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Abstract

Recently there has been significant interest in using machine learning to improve
the accuracy of cardinality estimation. This work has focused on improving average
estimation error, but not all estimates matter equally for downstream tasks like query
optimization. Since learned models inevitably make mistakes, the goal should be to
improve the estimates that make the biggest difference to an optimizer. We introduce
a new loss function, Flow-Loss, for learning cardinality estimation models. Flow-
Loss approximates the optimizer’s cost model and search algorithm with analytical
functions, which it uses to optimize explicitly for better query plans. At the heart
of Flow-Loss is a reduction of query optimization to a flow routing problem on a
certain “plan graph”, in which different paths correspond to different query plans. To
evaluate our approach, we introduce the Cardinality Estimation Benchmark (CEB)
which contains the ground truth cardinalities for sub-plans of over 16𝐾 queries from
21 templates with up to 15 joins. We show that across different architectures and
databases, a model trained with Flow-Loss improves the plan costs and query runtimes
despite having worse estimation accuracy than a model trained with Q-Error. When
the test set queries closely match the training queries, models trained with both loss
functions perform well. However, the Q-Error-trained model degrades significantly
when evaluated on slightly different queries (e.g., similar but unseen query templates),
while the Flow-Loss-trained model generalizes better to such situations, achieving
4 − 8× better 99th percentile runtimes on unseen templates with the same model
architecture and training data.
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1

Introduction

“All animals are equal, but some animals are more equal than others."

George Orwell, Animal Farm

“A man who wants the truth becomes a scientist; a man who wants to give free play

to his subjectivity may become a writer; but what should a man do who wants

something in between?”
Robert Musil, The Man Without Qualities

Cardinality estimation is a core task in query optimization for predicting the sizes

of sub-plans, which are intermediate operator trees needed during query optimization.

Query optimizers use these estimates to compare alternative query plans according

to a cost model and find the cheapest plan. Recently, machine learning approaches to

cardinality estimation have been successful in improving estimation accuracy [19, 53,

11, 15, 56], but they largely neglect the impact of improved estimates on the generated

query plans. This is the first work (known to us) that learns cardinality estimates by

directly optimizing for the cost of query plans generated by an optimizer.

All learned models will have non-trivial estimation errors due to limitations in

model capacity, featurization, training data, and differences between training and test-

ing conditions (e.g., due to changing workloads). Therefore it is crucial to understand

which errors are more acceptable for the optimizer. Unsupervised models learn from

the data — but they will use model capacity for sub-plans that never occur since they

treat every potential query as equally likely. Supervised models require representative

9



Figure 1-1: For this example, we use the sum of the cardinalities as the cost of a plan.
With true cardinality values, Plan1 is cheaper than Plan2. This is also the case with
Estimator1. Interestingly, however, although Estimator2’s cardinality values have smaller
error than those of Estimator1, they will mislead the optimizer to choose Plan2.

workloads, but learn more efficiently by focusing model capacity on likely sub-plans.

However, all estimates are not equally important. While an optimizer’s decisions may

be very sensitive to estimates for some sub-plans (e.g. join of two large tables), other

estimates may have no impact on its decisions.

As a drop-in replacement for the well known Q-Error [35] loss function used to

train supervised cardinality estimation models, we propose Flow-Loss, a loss function

that explicitly emphasizes estimates that matter to query performance for a given

workload. Flow-Loss takes the idea of focusing model capacity to its logical extreme

— encouraging better estimates only if they improve resulting query plans. For

instance, consider Figure 1-1: Estimator2 corrects Estimator1’s estimate of 𝐴 on 𝐶,

but it actually leads to a worse plan (Plan 2), because the relative cardinalities (𝐴 on 𝐵

vs. 𝐴 on 𝐶) are incorrect. A loss function using Flow-Loss will show no error for

Estimator1, while nudging Estimator2 to correct the relative cardinalities of these

two joins.

At its core, Flow-Loss computes the gradient of the cost of a query plan w.r.t. the

cardinality estimates used to generate the plan. To do this, we assume a simplified cost
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model and recast the dynamic programming (DP) algorithm for query optimization

as a shortest path problem, which we approximate with a smooth and differentiable

analytical objective function. This lets us use gradient descent based techniques to

improve the estimates that are most relevant to improving the query plans. We show

that improving cardinalities w.r.t. this objective also improves the quality of plans of

the complex PostgreSQL cost model and optimizer.

There are two main benefits of training models to minimize Flow-Loss. First,

similar to how attention-based models in natural language processing [49] treat certain

parts of the input as more important than others, Flow-Loss highlights which sub-

plans are most relevant to the query optimizer. This helps a model focus its limited

capacity on robustly estimating the sizes of such sub-plans. Across various scenarios,

we show that Flow-Loss trained model have worse average estimation accuracy than

Q-Error trained models, but improve the cost of generated plans. For instance, we

show in an ablation study that models trained with Flow-Loss can adapt to removing

various components of the featurization scheme, and still do equally well. Meanwhile,

ablations cause the Q-Error models to get up to 2× worse w.r.t. PostgreSQL costs.

Second, by having a larger tolerance for errors on less critical sub-plans, training

with Flow-Loss can avoid overfitting the model to cardinalities for which precise

estimates are not needed, thereby leading to simpler models without sacrificing query

performance. Such simpler models typically generalize better. We show that models

trained using Q-Error can be brittle, and can lead to significant regressions when

the query workload diverges slightly from the training queries; for instance, in the

worst cases, models trained with Q-Error are up to 4−8× slower than models trained

with Flow-Loss at the 99𝑡ℎ percentile, while the Flow-Loss trained models are not

much worse at the tail in any of the experiments. These correspond to query runtime

improvements of up to 1.5× at the mean, which goes up to over 3× if we restrict

PostgreSQL to use 256𝑀𝐵 RAM.

Our key contributions are:

• DBMS-based Plan Cost. Based on Moerkotte et al.’s [35] plan cost, defined

using arbitrary cost models, we introduce a cost model-based proxy for the runtime
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of a query plan in a particular DBMS. We show that it corresponds closely to

runtimes, and thus is a useful metric to evaluate the goodness of cardinality

estimates in terms of their impact on query optimization. Further, we provide

an implementation to easily evaluate the performance of cardinality estimation

models on Plan Cost using PostgreSQL or MySQL.

• Flow-Loss. We introduce Flow-Loss, a smooth and differentiable approximation

of Plan-Cost, which can be optimized by any supervised learning model with

gradient descent.

• Cardinality Estimation Benchmark (CEB). We create a new tool to generate

challenging queries based on templates in a semi-automated way. We use this to

create the Cardinality Estimation Benchmark, which is over 100× larger than the

Join Order Benchmark (JOB) [24], and has more complex queries.

• Training with AQP estimates. A challenge for using supervised cardinality

estimation models in practice is that collecting ground truth data is expensive.

However, precise estimates are not needed for near-optimal plans. We show that

almost equally good query plans can be generated using models trained with Flow-

Loss on data collected using approximate query processing (AQP), which is 10 −

100× faster than computing true values in our implementation. Since Q-Error

tends to overfit, it is less robust to noisy training data generated via AQP. In fact,

when using AQP training data, there is a clear degradation at the 99𝑡ℎ percentile

on all metrics for models trained with Q-Error, being 2× worse PostgreSQL costs,

and 30% slower on runtimes than the models trained with Flow-Loss.
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2

Related Work

For cardinality estimation, traditional approaches have used histograms [6], sam-

pling [25], kernel density estimation [17], wavelets [33], or singular value decom-

position [42]. Recently, machine learning approaches have shown high estimation

accuracy. Many works focus on single-table selectivity estimates [40, 56, 14, 11], but

while this is useful in other contexts, such as approximate query processing, it is non-

trivial to extend such models to joins using join sampling [59]. Learned cardinality

estimation for joins can be categorized into unsupervised (data-driven, independent

of query workload) and supervised (query-driven) approaches. Unsupervised ap-

proaches for cardinality estimation include Probabilistic Graphical Models [13, 48],

Sum-Product Networks [15], or deep autoregressive models [55]. NeuroCard [55] is

the most advanced of these approaches, but it still does not support the complex

analytical workloads studied in this work (e.g., queries with self joins). That being

said, any unsupervised model can be integrated into our approach by providing their

estimates as features.

Supervised approaches use queries with their true cardinalities as training data

to build a regression model. Our work builds on the approach pioneered by Kipf et

al. [19], which uses a single deep learning model for the whole workload. While several

supervised learning-based works report improved estimation accuracy [38, 19, 53, 54,

11, 10], only a few actually demonstrate improved query performance [16, 39, 37].

Our approach seeks to learn the cardinalities used by a traditional DBMS opti-
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mizer, while using the optimizer’s search and cost algorithms for query optimiza-

tion. Recently, there have been several other learning approaches to improve query

performance which are complementary to our methods: learning the complete op-

timizer [31, 32, 21], learning to use the optimizer’s hints [30], learning the cost

model [45], re-optimization [41, 47], and bounding worst case cardinalities to avoid

bad plans [7].

14



3

Overview

“The path of least resistance is the path of the loser."

H.G. Wells, “The New Machiavelli"

In this section, we will provide the high-level intuition behind our approach, which

will be formalized in the next sections. We target supervised learning methods that

use a parametric model, such as a neural network, to estimate cardinalities for sub-

plans required to optimize a given query. Today, such models are trained using loss

functions that compare true and estimated cardinalities for a given sub-plan, such as

Q-Error.

Definition 3.0.1. Q-Error.

Q-Error(𝑦𝑡𝑟𝑢𝑒, 𝑦𝑒𝑠𝑡) = max(
𝑦𝑡𝑟𝑢𝑒

𝑦𝑒𝑠𝑡
,
𝑦𝑒𝑠𝑡

𝑦𝑡𝑟𝑢𝑒
). (3.1)

Such a loss function treats every estimate as equally important. Instead, we want

a loss function that will focus model capacity on improving accuracy of estimates that

matter most to the quality of the plans produced by the optimizer, while tolerating

larger errors for other estimates. This loss function will need to be differentiable so

we can optimize it using standard gradient descent methods.

To understand how cardinality estimates impact the resulting query plan, let

us consider the basic structure of a query optimizer. There are two independent

components, as highlighted in Figure 3-1: (i) a cost model, which outputs a cost for
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⋈
⋈

SELECT * 
FROM A, B, C 
WHERE A.b1 = B.b1 
     AND A.c1 = C.c1

Query
|A| 4
|B| 2
|C| 2

|A    B| 10
|A    C| 8

Cardinalities

Optimizer’s 
Cost Model

Left-Deep 
Plan Search

B⋈
A C

⋈
Optimal Plan

≈ ≡
C  

Simple 
Cost Model

Shortest Path Soft Shortest Path

≈

A   B

S

D

B A C

A   C⋈⋈

S

D

B A C

A   B A   C⋈⋈

Figure 3-1: The query optimization process has two non-differentiable components: the
cost model and the plan search algorithm. We develop differentiable approximations for these
so we can understand how sensitive query plans are to changes in cardinality estimates.

every join given the cardinality estimates for all sub-plans. (ii) a DP search algorithm,

which finds the cheapest query plan. Our goal is to approximate both components

using analytical functions that can be combined into a single, differentiable loss

function:

𝑌
𝐶(·)−−→ Join-Cost

𝑆(·)−−→ Plan. (3.2)

Here 𝐶(·) maps the cardinality estimates, 𝑌 , to the cost of each join, and 𝑆(·) maps

the join costs to the optimal plan.

Approximating the cost model as an analytical function is straightforward since

it is already represented using analytical expressions. In principle, we can make this

function as precise as we want, but we found that a very simple approximation with

terms to cost joins with or without indexes works well in our workloads (Definition

4.1.5).

However, the DP search algorithm is non-trivial to model analytically. Our key

contribution is in developing a differentiable analytical function to approximate left-

deep plan search. Left-deep plans join a single table to a sub-plan at each step. Our
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construction exploits a connection between left-deep plan search and the shortest path

problem on a certain “plan graph”. While we focus on left-deep search for tractability,

the resulting loss function improves the performance for all query plans, as the sub-

plans required for costing left-deep plans are the same as required for all plans.

Figure 3-1 shows the plan graph corresponding to a simple query that joins three

tables 𝐴, 𝐵, and 𝐶. Every edge in the plan graph represents a join and has a cost,

and every path between two special nodes, 𝑆 and 𝐷, represents a left-deep plan.

The DP search algorithm outputs the cheapest plan, i.e. the shortest path. When

cardinality estimates change, they change the cost of the edges in the plan graph,

possibly changing the shortest path. Therefore, to capture the influence of cardinality

estimates on the plan analytically, we need an expression to relate edge costs to the

shortest path in the plan graph.

But this alone is not enough. The shortest path is insensitive to small changes

to most edge costs (and hence, small changes to most cardinality estimates). For

instance, consider any edge not on the shortest path; slightly increasing or decreasing

the cost of that edge would not change the shortest path. Therefore an analytical

function based on the shortest path would not have a gradient with respect to the

cost of such edges. This would make it impossible for gradient-descent-based learning

approaches to improve.

We tackle these challenges by using a soft approximation to the shortest path

problem. In this formulation, the plan graph is viewed as an electrical circuit, with

each edge having a resistance equal to its cost. One unit of current is sent from 𝑆

to 𝐷, split across paths in a way that minimizes the total energy consumed.1 This

formulation has two advantages over shortest path. First, it provides an explicit,

closed-form expression relating the edge resistances (costs) to the amount of current

on every path. Second, it does not suffer from the non-existent gradient problem

described above. In an electrical circuit, the current is not exclusively sent on the path

1Electrical flows have been used for graph algorithms in various fields: modeling random walks [9],
developing more efficient algorithms for approximating maximum flow problem [8, 23, 29], modeling
landscape connectivity in ecology [34], and inferring relatedness in evolutionary graphs in biol-
ogy [28].
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with the least resistance (i.e., the path corresponding to the cheapest plan). Instead,

all low-resistance paths carry a non-negligible amount of current. Therefore, changing

the resistance (cost) of an edge on any of these paths will affect the distribution of

current across the entire circuit. The implication in our context is that all joins

involved in low-cost query plans matter (even if they do not appear in the cheapest

plan). This aligns with the intuition that the optimizer is sensitive to precisely these

joins: changing their cost could easily change the plan it picks.

18



4

Flow-Loss

“Could fulfillment ever be felt as deeply as loss?"

Kiran Desai, The Inheritance of Loss

“Lost in the solitude of his immense power, he began to lose direction."

Gabriel García Márquez, One Hundred Years of Solitude

4.1 Definitions

This section formally defines the plan graph and the concepts we use to develop our

new loss function, Flow-Loss. As a running example, we will consider the query 𝑄1

(Figure 4-1) on the Internet Movie Database (IMDb). Throughout this work, joins

refer to inner joins, and we ignore cross-joins. For simplicity, we assume all joined

columns have an index.

Definition 4.1.1. Sub-plan. Given query 𝑄, a sub-plan is a subset of tables in 𝑄

that can be joined using inner joins. In query 𝑄1 (cf. Figure 4-1), 𝑘𝑡 on 𝑡 is a sub-plan

but 𝑘𝑡 on 𝑐𝑖 is not.

Definition 4.1.2. Plan graph. Given query 𝑄, the plan graph is a directed acyclic

graph (V,E) where 𝑉 is the set of all sub-plans, and there is an edge corresponding

to every join in 𝑄 between a sub-plan and a base table, i.e. (𝑢, 𝑣) ∈ 𝐸 if and only if

𝑣 = 𝑢 on 𝑏 for a base table 𝑏. For convenience, we add a node 𝑆 for the empty set,

19



Figure 4-1: Join graph and optimal plan for sample query 𝑄1 on the IMDb database.

which has an edge to all nodes containing exactly one table. We use 𝐷 to denote the

node consisting of all tables. Figure 4-2 shows the plan graph for query 𝑄1.

Definition 4.1.3. Path / Plan, 𝑃 . A path (sequence of edges) from 𝑆 to 𝐷 in the

plan graph. Any left-deep plan corresponds to a path from 𝑆 to 𝐷. For instance, the

plan (((𝑡 on 𝑘𝑡) on 𝑐𝑖) on 𝑛) on 𝑟𝑡 for query 𝑄1 corresponds to: 𝑆 → 𝑡 → 𝑡 on 𝑘𝑡 → 𝑡 on

𝑘𝑡 on 𝑐𝑖 → 𝑡 on 𝑘𝑡 on 𝑐𝑖 on 𝑛 → 𝐷 in Figure 4-2.

Definition 4.1.4. Cardinality vector 𝑌 . The cardinalities for each node (sub-plan)

in the plan graph. We use Y and 𝑌 to refer to true and estimated cardinalities.

Definition 4.1.5. 𝐶(𝑒, 𝑌 ). A cost model which takes as input an edge (join) 𝑒 in

the plan graph and assigns it a cost given the cardinality vector 𝑌 . In this paper , to
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Figure 4-2: Plan graph (Definition 4.1.2) for query 𝑄1. The cheapest path, P-Opt(Y), is
highlighted. The edges are colored according to 𝐶(𝑒,Y). The relative thickness of the edges
represent the flows computed by Equation 4.4, F-Opt(Y).

approximate PostgreSQL, we use the following simple cost model:

𝐶((𝑢, 𝑣), 𝑌 ) = min(|𝑢|+ 𝜆|𝑏|, |𝑢| · |𝑏|) (4.1)

where 𝑏 is a base table s.t. 𝑢 on 𝑏 = 𝑣 and |𝑢|, |𝑏| are cardinalities of 𝑢 and 𝑏 given

by 𝑌 . The term |𝑢| · |𝑏| models nested loop joins without an index, and 𝜆 = 0.001

is used to model an index on 𝑏. Figure 4-2 shows the cost of each edge in query 𝑄1.

Flow-Loss can use a more precise cost model (e.g., with terms for other join operators

such as hash join), but we found this simple model is effective in our workloads. §5.1

analyzes how well it approximates the PostgreSQL cost model.

Definition 4.1.6. 𝑃 * (Y). The cheapest path (plan) in the plan graph with edge

costs given by 𝐶(𝑒, 𝑌 ):

𝑃 *(𝑌 ) = argmin
𝑃

∑︁
𝑒∈𝑃

𝐶(𝑒, 𝑌 ). (4.2)
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For example, given Y, the cheapest path 𝑃 *(Y) is highlighted in Figure 4-2. We will

use the terms “cheapest” and “shortest” path interchangeably.

Definition 4.1.7. P-Cost, 𝑃𝐶(𝑌 ,Y). The true cost of the optimal path (plan) chosen

based on cardinality vector 𝑌 :

𝑃𝐶(𝑌 ,Y) =
∑︁

𝑒∈𝑃 *(𝑌 )

𝐶(𝑒,Y). (4.3)

P-Cost can be viewed as an alternative to loss functions like Q-Error to compare

estimated and true cardinalities 𝑌 and Y. It finds the cheapest path using 𝑌 , i.e. 𝑃 *

(𝑌 ), and then sums the true costs of the edges in this path using Y. Note that for a

fixed Y, P-Cost takes its lowest value when 𝑌 = Y.

Remark. As defined, P-Cost is not a distance metric [1] (e.g., it does not satisfy the

symmetry property). However, this does not affect its use in our loss function. In

an online appendix [3], we use 𝑃𝐶 to construct a pseudometric [2] that computes a

distance between two cardinality vectors.

While P-Cost captures the impact of cardinalities on query plans, it has an

important drawback as a loss function: It cannot be minimized using gradient-based

methods. In fact, the gradient of P-Cost with respect to 𝑌 is zero at almost all values

of 𝑌 . To see why, notice that a small perturbation to 𝑌 does unlikely change the

path chosen by 𝑃 * (𝑌 ); the path would only change if there were multiple cheapest

paths. Therefore P-Cost will also not be affected by a small perturbation to 𝑌 . In

this section we define an alternative to 𝑃 * that has a gradient w.r.t. any cardinality

in the plan graph, and use it to construct our loss function, Flow-Loss.

4.2 From Shortest Path to Electrical Flows

The problem with 𝑃 * is that it strictly selects the shortest (cheapest) path in the

plan graph. Consider, instead, the following alternative that can be thought of as a

“soft” variant of shortest path. Assume the plan graph is an electrical circuit, with
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edge 𝑒 containing a resistor with resistance 𝐶(𝑒, 𝑌 ). Now suppose we send one unit

of current from 𝑆 to 𝐷. How will the current be split between the different paths

from 𝑆 and 𝐷?

In an electric circuit, paths with lower resistance1 (shorter paths) carry more

current, but the current does not flow exclusively on the path with least resistance.

Assuming all paths have a non-zero resistance, they will all carry some current.

Importantly, every edge’s resistance affects how current is split across paths. The

precise way in which current flows in the circuit can be obtained by solving the

following energy minimization2 problem:

𝐹 *(𝑌 ) = argmin
𝐹

∑︁
𝑒∈𝐸

𝐶(𝑒, 𝑌 ) · 𝐹 2
𝑒 (4.4)

s.t
∑︁

𝑒∈𝑂𝑢𝑡(𝑆)

𝐹𝑒 =
∑︁

𝑒∈𝐼𝑛(𝐷)

𝐹𝑒 = 1 (4.5)

∑︁
𝑒∈𝑂𝑢𝑡(𝑉 )

𝐹𝑒 =
∑︁

𝑒∈𝐼𝑛(𝑉 )

𝐹𝑒 (4.6)

Here the optimization variable 𝐹 assigns a flow of current to each edge. Equation (4.5)

enforces that one unit of flow is sent from 𝑆 to 𝐷. Equation (4.6) is the conservation

constraint for all nodes except 𝑆 and 𝐷 — it enforces that the amount of flow going

in and out of a node should be the same. The thickness of edges in Figure 4-2 show

the flows assigned to each edge by 𝐹 * (Y).

Computing 𝐹 * is a classical problem in circuit design [4, 8], and it has a simple

closed form expression as a function of the resistances 𝐶(𝑒, 𝑌 ). For a plan graph with

𝑀 edges and 𝑁 nodes, we can compute the flows by:

𝐹 *(𝑌 ) = 𝐴𝐿−1𝑖, (4.7)

where 𝑖 ∈ 𝑅𝑁 is the constant vector of [1, 0, ...,−1]; 𝐴 ∈ 𝑅𝑀,𝑁 is a weighted

1For the purpose of this discussion, we view the resistance of a path as the sum of the resistances
along its edges, which corresponds to the path’s length when the resistance is viewed as a distance,
or the path’s cost when the resistance is viewed as the cost of an edge.

2Recall that the energy dissipated when current 𝐼 flows through a resistor with resistance 𝑅 is
𝑅𝐼2 [4].
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adjacency matrix. Each entry is defined by:

𝐴(𝑢,𝑣),𝑤 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

𝐶(𝑒,𝑌 )
if 𝑢 = 𝑤

− 1
𝐶(𝑒,𝑌 )

if 𝑣 = 𝑤

0 otherwise.

and 𝐿 ∈ 𝑅𝑁,𝑁 is known as the weighted Laplacian of a graph [9, 29], with its

entries given by:

𝐿𝑢,𝑤 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑︀
𝑒∈𝐼𝑛(𝑢)∪𝑂𝑢𝑡(𝑢)

1
𝐶(𝑒,𝑌 )

if 𝑢 = 𝑤

− 1
𝐶((𝑢,𝑤),𝑌 )

if (𝑢,𝑤) is an edge

0 otherwise.

𝐹 * just multiplies two matrices, thus is clearly differentiable. We also provide an

explicit closed form expression for the gradient of 𝐹 * online [3]. We are now ready to

define our final loss function.

Definition 4.2.1. Flow-Loss.

Flow-Loss(𝑌 ,Y) =
∑︁
𝑒∈𝐸

𝐶(𝑒,Y) · 𝐹 *(𝑌 )2𝑒 (4.8)

Notice the similarity to P-Cost (Equation 4.3). P-Cost computed the sum of the

true edge costs of the path chosen by 𝑃 *(𝑌 ), whereas Flow-Loss is a weighted sum

of the true edge costs, where the weight of an edge is the square of the flow assigned

to that edge by Equation 4.4, i.e., 𝐹 *(𝑌 )𝑒. An alternative, intuitive interpretation of

Flow-Loss is the true “energy dissipation” of the flows 𝐹 *(𝑌 ). Since 𝐹 * (·) and 𝐶(·)

(Definition 4.1.5) are both differentiable, so is Flow-Loss, and we can use the chain

rule to get the gradients of Flow-Loss w.r.t 𝑌 .

Claim: Flow-Loss is minimized when 𝑌 = Y.

Proof: Note that 𝐹 * (Y) assigns each flow edge, 𝐹𝑒 s.t.
∑︀

𝑒∈𝐸 𝐶(𝑒,Y) · 𝐹 2
𝑒 is
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minimized (Equation 4.4). This is precisely the equation for Flow-Loss (Equation

4.8), since the costs, 𝐶(𝑒,Y), are computed using true cardinalities as well. Thus,

setting 𝑌 = Y, i.e., choosing flows according to the true cardinalities, is one (not

unique) minimizer of Flow-Loss.

Similarly, 𝐹 * (𝑌 ) will be choosing flows to minimize
∑︀

𝑒∈𝐸 𝐶(𝑒, 𝑌 ) · 𝐹 2
𝑒 ; since

the costs, 𝐶(𝑒, 𝑌 ) may be arbitrarily different from the true costs, 𝐶(𝑒,Y) used in

Flow-Loss, the generated flows may have much higher Flow-Loss.

4.3 Bounding Plan-Cost in terms of Flow-Loss

Moerkotte et al. [35] showed PC(𝑌 ,Y) ≤ 𝑞4PC(Y,Y), where 𝑞 is the largest Q-Error

over all sub-plans. This loosely bounds how much worse can the plan using 𝑌 be

than the plan using Y in terms of Q-Error. We prove a similar result for Flow-Loss.

Theorem 1.

PC(𝑌 ,Y) ≤ 𝑘2Flow-Loss(𝑌 ,Y) (4.9)

≤ 𝑘2 Flow-Loss(𝑌 ,Y)

Flow-Loss(Y,Y)
PC(Y,Y) (4.10)

where 𝑘 = 1

min𝑒∈𝑃*(𝑌 ) 𝐹
*(𝑌 )𝑒

, i.e., inverse of the minimum flow on the path 𝑃 *(𝑌 ).

Proof. Flow-Loss (Equation 4.8) sums over all edges; Consider only the terms

summing over 𝑃 *(𝑌 ), i.e.,

∑︁
𝑒∈𝑃 *(𝑌 )

𝐶(𝑒,Y) · 𝐹 *(𝑌 )2𝑒. (4.11)

This is a weighted version of PC(𝑌 ,Y). We defined 𝑘, such that the smallest weight

is 1
𝑘2

. Thus multiplying Equation 4.11 by 𝑘2 ensures that the coefficients of 𝐶(𝑒, 𝑌 )

would be greater than 1, and Equation 4.9 follows. Equation 4.10 follows because

we multiplied Equation 4.9 with a term greater than 1, since Flow-Loss(Y,Y) ≤

PC(Y,Y) (to see this, notice that a potential solution for 𝐹 *(Y) sets the flow of each

edge in 𝑃 *(Y) to 1, and rest to 0. This would make Flow-Loss (Y,Y) = 𝑃𝐶(Y,Y).
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But, 𝐹 *(Y) chooses the flow values to minimize Flow-Loss (Y,Y), thus it will be at

least as small as 𝑃𝐶(Y,Y))
Flow-Loss(𝑌 ,Y)
Flow-Loss(Y,Y)

is typically much smaller than 𝑘. But 𝑘 is hard to bound — and gets

larger as the set of interesting paths increase. Empirically this seems to be at least

as good as the Q-Error bound. But mostly, both these bounds provide intuition for

why these are sensible loss functions, since other loss functions, such as mean squared

error, provide no worst case guarantees whatsoever.

4.4 Discussion

Beyond left-deep plans. P-Cost, and by extension, Flow-Loss are defined over left-

deep plans. Extending Flow-Loss to bushy plans is more challenging: we will need to

define a graph similar to the plan graph, where every valid bushy plan is a path, but

this will lead to an exponential increase in the number of paths. Fortunately, it does

not seem required to consider bushy plans explicitly when optimizing for cardinality

estimates. First, the best left-deep plan often has reasonable performance compared

to the best overall plan [24]. Second, every sub-plan in the query is required to find

the best left-deep plan, therefore, the set of cardinality estimates required to optimize

bushy plans are also needed for left-deep plans. In particular, when indices are used,

left-deep sub-plans are a prominent part of bushy plans. Hence, estimates that are

important for choosing good left-deep plans are also important for bushy plans.

Anchoring. An unusual property of Flow-Loss compared to loss functions such as Q-

Error is that it is not very sensitive to the absolute value of the cardinality estimates.

Like an optimizer, Flow-Loss is affected more by the relative value of estimates

for competing sub-plans. In particular, multiplying the cardinality estimates of all

sub-plans of a query by a constant will often not change the cheapest path in the

plan graph, because the costs computed using 𝐶 (Definition 4.1.5) are linear in the

cardinality estimates for most edges (specifically, the edges corresponding to joins that

are cheaper with an index). The implication is that training a cardinality estimation

model using Flow-Loss does not “anchor” the learned model’s outputs to the true
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values (e.g., it may learn to estimate cardinalities that are all roughly 5× larger than

the true values). It is possible to add explicit terms to the loss function that penalize

large deviations from true values, or use a more precise cost model that is sensitive

to absolute cardinalities.3 Flow-Loss will optimize for whichever cost model we use.

However, in our workloads we found that even without explicit anchoring, Flow-Loss

learns cardinalities that perform well with PostgreSQL.

3For example, a cost model that accounts for spilling.
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5

Flow-Loss Analysis

“I cannot make you understand. I cannot make anyone understand what is

happening inside me. I cannot even explain it to myself."
Franz Kafka, The Metamorphosis

The goal of Flow-Loss is to learn cardinality estimation models that improve query

performance of a DBMS. As a concrete example, we focus specifically on improving

PostgreSQL. In this section, we analyze the behavior of Flow-Loss using examples on

PostgreSQL to understand how it improves on traditional loss functions like Q-Error.

5.1 Cost Model

P-Cost and Flow-Loss were defined using the simple cost model 𝐶 (Definition 4.1.5).

However, our ultimate goal is to improve query performance of PostgreSQL, which

we quantify using the actual PostgreSQL cost model.

Definition 5.1.1. Postgres Plan Cost (PPC). PPC is the same as P-Cost (Defini-

tion 4.1.7), but uses the PostgreSQL cost model and PostgreSQL’s dynamic program-

ming implementation of exhaustive search over all plans—not only left-deep plans.

To compute PPC, we inject 𝑌 into the PostgreSQL optimizer to get the cheapest

plan (join order and physical operators) for 𝑌 . Then we cost this plan using Y. We

29



104 105 106 107 108

P-Cost

105

107

109
Po

st
gr

es
 P

la
n 

Co
st

IMDb Workload

105 106

P-Cost

105

106

107

108
StackExchange Workload

Figure 5-1: P-Cost versus PPC given true cardinalities for the two workloads we used.

implement it using a modified version of the plugin pg_hint_plan1 [46]. We disable

materialization and parallelism in PostgreSQL as they add complexity which makes

it harder to analyze. Similarly, we can use the DBMS MySQL to define MySQL

Plan Cost. We modify the open source MySQL code to implement the necessary

functionality of injecting cardinality estimates for query optimization2.

Flow-Loss is an approximation to P-Cost, which in turn is an approximation to

PPC. For Flow-Loss to be useful, its cost model 𝐶 must broadly reflect the behavior

of the PostgreSQL cost model. Figure 5-1 shows a scatter plot of P-Cost versus PPC

given true cardinalities for two workloads described in Section 6. The PostgreSQL

cost model includes many terms that we do not model, thus we would not expect the

scale of P-Cost and PPC to match precisely. Nonetheless, we observe that PPC and

P-Cost mostly follow the same trends. It matters less that P-Cost is not very precise,

since we are merely using it as a signal to improve the cardinality estimates that lead

to high costs. To optimize queries, these cardinality estimates will be provided to the

PostgreSQL optimizer with its full cost model.
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Figure 5-2: Comparing Q-Error (left) or Flow-Loss (right) as we vary the cardinality
estimates of different sub-plans. For each data point we multiply or divide the true value
(center) by 2.

5.2 Shape of Loss Functions

Next, we will compare the behavior of Q-Error (Definition 3.0.1), PPC (Definition

5.1.1), and Flow-Loss using our running example, query 𝑄1 (Figure 4-1). Recall that

Figure 4-2 shows the true cost of each edge, 𝐶(𝑒,Y). As we change the cardinality

of one node (sub-plan), 𝑢, the estimated costs of outgoing edges from 𝑢 will change,

affecting the overall cost of any path (plan) that passes through 𝑢.

Flow-Loss is sensitive to under-estimates of nodes on bad paths, and over-

estimates of nodes on good paths. Figure 5 − 2 shows three representative

examples of how Q-Error and Flow-Loss change as we multiply or divide the cardi-

nality of one node by increasing amounts while keeping the others fixed at their true

values. Q-Error changes identically for all nodes (the lines overlap), but the behavior

of Flow-Loss differs depending on the node. Node 𝑐𝑖 on 𝑡 has multiple expensive

paths that go through it (note the red edges in Figure 4-2). As we under-estimate

its cardinality, Flow-Loss shoots up (blue line). This aligns with the intuition that

under-estimating this node makes bad paths appear cheaper, which may cause the

optimizer to choose one of them instead of the actual cheapest path. Over-estimating

1https://github.com/parimarjan/pg_hint_plan
2https://github.com/parimarjan/mysql-server
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Figure 5-4: Comparing Q-Error, PPC, and Flow-Loss when we vary estimates of two
sub-plans at the same time. The colors go from dark (low errors) to light (high errors).

its cardinality, on the other hand, make bad paths appear even more expensive, which

is good as we want the optimizer to avoid these paths. Thus, it is sensible that Flow-

Loss stays near its minimum in this case. The node 𝑐𝑖 on 𝑛 on 𝑟𝑡 on 𝑡 is on the cheapest

path, while the node 𝑘𝑡 on 𝑡 has two relatively good paths passing through it (c.f.

Figure 4-2). For these nodes, Flow-Loss remains at its minimum for under-estimates

(since it makes good paths appear cheaper), and shoots up for over-estimates (since it

makes good paths appear more expensive). Recall that Flow-Loss uses all relatively

good paths, not just the cheapest, and therefore, it is impacted by both nodes.

Flow-Loss roughly tracks PPC decision boundaries. Figure 5-3 compares the

shapes of Q-Error, PPC, and Flow-Loss as we vary the cardinality of a single node.
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Each curve is plotted on its own scale as we are only interested in comparing their

behavioral trends. Node 𝑐𝑖 on 𝑛 on 𝑟𝑡 is already on the cheapest path (cf. Figure

4-2), so Flow-Loss is only sensitive to over-estimating its cardinality, like PPC. Node

𝑐𝑖 on 𝑟𝑡 is not on the cheapest path, and like PPC, Flow-Loss is a lot more sensitive

to under-estimates as it causes flow to be diverted to the paths containing this node

from potentially cheaper paths. Node 𝑐𝑖 on 𝑘𝑡 on 𝑟𝑡 on 𝑡 is an example of a case where

Flow-Loss leads to a different behavior from PPC. For overestimates, PPC is flat at

its minimum while Flow-Loss blows up. 𝑐𝑖 on 𝑘𝑡 on 𝑟𝑡 on 𝑡 is not on the cheapest path,

but there are multiple nearly optimal paths using this node (cf. Figure 4-2). Since

Flow-Loss routes a non-trivial amount of flow on such paths, it is sensitive to making

them more expensive, even though the optimizer does not switch from the cheapest

path (thus, PPC remains flat). This is a desirable property from the standpoint of

robustness. It reflects the fact that any of the nearly optimal paths could become the

cheapest path and get chosen by the optimizer if the cardinalities change slightly. For

instance, although node 𝑐𝑖 on 𝑘𝑡 on 𝑟𝑡 on 𝑡 is not on the cheapest path when all edges

are cost using true cardinalities, it would be on the cheapest path if we underestimate

the cost of the 𝑐𝑖 on 𝑘𝑡 on 𝑡 → 𝑐𝑖 on 𝑘𝑡 on 𝑟𝑡 on 𝑡 edge (or overestimate the cost of

the actual cheapest path). In that case, PPC would have been sensitive to increasing

the cardinality of this node. By considering all good paths simultaneously, Flow-Loss

more robustly captures the behavior of the optimizer in response to such variations

in cardinalities. As a further example, in Figure 5-4, we vary cardinalities of two

sub-plans simultaneously. Once again we observe that Flow-Loss roughly reflects the

behavior of PPC — it is highest when cardinalities for both the nodes are under-

estimated (lower left quadrant in the figures).

5.3 Benefits of Flow-Loss

In practice, cardinality estimation models face several challenges: limited model

capacity (making it impossible to learn all the intricacies of the data distribution),

limited training data (since collecting ground truth data is expensive), insufficient
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features (e.g., it may be hard to represent predicates on columns with a large number

of categorical values), noisy training data, changing data (e.g., Wang et al. [51] show

that learned models can have a steep drop in performance after data is updated),

and changing query workloads. Thus, it is inevitable that such models will make

mistakes. As the examples in §5.2 suggest, Flow-Loss guides the learning to focus on

estimates that matter, and to improve their accuracy only to the extent necessary for

improving query performance. This has several positive consequences as we highlight

below.

Model capacity. Lower capacity models, or less expressive features, make it harder

for learned models to achieve high accuracy. Flow-Loss helps utilizing the limited

model capacity in a way that maximizes the model’s impact on query performance.

Domain-specific regularization. A model trying to minimize Q-Error treats each

estimate as equally important, which makes it easy to overfit to the training data.

Regularization is a general approach to mitigate overfitting and improve general-

ization, but generic regularization techniques such as weight decay [5] simply bias

towards learning simpler models (e.g., smoother functions) without taking advan-

tage of the problem structure. Flow-Loss provides a stronger, guided regularization

effect by utilizing domain-specific knowledge about query optimization.3 The key

information is to know which details of the training data can be ignored without

impacting query performance. If estimation errors on a subset of sub-plans do not

typically cause worse plans, then there is no need to learn a more complex model to

correct them. This is precisely what Flow-Loss does by allowing a high tolerance to

cardinality estimation errors for many sub-plans.

Tolerance to noisy training data. As a direct consequence of the previous point,

by ignoring accuracy on less important subsets of the data, Flow-Loss can better

handle noisy, or missing training data, which can let us avoid the expensive process

of executing all sub-plans to generate the true cardinalities. Instead, we can train

well-performing models using approximate cardinalities obtained via fast sampling

3There are similar examples in other ML applications, e.g., Li et al. show domain-specific loss
functions for physics applications lead to improved generalization via implicit regularization [27].
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techniques [26].
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6

Cardinality Estimation Benchmark

(CEB)

Table 6.1: Comparing CEB with JOB.

Dataset
JOB
(IMDb)

CEB
(IMDb)

CEB
(SE)

# Queries 113 13,644 3435
# Sub-plans 70K 3.5M 500K
# Templates 31 15 6
# Joins 5 – 16 5 – 15 5 – 8
# Optimal plans 88 2200 113

Benchmark. We create a tool to generate a large number of challenging queries

based on predefined templates and rules. Using this tool, we generate the Car-

dinality Estimation Benchmark (CEB) [36], a workload on two different databases

(IMDb [24] and StackExchange (SE) [44]) containing over 16𝐾 unique queries and

true cardinalities for over 4𝑀 sub-plans including count and group by aggregates,

and range, in, and like predicates. Table 6.1 summarizes the key properties of

CEB, and contrasts them with Join Order Benchmark (JOB) [24]. Notice that

for the 13𝐾 IMDb queries in CEB, there are over 2𝐾 unique plans generated by

PostgreSQL with true cardinalities — showing that different predicates lead to a

diverse collection of optimal query plans. CEB addresses the two major limitations of
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Figure 6-1: TOML configuration file for generating queries based on a predefined template
and rules.

queries used in previous works [19, 39, 10]: First, past work on supervised cardinality

estimation [19, 10, 39] evaluate on workloads with only up to six joins per query.

CEB has much more complex queries ranging from five to sixteen joins. Second,

while JOB [24] contains challenging queries with up to 16 joins, they only have two

to five queries per template. This is insufficient training data for supervised learning

methods. CEB contains hundreds of queries per hand-crafted template with real-

world interpretations.

Query generator. Generating predicate values for query templates is challenging

because predicates interact in complex ways, and sampling them independently would

often lead to queries with zero or very few results. Our key insight is to generate

interesting predicate values for one, or multiple columns together, using predefined

SQL queries that take into account correlations and other user specified conditions.

Figure 6-1 shows a complete template which generates queries with the same structure

as our running example, 𝑄1. We will walk through the process of generating a sample
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query following the rules specified in this template. [base sql] is the SQL query to

be generated, with a few unspecified predicates to be filled in. [predicates] are rules

to choose the predicates for groups of one or more columns. The predicate year is

of type less than or equal to, and we choose a value uniformly from the given list.

We sample filter values for the remaining three in predicates together because kind,

role, and gender are highly correlated columns. For these, we also add year as a

dependency — as the year chosen would influence predicate selectivities for all these

columns. We generate a list of candidate triples using a group by query. From this

list, we sample 2 to 7 values for each in predicate.

Timeouts. Some sub-plans in the StackExchange queries time out when collecting

the true values. This is due to unusual join graphs which make certain sub-plans

behave like cross-joins (see online appendix [3]). In such cases, we use a large constant

value in place of the true cardinalities as the label for the timed out sub-plans in

the training data. We verified that the plans generated by injecting all known true

cardinalities and this constant value into PostgreSQL leads to almost 10× faster

runtimes than using the default PostgreSQL estimates. Thus, despite the timeouts,

our labels for StackExchange are a good target for training a cardinality estimation

model.

Approximate training data. Intuitively, we may not need precise cardinality esti-

mates to get the best plans — thus, approximate query processing (AQP) techniques,

such as wander join [26] or IBJS [25], should provide sufficient accuracy. However,

we cannot use these techniques for query optimization because they are too slow to

provide estimates for all sub-plans at runtime. But these techniques are much faster

than generating the ground truth cardinality estimates for all sub-plans, which is by

far the most expensive step in building a cardinality estimation model. Therefore,

we propose that training models on data generated by AQP techniques may be an

important component of a practical learned cardinality estimation system. We modify

the wander join algorithm to efficiently generate all the cardinality estimates in a given

workload (excluding LIKE / regex queries), with precise implementation details given

in the online appendix [3]. We use this only as a proof of concept; our implementation
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is not optimized, and uses a mix of Python and SQL calls to do the random walks in

wander join. Despite this, we generate the wander join estimates with speedups over

generating ground truth data that range from 10× to 100× for different templates. For

instance, for the largest template with around 3𝐾 sub-plans, generating all the ground

truth data on a single core takes about 5 hours, while wander join estimates take less

than 5 minutes on average, and give almost equally good plans. In Section 7.4, we

explore if the wander join estimates are as good as true cardinalities to train learned

models.1

1This learning problem is similar to how obfuscation by adding random noise to training data is
used to learn ML models while preserving privacy [58].
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7

Experiments

“People almost invariably arrive at their beliefs not on the basis of proof but on the

basis of what they find attractive.”
Blaise Pascal, De l’art de persuader

“The inability to predict outliers implies the inability to predict the course of

history."
Nassim Nicholas Taleb, The Black Swan

“Insanity is doing the same thing over and over again and expecting different

results."
Narcotics Anonymous, 1981

7.1 Setup

This section introduces the evaluation setup, including the model architectures, fea-

turization scheme, loss functions, and the DBMS setup. The implementations of these

models are available online1.

Featurization. As described by Kipf et al. [19], a sub-plan 𝑞 is mapped to three sets

of input vectors: 𝑇𝑞, 𝐽𝑞, and 𝑃𝑞 for the tables, joins, and predicates in the sub-plan.

We augment these with a vector 𝐺𝑞 that captures the properties of the sub-plan in

the context of the plan graph. A one-hot vector encodes each table in the sub-plan

1github.com/parimarjan/learned-cardinalities
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(𝑇𝑞), and a second one-hot vector encodes each join (𝐽𝑞). For range predicates,

we use min-max normalization [19, 39]. For in predicates we use feature hashing

[43]. This is a standard technique in ML applications where categorical features

with large alphabet sizes are hashed to 𝑁 bins. Even if 𝑁 is much smaller than the

alphabet size, it still provides a signal for the learned models. For like predicates

we use feature hashing with character n-grams [52]. This is useful to distinguish

between extremely common and uncommon characters. For like, we also include the

number of characters and the presence of a digit as additional features. We find that

𝑁 = 10 bins each for every column-operator pair works well on our workloads. As

proposed by Dutt et al. [11], we add the cardinality estimate for each table (after

applying its predicates) from PostgreSQL to that table’s vector in 𝑇𝑞, which we

found to be sufficient for our workload. For a stronger runtime signal, we could add

sample bitmaps [19, 20] (i.e., bitmaps indicating qualifying sample tuples), however,

as this would significantly increase the model’s parameters and hence increase memory

requirements, we omit this optimization in this work. Similarly, we do not explicitly

encode group by columns like earlier work does [18] and rely on PostgreSQL’s

estimates instead.

𝐺𝑞 is a vector for the plan graph-based properties of a sub-plan. This includes

information about the immediate children of the sub-plan node in the plan graph

(i.e., the nodes obtained by joining the sub-plan with a base table). Specifically: the

number of children, the cost using PostgreSQL’s estimated cardinalities of the join

producing that child, and the relative PostgreSQL’s estimated cardinality of that

child compared to the sub-plan. Intuitively, such information about neighboring plan

graph nodes could be useful to generalize to new queries. We also add the PostgreSQL

cardinality and cost estimate for the sub-plan to 𝐺𝑞. For all cardinalities, we apply

log transformation [11].

Models. To compare Q-Error and Flow-Loss, we train two representative neural

network architectures with both loss functions. Fully-Connected Neural Network

(FCNN) was used by Ortiz et al. [39] and Dutt et al. [11]. It takes as input a

1-D feature vector that concatenates the vectors in 𝑇𝑞, 𝐽𝑞, 𝑃𝑞, and 𝐺𝑞. Multi-
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Set Convolutional Network (MSCN) was proposed by Kipf et al. [19] based on the

DeepSets architecture [57], and we extend it to include the 𝐺𝑞 features as well. These

are very different architectures, and represent important trade-offs — FCNN is a

lightweight model that trains efficiently, but does not scale to increasing database

sizes (number of neural network weights grow with the number of columns), while

MSCN uses a set-based formulation that is scalable but is less efficient to train.

Setup. We use PostgreSQL 12 for the PostgreSQL experiments, and MySQL 8, with

the MyISAM storage backend. We tune the configurations to reasonable settings,

while disabling some optimizations like parallelism and materialization in both the

DBMSs. The precise configurations, and code to reproduce the execution environment

is provided online [36]. For the runtime experiments, we use Amazon EC2 instances

with a NVMe SSD device, and 8GB RAM (m5ad.large for IMDb, and m5ad.xlarge

for StackExchange).

Evaluation metrics. To evaluate our experiments we use Q-Error (Definition 3.0.1),

Postgres Plan Cost, (PPC, Definition 4.1.7), and actual query runtimes. Q-Errors are

computed per sub-plan, while PPC and runtimes are computed per query. PPC is in

the cost model units - thus, the absolute values are significantly larger. These do not

exactly translate into runtimes due to the inconsistencies between the cost model and

the reality. But, we find that significantly large differences in Postgres Plan Error are

reflected in the runtimes.

Loss functions. Our main focus is to compare the Q-Error and Flow-Loss loss

functions to train the neural network models. In the online appendix [3], we also

compare with Prioritized Q-Error [37], which was our exploratory earlier work in

tweaking the Q-Error loss function to focus on queries which have high PPC. We use

the true cardinalities and estimates from PostgreSQL as baselines to compare against

the learned models.

Baselines. We use the true cardinalities and estimates from PostgreSQL as baselines

to compare the learned cardinality estimation models.

Training and test sets. We consider two scenarios:
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1. Testing on seen templates. The model is evaluated on new queries from

the same templates that it was trained on. We put 20% of the queries of each

template into the validation set, and 40% each into the training and test sets. The

hyperparameters are tuned on the validation set, and we report results from the

test set.

2. Testing on unseen templates. The model is evaluated on different templates

than the ones it was trained on. We split the templates equally into training and

test templates. Since the number of templates is much smaller than the number of

queries, we use ten-fold cross-validation for these experiments: the training / test

set splits are done randomly using ten different seeds (seeds = 1− 10). We use the

same hyperparameters as determined in the seen templates scenario. Even though

the templates are different in the second scenario, there would be a significant

overlap with the training set on query sub-plans. This tests the robustness of these

models to slight shifts in the workload.

7.2 PostgreSQL Results

Key results. Figure 7-1a shows the results of all approaches w.r.t. PPC on IMDb.

All models outperform PostgreSQL’s estimator significantly on seen templates. How-

ever, only the Flow-Loss trained models do so consistently on unseen templates

as well. For seen templates, the models trained using Flow-Loss do better than

the models trained using Q-Error on PPC. All models get worse when evaluated

on unseen templates - but the Flow-Loss models degrade more gracefully. When

the queries are from seen templates, the difference in PPC does not translate into

runtime improvements (cf. Figure 7-1b). However, on unseen templates, we see clear

improvements in runtime as well.

7.2.1 Testing on seen templates

Table 7.1 summarizes the results for the IMDb workload when trained and tested on

all IMDb templates. Each experiment is repeated three times, and we show ±1𝑠𝑡𝑑𝑑𝑒𝑣
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Figure 7-1: Comparing performance of all models on seen versus unseen templates. For
unseen templates, we do ten experiments using ten different training/test template splits.

for each statistic. All learned models improve significantly over PostgreSQL on all

metrics, and do about equally well. All models do well in this scenario, but there are

subtle differences which we highlight below.

Worse Q-Error, better PPC, similar runtimes. The models trained to minimize

Q-Error naturally do best on Q-Error - even the 99th percentile Q-Error of millions

of sub-plans goes only up to 100. But, this is to be expected — our goal was to

improve cardinality estimates only when it is important for query optimization. As
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Table 7.1: Models trained and evaluated on the same IMDb templates. We show ±1𝑠𝑡𝑑𝑑𝑒𝑣
for Q-Error and PPC from three repeated experiments, and execute plans from one random
run. 𝑋𝑝 refers to the 𝑋𝑡ℎ percentile.

Q-Error Postgres Plan Cost (Millions) Runtime

50p 90p 99p Mean 90p 99p Mean 90p 99p

Baselines
True 1 1 1 4.7 1.1 131.5 13.23 28.96 60.83

PostgreSQL 42.87 48K 2.2M 10.7 9.6 269.7 20.86 46.86 101.57

FCNN
Q-Error 2.0 ± 0.1 10.5 ± 1.6 0.1K ± 32.0 6.4 ± 0.5 1.8 ± 0.1 142.6 ± 11.7 13.83 30.82 60.10

Prioritized Q-Error 2.5 ± 0.1 17.1 ± 1.9 0.4K ± 83.9 5.9 ± 0.4 1.7 ± 0.0 135.8 ± 18.9 13.91 31.48 61.40
Flow-Loss 4.0 ± 0.9 83.4 ± 36.3 4.1K ± 1.9K 6.0 ± 0.7 1.8 ± 0.1 136.0 ± 23.9 13.93 30.97 60.50

MSCN
Q-Error 2.0 ± 0.0 9.6 ± 0.2 0.1K ± 3.9 6.4 ± 0.3 1.9 ± 0.1 189.1 ± 6.6 13.69 30.49 58.49

Prioritized Q-Error 2.8 ± 0.4 25.2 ± 8.3 0.7K ± 0.4K 6.1 ± 0.4 2.4 ± 0.4 163.8 ± 10.1 13.83 31.10 60.00
Flow-Loss 3.0 ± 0.1 44.4 ± 5.6 2.1K ± 0.4K 5.5 ± 0.6 2.2 ± 0.1 161.9 ± 16.2 14.08 31.61 59.88

seen in Figure 7-1, the Flow-Loss trained models distinctly improve mean PPC over

the Q-Error models, getting close to the PPC with true cardinalities. This suggests

that Flow-Loss models better utilize their model capacity to focus on sub-plans that

are more crucial for PPC. It also shows that better Q-Error estimates do not directly

translate into improved plans. However, in terms of runtimes, all models do equally

well, and are very close to the performance of using true cardinalities.

PPC versus runtimes. Figure 7-2 shows the trends for PPC and runtimes are

roughly correlated. Notice that the costs (x-axis) are shown on a log scale — thus,

order of magnitude better costs translate to faster runtimes.

7.2.2 Testing on unseen templates

When we split the training set and test set by templates, each partition leads to

very different information available to the models — therefore we will analyze the

partitions individually.

Flow-Loss generalizes better. In Figure 7-3a, we look at the performance of a

model trained with Flow-Loss compared to one trained with Q-Error w.r.t. PPC and

query runtime. A single bar represents the same model architecture (FCNN or MSCN)

trained and evaluated on one of the ten partitions in the unseen templates scenario.

This figure highlights the overall trends across all unseen partition experiments: we

see significant improvements on some partitions, relatively smaller regressions, and
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Figure 7-2: PPC versus runtimes for MSCN models trained with Q-Error or Flow-Loss
and evaluated on seen templates.

similar performance on many partitions. Comparing the left (PPC), and the right

(query runtime) plots, we see that broadly the PPC trends show the same behavior

as the runtimes, although it is hard directly translate between them given this data.

Zooming in on partitions. In Figures 7-4a, 7-4b, we show the 50𝑝, 90𝑝, and 99𝑝

for runtimes of FCNN and MSCN models trained with Q-Error or Flow-Loss. For

both architectures, the model trained with Flow-Loss significantly improves on all

percentiles for the best partition — being up to 8×, and several hundred seconds faster

than the Q-Error model. On the worst partition, it is only up to 20 seconds slower

than the Q-Error model. Further, there are an additional 6 cases where the Flow-Loss

models had improvements in tens of seconds, comparable to the best improvement of

the Q-Error model. As we highlight next, even these smaller improvements suggest

more robust and better quality plans.
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Figure 7-3: Each bar shows the mean PPC or runtime improvement (green), or regression
(red) of Flow-Loss over Q-Error on an unseen partition and the same model architecture
(FCNN or MSCN). Lower is better for Flow-Loss.
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Figure 7-4: Showing 50𝑝, 90𝑝 and 99𝑝 runtimes for all partitions for Flow-Loss models on
unseen template partitions, trained by either Q-Error or Flow-Loss.

7.2.3 Restricting RAM

We re-execute the query plans from the unseen templates partitions after restricting

PostgreSQL to a docker container with only 256𝑀𝐵 RAM. The goal is to simulate

a database significantly larger than available RAM, as is common in the real world.

(The size of all tables in the IMDb database comes to about 5 GB). This scenario

emphasizes the robustness of query plans in more challenging execution environments;

bad plans that process a lot of unnecessary intermediate rows may cause more spills

to disk, leading to disastrous performance. To reduce overhead due to the slower

execution speeds, we re-execute a representative sample of 25% of the queries. Figure

7-3b plots the difference of the mean query runtime between the Q-Error and Flow-

Loss models. Across multiple partitions, the Q-Error model leads to significant

degradation of performance, having mean query runtime up to 3× slower in two

cases. In one case, the difference between the Q-Error model and the Flow-Loss

model goes from 3 seconds (w/o restrictions), to over 70 seconds after restricting

RAM to 256𝑀𝐵. In the cases where the Q-Error model had done better, restricting

to 256𝑀𝐵 RAM, increases its relative improvement over the Flow-Loss model, but

it only goes up to being 1.5×, and 20 seconds faster in the best case. Moreover, the

Q-Error trained models also lead to a significantly larger number of timeouts. We
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Figure 7-5: Mean PPC and runtimes for all models trained with Q-Error or Flow-Loss on
CEB, and evaluated on JOB.

use a 15 minute query time out (in the experiments using the full, 8𝐺𝐵 RAM, no

query times out). But in these restricted setting, in the worst case (for Q-Error), the

Q-Error model has 59 timeouts v/s 6 for the Flow-Loss model; while in the best case

(for Q-Error), it has 4 timeouts v/s 11 for the Flow-Loss model.

7.2.4 Join Order Benchmark

Join Order Benchmark (JOB) is not suitable for training a supervised learning model

as it has too few queries. But, we can use it as an evaluation set for a model trained

on all the templates from CEB. This is similar to the unseen templates scenario:

The JOB queries are less challenging in terms of PPC (for instance, PostgreSQL

estimates have 20× lower mean PPC on JOB than CEB). However, they are more

diverse: JOB has 31 templates, and includes predicates on columns not seen in CEB.

We train on queries from all the CEB templates and evaluate on the JOB queries.

Figure 7-5 summarizes the results of the Flow-Loss and Q-Error models for both

architectures over three repeated runs. Both Flow-Loss models improve slightly on

PPC over PostgreSQL while achieving similar runtimes. The FCNN model trained

with Q-Error performs similarly, but the MSCN model trained with Q-Error shows

much higher variance and does significantly worse. We use this experiment as a

sanity check to show that even when the queries are very different, our models avoid
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baselines and MSCN models evaluated on seen templates from the StackExchange workload.

disastrously bad estimates.

7.2.5 StackExchange workload

Finally, we study the performance of the MSCN model on the StackExchange (SE)

database using a workload that consists of fewer templates and queries than the IMDb

workload. Figure 7-6 summarizes the results for the SE workload when evaluated

on the seen templates, and Figure 7-3c shows difference between the mean PPC or

runtime achieved by the MSCN model trained with Q-Error or Flow-Loss.

The key difference is that due to timeouts we do not have exhaustive ground truth

about all the sub-plan cardinalities (see §6). The timeouts are replaced by a constant

value larger than any cardinality in the workload. The plans generated by providing

these cardinalities, along with the true cardinalities for known values, (Estimator:

True) results in almost 10× faster runtimes than the default PostgreSQL estimates.

Similarities to IMDb results. On seen templates, both loss functions improve

significantly over the PostgreSQL estimates, and perform similarly to each other,

although the Q-Error models exhibit more variance on PPC over five repeated exper-

iments (cf. Figure 7-6). On unseen templates, the Flow-Loss models improve over

the Q-Error models (cf. Figure 7-3c), with improvements of over 20 seconds at the

mean on three of the partitions. The magnitude of improvements are larger than
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on the IMDb workload, with improvements of over 20 seconds at the mean on three

partitions. Partially, this is because the database size is also larger than IMDb — thus

better plans lead to more substantial improvements — similar to what we see when

we restrict the RAM for the IMDb workloads. This emphasizes that we would expect

such behavior to scale to larger databases, where the model capacity and regularization

benefits of Flow-Loss can become more critical.

7.3 MySQL DBMS

We conduct the same set of experiments seen so far using the MySQL DBMS instead

of PostgreSQL to ensure our modeling assumptions, and Flow-Loss is not restricted

to PostgreSQL.

New cost model to retrain Flow-Loss models. Flow-Loss relies on a differen-

tiable approximation to the underlying cost model of the DBMS. For approximating

Postgres Plan Cost, we had used the cost model in Definition 4.1.5. As it turns out,

using the same cost model was not as good an approximation for MySQL Plan Cost.

So instead, for the MySQL evaluations, we trained each Flow-Loss model using a cost

model approximation tailored to MySQL. The exact cost model, and the trade-offs

associated with selecting a cost model, are provided in the online appendix [3].

Similar trends to PostgreSQL experiments. On the seen templates, both the

loss functions perform equally well, and significantly improve on heuristic DBMS

estimates (presented in the online appendix [3]). In Figure 7-3d, we show the results

on the unseen templates using the MySQL DBMS. In general, the trends of the

runtime improvements are comparable to the results from PostgreSQL, which we

discussed in the previous section. These results show that using Flow-Loss is valuable

across different DBMSs, and that it can adapt to different cost models. At the same

time, the dependence of Flow-Loss on the quality of the differentiable cost model

approximation is a drawback — it requires additional work when using it in a new

evaluation scenario.
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Figure 7-7: Learning curves for one unseen templates partition showing mean of all metrics
for MSCN models.

7.4 Analysis

In this section, we show experiments on the IMDb workload to better understand

when, and why the Flow-Loss models may improve performance. These experiments

are guided by the intuition and hypothesis from §5.

7.4.1 Learning curves

Figure 7-7 shows the MSCN model’s learning curves for Q-Error (normalized while

training as done by Dutt et al. [11]), Flow-Loss, and PPC on one partition (seed =

7) trained using Q-Error or Flow-Loss. We see that the Q-Error model has smooth

training set curves for all metrics, but it behaves erratically on the test set. This is

because it is trying to minimize estimation accuracy, but since the test set contains

queries from unseen templates, it is much more challenging. Note that the Flow-Loss

curves closely resemble the PPC curves. This similarity is particularly obvious for

the Q-Error model on the test set. In §5.2, we showed simple examples where the

Flow-Loss metric closely tracked the PPC. This shows that Flow-Loss can track the

PPC well even in more complex scenarios. Notice that on the test set, in terms of
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Figure 7-8: Median, 90p, and 99p Q-Error for FCNN models trained on queries from CEB
and evaluated on seen templates, unseen templates, and JOB.

Q-Error, the Flow-Loss model is consistently worse than the Q-Error model, while

it is much better on the Flow-Loss and PPC metrics. This suggests the Flow-Loss

model is using its capacity better to focus on PPC instead of minimizing estimation

accuracy.

7.4.2 Domain specific regularization effect

Figure 7-8 shows the median, 90𝑝, and 99𝑝 Q-Errors for the three scenarios we have

looked at. We show results for the FCNN architecture and omit MSCN here, which

performs very similar. For seen templates, the models trained with Q-Error only go

up to 100 at the 99𝑝 of millions of unseen sub-plans. To achieve such low estimation

errors, the model needs to get quite complex, and overfit to noisy patterns, like precise

estimates for ilike predicates or for sub-plans with 10 tables that may anyway get

pruned during the dynamic programming optimizer search. Often, we do not need

such precise estimates. Models trained with Flow-Loss achieve better PPC despite an

order of magnitude higher Q-Errors at the 99𝑝, which suggests that it learns a simpler

model that seems more effective for the task of query optimization. More strikingly,

as we consider the unseen templates scenario — the models trained with Q-Error get

almost 10× worse at the 90𝑝 and 99𝑝, while the models trained with Flow-Loss only

get about 1.5× worse. This pattern continues on to the JOB templates — where the
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Figure 7-9: Ablation study with the FCNN model for seen templates (left), unseen tem-
plates (middle), and JOB (right) showing PPC when various components of the featurization
scheme are removed.

Flow-Loss models even have better estimation accuracy than the Q-Error models.

This supports our regularization hypothesis (cf. §5.3), and shows that the Flow-Loss

models can avoid overfitting in a way that does not harm its performance on PPC,

but the simpler models make it generalize better to changing query patterns.

7.4.3 Ablation Study

Next, we seek to understand the impact of the various components of the featurization

(cf. §7.1) by an ablation study in which we remove key elements of the featurization,

and evaluate the PPC on the seen templates, unseen templates, and JOB. We again

focus on FCNN and omit MSCN, which follows similar trends. Figure 7-9 summarizes

the results. There are two main highlights. First, on the seen templates, Flow-Loss

models can adapt to removing various featurization components, and do as well as

with the default features, meanwhile, the Q-Error models suffer significantly with
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Figure 7-10: Mean PPC and runtimes, along with 90𝑝 to 99𝑝 error bars for a FCNN model
trained with true or wander join cardinalities.

worse featurization. This shows that when constrained with fewer resources, the

Flow-Loss model can better use its capacity to minimize PPC. Second, PostgreSQL

features are crucial for generalization. These include various cardinality and cost

estimates (cf. §7.1). Both the Flow-Loss and the Q-Error models get significantly

worse on unseen templates without these features. This explains how the models do

relatively well on different templates — these heuristic features have similar semantics

across different kinds of queries. Plan graph features also seem to help more than

others for generalization to unseen templates.

7.4.4 Training with AQP estimates

Figure 7-10 shows the PPC and runtimes for models trained with true cardinalities

and with wander join estimates for a subset of nine templates (that do not include

like predicates) from the CEB workload. Notice that training with wander join

estimates is almost as good as training with true cardinalities. And, the Flow-Loss

model is robust when trained using the noisy wander join estimates — meanwhile, the

Q-Error model trained using wander join estimates has a clear drop in performance

at the tails for both PPC and runtimes. The same trend is observed for Q-Errors

as well (see [3]). This supports our hypothesis that the models trained using Flow-

Loss are able to avoid overfitting to noisy data that may not be as relevant for query

optimization (cf. §5.3).
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7.4.5 Training overhead

Here, we present the overhead of using the Flow-Loss models on the IMDb workload.

Training time. Compared to Q-Error, there is a 3−5× overhead for training either

architecture with Flow-Loss due to the additional calculations needed for Flow-Loss—

the bottleneck is computing 𝐿−1 in Equation 4.7.2 On the CPU, when using Q-Error,

the FCNN architecture trains for 10 epochs on the IMDb workload in under 1000

seconds, and the MSCN model takes up to 2500 seconds.

Inference time. As in [19, 11], the inference times for these neural networks is in

the order of a few milliseconds (after featurization) and hence fast enough for query

optimization.

Model sizes. The MSCN model is 2.4MB, while the FCNN model is 4.7MB. Sizes

are the same for all loss functions.

2A long series of works [8, 22, 50] develop ways to approximate 𝐿−1 in linear time, utilizing the
structure of the electric flows formulation. We also expect it to be faster on GPUs with fast matrix
inverse operations [12].
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8

Conclusions

“Everything’s got a moral, if only you can find it."

Lewis Carrol, Alice’s Adventures in Wonderland

“We shall not cease from exploration, and the end of all our exploring will be to

arrive where we started and know the place for the first time."
T. S. Eliot, Little Gidding

We showed that Postgres Plan Cost (PPC) is a useful proxy to runtimes, and is

an important alternative to Q-Error when evaluating a cardinality estimator. This

lets us view cardinality estimation from a new lens — and we developed Flow-

Loss as a smooth, differentiable approximation to PPC that can be used to train

models via gradient descent based learning techniques. Using a new Cardinality

Estimation Benchmark, we provide evidence that Flow-Loss can guide learned models

to better utilize their capacity to learn cardinalities that have the most impact on

query performance. Even more importantly, it can help models avoid overfitting to

cardinality estimates that are unlikely to improve query performance — leading to

more robust generalization when evaluated on queries from templates not seen in the

training data, and helping models learn more robustly from training data generated

using AQP techniques. Generating ground truth cardinalities in order to train a model

is expensive; moreover, updates to the data would quickly make such training data

stale. Thus, avoiding the overhead of generating true labeled data can significantly
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improve adoption of learned cardinality estimation models in practice.
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