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Abstract:  

 

 Volatile Organic Compounds (VOCs) oxidize in the troposphere and significantly influence the 

formation of pollutants including ground-level ozone, CO2, and particulate matter (PM). Ozone and PM 

negatively impact human health, and all three pollutants influence Earth’s climate. VOCs also dominate 

the OH reactivity of the atmosphere which in turn influences concentrations of other important radical 

species including NOx and HO2. Chamber experiments are often conducted to measure VOC oxidation in 

a controlled laboratory setting, but these studies are may be complicated by vapor deposition on chamber 

surfaces and potential VOC decomposition in the Chemical Ionization Mass Spectrometers (CIMS) which 

are used to measure a broad range of oxidation products. Mechanistic simulations are also frequently 

performed to emulate chamber chemistry with less effort and fewer complications than may arise during 

a chamber experiment, but the results of these simulations are limited by uncertainties and gaps in our 

understanding of VOC oxidation chemistry from empirical studies. This thesis addresses uncertainties in 

chamber measurements and mechanisms and uses both in tandem to provide mutual benefits. Chapter 2 

focuses on the development and characterization of a Total Suspended Carbon (TSC) apparatus which 

may be used to parametrize chamber vapor deposition. Chapter 3 centers around the development of 

new methodology to compare carbon closure chamber datasets and mechanistic datasets using GECKO-

A as the base mechanism. Comparisons suggest a propensity for the decomposition of nitrate, peroxyacyl 

nitrate, alcohol, and aldehyde functional groups in the process of being detected by CIMS, so the final 

comparison methodology is based on carbon number and average carbon oxidation state distributions 

which are largely unaffected by decomposition. Chapter 4 uses the methodology from Chapter 3 to 

investigate how targeted edits to GECKO-A mechanism generator affect its overall agreement with 

chamber observations for α-pinene, isoprene, and 1,2,4-trimethylbenzene oxidation studies. This chapter 

highlights reaction pathways of particular importance for each VOC oxidation system and provides new 

methods to target pathways and specific reactions for further study. Overall, this thesis provides broadly 

applicable new tools to reduce uncertainty and improve chemical understanding of VOC oxidation 

systems. 

 

Thesis Supervisor: Jesse H. Kroll 

Title: Professor of Civil and Environmental Engineering and Chemical Engineering 
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I. Introduction 
 

1. Background Information and Motivation 
 

 99.9% of Earth’s atmosphere (not including water vapor) is composed of nitrogen, oxygen, and 

argon, yet a fraction of the remaining 0.1% of the atmosphere contains a remarkably important class of 

compounds known as Volatile Organic Compounds (VOCs). There are millions of VOCs in the atmosphere, 

of which 90% are biogenic in origin and 10% are anthropogenic in origin (Sindelarova et al. 2014). Many 

of these VOCs are familiar compounds like the smell of vanilla, pine trees, and oranges. Some VOCs are 

toxic to human health including formaldehyde, benzene, and chloroform (“Initial List of Hazardous Air 

Pollutants with Modifications | US EPA”). As discussed below, all VOCs play an integral role in the Earth-

Climate system and have important implications for human health as well. 

 VOCs can be oxidized in the atmosphere by a variety of oxidants including the OH radical and 

ozone (O3) which are of particular interest to this work (e.g. Ziemann 2011; Zhang et al. 2014). VOCs are 

the largest contributor to the overall OH reactivity of the troposphere and therefore are largely 

responsible for controlling OH concentrations (Heald and Kroll 2020). OH concentrations, in turn, directly 

affect the concentrations of other inorganic radical species including NOx and HO2 which, in part, 

determine concentrations and rates of formation of ozone, nitrogen-containing organic species, and 

carbon monoxide (CO) among other species (Shrivastava et al. 2017; Seinfeld and Pandis 2006). VOC 

oxidation also leads to the formation of CO2 and other greenhouse gases which have positive radiative 

forcing effects and lead to tropospheric warming (IPCC 2014). The highly interconnected nature of the 

chemical systems in the atmosphere means that if we are able to improve our understanding of VOC 

oxidation mechanisms, we will also improve our understanding of the formation and consumption of 

these other species which impact Earth’s climate. 
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 When VOCs react in the atmosphere they may become more oxygenated and have lower vapor 

pressures (e.g. Camredon et al. 2007; Jordan et al. 2008). These Semi Volatile OCs (SVOCs), Intermediate 

Volatility OCs (IVOCs), and Low Volatility OCs (LVOCs) often will partition out of the gas phase into 

microscopic condensed phase specks that are known as Particulate Matter (PM). Low vapor pressure gas-

phase species may also form new particles via nucleation, although this process contributes less to the 

overall mass of organic particles than condensation onto existing particles (Debevec et al. 2018). This 

constantly evolving mixture of VOCs and PM is known as Secondary Organic Aerosol (SOA) which is of high 

interest to the atmospheric chemistry community because of its direct effects on the Earth-climate system 

and its negative effects on human health . SOA may be removed from the atmosphere via deposition on 

to surfaces, scavenging by rain droplets, and particle-phase reactions leading to evaporation/sublimation 

of certain species (Seinfeld and Pandis 2006). A depiction of this process can be found in Figure 1. 

 

 SOA and particulate matter in general have been linked to significant health concerns such as 

Chronic Obstructive Pulmonary Disease (COPD), stroke, and heart disease (III, C Arden Pope, Dockery 

2006). Some previous studies have estimated that in regions of high particulate matter pollution such as 
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Delhi, India, aerosols may be responsible for decreasing average life expectancy by approximately six years 

(Ghude et al. 2016). Perhaps the clearest depiction of how increased particulate matter concentrations 

negatively impact human health comes from the so-called “Harvard Six Cities Study” and the 

corresponding follow-up study which both show a clear and dramatic linear increase in mortality rate with 

increased particulate loadings (Laden et al. 2006; Dockery et al. 1993). Furthermore, aerosols can have a 

profound influence on the Earth-climate system by both directly scattering and absorbing incoming solar 

radiation and by inducing cloud formation which alters the albedo of cloudy regions (IPCC 2014). Aerosol 

particle effects on climate are also currently the largest source of uncertainty in radiative forcing in global 

climate models which makes understanding SOA formation and evolution imperative for improving 

climate model predictive capabilities (IPCC 2014). 

 Many experiments studying SOA formation and evolution are conducted in environmental 

chambers (Kroll and Seinfeld 2008). Each chamber is unique in design and operation, but they generally 

consist of a large Teflon bag surrounded by UV lights (to mimic the sun’s actinic flux) in a temperature-

controlled environment. Organic species may then be injected into the chamber with ozone and nitrous 

acid (HONO) to produce OH radicals; ozone photolyzes to form O2 and O(1D) which may then react with 

water vapor to produce OH radicals while HONO directly photolyze to form OH radicals (Seinfeld and 

Pandis 2006). Ammonium sulfate seed particles are also often added during chamber experiments onto 

which low-volatility species may condense. After VOCs enter the particle phase, they may continue to 

react and interact with the gas phase resulting in a dynamic system where species are constantly 

chemically transforming and partitioning between the gas and particle phases (Donahue et al. 2013). The 

removal processes of organic compounds from the atmosphere are highly dependent on the phase in 

which they exist which is why it is important to study this partitioning process (Knote, Hodzic, and Jimenez 

2015; Donahue et al. 2013). 
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Lower volatility species may also condense onto chamber surfaces and instrument inlets which 

complicates our interpretation of both gas- and particle-phase data (Krechmer, Day, and Jimenez 2020). 

Particle-phase data may be affected because observed SOA yields are lower than they would be in the 

absence of vapor losses to surfaces. Additionally, SVOCs may partition out of the particle phase in an 

equilibrium response to gas-phase wall losses of the same SVOCs which results in lower observed SOA 

yields (Ye et al. 2016). Gas-phase data may be affected because the measured concentrations for lower-

volatility species may be artificially low due to direct vapor losses to surfaces and inlets (Krechmer et al. 

2016). Studies have been conducted to parametrize wall losses, including by observing the decay of 

oxidation products formed from rapid initial burst of photocatalyzed oxidation followed by  dark and inert 

chamber conditions in the absence of seed particles (Krechmer et al. 2016). The time series decay of the 

species in this study were measured by I- and NO3-CIMS, and wall loss was assumed to be the only loss 

mechanism. Krechmer et al. then developed an equilibrium partitioning model based on the SIMPOL-

calculated vapor pressure of each species, the lifetime of each species to wall loss, and the 

“concentration” of the wall (Cw) which is also a function of each compound’s vapor pressure (Pankow and 

Asher 2008). While this model represents an import step in wall loss parametrizations it is also susceptible 

to uncertainties which arise from estimating each compound’s vapor pressure. SIMPOL is also less 

acuurate for species which are more functionalized which makes this method potentially problematic for 

estimating wall losses of late-generation compounds which  are often quite functionalized (Pankow and 

Asher 2008; Krechmer et al. 2016). The equilibrium model in Krechmer et al. is the most explicit loss model 

currently available, yet uncertainties in vapor wall loss corrections will arise from uncertainties in 

predicted vapor pressures. A direct measure of total suspended carbon (TSC) over the course of a chamber 

experiment can be used to constrain these wall loss corrections and reduce uncertainty. 

Regional and global chemical transport models also often rely on chamber SOA yield studies to 

parametrize SOA production, and model yields may be underestimated because of wall loss influences on 



10 
 

observed yields. One relevant study used the University of California, Davis / California Institute of 

Technology regional air quality model with the statistical oxidation model for SOA production (Cappa et 

al. 2016). The statistical oxidation model was parametrized using chamber data, both accounting for and 

discounting wall loss. The study found that accounting for vapor wall losses increased modeled SOA 

concentrations by a factor of 2-10 depending on the assumed degree of wall loss (Cappa et al. 2016). The 

scenarios in which vapor wall losses were assumed to be higher led to improved agreement with 

observations from the SOAR-2005 campaign in terms of the absolute concentrations and diurnal profiles 

of the [OA]/CO ratio and OA O:C and H:C ratios. Other studies, however, do not necessarily suggest that 

wall loss influences on SOA yield affect model agreement with observed reality. One recent study 

compared observations from 15 globally distributed aircraft campaigns to GEOS-Chem simulations which 

incorporated a simple model parametrization for SOA formation based on reported laboratory SOA yields 

(Pai et al. 2020). This study found little systemic underestimation of OA across a distribution of observed 

OA loading although the models were still only able to capture the observed variability in OA with an r2 of 

0.41. Both of the studies we just discussed suggest that more accurate measurements of SOA yields from 

chamber studies could yield improvements in model-measurement agreement. 

TSC is a top-down metric which is another way of saying that it provides an overarching measure 

of the entire system. The complement to top-down measurements are bottom-up measurements, which 

in this case refers to speciated measurements of all of the compounds in the chamber. The organic species 

produced over the course of chamber experiments are often measured with a variety of mass 

spectrometry instruments with each instrument specializing in detecting different classes of compounds 

based on different characteristics including their functionalities and size (e.g. Koss et al. 2020; Isaacman-

VanWertz et al. 2018). The chamber experiments described herein were conducted with a suite of 

Chemical Ionization Mass Spectrometers (CIMS) which were selected to comprehensively measure all 

organic species, yet it remains to be seen if all species were, in fact, detected and quantified properly. 
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Current CIMS calibration methods yield uncertainties on the order of 10%-30% for compounds which can 

be identified by structure, measured with the Proton Transfer Reaction MS (PTR-MS), and/or measured 

with the Ammonia (NH4
+) CIMS; however, the Iodide (I-) CIMS which generally measures larger and more 

heavily oxidized compounds can yield significantly larger uncertainties on the order of 2.5x (Isaacman-

VanWertz et al. 2018). While more precise calibrations would certainly be useful in reducing uncertainties 

in chamber measurements, we can also attempt to reduce uncertainty by comparing chamber results with 

chemical mechanistic predictions.  

Mechanisms can be used to model the dynamic chamber system, thereby providing a direct 

(albeit simulated) comparison to chamber measurements. Mechanisms represent the culmination of our 

field’s understanding of the chemistry and dynamic partitioning of a variety of different VOC precursors 

and are often constructed from a list of known chemical reactions (Saunders et al. 2003; Jenkin, Saunders, 

and Pilling 1997; Camredon et al. 2007). In reality, completely exhaustive mechanisms would may 

comprise hundreds, thousands, or even millions of different species, many or most of which are unknown 

or present in such small quantities that they are essentially undetectable (Camredon et al. 2007). 

Mechanistic simulations have been compared to chamber datasets in order to, for example, 

validate the mechanisms ability to accurately predict the time series behavior of specific compounds over 

the course of an experiment (e.g. Yee et al. 2012; Bates and Jacob 2019). Similarly, these studies have 

been used to suggest compound identities for ions measured by CIMS. These types of studies are certainly 

helpful in increasing the accuracy and precision of individual reaction rates in mechanisms and are also 

useful for disambiguating chamber data by providing reasonable structures for detected ions. However, 

the two aforementioned studies did not tackle the pressing challenge of assessing the completeness and 

accuracy of the mechanism as a whole, and the mechanisms in the studies were not able to reproduce 

time series behavior for each species to within experimental uncertainty. 
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Performing experiments to detect each product, measure their rate(s) of production and 

consumption, and then writing them all down in an explicit mechanism would be tedious and extremely 

time consuming, but computer simulations provide an attractive alternative to this difficult chamber work. 

Much of the work in this dissertation relies heavily on GECKO-A (Generator for Explicit Chemistry and 

Kinetics of the Organics in the Atmosphere), a unique computational program which uses empirical kinetic 

data coupled with structure-activity relationships to generate explicit oxidation mechanisms (Aumont, 

Szopa, and Madronich 2005). Simply put, GECKO-A takes a precursor VOC, predicts how it will react with 

common atmospheric species (i.e. OH, O3, NO, etc.), generates explicit mechanisms for these predicted 

reactions, and then iterates through the same procedure for the VOC products it has just generated. 

Structure-Activity Relationships (SARs) are the main levers we can control to improve GECKO-A’s ability 

to accurately model VOC and SOA oxidation (Aumont, Szopa, and Madronich 2005; Camredon et al. 2007). 

SARs are ways to estimate reaction rates by analyzing the bond(s) involved in the reaction while 

simultaneously accounting for the structure of the organic molecule around the bond of interest 

(Vereecken and Peeters 2010). There are SARs for most of the currently studied atmospherically relevant 

reactions, so while we may not have explicit measurements of every reaction rate, we can use SARs to 

provide a rate constant for reactions which we believe may occur but have yet to be studied. We will 

discuss these SARs in more detail in Chapter 4, but the main takeaway here is that SARs dictate the path 

that organic carbon will take in a mechanism. By changing the value of the parameters in any given SAR 

we can change the way that the SOA oxidation system will behave. 

GECKO-A has been improved over time to incorporate experimental nuances that are relevant for 

chamber SOA studies, including gas-particle partitioning (Aumont et al. 2013). A relatively recent study 

incorporated wall losses into the model framework using a simple vapor-pressure-dependent function in 

order to assess loss effects on SOA yield (La et al. 2016). GECKO-A, however, is only as good as the 
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knowledge with which it is parametrized; any uncertainties and gaps in our knowledge will persist in the 

mechanisms GECKO-A creates.  

GECKO-A has been used to simulate chamber chemistry (e.g. La et al. 2016) as well as non-

chamber chemistry, for example, by simulating chemistry observed in the real atmosphere during field 

campaigns. One such study used the GECKO-A mechanism to simulate the formation and evolution of OA 

in the outflow from Mexico City as measured during the 2006 MILAGRO campaign (Lee-Taylor et al. 2011; 

Molina et al. 2010). Specifically, this study assessed the contributions of explicit n-alkane chemistry on 

SOA formation because n-alkanes were known to be emitted in significant quantities in and around 

Mexico City (Apel et al. 2010). This study found that the mechanism was able to replicate the diurnal 

profiles of OA and key species including ozone, NOx, and OH, although the absolute concentrations for 

ozone and NOx were not perfectly matched. The mechanism results over multiple days of oxidation also 

suggested higher-than-reported OA concentrations compared to aircraft observations; the authors 

suggest that changes to GECKO-A’s alkoxy radical SARs to increase decomposition rates relative to 

isomerization rates could reduce the OA discrepancy, but no laboratory studies at that time suggested 

that editing those SARs would be justified. Resolving these discrepancies is a critical task for our field in 

order to reduce uncertainty in chemical transport models which rely on mechanisms to provide accurate 

predictions of, among other parameters, ozone formation and pollution transport (Ahmadov et al. 2015; 

Park et al. 2021).  

To date, no study has compared speciated chamber measurements to mechanism outputs on a 

holistic level. One reason that this research had not been performed (until now) is that speciated chamber 

data measuring all organic species is highly uncommon. Our lab, however, has been performing 

experiments and generating such datasets (hereafter referred to as TotalC datasets) which afford us the 

relatively unique position of being able to perform the first of these kinds of comparisons. However, there 

are no clear or preexisting ways to perform these comparisons. New approaches must be developed to 
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compare chamber and mechanistic datasets in their entirety on different levels of granularity. 

Comparisons can be based on a species to species level at the most granular level, a bulk property level 

like average carbon oxidation state (OSc) at the least granular level, or distributive properties like vapor 

pressure distributions at some intermediate level of granularity. It behooves us to explore comparisons 

across a range of granularity to assess the type and value of information that can be gleaned at each level. 

It is important to put this task into the context of the bigger picture; chemists may wish to see more 

granular improvements in mechanisms whereas climate modelers may wish to see improvements in less 

granular properties which could be useful to parametrize their models. 

Just as mechanisms can help elucidate uncertainties in chamber experiments, chamber data can be 

used to refine GECKO-A’s predictive capabilities. Both mechanisms and chamber data analysis will greatly 

benefit from a chamber TSC measurement by providing a top-down constrain on speciated measurements 

and mechanism outputs. In summary, TSC measurements, speciated chamber measurements, and 

mechanistic simulations of VOC oxidation can be used together to improve our understanding of chamber 

oxidation systems, complex chemistry, mechanism behavior, and ultimately reduce key uncertainties in 

how radical chemistry and SOA formation affect Earth’s climate and human health. 

 

2. Research Questions 
 

In this thesis, we probe the completeness and accuracy of speciated organic chamber measurements 

and chemical mechanistic models. We perform this via the development of a new instrument to measure 

TSC and the comparison of multiple chamber experiments to GECKO-A simulations. Specifically, this work 

aims to address the following questions: 

(1) Are measurements of organic species accurate and complete in a chamber experiment when 

accounting for wall losses? 
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(2) How do we compare large chamber mechanistic datasets in a way that provides useful 

information for reducing uncertainty and error in both measurements and models?  

(3) How can mechanisms reduce ambiguity in speciated chamber measurements? 

(4) How well do mechanisms understand a few select complex SOA oxidation systems? 

(5) How can chamber measurements improve GECKO-A by suggesting changes to SARs? 

These questions will be addressed in the following chapters: 

Chapter 2: This chapter focuses on Question 1 by constructing, developing, and characterizing an 

instrument to measure TSC in an air sample. The instrument, known as the Oxy-Cat, uses heated palladium 

and platinum catalysts to convert organic species to CO2. A differential CO2 monitor then measures the 

amount of CO2 generated from the organic species which serves as the measure of TSC in the sampled air 

mass. Calibration studies of several species spanning a range of volatility and chemical complexity are 

presented. The objective of this chapter is to show that the Oxy-Cat will convert a diverse set of VOCs 

entire to CO2 and that it is capable of measuring concentrations of VOCs at chamber-relevant levels down 

to 10ppbC. 

Chapter 3: This chapter focuses on Questions 2 and 3 by developing new methodologies for comparing 

time series speciated datasets from chamber studies and mechanistic simulations. Initial comparisons 

focus on direct species-to-species analyses of the butane oxidation system which suggest the likelihood 

of decomposition reactions taking place inside the PTR-MS. Subsequent comparisons are based on 

distributive properties of the gas phase of chamber and GECKO-A SOA, namely carbon number and OSc 

distributions. These distributions are combined for a more granular examination of the similarities and 

differences between the chamber and modeled systems, and an error metric is developed to quantify the 

degree to which the two systems are similar. This chapter lays the foundations for a more in-depth 

examination of the chemical differences between the systems in Chapter 4. The objectives of this chapter 

are to show that the comparison methodology yields insights into the differences between observed and 



16 
 

modeled chemistry and that the error metric we developed can be used to compare measurement-

mechanism agreement across different VOC oxidation systems. 

Chapter 4: This chapter focuses on Questions 4 and 5 by using the metrics developed in Chapter 3 to 

analyze the similarities and discrepancies between chamber experiments and GECKO-A simulations of the 

α-pinene, 1,2,4-trimethylbenzene (TMB), and isoprene oxidation systems. Specific hypotheses based on 

an analysis of existing mechanisms for each system are discussed as possible reasons for observed 

differences. These hypotheses are translated into proposed edits to GECKO-A’s SARs, primarily those 

related to the fate of the alkoxy radical, ozonolysis, and nitrate yields. GECKO-A simulations are performed 

with the suggested SAR alterations, and changes to observed agreement across all systems are discussed. 

No single set of changes to any system uniformly improves agreement across all three oxidation systems 

which highlights the need for closer examination of specific reaction pathways to increase the accuracy 

of mechanisms. The objectives of this chapter are to show how GECKO-A and our novel chamber 

comparison methodology can be used to identify classes of reactions to which chamber-GECKO 

agreement are sensitive. 
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II. Development and Characterization of an Instrument to Measure 

Total Suspended Carbon for Chamber Experiments 
 

1. Introduction 
 

As we discussed in Chapter 1, SOA oxidation studies are frequently conducted in environmental 

chambers (Kroll and Seinfeld 2008). All of the physical experiments discussed in this work were conducted 

in the MIT environmental chamber in the Kroll lab. The surfaces of the chamber system itself, including 

the Teflon walls, outlet sample line tubing, and instrument inlets, are of particular importance to the work 

in this chapter. While an SOA oxidation experiment is being conducted, VOCs, SVOCs, IVOCs, and LVOCs 

are simultaneously being oxidized and partitioning between the gas phase, the particle phase, and also 

the “wall phase” which is a condensed organic phase on chamber system surfaces (La et al. 2016). Both 

gasses and particles may be lost to chamber surfaces (Park et al. 2001; Krechmer, Day, and Jimenez 2020; 

Zhang et al. 2014). Suspended particle and gas measurements are commonplace in environmental 

chamber experiments and often contain the most important data an environmental chamber experiment 

can provide, but the organic species on chamber surfaces are unable to be measured in-situ.  

Surface losses pose challenges to the accurate and complete interpretation of gas- and particle-phase 

chamber data. This is especially problematic for SVOC’s and IVOC’s which comprise the bulk of SOA as 

they are likely more susceptible to chamber depositional losses (Lopez-Hilfiker et al. 2015). These losses 

further complicate our understanding of the underlying chemistry behind the formation and oxidative 

evolution of SOA as highly oxygenated species likely partition more into the particle phase due to their 

lower vapor pressures (Donahue et al. 2013; Hallquist et al. 2009; Donahue et al. 2006). Indeed, some SOA 

modelling studies under-predict observed SOA yields and have suggested chamber depositional losses as  

(Cappa et al. 2016). A more recent comparison of GEOS-Chem model predictions and 15 aircraft 

campaigns suggested little systemic underprediction of SOA but also little correlation between observed 
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and modeled SOA (Pai et al. 2020). These discrepancies may arise from many factors including missing 

emissions inventories in models and unaccounted aerosol cloud processing, but another potential set of 

culprits is errors in SOA yields because model SOA yield inputs are determined in large part from chamber 

studies (Y. B. Lim et al. 2010; Ervens, Turpin, and Weber 2011; Loza et al. 2010; Zhang et al. 2014).  

The physical reasoning behind chamber particle losses are generally well-understood and can be 

modeled as a first-order decay if the particle size distribution is known (Park et al. 2001; Crump and 

Seinfeld 1981). Air masses within chambers are commonly assumed to be in a turbulent flow regime 

because of air’s low kinematic viscosity and corresponding high Reynold’s number even for low air flow 

velocities (Welty 2008). This turbulent flow creates a boundary layer at the chamber wall surfaces through 

which particles can diffuse and finally settle on the walls themselves (Crump and Seinfeld 1981; Park et 

al. 2001). The thickness of the boundary later and thus the rate of particle diffusion through said layer 

depend on the dynamics of chamber mixing which are usually unknown of poorly understood, so empirical 

studies analyzing loss rates of polydisperse particle populations must be performed to provide constraints 

on particle deposition rates as a function of particle size (Ng et al. 2007; M. D. Keywood et al. 2004). Once 

particles deposit on surfaces they may remain there, re-aerosolize, or evaporate either partially or 

completely, and some particles that have deposited may remain in the chamber even after repeated 

chamber flushing and baking (McGarvey and Shorten 2000). 

Vapor deposition rates are more difficult to parametrize, and until recently, few studies have been 

conducted to characterize these losses. Most vapor deposition models essentially treat chamber walls as 

one large particle into which gas-phase species may partition (Matsunaga et al. 2010; La et al. 2016). 

However, even these models are inadequate and usually do not account for important factors such as 

relative humidity and chamber age (Loza et al. 2010). Moreover, partitioning models in general such as 

the commonly used model described in Pankow, 1994 often under predict particle-phase concentrations 

of certain organic species such as methyl-tetrols because of myriad factors including particle-phase 
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oligomerization, particle phase inhomogeneity (i.e. varying viscosities and composition with radial 

position within the particle) , and unknown particle-phase activity coefficients (Pankow 1994; Isaacman-

VanWertz et al. 2016). Consequently, empirical observations are currently required to quantify vapor 

losses to walls for each individual compound in each chamber. Depositional losses are combated by 

adding ammonium sulfate seed particles to the chamber before the organic species is injected, but 

commonly used seed:chamber surface area ratios of <1x10-3 may  not be adequate to effectively prevent 

significant wall losses (Zhang et al. 2014). Evidently there is still a great deal of work that must be done 

before vapor wall losses are as well characterized as particle wall losses which provides powerful 

motivation for the work presented below which focuses on directly quantifying bulk depositional losses. 

We can quantify bulk depositional losses to chamber surfaces by measuring the Total Suspended 

Carbon (TSC) content of the SOA in the chamber. TSC is itself a bulk property which represents the total 

concentration of carbon in the gas and particle phases in an SOA sample. Measuring TSC in combination 

with an initial measurement or knowledge of the amount of carbon injected into a chamber system allows 

one to calculate the amount of carbon, if any, lost to chamber surfaces over the course of an SOA oxidation 

experiment. A measurement of TSC by itself is also useful as a top-down measurement to constrain the 

various bottom-up speciated measurements made by gas monitors and mass spectrometry instruments. 

This constraint can inform chamber researchers if they have accurately measured all of the suspended 

carbon contained within gas- and particle-phase organic species or if they may be under or overestimating 

the amount of TSC in the chamber from with bottom-up measurements. Previous studies have been 

performed using OH reactivity instead of TSC as the top-down constraint and in many instances have 

shown significant discrepancies between bottom-up measurements and the top-down constraint (Sinha 

et al. 2007; Hansen et al. 2015). Thus, the development of new techniques and instruments for 

establishing top-down constraints on aerosol systems is critically important for allowing for 
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intercomparisons of different top-down constraints and for assessing whether all carbon in a system has 

been properly quantified.  

The work presented herein describes the development and characterization of a TSC measurement 

apparatus hereafter referred to as the Oxy-Cat (short for ‘Oxidizing Catalyst’). The Oxy-Cat’s design is 

based on two previous apparatuses created to measure total gaseous carbon in ambient air and consists 

of three main components; a catalyst composed of palladium on glass wool, a tube furnace to house the 

catalyst, and a CO2 analyzer (Maris et al. 2003; Veres et al. 2010). Heated palladium catalysts are 

commonly employed in organic chemistry to oxidize organic chemicals, and when the oxidations occur 

when significant oxygen is present and with sufficient reaction time, carbonaceous species are converted 

completely to CO2 (Veres et al. 2010; Maris et al. 2003). It is currently unknown how efficient the catalyst 

is at oxidizing various species or even if it in fact is able to oxidize all species, so a significant portion of the 

research presented in this paper focuses on calibrating the catalyst. Once the catalyst has fully oxidized 

the organic species, the CO2 analyzer can measure the total carbon concentration in the sampled aerosol. 

As of yet, no system like the Oxy-Cat has been used in environmental chamber experiments (except for 

experiments conducted in smaller Potential Aerorosl Mass (PAM) oxidation flow reactor experiments). 

 

2. Design and Methodology 

The Oxy-Cat system is comprised of three main components: the palladium catalyst; the tube 

furnace to house the catalyst; and the CO2 monitor. Figure 1 displays the basic design of the Oxy-Cat. 1 

Lpm zero air passes through the heated inlet line (~20 cm of 1/4” stainless steel tubing wrapped in heat 

tape, held at 150 °C). VOC solutions are injected into the heated zero air stream. The gas stream then 

passes through the heated Pd catalysts (“Hi Sens Catalyst” from Shimadzu, 10% Pd on glass wool) and Pt 

catalysts (“Platinum screen, TOC” from Shimadzu). 24 Pt screen and two sets of Pd on glass wool catalysts 

were used. The catalysts were housed in a tube furnace (Supelco 2-3800 set to 500 °C). The gas stream 
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then exits the tube furnace and enters a cooling coil region (1/4” copper tubing; three coils). Lastly, the 

gas stream enters the sample cell of the CO2 (LI-7000, LI-COR Biosciences). The LI-7000 has two cells which 

measure CO2, one reference cell and one sample cell. The sample cell is sampling gas that has been put 

through the heated catalyst region which is designed to convert all organic carbon to CO2, and the 

reference cell is sampling gas that is not passing through the heated catalyst. The measurement from the 

reference cell is subtracted from the measurement of the sample cell in order to determine the difference 

in the concentration of CO2 between the two cells which is thus the measurement of TSC that we desire. 

The LI-7000 a rated nominal precision of ±1% and an empirically determined differential limit of detection 

of approximately 10 ppbC. 

 

The Oxy-Cat was calibrated with VOC injections via syringe pump as shown in Figure 1. The syringe 

pump used was a Harvard Apparatus PHD Ultra Syringe Pump with an accompanying Hamilton glass 50 μL 

syringe. Dilute solutions of water-soluble VOCs prepared in Milli-Q water were injected in the heated inlet 

line at different rates to produce air samples of varying TSC. It was necessary to dilute the organics prior 

to injection to ensure that the expected CO2 concentration would be in a relevant range to most chamber 

experiments (10-500 ppbC) The injected VOC solutions were vaporized in the heated inlet line and mixed 

with a zero air stream.  The gas stream is then split with roughly half of the gas (0.5 Lpm) traveling to the 



26 
 

reference cell of the LI-7000 and the other half of the gas traveling through the heated catalyst region to 

the sample cell of the LI-7000. 

Expected CO2 concentrations were calculated assuming ideal gas behavior and complete and rapid 

evaporation of all injected material. Expected CO2 concentrations were set by varying the volumetric 

injection rate of the diluted organic solutions. Blanks of Milli-Q water were run at each volumetric 

injection rate and used to establish baseline CO2 levels. The net flow rate (zero air plus vaporized dilute 

organic solution) was measured with a Mesa Labs DryCal® Defender 510 flow meter placed inline after 

each of the LI-7000’s cells. Zero air flow rates were adjusted with a needle valve placed inline before the 

heated inlet line to account for changes in flow rates at different organic solution injection rates because 

of significant influences on the net flow rate from the evaporation of the organic solution. CO2 

measurements were recorded at a rate of 1Hz and were averaged over at least a 30 second interval once 

the measurements had stabilized to obtain final values. The averaged CO2 measurements were then 

compared to the expected CO2 concentrations to determine the degree of oxidation for each organic 

species. 

3. Results: Calibration and Characterization 

An example of the raw data obtained from the LI-7000 from a calibration study involving a syringe 

pump injection of methanol is shown below in Figure 2. There is noise in the signal immediately preceding 

and following the start of the methanol injection (represented by the spike in the data), and averaging the 

signal over a two-minute period yields an uncertainty in the measurement of ±2.5 ppbC, two orders of 

magnitude less than the initial carbon content upon injection of a precursor VOC. 

In addition to measuring small changes in aerosol carbon content, it was crucial to ensure that 

the Oxy-Cat was not biased against VOC’s which are more difficult to oxidize. Methanol, acetone, benzene, 

glutaric acid, pinonic acid, and dichloromethane were chosen as calibrants because of the diversity of 

functional groups and vapor pressures they encompass. Of particular note is the inclusion of glutaric acid 
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and pinonic acid which are IVOC’s and thus more susceptible to wall losses than the other species included 

in the calibrations. Figure 3 displays the calibration results, and it is readily apparent that all species 

displayed complete conversion to CO2 across the chosen span of concentrations. 

One species of particular importance in Figure 3 that was not fully oxidized is perfluorooctane. All 

of the other species on which the Oxy-Cat was calibrated are at least somewhat water soluble which made 

it possible to create dilute solution in MilliQ water. However, we still need to ensure that the Oxy-Cat can 

convert a variety of non-water-soluble and nonpolar VOC’s entirely to CO2 as well. Perfluorooctane is 

nonpolar and liquid at room temperature which means it can be used as a solvent to create dilute 

solutions of non-water-soluble VOCs. It is readily apparent that the observed formation of CO2 from the 

oxidation of perfluorooctane is at least three orders of magnitude less than expected. This is promising 

for perfluorooctane’s use as a solvent since the solvent should not contribute to the differential CO2 signal 

measured by the LI-7000. 
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4. Discussion and Future Work 

The data presented in Figures 2 and 3 suggest that the Oxy-Cat is capable of oxidizing a wider range 

of organic species across a range of size, chemical complexity, volatility. The Oxy-Cat is capable of 

measuring gas-phase TSC in concentrations ranging from 500 ppbC down to 10 ppbC, which spans the 

range of concentrations that are commonly seen in chamber experiments. TSC measurements are precise 

to within ±2-5 ppbC which corresponds to a less than 1% uncertainty for a typical chamber study. 

The work in this chapter is a positive proof of concept to demonstrate that the Oxy-Cat is capable 

of oxidizing several different VOCs and that it is able to measure their concentrations with high precision 

down to 10ppbC ±2-5 ppbC. However, some work must still be completed before the Oxy-Cat is ready to 
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be used during chamber experiments to constrain TSC. Notably absent in Figure 3 are nonpolar species 

which are not water-soluble. Relatively hydrophilic species were chosen because water does not contain 

carbon, and so when the VOC calibrant mix is injected via syringe pump, the solvent will not contribute 

significantly to the observed CO2 signal. Were we to have used a common organic solvent like hexane, the 

solvent’s conversion to CO2 would completely mask the signal from the VOC under analysis. Future work 

regarding calibrations of nonpolar and non-water-soluble VOC may be performed with perfluorooctane. 

Figure 3 shows that perfluorooctane oxidizes approximately three orders of magnitude less than we would 

expect were it to be fully converted to CO2 by the heated catalysts. This means that perfluorooctane may 

be used as a nonpolar solvent for nonpolar VOC calibrations to confirm that they too may be fully oxidized.  

Particle-phase calibrations must also be performed because organic species often condense onto 

seed particles over the course of a normal chamber experiment. These particle-phase species are also 

considered a component of TSC. I propose that initial stages of this future work can be performed using 

purely organic particles of squalane (C30H62). Squalane particles of this nature have generated in our lab 

by flowing air through a tub containing liquid squalane in a tube furnace, and they would serve as a good 

model system for calibration purposes (C. Y. Lim et al. 2017). Squalane is also a branched alkane which is 

of particular interest to this proposal. Although particle-phase VOC oxidation may at first appear to be 

different than gas-phase VOC oxidation, it is worth remembering that the catalysts is kept at ~500 °C which 

we believe is sufficient to vaporize and/or decompose organic particles. However, more work on a variety 

of different particles, including oxygenated and aged aerosol particles, should be performed to verify this 

assumption. 

Our ultimate goal for the Oxy-Cat is for it to be used in any chamber study in which a measure of 

TSC would help constrain other measurements. Labs often perform chamber experiments in which they 

attempt to achieve carbon closure which means that they attempt to measure all oxidation products 

completely and accurately. However, those measurements may be uncertain due to uncertainties 
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stemming from the calibration used to convert instrument signal to concentration (e.g. Isaacman-

VanWertz et al. 2018). The Oxy-Cat can help constrain these measurements by providing an upper bound 

of TSC against which bottom-up speciated measurements can be compared. Further work must be 

performed to demonstrate the Oxy-Cat’s ability to provide this constraint. Chamber experiments designed 

to achieve carbon closure should be performed in tandem with the Oxy-Cat as proofs of concept. The 

process of attaching the Oxy-Cat to the chamber poses challenges. Some of these challenges may include 

gas and particle losses on Oxy-Cat tubing and other surfaces which would need to be minimized for the 

Oxy-Cat to provide an accurate measure of TSC regardless of the VOC system under observation. Another 

potential challenge could arise in the form of negative pressure leaks (e.g. room air entering into the Oxy-

Cat apparatus via small openings in tubing joints) which render the Oxy-Cat measurements useless 

because of high indoor CO2 concentrations. These chamber characterization studies will require 

collaboration across multiple labs and potentially multiple universities in order to obtain a suite of 

instruments capable of achieving carbon closure. 

Once these remaining steps are taken, the Oxy-Cat will be ready to be adapted and optimized for 

use in any future chamber study. Several benefits will arise from implementing the Oxy-Cat in chamber 

experiments. As discussed in Section 1, vapor losses have been difficult to parametrize, and they may 

differ substantially from chamber to chamber. The Oxy-Cat will allow each lab to measure wall losses in-

situ to better constrain all gas- and particle-phase bottom up measurements, for example, by measuring 

wall losses of VOCs across a range of volatilities to create a vapor deposition model as a function of 

volatility. Even if this parametrization is not performed, the Oxy-Cat can still be utilized to place an upper 

bound on all speciated measurements to reduce uncertainty. This clearly has important implications for 

the results of every chamber experiment, namely that measurements can be corrected and reported with 

increased accuracy and precision, particularly for studies focused on SOA yield and/or studies which 

involve significant formation of SVOCs, IVOCs, and LVOCs which are particularly susceptible to gas-phase 
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wall loss. Improvements in SOA yield studies from chamber will increase the accuracy of and decrease 

uncertainties in regional and global chemical transport models which rely on chamber studies to 

parametrize SOA particle formation (Zhang et al. 2014).  
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III. Multiparameter Quantitative Comparisons of Smog Chamber and  

Chemical Mechanistic Datasets 
 

1. Introduction 
 
 As we have discussed in the previous chapters, experiments studying the chemistry of SOA 

formation and evolution are frequently conducted in controlled environments known as environmental 

chambers (Kroll and Seinfeld 2008). The MIT chamber used in this work is composed of a Teflon bag in a 

temperature-controlled room surrounded by UV lights which catalyze the all-important photolytic 

reactions which drive oxidation reactions (Seinfeld and Pandis 2006). We study specific oxidation systems 

by injecting a single organic species into the chamber along with seed particles and oxidant precursors 

like HONO which photolyze to form OH and NO radicals. With this framework, chamber experiments allow 

us to examine isolated chemical oxidation systems in a variety of different ways and at different levels of 

granularity.  

 On the least granular side of the analysis spectrum, chamber studies are conducted to measure 

overarching system properties like O:C ratios and SOA yield from a specific VOC precursor oxidation 

system (Docherty et al. 2021; Zhang et al. 2014; Aiken et al. 2008; Gkatzelis et al. 2018). Some of these 

studies are particularly useful for parametrizing SOA production in chemical transport models, and other 

studies involving measurements of elemental ratios can provide evidence regarding the degree to which 

SOA is oxidized. On the most granular side of the analysis spectrum, chamber experiments can be 

conducted to measure specific products in a VOC oxidation system to better characterize production and 

degradation rate constants (Ma et al. 2007). These experiments are quite useful for elucidating specific 

chemical reactions, particularly those which lead to the production and degradation of major products 

like pinic acid and pinonaldehyde in the α-pinene oxidation system (Ma et al. 2007). Both highly granular 

and highly coarse chamber analyses provide useful information, but it is not possible to simultaneously 

gain deep and broad understandings of the oxidation system using simply one of these analyses. 
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 A third and particularly relevant class of chamber experiments falls in the category of holistic 

measurement studies which aim to achieve “carbon closure.” These chamber studies are performed with 

a suite of instruments selected to measure every major organic and inorganic species in the gas- and 

particle-phases to obtain a more complete view of the evolution of VOC oxidation system over time. These 

studies are difficult to perform because of the extreme complexity of VOC oxidation product mixtures, so 

until recently these studies had only been performed for simple systems like short-chain alkane oxidation 

(Calvert 2008). Advanced in analytical capabilities including the introduction of new CIMS measurement 

techniques have recently allowed our lab to conduct carbon closure studies on α-pinene oxidation (Gabriel 

Isaacman-VanWertz et al. 2018). The α-pinene study tracked carbon over the course of an eight-hour 

chamber experiment which translates to roughly one day in the atmosphere. Speciated measurements 

were catenated into distributions based on different properties including each species’ average carbon 

oxidation state (OSc), number of carbons per species, and each species’ vapor pressure. Examining the 

carbon number over time is a useful proxy for understanding the fragmentation of the VOC precursor’s 

carbon backbone, and exploring the OSc distribution is a useful proxy for understanding the degree to and 

manner in which the species in the system are functionalizing.  

 Computational mechanisms are another useful tool that researchers use to understand how a 

chemical oxidation system may behave in different circumstances. A mechanism’s greatest advantage lies 

in its predictive capabilities, allowing researchers to test their understanding of and potential additions  

Additionally, it usually requires much less time to perform a box model simulation than it does to perform 

a chamber experiment and analyze CIMS data. One of the best-known computational mechanism in the 

field of atmospheric chemistry is the Master Chemical Mechanism (MCM) which contains a set of 

thousands of explicitly defined chemical reactions of dozens of VOCs (Jenkin, Saunders, and Pilling 1997; 

Saunders et al. 2003). MCM has been used in different studies at different levels of granularity, just like 

chamber experiments. For example, MCM has been used to model bulk SOA production along with O:C 
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and N:C ratios in a chemical transport model for the Houston, Texas region (Li et al. 2015). MCM can also 

be used more granularly, for example, to characterize specific organonitrate species in the particle-phase 

of SOA formed from the nitrate radical initiated oxidation of limonene (Faxon et al. 2018). Both of these 

examples involve the comparison of MCM to an observationally derived dataset. This is a requirement in 

order to validate the results from the mechanism, and this comparison can also be used to improve the 

mechanism itself by constraining it to the observational data. 

 Explicit mechanisms like MCM are inherently limited because If a certain reaction exists in reality 

but has not been explicitly defined in the mechanism, the mechanism will be incomplete. Self-generating 

mechanisms are less susceptible to these limitations because they attempt to predict every possible 

reaction and their corresponding rates even if they are not already contained in an explicit mechanism. 

For example, GECKO-A, a self-generating mechanism, incorporates the known reactions contained in 

MCM and then generates its own reactions and predicts rates using SARs (Bernard Aumont, Szopa, and 

Madronich 2005; Camredon et al. 2007). GECKO-A examines every bond in a given molecule and predicts 

how it may react under different scenarios. Unimolecular reactions including, but not limited to, alkoxy 

radical decomposition and isomerization and bimolecular reactions including reaction with OH, NO, O3 

are all considered. If a reaction and its rate are contained within MCM or have been empirically studied 

and reported, GECKO-A will use the reported values (Bernard Aumont et al. 2012). However, if a reaction 

is not explicitly known, GECKO-A will use SARs to predict said reaction and rate. SARs are essentially a set 

of rules to predict the activation energy for a reaction, rules which have been determined via quantum 

chemical calculations using a training set of reactions for which rate and activation energies are known 

(Vereecken and Peeters 2010; Vereecken and Peeters 2009; Peeters, Fantechi, and Vereecken 2004). One 

of GECKO-A’s useful advantages is that these SARs may be edited to test their effects on predicted 

chemistry. 
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 GECKO-A results have been compared to empirical observations on several occasions. For 

example, GECKO-A has shown an ability to reproduce empirical results on SOA yields from alkane 

oxidation studies which has helped validate the mechanisms that GECKO-A creates for alkane oxidation 

(Bernard Aumont et al. 2012).  However, GECKO-A also indicated that a large fraction of alkane SOA 

particulate matter is composed of multifunctional organic nitrates which have previously not been 

empirically detected in the concentrations the model suggested (Bernard Aumont et al. 2013). The same 

study showed that GECKO-A does not do a good job of describing the formation of highly oxygenated 

organic aerosol most likely because of missing reaction pathways (i.e. RO2 isomerization) for which SARs 

dis not exist at that time in GECKO-A. We must remain wary that all mechanisms, and particularly those 

with capabilities to predict unknown or uncharacterized reactions like GECKO-A can, require validation to 

be taken as truth. 

The main goal of this chapter is to develop a methodology by which measurements and 

computational mechanistic results can be compared to provide mutual improvements. To date, no study 

has compared entire product distributions from chamber and mechanistic datasets. Chamber 

experiments provide an anchor in reality, but the chamber and instruments themselves often introduce 

uncertainty into the results. These uncertainties can arise from depositional losses as we discussed in 

Chapter 2, but they can also arise from chemical transformations which occur to certain species upon 

detection. Evidence of decomposition of organic hydroperoxides on instrument surfaces and 

decomposition of organic nitroperoxides upon protonation in the PTR ionization region have been 

reported (Rivera-Rios et al. 2014; Leglise et al. 2019). Additionally, alcohol dehydration has been reported 

to occur in the PTR-MS (Brown et al. 2010). Anecdotal evidence from collaborators Abby Koss and 

Alexander Zaytsev suggests that aldehyde functional groups may also undergo decomposition, and 

perhaps other functional groups may undergo decomposition as well. Through correlative analysis of the 

time series of each species, mechanisms can provide suggestions as to the true structures and identities 
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of decomposed species. On the other hand, GECKO-A results must be checked against physical 

measurements for validation purposes. Comprehensive chamber experiments like those we perform at 

MIT provide an unprecedented way to perform these comparisons since we can compare data every level 

of granularity to suggest areas in which GECKO-A can improve.  

The overall result of the work described in the rest of this chapter is to provide a method to generate 

two kinds of targeted insights from chamber-mechanism comparisons: (1) improvements in 

understanding how the act of measuring organic species with CIMS instruments affects the ways in which 

we should identify them; (2) suggested improvements in GECKO-A’s mechanism generator, particularly in 

how it predicts reactions and rates using SARs. 

 

2. Materials and Methods 
 

2.1. Chamber Experimental Design 

High-NOx experiments were conducted in the 7.5 m3 Teflon Kroll lab chamber (Hunter et al. 2014).  

The UV lights (Q-Labs) used in the chamber for the experiments described herein have a peak wavelength 

of 340 nm, different from the 351 nm peak wavelength lights from Hunter et al. The chamber was 

operated in semi-batch mode with a makeup zero air flow of 10-12 Lpm to account for the instrument 

sample flow. The chamber was run under dry conditions (maximum RH of ~2%), and the temperature was 

held at 291.0±0.5 K. The low RH is better for comparisons with GECKO-A simulations because the gas-

particle partitioning module in GECKO cannot account for most heterogeneous reactions or water uptake, 

both of which would increase the uncertainty between the measurement-mechanism comparisons 

(Camredon et al. 2007; Mouchel-Vallon et al. 2013; Lee-Taylor et al. 2011). 

Photochemical oxidation experiments were performed using butane and α-pinene as the VOC 

precursors, nitrous oxide (HONO) as the source of OH (and NO), and dry ammonium sulfate particles (2.5–

5.7×104 cm−3) as condensation nuclei. The dry ammonium sulfate particles were added first, followed by 
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2 μL of hexafluorobenzene (C6F6) which served as the dilution tracer because of its exceedingly slow 

reaction kinetics with OH. HONO was then generated in a bubbler by adding 2-4 μL of sulfuric acid (H2SO4) 

via syringe pump to a solution of sodium nitrate (NaNO2). HONO was added to the chamber in a 15 Lpm 

zero air stream to be added to the chamber, resulting in HONO mixing ratios of ~25-35 ppbV. Lastly, 

precursor VOCs were added by injecting 2-4 μL into a heated inlet with a zero air flow rate of 15 Lpm. All 

reagents and seed particles were allowed to mix in the chamber for several minutes to allow for more 

even distribution throughout the chamber. UV lights were then turned on to catalyze the production of 

OH and NO from HONO photolysis, thereby begging the experiment. Measurements were collected over 

the course of ~7.5 hrs. Three subsequent additions of HONO to the chamber occurred in for both 

precursor experiments so as to promote further oxidation and aging. 

 

2.2. Chamber Instrumentation 

The temperature, relative humidity, ozone (2B Technologies), CO (Teledyne) and HONO and 

nitrogen oxides (NOx) (Thermo Fischer Scientific) were monitored throughout the course of the 

experiments. An aerosol mass spectrometer (AMS) (Aerodyne Research Inc.) was calibrated with 

ammonium nitrate and was used to measure total organic particle-phase mass assuming a particle 

collection efficiency of 1. Gas-phase compounds, including the precursors, were measured with a suite of 

chemical ionization high-resolution time-of-flight mass spectrometers (CIMS). The I- CIMS (Aerodyne 

Research Inc.) was operated as described in Lee et al., 2014. H3O+ and NH4
+ CIMS (PTR3, IONICON Analytik) 

measurements were also performed. Each CIMS instrument used a 3/16” Teflon sampling line with a 2 

Lpm flow rate. Estimations of uncertainties in quantification for all of the species detected via CIMS are 

as follows: identified compounds, 10% uncertainty; PTR and NH4
+ CIMS, 30% uncertainty; and I-CIMS, 2.5x 

uncertainty.  
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2.3. GECKO-A Mechanistic Simulations 

GECKO-A was used to generate chemical oxidation mechanisms and perform 1-D box model 

simulations for the chamber experiments described in Section 3.2. All mechanisms were created to 

include all reactions, products, and intermediates leading up to and including fourth-generation oxidation 

products. Detailed descriptions of how GECKO-A generates mechanisms can be found in Aumont et al., 

2005, Camredon et al. 2007, and Valorso et al. 2011. GECKO-A simulations were run on a remote Linux 

server (Digital Ocean) operating Ubuntu 18.04. GECKO-A itself is written in FORTRAN 77 and FORTRAN 90 

(some parts of the code have not been updated to the more recent version of FORTRAN).] 

GECKO-A simulations must be “tuned” for the best comparisons to chamber data. Tuning a 

GECKO-A simulation involves matching the precursor, ozone, NOx, and particulate mass concentration 

time series to the time series measured in the chamber. Matching these key parameters ensures that the 

reaction conditions in the GECKO-A simulation are as close as possible to those experienced in the 

chamber. This serves to anchor the comparative analysis (main focus of Section 2.4) to chamber 

observations, allowing for comparisons to focus on differences in chemistry instead of differences arising 

from potential discrepancies in ambient conditions. Light intensity is the main tuning parameter used for 

these GECKO-A simulations because it is largely responsible for controlling ozone, HONO, and NOx 

concentrations as they are sensitive to the chamber’s photolytic conditions. Light intensity is scaled 

linearly across the UV light spectrum input which was obtained from the manufacturer of the lights (Q-

Labs). An iterative process is used to tune the light intensity scaling factor and all other tuning parameters. 

The other two major tuning parameters are linear multipliers controlling the rate of losses of gas-

phase species to the walls and the mass accommodation coefficient for gas-particle uptake. These 

parameters are tuned to match the ozone concentrations and particulate SOA yield as observed in the 

chamber as best as possible. 
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2.4. Chamber-Mechanism Comparisons: Development of and Insights from Novel Methods 

 This section focuses on the butane oxidation system as the basis on which the pinene oxidation 

system comparisons will be conducted. Butane is a relatively simple molecule comprised of a linear alkane 

chain of only four carbon atoms, and butane oxidation is believed to be well characterized by GECKO-A 

because of the extensive work done with GECKO-A to model alkane oxidation (B. Aumont et al. 2012). 

This simplicity and relatively high level of confidence in GECKO-A’s ability to model butane oxidation 

makes the butane system a reasonable choice as the starting point for building our comparison 

methodology. The PTR was the only CIMS-based instrument taking measurements during the chamber 

experiment, and there is a high degree of confidence that the PTR measured all expected major gas-phase 

products from butane oxidation because the PTR is adept at measuring species with four or fewer carbons, 

relatively high-volatility species, and species with O:C ratios ranging from 0-1 (G. Isaacman-VanWertz et 

al. 2017). No significant concentrations of organic particle-phase species were formed or were expected 

to have formed in the chamber. 

 Butane oxidation simulations were performed in GECKO-A and tuned according to the methods 

provided in Section 2.3. Since CIMS can not distinguish between compositional isomers (except in cases 

where the CIMS reagent ion may preferably associate with specific functional groups), all GECKO-A 

compositional isomers were lumped together before comparing GECKO-A and chamber data. After isomer 

lumping was performed and all time series were corrected for dilution, an average of the concentrations 

of each isomer in GECKO-A and the chamber were taken across the duration of the experiment. These 

average concentrations were then plotted against each other as shown in Figure 1. 

Several features are immediately apparent in Figure 1; the compositional isomer group of Methyl 

Ethyl Ketone (MEK), butanal, and tetrahydrofuran (THF) has the highest average concentration in both 

datasets and almost falls exactly on the 1:1 line. Several other major species (e.g. acetaldehyde) fall within 

one order of magnitude of the 1:1 line which implies that GECKO-A has done a reasonable job of 
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replicating the chemistry leading to the formation of those species. However, there are several species 

which only appear in one dataset and not the other, including some species with average concentrations 

greater than 1 ppbC, which is the heuristic that we are using to define what is considered to be a “major 

species”. Another concerning feature in Figure 1 is how the Methyl Vinyl Ketone (MVK) and butenal 

compositional isomer group is in very poor agreement between the two datasets. 

We begin exploring reasons for the observed discrepancies by examining the largest outlier in the PTR 

dataset which is represented by the greatest magnitude red point on the PTR axis. This isomer has the 

chemical formula C4H8 which corresponds may correspond to a few different species (e.g. cyclobutene 

and methyl cyclopropane) but most likely corresponds to butene. However, butene is not expected to be 

a major product of butane oxidation even though it is identified as one of the species with the highest 

 

Figure 1: A first-pass comparison of the averages of the concentrations of compositional isomers in the chamber and GECKO-A 
butane oxidation experiments. Major identifiable species that are found in both datasets are represented by blue dots which fall 
in the middle of the plot. All species which only appear in the GECKO-A or chamber dataset, but not both, are represented by red 
markers which fall on the axis belonging to their representative dataset. The blue line represents the 1:1 line, and each of the red 
dashed lines represent plus/minus one order of magnitude deviation from the 1:1 line. 
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concentrations in the chamber experiment. We will now explore the hypothesis that even though butene 

is the species that is detected by the PTR, it is actually a different species that undergoes a decomposition 

reaction inside the PTR itself.  

One of the major species in the GECKO-A dataset that does not appear in the PTR dataset is 

butylnitrate (C4H9NO3). If butylnitrate were to decompose along the same lines as an alcohol (which ejects 

H2O upon protonation) we could expect it to do so according to the reaction scheme shown in Figure 2. If 

this occurs, we would expect to detect butylnitrate as butene. 

 

We must now compare the time series of butylnitrate from the GECKO-A dataset with the time series 

of butene as detected by the PTR. Figure 3 displays two related ways to compare the time series. The 

overlaid time series in panel A suggest a strong correlation, and panel B plots the concentrations in each 

dataset at each measurement time point against each other to determine the correlation coefficient. The 

r2 of 0.995 between the GECKO-A and chamber datapoints (compared to an average r2 of 0.755 for 

correlating butylnitrate with all other major PTR species) provides strong evidence in support of our 

hypothesis that butylnitrate undergoes decomposition inside to PTR to end up being detected as butene. 

This insight changes the way that we must think about performing comparisons between GECKO-A 

and chamber data because isomer-to-isomer comparisons could suffer if decomposition reactions occur 
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in the PTR (or any other CIMS in other experiments). We must also explore the possibility that other 

functional groups may decompose including peroxyacyl nitrates (PANs), alcohols, and aldehydes, and we 

will begin this process by examining the largest GECKO-only species which is peroxyacetyl nitrate, the 

peroxyacyl nitrate with a total of two carbons (henceforth referred to as C2PAN). The same two 

correlation plots from Figure 3 are adapted in Figure 4 to compare GECKO-A C2PAN with its posited 

decomposition product from the PTR, ketene (C2H2O). The decomposition results in a loss of the PAN 

functional group along with one hydrogen atom from PTR data processing for a total loss of HNO4. 

Although the absolute concentrations between the species are not as similar as they were in the 

butylnitrate/butene comparison, the r2 between the two species is 0.997 (compared to an average r2 of 

0.736 for correlating C2PAN with all other major PTR species) which provides strong evidence that PANs 

also decompose prior to detection via mass spectrometry. 
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The compositional isomer set of MVK and butenal in the PTR dataset does not have one lone species 

in the GECKO-A dataset against which to compare it but rather multiple potential decomposition 

precursor species. Multiple GECKO-A species including nitrates, PANs, alcohols, and aldehydes could 

undergo decomposition reactions to yield either MVK or butenal, and Figure 5 displays the contributions 

of each set of potential decomposition reactions in the same was as was presented in Figures 3 and 4. 

Panel A reflects the complexity of performing a decomposition analysis when multiple decomposition 

reactions may be responsible for the species that is/are detected by the PTR. There is not a sole clear 

potential decomposition contributor to the detected MVK/butenal, and it is likely that two or more types 

of decomposition reactions are responsible for the detected MVK/butenal signal. Panel B explore two 

different possible correlations, one including all three potential decomposition reaction pathways and 

one which only considers decomposition involving the loss of a PAN group or a dehydration which involves 
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the loss of either an alcohol or aldehyde group. The correlation coefficients for both correlations are 

greater than 0.9 which still suggests evidence that decomposition reactions are responsible for the high 

detected concentrations of MVK/butenal. 

 We have now explored three different instances in which decomposition reactions have plausibly 

transformed organic species between the time they were sampled from the chamber and the time they 

were detected by the TOF-MS back end of the PTR. We can now say with some confidence that we are 

observing decomposition in the PTR, and we can apply the same decomposition correction method to 

every compositional isomer group. The results of these corrections are presented in Figure 6 which shows 

a marked improvement in the agreement between the GECKO-A and chamber datasets. No more species 

with average concentration greater than 1 ppbC remain on the chamber axis, and the two largest species 

on the GECKO axis in Figure 1 (C2PAN and butylnitrate) now have a good match in the chamber dataset.  

 The process of checking every set of compositional isomers against decomposition reactions 

involving a dehydration, loss of HNO3, and/or loss of HNO4 is necessary yet time consuming. It is useful to 

remember that we are using the butane oxidation system as the basis on which to construct our 
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comparison methodology because it is the simplest of all of the oxidation systems that we will consider. 

The α-pinene, 1,2,4-TMB, and isoprene systems each contain significantly more products with more 

functional groups than are found in the butane system, so the time it takes to manually perform 

decomposition corrections will quickly become untenable as we scale up in complexity. More complex 

oxidation systems derived from precursors with more than four carbons (like butane) are more likely to 

contain multifunctional species whose susceptibilities to one or more decomposition reactions may not 

be easily determinable as was the case for the butane system species. Instead of performing manual 

corrections however, we can perform bulk corrections on all species in the GECKO-A datasets by assuming 

100% decomposition of species that contain nitrate, alcohol, aldehyde, and PAN functional groups. This is 

a fairly bold assumption to make, especially since we are not certain if and/or how functional groups may 
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decompose in other CIMS instruments. Instead of spending considerable time and effort determining or 

estimating the extent to which different functional group and multifunctional species may decompose, 

we can instead group the species in each dataset in a way that will not be as susceptible to these 

considerations. 

Grouping the species by carbon number (Cnum) and average carbon oxidation state (OSc) provides 

an avenue that allows us to avoid performing manual decomposition corrections on each set of 

compositional isomers. Cnum and OSc are also useful proxies for understanding the dichotomy of 

backbone fragmentation and functionalization which is critical for understanding the evolution of a VOC 

oxidation system (e.g. Gabriel Isaacman-VanWertz et al. 2018). Species with the same Cnum and similar 

OSc fall along similar lines in the fragmentation and functionalization continuum which supports our 

decision to group species in this manner. It is important to note that the only way we can reliably use 

Cnum and OSc instead of doing direct isomer-to-isomer comparisons is if our chamber measurements 

capture all of the organic gas-phase carbon in the system. If not, these comparisons will be incomplete 

and could yield misleading data. 

CIMS instruments are soft ionization techniques which tend to leave the carbon backbone of each 

species intact (except for large molecules like sesquiterpenes), so Cnum is unlikely to change upon 

detection with an instrument. OSc is calculated using Equation 1: 

𝑂𝑆𝑐̅̅ ̅̅ ̅ = 2
𝑂

𝐶
−

𝐻

𝐶
− 5

𝑁

𝐶
                                                                    (1) 

The OSc calculation uses elemental ratios and assumes an oxidation state of -2 for each oxygen atom, 

+1 for reach hydrogen atom, and +5 for each nitrogen atom. These assumptions hold true for almost every 

functional group except for ones in which there is a peroxide bond in which each oxygen has an oxidation 

state of -1. Most importantly, when species undergo a decomposition reaction their average OSc will 

remain the same with the exception of PAN decomposition products because of the aforementioned 

peroxide linkage which is found in a PAN. This means that we only need to correct PAN species for 
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decomposition, and since PANs known to be highly prone to thermal and other modes of decomposition, 

we feel comfortable performing bulk corrections for PAN decomposition without having to worry about 

the degree to which these species may decompose. 

Grouping the species in the chamber and GECKO-A datasets for the butane oxidation systems by Cnum 

and OSc yields Figure 7. Each species’ OSc is rounded to the nearest 0.5 before being added to their 

respective Cnum and OSc bin. In comparison to Figure 6, Figure 7 shows similar qualitative agreement 

with less complexity. More major species and compositional isomer groups have left the axes and into the 

center of the plot which means that more of the carbon in each dataset is being used in the overall 

comparison. Only 1.8% of chamber carbon and 21.7% of GECKO-A carbon remain on the axes. 
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 We may now apply this novel comparison method to a more complex oxidation system, α-pinene. 

The three stages of the evolution of the comparison methodology are shown in Figure 8. There is an 

obvious decrease in the degree of scatter moving from Panel A to B, but the clearest reduction in 

complexity comes once species are binned by OSc and Cnum in Panel C. In Panel A, 5.9% of GECKO-A 

carbon is on the axis, and 25.5% or chamber carbon is on the axis. In Panel C all major species are off the 

axes with only 1.3% of GECKO-A carbon and 1.4% of chamber carbon remaining on the axes. This means 

that this binned comparison involves all major species and the vast majority of carbon in both datasets. 
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Another benefit we reap by progressing from a prima facie isomer-to-isomer comparison to the binned-

by-OSc-and-Cnum comparison is that we no longer have to be concerned about any decomposition 

reactions that may take place in any of the CIMS instruments except for PAN decomposition reactions. 

Even so, the presence of a PAN may not change the OSc bin into which a compound is sorted. Equation 1  

tells us that a PAN decomposition will correct a species’ OSc identification by -2/Cnum, so only PAN 

compounds which are within 2/C of the lower bound of the OSc bin in which they were sorted will change 

OSc bin upon decomposition correction implementation. 

 Although Figure 8 represents a significant improvement in the way we are able to compare large 

chamber and mechanistic datasets, some information is obfuscated in the process. The data are averaged 

over the course of the experiment, and the binned plots do not contain information related to the 

behavior of the species within each bin at each time. It is also unclear whether uncertainties in CIMS 

calibrations could be responsible the differences and similarities between chamber and GECKO-A data. In 

order to assess these points of concern we can examine the Cnum and OSc distributions separately at 

every point in time. The distributions are examined separately so the visualizations can be shown in two 

dimensions as opposed to a single three-dimensional plot where species are grouped jointly by Cnum and 

OSc. Uncertainties in the calibration of each species as detected by each CIMS were estimated as outlined 

in Section 2.2. 

 Figures 9 and 10 display the differences between the chamber and GECKO-A datasets in each 

Cnum and OSc bin respectively  at each time point in the experiment. GECKO-A concentrations in each bin 

were subtracted from chamber concentrations in each bin. If that subtraction results in a positive value it 

means that the concentration of secondary carbon in that bin is higher in the chamber dataset than the 

concentration of secondary carbon in the same bin in the GECKO-A dataset. Conversely, if the subtraction 

results in a negative number, the concentration in that bin is higher in the GECKO-A dataset than it is in 

the chamber dataset.  
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Both Figures 9 and 10 suggest that the uncertainties in the calibrations of the species detected by 

CIMS instruments can not be the main source of discrepancy observed between the chamber and GECKO-

A. Most of the shaded regions for each bin do not overlap with the zero line which means that, within one 

standard deviation uncertainty, it is not expected for the concentrations in each bin to be the same. It is 

also important to address the issue that there appears to be much more secondary gas-phase carbon in 

the chamber dataset than there is in the GECKO-A dataset. Although many parameters were used to tune 

the GECKO-A model to match the chamber experiment as best as possible, total secondary gas-phase 

carbon was not a parameter that was utilized. As discussed in Section 1, GECKO-A incorporates wall losses 

of gaseous species, and since we did not have the Oxy-Cat (Chapter 2) on hand to measure TSC in the 

chamber, we were unable to tune GECKO-A to TSC. Since GECKO-A was tuned to match the chamber’s 

SOA time series, GECKO-A’s apparent underestimate of TSC is likely caused by an overestimate of vapor 

wall losses. This potential source of error must be accounted for when we discuss the overall agreement 

between the two datasets.  

 Finally, we wish to develop a way to quantifiably express the degree to which the GECKO-A and 

chamber datasets disagree. In other words, we want to create an error metric that can be used to 

understand how any changes in GECKO-A’s mechanism generator quantitatively affect the overall 

agreement between GECKO-A and chamber measurements. This will be particularly useful for the work 

described in the next chapter. Another motivation for creating this error metric is so we can begin to 

quantitatively compare agreement between the two datasets across different VOC precursor oxidation 

systems. This will help determine which oxidation systems are well captured by GECKO-A and which 

systems GECKO-A struggles to model. 

 The method of binning species by Cnum and OSc is used to calculate the error metric. The error 

metric is calculated at every time point in the experiment, so concentrations in each bin will not be 

averaged over the entire timespan of the experiment like in Figure 8. We also normalized each dataset to 
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the amount of secondary carbon at each time point in each respective dataset; this is important because 

the amount of TSC in each dataset in each precursor VOC oxidation system is different, so normalization 

is required in order to compare error metrics across systems. The final decision we must make is whether 

to calculate the error metric using a partial distribution function or a cumulative distribution function. The 

partial distribution function method involves taking the sum of the absolute value of the difference 

between the values in each normalized Cnum-OSc bin in each dataset, and then taking that value and 

dividing it by the maximum possible error which is 2. We have selected to use the partial distribution (as 

opposed to the cumulative distribution) method because it will not be sensitive to the maximum Cnum in 

each precursor system and will therefore allow for a more even comparison across precursor systems. 

The final equation for the error metric is shown below in Equation 2: 

𝐸𝑟𝑟𝑜𝑟 =  ∑ ∑ | [𝐶ℎ𝑎𝑚𝑏𝑒𝑟]𝐶𝑛𝑢𝑚,𝑂𝑆𝑐 𝑏𝑖𝑛 −  [𝐺𝐸𝐶𝐾𝑂]𝐶𝑛𝑢𝑚,𝑂𝑆𝑐 𝑏𝑖𝑛 |/2                  (2)

𝑂𝑆𝑐=4

𝑂𝑆𝑐 𝑏𝑖𝑛 −4

𝐶𝑛𝑢𝑚 𝑚𝑎𝑥

1

 

Applying Equation 2 to the α-pinene system results in Figure 11. The error metric is bound between 0 

and 1, so the maximum and minimum values of approximately 0.25 and 0.5 are reasonable. The error 

grows over time which is expected because as time advances, GECKO-A is less likely to accurately capture 

later-generation chemistry due to gaps in specific knowledge of later-generation chemical reactions and 

their corresponding rates.  
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3. Discussion and Further Work 
 

 We began by examining the relatively simple butane oxidation system in order to better 

understand how GECKO-A (and more broadly, mechanisms in general) can be used to disambiguate 

chamber data. We explored multiple different potential decomposition reactions, and we found evidence 

to suggest that organic compounds with nitrate, PAN, alcohol, and aldehyde functional groups may all 

undergo decomposition reactions via detection with the PTR-MS. It is unclear exactly where the 

decompositions occur, but we hypothesize that they may occur in the ionization region of the PTR. It is 

also unclear whether these reactions may occur in other CIMS instruments, and the extent to which these 

decompositions may occur is also unknown. However, this work has provided useful evidence showing 

that species may transform upon detection with a CIMS instrument and also that comparing chamber 
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datasets to GECKO-A results can help elucidate the correct structures and identities of a variety of 

different compounds. 

 The uncertainty surrounding potential decompositions complicate efforts to compare chamber 

and GECKO-A datasets, so we began grouping species by Cnum and OSc. It is important to highlight that 

this grouping was only reasonable because we believe that we have the instrumentation to measure all 

major organic gas-phase species formed over the course of a chamber experiment. The only functional 

group that required decomposition correction was the PAN group because the peroxide oxygens in PAN 

have an oxidation state of -1 instead of -2. This binning simplified the comparison methodology while 

maintaining important information; Cnum and OSc may be used as proxies for understanding the tradeoff 

between fragmentation and functionalization. This binning is thus a suitable and utile basis for our 

comparisons. 

 Once the species in each dataset were binned, we ensured that the differences we observed 

between the chamber and GECKO-A data in Figure 8 could not be explained by uncertainties in calibrations 

for CIMS measurements. While the one standard deviation uncertainty for some bins was rather large (i.e. 

the uncertainty in the Cnum = 4 bin in Figure 9 was ±26 ppbC at the end of the experiment), even those 

uncertainties were not large enough to account for the discrepancies in the distributions between the 

chamber and GECKO-A. We can therefore conclude that the observed discrepancies are not arising from 

uncertainties in chamber measurements and more likely arise from differences between observed and 

modeled chemistry and/or partitioning. 

 Lastly, we developed an error metric to quantify the degree to which the chamber and GECKO-A 

datasets disagrees with each other. The true utility of this work lies ahead in Chapter 4 in which we will 

discuss how changes to the chemistry in a GECKO-A might affect overall agreement with the chamber 

experiment. Data from figures like Figure 8 highlights areas of large measurement-mechanism 

disagreement which can in turn suggest that certain chemical reactions are missing from the mechanism 
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or that the mechanism does not accurate predict the rates of those reactions. GECKO-A can then be 

accordingly edited to attempt to better match empirical observations. 

 This work has broad implications across our field. CIMS instrument users now have a generalized, 

straightforward, and efficient way to compare empirically derived results to mechanisms. GECKO-A and 

mechanism users in general also benefit from this work because it describes for the first time a way to 

holistically compare chamber and mechanism datasets on all levels of granularity, ranging from species-

to-species comparisons, distribution comparisons, and ensemble property comparisons. Mechanisms 

must be continuously validated and improved based on empirical data, and this work specifically devises 

a method to quantify the degree to which mechanisms are improved following alterations. This work also 

provides a way to target those edits based on discrepancies in Cnum and OSc distributions which may 

arise from missing chemistry in mechanisms and/or inaccurate SARs parametrization. Improvements in 

mechanisms are ultimately beneficial for improving the accuracy of chemical transport and global climate 

models. 
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IV. Comparing Chamber Data to Chemical Mechanistic Simulations 

Suggests Targeting Pathways for Mechanism Improvements 
 

1. Introduction 
 

 Chapters 2 and 3 tackled questions regarding chamber experiments, mechanisms, and how to 

effectively and efficiently compare the two, but lacking from those chapters was an in-depth discussion 

of the actual chemistry underpinning SOA formation and evolution. This chapter focuses primarily on 

investigations of alterations to GECKO-A’s mechanism generator in order to provide a better match to 

chamber observations. We begin with a more thorough explanation of the inner workings of GECKO-A. A 

simplified diagram of GECKO-A’s mechanism generation procedure is shown in Figure 1 (Bernard Aumont, 

Szopa, and Madronich 2005): 

 

Figure 1: A simplified scheme of the GECKO-A mechanism generator taken from (Bernard Aumont, Szopa, and Madronich 2005). 
VOC+oxidant reactions leading to the formation of peroxy and alkoxy radicals are performed until stable species is produced. 
These stable species compose the 1st generation of products. GECKO-A’s mechanism generator is run either until all species are 
converted to CO2 or the GECKO-A user specifies a terminating generation. 
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 GECKO-A begins generating explicit mechanisms by examining every bond in the precursor VOC 

(Camredon et al. 2007; Bernard Aumont, Szopa, and Madronich 2005). Each bond may be susceptible to 

one or more types of reaction including, but not limited to, hydrogen abstraction by an OH radical, 

ozonolysis, and addition of an OH radical across a double bond. If one or more individual reactions in each 

class of reactions can be found in MCM (discussed in Chapter 3) or another mechanism like SAPRC, GECKO-

A will use the rate constants contained therein (Bernard Aumont, Szopa, and Madronich 2005). If these 

reactions can not be found in an existing mechanism, GECKO-A will predict the reaction rate using 

Structure Activity Relationships (SARs) which will be discussed in more depth below. The precursor is likely 

to undergo more than one reaction, but GECKO-A will only retain reactions which account for at least 2% 

of the total consumption of the precursor. This is done to retain all major reactions while simultaneously 

preventing the GECKO-A mechanism from growing too large and computationally unwieldy. 

 Once all potential reactions have been generated, rates predicted, and reactions filtered, the 

products from said reactions will be added to the stack to subsequently go through the same process 

themselves. This process may repeat until all species are eventually reacted to CO2, but more commonly 

the GECKO-A user defines a certain product generation as the end generation. This is done for practical 

purposes since mechanisms including between three and five generations of stable products are usually 

sufficient to capture the chemistry that is expected to be observed over the length of a normal chamber 

experiment (B. Aumont et al. 2012). 

 GECKO-A incorporates thousands of explicitly defined reactions from mechanisms including 

MCM, but what makes GECKO-A relatively unique is its ability to also generate its own reactions based on 

a set of rules known as Structure Activity Relationships (SARs) (Bernard Aumont, Szopa, and Madronich 

2005; Jenkin, Saunders, and Pilling 1997; Saunders et al. 2003). SARs have been used since the 1970’s as 

a way to predict the rates of reactions which were difficult to study at that time including even simple 
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alkane oxidation reactions (Baldwin et al. 1977). Needless to say, there have been significant advances in 

the use and creation of SARs since the Baldwin paper was published.  

 GECKO-A uses SARs to predict reaction rates by beginning with a well-studied reaction that 

incorporates a reactive site that resembles the reactive site of interest (Peeters, Fantechi, and Vereecken 

2004). The activation energy for that known reaction forms the basis of the SARs-predicted rate constant 

along with the assumption that the reaction follows Arrhenius kinetics. For example, estimating the rate 

for a reaction of any double bond with an OH radical would start with the known activation energy of 

ethene reacting with OH. Modifying factors are then applied (usually additively or multiplicatively) to that 

activation energy based on the substituents and functional groups that may be adjacent to the bond of 

interest (Vereecken and Peeters 2009). The values of these modifying factors are most frequently 

determined using quantum chemical calculations from a training set of molecules that all contain the 

reactive site of interest but with a variety of permutations of different moieties surrounding the reactive 

site. The reaction rates and activation energies for the reactions of each molecule in the training set are 

known quantities, so the results from the quantum chemical prediction can be validated against the 

empirically known rate values. Once the SARs have been validated, they can be used to predict activation 

energies and rates for reactions which have yet to be empirically characterized.  

It is important to note that SARs can not be used to predict rates for reactions for which a training 

set does not exist. While the work in this chapter focuses on understanding the extent to which 

uncertainties and errors in SARs contribute to chamber-GECKO discrepancies, the other major potential 

source of discrepancy is missing chemistry in GECKO-A. The importance of new chemistry is continuously 

being elucidated; for example, isomerization of RO2 species has recently been found to form Highly 

Oxygenated Organic Molecules (HOMs), but the version of GECKO-A used in this thesis only allows RO2 

species to react with NOx (Crounse et al. 2013; Bianchi et al. 2019; Barber and Kroll 2021). Adding this 

class of reactions and others could yield improved chamber-GECKO agreement, but adding new chemistry 
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to GECKO-A is outside the scope of this work. Instead, we will focus on the effects of potential 

amendments to existing GECKO-A chemistry. 

 We now turn our attention to specific classes of reactions which are critically important for 

understanding how VOCs functionalize and fragment. Figure 2 displays an example reaction scheme for 

n-heptane OH oxidation which highlights the important pathways under consideration in this chapter 

(Atkinson, Arey, and Aschmann 2008). After an initial hydrogen abstraction and addition of O2, peroxy 

radicals (ROO•) may follow four different paths of further oxidation. Since the chamber experiments 

presented in this work were conducted under high-NOx conditions, we will only be considering peroxy 

radical  reactions with NO2 and NO. Reactions with NO2 result in an equilibrium between the peroxy radical 

Figure 2: Sample oxidation reaction scheme for n-pentane. Only the first two generations of products are 
shown. Chamber studies in this work were performed under high-NOx conditions which means organonitrates 
(RONO2) and alkoxy radicals (RO•) are expected to be formed. Adapted from (Atkinson, Arey, and Aschmann 
2008). The fate of alkoxy radicals is critical to understanding the interplay of fragmentation and 
functionalization. 



67 
 

and a peroxynitrate species (Seinfeld and Pandis 2006). Peroxy radical reactions with NO can either result 

in the formation of an organonitrate species (RONO2) or an alkoxy radical (RO•).  

 The fate of the alkoxy radical is an important contributor to the dynamic between fragmentation 

and functionalization (Ziemann 2011). Decomposition reactions encompass the means by which an alkoxy 

radical undergoes carbon backbone fragmentation, leading to the formation of a stable aldehyde and an 

alkyl radical. The vapor pressures of these products tend to be higher than that of the parent molecule 

which decreases the likelihood that they will contribute to SOA particulate formation and growth (Lambe 

et al. 2012). In contrast, alkoxy radical reactions with O2 lead to the formation of stable products with 

carbonyls. The addition of the carbonyl lowers the vapor pressure of the product compared to its parent 

which in turn makes it more likely to partition into the particle phase. Isomerization is the third and most 

complex path available to an alkoxy radical (at least four carbons in length). As Figure 2 shows, alkoxy 

radicals may form a transition state in which the oxygen abstracts an internal molecular hydrogen leading 

to the formation of an alcohol and an alkyl radical in the same molecule. Essentially this means that the 

molecule restarts from the top middle of the Figure 2, just with another functional group. Species may 

undergo any number of rounds of isomerization before a stable species is generated, but the more 

functionalized a molecule becomes, the more likely it is to undergo decomposition (Lambe et al. 2012; 

Roger Atkinson, Arey, and Aschmann 2008; Jordan et al. 2008). 

 We will now examine changes to the above chemistry to posit potential explanations for 

differences between chamber measurements and mechanistic simulations. Chapter 3 provided new 

methods to compare chamber and GECKO-A datasets, and in the process we uncovered significant 

differences in the carbon number (Cnum) and average carbon oxidation state (OSc) distributions of the V-

pinene oxidation system which serve as useful proxies for understanding the fragmentation-

functionalization dynamic of the system (Isaacman-VanWertz et al. 2018). We determined that the 

differences between the distributions were not due to CIMS calibration uncertainties. CIMS are also not 
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prone to fragmenting a molecule’s carbon backbone, so although functional groups may decompose the 

Cnum distribution should remain unaffected. A reasonable explanation for the differences between the 

datasets is they are derived from differences between observed and simulated chemistry. Alkoxy radical 

chemistry can serve as a potential driver of the observed differences since the differing fates of the alkoxy 

radical directly impact the fragmentation-functionalization dynamic. Ozonolysis provides yet another 

pathway to fragmentation is double bonds are present (Roger Atkinson 2009). Organonitrate and PAN 

formation may also be important in that they act as sinks or reservoirs of reactive carbon, changing the 

pace at which a system may proceed toward increased oxidation.  

 This chapter uses GECKO-A to explore how changes to different reaction pathways influence the 

degree to which GECKO-A simulations agree with chamber observations. We can then perform a directed 

sensitivity analysis for the SARs for each of the pathways above in order to determine how important each 

pathway is to the overall agreement with chamber in terms of Cnum and OSc. Ultimately, this work could 

help target specific chemical pathways for further scrutiny, thereby improving our understanding of 

complex mechanisms. More complete and accurate mechanisms then allow for more accurate chemical 

transport and climate models. 

 

2. Methods 
 

 The chamber experiments in this chapter are the same as those discussed in Section 3.2. α-Pinene, 

1,2,4-TMB, and isoprene were the precursor VOCs. We used the comparison methodology developed over 

the course of section 3.2 in order to understand differences in the Cnum and OSc distributions. We then 

edited one or more SARs in GECKO-A to direct each of the precursors’ mechanisms to better match their 

corresponding chamber datasets. We generated new mechanisms using edited SARs, ran new simulations 

of each precursor’s chamber experiment in GECKO-A’s 1-D box model program, and then used the 
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comparison methodology from Chapter 3 to assess the degree to which the edits improved agreement 

between the measurements and mechanisms.  

 Edits were performed on the SARs controlling alkoxy decomposition, alkoxy isomerization, 

ozonolysis, nitrate yield, and PAN decomposition. Each SAR has a corresponding subroutine in GECKO-A’s 

mechanism generator (except for the two aforementioned alkoxy reaction SARs which share a 

subroutine). Edits were made by multiplying or dividing the SAR-calculated rate constants for all reactions 

in each subroutine by 2x, 5x, or 10x. These edits were not necessarily meant to be realistic since it is 

unlikely that the SAR-calculated rate for every reaction in each class of reactions would be inaccurate in 

the same direction by upwards of an order of magnitude (Vereecken and Peeters 2010). However, we 

designed these edits as a proof of concept and wanted to push the mechanisms into a regime in which we 

would be able to discern obvious effects from our edits. 

 SARs for each class of reactions were derived from their corresponding sources in Table 1: 

SAR/Subroutine Source SAR-rate uncertainty 

Alkoxy Radical Decomposition Vereecken and Peeters 2009 5-10x 

Alkoxy Radical Isomerization Vereecken and Peeters 2010 3-5x 

Alkoxy Radical + O2 Roger Atkinson 2007 5.4x 

Nitrate Yield Arey et al. 2001 1.4x 

Ozonolysis Roger Atkinson 1997 unknown 

PAN Decomposition 
Tyndall et al. 2001 ; 

R. Atkinson et al. 1999 
unknown 

Table 1: Sources for GECKO-A SARs and subroutines 

Mechanistic simulations were also performed using MCM 3.3.1 in the F0AM box model program in 

MATLAB (Wolfe et al. 2016). These simulations were performed to understand how GECKO-A performs 

compared to MCM in terms of accurately reproducing chamber results. MCM was tuned for precursor 

decay. However, at the time of simulation, MCM and F0AM did not contain modules to account for gas-

particle-wall partitioning so all species remain in the gas-phase over the entire course of the simulation. 
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3. Results 
 

We first compared how GECKO-A and MCM perform for each of the three precursor systems. These 

comparisons were performed to understand the value added by GECKO-A’s SARs to generate reactions 

which are not explicitly know and are thus not contained within MCM. However, GECKO-A contains MCM 

and thus reaps the benefits of having its reaction data built-in. The error metric results (based on Chapter 

3 methods) for all three tuned and unedited systems are shown in Figure 3. The pinene system shows 

similar error for MCM and GECKO-A with the MCM error growing larger by the end of the experiment. 

The isoprene system shows a bit more complex behavior because the GECKO-A error is lower until the 

end of the experiment when the MCM error becomes lower. Lastly, the 1,2,4-TMB system sees 
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consistently lower error for GECKO-A than for MCM. Overall, GECKO-A performs comparably to MCM and 

tends to generally reduce chamber-mechanism disagreement. All remaining chamber-mechanism 

comparisons in this chapter will be performed using GECKO-A since its SARs are editable in a way that 

MCM is not. 

 The results of the error metric calculations described in Chapter 3 for the α-pinene, 1,2,4-TMB, 

and isoprene oxidation systems are shown below in Figure 4. One common feature across all three 

systems includes a general growth in error over the duration of the experiments. This is what we anticipate 

to see because our knowledge of higher-generation chemistry is limited compared to our knowledge and 

parametrization of early-generation reactions. Overall, however, we observe more differences than 

similarities between the three systems, namely that isoprene appears to have the lowest error in 

chamber-GECKO agreement followed by α-pinene, and lastly followed by 1,2,4-TMB. This result is 
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consistent with general trends in the field of atmospheric chemistry over the past few decades because 

isoprene and α-pinene chemistry have been studied extensively while 1,2,4-TMB chemistry has 

comparatively received less attention (e.g. Zhang et al. 2015; Iyer et al. 2021; Archibald et al. 2010; Bates 

et al. 2014; Bates and Jacob 2019).  

 We will focus on reducing disagreement between chamber and GECKO-A datasets for the α-

pinene and 1,2,4-TMB systems since they displayed the greatest degree of disagreement over the 
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durations of their experiments. Error reductions were attempted by editing SARs in the GECKO-A 

mechanism generator, but a closer examination of the pinene and TMB systems were necessary to 

determine which SARs should be edited. Figure 5 displays histograms of the chamber and GECKO-A Cnum 

and OSc distributions which are useful to highlight the discrepancies we want to address. 

 We first consider the discrepancies observed in the pinene comparison from Panel A of Figure 5 

which shows that GECKO-A severely underpredicts fragmentation compared to what is observed in the 

chamber dataset; the Cnum distribution for GECKO-A is skewed right compared to the chamber Cnum 

distribution. The OSc distributions show a similar yet opposite difference in that GECKO-A predicts less 

oxidation than occurs in the chamber. Although these histograms are only shown for one point in time 

near the end of the experiment, Figure 5 shows that the Cnum distribution discrepancies persist and grow 

over the course of the experiment, consistent with the growth in the Cnum-OSc binned error growth 

shown in Figure 3. 

 Based on the differences in the Cnum and OSc distributions, we edited GECKO-A’s base case 

mechanism (i.e. the normal, unedited mechanism) SARs to attempt to yield more fragmentation and more 

oxidation. Increasing the rate of alkoxy radical decomposition provides a way to increase both 

fragmentation and functionalization as described in Figure 2. Alkoxy radical isomerization is also 

important for increasing functionalization, so all alkoxy isomerizations were increased 5x. Increasing 

ozonolysis rates serves a similar function because ozonolysis breaks a carbon-carbon double bond while 

oxygenating one of those carbons. Photolysis of carbonyls is another path that could lead to 

fragmentation, so photolysis rates were increased 2x. PAN decomposition and organonitrate yield SARs 

were also edited to decrease the amount of reactive carbon effectively trapped in those stable species. 

Other SARs edits including  reducing alkoxy radical decomposition rates by 1/2x and increasing alkoxy 

radical + O2 rates by 10x were also considered to test their effects on overall agreement. The error metrics, 
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Cnum distributions, and OSc distributions for each of these edits are shown in Figures 6, 7, and 8 

respectively. 

 

 

 

Figure 6: a-Pinene Error Metric Results from SARs Edits. The chamber-GECKO comparison  errors resulting from each denoted 
SARs edit to the GECKO-A Base model. Only the SARs edits reducing nitrate yields by 1/2x showed a small reduction in error at the 
beginning of the experiment. All other SARs edits resulted in an increase in the error metric compared to the Base GECKO-A 
mechanism. The gaps in the data preceding the 3 hr mark correspond to the period with missing chamber pinonaldehyde 
measurements. 
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Figure 7: a-Pinene Cnum Distributions from SARs Edits. Panel A shows the chamber and GECKO-A Base model Cnum distributions. 
Panel B shows the Cnum distributions resulting from  each denoted SARs edit to the GECKO-A Base model. 
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Figure 8: a-Pinene OSc Distributions from SARs Edits. Panel A shows the chamber and GECKO-A Base model OSc distributions. 
Panel B shows the OSc distributions resulting from  each denoted SARs edit to the GECKO-A Base model. 

   

Figure 6 shows that no SARs edit yielded any significant improvements in chamber-GECKO 

agreement. Dividing nitrate yields in half yielded minor improvements in agreement for the first half of 

the experiment, but the second half of the experiment showed subsequent decreases in agreement 

relative to the unedited GECKO-A mechanism. All other SARs edits yielded increases in chamber-

mechanism error. Figure 7 displays the Cnum distributions resulting from each SARs edit. Some edits 

yielded increased fragmentation which helped increase agreement with the chamber Cnum distribution 



77 
 

including increasing ozonolysis rates 5x which increased concentrations of C3, C7, and C8 compounds in 

GECKO-A. However, the OSc distribution resulting from increasing ozonolysis rates 5x in Figure 8 show 

little change compared to the base case, and the error metric for ozonolysis shows an overall slight 

worsening in agreement upon increasing ozonolysis rates. Surprisingly, Figure 7 also shows that both 

increasing and decreasing alkoxy radical decomposition rates decreased the observed degree of 

fragmentation. Figure 8 displays the OSc distributions from each GECKO-A mechanism with its associated 

SAR edit. None of the SARs edits show meaningful improvement in agreement with the chamber 

distribution, and some including the alkoxy decomposition rate increase and decrease edits show 

significant worsening in agreement. All of these results, but particularly the error metric results in Figure 

6, imply that, at least for the SARs we considered, uncertainties or errors GECKO-A’s SARs are not 

responsible for the discrepancies observed in comparison to chamber data. 

 We will now consider SARs edits for improving chamber-GECKO-A agreement for the 1,2,4-TMB 

system. Panel B in Figure 4 shows that GECKO-A predicts more fragmentation and more oxidation than is 

observed in the chamber. All three alkoxy radical SARs from Table 1 were edited to analyze which would 

yield reductions in the error metric for the TMB system upon editing. Alkoxy isomerization and reaction 

with O2 were increased 10x, and decomposition rates were decreased 1/10x. Figures 9, 10, and 11 display 

the error metrics, Cnum distributions, and OSc distributions for each SAR edit as well as the combined 

isomerization and O2 reaction SARs edit. 
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Figure 9: 1,2,4-TMB Error Metric Results from SARs Edits. The chamber-GECKO comparison  errors resulting from each denoted 
SARs edit to the GECKO-A Base model. Decreasing alkoxy decomposition drastically increased error at all times. Increasing alkoxy 
+ O2 and alkoxy isomerization rates yielded near-identical improvements. The combination of these two SARs edits does not 
appreciably change compared to either individual SAR edit. 
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Figure 10: 1,2,4-TMB Cnum Distributions from SARs Edits. Panel A shows the chamber and GECKO-A Base model Cnum 
distributions. Panel B shows the Cnum distributions resulting from  each denoted SARs edit to the GECKO-A Base model. Very little 
change is observed compared to the base case except for the SAR edit to decrease alkoxy decomposition 10x. 
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Figure 11: 1,2,4-TMB OSc Distributions from SARs Edits. Panel A shows the chamber and GECKO-A Base model OSc distributions. 
Panel B shows the OSc distributions resulting from  each denoted SARs edit to the GECKO-A Base model. Very little change is 
observed compared to the base case except for the SAR edit to decrease alkoxy decomposition 10x. 
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Figure 12: Error Metric Plots for a-Pinene and Isoprene Increasing Alkoxy + O2 and Isomerization 10x. The chamber-GECKO 
comparison errors for the pinene and isoprene oxidation systems  resulting from each denoted SARs edit to the GECKO-A base 
model. 

 

Figure 9 shows that the O2 and isomerization rates edits provided near-identical marginal 

improvements in the error for the TMB system for the first half of the experiment, but the errors 

eventually grew to exceed the error of the unedited TMB system. Because both of these edits provided 

some improvement in overall agreement, we combined the edits to observe how they would affect 

agreement together. There was no significant difference observed from the combined edits and the 

individual edits. In terms of alkoxy decomposition, rates by 1/10x substantially increased the error across 

the entire duration of the experiment, but surprisingly this appears to be because, as shown in Figure 10, 

this SAR edit led to significantly more fragmentation. This contradicts our preconceived notion that 

decreasing alkoxy decomposition rates would lead to less fragmentation. Figure 11 suggests none of the 

edits had a substantial effect on the OSc distribution. 

Because a small improvement in overall agreement in the 1,2,4-TMB system was observed upon 

increasing alkoxy isomerization and O2 reaction rates, these SARs edits were applied to the α-pinene and 

isoprene systems to see if the edits could provide benefits to each of the precursor systems we have 

examined. The error metric results of these edits are presented in Figure 12. The isoprene system sees a 

small reduction in its initial error compared to its base GECKO-A mechanism, but the edited system’s error 
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quickly grows larger than the base mechanism’s error. The pinene system error is noticeably higher with 

the 1,2,4-TMB system edits than without them. Therefore, no systematic benefits were realized by 

implementing the beneficial 1,2,4-TMB system edits to the pinene and isoprene systems. 

 

4. Conclusions and Implications 
 

 In this chapter, we explored potential changes to GECKO-A SARs in order to increase agreement 

between GECKO-A simulations and chamber experiments. SARs edits were considered for alkoxy radical 

decomposition, isomerization, and reaction with O2. SARs edits were also considered for ozonolysis 

reactions, PAN decomposition reactions, and nitrate yield calculations. These edits were based on our 

general understanding of different reaction pathways available to atmospheric species in an oxidizing 

environment and how each of those pathways contributes to the dynamic of fragmentation and 

functionalization in each system. 

 SARs edits were first performed to the α-pinene system in an attempt to reduce the chamber-

mechanism discrepancy. The pinene system exhibited a higher degree of fragmentation and oxidation in 

the chamber than was predicted in GECKO-A. Some SARs-edited systems showed an improvement in 

Cnum distributions like the “nitrate yield 1/2x” and “photolysis 2x” systems, but no SARs-edited systems 

yielded significant differences in the OSc distribution. Overall, no SARs edits yielded reduced error 

compared to the base GECKO-A mechanisms which implies that uncertainties and potential errors in the 

SARs we examined are not responsible for the chamber-mechanisms discrepancies observed for the α-

pinene system. 

Edits were also made for the 1,2,4-TMB system based on observations that GECKO-A predicts 

slightly more fragmentation and oxidation than was observed in the chamber. The SARs for alkoxy radical 

isomerization and reaction with O2 were each increased by 10x which led to initial reductions in the error 

metric compared to the unedited system, and a reduction of alkoxy decomposition rates by 1/10x 
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surprisingly led to a large increase in error for the duration of the experiment. We had discussed reducing 

alkoxy decomposition rates to decrease fragmentation in GECKO-A, but this reduction actually led to 

increased fragmentation. Future work may focus on examining the changes branching ratios and specific 

reaction rates which led to this surprising result. Because increasing alkoxy isomerization and reaction 

with O2 led to a partial reduction in the error of the 1,2,4-TMB system, the same edits were applied to the 

isoprene and pinene systems. Both systems observed a general increase in error over the duration of their 

experiments compared to their base mechanisms. Thus, no pan-system benefits were observed for any 

SARs we examined. 

 It is possible, albeit computationally intense, to analyze all of the rules that comprise each SAR. 

This chapter took a sweeping approach to SARs edits by changing the rates of every SARs-predicted 

reaction in each class of reactions. However, SARs-calculated rates are dependent on the substituents 

surrounding each reactive site because each substituent contributes their own modifying factor(s). We 

suggest that future work in this area could be conducted with a Monte-Carlo analysis of all potential SARs 

of interest in order to map the error metric landscape from a variety of SARs edits combinations of varying 

orders of magnitude. Similarly, sensitivity analyses could be conducted on the explicitly input reactions 

from MCM using the uncertainties in their reported rate constants. The SARs edits we performed in this 

chapter did not change anything regarding the explicitly input reactions. 

 This work probed the degree to which uncertainties and errors in SARs may be responsible for the 

discrepancies we observe when comparing GECKO-A results to chamber data. We did not observe that 

editing any SARs provided benefits across all VOC oxidation systems, and even when errors were reduced 

from SARs edits for a given oxidation system, the magnitude of those error reductions was minor 

compared to the overarching discrepancies. These results increase the likelihood that measurement-

mechanism discrepancies are driven by missing chemistry in GECKO-A. In section 4.1 we discussed that 

GECKO-A is not yet completely parametrized for the recently elucidated RO2 isomerization reaction which 
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could account for some of the observed discrepancies (Crounse et al. 2013; Bianchi et al. 2019). We also 

can not preclude the possibility that other important classes of reactions will be elucidated in the future 

which could account for more discrepancies. Lastly, we can not aver with complete confidence that we 

edited all relevant SARs in GECKO-A, so other SARs may be important to reduce pan-system chamber-

GECKO discrepancies. 

 One overarching insight we can provide from this work is that GECKO-chamber agreement 

invariably tends to become worse the longer the system is oxidizing. Much of the work other researchers 

in our field have conducted has focused on early stage oxidation, in part because most experiments are 

conducted using the precursor as the initial VOC in the chamber as a practical matter. However, this has 

unintentionally contributed to a relative dearth in knowledge of reactions that occur after several rounds 

of oxidation have already happened. Constraints on these reactions which gain importance toward the 

ends of experiments are needed to reduce measurement-mechanism error and improve our 

understanding of each VOC oxidation system. One potential way to target these reactions in the future 

would be to synthesize late-generation products and use them as the initial VOC precursor for the 

chamber study. Future work may also be conducted by synthesizing chlorinated, iodated, or nitrite 

precursors to later-generation products which, upon exposure to UV light, will photolyze to form a 

reactive intermediate which would normally be found in late stage oxidation (Carrasquillo et al. 2014). 

Chamber studies using these reactive intermediate precursors can then be conducted to measure 

oxidation products with fewer confounding issues than would occur at the end of a chamber experiment 

including potential wall losses and significant chamber dilution. Similarly, the Oxy-Cat (Chapter 2) can help 

constrain the ends of experiments by providing a measurement of TSC which can be used to tune GECKO-

A to TSC instead of just SOA yield. Tuning GECKO-A to TSC should yield a more accurate representation of 

each chamber experiment than we are currently able to attain. 
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V. Conclusions, Implications, and Future Directions 
 

1. Summary of Results 
 

 Improving our knowledge of the gas-phase oxidation chemistry of VOCs is crucial to refining our 

understanding of how SOA forms and evolves in the troposphere. Chamber experiments and mechanistic 

simulations are commonly used to provide the aforementioned improvements we desire, but both 

measurements and mechanisms have inherent limitations. Chamber species are susceptible to deposition 

on chamber surfaces, tubing, and instrument inlets, which may result in artificially lowered observed 

concentrations. This complicates our understanding of  the chemistry occurring in the chamber; reaction 

rates for pathways which lead to the production and consumption of species susceptible to deposition 

may be underestimated and overestimated, respectively. At the same time, species that make it to 

detection in a CIMS may decompose, leading to the detection of ions which are not easily attributable to 

an identifiable compound. Mechanisms, on the other hand, are not completely exhaustive depictions of 

chemistry which occurs in reality. They are largely parametrized with results from empirical studies and 

are thus susceptible to any uncertainties and errors which may arise during said studies. However, 

mechanisms must be validated against empirical evidence if any mechanistic results can be considered 

reasonable representations of our knowledge of oxidation chemistry. The work in this thesis addressed 

uncertainties in chamber experiments and mechanistic simulations, and in the process,  we gained new 

insights into the mutual benefits that measurement-mechanism comparisons can provide. 

 Chapter 2 focused on the development and characterization of an apparatus known as the Oxy-

Cat to measure Total Suspended Carbon (TSC) for use in a chamber experiment. The Oxy-Cat consists of a 

heated inlet line, a tube furnace containing platinum and palladium catalysts, and a differential CO2 

measurement device (LI-7000). We calibrated the Oxy-Cat with seven different precursors to test its ability 

to convert them fully to CO2 across a range of concentrations. The VOCs also spanned a range of 
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volatilities, sizes, and degrees of oxidation. All of the precursors except for perfluorooctane were observed 

to fully oxidize to CO2. We discussed that perfluorooctane can be used as the solvent for dilute solutions 

for future syringe pump calibration studies for nonpolar and non-water-soluble VOC’s. 

 Chapter 3 tackled the question of how to compare large chamber and mechanisms datasets. We 

utilized GECKO-A to generate the butane and α-pinene mechanisms for these comparisons. A chamber 

study for butane oxidation was conducted with a PTR-MS, and a chamber study of α-pinene oxidation was 

conducted with a suite of CIMS and gas monitors designed to achieve carbon closure (except for CO2 which 

was not measured). We chose to begin our comparison methodology development by examining the 

relatively simple and well-characterized butane oxidation system. Prima facie isomer-to-isomer 

comparisons showed that several major species were found in one, but not both, chamber and GECKO-A 

datasets. A closer inspection of some chamber-only isomer sets suggested that nitrate, PAN, alcohol, and 

aldehyde functional groups may decompose in the process of being detected, and close time series 

correlations with non-decomposed GECKO-A species provided evidence for this assertion. 

 We grouped species by Cnum and OSc in both datasets to circumvent the decomposition issue 

and to highlight differences and similarities between measurements and mechanisms in terms of the 

fragmentation and functionalization dynamic. This dynamic is key to understanding SOA evolution and 

particle formation potential. We then developed an error metric by, first, normalizing the binned Cnum-

OSc distributions at every time point in the experiment to account for differences in TSC between the 

chamber and GECKO-A. This error is bounded between zero and one and can be used to compare 

agreement across multiple VOC systems. 

 Chapter 4  began by discussing  error metric results for unedited GECKO-A mechanisms which 

suggested that the isoprene oxidation system has the highest degree of chamber-GECKO agreement 

followed by α-pinene and then 1,2,4-TMB. This makes logical sense because isoprene and pinene 

chemistry have been extensively studied for decades while 1,2,4-TMB has received comparatively less 
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investigative attention. Isoprene is also a smaller and less complex molecule than the bicyclic α-pinene, 

so it makes sense for isoprene to display a lower average error as well.  We then demonstrated how to 

use the comparison methodology and error metric developed in Chapter 3 to test edits to GECKO-A’s 

mechanism generator to decrease disagreement with the corresponding chamber dataset. We targeted 

ozonolysis, alkoxy radical decomposition, alkoxy radical isomerization, alkoxy radical + O2, nitrate yield, 

photolysis, and PAN decomposition SARs for amendment because these reaction pathways are important 

for influencing the fragmentation-functionalization dynamic.  

 Edits were performed on the α-pinene and 1,2,4-TMB systems because of the relatively high 

disagreement compared to the relatively low disagreement observed for isoprene. Although some SARs 

edits marginally improved chamber-GECKO agreement (i.e. increasing alkoxy radical isomerization rates 

by 10x for the 1,2,4-TMB oxidation system), the vast majority led to increased disagreement. Additionally, 

no SAR edits were found to provide benefits in all three oxidation systems we examined. These results 

indicate that improving agreement between observed and modeled chemistry will not be as simple as 

implementing  sweeping SARs changes. Instead, these results indicate that a more targeted approach for 

each precursor system is required to amend relevant SARs or SARs subsets without decreasing agreement 

among other systems. Additionally, these results indicate that specific reactions and/or classes reactions 

which are missing or incomplete in GECKO-A may be responsible for the observed chamber-GECKO 

discrepancies. For example, RO2 isomerization chemistry was recently found to be a major contributor to 

HOMs formation, but RO2 isomerization SARs were not incorporated in the GECKO-A mechanisms 

presented  in this thesis (Bianchi et al., 2019; Crounse et al., 2013). These missing reaction pathways could 

be critical for improving chamber-GECKO agreement, thereby improving our overall understanding of 

atmospheric organic chemistry. 
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2. Future Directions and Implications 
 

 Future work on the OxyCat will initially involve more syringe pump calibration studies with 

perfluorooctane as the solvent for non-polar and non-water-soluble VOCs. The more difficult work will be 

to adapt and optimize the Oxy-Cat for use in chamber studies. It is unclear the extent to which vapors and 

particles may deposit on tubing and other surfaces on their way to the Oxy-Cat’s tube furnace, so this will 

be an important issue to address. Its anticipated use to constrain bottom-up measurements has yet to be 

proven, so future work must be performed to demonstrate this potential. Once it is ready to be used in 

chamber experiments, the Oxy-Cat may provide yet another utility in the form of constraining GECKO-A 

models for TSC. Currently GECKO-A is tuned to match experimentally observed precursor decay, ozone, 

NOx, and particulate SOA time series which serves to constrains the mechanism output. However, 

concentrations of TSC in the chamber and GECKO-A datasets are often different because of differing vapor 

deposition losses. Constraining those losses should serve to increase GECKO-A’s fidelity to observed 

reality. 

 The first results in Chapter 3 demonstrated how GECKO-A can be used to reduce ambiguity in 

chamber data by suggesting structures and identities for ions detected in CIMS. Future work can focus on 

determining if other functional groups may decompose and the extent to which we may expect them to 

decompose. Future work should also be performed to understand differences in observed decomposition 

in each CIMS since the decomposition analysis in Chapter 3 focused primarily on decomposition upon 

detection with a PTR-MS. Chamber dataset also often contain species/ions whose time series suggest that 

they are real oxidation products but whose m/z’s do not allow for a reasonable formula or chemical 

structure. Future work may elucidate from whence these ions arise and whether they represent organic 

species which may be unmeasured or undermeasured if they are fragments of an identified species. This 

work may be performed empirically and via quantum chemical simulations of ion fragmentation to create 

a CIMS fragmentation SAR, so to speak. This may allow researchers to predict how unidentified species 
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may fragment upon detection in any given CIMS. All of this future work will help decrease uncertainty in 

chamber measurements. 

 Chapter 4 provided an example by which we edited GECKO-A SARs to attempt to yield improved 

agreement with chamber data. The examples presented in that chapter are not meant to suggest that 

GECKO-A’s SARs can not be improved, but rather to illustrate the process by which we can understand the 

effects of editing SARs on overall chamber-GECKO agreement. We performed our edits manually in a 

sweeping fashion, multiplying every SARs-predicted reaction by the same factor. It is unlikely that every 

SARs-predicted rate is inaccurate by the same amount, and the ideal magnitude of the SARs edits are also  

uncertain. We propose that future work be conducted in a Monte Carlo style to map out the error metric 

agreement landscape arising from editing multiple SARs at once. Subsets of each SARs may also be edited 

independently of one another which is not something we performed in this thesis. Running this type of 

Monte-Carlo analysis with GECKO-A will be laborious and time consuming because a new mechanism must 

be generated each time a new SARs edit is made. However, we believe that this proposed work is 

important to fully characterize which SARs edits or combination of SARs edits yield the best improvement 

in agreement between GECKO-A and chamber datasets. These edits may then, in turn, direct future 

empirical studies to more accurately measure rates for reactions which the improved GECKO-chamber 

agreements suggest are particularly important. 

 We also used the error metric to analyze how well GECKO-A and MCM are each able to 

encapsulate chamber observations. In each case (except for the end of the isoprene experiments) GECKO-

A performed equally well or slightly better than MCM. However, GECKO-A performed significantly better 

than MCM for the 1,2,4-TMB oxidation system. It is worth noting again that the α-pinene and isoprene 

systems have been extensively scrutinized by our field over the past several years while the 1,2,4-TMB 

system has been relatively understudied. The MCM-GECKO comparisons suggest that increased a priori 

knowledge of the chemical system of interest decreases the significance or prevalence of the GECKO-
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predicted reactions and rates in the final GECKO-A mechanisms. The comparisons also suggest that for 

systems for which empirical studies are lacking, GECKO-A provides significant benefits to the final 

mechanism in terms of agreement with chamber observations. Therefore, other systems which have not 

been studied as thoroughly as isoprene or pinene, for example, may benefit from using GECKO-A 

simulations to direct empirical studies to measure key reactions and their corresponding rates. 

 The studies presented in this thesis point to future technical advances which would be beneficial 

for advancing the field of atmospheric chemistry as a whole. Developing new methods to predict how 

chemical species behave in different CIMS’s ionization regions will allow for more accurate TotalC 

accounting by determining whether each ion (including those for which a reasonable corresponding 

structure does not exist) is derived from a whole stable species or is formed from the fragmentation of 

another species. Similarly, developing methods to elucidate the structure for each species detected via 

CIMS would allow for much closer mechanism-measurement comparisons. The methods discussed in this 

thesis relied upon binning species by Cnum and OSc, in part, because structural characteristics for most 

species were unable to be empirically determined. Knowing the structure of each species in the chamber 

will also allow for the creation of more accurate mechanisms and more accurate SARs. Empirically derived 

mechanisms will benefit because more detailed structural information allows one to more closely and 

confidently relate specific species as parent and child in each reaction pathway. SARs will be improved 

because they rely on, in part, accurate empirical rate constant data for a wide variety of species with 

different chemical constituents, and the locations of those constituents is highly relevant for an SAR. 

Additionally, SARs are currently less accurate for highly functionalized species, so empirical structural 

information would be helpful for increasing the accuracy of rate-constant predictions for these species. 

All of these aspirational advances in instrumentation will broadly benefit the field and help increase clarity 

on whether measurement-mechanism discrepancies are arising because of uncertainties in 

measurements. 
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 The implications of this work extend past decreasing uncertainties in chamber measurements and 

improving GECKO-A’s mechanism generation capabilities. By improving our understanding of 

atmospherically relevant chemistry, we can better understand how VOC’s contribute to the production of 

pollutants including tropospheric ozone, CO2, and SOA particulate matter (Heald & Kroll, 2020). Ozone 

and particulate matter at ground level negatively impact respiratory health, and all three pollutants 

influence Earth’s climate either as greenhouse gases in the cases of CO2 and ozone or by scattering light 

and influencing cloud formation in the case of SOA particulate matter. VOC’s are also the dominant 

contributor to the overall OH reactivity of the atmosphere and therefore play an important role in 

controlling ambient concentration of the OH radical. OH concentrations strongly influence the oxidizing 

capacity of the atmosphere which, in turn, influence SOA formation and evolution.  This feedback is just 

one example of how the atmosphere is a highly connected and complex chemical system, but the work in 

this thesis will hopefully increase our understanding of its behavior so we can better predict its behavior 

and its  influences on Earth’s climate and human health. 
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