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Abstract
Community-acquired pneumonia is the most common infectious cause of death worldwide,
and is defined as an infection of the lung parenchyma. It is a heterogeneous disease caused
by wide range of bacteria, viruses, and occasionally fungi. An arsenal of diagnostic tools
have been developed to detect the many causes of CAP, yet in approximately 60% of CAP
patients the causative organism is never determined. As such, the standard of practice for
treating suspected CAP is to administer antibiotics as soon as possible because existing di-
agnostics cannot determine the etiology of disease quickly and accurately enough to warrant
withholding treatment. This diagnostic and therapeutic paradigm is out of touch with the
approaches to personalized medicine that are being taken for other diseases such as cancer,
and an urgent need exists for an accurate and rapid pneumonia diagnostic that can simulta-
neously detect CAP and stratify etiology.

To address this gap, in this work we have developed two novel approaches to diagnosing
CAP. Both approaches leverage differential protease expression by the host in response to
pneumonia-causing pathogens to detect pneumonia and stratify etiology. To this end, we
first derived a 40-gene signature from human transcriptomic data, which consisted of pro-
teases biomarkers for pneumonia. We then used our lab’s activity-based nanosensor (ABN)
technology to create a 20-plex panel of nanoparticles that could produce urinary signatures
of disease state in response to the activity of a subset of these proteases. We validated that
this panel could generate unique urinary signatures of disease in five in vivo mouse models
of CAP within two hours of sensor administration. Using these signatures, we trained diag-
nostic classifiers to distinguish healthy mice from those with bacterial and viral pneumonia
with high accuracy. To produce an even faster readout, we then modified these ABNs with
volatile reporters to create breath-based volatile activity-based nanosensors (vABNs), and
demonstrated that we that could detect pneumonia within 15 minutes of administration. Al-
together, these nanosensors enable urine and breath-based detection of CAP, and constitute
a means of diagnosing pneumonia that is orthogonal to existing clinical tests, thus opening
a new direction of study for pneumonia diagnostics.

Thesis Supervisor: Sangeeta N. Bhatia, M.D., Ph.D.
Title: John J. and Dorothy Wilson Professor of Health Sciences and Technology &
Electrical Engineering and Computer Science, MIT
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Chapter 1

Introduction

1.1 Causes and detection of community-acquired pneumo-

nia

Hippocrates first described pneumonia (Greek: 𝜋𝜈𝜖𝜐𝜇o𝜈𝜄𝛼) in the fourth to fifth century

BC. [1] This was over 2,000 years before Antoni van Leeuwenhoek’s discovery of bacte-

ria (then termed “animalcules”, in 1676) and Dmitiri Ivanovsky’s identification of viruses

(Tobacco mosaic virus, in 1892). Without knowing what agents caused it, Hippocrates cor-

rectly identified that patients with pneumonia had liquid-filled lungs accompanied by fever,

chills, coughing, pain, and difficulty breathing. [1] Since those early days, pneumonia has

continued to plague humanity, killing millions of adults and children worldwide each year.

1.1.1 Defining community-acquired pneumonia

Each day, we breathe in millions of aerosolized pathogens. [2] The robust immune system in

the lungs is constantly at work preventing these foreign microbes from causing respiratory

infections. These infections can occur in both the upper and lower respiratory tracts, which

each play unique yet interdependent roles in preventing disease. To broadly summarize

their interaction, the upper respiratory tract (URT, consisting of the nasal cavity, larynx and

13



pharynx) keeps foreign pathogens and particles from entering the lower respiratory tract

(LRT, made up of the trachea, bronchial tree, and lungs), where infections and resulting

inflammation can acutely impact gas exchange and impair respiratory mechanics, thereby

compromising breathing. As a result, lower respiratory tract infections (LRTIs) have par-

ticularly dire health consequences and were the fourth leading cause of death worldwide in

2019. [3]

While the term “LRTI” is sometimes used as a synonym for pneumonia, LRTI is a

broader term that encompasses not only infectious pneumonia, but also bronchitis and pul-

monary abscess. The distinction is that pneumonia is an infection of the lung parenchyma,

but the nomenclature surrounding pneumonia and other LRTIs is subtle. Furthermore, in-

fectious pneumonia can be further classified clinically into four broad groupings: community-

acquired, hospital-acquired pneumonia, ventilator-associated pneumonia (VAP) and aspira-

tion pneumonia. [4] As the names suggest, hospital-acquired pneumonia (HAP) is charac-

terized as pneumonia that develops in a healthcare setting and presents at least 48 hours

after hospitalization, whereas community-acquired pneumonia (CAP) develops outside of a

hospital or within 48 hours after admission. CAP is generally more relevant to public health

as it is dependent on community spread, and as such it will be the focus of this work.

1.1.2 Common etiologies of CAP

The prevention, diagnosis, and treatment of CAP is complicated by the fact that a wide

range of bacteria, viruses, and fungi can cause disease. Not only that, but the pneumonia-

causing microbe cannot be identified in a majority of patients, making it impossible to fully

understand the scope of etiologies. [5] This is a relatively recent dilemma as before 1945, a

single bacterium, Streptococcus pneumoniae, was responsible for over 90% of pneumonia

cases in adults. [6] Since then, the prevalence of S. pneumoniae in the United States has

been steadily declining, a trend that has been largely attributed to the use of antibiotics and

widespread vaccination of the pneumococcal polysaccharide vaccine. [6,7] This decrease in

pneumococcal pneumonia has been accompanied by increased detection of other bacterial

14



etiologies, namely Mycoplasma pneumoniae, Haemophilus influenzae, and Staphylococcus

aureus. [7,8] Importantly, the bacteria responsible for CAP differ based on elements such as

geography, age, time of year, and individual patient risk factors. [8] For example, gram neg-

ative bacteria such as Klebsiella pneumoniae and Burkholderia pseudomallei are common

causes of CAP throughout Asia but are much rarer in the United States. [9] Patient outcomes

for those with bacterial CAP are improved with early initiation of antibiotic therapy, which

has led to a sense of urgency among clinicians to begin treatment with empiric antibiotics

as soon as CAP is suspected. [10] However, this has led to overtreatment in patients whose

CAP is actually viral in origin, which can contribute to antibiotic resistance. [11]

Despite historical emphasis on bacterial CAP, there is increasing evidence that viruses

are a significant cause of CAP. [6,7,12–14] In the United States, rhinovirus, influenza, and

metapneumovirus are the leading viral etiologies [8], but the full scope of viral CAP is

impossible to appreciate, as detecting viruses via assays such as polymerase chain reaction

(PCR) has only recently been made accessible enough to enable routine testing of patients

in high and middle income countries. Furthermore the exquisite sensitivity of PCR also

makes it prone to false positives, because pathogen-derived nucleic acids are not necessarily

derived from pathogens that are responsible for acute illness (e.g. commensal bacteria and

lingering viral RNA after infection resolution). [15,16] Viral antigen tests and viral cultures

can also be used to identify viral CAP, but suffer from limitations that are causing them to

be edged out by PCR. [17] Namely, viral antigen tests only exist for a subset of viruses (e.g.

influenza and SARS-CoV-2), limiting their utility in the broader scope of CAP diagnosis.

1.2 The diagnostic paradigm for CAP

To diagnose CAP, clinical guidelines recommend that patients with signs of a respiratory

infection (e.g., cough, dyspnea, fever) be given chest X-rays to look for signs of fluid build

up and inflammation in the lungs (e.g., consolidation, infiltrates, or cavitations). [18] Posi-

tive chest imaging and the presence of symptoms are typically enough to establish CAP as
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a differential diagnosis, but indications of infection using routine blood tests (e.g., presence

of leukocytosis or increased neutrophilic bands indicating "left shift") can be used to sup-

port the diagnosis. Once a patient is diagnosed with CAP, their severity is then assessed.

There are formal scoring systems such as the CURB-65 score and the Pneumonia Severity

Index (PSI) that use patient characteristics such as age, the presence of co-morbidities, and

lab findings to distinguish mild from severe disease; but the decision of whether to admit a

patient is usually made on a case-by-case basis based on signs, symptoms, and test results.

Regardless of whether a patient is treated as an outpatient or is hospitalized, standard prac-

tice is to initiate empiric antibiotics in any patient with suspected CAP and monitor their

response to therapy for improvement within 48-72 hours. [19]

Notably, this diagnostic paradigm does not include microbiologic testing for the cause

of one’s CAP. Depending on the season and regional spread, patients may be tested for in-

fluenza via a rapid antigen test or PCR, and since the Covid-19 pandemic, testing for SARS-

CoV-2 has also become routine. Otherwise, clinical guidelines advise against microbiologic

testing in otherwise healthy outpatients, including sputum cultures, because it could delay

antibiotic therapy. [19] This means that patients whose CAP is due to viral causes besides

flu or SARS-CoV-2 can readily be prescribed antibiotics. While these antibiotics could be

effective in preventing secondary bacterial infections, which are common with primary vi-

ral CAP, as an initial treatment these antibiotics would prove to be ineffective in treating a

patient’s underlying illness and could give rise to antibiotic resistance. Not only that, but

the one recommended diagnostic test, chest imaging, is both unable to stratify etiology [20]

and often unavailable in primary care clinics, meaning that patients who are not treated at a

hospital, specialized imaging facility, or a similarly equipped clinical setting are often diag-

nosed and treated without the radiographic proof that is the cornerstone of this diagnostic

workflow. In defense of the clinical guidelines, even in hospitalized patients who are given

extensive microbiological testing, including blood and sputum cultures, urine antigen test-

ing, and multiplexed molecular assays, a causative pathogen is unable to be identified in

approximately 60% of cases. [8]
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Altogether, these issues highlight the fact that in an era of personalized medicine and

advanced biotechnology, the current methods of diagnosing CAP are insufficient. Towards

this end, new biomarkers and technologies are being studied to more accurately diagnose

pneumonia and reduce the time of pathogen identification, potentially to the point where

microbiologic testing can be used to guide antibiotic stewardship.

1.2.1 Serum biomarkers for distinguishing CAP etiology

In hospitals, serum biomarkers such as C-reactive protein (CRP) and procalcitonin (PCT)

are used to broadly distinguish between bacterial and viral infections. CRP is synthesized

by hepatocytes in response to inflammation and tissue damage, and high levels have been

associated with bacterial infections. [21, 22] The Alere Afinion CRP, Eurolyser Smart, and

QuikRead Go CRP are all devices that can be used to rapidly quantify CRP levels in the

blood. However, even if a patient has CRP levels indicative of bacterial pneumonia, these

tests do not specify the disease-causing organism, greatly limiting their utility. PCT is a

polypeptide that becomes markedly elevated in patients with bacterial infections and sep-

ticemia. [23] There is growing evidence that it is a better indicator of bacterial vs. viral

infection compared to CRP. [24] However, both CRP and PCT ultimately suffer from poor

sensitivity and have been shown to be insufficient for diagnosing CAP, let alone distinguish

between bacterial and viral causes. [25] Furthermore, the thresholds for differentiating bac-

terial versus viral pneumonia using these markers are still being debated, and are ultimately

not reliable enough to broadly influence decision-making on antibiotics. [26] Hence, there

is still a need for specific, reliable CAP biomarkers.

To this end, much research is being done to find novel biomarkers that can distinguish eti-

ology. Often, these candidates are first identified as sepsis biomarkers, and are subsequently

evaluated for their ability to distinguish CAP etiology. Several examples include mid re-

gional pro-adrenomedullin (MR-proADM), which is a more stable form of adrenomedullin

(which functions as a vasodilator, diuretic, and bronchodilator), the ratio of Fas apoptotic

inhibitory molecule 3 to placenta-specific 8 (FAIM3:PLAC8), and calprotectin, a protein
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derived from the cytosol of neutrophil granulocytes [27–29]. While biomarkers such as

these represent a step forward in CAP diagnosis, they all rely on detection from blood.

Therefore, they will suffer from the classic limitations of all blood biomarkers, such as the

need to establish threshold values for a positive test without sacrificing specificity, inherent

dilution in the 5-6 liters of circulating blood, and the lack of site-specific signal as blood

contains molecules that are derived from all over the body.

1.2.2 Multiplexed nucleic acid amplification tests for identifying CAP-

causing organisms

Issues with sensitivity and specificity can be overcome using multiplexed, automated PCR

panels, which have been developed to detect bacterial and viral nucleic acids from a wide

range of samples. For example, the BioFire FilmArray Pneumonia (PN) Plus Panel can

detect 9 viruses, 18 bacteria (including common lung colonizers), and 7 antimicrobial re-

sistance genes from bronchoalveolar lavage (BAL), endotracheal aspirate, and sputum sam-

ples in approximately 1 hour, which is far superior to traditional culture and PCR methods.

BioFire also produces other FilmArray respiratory and blood culture panels that can expand

the platform’s detection repertoire. A wide array of other panels such as the Curetis Unyvero

LRT panel and the SeeGene Allplex™ Respiratory Panel Assays also enable multiplexed

PCR. In general, these panels have excellent performance in clinical settings [30, 31], and

have been shown to decrease the time course of antibiotic therapies. [32–34]. While these

panels are fast and accurate, they require users to use proprietary instrumentation or soft-

ware, making these tests untenable for use in many outpatient and resource limited settings.

For example, the BioFire panels can only be run using the BioFire FilmArray instruments,

which cost tens of thousands of dollars. In addition, each test needs to be performed on a

disposable cartridge, which are around $120 each, making the cost to use and maintain such

a system prohibitive for many outpatient facilities where patients with mild CAP are likely

to present. [35]

Furthermore, the samples needed to run these panels and similar tests are difficult to
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collect. For one, many CAP patients do not naturally produce sputum, necessitating induc-

tion that can only be performed in patients with high enough oxygen concentrations who

can protect their airway, and even then getting quality samples is notoriously difficult. [36]

Studies have shown that sputum can be reliably produced through the nebulization of hy-

pertonic saline [37], but induced sputum can easily be contaminated by the microflora of

the URT and have a composition that is inadequate for testing. Similarly, bronchoscopy

with BAL is an invasive procedure that requires sedation in order to instill saline into the

lungs and suction it back out with a bronchoscope. While BAL can overcome some of the

limitations of sputum by allowing for high quality lower respiratory tract microbial samples

in patients regardless of their ability to produce sputum, it has several of its own limitations

including the need for an invasive procedure with risk for procedural complications, need

for trained personnel, and expense. [37]

1.2.3 Urine antigen tests for identifying CAP-causing organisms

A far less invasive method of diagnosing CAP is through urine antigen tests for S. pneumo-

niae and Legionella. The Alere BinaxNOW S. pneumoniae test detects C-polysaccharide,

which is present in all strains but not all serotypes, within 15 minutes. Similarly Alere

BinaxNOW Legionella Urinary Antigen Card can detect serogroup 1 bacteria, which is re-

sponsible for a majority of human infections, but is not all encompassing. While these tests

are fast and clinically useful for select organisms, nationwide CAP treatment guidelines dis-

courage their routine use unless there is high epidemiological risk of these bacteria or the

patient is suffering from severe CAP, as there is conflicting evidence about whether their use

influences antibiotic treatment and patient outcomes. [19, 38, 39] Furthermore, these urine

tests have been shown to have few benefits in terms of cost saving. [40]
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1.3 The role of proteases in pneumonia

Much like cancer, pneumonia is not a single disease, but a disease state that is characterized

by a common underlying condition: an acute infection of the lung. It was once believed that

the presence of microorganisms in the LRT sullied an otherwise sterile lung environment,

sparking pneumonia. [41] However, it is now known that the healthy LRT contains a wide

range of colonizing bacteria that help maintain homeostasis, meaning it not simply the pres-

ence of microorganisms that triggers infection. Rather, this homeostasis can be disrupted by

the host response to foreign microbes and by the pathogens themselves through the produc-

tion of virulence factors. [8] The lungs prevent such disruptions from leading to pneumonia

throughout the balance of two forces: immune resistance and tissue resilience. [42] Immune

resistance involves killing the pathogenic microbes, whereas tissue resilience encompasses

the processes of maintaining or restoring the structural and functional integrity of the lung

despite the surging immune response. Those who study these processes typically focus on

the cytokines, chemokines, receptors, and signaling molecules that are involved. In this

work, we are approaching respiratory immunity through the lens of protease activity as a

driver for immune resistance and tissue resilience in response to pneumonia.

Proteases are enzymes that degrade proteins. There are over 500 proteases produced

by humans, and an even greater number produced by other organisms, including bacteria

and viruses. [43] There are five classes of proteases (serine, cysteine, metallo, aspartic and

threonine) that are distinguished by the catalytic mechanisms they use to hydrolyze peptide

bonds. Serine, cysteine, and metalloproteases are the most abundant, each making up ap-

proximately 30% of identified human proteases, respectively. [44] Proteases have been well

studied in the contexts of the coagulation cascade, where they activate platelets and other

proteases, and cancer progression, where they play significant roles in tissue remodeling and

metastasis. [45] This work will focus on proteases that are produced by the host to combat

infection through the processes of immune resistance and tissue resilience.

When considering pneumonia that is caused by a pathogen that the body has not encoun-

tered before, the processes of innate pulmonary immunity become particularly important.
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Traditionally, research into the innate immune system of the lower respiratory tract em-

phasizes the important of the lung epithelium, which is the surface directly in contact with

inhaled air, and innate immune cells, which are the first responders to infection. [46] The

alveolar epithelium is lined by Type I and Type II lung cells, which jointly serve as the lung’s

protective barrier against pathogens and maintain the gas exchange barrier. Type II pneumo-

cytes, specifically, maintain lung structure by producing surfactant, containing the proteins

SP-A and SP-D, which are crucial in supporting the innate immune response in the lungs

and help prevent infection by binding to microbial surfaces via collectins and lipopolysac-

charide (LPS), thereby priming them for clearance by alveolar macrophages (AMs). In the

healthy lung environment, AMs dominate the immune cell population in the respiratory

tract, where they play an immunosuppressive role by clearing debris, excess surfactant, and

apoptotic cells. [47, 48] However, in the setting of infection AMs are pro-inflammatory,

phagocytosing macrophages and triggering cytokines that help orchestrate the immune re-

sponse. [42, 48] This phagocytosis is supported by the production of cathepsins, which are

lysosomal proteases that aid in killing phagocytosed bacteria via apoptosis induction. [49]

AMs also produce matrix metalloproteases (MMPs), which process chemokines, remodel

the extracellular matrix, and generally play important roles in inflammation. [49]

Another important immune cell involved in pulmonary immunity is the neutrophil. Un-

like AMs, neutrophils have a very small population in healthy lungs, but after infection,

they are the most rapidly and abundantly recruited cells to the disease site. [42] This re-

cruitment is orchestrated by chemokines, which cause neutrophils to migrate to the infected

lung and immediately take on several effector (e.g., degranulation, production of reactive

oxygen species and neutrophil extracellular traps, phagocytosis), and inflammatory (e.g.,

chemokine and cytokine signaling to recruit other neutrophils and immune cells to the site

of infection) roles. Particularly relevant to this work are the neutrophil serine proteases

(NSPs) that are released via neutrophil degranulation, including neutrophil elastase (NE),

proteinase 3 (PR3) and cathepsin G (CTSG). It has been shown that these proteases play

a direct role in killing intracellular S. pneumoniae. [50] However, harkening back to the
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idea of tissue resilience versus immune resistance in maintaining lung homeostasis, this

proteolytic action is a double-edged sword as S. pneumoniae also produces pneumolysin,

a virulence factor that induces the neutrophil lysis, thereby releasing these proteases into

the extracellular environment. This results in proteolytic damage to the alveolar epithelium

and macrophages. [51] S. aureus has also developed its own protective mechanism against

NSPs through the production of extracellular adherence proteins, which inhibit NSP activity

thereby reducing bacterial killing and enabling further colonization.

Protease release via degranulation is also a hallmark process for natural killer (NK)

and cytotoxic T lymphocytes (CTLs), which produce granzymes in response to infection.

While NSPs are associated with bacterial infections, granzymes are typically associated

with viral infections, as NK and CTLs are highly implicated in viral immunity. [52] In

contrast to the previously mentioned proteases that directly attack the bacteria, granzymes

trigger apoptosis in infected cells thereby preventing further spread. [?] This mechanism

of action accounts for the important role of granzymes in viral infections, as viruses hijack

host cells and require their machinery in order to survive. Overall, it is clear that proteases

play an important role in pneumonia pathogenesis. In this work, we argue that by querying

protease activity, it is possible to detect pneumonia-associated host immune responses.

1.4 Thesis overview

Over the past several years, the Bhatia lab has developed nanoparticles that respond to pro-

tease activity. These activity-based nanosensors (ABNs) consist of a core (e.g. iron oxide

or polyethylene glycol) that is conjugated to peptide substrates. These peptides contain a

reporter, such that when the substrate comes in contact with its target protease, the reporter

is released from the ABN. Typically, this reporter is a small molecule that can be filtered by

the kidney and concentrated in the urine. Upon urine collection, the reporter can be detected

by a number of modalities. For example, if the ABNs are created with fluorescent reporters,

detecting protease activity is as simple as measuring the fluorescence of collected urine. [53]
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In some cases the reporters are designed to be mass-encoded, meaning they have slightly

different molecular weights, which can be differentiated using mass spectrometry. [54–56]

A major asset of ABNs is that they allow for direct monitoring of the disease state within the

host and can be used to monitor disease progress, assuming that protease levels vary based

on the patient’s condition. This system is also capable of multiplexing by co-administering

ABNs that are responsive to different proteases and release unique reporters, allowing a

reporter signature to be generated that is indicative of a particular disease state.

Given the gaps in the CAP clinical workflow, the goal of this thesis is to create ABNs

that can detect CAP and stratify etiology quickly and non-invasively. Towards this end,

in chapter 2 we designed a 20-plex panel for pneumonia based on human transcriptomic

data, validated and assessed its targets in vitro, and showed that it produced unique urinary

signatures in vivo. In chapter 3, we then showed that these urine outputs could be used

to train diagnostic classifiers that could detect pneumonia and stratify etiology with high

accuracy, and tested the limits of these classifiers on minimal training sets. We then created

a novel readout of our ABN system by modifying the nanosensors to generate a synthetic

volatile signal, enabling us to detect pneumonia via breath. In chapter 4, we describe the

creation of these volatile activity-based nanosensors (vABNs), the development of an in

silico model that can be used to enhance the design and predict the output of vABNs, and

validated their efficacy in mouse models of pneumonia. Overall, this work demonstrates

a novel approach to diagnosing pneumonia and identifying etiology that is distinct from

all existing methods, is relatively fast, and uniquely non-invasive, thus opening up a new

avenue of pneumonia diagnostics.
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Chapter 2

Creating a urine-based readout of

pneumonia by leveraging differential

protease activity

2.1 Introduction

At the start of 2020, the world watched as the novel severe acute respiratory syndrome

coronavirus (SARS-CoV-2) began spreading around the world, leaving few communities

untouched by coronavirus disease 2019 (COVID-19). This new form of community ac-

quired pneumonia (CAP) put pneumonia at the forefront of both medical research and pub-

lic discourse. However, CAP has caused significant morbidity and mortality for thousands

of years, with millions of people affected globally and over 100,000 deaths per year in the

U.S. alone. [9] The COVID-19 pandemic has simply underscored how important it is to

determine the etiology of one’s pneumonia for the sake of individual patient management

and public health. Thankfully, the world watched in awe as new molecular diagnostics were

rapidly created to detect SARS-CoV-2 with exquisite sensitivity and specificity, and were

quickly deployed via emergency use authorization. Unfortunately, determining the etiology

of CAP in cases where SARS-CoV-2 is not the culprit is still fraught with difficulty, and
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oftentimes the causative organism of someone’s CAP is never identified for reasons that

are unknown. [5,57] Clinical symptoms and radiologic parameters have poor specificity for

distinguishing between common bacterial and viral causes. [19] As a result, the standard of

care for patients with suspected CAP is to initiate empiric antibiotics as soon as possible

based on local antibiotic resistance patterns and patient characteristics (e.g. age, comorbidi-

ties). [58] To accurately triage, treat, and track patients with CAP due to bacterial and viral

causes, new noninvasive tools need to be developed that can both rapidly diagnose acute

pneumonia and identify the etiology.

To this end, host response-based disease signatures have been developed that lever-

age the differential expression of host gene sets to distinguish bacterial versus viral infec-

tions. [59] These signatures mainly consist of genes encoding inflammatory markers, trans-

membrane proteins, and binding proteins that are implicated in the host immune response

to infection but can only be made clinically useful by measuring their relative abundance

through methods such as blood tests and gene sequencing. Meanwhile, a potential trove of

biomarkers that can generate a functional readout of their own activation lies within the over

550 human proteases that respond to, cause, and manage disease. [44] Proteases are widely

known for their roles in cancer, vascular disease, apoptosis, and inflammation. However,

they are becoming increasingly recognized as potential therapeutic targets for infectious

disease due to their involvement in the immune response and their production by invading

pathogens. [60, 61] These same properties make them excellent candidates as biomarkers,

and are made all the more appealing by the fact that their enzymatic activity enables detec-

tion by means other than simply measuring their absolute concentrations in blood. [62–64]

Our lab has previously developed activity-based nanosensors (ABNs), which are nanopar-

ticles that can detect protease activity in vivo and create urinary signatures of active dis-

ease. [53–56, 65–68] These ABNs contain mass-encoded peptide linkers that are designed

to be cleaved by proteases dysregulated in specific disease states. Upon peptide cleavage

by a target protease, the barcodes are released from the ABN, after which they are small

enough to diffuse into systemic circulation for subsequent renal clearance. By leveraging
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Figure 2-1: Schematic of approach. (1) ABNs are administered to mice that have been infected
with either bacterial or viral pneumonia. (2) Proteases that are present in the lung cleave the ABNs at
engineered substrate linkers, which releases the mass-encoded free reporters from the ABN scaffold
into the circulation. (3) These reporters are filtered by the kidney and concentrated in the urine. (4)
The reporters are then collected, and their concentrations are measured via mass spectrometry. (5)
These concentrations are input into machine learning algorithms to train diagnostic classifiers. (6)
This algorithm enables the diagnosis of pneumonia and in the case of infection, specifies whether
the etiology is bacterial or viral.

catalytic protease activities and concentration of barcodes from a large circulating volume

to a smaller urinary volume output, a highly amplified urinary readout is generated for sensi-

tive disease detection. Furthermore, by multiplexing ABNs, we can create disease-specific

urinary “signatures”. Here, we have mined publicly available human transcriptomic datasets

to create host-gene signatures for bacterial and viral pneumonia that consist solely of pro-

teases. We then created a multiplexed panel of ABNs to detect the activity of a subset of

these proteases, and demonstrated that they could produce protease-driven urinary signa-

tures in mouse models of CAP that differ between bacterial and viral pneumonia within 2

hours of intrapulmonary sensor administration (Fig. 2-1).
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2.2 Results

2.2.1 A 40-gene signature can distinguish bacterial and viral pneumo-

nia

To create disease-specific gene signatures for bacterial versus viral pneumonia, we cu-

rated publicly available transcriptomic datasets for respiratory infections from whole blood

(WB) and peripheral mononuclear blood cells (PBMCs), filtered these datasets for human

proteases, and applied a computational multicohort framework designed to integrate gene

expression data (MANATEE, Multicohort Analysis using AggregaTed gEne Expression)

across 33 unique study cohorts (Table 2.1, Table 2.2, Fig. 2-2a).

Table 2.1: Discovery datasets for creating transcriptomic signatures. Cohorts of human tran-
scriptomic data was used to train and validate a diagnostic classifier for bacterial and viral infections.
Information on the source of the data and the patient cohorts that were used to train the classifier are
listed.

Accession Author Platform Tissue Location Demographic Bacteria Viruses # of healthy samples # of bacterial samples # of viral samples

GSE101702 Yu GPL21185 WB
Australia, 
Canada, 
Germany

Adults with influenza Influenza 52 0 72

GSE117827 Tang GPL23126 WB USA
Children with acute viral 

infection

HRV, RSV, 
Enterovirus, 

Coxsackievirus
6 0 18

GSE16129 
GPL96

Ardura GPL96 PBMC USA
Children with invasive 

staph infections
S. aureus 10 4 0

GSE17156 Zaas GPL571 WB USA, UK
Adults with respiratory viral 

infection
Influenza, HRV, 

RSV
56 0 27

GSE19491 Berry GPL6947 WB
UK, South 

Africa
Patients with febrile 
bacterial infection

S. pyogenes, 
Staphylococcus 

spp.
18 75 0

GSE20346 Parnell GPL6947 WB Australia Adults with CAP Unknown Influenza 18 6 4

GSE21802
Bermejo-

Martin
GPL6102 WB Spain Adults with septic influenza Influenza 4 0 12

GSE27131 Berdal GPL6244 WB Norway Adults with influenza Influenza 7 0 7
GSE38900 
GPL10558

Mejias GPL10558 WB USA Children with acute LRTI RSV 8 0 28

GSE38900 
GPL6884

Mejias GPL6884 WB
USA, 

Finland
Children with acute LRTI

Influenza, HRV, 
RSV

31 0 153

GSE40012 Parnell GPL6947 WB
Australia, 

Hong Kong
Adults with CAP Unknown Influenza 18 16 8

GSE42026 Herberg GPL6947 WB UK
Children admitted with 

febrile infections
Gram-positive Influenza, RSV 33 18 41

GSE60244 Suarez GPL10558 WB USA
Adults hospitalized with 

LRTI
Unknown 40 22 0

GSE64456 Mahajan GPL10558 WB USA
Febrile infants ≤ 60 days 

old

Influenza, RSV, 
Enterovirus, 

HRV
19 0 108

GSE68310 Zhai GPL10558 WB USA Adults with ARIs

Influenza, HRV, 
RSV, 

Enterovirus, 
Coronavirus

98 0 75

GSE82050 Tang GPL21185 WB Germany Adults with influenza Influenza 15 0 24

By applying a set of differential expression statistics and machine learning algorithms,
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Table 2.2: Validation datasets of the transcriptomic signatures. Independent human datasets
were used to test the diagnostic classifier. Information on the source of the data and the patient
cohorts that were used to test the classifier are listed.

Accession Author Platform Tissue Location Demographic Bacteria Viruses # of healthy samples # of  bacterial samples # of viral samples

E-MTAB-5195 Jong GPL570 WB Netherlands Infants with RSV RSV 4 0 39

GSE103842
Rodriguez-
Fernandez

GPL10558 WB USA
Young children 

hospitalized with 
bronchiolitis

RSV 12 0 62

GSE30119 Banchereau GPL6947 WB USA
Children with community 
acquired Staph infection

S. aureus 44 10 0

GSE34205 Ioannidis GPL570 PBMC USA Children with ARIs Influenza, RSV 22 0 79

GSE4607 Wong GPL570 WB USA Septic children in the PICU Multiple Influenza 15 9 2

GSE6269
GPL96

Ramilo GPL96 PBMC USA
Children with bacterial or 

viral sepsis
S. aureus, S. 
pneumoniae

Influenza 6 12 3

GSE66099 Sweeney GPL570 WB USA Septic children in the PICU Multiple
Influenza, 

HMPV, 
Parainfluenza

47 35 5

GSE67059 
GPL10558

Heinonen GPL10558 WB
USA, Spain, 

Finland

Previously healthy children 
with asymptomatic or 

symptomatic HRV
HRV 16 0 20

GSE67059 
GPL6947

Heinonen GPL6947 WB
USA, Spain, 

Finland

Previously healthy children 
with asymptomatic or 

symptomatic HRV
HRV 21 0 80

GSE73072
(RSV DEE1)

Liu GPL14604 WB USA
Patients in the acute phase 
of a viral challenge study

RSV 20 0 9

GSE73072 
(H3N2 DEE2)

Liu GPL14605 WB USA
Patients in the acute phase 
of a viral challenge study

Influenza 17 0 9

GSE73072 
(H1N1 DEE3)

Liu GPL14606 WB USA
Patients in the acute phase 
of a viral challenge study

Influenza 22 0 9

GSE73072 
(H1N1 DEE4)

Liu GPL14607 WB USA
Patients in the acute phase 
of a viral challenge study

Influenza 19 0 5

GSE73072 
(H3N2 DEE5)

Liu GPL14608 WB USA
Patients in the acute phase 
of a viral challenge study

Influenza 21 0 8

GSE73072
(HRV UVA)

Liu GPL14609 WB USA
Patients in the acute phase 
of a viral challenge study

HRV 20 0 8

GSE73072
(HRV DUKE)

Liu GPL14610 WB USA
Patients in the acute phase 
of a viral challenge study

HRV 26 0 11

GSE77087
de 

Steenhuijsen 
Piters

GPL10558 WB USA
Young children with mild 
and severe RSV disease

RSV 23 0 81

we identified a subset of 40 proteases that were consistently differentially expressed be-

tween bacterial and viral respiratory infections (Fig. 2-2b). With our previously described

signature score model [59,69], the expression of these protease genes was able to distinguish

bacterial and viral respiratory infections in 16 discovery cohorts (area under the receiver op-

erating characteristics curve (AUROC) = 0.90, 95% confidence interval (CI): 0.841-0.959;

Fig. 2-2c). Furthermore, in held-out, un-seen samples from the 16 discovery cohorts, data

from the 40 proteases achieved an AUROC of 0.826 (95% CI: 0.706-0.946; Fig. 2-2c).

Finally, in 17 completely independent cohorts, the expression pattern of these proteases

maintained high accuracy in separating bacterial and viral respiratory infections (AUROC
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= 0.905, 95% CI: 0.855-0.954; Fig. 2-2c).

The proteases used in these signatures were selected purely based on differential gene ex-

pression and classification power. To validate their biological relevance to acute respiratory

infections, we input the respective signatures into a molecular functions database [70, 71].

Notably, the bacterial gene set was significantly associated with pathways that included

neutrophil degranulation, innate immunity, and extracellular matrix (ECM) organization

(Fig. 2-2d). Neutrophils are an integral component of the early innate immune response

and have been known to play a significant role in the clearing of bacterial pneumonia via

mechanisms that include bacterial killing, antimicrobial peptide (AMP) production, and re-

cruitment of other innate immune cells [72]. The ECM has also been shown to influence

bacterial adhesion and colonization, and is remodeled during tissue repair following inflam-

matory damage [73]. The viral protease set was significantly enriched in several different

pathways, including apoptosis and deubiquitination (Fig. 2-2e). Apoptosis is a classic de-

fense mechanism against viral infections [74], while deubiquitination has been implicated

more recently in the antiviral response [75, 76]. The associations between these newly de-

rived in silico signatures and known biological pathways gave us confidence that our 40-

protease gene signature (ProSet) would prove to be active, functional players in pneumonia,

and thus valuable biomarkers in vivo.

2.2.2 A pneumonia-specific panel of ABNs can be created based on

proteases implicated in pneumonia and inflammation

Activity-based nanosensors produce a functional output for disease and possess an inherent

amplification factor, in that single target enzymes trigger the release of multiple reporters.

Therefore, rather than rely on endogenous gene expression, we sought to create ABNs that

leverage the catalytic activity of our ProSet to generate a non-invasive and amplified uri-

nary readout for distinguishing bacterial versus viral pneumonia. This goal necessitated

identifying peptide substrates that are susceptible to cleavage by our ProSet enzymes for

use as protease-cleavable linkers in our ABNs. From prior literature, we identified peptide
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Figure 2-2: Generation of a bacterial versus viral infection protease signature using transcrip-
tional metanalysis. (A) Publicly available transcriptional datasets from human patients with bacte-
rial and viral respiratory infections were normalized using MANATEE, a computational framework
for meta-analysis of gene expression data. (B) MANATEE yielded a 40-gene signature of proteases
that are differentially upregulated in bacterial versus viral infections. (C) A classifier was trained on
human data from 16 published cohorts and validated on 17 independent published cohorts. ROC
curves represent the distinguishing power of the classifier, where an AUC of 0.5 indicates the classi-
fier performs as well as chance and 1 indicates perfect classification. (D, E) Biological pathways un-
derlying the different gene sets were queried using a pathway analysis program (ConsensusPathDB).
The pathways are represented by nodes, with the size indicating the number of total genes associated
with that pathway and the color indicating the significance of the inputted gene set in terms of its as-
sociation with the pathway. Signature genes that are shared between different pathways are depicted
as edges, with the color indicating the number of shared input genes.
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substrates with amino acid sequences optimized for cleavage by a subset of the ProSet (see

Table 2.3 for sequence source information). We then expanded the substrate pool by draw-

ing upon our previous work, in which we identified peptide sequences that were efficiently

cleaved in other mouse models of disease [55, 56, 64, 67], and nominated additional candi-

dates based on literature review (references in Table 2.3). This process resulted in a panel

of 20 peptides, which were incorporated into ABNs (Table 2.3). These ABNs consist of

a 40-kDa polyethylene glycol (PEG) core that is conjugated to the peptide substrates. The

N-terminus of each substrate linker is synthesized with a mass-encoded GluFib reporter, a

peptide that is stable in circulation and renally cleared, to enable detection in urine via mass

spectrometry. However, the N-terminus can also accommodate other reporter molecules,

such as a fluorophore or short peptide domain, to suit different readout modalities.

Table 2.3: 20-plex panel of activity-based nanosensors for pneumonia. Each nanoparticle con-
sists of a mass-encoded GluFib reporter (in italics, d-amino acids represented by lowercase letters)
attached to a photolabile linker (ANP). The adjacent peptide sequence (in bold) is conjugated to an
inert 40kDa 8-arm PEG scaffold. All peptide sequences were derived from published studies (refer-
ence listed per substrate).

Name Sequence (reporter, peptide sequence)

BV01

BV02

BV03

BV04

BV05

BV06

BV07

BV08

BV09

BV10

BV11

BV12

BV13

BV14

BV15

BV16

BV17

BV18

BV19

BV20

e(+2G)(+6V)ndneeGFFsAr-(ANP)-GGAIEFDSGC-(PEG8-40kDa)

eG(+6V)ndneeGF(+1F)s(+1A)r-(ANP)-GGHPGGPQC-(PEG8-40kDa)

e(+3G)(+1V)ndneeGFFs(+4A)r-(ANP)-GGGVFRMLSVGC-(PEG8-40kDa)

e(+2G)Vndnee(+2G)FFs(+4A)r-(ANP)-GGGLFRSLSSGC-(PEG8-40kDa)

eGVndnee(+3G)(+1F)Fs(+4A)r-(ANP)-GGGLLYGKGGC-(PEG8-40kDa)

e(+2G)(+6V)ndnee(+3G)(+1F)(+1F)s(+1A)r-(ANP)-GGy-Tic-TNGC-(PEG8-40kDa)

eG(+6V)ndnee(+3G)(+1F)Fs(+4A)r-(ANP)-GGfPRSGGGC-(PEG8-40kDa)

e(+3G)(+1V)ndneeG(+10F)FsAr-(ANP)-GGGSGRSANAKGC-(PEG8-40kDa)

e(+2G)Vndnee(+2G)F(+10F)sAr-(ANP)-GGGIQQRSLGGGC-(PEG8-40kDa)

eGVndneeGF(+10F)s(+4A)r-(ANP)-GGIPSIQSRGLGC-(PEG8-40kDa)

e(+2G)(+6V)ndneeG(+10F)(+1F)s(+1A)r-(ANP)-GGNLARALKQTIGC-(PEG8-40kDa)

eG(+6V)ndneeG(+10F)Fs(+4A)r-(ANP)-GGHMVQHLIQWHGC-(PEG8-40kDa)

e(+3G)(+1V)ndnee(+2G)(+10F)Fs(+4A)r-(ANP)-GGPRAAA-Homophe-TSPGC-(PEG8-40kDa)

e(+2G)Vndnee(+3G)(+10F)(+1F)s(+4A)r-(ANP)-GGTGPPGYTGC-(PEG8-40kDa)

eGVndneeG(+10F)(+10F)sAr-(ANP)-GGTGLPVYQGC-(PEG8-40kDa)

e(+2G)(+6V)ndnee(+3G)(+10F)(+1F)s(+4A)r-(ANP)-GG-Nle(O-Bzl)-Met(O)2-Oic-Abu-C-(PEG8-40kDa)

eG(+6V)ndneeG(+10F)(+10F)sAr-(ANP)-GGAAFAGC-(PEG8-40kDa)

e(+3G)(+1V)ndnee(+2G)(+10F)(+10F)sAr-(ANP)-GGGGGPGC-(PEG8-40kDa)

e(+2G)VndneeG(+10F)(+10F)s(+4A)r-(ANP)-GGPLGMRGGC-(PEG8-40kDa)

eGVndnee(+2G)(+10F)(+10F)s(+4A)r-ANP-GGP-(Cha)-G-Cys(Me)-HAGC-(PEG8-40kDa)

Sequence source

Published Granzyme B substrate (Kwong et al., 2020)

Commercially available Cathepsin K substrate 

Screened Granzyme A substrate (Kaiserman et al., 2014)

Screened Granzyme A substrate (Kaiserman et al., 2014)

Published CAPN2 substrate (Kwon et al., 2020)

Published Legumain substrate (Poreba et al., 2018) 

Derived from Kirkpatrick et al., 2020

Derived from Kirkpatrick et al., 2020

Derived from Dudani et al., 2018

Influenza hemaagluttinin cleavage site (Tse and Whittaker, 2015)

Screened MMP substrate (Kukreja et al., 2015)

Screened MMP substrate (Kukreja et al., 2015)

Screened ADAM9 substrate (Moss et al., 2016)

Screened ADAMTS substrate (Bekhouche et al., 2016)

Screened ADAMTS substrate (Bekhouche et al., 2016)

Published Neutrophil elastase substrate (Kasperkiewicz et al., 2014 )

Published Neutrophil elastase substrate (Buss et al., 2018)

Derived from Dudani et al., 2018

Derived from Kirkpatrick et al., 2020

Derived from Kirkpatrick et al., 2020
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2.2.3 The pneumonia ABN panel generates etiology-specific urinary

signatures

We next sought to determine whether this ABN panel could distinguish bacterial from viral

pneumonia in vivo by administering the ABN panel into five mouse models representing

common causes of CAP in humans. We established the models by infecting immunocom-

petent BALB/c mice with either bacteria (Streptococcus pneumoniae, SP; Klebsiella pneu-

moniae, KP; Haemophilus influenzae, HI) or viruses (Influenza A/PR/8/34 (H1N1), PR8;

Pneumonia virus of mice, PVM). We optimized the dose of each pathogen to cause sim-

ilar timelines of disease within each etiology based on lung bacterial and viral loads, and

outward physical symptoms (Figure 2-3).

To characterize the performance of our panel in vivo, we then delivered the 20 ABNs di-

rectly into the lungs of mice with bacterial pneumonia, viral pneumonia, or healthy controls,

and collected urine two hours after administration. The urinary reporter concentrations

were measured, normalized, and compared to assess whether the ABNs were differentially

cleaved among disease states. Principal component analysis (PCA) revealed distinct diver-

gence between mice with pneumonia and the corresponding healthy controls, consistent

with the hypothesis that ABNs are differentially cleaved between these groups (Fig. 2-4b).

Furthermore, the tightness of each group indicates that these cleavage events are consistent,

suggesting the existence of ABN-generated urinary signatures for mice with and without

pneumonia. To determine these signatures, we examined the relative differences in reporter

concentrations between the healthy and infected mice and found that 17 of the 20 ABNs were

significantly differentially cleaved in one state versus the other (Fig. 2-4c). This demon-

strated that the host protease response could be queried to generate a functional readout of

active pneumonia. Furthermore, it is worth noting that even though the infected lung is pre-

sumably more protease-rich than healthy tissue, many reporters are significantly enriched in

healthy controls relative to the mice with pneumonia, which highlights differential protease

activity between the two states.

Re-labeling each mouse by etiology revealed further separation between bacterial versus
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Figure 2-3: Characterization of the mouse models for bacterial and viral pneumonia. (A,B,C)
Various doses of each bacteria were administered to immunocompetent mice. Lungs from these
mice were homogenized and plated to determine bacterial loads. Each point represents one mouse,
n = 5 to 10 per dose. (D,F) The viral load in mice infected with with pnuemonia virus of mice (PVM)
and influenza A (PR8) was evaluated over time. Viral loads were quantified using qRT-PCR. n=3-
5 mice per timepoint. (E,G) The physical manifestations of disease were tracked via body weight
throughout the timecourse of infection. n=3-5 mice per timepoint.
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Figure 2-4: Activity-based nanosensors distinguish pneumonia and etiology in mice. (A) ABNs
were administered into 5 mouse models of pneumonia. Urine from each mouse was collected 2 hours
after administration to characterize in vivo ABN activity. (B,D) Unsupervised principal component
analysis (PCA) of normalized urine reporter concentrations in pneumonia (n=106 mice) and healthy
controls (n=35 mice). Data from pneumonia mice are labeled according to either infection (B) or
etiology (D). (C,E) The relative fold change between disease states was calculated using mean scaled
reporter concentrations. Dotted line at x-axis represents no fold change between disease states. Each
point represents one reporter, with significantly differential reporters in red. Significance was calcu-
lated using two-tailed t-test with Holm-Sidak correction. Dotted y-axis at 𝑃𝑎𝑑𝑗 = 0.05.
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viral pneumonia (Fig. 2-4d). Notably, of the 5 reporters enriched in mice with pneumonia

compared to controls, 3 (BV13, BV19, BV20) were significantly enriched in the viral mice

while the other 2 (BV03 and BV04) were enriched in the bacterial mice (Fig. 2-4e). Re-

porters from additional ABNs that were not part of this initial subset (e.g., BV01, BV10,

BV12) also emerged as differentially enriched in bacterial and viral pneumonia. The asso-

ciation of these reporters with the healthy controls when comparing to mice infected with

pneumonia, versus bacterial or viral pneumonia when comparing etiologies, demonstrates

that multiplexing ABNs enables the creation of discrete reporter sets for different disease

states. Overall, these results revealed distinct differences in urinary reporter concentrations,

and thus protease activity, between mice with bacterial and viral pneumonia.

2.2.4 Activity-based nanosensors are cleaved by a wide range of pro-

tease classes

Having shown that the pneumonia activity-based nanosensor panel generated differential

in vivo cleavage signatures, we next sought to evaluate the specificity of each substrate for

its target protease by screening of the peptide linkers across a non-exhaustive range of pro-

teases. To this end, we first reformulated each ABN into a fluorescent probe format by

flanking the peptide substrate sequence with a fluorophore-quencher pair (Fig. 2-5a; se-

quences listed in Table 2.4). We then incubated each probe with commercially-available

recombinant proteases that were either derived from the ProSet or predicted to be present

in the lungs (protease and buffer conditions in Table 2.5).

All probes were cleaved by at least one protease within 10 minutes, with marked cleavage

by several proteases that are known to be more promiscuous, such as neutrophil elastase

(NE) and matriptase (ST14) (Fig. 2-5a). We performed hierarchical clustering to determine

which proteases had orthogonal cleavage profiles and saw similarities across Cathepsin K

(CATK), Kallikrein 5 (KLK5) and Serine Protease 3 (PRSS3). However, we observed no

obvious clustering based on protease class, and in fact, most proteases had relatively distinct

cleavage patterns, which was expected given our rational approach to substrate selection.
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Table 2.4: Quenched fluorescent probe formulations of ABN panel. Substrate sequences were
incorporated into quenched fluorescent probes. 5FAM = Fluorescein, CPQ2 = Quencher, PEG2 =
polyethylene glycol. Other capital letters are single amino acid codes.

Substrate Sequence
BV01-F (5FAM)-GGAIEFDSGK(CPQ2)-(PEG2)-C
BV02-F (5FAM)-GGHPGGPQGK(CPQ2)-(PEG2)-C
BV03-F (5FAM)-GGGVFRMLSVGK(CPQ2)-(PEG2)-C
BV04-F (5FAM)-GGGLFRSLSSGK(CPQ2)-(PEG2)-C
BV05-F (5FAM)-GGGLLYGKGGK(CPQ2)-(PEG2)-C
BV06-F (5FAM)-GGy-Tic-TNGK(CPQ2)-(PEG2)-C
BV07-F (5FAM)-GGfPRSGGGK(CPQ2)-(PEG2)-C
BV08-F (5FAM)-GGGSGRSANAKGK(CPQ2)-(PEG2)-C
BV09-F (5FAM)-GGGIQQRSLGGGK(CPQ2)-(PEG2)-C
BV10-F (5FAM)-GGIPSIQSRGLGK(CPQ2)-(PEG2)-C
BV11-F (5FAM)-GGNLARALKQTIGK(CPQ2)-(PEG2)-C
BV12-F (5FAM)-GGHMVQHLIQWHGK(CPQ2)-(PEG2)-C
BV13-F (5FAM)-GGPRAAA-Homophe-TSPGK(CPQ2)-(PEG2)-C
BV14-F (5FAM)-GGTGPPGYTGK(CPQ2)-(PEG2)-C
BV15-F (5FAM)-GGTGLPVYQGK(CPQ2)-(PEG2)-C
BV16-F (5FAM)-GG-Nle(O-Bzl)-Met(O)2-Oic-Abu-K(CPQ2)-(PEG2)-C
BV17-F (5FAM)-GGAAFAGK(CPQ2)-(PEG2)-C
BV18-F (5FAM)-GGGGGPGK(CPQ2)-(PEG2)-C
BV19-F (5FAM)-GGPLGMRGGK(CPQ2)-(PEG2)-C
BV20-F (5FAM)-GGP-(Cha)-G-Cys(Me)-HAGK(CPQ2)-(PEG2)-C

Table 2.5: Recombinant proteases and buffers used for in vitro screen. Specific buffers were
used to create optimal cleavage conditions for each recombinant protease. Activation buffers were
used for pre-incubation of the protease as needed.

Protease Product info Assay buffer Activation buffer
rhFAP R&D (3715-SE) 50 mM Tris, 1 M NaCl, 1 mg/mL BSA, pH 7.5
rhNE Enzo BML-SE284-0100 0.1 M Tris-HCl pH 8
rhLGMN R&D (2199-CY) 50 mM MES, 250 mM NaCl, pH 5.0 50 mM Sodium Acetate, 100 mM NaCl, pH 4.0
rhMMP9 Enzo (BML-SE360) 50 mM Tris, 0.15 M NaCl, 10 mM CaCl2, 0.05% Brij-35 (w/v), pH 7.5 
rhPR3 Enzo (BML-SE498-0025) 100mM MOPS pH 7.5, 500mM NaCl, 10% DMSO, 100μM DTNB
rhMMP24 Enzo (ALX-201-105-C010) 50mM TRIS-HCl, pH 7.57, 150mM NaCl, 5mM CaCl2, 0.025% Brij 35.
rhGZMK Enzo (ALX-201-117-C010) 50 mM TRIS, pH 8.0, 0.15M NaCl, 0.01% Triton X-100, 0.3mM DTNB
rhGZMA R&D (2905-SE) 50 mM Tris, pH 8.0 0.1 M Tris, pH 9.0 
r3CLpro R&D (E-720) 50 mM HEPES, 0.1 M NaCl, pH 8 
rhCATB R&D (953-CY-010) 25 mM MES, pH 5.0 25 mM MES, 5 mM DTT, pH 5.0
rhNAPSA R&D (8489-NA-050) 50 mM Sodium Acetate, 100 mM NaCl, pH 4.0
rhGZMH R&D (1377-SE-010) 50 mM Tris, 1 M NaCl, 1 mg/mL BSA, pH 7.5
rhCATG Enzo (BML-SE283-0100) 160 mM Tris-HCl, 1.6 M NaCl, pH 7.7
rPLPro R&D (E-611) 50 mM HEPES, 0.1 M NaCl, pH 8 
rhADAM9 R&D (939-AD-020) 25 mM Tris, 2.5 µM ZnCl2, 0.005% (w/v) Brij-35, pH 9.0
rhGZMB R&D (2906-SE) 50 mM Tris, pH 7.5 50 mM MES, 50 mM NaCl, pH 5.5
rhST14 R&D (3946-SEB-010) 50 mM Tris, 0.05% (w/v) Brij-35, pH 9.5
rhF2 R&D (1473-SE-010) 50 mM Tris, 1 M NaCl, 1 mg/mL BSA, pH 7.5
rhCATK Enzo (BML-SE553-0010) 25 mM MES, 5 mM DTT, pH 5.0
rhKLK5 R&D (1108-SE-010) 0.1 M NaH2PO4, pH 8.0
rhPRSS3 R&D (3714-SE) 50 mM Tris, 0.15 M NaCl, 10 mM CaCl2, 0.05% Brij-35 (w/v), pH 7.5 
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Importantly, although the peptide substrates were selected based on published suscepti-

bility to cleavage by our proteases of interest, peptide sequences are often cleaved by mul-

tiple enzymes, to varying degrees; thus, there will inevitably be substrate cleavage by other

proteases in vivo, especially in the protease-rich microenvironment of the infected lung.

To parse through this confounding cleavage and more directly correlate our in vivo results

with specific protease activity, we normalized the screening data to identify the strongest

protease-substrate pairs from our screen. We reasoned that standardizing across substrates

would allow us to compare how quickly an individual protease cleaved one probe rela-

tive to others, thus providing a yardstick for cleavage efficiency. Conversely, normalizing

across proteases reflected specificity by comparing the cleavage rates of one probe by a wide

panel of proteases. Correlating these metrics enabled the identification of optimal protease-

substrate pairs that had both robust and specific cleavage (Fig. 2-5b, Fig. 2-6). Based on

their cleavage efficiency and specificity, several optimal protease-probe pairs emerged from

the screen. Pairings such as Granzyme B (GZMB) and BV01-F (Fig. 2-5b), and Legumain

(LGMN) and BV06-F (Fig. 2-5c) confirmed that some of the rationally designed probes

were being well cleaved by their intended targets (as listed in Table 2.3). Other probes

yielded no optimal protease hits, though it is possible that an unscreened protease might

cleave that probe more successfully, or simply that the optimal cleavage kinetics for that

probe is not achieved during a 10-minute assay. Overall, this analysis indicated that while

each ABN is vulnerable to protease cleavage, the presence of any given reporter in the urine

may not directly correspond to one specific protease. Still, given that the cleavage patterns

in vitro were sufficiently distinct, and that multiplexing allows us to leverage the relative

reporter levels from each ABN, we anticipated that our in vivo cleavage signatures would

enable classification among disease states.
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Figure 2-5: In vitro screening of fluorescent substrates reveals possible ABN targets. (A) Each
peptide sequence was also incorporated into a quenched fluorescent substrate. These fluorogenic
probes were then incubated with recombinant proteases to evaluate the cleavage profile of each ABN.
Hierarchical clustering was performed based on the fold change in fluorescence after 10 minutes (av-
erage of two replicates). (B,C) Standardization was performed to assess protease-substrate pairings
from the in vitro screening data. Z-scores of the average fold change values for each pairing across
the proteases (x-axis) and substrates (y-axis) were compared to characterize protease-substrate pairs
by specificity and cleavage efficiency.
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Figure 2-6: Z-score correlation plots with “optimal” proteases. Each plot represents standardized
metrics that were calculated based on the fluorescence fold change at 10 minutes after incubation of
the fluorescent probe with each recombinant protease. The most protease with the highest of both
metrics is in red, but other proteases in the upper red quadrant are also considered “optimal” hits.
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2.2.5 BV01 signals differences in the host immune response to bacterial

and viral pneumonia

After observing differential cleavage of the ABNs in vivo and characterizing cleavage sus-

ceptibilities in vitro, we sought to validate that our urine reporter signatures were reflective

of diverging biology between bacterial and viral pneumonia. To do this, we focused on

BV01, which was designed and validated to be cleaved by Granzyme B (GzmB) in vitro.

GzmB is a serine protease that is produced by natural killer (NK) cells and cytotoxic T

lymphocytes (CTLs), and has been implicated in the antiviral response. [77] NK cells in

particular are known to play an important role in antiviral immunity. [78] However, there is

evidence that they have a detrimental effect on the lungs of immunocompromised mice in

the context of S. pneumoniae due to the production of inflammatory cytokines. [79] To de-

termine whether our differential BV01 signal was being driven by the immune response to

viral infection, we focused on the main causes of viral and bacterial pneumonia: influenza

(PR8) and S. pneumoniae (SP), respectively. We hypothesized that the virally-associated

BV01 signal we observed in vivo (Fig. 2-4e) was due to increased recruitment of activated

NK cells and CTLs into the lungs during viral infection. To assess the presence of these

immune cells in viral and bacterial pneumonia, we performed immunofluorescent staining

for cell surface markers on CTLs (CD8 co-receptor) and NK cells (NKp.46) using fresh

frozen lung sections from SP and PR8 mice. The staining showed few CD8+ T cells and

NK cells in the SP tissue (Fig. 2-7a,b,f) relative to the PR8-infected lungs, which had a

higher number of positive cells for both cell populations. To confirm that the low levels of

staining in the SP samples were due to negative signal rather than incomparable infection

or a lack of tissue binding, we also stained for an antibody against RB6-8C5, which reacts

strongly with Ly6G, a neutrophil marker. We observed robust staining of RB6-8C5+ cells in

SP compared to PR8 (Fig. 2-7c,h), which contrasted with the CD8 and NK staining patterns

and indicated that the SP lungs were indeed inflamed. We also stained for GzmB protein in

the same sections and saw increased staining in PR8-infected lungs relative to SP-infected

samples (Fig. 2-7d,g), which aligned with elevated GzmB expression in PR8 lungs, as mea-
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sured by qRT-PCR (Fig. 2-7e). Overall, these results show that GzmB, CD8+ T cells and

NKp46+ NK cells are significantly more prevalent in PR8 lungs compared to SP, which is

consistent with previous findings that NK cells are actively recruited to the lungs following

influenza infection in mice. [80]

At this point, we had nominated GzmB as a viral target via transcriptomics, shown that

BV01 is efficiently and specifically cleaved by GzmB in vitro, observed staining that sug-

gests that the cells producing GzmB are enriched in the deep lung infected with PR8 com-

pared to SP, and validated that GzmB itself is upregulated in PR8 based on immunohisto-

chemistry and mRNA expression. We next sought to test whether the BV01 urinary signal

could be considered a proxy for GzmB activity in the context of pneumonia. To do this, we

constructed an activatable zymography probe (AZP) using the BV01 substrate (BV01-Z)

to observe in situ cleavage in fresh frozen lung tissue samples from our mouse models of

infection (Fig. 2-8a). AZPs are composed of an anionic poly-glutamic acid (polyE) domain

that is connected to a fluorophore-labeled cationic poly-arginine (polyR) domain via a pep-

tide substrate. [81] When the peptide substrate adjoining the polyE and polyR domains in

the AZP (in this case, the BV01 linker) is cleaved by a protease, the AZP is activated and the

polyE and polyR domains can separate. Freed cationic polyR domains can then bind locally

to the tissue where the AZP was activated, enabling in situ labeling of protease activity on

fresh frozen tissue sections (Fig. 2-8a). To confirm that BV01-Z could be cleaved by GzmB

and that proteolytic activation was necessary for tissue binding, we incubated the AZP with

recombinant GzmB, allowing protease-driven activation to take place. We then applied ei-

ther the pre-cleaved mixture or intact probe onto fresh frozen sections of healthy mouse

lung at 4ºC, enabling tissue binding while preventing activity of endogenous enzymes. A

fluorescent signal was visible in the sections incubated with the pre-cleaved AZP, but not

with the intact probe, demonstrating that a positive signal is dependent on protease activity

(Fig. 2-8b).

Having validated that GzmB cleaved BV01-Z, we applied BV01-Z to fresh frozen lung

sections from PR8 infected mice and observed strong signal throughout the lungs (Fig. 2-
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8c). This labeling was significantly abrogated by the addition of a GzmB specific inhibitor

(Z-AAD-CH2Cl) (Fig. 2-8c, p=0.0180), confirming that in situ GzmB activity contributes

to BV01-Z activation. However, the signal is not completely eliminated with the inhibitor,

indicating some off-target cleavage by other proteases present in the tissue. We confirmed

this orthogonal cleavage by incubating BV01-Z with a broad-spectrum protease inhibitor

cocktail, and observed a trend in further reduction of BV01-Z signal relative to GzmB spe-

cific inhibition, but it was not significant (Fig. 2-8c, n.s. p=0.0563). Nevertheless, a certain

level of off-target cleavage was to be expected as the in vitro screen revealed that BV01-F

is also cleaved to a notable, but lesser, extent by NE and ADAM9 (Fig. 2-5b), and is also

likely cleaved by other proteases that were not included in the recombinant screen. We also

compared BV01-Z signal in PR8 versus healthy lung, and observed increased BV01-Z sig-

nal in the infected tissue (Fig. 2-8d). Taken together, we have shown that there is a greater

influx of natural killer and CD8+ T cells in viral pneumonia compared to bacterial pneu-

monia. These cells produce the viral pneumonia marker GzmB, which can cleave the BV01

peptide sequence to produce a reporter signal that is appreciable in urine samples and tissue

sections from mice with viral pneumonia.

2.3 Discussion

Our results reveal several new insights into diagnosing community-acquired pneumonia

(CAP). First, we demonstrated that proteases can be mined from existing transcriptomic hu-

man data and leveraged as novel biomarkers for distinguishing pneumonia etiology. Existing

biomarkers for pneumonia such as as C-reactive protein (CRP) and procalcitonin (PCT) re-

quire measurement from blood. Similarly, our in silico protease signature was derived from

transriptomic data derived from whole blood and PBMCs. However, the diagnostic value of

CRP and PCT is dependent on their concentrations in blood, which is diluted by the circula-

tory volume and accumulates from the whole body. In contrast, we have previously shown

that a vast majority of ABNs that are intratracheally delivered directly into the lungs remain
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there for up to 24 hours. [56] Therefore, the reporter enrichment that we observed in vivo

is indicative of protease activity in the lungs, providing a readout of inflammation directly

from the disease site.

Second, we created a nanosensor panel that can detect the differential activity of these

proteases during pneumonia and release renally-cleared reporters to generate disease-specific

signatures in urine. These ABNs have a plausible path to clinical approval and translation.

The safety of the base formulation (i.e. a PEG scaffold with attached peptide linkers and

conjugated mass barcodes) has already been established in both small and large animal mod-

els, as well as in healthy human subjects after intravenous administration in a phase I clinical

trial. [82] Furthermore, our lab is developing aerosolized formulations of ABNs that are suit-

able for pulmonary delivery in patients. Finally, we have previously established lateral flow

assays that can detect urinary ABN reporters in paper diagnostic formats. [83,84] These ad-

vances in safety, administration, and detection establish a path to develop our activity-based

diagnostic platform for clinical use.

Importantly, in this work we have shown that a single panel of ABNs provides a readout

of three different disease states. This is similar to techniques such as bacterial culture and

multiplex PCR, but our ABNs have the added advantage of generating a readout within 2

hours of sensor administration, which is much faster than the hours to days required for other

tests. Furthermore, the COVID-19 pandemic has highlighted some important limitations of

PCR, such as the 24-48 hour turnaround time for results, the high cost per test, debates

about the threshold for a positive result, and uncomfortable or invasive sample collection

methods (e.g., nasopharyngeal swabs, sputum collection, bronchoalveolar lavage). It is also

feasible that we could apply this same 20-plex panel to create signatures for other respiratory

diseases, as we have shown that even within pneumonia the ABN signatures differ based on

etiology. This is also supported by the fact that one ABN, BV07, was derived from our

previous work in lung cancer. [56] Whereas BV07 signal was significantly decreased in

lung cancer compared to healthy controls, it is increased in viral pneumonia.

Finally, we have identified a protease activity sensor, BV01, that contributes to etiology
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stratification by detecting the activity of granzyme B (GzmB), which has increased expres-

sion in the mouse model of viral pneumonia than in bacterial pneumonia. This is further

supported by the greater influx of GzmB-producing immune cells into the lungs of mice

infected with PR8 versus during infection with S. pneumoniae. This shows that there are

distinct differences in the immune response to viral versus bacterial pneumonia in terms of

cell recruitment and subsequent protease expression, and that ABNs can be used to query

these differences. In addition, creating AZP versions of other ABNs could yield a new way

of detecting pneumonia ex vivo.

In summary, we have used our urinary reporter signatures to create diagnostic classifiers

that can differentiate between bacterial and viral pneumonia and healthy controls with high

accuracy. By focusing on the proteases implicated in host immunity, we have demonstrated

that pneumonia diagnostics can leverage the body’s innate response to pathogens to create

noninvasive readouts of infection that are sensitive and specific. We believe that our activity-

based nanosensor panel represents a new method of diagnosing pneumonia that could help

disrupt the diagnostic paradigm.

2.4 Materials and Methods

2.4.1 Systematic search for gene expression datasets

We performed a systematic search in NIH Gene Expression Omnibus (GEO) and European

Bioinformatics Institute (EBI) ArrayExpress for public human microarray genome-wide

expression studies of TB or other diseases. [85, 86] Datasets were excluded if they (i) were

nonclinical, (ii) were profiled using tissues other than WB or PBMCs, (iii) did not have at

least 3 healthy samples, or (iv) did not provide information to identify whether a patient had

bacterial or viral infection.

All microarray data were renormalized from raw data (when available) using standard-

ized methods. Affymetrix arrays were renormalized using GC robust multiarray average

(gcRMA) (on arrays with mismatch probes) or RMA. Illumina, Agilent, GE, and other
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commercial arrays were renormalized via normal-exponential background correction fol-

lowed by quantile normalization. Custom arrays were not renormalized. Data were log2-

transformed, and a fixed-effect model was used to summarize probes to genes within each

study. Within each study, cohorts assayed with different microarray types were treated as

independent.

2.4.2 COCONUT conormalization

We conormalized data using COCONUT or Combat CONormalization Using conTrols. [59]

COCONUT allows for conormalization of expression data without changing the distribu-

tion of genes between studies and without any bias towards sample diagnosis. It applies a

modified version of the ComBat empirical Bayes normalization method that only assumes

an equal distribution between control samples. [87] Briefly, the healthy controls from each

cohort undergo ComBat conormalization without covariates, and the ComBat estimated pa-

rameters are acquired for each dataset’s healthy samples. These parameters are then applied

to the diseased samples in each dataset, which causes all samples to assume the same back-

ground distribution while still retaining the relative distance between healthy and diseased

samples in each dataset. We have previously shown that when COCONUT conormalization

is applied, housekeeping genes remain invariant across both diseases and cohorts, and each

gene still retained the same distribution between diseases and controls within each data set.

2.4.3 Derivation of the 40-protease signature with MANATEE

MANATEE or Multicohort ANalysis with AggregaTed gEne Expression is a multicohort

analysis framework that is used to integrate gene expression datasets, perform differential

expression analyses to filter out top genes, apply machine learning methods to arrive at a

concise diagnostic signature, and finally to validate the discovered signature in independent

data (Fig. 2a). In this analysis, any genes that did not code for proteases were removed from

all datasets. Next, relevant datasets were identified through a systemic search of public gene
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expression data repositories. Some of these datasets were chosen for training the signature,

and the rest were set aside as future independent validation datasets. Samples from the

training datasets were then randomly split, with 70% of the samples assigned to Discovery

and the other 30% assigned to Hold-out Validation. The Discovery and Hold-out Validation

cohorts were each batch corrected with COCONUT conormalization.

Next, differential expression statistics were calculated in Discovery. Here, we com-

puted four measures of differential expression between cases and controls are calculated for

each protease: (1) the SAM score (from the Significance Analysis of Microarrays or SAM

method) [88], (2) the corresponding SAM local FDR, (3) the Benjamini-Hochberg FDR

corrected P value (from running a t-test [89]) and (4) the effect size (ES). The effect size

is estimated as Hedges’ adjusted g, which accounts for small sample bias. [90–93] We also

performed a leave-one-study-out (LOSO) analysis, wherein each study that accounted for

at least 5% of the training samples was iteratively removed from the training set, and the

differential expression statistics were re-calculated for each version of the training set with

one study left out. Thus, in order for a protease to be selected, it must not only exceed the

given thresholds in the statistics calculated for the full training set, but it must also exceed

those thresholds for each version of the training set with one study removed. This prevents

any single study from exerting too strong of an effect on the selection of proteases. [94,95]

Once the differential statistics were calculated, a set of “top” differentially expressed

proteases was chosen by filtering out proteases that had an FDR of less than 0.01 and an

absolute effect size of greater than 0.6. This resulted in a 40-protease signature. The sig-

nature was first tested in Hold-out Validation to assess whether the signature’s performance

remained robust when tested in new data. Finally, the signature was tested in Independent

Validation to measure its performance in completely independent data.

2.4.4 Enrichment analysis with ConsensusPathDB

The bacterial and viral gene signatures were input into ConsensusPathDB for over repre-

sentation analysis. For the pathway analysis there was a minimum overlap of 3 candidates
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and a p-value cutoff less than 0.01. The entity graph visualization was performed using the

database and edges with no shared candidates between nodes were filtered out.

2.4.5 Recombinant substrate screens with fluorescent substrates

Quenched fluorogenic probes were synthesized by CPC Scientific (sequences in table S3).

Each probe was diluted first in dimethylformamide (DMF), subsequently in PBS, and plated

into a 384-well plate. The plates were sealed and stored at -20°C until needed. To perform

the cleavage assay, recombinant proteases were activated as necessary and diluted in their

respective assay buffers with 0.1% BSA. The recombinant proteases were then added to each

substrate containing well for a final reaction volume of 50 µL (20 µM substrate and 20 nM

recombinant protease per well). Control wells, which contained no protease, were run on the

same plate. Each protease-substrate pair and relevant blank control was plated in duplicate.

Cleavage over time was quantified by fluorescence as measured by a fluorimeter (Tecan

Infinite M200 Pro). Fold change was calculated as the fluorescent signal at 10 minutes

divided by the original fluorescence at the start of the read. All enzyme sources and buffers

can be found in Table 2.5.

2.4.6 Mouse pneumonia models

All animal studies were approved by the MIT IUCAC (protocol 0619-032-44) and were

conducted in compliance with institutional and national policies. 7 to 9 week-old female

mice (BALB/c, Taconic) were dosed with either S. pneumoniae (NCTC 7466), K. pneu-

moniae (ATCC 43816), H. influenzae (ATCC 33391), Pneumonia virus of mice (ATCC

VR-1819), or influenza (Influenza A/PR/8/34 (H1N1), Charles River). The infectious dose

for each pathogen was selected based on physical signs of infection in the mice and plated

colony counts (for bacteria). To administer the pathogens, mice were first anesthetized by

isoflurane inhalation (Zoetis). While under anesthesia, pathogens were passively inhaled

via either intratracheal instillation (IT, for S. pneumoniae, K. pneumoniae, and H. influen-
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zae) or intranasally (for PVM and Influenza A). A volume of 50 µL was administered for all

pathogens except Influenza A, which was administered at 30 µL. Age- and gender-matched

control mice in each experiment received either 50 µL of sterile-filtered PBS IT for the

bacterial cohorts or IN for the viral cohorts.

2.4.7 Pathogen preparation

To prepare the bacteria, all bacteria were first cultured overnight (37°C, shaking at 250 rpm

for 14-20 hours) and subsequently grown in secondary culture with 1:100 to 1:200 dilutions

to an OD600 of 0.5-0.7, corresponding to a phase of exponential growth. K. pneumoniae

was cultured in LB broth (Invitrogen). S. pneumoniae was plated overnight on blood-agar

plates with neomycin (Hardy Diagnostics), and subsequently cultured in liquid brain-heart

infusion (BHI; BD) media. H. influenzae was cultured in supplemented BHI (BHI with

NAD and histidine-hemin). They were then pelleted, washed three times with sterile-filtered

PBS and diluted to the appropriate concentration for administration. To prepare the viruses

for infection, all viruses were diluted directly into sterile-filtered PBS from aliquoted stocks

and kept on ice until administration.

2.4.8 qRT-PCR for viral loads and GzmB

Lungs were dissected from infected and healthy mice, rinsed in PBS and stored in RNAlater

(Sigma Aldrich) at -80°C until use. RNA extraction was performed using the RNeasy Mini

kit (Qiagen). On-column DNase digestion was performed using the RNase-Free DNase Set

(Qiagen). RNA concentration was measured on a Nanodrop at A260. cDNA was prepared

with the RevertAid First Strand cDNA synthesis kit (Thermo Fisher). qRT-PCR was per-

formed using Ssofast EvaGreen Supermix (Bio-Rad). For viral load quantification, custom

oligo primers for PR8 and PVM were ordered from IDT (PR8: PA gene, Forward: 5’ GCG

GTC CAA ATT CCT GCT GA 3’, Reverse: 5’ CAT TGG GTT CCT TCC ATC CAA AG

3’; PVM: SH gene, Forward: 5’ GCC GTC ATC AAC ACAG TGT GT 3’, Reverse: 5’ GCC
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TGA TGT GGC AGT GCT T 3’). Viral loads were estimated by running a standard curve

with custom gBlocks from IDT for PR8 (PA gene) and PVM (SH gene). Relative Granzyme

B expression was measured using custom primers (IDT, Forward: 5’ TCT CTG ACT CCA

CGT CTC TTA C 3’, Reverse: 5’ CTG GGT CTT CTC CTG TTC TTT G 3’). GAPDH

expression was measured for normalization (ReadyMade primers, IDT).

2.4.9 In vivo activity-based nanosensor studies

Nanosensors were synthesized by CPC Scientific. ABNs were dosed in mannitol buffer

(0.28 M mannitol, 5 mM sodium phosphate monobasic, 15 mM sodium phosphate dibasic,

pH 7.0-7.5) and deposited into the lungs by intratracheal instillation (50 µL total volume,

20 µM per ABN). Immediately after dosing, all mice were given a subcutaneous injection

of PBS (400 µL) to promote adequate urine volumes for subsequent analysis. For the viral

pneumonia models, mice were administered the ABN cocktail 6 days post infection (p.i.).

For the bacterial pneumonia models, mice were administered ABNs 16 hours p.i. For all

mice, after receiving the ABNs mice were returned to their home cage for one hour with

full access to food and water. After this hour their bladder was manually voided, and they

were transferred into a urine collection chamber. At the end of the second hour, the bladder

was manually voided and the urine was collected, along with any urine that was produced in

the collection chamber. The urine samples were then sent to Syneos Health for LC-MS/MS

analysis. Reporter quantification by LC-MS/MS was performed as previously described.

[56]

2.4.10 Tissue dissection from mice and slide preparation

Female BALB/c mice were infected with influenza A (PR8) or S. pneumoniae (SP) as de-

scribed above. PR8 and SP mice were euthanized at 6 days and 16 hours after infection

initiation, respectively. The lungs were removed from the infected mice or healthy controls,

and put into a 6-well plate filled with PBS while the lobes were separated. The individual
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lobes were then immediately embedded in optimal-cutting-temperature (OCT) compound

(Sakura), frozen in isopentane chilled with dry ice, and stored at -80ºC until sectioning.

Cryosectioning was performed at the Koch Institute Histology Core. The resulting slides

were then stored at -80ºC until use for immunofluorescent staining or AZP experiments.

2.4.11 Immunofluorescent staining for immune cell markers and GzmB

Fresh frozen slides were prepared as described above. To prepare the slides for staining,

they were air-dried for 20 minutes, fixed in ice-cold acetone for 10 minutes, air-dried for 20

minutes and washed in sterile PBS (3x5 minutes). After the final wash, the tissue sections on

each slide were outlined with an ImmeEdge Pen (Vector Laboratories Inc, Bulingame, CA)

and blocked with 1% BSA in PBS for 30-45 minutes. The blocking buffer was then aspirated

and replaced with the relevant primary antibodies in PBS (Granzyme B, Abcam 25598, 2.93

𝜇g/mL; RB6-8C5, Abcam 25377, 5𝜇g/mL; Mouse NKp46/NCR1 Antibody, R&D AF2225,

4 𝜇g/mL; CD8 (53-6.7), Novus NBP1-49045, 5 𝜇g/mL), and incubated at room temperature

for 1.5 hours. Slides were washed with PBS (3x5 minutes) and incubated with appropriate

secondary antibodies and Hoechst (1:2000 dilution) for 30 minutes at room temperature.

They were then washed (3x5 minutes) and mounted (ProLong Diamond Antifade Mountant,

Invitrogen).

2.4.12 In situ zymography with AZPs

For experiments involving on-slide AZP activation, slides were dried and fixed as previously

described. Slides with Granzyme B inhibitor (Z-AAD-CH2Cl, Abcam ab142034) were

blocked with 1% BSA and 100 𝜇M inhibitor in PBS, and those without were blocked with

1% BSA and an equivalent volume of DMSO to the GzmB inhibitor. After blocking, slides

were incubated with BV01-Z (1 𝜇M), Cy7-polyR (1 nM), and either GzmB inhibitor (100

𝜇M) or equivalent DMSO volume diluted in buffer (50 mM Tris, pH 7.5) for 2 hours at 37ºC.

Slides were washed with PBS (3x5 minutes) and incubated with Hoechst (1:2000 dilution)
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for 10 minutes at room temperature. Slides were washed again (3x5 minutes) and mounted

as previously described. For pre-cleavage experiments, recombinant human Granzyme B

(R&D 2096-SE, 100 𝜇g/mL) was activated with recombinant mouse Cathepsin C (R&D

2336-CY-010, 10 𝜇g/mL) in activation buffer (50 mM MES, 50 mM NaCl, pH 5.5) for 4

hours at 37°C. The activated rhGzmB was diluted to 100 nM and incubated with BV01-Z

(10 𝜇M) and DNTB (100 𝜇M) in assay buffer (50 mM Tris, pH 7.5) for 4 hours at 37°C.

Meanwhile, fresh frozen slides with healthy lung tissue were prepared and blocked with

BSA as described. After blocking, the slides were either incubated at 4°C for 1 hour with

the pre-cleaved BV01-Z mixture or intact BV01-Z, Cy7-polyR and DNTB diluted in assay

buffer. Slides were then washed (3x5 minutes), stained with Hoechst, washed, and mounted

as previously described.

2.4.13 Quantification of immunofluorescent staining and AZP signal

All slides were imaged on a Pannoramic 250 Flash III whole slide scanner (3DHistech).

Whole slide images were imported into QuPath (0.2.3) for quantification. Individual cells

were detected using the cell detection feature on the DAPI channel. Intensity thresholds

were manually determined based on mean and maximum intensity distributions for each

channel, in order to classify cells as being either positive or negative for any given marker

(CD8, NK, GzmB, Ly6G). Using scripts, each cell on the slide was annotated based on

whether it met the threshold, and the percentage of positive cells for each marker was cal-

culated using Excel. For AZP quantification, the mean intensity of each cell in the AZP and

polyR channels was calculated and the ratio of those values was interpreted as the relative

AZP signal. All further statistical measurements were performed in GraphPad 9.0 (Prism).

2.4.14 Statistical analysis

Principal component analysis, reporter enrichment, and the support vector machine algo-

rithm training were performed in the Python with the scikit-learn environment (https://scikit-
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learn.org). Hierarchical clustering was performed in R (https://www.r-project.org/). All

other analyses were performed in GraphPad 9.0 (Prism).
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Chapter 3

Designing diagnostic classifiers for

pneumonia

3.1 Introduction

Artificial intelligence (AI) algorithms have become a quintessential component of the diag-

nostic paradigm. Researchers and clinicians around the world have been incorporating AI

into their work in the hopes that computers can prevail where humans fail. Machine learning

(ML) is an application of AI whereby an algorithm can learn to produce a behavior that has

not been explicitly programmed, thus allowing the machine to gain human-like intelligence.

It is particularly useful in making predictions based on large datasets, therefore we sought

to use ML to translate the urinary signatures of our 20-plex ABN panel into diagnoses of

disease. To do this, we used a ML model called a Support Vector Machine (SVM), which

can assign unknowns into different categories. In our case, these categories are pneumonia

versus healthy, and bacterial versus viral pneumonia.

To do this, labeled objects from each group are fed into the model to train the algo-

rithm. The algorithm then essentially plots the objects in 𝑛-dimensional space, where 𝑛 is

the number of features for each object, and creates a mathematical function that optimizes

separation between the two categories of objects. This function is termed the “separating
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hyperplane”, and is the crux of SVM’s usefulness. The model is then fed new datapoints,

comprising the “test” dataset, which are then classified as members of group 1 or group

2 based on where each point falls relative to the separating hyperplane. This process can

then be iterated upon to distinguish between multiple categories, which is termed multiclass

classification.

Previously, we had shown clear separation between pneumonia and healthy mice, as well

as bacterial versus viral etiology, via PCA. This separation in two-dimensional space indi-

cated that there were clear differences in the urinary reporter concentrations among mice

with varied disease states. To translate the differences among all 20 nanosensors into some-

thing that could be diagnostically useful, we leveraged SVM to create classifiers that can

simultaneously detect CAP and distinguish etiology with high specificity and sensitivity.

These classifiers were also able to distinguish between pneumonia and healthy mice when

applied to pathogens that were not used for training, demonstrating that they are generaliz-

able. We also showed that high accuracy can be maintained when limiting the panel to just

five ABNs, which puts less technical readout modalities such as lateral flow assays within

reach. Thus, with our ABN panel, we have created a proof of concept for a non-invasive

urinary diagnostic for CAP with broad clinical utility.

3.2 Results

3.2.1 The ABN panel can classify pneumonia and determine etiology

Ultimately, our goal is to use our protease activity sensor panel to noninvasively diagnose

pneumonia and determine etiology without any prior knowledge of a subject’s infectious

state. Our enrichment analysis demonstrated that ABNs were differentially cleaved based

on disease state (Fig. 2-4), and our AZP results gave us confidence that the reporters present

in the urine were reflective of protease activity that was driven by disease pathogenesis

(Fig. 2-8). Confident that the urinary reporters were reflective of disease, we sought to

leverage their relative concentrations to create a diagnostic tool. For this, we leveraged ma-
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Figure 3-1: The panel can diagnose pneumonia and distinguish pneumonia etiology with high
accuracy. (A) Mice from two independent cohorts were infected with various pneumonia-causing
pathogens or given mock PBS for healthy controls. (B) Flowchart of the training and validation
method used to create and test support vector machine (SVM) classifiers for pneumonia. Cohort 2
was split into two groups, one to train the classifier and another to validate its performance. The
classifier was then applied to a separate group of infected and healthy mice, Cohort 1. The classifi-
cation performance of the classifier on this independent cohort is labeled as the test condition. The
validation and test performance of binary classifiers trained using this framework is represented with
ROC curves. Distinguishing power of classifiers trained on a multiclass algorithm were visualized
with a confusion matrix. (C, D) Performance of binary classifiers to differentiate mice infected with
pneumonia from healthy controls (C) and bacterial from viral pneumonia (D). All classifiers are
averages over 10 independent train-test trials. Train, validation, and test n can be found in the text.
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chine learning to build a classifier that could be prospectively applied to enable pneumonia

diagnosis. To do so, we infected a completely new set of mice (Cohort 2, n=102). These

mice infected with the same pathogens as the original cohort (Cohort 1, n=118) but all as-

pects of the infection, ABN administration, and urine collection processes were performed

independently. We then split Cohort 2 into one group (n=81) that was used to train a support

vector machine (SVM) classifier and another (n=21) to validate the classifier’s performance

(Fig. 3-1b). The classifier was able to perfectly distinguish between mice that had pneumo-

nia and healthy controls within this validation group (AUC 1.0, Fig. 3-1c). We then took

this classifier and applied it to the urine reporter concentrations from Cohort 1 to evaluate

its diagnostic potential. The classifier achieved near perfect classification (AUC = 0.998,

Fig. 3-1c), thus demonstrating that the ABN panel can be used to train a classifier that can

diagnose pneumonia.

Test of Cohort 1

Bacterial

Control

Viral

Bacterial Control Viral

1.0
BCohort 2 Cross-Validation

1.0

Bacterial

Control

Viral

Bacterial Control Viral

A

Figure 3-2: Confusion matrices visualizing performance of a multiclass SVM algorithm to
distinguish between all 3 states of interest. Each value represents the frequency at which each true
label was classified with the predicted label (e.g., the top left box represents the mice with bacterial
pneumonia, the true label, that were classified as having bacterial pneumonia, the predicted label).
The diagonal represents the true positive classifications. Train, validation, and test n can be found in
the text. (A) Cross-validation of the diagnostic classifier derived from the Cohort 2 training group
was performed on a subset of a samples and (B) tested on cohort 1. Values in the matrix represent
the percentage of mice that were assigned each label in relation to the true identity of the disease
state for each mouse. All classifiers are averages over 10 independent train-test trials.

Using the same framework, we then used the reporter concentrations from the infected

population of Cohort 2 (n=69) to train and validate a new binary classifier to distinguish
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viral and bacterial pneumonia. Again, we observed very high performance in the validation

cohort (AUC = 0.980, Fig. 3-1d). To test the bacterial-viral classifier, we applied it to the

infected mice from Cohort 1 (n=83) and saw near perfect classification of the infected mice

based on pneumonia etiology (AUC = 0.999, Fig. 3-1d). After establishing that binary

classifiers could be used to separately identify pneumonia and distinguish its cause, we then

sought to put these capabilities together. To do this, we created a multiclass SVM algorithm

that was trained and validated on Cohort 2 and then tested on Cohort 1. As expected, the

urinary signatures could differentiate between these three states with near perfect accuracy

(Cohort 2 validation Fig. 3-2a, Cohort 1 test Fig. 3-2b). These results demonstrate that our

ABN platform can be used to not only identify pneumonia but also stratify etiology.

After establishing that classifiers could be trained to differentiate between viral and

bacterial pneumonia, we next sought to evaluate whether the urine signatures were unique

enough to enable pathogen specific identification. PCA analysis of Cohorts 1 and 2 showed

that the pathogens formed fairly distinct clusters (Fig. 3-3a). By training a multiclass clas-

sifier on Cohort 2 and testing it on Cohort 1, we demonstrated that a classifier could be

created to correctly identify the pneumonia-causing pathogen, or lack thereof in the case of

the healthy controls, in each mouse with high accuracy.(Fig. 3-3b,c) In cross-validation, the

classifier struggled slightly with distinguishing between the two viral models. This was to

be expected as the PCA of Cohort 2 reveals a large amount of overlap between PVM and

PR8, suggesting that the two viruses produce similar urinary signatures. Importantly, this

error would not affect classification when focusing on distinguishing bacterial versus viral

etiology, as ultimately this result shows that the viral ABN signatures are similar, yet distinct

from the bacterial signatures. Applying this classifier to the test set also yields highly accu-

rate identification for all pathogens except HI, which can be mislabeled as healthy controls.

Given these errors, it is clear that while the ABN panel does enable pathogen identification,

further optimization is required to reach a level of accuracy that would enable microbe-

directed treatment.
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A Cohort 2: Training set

CB Cohort 2: Cross-valiation Cohort 1: Test

Cohort 1: Test set

Figure 3-3: A multiclass SVM algorithm can be trained to identify each pneumonia-causing
pathogen. (A) Principal component analysis (PCA) was performed on mean normalized urinary
ABN signals from healthy controls (black) and mice with pneumonia (colored symbols) in Cohorts
1 (right) and 2 (left). (B,C) Confusion matrices showing the accuracy of a support vector machine
(SVM) classifier in distinguish each pathogen from one another. All classifiers are averages over 10
independent train-test trials.
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3.2.2 The ABN panel can be reduced without sacrificing accuracy

Multiplexing our nanoparticles enables the creation of specific urinary signatures that can

reflect subtle differences between disease states. However, point-of-care diagnostics typi-

cally do not have strong multiplexing capabilities, as tests must be simplified for universally

accessible sampling, processing, and analysis. Therefore, while our 20-plex panel was able

to distinguish between pneumonia etiology with high sensitivity and specificity, to demon-

strate that this panel has potential to be used as a point-of-care diagnostic, we sought to de-

termine the minimal subset of ABNs that could still achieve high classification. To do this,

we re-performed the analysis while iterating through various combinations of the reporters

to determine which minimal set could still achieve differentiation. Creating a classifier us-

ing the top two differentially expressed reporters between bacterial and viral pneumonia

(BV03 and BV19) yielded fairly robust classification using a binary classifier (AUC=0.951,

Fig. 3-4a). This is promising in terms of creating a simple test that can guide antibiotic

stewardship if a patient is already known to have pneumonia but the underlying cause needs

to be identified, as measuring the presence of two analytes can be done using fairly straight-

forward lateral flow assays and other traditional point-of-care tests. However, testing using

a multiclass classifier showed that this reporter pair could not classify etiology in the wider

context of comparing to healthy controls, making the pair unsuitable for use in a more clas-

sic clinical setting. Based on the differential enrichment analysis performed in chapter 2

(Fig. 2-4c,e), we gradually incorporated other reporters into the set and determined that a

set of five ABNs (BV19, BV03, BV13, BV09, and BV07) could determine etiology with

high accuracy using both binary and multiclass classifiers (Fig. 3-4d).
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3.2.3 The urinary signatures are generalizable to causes of CAP be-

yond the training set

We next sought to evaluate whether the ABN panel produced urinary signatures that could

be generalizable to pathogens that were not used to train the diagnostic classifier, as the five

pathogens that were tested using the ABNs represent a small subset of the bacteria, viruses,

and fungi that can cause CAP. Using our existing data, we tested this by systematically

excluding pathogens from the training set, while testing the resulting classifier on all five

pathogens (Fig. 3-5). This exclusion analysis revealed that pneumonia virus of mice (PVM)

and H. influenzae (HI) were the most important pathogens to include in the training set

in order to achieve high quality classification, as indicated by the fact that excluding them

from the training set led to misclassification of viral pneumonia as bacterial, and bacterial

pneumonia as healthy controls, respectively.

Based on that finding, we then trained a classifier using urine data from mice infected

with HI, PVM, and healthy controls, and found that the resulting classifier could reliably

predict the etiology of the remaining three pathogens (S. pneumoniae, K. pneumoniae, and

influenza; Fig. 3-5g). This indicates that the urinary signatures generated by bacterial and

viral pneumonia are somewhat generalizable, as a single representative pathogen from each

group can be used to distinguish broad differences in protease activity between etiologies.

Most promisingly, this holds even when the cohort used for training and testing is reversed

(Fig. 3-5i), showing that this effect is not biased by cohort selection. We then sought to

combine this minimal pathogen set with the minimal reporter set that we previously identi-

fied. Unsurprisingly, we found that limiting the ABN panel from the original 20-plex to the

previous 5-plex strongly impacted the accuracy of the resulting classifier Fig. 3-5j). This

finding validates our previous results, in the sense that it shows that multiplexing can im-

prove performance by creating more nuanced signatures of disease.

Having established that the ABN panel and resulting diagnostic classifiers could be used

to generally discern bacterial and viral pneumonia, and even identify specific disease caus-

ing pathogens, we then wanted to evaluate its performance on other CAP-causing pathogens.
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Figure 3-5: Classifier performance can be maintained after training on limited sets of disease
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Staphylococcus aureus is another common cause of CAP and is a gram-positive bacteria that

colonizes the upper airways in healthy humans, making it similar to Streptococcus pneumo-

niae. However, despite these similarities, studies have shown that pneumonia caused by S.

aureus produces a distinct metabolic profile compared to S. pneumoniae, suggesting that

though these two bacteria share many qualities, they influence the host response in unique

ways. After optimizing the S. aureus pneumonia model (Fig. 3-6a), we administered the full

ABN panel into mice with S. aureus (SA) pneumonia and parallel healthy controls (Cohort

3, n=10 controls, n=13 SA). PCA showed distinct separation between the two groups, simi-

lar to what had been previously observed with the original panel of bacteria (Fig. 3-6b). We

then used the previously derived diagnostic classifier, tested it on Cohort 3, and observed

that there was perfect classification of healthy versus pneumonia mice.(Fig. 3-6c) This in-

dicated consistency among the urine signatures produced by the control mice, as this was

a completely independent set of mice, and among the mice with pneumonia, as this new

pathogen was not included in the training cohort. To evaluate how the S. aureus derived

urinary signatures compared to the other pneumonia-causing pathogens, we compiled the

data from cohorts 2 and 3 and re-performed PCA. Surprisingly, we observed that S. au-

reus overlapped significantly with the viral pneumonia models and distinctly from the other

bacteria (Fig. 3-6d).

To determine whether this viral-like signature was unique to S. aureus, we then op-

timized and tested another mouse model of bacterial pneumonia, this time infecting with

Pseudomonas aeruginosa (PA). This bacteria is a gram-positive pathogen, like H. influenzae

and K. pneumoniae. For this experiment, we administered the ABN panel alongside a group

of healthy CD-1 mice, in order to simultaneously assess whether the panel would behave

differently in a mouse strain with a distinct genetic background (Cohort 4, n=20 healthy CD-

1, n=18 PA). Once again, we observed distinct separation between the healthy CD-1 mice

and the P. aeruginosa infected BALB/c (Fig. 3-6f), and demonstrated that the binary classi-

fier derived from Cohort 2 could correctly diagnose both sets of mice as pneumonia versus

healthy, despite the distinct characteristics of both groups (Fig. 3-6g). However, when we
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compared Cohorts 2 and 4 using PCA we observed that unlike S. aureus, P. aeruginosa did

not overlap with any other pathogen; rather it formed its own distinct group (Fig. 3-6h). In

contrast, the CD-1 group overlapped with the BALB/c controls.

Based on the PCA results for both S. aureus and P. aeruginosa, we were unsurprised to

find that using the multiclass classifier trained on Cohort 2, both pathogens were frequently

misidentified as viral pneumonia (Fig. 3-6i,j). However, we hypothesized that by including

Cohort 4 in the training set, we could improve classifier performance for S. aureus, as the

classifier would be exposed to bacterial signatures with strong viral "components". Indeed,

we observed this to be the case (Fig. 3-6k), indicating that the composition of the training

set can greatly influence classification power.

3.3 Discussion

Artificial intelligence is commonly employed to detect abnormalities in chest x-ray and com-

puted tomography (CT) images with a level of precision that is unmatched by the human eye.

This has made it an increasingly popular area of research throughout the COVID-19 pan-

demic, and studies have shown that AI models can be trained to diagnose COVID-19, and

differentiate it from other viral and bacterial pneumonias. While computer-aided diagnosis

of chest images is undoubtedly useful, an estimated two-thirds of the world’s population

does not have access to diagnostic imaging, making the clinical utility of these algorithms

moot. Activity-based nanosensors (ABNs) offer an alternative means of diagnosing pneu-

monia. In this work, we have shown that machine learning algorithms can be trained on

urinary signatures generated by the 20-plex to create diagnostic classifiers that both diag-

nose pneumonia, distinguish etiology, and identify specific disease-causing pathogens. We

have also identified a set of five ABNs from the original 20-plex that can characterize etiol-

ogy with high accuracy, which primes the pneumonia ABNs for future development using

lower-throughout readout modalities.

The COVID-19 pandemic has made it clear that determining the etiology of pneumo-
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Figure 3-6: Diagnostic classifiers can be generalized to urinary signatures from pathogens
outside of the training set. (A,E) Mouse models of S. aureus (SA) and P. aeruginosa (PA) were
optimized. (B, F) PCA of independent mouse cohorts that were administered the 20-plex ABN panel.
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nia is crucial for individual patient management and public health. Here we have used

our urinary reporter signatures to create diagnostic classifiers that can differentiate between

bacterial and viral pneumonia and healthy controls with high accuracy. By focusing on the

proteases implicated in host immunity, we have demonstrated that pneumonia diagnostics

can leverage the body’s innate response to pathogens to create noninvasive readouts of in-

fection that are sensitive and specific. We believe that our activity-based nanosensor panel

represents a new method of diagnosing pneumonia that could help disrupt the diagnostic

paradigm.

While the reliance mass-spectrometry analysis does not make ABNs a feasible diagnos-

tic tool in middle- and low-income settings, the identification of a five reporter panel that

can diagnose pneumonia puts point-of-care use within reach. Lateral flow assays (LFAs)

are ideal diagnostic tools for point-of-care use in resource limited settings due to their low

cost, quantification potential, and user friendliness. Our lab has previously shown that LFAs

can be used to read out ABN activity in vivo [83] for up to four urinary reporters. However,

there are multiplexing strategies for LFAs that can enable the detection of 10-30 target si-

multaneously. Therefore, the set of five ABNs that we identified is well within the design

parameters for the future design of an LFA for diagnosing pneumonia.

An important biological limitation of this work is that a wide range of bacterial and viral

pathogens cause CAP. Thus, to use the ABN panel as a point-of-care diagnostic, the classi-

fier will need to be trained on urinary signatures derived from human subjects infected with

pathogens beyond the seven included in this work. For example, emerging causes of CAP,

such as SARS-CoV-2, should be included in classifier training. Promisingly, we have shown

that the urinary signatures generated by a small subset of CAP causing pathogens can be

used to train classifiers that are generalizable to novel pathogens. Furthermore, recent work

has shown that respiratory viruses such as influenza, SARS-CoV-2, Ebola, and others have

well conserved dysregulation of the host immune response [96], which supports that our

diagnostic may be generalizable to novel and evolving viruses. In addition, the inclusion of

data from pathogens that confounded the classifier when they were not included in training
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(e.g. P. aeruginosa), should help boost classifier performance.

3.4 Materials and Methods

3.4.1 Mouse pneumonia models

All animal studies were approved by the MIT IUCAC (protocol 0619-032-44) and were con-

ducted in compliance with institutional and national policies. 7 to 9 week-old female mice

(BALB/c, Taconic) were dosed with either S. pneumoniae (NCTC 7466), S. aureus (502A),

K. pneumoniae (ATCC 43816), H. influenzae (ATCC 33391), P. aeruginosa (PA01, PA14),

pneumonia virus of mice (ATCC VR-1819), or influenza (Influenza A/PR/8/34 (H1N1),

Charles River). The infectious dose for each pathogen was selected based on physical signs

of infection in the mice and either plated colony counts (for bacteria) or viral titers. To ad-

minister the pathogens, mice were first anesthetized by isoflurane inhalation (Zoetis). While

under anesthesia, pathogens were passively inhaled via either intratracheal instillation (IT,

for S. pneumoniae, S. aureus, K. pneumoniae, and H. influenzae and P. aeruginosa) or in-

tranasally (for PVM and Influenza A). A volume of 50 µL was administered for all pathogens

except Influenza A, which was administered at 30 µL. Healthy age and gender-matched con-

trol mice in each experiment received either 50 µL of sterile filtered PBS intratracheally for

the bacterial cohorts or 50 µL of sterile filtered PBS intranasally for the viral cohorts.

3.4.2 Pathogen preparation

To prepare the bacteria, all bacteria were first cultured overnight (37°C, shaking at 250 rpm

for 14-20 hours) and subsequently grown in secondary culture with 1:100 to 1:200 dilutions

to an OD600 of 0.5-0.7, corresponding to a phase of exponential growth. K. pneumoniae,

S. aureus, and P. aeruginosa were cultured in LB broth (Invitrogen). S. pneumoniae was

plated overnight on blood-agar plates with neomycin (Hardy Diagnostics), and subsequently

cultured in liquid brain-heart infusion (BHI; BD) media. H. influenzae was cultured in sup-
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plemented BHI (BHI with NAD and histidine-hemin) They were then pelleted, washed three

times with sterile-filtered PBS and diluted to the appropriate concentration for administra-

tion. To prepare the viruses for infection, all viruses were diluted directly into sterile-filtered

PBS from aliquoted stocks and kept on ice until administration.

3.4.3 In vivo activity-based nanosensor studies

Nanosensors were synthesized by CPC Scientific. ABNs were dosed in mannitol buffer

(0.28 M mannitol, 5 mM sodium phosphate monobasic, 15 mM sodium phosphate dibasic,

pH 7.0-7.5) and deposited into the lungs by intratracheal instillation (50 µL total volume,

20 µM per ABN). Immediately after dosing, all mice were given a subcutaneous injection

of PBS (400 µL) to promote adequate urine volumes for subsequent analysis. For the viral

pneumonia models, mice were administered the ABN cocktail 6 days post infection (p.i.).

For the bacterial pneumonia models, mice were administered ABNs 16 hours p.i. For all

mice, after receiving the ABNs mice were returned to their home cage for one hour with

full access to food and water. After this hour their bladder was manually voided, and they

were transferred into a urine collection chamber. At the end of the second hour, the bladder

was manually voided and the urine was collected, along with any urine that was produced in

the collection chamber. The urine samples were then sent to Syneos Health for LC-MS/MS

analysis. Reporter quantification by LC-MS/MS was performed as previously described.

[56]

3.4.4 Statistical analysis of urine signatures

For disease classification based on urinary activity-based nanosensor signatures, randomly

assigned sets of paired data samples consisting of features, i.e., standardized scores of peak

area ratio (PAR) of individual urinary reporters measured by LC-MS/MS, and labels, i.e.,

bacterial or viral, were used to train linear support vector machine classifiers implemented

in Python 3. All analyses were run with ten-fold cross validation, and trained classifiers
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were tested on randomly assigned, held-out, independent test cohorts. Classification per-

formance was evaluated with receiver operating characteristic (ROC) statistics. Classifier

performance was reported as the mean accuracy and AUC across ten-fold independent cross

validations.
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Chapter 4

Engineering nanoparticles for

breath-based detection of protease

activity

4.1 Introduction

Breath has been a readout for physiological status since the days of Hippocrates, when doc-

tors were trained to detect diseases by smelling patients’ breath. [97] However, the precise

composition of volatiles found in human breath was first probed in 1971, when Linus Pauling

used gas-liquid chromatography to identify around 250 substances. [98] Since then, thou-

sands of endogenously produced volatile organic compounds (VOCs) have been detected

among breath, skin, urine, feces, and other bodily tissues, giving rise to the new field of

"volatolomics". [99] Breath is a particularly attractive analyte, as it can be sampled repeat-

edly, non-invasively, at high volumes, and upon request. Furthermore, it contains a diverse

set of volatiles that are pooled from around the body due to the constant circulation of blood

through the lungs. One known difficulty of using exhaled volatiles as biomarkers for dis-

ease is that an individual’s volatolome is influenced by a wide range of factors, such as diet,

the environment, drugs, and generally anything affecting metabolism. [100] This makes it
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particularly difficult to identify VOCs that are differentially enriched in different disease

states. Furthermore, individual VOCs, which by definition and nature have low molecular

weights, are diluted in the breath, necessitating measurement tools with exquisite levels of

sensitivity. [101]

To overcome these limitation, exogenous volatiles, which are VOCs that are not natu-

rally present in the body, can be detected. [101] Early work with exogenous volatiles involved

detecting VOCs that were produced by pathogenic bacteria [102], environmental exposures

(e.g. the breathalyzer test for ethanol as a readout of blood alcohol concentration), and

using isotope labeled volatiles as chemical tracers for metabolic activity. [103] The latter

discovery led to the creation of the BreathTek test for Helicobacter pylori, a bacterium

that colonizes the stomach and is associated with numerous gastrointestinal diseases. Pa-

tients are administered an oral solution that contains urea made with 13C, a non-radioactive,

naturally occurring carbon isotope. Urease produced by H. pylori cleaves the 13C-urea,

producing 13CO2 that can partition into the breath. If the ratio of 13CO2/12CO2 is above a

cutoff ratio, the patient is determined to be H. pylori positive. This test demonstrated that

breath-based diagnostics can be developed around enzyme activity and used successfully in

clinical settings.

Inspired by the use of exogenous volatiles as biomarkers for disease, we sought to mod-

ify our our urinary nanoparticles (ABNs) to produce a breath-based readout by replacing

the traditional mass encoded reporters with VOCs; we have termed these particles volatile

ABNs (vABNs) (Fig. 4-1). The basic structure of these nanoparticles is similar to our tradi-

tional ABNs, whereby a PEG scaffold is decorated with peptide substrates. These substrates

are linked to a VOC reporter via a peptide bond. Upon substrate cleavage by a target pro-

tease, the VOC is released from the nanoparticle and able to partition into the air space of the

lung. The VOC is then exhaled, so by collecting breath we are able to use mass spectrometry

to measure the reporter concentration. Using this method, we can create a breath signature

of disease that is distinct from the signature generated by healthy controls. Throughout the

course of this work, the use of probes to produce exogenous VOCs in response to disease
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ABN

vABN

Mass reporter

Volatile reporter

Protease

Figure 4-1: Volatile ABNs enable an air-based readout ABNs were modified with volatile organic
compound reporters to create volatile ABNs (vABNs). vABNs release their volatile reporters into
the airspace, allowing vABN activity to be measured by sampling air.

was termed "induced volatolomics". [99]

In this work, the serine protease neutrophil elastase (NE) was selected as the target

protease. During inflammation, NE is released by neutrophils to kill microbial pathogens

and regulate leucocyte recruitment. [104] Due to its elastin-rich composition, the lung is also

susceptible to damage by elastases. Therefore, NE plays a notable role in numerous lung

diseases, including pulmonary infection, which is the most common risk factor for acute

lung injury [105]. Here, we engineer the vABN platform and demonstrate the ability to track

pulmonary NE activity through breath analysis within ten minutes of vABN delivery in a

mouse pneumonia model with P. aeruginosa. We also describe the creation of an in silico

model for predicting breath signal from these vABNs, and demonstrate that the vABNs can

be multiplexed in mouse models of pneumonia virus of mice (PVM) and S. pneumoniae.
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4.2 Results

4.2.1 Volatile ABNs can release volatile organic compounds in response

to protease activity

To engineer vABNs, we chemically modified peptide substrates to release a volatile re-

porter upon cleavage. We selected an optimized fluorogenic tetrapeptide substrate with the

sequence Ac-Nle(O-Bzl)-Met(O)2-Oic-Abu-ACC (ACC, fluorophore reporter 7-amino-4-

carbamoylmethylcoumarin) due to its selectivity for both human and mouse NE, catalytic

efficiency and cleavage site between the C-terminal residue (Abu) and the fluorophore re-

porter. [106,107] We hypothesized that an amine-containing VOC could be attached via an

amide bond to the peptide C-terminus in place of the fluorophore reporter while maintaining

substrate susceptibility to NE. Furthermore, we predicted this attachment chemistry would

allow the released VOC to recover its characteristic mass and volatility to undergo phase

transition for detection as a gas (Fig. 4-2a).

Hydrofluoroamines (HFAs) with the chemical formula CF3(CF2)𝑥CH2NH2 were se-

lected as bio-orthogonal VOC reporters due to their high volatility. In this work, HFA

reporters will be referred to as HFA𝑥, where 𝑥 is the CF2 chain length (Fig. 4-2b). To

test our hypothesis, we synthesized an HFA1-modified NE peptide substrate and used mass

spectrometry to characterize the substrate and reporter behavior in the presence of active NE

(Fig. 4-2c). Before NE addition, no HFA1 was detected in the headspace of vials containing

the solubilized, intact substrate. After NE addition, the substrate was cleaved between the

Abu residue and HFA1 reporter, and freed reporters partitioned rapidly from solution into

the vial headspace. The HFA1-releasing substrate was subsequently formulated into vABNs

for intrapulmonary delivery. To prolong retention in the lungs, substrates were conjugated

to 40 kDa eight-arm poly(ethylene glycol) (PEG) nanocarriers, which distribute throughout

the lungs and have a half-life of several days after intratracheal instillation. [56, 108]
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Figure 4-2: vABNs are activated by human NE and release volatile reporters detectable by
mass spectrometry. (A) Chemical structure of HFA-modified NE peptide substrates. HFA reporters
are attached at the C-terminus via an amide bond. A cysteine is included in the hydrophilic linker
at the N-terminus for conjugation to a nanoparticle carrier. (B) Chemical names and CAS reg-
istry numbers for volatile reporters. (C) Matrix-assisted laser desorption/ionization time-of-flight
(MALDI-TOF) mass spectrum confirming HFA1 release after substrate cleavage by purified human
NE (bottom) and mass spectra from real-time vapour analysis confirming partitioning of the freed
reporter into the reaction headspace (top).
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4.2.2 Creation of a mathematical model to predict exhaled vABN con-

centrations

Having established methods for vABN synthesis, we built a physiologically based pharma-

cokinetic (PBPK) model to investigate and optimize parameters important for breath signal.

Mathematical models have been previously developed to track ABN distribution and pre-

dict reporter concentrations in urine [53,109], and PBPK models for the respiratory tract are

well-established in the toxicology field. [110–114] Given the novelty of our breath-based

readout, we developed a new PBPK model that is governed by a set of differential equa-

tions representing the sequence of events from vABN delivery to breath collection. These

events include: (i) vABN accumulation in diseased lung tissue, (ii) peptide cleavage by

proteases in the lung, and subsequent reporter release, (iii) partitioning of freed reporters

from lung tissue to the respiratory lumen, (iv) exhalation of freed reporters and (v) breath

analysis (Fig. 4-3). We then used this model to predict the effects of key parameters (i.e.

protease concentration, vABN dosing, vABN cleavage kinetics, and reporter partitioning)

on reporter concentration in exhaled breath.

Compartment 1: vABN absorption from the lung lumen

In this model, the lung lumen is considered the air space of the lungs and can be represented

as the tidal volume. Because we deliver the vABNs into the lungs via intratracheal instilla-

tion, we assume that the entire dose is present in the lumen at 𝑡 = 0. Once in the lumen, the

vABNs can penetrate into the underlying pulmonary tissue at a rate that we define 𝑘𝑁𝑃
𝑇𝑖𝑠𝑠𝑢𝑒.

𝑑𝐶𝑁𝑃
𝑙𝑢𝑚𝑒𝑛

𝑑𝑡
= −𝑘𝑁𝑃

𝑡𝑖𝑠𝑠𝑢𝑒(𝐶
𝑁𝑃
𝑙𝑢𝑚𝑒𝑛 − 𝐶𝑁𝑃

𝑡𝑖𝑠𝑠𝑢𝑒) (4.1)

Compartment 2: vABN clearance from the pulmonary tissue

In our model, we have grouped the epithelial lining fluid (ELF), the alveolar macrophages

within that fluid, and the underlying lung epithelium into a compartment that we refer to as
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Figure 4-3: PBPK model schematic. Multicompartment PBPK model built to predict volatile
reporter concentrations in breath following intrapulmonary vABN delivery (𝐶, concentration; 𝑘,
rate constant; 𝐻 , partition coefficient of the free reporter in tissue (t), blood (b), or the respiratory
lumen/air (a); 𝑄𝑚, flow rate). The model consists of differential equations representing the follow-
ing: diffusion of nanoparticles (NP), or vABNs, from the respiratory lumen into the diseased lung
tissue (𝑘𝑁𝑃

𝑡𝑖𝑠𝑠𝑢𝑒), generation of freed reporters from NE cleavage of vABNs (𝑘𝑁𝐸
𝑐𝑎𝑡 ) and non-specific

cleavage by other pulmonary proteases (NS) in the tissue compartment (𝑘𝑁.𝑆.
𝑐𝑎𝑡 ), partitioning of freed

reporters from the tissue into the respiratory lumen (𝑘𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟𝑡𝑖𝑠𝑠𝑢𝑒 , 𝐻𝑡:𝑎) and subsequent exhalation in
breath (𝑄𝑚), and the alternative route of reporter clearance from the lungs by diffusion from tissue
into blood (𝑘𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟𝑐𝑙𝑒𝑎𝑟 , 𝐻𝑡:𝑏). The model was used to investigate the effects of reporter size on breath
signal generated by NE-sensing vABNs during lung infection. Parameters that change with reporter
size are 𝐻𝑡:𝑏 and the catalytic efficiency of vABN cleavage by NE (𝑘𝑐𝑎𝑡/𝐾𝑚).
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the “pulmonary tissue”. The concentration of the vABNs in the tissue is influenced by cleav-

age by target proteases (in this description the target is neutrophil elastase, NE), non-specific

cleavage by other proteases (non-specific, N.S.), and phagocytosis by alveolar macrophages

in the ELF (𝑘𝑁𝑃
𝑝ℎ𝑎𝑔𝑜). vABN cleavage is modeled using Michaelis-Menten enzyme kinetics.

The kinetic terms describing cleavage by NE (𝑘𝑁𝐸
𝑐𝑎𝑡 and 𝐾𝑁𝐸

𝑚 ) were determined through in

vitro experiments, while the terms for non-specific enzyme degradation (𝑘𝑁.𝑆.
𝑐𝑎𝑡 and 𝐾𝑁.𝑆.

𝑚 )

were fit to in vivo data (Fig. 4-4) and assumed to be the same for all vABNs, regardless of

their reporter. PEG polymers larger than 20 kDa have been shown to have high retention

rates in pulmonary tissue at early timepoints after intratracheal administration. [115] There-

fore, because we only modeled the vABN activity up to 3 hours after dosing, our model does

not account for transport from the pulmonary tissue into systemic circulation.

𝑑𝐶𝑁𝑃
𝑡𝑖𝑠𝑠𝑢𝑒

𝑑𝑡
= 𝑘𝑁𝑃

𝑡𝑖𝑠𝑠𝑢𝑒(𝐶
𝑁𝑃
𝑙𝑢𝑚𝑒𝑛 − 𝐶𝑁𝑃

𝑡𝑖𝑠𝑠𝑢𝑒) − 𝑘𝑁𝑃
𝑝ℎ𝑎𝑔𝑜𝐶

𝑁𝑃
𝑡𝑖𝑠𝑠𝑢𝑒

− (𝑘𝑁𝐸
𝑐𝑎𝑡 [𝑁𝐸]𝐶𝑁𝑃

𝑡𝑖𝑠𝑠𝑢𝑒

(𝐾𝑁𝐸
𝑚 + 𝐶𝑁𝑃

𝑡𝑖𝑠𝑠𝑢𝑒)
− 𝑘𝑁.𝑆.

𝑐𝑎𝑡 [𝑁.𝑆.]𝐶𝑁𝑃
𝑡𝑖𝑠𝑠𝑢𝑒

(𝐾𝑁.𝑆.
𝑚 + 𝐶𝑁𝑃

𝑡𝑖𝑠𝑠𝑢𝑒)
(4.2)

To obtain the concentration of NE in the ELF, we performed bronchoalveolar lavage

(BAL) in PA01 infected mice using a single wash (1 mL of phosphate buffer saline instilled,

with approximately 80% aspirated). The collected fluid was centrifuged to remove cells, and

the supernatant NE concentration was measured via ELISA. To correct for NE dilution in

BALF, we normalized this measured concentration, 5.29 ng/mL, to the total volume of ELF

in the lungs, which is where NE would be present. Using an ELF volume of 40𝜇L [116,117],

we estimated an NE concentration of 3.5 nM.

(5.29𝑛𝑔/𝑚𝐿 of NE in BALF)(0.8𝑚𝐿 of BALF)=(𝑥𝑛𝑔/𝑚𝐿)(0.04𝑚𝐿 of

ELF) 𝑥 = 105.8𝑛𝑔/𝑚𝐿

105.8𝑛𝑔/𝑚𝐿 * (1𝑒3𝑚𝐿)/(1𝐿) * (1𝑔)/(1𝑒9𝑛𝑔) * (1𝑚𝑜𝑙)/(29.5𝑒3𝑔) *

(1𝑒9𝑛𝑚𝑜𝑙)/(1𝑚𝑜𝑙) = 3.5𝑛𝑀 NE
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Compartment 3: Transport of liberated VOC reporters through the pulmonary tissue

Once the vABNs are cleaved, the liberated reporters can either diffuse from the tissue into

the lumen (𝑘𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟
𝑡𝑖𝑠𝑠𝑢𝑒 ), which allows them to be exhaled into the chamber, or transported into

the blood (𝑘𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟
𝑐𝑙𝑒𝑎𝑟 ), after which they are assumed to be diluted in the total circulatory blood

volume and unavailable for exhalation.

𝑑𝐶𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟
𝑡𝑖𝑠𝑠𝑢𝑒

𝑑𝑡
= −𝑘𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟

𝑡𝑖𝑠𝑠𝑢𝑒 (
𝐶𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟

𝑡𝑖𝑠𝑠𝑢𝑒

𝐻𝑡:𝑎

− 𝐶𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟
𝑙𝑢𝑚𝑒𝑛 ) − 𝑘𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟

𝑐𝑙𝑒𝑎𝑟 (
𝐶𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟

𝑡𝑖𝑠𝑠𝑢𝑒

𝐻𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟
𝑡:𝑏

)

+
𝑘𝑁𝐸
𝑐𝑎𝑡 [𝑁𝐸]𝐶𝑁𝑃

𝑡𝑖𝑠𝑠𝑢𝑒

𝐾𝑁𝐸
𝑚 + 𝐶𝑁𝑃

𝑡𝑖𝑠𝑠𝑢𝑒

+
𝑘𝑁.𝑆.
𝑐𝑎𝑡 [𝑁.𝑆.]𝐶𝑁𝑃

𝑡𝑖𝑠𝑠𝑢𝑒

𝐾𝑁.𝑆.
𝑚 + 𝐶𝑁𝑃

𝑡𝑖𝑠𝑠𝑢𝑒

(4.3)

The clearance rate of reporters from the respiratory tissue into blood (𝑘𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟
𝑐𝑙𝑒𝑎𝑟 ) was fit

to in vivo values (Fig. 4-4) and assumed to be equal for all reporters due to their similar

molecular weights. 𝐻𝑡:𝑎 is the tissue:air partition coefficient, which represents the ratio

of the VOC reporter concentration in the tissue to the concentration in air. A higher 𝐻𝑡:𝑎

implies that the reporter partitions more readily into tissue. Similarly, the 𝐻𝑏:𝑎 represents

the ratio of the VOC reporter concentration in the blood to the concentration in air. The 𝐻𝑡:𝑏

(tissue:blood partition coefficient) was calculated by dividing 𝐻𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟
𝑡:𝑎 by 𝐻𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟

𝑏:𝑎 , as is

standard for PBPK modeling. The 𝐻𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟
𝑡:𝑎 and 𝐻𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟

𝑏:𝑎 were measured in vitro for each

reporter except HFA7 due to difficulties with vaporization, which was assumed to have the

same partition coefficients as HFA5.

Compartment 4: VOC reporter concentration in the pulmonary lumen

The reporters that diffuse from the tissue and into the lung lumen are represented by:

𝑑𝐶𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟
𝑙𝑢𝑚𝑒𝑛

𝑑𝑡
= 𝑘𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟

𝑡𝑖𝑠𝑠𝑢𝑒 (
𝐶𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟

𝑡𝑖𝑠𝑠𝑢𝑒

𝐻𝑡:𝑎

− 𝐶𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟
𝑙𝑢𝑚𝑒𝑛 ) −𝑄𝑚,𝑐(𝐶

𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟
𝑙𝑢𝑚𝑒𝑛 − 𝐶𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟

𝑐ℎ𝑎𝑚𝑏𝑒𝑟) (4.4)

The first term of Eq. 4.4 describes the diffusion of the VOC reporter between the lumen

and tissue. The second term describes the movement of the reporter that is influenced by

breathing. 𝑄𝑚 represents the minute volume, which is the volume of gas that is inhaled or
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Figure 4-4: In vivo breath signal used to fit the PBPK model. Breath signal after intrapulmonary
delivery of HFA1-releasing vABNs in a mouse model of P. aeruginosa was used to fit the PBPK
model, in order to determine the values of several unknown parameters. Black squares are mean
concentrations from breath measurements.

exhaled per minute. Minute volume consists of both the alveolar volume (the volume of air

that undergoes gas exchange) and the dead space (air that is not perfused). The value for

𝑄𝑚 is typically given in units of 𝐿/𝑚𝑖𝑛. To correct for the units, the term 𝑄𝑚,𝑐 was used,

whereby 𝑄𝑚 is divided by tidal volume (the volume of air displaced between inhalation and

exhalation). With this correction, 𝑄𝑚,𝑐 effectively represents the ventilation rate.

Compartment 5: The breath collection chamber

Finally, the chamber compartment represents the receptacle that is used to collect breath.

In the model, this compartment is the syringe that encloses mice during breath collection.

In humans, it could represent any collection container that the patient breathes in and out

of during breath collection. The reporters in the lumen that do not diffuse back into the

pulmonary tissue are exhaled into the chamber. Assuming ideal transport of VOCs into and

out of the lumen, the chamber concentration can be modeled as:

𝑑𝐶𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟
𝑐ℎ𝑎𝑚𝑏𝑒𝑟

𝑑𝑡
= 𝑄𝑚,𝑐(𝐶

𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟
𝑙𝑢𝑚𝑒𝑛 − 𝐶𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟

𝑐ℎ𝑎𝑚𝑏𝑒𝑟) (4.5)
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Furthermore, this equation accounts for VOC reporters in the chamber that are re-inhaled,

which affects the concentration of reporters in the collected breath.

Conversion to parts per billion (ppb)

All concentrations in the model are in terms of 𝜇𝑀 . To convert the final exhaled concen-

trations into parts per billion (ppb), the following conversion factor was used:

𝐸𝑥ℎ𝑝𝑝𝑚 = 𝐶𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟
𝑐ℎ𝑎𝑚𝑏𝑒𝑟 * 1𝑒− 6 * 1000 * 24450

𝐸𝑥ℎ𝑝𝑝𝑏 = 𝐸𝑥ℎ𝑝𝑝𝑚 * 1000

Parameter estimation

Any values that were not measured or available in the literature were determined by fitting
the model for HFA1 to in vivo breath data obtained from administration of 100 𝜇𝑀 of the NE
responsive HFA1-vABN into infected mice (Fig. 4-4). The MATLAB function lsqcurvefit
was used to simultaneously fit 𝑘𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟

𝑡𝑖𝑠𝑠𝑢𝑒 , 𝑘𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟
𝑐𝑙𝑒𝑎𝑟 , 𝑘𝑁.𝑆.

𝑐𝑎𝑡 , and 𝐾𝑁.𝑆.
𝑚 until a local minimum

was reached. The fit was bound by the constraints that all values must be positive. 𝑘𝑁𝑃
𝑡𝑖𝑠𝑠𝑢𝑒

was manually adjusted to obtain a value that was less than 𝑘𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟
𝑡𝑖𝑠𝑠𝑢𝑒 and within a range of

previously modeled values. [109] The fitted values for 𝑘𝑁.𝑆.
𝑐𝑎𝑡 and 𝐾𝑁.𝑆.

𝑚 were then compared
to the measured values of 𝑘𝑁𝐸

𝑐𝑎𝑡 and 𝐾𝑁
𝑚 for HFA1, and scaled accordingly to obtain a more

generalized form that could be used to account for the differences in cleavage rate for vABNs
with other HFA reporters. The [𝑁.𝑆.] was held constant throughout all ABN models, as the
concentration of nonspecific enzymes should not change based on the vABN. All parameter
values can be found in Table 4.1.

Table 4.1: PBPK Model values. The parameters used to create the PBPK model.

Parameter Description Unit Value Source

Flow rates 𝑄𝑚 Minute volume L/min 0.037 [118]

𝑄𝑚,𝑐 Corrected minute volume 1/min 𝑄𝑚/𝑉𝑡𝑖𝑑𝑎𝑙 Estimate

Volumes 𝑉𝑡𝑖𝑑𝑎𝑙 Tidal volume mL 0.131 [118]

Partition

coefficients
𝐻𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟

𝑏:𝑎

VOC reporter blood:air

partition coefficient
-

HFA1: 51.26

HFA3: 31.50

HFA5: 18.73

Measurement
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Continuation of Table 4.1

Parameter Description Unit Value Source

𝐻𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟
𝑡:𝑎

VOC reporter tissue:air

partition coefficient
-

HFA1: 34.49

HFA3: 36.64

HFA5: 30.82

Measurement

𝐻𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟
𝑡:𝑏

VOC reporter tissue:blood

partition coefficient
- 𝐻𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟

𝑡:𝑎 /𝐻𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟
𝑡:𝑏 Defined

Clearance

rates
𝑘𝑁𝑃
𝑡𝑖𝑠𝑠𝑢𝑒

Diffusion rate of

vABNs into tissue
1/min 0.05

Manually fit to

in vivo data

𝑘𝑁𝑃
𝑝ℎ𝑎𝑔𝑜

Clearance rate of

vABNs via macrophages
1/min 0.0006 [109]

𝑘𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟
𝑡𝑖𝑠𝑠𝑢𝑒

Diffusion rate of

VOC into tissue
1/min 30.8

Computationally fit to

in vivo data

𝑘𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟
𝑐𝑙𝑒𝑎𝑟

Clearance rate of

VOC into blood
1/min 28.1

Computationally fit to

in vivo data

Michaelis-Menten

Kinetics
[NE]

NE concentration in the

respiratory tissue
nM 3.5 Measurement

𝑘𝑁𝐸
𝑐𝑎𝑡 Turnover number for NE 1/min

HFA1: 186

HFA3: 52.8

HFA5: 142.2

HFA7:4.2

Measurement

𝐾𝑁𝐸
𝑚 Michaelis constant for NE 𝜇𝑀

HFA1: 10.9

HFA3: 4.4

HFA5: 56.1

HFA7:22.3

Measurement

[N.S.]

Concentration of

nonspecific enzymes

in the respiratory tissue

𝜇𝑀 2.62
Computationally fit to

in vivo data

𝑘𝑁.𝑆.
𝑐𝑎𝑡

Turnover number for

nonspecific enzymes
1/min 𝑘𝑁𝐸

𝑐𝑎𝑡 /60
Computationally fit to

in vivo data

𝐾𝑁.𝑆.
𝑛

Michaelis constant for

nonspecific enzymes
𝜇𝑀 𝐾𝑁𝐸

𝑚 * 35
Computationally fit to

in vivo data
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Figure 4-5: Validating the PBPK breath signal predictions. Comparison of in vivo breath data
to in silico predictions for a 10 𝜇𝑀 of the NE responsive vABN with the HFA1 reporter.

4.2.3 Validating the model

Before using the model to make predictions about how changing characteristics of the

vABNs and host disease state could influence the breath signal, we first validated that the

model was producing accurate predictions by administering a 10𝜇𝑀 dose of the vABN with

the HFA1 reporter into healthy and PA01 infected mice. We found that the model could ac-

curately predict breath signal from both sets of mice, depsite the fact that it was trained on

data from a 100 𝜇𝑀 vABN dose, assuring us that the parameters could be adjusted while

faithfully recapitulating in vivo measurements (Fig. 4-5).

4.2.4 The PBPK model can be used to guide vABN design

We hypothesized that protease abundance, vABN dose, cleavage kinetics and partitioning

of freed reporters into air (over tissue or blood) were key parameters that would influence

the magnitude of the breath signal generated over time. As such, their values were varied

in the model to determine their effect on detection sensitivity. Of note, the model predicted

that micromolar substrate doses produce ppb-range reporter concentrations in breath, which

are well above the mass spectrometer ppt detection limit. Increasing the dose causes the

signal to saturate, leading to prolonged breath signal that persists up to two hours after
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Figure 4-6: Predicted effect of key parameters on breath signal. Key parameters in the PBPK
model such as (A) vABN dose (𝑁 ), (B) NE concentration ([NE]), and (C) blood-air partition coef-
ficient of the reporter (𝐻𝑏:𝑎) were varied to confirm model functionality. (A) Micromolar substrate
concentration range is predicted to generate breath signal at ppb levels, which is well above the ppt
detection limit of mass spectrometry. With increasing vABN dose, we observe increased signal
intensity and broadening of signal peaks until a vABN dose is achieved such that even at higher
doses, the breath signal remains stable due to establishment of a substrate reservoir. (B) At higher
[NE], signal curves are narrowed with higher peak breath signal and earlier return of breath signal
to baseline, which can be attributed to faster cleavage of the injected vABN dose. (C,D) As 𝐻𝑏:𝑎 in-
creases, breath signal drops due to reduced reporter concentrations in tissue (i.e. reporters available
to partition into air). Arrows indicate direction of increasing parameter values.
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Figure 4-7: In silico investigation of volatile reporter properties. Empirical values for both pa-
rameters were determined for a vABN panel containing the candidate reporters (HFA1, HFA3, HFA5

and HFA7) and used in the model to predict the effect of each parameter in isolation (A,B) and their
combined effects (C). Arrows indicate direction of increasing parameter values. Predicted breath
signal for HFA7 is not included in B due to difficulty in vaporizing HFA7 for determination of its
partition coefficient. For d, 𝐻𝑡:𝑏 for HFA7 is assumed to be the same as that of HFA5.

administration (Fig. 4-6a). While such a dose would preclude repeated dosing, it could

enable detection with less sensitive instruments. The model also sensibly predicted that

increased amounts of NE would shift the peak signal to enable an even faster readout (Fig. 4-

6b).

While protease concentrations are inherent to the disease state, and vABN dosing is

easily adjusted, other parameters such as cleavage rate and reporter partitioning are governed

by vABN composition. vABNs can be synthesized with HFA reporters of varying size,

which partition differently into the three compartments — lung tissue (t), blood (b) and

respiratory lumen/air (a) — after release. Partition coefficients (𝐻𝑡:𝑎 and 𝐻𝑏:𝑎) and their

quotient (𝐻𝑡:𝑏) define the ratio of reporters between two compartments at equilibrium. As

𝐻𝑏:𝑎 increases in favour of the blood compartment, 𝐻𝑡:𝑏 decreases and more reporter is

cleared from lung tissue into blood and unavailable for partitioning into lumen (Fig. 4-6c,d).

Therefore, reporters with lower 𝐻𝑏:𝑎 should provide a greater breath signal.

We determined the partition coefficients for candidate reporters (HFA1, HFA3 and HFA5;

Table 4.1) and, using the model, predicted that HFA3 and HFA5 would produce the great-

est breath signal if partitioning were the only essential parameter (Fig. 4-7a). However,

we hypothesized that the benefits of partitioning might be offset by changes to cleavage
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rates upon exchanging HFA1 for larger, bulkier HFA reporters that might adversely affect

protease–substrate interactions. To test this hypothesis, we synthesized a vABN panel con-

taining the candidate reporters, and the catalytic efficiency of substrate cleavage (𝑘𝑐𝑎𝑡/𝐾𝑚,

where 𝑘𝑐𝑎𝑡 is the catalytic rate constant and 𝐾𝑚 is the Michaelis–Menten constant) was de-

termined empirically to be used in the PBPK model (Table 4.1). The catalytic efficiency of

HFA1-containing vABNs fell in between that of the parent, commercial substrate and the

optimized peptide substrate (103–107 𝑀−1𝑠−1) [106]. Reduced catalytic efficiency is likely

due to nanoparticle sterics [53] and/or the modification of the P1 position [119]. Catalytic

efficiency is further reduced by up to two orders of magnitude when HFA1 is replaced by

larger reporters. Thus, when solely considering this parameter, the predicted breath signal

was greater for vABNs containing smaller HFAs (Fig. 4-7b). With the exception of HFA3,

which has all-around favourable parameter values, rankings of candidate reporters based

on the combined effects of cleavage kinetics and partitioning were nonintuitive. Using the

PBPK model, we were able to identify HFA1 and HFA3 as our top candidate reporters based

on maximum breath signal (Fig. 4-7c).

Using the PBPK model, we explored a final parameter, 𝑘𝑁𝑃
𝑡𝑖𝑠𝑠𝑢𝑒, that describes the nanopar-

ticle transport rate from the lumen into the lung tissue (that is, the compartment containing

NE). In the model, 𝑘𝑁𝑃
𝑡𝑖𝑠𝑠𝑢𝑒 is used to describe the transport of the nanoparticle from the lumen

into the underlying lung tissue, the compartment containing the NE. This term represents

the combined effects of the permeability constant, surface area, and volume, as defined by

Fick’s law. When considering how this value would be different for a nanoparticle versus

microparticle in the same setting (e.g. the air:tissue interface in the lung), the permeability

constant (𝑃 ) would be the changing variable. 𝑃 = 𝑘𝐷
Δ𝑋

, where 𝑘 is the partition coeffi-

cient, 𝐷 is the diffusion coefficient, and ∆𝑋 is the width being traversed. 𝐷 is dependent

on particle size, and using the Stokes-Einstein equation we can estimate the diffusion co-

efficient in water (at body temperature). For a microparticle with a radius of 0.5 µm and a

nanoparticle with a radius of 4 nm (representative of our vABN), 𝐷 is 5.1e-13 𝑚2/𝑠 and

6.3e-11 𝑚2/𝑠 respectively. Because 𝑘𝑁𝑃
𝑡𝑖𝑠𝑠𝑢𝑒 scales directly with 𝐷, this would imply that the

𝑘𝑁𝑃
𝑡𝑖𝑠𝑠𝑢𝑒 for a nanoparticle is about 100 times that of a microparticle. When we model this
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Figure 4-8: Effect of particle size on breath signal. (A) PBPK model predictions for breath signal
for free peptide substrates and peptide substrates delivered on nano- or microparticle carriers. (B)
Empirical comparison of breath signal after intrapulmonary delivery of the free peptide substrate
versus the nanoformulated peptide substrate (i.e. the vABN) containing the HFA1 reporter (mean ±
s.d., n = 5 mice per group). (C) Empirical comparison of breath signal after intrapulmonary delivery
of the free peptide substrate versus vABNs containing the HFA2 reporter (mean ± s.d., n = 4 mice
per group).

difference, it becomes clear that a microparticle would not produce a more detectable breath

signal, even in the setting of infection (Fig. 4-8a). Conversely, if we increase 𝑘𝑁𝑃
𝑡𝑖𝑠𝑠𝑢𝑒 by an

equivalent factor, the model predicts a similar, though delayed, trend to what we observe in

the empirical data, such that breath signal decays more rapidly for free peptide substrates

than peptide substrates on a nanocarrier.(Fig. 4-8a) We then showed that these kinetics were

observed in vivo (Fig. 4-8b,c). Ultimately, this modeling justified our nanoformulation over

a microformulation or free peptide and with validation from the PBPK model, we moved

forward with our nanoscale sensors.

4.2.5 In vivo investigation of vABN derived breath signal

We moved to a mouse model of acute lung infection [67] to verify the feasibility of a

protease-driven breath signal (Fig. 4-9a). In this model, NE protein levels in the lungs are

elevated 20-fold by 12 hours after intratracheal instillation of Gram-negative P. aeruginosa

(Fig. 4-9a). After intrapulmonary delivery of the vABNs, we observed breath signal in the

exhaled breath as measured by mass spectrometry. Importantly, we confirmed that no back-

ground signal is present in the absence of vABN administration (Fig. 4-9b). Repeated sam-
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pling revealed that breath collected over 1–3 hours contained dose-dependent, ppb-range

reporter concentrations (Fig. 4-9c,d). The maximum breath signal in infected mice was ob-

served 10–20 min after vABN administration, elevated relative to that of healthy controls,

and returned to control levels within 1–3 hours. These results are consistent with PBPK

model predictions. We next sought to validate model predictions for optimal vABN com-

position. Breath analysis after administration of 10 𝜇𝑀 vABNs containing HFA1, HFA3,

HFA5 and HFA7 reporters revealed that vABNs with HFA1 and HFA3 produced the high-

est breath signal and most rapid signal kinetics (Fig. 4-9e), which was also in line with

the PBPK predictions. With these results, we demonstrated that vABNs could produce de-

tectable breath signal that was dose dependent, varied by disease state, and capable of being

readout with modular volatile reporters.

4.2.6 vABNs can be multiplexed

As shown in chapter 3, one of the strengths of ABNs is the ability to multiplex, as capturing

the activity of multiple proteases simultaneously allows for the creation of disease-specific

urinary signatures that can be used to train diagnostic classifiers. To determine whether mul-

tiplexing could enable breath-based readout of disease etiology, we administered vABNs for

Granzyme B (GzmB) and NE into mouse models of PVM and S. pneumoniae. The GzmB

vABN was synthesized with an HFA1 reporter, while the NE vABN contained HFA2. In

chapter 2, we nominated GzmB and NE as protease biomarkers for viral and bacterial pneu-

monia, respectively. Therefore, we hypothesized that if we co-administered these vABNs

into pneumonia-infected mice, the ratio of HFA2/HFA1 would be higher in bacterial pneu-

monia, due to increased NE activity, and lower in viral pneumonia, due to increased GzmB

activity, and vice versa. In a small pilot study, we observed this trend in mice infected with

SP (Fig. 4-10b-d) and PVM (Fig. 4-10e-g), thus validating that the vABNs can be multi-

plexed.
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Figure 4-9: Effect of particle size on breath signal. (A) Schematic for characterization of vABN
activity in a mouse model of acute lung infection. Immunofluorescence images show NE (green) in
healthy lungs (top left) versus lungs infected with P. aeruginosa (top right), and co-localization of
vABNs (magenta) with extracellular NE (green, bottom left) and intracellular vABN uptake (bottom
right). DAPI staining is used for cell nuclei. White arrows indicate vABNs of interest. Immunofluo-
rescence staining was completed independently twice with similar results. (B) Mass spectra confirm-
ing no HFA1 background signal in the absence of vABN administration. Each peak represents the
reporter signal in breath collected from one mouse. Each sample was analyzed by the mass spectrom-
eter for a duration of 0.25 min. (C,D) Breath signal after intrapulmonary delivery of HFA1-releasing
vABNs in healthy controls and lung infection mouse models. Two concentrations were tested, 10 and
100 𝜇𝑀 vABN by peptide concentration (mean±s.d., n=3 or 4 mice per group). Area-under-the-
curve analysis showed that the total reporters exhaled scaled with dose (46.1 and 398 pmol HFA1 for
10 and 100 𝜇𝑀 , respectively). (E) Breath signal after delivery of 10 𝜇𝑀 vABNs containing HFA1,
HFA3, HFA5 or HFA7 reporters (mean±s.d., n=3 or 4 mice per group). Breath experiments were
completed independently twice with similar results.
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Figure 4-10: Demonstration of multiplexed vABNs for the differentiation of viral vs. bacterial
pneumonia. (A) Schematics of the vABN constructs and the experimental timeline. (B) The ratio of
the reporter signals from both vABNs after administration into a bacterial pneumonia model. (C-D)
Raw values of each HFA reporter as measured by mass spectrometry. (E-G) Corresponding graphs
of the reporter ratio and signal from mice infected with viral pneumonia.
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4.2.7 Use of the PBPK model to predict breath signal in humans

We can also use our PBPK model for allometric scaling to predict breath signal in humans.

The model parameters that differ the most significantly between mice and humans are: (1)

the vABN dose, (2) the minute and tidal volumes, (3) the NE concentration in the infected

lungs, (4) the concentration of nonspecific enzymes in the respiratory tissue. Based on prior

literature, we assume that the partition coefficients hold across species. [120] We assume

that the macrophage phagocytosis rate is the same in mice and humans. We can also use

the catalytic rate constants (𝑘𝑐𝑎𝑡) and Michaelis-Menten constants (𝐾𝑚) that we obtained in

vitro, as they were calculated using human NE.

Modification of the vABN dose

Following guidelines outlined by the FDA and literature, we can scale the dose across

species by calculating the Human Equivalent Dose (HED) of the vABNs by using Equation

4.6, where 𝑘𝑚 (not to be confused with the Michaelis Menten constant,𝐾𝑚) is an established

correction factor for each species that is based on body weight and surface area. [121, 122]

HED (𝑚𝑔/𝑘𝑔) = Animal dose (𝑚𝑔/𝑘𝑔) * (Animal 𝑘𝑚/Human 𝑘𝑚) (4.6)

For our animal studies, we administered 10 𝜇𝑀 of vABN by peptide concentration in 50

𝜇𝐿 of PBS, making our dose in a 30 gram mouse 36.4 𝜇𝑔/𝑘𝑔. Based on FDA guidelines,

the 𝑘𝑚 for humans and mice are 37 and 3, respectively. Using Equation 4.6, the human

equivalent dose is 2.95 𝜇𝑔/𝑘𝑔. If we were to deliver this dose by diluting it in 3 mL of

saline, which is the saline volume commonly used to administer the adult dose of nebulized

albuterol, the starting dose in a 60-kg human would be 27.03 𝜇𝑀 . This vABN dose concen-

tration is 2.7 times higher than our current concentration and falls within the concentration

range for which acute toxicity was not observed.
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Modifying the minute and tidal volumes

The minute volume is the volume of air that is moved in and out of the lungs per minute,

while the tidal volume is the volume of air displaced between inhalation and exhalation.

[123] The average minute volume for humans is 7.5 L/min, which is 200 times greater than

mice (Arms 1988). The tidal volume for a human can be calculated using an established

allometric equation 𝑌 = 𝑎𝑀 𝑏, where a and b are established constants specific to the or-

ganism (for humans, 𝑎 = 7.69 and 𝑏 = 1.04) and M is the mass of the organism in kg. [118]

Using this equation, the tidal volume for a 60 kg human is 543.5 mL, which aligns with the

500 mL approximation that is often cited in literature. [123] This is 4000 times greater than

mice. Significantly larger human lung volumes could produce greater reporter abundance,

but also dilute reporter concentration in breath. The PBPK model factors in this dilution to

predict the final breath signal.

NE concentration in an infected human

A prior study found that NE concentration in bronchoalveolar lavage fluid (BALF) from 9

patients with lung infection averaged 780.5 𝜇g/L. [124] BALF was collected by instilling

80-100 mL of saline solution into the lung regions where consolidation was noted on a

chest X-ray. Therefore, BALF concentrations are diluted relative to actual concentrations

in the epithelial lining fluid (ELF). To estimate the actual NE concentration in ELF (the

concentration to which vABNs are exposed), the following figures were used: (1) during

BALF collection, average fluid recovery was 47% of the instilled saline solution [124] and

(2) in humans, approximately 1 mL of epithelial lining fluid (ELF) is recovered per 100

mL of lavage fluid. [125] Therefore, in 47 mL of lavage fluid, one would expect 0.47 mL

of ELF and the estimated NE concentration in human lungs during infection would be the

following:

(780.5 𝜇𝑔/𝐿)(47 𝑚𝐿 of BALF) = (x 𝜇𝑔/𝐿)(0.47 𝑚𝐿 of ELF)

x = 78.1 𝑚𝑔/𝐿 or 2.64 𝜇𝑀 of NE in infected human lungs
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Figure 4-11: Prediction of human breath signal during lung infection using the PBPK model.
Human-specific values for parameters such as human equivalent vABN dose, neutrophil elastase
concentrations during lung infection, and minute and tidal volumes during respiration were used in
the PBPK model to predict breath signal in healthy humans and humans with lung infection. Mouse
breath signal predictions are included for comparison.

Concentration of nonspecific (N.S.) enzymes in an infected human

Mouse values for N.S. enzyme concentration were derived by fitting the model to empirical

data from breath studies in infected mice. Human values would need to be derived in a

similar fashion. For the purposes of our estimation of human breath signal, we assumed an

equivalent non-specific enzyme concentration.

Using the adjusted human values, the PBPK model predicts that the breath signal 10

min after vABN administration in humans during lung infection is 4.3 fold higher than in

healthy humans and 3.9-fold higher than in infected mice (Fig. 4-11). The absolute signal

is at ppb concentrations which is within the limit of detection of the mass spectrometer.

These predictions support the feasibility of using our platform to monitor neutrophil elastase

activity in humans during lung infection. We expect these values to be even more elevated

in during lung infection in individuals with AATD given the deficiency in NE inhibition.

Furthermore, collection of human breath onto sorbent tubes, a method in which volatiles in

liters of breath can be concentrated onto a solid support for subsequent thermal desorption

into a VOC detector, can further increase reporter concentrations up to several orders of

magnitude to increase testing sensitivity. [126]
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4.3 Discussion

In this work, we have created volatile activity-based nanoparticles, termed vABNs, which

release exogenous VOCs into the breath in response to protease activity. By synthesizing

vABNs that detect neutrophil elastase (NE) activity, we were able to detect pneumonia via

breath in a mouse model of P. aeruginosa. We also multiplexed this nanosensor with another

vABN responsive to Granzyme B, and showed preliminary data suggesting that multiplexed

vABNs can be used to distinguish pneumonia etiology. Finally, we created a mathematical

model of vABN activity in vivo that can be used to design new nanoparticles and estimate

breath signal based on varied in vitro and in vivo parameters, and showed that the model

predicted that our NE vABNs could produce a detectable breath signal in humans. Overall,

we have created a proof-of-principle for a breath-based pneumonia diagnostic.

Breath tests are emerging as a simple clinical tool to diagnose disease, as they are con-

venient, non-invasive, and rapid. There are now a handful of clinical tests that rely on breath

and hundreds of clinical trials have involved breath analysis. As a result, there is growing

academic, clinical, and industrial interest in breathomics, which puts our work at the fore-

front of what we expect will be a technological boom. While we have focused on pneumonia

as our target disease, breath analysis has been used to detect diseases that touch on every

organ system. Given that proteases are also involved in physiological processes underlying

a wide range of organs, we expect that our vABNs will be a modular tool that can be used

to diagnose this wide range of conditions.

Most excitingly, we believe that by expanding the multiplexing capabilities of our vABN

platform, we can translate our urinary 20-plex panel for pneumonia into a breath-based for-

mat. This could enable point-of-care detection of pneumonia etiology, as vABNs produce

detectable breath signal within 15 minutes rather than 2 hours and portable gas analysis

tools exist that could enable detection without the need for expensive and labor-intensive

mass spectometers. Being able to quickly determine etiology could enable antibiotic stew-

ardship and ultimately change the diagnostic paradigm for pneumonia. However, there are

many difficult challenges that need to be overcome before this vision can become a reality.

First, we need to enable multiplexing beyond the capabilities that we have demonstrated.
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Based on our urinary results, we would need to create a 5-plex vABN system to diagnose

pneumonia and distinguish etiology. This would require the selection of additional VOC

reporters that have favorable kinetics and partition properties. Ideally these new reporters

would be approved by the FDA, to expedite clinical approval. Second, our vABNs are cur-

rently limited by the fact that they require terminal cleavage in order to achieve unscarred

release of the VOC reporter. Reconfiguring the chemistry of our substrate linker could allow

us to target endopeptidases, which would open up the pool of protease targets dramatically.

Finally, we must validate that our vABNs can produce a signal high enough to be detected

with portable gas sensing tools, which usually have poorer sensitivity than traditional mass

spectrometers. To do this we can use our PBPK model to predict how changes in vABN

synthesis and multiplexing would affect breath signal.

4.4 Materials and Methods

4.4.1 vABN synthesis and characterization

HFA-modified peptides were synthesized by CPC Scientific (>95% purity). Briefly, the NE

peptide substrate, Ac-CKKK(Cy5)-PEG4-Nle(OBzl)-Met(O)2-Oic-Abu-OH and the GzmB

substrate, Ac-CKKK(Cy5)-PEG4-Ile-Glu-Phe-Asp), was synthesized on Fmoc-Abu-CTC

resin via standard Fmoc solid phase peptide synthesis. The peptide was cleaved from the

resin using 30% HFIP in DCM for 30 min and subsequently coupled to the HFA reporter

using DIC/HOBt coupling reagents in DCM under stirring conditions at room temperature

for 2h. The finished product was deprotected in TFA for 2.5 hours, precipitated and washed

in chilled ether 2 times, and dried under vacuum overnight. The crude peptide was then

purified using RP-HPLC. For vABN synthesis, HFA-modified peptides were conjugated to

40 kDa maleimide-functionalized 8-arm PEG (Jenkem) overnight at room temperature in

DI water (2:1 molar ratio of peptide to maleimide groups). Excess peptides were removed

using spin filters (Millipore, 10 kDa MWCO), and completed vABNs were stored in DI

water at 4°C.
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4.4.2 Real-time vapor analysis

A triple quadrupole mass spectrometer with 1 L/min sampling rate and ppq to ppt detection

limit was used to quantify HFA reporter concentrations in the headspace of in vitro reactions

and breath samples collected in glass vials during in vivo experiments. Multiple reaction

monitoring (MRM), in which both [M+H]+ precursor ions and the [M-HF]+ product ions

are monitored, was used for sensitive and selective detection of HFA reporters. Data was

acquired using Analyst® software.

4.4.3 Partition coefficient studies

Partition coefficients for HFA reporters were derived empirically to be used in the PBPK

model. To determine tissue:air partition coefficients (𝐻𝑡:𝑎) and blood:air partition coeffi-

cients (𝐻𝑏:𝑎) of HFA1, HFA3, and HFA5, blood in EDTA solution and lung tissue were col-

lected from female CD-1 mice and aliquoted into 20-mL volatile organic analysis (VOA)

glass vials with rubber septa caps (Thermo Scientific™). 5 µL of pure HFAs were vapor-

ized inside separate VOA glass vials and 10 µL of vaporized HFA was transferred to empty

reference vials and vials containing EDTA solution, blood, or lung tissue using gastight

syringes. Vials were then allowed to equilibrate for 4h at 37°C, after which, 10 𝜇𝐿 of

headspace from each vial was sampled using a gastight syringe and introduced into the

triple quadrupole mass spectrometer. Partition coefficients were calculated using equations

established by Gargas et al. [?] For 𝐻𝐸𝐷𝑇𝐴:𝑎 and 𝐻𝑡:𝑎, where 𝑐 represents HFA concentra-

tion in the headspace, 𝑣 represents volume, and 𝑖 represents the compartment of interest

(i.e. EDTA or tissue):

𝐻𝑖:𝑎 =
𝐶𝑟𝑒𝑓𝑉𝑣𝑖𝑎𝑙 − 𝐶𝑖(𝑉𝑣𝑖𝑎𝑙 − 𝑉𝑖)

𝐶𝑖𝑉𝑖

(4.7)

For the 𝐻𝑏:𝑎:

𝐻𝑏:𝑎 =
𝐶𝑟𝑒𝑓 (𝑉𝑣𝑖𝑎𝑙 − 𝑉𝐸𝐷𝑇𝐴) − 𝐶𝑏(𝑉𝑣𝑖𝑎𝑙 − 𝑉𝐸𝐷𝑇𝐴 − 𝑉𝑏) + (𝐶𝑟𝑒𝑓 − 𝐶𝑏)𝐻𝐸𝐷𝑇𝐴:𝑎𝑉𝐸𝐷𝑇𝐴

𝐶𝑏𝑉𝑏

(4.8)
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4.4.4 PBPK Modeling

Code for the PBPK model is available online at https://github.com/NN19092108A/

PBPKmodel.

4.4.5 Lung infection models

All animal studies were approved by the Massachusetts Institute of Technology’s Committee

on Animal Care and were completed in accordance with the National Institutes on Health

Guide for the Care and Use of Laboratory Animals. For lung infection breath studies, 7-

to 8-week-old female CD-1 mice (Charles River) were administered an inoculum of 1.5 ×

106 c.f.u. P. aeruginosa (strain PA01) in 50 l PBS buffer via intratracheal instillation. The

inoculum was prepared by diluting an overnight culture 1:10–1:50 in LB media, allowing the

secondary culture to grow to an optical density of approximately 0.5, washing the secondary

culture twice with PBS and resuspending the bacteria in PBS. S. pneumoniae and pneumonia

virus of mice were prepared and administered as previously described.

4.4.6 Breath collection and analysis

For vABN breath tests, 10 𝜇M vABNs in 50 𝜇L PBS were administered into mice via

intratracheal instillation. At 10 minutes after vABN administration (unless otherwise spec-

ified), mice were placed inside a breath collection apparatus consisting of a 100 mL syringe

(Wilburn Medical) connected to a stopcock valve (Cole Parmer, UX-30600-05) with a 23G

needle (BD, 305145). The syringe was sealed for 2 minutes to allow breath volatiles to

accumulate in the syringe headspace. After 2 minutes, the valve was opened and 55 mL

of headspace was displaced into five 12-mL Exetainers (Labco Limited) by puncturing the

rubber septum with the needle and pushing the syringe plunger. To measure the HFA re-

porter signal in breath samples, Exetainers were uncapped at the inlet of a triple quadrupole

mass spectrometer and analysed for 0.25 minutes each. Signal peaks were integrated to

determine total counts and converted to ppb units.
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4.4.7 Statistical analysis

Ordinary one-way ANOVA with Tukey’s multiple comparisons test, ROC curve analyses,

and calculations for Pearson’s correlation coefficient were completed in GraphPad Prism 8.

4.5 Author contributions

Sections of this chapter were derived from [64]. Leslie W. Chan (L.W.C) was the lead au-

thor on the paper, and wrote it with contributions from Sangeeta N. Bhatia (S.N.B) and

Melodi Anahtar (M.A). The author contributions from that paper are updated below to re-

flect changes to that original publication that were made for this chapter.

L.W.C. and S.N.B. conceived the study with suggestions from R.R.K. and M.A. L.W.C.

and M.A. synthesized and characterized the nanoparticle sensors. L.W.C., M.A., and Ta-

Hsuan Ong (T.-H.O.) carried out in vitro experiments. M.A. built the multicompartment

model for in silico predictions of breath signal output, extracted in vivo parameters for re-

porter partitioning and completed in silico experiments. L.W.C., M.A., and Kelsey E. Hern

(K.E.H.) carried out in vivo experiments. L.W.C., M.N.A. and T.-H.O. analysed the data.
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Chapter 5

Perspectives and future directions

5.1 Towards the non-invasive diagnosis of pneumonia

Community-acquired pneumonia (CAP) is responsible for significant morbidity and mor-

tality worldwide, and is broadly defined by acute signs and symptoms of lower respiratory

infection without other obvious causes. Despite its prevalence, current diagnostics are insuf-

ficient to rapidly detect pneumonia and determine etiology. A rapid, accessible pneumonia

diagnostic that could simultaneously detect the bacterial and viral pathogens responsible for

a patient’s CAP would allow doctors to make prompt, fully informed treatment decisions.

In this thesis, we sought to create a novel means to diagnose pneumonia and distinguish

etiology that is fast, non-invasive, and specific. To this end, we created, screened, tested,

and validated intrapulmonary activity-based nanosensors for pneumonia using in silico, in

vitro, in vivo, and in situ methods. These sensors can create a urine-based readout of eti-

ology within 2 hours and a breath-based readout of pneumonia within 10 minutes, thereby

decreasing the gap from presentation to diagnosis. This work sets the stage for further de-

velopment that might one day translate into a clinically useful diagnostic for the rapid and

noninvasive detection of CAP.
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5.1.1 Bacterial and viral pneumonia have distinct protease activity pro-

files

With over 500 human proteases, we hypothesized that the proteolytic host response to in-

fection would be distinct enough to distinguish between bacterial and viral pneumonia. In

this work, we demonstrated that this was the case on several fronts. First, we by querying

human transcriptomic datasets from blood for proteases that were differentially expressed

in bacterial and viral infections, we identified numerous novel pneumonia biomarkers that

were associated with distinct biological pathways (Fig. 2-2). We then designed ABNs to

target a subset of these proteases and demonstrated that after intratracheal administration,

the ABNs produced urinary reporter signatures that were distinct based on disease state

(Fig. 2-4). This indicates that there are proteases localized to the lungs that exhibit dif-

ferential activity based on etiology. By creating an AZP form of one ABN, BV01, which

had increased signal in viral compared to bacterial pneumonia, we validated that the signal

derived from the ABN was driven by differential Granzyme B activity, due to increased

infiltration of the virally infected lung by NKs and CTLs (Fig. 2-8). Together, these results

show that despite the similar clinical presentations of bacterial and viral pneumonia, the

biological processes underlying etiology are distinct in terms of protease activity.

5.1.2 Machine learning enables powerful integration of multiplexed

disease signatures

Our lab has previously demonstrated that multiplexing ABNs is key in distinguishing dis-

ease states. [54,56] Whereas these previous studies have shown that multiplexed ABN pan-

els could train binary classifiers with high diagnostic capabilities, our 20-plex panel can be

used to train multiclass classifiers that can distinguish between up to six disease states with

high accuracy (Fig. 3-3). While down-selection to a 5-plex still enabled three-way clas-

sification between bacterial pneumonia, viral pneumonia, and healthy controls with high

specificity and sensitivity (Fig. 3-4), the larger ABN panel will likely enable discrimination

between pneumonia and other comorbidities or confounding conditions such as pulmonary
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hypertension, acute respiratory distress syndrome (ARDS), systemic lupus erythematosus

(SLE).

5.1.3 The promise of breath-based diagnostics

Breath is a powerful analyte, as it can be sampled repeatedly, at large volumes, on demand,

in many clinical settings, and noninvasively in people of all ages and conditions. By refor-

mulating our ABNs into a breath-based readout, we were able to decrease the time from

sensor administration to a diagnostically useful output from by 10-fold (Fig. 4-9). Notably,

we multiplexed the vABNs and showed preliminary evidence which suggests that vABNs

can distinguish between etiology within 10 minutes of sensor administration. Ideally, a pa-

tient would be able to come to their doctor, get tests done, and receive the results within the

same visit. Our vABNs make this clinical pipeline possible for diagnosing CAP, and possi-

bly be used to rule out bacterial pneumonia rapidly enough to enable antibiotic stewardship

in patients with suspected CAP.

5.2 Future directions

5.2.1 Detecting microbial protease activity

A clear barrier to translation is that there are inherently differences between model organ-

isms and humans. For example, there are likely differences in the cleavage patterns between

the mouse and human protease homologs that would necessitate tweaking of the peptide se-

quences comprising the ABNs for human use. However, our transcriptomic signature was

derived from human patients and our in vitro screen was performed with recombinant human

proteases, so we have confidence that the ABN panel will likely translate into humans, and

perhaps perform even better after optimizing the substrates to any human preferred forms.

Differences in urinary reporter signatures between model organisms and humans could also

be subverted by developing future panels with ABNs that respond to proteases produced by

the pathogens themselves, as their expression and subsequent activity would be independent
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from the host. For this work we did not target microbial proteases as our goal was to broadly

distinguish between etiology, but the inclusion of ABNs that target microbial proteases in

future nanosensor panels could enable pathogen-specific detection.

For example, S. pneumoniae is the leading cause of bacterial pneumonia. It is com-

mensal in the URT but is an opportunistic pathogen that can cause pneumonia if able to

migrate to the LRT. Once in the lungs, its many virulence factors enable it to initiate in-

fection and evade immunity. One of its most prominent factors is Immunoglobulin A1

(IgA1) protease, which cleaves IgA, the main driver of mucosal immunity. This thwarting

of mucosal defense pathways allows S. pneumoniae to colonize the lungs, due to inhibited

opsonization and prevents agglutination. [127, 128] H. influenzae, another gram-positive

bacterium that is a human restricted pathogen and a leading cause of CAP, also produces

IgA proteases. [129] Another proteolytic virulence factor produced by S. pneumoniae is

High temperature requirement A (HtrA), a serine protease that is conserved across many

bacteria and has been implicated as a major factor in S. pneumoniae colonization, though

its exact substrates and functions are still being studied. Coronaviruses also produce two

proteases that are essential for viral replication: 3C-like protease (3CL𝑝𝑟𝑜) and papain-like

protease (PL𝑝𝑟𝑜). [130] These proteases cleave the translated viral genome into the nonstruc-

tural proteins that enable replication, such as RNA polymerase and helicase. The active sites

of these proteases are relatively conserved across coronaviruses, which allowed scientists

to leverage previous studies about the role of these protases in MERS and SARS to better

understand SARS-CoV-2 when it was first identified.

5.2.2 Detecting additional causes of CAP

An important biological limitation of this work is that a wide range of bacterial and viral

pathogens cause CAP. Thus, to use the ABN panel as a point-of-care diagnostic, the classi-

fier will need to be trained on urinary signatures derived from human subjects infected with

pathogens beyond the five included in this work. For example, emerging causes of CAP,

such as SARS-CoV-2, should be included in classifier training. Furthermore, while fungal

CAP is uncommon, it does occur; therefore, the ABNs should also be trained on CAP due
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to fungi.

5.2.3 Detecting co-infections and secondary infection

Secondary bacterial infections are known to occur following primary influenza infections.

Therefore, further advances in multiplexing could allow the ABNs to be tested in a clinically

relevant secondary infection model whereby mice first contract viral pneumonia, regain

partial control over the infection, and are subsequently exposed to a bacterial pathogen that

causes bacterial pneumonia. Theoretically, as the disease burden shifts from being virally

dominated to bacterially driven, the exhaled breath signatures will change accordingly.

5.2.4 Monitoring responses to CAP treatment

Given the repeated sampling that is possible with breath, vABNs could be particularly useful

for monitor responses to CAP treatment. This would enable doctors to shorten the duration

of a patient’s antibiotic regimen. In a hospital setting, this could allow patients to get dis-

charged sooner, thereby reducing their risk of acquiring a secondary nosocomial infection

and reducing their medical expenses. In an outpatient setting, it would allow patients to get

back to their daily lives and limit their risk of experiencing side effects as a result of their

medication.
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