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Abstract

The rapidly growing field of silicon photonics is an attractive research and manufac-
turing platform, due to its ability to enable novel functionalities. Silicon photonics
leverages existing CMOS processes and fabrication infrastructure, making its com-
ponents suffer from the process variations present in CMOS technology. Long and
repetitive simulations are required to understand the effect of these variations, largely
due to the lack of variation-aware models.

This thesis explores methodologies for the development and application of process
variation-aware compact models for silicon photonics components to enable photon-
ics design for manufacturability. We consider the effect of a number of common
unavoidable process variations, including both systematic and random variations, on
the behavior of key optical building blocks. We examine the effect of line edge rough-
ness as a random process variation on different components including Y-branches and
coupled resonator optical waveguides. For the Y-branch, we use ensemble simulations
to develop behavioral statistical models that can predict the behavior in the presence
of different line edge roughness parameters. In the case of coupled resonator optical
waveguides, to predict the behavior in the presence of different line edge roughness
parameters, we develop an S-parameter based model that can be used directly in
circuit simulation. Also, we present methods to develop S-parameter based compact
models against systematic variations (geometric variations) in rings for both silicon
and silicon nitride waveguides. The models are capable of predicting the behavior
much faster than by full wave simulations, and give insight on resulting performance
variation to enable yield prediction and optimization. We use the developed compact
model to simulate photonic integrated circuits and compare the time required with
the case of traditional simulations loops. We also present methods for extraction
of spatial variations using variation test chip design and measurement. The spatial
variations are decomposed into die-to-die and within-die variations.

We examine modulation (electrical and thermal) as a conventional approach to
account for the effect of process variations. For electrical modulation, we study typical
operating condition variations it can experience and find that their effect is not as
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severe as typical process variations. Moreover, the power budget required to correct
for process variations is calculated.

Together, these methods are key components toward design for manufacturability
approaches and serve as a basis for extended PDKs for silicon photonics. Such models
and methods help increase the speed of the simulation process required in photonics
integrated circuit design, and inform designers of potential design modifications to
correct for process variations for high yield and performance.

Thesis Supervisor: Duane S. Boning
Title: Clarence J. LeBel Professor
Electrical Engineering and Computer Science
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Chapter 1

Introduction

In our first chapter, we emphasis on the motivation and purpose of the work in this

thesis. Section 1.1 introduces the novel applications and functions enabled by using

silicon photonics. In Section 1.2, we present the challenges that the silicon photonics

design platform may experience during fabrication. Section 1.3 highlights the process

variations that we will examine in the thesis. In Section 1.4, we present the thesis

objective and the approach that we use to address the challenges in silicon photonics.

Finally, Section 1.5 shows the thesis flow and the main output from the coming

chapters.

1.1 Motivation

Silicon photonics, where non-interacting photons (light) rather than electrons are

used to transmit data, is the subject of a substantial active research effort in both

academic and industrial settings. Many are looking forward to using silicon photonics

to help overcome the bottleneck of Moore’s law. In addition to providing a means to

enable novel applications, silicon photonics also has exciting potential to revolutionize

existing technologies [4, 5].

Among the applications and enhancements offered by silicon photonics are higher

data rates, faster connections, and higher bandwidth communications, which can be

achieved by using optical links and photonic integrated circuit (PIC) based transceivers
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Figure 1-1: 64 × 64 nanophotonic phased array [1].

to replace conventional circuitry for both data center and on-chip communications [6].

Other interesting applications being developed that use silicon photonics technology

are biomedical sensing and Lab-On-A-Chip devices, where the whole system, includ-

ing the optical sensors and the CMOS processing unit, can be integrated in the same

chip, providing a compact and fast sensing system with real time measurements [7, 8].

Another novel optically based application is wave front engineering, such as in the

Nanophotonic Phased Array (NPA) shown in Fig. 1-1 as presented in [1], where a

compact set of 64×64 NPA elements are integrated on a silicon chip, enabling beam

steering and focusing. In addition is the promising use of silicon photonics in LI-

DAR [9, 10].

These novel applications demonstrate the interest in silicon photonics as a new

design platform and draw attention to this enabling technology; but as a new tech-

nology, silicon photonics has a number of obstacles that need to be cleared first, in

order to be widely adopted.
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1.2 Challenges

In silicon photonics, both electrical and photonic components are integrated on the

same chip. An important aspect and one of the most compelling features of silicon

photonics, is its relatively seamless integration with existing Complementary Metal

Oxide Semiconductor (CMOS) fabrication infrastructure such that it leverages exist-

ing CMOS fabrication processes and infrastructure, making it a cost-effective technol-

ogy. That means, however, that the process variations present in CMOS technology

will be inherently transferred to silicon photonic components.

In CMOS technology, the effect of process variations has been deeply studied and

modeled. Moreover, process design kits (PDKs) that include compact models and

variation-aware models, describing and predicting the effects of process variations, are

readily available for designers to use. This facilitates the design process for CMOS

circuits [11], reducing design time, and increasing the yield, as the expected range and

margins in performance can be predicted and evaluated in simulation by the designer.

By contrast, when it comes to silicon photonics, we lack variation-aware compact

models. Accordingly, the effect of these inherently transferred manufacturing varia-

tions on the performance of photonic components are still under examination, with

limited number of studies and analyses reported [12, 13, 14, 15, 16, 17, 18, 19] trying

to understood their effect. As a result, the design of a silicon photonics based system

becomes a time consuming and slow process, particularly if variation and yield are to

be taken into account. The designer has to go through the design steps starting from

the component level and in each step, they have to check the device physics and per-

formance, which even in the nominal case can require several iterations. Accounting

for variations multiplies the design challenge, or may not even be possible if models

of likely variations are not available.

So, a key challenge for the emerging silicon photonics industry is the lack of mature

process, device, and circuit variation-aware models for the existing IC and photonic

process steps. This lack is a road block that must be overcome for this technology to

make it into mainstream manufacturing.
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In particular, process-variation-aware compact models for silicon photonics is an

increasingly important need in order to enhance yield and expedite the design process.

Understanding and modeling the various process variations (both systematic and ran-

dom) at the wafer, chip, and feature scales, and predicting their performance impact

on both the device and circuit levels, is a key element of a robust DFM methodology

for silicon photonics that would help designers compensate for process variations and

help move silicon photonics from the research into high yield manufacturing.

1.3 Process Variations

Process variations result in the deviation of the intended device parameters due to

limitations and imperfections during the fabrication process. In CMOS process tech-

nology, a large range of variations can occur during the fabrication process. These

variations affect both device and circuit levels; the variations can occur at the wafer,

chip, or feature scales, and can be systematic, random, or a combination of both.

1.3.1 Systematic Variations

Systematic variations are geometric or material properties that vary based on spatial

device location within the die or wafer. These variations can be a change in silicon or

other layer and structure width, thickness or partial etch thickness as seen in Fig. 1-2,

where ∆𝑊𝑆𝐸 is the variation in silicon width, ∆𝑊𝑅𝐸 is the width variation in rib

waveguide width, and ∆𝑇𝑅𝐸 is the variation in silicon thickness for the rib waveg-

uide partial etch. Such variations cause deviation from the intended device design

parameters, resulting in skewed or undesirable performance. Systematic variations

have a repeatable component that can in some cases be modeled as a function of chip

or layout design parameters (e.g., layout pattern density) or spatial location (e.g.,

wafers with a known center to edge ring non-uniformity).
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Figure 1-2: Potential systematic geometric variations that photonic components can
experience.

1.3.2 Random Variations

A random process variation means that there is not a fixed offset or deviation in

some parameter that is known based on location within wafer; rather, the parameter

varies randomly from wafer-to-wafer, die-to-die, device-to-device, or even within a

given component. Accordingly, these random variations are usually described with

their statistics or a function that varies stochastically depending on location.

Line edge roughness (LER) [20] is an example of a random variation that occurs

during patterning due to fluctuations in either tools, materials, processes or a combi-

nation of them. LER can be modelled by generating noise using a Fourier synthesis

technique [20, 21], where LER deviations are commonly described by spectrum of the

Gaussian auto-correlation function defined by the LER amplitude (𝐴) and spatial

correlation length (𝐿𝑐). Figure 1-3 shows a waveguide experiencing LER on its side

walls.
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Figure 1-3: Line edge roughness applied to the side walls of a waveguide.

1.4 Objective

These inherently transferred process variations are unavoidable and affect the light-

guiding capabilities of the optical components, which degrades the overall circuit

performance, and decreases the yield. Process variation-aware compact models as

part of variation-aware design methodology are needed to enable modeling, analyzing,

and optimizing photonic devices and circuits. Such methods will help designers to

predict performance and enable the design of both high yielding and high performing

photonic integrated circuits (PICs).

Figure 1-4: General flow of DFM for silicon photonics.

To deal with these variations, we propose developing compact models that de-

scribe an input-output relationship between process variations and the resulting per-

formance. The flow of a design enabled by design for manufacturability (DFM) meth-
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ods is envisioned in Fig. 1-4. Process variations, which are foundry based variations,

along with component design parameters, are fed to the compact models which have

information about sensitivity and statistics to design parameter variations. These

compact models are capable of evaluating and predicting the device behavior, perfor-

mance, and yield. Based on these results the designer can perform design explorations

and consider modifications to optimize the behavior. A further goal is to do this faster

than with traditional simulations in the absence of the compact model.

These compact models can be created by adopting the statistical modeling tech-

niques used for CMOS design, which have proved to be very successful in the CMOS

electronic integrated circuit industry, and apply these concepts to the modeling of

silicon photonic components to develop compact models. In this work, we seek to

develop and follow a methodology that will enable photonic DFM, as highlighted in

Figure 1-5. For passive devices, we use FDTD [22] and MODE [23] simulations as the

basis for compact models. For active photonic components, we also use CHARGE [24]

to generate ranges of behavior for compact models.

1.5 Thesis Flow

In Chapter 2, we explore the effect of LER on Y-branch behavior, and seek to under-

stand and provide a predictive model for the behavior across wavelength as a function

of LER parameters. This serves as an example and demonstration of compact models

for a key random process variation. Chapter 3 explores a larger component, cou-

pled resonator optical waveguides (CROWs), where we model the effect of systematic

spatial variations in thickness and width as well as the LER, and demonstrate the

use of such models to predict yield and resonance frequency. Chapter 4 proposes

methods for extraction of compact models developed for large silicon nitride based

rings, enabling performance prediction and optimization. In Chapter 5, we design

test structures and present analysis methods to extract wafer variations from mea-

surements, and to provide design rule guidelines. Then in Chapter 6, we examine the

modulator as an active optical device, and model the effect of process variations on
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Figure 1-5: Simulation-based methodology for analysis and modeling of process vari-
ations in silicon photonics.

the active section, specifically, the effect of mask exposure and doping variations on

modulator behavior. In Chapter 7, we combine models developed in earlier chapters

together to demonstrate simulation of variation impact on a PIC system. Finally,

conclusions and suggestions for future work are presented in Chapter 8
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Chapter 2

Y-branch Statistical Modeling

Process variation is the deviation of device geometry from its intended design due

to non-idealities in the fabrication process. One common source of process variation

is line edge roughness (LER) [20], which occurs due to random fluctuations in the

lithography tools, materials, and processes, as well as variations in the plasma etching

process. Since LER affects the fabricated component geometry by introducing random

perturbations to its sidewalls, as illustrated in Fig. 2-1, it can have a significant impact

on the light-guiding abilities of waveguides, and can be the dominant contribution to

propagation loss [25, 26].

These spatial perturbations can be viewed as random noise and are characterized

by two parameters: the root mean square amplitude (𝐴) and the correlation length

(𝐿𝑐). 𝐴 is the standard deviation of the displacements from and normal to the

smooth (no roughness) surface at each point along the surface. The 𝐿𝑐 specifies

the longitudinal spatial frequency content for the roughness along the surface; large

correlation lengths will cut off high frequency components of the roughness, resulting

in a “smoother” profile with fewer oscillations per unit length, and small correlation

lengths will retain the higher-frequency parts of the roughness. This noise is described

by Eq. 2.1:

𝑁 = 𝐴2𝑒−(𝑥/𝐿𝑐)
2𝛼

(2.1)

where 𝑥 is the length along the structure, and 𝛼 is either 0.5 for exponential noise
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or 1 for Gaussian noise. In our study, 𝛼 is always taken to be 1. This value of 𝛼 is

chosen because typically there are extra processing steps after lithography, such as

oxidation, that tend to smooth the LER and reduce the high-frequency edges [27].

This leads to sidewall noise characteristics that are better described by a Gaussian

correlation function, which suppresses high-frequency noise components more than

the exponential correlation function, as shown in Fig. 2-2.

Figure 2-1: Line edge roughness im-
posed on a Y-branch and waveguide
sidewalls.

Figure 2-2: Example Gaussian and ex-
ponential LER with the same ampli-
tude and correlation length imposed on
a waveguide.

To understand the impact of LER on PIC components, it is crucial to be able

to model these effects. Previous work has considered LER impact on loss in simple

silicon waveguides [14]. In [28], we report the first study to consider the performance

impact of LER on a more complicated fundamental photonic structure, a Y-branch [2],

through virtual fabrication and optical simulation. The Y-branch serves as either a

means to split one stream of light into two or combine two streams of light into one,

which makes it a common element of a PIC (for example, two Y-branches can be

used in a Mach-Zehnder interferometer) [5]. Three critical performance factors of the

Y-branch are considered: transmission imbalance at the two output ports, excess loss,

and fractional reflection back into the input port (back reflection).

In this chapter, we present a method for behavioral statistical modeling for the

effect of line edge roughness (LER) on Y-branch optical splitters. The model predicts

the performance as a function of the operating wavelength and the LER parameters,
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which vary within the same process from one step to another or from one foundry to

another.

In Section 2.1, the simulation methodology is described, with ensemble simulation

results presented in Section 2.2. Section 2.3 describes the compact modeling approach

used to capture these variations. Applications of these models for yield analysis is

demonstrated in Section 2.4. Comparisons to other splitter geometries are presented

in Section 2.5. Finally, Section 2.6 summarizes the chapter.

2.1 Simulation Details

We focus on a Y-branch silicon-on-insulator (SOI) waveguide splitter that was pre-

viously optimized to minimize back-scatter at 1550 𝑛𝑚 [2]. The silicon waveguiding

regions have widths of 500 𝑛𝑚, thicknesses of 220 𝑛𝑚, and the overall component

length is 15 𝜇𝑚 as shown in Fig. 2-3. The Y-branch is encased in 𝑆𝑖𝑂2 cladding

extending 1 𝜇𝑚 below the bottom silicon surface, and 1 𝜇𝑚 above the bottom silicon

surface (2 𝜇𝑚 in total). The fundamental TE mode is launched into the input port

and the output power is measured at the input port (to measure back reflection) and

at the two output ports, referred to as the “upper” and “lower” ports.

The frequency range is chosen to span a wavelength window around the common

operating wavelength of 𝜆 = 1550 𝑛𝑚 in the C-band; this window ranges from 1.5 𝜇m

to 1.6 𝜇m into the S-band and L-band, providing insight into the common photonic

operating regions. All process modelling (including line edge roughness) is performed

in Coventor’s SEMulator3D R○ [29] software. The structures with the LER imposed on

the sidewalls are then exported from SEMulator3D via a surface mesh and imported

into Lumerical FDTD [22] for optical simulation.

LER can be modelled by generating noise using a Fourier synthesis technique [21,

20], and applying that noise as geometric width perturbations to the sides of the

structure. This technique generates roughness 𝑁 that corresponds to the power spec-

trum of the Gaussian autocorrelation function defined by the LER root mean squared

amplitude 𝐴 and correlation length 𝐿𝑐, as defined in Eq. 2.1. Various combinations
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Figure 2-3: Geometry of the Y-branch
used for analysis [2].

Figure 2-4: Y-branch transmission spec-
trum when no LER is applied (ideal case)
and the imbalanced case when LER is ap-
plied.

of 𝐴 and 𝐿𝑐 values are simulated. Amplitudes between 1 𝑛𝑚 and 15 𝑛𝑚 and corre-

lation lengths between 10 𝑛𝑚 and 60 𝑛𝑚 are chosen to span realistic observed values

reported in previous works [21, 30, 20, 31]. For each 𝐴 and 𝐿𝑐 combination that is

simulated, many structures (referred to as instantiations) are generated with different

random seeds for the edge noise, in order to capture the statistical variation of the

optical response.

The model development flow is shown in Fig. 2-5. In Stage 1, we start by defining

the process steps with the LER added to the lithography step with prescribed 𝐴 and

𝐿𝑐, then this process is used in Coventors’s SEMulator3D R○. A 3D mesh representing

the final structure (with LER added) is generated by SEMulator3D and exported

for use in the optical simulations. In Stage 2, the 3D mesh is imported into FDTD

for broadband optical simulations, where the normalized transmission power at each

output port is measured for wavelengths in the range of 1500 − 1600 𝑛𝑚, as shown

in Fig. 2-6. To capture the statistical variation in the output as seen in Fig. 2-7, the

previous two stages are repeated for 50 different instantiations (a Y-branch with a

unique sidewall noise profile) for each amplitude and correlation length combination.

This is repeated for 10 different combinations of 𝐴 and 𝐿𝑐, leading to 500 Stage

1/Stage 2 iterations in total. We choose the 10 DOE values for 𝐴 and 𝐿𝑐 using Latin

hypercube sampling for the ranges we care about (based on literature values) with
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two extra experiments to consider the effect of changing the 𝐴 and keeping the 𝐿𝑐

constant and vice versa.

Figure 2-5: The model development flow.

2.2 Simulation Results

2.2.1 Transmission

With no LER applied, the ideal Y-branch transmits power equally between its two

output ports, as seen in the simulation (dashed lines) in Fig. 2-4. In this ideal case, we

also see the expected wavelength dependence of transmission from 𝜆 = 1.5− 1.6 𝜇𝑚,

with maximum transmission of 0.4865 near 1550 𝑛𝑚, corresponding to excess loss

(discussed further in Section 2.2.2) of about 3%. However, when LER is present,

imbalanced transmission between the upper and lower ports is observed (solid lines

in Fig. 2-4). The amount of the imbalance changes for different instantiations of the

same LER parameters, where the power generally favors one port over the other. For

the relatively small 𝐴 and 𝐿𝑐 values of 3 𝑛𝑚 and 10 𝑛𝑚, respectively, the variations

for each port are Gaussian as seen in Fig. 2-7(a), with a mean that is almost equal

to the ideal transmission value of 0.4862 and with a standard deviation of 0.004.

Therefore, the effect of small LER is a modest degree of statistical variation of the

transmission response that fluctuates about the ideal (smooth) result.
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In contrast, higher values of 𝐴 and 𝐿𝑐 can lead to more pronounced device degra-

dation, where the mean for both upper and lower ports is shifted from the ideal device

mean. For 𝐴 of 10 𝑛𝑚 and 𝐿𝑐 of 40 𝑛𝑚, the results in Fig. 2-7(b) show a much larger

spread in the upper and lower branch transmissions at 𝜆 = 1550 𝑛𝑚, with mean

of upper port of 0.4727 and mean of 0.4783 for the lower port. In this case, the

correlated transmissions are below the nominal, indicating substantial excess loss.

(a) (b)

(c) (d)

Figure 2-6: The upper port transmission power spectrum of 50 instantiations for
different 𝐴 and 𝐿𝑐 combinations. (a) 𝐴 = 1 𝑛𝑚 and 𝐿𝑐 = 25 𝑛𝑚, (b) 𝐴 = 3 𝑛𝑚 and
𝐿𝑐 = 20 𝑛𝑚, (c) 𝐴 = 6 𝑛𝑚 and 𝐿𝑐 = 60 𝑛𝑚, (d) 𝐴 = 12 𝑛𝑚 and 𝐿𝑐 = 50 𝑛𝑚.

To further study the effect of 𝐴 and 𝐿𝑐 on imbalanced transmission at the two

output ports, 50 instantiations for different 𝐴 and 𝐿𝑐 combinations are generated and

analyzed. The resulting transmission for the upper ports at 1550 𝑛𝑚, shown in Fig. 2-

6, indicates that as 𝐴 or 𝐿𝑐 increases, the deviation of the transmission value from

the ideal (smooth) case increases, which in turn means that the imbalance between
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(a) (b)

Figure 2-7: Joint distribution plot of the transmitted power for the upper and lower
ports at 𝜆 = 1550 𝑛𝑚. (a) 200 instantiations for 𝐴 = 3 𝑛𝑚 and 𝐿𝑐 = 10 𝑛𝑚; red
point is nominal (no LER) case. (b) 50 instantiations for 𝐴 = 10 𝑛𝑚 and 𝐿𝑐 = 40 𝑛𝑚;
red point is nominal (no LER) case.

the two output ports increases. The effect of 𝐴 on this imbalance is larger than the

effect of 𝐿𝑐, as shown in Table 2.1.

𝐴 (𝑛𝑚) 𝐿𝑐 (𝑛𝑚)
Imbalance
Mean (%)

Imbalance
Variance (%)

Maximum
Imbalance (%)

1 25 -0.03 0.25 0.49
3 10 -0.16 0.45 1.89
3 20 -0.22 0.64 2.05
3 40 -0.30 0.9 2.44
6 60 0.22 2.71 6.58
7 30 0.05 2.33 4.99
10 10 0.78 1.86 7.95
10 40 1.35 3.85 9.99
12 50 -0.18 4.04 12.46
15 60 -0.37 5.65 16.84

Table 2.1: Mean, standard deviation and maximum values for imbalance in trans-
mission between Y-branch upper and lower ports for 50 instantiations, for different
amplitude and correlation length combinations at 1550 𝑛𝑚 wavelength.

Figure 2-8 shows the relative imbalance between the transmitted power between

the Y-branch two output ports as a function of the LER amplitude and correlation

length, for ten different combinations of 𝐴 and 𝐿𝑐. The maximum imbalance increases

more along the amplitude axis than along the correlation length axis, ranging from

∼ 1% for the smallest case at 𝐴 = 1 𝑛𝑚 and 𝐿𝑐 = 25 𝑛𝑚 (left-most bubble), to 17%
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Figure 2-8: Relative imbalance in Y-branch transmission as a function of LER am-
plitude and correlation length at 1550 𝑛𝑚, the radius of the bubble indicates the
magnitude of the imbalance.

for the largest case of 𝐴 = 15 𝑛𝑚 and 𝐿𝑐 = 60 𝑛𝑚 (right-most bubble). This agrees

well with the results shown in Fig. 2-6 which clearly shows that increasing the 𝐴

(moving from the top row to the bottom row) has a greater impact on the imbalance

than increasing the 𝐿𝑐 (moving from the left column to the right column).

While Fig. 2-8 and Table 2.1 report the maximum imbalance percentage be-

tween the two output ports across the 50 instantiations for a single wavelength

(𝜆 = 1550 𝑛𝑚), Fig. 2-9 shows the average imbalance (averaged for all the 50

instantiations) across the whole wavelength range. The imbalance increases over

all wavelengths sampled in both the increasing-𝐴 and increasing-𝐿𝑐 directions. At

𝜆 = 1550 𝑛𝑚 specifically, the imbalance increases by ∼4x [3.864] when 𝐴 increases

from 3 𝑛𝑚 to 10 𝑛𝑚 for 𝐿𝑐 = 10 𝑛𝑚, and by ∼4x [4.2868] in the 𝐿𝑐 = 40 𝑛𝑚 case.

For increasing 𝐿𝑐 from 10 𝑛𝑚 to 40 𝑛𝑚, the imbalance increases by ∼1.5x [1.3689] for

𝐴 = 3 𝑛𝑚 and by ∼1.5x [1.5186] in the 𝐴 = 10 𝑛𝑚 cases. Thus, we see that increasing

the LER amplitude and correlation lengths both lead to increased imbalance in the

output ports. These effects can be attributed to the distortion of the junction region

where the two output branches split. The ideal device and mode source are fully sym-

metric, hence the equal transmission in the two output ports for the ideal case shown

in Fig. 2-4 and in the electric field profile in Fig. 2-10(a). However, LER introduces
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defects to the center region that break the symmetry of the device, causing more light

to enter one branch than the other, as seen in the perturbed electric field profile in

Fig. 2-10(b). As was mentioned in [2], for short values of 𝐿𝑐 (as compared to the

effective wavelength in the waveguide core, which is ∼440 𝑛𝑚 here), the propagating

mode does not interact with the rapidly-oscillating sidewall roughness significantly.

However, as 𝐿𝑐 increases, there are fewer spatial oscillations per unit length, and the

mode will begin to interact with the sidewall perturbations more, until 𝐿𝑐 becomes

much larger than the wavelength and the mode effectively sees no oscillations at all.

Increasing 𝐴 has a more obvious effect on the junction-region distortion. Higher val-

ues of 𝐴 introduce larger peaks and valleys on the device sidewall surfaces, which

cause larger deviations from the ideal symmetric junction shape, and more power will

inevitably end up in one output branch than the other.

2.2.2 Excess losses

Figure 2-7(b) indicates that a significant amount of incident power is being lost for the

large 𝐴 and 𝐿𝑐 case, as the mean power for both ports have deviated significantly from

the nominal value, and the highly anticorrelated upper and lower port transmissions

are shifted downward from the nominal balanced transmission case. Several studies

have been reported to characterize and minimize loss due to LER on straight SOI

waveguides [26, 31, 32]. The perturbations introduced by LER to the Y-branch

sidewalls not only affect the power imbalance between the two outputs, but also

contribute to increased propagation loss the light experiences as it travels down the

Y-branch. Excess loss is defined here as ratio of the sum of the power in the two

output ports relative to the power in the input port:

𝐸𝐿 =
𝑃𝑢𝑝𝑝𝑒𝑟 + 𝑃𝑙𝑜𝑤𝑒𝑟

𝑃𝑖𝑛𝑝𝑢𝑡

(2.2)

This serves as a metric to determine how much power is lost as the light travels

the length of the structure (excess loss does not include the coupling loss from the

source). Ideally, in the case of no losses, the 𝐸𝐿 ratio is 1 (0 dB). However, in real
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(a) (b)

(c) (d)

Figure 2-9: Average imbalance between two output ports for 50 instantiations at:
(a) 𝐴 = 3 𝑛𝑚 and 𝐿𝑐 = 10 𝑛𝑚, (b) 𝐴 = 3 𝑛𝑚 and 𝐿𝑐 = 40 𝑛𝑚, (c) 𝐴 = 10 𝑛𝑚 and
𝐿𝑐 = 10 𝑛𝑚, (d) 𝐴 = 10 𝑛𝑚 and 𝐿𝑐 = 40 𝑛𝑚. Notice difference in vertical scales.

(a) (b)

Figure 2-10: Electric field profiles at the Y-branch junction for the (a) smooth case and
(b) LER case with 𝐴 = 15 𝑛𝑚 and 𝐿𝑐 = 60 𝑛𝑚, where the roughness breaks the device
symmetry and causes more power to go into the upper port for this instantiation.
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devices there are inevitable back reflections and scattering losses that make this ratio

less than 1 (some negative value on a dB scale).

To analyze the effect of LER on excess loss for the Y-branch, the excess loss is

analyzed for the 50 instantiations of the Y-branch with different 𝐴 and 𝐿𝑐. The

results for the 50 instantiations for 𝜆 = 1550 𝑛𝑚 are shown in Fig. 2-11 for selected

𝐴 and 𝐿𝑐 combinations, along with the results for the nominal (smooth) case. We

see that the LER causes an increase in the excess loss values in the majority of the

instantiations, and the fraction of instantiations with loss values greater than the ideal

case increases with increasing values of 𝐴 and 𝐿𝑐. At large enough values (for example,

𝐴 = 15 𝑛𝑚 and 𝐿𝑐 = 60 𝑛𝑚), all of the instantiations have higher excess loss than the

ideal case. The maximum loss observed over all instantiations increases as well with

increasing 𝐴 and 𝐿𝑐. Figure 2-11 shows that excess losses can reach -0.8dB (16.8%)

when 𝐴 = 15 𝑛𝑚 and 𝐿𝑐 = 60 𝑛𝑚, while the excess loss is only about -0.12dB (3%)

for the smooth case. The smooth case still suffers loss due to the junction region

where the mode splits into the two paths [2], which also occurs in the LER cases.

This means that losses greater than this nominal case can be attributed to the LER.

Thus, in addition to causing imbalanced transmission between the two output ports

of the Y-branch, LER also increases the excess loss that the light experiences as it

propagates.

2.2.3 Back reflection

In sourced waveguiding structures, it is also instructive to analyze the back reflection,

which is the fractional power returned to the input port. Since the excess loss defined

in Section 2.2.2 is the ratio of the total output power (upper port plus lower port)

to the input port, the power lost to back reflection is included in the excess loss.

However, back reflection can be measured separately in FDTD simulation, which will

decouple its effect on excess loss from that of propagation loss. Figure 2-12 shows the

back reflection, as a percentage of total incident power, for four combinations of 𝐴

and 𝐿𝑐. The LER has a lesser effect on the back reflection than on the total excess

loss reported in Section 2.2.2. Although the back reflection can reach higher values

43



(a) (b)

(c) (d)

Figure 2-11: The Y-branch excess loss variation from the nominal case (red line) with
LER for 50 instantiations at the center wavelength of 1550 𝑛𝑚 with LER. (a) 𝐴 =
3 𝑛𝑚 and 𝐿𝑐 = 10 𝑛𝑚, (b) 𝐴 = 7 𝑛𝑚 and 𝐿𝑐 = 30 𝑛𝑚, (c) 𝐴 = 12 𝑛𝑚 and
𝐿𝑐 = 50 𝑛𝑚, (d) 𝐴 = 15 𝑛𝑚 and 𝐿𝑐 = 60 𝑛𝑚. Note differences in vertical scales.

as the 𝐴 and 𝐿𝑐 increase, as shown in Fig. 2-12, and the fraction of instantiations

in which the back reflection goes above the nominal case also increases with 𝐴 and

𝐿𝑐, the loss values even in the worst-case scenario never exceed 1%. Despite the fact

that the back reflection losses decrease in almost half of the instantiations, the overall

losses still increase with 𝐴 and 𝐿𝑐 because the back reflection is very small compared

to the excess loss.

2.2.4 Sensitivity

To further understand the Y-branch, we examine the sensitivity of various sections of

the Y-branch geometry to LER, seeking to locate the part that is most sensitive to
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(a) (b)

(c) (d)

Figure 2-12: The Y-branch back reflection variation from the nominal case (red line)
with LER for 50 instantiations at the center wavelength of 1550 𝑛𝑚 with LER. (a) 𝐴 =
3 𝑛𝑚 and 𝐿𝑐 = 10 𝑛𝑚, (b) 𝐴 = 7 𝑛𝑚 and 𝐿𝑐 = 30 𝑛𝑚, (c) 𝐴 = 12 𝑛𝑚 and
𝐿𝑐 = 50 𝑛𝑚, (d) 𝐴 = 15 𝑛𝑚 and 𝐿𝑐 = 60 𝑛𝑚. Note differences in vertical scales.

LER. We divide the Y-branch into three main regions: the input taper (region 1), the

junction (region 2), and the two Y-branch arms (region 3) as shown in Fig. 2-13(a).

LER is applied to each of these regions separately and for each case, we generate

50 different instantiations for each 𝐴 and 𝐿𝑐 combination considered to capture the

transmission statistics with respect to the spatial LER. We compare the transmission

imbalance caused by each section separately to the case when LER is applied to the

entire structure, Fig. 2-13(b).

Table 2.2 shows the standard deviation for the imbalance between the two output

ports when LER is applied to these different sections of the Y-branch. From the

results in Table 2.2 and Fig. 2-13, we find that the input taper (region 1) in the

Y-branch, where the power starts to split between the two output ports, is the most
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𝐴 (𝑛𝑚) 𝐿𝑐 (𝑛𝑚) Entire structure Input taper Junction Arms

1 25 0.25
(︁0.31
0.21

)︁
0.25

(︁0.31
0.21

)︁
0.04

(︁0.05
0.04

)︁
0.04

(︁0.05
0.04

)︁
3 10 0.45

(︁0.56
0.38

)︁
0.45

(︁0.56
0.38

)︁
0.08

(︁0.10
0.07

)︁
0.07

(︁0.09
0.06

)︁
3 20 0.64

(︁0.79
0.53

)︁
0.63

(︁0.79
0.53

)︁
0.12

(︁0.15
0.10

)︁
0.09

(︁0.11
0.08

)︁
3 40 0.90

(︁1.12
0.75

)︁
0.90

(︁1.12
0.75

)︁
0.14

(︁0.18
0.12

)︁
0.11

(︁0.14
0.09

)︁
6 60 2.71

(︁3.38
2.26

)︁
2.59

(︁3.24
2.18

)︁
0.29

(︁0.36
0.24

)︁
0.25

(︁0.31
0.21

)︁
7 30 2.33

(︁2.90
1.94

)︁
2.28

(︁2.85
1.92

)︁
0.32

(︁0.40
0.27

)︁
0.21

(︁0.26
0.18

)︁
10 10 1.86

(︁2.31
1.51

)︁
1.86

(︁2.31
1.51

)︁
0.32

(︁0.40
0.27

)︁
0.18

(︁0.23
0.15

)︁
10 40 3.85

(︁4.80
3.23

)︁
3.83

(︁4.79
3.22

)︁
0.59

(︁0.74
0.50

)︁
0.29

(︁0.36
0.24

)︁
12 50 4.04

(︁5.05
3.39

)︁
4.09

(︁5.11
3.43

)︁
0.64

(︁0.80
0.54

)︁
0.41

(︁0.51
0.34

)︁
15 60 5.65

(︁7.06
4.75

)︁
5.83

(︁7.29
4.9

)︁
0.88

(︁ 1.1

0.74

)︁
0.64

(︁0.80
0.54

)︁

Table 2.2: Summary of imbalanced transmission standard deviation (in percent) for
LER applied to different sections of a Y-branch at a wavelength of 1550 𝑛𝑚. The val-
ues in the brackets are the 95% lower and upper bound confidence intervals calculated
for the ensemble of 50 simulations.
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(a) (b)

Figure 2-13: (a) Y-branch geometry where region 1 (green) is the input taper, region
2 (red) is the junction and region 3 (blue) contains the output arms. (b) Standard
deviation 𝜎 (in percent) of the transmission imbalance caused by applying LER for
different sections of the Y-branch for 𝐴 = 10 𝑛𝑚 and 𝐿𝑐 = 40 𝑛𝑚.

sensitive section to LER, and regions 2 and 3 are not as sensitive.

2.3 Modeling

In previous sections, we have demonstrated that when the Y-branch is subjected to

LER, there is an asymmetric power distribution at the output ports, as shown in

Fig. 2-4. This imbalance is considered to be a random device variation, and is highly

dependent on the statistical nature of the LER.

Figure 2-6 shows that the output imbalance is not unique for a given set of 𝐴,

𝐿𝑐 and 𝜆, since any particular instantiation (which corresponds to one Y-branch on

a wafer) can have very different output characteristics than others. Therefore, any

model aiming to quantify the performance of a Y-branch subjected to LER should

be constructed for statistical performance values, namely the transmission mean (𝜇)

and variance (𝜎2), as a function of the LER parameters and wavelength of operation.

For each 𝐴 and 𝐿𝑐 combination, the 𝜇 and 𝜎2 are calculated using results from

its 50 instantiations, as shown for selected combinations in Fig. 2-14. The 2𝜎 (95%)

confidence intervals (CI) are also plotted. We note that the mean decreases with

increasing 𝐴 and 𝐿𝑐. This is likely due to the increased levels of losses introduced by
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the LER peaks, as the peaks act as scattering locations for the guided fundamental

mode to leak out of the main waveguide [32]. Also, the variance increases with

increasing 𝐴 and/or 𝐿𝑐, which is likely due to these regimes presenting the greatest

deviation of the device geometry over a given length from its nominal (noise-free)

structure, as the LER becomes more impactful on the Y-branch. In Stage 3, shown

in the workflow in Fig. 2-5, the data from the above ensemble virtual fabrication and

optical simulations can be used to develop statistical compact models.

(a) (b)

(c) (d)

Figure 2-14: Mean and variance for the upper port transmission calculated from
an ensemble of 50 runs for different amplitude and correlation length combinations.
The shaded area is the 95% confidence interval. (a) 𝐴 = 1 𝑛𝑚 and 𝐿𝑐 = 25 𝑛𝑚,
(b) 𝐴 = 3 𝑛𝑚 and 𝐿𝑐 = 20 𝑛𝑚, (c) 𝐴 = 6 𝑛𝑚 and 𝐿𝑐 = 60 𝑛𝑚, (d) 𝐴 = 12 𝑛𝑚 and
𝐿𝑐 = 50 𝑛𝑚. Note differences in vertical scales.

This section details the methods used to develop such statistical compact mod-

els. Two different machine learning regression methods are used: polynomial linear

regression [33] and Gaussian process (GP) regression [34, 35, 36]. For each method,
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models are developed to predict the mean and variance as a function of the LER

parameters (𝐴 and 𝐿𝑐) and the operating wavelength (𝜆), and the performance of

each model is compared. The models are developed using data from the ten sets of

𝐴 and 𝐿𝑐 combinations, each containing 50 unique instantiations of the structure,

previously described. For each set, the mean and variance are calculated. At the

end, we use another data set to test the model, this test set data for 𝐴 = 4 𝑛𝑚 and

𝐿𝑐 = 50 𝑛𝑚 is never used for model fitting, only for final model testing. Since there

are only ten 𝐴 and 𝐿𝑐 sets, there is not enough data to perform validation analysis

on the training data, i.e., by dividing the data into two sets (training and validation).

Instead, leave one out cross validation (LOOCV) [33] is used on the training data.

LOOCV interchangeably leaves out one set of data to be used as a validation set,

the model is fit with the remaining data, and a validation error is calculated for that

case. Then all the validation errors are averaged, so that the two methods can be

compared.

2.3.1 Mean

The mean of the transmission not only gives an insight on the average port transmis-

sion but also reflects the losses experienced due to LER. For modeling the transmis-

sion mean, we start by employing polynomial regression. A linear regression model

order that prevents overfitting as well as accurately explains most of the data is a

second-order polynomial model in the three parameters (𝐴, 𝐿𝑐, and 𝜆):

𝜇(𝐴,𝐿𝑐, 𝜆) = 𝛽0+𝛽1𝐴+𝛽2𝐿𝑐+𝛽3𝜆+𝛽4𝐴
2+𝛽5𝐿

2
𝑐+𝛽6𝜆

2+𝛽7𝐴𝐿𝑐+𝛽8𝐿𝑐𝜆+𝛽9𝐴𝜆 (2.3)

The coefficient of determination, 𝑅2, which says how well the model predicts the

observed data compared to an overall mean, is 0.966 for this model. This indicates

that the model explains 96.6% of the data, while the 𝑅2
𝐴 (which takes into account

the number of terms forming the model) value is 0.9654. The mean squared error

(MSE) of the the transmission power model is 0.04. Figure 2-15 shows the model

performance over different training data sets, i.e., different 𝐴 and 𝐿𝑐 combinations.
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The model fails to predict the mean within the 95% CI of the simulated mean in the

low-amplitude cases. This is because the variance is very low in these cases (as shown

in Fig. 2-14) leading to small CIs.

(a) (b)

(c) (d)

Figure 2-15: The mean values predicted from the polynomial model vs. the values
obtained from simulation for different 𝐴 and 𝐿𝑐 combinations. (a) 𝐴 = 1 𝑛𝑚 and
𝐿𝑐 = 25 𝑛𝑚, (b) 𝐴 = 3 𝑛𝑚 and 𝐿𝑐 = 20 𝑛𝑚, (c) 𝐴 = 6 𝑛𝑚 and 𝐿𝑐 = 60 𝑛𝑚,
(d) 𝐴 = 12 𝑛𝑚 and 𝐿𝑐 = 50 𝑛𝑚. Note differences in vertical scales.

The next statistical modeling technique, Gaussian process (GP) regression, is a

powerful non-linear prediction tool when there is a small number of data points, as

is the case in this study, whereas neural networks can fail to generalize to unseen

data and often overfit. GP is a nonparametric kernel-based probabilistic framework

that can predict a response (𝑌 ) as a multivariate normal distribution using a certain

covariance (kernel) function, 𝑘(𝑥𝑖, 𝑥𝑗), that correlates different inputs (𝑥). The kernel

function determines how close the responses (𝑌 ) are to each other based on the

relations between the inputs (𝑥), where points with equal or close input values are
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likely to have equal or close responses (𝑌 ). Accordingly, using the kernel function on

new data points (𝑥𝑛𝑒𝑤) can predict the response (𝑌𝑛𝑒𝑤) at those points. In this study,

the squared exponential kernel function is used:

𝑘(𝑥𝑖, 𝑥𝑗|𝜃) = 𝜎𝑓 exp[−1

2

𝑑∑︁
𝑚=1

(𝑥𝑖𝑚 − 𝑥𝑗𝑚)2

𝜎2
𝑚

] (2.4)

where 𝜃 represents the hyperparameters (𝜎𝑓 , 𝜎𝑚) that parametrize the kernel func-

tion; 𝜎𝑓 is the signal standard deviation, 𝜎𝑚 is the characteristic length scale which

dictates how far apart two points (𝑥) need to be in order for the response (𝑌 ) to be

uncorrelated, and 𝑑 is the dimension of the input. In this study, 𝑑 is third order (𝐴,

𝐿𝑐 and 𝜆).

The GP regression (GPR) for mean is developed using the three training fea-

tures (𝐴, 𝐿𝑐 and 𝜆), where the model’s calculated hyperparameters are 𝜎𝑓=1.0245;

𝜎𝐴=0.3552, which is the LER amplitude characteristic length scale; 𝜎𝐿𝑐=3.2078,

which is the LER correlation length characteristic length scale; and 𝜎𝜆=0.4152, which

is the wavelength characteristic length scale. The amplitude’s characteristic length

scale has a low value, which means that responses for different amplitudes are not

very correlated to one another. This agrees with the findings presented in Section 2.2

and in [28], which showed that the LER amplitude is the most influential parameter

in causing the imbalanced transmission, i.e., variations in 𝐴 causes larger changes in

the response compared to 𝐿𝑐. The GPR developed here has an 𝑅2 value of 0.999 and

an MSE of 8.3× 10−6. As seen in Fig. 2-16, this model accurately predicts both high

and low amplitude values, unlike the linear regression model.

The MSE for the LOOCV for both models are shown in Table 2.3. The GP

regression model has lower MSE values than the polynomial regression. Moreover,

both models are used to predict the performance of a hold out test set (𝐴 = 4 𝑛𝑚

and 𝐿𝑐 = 50 𝑛𝑚), for visualization of typical fits. The results are shown in Fig. 2-17.

The GP and linear regression models perform similarly in predicting the test data

set. Since the linear regression model performs poorly for small amplitude values, we

conclude that the GP regression model outperforms the linear regression model for
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(a) (b)

(c) (d)

Figure 2-16: The Gaussian Process model predicted mean values vs. the virtual fab-
rication simulation values for different 𝐴 and 𝐿𝑐 combinations. (a) 𝐴 = 1 𝑛𝑚 and
𝐿𝑐 = 25 𝑛𝑚, (b) 𝐴 = 3 𝑛𝑚 and 𝐿𝑐 = 20 𝑛𝑚, (c) 𝐴 = 6 𝑛𝑚 and 𝐿𝑐 = 60 𝑛𝑚,
(d) 𝐴 = 12 𝑛𝑚 and 𝐿𝑐 = 50 𝑛𝑚. Note differences in vertical scales.

mean prediction in this study.

Model Across whole spectrum At 1550 𝑛𝑚
Linear regression (2𝑛𝑑 order) 0.165 1.578
GP regression 0.093 0.862

Table 2.3: Comparison between the LOOCV mean squared error in transmission
output port for different models of the mean.
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Figure 2-17: The model predicted mean values vs. the virtual fabrication simulation
values, for the hold out test data set with 𝐴 = 4 𝑛𝑚 and 𝐿𝑐 = 50 𝑛𝑚. The 95%
confidence interval corresponds to the original ensemble simulations shown in blue.

2.3.2 Variance

The above procedure for mean prediction is also used for the variance. The following

third-order regression model is used:

𝜎2(𝐴,𝐿𝑐, 𝜆) = 𝛽0 + 𝛽1𝐴 + 𝛽2𝐿𝑐 + 𝛽3𝜆 + 𝛽4𝐴
2 + 𝛽5𝐿

2
𝑐 + 𝛽6𝜆

2 + 𝛽7𝐴𝐿𝑐 + 𝛽8𝐿𝑐𝜆

+ 𝛽9𝐴𝜆 + 𝛽10𝐴
3 + 𝛽11𝐿

3
𝑐 + 𝛽12𝜆

3 + 𝛽13𝐴
2𝐿𝑐 + 𝛽14𝐴

2𝜆 + 𝛽15𝐴𝐿
2
𝑐

+ 𝛽16𝐿
2
𝑐𝜆 + 𝛽17𝐴𝜆

2 + 𝛽18𝐿𝑐𝜆
2 + 𝛽10𝐴𝐿𝑐𝜆

(2.5)

The model has the same 𝑅2 and 𝑅2
𝐴 values (0.9994), and an MSE value of

4.43×10−4. The GPR model for variance has calculated hyperparameters: 𝜎𝑓=0.6844;

𝜎𝐴=0.3617, which is the LER amplitude characteristic length scale; 𝜎𝐿𝑐=1.4667,

which is the LER correlation length characteristic length scale; and 𝜎𝜆=0.7263, is

the wavelength characteristic length scale. The GP regression model has an 𝑅2 value

of 0.999 and an MSE of 2.2 × 10−5. The performance of both models on the training

set is shown in Fig. 2-18. Unlike the mean prediction, both models, polynomial and

GP regression, perform well for all of the 𝐴 and 𝐿𝑐 combinations.

To further compare and choose between the models, LOOCV is performed. The

computed MSE is shown in Table 2.4. The linear regression model has MSE that is

lower by an order of magnitude. Both models are then run with the hold out test
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data set (𝐴 = 4 𝑛𝑚 and 𝐿𝑐 = 50 𝑛𝑚). The results are shown in Fig.2-19. Visually,

one sees that the polynomial regression model more closely adheres to the test data.

Given that the linear regression model has a lower LOOCV MSE, and that it is

computationally cheaper than GP (especially in the presence of more training data),

we conclude that the linear regression model outperforms the GP model for variance

prediction.

(a) (b)

(c) (d)

Figure 2-18: The upper port model predicted variance values vs. the virtual fabrica-
tion simulation values for different 𝐴 and 𝐿𝑐 values. (a) 𝐴 = 1 𝑛𝑚 and 𝐿𝑐 = 25 𝑛𝑚,
(b) 𝐴 = 3 𝑛𝑚 and 𝐿𝑐 = 20 𝑛𝑚, (c) 𝐴 = 6 𝑛𝑚 and 𝐿𝑐 = 60 𝑛𝑚, (d) 𝐴 = 12 𝑛𝑚
𝐿𝑐 = 50 𝑛𝑚. Note differences in vertical scales.

Model Across whole spectrum At 1550 𝑛𝑚
Linear regression (3𝑟𝑑 order) 1.71×10−3 0.01475
GP regression 0.0214 0.23198

Table 2.4: Comparison between the LOOCV mean squared error for different models
of the port transmission variance.
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Figure 2-19: The model predicted variance values vs. the virtual fabrication simula-
tion value for the hold out test data set with 𝐴 = 4 𝑛𝑚 and 𝐿𝑐 = 50 𝑛𝑚. The 95%
confidence interval corresponds to the original ensemble simulations shown in blue.

2.4 Model Applications

This section aims to demonstrate ways in which the models developed above can

be leveraged in the design process. The wavelength dependent GP model for mean

and polynomial model for variance are used to generate transmission spectra for

many instantiations, for comparison to Fig. 2-6 which shows actual ensemble virtual

fabrication simulated data. The generation of a single instantiation using these models

takes only few seconds, compared to several hours needed for ensemble generation

and simulation using FDTD and SEMlator3D simulations. Figure 2-20(a-b) shows

50 different random instantiations generated for the upper port transmission using

the models for selected 𝐴 and 𝐿𝑐 combinations. Comparing to Fig. 2-6, one notices

the same general shape of the transmission curves (the peak near the middle of the

queried band), and similar ranges of the transmission for each parameter combination.

However, the data generated from the models show far less fluctuations in the

queried wavelength range than do the simulation data; this is because the models de-

veloped do not account for the within-wavelength variations between instantiations.

To address this issue, we further add a within wavelength variance between instan-

tiations (𝜎𝑖) as a function of the LER amplitude and correlation length. The final
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(a) (b)

(c) (d)

Figure 2-20: Generated random instantiations for upper port transmission using the
statistical compact models, for different 𝐴 and 𝐿𝑐 values without considering the
variance across wavelength: (a) 𝐴 = 6 𝑛𝑚 and 𝐿𝑐 = 60 𝑛𝑚, (b) 𝐴 = 12 𝑛𝑚 and
𝐿𝑐 = 50 𝑛𝑚. With adding the variance across wavelength: (c) 𝐴 = 6 𝑛𝑚 and
𝐿𝑐 = 60 𝑛𝑚, (d) 𝐴 = 12 𝑛𝑚 and 𝐿𝑐 = 50 𝑛𝑚.

model to generate an instantiation becomes:

𝑇 (𝐴,𝐿𝑐, 𝜆) = 𝑁𝑠(𝜇𝑠, 𝜎𝑠) + 𝑁𝑖(0, 𝜎𝑖) (2.6)

where 𝑁𝑠 is the normal distribution of the statistics of the transmission such that

𝜇𝑠 = 𝜇(𝐴,𝐿𝑐, 𝜆) and 𝜎𝑠 =
√︀
𝜎2(𝐴,𝐿𝑐, 𝜆) are the mean and standard deviations

modeled above, while 𝑁𝑖 is the normal distribution of the variation within-wavelength

between instantiations, and 𝜎𝑖 is its standard deviation. The generated instantiations

using the updates model are shown in Fig. 2-20(c-d), which are similar the ensemble

simulations shown in Fig. 2-6.
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These generated spectra can help in predicting the yield (the percentage of working

devices) when the Y-branch is subjected to a specific set of LER parameters. Here, the

yield is defined as the percentage of Y-branches having imbalance less than a certain

threshold value. Most photonic applications have a very small threshold for imbalance

and are not forgiving. Typically a threshold of 1% is considered, which is adopted for

our example. Transmission spectra for 500 random instantiations for each different

combinations of 𝐴 and 𝐿𝑐 are generated using our developed statistical compact

models, and the yield is calculated for each combination. Figure 2-21 shows the

yield at 𝜆=1550 𝑛𝑚 as a function of LER correlation length (𝐿𝑐) and amplitude (𝐴).

Information such as this can help a designer predict yield, if they have information

about the foundry-specific LER parameters their devices will be subjected to.

Figure 2-21: Yield (%) predicted at 𝜆=1550 𝑛𝑚 for the Y-branch using 500 generated
instantiations for each 𝐴 and 𝐿𝑐, at 1% imbalance threshold.

Figure 2-22: Series of Y-branches connected together to form a 1 : 2N split ratio.

A Y-branch often exists within a series of connected Y-branches to form a 1 : 2𝑁

splitting network, where 𝑁 is the number of levels of Y-branches in the network, as

pictured in Fig. 2-22. To show this, six Y-branches are generated from the developed

57



(a) (b)

(c) (d)

Figure 2-23: Split ratio calculated from connecting six generated Y-branches where
this experiment is repeated 500 times for different 𝐴 and 𝐿𝑐 values. (a) 𝐴 = 1 𝑛𝑚
and 𝐿𝑐 = 25 𝑛𝑚, (b) 𝐴 = 3 𝑛𝑚 and 𝐿𝑐 = 20 𝑛𝑚, (c) 𝐴 = 6 𝑛𝑚 and 𝐿𝑐 = 60 𝑛𝑚,
(d) 𝐴 = 12 𝑛𝑚 𝐿𝑐 = 50 𝑛𝑚. Note differences in the horizontal scales.

mean (GPR based) and variance (polynomial based) models, and the output from

the upper port for each is multiplied to obtain the final split ratio. This procedure is

repeated 500 distinct times. Figure 2-23 shows the histogram for the 500 generated

instantiations of six connected Y-branches. Ideally, the final output power would be

1/64 of the initial power (a 1:64 splitting ratio). As the 𝐴 and/or 𝐿𝑐 increase, the

more instantiations there are that deviate from the ideal 1:64 ratio, indicating a larger

shift from desired device behavior.
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2.5 Application to Power Splitting Structure Com-

parison

The same methodology is applied to two different power splitting structures in addi-

tion to the Y-branch, including multimode interference (MMI) and 50/50 directional

couplers, with 50/50 split ratio near 1550 𝑛𝑚, as shown in Fig 2-24. The sensitivity

of each of these structures to LER is examined, where the imbalance and the excess

loss experienced are calculated.

(a) (b)

(c) (d)

Figure 2-24: (a) MMI geometry and, (b) directional coupler geometry, each to have
50/50 split at 1550 𝑛𝑚. (c) Transmission for MMI with and without LER. (d) Trans-
mission for directional coupler with and without LER. Here LER with 𝐴 = 15 𝑛𝑚
and 𝐿𝑐 = 60 𝑛𝑚 is used.

Figure 2-25 shows the imbalance and excess loss (defined here as the extra loss

the structure experience due to LER compared to the no LER case) distribution,

experienced at wavelength of 1550 𝑛𝑚, for the three structures when LER of ampli-

tude 𝐴 = 15 𝑛𝑚 and correlation length of 𝐿𝑐 = 60 𝑛𝑚 is applied to each, and 100

instantiations are simulated.
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In the case of MMI, an imbalanced transmission occurs. We see that the MMI is

the least sensitive to LER, as it encounters a 2% standard deviation imbalance and

a maximum imbalance of 7%. Moreover, the excess loss it experiences has a mean of

8% and a standard deviation of 1.9%.

(a) (b) (c)

(d) (e) (f)

Figure 2-25: Imbalance in transmission at 1550 𝑛𝑚: (a) MMI, (b) directional coupler,
(c) Y-branch. Excess loss at 1550 𝑛𝑚 due to LER: (d) MMI, (e) directional coupler,
(f) Y-branch.

We also observe that for the 50/50 directional coupler, the frequency of the 50/50

split point shifts, as shown in Fig. 2-26. This can be viewed as measure of variation or

imbalance in the designed frequency of the 50/50 split. The standard deviation for the

transmission imbalance at 1550 𝑛𝑚 (due to the shift in the 50/50 split wavelength) is

3.5% with maximum imbalance of 15%. The excess loss for the directional coupler has

a mean of 16% and a 𝜎 of 2%. Finally, the Y-branch imbalance standard deviation

is 5% and has a maximum value of 17%, with an excess loss of 6% mean and 1%

standard deviation, with this LER case.

Based upon this analysis we can see that there is a trade off between the footprint

of the device and its sensitivity to LER. As the device becomes larger in size, it

becomes less sensitive to the LER. Accordingly, choosing the device to use to achieve
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Figure 2-26: Histogram for the variation in the directional coupler wavelength at
which the 50/50 split occurs, between the no LER nominal case (𝜆=1550 𝑛𝑚) and
the LER cases.

splitting with a required ratio is dependent on the tolerance of the imbalance, as well

as the area available for implementation.

The statistical compact modeling approach used here for random variations can

be extended to other optical components, and combined with models for systematic

geometric variations (as discussed in the next chapter) to serve as a basic building

block for extended process design kits (PDKs) for silicon photonics. These PDKs

would help photonic integrated circuit (PIC) designers predict the performance across

process variations in the same way that is currently heavily employed in CMOS

electronic IC design.

2.6 Summary

Line edge roughness with different combinations of amplitude and correlation length

values is applied to many instantiations of a Y-branch through virtual fabrication.

The optical transmission characteristics of the resulting structures are studied. Re-

sults show that LER causes unbalanced transmission between the upper and lower

port, which differs substantially from the ideal (smooth) case where the power is split

evenly between the two output ports. The amount of the imbalance is dependent on

the statistical parameters of the LER (amplitude and correlation length). The largest
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imbalance between the two output ports for a single run over all the wavelengths is

17% for large 𝐴 and 𝐿𝑐 at wavelength of 1550 𝑛𝑚 across 50 ensemble simulations.

However, the imbalance is relatively small (∼ 1%) for small LER amplitude. In ad-

dition, LER increases the excess losses that the Y-branch experiences, as compared

to the nominal case. These results motivate the desirability to develop statistical

compact models for the LER effect on Y-branch. These models can then be used for

efficient analysis of performance and yield in the face of these variations.
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Chapter 3

CROW Compact Modeling

Significant computing and communication system performance gains can be achieved

by transferring information using optical rather than electrical signals [37]. Accord-

ingly, often on-chip optical buffers are needed that delay the optical signals. This

raises the interest in coupled resonator optical waveguides (CROWs), where a num-

ber of ring waveguides are chained together, as illustrated in Fig. 3-1(a). The CROW

serves as a slow wave structure as the signal needs to build up in all the rings, that

can be used for buffering and storing data [37, 3, 38].

(a) (b)

Figure 3-1: (a) Schematic of a CROW where the dashed box represents the CROW
constituting component. (b) Geometry of half ring used during CROW model de-
velopment, with silicon waveguide nominal width W=500 𝑛𝑚, thickness T=220 𝑛𝑚,
coupling length 𝐶𝐿=7 𝜇𝑚 and coupling gap 𝐶𝑔=200 𝑛𝑚.
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However, since CROWs are large structures extending hundreds of microns to mil-

limeters in length, as in Fig. 3-2(a), depending on the number of constituent rings

forming the CROW, the CROW can be challenged by the spatial variations within

die or across the wafer, Fig. 3-2(b). These variations can cause a slight difference in

the geometry of the rings than the intended nominal design values, which in turn can

change the intended passband of the CROW, as seen in the simulation of Fig. 3-3.

More importantly, these variations may cause the CROW to fail, if the spatial varia-

tions cause each group of rings to have different geometry from the neighboring rings.

In such case, the resonances of the coupled rings lose their alignment, suppressing

the transmitted power before arriving to the end, Fig. 3-4. Another challenge due

to the large size of CROWs is the long simulation time, particularly for repetitive

simulations needed to evaluate the impact of each design parameter.

In order to speed up simulations and optimization for CROWs in the presence of

process variations, we develop a method to create variation-aware compact models

that can be used to simulate and predict the CROW behavior against systematic

and spatially correlated process variations. We demonstrate models for variations

in CROW ring waveguide thickness and width as well as due to LER. Such pro-

posed compact models enable feasible and fast simulations compared to FDTD or

MODE [23] simulations, and enable variation impact and yield analysis.

In Section 3.1, the simulation setup is described with the variation-aware compact

model development flow presented. Section 3.2 presents the variation-aware com-

pact model based on S-parameter with example potential applications for the model

shown. In Section 3.3, we develop S-parameter based compact models for LER and

its application for yield and performance analysis is presented. Finally, Section 3.4

summarizes the chapter.

3.1 Simulation Setup

Generally, because a CROW consists of a large number of coupled rings, it is infeasi-

ble to simulate the whole structure directly using a device level simulator (FDTD) [22].
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(a) (b)

Figure 3-2: (a) Long fabricated CROWs [3]. (b) Conceptual placement of CROW in
a die subject to spatially varying geometry (e.g., silicon layer thickness) with each
set of rings experiencing different geometry from nominal design due to the spatial
variations.

(a) (b)

Figure 3-3: Change in the passband of a 28 ring CROW with all the rings experiencing
the same geometric variation in. (a) Silicon layer thickness (𝑇 ) of the rings away from
nominal 𝑇 = 220 𝑛𝑚, and (b) width 𝑊 of the rings away from nominal 𝑊 = 500 𝑛𝑚.
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Figure 3-4: The response of CROW consisting of 28 ring with each ring experiencing
a slightly different geometric variation. Overall resonance and response is suppressed
below a usable level.

Instead, its simulation is based on generating the scattering parameters (S-parameters)

for the constituent device component, the half ring as shown in Fig. 3-1(b), with a

finite difference time domain (FDTD) simulator. The whole CROW is then simu-

lated with a photonic circuit simulator (INTERCONNECT [39]) by connecting the

half rings together. This simulation flow is shown in Fig. 3-5. The S-parameters

generated in the FDTD simulator are specific to a certain half ring waveguide design

(i.e., fixed thickness and width). So, varying the ring design requires re-generating

the S-parameters; this is computationally expensive if a large number of half-ring

variants must be considered for variation assessment. This highlights the need for

a variation-aware compact model for device components, especially considering the

fact that large numbers of these simulations are needed for Monte Carlo statistical

simulations or during design optimization.

To develop such variation-aware compact models we start by determining a design

of experiments (DOE) [40] for the silicon widths (𝑊 ) and thicknesses (𝑇 ) such that

these values cover the design space of interest for the half ring. This design space is

based on the controlled accuracy typically achieved for photonics 193 𝑛𝑚 and 248 𝑛𝑚

lithography process, with ±20 𝑛𝑚 for width, and ±10 𝑛𝑚 for thickness [41, 42, 43].

Then, the S-parameters for each of these DOE combinations are generated using
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Figure 3-5: Simulation flow to evaluate the CROW performance for a single combi-
nation of width and thickness values.

Lumerical FDTD [22], and then used in MATLAB [44] to develop the variation-

aware compact models for the S-parameters. Afterwards, these models are used to

generate the S-parameters to be used in the circuit simulator to predict the response

for new design and variation conditions. The new design flow with the variation-aware

compact models is shown in Fig. 3-6.

(a)

(b)

Figure 3-6: (a) Simulation flow (surrounded by dashed box) to obtain the performance
for any width and thickness values using the variation-aware compact model. The
steps surrounded by solid line box are done only once to generate the parametrized
compact model. (b) The S-parameters generated from the parametrized compact
model for the half ring can then be used in the circuit simulator.
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3.2 Systematic Variations

In this section, we focus on the case when the rings experience systematic variations,

i.e., variations in the silicon width and thickness. We consider two applications of the

generated variation-aware compact models. The first case is when all rings experience

the same variation. A second case then considers spatially varying perturbations.

3.2.1 Models

We first develop an S-parameter based parametrized variation-aware compact model

for the CROW constituent device – a half ring with nominal design parameters –

as shown in Fig 3-1(b). This model provides the S-parameters for the half ring

under varying thickness or width, 𝑆𝑖𝑗(𝑊 |𝑇, 𝜆), with acceptable accuracy and much

less computational cost than repeated FDTD simulations. We divide the data set

generated based on our DOE (the S-parameters for different geometry) into a 70%

training and 30% testing sets. Since the S-parameters can be fully defined by two

terms at each wavelength, the magnitude and phase, the model is developed to predict

both magnitude and phase of S-parameters using polynomial regression.

A third order polynomial in the design parameters, namely width (𝑊 ), thickness

(𝑇 ), and operating wavelength (𝜆) issued to, model the S-parameter magnitude vari-

ations with width and thickness. The S-parameter magnitude model has an 𝑅2 of

0.969 and 0.993 for width and thickness variation models, respectively. However, a

fifth order polynomial is needed for the S-parameter phase variations, to achieve an

𝑅2 of 0.99 for both width and thickness variations. Figure 3-7 shows the 𝑆13 com-

parison for the magnitude and phase using FDTD simulations directly, and using

the developed compact models, when the width is varying. For the training set, the

model has a difference from the direct simulation value for magnitude of 0.0009 and

0.05 rad for phase; however, for the test set these differences are 0.0007 and 0.09 rad

for magnitude and phase, respectively.

The S-parameters generated from the variation-aware compact model can then

be used in the photonic circuit simulator to simulate a whole CROW consisting of
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(a) (b)

(c) (d)

Figure 3-7: 𝑆13 for the half ring using both FDTD simulations and the developed
model. (a) Magnitude in case of training with 𝑊 = 491 𝑛𝑚 and 𝑇 = 220 𝑛𝑚.
(b) Phase in case of training with 𝑊 = 491 𝑛𝑚 and 𝑇 = 220 𝑛𝑚. (c) Magnitude in
case of testing with 𝑊 = 504 𝑛𝑚 and 𝑇 = 220 𝑛𝑚. (d) Phase in case of testing with
𝑊 = 504 𝑛𝑚 and 𝑇 = 220 𝑛𝑚.
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(a) (b)

(c) (d)

Figure 3-8: Behavior of CROW consisting of 28 rings simulated using the S-
parameters generated from the FDTD simulations and generated by the compact
model. (a) Training data with 𝑊 = 491 𝑛𝑚 and 𝑇 = 220 𝑛𝑚, (b) testing data with
𝑊 = 504 𝑛𝑚 and 𝑇 = 220 𝑛𝑚, (c) training data with 𝑊 = 500 𝑛𝑚 and 𝑇 = 225 𝑛𝑚,
and (d) testing data with 𝑊 = 500 𝑛𝑚 and 𝑇 = 218 𝑛𝑚.
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any number of rings, by connecting these compact model-based components together

as indicated in Fig. 3-6(b). Figure 3-8 shows a comparison between the simulated

performance of a 28 ring CROW using S-parameters generated directly from FDTD

simulation, and S-parameters generated using the developed variation-aware compact

model. As seen in Fig. 3-8, both result in similar passband transmissions (our most

important parameter) and bandwidth for both the training and testing data. There

is an offset in passband center wavelength of value ∆𝜆 = 0.07 𝑛𝑚 for training data

with 𝑊 = 491 𝑛𝑚 and 𝑇 = 220 𝑛𝑚 while ∆𝜆 = 0.05 𝑛𝑚 for training data with

𝑊 = 500 𝑛𝑚 and 𝑇 = 225 𝑛𝑚. However, for the testing data, ∆𝜆 = 0.24 𝑛𝑚 for

the test data with 𝑊 = 504 𝑛𝑚 and 𝑇 = 220 𝑛𝑚 is observed, and ∆𝜆 is about

0.5 𝑛𝑚 for the testing data with 𝑊 = 500 𝑛𝑚 and 𝑇 = 218 𝑛𝑚. The observed offset

in the response of the CROW between the case when S-parameters are generated

directly from FDTD simulation, and S-parameters are generated using the developed

variation-aware compact model are random depending on different 𝑊 and 𝑇 values.

These offsets can be attributed to the difference in the magnitude and phase response

for 𝑆𝑖𝑗, as shown in Fig. 3-7. Moreover, such offsets are modest, and worth the

speedups made possible compared to the case when we use lower mesh (grid density)

in FDTD simulations for speeding simulations, as shown in Fig. 3-9, where the yellow

response corresponds to a lower mesh accuracy (Mesh accuracy 6) to avoid the highest

accuracy (Mesh accuracy 8) which is computationally expensive (shown in blue).

From this result, we see that the fitting errors introduced by the variation-aware

compact model is smaller than errors that would typically arise from using a less

accurate FDTD simulation. The compact model generates the S-parameters in a

few seconds, while each FDTD-based S-parameter model requires ∼90 minutes to

generate on similar hardware.

3.2.2 Model Applications

This S-parameter based parameterized compact models can be used to facilitate and

speed up design optimization, and to run Monte Carlo simulations for variations

analysis and yield prediction. Having a model that generate S-parameters much
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Figure 3-9: Behavior of CROW consisting of 28 rings simulated using the S-
parameters generated from the FDTD simulations with different simulation accuracy
and generated by the compact model with 𝑊 = 504 𝑛𝑚 and 𝑇 = 220 𝑛𝑚. The yellow
response corresponds to a low simulation accuracy (Mesh accuracy 6).

faster than the direct simulations enables us to run many simulations in a very short

time, making Monte Carlo simulation feasible using these models.

In our first application scenario, we use Monte Carlo analysis to examine when all

of the rings in the CROW experience the same variation. The compact model is used

to construct the S-parameters for the circuit level simulation, given random sample

values for width and thickness. The compact model generates S-parameters for 100

half rings, each with a randomly sampled thickness as shown in the histogram in

Fig. 3-10(a), assuming normally distributed thickness, 𝑇 = 220 𝑛𝑚 nominal, with a

standard deviation 1 𝑛𝑚. Then, each S-parameter is used to build a 28 ring CROW,

all with the same value for 𝑇 . Accordingly, we have 100 different CROWs, each

with a randomly sampled thickness. We then perform Lumerical INTERCONNECT

simulation for the corresponding CROW. Figure 3-10(b) shows the resulting variation

in resonance wavelength passband (𝜆𝑅) across these 100 different CROWs. A mean

𝜆𝑅 of 1544.2 𝑛𝑚 and standard deviation of 1.4 𝑛𝑚 is observed.

Another interesting application of these models is predicting the yield when the

rings within the CROW experience different but spatially correlated variations in
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(a) (b)

Figure 3-10: (a) Distribution of 100 ring thickness with variation around the nominal
value 𝑇 = 220 𝑛𝑚 and a standard deviation of 1 𝑛𝑚. (b) Resulting resonance
wavelength variation for 28 ring CROWs with these silicon thickness variations.

waveguide width or thickness that depend on the location within the die, defined as

a function of the spatial correlation length (𝐿𝑇 ) and amplitude (𝜎) as in Fig. 3-11.

As mentioned earlier, when the geometry of the rings within a CROW become

slightly different, this makes the neighbouring rings lose their resonance alignment,

and can suppress the resonance such that the response of the CROW becomes below

usable levels as shown in Fig. 3-4. Accordingly, predicting the yield (the number of

working CROWs) given the specific foundry width and thickness variation control (in

terms of 𝐿𝑇 and 𝜎) becomes crucial. Variation impact and yield gives insight into

the potential tuning power needed to have an acceptable yield, or to specify what

foundry control level must be, i.e., the spatial variation correlation lengths, in order

to have acceptable yield.

For yield prediction, we run 100 different instantiations of spatially correlated

width and thickness process maps. Figure 3-11 shows an example of width and thick-

ness spatial maps (along the length of the CROW), with geometric values for each ring.

According to each, we generate S-parameters for each ring based on its local thickness

and width values within the process spatial map. We consider working CROWs to

be those where the pass band transmission is more than -20 dB. Yield simulations

in response to width and thickness characteristic variations are shown Fig. 3-12, as

a function of spatial correlation length (𝐿𝑇 ) and amplitude (𝜎). From Fig. 3-12, we
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Figure 3-11: Spatially correlated variation map for a single instantiation of a CROW
consisting of 100 rings.

can see that as the CROW length increases (more rings form the CROW), it becomes

more sensitive to correlation length and amplitude of the spatial variation, because

longer variations are sensed by the CROW. Also, we can see that the CROW is more

sensitive to the spatial variations in thickness, since for the same amplitude or corre-

lation length, the thickness variation (which is less than the width variation) causes

a higher variation percentage in the yield.

3.3 Random Variations

In this section, we consider an important random process variation, specifically LER,

and its impact on CROWs. We examine the case when LER is applied to the half

ring, and evaluate how this can affect the response of the CROW and its passband.

3.3.1 Results

Following the procedure described in Chapter 2, we generate 30 different instantia-

tions for the half ring geometry with LER applied to it using virtual fabrication with

SEMulator3D [29] and, repeated for seven different combinations of 𝐴 and 𝐿𝑐 values.

74



(a) (b)

(c) (d)

Figure 3-12: Yield (%) as a function of spatial variation correlation length (𝐿𝑇 ) and
amplitude (𝜎). (a) CROW composed of 28 rings experiencing spatial variations in
silicon thickness, (b) CROW composed of 100 rings experiencing spatial variations in
silicon thickness, (c) CROW composed of 28 rings experiencing spatial variations in
silicon width, and (d) CROW composed of 100 rings experiencing spatial variations
in silicon width. Yield is strongly impacted for longer 100 ring CROWs (right).
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When LER is applied to the CROW rings, there are two potential types of responses,

as shown in Fig. 3-13. The first case is shown in Fig. 3-13(a); for small LER 𝐴 and

𝐿𝑐, we see that LER, which is a random process variation, causes randomness every-

where. Randomness in the resonance position is observed, where for each different

instantiation, we see that the center of the passband is different. Also, the shape of

the response is different, such that there are dips in the transmission with levels that

vary from one instantiation to another. Moreover, the passband width is different

for each instantiation. The second type of response happens for large values of LER

amplitude and correlation length, where the LER causes the resonance to be largely

suppressed, as in Fig. 3-13(b).

We focus on the small LER case, and seek to build variation-aware compact models

that capture each of the observed effects. A first step in modeling is pre-processing

of the data. We start by shifting all of the thirty instantiations for each 𝐴 and

𝐿𝑐 combination, such that all of them have the same starting passband resonance

wavelength, as shown in Fig. 3-14. When doing this shift, we note that the passband

width varies from one instantiation to another, and this shift is progressive with the

wavelength as seen in Fig. 3-15. Accordingly, the shift is not constant for all resonance

modes, and a mode-wise shift is applied.

3.3.2 Models

Our variation-aware compact models are S-parameter based models; thus, we build

models for both the S-parameter magnitude and phase, as a function of the process

variation (LER amplitude and correlation length) and the operating wavelength (𝜆),

such that the models are 𝑆𝑖𝑗(𝐴,𝐿𝑐, 𝜆) where 𝑆𝑖𝑗 is the S-parameter for input port 𝑖

and output port 𝑗, where both 𝑖 and 𝑗 can take values 1 through 4.

The real challenge is how to include all types of randomness in the response in

the models as discussed in Section 3.3.1. A key step in modeling is choosing a single

instantiation, which we call the "base instantiation," to be a representative of the

behavior for each one of the LER amplitude and correlation length combinations. We

then split our DOE simulation data into training and test sets with a split ratio of
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(a)

(b)

Figure 3-13: Response of a 28 ring CROW when LER is applied. Different instan-
tiations are displayed for (a) 𝐴 = 4 𝑛𝑚 and 𝐿𝑐 = 30 𝑛𝑚, and (b) 𝐴 = 7 𝑛𝑚 and
𝐿𝑐 = 120 𝑛𝑚.

77



Figure 3-14: Thirty instantiations for LER with 𝐴 = 4 𝑛𝑚 and 𝐿𝑐 = 30 𝑛𝑚, after
shift to start at the same wavelength.

70/30, respectively.

We build polynomial regression models for each of the magnitude and phase for

each 𝑆𝑖𝑗. The 𝑅2 for all of the S-parameter models for phase and magnitude is at

least 0.96. The models developed for the S-parameters are then used to generate a

new full CROW instantiation, and compare it to simulation based S-parameters, as

shown in Fig. 3-16.

As seen from Fig. 3-16, the model fails to capture the location of the dip. It is also

difficult to generate new instantiations that mimic the range of variations that we see

in Fig. 3-13. Accordingly, some post-processing for the models is required to be done

to consider all the aforementioned types of randomness in the observed behavior in

full simulations.

The first step for post-processing is to account for the randomness in the shift in

resonance location for different instantiations with respect to the base instantiation

(that we used in building the model). This shift is a mode-wise shift, meaning that

the shift between instantiation 𝑖 and instantiation 𝑗 is not constant at every mode

rather, it is mode dependent and random. Accordingly, this shift in the resonance can

be decomposed into two parts: the random shift between instantiations which, we de-
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Figure 3-15: Passband width for the thirty different instantiations across the wave-
length of interest (1500-1600 𝑛𝑚), showing the different resonance modes, for LER
𝐴 = 4 𝑛𝑚 and 𝐿𝑐 = 30 𝑛𝑚.

note as 𝑁𝑠ℎ𝑖𝑓𝑡(𝜇𝑠, 𝜎𝑠), and randomness within the instantiation 𝑁𝑠ℎ𝑖𝑓𝑡/𝑖𝑛𝑡(𝜇𝑠𝑖, 𝜎𝑠𝑖), i.e.

within modes. The means and standard deviation are calculated from the ensemble

of thirty instantiations. Figure 3-17(a) shows the wavelength shift between the base

instantiation and the rest across the different modes from the ensemble simulations.

Figure 3-17(b) shows the wavelength shift generated using the calculated means (𝜇𝑠

and 𝜇𝑠𝑖) and standard deviations (𝜎𝑠 and 𝜎𝑠𝑖).

When this extra post-processing step is added to the models of the S-parameters

and the models used to generate LER instantiations, the result we obtain is shown

in Fig. 3-18. Although the above post-processing step helps the model capture the

change in the passband location due to LER, we can see that the model still fails to

capture the change in the response shape (dip locations, levels and change in the pass-

band width). Accordingly, we introduce another post-processing step to account for

this. In this second post-processing step, we model the difference in the S-parameters

between the base instantiation and the rest of the ensemble instantiations. This helps

us capture the difference in the response (which is embedded in the difference between

the S-parameters) in addition to the previously captured shift. This difference is ran-

dom across the wavelength and has a mean (𝜇𝑑(𝜆)) and a standard deviation( 𝜎𝑑(𝜆)),
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Figure 3-16: Comparison of the response behavior for a 28 ring CROW experiencing
LER (𝐴 = 4 𝑛𝑚 and 𝐿𝑐 = 30 𝑛𝑚) when S-parameters are generated using either
virtual fabrications and FDTD simulations (simulated) or variation-aware compact
models (predicted).

which we denote as 𝑁𝑑𝑖𝑓𝑓 (𝜇𝑑(𝜆), 𝜎𝑑(𝜆)). Figure 3-19(a) shows the difference between

the base instantiation S-parameters and others calculated for the simulated 𝑆13 mag-

nitude. Figure 3-19(b) shows this difference for 𝑆13 magnitude generated using the

random distribution 𝑁𝑑𝑖𝑓𝑓 (𝜇𝑑(𝜆), 𝜎𝑑(𝜆)), where 𝜇𝑑(𝜆) and 𝜎𝑑(𝜆) are calculated using

the ensemble of thirty instantiations.

Now to generate an instantiation, we do the two post-processing steps and accord-

ingly the model for any of the S-parameters becomes:

𝑆*
𝑖𝑗|𝑖𝑛𝑠𝑡(𝐴,𝐿𝑐, 𝜆) = 𝑆𝑖𝑗|𝑝𝑟𝑒𝑑(𝐴,𝐿𝑐, 𝜆) + 𝑁𝑠ℎ𝑖𝑓𝑡(𝜇𝑠, 𝜎𝑠)+

𝑁𝑠ℎ𝑖𝑓𝑡/𝑖𝑛𝑡(𝜇𝑠𝑖, 𝜎𝑠𝑖) + 𝑁𝑑𝑖𝑓𝑓 (𝜇𝑑(𝜆), 𝜎𝑑(𝜆))
(3.1)

where 𝑆𝑖𝑗|𝑝𝑟𝑒𝑑(𝐴,𝐿𝑐, 𝜆) is the model developed using the base instantiations without

any processing, the terms 𝑁𝑠ℎ𝑖𝑓𝑡(𝜇𝑠, 𝜎𝑠)and 𝑁𝑠ℎ𝑖𝑓𝑡/𝑖(𝜇𝑠𝑖, 𝜎𝑠𝑖) account for the shift in

the passband location, and finally the term 𝑁𝑑𝑖𝑓𝑓 (𝜇𝑑(𝜆), 𝜎𝑑(𝜆)) accounts for the across

wavelength difference in the response (S-parameter magnitude and phase) between

the base instantiation and the other instantiations.

Using the model in Eq. 3.1 to generate different instantiations for S-parameters of
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(a) (b)

Figure 3-17: Shift in the resonance location compared to the base instantiation for
LER with 𝐴 = 4 𝑛𝑚 and 𝐿𝑐 = 30 𝑛𝑚 as, (a) calculated from the simulated instantia-
tions we have, and (b) generated using the calculated means and standard deviations
for between-instantiation shift and across instantiations shift.

Figure 3-18: Response for a 28 ring CROW with generated S-parameter instantiations
using the developed model, and after applying the shifting post-processing step, with
LER of 𝐴 = 4 𝑛𝑚 and 𝐿𝑐 = 30 𝑛𝑚.
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(a) (b)

Figure 3-19: Difference in the magnitude of 𝑆13 as compared to the base instantiation
for LER with 𝐴 = 4 𝑛𝑚 and 𝐿𝑐 = 30 𝑛𝑚. (a) Calculated from the simulated instan-
tiations we have, (b) generated using the calculated means and standard deviations
for the difference using the ensemble.

the half ring with LER applied to its side walls, we get the response shown in Fig. 3-

20(b). When comparing the response between the different instantiations when the

S-parameters are directly simulated in FDTD to the case when the S-parameters are

generated based on the model defined by Eq. 3.1, we see that the models capture

to a good extent representative response randomness in passband width, passband

location as well as the dip locations and levels.

3.3.3 Model Application

The models developed for the half ring S-parameters in the presence of LER can be

used to predict the yield under specific foundry LER parameters (the amplitude and

correlation length). We use the models developed to generate half ring S-parameters

for 100 instantiations for different amplitudes and correlation length combinations.

These S-parameters are then used to build a 28 ring CROW (by connecting the half

rings together) and calculate the yield, i.e., the fraction of working CROWs. We

consider any CROW that has a transmission level less than -20 dB or has a dip in

the transmission that goes lower than -50 dB to be a defective CROW. Figure 3-

21 shows the calculated yield. We can see that LER has a serious effect on the
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(a)

(b)

Figure 3-20: Response for a 28 ring CROW with LER of 𝐴 = 4 𝑛𝑚 and 𝐿𝑐 = 30 𝑛𝑚 at
different instantiations when: (a) S-parameters are generated directly from the FDTD
simulations, and (b) S-parameters are generated based on the model in Eq. 3.1.
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(a) (b)

Figure 3-21: CROW yield (%) calculated when LER is applied to the half ring (CROW
constitute parameters), (a) for different values of amplitude and correlation length,
and (b) zoomed view on the working range of amplitude and correlation length.

CROW performance, and that the amplitude rather than the correlation length is

more impactful, where, for 𝐴 > 6 𝑛𝑚 the yield is almost always zero. This is an

expected behavior, because substantial LER will cause the geometries of the rings to

be different from one ring to another, as it changes the geometry of the half ring. In

particular, the coupling gap deviates from the intended design value (𝐶𝑔 = 200 𝑛𝑚),

and can be different for each ring.

(a) (b)

Figure 3-22: Response of a 28 ring CROW with each ring experiencing a different
instantiation for LER of 𝐴 = 4 𝑛𝑚 and 𝐿𝑐 = 30 𝑛𝑚 when S-parameters are generated
using: (a) compact model, and (b) FDTD simulations.

We further use the S-parameters generated from the model to simulate 28 ring
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CROWs, with each ring experiencing a different LER instantiation, as shown in Fig. 3-

22(a). Comparing it with the case of building CROWs using simulation generated

S-parameters, Fig 3-22(b), we can see that both agree well.

3.4 Summary

We present S-parameter based compact models for a constituent half ring coupler

geometry. These models can be used to simulate larger circuits (full CROWs) and

predict their performance in the presence of process variations, either geometric or

random (LER). In addition to the prediction capability of these models, they also

enable fast approximate simulations, where a simulation can be done directly in the

circuit simulator in a few seconds, compared to hours needed using traditional sim-

ulations using device and circuit level simulators. The compact model demonstrated

can serve as another building block for variation-aware process design kits (PDKs)

for photonics. Such models enable silicon photonic designers to run Monte Carlo

simulations to predict performance and yield as shown in this chapter, of their silicon

photonic devices and circuits given the variation characteristics of a specific foundry.
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Chapter 4

Large Silicon Nitride Ring Resonator

Modeling

Silicon nitride based ring resonators are crucial for many applications such as optical

clocks [45], frequency combs [46, 47], and metrology and sensing [48]. Accordingly,

when using silicon nitride (𝑆𝑖3𝑁4) rather than silicon (𝑆𝑖), a lower index difference

(∆𝑛 ∼ 0.5) results; this low ∆𝑛 offers better tolerance for fabrication variations.

Moreover, the ring resonators are usually challenging devices in full physical sim-

ulation, because the ring simulation usually takes a long time for the signal to fully

propagate in the device. Accordingly, FDTD ring simulations are time consuming,

and rings are usually simulated by partitioning the ring into smaller parts. Each part

takes less time; however, when the rings have large radii (𝑅 ≥ 10 𝜇𝑚), even the

coupling region section simulation still takes substantial time. So, designers in many

cases resort to fabricating and measuring performance rather than simulating many

structures, examining many different designs in order to choose the ring parameters

that meet required specifications.

In this chapter, we consider an all pass 𝑆𝑖3𝑁4 rib ring as in Fig. 4-1(a-b). We seek

to speed up the simulation and optimization by proposing a methodology to develop

compact models that will help the designer predict the performance for different design

parameters of the silicon nitride ring. In addition, once we have fabricated rings, we

can use measurements to tune the model to the particular fabrication process. We can
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also use these measurements to extract geometric variations that the rings experience

during fabrication.

(a)

(b)

(c)

Figure 4-1: (a) The silicon nitride all pass ring used, (b) geometry of the rib silicon
nitride ring fabricated, (c) layout of the different fabricated rings.
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4.1 Fabrication and Measurements1

Different all pass rib silicon nitride rings as shown in Fig. 4-1(a-b) are designed, with

radii (𝑅) ranging from 20 𝜇m to 160 𝜇m and gaps (𝐺) ranging from 0.2 𝜇m to 1.6 𝜇m.

We have a total of 48 unique rings fabricated on a 6 inch wafer as shown in Fig. 4-1(c).

The insertion loss (IL) for each of these rings is measured for wavelength ranging from

1525 to 1610 𝑛𝑚 with a large number of points (216 points) sufficient to locate the

resonance locations (to within 1.297 × 10−3 𝑛𝑚). Figure 4-2(a) shows the insertion

loss as directly measured. A first step is to detrend the IL, i.e., remove the effect of

the grating coupler used for measurement, resulting in the ring transmission as shown

in Fig. 4-2(b).

(a) (b)

Figure 4-2: (a) The insertion loss measured for 𝑅 = 60 𝜇m and 𝐺 = 1 𝜇m. (b) The
measured insertion loss for the ring after detrending.

After detrending all 48 rings, some of the rings are found to be non-functional.

Specifically, all the rings having 𝑅 = 20 𝜇m and 𝑅 = 40 𝜇m with 𝐺 > 1 𝜇m are

non-functional; hence, only 39 rings are working, and used in subsequent analysis

below.

1These rings are designed, fabricated, and measured by Carlos A Rios Ocampo at MIT. The
analysis in this chapter is in collaboration with Carlos A Rios Ocampo and Zhengxing Zhang.
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4.1.1 Features Extraction

For each of the working rings, we extract features from the measured data, includ-

ing free spectral range (FSR), effective index (𝑛𝑒𝑓𝑓 ), group index (𝑛𝑔), resonance

wavelength for each mode (𝜆𝑟𝑒𝑠), coupling coefficient (𝑡), and loss (𝛼).

We start by calculating the FSR and the resonance locations for each resonance

mode. To calculate the effective index, we need to consider the resonance mode, with

𝑛𝑒𝑓𝑓 calculated based on the relation

𝑛𝑒𝑓𝑓 =
𝑀 · 𝜆𝑟𝑒𝑠

𝐿
(4.1)

where 𝑀 is the resonance mode, and 𝐿 is the ring circumference such that 𝐿 = 2𝜋𝑅.

To find 𝑀 , each ring is simulated in MODE [23] and the simulated 𝑛𝑒𝑓𝑓 near a

resonance of 1550 𝑛𝑚 is identified. For the given ring geometry and identified 𝑛𝑒𝑓𝑓 ,

the corresponding 𝑀 is calculated. This resonance mode 𝑀 is then used to calculate

the 𝑛𝑒𝑓𝑓 for each of the extracted resonances for that ring. The calculated 𝑛𝑒𝑓𝑓 values

are shown in Fig. 4-3, where each cross represents an 𝑛𝑒𝑓𝑓 for a specific resonance

wavelength for each of the rings. Finally, to choose the 𝑛𝑒𝑓𝑓 values that are closest

to the simulation, i.e., to choose the resonance wavelength, we compare the extracted

values to the simulated values (solid line drawn in Fig. 4-3). Accordingly, the data

points in black stars are the points that we choose to be our effective refractive indices

for our rings, with the corresponding wavelength as our chosen 𝜆𝑟𝑒𝑠.

Now, to calculate the group index (𝑛𝑔) we use the relation:

𝑛𝑔 =
𝜆2
𝑟𝑒𝑠

𝐹𝑆𝑅 · 𝐿
(4.2)

where 𝜆𝑟𝑒𝑠 is the resonance wavelength. The calculated 𝑛𝑔 is different for each of the

rings, with an example for one ring geometry shown in Fig. 4-4.

The final feature that we care to extract is the coupling coefficient (𝑡). However,

calculating 𝑡 is challenging as it is an indirect calculation. To do so, we need to find

the extinction ratio (𝜀) as well as the finess (𝑓), based on [49]. This is because the

extinction ratio, as shown in Eq. 4.3, can be calculated from the measurement data
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Figure 4-3: The effective refractive indices 𝑛𝑒𝑓𝑓 calculated from the measurement
data (+ symbols), compared to the MODE simulated values (line).

Figure 4-4: Group index calculated from measurement data for a silicon nitride ring
having 𝑅 = 60 𝜇m and 𝐺 = 1 𝜇m.
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by dividing the maximum and minimum transmissions, but it is also a function of the

coupling coefficient (𝑡) as well as the loss (𝛼). Similarly, the finess can be calculated

from the measurements by dividing the FSR and the FWHM as in Eq. 4.4, and it

can also be expressed in terms of 𝑡 and 𝛼, as in Eq. 4.5:

𝜀 =
𝑇𝑚𝑎𝑥

𝑇𝑚𝑖𝑛

= [
𝛼 + 𝑡

𝛼− 𝑡

1 − 𝛼𝑡

1 + 𝛼𝑡
]2 (4.3)

𝑓 =
𝐹𝑆𝑅

𝐹𝑊𝐻𝑀
(4.4)

cos(
𝜋

𝑓
) =

2𝛼𝑡

1 + 𝛼2𝑡2
(4.5)

where 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 are the maximum and minimum transmission, respectively, and

FWHM is the full width half maximum value for the transmission.

Hence, calculating 𝜀 and 𝑓 from the measurements and from equations 4.3 and 4.5

based on solving these two equations, will result in two roots: one for the loss and the

other for the coupling [49]. In order to find the coupling coefficient, i.e., decide which

of the roots is 𝑡, we need to use the fact that, for rings, if the gap is kept constant

then the coupling coefficient is supposed to be the same for different radii. Also, if the

radius is kept constant, the loss should be constant for different gaps. Accordingly,

for each radius, we start by identifying the loss to be the responses that are similar,

as in Fig. 4-5, and for each gap, we identify the responses that are similar to be the

coupling coefficient, as shown in Fig. 4-6. In this way, the coupling coefficient for

each ring is extracted.

4.1.2 Geometric Extraction

Fabricating the structure enables us to infer the geometric spatial variations in silicon

nitride width (𝑊 ), thickness (𝑇 ) and height (ℎ). To find the spatial maps for these

variations, we need to relate the change in the parameter features that we extracted to

the change in the geometry [42]. For our geometric variations, we have three values;
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(a) (b) (c)

(d) (e) (f)

Figure 4-5: Inferring the loss from solving Eq. 4.3 and Eq. 4.5 by using the fact that,
for the same radius (𝑅 = 60 𝜇m in these figures), the loss is the same for different
gaps. (a) 𝐺 = 0.6 𝜇m, (b) 𝐺 = 0.8 𝜇m, (c) 𝐺 = 1 𝜇m, (d) 𝐺 = 1.2 𝜇m, (e)
𝐺 = 1.4 𝜇m, (f) 𝐺 = 1.6 𝜇m. The red line highlights the loss 𝛼 extracted in each
case.
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(a) (b) (c)

(d) (e) (f)

Figure 4-6: Inferring the coupling from solving Eq. 4.3 and Eq. 4.5 by using the fact
that, for the same gap (𝐺 = 1.2 𝜇m in these figures), the coupling coefficient is the
same for different radii. (a) 𝑅 = 60 𝜇m, (b) 𝑅 = 80 𝜇m, (c) 𝑅 = 100 𝜇m, (d)
𝑅 = 120 𝜇m, (e) 𝑅 = 140 𝜇m, (f) 𝑅 = 160 𝜇m. The red line highlights coupling
coefficient 𝑡 extracted in each case.
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so we need three feature parameters. We relate geometry variations to extracted

measurement feature as:

⎡⎢⎢⎢⎣
∆𝑊

∆𝑇

∆ℎ

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝛿𝑛𝑔

𝛿𝑊

𝛿𝑛𝑔

𝛿𝑇

𝛿𝑛𝑔

𝛿ℎ

𝛿𝜆𝑟𝑒𝑠

𝛿𝑊
𝛿𝜆𝑟𝑒𝑠

𝛿𝑇
𝛿𝜆𝑟𝑒𝑠

𝛿ℎ

𝛿𝑡
𝛿𝑊

𝛿𝑡
𝛿𝑇

𝛿𝑡
𝛿ℎ

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

∆𝑛𝑔

∆𝜆𝑟𝑒𝑠

∆𝑡

⎤⎥⎥⎥⎦ (4.6)

where ∆𝑛𝑔, ∆𝜆𝑟𝑒𝑠, and ∆𝑡 are the differences between the simulation-generated and

fabrication-calculated values for group index, resonance wavelength, and coupling

coefficient, respectively. Here ∆𝑊 , ∆𝑇 and ∆ℎ are the variation in the ring width,

thickness, and height, respectively. In addition 𝛿𝑛𝑔

𝛿𝑊
and 𝛿𝑛𝑒𝑓𝑓

𝛿𝑊
are the sensitivity of

the group and effective indices to the width variations. Similarly, 𝛿𝑛𝑔

𝛿𝑇
, 𝛿𝑛𝑒𝑓𝑓

𝛿𝑇
, 𝛿𝑛𝑔

𝛿ℎ
and

𝛿𝑛𝑒𝑓𝑓

𝛿ℎ
are the sensitivities of group and effective indices to the thickness and height

variations. Finally, 𝛿𝑡
𝛿𝑊

, 𝛿𝑡
𝛿𝑇

, and 𝛿𝑡
𝛿ℎ

are the sensitivities of the coupling coefficient due

to variations in width, thickness, and height, respectively.

To calculate the sensitivity matrix, i.e., the sensitivities of the features due to

variations in the geometry, we use MODE [23] simulations, where we vary the width,

thickness or height and calculate the 𝑛𝑒𝑓𝑓 and 𝑛𝑔 values at 1550 𝑛𝑚. Figures 4-7

shows the sensitivity for width variation, where this value is different for each radius.

Similarly, Figs. 4-8 and 4-9 show the sensitivity at 1550 𝑛𝑚 for thickness and height

variations, respectively. For coupling sensitivity calculations, FDTD [22] simulations

are used to find the coupling for each of the rings, as the coupling is different for each

ring and gap value. Figure 4-10 shows the coupling sensitivity for selected rings as

simulated with FDTD.

Now, after all of the sensitivity matrix entries are calculated using simulations

for each of the silicon nitride rings, we need to find the difference between the de-

signed (simulation) values and the fabrication-extracted values for the effective index,

group index and coupling, i.e., find ∆𝑛𝑒𝑓𝑓 , ∆𝑛𝑔, and ∆𝑡. Using FDTD simulations for

coupling calculation and MODE simulations for effective and group index calculation

we find the differences (∆𝑛𝑒𝑓𝑓 , ∆𝑛𝑔). Figure 4-11 shows the simulated and fabrication

extracted values for selected rings.

95



(a) (b)

Figure 4-7: The sensitivity due to width variations at 1550 𝑛𝑚 in (a) effective index,
and (b) group index.

(a) (b)

Figure 4-8: The sensitivity due to thickness variations at 1550 𝑛𝑚 in (a) effective
index, and (b) group index.
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(a) (b)

Figure 4-9: The sensitivity due to height variations at 1550 𝑛𝑚 in (a) effective index,
and (b) group index.

(a) (b)

(c)

Figure 4-10: The coupling coefficient variation at 1550 𝑛𝑚 due to variations in silicon
nitride ring (a) width for 𝑅 = 60 𝜇m, (b) thickness for 𝑅 = 100 𝜇m, and (c) height
for 𝑅 = 120 𝜇m.
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Figure 4-11: The coupling coefficient for silicon nitride rings with 𝑅 = 60 𝜇m and
different gaps. The solid lines are the simulation values and the dashed lines are the
fabrication-extracted values.

Using the calculated sensitivity matrix and the difference between fabrication and

simulations for the features, Eq. 4.6 can be used to find the variations in geometry,

i.e., in width, thickness, and height, due to fabrication. Figure 4-12 shows the his-

togram of the extracted variations in width, thickness, and height. For the width

variation (∆𝑊 ), it has a standard deviation of 42 𝑛𝑚; the standard deviation for

∆𝑇 is 1.76 𝑛𝑚; and finally, for the height variation (∆ℎ), the standard deviation is

5.53 𝑛𝑚. Figure 4-13 shows the spatial variation for the extracted geometries overlaid

on the wafer layout for the multiple rings.

4.2 Models

Since the simulation of a whole ring with large radius (like our silicon nitride rings

having 𝑅 ≥ 20 𝜇𝑚) using FDTD can be difficult and slow, it is common to divide

it into sub-components and simulate each separately. Specifically the half ring is

simulated to obtain the coupling coefficient or S-parameters using FDTD [22] as shown

surrounded by the dotted box in Fig. 4-1(a), and the rest of the remaining passive

bent sections, shown surrounded by the solid box in Fig. 4-1(a), are characterized

using MODE [23] simulations. However, in this case of silicon nitride rings that have
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(a) (b)

(c)

Figure 4-12: The histograms for the extracted silicon nitride geometric variations
using Eq. 4.6 for (a) width, (b) thickness, and (c) height.
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(a) (b)

(c)

Figure 4-13: The spatial variation map of the extracted silicon nitride geometric
variations in Fig. 4-12, for (a) width, (b) thickness, and (c) height.
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radii that can reach up to 160 𝜇m, even simulating the half ring requires a long time

in FDTD; this can reach more than 12 hours for large radii. So, to obtain the coupling

coefficient and S-parameters for a given ring, we choose to simulate a smaller portion

of the ring. In particular, we simulate 1/6 of the ring as shown in Fig. 4-14(a); the

resulting S-parameters from the simulation are shown in Fig. 4-14(b).

(a)

(b)

Figure 4-14: (a) Silicon nitride ring simulation setup in FDTD, where the ports
are placed at angles 30𝑜 and -30𝑜 with respect to the center of the ring. (b) The
S-parameters at 1550 𝑛𝑚 for ring with 𝑅 = 60 𝜇m and 𝐺 = 0.6 𝜇m.

As mentioned earlier, the long simulation times for generating S-parameters mo-

tivates the development of compact models for these silicon nitride rings, i.e., for

parameterized models able to generate 𝑆𝑖𝑗(𝑅,𝐺, 𝜆) where 𝑖 and 𝑗 are the input and

output ports. To develop the compact models, we start by choosing a DOE consisting

of 13 different radius and gap combinations for simulations. Using these, the corre-

sponding 13 S-parameter spectra are generated using FDTD simulation. We further
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divide these 13 S-parameter datasets into training and test sets, with ten used for

training and the rest for testing. For the different S-parameters, we make use of

symmetry as observed in Fig. 4-14, such that:

𝑆11 = 𝑆22, 𝑆12 = 𝑆21

𝑆13 = 𝑆24, 𝑆14 = 𝑆23

𝑆31 = 𝑆42, 𝑆32 = 𝑆41

𝑆33 = 𝑆44, 𝑆34 = 𝑆43

A third-order polynomial regression (in 𝑅, 𝐺, and 𝜆) is used for the S-parameter

magnitude and phase models. The coefficient of determination (𝑅2) for all of the

models is at least 0.95; i.e., the model is capable of explaining 95% of the data spread

in training data. Figure 4-15 shows the 𝑆12 magnitude and phase response for a

training and a test set. For the phase models, the difference between the model and

the simulation is very small, ∼0.1 rad; and for the magnitude, this difference for the

training set is 0.005, and for the test set it is 0.008.

To simulate the whole ring, in addition to the S-parameters corresponding to

the coupling region characteristic making up 1/6 of the ring behavior, the rest of

the ring consisting of the bent waveguide section in Fig. 4-14(a) can be character-

ized in MODE. Using MODE simulation results for the bent section along with the

S-parameters, either generated from direct simulation or generated by model, we sim-

ulate the whole ring in the circuit simulator INTERCONNECT [39] using the circuit

shown in Fig. 4-16(a). We obtain the responses in Fig. 4-16(b). It is seen that the

behavior of the silicon nitride ring using the model-generated and the simulation-

generated S-parameters are in good agreement.

We further compare the behavior of the rings as fabricated and measured with

circuit simulations using the S-parameters generated from compact model; the results

are displayed in Fig. 4-17. We see that there is a slight difference in the FSR between

the fabricated (3.62) and the simulated (3.56) ring. This could be due to the geometric

variations that the fabricated rings experience, as shown previously in Section 4.1.2.
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(a) (b)

(c) (d)

Figure 4-15: Comparison of 𝑆12 polynomial regression modeling and direct simulation
behavior for silicon nitride rings. (a) Magnitude for training set with 𝑅 = 80 𝜇m and
𝐺 = 0.8 𝜇m, and (b) phase for training set with 𝑅 = 80 𝜇m and 𝐺 = 0.8 𝜇m. (c)
Magnitude for test set with 𝑅 = 60 𝜇m and 𝐺 = 0.6 𝜇m, and (d) phase for test set
with 𝑅 = 60 𝜇m and 𝐺 = 0.6 𝜇m.
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Also, the extinction ratio of the simulated ring is less than that of the fabricated ring,

since the fabricated ring has more losses.

(a)

(b)

Figure 4-16: (a) Circuit used in INTERCONNECT to simulate the silicon nitride
rings. (b) Using simulated and model-generated S-parameters to simulate a ring with
𝑅 = 60 𝜇m and 𝐺 = 0.6 𝜇m.

4.3 Summary

We demonstrate a methodology to provide S-parameter based predictive models as

a function of the silicon nitride ring coupling gap (𝐺), radius (𝑅), as well as the

operating wavelength (𝜆). These models can be used to generate the S-parameters

for a given ring design that can be used in circuit simulation to analyze or opti-

mize ring performance, for such parameters as free spectral range (𝐹𝑆𝑅), resonance
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Figure 4-17: Behavior for a ring with 𝑅 = 60 𝜇m and 𝐺 = 0.6 𝜇m, from fabrication
and using the model-generated S-parameters in circuit simulation.

locations (𝜆𝑟𝑒𝑠), and the group index (𝑛𝑔). We validate and test the model using fab-

ricated rings, where we compare the performance extracted from fabrication with the

model’s predicted performance, for various design parameters. This compact mod-

eling approach can help designers narrow, if not pre-define exactly, the parameters

that can be used to achieve the desired performance specification, and thus speed

up design simulation and optimization. Moreover, as we have fabricated devices, we

use measurement data to predict the within-wafer silicon nitride width, height and

thickness variations for the foundry in which the devices are fabricated.

105



106



Chapter 5

Variation Extraction and

Decomposition from Measurements

The DFM methods presented in previous chapters enable prediction of photonic be-

havior in the presence of process variations. However, process variations can depend

on the foundry, process steps, location within the wafer, or surrounding layout context

within a die (e.g., layout pattern density) [50]. Accordingly, a complete DFM flow (as

in Fig. 1-4) requires methods to extract and decompose [51] variation dependencies

and models from measurements.

In this chapter, we present a case study demonstrating methods to extract vari-

ation statistics, including the use of variation test chips. Section 5.1 presents the

designed test structure and test chip, and summarizes measurements from a fabri-

cated test wafer. The extraction of geometric variations from these measurements is

described in Section 5.2. This includes decomposition into die-to-die variation, silicon

layout pattern density dependent variation, and residual variation.

5.1 Test Structure and Measurements

We use a slab ring resonator with a radius of 5 𝜇𝑚, width of 500 𝑛𝑚, and thickness of

220 𝑛𝑚, as the test structure in our test chip. The overall chip is 3.5 𝑚𝑚× 4 𝑚𝑚 in

size, and is contained within a larger multi-project wafer (MWP) reticle. The slab ring
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resonator is replicated within the test chip and placed in different pattern densities,

Fig. 5-1(a). We introduce nine different regions with specified layout pattern density

of etched silicon, ranging from about 5% to 55%, as created by different designed

dummy fill pattern densities. The test chip is then replicated across the wafer, with

every other chip measured, Fig. 5-1(b). With these replicas, we obtain both the

statistics of that ring resonator behavior, and are able to extract the underlying

spatial variations.

(a) (b)

Figure 5-1: (a) Slab ring resonators, in red box, replicated within the test chip with
different pattern densities across the test chip. (b) Every other chip on the 300 𝑛𝑚
wafer is measured, with locations as shown.

The insertion loss for each of these ring replicas is measured using grating couplers,

as shown in Fig. 5-2(a). After detrending, an example (normalized) transmission is

shown in Fig. 5-2(b). From these, we extract the group index as well as the resonance

wavelength (𝜆𝑟𝑒𝑠). This is done by extracting the locations of resonance and the free

spectral range (FSR). Then the group index is found such that:

𝑛𝑔 =
𝜆2
𝑟𝑒𝑠

𝐹𝑆𝑅 · 𝐿
(5.1)

where 𝐿 is the circumference of the ring, 𝐿 = 2𝜋𝑅 with designed ring radius 𝑅.
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(a) (b)

Figure 5-2: (a) Insertion loss measured for one of the fabricated rings including grating
coupler effects. (b) The insertion loss after de-trending and removing the effect of the
measurement setup.

Both of the extracted quantities (𝑛𝑔 and 𝜆𝑟𝑒𝑠) vary with the width and thick-

ness [41], and are related by the first order sensitivity (sensitivity matrix) with respect

to width and thickness as in Eq. 5.2. The sensitivity matrix can be calculated using

FDTD simulation for our designed structure. The width results are shown in Fig. 5-3,

giving 𝛿𝜆𝑟𝑒𝑠

𝛿𝑊
= 0.5859 (𝑛𝑚/𝑛𝑚) and 𝛿𝑛𝑔

𝛿𝑊
= −0.00165 (/𝑛𝑚). For thickness, the results

are shown in Fig. 5-4, and give Δ𝜆𝑟𝑒𝑠

𝛿𝑇
= 1.3633 (𝑛𝑚/𝑛𝑚) and 𝛿𝑛𝑔

Δ𝑇
= 0.00109 (/𝑛𝑚).

⎡⎣∆𝑊

∆𝑇

⎤⎦ =

⎡⎣ 𝛿𝑛𝑔

𝛿𝑊

𝛿𝑛𝑔

𝛿𝑇

𝛿𝜆𝑟𝑒𝑠

𝛿𝑊
𝛿𝜆𝑟𝑒𝑠

𝛿𝑇

⎤⎦−1 ⎡⎣ ∆𝑛𝑔

∆𝜆𝑟𝑒𝑠

⎤⎦ (5.2)

5.2 Geometry Extraction

We can use Eq. 5.2 to infer width and thickness variations for each test chip fab-

ricated in a specific foundry. In our experiment, our extractions are done for the

resonance mode near wavelength of 1531 𝑛𝑚. One thing to note is that the silicon

layer thickness is assumed to be constant within each individual test chip, due cor-

relation lengths of 4 𝑛𝑚 to 5 𝑛𝑚 within wafer [41, 52, 53]; accordingly, thickness

variations are considered to be a die-to-die variation (with 30 values only). Using this

information with Eq. 5.2, we extract the values for ∆𝑊 and ∆𝑇 geometric variations.
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(a) (b)

(c) (d)

Figure 5-3: The sensitivity due to width variations. (a) Change in 𝜆𝑟𝑒𝑠, (b) change in
group index (𝑛𝑔), (c) the first order sensitivity in 𝜆𝑟𝑒𝑠 due to width ( 𝛿𝜆𝑟𝑒𝑠

𝛿𝑊
) , (d) the

first order sensitivity in 𝑛𝑔 due to width ( 𝛿𝑛𝑔

𝛿𝑊
).
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(a) (b)

(c) (d)

Figure 5-4: The sensitivity due to thickness variations. (a) Change in 𝜆𝑟𝑒𝑠, (b) change
in group index (𝑛𝑔), (c) the first order sensitivity in 𝜆𝑟𝑒𝑠 due to thickness ( 𝛿𝜆𝑟𝑒𝑠

𝛿𝑇
) , (d)

the first order sensitivity in 𝑛𝑔 due to thickness ( 𝛿𝑛𝑔

𝛿𝑇
).
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(a) (b)

Figure 5-5: (a) Die-to-die variation statistics for the thickness variation ∆𝑇 across
the wafer. (b) Spatial variation map for the thickness variation across the wafer.

For thickness, the histogram of the extracted values is shown in Fig. 5-5(a), where

∆𝑇 is found to have a mean of 2.9047 𝑛𝑚 and variance of 1.76 𝑛𝑚. The spatial

map of the ∆𝑇 variation across the wafer is shown in Fig. 5-5(b), which indicates a

center-low thickness variation pattern at the wafer scale.

For the width variations ∆𝑊 , the variations are assumed to depend or vary based

on location within the test chip as well as across the wafer. Thus, we get an overall

larger distribution in device-to-device variation statistics. Figure 5-6 shows the his-

togram for the extracted width variations, where ∆𝑊 has a mean of −6.72 𝑛𝑚 and

a standard deviation of 4.4789 𝑛𝑚.

However, with width we are also interested in a systematic width variation de-

pendency due to the plasma etch process. Etch variations are known to depend on

the local or effective pattern density of structures nearby to or around any given

structure, resulting in within die variation [54, 55].

Accordingly, it is important to quantify and extract the effect of the effective

layout pattern density on the etch width. To calculate the effective pattern density,

we need to find the length scale or correlation length (𝜎) over which we average layout

pattern density to get the effective pattern density. For our data, a correlation length

of 500 𝜇𝑚 is found to give the least mean square error for a second order fit of ∆𝑊

and 𝜌𝑒𝑓𝑓 , Fig. 5-7. These results are similar to those reported elsewhere for waveguide

112



Figure 5-6: Histogram for the extracted width variation, ∆𝑊 , including both within-
die and die-to-die variations.

width variations in a 193 𝑛𝑚 lithography process [55].

The width variations can be further decomposed into multiple components. First,

die-to-die is the variation in mean width within a test chip, as shown in Fig. 5-

8(a). Second is width variation due to effective layout pattern density, as in Fig. 5-

8(b). This can be very useful in evaluating dummy fill strategies or to make layout

modifications to ensure that width variations, are kept within accepted range. Finally,

there is some residual or random width variations as shown in Fig. 5-8(c).

Accordingly, we can describe width variation as:

𝑊𝑖,𝑥,𝑦 = 𝑊𝑛𝑜𝑚 + ∆𝑊𝑑𝑖 + 𝑓(𝜌𝑒𝑓𝑓 , 𝑥, 𝑦) + ∆𝑊𝑟𝑒𝑠 (5.3)

where 𝑊𝑖,𝑥,𝑦 is the width of device in die 𝑖 at position 𝑥 and 𝑦 within the die. Here,

𝑊𝑛𝑜𝑚 is the nominal width (it is 500 𝑛𝑚 in our test structure). Variation ∆𝑊𝑑𝑖 is the

die offset, or in other word, the variation in the device width due to its presence in

die 𝑖. This is the mean width variation within the die from extraction. The function

𝑓(𝜌𝑒𝑓𝑓 , 𝑥, 𝑦) is the shift in the width of the device at position 𝑥 and 𝑦 due to the

effective pattern density. Finally, ∆𝑊𝑟𝑒𝑠 is random/residual variation not included

or explained by the die mean offset or the effective pattern density.

Such methods that include design of test structures (e.g., ring resonators) and
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(a)

(b)

Figure 5-7: (a) Effective layout pattern density for the test chip shown in Fig. 5-1,
based on extracted spatial averaging length of 500 𝜇𝑚. (b) The fitting of 𝜌𝑒𝑓𝑓 and
∆𝑊 for different dies.
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(a) (b)

(c)

Figure 5-8: (a) Spatial variation map for the mean width within each die across the
wafer. (b) Width variation ∆𝑊 as a function of effective layout pattern density.
(c) Residual width variation.

variation decomposition using test structure measurements provide statistics and de-

pendencies of the underlying process variations. The variation statistics and models

can then be used in conjunction with variation-aware compact models to analyze

variation yield impact and to provide photonic design rule guidelines for acceptable

yield. This information will help designers when placing their components in a pho-

tonic integrated circuit in order to maximize the yield and minimize the effect of

process variations.
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5.3 Summary

We design and measure test chips based on a slab ring resonator test structure to

extract key process variations. We explore layout dependencies by applying variable

pattern densities within the die. The die is repeated across the wafer, enabling die-to-

die variation extraction. The aim of this method is to extract both the effect of pattern

density on the behavior of the test structure, as well as extract the spatial correlation

relation within die and across the wafer. Based on test structure measurement and

geometric variation extraction, we then separate variations due to pattern density

effect, location within wafer, and random residuals not captured in the pattern density

effect or wafer location effect. This information will help designers to analyze and

maximize yield, in conjunction with variation-aware compact models.
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Chapter 6

Active Devices: Modulators

In the previous chapters, we have seen that process variations, both systematic and

random, can cause substantial shift and degradation in photonic performance and

consequently negatively affect yield. Accordingly, it becomes clear that for a pho-

tonic integrated circuit (PIC), the availability of means to correct for these process

variations becomes crucial. For this purpose, modulation rises as a well-known ap-

proach to correct for both operating condition and fabrication variations [56, 57].

More generally, optical modulation is an essential functionality in optical inter-

connect solutions. Optical modulators are key building-blocks in silicon photonics, as

they are used to modulate or vary the propagating light beam properties. Being an

important photonic component, we are also interested in understanding and modeling

how modulators are impacted by process variation.

In this chapter, we study active photonic components, specifically elements used

to implement modulators. This enables us both to understand variation impact in

these devices, and to examine their use to correct or compensate for inherent process

variations in PICs. In Section 6.1, we review dependencies of the index of refraction

on carrier concentration, particularly PN junctions. We describe our simulation setup

in Section 6.2, and model sensitivities to different process variations. In Chapter 7,

we use these modules for larger PIC variation analysis and variation compensation.
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6.1 Plasma Dispersion Effect

Optical modulation in photonic circuits is implemented by devices that cause direct

changes in optical intensity via absorption, or cause changes in the refractive index

of the material (and hence the phase of a propagating wave) that can be converted

to an intensity change via an interferometer or a resonator (e.g., a ring resonator and

Mach-Zehnder interferometer) [58]. Applying an electric field is an attractive way to

achieve modulation, since modulation can be achieved with small current, with low

power as well as fast response.

The plasma dispersion effect [59] defines the relation between the refractive index,

both real and imaginary parts, and the carrier concentrations modified either by

removing or injecting carriers. The change in the refractive index real part (∆𝑛) and

imaginary part, absorption (∆𝛼), according to the plasma dispersion effect is updated

in [60] and defined as:

∆𝑛 (1550 𝑛𝑚) = −5.4 × 10−22∆𝑁1.011 − 1.53 × 10−18∆𝑃 0.838 (6.1)

∆𝛼 (1550 𝑛𝑚) = 8.88 × 10−22∆𝑁1.167 + 5.84 × 10−20∆𝑃 1.109 [𝑐𝑚−1] (6.2)

where ∆𝑁 and ∆𝑃 are the changes in carrier densities for electrons and holes (𝑐𝑚−3),

respectively. The above relations for ∆𝑛 and ∆𝛼 variations can be extended to include

wavelength dependence as well [5], as follows:

∆𝑛(𝜆) = −3.6 × 10−10𝜆2∆𝑁 − 3.51 × 10−6𝜆2∆𝑃 0.8 (6.3)

∆𝛼(𝜆) = 3.52 × 10−6𝜆2∆𝑁 + 2.4 × 10−6𝜆2∆𝑃 [𝑐𝑚−1] (6.4)

where 𝜆 is the wavelength in meters.

6.1.1 PN Junction

Accordingly, to change the refractive index, we need to modify the charge density.

Manipulation of the charge density can be achieved using the depletion mechanism
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as in a PN junction, as shown in Fig. 6-1. In our application, the PN junction is a rib

waveguide that is doped in such a way that enables modulation in silicon photonics [5]

using the plasma dispersion effect for controllable electro-optical phase shift. The

doping is done with a mask-defined doping boundary. When the PN junction is reverse

biased, a depletion region with no free carriers is formed; consequently, the effective

index increases and the absorption decreases based on Eqs. 6.3 and 6.4. This depletion

region formed between the N and P doping regions increases as the applied reverse

voltage increases as shown in Fig. 6-5. We examine integrating this PN semiconductor

junction into devices (e.g., ring resonator) to achieve efficient modulation, relying on

the plasma-dispersion effect.

(a)

Figure 6-1: A cross section of the PN junction schematic, where 𝑥𝑛 and 𝑥𝑝 are the N
and P doping mask offsets.

6.2 Structure Modulated

Ring resonators are often modulated and used for high speed data transfer [61, 62]. In

our study, we examine a ring resonator modulated with a PN junction. The geometry

of the silicon ring modulator used is adopted from [63], having a radius of 10 𝜇𝑚,

width of 450 𝑛𝑚, thickness of 220 𝑛𝑚, and gap of 400 𝑛𝑚.
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Figure 6-2: Simulation flow for a ring modulator, including both active and passive
photonic device components.

6.2.1 Simulation setup

Usually for simulating an optical ring modulator, the device is divided into some

number of sub-components, where the designer uses a simulation flow, as shown in

Fig. 6-2, to characterize each of these sub-components. We start with an FDTD [22]

simulation to obtain the coupling coefficient (𝑡) and S-parameters as a function of

frequency for the waveguide coupler section (surrounded by a solid box in Fig. 6-3).

We use MODE [23] simulations to characterize the passive (un-modulated) straight

and bent waveguides (surrounded by dashed box in Fig. 6-3), where effective index,

group index, and dispersion as a function of frequency of interest are calculated. For

the active, modulated, waveguide section (surrounded by dotted box in Fig. 6-3),

CHARGE [24] simulator is used to obtain the spatial distribution of charge carriers

as a function of bias voltage applied. These results are then used in MODE to

calculate the perturbation in effective index as a function of bias voltage. Finally,

these simulation results for the different sub-components are combined in the photonic

circuit simulator INTERCONNECT [39] to simulate the whole structure of the ring

modulator.

Applying different reverse bias voltages to the PN region changes the depletion
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Figure 6-3: Ring modulator used in our analysis. Solid box surrounds the coupler
waveguide; dashed boxes surround the passive straight and bent waveguides, and
finally the dotted box surrounds the active waveguide.The dotted pattern in the P
doping shows the over exposure case while the dashed pattern represents the under
exposure case.

region width, as seen in Fig. 6-5 as more free carriers move towards the applied voltage

leaving behind charged ions and thus the carrier concentration changes, that changes

the effective refractive index, which in turn causes a shift in the resonance locations

as seen in Fig. 6-4.

We examine the impact of variations in the active modulation section (CHARGE

simulation). Specifically, we are interested in the effect of the doping concentration

variation and mask exposure variation on the response of the modulated ring. To

analyze this, we use CHARGE simulation to understand variation impact on the

active PN region.

6.2.2 Mask Exposure Variation

For the PN junction, the doping area is defined by a mask that specifies the area

within which dopants are allowed to be incorporated into the silicon. When the

mask exposure step experiences variation, this causes a variation in the PN junction

geometry; i.e., doping locations are shrunk or expanded around the ring from where

the intended locations are, as shown in Fig. 6-3. This mask exposure variation can
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(a)

Figure 6-4: The effect of varying the reverse voltage applied to the PN junction on
resonance wavelength of the ring resonator.

(a)

(b)

Figure 6-5: Charge distribution in the PN junction with (a) 0 V applied, and (b) -4 V
reverse bias applied.
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affect device performance. To model the effect of this exposure variation on the

modulator directly would require many simulations, particularly if we are to consider

many different mask exposure variations.

As with the passive components in earlier chapters, here we seek to develop sim-

plified compact models that can predict the effect of mask exposure variation on

the different performance parameters. We start by specifying a DOE for the mask

position relative to the nominal case. The nominal N-doping mask edge is located

50 𝑛𝑚 in the positive direction away from the waveguide center (𝑥𝑛 = 50 𝑛𝑚), and

the P-doping mask edge is located 50 𝑛𝑚 in the negative direction (𝑥𝑝 = 50 𝑛𝑚), as

shown in Fig. 6-1.

For our DOE, we consider maximum variations up to 20% (±10 𝑛𝑚), such that

either masks can be expanded or shrunk 10 𝑛𝑚 in either direction, i.e., towards or

away from the waveguide center. Using the combined simulation setup described in

Section 6.2.1, we perform simulations at nominal, ±1 𝑛𝑚 to ±10 𝑛𝑚 with a step of

1 𝑛𝑚 for mask edge variations. The change in the ring resonance frequency due to

mask exposure variation is shown Fig. 6-6(a). These can be attributed to the change

in the effective index as a function of voltage, shown in Fig. 6-6(b).

We now build models that capture the effect of the mask exposure variation on the

various performance parameters of the modulator. We fit regression models for each

of our key performance parameters 𝑓𝑖, including extinction ratio, FSR, capacitance,

and resonance wavelength as a function of the N and P mask exposure variation

and the bias voltage, 𝑓𝑖(∆𝑥𝑁 ,∆𝑥𝑃 , 𝑉 ). Our DOE simulation points are divided into

training and test sets (70/30 split ratio). A third-order polynomial regression is used

to develop the response surface models. The 𝑅2 values for all of these responses is at

least ∼0.97. Figure 6-7 shows selected response surface models, illustrating fits for

extinction ratio and quality factor as a function of mask exposure variation on the

performance.
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(a)

(b)

Figure 6-6: The effect of a PN junction P doping side mask exposure variation on,
(a) the resonance wavelength (b) the effective refractive index variation (∆𝑛𝑒𝑓𝑓 ) as a
function of applied voltage, for different ∆𝑃 .
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(a)

(b)

Figure 6-7: Response surface models developed at -10 V for mask location variation
impact, (a) the extinction ratio, and (b) the ring quality factor. The red dots represent
the DOE data points used for training and testing.
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6.2.3 Doping Concentration

The doping concentration can vary from one location to another within the die or

wafer, due to dose, energy, angle, or other ion implant dependencies. Accordingly,

understanding the effect of doping concentration variation is also of interest.

We start by considering up to 20% variation in the doping concentration in either N

or P doping nominal (2.5×1017 𝑐𝑚−3) values. The resulting variation in the resonance

location is shown in Fig. 6-8. This is caused by the variation in the effective index,

Fig. 6-9. From Figs. 6-8 and 6-9, we can see that the variations in the P-doping

are more impactful than the N-doping variation, since the spread of the variation

in ∆𝑛𝑒𝑓𝑓 is larger with the P doping variation as reflected by a larger shift in the

resonance location. This is expected based on Eq. 6.3.

Similar to the case of mask exposure variation, we build response surface models

that capture the effect of the doping concentration variation on the various perfor-

mance parameters. In this case, functions 𝑓𝑖 for each performance parameter are

developed to depend on the N and P doping concentration and the bias voltage with

the form 𝑓𝑖(∆𝑁 ′,∆𝑃 ′, 𝑉 ), where ∆𝑁 ′ = 𝑁
𝑁𝑛𝑜𝑚𝑖𝑛𝑎𝑙

and ∆𝑃 ′ = 𝑃
𝑃𝑛𝑜𝑚𝑖𝑛𝑎𝑙

. Our DOE

simulation data points are again divided into training and test sets, with 70/30 split

ratio. Polynomial regression, third-order in the features, is used to fit the response

surface models. The 𝑅2 values for all of these responses is at least ∼0.98. Figures 6-

11 and 6-10 show example response surface models that capture the effect of doping

concentration variation on these performance parameters.

6.3 Summary

The effect of representative process variations within the active region of a silicon ring

modulator on the modulation is examined. Specifically, the effect of mask exposure

and doping concentration variation is analyzed. The effect of the doping variation

is greater than the effect of mask exposure variation. The mask exposure variation

causes a variation in the resonance wavelength of almost 0.005 𝑛𝑚 when there is an

over exposure 10 𝑛𝑚 in the mask location. However, for the case of doping variation,
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(a)

(b)

Figure 6-8: The effect of doping variation at 0 V on the resonance wavelength when
(a) N-doping changes from -20% to +20%, and (b) P-doping changes from -20% to
+20%. The dashed line is the nominal doping case.
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(a)

(b)

Figure 6-9: The effect of doping variation at 0 V on the PN junction effective index
(∆𝑛𝑒𝑓𝑓 ) on PN junction when (a) N-doping is changing, and (b) P-doping is changing.
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(a)

(b)

Figure 6-10: Response surface models at -10 V for the doping concentration variation
impact, (a) the extinction ratio, and (b) the ring quality factor. The red dots represent
the data points used for training and testing.
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(a)

Figure 6-11: Response surface model for the doping concentration variation impact
on PN junction capacitance at -10 V.

the resonance wavelength shift is only 0.02 𝑛𝑚 with a 10% change in the doping con-

centration. These results show that the variation in the active (modulation) section

in the silicon ring resonator, i.e., due to mask exposure and doping concentration,

have much smaller impact than do geometric variation and LER discussed in previ-

ous chapters. However, the compact models relating voltage to modulation will find

additional application in Chapter 7, to variation compensation in PICs.
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Chapter 7

Photonic Integrated Circuit

Simulation with Variation Impact

Analysis

In this chapter, we use the models and analysis methods developed and presented in

the previous chapters, to simulate a larger photonic integrated circuit (PIC) system.

Importantly, these models and methods enable us to analyze the impact of process

variations on PIC performance. We compare the time and computational require-

ments needed for the simulation using the traditional simulation methods and the

use of our developed models and analysis.

Section 7.1 overviews the PICs considered here, and maps the components to

compact models developed in previous chapters. In Sections 7.2 and 7.3, we use circuit

simulation to analyze PIC behavior and obtain eye diagram metrics for checking the

interference of signal, and calculate the delay an 𝑁 CROW achieves. In Section 7.4,

we present thermal modulation for compensating for process variations, and the power

budget required for such compensation. Section 7.5 shows the effects of environmental

variations and compares it to process variations. Finally, Section 7.6 summarizes the

chapter.
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7.1 PIC Systems

We analyze three PICs systems examples, shown in Fig 7-1, using the previously de-

veloped compact models in previous chapters. Specifically, we use the compact model

for the half ring presented in Chapter 3 for variation analysis, and the modulator mod-

els presented in Chapter 6 for power and compensation analysis. A transceiver is an

important building block in telecommunications, used to transmit and receive data

over a data link. A key photonic building block of an optical transceiver is the ring,

either as a modulator at the transmitting end or as a filter at the receiving end, as

shown in Fig. 7-1(a). In addition to transceivers, we use the compact model to build

a CROW, as shown in Fig. 7-1(b). Thus, we first investigate the behavior of the PIC

using the half ring compact models we developed earlier, when it is fed by a modu-

lating signal generated by a pseudo-random bit sequence with bit-rate of 1 𝐺𝐵𝑖𝑡𝑠/𝑠,

shown in Fig. 7-2, and having a power level of 0 𝑑𝐵𝑚 (1 𝑚𝑊 ) to obtain the delay

the signal experiences and the response to a modulated input. Moreover, we use the

variation-aware compact models developed for the half ring to thermally modulate

ring, as shown in Fig. 7-1(c). This PIC setup will enable calculating the power budget

required to compensate for various process variations.

7.2 Eye Diagram

An eye diagram [64] represents the signal when repetitively sampled with respect to

time. It is a valuable means to qualitatively analyze and evaluate the behavior of the

system. The eye diagram calculated for the a single ring (transmitter ring modulator)

is shown in Fig. 7-3 which shows that the output drops about 35% which is related

to the transmission level of -2.3 dB. We also feed the modulated signal into a 28

ring CROW, to consider how this long structure would affect the signal. The output

signal at the drop port of the 28 ring CROW is shown in Fig. 7-4(a), and the eye

diagram of the signal received at the drop port at the passband frequency is shown

in Fig. 7-4(b). We see that the output signal has a level of ∼ 0.08 𝑚𝑊 which is an
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(a)

(b) (c)

Figure 7-1: (a) Block diagram for simulating transceiver circuit. (b) Simulation flow
for PIC consisting of N-rings having a modulated input signal using the developed
compact models foe the half ring in Chapter 3. (b) Simulation flow for thermal
modulation of a ring using the developed compact models in Chapters 3 and 6.

expected value based on the response of the 28 ring CROW shown in Fig. 3-3, which

has a passband with −11 𝑑𝐵. The eye diagram shows that the output signal will be

experiencing a bit error rate (BER) of 0, in this ideal case when there is no variation

or circuit and environmental noise.

7.3 Delay

The CROWs [3] are typically used as delay units or buffers, so measuring or being able

to predict the delay that an 𝑁 -ring CROW can provide becomes important, i.e., to

determine the number of rings (𝑁) needed to achieve a required delay. Accordingly,

we use the compact models developed for the half ring to analyze an 𝑁 -ring CROW.

The circuit simulation setup is shown in Fig. 7-5. We feed the circuit with an optical

impulse at 𝜆 = 1554.17 𝑛𝑚 (the CROW passband center) at time 𝑡0, and measure

the time 𝑡1 when the signal arrives at the drop port (port 2 in Fig. 7-5). The time
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Figure 7-2: Level of the input sequence with bitrate of 1 𝐺𝐵𝑖𝑡𝑠/𝑠 and power of 1 𝑚𝑊 ,
used to drive the ring modulator.

𝑡1 − 𝑡0 is the delay this 𝑁 -ring CROW would provide.

A 28 ring CROW and a 100 ring CROW are examined. For the 28 ring CROW,

the delay is found to be 60 𝑝𝑠, while for the 100 ring CROW it is 172 𝑝𝑠. These

results are close to those in [37] which reports 220 𝑝𝑠 for fabricated CROWs. This

discrepancy between the simulated and literature value is attributed to several factors,

among which is the slight difference in the CROW geometry.

It is to be noted that, in all of the above simulations, with either 1, 28 or 100 rings,

the simulation time to obtain eye diagram or find the delay is the INTERCONNECT

circuit simulation time; this ranges from seconds to a few minutes depending on the

circuit size. However, without the use of our S-parameter compact models, one would

have to simulate the half ring to get its S-parameters. In that case, the simulation time

would be dominated by the FDTD simulation step to generate the ring S-parameters,

which takes hours. By doing these simulations up front using DOE and constructing

the parameterized compact models, rapid PIC circuit evaluation, exploration, and

optimization becomes possible.
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Figure 7-3: Eye diagram for a single ring, calculated using the compact models de-
veloped in Chapter 3 for the half ring.

Figure 7-5: The circuit simulation setup used for measuring the delay of an 𝑁 ring
CROW.

7.4 Thermal Modulation and Compensation

In Chapter 6, we analyzed the electro-optical modulation of a ring resonator, and

considered its variation sensitivity. In terms of basic operation, electro-optical mod-

ulation of the ring causes a small shift or change in the resonance frequency, and

advantageously has a fast response time. Accordingly, electro-optical modulation is

usually used for data transfer.

For coarse tuning of the resonance frequency, i.e., to correct for process variations,

thermal modulation [65] is usually the best option. This is due to the the large
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(a)

(b)

Figure 7-4: (a) The output signal from the drop port after passing through a low pass
filter (LPF) of the 28 ring CROW. (b) Eye diagram for a 28 ring CROW, calculated
using the compact models developed in Chapter 3 for the half ring.
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thermo-optic coefficient for silicon ( 𝑑𝑛
𝑑𝑇

[𝐾−1]), which enables substantial change in the

effective index 𝑛𝑒𝑓𝑓 with modest changes in temperature, 𝑇 [66]. However, thermal

modulation comes with a slow response compared to the requirements in modern

communications and interconnects, and so is only used for signal modulation in very

low bitrate scenarios.

7.4.1 Simulation Setup

To implement and investigate the effect of thermal modulation, a heater is placed

above the device, such that when a voltage is applied to the heater/wire, current flows

and the power 𝑃 = 𝑉 · 𝐼 resistively heats the wire. Thus the underlying photonic

component experiences a higher temperature, which in turn changes the refractive

index.

For our analysis, we again use the half ring models developed in Chapter 3, but

now augmented to account for thermal impact. Specifically, we need to correct for the

group delay 𝜏𝑔, such that the S-parameter based models previously developed for the

half ring can be used. However, for thermal modulation we heat the ring curvature

sections, and thus simulate those sections using HEAT [24]. So, the light path for the

ring sections that are described by the S-parameters, i.e., the sections that are not

modulated, changes from 2𝜋𝑅 + 2𝐿𝑐 to 2𝐿𝑐 where 𝑅 is the ring radius and 𝐿𝑐 is the

coupling length. Accordingly, the group delay also changes, since the group delay is

defined as:

𝜏𝑔 =
𝐿 · 𝑛𝑔

𝑐
(7.1)

where 𝐿 is the length of the ring or the path the light experiences, 𝑛𝑔 is the group

index, and 𝑐 is the speed of light.

We place a heater above a ring with radius 6.5 𝜇𝑚, the same size as the half ring

analyzed in Chapter 3, as shown in Fig. 7-6(a). We apply voltage to the heater, so

that temperature increase affects the underlying ring, Fig. 7-6(b).

Using the thermo-optic coefficient of silicon, 𝑑𝑛
𝑑𝑇

= 1.86×10−4𝐾−1, along with the
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(a)

(b)

Figure 7-6: (a) Layout used to simulate the thermally modulated ring in HEAT. (b)
The heat distribution in the ring due to applying a voltage of 0.4 V.
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silicon effective index, group index, the heat change across the curved section of the

ring, and the S-parameters generated from the original ring models after modification

in the circuit simulator, Fig. 7-7(a), we obtain the modulated behavior. The response

is shown in Fig. 7-7(b), where we see the change in the resonance frequency resulting

from changing the applied voltage. From these results, we see that for thermal mod-

ulation, a large shift in the resonance can be achieved. Thus, if we need to correct

for substantial resonance shifts due to geometric variations, such as those in Fig. 3-3

where shifts of more than 1 𝑛𝑚 are seen, thermal modulation can be used.

7.4.2 Power for Modulation

As discussed above, thermal modulation can be used for coarse frequency tuning and

correcting for resonance shifts due to variations. However, unlike electro-optical mod-

ulation, thermal modulation requires a relatively substantial flow of current through

resistive heater element. Thus, it is important to calculate and predict the power

consumed for correction of such process variations.

The current that flows through the heater when a voltage is applied increases with

increasing voltage, i.e., the power needed for larger correction increases. Figure 7-

8(a) shows the circuit simulation results for a ring that is thermally modulated. We

observe resonance location change by varying the power that is consumed. The change

in the resonance wavelength (∆𝜆) with respect to power is shown in Fig. 7-8(b); this

sensitivity is Δ𝜆
Δ𝑃

= 0.1 𝑛𝑚/0.172 𝑚𝑊 . Thus, to achieve a 0.1 𝑛𝑚 shift in the

resonance wavelength, 0.172 𝑚𝑊 of power is needed.

Now, to find the power needed to correct for a geometric variation that affects res-

onance, we need to analyze how these variations influence the resonance location. To

do this, we use the S-parameters based compact to consider rings experiencing differ-

ent geometric variations. Figure 7-9 shows the variation in the resonance location due

to variation in the ring silicon thickness or width. In the case of thickness variations,

the variations are large, such that 1 𝑛𝑚 variation in thickness causes almost a 2 𝑛𝑚

variation in the resonance location. The change in the resonance wavelength (∆𝜆)

with respect to the variation in the geometry (∆𝑇 and ∆𝑊 ) is shown in Fig. 7-10.
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(a)

(b)

Figure 7-7: (a) Circuit simulation setup used to simulate the thermally modulated ring
in INTERCONNECT. (b) Response of a ring thermally modulated with 𝑊 = 500 𝑛𝑚
and 𝑇 = 220 𝑛𝑚 by different applied voltages.
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(a)

(b)

Figure 7-8: (a) The change in the resonance location for different applied thermal
tuning power, for a ring with 𝑇 = 220 𝑛𝑚 and 𝑊 = 500 𝑛𝑚. (b) The resonance shift
with respect to the power consumption in the heater.
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(a) (b)

Figure 7-9: (a) Change in the resonance location for ring resonators. (a) 𝑊 = 500 𝑛𝑚
and varying thickness. (b) 𝑇 = 220 𝑛𝑚 and varying width.

The sensitivity for thickness is calculated to be Δ𝜆
Δ𝑇

= 2 𝑛𝑚/1 𝑛𝑚. For the width

variations, the sensitivity is Δ𝜆
Δ𝑊

= 1 𝑛𝑚/1 𝑛𝑚, i.e., a 1 𝑛𝑚 variation in the width

causes a 1 𝑛𝑚 shift in the resonance wavelength.

Combining the two sensitivities, Δ𝜆
Δ𝑇

and Δ𝜆
Δ𝑃

we find that 3.44 𝑚𝑊 ia required to

correct for the shift caused by a 1 𝑛𝑚 change in the thickness, i.e., Δ𝑃
Δ𝑇

= 3.44 𝑚𝑊/1 𝑛𝑚.

For the width, the power per width variation is Δ𝑃
Δ𝑊

= 1.72 𝑚𝑊/1 𝑛𝑚.

When thinking of using thermal modulation to correct for LER effect on a ring,

it turns out that this cannot be achieved efficiently because LER not only shift the

resonance location but also distorts the S-parameters, as shown in Fig. 7-11 and con-

sequently the response. For LER, when using thermal modulation we can shift the

resonance location due to the variations in 𝑛𝑒𝑓𝑓 due to temperature change however,

the distortion in the S-parameter is still existing to minimize or remove its effect, the

solution will include extra processing steps while fabricating to smear these pertur-

bations.

7.5 Environmental Variations and Compensation

Environmental variations are systematic variations that arise during operation of

the circuit. For example, depending on how photonic and electronic components
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(a) (b)

Figure 7-10: Variation in the resonance wavelength with respect to (a) variations in
thickness relative to nominal thickness of 220 𝑛𝑚, and (b) variations in width relative
to nominal thickness of 500 𝑛𝑚.

Figure 7-11: The response of a ring experiencing LER with 𝐴 = 4 𝑛𝑚 and 𝐿𝑐 = 30 𝑛𝑚.
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are distributed within the chip, some components may dissipate power which can

cause variation in local temperatures within the chip [11]. From the above results for

thermal modulation, we can see that applied heater power of 1 𝑚𝑊 causes a local

change in the temperature of ∼10.8 𝑜C. So, for example, if the chip experiences a

temperature variation of 10 𝑜C, using the above calculated sensitivities, this would

affect the performance of an affected ring resonator, causing a ∼ 0.6 𝑛𝑚 shift in

the resonance wavelength. Similarly, a 30 𝑜C perturbation would cause a shift of

∼ 1.75 𝑛𝑚 in resonant wavelength. Comparing this to the shift in resonance due

to process variations introduced, we see that geometric process variations can be

more serious and impactful than this example environmental variation. For a 0.5%

variation in the thickness (1 𝑛𝑚 for a 220 𝑛𝑚 silicon thickness), a shift of 2 𝑛𝑚 in

the resonance of our ring is observed, and 3.44 𝑚𝑊 power is needed to correct for it.

7.6 Summary

In this chapter, we use our previously developed variation-aware compact models,

with some corrections, to analyze photonic integrated circuits (PIC). These circuits

are based primarily on rings. We consider modulating a ring for data transmission;

this is typically done using electrical modulation due it its ability to support high

frequency and fast communication. We also use the models to analyze CROWs,

examining the resulting eye diagram, BER, and signal delay the signal experience.

Finally, we consider thermal modulation to correct for the geometric variations, and

analyze the power needed to correct for example process variations.
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Chapter 8

Conclusions and Future Work

Silicon photonics is becoming an attractive technology platform to meet future de-

manding communications speed and power requirements, as well as to enable new

photonic functionalities in sensing, quantum computation, and other applications.

However, it lacks variation-aware compact models against process variations. Thus,

producing high yield photonic integrated circuits has been challenging, due to the

difficulty in design, analysis, and optimization of photonic components and circuits

to account for process variations.

8.1 Contribution

In this thesis, we present methodologies to enable understanding, analyzing and mod-

eling the effect of process variations on photonic components, both passive and active.

Such methods support variation-aware photonic design for manufacturability (DFM).

For systematic process variations, S-parameter based variation-aware compact

models are developed for geometric variations. In the case of CROWs, we perform

simulations of the fundamental CROW sub-components (the half ring) and consider-

ing geometric variations that cover the values we expect due to fabrication variations.

Based on these simulations, compact models are developed providing an input-output

relationship between the geometric variations (width and thickness in this case) and

the half ring S-parameter response. The models are then used to interpret the per-
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formance, behavior and predict yield of full CROWs in the presence of geometric

variations. Moreover, when using the compact models in circuit simulation, substan-

tial speed-up in the simulation can be achieved, enabling Monte Carlo simulations

and design exploration. We further extend the method used in developing CROW

compact models, to develop models for large silicon nitride rings. Simulation results

using these models are compared with fabrication data and found to be in acceptable

agreement. Such models again provide results faster than full FDTD simulation.

In the case of line edge roughness (LER), which is a random process variation,

statistical analysis can help predict and express the uncertainty in photonic device

behavior due to the effect of LER. For the Y-branch, such statistical analysis is per-

formed using ensemble virtual fabrication. We further develop behavioral models for

the Y-branch transmission statistics in the presence of LER. These models help pre-

dict performance and yield, enabling Monte Carlo simulations in much less time than

having to go through the ensemble simulations for each yield analysis. Variation-aware

compact models are also developed for CROWs in the presence of LER, where these

models take into account various types of randomness in CROW behavior introduced

by the LER. These models are used to efficiently predict the yield and performance

using circuit simulations.

We examine the effect of process variations on active devices, and show how the

variation in the active region of a PN junction silicon ring, either doping concentra-

tion or mask exposure variation, can change slightly the behavior from the nominal

design. Response surface models are developed for different performance metrics in

the presence of these variations. Also, thermal modulation is examined, and the

power needed to correct for the effect of geometry on performance is highlighted for

representative resonant photonic devices.

Since all of these variations are foundry specific, methods for extraction and de-

composition of spatial variations including wafer-level, pattern-dependent, and ran-

dom variations, are presented. These extracted variations can then be used in con-

junction with variation-aware compact models for ensemble study of variation impact.

Finally, we use our developed compact models to simulate representative photonic in-
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tegrated circuits, and calculate the power budget required to tune the circuits to

compensate for process and environmental variations.

Together, these methods and models can be applied to different photonic com-

ponents to help build extended process design kits (PDKs) that will enable silicon

photonic designers to predict and optimize behavior, performance, and yield of com-

plex silicon photonic devices and circuits in the face of unavoidable manufacturing

variation, just as IC designers do today.

8.2 Future Work

The methods and models presented in the thesis are just the start for the extended

PDKs; there is still much work to be done to help silicon photonics designers effectively

and efficiently design for manufacturability like the case with IC designers.

Future work includes extending these proposed methods for modeling other com-

ponents, and to examine other process variations, like etch lateral ratio. However,

fabricating and measuring device responses and comparing to the models is a crucial

step to further validate the methodologies we have presented.

Moreover, the compact models themselves could be extended. For rings, more

parameters could be included, i.e., such that the S-parameter ring compact model

would have the form 𝑆𝑖𝑗(𝑅,𝐺,𝐿𝑐, 𝜆, 𝑇,𝑊 ) where 𝑅 is the ring radius, 𝐺 is the coupling

gap, 𝐿𝑐 is the coupling length, 𝜆 is the operating wavelength, 𝑇 is the silicon thickness,

and 𝑊 is the silicon width. Such an extended model could facilitate joint design space

and variation exploration.

Another interesting opportunity is developing semi-empirical models using a mix-

ture of measurements and simulations. This could help generate better models, where

measurements will give insight into effects that cannot be directly included and cap-

tured in current physical simulations.

An essential step for silicon photonics growth is design for robustness against

these process variations, such that device designs are created that can overcome or

compensate for the effect of variations.
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Finally, we recommend that variation-aware compact models and design guide

rules should be made available in extended PDKs, based on and provided by the

specific foundry. These variation-aware models and rules are crucial to enable PIC

designers to improve and enhance both performance and yield.
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