.14)

and therefore
𝑆 = −

[︀
𝐼 +𝐷(𝑖𝜔 − 𝑖Ω)−1Λ𝐷𝑡

]︀
, (3.15)

for some arbitrary diagonal matrix Λ with entries 𝜆𝑛 [with the only restriction that 𝜆𝑛′ =

𝜆*𝑛 ̸= 0, so that Eq. (3.14) is compatible with realness], where a specific choice of 𝜆𝑛 fixes
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the 𝜓𝑛-normalization-dependent scaling-factor. For any such choice, as mentioned earlier,
the numerator of pole 𝑛 for 𝑆𝑝𝑞 in Eq. (3.15) stays the same, however, its calculation
requires evaluation/regularization of divergent volume integrals involving the QNM fields
(including their norm {𝜓𝑛|𝜓𝑛}), which we try to avoid here. Note also that, since Λ can
be arbitrary, the usually assumed condition of reciprocity 𝐾 = 𝐷 (corresponding to the
specific normalization choice Λ = 𝐼) is not necessarily true.

𝐷-optimization

In order to satisfy both energy conservation and reciprocity (unitarity and symmetry of
𝑆), the input coupling coefficients𝐾 must satisfy both Eq. (3.9) and (3.14) simultaneously,
namely the output coupling coefficients 𝐷 must satisfy

𝐷𝑞𝑛

∑︁
𝑙

𝑀−1
𝑛𝑙𝐷

*
𝑝𝑙 = 𝐷𝑝𝑛

∑︁
𝑙

𝑀−1
𝑛𝑙𝐷

*
𝑞𝑙 ⇔ 𝐷* = 𝐷Λ𝑀 𝑡. (3.16)

Here again, for each resonance 𝑛, either 𝐷𝑟𝑛𝑛 (for one port 𝑟𝑛) or 𝜆𝑛 can be chosen
arbitrarily. In practice, this reciprocity condition Eq. (3.16) is a set of 𝑃𝑁 equations. Let
𝐷𝑐 be the coupling coefficients computed from the eigenmode solver. In most cases, as we
see in numerical examples, it turns out that 𝐷𝑐 are very close to satisfying this required
condition, but they don’t satisfy it perfectly, since the finite set of chosen resonances is
not truly complete. This is why in Ref. 6, Eq. (3.16) was not enforced exactly, rather
the 𝑁 coefficients of Λ were chosen as 𝜆𝑗 = [𝑋†𝑋]𝑗𝑗/[𝑋

†𝐷]𝑗𝑗 with 𝑋 = 𝐷*(𝑀 𝑡)−1 as one
way to minimize its error (note 5), and their final 𝑆-matrix, which was formulated as in
Eq. (3.15), was reciprocal but not necessarily unitary. Instead, here, we give priority to
exactly satisfying these physical properties of the actual system, if we want our model to
be a physically realistic and thus, as we will show, a more accurate description. Therefore,
we fine-tune the 𝑃𝑁 coefficients 𝐷 by using a constrained optimization procedure, with
the goal of exactly satisfying Eq. (3.16) while staying as close as possible to the computed
system performance:

𝐷 = argmin
𝐷*=𝐷Λ𝑀𝑡

𝑓 (𝐷,𝐷𝑐) (3.17)

where 𝑓(𝐷,𝐷𝑐) is some penalty function to ensure that 𝐷 stays close to 𝐷𝑐 (note 6).
An obvious choice is 𝑓(𝐷,𝐷𝑐) = ‖𝐷 −𝐷𝑐‖2. Another option is 𝑓(𝐷,𝐷𝑐) =∑︀

{𝑝,𝑞} ‖𝑅𝑝𝑞 (𝐷)−𝑅𝑝𝑞 (𝐷
𝑐)‖2, where 𝑅 (𝐷) represents the residues of the scattering ma-

5𝑓(Λ) = |𝑋Λ−1 −𝐷|2 was minimized, however, different results would have been obtained for other
choices, e.g. 𝑓(Λ) = |𝑋 −𝐷Λ|2 leads to 𝜆𝑗 = [𝐷†𝑋]𝑗𝑗/[𝐷

†𝐷]𝑗𝑗 .
6The optimization can for example be done using an augmented Lagrangian method [91]. Gradients

can also be effectively computed using automatic differentiation [92] or even analytically, when Λ = 𝐼.
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trix expansion given in Eq. (3.10) and {𝑝, 𝑞} is a chosen subset of indices. When sum-
ming over 𝑝 ̸= 𝑞, the global optimum is reached for 𝐷 satisfying 𝑅𝑝𝑞 (𝐷) = 𝑅𝑞𝑝 (𝐷) =

[𝑅𝑝𝑞 (𝐷
𝑐) +𝑅𝑞𝑝 (𝐷

𝑐)] /2, but such a set of 𝐷 is not guaranteed to exist. When it does
exist, directly solving this system of equations has given the best results in our experience
with actual 2-port systems.

3.3.3 Properties of 2-port systems

Since many common applications of scattering theory involve lossless reciprocal 2-port
systems, we discuss some properties of their 𝑆 matrix.

Energy conservation leads to the unitary 𝑆-matrix of Eq. (3.10), which was recast in
a normalization-independent form [Eq. (3.12)]. We can then simply choose 𝑟𝑛 = 1, skip
the 𝑟-subscript and denote 𝜎𝑛 = 𝐷2𝑛/𝐷1𝑛. The 𝑆-matrix then becomes (𝑝, 𝑞 = 1, 2)

𝑆𝑝𝑞 = −𝛿𝑝𝑞 −
𝑁∑︁

𝑛=1

𝜎𝑝𝑛
∑︀𝑁

𝑙=1𝑀
−1
𝑛𝑙 𝜎

*
𝑞𝑙

𝑖𝜔 − 𝑖𝜔𝑛

; 𝑀𝑛𝑙 =
1 + 𝜎𝑙𝜎

*
𝑛

𝑖𝜔𝑙 − 𝑖𝜔*
𝑛

; 𝜎1𝑛 = 1, 𝜎2𝑛 = 𝜎𝑛. (3.18)

When the system has mirror symmetry, these ratios can only take the values 𝜎𝑛 = ±1, so
they act like eigenvalues of the symmetry operator.

Realness requires also that, for each mode (𝜔𝑛, 𝜎𝑛), the mode (−𝜔*
𝑛, 𝜎

*
𝑛) is also included.

Then, the dependence of 𝑆 on 𝜎𝑛 can be easily checked to satisfy, for 𝛾 = ±1,

𝑆11{𝜔𝑛,𝛾𝜎𝑛} = 𝑆11{𝜔𝑛,𝜎𝑛}, 𝑆12{𝜔𝑛,𝛾𝜎𝑛} = 𝛾*𝑆12{𝜔𝑛,𝜎𝑛}

𝑆21{𝜔𝑛,𝛾𝜎𝑛} = 𝛾𝑆21{𝜔𝑛,𝜎𝑛}, 𝑆22{𝜔𝑛,𝛾𝜎𝑛} = 𝑆22{𝜔𝑛,𝜎𝑛}.
(3.19)

[If only positive-frequency modes are considered and thus the realness requirement is
relaxed—commonly known as a rotating-wave approximation (RWA)—Eq. (3.19) holds
for any phase factor 𝛾 = 𝑒𝑖𝜙.] Moreover, swapping ports 1 ↔ 2 corresponds simply to
replacing 𝜎𝑛 ↔ 1/𝜎𝑛:

𝑆11{𝜔𝑛,𝜎𝑛} = 𝑆22{𝜔𝑛,1/𝜎𝑛}, 𝑆21{𝜔𝑛,𝜎𝑛} = 𝑆12{𝜔𝑛,1/𝜎𝑛}. (3.20)

As a consequence, when all 𝜎𝑛 are ±1 (as for a symmetric structure, whose modes must be
even or odd [61]), 𝑆11 = 𝑆22 and 𝑆21 = 𝑆12, so the 2-port system is immediately reciprocal.
(Obviously, 𝜎𝑛 = ±1 is not necessary for the reciprocity condition Eq. (3.16) to hold.)
Note that energy conservation alone implies that |𝑆12| = |𝑆21|, so reciprocity in lossless
2-ports is mostly a statement on the transmission phase responses.
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— Properties of zeros — Combining realness 𝑆*(𝜔) = 𝑆(−𝜔), unitarity 𝑆†(𝜔)𝑆(𝜔) =

𝐼 and symmetry 𝑆𝑡(𝜔) = 𝑆(𝜔) on the real-𝜔 axis, gives 𝑆(−𝜔)𝑆(𝜔) = 𝐼, which can then
be analytically continued in the entire complex-𝜔 plane. Expanding this equation for a
2-port, we get

𝑆11 (−𝜔)𝑆11 (𝜔) + 𝑆21 (−𝜔)𝑆21 (𝜔) = 1 (3.21a)

𝑆11 (−𝜔)𝑆11 (𝜔) = 𝑆22 (−𝜔)𝑆22 (𝜔) (3.21b)

𝑆11 (−𝜔)𝑆21 (𝜔) = −𝑆21 (−𝜔)𝑆22 (𝜔) . (3.21c)

We can use these equations to derive some useful properties of the zeros of 𝑆-coefficients.
As a reminder, realness requires all poles and zeros to be symmetric across the imaginary
𝜔-axis.

Let’s first assume that −𝜔𝑜 is not a system pole [so 𝑆(−𝜔o) is finite]. Eq. (3.21a)
then prevents 𝑆11 and 𝑆21 = 𝑆12 from having simultaneous zeros at 𝜔𝑜, and using also
Eq. (3.21b) the same holds for 𝑆22 and 𝑆21. Therefore, Eq. (3.21c) mandates that (i) the
zeros of 𝑆21 can only appear as complex quadruplets (𝜔𝑜, 𝜔

*
𝑜 ,−𝜔𝑜,−𝜔*

𝑜), real or imaginary
pairs (𝜔𝑜,−𝜔𝑜), or at 𝜔𝑜 = 0 and that (ii), for each zero-pair (𝜔𝑜,−𝜔*

𝑜) of 𝑆11, (−𝜔𝑜, 𝜔
*
𝑜)

is a zero-pair of 𝑆22.

If now −𝜔𝑜 is a system pole (so at least one 𝑆-element diverges there), the same
rules (i) and (ii) still apply, as long as zero-pole cancellations that occur at (−𝜔𝑜, 𝜔

*
𝑜)

are taken into account. All possible scenarios are: (I) If 𝑆11 (𝜔𝑜) = 0 ̸= 𝑆22 (𝜔𝑜),
Eq. (3.21b) forces 𝑆22 (−𝜔𝑜) to be finite, thus 𝑆22 must exhibit a zero at −𝜔𝑜 that cancels
the pole there (and similarly when switching 𝑆11 and 𝑆22). Moreover, if simultaneously
𝑆21 (𝜔𝑜) = 0, Eq. (3.21c) mandates a pole-zero cancellation also for 𝑆21 at −𝜔𝑜. (II)
If 𝑆11 (𝜔𝑜) = 𝑆22 (𝜔𝑜) = 0, Eq. (3.21c) implies that also 𝑆21 (𝜔𝑜) = 0, namely the en-
tire matrix 𝑆(𝜔o) = 0. In this case, we can consider that all 𝑆-coefficients also have
another zero at −𝜔𝑜 that cancels a degenerate pole, which usually do appear when the
physical system is perturbed. (III) If 𝑆11 (𝜔𝑜) ̸= 0 ̸= 𝑆22 (𝜔𝑜), Eq. (3.21a,3.21c) dictate
also that 𝑆21 (𝜔𝑜) ̸= 0. In the cases above, for any coefficient with 𝑆𝑝𝑞(𝜔o) = 0, then
𝑆𝑝𝑞(𝜔) ∝ 𝑒𝑖𝜙(𝜔) = (𝜔 − 𝜔𝑜) (𝜔 + 𝜔*

𝑜) / (𝜔 + 𝜔𝑜) (𝜔 − 𝜔*
𝑜), a behavior known as an “all-

pass” phase filter. Moreover, when 𝑆(𝜔o) is singular, 𝜔o is called an “𝑆-matrix zero” (for
example generalized in Ref. 85).

The restrictions (i) on the 𝑆21 zeros imply that its numerator is a polynomial of 𝜔2

with real coefficients, optionally with multiplicative 𝑖𝜔 factors. We emphasize that, for any
lossless system with more than one port, the zeros of the 𝑆 coefficients are different from
the “𝑆-matrix zeros”, where det(𝑆) = 0 and which always coincide with the conjugates of
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the poles [85].

3.3.4 Absorption and gain

In presence of small absorption loss, 𝑆 is no longer unitary, but it can be calculated
perturbatively when all relevant modes have high 𝑄. In particular, the denominators of
Eq. (3.10) must obviously use the poles Ω̃ of the actual absorptive system, however, if the
QNM loss rates are split into radiative (Γr) and non-radiative (Γnr) parts, the numerators
of Eq. (3.10) scale as 𝐷𝑀−1𝐷 ∼ Γr(1+ const ·Γnr) [no scattering when Γr → 0]. We then
see that, for high-𝑄 modes (where both Γr and Γnr are much smaller than the frequencies),
these numerators are equal to those of the lossless case to first order in Γr,Γnr, namely
absorption only affects the poles. (A similar argument is often implicitly used in CMT,
where it is typically assumed that Γ = 𝐷†𝐷+Γnr with 𝐷 not changing in the presence of
Γnr because Γ itself is small [6], or is explicitly used to argue that the coupling coefficients
to different CMT channels can be determined independently [28].) Therefore, in practice,
to compute 𝑆 for absorptive or active scatterers, we first calculate the QNMs (𝜔𝑛, 𝐷𝑝𝑛)
of the lossless (radiative only) structure and use them to evaluate the numerators of
Eq. (3.10). Then, we turn on absorption or gain mechanisms (adiabatically if needed
for QNM-tracking purposes) to get the exact denominator poles (𝜔̃𝑛). Since the lossless-
case 𝐷 was fine-tuned for reciprocity, the non-unitary 𝑆 will still be symmetric. The
perturbation argument assumes high-𝑄 modes but does not restrict the relative strength
between radiation and absorption/gain rates. Indeed, as we see in the next examples, our
QNMT gives quite accurate predictions even in the presence of modes with Γnr ≫ Γr and,
in fact, even when relatively low-𝑄 modes are present.

3.4 Examples in electromagnetism

Our QNMT for the 𝑆 matrix is applicable to all kinds of wave physics, such as acous-
tics [93–95], electromagnetics [6, 78, 79], and quantum mechanics [77, 96]. Therefore, in
our derivation, we used general physics-agnostic notation to render our results usable for
any wave-scattering problem. In this section, to examine the accuracy of our QNMT, we
study multiple examples in electromagnetism.

3.4.1 Normal incidence on microwave metasurface

We now study scattering of an electromagnetic plane wave with frequency 𝑓 = 𝜔/2𝜋

normally incident on the metasurface depicted in the inset of Fig. 3-2(a). It consists
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of alternating dielectric (green) and metallic (grey) layers, where the latter have been
etched out to form two-dimensional square periodic lattices (of period 𝑎) of thin metallic
crosses, whose centers are the same for all patterned layers. A square air-hole has also
been etched throughout the entire thickness 𝑑 of the metasurface in the region between
the crosses. The metal thickness is 18𝜇m (corresponding to 0.5oz copper). We study
for frequencies below the first diffraction cutoff (𝑓cut = 𝑐/𝑎 at normal incidence), so only
transmission and reflection need to be considered. Moreover, there is 𝐶2𝑣 symmetry, so
the response for normal incidence is independent of the polarization 𝑒 and only 2 ports are
needed. Numerical computation of the “exact” frequency response (𝑆-matrix) for plane-
wave excitation as well as of the eigenmodes for use in our QNMT is carried out using
COMSOL Multiphysics [97]. Complex eigenfrequencies 𝜔𝑛 are immediately obtained from
the eigensolver, while the coupling coefficients 𝐷1𝑛, 𝐷2𝑛 are computed from Eq. (3.3) as
“power” inner-product surface integrals

𝐷𝑝𝑛 ∝
∫︁
𝑧′𝑝

(︀
E*

𝑝 ×H𝑛 + E𝑛 ×H*
𝑝

)︀
· 𝑑S (3.22)

at the two (left/right for 𝑝 = 1, 2) external boundaries of the metasurface between the
QNM field 𝜓𝑛 = (E𝑛,H𝑛) and the coupling port-modes 𝜑⊥

𝑝 = (E𝑝,H𝑝) [plane waves in
this case, so 𝐷𝑝𝑛 ∝

∫︀
𝑧′𝑝
(𝑒 · E𝑛) 𝑑𝑆], where, as emphasized earlier, only their ratio 𝜎𝑛

is needed. In Appendix-B, we provide further details and guidelines for the numerical
simulations (mainly how to avoid spurious modes [67, 70, 98, 99]), as well as tables with
the calculated QNMs (𝜔𝑛, 𝜎𝑛) for every structure presented in the article.

For the asymmetric structure of Fig. 3-2, the parameters were chosen arbitrarily to
test a very general response, with 𝜎𝑛 departing substantially from ±1. Even so, we
see a very good match between the exact numerical computation (black lines) and the
QNM expansion of Eq. (3.10) (red lines), for both the amplitude of 𝑆21 = |𝑆21|𝑒𝑖𝜑21 (a)
and its time delay 𝜏21 = 𝑑𝜑21/𝑑𝜔 × 𝑐/𝑑 (b), in both cases of lossless (solid lines) and
lossy (dashed lines) structures. In the lossless case, we emphasize again that, due to our
symmetrization procedure of Eq. (3.17), the QNM expansion we obtained is both unitary
and symmetric. This is why the zeros of 𝑆21 = 𝑆12 are either real or complex conjugate
pairs, and the zeros of 𝑆11, 𝑆22 complex conjugates of each other, as they should [Fig. 3-
2(c)]. The response with copper and dielectric losses mostly maintains the same overall
features, and merely exhibits reduced transmission at high frequencies and “superluminal”
(0 ≤ 𝜏21 < 1) or negative group delay (𝜏21 < 0) around transmission zeros. The latter
does not violate causality [100], instead it has been shown to necessarily occur at peaks
of absorption [101], and thus is indeed typically associated with lossy bandstop (“notch”)
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Figure 3-2: QNMT modeling scattering of a plane wave normally incident from the left on
the microwave metasurface depicted in the inset of (a). Parameters are: 𝑎 = 15mm, ℎ/𝑎
= 0.64, 𝑤𝑗/𝑎 = (0.05, 0.2, 0.1), 𝑙𝑗/𝑎 = (0.62, 0.92, 0.82), metal (grey) layers’ thickness
𝑑𝜇 = 18𝜇m, dielectric (green) layers’ permittivities 𝜖𝑖 = (4, 6, 3, 10) and thicknesses 𝑑𝑖/𝑎
= (0.1, 0.2, 0.3, 0.2). In the lossy simulation, we used copper and added loss tan 𝛿 = 0.01
to all dielectric layers [for simplicity, − tan 𝛿 is assumed for Re(𝑓) < 0 to maintain realness
of 𝜖(𝑓)]. Curves: (a) magnitude and (b) group delay of the transmission coefficient (where
a constant delay of 0.24× 𝑑/𝑐 was added to QNMT to match the exact simulation at low
frequencies). (c) Lossless-system poles used in the QNM expansion (with their negative-
frequency pairs used but not shown) and zeros of the resulting 𝑆 coefficients, confirming
unitarity and symmetry of 𝑆. The dotted arrows point at the 4 modes used to compute
the slowly varying background 𝐶 in the 𝑆 = 𝑆𝐶 approximation. (d) Errors of asymmetric
[Eq. (3.10) without Eq. (3.17), and approximate Eq. (3.23)] or non-unitary [Ref. 6] QNMT
formulations.

transmission responses (such as zeros) [102]. Our QNMT correctly predicts even these
unusual phenomena.

To quantify the benefits of our QNMT, we calculate the errors associated with not
exactly enforcing reciprocity or energy conservation, for the same QNMs of the lossless
structure. If the 𝐷 coefficients are not fine-tuned with Eq. (3.17), 𝑆 from Eq. (3.10) is
not exactly symmetric, so Fig. 3-2(d) shows the resulting error in |𝑆21 − 𝑆12|2 (orange
curve). It is relatively small (although increasing at higher frequencies), indicating that
Eq. (3.10) is already a good approximation. In contrast, the QNMT of Ref. 6 [analogous
to our Eq. (3.15)] is reciprocal but violates energy conservation by large amounts, leading
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to non-physical “absorption/gain”. As indeed shown in Fig. 3-2(d), for this lossless 2-
port, the sum of transmission and reflection |𝑆𝑝𝑝|2 + |𝑆21|2 (𝑝 = 1, 2) deviates from 1 by
almost ±0.4 at some frequencies (blue curves)! It turns out that these large errors exhibit
themselves mostly in the reflection coefficients. Additionally, in both cases, the violation
of a physical constraint leads to errors also in the group-delay prediction (such as negative
group delay, which is impossible for a lossless 2-port). However, these errors are of less
importance, since they usually appear around transmission zeros and they are mitigated
when a finite-bandwidth pulse is considered [103].

One key advantage of the QNMT method is that it resolves spectra around very-high-
𝑄 modes with perfect detail, while a frequency simulation requires a very dense uniform
frequency-grid to resolve them, being ignorant of their location. This, in turn, leads to
a stark benefit in speed for QNMT. For this example, on the same machine and finite-
element mesh, the QNMT calculation took an average of ∼ 60 secs per mode (×10 modes
in Fig. 3-2), while the frequency-domain calculation an average of ∼ 100 secs per point
(×600 points in Fig. 3-2).

3.4.2 4-port metasurface via coupled polarizations

We now consider the 4-port system described in Fig. 3-3 which consists of a microwave
metasurface with three dielectric layers sandwiching two metallic sheets, with patterned
arrays of rotated cross-like apertures. The ports correspond to the two polarizations on
the left (1,2) and right (3,4) sides of the structure. This system does not have the required
symmetry for the normally incident plane-wave polarization to be conserved, instead the
two orthogonal polarizations on each side cross-couple in both reflection and transmission,
so a 4-port system is needed.

In Fig. 3-3(a), we plot the cross-polarization transmission |𝑆41|2 and again find a good
agreement with our QNMT. In Fig. 3-3(b), we again show for comparison the errors of
QNMT without symmetry or unitarity. For the non-unitary QNMT of Ref. 6, the quantity
1 −∑︀𝑝 |𝑆𝑝1|2 reaches values as low as −0.5 (blue curve), in stark contradiction with
energy conservation. The asymmetric QNMT using Eq. (3.10) without the 𝐷 correction
of Eq. (3.17) has errors in |𝑆𝑝𝑞 − 𝑆𝑞𝑝|2 as large as 0.3 (orange curves). Moreover, in this
example, it also has nonzero |𝑆𝑝𝑞|2 − |𝑆𝑞𝑝|2 with an error up to ∼ 0.015. This happens,
because, for 𝑃 -port systems with 𝑃 > 2, unitarity alone does not guarantee |𝑆𝑝𝑞| = |𝑆𝑞𝑝|
anymore, so our method of fine-tuning 𝐷 to also enforce symmetry [Eq. (3.17)] corrects
errors not just in the scattering phase, but in the amplitudes too.
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Figure 3-3: QNMT modeling of cross-polarization transmission of a normally incident
plane wave from a metasurface with rotated apertures. The two planar metallic sheets
are periodically patterned (period 𝑎 = 15𝑚𝑚) with same cross-like apertures [with widths
(0.05𝑎, 0.1𝑎) and lengths (0.5𝑎, 0.3𝑎) in two orthogonal directions], which are rotated by
angles 30∘ and 60∘ with respect to the polarization of port 1. The three uniform dielectric
layers have 𝜖𝑖 = (2, 3, 5) and thicknesses 𝑑𝑖/𝑎 = (0.1, 0.05, 0.15). (b) Errors of asymmetric
[Eq. (3.10) without Eq. (3.17)] or non-unitary [Ref. 6] QNMT formulations.

3.4.3 Oblique incidence on 2d photonic metasurface

When a plane wave is incident on a metasurface at an angle 𝜃, its transverse wavevector
component at frequency 𝜔 is 𝑘⊥ = 𝜔 sin𝜃/𝑐. Phase matching then imposes that this
must also be the Bloch wavevector within the metasurface. QNMT modeling with such
excitation may seem intractable at first glance, if one tries to obtain a full band diagram
to apply QNMT at each fixed real 𝑘⊥. However, we calculate the relevant QNMs are those
calculated from a nonlinear eigenproblem, where the phase matching condition is imposed
at the complex eigenfrequency by analytic continuation (thus giving a complex Bloch
wavevector 𝑘⊥𝑛 = 𝜔𝑛 sin𝜃/𝑐). To find such unusual resonances, we developed software
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for two-dimensional (2d) dielectric structures, whose geometry can be split into uniform
layered sections: at any complex 𝜔, these complex Bloch modes are calculated within each
section with a 𝑇 -matrix formulation, then matched at interfaces between sections, and
finally radiation conditions are applied to find the resonances (similar to CAMFR [104]
and other interface mode-matching analyses [105,106]).
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Figure 3-4: QNMT modeling of transmission of obliquely incident (𝜃 = 30∘) TE plane
wave from a dielectric (𝜖 = 11) grating with 𝑤/𝑎 = 0.4 and 𝑑𝑖/𝑎 = (0.6, 0.4) so 𝑑 =
𝑑1 + 𝑑2 = 𝑎. The lossy structure has 𝜖 = 11 + 0.77𝑖 (loss tangent tan 𝛿 = 0.07).

We then study scattering of a plane wave incident at a 30∘ angle on a 2d photonic
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grating with its E-field transverse to the plane [inset of Fig. 3-4(a)]. For frequencies below
the first diffraction cutoff 𝑓cut = 𝑐/𝑎(1+sin𝜃), the system again has only 2 ports. In Fig. 3-
4(a,b), we show transmission, calculated both exactly (black curves) and with our QNMT
(red curves). The agreement is indeed very good all throughout the range. The QNMTs
without unitarity or symmetry reach errors ∼ 0.5 and ∼ 0.25 respectively [Fig. 3-4(c)].
We highlight that QNMTs are expected to improve as more (higher-frequency) modes are
included, however, the non-unitary formulation [6] exhibits large errors even down to very
low frequencies. Transmission is also plotted in the case of strong dielectric losses and
it highlights that our perturbative approach works very well, even though now (due to
absorption) several modes have decay rates Γ̃𝑛 more than an order of magnitude larger
than their rates Γ𝑛 for the lossless structure (see QNMs in Appendix-B).

3.5 Background scattering representation by low-𝑄

modes

In some design situations, as we will see in Chapter 4, one needs an effective slowly-
varying background response, which has to be designed collectively and in conjunction
with the high-𝑄 modes. This background response (responsible also for the concept of
Fano resonances [80]) is usually modeled in standard CMT via the direct-coupling matrix
𝐶 in Eq. (3.2). In most cases, researchers have approximated 𝐶 by simulating an effective
background structure derived by some type of topology averaging which removes the
high-𝑄 resonances, with parameters chosen a posteriori for a best fit [17,78,81]. Here, we
show how 𝐶 can be calculated using the actual structure under study by appropriately
combining its low-𝑄 modes, providing also intuition for this dependency and its physical
interpretation. Given the background 𝐶, we also derive how the total 𝑆 can be computed
and we test it for the electromagnetic examples of section 3.4.

3.5.1 QNMT with background 𝐶 matrix

Consider a lossless system supporting some high-𝑄 resonant modes (𝜔𝑛 = Ω𝑛− 𝑖Γ𝑛, 𝐷𝑛),
while the rest (𝜔𝐶

𝑛 = Ω𝐶
𝑛 − 𝑖Γ𝐶

𝑛 , 𝐷
𝐶
𝑛 ) have much smaller 𝑄 (Fig. 3-1). Starting from

Eq. (3.5), we combine these low-𝑄-mode terms within the sum to define 𝐶 (𝜔) ≡
𝑆{𝜔𝐶

𝑛 ,𝐷𝐶
𝑛 } (𝜔), so that 𝑆 takes the form of Eq. (3.4), with Ω including only the high-𝑄

modes. In the limit Γ𝐶 → ∞, 𝐶 becomes a frequency-independent matrix, which is
unitary, since 𝑆(𝜔 → ∞) = 𝐶. Therefore, we can use Eqs. (3.10) to calculate 𝐶 and
Eq. (3.17) to guarantee its symmetry. In this process, 𝑀𝐶

𝑛𝑙 ≈
∑︀𝑃

𝑝=1𝐷
𝐶
𝑝𝑙𝐷

𝐶*
𝑞𝑛 /

(︀
Γ𝐶
𝑙 + Γ𝐶

𝑛

)︀
,
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so the Γ𝐶
𝑛 → ∞ cancel out between 𝑀𝐶 and the 𝐶-denominator poles, leading to a con-

stant 𝐶 not necessarily equal to −𝐼. In the next subsection, we calculate this limiting 𝐶
for some simple but useful pole configurations. Now, for the total 𝑆-matrix of Eq. (3.4),
following the same procedure for energy conservation in the subsection 3.3.2 but with −𝐼
replaced by a unitary symmetric constant 𝐶, one can easily see that 𝑆†𝑆 = 𝐼 is now
equivalent to 𝐾𝑡 = −𝑀−1𝐷†𝐶. Therefore, the background 𝐶 can be factored out of
Eq. (3.4) to write:

𝑆 = 𝑆𝐶 =
[︀
𝐼 +𝐷(𝑖𝜔 − 𝑖Ω)−1𝑀−1𝐷†]︀𝐶

⇔ 𝑆𝑝𝑞 = 𝐶𝑝𝑞 +
∑︁
𝑛

𝐷𝑝𝑛

∑︀
𝑙𝑀

−1
𝑛𝑙

∑︀
𝑟𝐷

*
𝑟𝑙𝐶𝑟𝑞

𝑖𝜔 − 𝑖𝜔𝑛

.
(3.23)

Here, 𝑆 has the form of a separate scattering matrix, which itself also satisfies realness,
unitarity and the properties of Eqs. (3.19, 3.20). The condition of Eq. (3.16), to addition-
ally impose exact symmetry on 𝑆, is modified to

𝐷𝑞𝑛

∑︁
𝑙

𝑀−1
𝑛𝑙

∑︁
𝑟

𝐷*
𝑟𝑙𝐶𝑟𝑝 = 𝐷𝑝𝑛

∑︁
𝑙

𝑀−1
𝑛𝑙

∑︁
𝑟

𝐷*
𝑟𝑙𝐶𝑟𝑞 ⇔ 𝐶𝐷* = −𝐷Λ𝑀 𝑡, (3.24)

through which a fine-tuned 𝐷 can be evaluated by an optimization procedure, as before,
to obtain the final 𝑆.

Such extremely-low 𝑄 modes are very difficult to locate numerically. Thankfully, in
practice, real systems usually have modes with reasonably low 𝑄, which are easier to
find. However, the problem then is that their associated 𝐶 (𝜔) is slowly varying instead
of constant and is not necessarily unitary (as it does not describe a physical system
by itself). Nevertheless, we can still use Eq. (3.10) for those low-𝑄 modes to obtain a
unitary (thus approximate) 𝐶, symmetrize it with Eq. (3.17), and then use Eq. (3.23) with
the high-𝑄 modes inside 𝑆 to get 𝑆 simply as a best-effort approximation to the actual
system response. This 𝑆𝐶 construction still guarantees that 𝑆 will also satisfy realness
[𝑆*(𝜔) = 𝑆*(𝜔)𝐶*(𝜔) = 𝑆(−𝜔*)𝐶(−𝜔*) = 𝑆(−𝜔*)] and unitarity (𝑆†𝑆 = 𝐶†𝑆†𝑆𝐶 = 𝐼),
but does not guarantee reciprocity (𝑆𝑡 = 𝐶𝑡𝑆𝑡 ̸= 𝑆𝐶 = 𝑆) even though 𝐶𝑡 = 𝐶 [at least,
unitarity implies |𝑆12| = |𝑆21| for a 2-port]. Attempts to symmetrize 𝑆 (for example, 7) are
not expected to have much success: if it were possible to exactly satisfy also reciprocity for
a varying 𝐶(𝜔), one would then be able to build a unitary and symmetric 𝑆 by multiplying

7One could, for example, use the approximation that, within the bandwidth of each high-𝑄 resonance
in Eq. (3.23), 𝐶(𝜔) ≈ 𝐶(𝜔𝑛), which translates to substituting 𝐶𝑝𝑞 → 𝐶𝑝𝑞,𝑛 in the symmetrization
condition Eq. (3.24). However, this only gives an approximate condition that does not improve much on
the original result.
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unitary and symmetric 𝐶 matrices formed by individual modes, which obviously is not
possible. Regardless, as we show later in examples, for many physical systems, 𝑆 = 𝑆𝐶

is a good enough approximation, which we use in separate Chapter 4 to design accurate
metasurface standard (e.g. elliptic) filters with a non-trivial background. In such design
situations where a specific background is desired, 𝐶 = 𝑆−1𝑆 can alternatively be used to
estimate and then design 𝐶(𝜔𝑐) at the target frequencies 𝜔𝑐 without having to calculate
any low-𝑄 modes, rather by using 𝑆(𝜔𝑐) from a direct simulation and 𝑆(𝜔𝑐) from QNMT
using only the high-𝑄 modes.

3.5.2 𝐶 matrix due to Γ → ∞ modes in 2-port systems

In this subsection, we study some very basic configurations of high-Γ modes (𝜔𝐶
𝑛 , 𝜎

𝐶
𝑛 ) in

2-port systems to build intuition on their influence in shaping the background scattering.
(For notational simplicity, here we drop the superscript “𝐶”.)

Single zero-frequency mode (−𝑖Γo, 𝜎o)

Consider a 2-port system supporting a zero-frequency mode 𝜔o = −𝑖Γo. As explained
above, when Γo → ∞, this mode can be factored out of 𝑆 into a unitary symmetric
background response 𝐶. The symmetry of 𝐶 dictates that the modal ports-coupling ratio
𝜎o is real. Using Eq. (3.18) for just this mode, we find 𝑀 = (1 + 𝜎2

o)/2Γo and then

𝐶𝑝𝑞 = −𝛿𝑝𝑞 −
𝜎𝑝o𝑀

−1𝜎𝑞o
𝑖𝜔 − Γo

Γo≫|𝜔|−−−−→ −𝛿𝑝𝑞 +
2𝜎𝑝o𝜎𝑞o
1 + 𝜎2

o

⇔ 𝐶 =

(︃
𝑟 𝑡

𝑡 −𝑟

)︃
; 𝑟 =

1− 𝜎2
o

1 + 𝜎2
o

, 𝑡 =
2𝜎o

1 + 𝜎2
o

,

(3.25)

which can give any “reflection matrix” in the orthogonal group 𝑂(2). A given transmission
𝑡 is achieved for

𝜎o =
1

𝑡
±
√︂

1

𝑡2
− 1. (3.26)

In particular, we obtain 𝑟 = 1 for 𝜎o = 0, while 𝑟 = −1 for 𝜎o → ∞. On the other hand,
𝜎o = ±1 gives a fully-transmissive background with 𝑡 = ±1.

A concrete example which confirms this last result comes from considering a uniform
material slab with thickness 𝑑 and refractive index 𝑛̃. Its “Fabry–Perot” modes are an
equi-spaced spectrum given by [82]

𝜔𝑛 =
2𝑐

𝑛̃𝑑

(︂
𝑛𝜋

2
− 𝑖 · atanh

1

𝑛̃

)︂
, 𝜎𝑛 = (−1)𝑛 . (3.27)
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Consider now appropriately large 𝑛̃, so that atanh (1/𝑛̃) ≪ 𝜋/2 ⇔ Γo ≪ Ω1. Then, at
frequencies of interest 0 < 𝜔 ≪ Ω1, the modal contribution (∼ Γo/Ω𝑛) is negligible for all
𝑛 ̸= 0. In the limit 𝑑→ 0, indicating the absence of slab, the only relevant 𝑛 = 0 system
mode has Γo → ∞. Therefore, perhaps counter-intuitively, full transmission can be seen
as equivalent to such a mode at 0− 𝑖∞ with 𝜎0 = 1.

This result of 𝑡 = 1 for a zero-thickness slab is a consequence our initial phase choice
𝐶 ′ = −𝐼 in Eq. (3.5). If we had instead chosen 𝐶 ′ = +𝐼, we would have obtained 𝑡 = −1

for zero thickness, which would be a valid but awkward phase convention.

Conjugate-modes pair [(𝜔o, 𝜎o), (−𝜔*
o, 𝜎

*
o)]

Let us now consider a single mode 𝜔o = Ωo − 𝑖Γo with Ωo ̸= 0, together with its negative
(paired) mode at −𝜔*

o. The symmetry of the associated background matrix 𝐶 again
requires a real 𝜎o, and Eq. (3.18) gives

𝐶𝑝𝑞 = − 𝛿𝑝𝑞 −
2𝜎𝑝o𝜎𝑞o
1 + 𝜎2

o

𝑖2Γo𝜔

[𝑖(𝜔 − Ωo)− Γo][𝑖(𝜔 + Ωo)− Γo]

⇒ 𝐶𝑝𝑞(Ωo) = −𝛿𝑝𝑞 +
2𝜎𝑝o𝜎𝑞o
1 + 𝜎2

o

1

1 + 𝑖Γo/2Ωo

.

(3.28)

When |𝜔−Ωo| ≪ Γo ≪ 2Ωo (so that RWA holds), 𝐶(𝜔 ∼ Ωo) again takes the single-mode
value of Eq. (3.25) independent of Ωo. Instead, when Γo ≫ 2Ωo, the two broad resonances
effectively cancel each other and 𝐶 ≈ −𝐼.

Two uncoupled modes [(𝜔1, 𝜎1), (𝜔2, 𝜎2)]

Two modes with Ω1,2 ̸= 0 and 𝜎1𝜎
*
2 = −1 do not couple [𝑀12 = 0 in Eq. (3.18)] and

their pole contributions add up independently in 𝐶(𝜔). Symmetry of their 𝐶 again forces
𝜎1 = −1/𝜎2 to be real. [This is the case of an even (𝜎1 = 1) and an odd (𝜎2 = −1)
mode. Another example with 𝜎1 → 0± and 𝜎2 → ∓∞ can occur for a strongly reflecting
mirror, where each mode is localized on one of the two asymmetric sides and couples
mainly to one port, thus defining two essentially disjoint 1-port systems.] Under the
RWA |𝜔 − Ω1,2| ≪ Γ1,2 ≪ 2Ω1,2, the pole contribution of each mode is like the one in
Eq. (3.25) and then 𝐶(𝜔 ∼ Ω1,2) ≈ 𝐼. However, in the limit Γ1,2 ≫ 2Ω1,2, their negative
poles cannot be ignored, the contributions are as in Eq. (3.28), and the result is instead
𝐶 ≈ −𝐼.
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Equi-spaced (Fabry–Perot) modes [𝑛𝜔o − 𝑖Γo, (−1)𝑛]

When the structure has localized resonant elements but does not exhibit very strong over-
all reflection, the background response is commonly assumed to arise from the averaged
geometry. When this is a simple uniform material slab, it corresponds to a Fabry–Perot
system with the infinite set of equi-spaced alternating-symmetry modes given in Eq. (3.27)
and a “comb” transmission response (see e.g. Fig. 3-5 blue circles and dashed lines). In
the limit 𝑛̃→ 1, the system approaches a slab of free space of thickness 𝑑 and its array of
modes (equi-spaced by 𝜋𝑐/𝑑) is shifted down towards −𝑖∞. The corresponding limiting
value of 𝐶 is simply the scattering matrix for propagation through 𝑑, namely |𝐶21| → 1

and 𝑑𝜑𝐶
21/𝑑𝜔 → 𝑑/𝑐.

One-sided equi-spaced modes [𝑛𝜔o − 𝑖Γo, 0 or ∞]

When instead the structure has strongly reflective components separating the two ports,
the background response will comprise low-𝑄 modes with fields mostly localized on either
of the two port sides, thus having |𝜎𝑛| ≪ 1 or |𝜎𝑛| ≫ 1 respectively, adding up to
|𝐶11|, |𝐶22| ≈ 1. If the average geometry on one side is a uniform material slab of thickness
𝑑/2 on a perfect mirror, its modes will again be Eq. (3.27) but for only odd or only even
𝑛. As 𝑛̃→ 1 and Γo → ∞, its round-trip reflection phase approaches 𝑑𝜑𝐶

11/𝑑𝜔 → 𝑑/𝑐.

From the last two examples, note that, although a conjugate-mode pair gives 𝐶 ≈ −𝐼
in the large-Γ limit, when considering many such modes, their small pole contributions
(deviations from −𝐼), ∝ 𝑖2𝜔/Γo from Eq. (3.28), add up to give a non-trivial phase term
(in transmission or reflection).

3.5.3 Choice of boundary for 𝐷 calculation and 𝐶-matrix descrip-

tion of a port shift

In our QNMT formulation, we suggest calculating the coupling coefficient 𝐷𝑝𝑛 as an
overlap between the QNM 𝑛 and the CPM 𝑝 at the latter’s cross-section 𝑧′𝑝 which first
touches the scatterer boundary [Eq. (3.3)]. A reasonable question is whether such a
choice is always appropriate, especially in unusual geometries where a thin “needle” sticks
out from the scatterer or when very-low-index materials surround the scatterer. In such
scenarios, the QNMs are expected to be localized close to the center of the scatterer and
likely are already exponentially increasing inside the suggested outermost boundary. Here,
we study a simple such photonic structure to explain the physics that come into play to
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Figure 3-5: Normally incident plane wave transmission through slabs with indices 𝑛̃𝑠 = 3,
𝑛̃ = 1.05 and thickness 𝑑 (black for exact result and red for QNMT prediction), and
comparison to the limiting case of 𝑛̃ = 1 (blue for exact result). (a) Geometry and poles,
(b) amplitude and (c) group delay: the small shift is due to the extra propagation through
the A–A′ slab, predicted by QNMT primarily via the contribution of the low-𝑄 modes, as
can be seen also from the 𝑆𝐶 approximation (green) where 𝑆21 ≈ 𝑆21𝐶11 gives the correct
delay 𝜏21 ≈ 𝜏21[𝑆] + 𝜏11[𝐶].

render our boundary choice indeed suitable and we show how the 𝑆 = 𝑆𝐶 formulation
can give an interesting physical interpretation.

A plane wave at frequency 𝑓 = 𝜔/2𝜋 is normally incident on a uniform material slab
of refractive index 𝑛̃𝑠 = 3 and thickness 𝑑 that is attached to another slab of the same
thickness but with 𝑛̃ = 1.05 (Fig. 3-5 inset). As a reference, the limiting symmetric system
with 𝑛̃ = 1 and ports’ cross-sections A′, B on the boundaries of the 𝑛̃𝑠 slab has the response
shown in Fig. 3-5 for (a) the poles (blue circles) with 𝜎𝑛 = ±1, (b) transmission amplitude
and (c) phase delay (blue dashed lines). The response of the actual test system (shown
with black ‘x’ and lines) obviously approaches that of the limiting case in amplitude and
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has an additional phase delay due to the propagation through the 𝑛̃ slab A–A′ [Fig. 3-5
(b,c)]. It may be tempting to think that the two systems should have the same QNMT
parameters (𝜔𝑛, 𝜎𝑛). However, its high-𝑄 modes now have 𝜎𝑛 different from ±1 (e.g.
𝜔𝑛𝑑/2𝜋𝑐 = 0.165 − 0.039𝑖 has 𝜎𝑛 = −0.45 + 0.68𝑖), exactly because they are calculated
on our suggested boundary 𝑧′𝑝 = A and the structure between A–B is asymmetric. How
can we then expect QNMT to give an accurate prediction? The key lies in a set of very-
low-𝑄 modes 𝜔𝐶

𝑛 that are supported mainly by the weakly scattering 𝑛̃ slab [Fig. 3-5(a)
below the inset] and have highly asymmetric |𝜎𝐶

𝑛 | ≪ 1 [e.g. 𝜔𝐶
𝑛 𝑑/2𝜋𝑐 = 0.24 − 0.23𝑖 has

𝜎𝐶
𝑛 ∼ 10−3(1 + 1𝑖)]. As 𝑛̃→ 1, their Γ𝐶

𝑛 → ∞ and, when taken into account, the QNMT
prediction of 𝑆 gives the correct result with the additional expected group delay through
A–A′.

To clearly understand the effect of the low-𝑄 modes, we separate them into a back-
ground response 𝐶, shown in green lines in Fig. 3-5. We see that 𝐶 is almost a diagonal
matrix [|𝐶11|2 ≈ 1 in Fig. 3-5(b)] and that 𝐶11 represents a group delay equal to 2𝑑/𝑐

[Fig. 3-5(c)]. Indeed, this spectrum of low-𝑄-modes matches the “one-sided equi-spaced
modes” of the previous subsection: due to 𝑛𝑠 ≫ 𝑛, 𝐴′ acts as a highly reflective boundary,
so 𝜏𝐶11 models the roundtrip phase propagation through 𝐴 → 𝐴′ → 𝐴. The group delay
of 𝑆21 through A–B is surprisingly reduced (and not increased!) by 𝑑/𝑐 compared to the
A′–B 𝑆21, and that is because the high-𝑄 modes have modified 𝜎𝑛 values. In this way,
𝑆21 ≈ 𝑆21𝐶11 works out correctly to give the required additional group delay 𝑑/𝑐. It is
worth reminding that 𝑆 does not have to be symmetric. In fact, oppositely to 𝑆21, the A–B
𝑆12 has group delay increased by 𝑑/𝑐 compared to the A′–B transmission, so that, com-
bined with 𝐶22 ≈ −1 ̸= −𝑒𝑖𝜔2𝑑/𝑐 ≈ 𝐶11, we get the correct 𝑆12𝐶22 ≈ 𝑆12 = 𝑆21 ≈ 𝑆21𝐶11.

We conclude that all structural features contribute to scattering, which may be ex-
pressed via low-𝑄 modes that need to be included in the QNM expansion. This justifies
our choice of surface for the calculation of𝐷 in Eq. (3.3) to be the closest port cross-section
that encloses the entire scatterer 𝑧′𝑝. For a different port choice 𝑧𝑝, additional (practically
impossible to locate) infinite-Γ modes would need to be accounted for to express the extra
phase shift through 𝑧𝑝 − 𝑧′𝑝.

3.5.4 Examples of Section 3.4

We finally test this formulation on the 2-port electromagnetic structures of Figs. 3-2 & 3-
4 by using the modes with lowest 𝑄s (much lower than the other modes) to construct
the 𝐶 matrix [see modes in Fig. 3-2(c)]. 𝐶21 indeed yields a slowly-varying transmission
background, as shown in Figs. 3-2(a) & 3-4(a) (green dash-dotted lines). Sharp features in
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𝑆21 are then obtained by the high-𝑄 modes within the 𝑆𝐶 formulation (green solid lines),
which actually gives a very good approximation of the overall transmission amplitude
spectrum. Due to the remaining asymmetry of 𝑆𝐶, we find that there are some errors in
the group-delay prediction close to transmission zeros, but these errors are reduced when
considering realistic finite-bandwidth pulses.

The 4-port structure of Fig. 3-3 has large connected metallic sheets, so it exhibits some
very-low-𝑄 “one-sided equi-spaced modes" (Sec. 3.5.2) due to the outermost dielectric
layers that only couple ports on the same side (namely they have 𝜎𝑟,𝑝𝑞 → 0 or ∞ for 𝑝, 𝑞
in opposite sides, so that |𝐶𝑝𝑞| → 0). This explains the sharp features observed in 𝑆41, as
only high-𝑄 modes contribute to it. Moreover, the layers in this example are very thin,
so these low-𝑄 modes are located very far from the frequencies of interest anyway.

3.6 Conclusions

In this chapter, we have presented an expansion of the system scattering matrix 𝑆 over
non-normalized QNMs, formulated to satisfy the fundamental physical conditions of real-
ness, energy conservation and reciprocity even for a small truncated number of terms. Res-
onant QNMs with frequencies 𝜔𝑛 are computed with a numerical eigensolver. Coupling co-
efficients𝐷𝑝𝑛 are evaluated as surface overlap integrals between normalized-CPM and non-
normalized-QNM fields (as only ratios 𝜎𝑟,𝑝𝑛 = 𝐷𝑝𝑛/𝐷𝑟𝑛 are needed). Negative-frequency
modes (−𝜔*

𝑛, 𝐷
*
𝑝𝑛) are included. The 𝐷 matrix is then adjusted through Eq. (3.17) and

𝑆 is finally calculated via Eq. (3.10). For applications where it is convenient to separate
an effective background response from the high-𝑄 resonances, 𝐶 can be determined by
the same procedure using only the low-𝑄 resonances, with 𝑆 from the high-𝑄 modes, and
then 𝑆 ≈ 𝑆𝐶. In Sec. 3.5.2, we discussed several limiting cases, and showed that a nearly
frequency-independent 𝐶 with nonzero transmission can be produced by a very-low-𝑄
mode on the imaginary-frequency axis, while a propagation phase is modeled by a set of
several low-𝑄 modes. The agreement of our QNMT with exact simulations gives us con-
fidence that it can be successfully employed for rapid device design. In the next chapter,
we indeed use this formulation to design precise standard (especially elliptic) high-order
filters.

Our QNMT was mainly developed for linear ports with frequency-independent trans-
verse mode profiles, such as plane waves. However, it could also be extended to finite
arbitrary-shape scatterers using a spherical CPM basis. (Note that systems with spheri-
cal symmetry studied in previous QNMT formulations [6, 79] can be modeled merely as
multiple 1-ports, so QNMT was not really needed, as explained in the overview.) Diffi-
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culties arise with other types of ports, such as when QNM-to-CPM coupling coefficients
𝐷(𝜔) are frequency dependent, and specifically when the 𝑆 matrix has branch points due
to CPM cutoff frequencies. While a rigorous extension of the theory to such systems may
require a different approach, our model may still provide good approximate results for
slowly varying coupling coefficients (such as for dielectric waveguides with low waveguide
dispersion).
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Chapter 4

Few resonances 2: Filter design criteria
with application to microwave
metasurfaces

1

4.1 On resonances

In the previous chapter, we derived a general expansion for the scattering matrix based
on enforcing fundamental physical constraints. As highlighted there, such formalism is
general and does not necessarily depend on a specific physics. The most simple exam-
ple corresponds to transfer functions of electronic circuits, which are equal to rational
functions determined by their poles, zeros, and an overall constant factor. In signal pro-
cessing, such rational transfer functions are used to obtain standard approximations to
ideal peacewise constant filters [16]. A corresponding physical electronic circuit can then
be designed using network synthesis [16]. This filter design approach is usually restricted
to systems with distinct components (e.g. electronic circuits) where the elements (e.g.
capacitors and inductors) can be independently tuned to achieve the desired response.
As we describe later, for certain applications and wavelength regimes, the different “com-
ponants” of the system (e.g. individual resonators) cannot be designed independently as
they are strongly coupled and affect each others properties (e.g. resonance frequency)
when they are “put together”. In this case, the system should be considered as a whole
in the design. Since our QNMT theory in Chapter 3 allows us to compute a rational
function approximation of the scattering matrix directly using the quasi-normal modes of
the full system, we can use it to derive universal analytical criteria for standard-filter de-

1Our work on this topic was published in Ref. 19.
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sign. These can in principle be used in all areas of wave physics to design general devices,
which can be seen as a black boxes, as long as we can compute their quasi-normal modes.
In this chapter, we derive such universal filter design criteria and apply our method to
design microwave metasurfaces implementing standard amplitude filters of various types,
orders and bandwidths. In the next section, we first give a brief overview on filters and
design methods and describe the structure of the rest of the chapter.

4.2 Overview

High-order (multi-resonance) filters—especially ideal standard filters (ISFs), such as But-
terworth or elliptic [16]—have been designed for many types of wave physics (electro-
magnetic [20, 107–116], mechanical [117–121], etc.) by a variety of techniques, including
brute-force optimization of the transmission/scattering spectrum [122–125], circuit the-
ory in the microwave regime [126–135], and coupled-mode theory (CMT) [17, 71, 136] for
cascaded optical resonators [107–113]. Circuit theory and CMT provide attractive semi-
analytical frameworks for filter design, but are restricted to systems composed of spatially
separable components (either discrete circuit elements or weakly coupled resonances, re-
spectively), while brute-force spectrum optimization faces several numerical challenges.
To design ultra-compact filters, involving strongly coupled elements and spatially over-
lapping resonances, a precise, systematic and computationally tractable methodology is
missing. In this chapter, we develop a new such filter-design approach by deriving a
minimal set of explicit analytical criteria on the system resonances, applicable to all sym-
metric and “antimetric” [137] filters, including ISFs. To derive these conditions, we use
the unitary and symmetric quasi-normal-mode (QNM) expansion of the scattering matrix
𝑆 from Chapter 3 to derive the required coupling coefficients of the resonances (QNMs)
to the input and output ports in conjunction with the net background response, in order
to achieve multiple configurations for the zeros of the 𝑆 coefficients (generalizing previous
work [138, 139]) and thus realize any desired ISF. We apply our procedure to computa-
tionally design microwave metasurface filters that precisely match ISFs of various orders,
bandwidths, and types—especially optimal elliptic filters, which were demonstrated only
approximately in the past [125–129].

Large-scale optimization (including a variety of inverse-design and machine-learning
algorithms) is a powerful approach to design complex structures by optimizing thousands
of degrees of freedom [140, 141]. However, if the optimization problem is formulated di-
rectly in terms of matching a desired transmission spectrum, it can face severe numerical
challenges: the highly oscillatory nature of the transmission spectrum can trap optimizers
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in poor local optima, and stringent constraints (e.g. on stop- and pass-band transmission)
can lead to very “stiff” optimization problems with slow convergence. One proposed solu-
tion was to restrict the designs to spatially distinct resonators as in CMT [142]. However,
when analytical solutions to parts of the problem exist, the numerical side of the opti-
mization can be rendered simpler and more robust. For filter design in particular, signal-
processing theory analytically defines many such “optimal” filters (ISFs), characterized
by various rational transfer functions with specified poles and zeros, the latter necessary
to achieve a steep transition between the “pass” and “stop” frequency bands. Therefore,
when designing physical filters, it is advantageous to exploit these analytical solutions.
An exact methodology, called network synthesis, was developed to implement these ISFs
in the extreme quasi-static (subwavelength) limit, where structures can be modeled pre-
cisely by networks of discrete elements, as in electronic circuits [16]. In the other limit of
structures spanning multiple wavelengths, the simple mapping between coupled resonators
and transfer-function poles has made temporal coupled-mode theory (CMT) [17, 71, 136]
a popular design tool, especially for (high-order) optical add-drop filters [107–112], most
of which are only Chebyshev or Butterworth filters with no transmission-zeros, using a
symmetric topology. However, in the intermediate limit of physical structures with size
on the order of the wavelength or only a few times smaller (metamaterials), no com-
plete filter-design methodology exists. Discrete-element equivalent networks must often
become overly complicated to model the full-wave physics accurately and they change
for each different structural topology [133] or, worse, they fail to provide any adequate
model (as is typically the case in dielectric photonic structures). Therefore, network
synthesis may be useful for the intuitive choice of an appropriate system topology but
not for the calculation of its exact parameters. CMT, on the other hand, is typically
based on weakly coupled resonators and the knowledge of the “uncoupled” modes of the
system [17], but neither of these conditions usually hold for wavelength-scale structures
with multiple strongly inter-coupled/overlapping resonances [143]. Still missing has been
a unified, physics-independent, set of exact conditions for the precise design of filters with
multiple zeros that can be fed as a smooth objective to optimization algorithms. Using
our QNM theory (QNMT) from Chapter 3, in Sec. 4.4 we derive such simple and general
rules to design ISFs using eigenmode solvers. In particular, we show that the resonant
QNM fields of all lossless reciprocal 2-port systems with symmetric (𝑆22 = 𝑆11) or “an-
timetric” (𝑆22 = −𝑆11) [137] response couple to the input and output ports with specific
unitary ratios, whose relative signs determine the position of the scattering zeros. Thus,
for filter design, apart from the obvious matching of system resonant frequencies to the
desired filter’s complex poles, we explain that, to also obtain the desired-filter zeros, these
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ratios must be enforced for the critical filter resonances and the remaining QNMs must
add up to a required overall background response.

As an application of our theory, we design microwave frequency selective surfaces
(FSS), which are usually used to implement spatial (wave) filters for communication an-
tennas, radars, radomes [20,115,116], lenses [144,145] etc. FSSs typically take the form of
two-dimensional periodic metal-dielectric arrays exhibiting specific frequency-dependent
transmission or reflection under planewave excitation. While older designs were based on
wavelength-sized unit cells (as in typical antenna design), the use of subwavelength dimen-
sions to form metasurfaces has attracted much attention in the past decade due to multiple
advantages, such as higher unit-cells density and smaller angular sensitivity [130,131,146].
An important design challenge in frequency-selective metasurfaces is the ability to obtain
specific high-order frequency responses using their strongly inter-coupled subwavelength
resonances, attempted usually through multilayer FSSs. Most previous efforts have been
based on effective-circuit models [130–135]. The basic FSS building blocks are metallic
patches with gaps (effective capacitors 𝐶) and apertures/loops (effective inductors 𝐿) that
can be combined to make effective 𝐿𝐶 resonators. Then, the shape, size and arrangement
of patches and apertures in the FSS dielectric and metallic sheets are designed to ac-
complish the necessary circuit topology and element-values for the transmission desired.
While such circuit models can give a good physical intuition about the expected response
of a FSS, they are too approximate and less flexible for a precise design method (as ex-
plained above). This is why, although particular attention has been given to the design of
elliptic filters, most of previous efforts have only achieved an approximate “quasi-elliptic”
response [125–129]. In Sec. 4.5, we discuss the relation between QNMT and effective-
circuit models to motivate appropriate structural-topology choices for different filters and
scattering-zero placements. However, following our systematic filter-design procedure, we
then implement microwave metasurfaces that exhibit, for a normally incident plane wave,
transmission spectra matching ISF responses of various orders, bandwidths and types.
Notably, we demonstrate second- and third-order elliptic filters for both bandpass and
bandstop behaviors. We show that, in some cases, even though symmetric performance is
desired, structural asymmetry should be used, while conversely, in cases where the ideal
performance is antimetric, we also present approximate symmetric solutions. The de-
signed metasurfaces are compatible with fabrication by printed-circuit board technology,
and also offer potential electrical tunability.
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4.3 𝑆-matrix of lossless reciprocal 2-port systems

We consider a linear time-independent reciprocal system, without material absorption
or gain (although these could easily be included perturbatively as described in subsec-
tion 3.3.4), coupled to radiation only via two ports. These are used as channels for an
incoming excitation at frequency 𝜔 and outgoing scattered waves, described by a 2 × 2

scattering matrix 𝑆 (Fig. 4-1). Here, we summarize some key properties of 𝑆 and its
QNMT model, derived in Chapter 3, which we will need in this chapter.

 

𝑠!"	

𝑠#"	

𝑠!$	

𝑠#$	

𝒔! = 𝑺(𝜔)𝒔"	

𝑪	(𝜔#, 𝜎#)	

Figure 4-1: A lossless reciprocal 2-port scattering system excited at frequency 𝜔, with
input and output amplitudes respectively 𝑠±𝑝, related by the 𝑆-matrix through 𝑠− = 𝑆𝑠+.
The system supports high-𝑄 quasi-normal modes (QNMs) with frequencies 𝜔𝑛 and port-
coupling ratios 𝜎𝑛, while low-𝑄 resonances create an effective background response 𝐶.

To begin with, recall from subsection 3.3.3 that (i) the poles of 𝑆 appear in pairs
(𝜔𝑛,−𝜔*

𝑛) due to realness [𝑆*(𝑖𝜔) = 𝑆(−𝑖𝜔*)]; (ii) the zeros of 𝑆21 = 𝑆12 can only ap-
pear as complex quadruplets (𝜔𝑜, 𝜔

*
𝑜 ,−𝜔𝑜,−𝜔*

𝑜), real or imaginary pairs (𝜔𝑜,−𝜔𝑜), or at
𝜔𝑜 = 0; and (iii), for each zero-pair (𝜔𝑜,−𝜔*

𝑜) of 𝑆11, (−𝜔𝑜, 𝜔
*
𝑜) is a zero-pair of 𝑆22. These

restrictions imply that 𝑆𝑝𝑞 is a rational function of 𝑖𝜔 with real coefficients and, in par-
ticular, that the numerator of 𝑆21 is a polynomial of 𝜔2 with real coefficients, optionally
with multiplicative 𝑖𝜔 factors.

We consider the high-𝑄 modes of the system with frequencies 𝜔𝑛 and coupling coef-
ficients to the ports 𝑝 = 1, 2 equal to 𝐷𝑝𝑛, which can be computed as an overlap surface
integral between the 𝑛-QNM field and the 𝑝-port mode at the boundary of the scatterer
[e.g. Eq. (3.22)]. Their ratios 𝜎𝑛 = 𝐷2𝑛/𝐷1𝑛 do not depend on the normalization of the
QNMs. Moreover, any system low-𝑄 resonances 𝜔𝐶

𝑛 can admit a simplified description in
terms of an effective “background” response between the two ports, quantified by a back-
ground scattering matrix 𝐶. When these background QNMs have 𝑄 → 0, they give a
frequency-independent unitary symmetric 𝐶. In this case, our QNMT formulation shows
that, when the ports are referenced at the boundary of the scatterer, enforcing energy
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conservation (unitary 𝑆) gives:

𝑆 = 𝑆𝐶, 𝑆 = 𝐼 +
𝑁∑︁

𝑛=1

𝑆(𝑛)

𝑖𝜔 − 𝑖𝜔𝑛

,

𝑆(𝑛)
𝑝𝑞 = 𝜎𝑝𝑛

𝑁∑︁
𝑙=1

𝑀−1
𝑛𝑙 𝜎

*
𝑞𝑙, 𝑀𝑛𝑙 =

1 + 𝜎𝑙𝜎
*
𝑛

𝑖𝜔𝑙 − 𝑖𝜔*
𝑛

, 𝜎1𝑛 = 1, 𝜎2𝑛 = 𝜎𝑛,

(4.1)

where 𝜎𝑛 are further fine-tuned from the computed values in order to satisfy also reci-
procity (symmetric 𝑆 via [𝑆(𝑛)𝐶]21 = [𝑆(𝑛)𝐶]12), using a simple constrained optimization.
𝐶 itself can be computed as 𝐶 = −𝑆{𝜔𝐶

𝑛 }. In practice, the background 𝑄s are small
but nonzero, so 𝐶 is slowly varying but not constant; nevertheless, Eq. (4.1) provides a
good approximation for 𝑆. The distinction between high- and low-𝑄 modes is, in fact,
somewhat arbitrary and based mainly on computational convenience. In the limit where
one includes all modes in 𝑆, then 𝐶 = −𝐼.

𝑆 in Eq. (4.1) is uniquely determined by the values {𝜔𝑛, 𝜎𝑛} and can be easily
shown [18] to satisfy, for 𝛾 = ±1 (extended to complex 𝛾 in Sec. 4.4),

𝑆11{𝜔𝑛,𝛾𝜎𝑛} = 𝑆11{𝜔𝑛,𝜎𝑛}, 𝑆12{𝜔𝑛,𝛾𝜎𝑛} = 𝛾*𝑆12{𝜔𝑛,𝜎𝑛}

𝑆21{𝜔𝑛,𝛾𝜎𝑛} = 𝛾𝑆21{𝜔𝑛,𝜎𝑛}, 𝑆22{𝜔𝑛,𝛾𝜎𝑛} = 𝑆22{𝜔𝑛,𝜎𝑛}.
(4.2)

and, by swapping ports 1 ↔ 2,

𝑆11{𝜔𝑛,𝜎𝑛} = 𝑆22{𝜔𝑛,1/𝜎𝑛}, 𝑆21{𝜔𝑛,𝜎𝑛} = 𝑆12{𝜔𝑛,1/𝜎𝑛}. (4.3)

4.4 Filter Design

Our goal is to design physical 2-port systems with standard network-synthesis filter re-
sponses, specifically 𝑁 𝑡ℎ-order band-pass and band-stop filters of a finite bandwidth,
which are given as rational functions of frequency 𝐻(𝜔) with specified 2𝑁 complex poles
[appearing as 𝑁 pairs (𝜔𝑛,−𝜔*

𝑛)], 2𝑁 zeros (abiding by the restrictions detailed in subsec-
tion 3.3.3) and an overall constant. Attempting this design by optimizing over structural
parameters to find a scattering-matrix that matches specific values of the desired 𝐻(𝜔)

at a finite set of key frequencies can be very difficult in practice, as this highly-resonant
problem can present a vast number of local extrema and lead to “stiff” constraints [142].
Instead, the eigenmode-solver-derived components of a QNMT expansion have a much
slower dependence on the physical structural parameters, so they yield a more tractable
optimization formulation.
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It is obvious that the complex resonant frequencies 𝜔𝑛 of the physical system must
match the complex poles of the desired filter. In this work, we show how to also enforce
the desired zeros in the system response, by deriving the corresponding 𝜎𝑛 coefficients and
the matrix 𝐶. Specifically, |𝐶21| must match the desired filter background transmission
and then, for exact ISFs, we find that the ratios of couplings of the QNMs’ fields to the
two ports must be 𝜎𝑛 = ±1 for 𝑁 odd or 𝜎𝑛 = ±𝑖 for 𝑁 even, with alternating signs for
consecutive modes. Enforcing |𝐶21| and the 𝑁 complex 𝜔𝑛, 𝜎𝑛 results in a minimal set of
4𝑁 +1 real equations. We also explain that good approximate solutions can be obtained,
if an overall common phase for all 𝜎𝑛 is allowed, according to Eqs. (4.12–4.15).

— Symmetric and antimetric filters — We explained in subsection 3.3.3 that, for
a general lossless reciprocal 2-port system, the zeros of 𝑆11 and 𝑆22 are conjugates of each
other, but they do not necessarily coincide. In this work, we are interested in the special
cases of filters where they do coincide, so that these zeros can only appear as complex
quadruplets (𝜔𝑜, 𝜔

*
𝑜 ,−𝜔𝑜,−𝜔*

𝑜), real or imaginary pairs (𝜔𝑜,−𝜔𝑜), or at 𝜔𝑜 = 0. Their
numerator is then also (as is always true for 𝑆21) a polynomial of 𝜔2 with real coefficients,
optionally with multiplicative 𝑖𝜔 factors. These cases include, in particular, common
practical amplitude filters, for which all zeros of reflection (𝑆11 and 𝑆22), corresponding to
full transmission, lie on the real frequency axis or at infinity. To satisfy realness, this class
of filters is collectively described by the condition 𝑆22 = ±𝑆11, namely they are either
symmetric or “antimetric” [137] (note 2). Energy conservation and reciprocity then force
√
𝛾𝑆11𝑆

*
21 to be purely imaginary for 𝛾 ≡ 𝑆22/𝑆11 = ±1, corresponding to (+) odd or (-)

even number of 𝑖𝜔 factors in the numerator of 𝑆11 or 𝑆21.

The most important subclass comprises the ideal standard filter (ISF) approxima-
tions [16]: Butterworth (flat passband and stopband), Chebyshev (equiripple pass-
band, flat stopband), inverse Chebyshev (equiripple stopband, flat passband) and elliptic
(equiripple passband and stopband) (see Fig. 4-4). For a 𝑁 𝑡ℎ-order Butterworth or Cheby-
shev transmission bandpass filter, 𝑆21 has 𝑁 zeros at 𝜔 = 0 (𝑁 𝑖𝜔-factors in numerator)
and 𝑁 zeros at 𝜔 → ∞ (2𝑁 zeros total). For 𝑁 𝑡ℎ-order inverse Chebyshev or elliptic
filters, which have zeros at finite real frequencies, 𝑆21 still has one zero at 𝜔 = 0 and
one at 𝜔 → ∞ for 𝑁 odd, while all 2𝑁 zeros are finite for 𝑁 even (no 𝑖𝜔 factors). For
a transmission bandstop filter, the same observations hold instead for 𝑆11. In all ISF
cases, we conclude that 𝑆11𝑆

*
21 is purely imaginary (𝛾 = 1), if 𝑁 is odd, and purely real

(𝛾 = −1), if 𝑁 is even.

2This should not be confused with a symmetric 𝑆 matrix, which holds for a reciprocal system.
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4.4.1 Conditions on 𝐶 and 𝜎𝑛

A partial-fraction expansion of the desired network-synthesis expresses 𝐻(𝜔) in terms of
the complex poles, their residues, and a direct term 𝑡 (which gives the limiting response at
high frequencies according to the filter’s type). Using the 𝑆 = 𝑆𝐶 formulation of Eq. (4.1)
for an actual physical system, we assume that 𝐶 can be designed as approximately con-
stant over the finite bandwidth of interest, where it can generally be complex. Far from
the high-𝑄 resonances (𝜔 ≫ |𝜔𝑛|), Eq. (4.1) dictates 𝑆 → 𝐼 and thus 𝑆 → 𝐶. Therefore,
for a transmission filter, one must design |𝐶21| = 𝑡. This provides design intuition for the
topology of the structure, where appropriate low-𝑄 modes are utilized to get the desired
𝐶, as we will see in practical examples later. During structural optimization, it may be
difficult to find the low-𝑄 modes contributing to 𝐶, in which case it can also be calculated
efficiently as 𝐶 = 𝑆−1𝑆, where 𝑆 is obtained via direct simulation of the structure (with
the ports referenced at the scatterer boundary) and the filter-relevant high-𝑄 modes are
used to get a QNMT evaluation of 𝑆.

For the class of filters of interest with 𝑆22 = 𝛾𝑆11 (𝛾 = ±1), 𝑆 → 𝐶 means that the
unitary symmetric 𝐶 also satisfies 𝐶22 = 𝛾𝐶11 and that √

𝛾𝐶11𝐶
*
21 is purely imaginary.

Now, since 𝑆 = 𝑆𝐶−1, we can write:

𝑆 =
1

|𝐶|

(︃
𝑆11𝛾𝐶11 − 𝑆21𝐶21 −𝑆11𝐶21 + 𝑆21𝐶11

𝑆21𝛾𝐶11 − 𝛾𝑆11𝐶21 −𝑆21𝐶21 + 𝛾𝑆11𝐶11

)︃
(4.4)

so that 𝑆11 = 𝑆22 and 𝑆21 = 𝛾𝑆12. Further, using Eqs. (4.2, 4.3) for the dependence of 𝑆
on 𝜎𝑛:

𝑆11{𝜔𝑛,
1
𝜎𝑛

} = 𝑆22{𝜔𝑛,𝜎𝑛} = 𝑆11{𝜔𝑛,𝜎𝑛} = 𝑆11{𝜔𝑛,
𝜎𝑛
𝛾

}

𝑆21{𝜔𝑛,
1
𝜎𝑛

} = 𝑆12{𝜔𝑛,𝜎𝑛} =
1
𝛾
𝑆21{𝜔𝑛,𝜎𝑛} = 𝑆21{𝜔𝑛,

𝜎𝑛
𝛾

}.
(4.5)

The same result applies to 𝑆22 and 𝑆21, so we obtain 𝑆{𝜔𝑛,1/𝜎𝑛} = 𝑆{𝜔𝑛,𝜎𝑛/𝛾}. From the
uniqueness property mentioned earlier, we conclude that 1/𝜎𝑛 = 𝜎𝑛/𝛾. Therefore, for a
lossless reciprocal 2-port system:

𝑆22 = 𝛾𝑆11 ⇔ 𝜎𝑛 = ±√
𝛾, (4.6)

so that all modes have 𝜎𝑛 = ±1 for a symmetric filter (𝛾 = 1), while 𝜎𝑛 = ±𝑖 for an
antimetric (𝛾 = −1). (This generalizes the well-known CMT result for a single resonance,
where transmission reaches 1 only for equal decay rates into the two ports [28].) Moreover,
with this 𝜎𝑛 choice, 𝑖𝜎𝑛𝐶11𝐶

*
21 is purely real.

In the particular case of ISFs, 𝐶 is constant over all frequencies, so it must be real,
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to satisfy the realness condition. Consistently with 𝑖𝜎𝑛𝐶11𝐶
*
21 real, odd-order ISFs have

𝜎𝑛 = ±1 and 𝐶11𝐶21 = 0, while 𝜎𝑛 = ±𝑖 for even order.

— Transfer-matrix method — Eq. (4.6) can be also derived using general arguments
based on the transfer matrix as we show here. For a 2-ports system as in Fig. 4-1, the
(forward) transfer matrix is defined as:(︃

𝑠+1

𝑠−1

)︃
=

(︃
𝑇11 𝑇12

𝑇21 𝑇22

)︃(︃
𝑠−2

𝑠+2

)︃
(4.7)

and is related to the scattering matrix via the transformation:

𝑇 =
1

𝑆21

(︃
1 −𝑆22

𝑆11 − det(𝑆)

)︃
. (4.8)

In terms of the 𝑇 matrix, on the real-𝜔 axis, realness is expressed as 𝑇 *(𝑖𝜔) = 𝑇 (−𝑖𝜔)
and energy conservation as |𝑇11|2 − |𝑇21|2 = |𝑇22|2 − |𝑇12|2 = 1, 𝑇 *

11𝑇12 = 𝑇 *
21𝑇22, while

reciprocity holds anywhere on the complex-𝜔 plane and is written as det(𝑇 ) = 1.

At a system complex pole 𝜔𝑛, there are non-zero outgoing fields (𝑠−1, 𝑠−2 ̸= 0) without
an input (𝑠+1 = 𝑠+2 = 0), so 𝑇11(𝜔𝑛) = 0. Since then 𝐷1𝑛 ∝ 𝑠−1 and 𝐷2𝑛 ∝ 𝑠−2, the
ports-coupling ratio of the mode is 𝜎𝑛 = 1/𝑇21(𝜔𝑛) and reciprocity further mandates
𝑇12(𝜔𝑛) = −1/𝑇21(𝜔𝑛) = −𝜎𝑛.

The types of filters we are interested in satisfy 𝑆22 = 𝛾𝑆11, namely 𝑇12 = −𝛾𝑇21.
Therefore, for reciprocal such filters, we get 𝜎2

𝑛 = −𝑇12(𝜔𝑛)/𝑇21(𝜔𝑛) = 𝛾, as in Eq. (4.6)
of the main text. (Reminder that, if realness must hold, then 𝛾 = ±1.)

Inversely, consider a unitary reciprocal system where all the modes verify 𝜎2
𝑛 = 𝛾.

We write 𝑆𝑝𝑞(𝜔) = 𝐴𝑝𝑞(𝜔)/𝑃 (𝜔), where 𝑃 (𝜔) =
∏︀

𝑛(𝜔 − 𝜔𝑛) includes all the 2𝑁

poles 𝜔𝑛 and 𝐴𝑝𝑞(𝜔) is a polynomial of degree at most 2𝑁 , so Eq. (4.8) implies
that 𝑇12(𝜔) = −𝐴22(𝜔)/𝐴21(𝜔) and 𝑇21(𝜔) = 𝐴11(𝜔)/𝐴21(𝜔). At a pole, we have
𝑇12(𝜔𝑛) = −𝜎2

𝑛𝑇21(𝜔𝑛) = −𝛾𝑇21(𝜔𝑛), thus 𝐴22(𝜔𝑛)− 𝛾𝐴11(𝜔𝑛) = 0 [because 𝐴21(𝜔𝑛) ̸= 0].
Since the degree of 𝐴22−𝛾𝐴11 is at most 2𝑁 , we then have 𝐴22(𝜔)−𝛾𝐴11(𝜔) = 𝛼𝑃 (𝜔) ⇔
𝑆22 = 𝛾𝑆11 + 𝛼, where 𝛼 is a constant. Now, assuming a unitary system, we have
|𝑆22|2 = |𝛾𝑆11 + 𝛼|2 = |𝑆11|2 ⇔ |𝛼|2 + 2Re[𝛼*𝛾𝑆11(𝜔)] = 0 at all real frequencies 𝜔,
leading to 𝛼 = 0 and thus 𝑆22 = 𝛾𝑆11.

In the remainder of this section, we use the scattering-matrix QNMT to further specify
the choice of 𝜎-signs in order to enforce the desired positions of 𝑆-coefficients zeros.
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4.4.2 Types of Filters

For each mode 𝑛, the appropriate choice of sign for 𝜎𝑛 in Eq. (4.6) depends on the specific
filter type that is being designed. We find the adequate choice analytically in the limit
of large 𝑄s, or more specifically when Γ𝑛,𝑙 ≪ |Ω𝑛 − Ω𝑙| for 𝜔𝑛 = Ω𝑛 − 𝑖Γ𝑛. Under such
condition, the matrix 𝑀 is dominated by its diagonal terms 𝑀𝑛𝑛 =

(︀
1 + |𝜎𝑛|2

)︀
/2Γ𝑛, so

Eq. (4.1) becomes:

𝑆𝑝𝑞 ≈ 𝛿𝑝𝑞 +
∑︁
𝑛

Γ𝑛

𝑖 (𝜔 − Ω𝑛)− Γ𝑛

2𝜎𝑝𝑛𝜎
*
𝑞𝑛

1 + |𝜎𝑛|2
, (4.9)

with 𝜎1𝑛 = 1, 𝜎2𝑛 = 𝜎𝑛. Then, away from the resonances (Γ𝑛 ≪ |𝜔 − Ω𝑛|) and to lowest
order in Γ𝑛, further using |𝜎𝑛| = 1 from Eq. (4.6), transmission is

𝑆21 ≈ 𝐶21 − 𝑖
∑︁
𝑛

Γ𝑛

𝜔 − Ω𝑛

(𝜎𝑛𝐶11 + 𝐶21) . (4.10)

As the overall background transmission 𝐶21 ≈ 𝑆21 (𝜔 ≫ Ω𝑛) determines the filter type,
we will study its different cases separately.

Case (a) 𝐶21 = 0 ⇔ |𝐶11| = 1: This is a band-pass filter with zero transmission at
𝜔 → ∞. From Eq. (4.10), we have 𝑆21 ∝ ∑︀

𝑛 Γ𝑛𝜎𝑛/(𝜔 − Ω𝑛), which, under condition
Eq. (4.6), is proportional to a real function that can be easily used to determine the
placement of its zeros. As an example, we look at the simple scenario of two modes with
Ω1 < Ω2 and calculate the zero at

𝜔𝑜 ≈
Ω2Γ1𝜎1 + Ω1Γ2𝜎2

Γ1𝜎1 + Γ2𝜎2
. (4.11)

One can easily confirm that, when 𝜎1 = 𝜎2, the zero appears between the modes (Ω1 <

𝜔𝑜 < Ω2), a feature often observed in interference phenomena, such as electromagnetically
induced transparency (EIT) [138,147]. When 𝜎1 = −𝜎2, it appears on the side of the mode
with the smallest loss rate (𝜔𝑜 < Ω1 if Γ1 < Γ2 and 𝜔𝑜 > Ω2 if Γ2 < Γ1), while there is no
zero if Γ2 = Γ1 (explaining the lack of transmission zeros predicted by traditional CMT
for two equal-loss coupled resonances [17] and in symmetric “Fabry-Perot” systems where
all Γ’s are the same [71]). These points are illustrated in Figure 4-2(a).

These conclusions can be extended to the scenario of multiple high-𝑄 modes: a real
zero always occurs between two consecutive modes of same 𝜎𝑛, there can only be an even
(or zero) number of real zeros between two consecutive modes of opposite 𝜎𝑛 and, below
the lowest mode or above the highest mode, a zero can exist only if there is at least one
change in 𝜎-sign.
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Figure 4-2: Second-order filter responses, using QNM expansions of the form 𝑆 = 𝑆𝐶,
with two modes of frequencies Ω = (0.98−0.01𝑖, 1.02−0.005𝑖) and coupling ratios (±𝜎,±𝜎)
in 𝑆, and with unitary reciprocal 𝐶 =

(︂
𝑖𝜎*𝑟 𝑡
𝑡 𝑖𝜎𝑟

)︂
where 𝑟 =

√
1− 𝑡2 and such that

𝛽 = 𝑖𝜎* and 𝐶22 = 𝜎2𝐶11 (⇔ 𝑆22 = 𝜎2𝑆11), for different values of real background
transmission 𝑡 indicated in the plots. We use the RWA of ignoring negative-frequency
poles, so the amplitudes of 𝑆-matrix coefficients are exactly the same for any complex
𝜎 =

√
𝛾 = 𝑒𝑖𝜙/2. A zero always occurs between modes of same coupling ratio (red), so

filters with no zeros between the poles require opposite signs of the ratios (blue). Including
negative-frequency poles would result to the same qualitative behavior and only slightly
change the response away from the resonances.

For the ISFs with no transmission at infinity, such as a Butterworth, Chebyshev, odd-
order inverse Chebyshev or odd-order elliptic, where the transmission zeros are always
outside the passband, it is necessary to design 𝜎𝑛 with alternating signs, namely

𝜎𝑛 = ±√
𝛾 (1,−1, 1,−1, ...) = ±√

𝛾 (−1)𝑛−1 . (4.12)

Case (b) 0 < |𝐶21| ≪ |𝐶11| < 1: This is a band-pass filter with finite small transmission
at 𝜔 → ∞. From Eq. (4.10), we have 𝑆21 ≈ 𝐶21 − 𝑖𝐶11

∑︀
𝑛 Γ𝑛𝜎𝑛/(𝜔 − Ω𝑛). If we

denote 𝛽 = 𝐶11𝐶
*
21/|𝐶11𝐶21|, then, from the previous discussion, 𝑖𝜎𝑛𝛽 = ±𝑖√𝛾𝛽 = ±1.

Therefore, 𝑆21 is proportional to a real expression whose zeros can be easily predicted,
as in the previous case. In particular, a real zero always occurs between two consecutive
modes of same 𝜎𝑛. Moreover, there is an odd number of real zeros below the lowest
mode, when 𝑖𝜎1𝛽 = −1, and an even (or zero) number when 𝑖𝜎1𝛽 = 1, with a similar
result above the highest mode but for opposite signs of 𝑖𝜎𝑁𝛽. This is simply illustrated
in Figs. 4-2(b,c).
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For ISFs (𝛽 = ±1), in this case inverse Chebyshev or elliptic of even order 𝑁 (𝛾 = −1),
with a total of 𝑁/2 positive-frequency transmission zeros on each side of the passband, it
is necessary to have

𝜎𝑛 =
1

𝛽
(−1)𝑛−1 𝑖𝑁−1; 𝛽 =

𝐶11𝐶
*
21

|𝐶11𝐶21|
. (4.13)

Case (c) 0 < |𝐶11| ≪ |𝐶21| < 1: This is a band-stop filter with finite small reflection at
𝜔 → ∞. Similar analysis by considering 𝑆11 dictates, for even-order inverse Chebyshev
or elliptic ISFs,

𝜎𝑛 =
1

𝛽
(−1)𝑛−1 𝑖𝑁+1; 𝛽 =

𝐶11𝐶
*
21

|𝐶11𝐶21|
. (4.14)

Case (d) 𝐶11 = 0 ⇔ |𝐶21| = 1: This is a band-stop filter with zero reflection at 𝜔 → ∞
and a ISF implementation requires again simply

𝜎𝑛 = ±√
𝛾 (−1)𝑛−1 . (4.15)

By designing 𝜎𝑛 to satisfy the appropriate condition from Eqs. (4.12–4.15) according
to the filter type, the pole residues in the partial-fraction expansion of 𝐻(𝜔) are also
matched and thus the filter design is complete.

4.4.3 Approximate solutions

Negative-frequency modes are necessary to exactly satisfy realness. However, for filters
with high-𝑄 modes, the response can be well approximated (at positive frequencies 𝜔) by
the well-known rotating-wave approximation (RWA) of including only positive-frequency
modes in QNMT. In this case, the previous results hold for any complex phase factor
𝛾 = 𝑒𝑖𝜙. Therefore, in filter design, Eqs. (4.12–4.15) permit 𝜎𝑛 to be tuned to the desired
values up to an overall common phase factor (expressed via 𝛾 or 𝛽 = ±𝑖/√𝛾). Then, the
resulting filters, even after including also negative modes with their corresponding 𝜎*

𝑛 to
satisfy realness, will be good approximations of ISFs within the bandwidth of interest.

As seen from Eq. (4.3), for 𝜎 = ±1 (𝛾 = 1), 𝑆 is symmetric, so 𝑆 = 𝑆𝐶 is also
symmetric if 𝐶22 = 𝐶11. Similarly, for 𝜎 = ±𝑖 (𝛾 = −1), 𝑆 is symmetric with 𝐶22 = −𝐶11.
However, when 𝛾 is complex, reciprocity and realness of 𝑆 = 𝑆𝐶 cannot be satisfied with
a constant 𝐶. Since an actual physical system is obviously reciprocal, even when designed
for complex 𝛾, this means that 𝐶 is necessarily non-constant, but rather slowly varying due
to other modes, in a way that guarantees reciprocity. In other words, it is not possible
to obtain high-𝑄 modes verifying Eq. (4.6) with complex 𝛾 without additional modes
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proximal enough to form a frequency-dependent 𝐶.

4.4.4 Geometrical symmetry

𝜎𝑛 = ±1 means that the radiative part of the modes is even or odd, which can be
easily obtained using a structure with geometrical (e.g. mirror) symmetry between the
two ports [28]. This can explain the increase in transmission previously observed in
symmetric structures [148]. However, we will later see filter designs where it is preferable
for the structure to not be symmetric, so the modes themselves are not even or odd, even
though their radiative far fields may in fact be (satisfying 𝜎𝑛 = ±1).

On the other hand, for 𝛾 ̸= 1, the mode and structure have to be asymmetric anyway.
In particular, even-order antimetric ISFs (𝛾 = −1) can be made only from asymmetric
structures, as confirmed for example by their known corresponding electric-circuit topolo-
gies [16]. However, we explained that good approximate filters can be obtained with 𝛾

deviating from its optimal value by a phase factor (as long as the background 𝐶 is slowly
varying, in contrast to being constant for ISFs). Therefore, approximate even-order ISFs
can be designed also with 𝛾 = 1. To highlight this point, we later show implementations
of such filters, using symmetric structures.

4.4.5 Summary

A 𝑁 -order 2-port filter, whose reflection is zero at 𝑁 real frequencies, obeys 𝑆22 = 𝛾𝑆11

(𝛾 = ±1) and consists only of modes whose radiation couples to the two ports with the
ratios 𝜎𝑛 = ±√

𝛾. To design standard filters, these ratios must alternate sign among
consecutive modes, and a background scattering 𝐶, appropriate for the desired filter
type, must be established [Eqs. (4.12–4.15)]. Approximate filters can also be designed
with complex unitary 𝛾. Once the QNMT design objectives (background transmission
|𝐶21|, eigenfrequencies 𝜔𝑛 and port-coupling ratios 𝜎𝑛) have been determined for the
desired filter profile, the physical metasurface parameters can be identified using adequate
optimization/nonlinear-solver tools.

4.5 Microwave metasurfaces

The analytical criteria we have presented in this chapter give a direct pathway to precisely
design high-order microwave metasurface filters. In this section, we obtain all types of
bandpass and bandstop ISFs with different orders and bandwidths. For each desired filter,
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we choose a fixed topology, based on circuit-theory principles and also on intuition from
QNMT itself (for the background scattering 𝐶), with few unknown physical parameters.
These are then optimally identified by simply applying a multivariable solver of nonlinear
systems of equations on the filter conditions derived in section 4.4. This rather “tradi-
tional” approach leads to very rapid computational design, as physics and analytics have
already been used to facilitate the job of the optimizer.

Unless otherwise stated, in all microwave metasurfaces studied in this chapter: (i) We
use perfect metal with thickness 18𝜇m (corresponding to 0.5oz copper). (ii) The square-
lattice period 𝑎 and the centers of the crosses are the same for all patterned layers. (iii)
We study for frequencies below the first diffraction cutoff (𝑓cut = 𝑐/𝑎 at normal incidence),
so only transmission and reflection need to be considered. (iv) There is 𝐶2𝑣 symmetry,
so the response for normal incidence is independent of the polarization 𝑒 and indeed only
2 ports are needed. (v) Numerical computation of the “exact” frequency response 𝑆(𝜔)
for plane-wave excitation as well as of the eigenmodes (𝜔𝑛, 𝜎𝑛) for use in our QNMT is
carried out using COMSOL Multiphysics [97]. In the Supplemental Material [149], we
provide tables with the calculated QNMs for every metasurface presented.

4.5.1 Second-order bandpass filter - Circuit model

We start by studying a simple symmetric second-order metasurface, in order to build
some physical intuition on how a particular structural topology can be modeled by an
effective circuit, to relate this circuit to the QNMT, and to derive design guidelines for
transmission-zero placement. The metasurface, shown in Fig. 4-3(a), is formed by two
planar metallic sheets sandwiched between three uniform dielectric layers. A square array
(with period 𝑎) of narrow cross-like apertures in each metallic sheet creates a resonance,
which can be modeled in the subwavelength limit (𝑎 ≪ 𝜆) as an effective shunt parallel
𝐿𝑎𝐶𝑎 (≡ 1/𝜔2

𝑎) to a plane wave incoming from free space with impedance 𝑍. The induc-
tance 𝐿𝑎 originates from the current flowing around the edge of the aperture, while the
capacitance 𝐶𝑎 comes from the opposite-charge accumulation across facing sides of this
narrow gap [see Fig. 4-3(a)]. The connected topology of the metallic sheets represents
a short-circuit to an incident plane wave at long wavelengths (shunt 𝐿𝑎), leading to no
transmission at zero frequency. Moreover, a longitudinal inductance 𝐿𝑏 couples the aper-
tures on the two metallic sheets, corresponding both to first-order transmission-line effects
of the thin dielectric layer and to the direct mutual inductance between the apertures.
Finally, capacitance 𝐶𝑏 builds up between the two metallic sheets [see Fig. 4-3(a)], which
is an interesting feature that has an important consequence: it leads to the emergence, in
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series with the path of incident-wave propagation (longitudinally), of a parallel-resonant
𝐿𝑏𝐶𝑏, which becomes an open circuit at the frequency 𝜔𝑏 = 1/

√
𝐿𝑏𝐶𝑏, thus leading to a

zero in the transmission function. The final equivalent-circuit model is given in Fig. 4-3(b),
corresponding to a passband filter with a finite-frequency zero.
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Figure 4-3: (a) Symmetric metasurface for a second-order bandpass filter centered at 10
GHz with a single transmission-zero, designed for 0.25 dB passband ripple and 25 dB
stopband attenuation (black dashed lines). (b) Equivalent circuit model. The coupling
𝐿𝑏𝐶𝑏 gives the transmission-zero. (c) Transmission spectrum of two optimized structures
with a zero respectively on the left (L) and on the right (R) of their transmission peaks.
Parameters for structure (L): 𝑎 = 6mm, 𝑤1/𝑎 = 𝑤2/𝑎 = 0.0479, 𝑙1/𝑎 = 𝑙2/𝑎 = 0.846,
𝑡1/𝑎 = 𝑡3/𝑎 = 0.493, 𝑡2/𝑎 = 0.257, 𝜖1 = 𝜖3 = 1.43, 𝜖2 = 14.51. Parameters for structure
(R): 𝑎 = 9.34mm, 𝑤1/𝑎 = 𝑤2/𝑎 = 0.00877, 𝑙1/𝑎 = 𝑙2/𝑎 = 0.905, 𝑡1/𝑎 = 𝑡3/𝑎 = 0.0237,
𝑡2/𝑎 = 0.0966, 𝜖1 = 𝜖3 = 4.12, 𝜖2 = 3.80.

The transmission spectrum can be computed through 𝑆21 = 2𝑉𝑜𝑢𝑡/𝑉𝑖𝑛 [16], and with
𝑦𝑗 = 𝑍 (1/𝜔𝐿𝑗 − 𝜔𝐶𝑗) for 𝑗 = 𝑎, 𝑏 we obtain:

𝑆21(𝜔) =
2𝑖𝑦𝑏

(1 + 𝑖𝑦𝑎)(1 + 𝑖(𝑦𝑎 + 2𝑦𝑏))
. (4.16)

This clearly shows transmission zeros at ±𝜔𝑏, and also at 𝜔 = 0, 𝜔 → ∞ (bandpass
behavior). Denoting the loss rates Γ𝑗 = 1/(2𝑍𝐶𝑗), the denominator shows the system
poles at ±Ω1 − 𝑖Γ1 and ±Ω2 − 𝑖Γ2, where Γ1 = Γ𝑎, Ω1 ≈ 𝜔𝑎, Γ2 = 1/ (1/Γ𝑎 + 2/Γ𝑏), Ω2 ≈
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Γ2 (𝜔𝑎/Γ𝑎 + 2𝜔𝑏/Γ𝑏). One system resonance is identical to the single-sheet resonance,
while the second is affected also by the inter-sheet couplings: it is always narrower (Γ2 <

Γ1) and Ω2 ≷ Ω1 if 𝜔𝑏 ≷ 𝜔𝑎.

When 𝜔 is close to the positive resonances, the RWA 𝑦𝑗 ≈ (𝜔𝑗 − 𝜔)/Γ𝑗 effectively
drops the negative resonances. Then, a partial-fraction expansion of Eq. (4.16) can be
obtained:

𝑆21(𝜔) ≈
𝑖Γ1

𝜔 − (Ω1 − 𝑖Γ1)
− 𝑖Γ2

𝜔 − (Ω2 − 𝑖Γ2)
, (4.17)

This is identical to the QNMT result in Eq. (4.1) with 𝜎 = (−1, 1) and 𝐶 = 𝐼. As
mentioned earlier, the two different values for the decay rate Γ lead to a transmission
zero, which is not usually described in typical CMT models that assume equal Γ for the
two resonances.

We saw from Eq. (4.11) that this zero 𝜔𝑏 appears on the side of the resonance with
the smallest loss rate, which is Γ2 in this case, so 𝜔𝑏 < Ω2 < Ω1 = 𝜔𝑎 ⇔ 𝐿𝑎𝐶𝑎 <

𝐿𝑏𝐶𝑏 or the opposite order. Therefore, we have a recipe to design the zero for this
metasurface, based on the equivalent circuit elements. To translate those to physical
structural parameters, we observe that, in the quasi-static limit, 𝐿𝑏 ∝ 𝑡2 and 𝐶𝑏 ∝ 𝜖2/𝑡2,
where 𝑡2 is the small separation between the two metallic sheets and 𝜖2 is the dielectric
constant of the separating layer. This means that 𝐿𝑏𝐶𝑏 ∝ 𝜖2 and does not depend on 𝑡2

to first order. On the other hand, 𝐿𝑎𝐶𝑎 also does not depend on 𝑡2, but it has a weighted
dependence on 𝜖1 and 𝜖2. The location of the transmission zero relative to the poles then
mainly depends on the ratio of permittivities of the two dielectric materials. In particular,
a zero at a frequency below the poles is obtained using a large 𝜖2/𝜖1 > 1.

We can also use Eq. (4.17) to compute the full-transmission frequencies (|𝑆21(𝜔𝑡)| = 1):

𝜔𝑡 =
Ω1 + Ω2

2
±
√︃(︂

Ω1 − Ω2

2

)︂2

− Γ1Γ2. (4.18)

We see that there are two full-transmission maxima between Ω1 and Ω2, as long as the
eigenfrequencies are well separated (|Ω1 − Ω2| > 2

√
Γ1Γ2).

We can now use the QNMT to design second-order bandpass filters with a
transmission-zero either on the right or on the left of the transmission peaks. In both
cases, we choose the two complex eigenfrequencies, for which Eq. (4.17) gives a trans-
mission peak-to-peak passband ripple of 0.25 dB, a stopband attenuation of at least 25
dB and a 3dB-bandwidth of 5% around the center frequency 𝑓𝑐 = 𝜔𝑐/2𝜋 = 10 GHz.
(For comparison, we will target these passband/stopband limits and center frequency for
all filters designed in this chapter.) Then, we use the multivariable nonlinear-equation
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solver to find the structural parameters that will make the eigenmodes of the metasur-
face of Fig. 4-3(a) match those desired eigenfrequencies and with port-coupling ratios
𝜎 = ± (1,−1). Results for optimized structures are shown in Fig. 4-3(c). We note that,
as expected, the structure with a transmission-zero at smaller frequencies has a larger
dielectric constant for the inside layer. We also see that the shapes of the transmission
spectra deviate somewhat from the ideal filters. This is mainly due to higher-frequency
resonances that affect the scattering matrix (acting as a background 𝐶) and make it
different from the two-poles approximation of Eq. (4.17), leading to slight reduction of
transmission at low frequencies and increase at higher ones. As commonly known for
metasurfaces, higher-order diffraction modes can be pushed away by looking, if possible,
for solutions with reduced periodicity 𝑎 and higher permittivities 𝜖𝑗.

4.5.2 Third-order bandpass filters

Using the QNMT design method, as well as guidance from the previous two-pole bandpass
structure, we now design all four standard types mentioned in section 4.4 for third-order
bandpass filters. The three poles necessary for each wanted filter are given by standard
analytical expressions or software tools [16]. Since all filter types are of third order with
𝐶21 = 0 [case (a)], we see from Eq. (4.12) that we trivially need port-coupling coefficients
with ratios 𝜎 ∝ (1,−1, 1) for the three modes.

To implement these filters, we use a structure with the same unit-cell topology as
in Fig. 4-3(a), but with three metallic sheets and four dielectric layers. Based on the
insight gained in section 4.5.1 from the effective circuit model, we realize that each of the
inside layers will create a longitudinal parallel 𝐿𝑗𝐶𝑗 ∝ 𝜖𝑗 resonance, which will cause a
transmission zero ∝ 1/

√
𝜖𝑗. For the inverse Chebyshev and elliptic filters, two distinct

zeros are required. Therefore, we need different dielectric constants 𝜖𝑗 for the inside layers.
This means that the physical structure for these filter types must not be symmetric, so
their modes are not even or odd, even if their radiative tails are [𝜎 = (1,−1, 1)]. On
the other hand, Butterworth and Chebyshev filters do not have real zeros, so there we
can choose a symmetric structure, which simplifies the optimization problem, as only
eigenfrequencies need to be matched (in the correct order of modal symmetry). However,
for these “zeroless” ISFs, the challenge with the chosen metasurface topology is to push
away from our bandwidth the unavoidable zero that will arise from the inside layers.
The simplest way to accomplish this, is to look for solutions where these layers are thick
enough that the second-order dependence of the longitudinal parallel 𝐿𝑗𝐶𝑗 on 𝑡𝑗 moves
the zero to sufficiently high frequencies. Different topologies could also be devised that
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eliminate either the mutual inductance or capacitance between sheets.
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Figure 4-4: Optimized third-order bandpass filters (a) of different types with same band-
width and (b) elliptic only for different bandwidths. We use the same structure as in
Fig. 4-3 but with three metallic sheets and four dielectric layers. Physical parameters are
provided in a table above. We notice good agreement of lossless structures (solid lines)
with ideal filters (dashed lines), except for small deviations mainly due to effects from
high-order modes. Copper losses (dotted line) reduce peak transmission while preserving
the filter’s shape.

Again by optimizing the structural topology, for each filter, we get the desired three
complex resonant frequencies 𝜔𝑛 and their corresponding 𝜎𝑛. The optimized structural
parameters are summarized here:

Type 𝑎 (mm) 𝑤1/𝑎 𝑤2/𝑎 𝑤3/𝑎 𝑙1/𝑎 𝑙2/𝑎 𝑙3/𝑎

Butterworth 13.49 0.024 0.003 0.024 0.805 0.709 0.805
Chebyshev 12.02 0.0099 0.0027 0.0099 0.7896 0.6639 0.7896

Inverse Chebyshev 9.83 0.221 0.050 0.055 0.772 0.645 0.944
Elliptic 1 10.00 0.28 0.034 0.009 0.501 0.535 0.849
Elliptic 2 9.175 0.222 0.068 0.022 0.692 0.607 0.908
Elliptic 3 10.45 0.207 0.012 0.071 0.806 0.710 0.992
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Type 𝑡1/𝑎 𝑡2/𝑎 𝑡3/𝑎 𝑡4/𝑎 𝜖1 𝜖2 𝜖3 𝜖4

Butterworth – 0.445 0.445 – 1 2.41 2.41 1
Chebyshev – 0.483 0.483 – 1 3.45 3.45 1

Inverse Chebyshev – 0.278 0.096 0.018 1 6.72 3.64 2.73
Elliptic 1 – 0.451 0.026 0.020 1 8.21 3.95 3.00
Elliptic 2 – 0.343 0.071 0.021 1 8.58 4.42 3.19
Elliptic 3 – 0.187 0.066 0.014 1 5.72 2.61 3.41

Transmissions of the optimized metasurfaces that implement the four filter types with
∼5-6% 3dB-bandwidth are shown in Fig. 4-4(a), while in Fig. 4-4(b) only for elliptic
filters with varying bandwidth (∼2-10%). We note a good agreement with the ideal
filters, except for small discrepancies again due to effects from higher-order modes and
to small errors in the values of optimized resonances. Notice that, indeed, Butterworth
and Chebyshev filters require thick inside dielectric layers to move the zero away and that
smaller bandwidths need higher 𝜖𝑗 to increase the modal 𝑄s. Moreover, we test the effect
of metal (here, copper) losses on an elliptic filter and find that it mainly just reduces the
values of the transmission peaks (only by ∼ 0.5 dB at 10 GHz operation).

4.5.3 Third-order elliptic bandstop filter

In order to design a third-order bandstop filter, we now need to achieve a full-transmission
background |𝐶21| = 1 [case (d)], and then Eq. (4.15) dictates again three QNMs with
𝜎 ∝ (1,−1, 1). As saw in Sec. 3.5.2, the background-𝐶 design can generally be under-
stood using the system low-𝑄 modes and, in particular, a fully-transmissive 𝐶 can be
achieved by a mode with infinite radiative rate, which effectively models free space (see
Sec. 3.5.2). Thus, as expected, we need a physical structure with a very small effective
index (∼ 1), while still able to support the required high-𝑄 resonances. Moreover, since
we want full transmission at zero frequency, the metallic components now should not have
a fully-connected topology. Therefore, relying on the principle of duality, we choose, in
place of each metallic sheet with cross apertures, an array of non-connected thin metallic
crosses. These are supported by dielectric crosses, also non-connected to minimize the
total effective index. The structure is shown as an inset in Fig. 4-5(a). Its effective circuit
model now sees each array of crosses as a shunt series-𝐿𝐶 resonance, where 𝐿 is the in-
ductance of the cross wires and 𝐶 is the capacitance across adjacent crosses within each
array [see Fig. 4-5(a)], and then the couplings between arrays are effectively longitudinal
parallel-𝐿𝐶, where 𝐶 is the capacitance across facing (cocentric) crosses and 𝐿 is the first-
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Figure 4-5: (a) Third-order elliptic bandstop filter. The structure has three metallic-
cross arrays and four dielectric layers with parameters: 𝑎 = 16.99mm, ℎ/𝑎 = 0.03,
𝑑/𝑎 = 0.619, 𝑤/𝑎 = (1.53, 3.73, 1.61) × 10−3, 𝑙/𝑎 = (0.558, 0.589, 0.524), 𝑡/𝑎 =
(0.166, 0.358, 0.441, 0.183), 𝜖 = (4.76, 3.22, 4.05, 4.50). (b) Second-order elliptic bandpass
filter. The structure has two metallic sheets and three dielectric layers with parame-
ters: 𝑎 = 17.571mm, ℎ/𝑎 = 0.456, 𝑤1/𝑎 = 𝑤2/𝑎 = 6.08 × 10−3, 𝑙1/𝑎 = 𝑙2/𝑎 = 0.4355,
𝑡1/𝑎 = 𝑡3/𝑎 = 0.3072, 𝑡2/𝑎 = 0.3169, 𝜖1 = 𝜖3 = 3.82, 𝜖2 = 1.893. (c) Second-order elliptic
bandstop filter. The structure has two metallic-cross arrays and three dielectric layers with
parameters: 𝑎 = 18.70mm, ℎ/𝑎 = 0.181, 𝑤1/𝑎 = 𝑤2/𝑎 = 2.74×10−3, 𝑙1/𝑎 = 𝑙2/𝑎 = 0.514,
𝑡1/𝑎 = 𝑡3/𝑎 = 0.204, 𝑡2/𝑎 = 0.332, 𝜖1 = 𝜖3 = 1.60, 𝜖2 = 3.10. All filters satisfy quite well
the marked requirements (black dashed lines) and agree with the ideal filters.

order transmission-line model of propagation through the free space, but also includes the
small contribution (a large in-parallel value) of the mutual inductance between facing
crosses. This circuit can implement the desired ISF, where each shunt series-𝐿𝐶 or lon-
gitudinal parallel-𝐿𝐶 can directly impose one of the required three distinct transmission
zeros.

An example of an optimized structure with a third-order elliptic bandstop response
of 12% 3dB-bandwidth is shown in Fig. 4-5(a). We note again the very good agreement
compared to the ideal filter. Notice that, in duality to the passband filter, the permittivity
of one inside dielectric turns out to be smaller than the outside layers.

4.5.4 Second-order elliptic bandpass and bandstop filters

To complete our set of design examples, we now demonstrate second-order elliptic band-
pass and bandstop metasurface filters. In this case, we need to design a specific non-trivial
background 𝐶, in particular, 𝐶21 must be roughly constant within the bandwidth of in-
terest and its amplitude set respectively to the desired stopband minimum attenuation
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value (−25 dB) [case (b)] or passband maximum ripple value (−0.25 dB) [case (c)]. Fur-
thermore, the coefficients 𝜎𝑛 should respectively satisfy Eq. (4.13) or Eq. (4.14). As
discussed in section 4.4, for even-order ISFs, 𝛾 = −1 and 𝐶 is a real constant matrix, so
𝛽 ≡ 𝐶11𝐶

*
21/ |𝐶11𝐶21| = ±1 and 𝜎𝑛 = ±𝑖, which corresponds to asymmetric structures,

such as the standard circuit topologies of even-order ISFs. However, we explained that
approximate solutions with a different unitary 𝛾 are possible (using the RWA) and here
we present symmetric structures (𝛾 = 1) exhibiting a second-order elliptic filter response
within the bandwidth of interest. Since symmetry guarantees 𝜎𝑛 = ±1, Eqs. (4.13,4.14)
become design objectives for 𝛽, which must respectively match ±𝑖/𝜎1.

For the bandpass filter (with two transmission zeros), we use as starting point for the
structural topology that from Fig. 4-3(a) corresponding to a second-order bandpass filter
with only one zero. There, the large metallic sheets led to 𝐶21 = 0. In order to increase
|𝐶21| to the small required −25 dB around the filter center-frequency 𝜔𝑐, we open holes
through the entire metasurface, as shown in Fig. 4-5(b), so that some of the incident
wave will directly go through without coupling to the high-𝑄 resonances of the crosses.
Excluding those two high-𝑄 modes, using QNMT we calculate 𝐶 = 𝑆{𝜔𝐶

𝑛 }, and it turns
out that even-odd pairs of almost degenerate low-𝑄 modes below 𝜔𝑐 together with higher-
order modes lead to a background with a flat small |𝐶21| and constant 𝛽 over a fairly large
frequency range (see modes in Supplemental Material [149]). [Traditionally, one would
approximate 𝐶 by simulating an effective background structure (e.g. where the cross
apertures which cause the high-𝑄 resonances are closed), but the result is inaccurate (−19

dB instead of −25 dB).] The optimization then consists of enforcing the values of the two
complex eigenfrequencies, |𝐶21 (𝜔𝑐)| = −25 dB and, from Eq. (4.13), 𝛽 (𝜔𝑐) = 𝑖/𝜎1. The
transmission of the designed structure is shown in Fig. 4-5(b) and agrees very well with
the 1%-bandwidth ISF spectrum. It turns out that the modal symmetry is 𝜎 = (−1, 1),
so 𝛽 (𝜔𝑐) = −𝑖. Note that, since each metallic sheet is still connected (in a topological
sense), the transmission at very long wavelengths will still go to zero.

For the second-order bandstop elliptic filter, we use as starting point the structural
topology from Fig. 4-5(a) for the third-order bandstop filter, but with two metallic-cross
arrays sandwiched between three dielectric layers. There, the effective refractive index
of the entire metasurface was designed small to get |𝐶21 (𝜔𝑐)| ≈ 1. In order to decrease
|𝐶21| to the required −0.25 dB, we connect the dielectric crosses, as shown in Fig. 4-
5(c), to reflect back some of the incident wave. In QNMT terms, an averaging over the
metasurface leads to an effective slab of low refractive index, which supports equispaced
“Fabry-Perot” low-𝑄 modes 𝜔𝐶

𝑛 = 𝑛Ω𝐶 − 𝑖Γ𝐶 [71]; the “Fabry-Perot” transmission hits
|𝐶21| = 1 at Ω𝐶

𝑛 , but is less than 1 and flat between modes [𝑛Ω𝐶 , (𝑛+1)Ω𝐶 ], with roughly
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constant 𝛽 ≈ 𝑖 if 𝑛 even (and 𝛽 ≈ −𝑖 if 𝑛 odd). For this structure, it turns out that
these modes 𝜔𝐶

𝑛 have such a small 𝑄 (see modes in Supplemental Material [149]) that it
is difficult to accurately find all of those contributing to 𝐶 (𝜔𝑐). Therefore, we instead
calculate it indirectly from 𝐶(𝜔𝑐) = 𝑆−1(𝜔𝑐)𝑆(𝜔𝑐), as explained earlier. [Again, the
traditional method of an effective background structure (removing the metallic crosses)
gives a noticeably less accurate estimate of 𝐶 (−0.11 dB instead of −0.25 dB).] The two
high-𝑄 modes have symmetry 𝜎 = (−1, 1), consistent with 𝛽 (𝜔𝑐) = 𝑖 from Eq. (4.14), and
the optimized final structure has transmission shown in Fig. 4-5(c), matching precisely an
elliptic bandstop ISF of 10% bandwidth.

4.5.5 Fabrication and tunability

All the metasurface filters that we presented were based on a layered topology with metal-
lic sheets sandwiched between dielectric layers. This layered form was chosen, because
it has the great advantage of allowing easy fabrication. Especially in the cases where
patterning is only on the metallic sheets, these metasurfaces can be manufactured even
with widespread printed-circuit board (pcb) techniques. In fact, all designed ISFs pre-
sented in this work used dielectrics with permittivities less than 11.2, which is roughly
the upper limit for (typically Al2O3-based) low-loss materials compatible with pcbs. Fur-
thermore, the clear separation between metallic sheets allows them to be connected to
separate electrodes, where voltage can be applied to potentially tune the permittivity
of the intermediate dielectrics, if those are chosen to be tunable materials (liquid crys-
tals, ferro-electrics etc.) [150]. Previous attempts at elliptic filters have usually employed
topologies with shunt metal paths connecting different metal sections within the meta-
surface, which hinders both these benefits [126–128].

4.6 Conclusions

In this chapter, we presented a systematic method using eigensolvers for designing stan-
dard filters or other useful transmission/reflection spectra, especially ones with multiple
finite real zeros, allowing ultra-compact devices with spatially overlapping resonances (un-
like previous circuit-theory or CMT approaches). It is based on a non-normalized QNM
expansion of the system scattering matrix 𝑆 and entails identifying the necessary back-
ground response 𝐶, the exact complex eigenfrequencies 𝜔𝑛 of these modes, and the values
of the ratios 𝜎𝑛 with which these modes must couple to the system coupling ports, to
achieve the desired scattering frequency profile. An efficient optimization procedure is
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then applied to determine the structural parameters (geometry and materials) that meet
these criteria. We have demonstrated the method for microwave planar metasurface fil-
ters, for all standard amplitude-filter types (especially the most challenging, elliptic), for
both bandpass and bandstop behaviors, and for a variety of frequency bandwidths.

In our examples, we used fixed topologies, guided by general physical intuition from
circuit models, and then applied a simple multi-variable equation solver to obtain a small
set of structural parameters. In principle, our conditions can also be combined with var-
ious large-scale topology-optimization algorithms and solver methods [140]. While we
focused on amplitude standard filters, our design process can be used for any desired
scattering spectrum, by fitting it to QNMT to extract the corresponding eigenmode op-
timization objectives (𝜔𝑛, 𝜎𝑛). Moreover, it should be clear that the accurate QNMT
prediction of the time delay in Chapter 3 also makes the theory applicable to design
phase filters, such as all-pass delay filters [151] (useful also for metalenses [152]). Our
design method was demonstrated for microwave metasurfaces, but it can also be used
for resonant systems with any qualitatively similar physics, such as mechanical, acoustic,
photonic, or quantum-electronic filters.
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Chapter 5

Many resonances: From solar cells to
ocean buoys

1

5.1 On resonances

In Chapter 4, we saw how we can use few resonances to design high-order filters and
demonstrated it by designing a variety of microwave metasurfaces. In certain applica-
tions concerned with a large frequency bandwidth, a considerable number of resonances
is involved. For example, Figure 5.1(b) shows the absorption spectrum for a solar cell
with a patterned surface [Figure 5.1(a)]. The spectrum includes a very large number
of sharp peaks, associated with resonances, due to the use of a top grating. These reso-
nances lead to a significant enhancement of the solar-cell absorption compared to the bare
slab in absence of a top grating and back mirror. The detailed spectral-resolved shape
of the spectrum hardly matters, as we are mainly concerned with the spectral-averaged
absorption (weighted with the wide-bandwidth solar spectrum). In general, we want our
solar-cell to also perform well for different angles of incidence (to avoid mechanical track-
ing of the sun throughout the day), so our final quantity of interest involve both spectral
and angle averaging. From the spectrum in Figure 5.1(b), it may seem that the details of
the resonances distribution would not matter after averaging, and that the result would
only depend on some global property of the structure. This is indeed (mostly) the case!
In fact, using ray optics, Yablonovitch [22] found an upperlimit to the enhancement that
simply depends on the refractive index 𝑛 of the cell, and that is equal to 4𝑛2 (in 3D, for
isotropic incidence and small absorption). This limit turned out to be hard to beat (after
averaging) even using more complex nanopatterns to scatter light [154,155].

1Our work on this topic was published in Ref. 153.
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limit of 2 24 / sinn θ  [4]. On the other hand, a grating structure with periodicity much larger 

than the wavelength has enhancement factor approaching 24n  with near-isotropic response. 

5.2 Numerical simulations of 2D grating structures 

In this section, we use numerical simulations to support the analytical predictions made in 
Section 5.1. In our numerical simulation, we consider the 2D grating structure whose unit cell 
shown in Fig. 6a. The periods of the grating are 600nm in both x and y directions. The film 
structure otherwise is the same as in Section 2. 

For normally incident light, the absorption spectrum in the wavelength range 600-1200nm 
is shown in Fig. 6b. The spectrally averaged enhancement factor in this wavelength range is 

74.2f = , which significantly exceeds 24 50n = . This is also much larger than that of 1D 

grating with the same period (Fig. 1) for the same wavelength range. As a comparison, the 

spectrally averaged theoretical upper limit is 91F = as calculated from Fig. 5b. The numerical 
result is in good agreement with our theoretical prediction. The simulated enhancement factor 
is lower than the theoretical upper limit, due to the fact that some resonances are not in the 
over-coupling regime. 

 

Fig. 6. a) The unit of cell of a 2D grating structure. Film thickness is the same as the structure 
in Fig. 1a. b) Absorption spectrum for normally incident light (averaged among two 
polarizations). c) Spectra of the running average enhancement factors. Blue: simulation result. 

Red: analytical theory. d. average enhancement factor for different incidence angles θ . The 

azimuthal angle is fixed at 0ϕ = . Blue dots are simulation results and red is analytical theory. 

In the absorption spectrum of Fig. 6b, the higher frequency region has denser peaks, since 
the density of resonances in the film in general increases with frequency. In our theoretical 
analysis, the enhancement factor is directly proportional to the number of resonances. Thus, 
one should expect that in the higher frequency region the enhancement factor is larger. To 
study this effect, we calculate the running average of the enhancement factor over a 
bandwidth of 100nm. The enhancement factor indeed decreases with increasing wavelength 
(Fig. 6c). As a comparison, we also calculate the running average for the theoretical upper 
limit as shown by red line in Fig. 6c, which shows good agreement with numerical results. 

#130516 - $15.00 USD Received 22 Jun 2010; revised 5 Aug 2010; accepted 8 Aug 2010; published 17 Aug 2010
(C) 2010 OSA 13 September 2010 / Vol. 18, No. S3 / OPTICS EXPRESS A378

Figure 5-1: Figure taken from Ref. 7. (a) Solar-cell with a 2D grating on top and back
reflector on the back. (b) Absorption spectrum of the cell for normally incident light.
A large number of narrow resonances is present, which leads to an overall increase in
absorption. The spectral-averaged absorption in presence of the grating and back reflector
(red line) is 74.2 larger than the “single pass” absorption in their absence (blue line).

Absorption enhancement due to scattering can happen in all areas of wave physics,
and does not only apply to solar cells. In this chapter, we will be mostly concerned with
an application to ocean wave energy extraction [156]. Multiple scattering between ocean
buoys (mechanical oscillators used to absorb ocean wave power) in an array can in fact
increase the total absorption [8,21]. Since an effective uniform slab is not an appropriate
model in this case, Yablonovitch limit cannot directly be applied to this problem. In
this chapter, we develop approximate bounds on the spectral/angle-averaged absorption
enhancement for an array of “metaparticles” and successfully apply it to the ocean buoy
problem. In the next section, we give a general overview and describe the layout of the
chapter.

5.2 Overview

One of the most influential theoretical results for solar-cell design has been the ray-optical
Yablonovitch limit [22, 23, 25, 154, 155, 157–159], which provides a bound to how much
surface texturing can enhance the performance of an absorbing film averaged over a broad
bandwidth and angular range. In this chapter, we obtain approximate broad-band/angle
absorption limits for a case in which the traditional Yablonovitch result is not useful:
dilute arrays of “metaparticles”(synthetic absorbers/scatterers). Known limits bound the
absorption at every wavelength [24, 160], but they tend to be loose when considering

108



Figure 5-2: Left: We bound absorption for very general arrays of “particles”, including
arrays of buoys that extract energy from ocean waves. Left: Ocean surface displacement
𝜂 for a cylindrical buoy array [8] where 𝐴 is the amplitude of waves incident from left
(arrow).

large bandwidths since coherent effects average out [7, 25]. Here, we find limits on the
absorption for arrays of particles that can be described by the radiative-transfer equation
(RTE) [62, 161]. In particular, we show that an isotropic diffusive regime is optimal for
maximizing absorption. This allows us both to obtain analytical upper bounds (Eqs. 5.17,
5.26) and identify the ideal operating regime of absorbing metaparticle arrays.

In optics contexts, scattering particles can be used to enhance absorption in thin-film
or dye-sensitized solar cells [162–165]. Most previous work focused on numerical opti-
mization using the full-wave equations [162, 163] or, in the case of dye-sensitized solar
cells, RTE for random arrays [164, 165]. In Ref. 166, approximate analytical estimations
of absorption enhancement were given in cases of optically-thin/thick layers under as-
sumptions of weak absorption, normal incidence and isotropic differential cross section.
In this work, we were actually motivated by arrays of buoys designed to extract energy
from ocean waves [156, 167–169] depicted in Fig. 5-2. Previous numerical-optimization
work [8, 21, 170, 171], in particular a recent extensive computational study on large ar-
rays [8,21], showed promising results through the design of buoy positions. The question
we are trying to answer in this work is more general: given the absorbing/scattering
properties of an individual metaparticle, is there a limit on the total enhancement and
how can it be reached? The Yablonovitch limit cannot be applied to all metaparticle
arrays since it requires an effective-medium approximation, which is only accurate for
either dilute weakly interacting dipolar particles [172] or for strongly interacting particles
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with sufficiently subwavelength separation [173], neither of which is true of the ocean-
power problem. Moreover, the Yablonovitch limit is independent of the precise nature of
the scattering texture, whereas in our case the whole point is to extrapolate the array
properties from the individual-scatterer properties.

In this chapter, we define the interaction factor 𝑞(𝜃) [174,175] as the ratio of the power
extracted by the array to that of the equivalent number of isolated particles for a given
incident angle 𝜃. We first point out that previously known limits in both solar cells and
ocean buoys arise from reciprocity constraints on the full-wave equations (Sec. 5.3). The
use of reciprocity in the radiative-transfer equation leads to a general limit (Eq. 5.17),
valid for any geometrical configuration in RTE regime, that is reached through an isotropic
distribution of intensity in the ideal case of small absorption (Sec. 5.4). This optimal so-
lution justifies the use of a corrected radiative-diffusion model (Eq. 5.26) that predicts the
frequency-averaged performance of random arrays, but also the angle/frequency-averaged
performance of the optimized periodic array with better than 5% accuracy. This cor-
rected model can be used to estimate the upper bound on 𝑞 (which is proportional to the
spatially-averaged intensity in RTE framework) even in regimes where the standard dif-
fusion model is not expected to be accurate. This result allows us to quickly evaluate the
performance benefits of different metaparticle designs and array configurations, and we
show that substantial improvement is possible if the scattering cross-section is increased
(relative to the absorption cross-section) and/or if partially reflecting strips are placed
on either side of the array (Sec. 5.5). More specifically, we show that the use of bending
membranes on the water’s surface around the buoys significantly increases the interaction
factor. We finally use the corrected radiative-diffusion model to find optimal parameters
that maximize 𝑞.

5.3 Reciprocity

5.3.1 Solar cells

The original intuition behind the ray-optical Yablonovitch limit is that the optimal en-
hancement is achieved through an isotropic distribution of light inside the device [22,157].
This can be thought of as a reciprocity condition. Reciprocity [62] implies that rays at
a given position cannot emerge in the same direction from two different paths. In con-
sequence, if a given point in the absorber is to be reached from as many ray bounces as
possible, the rays must be entering/exiting that point from all angles. More formally, we
show here that reciprocity can be applied to the full Maxwell’s equations in order to relate
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the enhancement to the density of states. Although the end result is not new, we wish to
emphasize that the underlying ideas of the Yablonovitch and LDOS limits are closely tied
to reciprocity. This is an alternative to the derivation in Ref. 160, which differs in that it
directly uses the reciprocity (or generalized reciprocity) from Maxwell’s equations. As was
also emphasized in Ref. 160, the result also applies to linear nonreciprocal systems, since
the density of states of transposed-related materials is the same (𝐺𝜖(𝑟, 𝑟) = 𝐺𝑡

𝜖𝑡(𝑟, 𝑟) [62]).

Here for simplicity, we consider a reciprocal system in the derivation. We have then:∫︁
𝑆∞

[E𝑎 ×H𝑏 − E𝑏 ×H𝑎] · k̂ 𝑑𝑆 =

∫︁
𝑉

[E𝑎 · J𝑏 − E𝑎 · J𝑎]𝑑𝑉 (5.1)

If we choose (J𝑎 = 1
𝑖𝜇𝜔

ê𝑠𝛿r0 , E𝑖𝑛𝑐
𝑎 = 0) and (J𝑏 = 0, E𝑖𝑛𝑐

𝑏 = 𝑒𝑖𝑘k̂0·rê𝑏), then E𝑎 =
¯̄G𝐸(r0, r0)ê𝑠.

The far field term can be written as E𝑠
𝑎 = 𝑒𝑖𝑘𝑟𝑓𝑠(k̂)ê𝑎/𝑟, H

𝑠
𝑎 =

(︁
k̂× E𝑠

𝑎

)︁
/𝜂 with 𝜂 =√︀

𝜇0/𝜖0, and similarly for the far-field of the scattered field “𝑏”, so that:
∫︀
𝑆∞

[E𝑠
𝑎 ×H𝑠

𝑏 −
E𝑠

𝑏×H𝑠
𝑎] · k̂ 𝑑𝑆 = 0. We then expand the integrand of the left term in Eq. (5.1) to obtain:∫︁

𝑆∞

[E𝑠
𝑎 ×H𝑖𝑛𝑐

𝑏 − E𝑖𝑛𝑐
𝑏 ×H𝑠

𝑎] 𝑑𝑆 = −1

𝜂

∫︁
𝑓𝑠(k̂)𝑒

𝑖𝑘𝑟(1+k̂·k̂0)×

[(ê𝑎 · ê𝑏)(1− k̂ · k̂0) + (ê𝑎 · k̂0)(ê𝑏 · k̂)]𝑟 𝑑k̂ = −1

𝜂
𝑒𝑖𝑘𝑟𝑔(𝜃,𝜑)ℎ(𝜃, 𝜑)𝑑𝜃𝑑𝜑

(5.2)

The integral can be evaluated using the method of stationary phase [176]. The function
𝑔(𝜃, 𝜑) = 1+ k̂ · k̂0 = 1+cos 𝜃 cos 𝜃0+sin 𝜃 sin 𝜃0 cos(𝜑−𝜑0) has two extrema at ±k̂0. The
integrand is null at the first, so only the second matters. The Hessian matrix at −k̂0 is

given by:

(︃
1 0

0 sin 𝜃20

)︃
. We then conclude that the integral we want to evaluate is equal

to:

−1

𝜂
𝑖

1

sin 𝜃0/2𝜋

1

𝑘𝑟
ℎ(−k̂0) =

𝑖

𝜂

4𝜋

𝑘
(ê𝑎 · ê𝑏)𝑓𝑠(−k̂0) (5.3)

where ê𝑎 is evaluated at −k̂0.

We finally conclude from Eq. (5.1) that:

− ê𝑠 · E𝑏(r0) = 4𝜋(ê𝑎 · ê𝑏)𝑓𝑠(−k̂0) (5.4)

which is the reciprocity relation relating the far field of a point source at r0 in the direction
−k̂0 to the field at r0 due to an incoming plane wave from the same direction.
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Now, we use the Poynting theorem to compute the far field of the point source:

1

𝜂

∫︁
|𝑓𝑠(k̂)|2𝑑k =

∫︁
Re[E𝑎 ×H*

𝑎] · k̂ 𝑑𝑆 ≤ −
∫︁

Re[J*
𝑎 · E𝑎] =

1

𝜔𝜇
Im[E𝑎(r0) · ês] (5.5)

At this point we are able to combine Eq. (5.4) and Eq. (5.5) to find our main result
about the enhancement. We consider an incoming angular distribution 𝑓(k̂0) with a
normalized flux (

∫︀
4𝜋
| cos 𝜃|𝑓(k̂0)𝑑k̂0 = 1). By integrating over all coming angles and

polarizations of the “b” field, we have:∫︁ ∑︁
ê𝑏

|E𝑏|2𝑓(k̂0) 𝑑k̂0 =

∫︁ ∑︁
ê𝑏,ê𝑠

|E𝑏 · ê𝑠|2𝑓(k̂0) 𝑑k̂0

= (4𝜋)2
∫︁ ∑︁

ê𝑏,ê𝑠

|ê𝑎 · ê𝑏|2|𝑓𝑠(−k̂0)|2𝑓(k̂0) 𝑑k̂0

= (4𝜋)2
∫︁ ∑︁

ê𝑠

|𝑓𝑠(−k̂0)|2𝑓(k̂0) 𝑑k̂0 ≤ (4𝜋)2
max 𝑓

𝑘

∑︁
ê𝑠

Im[E𝑎(r0) · ê𝑠]

= (4𝜋)2
max 𝑓

𝑘
Tr[Im ¯̄G𝐸(r0, r0)] = (4𝜋)2

max 𝑓

𝑘

𝜋𝑐2

𝜔𝑛2
𝜌𝑑(r0)

(5.6)

which relates rigorously the enhancement and the local density of states.

We can use this result to compute the absorbed power and deduce the enhancement
compared to the single pass for a cell of surface 𝑆 and effective thickness 𝑑. We have:

⟨𝑃𝑎𝑏𝑠⟩ =
1

2
𝜔𝜖′′𝑟𝜖0

∫︁
𝑉

∫︁ ∑︁
ê𝑏

|E𝑏|2𝑓(k̂0) 𝑑k̂0 ≤
1

2
𝜖′′𝑟𝜖0(4𝜋)

2 𝜋𝑐
3

𝜔𝑛2
max 𝑓

∫︁
𝑉

𝜌𝑑 (5.7)

The total incident power, taking into account the two polarizations, is given by
1
2𝜂

∫︀
𝑓(k̂0)| cos 𝜃|𝑑k̂0 × 2 × 𝑆 = 𝑆/𝜂, and the normalized single pass absorption is

𝛼𝑑 = 𝜖′′𝑟
𝑛

𝜔
𝑐
𝑑. The enhancement is then given by:

⟨𝑞⟩ = ⟨𝑃𝑎𝑏𝑠⟩
𝑃𝑖𝑛𝑐𝛼𝑑

≤ 4𝜋

𝑛

⟨𝜌𝑑⟩
𝜌𝑣

max 𝑓 (5.8)

where 𝜌𝑣 = 𝜔2/2𝜋2𝑐3 is the free space density of states. We remind that ⟨𝑞⟩ refers to the
absorption enhancement compared to the single pass, averaged over both polarizations
and over a directional spectrum 𝑓(𝜃) with normalized flux (

∫︀
4𝜋
| cos 𝜃|𝑓(𝜃)𝑑Ω = 1), and

⟨𝜌𝑑⟩ is the average density of states in the device. This inequality becomes an equality in
the case of negligible absorption and isotropic incidence (𝑓 = 1

2𝜋
).

For a bulk dielectric, we have 𝜌𝑑 = 𝑛3𝜌𝑣 so that ⟨𝑞⟩ ≤ 2𝑛2 for isotropic incident light
which is the standard limit in the absence of a back reflector.
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5.3.2 Ocean buoys

A similar procedure can be followed in the ocean-buoy problem. Here, we review the
result in Ref. 24 and emphasize that it is also a consequence of reciprocity, which shows
the similarity with the LDOS limit in solar cells.

The problem of ocean wave energy extraction using oscillating bodies is formally equiv-
alent to the problem where there are discrete sources of which the amplitude can in prin-
ciple be controlled externally (velocity of the body that can be controlled through an
external mechanical mechanism). Considering the effect of the incoming wave and in-
teraction between bodies, the total absorption can be written as a quadratic function in
terms of the amplitudes of the different sources as in [174] for example. Maximizing the
absorption allows to find the optimal amplitudes as a function of the scattered field and
the radiated fields from the sources. This gives [174]:

𝑃𝑚𝑎𝑥 =
1

8
Fe

*(𝜃)𝑅−1Fe(𝜃) (5.9)

where Fe(𝜃) is the force applied on the bodies for an incident wave from the direction 𝜃

and 𝑅 is the resistance matrix (radiation damping matrix).

One would try to see the effect of the reciprocity relations discussed before on the
maximum absorption in this context. The exact equivalent of Eq. (5.4) is already known
in the ocean waves problem as the Haskind-Hanaoka formula that relates the force applied
on a body due to an incident wave to the radiated field when the the body acts as a
source [177]. It leads to:

𝐹𝑒,𝑖(𝜃) = −4

𝑘
𝜌𝑜𝑔𝐴𝑐𝑔𝐴𝑖(𝜃 + 𝜋) (5.10)

where 𝐴 is the amplitude of the incident wave, 𝐴𝑖 is the far-field amplitude of the radiation
mode 𝑖, 𝑘 is the wavenumber, 𝑐𝑔 is the group velocity, 𝜌𝑜 is the water density, and 𝑔 is
the gravity of Earth.

The use of this formula on the maximum absorbed power by an array of oscillating
bodies leads to the bound on the power absorbed by the array. For a given incident
angular distribution 𝑓(𝜃) normalized so that

∫︀
2𝜋
𝑓(𝜃)𝑑𝜃 = 1:

⟨𝑃𝑚𝑎𝑥⟩ =
∫︁
𝑓(𝜃)𝑃𝑚𝑎𝑥(𝜃)d𝜃 ≤ max 𝑓

∫︁
𝑃𝑚𝑎𝑥(𝜃)d𝜃 = max 𝑓

1

8

∑︁
𝑖,𝑗

[𝑅−1]𝑖,𝑗

∫︁
2𝜋

𝐹 *
𝑒,𝑖𝐹𝑒,𝑗d𝜃

(5.11)
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Using Eq. (5.10) and the fact that 𝑅𝑖,𝑗 =
2
𝜋𝑘
𝜌𝑜𝑔𝑐𝑔 Re(

∫︀
2𝜋
𝐴*

𝑖𝐴𝑗) [174], we conclude that:

⟨𝜎𝑁
𝑎,𝑚𝑎𝑥⟩ =

∫︁
2𝜋

𝜎𝑁
𝑎,𝑚𝑎𝑥(𝜃)𝑓(𝜃)𝑑𝜃 ≤

𝑁𝑀

𝑘
2𝜋max 𝑓 (5.12)

where 𝜎𝑁
𝑎,𝑚𝑎𝑥 = 𝑃𝑚𝑎𝑥/(

1
2
𝜌𝑜𝑔|𝐴|2𝑐𝑔) is the maximum absorption cross section of the array,

𝑁 is the number of buoys and 𝑀 is the number of degrees of freedom for the buoy motion
(1–6 [174], e.g. 1 for only heave motion).

This result is general and does not depend on assumptions on the scatterers. It means
that the interaction factor 𝑞 = ⟨𝜎𝑁

𝑎,𝑚𝑎𝑥⟩/𝑁⟨𝜎1
𝑎⟩ is bounded by 𝑀/(𝑘⟨𝜎1

𝑎⟩) for isotropic
incidence. For buoys in heave motion which are studied in this chapter, we have 𝑀 = 1

and ⟨𝜎1
𝑎⟩ = 𝜎1

𝑎 (the absorption cross section of the single buoy does not depend on the
incident angle).

Note that Eq. (5.12) is also valid for a single buoy. Depending on the symmetries of
the buoy, the actual absorption may be smaller (for an axisymmetric buoy, we always
have 𝑘𝜎1

𝑎 ≤ 3 [177]).
It is important to realize that for isotropic incidence, we have ⟨𝑞⟩ ≤ 1 at the resonance

frequency [the 𝑘 where ⟨𝜎1
𝑎⟩ reaches the maximum 𝑀/𝑘 from Eq. (5.12)], while it can in

principle be larger at other frequencies. Although this sets a general limit valid at any
frequency for any structure, we show in the following that it is not tight when considering
the frequency-averaged performance.

5.4 Radiative transfer equation limits

We consider a two-dimensional array of scattering/absorbing particles distributed inside
a region 𝑆 bounded with a curve 𝐶 (Fig. 5-3).

In the case of dilute and non-structured arrays, coherent scattering effects average out.
This allows one to use the radiative-transfer equation (RTE) that only involves specific
intensity 𝐼(r, 𝜃), and that is applicable to ensemble averages of random arrays at a single
frequency [62,161]:

e𝜃 · ∇𝑟𝐼 = −𝜌𝜎𝑒𝐼 + 𝜌𝜎𝑠

∫︁
𝑑𝜃′𝑝(𝜃, 𝜃′)𝐼 + 𝜖 (5.13)

where 𝜎𝑠, 𝜎𝑎 and 𝜎𝑒 denote respectively the scattering, absorbtion and extinction cross
sections of the individual particles (𝜎𝑒 = 𝜎𝑠 + 𝜎𝑎), 𝑝 the normalized differential cross
section, 𝜌 the particles’ density, e𝜃 the unit vector with direction 𝜃 and 𝜖 internal sources.

We conjecture that a similar averaging of coherent effects arises from averaging over
frequency and/or angle, and below we demonstrate numerically that this allows RTE to
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Figure 5-3: Sketch of RTE system.

make accurate predictions even for a small number of random samples or for optimized
periodic arrays. This is similar to optical light trapping where Yablonovitch model can
predict the frequency/angle-average performance of textured solar cells even though it
cannot reproduce the exact spectral or angular response [7, 25].

5.4.1 General limit

Similarly to our previous discussion of reciprocity-based limits from the wave equation,
we now use reciprocity constraints on RTE to obtain general limits on the interaction
factor 𝑞.

One can first define a surface Green’s function 𝐺𝑠(r, 𝜃; r
′, 𝜃′) [178] giving 𝐼(r, 𝜃) for

an incident field 𝐼𝑖(ri, 𝜃𝑖) = 𝛿(𝜃𝑖 − 𝜃′)𝛿(ri − r′) and no internal sources 𝜖 = 0. Similarly,
a volume Green’s function 𝐺𝑝(r, 𝜃; r

′, 𝜃′) can be defined as the intensity 𝐼(r, 𝜃) obtained
with no incident field 𝐼𝑖 = 0 and a point source 𝜖(ri, 𝜃𝑖) = 𝛿(𝜃𝑖 − 𝜃′)𝛿(ri − r′).

We recall that the flux density F is defined as
∫︀
2𝜋
𝐼e𝜃𝑑𝜃. Conservation of energy [161]

then leads to
∫︀
𝐶
F · n𝑜𝑢𝑡𝑑r = 𝑃𝑒 − 𝑃𝑎 where 𝑃𝑒 and 𝑃𝑎 are the generated and absorbed

power respectively. For a unit source, we have 𝑃𝑒 =
∫︀
𝑆
𝜖(r, 𝜃)𝑑r𝑑𝜃 = 1 so that:∫︁

𝐶

∫︁
e𝜃·n𝑜𝑢𝑡>0

𝐺𝑝(r, 𝜃; r
′, 𝜃′)(e𝜃 · n𝑜𝑢𝑡)𝑑r𝑑𝜃 = 1− 𝑃𝑎 (5.14)

To bound this last expression, we need a lower -bound for 𝑃𝑎. By noting that the
intensity at any point is larger than the single pass value (obtained after extinction without
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multiple scattering), we have:

𝑃𝑎 = 𝜌𝜎𝑎

∫︁
𝑆

∫︁
2𝜋

𝐺𝑝(r, 𝜃; r
′, 𝜃′)𝑑r𝑑𝜃

≥ 𝜌𝜎𝑎

∫︁
𝑆

𝑒−𝜌𝜎𝑒|r−r′|

|r− r′| 𝛿[𝑎𝑛𝑔𝑙𝑒(r− r′)− 𝜃′]𝑑r =
𝜎𝑎
𝜎𝑒
𝐻𝜌𝜎𝑒(r

′, 𝜃′)

(5.15)

where 𝐻𝜌𝜎𝑒(r
′, 𝜃′) defined in the previous equation can be interpreted as the power ab-

sorbed by a medium without scattering and with an absorption coefficient 𝜌𝜎𝑒 in the
presence of a unit source at the point r′ emitting in direction 𝜃′.

Finally, we relate𝐺𝑠 to𝐺𝑝 through reciprocity using𝐺𝑝(r, 𝜃; r
′, 𝜃′)|e𝜃·n𝑜𝑢𝑡| = 𝐺𝑠(r

′, 𝜋−
𝜃′; r, 𝜋 − 𝜃) [178]. We conclude from Eq. (5.14) and Eq. (5.15) after a simple change of
variable that: ∫︁

𝐶

∫︁
e𝜃·n𝑜𝑢𝑡<0

𝐺𝑠(r
′, 𝜃′; r, 𝜃)𝑑r𝑑𝜃 ≤ 1− 𝜎𝑎

𝜎𝑒
𝐻𝜌𝜎𝑒(r

′, 𝜋 − 𝜃′) (5.16)

with equality always realized in the absence of absorption.

Since the interaction factor in RTE is given by 𝑞 = ⟨
∫︀ 2𝜋

0
𝐼(r′, 𝜃′)𝑑𝜃′⟩r′/𝐼𝑖 where 𝐼𝑖 is

the incident intensity and ⟨.⟩r′ is the average over r′ in S, we can therefore bound the
interaction factor 𝑞 for a given directional spectrum 𝑓(𝜃) [fraction of power incident from
angle 𝜃]:

⟨𝑞⟩ =
∫︁
𝐶

∫︁
2𝜋

∫︁
e𝜃·n𝑜𝑢𝑡<0

𝑓(𝜃)⟨𝐺𝑠(r
′, 𝜃′; r, 𝜃)⟩r′𝑑r𝑑𝜃′𝑑𝜃 ≤ 2𝜋

[︂
1− 𝜎𝑎

𝜎𝑒
ℎ(𝜌𝜎𝑒)

]︂
max

𝜃
𝑓 (5.17)

where ℎ(𝜌𝜎𝑒) = ⟨𝐻𝜌𝜎𝑒(r
′, 𝜃′)⟩r′,𝜃′ ≥ 0.

We can compute the function ℎ in Eq. (5.17) for a “slab” of thickness 𝑑 (with perfectly
transmitting boundaries). We assume that the slab is normal to the x -axis. We first write
the integral 𝐻 using polar coordinates (𝑟, 𝜃):

𝐻𝛼(𝑥
′, 𝜃′) =

∫︁ 𝜋/2

−𝜋/2

∫︁ 𝑥′
cos 𝜃

0

𝛼𝑒−𝛼𝑟𝛿(𝜃 − 𝜃′)𝑑𝜃𝑑𝑟 +

∫︁ 𝜋/2

−𝜋/2

∫︁ 𝑑−𝑥′
cos 𝜃

0

𝛼𝑒−𝛼𝑟𝛿(𝜃 − 𝜃′)𝑑𝜃𝑑𝑟 (5.18)

After simplification, we have then:

ℎ(𝛼) =
1

2𝜋𝑑

∫︁ 2𝜋

0

∫︁ 𝑑

0

𝐻𝛼(𝑥
′, 𝜃′)𝑑𝑥′𝑑𝜃′ = 1− 2

𝜋

1− 𝑒1(𝛼𝑑)

𝛼𝑑
, 𝑒𝑖(𝑥) =

∫︁ 𝜋/2

0

𝑒−𝑥 sec𝛼 cos𝑖 𝛼𝑑𝛼.

(5.19)

Note that the bound in Eq. (5.17) reaches its maximal value 2𝜋max 𝑓 in the limit
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of small absorption. This maximal value, which does not assume optimal single-buoy
absorption, generalizes then the previous ocean-buoy bound, giving ⟨𝑞⟩ ≤ 1 for isotropic
incidence 𝑓 = 1/2𝜋 at any wavelength in RTE regime. In addition, ⟨𝑞⟩ = 1 is always real-
ized in the small absorption limit. This special case is sometimes referred to as Aronson’s
theorem [179].

The equality in Eq. (5.17) is reached for:∫︁
𝐶{e𝜃 ·n𝑜𝑢𝑡<0}

𝐺𝑠(r
′, 𝜃′; r, 𝜃)𝑑r =

[︂
1− 𝜎𝑎

𝜎𝑒
𝐻𝜌𝜎𝑒(r

′, 𝜃′)

]︂
𝛿(𝜃 − 𝜃𝑚) (5.20)

where 𝜃𝑚 = argmax 𝑓 . This means that the interaction factor should be equal to zero for
any incident angle different from 𝜃𝑚. In the ideal case of small absorption, the optimal
𝐺𝑠 becomes independent of 𝜃′, which corresponds to isotropic interior intensity, similar
to the Yablonovitch model. Therefore, in order to explore optimal solutions of RTE, we
solve it under the assumption of nearly isotropic intensity, which is well known to lead to
a diffusion model [62,161,178]. We emphasize that not all RTE systems are diffusive, but
our result above shows that the optimal ⟨𝑞⟩ is attained in an isotropic diffusive regime.

5.4.2 Radiative-diffusion model

Unless otherwise stated, we restrict ourselves to scatterers distributed inside a slab of
thickness 𝑑 (Fig. 5-3).

Diffusion equation

We start by reproducing the diffusion equation as in Ref. 62, 161 but adjusting the nu-
merical coefficients for a two-dimensional medium. In addition to RTE parameters and
reflection coefficients at the boundaries (𝑅𝑖), the radiative-diffusion solution uses an asym-
metry factor (𝜇) [see below] of the single particle (Fig. 5-4).

We first separate the intensity as 𝐼 = 𝐼𝑟𝑖 + 𝐼𝑑 where 𝐼𝑟𝑖 is the reduced (coherent)
intensity and 𝐼 = 𝐼𝑑 is the diffuse (incoherent) intensity. The reduced intensity is related
to the single scattering and obeys e𝜃 ·∇𝑟𝐼𝑟𝑖 = −𝜌𝜎𝑒𝐼𝑟𝑖. So from RTE equation, the diffuse
intensity obeys:

e𝜃 · ∇𝑟𝐼𝑑 = −𝜌𝜎𝑒𝐼𝑑 + 𝜌𝜎𝑠

∫︁
𝑑𝜃′𝑝(𝜃, 𝜃′)𝐼𝑑 + 𝐽, 𝐽 = 𝜌𝜎𝑠

∫︁
𝑑𝜃′𝑝(𝜃, 𝜃′)𝐼𝑟𝑖. (5.21)

Now, considering the diffusion approximation, we write: 𝐼𝑑(r, 𝜃) = 𝑈(r) + 1
𝜋
F(r) · e𝜃.
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This could be seen as a first order series in 𝜃. We also note that the diffuse flux is:∫︀
𝐼𝑑e𝜃 𝑑𝜃 = F.
In order to obtain 𝑈 and F we apply the operators

∫︀
𝑑𝜃 and

∫︀
e𝜃𝑑𝜃 on Eq. (5.21).

This leads to:

∇𝑟 · F = −2𝜋𝜌𝜎𝑎𝑈 + 2𝜋𝜌𝜎𝑠𝑈𝑟𝑖,

𝑈𝑟𝑖(r) =
1

2𝜋

∫︁
𝑑𝜃 𝐼𝑟𝑖(r, 𝜃),

∇𝑟𝑈 = − 1

𝜋
𝜌𝜎𝑡𝑟F+

1

𝜋

∫︁
𝑑𝜃 𝐽 ŝ,

(5.22)

where 𝜎𝑡𝑟 = 𝜎𝑒(1− 𝑝1) and 𝜎𝑒𝑝1 =
∫︀
𝑑𝜃′𝑝(̂s, ŝ′)[̂s · ŝ′], so that 𝑝1 = 𝜎𝑠𝜇/𝜎𝑒 where 𝜇 is the

average of the cosine of the scattering angle.
Equations (5.22) allow to solve for 𝑈 and F. Combining them, we obtain a diffusion

equation for 𝑈 :

∇2𝑈 − (𝜌𝜎𝑑)
2𝑈 = −2𝜌2𝜎𝑡𝑟𝜎𝑠𝑈𝑟𝑖 +

1

𝜋
∇ ·
∫︁
𝑑𝜃 𝐽 ŝ (5.23)

Now we need to add appropriate boundary conditions. Supposing that we have a
reflection coefficient 𝑅 on the surface, this should be: 𝐼𝑑(r, 𝜃) = 𝑅(𝜃)𝐼𝑑(r, 𝜋 − 𝜃) for ŝ

directed towards the inside of the medium. However, considering the assumed formula for
𝐼𝑑 the condition cannot be satisfied exactly . A common approximate boundary condition
is to verify the relation for the fluxes:∫︁

ŝ·n̂>0

𝐼𝑑(̂s · n̂)𝑑𝜃 =
∫︁
ŝ·n̂<0

𝑅(𝜃)𝐼𝑑(̂s · n̂)𝑑𝜃 (5.24)

where n̂ is the normal to the surface directed inwards.
Using the formula for 𝐼𝑑 we obtain:

2(1− 𝑟1)𝑈 +
(1 + 𝑟2)

2
F · n̂ = 0 (5.25)

where 𝑟𝑖 =
∫︀ 𝜋/2

−𝜋/2
𝑅(𝜃) cos𝑖(𝜃)𝑑𝜃/

∫︀ 𝜋/2

−𝜋/2
cos𝑖(𝜃)𝑑𝜃.

— Asymmetry factor — The asymmetry factor usually used in diffusion models
is [62, 161] 𝜇 = 𝜇1, where in general 𝜇𝑖 =

∫︀
2𝜋
cos(𝑖𝜃)𝑝(𝜃)𝑑𝜃 (where we take 𝑝(𝜃, 𝜃′) =

𝑝(𝜃 − 𝜃′)). Since the diffusion result depends only on 𝜐𝑠, 𝜐𝑎 and 𝜇1, it can be seen as
approximating the differential scattering cross section by: 𝑝(𝜃−𝜃′) = 1

2𝜋
[1+2𝜇1 cos(𝜃−𝜃′)].

The Delta-Eddington approximation [10] allows to incorporate the second moment of
𝑝 by including the forward scattering peak using a “delta function" term so that: 𝑝(𝜃, 𝜃′) =
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𝜇2𝛿(𝜃 − 𝜃′) + 1−𝜇2

2𝜋
[1 + 2𝜇 cos(𝜃 − 𝜃′)] where 𝜇 = (𝜇1 − 𝜇2)/(1− 𝜇2). This approximation

matches the Fourier decomposition of 𝑝 up to the second term. By incorporating this
expression in RTE (Eq. 5.13), one recovers a second RTE with 𝑝 replaced by 1

2𝜋
[1 +

2𝜇 cos(𝜃− 𝜃′)] and 𝜎𝑠 replaced by 𝜎𝑠(1−𝜇2). So the diffusion approximation can be made
more accurate by replacing 𝜇 by (𝜇1 − 𝜇2)/(1− 𝜇2) and 𝜎𝑠 by 𝜎𝑠(1− 𝜇2). This is known
as the Delta-Eddington approximation [10].

In a three-dimensional medium, 𝜇𝑖 =
∫︀
4𝜋
𝑃𝑖(cos 𝜃)𝑝(cos 𝜃)𝑑Ω where 𝑃𝑖 is the 𝑖𝑡ℎ Leg-

endre polynomial.

Enhancement

By defining the cross sections per unit of length as 𝜐𝑠,𝑎,𝑒 = 𝜌𝑑𝜎𝑠,𝑎,𝑒, the previous diffusion
model predicts an interaction factor 𝑞 of:

𝑞(𝜃) = 𝑞0(𝜃)

(︂
𝜂

[︂
𝐷

𝜉(𝜐𝑑)

𝜉(𝜐𝑒 sec 𝜃)
+ 𝐶

]︂
+ 1

)︂
(5.26)

where 𝜐2𝑑 = 𝛾𝜐𝑎(𝜐𝑒 − 𝜐𝑠𝜇) is the diffusion coefficient [𝛾 = 2 (resp. = 3) in 2D (resp. 3D)],
𝜉(𝑥) is the function (1− 𝑒−𝑥)/𝑥, 𝐶 = 𝛾[𝜐𝑠(𝜐𝑒 + 𝜇𝜐𝑎)]/[𝜐

2
𝑑 − (𝜐𝑒 sec 𝜃)

2], 𝐷 is given by the
boundary conditions, 𝑞0(𝜃) is the reduced factor and 𝜂 is an additional correction term
that we discuss later. 𝑞0(𝜃) is given by:

𝑞0(𝜃) =
(1−𝑅1)(1 +𝑅2𝑌 )

1−𝑅1𝑅2𝑌 2
𝜉(𝜐𝑒 sec 𝜃) (5.27)

with 𝑅𝑖 = 𝑅𝑖(𝜃), 𝑌 = 𝑒−𝜐𝑒 sec 𝜃 and 𝑅1 refers to the boundary facing the incident wave.

𝐷 is given through boundary conditions by 𝐷 = 𝐴+𝐵
1+𝑅2𝑌

, where:

[︃
𝛼1 + 𝛽 𝜐𝑑

𝜐𝑡𝑟
(𝛼1 − 𝛽 𝜐𝑑

𝜐𝑡𝑟
)𝑒−𝜐𝑑

(𝛼2 − 𝛽 𝜐𝑑
𝜐𝑡𝑟

)𝑒−𝜐𝑑 (𝛼2 + 𝛽 𝜐𝑑
𝜐𝑡𝑟

)

]︃[︃
𝐴

𝐵

]︃
= 𝑋 =

−
[︃
𝐶(1 +𝑅2𝑌

2)𝛼1 + 𝛽 𝜐𝑒
𝜐𝑡𝑟

( 𝐶
cos 𝜃

+ 𝛾𝑝1 cos 𝜃)(1−𝑅2𝑌
2)

[𝐶(1 +𝑅2)𝛼2 − 𝛽 𝜐𝑒
𝜐𝑡𝑟

( 𝐶
cos 𝜃

+ 𝛾𝑝1 cos 𝜃)(1−𝑅2)]𝑌

]︃ (5.28)

with 𝜐𝑡𝑟 = 𝜐𝑒−𝜐𝑠𝜇, 𝛼𝑖 = (1−𝑟𝑖1)/(1+𝑟𝑖2) and 𝑟𝑖𝑝 =
∫︀ 𝜋/2

−𝜋/2
𝑅𝑖(𝜃) cos

𝑝(𝜃)d𝜃/
∫︀ 𝜋/2

−𝜋/2
cos𝑝(𝜃)d𝜃.

We recall that (𝛾 = 2, 𝛽 = 𝜋/4) [resp. (𝛾 = 3, 𝛽 = 1)] in 2D [resp. 3D].

In the absence of reflecting walls (𝑅𝑖 = 0) previous experssions simplify to 𝑞0(𝜃) =
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𝜉(𝜐𝑒 sec 𝜃) and:

𝐷 = −
𝐶(1 + 𝑒−𝜐𝑒 sec 𝜃) + 𝛽 (𝐶+𝛾𝑝1 cos2 𝜃)

(1−𝑝1) cos 𝜃
(1− 𝑒−𝜐𝑒 sec 𝜃)

(1 + 𝑒−𝜐𝑑) + 𝛽 𝜐𝑑
𝜐𝑒(1−𝑝1)

(1− 𝑒−𝜐𝑑)
, (5.29)

where 𝑝1 = 𝜎𝑠𝜇/𝜎𝑒 and 𝛽 = 𝜋/4 (resp. = 1) in 2D (resp. 3D).

Corrected radiative-diffusion

Equation (5.26) with 𝜂 = 1 is obtained from the standard diffusion model. However, it
is also known that the diffusion solution is inaccurate for small thicknesses [180–182]. A
major problem is that it does not guarantee ⟨𝑞⟩ = 1 for isotropic incidence and negligible
absorption, even though we previously mentioned that this is the case for any solution
of RTE. The reason behind this problem is that the term 𝐼𝑟𝑖 is not isotropic even for
an isotropic incidence. For large thicknesses, however, the contribution of the term 𝐼𝑟𝑖

becomes negligible and the diffuse term 𝐼𝑑 can ensure an isotropic solution. This simply
means that the higher order terms in the expression of 𝐼𝑑 cannot be neglected for small
thicknesses. In order to keep the simplicity of the diffusion solution, we suppose that the
effects of higher order terms can be incorporated by the introduction of a scalar term in
the diffuse intensity 𝜂𝐼𝑑 instead of 𝐼𝑑. 𝜂 is then defined so as ensure the condition ⟨𝑞⟩ = 1

for isotropic incidence and zero absorption. This procedure is somewhat similar to the
approach in Ref. 181 except that we use a constant factor 𝜂 since we are interested in
the total 𝑞 and not the spatially resolved 𝐼. In order to define 𝜂, we study the limit of
negligible absorption for which 𝜐𝑑 → 0, 𝐶 → −2 cos2 𝜃 and 𝐷 → cos2 𝜃(1 − 𝑒−𝜐𝑒 sec 𝜃) +
𝜋
4
cos 𝜃(1− 𝑒−𝜐𝑒 sec 𝜃). After simplification, the condition ⟨𝑞⟩ = 1 allows to define 𝜂 as:

𝜂 =

𝜋 −
2∑︀

𝑖=1

∫︁ 𝜋/2

0

𝑞
(𝑖)
0 𝑑𝜃

2∑︀
𝑖=1

∫︁ 𝜋/2

0

[︃
𝑞
(𝑖)
0 𝐷

(𝑖)
0 (𝜃, 𝜐𝑒, 𝜐𝑡𝑟)

𝜉(𝜐𝑒 sec 𝜃)
− 𝛾 cos2 𝜃𝑞

(𝑖)
0

]︃
𝑑𝜃

(5.30)

with:

(1 +𝑅2𝑌 )𝐷0(𝜃, 𝜐𝑒, 𝜐𝑡𝑟) =
(𝛼2 +

2𝛽
𝜐𝑡𝑟

)𝑋0,1 + (𝛼1 +
2𝛽
𝜐𝑡𝑟

)𝑋0,2

2𝛽
𝜐𝑡𝑟

(𝛼1 + 𝛼2) + 2𝛼1𝛼2

(5.31)

where:

𝑋0 =

[︃
𝛾 cos2 𝜃(1 +𝑅2𝑌

2)𝛼1 + 2𝛽 cos 𝜃(1−𝑅2𝑌
2)

[𝛾 cos2 𝜃(1 +𝑅2)𝛼2 − 2𝛽 cos 𝜃(1−𝑅2)]𝑌

]︃
(5.32)
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Superscripts for 𝑞(𝑖)0 and 𝐷(𝑖)
0 refer to the boundary that is facing the incident wave.

In absence of reflecting walls (𝑅𝑖 = 0), this simplifies to:

𝜂 =
𝜋
2
− 1

𝜐𝑒
[1− 𝑒1(𝜐𝑒)]

𝛽 + 𝜋
8
𝛾 − 2𝛾

3𝜐𝑒
− 𝛽𝑒1(𝜐𝑒) +

𝛾
2
𝑒2(𝜐𝑒) +

𝛾
𝜐𝑒
𝑒3(𝜐𝑒)

. (5.33)

We note that, as expected, 𝜂 → 1 for an absorber that is thick compared to the extinction
length. From our discussion above, this corrected radiative-diffusion model can now be
used to estimate the upper bound on the interaction factor even in regimes where the
standard diffusion model is not expected to be accurate (optically thin or large absorp-
tion).

Scattering particles embedded in low-absorbing layer

As a first example, we consider scattering particles embedded in a layer of index 𝑛 and
negligible absorption in the presence of perfect back-reflector (𝑅2 = 1). In the limit of
large scattering we obtain:

𝑞(𝜃) = 3 cos2 𝜃 +
2

𝛼1

cos 𝜃 (5.34)

where 𝜃 is the refraction angle (< 𝜃𝑐 = asin 1
𝑛
) and 𝛼−1

1 = 𝑛2
[︁
1 +

(︀
1 + 1

𝑛2

)︀ 3
2

]︁
.

For isotopic incidence (𝑓 = 𝑛2

𝜋
𝛿(𝜃 < 𝜃𝑐)), we have:

⟨𝑞⟩ =
∫︁
4𝜋

𝑞(𝜃)𝑓(𝜃)𝑑Ω = 2𝜋
𝑛2

𝜋

∫︁ 𝜃𝑐

0

𝑞(𝜃) sin 𝜃𝑑𝜃 = 4𝑛2. (5.35)

In the presence of bulk scattering, the Yablonovitch limit is indeed maintained for
isotropic incidence but can be overcome at normal incidence.

5.5 Ocean-buoy arrays

5.5.1 Example

We now present a validation of the accuracy of Eq. (5.26) in a model of ocean-wave
energy converter (WEC) consisting of a truncated cylinder in heave motion (Fig. 5-2).
The isolated-buoy properties can be obtained analytically [183–185] and are depicted in
Fig. 5-4: they are designed [8] to have an absorption resonance that matches the typical
Bretschneider spectrum [9] of ocean waves. We choose the array density based on an earlier
optimized periodic 3-row WEC arrangement [8]. For this density, we then compare the
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exact numerical scattering solution calculated for both random and optimized-periodic
arrays (using the method from Ref. 8) to both the analytical radiation-diffusion 𝑞 from
Eq. (5.26), with and without the correction 𝜂, and the numerical solution of RTE model
by a Monte Carlo method [186].

 

H 
h 

2a 

Figure 5-4: Properties of a single truncated-cylinder wave energy converter (WEC) in
heave (vertical) motion, with radius 𝑎 = 0.3ℎ and draft 𝐻 = 0.2ℎ where ℎ is the ocean
depth. The WEC has an isotropic response with respect to the direction of the incident
field. Left: Scattering and absorption cross sections of a single buoy normalized to the
cylinder diameter (𝜎/2𝑎). The ocean spectral energy density (energy per horizontal sur-
face) is chosen as Bretschneider [9] with resonant frequency matching that of the body
and is shown in units of 𝜌𝑔𝐻2𝑇 (𝜌 is the water density, 𝑔 the acceleration of gravity, 𝑇
the mean wave period and 𝐻 the significant wave height). Right: Asymmetry factors,
defined as the average of cos𝜑 and cos 2𝜑 for the two-dimensional differential scattering
cross section. These parameters enter into the diffusion equation as 𝜇 = (𝜇1−𝜇2)/(1−𝜇2)
and with 𝜎𝑠 replaced by 𝜎𝑠(1− 𝜇2) [10].

In Fig. 5-5 (left), our corrected model agrees to < 2% accuracy with exact solutions for
random arrays at 𝜃 < 80∘, as long as the results are frequency-averaged. The importance
of frequency averaging is shown by the 𝑞 frequency spectrum shown in the inset for 𝜃 = 0∘.
For an ensemble of random structures, this spectrum exhibits a large standard deviation
(gray shaded region), due to the many resonance peaks that are typical of absorption by
randomized thin films [23, 25], but the frequency average mostly eliminates this variance
and matches our predicted 𝑞(𝜃). Precisely such an average over many resonances is what
allows the Yablonovitch model to accurately predict the performance of textured solar
cells even though it cannot reproduce the detailed spectrum [7,25].

At first glance, our model does not agree in Fig. 5-5 with the performance of the
optimized periodic array from Ref. 8: the periodic array, which was optimized for waves
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Random structure (0.99) 
Periodic structure (1.04) 
Corrected Diffusion (1.00) 
Diffusion (0.95) 
RTE (0.99) 

RTE bound 

Figure 5-5: Left: Frequency-averaged interaction factor 𝑞𝑠 vs incident angle 𝜃 for 𝑁𝑥 ×
𝑁𝑦 = 3 × 30 arrays of buoys from exact solution [8] (solid lines), compared to standard-
diffusion (black dashed lines), corrected-diffusion (red dashed lines) and radiative-transfer
(RTE with Monte Carlo simulation, dots) models. (𝑞 = array absorption / isolated-buoys
absorption.) The average buoy spacings (randomly chosen via a Gamma distribution) are
𝑑𝑥/ℎ = 1.73, 𝑑𝑦/ℎ = 3.63, with ℎ = ocean depth (the density is 𝜌 = 1/𝑑𝑦𝑑𝑥). Numbers in
legend are 𝑞𝑠 averaged over 𝜃 for a typical ocean-wave directional spectrum cos2𝑠 𝜃 with
𝑠 = 4 [11]. Inset: 𝑞 vs. wavelength at 𝜃 = 0, where shaded regions is one standard
deviation from mean value (blue line) for 100 random structures. Right: ⟨𝑞⟩ for over
isotropic incidence. Results compared to limit in Eq. (5.17).

near normal incidence, is better at 𝜃 near 0∘ and worse elsewhere. However, when we also
average over 𝜃 (from a typical ocean-wave directional spectrum [11]), the result (shown
as a parenthesized number in the legend of Fig. 5-5) matches Eq. (5.26) within 5%. If we
average over all angles assuming an isotropic distribution of incident waves, the results
match within 1%. Similar results have been observed for thin-film solar cells, in which an
optimized structure can easily exceed the 4𝑛2 Yablonovitch limit for particular incident
angles, but the Yablonovitch result is recovered upon angle-averaging [7, 25,155,158].

Finally, we note in Fig. 5-5 (right) that RTE results respect indeed the bound in
Eq. (5.17) for isotropic incidence. In particular, we confirm that random arrays achieve
⟨𝑞⟩ = 1 for small absorption (i.e. small wavelength in our case). The periodic array,
on the other hand, doesn’t satisfy this relation unless it is frequency averaged. We also
mention that the limit Eq. (5.17) is very loose for anisotropic incidence and cannot be
reached without using external reflectors as discussed in Section IV-B below.
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5.5.2 Larger interaction factor

Given this model, we can now explore ways to increase the interaction factor 𝑞. By ex-
amining the dependence of 𝑞 in Eq. (5.26) on the parameters (Fig. 5-6), we find that for a
fixed scattering-to-absorption ratio 𝜎𝑠/𝜎𝑎, 𝑞 reaches a maximum 𝑞𝑚𝑎𝑥 for an intermediate
value of scattering per unit length 𝜌𝑑𝜎𝑠, whereas it increases monotonically with 𝜇. A
maximum 𝜇 is achieved by increasing 𝜇1 (forward scattering) and decreasing 𝜇2 (lateral
scattering). The optimal value of 𝜌𝑑𝜎𝑠 and 𝑞𝑚𝑎𝑥 both increase with 𝜎𝑠/𝜎𝑎; as the single
particle absorbs more, the interaction factor decreases and the optimal configuration re-
quires a larger spacing between the particles. The maximum 𝑞 is then achieved in the
limit of small absorption (𝜌𝑑𝜎𝑎 ≪ 1) and large scattering (𝜌𝑑𝜎𝑠 ≫ 1) for which we obtain
a perfect isotropic diffuse intensity.

From Fig. 5-4, we see that we have 𝜎𝑎/𝜎𝑠 ≈ 1 at the resonance of the WEC. In
this case, the enhancement is expected to be smaller than 1 around the resonance and
optimal structures will tend to have a large spacing 𝑑𝑦. (If the array were optimized
for small wavelengths 𝜆, where 𝜎𝑠 ≫ 𝜎𝑎, then a larger 𝑞 could be obtained at those
wavelengths, but 𝑞𝑠 would be worse because the optimal spacing in this case is too small for
good performance at the resonance.) Still, multiple scattering significantly improves the
broadband performance of our array: our ⟨𝑞⟩ ≈ 0.99 is larger than the ⟨𝑞0⟩ ≈ 0.78 that is
obtained from RTE in absence of multiple scattering (reduced factor 𝑞0). The performance
is still lower than the 1.65 that would be obtained for 𝜎𝑠 ≫ 𝜎𝑎 in the ideal isotropic regime
discussed below, essentially because 𝜎𝑎/𝜎𝑠 is too small and the structure is too thin (as for
example quantified by the transport mean-free path 𝑑/𝑙𝑡𝑟 = 𝜐𝑠(1− 𝜇) ≈ 0.5 for 2𝑎

𝜆
& 0.3)

to practically achieve an isotropic diffuse intensity.

Alternatively, we show that 𝑞 can be enhanced by putting partially reflecting strips
around the array. Similar to light-trapping by total internal reflection [22, 157], one pos-
sibility is to use a strip of a lower-“index” [177] medium (compared to the array’s ambient
medium) on either side of the array. In the ocean-buoy problem, this can for example
be achieved by either a depth change or the use of a tension/bending surface membrane
which can lead to near-zero index [187,188].

In Fig. 5-6, we show the effect of an increase in the scattering cross section and/or the
index contrast for the same array studied before. By combining both effects, a large (> 3)
spectral interaction factor can be achieved at normal incidence. At the same time, waves
incident at large angles will be reflected out, so that the interaction factor integrated over
isotropic incidence is still smaller than 1. For a given directional spectrum and scattering
cross section of a single buoy, the optimal interaction factor is achieved for a specific value
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Figure 5-6: Upper: Dependence of 𝑞(0∘) on parameters in absence of reflecting boundaries.
In the left plot, we take 𝜎𝑠/𝜎𝑎 = 5. In the right plot, we show the optimal 𝜌𝑑𝜎𝑠 and 𝑞𝑚𝑎𝑥

for different values of 𝜎𝑠/𝜎𝑎 and 𝜇. Lower: Effect of a change in the index contrast and
scattering cross section on the bandwidth-averaged factor 𝑞𝑠 for the same array in Fig. 5-
5. We tune the index 𝑛1 along a strip surrounding the array, with 𝑛0 being the index of
the array’s ambient medium. We suppose that the WEC has new scattering cross section
𝜎̃𝑠, but keep the same absorption cross section. Left: 𝑞𝑠 at normal incidence. Right: 𝑞𝑠
averaged over 𝜃 with a directional spectrum of cos2𝑠 𝜃 and s = 4.

of the index contrast as can be seen in Fig. 5-6 (right).

Finally, it is instructive to look at the ideal case of small absorption and large scat-
tering, for which Eq. (5.26) simplifies to:

𝑞(𝜃) = [1−𝑅1(𝜃)]
(︁ 𝜋
4𝛼

+ cos 𝜃
)︁
cos 𝜃 (5.36)

where 𝑅1 is the reflection coefficient of the front-surface and 𝛼 = (1−𝑟1)/(1+𝑟2) with 𝑟𝑖 =∫︀ 𝜋/2

−𝜋/2
𝑅1(𝜃) cos

𝑖(𝜃)d𝜃/
∫︀ 𝜋/2

−𝜋/2
cos𝑖(𝜃)d𝜃. Equation (5.36) still gives 1 when averaged over

isotropic incidence, but the interaction factor is larger near normal incidence. Without
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reflectors (𝑅1 = 0), the maximum value of 𝑞 at normal incidence is 1+ 𝜋
4
, and the previous

directional spectrum gives ⟨𝑞⟩ ≈ 1.65. This maximum value of 𝑞(0) does not reach the
arbitrarily large enhancement allowed by Eq. (5.17). However, 𝑞(0) can still be made
sufficiently large by including a reflector designed for transmission near normal incidence
and reflection elsewhere (since 𝛼 → 0).

5.5.3 Surface membrane

We now use a specific example to demonstrate a larger interaction factor 𝑞 using surface
membranes surrounding the WEC array. For large scale applications, such membranes
could be designed to have the desired properties by connecting floating pontoons with
elastic elements of appropriate stiffness.

A thin bending membrane on the water surface changes the “refractive index” (∼ 𝑘/𝜔)
through the following dispersion relation (e.g. Ref. 189):

𝜔2 = 𝑔𝑘 tanh(𝑘ℎ)
1 + 𝐶𝑏(𝑘ℎ)

4

1 +𝑚 · 𝑘ℎ tanh(𝑘ℎ) (5.37)

where 𝜔 is the frequency, 𝑔 the acceleration of gravity, 𝑘 the wavenumber, 𝐶𝑏 is a dimen-
sionless bending coefficient, 𝑚 is the mass of the membrane relative to the mass of the
water beneath it and ℎ is the water depth. We simply assume 𝑚 = 0 in the following.

At a fixed 𝜔, the membrane decreases 𝑘 (decreases the “index”) compared to the
surrounding medium. This change of index leads to a reflection off the membrane’s edges.
In particular, total internal reflection traps the water waves similarly to light trapping
in solar cells, which increases the interaction factor 𝑞. The reflection coefficient, which
depends on 𝜔, 𝐶𝑏, the incident angle and the membrane’s width 𝑤, can be computed by
applying appropriate boundary conditions on either side of the membrane and using a
transfer-matrix method as reviewed we show in the following. We note that evanescent
modes need to be included because of the change in dispersion relations.

The index contrast increases with 𝐶𝑏 (increasing stiffness), which increases the range
of angles undergoing total internal reflection, making a more effective mirror. Since no
waves are coming from the rear of the array, the optimal membrane behind the array
should be a perfect reflector (𝐶𝑏 → ∞, limited only by the attainable practical 𝐶𝑏).

Reflection coefficient with membranes

We consider a plane wave arriving from medium (1), that is a free-surface ocean with finite
depth ℎ, at angle 𝜃 with respect to the 𝑥-axis. We suppose that we have a thin membrane
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(2) on the water surface extended from 𝑥 = 0 to 𝑥 = 𝑤. Change in the dispersion relation
leads to different wavenumbers 𝑘𝑛𝑖 verifying:

𝜔2 = 𝑔𝑘𝑛1ℎ tanh(𝑘
𝑛
1ℎ) = 𝑔𝑘𝑛2ℎ tanh(𝑘

𝑛
2ℎ)(1 + 𝐶𝑏(𝑘

𝑛
2ℎ)

4) (5.38)

where 𝐶𝑏 is a bending coefficient of the membrane. 𝑘0𝑖 corresponds to a (real) propagating
wave while the other 𝑘𝑛𝑖 correspond to (pure imaginary) evanescent waves.

We first compute the transfer-matrix between medium (1) and medium (2). We write
the velocity potential in each medium 𝑖 as:

𝜑𝑖 =
𝑁∑︁

𝑛=0

𝑓𝑛,𝑖(𝑧)
[︀
𝛼𝑛,𝑖𝑒

𝑖𝑘𝑛𝑥,𝑖 + 𝛽𝑛,𝑖𝑒
−𝑖𝑘𝑛𝑥,𝑖

]︀
𝑒𝑖𝑘𝑦𝑦 (5.39)

where (𝑘𝑛𝑥,𝑖)
2 + 𝑘2𝑦 = (𝑘𝑛𝑖 )

2 and 𝑓𝑛,𝑖(𝑧) = 𝑁𝑛,𝑖 cosh 𝑘
𝑛
𝑖 (𝑧 + ℎ) (𝑧 = 0 is the water’s free

surface). 𝑁𝑛,𝑖 = 1/
√︁

1 +
sinh(2𝑘𝑛𝑖 ℎ)

2𝑘𝑛𝑖 ℎ
is defined so as to ensure that ⟨𝑓𝑛,𝑖, 𝑓𝑛,𝑖⟩ =

∫︀ 0

−ℎ
𝑓 2
𝑛,𝑖𝑑𝑧 =

1. We also note that (𝑓𝑛,1)𝑛 form an orthogonal basis while (𝑓𝑛,2)𝑛 are not orthogonal but
still complete (in the limit of 𝑁 → ∞) [189]. Finally, for a propagating wave incident
from medium (1) with angle 𝜃, we have 𝑘𝑦 = 𝑘01 sin 𝜃.

The boundary condition requires continuity of 𝜑 and 𝜕𝑥𝜑 at 𝑥 = 0. We write then:∑︁
𝑛

𝑓𝑛,1(𝛼𝑛,1 + 𝛽𝑛,1) =
∑︁
𝑛

𝑓𝑛,2(𝛼𝑛,2 + 𝛽𝑛,2)∑︁
𝑛

𝑓𝑛,1(𝛼𝑛,1 − 𝛽𝑛,1)𝑖𝑘
𝑛
𝑥,1 =

∑︁
𝑛

𝑓𝑛,2(𝛼𝑛,2 − 𝛽𝑛,2)𝑖𝑘
𝑛
𝑥,2

(5.40)

By projecting the previous equations on 𝑓𝑛,1, we can deduce:

2𝑖𝑘𝑛𝑥,1𝛼𝑛,1 =
∑︁
𝑚

[︀
𝑖(𝑘𝑛𝑥,1 + 𝑘𝑚𝑥,2)𝛼𝑚,2 + 𝑖(𝑘𝑛𝑥,1 − 𝑘𝑚𝑥,2)𝛽𝑚,2

]︀
⟨𝑓𝑛,1, 𝑓𝑚,2⟩

2𝑖𝑘𝑛𝑥,1𝛽𝑛,1 =
∑︁
𝑚

[︀
𝑖(𝑘𝑛𝑥,1 − 𝑘𝑚𝑥,2)𝛼𝑚,2 + 𝑖(𝑘𝑛𝑥,1 + 𝑘𝑚𝑥,2)𝛽𝑚,2

]︀
⟨𝑓𝑛,1, 𝑓𝑚,2⟩.

(5.41)

This allows us to define the transfer matrix as 𝑋1 = 𝑀12𝑋2 where 𝑋𝑖 =

(𝛼0,𝑖, 𝛼1,𝑖, ..., 𝛽0,𝑖, ...). 𝑀21 is subsequently defined as 𝑀−1
12 .

We finally write the global transfer matrix as 𝑀 =𝑀12𝑀𝑝𝑀21, where 𝑀𝑝 is a diagonal
matrix that propagates the modes along the membrane and that is defined as:

𝑀𝑝,(𝑛,𝑛) = 𝑒𝑖𝑘
𝑛
𝑥,2𝑤,

𝑀𝑝,(𝑛+𝑁+1,𝑛+𝑁+1) = 𝑒−𝑖𝑘𝑛𝑥,2𝑤, 0 ≤ 𝑛 ≤ 𝑁
(5.42)
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We can now write 𝑋𝑜𝑢𝑡 = 𝑀𝑋𝑖𝑛 where 𝑋𝑖𝑛 = (𝐼, 𝑅) = (1, 0, ..., 𝑟, 𝛽1,1...) and 𝑋𝑜𝑢𝑡 =

(𝑇, 0) = (𝑡, 𝛼1,1, ..., 0, ....). By writing 𝑀 =

[︃
𝑀1 𝑀2

𝑀3 𝑀4

]︃
, we have:

𝑇 =𝑀1𝐼 +𝑀2𝑅, 0 =𝑀3𝐼 +𝑀4𝑅 (5.43)

which allows us to compute the transmission and reflection coefficients as:

𝑅 = −𝑀−1
4 𝑀3𝐼, 𝑇 =𝑀1𝐼 +𝑀2𝑅. (5.44)

We check of course that |𝑡|2 + |𝑟|2 = 1.

Enhancement

Buoys 

𝑛!	 𝑛"	𝑛#	

𝑤2	𝑤1	

 

Corrected diffusion (1.97) 
Diffusion (1.63) 
RTE (1.85) 

Figure 5-7: Left: ⟨𝑞𝑠⟩ with a directional spectrum of cos2𝑠 𝜃 and s = 4 for different values
of 𝐶𝑏1 and 𝐶𝑏2 corresponding to the front and back membranes respectively. Each point
is obtained after optimizing over the membranes’ thicknesses. Right: Frequency-averaged
interaction factor 𝑞𝑠 vs incident angle 𝜃 for the previously studied array using additional
membranes with parameters (𝐶𝑏1, 𝐶𝑏2) = (0.048, 2) and 𝑤1 = 𝑤2 = 1.6ℎ.

We can now use our corrected diffusion model to predict the upper-bound for the
previously studied array as we change 𝐶𝑏. For each value of 𝐶𝑏1 and 𝐶𝑏2 representing
the front and rear membranes, respectively, we find the optimal membrane widths that
maximize the radiative-diffusion bound. The resulting optimized ⟨𝑞𝑠⟩ values are shown are
shown in Fig. 5-7 (left). We first note that the frequency/angle-averaged interaction factor
⟨𝑞𝑠⟩ increases significantly (> 1.8) compared to the ⟨𝑞𝑠⟩ = 1.00 without the membranes.
We also confirm that ⟨𝑞𝑠⟩ increases with 𝐶𝑏2 (rear membrane) as expected. On the other
hand, there is an optimal value for 𝐶𝑏1 depending on the directional spectrum 𝑓(𝜃). For
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a focused incident field, only angles near normal incidence matter so that 𝐶𝑏1 can be
increased allowing more of the waves scattered by the WECs to be trapped. On the other
hand, for a broad directional spectrum, a large value of 𝐶𝑏1 prevents waves incident from
wide angles from reaching the WECs.

For our array, supposing for example that the maximal attainable value of 𝐶𝑏2 is equal
to 2, the optimal value for 𝐶𝑏1 is 0.048 with optimal widths equal to 1.6ℎ for both the
front and rear membranes. The frequency-averaged interaction factor 𝑞𝑠 for the optimal
parameters is shown in Fig. 5-7 (right). Our predicted bound (red dashed line = corrected
diffusion) is indeed larger than the actual performance of the array as modeled by RTE
(orange dots). That is mainly due to the relatively small scattering cross section compared
to the absorption cross section. As illustrated in the inset of Fig. 5-7 at small wavelengths
where 𝜎𝑠 is large (Fig. 5-4), we see that an increase in the scattering cross section leads
to arrays with performance closer to the radiative-diffusion bound.

We finally mention that in the case of using a perfect back-reflector, ⟨𝑞𝑠⟩ can reach a
value of 2.26 for 𝐶𝑏1 = 0.06 and 𝑤1 = 1.65ℎ.

5.6 Conclusion

We believe that the angle/frequency-averaged limits presented in this chapter provide
guidelines for future designs to achieve a large 𝑞 factor which may open the path for the
realization of large arrays of buoys for efficient ocean energy harvesting. In particular, the
use of external reflecting elements such as surface membranes seems a promising approach.
The results are also applicable to other problems where multiple scattering effects are
used to achieve enhancement, including scattering particles inside an absorbing layer. As
we saw earlier, we can for example recover the standard Yablonovitch-4𝑛2 value in an
appropriate limit, but the real power of our result is that it allows to study the effect of
single-metaparticle properties, angle of incidence and reflecting boundaries.
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Chapter 6

Infinity of resonances: The periodic
laser problem

1

6.1 On resonances

In the previous chapters, we have seen examples of applications making use of resonances
in numbers ranging from few to many. As a next step, we will consider a system with
an “infinity” of resonances which can happen in the limit of an infinitely large system.
For example, the modes of a box of size 𝐿 are typically separated by a factor ∝ 1/𝐿 and
thus become infinitely dense for large enough 𝐿. In particular, if we consider an arbitrary
periodic structure, and as known in solid-state physics, Bloch theorem tells us that we
have a continuum of modes described by a band diagram 𝜔𝑛(k), which is parameterized
by the band number 𝑛 and the wavevector k. The corresponding eigenfields are Bloch-
periodic and can be written as 𝑒𝑖k·x𝜓k,𝑛(x), where 𝜓k,𝑛(x) is a periodic function [61]. If
the structure is only periodic along certain directions (e.g. x and y), as in a periodically
perforated slab, the Bloch wavevector k is parallel to these directions (e.g. k·(x× y) = 0).
Assuming that the structure is surrounded by free space, the far field is proportional to
a planewave term ∝ 𝑒𝑖(k+k⊥)·x, where k⊥ is perpendicular to k. The wave equation then
gives 𝜔2 = 𝑐2(𝑘2 + 𝑘2⊥). For real 𝜔, 𝑘⊥ is real only when 𝜔 ≥ 𝑐𝑘. This region is called
the light cone, and 𝜔 = 𝑐𝑘 is called the light line. Modes below the light line have an
imaginary 𝑘⊥, meaning that the field is exponentially decaying outside the structure.
These are called trapped, bound or guided modes. As a consequence, resonances that
couple to incident planewaves can only be found inside the light cone. However, some
trapped modes can still be found inside the light cone and are called bound-in-continuum

1Our work on this topic was published in Ref. 26.
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(BiC) states [190].

A consequence from group representation theory is that k is conserved [61]. In par-
ticular, a Bloch-periodic incident wave has its parallel (along directions of periodicity)
wavevector conserved inside the structure, and can then only excite modes with the same
wavevector. For example, a normally-incident (k = 0) planewave only excites the modes
𝜔𝑛(k = 0). This was the case for the structures analyzed in Chapter 3 and Chapter 4
where we considered a fixed angle of incidence, and only a discrete number of modes were
relevant. So, even though we mentioned that such periodic structures host a continuum of
resonances, only a few discrete set is relevant for the scattering problem with an incident
planewave.

However, if we consider a laser system, described semiclassically as an electromagnetic
resonator coupled to oscillating dipoles [191–193], all the modes with different wavevec-
tors can be excited, and the full continuum of resonances become relevant. This means
that studies of periodic lasers should in general take into account effects stemming from
the interactions between the different modes of the continuum bands. The fact that the
equations describing the laser behaviour above threshold are nonlinear can make the prob-
lem intractable for large structures. As a consequence, practically all previous theoretical
results are only based on single-unit-cell simulations with Bloch-periodic boundary con-
ditions, only considering a single Bloch wavevector [194–199]. Such simulations, which do
not take into account the continuum of modes, cannot be used to check the lasing stability
(since modes that are not taken into account can lead to instabilities). In this chapter,
we rigorously solve the stability problem of single-mode lasing in periodic structures and
obtain a general numerical stability criterion in addition to simple analytical conditions.
In the next section, we give a brief overview of the problem and describe the new results
presented in this chapter.

6.2 Overview

Many lasers rely on resonances in periodic systems, ranging from band-edge modes
of grated distributed-feedback (DFB) waveguides [200, 201] or photonic-crystal surface-
emitting lasers (PCSELS) [202–208] to more exotic bound-in-continuum (BiC) states [209,
210]. In this chapter, we address a fundamental question for periodic lasers: does stable
single-mode lasing exist in an infinite periodic structure, or does it inherently require
the boundaries of a finite structure to stabilize? A number of theoretical works have
studied lasing with periodic boundary conditions as in Fig. 6-1(left) and found lasing
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modes [194–199], but neglected a key concern: even if the structure and the lasing mode
are periodic, stable lasing requires that arbitrary aperiodic electromagnetic perturbations
[as in Fig. 6-1(right)] must decay rather than grow [211–213]. At first glance, such sta-
bility may seem unlikely: any resonance in a periodic system is part of a continuum of
resonances at different Bloch wavevectors with arbitrarily close lasing thresholds, and this
seems to violate typical assumptions for stable lasing [214–216]. A finite-size structure
discretizes the resonance spectrum and hence may suppress this problem, but instabili-
ties have been observed in large enough finite periodic lasers where the resonances be-
come very closely spaced [217]. Analogous transverse instabilities are known to occur in
translation-invariant (period → 0) lasers such as VCSELs [218], for which stability anal-
ysis has been performed with various assumptions [219, 220]. In fact, however, we show
in subsection 6.3 that single-mode lasing is possible even in infinite periodic structures
for range of powers above threshold, by applying a Bloch adaptation of linear-stability
analysis to the full Maxwell–Bloch equations [212,213]. (Instabilities can still arise if our
criteria are violated, or from effects such as disorder not considered in this work.) In
subsection 6.4, we use perturbation theory to obtain a simple condition for stability near
threshold of low-loss resonances and confirm it numerically: the sign of the laser detuning
from the gain frequency should match the sign of the band curvature at threshold. We
then consider examples for both 1d DFB-like lasers (subsection 6.5) and 2d BiC-based
lasing (subsection 6.6), and validate our result against brute-force time-domain simula-
tions [221, 222]. Finally, in subsection 6.7, we perform numerical simulations to further
confirm our perturbation theory.

6.3 Stability of steady state solution Maxwell-Bloch

We consider lasing systems described by the semi-classical Maxwell–Bloch equations (with
the rotating-wave approximation), which fully include nonlinear mode-competitition ef-
fects (such as spatial hole-burning) [193]:

−∇×∇× E+ = P̈+ + 𝜖𝑐Ë
+ + 𝜎𝑐Ė

+

𝑖Ṗ+ = (𝜔𝑎 − 𝑖𝛾⊥)P
+ + 𝛾⊥E

+𝐷 (6.1)

𝐷̇/𝛾‖ = 𝐷0 −𝐷 + Im(E+* ·P+),

where E+ is the positive-frequency component of the electric field (the physical field being
given by 2Re[E+]), P+ is the positive-frequency polarization describing the transition be-
tween two atomic energy levels (with frequency 𝜔𝑎 and linewidth 𝛾⊥), 𝐷 is the population
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Figure 6-1: We study the stability of a single Bloch-periodic lasing mode under aperiodic
perturbations. The stability eigenproblem can be solved using Bloch theorem by writing
perturbations as a general Bloch wave. The lasing mode is stable when real parts of the
eigenvalues 𝜎(𝑞) are negative for all wavevectors 𝑞.

inversion (with relaxation rate 𝛾‖), 𝐷0 is the pump strength, 𝜖𝑐 is the cold-cavity real
permittivity, and 𝜎𝑐 is a cold-cavity conductivity loss. Here, we are assuming that the
orientation of the atomic transition is parallel to the electric field, and have written all
three fields in their natural units [212].

A steady-state solution of these equations can be obtained via steady-state ab-initio
lasing theory (SALT), which is exact for single-mode lasing and approximate for multi-
mode lasing with well-separated modes [214–216]. For a periodic system, we consider a
Bloch-mode steady-state solution E+ = Ek𝑒

𝑖(k·x−𝜔𝑡) satisfying the stationary (𝐷̇ = 0)
SALT equation:

ΘkEk = 𝜔2
k

[︂
𝜖𝑐 + 𝑖

𝜎𝑐
𝜔k

+ Γ(𝜔k)𝐷k

]︂
Ek, (6.2)

where Γ(𝜔) = 𝛾⊥/ (𝜔 − 𝜔𝑎 + 𝑖𝛾⊥), Pk = Γ(𝜔k)𝐷kEk, 𝐷k = 𝐷0/ (1 + |Γ(𝜔k)Ek|2) and
Θk = 𝑒−𝑖k·x∇×∇× 𝑒𝑖k·x is a periodic operator.

Given this steady-state solution, one can then apply linear-stability analysis to the full
Maxwell–Bloch equations, linearizing arbitrary aperiodic perturbations 𝑋 = 𝑋k+𝛿𝑋, for
𝑋 ∈ {E,P, 𝐷}, to determine whether perturbations 𝛿𝑋 exponentially grow (unstable) or
shrink (stable) [211–213]. Here, our key point is that, because the linearized equations for
the perturbations 𝛿𝑋 are periodic (for a Bloch-mode steady state), we can apply Bloch’s
theorem [223] to decompose the perturbations themselves into Bloch-wave modes 𝛿Eq,
solving a separate linear-stability eigenproblem for each wavevector q.
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The well-known linear-stability analysis [212] of the Maxwell–Bloch equations (6.1)
proceeds as follows. Linearization of (6.1) in 𝛿𝑋 gives:

0 = Θk𝛿E+ 𝑑2𝜔(𝜖𝑐𝛿E+ 𝛿P) + 𝑑𝜔𝜎𝑐𝛿E

𝑖𝛿Ṗ = (𝜔𝑎 − 𝜔 − 𝑖𝛾⊥)𝛿P+ 𝛾⊥(𝐷k𝛿E+ Ek𝛿𝐷)

𝛿𝐷̇/𝛾‖ = −𝛿𝐷 + Im(Pk · 𝛿E* + E*
k · 𝛿P),

(6.3)

where 𝑑𝜔 =
(︀

𝑑
𝑑𝑡
− 𝑖𝜔

)︀
. Splitting complex variables into real and imaginary parts

yields a set of linear equations
(︁
𝐶 𝑑2

𝑑𝑡2
+𝐵 𝑑

𝑑𝑡
+ 𝐴

)︁
𝑢(x, 𝑡) = 0 [212], where 𝑢 =

(Re(𝛿E), Im(𝛿E),Re(𝛿P), Im(𝛿P), 𝛿𝐷) and 𝐴, 𝐵 and 𝐶 are operator matrices readily
obtained from (6.3). Stability analysis consists of looking for solutions of the form
𝑢 = Re(𝑈𝑒𝜎𝑡), which leads to a quadratic eigenproblem:

(︀
𝐴+𝐵𝜎 + 𝐶𝜎2

)︀
𝑈 = 0. (6.4)

The sign of Re(𝜎) determines the stability of the single-mode solution [212].

Since the operators 𝐴, 𝐵 and 𝐶 are periodic in our case, however, we can use Bloch’s
theorem to further simplify the problem: the eigenfunctions can be chosen in the Bloch
form 𝑈 = 𝑈q𝑒

𝑖q·x where 𝑈q is periodic. The eigenvalues 𝜎(q, 𝐷0) then determine the
stability: If there exists a wavevector q so that Re[𝜎(q, 𝐷0)] > 0, then the single-mode
solution is unstable at the pump rate 𝐷0, with exponential growth at the wavevector
k ± q. Since (𝐴,𝐵,𝐶) are real, we also have 𝜎(q, 𝐷0) = 𝜎(−q, 𝐷0)

*, so we need only
consider one side of q within the Brillouin zone.

6.4 Perturbation theory

The condition obtained in Sec. 6.3 can be used to numerically evaluate the single-mode
lasing stability for an arbitrary value of the pump𝐷0. Here, we derive analytical results for
the specific question of stability near lasing threshold. In particular, we use perturbation
theory to compute the stability eigenvalues 𝜎(𝑞 = 𝑞0 + 𝛿𝑘, 𝑑) for small 𝛿𝑘, where 𝐷0 =

𝐷𝑡(1 + 𝑑2) with 𝐷𝑡 being the pump at threshold, for points 𝑞0 where 𝜎(𝑞0, 0) = 0. Such
perturbation theory is particularly subtle due to eigenvalue crossings that result in “critical
lines” (similar to the so-called exceptional points) where 𝜎 changes form, and these are
also reproduced in the numerical validation (Sec. 6.7). The final result is a formula that
determines stability near threshold in terms of simple integrals of the threshold lasing
mode. In the limit of low-loss resonances, this result further simplifies to a criterion
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relating band curvature to gain detuning as we show later [Eq. (6.24)].

In all systems, we have by definition 𝜎(0, 0) = 0. For reciprocal systems, the mode
at −𝑘 also reaches threshold at 𝐷𝑡 so that 𝜎(±2𝑘, 0) = 0 [213]. Note that this last case
does not need to be considered when 𝑘 and −𝑘 are separated with lattice vectors, as for
example when lasing at a band edge or at the center of the Brillouin zone. We first give
a detailed derivation in the case 𝑞0 = 0, and then present the results for 𝑞0 = ±2𝑘.

The stability eigenproblem is given by (𝐴𝑞 +𝐵𝜎 + 𝐶𝜎2)𝑈𝑞 = 0, where:

𝐴𝑞 =

⎛⎜⎜⎜⎜⎜⎜⎝
Δ𝑟

𝑘,𝑞 −Δ𝑖
𝑘,𝑞 𝜔2 0 0

Δ𝑖
𝑘,𝑞 Δ𝑟

𝑘,𝑞 0 𝜔2 0

𝛾⊥𝐷 0 𝜔𝑎 − 𝜔 𝛾⊥ 𝛾⊥E
𝑟

0 𝛾⊥𝐷 −𝛾⊥ 𝜔𝑎 − 𝜔 𝛾⊥E
𝑖

−𝛾‖P𝑖 𝛾‖P
𝑟 𝛾‖E

𝑖 −𝛾‖E𝑟 𝛾‖

⎞⎟⎟⎟⎟⎟⎟⎠ ,

𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎝
−𝜎𝑐 −2𝜖𝑐𝜔 0 −2𝜔 0

2𝜖𝑐𝜔 −𝜎𝑐 2𝜔 0 0

0 0 0 1 0

0 0 −1 0 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝐶 =

⎛⎜⎜⎜⎜⎜⎜⎝
−𝜖𝑐 0 −1 0 0

0 −𝜖𝑐 0 −1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ (6.5)

with Δ𝑟
𝑘,𝑞 = −𝑒−𝑖𝑞𝑥Re(Θ𝑘)𝑒

𝑖𝑞𝑥 + 𝜖𝑐𝜔
2, Δ𝑖

𝑘,𝑞 = −𝑒−𝑖𝑞𝑥Im(Θ𝑘)𝑒
𝑖𝑞𝑥 + 𝜎𝑐𝜔, E𝑟 = Re(E) and

E𝑖 = Im(E). For brevity of notation, we removed the subscript 𝑘 from 𝜔𝑘, E𝑘, P𝑘, 𝐷𝑘, but
vectors still refer to the periodic part of Bloch terms. The SALT mode can be expanded
in 𝑑, as for example done in Ref. 213. In particular, we have:

𝜔 ≈ 𝜔𝑡 + 𝜔2𝑑
2, E ≈ 𝑑

𝑎E+

Γ𝑡

, |𝑎|2 = 𝐺𝐷 + 𝜔2𝐻

𝐼
, 𝜔2 = −Im

(︂
𝐺𝐷

𝐼

)︂
/Im

(︂
𝐻

𝐼

)︂
(6.6)

where E+ (resp. E−) is a solution to the linear SALT equation at threshold with Bloch
vector 𝑘 (resp. −𝑘). 𝐺𝐷, 𝐼 and 𝐻 are given by:

𝐺𝐶 =

∫︁
𝑑x(𝜖𝑐 + 𝑖𝜎𝑐𝜔𝑡) E− · E+, 𝐺𝐷 =

∫︁
𝑑x𝐷𝑡 E− · E+,

𝐼 =

∫︁
𝑑x𝐷𝑡|E+|2E− · E+, 𝐻 =

1

𝜔2
𝑡Γ𝑡

𝜕

𝜕𝜔𝑡

[︀
𝜔2
𝑡 (𝐺𝐶 +𝐺𝐷Γ𝑡)

]︀
.

(6.7)

Note that there is an arbitrary choice for the phase of 𝑎. To simplify some computations,
we take 𝑎Γ*

𝑡 to be real.
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Operators 𝐴𝑞, 𝐵 and 𝐶 can then be expanded in (𝛿𝑘 = 𝑞 − 𝑞0, 𝑑):

𝐴𝑞 ≈ 𝐴00 + 𝐴01𝑑+ 𝐴02𝑑
2 + 𝐴10𝛿𝑘 + 𝐴20𝛿𝑘

2, 𝐵 ≈ 𝐵0 +𝐵2𝑑
2, 𝐶 = 𝐶0. (6.8)

As a result, eigenvalues and eigenvectors can be expanded in the same way:

𝑈𝑞 ≈
∑︁
𝑖,𝑗≤2

𝑈𝑖𝑗𝛿𝑘
𝑖𝑑𝑗, 𝜎 ≈

∑︁
𝑖,𝑗≤2

𝜎𝑖𝑗𝛿𝑘
𝑖𝑑𝑗. (6.9)

A crucial point that we confirm later, is that 𝜎 is not necessarily analytical at (𝑞0, 0) since
there is a degeneracy. So equation (6.9) is not valid inside a ball around (𝛿𝑘, 𝑑) = (0, 0).
Instead, we have different expansion coefficients depending on the path (𝛿𝑘, 𝑑).

We first consider 𝑞0 = 0. The zeroth-order stability problem is equivalent to the
threshold SALT equation at 𝑘. Because real and imaginary parts of the field are split, we
have two degenerate eigenvectors 𝑣𝑝 corresponding to 𝜎00 = 0, where:

𝑣𝑝 =
(︀
Re
(︀
e+𝑝
)︀
, Im

(︀
e+𝑝
)︀
, 𝐷𝑡Re

(︀
Γ𝑡e

+
𝑝

)︀
, 𝐷𝑡Im

(︀
Γ𝑡e

+
𝑝

)︀
, 0
)︀
, (6.10)

for e+1,2 = E+, 𝑖E+. We also need solutions 𝑤𝑝 to the transverse problem 𝑤𝑡
𝑝𝐴00 = 0 given

by:

𝑤𝑝 =

(︂
Re
(︀
e−𝑝
)︀
, −Im

(︀
e−𝑝
)︀
,
𝜔2
𝑡

𝛾⊥
Re
(︀
Γ𝑡e

−
𝑝

)︀
, −𝜔

2
𝑡

𝛾⊥
Im
(︀
Γ𝑡e

−
𝑝

)︀
, 0

)︂
, (6.11)

where e−1,2 = E−, 𝑖E−.

We now have 𝑈00 = 𝑏1𝑣1 + 𝑏2𝑣2, where 𝑏𝑝 are to be determined by degenerate per-
turbation theory. As we will see later, the coefficients 𝑏𝑝 depend on the path (𝛿𝑘, 𝑑). To
simplify notations, we note 𝑀̄ =

[︀
𝑤𝑡

𝑗𝑀𝑣𝑝
]︀
𝑗𝑝

for a given operator matrix 𝑀 . The first
order perturbation equations are given by:

(𝛿𝑘) (𝐵0𝜎10 + 𝐴10)𝑈00 + 𝐴00𝑈10 = 0 → 𝐴10𝑏 = −𝜎10𝐵̄0𝑏

(𝑑) (𝐵0𝜎01 + 𝐴01)𝑈00 + 𝐴00𝑈01 = 0 → 𝐴01𝑏 = −𝜎01𝐵̄0𝑏.
(6.12)

It is straightforward to show that 𝐴01 = 0, 𝐵̄0 = −Im (𝜔2
𝑡Γ𝑡𝐻𝑀) and 𝐴10 = 𝑖Im (𝐿𝑀),

where 𝑀 =

(︃
1 𝑖

𝑖 −1

)︃
and 𝐿 = −

∫︀
𝑑x E− · 𝜕𝑞Θ𝑘+𝑞E+ (in particular, −𝜕𝑞Θ𝑘+𝑞 =

2𝑖 𝑒−𝑖𝑘𝑥∇𝑒𝑖𝑘𝑥 for E = E𝑧z waves). We then have:

𝜎01 = 0, 𝜎10 = 𝑖
𝐿

𝜔2
𝑡Γ𝑡𝐻

or 𝜎10 = 𝑖

(︂
𝐿

𝜔2
𝑡Γ𝑡𝐻

)︂*

. (6.13)

137



Since 0 is a maximum of Re[𝜎(𝛿𝑘, 0)], 𝜎01 is purely imaginary and the two eigenvalues are
identical. So 𝐴10 + 𝜎10𝐵̄0 = 0 and 𝑏 is not determined by first order equations. Note that
𝑖𝜎10 is simply the slope of 𝜔(𝑘) at the lasing 𝑘. We can also see that:

𝑈01 = −
∑︁

𝑏𝑝𝑔𝑝 +
∑︁

𝑐𝑙𝑣𝑙, 𝑈10 = −
∑︁

𝑏𝑝𝐴
−1
00 (𝜎10𝐵0 + 𝐴10)𝑣𝑝 +

∑︁
𝑐𝑙𝑣𝑙, (6.14)

where 𝑔5𝑝 = 2𝐷𝑡Re
(︀
Γ𝑡𝑎

*e+𝑝 · E*
+

)︀
and the first fourth components of 𝑔𝑝 are zero. 𝑐𝑙 and 𝑐𝑙

are arbitrary complex coefficients that will not affect our results. Note also that the fifth
component of 𝑈10 is equal to zero.

The second order perturbation equations are now given by:

(𝛿𝑘𝑑) 𝜎11𝐵0𝑈00 + (𝐴10 + 𝜎10𝐵0)𝑈01 + 𝐴01𝑈10 + 𝐴00𝑈11 = 0

(𝛿𝑘2)
(︀
𝐴20 + 𝜎20𝐵0 + 𝜎2

10𝐶
)︀
𝑈00 + (𝐴10 + 𝜎10𝐵0)𝑈10 + 𝐴00𝑈20 = 0

(𝑑2) (𝐴02 + 𝜎02𝐵0)𝑈00 + 𝐴01𝑈01 + 𝐴00𝑈02 = 0.

(6.15)

We start by solving the three equations independently. From results of first-order pertur-
bation we can see that 𝑤𝑡

𝑗(𝐴10 + 𝜎10𝐵0)𝑈01 = 0 and 𝑤𝑡
𝑗𝐴01𝑈10 = 0. The equation of order

𝛿𝑘𝑑 then gives 𝜎11 = 0.

Multiplying the equation of order 𝛿𝑘2 by 𝑤𝑡
𝑗 we get:

−𝜎20𝐵̄0𝑏 =
(︀
𝐴20 + 𝜎2

10𝐶 + 𝑃
)︀
𝑏 = Re (𝑋𝑀) 𝑏, where 𝑃 = (𝜎10𝐵0+𝐴10)𝐴

−1
00 (𝜎10𝐵0+𝐴10),

(6.16)
where eigenvalues are simply related to the curvature of 𝜔(𝑘) at the lasing 𝑘 (= 𝑖𝜎20):

𝜎20 = 𝑖
𝑋

𝜔2
𝑡Γ𝑡𝐻

or 𝜎20 = −𝑖
(︂

𝑋

𝜔2
𝑡Γ𝑡𝐻

)︂*

, 𝑏 = (1,∓𝑖). (6.17)

The degeneracy is artificially due to the separation of the real and imaginary parts of the
field, so 𝑋 can be easily recovered from the non-degenerate perturbation theory of 𝜔(𝑘)
in 𝑘. We obtain:

𝑋 =

∫︁
𝑑x E− ·�E+,

� = 𝜕2𝑞Θ𝑘+𝑞 −
𝜎2
10

2
𝜕2𝐺+ (𝑖𝜕𝑞Θ𝑘+𝑞 + 𝜎10𝜕𝐺)(−Θ𝑘 +𝐺)−1(𝑖𝜕𝑞Θ𝑘+𝑞 + 𝜎10𝜕𝐺),

𝐺(𝜔𝑡) = 𝜔2
𝑡

[︂
𝜖𝑐 + 𝑖

𝜎𝑐
𝜔𝑡

+𝐷𝑡Γ(𝜔𝑡)

]︂
and 𝜕2𝑞Θ𝑘+𝑞 = −𝐼 for E = E𝑧z waves. (6.18)
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Finally, multiplying the equation of order 𝑑2 by 𝑤𝑡
𝑗 we get (using 𝑎Γ*

𝑡 = 𝑎*Γ𝑡):

−𝜎02𝐵̄0𝑏 =
(︀
𝐴02 − 𝑄̄

)︀
𝑏, with 𝑄̄ =

[︀
𝑤𝑡

𝑗𝐴01𝑔𝑝
]︀
𝑗𝑝

= Re
[︀
𝜔2
𝑡Γ𝑡|𝑎|2𝐼 (𝑀 ′ +𝑀)

]︀
and 𝐴02 = 0,

(6.19)

where 𝑀 ′ =

(︃
1 −𝑖
𝑖 1

)︃
. The eigenvalues are then given by:

𝜎02 = 0, 𝑏 = (0, 1) or 𝜎02 = 2|𝑎|2Im
(︂
𝐼

𝐻

)︂
, 𝑏 = (−Im[𝐼/𝐻],Re[𝐼/𝐻]). (6.20)

We see that we obtain different eigenvectors in (6.17) and (6.20). This means that the
expansion in (6.9) depends on the path (𝛿𝑘, 𝑑). If 𝑑 = 𝑜(𝛿𝑘), the expansion is determined
by (6.17); while it is determined by (6.20) if 𝛿𝑘 = 𝑜(𝑑). A critical behaviour is obtained
along the linse 𝛿𝑘 = 𝛼𝑑 for which the second order term is given by 𝜎2𝑑

2 and the three
equations in (6.15) have to be combined. In this case, the second order perturbation
eigenproblem becomes:

− 𝜎2𝐵̄0𝑏 =
[︀
𝛼2Re (𝑋𝑀)− 𝑄̄

]︀
𝑏, (6.21)

and the eigenvalues are given by:

𝜎2 = Im
(︀
𝛼2𝜃 + 𝜂𝐼

)︀
±
√︁

|𝜂𝐼 |2 − [Re (𝛼2𝜃 + 𝜂𝐼)]
2, 𝜃 = − 𝑋

𝜔2
𝑡Γ𝑡𝐻

, 𝜂𝐼 = |𝑎|2 𝐼
𝐻
. (6.22)

Note that 𝜃 is simply the band curvature at threshold (𝜔(𝑘) ≈ 𝜔𝑡 + 𝑖𝜎10𝛿𝑘 + 𝜃𝛿𝑘2).
The presence of the square root function clearly shows the non-analyticity of 𝜎. In

particular, the there is an eigenvalue crossing for 𝛼2
𝑐 = (−Re (𝜂𝐼)± |𝜂𝐼 |) /Re (𝜃). The

stability condition (𝜎2 ≤ 0) can also be immediately retrieved:

𝛼2
𝑠 = −2Re (𝜂𝐼/𝜃) ≤ 0. (6.23)

We can simplify the stability condition in the limit of small loss. In this case, 𝐻 ≈
2𝜔𝑡

∫︀
𝜖𝑐E− · E+/Γ𝑡, E− ≈ E*

+ and Im (𝜃) ≈ 0. The stability condition Re (𝜂𝐼)Re (𝜃) +
Im (𝜂𝐼) Im (𝜃) ≥ 0 becomes equivalent to:

Re (𝜃) (𝜔𝑡 − 𝜔𝑎) & 0. (6.24)

This means that the sign of the detuning (𝜔𝑡 − 𝜔𝑎) should be the same as the sign of
the band curvature (Re[𝜃]). For example, when lasing at a bandedge, this means that 𝜔𝑎

should be inside the bandgap.
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As mentioned in the beginning of the section, in the case of degenerate lasing, the
previous analysis should also be carried out at 𝑞0 = −2𝑘 (or eqivalently at 2𝑘). (Note
that we are not considering the special case of a degeneracy that comes for a wavevector
other than −𝑘. However, this situation can be studied in a similar way by computing
a perturbation expansion of 𝜎 around multiple adequate 𝑞0s.) It is easy to see that the
solutions of the zeroth order problem 𝐴−2𝑘𝑈00 = 0 are related to solutions of SALT at
𝑘 ± 2𝑘. Two separate cases should then be considered.

𝑘𝑎 = 𝜋/2 : In this case, the problems at −𝑘 and 3𝑘 are equivalent (separated by a lattice
vector) and the zeroth order problem is degenerate. The eigenvectors are given by:

𝑣𝑝 = 𝑒𝑖
𝜋𝑥
𝑎

(︀
Re
(︀
𝑒−𝑖𝜋𝑥

𝑎 e−𝑝
)︀
, Im

(︀
𝑒−𝑖𝜋𝑥

𝑎 e−𝑝
)︀
, 𝐷𝑡Re

(︀
𝑒−𝑖𝜋𝑥

𝑎 Γ𝑡e
−
𝑝

)︀
, 𝐷𝑡Im

(︀
𝑒−𝑖𝜋𝑥

𝑎 Γ𝑡e
−
𝑝

)︀
, 0
)︀
,

(6.25)
while solutions of the transverse problem become:

𝑤𝑝 = 𝑒−𝑖𝜋𝑥
𝑎

(︂
Re
(︀
𝑒𝑖

𝜋𝑥
𝑎 e+𝑝

)︀
,−Im

(︀
𝑒𝑖

𝜋𝑥
𝑎 e+𝑝

)︀
,
𝜔2
𝑡

𝛾⊥
Re
(︀
𝑒𝑖

𝜋𝑥
𝑎 Γ𝑡e

+
𝑝

)︀
,
−𝜔2

𝑡

𝛾⊥
Im
(︀
𝑒𝑖

𝜋𝑥
𝑎 Γ𝑡e

+
𝑝

)︀
, 0

)︂
.

(6.26)
We now have 𝑔5𝑝 = 2𝐷𝑡𝑒

𝑖𝜋𝑥/𝑎Re
(︀
Γ𝑡𝑎

*𝑒−𝑖𝜋𝑥/𝑎e−𝑝 · E*
+

)︀
and 𝑄̄ = Re [𝜔2

𝑡Γ𝑡|𝑎|2(𝐾𝑀 ′ + 𝐽𝑀)],
where:

𝐽 =

∫︁
𝑑x 𝐷𝑡(E

*
+ · E−)(E+ · E+) and 𝐾 =

∫︁
𝑑x 𝑒2𝑖𝜋𝑥/𝑎𝐷𝑡(E

*
− · E+)(E+ · E+). (6.27)

We can then obtain the eigenvalues of the problem (6.21) for 𝛿𝑘 = 𝑞 + 2𝑘 = 𝛼𝑑:

𝜎2 = Im
(︀
𝛼2𝜃 + 𝜂𝐽

)︀
±
√︁

|𝜂𝐾 |2 − [Re (𝛼2𝜃 + 𝜂𝐽)]
2, 𝜂𝐽 = |𝑎|2 𝐽

𝐻
, 𝜂𝐾 = |𝑎|2𝐾

𝐻
. (6.28)

The stability condition is now equivalent to:

𝛼2
𝑠 = −Re

(︁𝜂𝐽
𝜃

)︁
+

√︂⃒⃒⃒𝜂𝐾
𝜃

⃒⃒⃒2
−
⃒⃒⃒𝜂𝐽
𝜃

⃒⃒⃒2
+ Re

(︁𝜂𝐽
𝜃

)︁2
non-real or real negative. (6.29)

𝑘𝑎 ̸= 𝜋/2 : In this case, the problems at −𝑘 and 3𝑘 are different, and only −𝑘 has a
solution. The zeroth order problem for 𝑞0 = −2𝑘 is now not degenerate and eigenvectors
are given by:

𝑣 = (1, −𝑖, 𝐷𝑡Γ𝑡, −𝑖𝐷𝑡Γ𝑡, 0)E−, 𝑤 =

(︂
1, 𝑖,

𝜔2
𝑡Γ𝑡

𝛾⊥
, 𝑖
𝜔2
𝑡Γ𝑡

𝛾⊥
, 0

)︂
E+. (6.30)
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The dimension of our problem is now one and we have 𝑔5 = 2𝐷𝑡Γ𝑡𝑎
*E*

+ · E−, 𝐵̄0 =

2𝑖𝜔2
𝑡Γ𝑡𝐻, 𝐴20 = 2𝑋 and 𝑄̄ = 2𝜔2

𝑡Γ𝑡|𝑎|2𝐽 . The unique eigenvalue of (6.21) is now equal
to:

𝜎2 = −𝑖(𝜃𝛼2 + 𝜂𝐽). (6.31)

This simply means that there is no eigenvalue crossing and that the expansion of 𝜎 does
not depend on the path (𝛿𝑘, 𝑑). Note that 𝜎*

2 is also an eigenvalue around 𝑞0 = 2𝑘 (which
is is simply due to the facts that our operators 𝐴,𝐵 and 𝐶 are real as indicated in the
main text). The stability condition is immediately given by:

Im (𝜂𝐽) ≤ 0, (6.32)

since we already have Im (𝜃) ≤ 0 (Im[𝜔(𝑘)] has a maximum at 𝑘). Note that this stability
condition is equivalent to having a stable lasing close to threshold for the single unit-cell
problem.

Finally, some useful points to mention:

• We have 𝜂𝐼 = 𝐺𝐷/𝐻 + 𝜔2. It is also straightforward to use perturbation the-
ory to show that 𝜔𝑙

2 = −𝐺𝐷/𝐻 where 𝜔𝑙
2 is the slope (in 𝐷0/𝐷𝑡 − 1) of the

eigenfrequency of the linear problem at the threshold without gain saturation
(𝜔𝑙 ≈ 𝜔𝑡+𝜔

𝑙
2(𝐷0/𝐷𝑡−1)). By definition, threshold should be reached from below the

real axis, so Im
(︀
𝜔𝑙
2

)︀
≥ 0. Since 𝜔2 is real, we conclude that Im (𝜂𝐼) = −Im

(︀
𝜔𝑙
2

)︀
≤ 0.

This means that 𝜎02 ≤ 0 and that the single unit-cell lasing problem is always stable
near threshold in absence of degeneracy.

• For TM waves (E = E𝑧z), we have 𝐼 = 𝐽 . This means that Im (𝜂𝐽) ≤ 0 and that the
single unit-cell lasing problem is also stable in the degenerate case when 𝑘 ̸= 𝜋/2.
This is an analytical proof for part of the stability result conjectured in Ref. 213.
Note that 𝑘 = 𝜋/2 is equivalent to the condition 𝑛 = 4ℓ in Ref. 213.

• For TM waves and 𝑘 ̸= 𝜋/2, we conclude that 𝜎2 ≤ 0 when expanding around −2𝑘.
So the stability is only determined by the expansion around 0 (−Re (𝜂𝐼/𝜃) ≤ 0.)

6.5 DFB laser: 1d example

We can now use our stability criteria to study a simplified model for a DFB laser formed
by a 1D photonic crystal with alternating layers of equal thickness and dielectric constants
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equal to 1 and 3 (Figure 6-2). We assume a uniform conductivity loss 𝜎𝑐 = 0.001𝜔𝑎 and a
two-level gain medium with 𝜔𝑎𝑎/2𝜋𝑐 = 0.31 and 𝛾⊥𝑎/2𝜋𝑐 = 0.008. Figure 6-2 shows part
of the band diagram, with 𝜔𝑎 chosen near the first band edge. For every wavevector 𝑘 of
the first band, we compute the pump threshold 𝐷𝑡, defined as the lowest pump rate 𝐷0

that compensates the loss and leads to a real eigenfrequency 𝜔𝑘 in (6.2). As expected, the
smallest 𝐷𝑡 is obtained at the band edge 𝑘 = 𝜋/𝑎 of the first band, which we therefore
take to be the first lasing mode. However, as discussed earlier, 𝐷𝑡 varies continuously
with 𝑘 and other modes are expected to reach threshold for arbitrary close values of the
pump in the linear model.
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Figure 6-2: The cold cavity is 1D photonic crystal with uniform conductivity loss 𝜎𝑐 =
0.001𝜔𝑎. The two-level gain medium is characterized by 𝜔𝑎𝑎/2𝜋𝑐 = 0.31 and 𝛾⊥𝑎/2𝜋𝑐 =
0.008. The frequency (dots) and pump (dashed lines) at the lasing threshold are computed
for modes of the first band. The minimum pump at threshold is obtained at the band
edge 𝑘𝑎 = 𝜋. In absence of gain, the decay rate for the band-edge mode is equal to
𝜅 ≈ 5.8× 10−5(2𝜋𝑐/𝑎).

In order to study the stability of the lasing band-edge mode, we first solve the steady-
state nonlinear equation (6.2) at higher pump values with a Newton-Raphson solver as
described in Ref. 216. We then use the obtained steady-state solution to solve the stability
eigenproblem (6.4) for different pump values. Results are summarized in Fig. 6-3 and
Fig. 6-4. First, note that the single mode solution is stable close to threshold, unlike a
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linear model (Fig. 6-2). This can be attributed to the nonlinear gain saturation, which
prevents arbitrary close modes from reaching threshold. In general, the stability of the
laser depends on the relationship between the decay rates of the three fields, 𝛾⊥ for P, 𝛾‖
for 𝐷, and 𝜅 for E, the decay rate of the cavity in the absence of gain [224]. When two
(or more) of these decay rates become similar, we notice a sharp reduction of 𝐷0 for the
onset of instability (in this case, 𝛾‖ ∼ 𝜅).

 

Unstable 
Stable 

𝛾∥ → 0	

Threshold for 
second mode 

Figure 6-3: Detailed stability map for 𝛾‖𝑎/2𝜋𝑐 = 10−4 as a function of 𝑞. We compare
results to FDTD simulations using a finite supercell with periodic boundary conditions
(unstable in shaded regions), initialized with the SALT solution plus ∼ 1% noise and
checking stability after ∼ 105 optical periods. Stars show the allowed 𝑞 due to the finite
supercell (2𝜋ℓ/𝑎𝑁cells). (b) Modal intensity of lasing modes with FDTD (𝑁cells = 50) and
multimode SALT (assuming second lasing mode at 𝑞 = 4𝜋/50𝑎).

Stability can also be studied using a multimode SALT by including the first lasing
mode in the gain saturation and computing the pump threshold for a second lasing mode
as a function of 𝑘 (inset of Fig. 6-3). In particular, this coincides with the results from the
stability eigenproblem in the limit 𝛾‖ → 0. Solving (6.3) for 𝛾‖ → 0 is indeed equivalent
to having 𝛿𝐷 → 0 and 𝛿𝑋 being a solution to SALT equation. As can be seen in the
inset of Fig. 6-3, the nonlinear gain saturation pushes the threshold of the arbitrary close
modes (𝑞 → 0) to a higher pump value compared to what is expected from a linear model.
However, this multimode SALT predicts a second lasing mode that is arbitrary close to
the first lasing mode, which is outside the domain of validity of SALT. Furthermore, the
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instability onset depends rather strongly on 𝛾‖, emphasizing the need for a full Maxwell–
Bloch stability analysis.

From the results of our perturbation theory (Sec. 6.4), we remind that in the case of
small loss, a simple approximate condition for stability near threshold is: the band cur-
vature Re

(︁
𝑑2𝜔
𝑑𝑘2

)︁
and the laser detuning (𝜔𝑡−𝜔𝑎) should have the same sign at threshold.

When lasing at the band edge, as in this example, this is equivalent to requiring 𝜔𝑎 to lie
inside the band gap.
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Figure 6-4: (a) Detailed stability map for 𝛾‖𝑎/2𝜋𝑐 = 10−4 as a function of 𝑞. We compare
results to FDTD simulations using a finite supercell with periodic boundary conditions
(unstable in shaded regions), initialized with the SALT solution plus ∼ 1% noise and
checking stability after ∼ 105 optical periods. Stars show the allowed 𝑞 due to the finite
supercell (2𝜋ℓ/𝑎𝑁cells). (b) Modal intensity of lasing modes with FDTD (𝑁cells = 50) and
multimode SALT (assuming second lasing mode at 𝑞 = 4𝜋/50𝑎).

We now validate the results of stability analysis against FDTD simulations [221, 222]
with a finite supercell and periodic boundary conditions. We initialize the simulation
fields with the SALT solution plus additional noise, and analyze whether the system
remains in the same steady-state at later times. Note that for a supercell with 𝑁cells

periods, only a finite set of values for 𝑞 is allowed (= 2𝜋ℓ/𝑎𝑁cells for ℓ = 0, . . . , 𝑁cells − 1).
Figure 6-4(a) shows a perfect match between the two computations. In particular, the
instability onset for the FDTD simulations corresponds to the value of the pump 𝐷0 for
which at least one allowed 𝑞 reaches the instability region obtained from the stability
eigenproblem (6.4). Once instability is reached, a second lasing mode starts. This second
lasing mode corresponds to the first 𝑞 that hits the instability region. However, the new
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lasing solution is not accurately described by two-mode SALT (Figure 6-4(b)) because
the small frequency difference violates the SALT assumptions (exact in the limit 𝛾‖ → 0).
In particular, the inset of Fig. 6-3 shows that the threshold of the multimode SALT (for
𝑞 = 4𝜋/50𝑎) does not match the actual threshold for the stability eigenproblem. As 𝑁cells

increases, the second lasing frequency becomes arbitrary close to the first mode, requiring
an ever-smaller 𝛾‖ for the multimode SALT approach to be viable. On the other hand, for
a fixed 𝑁cells, the multimode SALT approach becomes increasingly accurate for smaller
𝛾‖. The two-mode regime here also exhibits a chaotic behaviour, typical in certain classes
of lasers [224].

6.6 BiC lasing: 2d example
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Figure 6-5: Inset shows a 2d array of cylindrical rods with diameter = 0.7𝑎, 𝜖𝑐 = 2.58,
𝜎𝑐 = 0.001𝜔𝑎 and a separation 𝐿 = 1.078𝑎 to a perfect mirror. Gain inside the rods
is characterized by 𝜔𝑎𝑎/2𝜋𝑐 = 0.625 and 𝛾⊥𝑎/2𝜋𝑐 = 0.01. Three BiCs are shown at
𝑘𝑎 = 0, 0.4𝜋, 0.8𝜋. The minimum pump at threshold 𝐷𝑡 is obtained at 𝑘𝑎 = 0.4𝜋 which
is the first lasing mode. In absence of gain, the decay rate for this mode is equal to
𝜅 ≈ 8× 10−5(2𝜋𝑐/𝑎). Top inset shows a positive band curvature at threshold.

We next consider a 2d (𝐸𝑧-polarized) example to study the stability of a BiC lasing
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mode. The structure is a periodic line of surface rods placed at a distance 𝐿 from a
perfect-metal boundary (Figure 6-5 inset), which is known to have multiple BiCs [190].
BiCs are characterized by a quality factor 𝑄 → ∞ in absence of external pump and
absorption loss, as seen in the inset. As in the previous 1d example, we compute the
pump threshold 𝐷𝑡 at different wavevectors 𝑘 and find the lasing mode corresponding
to the smallest 𝐷𝑡. In this example, the first lasing mode corresponds to the BiC at
𝑘𝑎 = 0.4𝜋, with 𝐷𝑡 ≈ 7× 10−3 and a lasing frequency 𝜔𝑡𝑎/2𝜋𝑐 ≈ 0.65.
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Figure 6-6: Result from stability eigenproblem. Shaded region indicates instability. Inset
shows FDTD results using a supercell with 20 unit cells and periodic boundary conditions.
Plots show the Fourier transform of the electric field at a point near a rod. Small insets
show the eigenvectors obtained from (6.4) along with their frequencies 𝜔𝑎/2𝜋𝑐. They do
match modes obtained in the linear regime (below threshold) at 𝑘𝑎 = 0.8𝜋 and 𝑘𝑎 = 𝜋.

The results of the stability analysis are shown in Fig. 6-6 for 𝛾‖𝑎/2𝜋𝑐 = 5 × 10−3.
We first note that the lasing mode is stable near threshold and that instability occurs
at a higher pump value 𝐷0 [Fig. 6-7(left)]. This matches our condition for stability near
threshold (positive band curvature and laser detuning). As clear from the corresponding 𝑞
and eigenfrequencies, instabilities at higher pump correspond to modes that become active
at 𝑘𝑎 = 0.8𝜋 (BiC) and 𝑘𝑎 = 𝜋 (guided mode). A comparison between our stability results
and FDTD simulations is shown in Fig. 6-6(inset), where we plot the Fourier transform
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of the electric field at a given point outside a rod for different pump values. The number
and frequencies of lasing modes match our stability computations.

Finally, in order to confirm our simple analytical stability condition [Eq. (6.24)], we
study the same system with a larger 𝜔𝑎 corresponding to a negative laser detuning. As
shown in Fig. 6-7(right), the lasing system is indeed not stable for any value of pump
above threshold. Such instabilities may arise in very large systems (small 𝑞).
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Figure 6-7: Re(𝜎) as a function of 𝑞 and 𝐷0/𝐷𝑡 for different transition frequencies
𝜔𝑎𝑎/2𝜋𝑐 (= 0.625, 0.675). The threshold lasing frequency 𝜔𝑡𝑎/2𝜋𝑐 is maintained at ≈ 0.65.
The system is unstable near threshold when the laser detuning (𝜔𝑡−𝜔𝑎) has opposite sign
to the band curvature. Black solid line corresponds to Re (𝜎) = 0.

6.7 Numerical validation of perturbation theory

Before concluding this chapter, we present further numerical validation for the analytical
perturbation-theory results discussed in Sec. 6.4.

Figure 6-8 shows results for the 1d structure studied in Sec. 6.5. Figures 6-9 and 6-10
are for the same structure, but with 𝜔𝑎 lying below the lasing band edge, outside the
bandgap, leading to instability near threshold as predicted by our simplified stability con-
dition [Eq. (6.24)]. In both cases, the numerical simulations show near-perfect agreement
with the analytical results.

Figures 6-12 and 6-11 show results for the 2d structures presented in Sec. 6.6 with
a positive and negative laser detuning, respectively. Again, numerical simulations are in
agreement with the analytical results.
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Figure 6-8: Same 1d structure in Sec. 6.5. Numerical simulation (stars and dashed contour
lines) are in agreement with analytical results (solid lines). Since the lasing mode is at a
bandedge, we have 𝜎10 = 0. Black line corresponds to 𝛿𝑘𝑎 = 𝛼𝑐𝑑 and represents the line
of eigenvalue crossing (transition from two real to two complex conjugate eigenvalues).
𝛼𝑐 ≈ 0.018 and 𝛼2

𝑠 ≈ −4.2× 10−4.
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Figure 6-9: Same 1d structure in Sec. 6.5 but with 𝜔𝑎𝑎/2𝜋𝑐 = 0.306 and 𝛾⊥/2𝜋𝑐 = 0.08.
The lasing mode is still at the band edge but the laser detuning (𝜔𝑡−𝜔𝑎) is now positive.
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Figure 6-10: Same 1d structure studied in Sec. 6.5 but with 𝜔𝑎𝑎/2𝜋𝑐 = 0.306 and
𝛾⊥/2𝜋𝑐 = 0.08. Numerical simulation (stars and dashed contour lines) are in agreement
with analytical results (solid lines). Black line corresponds to 𝛿𝑘𝑎 = 𝛼𝑐𝑑 and represents
the line of eigenvalue crossing (transition from two real to two complex conjugate eigen-
values). Magenta solid line corresponds to 𝛿𝑘 = 𝛼𝑠𝑑 from analytical perturbation results
and matches Re (𝜎) = 0 from numerical simulation. 𝛼𝑐 ≈ 0.022 and 𝛼𝑠 ≈ 3× 10−3.
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Figure 6-11: Same 2d structure in Sec. 6.6 with 𝜔𝑎𝑎/2𝜋𝑐 = 0.625 and 𝜔𝑡𝑎/2𝜋𝑐 ≈ 0.65.
Left: 𝑞0 = 0. Right: 𝑞0 = −2𝑘. Contour lines (dashed) are from numerical simulation.
Black solid line corresponds to 𝛿𝑘 = 𝛼𝑐𝑑 from analytical perturbation results and repre-
sents the line of eigenvalue crossing (transition of 𝜎−𝜎10𝛿𝑘 from two real to two complex
conjugate eigenvalues) when expanding around 𝑞0 = 0. The analytical line matches re-
sults of numerical simulation. Expansion around −2𝑘 does not show a critical line in
agreement with perturbation theory (case 𝑘𝑎 ̸= 𝜋/2). We have 𝛼𝑐 ≈ 0.05, 𝛼2

𝑠 ≈ −0.018

and 𝜎10 ≈ 0.59𝑖 when expanding around 𝑞0 = 0 (opposite sign for 𝑖𝜎10 when expanding
around 𝑞0 = −2𝑘).
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Figure 6-12: Same 2d structure in Sec. 6.6 with 𝜔𝑎𝑎/2𝜋𝑐 = 0.675. Left: 𝑞0 = 0. Right:
𝑞0 = −2𝑘. The lasing mode is slightly shifted to 𝑘𝑎/2𝜋 ≈ 0.1944 but still with 𝜔𝑡𝑎/2𝜋𝑐 ≈
0.65. Contour lines (dashed) are from numerical simulation. Black solid line corresponds
to 𝛿𝑘 = 𝛼𝑐𝑑 and magenta solid line corresponds to 𝛿𝑘 = 𝛼𝑠𝑑 from analytical perturbation
results when expanding around 𝑞0 = 0. Majenta line (analytical) matches Re (𝜎) = 0 from
numerical simulation. Expansion around −2𝑘 does not show a critical line in agreement
with perturbation theory (case 𝑘𝑎 ̸= 𝜋/2). We have 𝛼𝑐 ≈ 0.21, 𝛼𝑠 ≈ 0.088 and 𝜎10 ≈ 0.59𝑖

when expanding around 𝑞0 = 0 (opposite sign for 𝑖𝜎10 when expanding around 𝑞0 = −2𝑘).

6.8 Conclusion

The method presented in this chapter gives a rigorous answer to the fundamental question
of stable lasing in infinite periodic systems and provides practical guidance in the form
of theoretical criterion for stability. If these criteria are satisfied, the main theoretical
challenges for future work are to analyze the effects of boundaries (which we expect are
negligible for sufficiently large systems) and manufacturing disorder (which must eventu-
ally limit single-mode lasing).
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Chapter 7

Concluding remarks

In this thesis, we explored various applications where the resonances of the system play
an important role and allow for a general and simple understanding of the problem.

We first quantified the limitations imposed by absorption losses on enhancement ef-
fects in electromagnetic systems and obtained fundamental limits on the surface-enhanced
Raman scattering (SERS) in terms of the material susceptibility. While these limits are
proven to be tight only in the quasistatic regime, they are still an important tool for
guiding the optimization of arbitrary-shaped nanostructures to obtain larger enhance-
ments. We also investigated design methods for high-order filters, especially in strongly
coupled resonant systems, where individual resonators cannot be designed independently.
In particular, we developed a quasinormal mode theory (QNMT) to compute the scat-
tering matrix directly from the resonant modes of the system, making sure to enforce
all physical constraints of energy conservation and reciprocity, even for finite truncated
expansions. While this QNMT is a great numerical tool for computing the spectral re-
sponse, especially in the presence of sharp features that are difficult to resolve using a
frequency-domain simulation, it also offers better physical insight and can be seen as an
effective reduced-order model (reducing the complexity of the system from a spatially-
dependent geometrical profile to a few parameters associated with each resonance). This
model allowed us to obtain analytical design criteria for the realization of standard filers
based on the sole knowledge of the system resonances, which we applied to design var-
ious microwave metasurfaces. We then studied limitations on absorption enhancement
in metaparticle arrays for problems with large spectral and angular bandwidth, where
a large number of resonances is in play and coherent effects tend to average out. We
found approximate limits in the radiative transfer regime, and, highlighting the similarity
between light trapping in solar cells and multiple scattering enhancement in ocean buoy
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arrays (two seemingly different renewable-energy problems), we suggested new ways to
further increase the total absorption in the ocean buoy system, in particular using ex-
ternal membranes that act as partial reflectors, as in solar-cells’ light trapping. Finally,
we explored foundations of single-mode lasing in periodic structures, where a continuum
of modes need to be taken into account. Using Bloch theorem for the stability analysis
of the nonlinear Maxwell-Bloch equations, we obtained numerical and analytical criteria
for single-mode lasing. We showed that, under the right conditions, single-mode lasing is
possible in an infinite periodic structure, with practical limitations potentially stemming
from boundary effects and manufacturing disorder. These results are particularly relevant
for novel (e.g., BiC-based) lasers.

Multiple directions are worth exploring in the future. The methods for fundamental
bounds have been extended in multiple ways since our work, including the possibility
of frequency-averaged bounds as well as tighter single-frequency bounds using additional
constraints (albeit the increased complexity). It would be interesting to apply these new
techniques to the nonlinear Raman problem. Additionally, our work on quasinormal
modes can trigger new research directions such as: new QNMT enforcing other symme-
try constraints, rigorous treatment of absorption loss, QNMT for finite-sized scatterers
with spherical or cylindrical ports, or necessary symmetries of QNMs (in terms of QNM-
to-ports coupling coefficients) assuming certain symmetries of 𝑆 (e.g., unitarity and/or
symmetry). Other applications of our theory can also be explored such as the design
of metalenses (especially those with multi-wavelength constraints) or thermal emitters
(requiring a more rigorous treatment of absorption/emission channels). Looking further
ahead, our work can be seen as part of a larger effort to obtain simplified models for
complex systems. One of the interesting directions to explore is the possibility of a more
general and systematic framework to obtain such simplified models, potentially combined
with more recent data-driven approaches, but making sure that any model satisfies the
necessary physical constraints. Furthermore, our work on single-mode stability in periodic
structures can be extended to include effects of boundaries and manufacturing disorder
to attempt experimental investigations. Finally, while we have presented a variety of
scenarios where resonances are involved in different ways, there are still many situations
that we have not looked at. One such case corresponds to the collapse of two (or more)
resonances (i.e., eigenfrequencies and eigenfields become identical) making the operator
defective (not diagonalizable). These are called exceptional points (EPs). While in reality,
they may not be as exceptional as they are claimed to be, they still present a peculiar
state worth investigating as new effects may emerge. In particular, our QNMT and the
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laser stability conditions can be used to investigate, respectively, the spectral response as
well as the nonlinear lasing behaviour in the presence of such exceptional points.
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Appendix A

Elementary concepts

In this appendix, we describe important scattering problems and some physical quantities
associated with them.

A.1 Planewave scattering

We consider a planewave incident upon a finite-sized structure [defined by a permittivity
𝜖𝑠(r)] embedded in a homogeneous background with permittivity 𝜖 and permeability 𝜇.
Using the 𝑒−𝑖𝜔𝑡 harmonic time-dependence convention, the electric field of the incident
wave is given by Einc = 𝐸0ê𝑖𝑒

𝑖k·x, where k is the incident wavevector, 𝐸0 is the amplitude
and ê𝑖 is a unit vector defining the incident polarization.

For a three-dimensional structure, the far-field scattered field is a spherical wave1.
Along a direction k̂𝑠, the scattered field can be written as:

Es = 𝐸0ê𝑠𝑓(k̂𝑠, k̂)
𝑒𝑖𝑘𝑟

𝑟
, (A.1)

where ê𝑠 is perpendicular to k̂𝑠 and 𝑓(k̂𝑠, k̂) is the scattering amplitude from k̂ to k̂𝑠.

The power flow per unit area is given by the Poynting vector. For the incident wave,
this is equal to:

Πinc =
1

2
Re (Einc ×Hinc

*) =
|𝐸0|2
2𝜂

k̂, (A.2)

where 𝜂 =
√︀
𝜇/𝜖 is the background impedance. Similarly for the scattered wave, Πs =

|Es|2k̂𝑠/2𝜂.

The differential scattered power 𝑑𝑃𝑠 through an elementary surface 𝑑𝐴 = 𝑟2𝑑Ω asso-

1Similar results can be defined in a two-dimensional space using cylindrical waves.
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ciated with solid angle 𝑑Ω in the direction k̂𝑠 is given by |Πs|𝑑𝐴. It is then convenient to
define a differential scattering cross section as:

𝜎𝑑
𝑠 (k̂𝑠, k̂) =

𝑑𝑃𝑠

|Πinc|𝑑Ω
= |𝑓(k̂𝑠, k̂)|2. (A.3)

Note that 𝜎𝑑
𝑠 has the unit of a surface area (per solid angle). The total scattering cross

section is defined as:
𝜎𝑠 =

∫︁
|𝑓(k̂𝑠, k̂)|2𝑑Ω =

𝑃𝑠

|Πinc|
, (A.4)

where 𝑃𝑠 is the total scattered power.

We can also define an absorption cross section associated with the absorbed power.
The latter is given by:

𝑃𝑎 =
1

2
𝜔

∫︁
Im (𝜖𝑠) |E|2𝑑r, (A.5)

where E is the total field inside the structure. The absorption cross section is then defined
as 𝜎𝑎 = 𝑃𝑎/|Πinc|.

Finally, we can define the extinction (total) cross section as 𝜎𝑒 = 𝜎𝑠 + 𝜎𝑎, which
quantifies the total interaction (scattering and absorption) between the incident planewave
and the scatterer.

A.2 Dipolar emission

A dipolar emitter is one of the simplest and common sources of electromagnetic radiation.
A dipole at r0 behaves as a current source with density j = −𝑖𝜔𝛿(r−r0)p. The associated
dipolar emission is related to important concepts such as the rate of spontaneous emission
and the local density of states.

Spontaneous emission is a quantum process resulting from the decay of an electron
from an excited to a lower state, typically accompanied by a photon emission (radiative)
or heat (non radiative). In 1946, Purcell showed that the spontaneous emission rate is not
an intrinsic property of atoms and molecules, and that it can be enhanced, for example,
in the presence of a resonant device [225]. While spontaneous emission is fundamentally
a quantum effect, the enhancement of its rate (Purcell factor) can still be estimated
classically.

The decay rate Γ can be computed using Fermi’s rule and decomposing the electric
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into the cavity modes [56]. This gives:

Γ =
2𝜋𝜔

~𝜖
|pq|2𝜌𝐸pq

, 𝜌𝐸p =
𝜖

𝜖0

1

𝜋𝜔

[︀
p̂† ImG p̂

]︀
, (A.6)

where pq refers to the dipole moment of the transition between two quantum states, 𝜌𝐸p
is the partial (or polarized) electric local density of states (which describes the overlap of
the cavity modes with the dipole), and G is the dyadic Green’s function2 (at the emitter’s
position). The average power radiated is then given by Γ~𝜔 = 2𝜔

[︀
pq

† ImG pq

]︀
/𝜖0.

We can compare the previous result with the total power lost by a classical dipole p

which is given by:
𝑃p =

𝜔

2𝜖0

[︀
p† ImG p

]︀
. (A.7)

We see that the classical model matches the quantum model for p = 2pq [56]. How-
ever, this constant factor is not of much importance, since we are usually interested in
computing the power/rate enhancement in the presence of a nearby scatterer (resonator)
compared to the background. The enhancement (Purcell) factor Γ/Γ𝑏 (with Γ𝑏 the spon-
taneous emission in a homogeneous background medium) can still be computed from the
classical dipole model.

From the two previous equations, we note that the partial electric local density of
states can be computed based on the power emitted by a classical dipole:

𝜌𝐸p =
2𝜖

𝜋𝜔2
𝑃p. (A.8)

The fact that the power emitted by a dipole depends on the environment is simply due to
the fact that a fixed dipole amplitude requires a fixed current density. The power required
to maintain this current is then dependent on the environment (equivalent to changing the
load impedance). This power can be decomposed into two contributions: absorptive (lost
as heat inside the scatterer/resonator in the presence of absorption loss) and radiative
(emitted to the far-field). Similarly, we can talk about radiation and absorption LDOS
(local density of states).

The LDOS is also an important quantity to compute the thermal emission of an object.
In this case, both the electric and magnetic LDOS need to be taken into account [226]. The
total LDOS can be estimated by summing over three orthogonal polarization directions.
In a homogeneous medium with refractive index 𝑛𝑏, both contributions are equal and

2G is defined here so that E = 𝜇𝑟/𝜖0Gp.
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𝜌𝐸p = 𝜌𝐻p = 𝑛3
𝑏𝜔

2/6𝜋2𝑐3. The total LDOS is then equal to:

𝜌 =
∑︁
p

𝜌𝐸p +
∑︁
p

𝜌𝐻p =
𝑛3
𝑏𝜔

2

𝜋2𝑐3
. (A.9)
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Appendix B

QNM parameters for structures in
Chapter 3 and Chapter 4

Here, we provide all the QNMs computed via finite-element simulations. The computed
QNM-to-CPM ratios are indicated by 𝜎𝑐, while the ones fine-tuned by Eq. 3.16 of the
main text are denoted by 𝜎. The modes used to calculate the background 𝐶 matrix are
marked in bold.

B.1 Structures of Chapter 3

For simplicity, Ω and Γ in the tables denote the dimensionless frequency values as defined
in the corresponding figures.

• Normal incidence on microwave metasurface of Fig. 3-2:

Ω 0 0.2020 0.2929 0.3510 0.5099
Γ 0.0699 0.0136 0.0218 0.0625 0.0905
𝜎𝑐 0.98 -1.01+0.09i 0.14+0.01i 1.23+4.29i -0.27+0.11i
𝜎 1.00 -1.04+0.07i 0.14+0.02i 1.14+4.50i -0.28+0.09i
Ω̃ 0 0.2018 0.2925 0.3503 0.5091
Γ̃ 0.0699 0.0147 0.0234 0.0641 0.0926

Ω 0.6207 0.6431 0.6539 0.6932 0.7395
Γ 0.0029 0.0145 0.0048 0.0048 0.0363
𝜎𝑐 -0.81+0.18i -0.07+0.19i -0.26-1.70i -0.93-0.36i 0.89+0.2i
𝜎 -0.78+0.12i -0.09+0.20i -0.05-1.67i -0.94-0.61i 0.75+0.3i
Ω̃ 0.6206 0.6428 0.6538 0.6931 0.7388
Γ̃ 0.0056 0.0171 0.0077 0.0081 0.0397
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• 4-port metasurface via coupled polarizations of Fig. 3-3:

Ω𝑛 0.3826 0.4093 0.5288 0.5753 0.5948 0.6753
Γ𝑛 0.0011 0.0007 0.0095 0.0029 0.0011 0.0064
𝜎𝑐
1,2𝑛 -1.44-0.36i -0.07+0.01i 2.00+0.62i 0.57+0.23i -17.60-5.09i 1.68+1.69i
𝜎1,2𝑛 -1.50-0.13i -0.06+0.03i 2.24-0.21i 0.59-0.06i -14.57+3.13i 3.17-0.01i
𝜎𝑐
1,3𝑛 0.71+0.00i 0.15+0.03i 1.01-0.02i 0.66-0.03i -3.62+2.09i -0.71-0.03i
𝜎1,3𝑛 0.72+0.00i 0.13+0.03i 1.01-0.03i 0.70-0.02i -2.40+1.190i -0.72-0.03i
𝜎𝑐
1,4𝑛 -2.32-0.60i 1.20+0.25i 2.83+0.79i 0.43+0.00i 9.97+4.22i -1.37-1.40i
𝜎1,4𝑛 -2.37-0.23i 1.18+0.01i 3.11-0.36i 0.41-0.17i 8.90-1.07i -2.60+0.00i

• Oblique incidence on 2d photonic metasurface of Fig. 3-4:

Ω 0 0.187 0.3157 0.362 0.427
Γ 0.0402 0.0377 0.0026 0.0265 0.0012
𝜎𝑐 0.953 -0.679+0.03i 0.345+0.274i 0.992-0.051i 1.08-0.181i
𝜎 0.973 -0.689-0.019i 0.289+0.329i 1.11+0.088i 1.21+0.032i
Ω̃ 0 0.184 0.3152 0.359 0.4264
Γ̃ 0.0402 0.0440 0.0121 0.0391 0.0180

Ω 0.444 0.499 0.5219 0.5716
Γ 0.0107 0.0106 0.0122 0.00024
𝜎𝑐 -0.841+0.062i -1.71+1.19i -0.078+0.24i -0.051+0.137i
𝜎 -0.787-0.073i -1.99+0.865i -0.125+0.221i -0.081+0.120i
Ω̃ 0.443 0.498 0.5195 0.5708
Γ̃ 0.0237 0.0274 0.0278 0.0175

Ω 0.6044 0.6514 0.6737 0.7231
Γ 0.0011 0.016 0.0065 0.0052
𝜎𝑐 -3.09-0.498i 0.409+0.012i 1.39+3.76i 0.246-0.008i
𝜎 -2.96-1.43i 0.369+0.155i 0.769+5.40i 0.266-0.024i
Ω̃ 0.6032 0.6499 0.6702 0.7218
Γ̃ 0.0221 0.0373 0.0311 0.0279

B.2 Structures of Chapter 4

Ω and Γ in the tables are in units of 𝜔𝑐 = 2𝜋 × 10 GHz.
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We remind that good approximate solutions with complex 𝛾 = 𝑒𝑖𝜙 can be found, so
we allow a common phase √

𝛾 for the ratios 𝜎 during optimization. Deviations of the final
computed 𝜎/

√
𝛾 from the ideal ±1 or ±𝑖 shown below lead to only small errors in the

ISF designs. For symmetric structures, all computed 𝜎 are equal to ±1 anyway. (Note
that, after the design optimization process is completed, we do not care to fine-tune 𝜎
for QNMT modeling, since in Figs. 4,5 we only show the exact transmission spectra from
direct frequency-domain simulations anyway.)

• Third-order bandpass filters of Fig. 4-4:

Type Butterworth (𝜙 = 0) Chebyshev (𝜙 = 0)
Ω 0.9774 1.0010 1.0210 0.9788 1.0009 1.0223
Γ 0.0127 0.0251 0.0123 0.0079 0.0154 0.0075

𝜎/
√
𝛾 1 -1 1 1 -1 1

Type Inverse Chebyshev (𝜙 = −0.07𝜋) Elliptic 2% (𝜙 = −0.066𝜋)
Ω 0.9885 0.9995 1.0101 0.9728 0.9975 1.0254
Γ 0.0032 0.0086 0.0028 0.0119 0.0341 0.0128

𝜎/
√
𝛾 -1.04-0.14i 1.16+0.03i -1.10+0.17i -0.94+0.00i 1.05+0.02i -0.98+0.03i

Type Elliptic 6% (𝜙 = −0.059𝜋) Elliptic 10% (𝜙 = −0.075𝜋)
Ω 0.9718 0.9987 1.0274 0.9516 0.9972 1.0504
Γ 0.0076 0.0218 0.0078 0.0124 0.0392 0.0145

𝜎/
√
𝛾 -1.04+0.03i 0.91-0.01i -1.01-0.04i -1.04-0.15i 1.19+0.00i -1.03+0.15i

• Third-order bandstop filter of Fig. 4-5(a): (𝜙 = −0.16𝜋)

Ω 0.949 1.004 1.065
Γ 0.0156 0.0809 0.0158

𝜎/
√
𝛾 0.95+0.04i -0.97+0.00i 0.97-0.04i

• Second-order bandpass filter of Fig. 4-5(b):

Ω 0.738 0.751 0.996 1.004 1.186 1.191 1.289 1.362
Γ 0.297 0.301 0.0031 0.0031 0.0012 0.011 0.0084 0.0007
𝜎 1 -1 -1 1 -1 1 -1 1

The modes marked in bold lead to |𝐶21(𝜔𝑐)| = −24.9 dB and 𝛽 = 𝐶11𝐶
*
21/|𝐶11𝐶21| = −𝑖.

• Second-order bandstop filter of Fig. 4-5(c):
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Ω 0 0.954 1.042 1.109 1.459 1.481 1.892
Γ 0.851 0.0313 0.0343 0.993 0.0156 0.0024 0.945
𝜎 1 -1 1 -1 1 -1 1

Note that the “Fabry-Perot” modes in this final table have such a large Γ that higher-
order such modes will still have an effect at frequencies around 𝜔 ∼ 𝜔𝑐. However, they lie
deep inside the diffraction zone, so they are hard to identify from spurious modes. There-
fore, as explained in Chapter 4, we calculated more accurately 𝐶(𝜔𝑐) = 𝑆−1(𝜔𝑐)𝑆(𝜔𝑐),
with 𝑆 and 𝑆 obtained at 𝜔𝑐 from QNMT on the two high-𝑄 modes and a direct com-
putation respectively. The optimized result is then indeed |𝐶21(𝜔𝑐)| = −0.25 dB and
𝛽 = 𝑖.
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