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Doctor of Philosophy

Abstract

Managed lanes are separate tolled lanes adjacent to free general-purpose lanes. The
key real-time operation problem is how to set the toll for both effective network man-
agement and revenue generation, jointly considering the objectives of the operator,
the travelers and the regulator. Based on a comprehensive analysis of travel behavior,
this thesis develops a solution with adaptive personalized pricing.

Travelers are observed to either predominantly use managed lanes or almost never.
This could be attributed to two competing latent behavioral factors: preference het-
erogeneity, and state dependence—not switching between options causally yields pos-
itive utility. Their econometric quantifications have crucial implications on pricing,
but are challenging due to endogeneity known as the initial condition problem. We
begin by proposing a Control Function solution under a general setting, which is
shown to improve a commonly used solution by Wooldridge. Then, through applying
the developed solutions to empirical data, we discovered heterogeneity and state de-
pendence to be both significant in explaining the usage decision. It is further shown
that when ignoring unobserved heterogeneity or the initial condition problem, state
dependence will be largely overstated. Price endogeneity caused by dynamic pricing
is also discovered and corrected.

The developed behavioral model is integrated into an online personalized tolling
system that incorporates prediction, optimization and personalization. In addition to
optimizing the toll adaptively, an online bi-level optimization problem is formulated to
jointly offer personalized discounts. A flexible multi-component objective is designed
to consider not only short-term revenue and social welfare, but also the impact on
future revenue based on the state-dependent choice behavior. The online personalized
tolling system is deployed to a microscopic traffic simulator calibrated with real data.
The results show simultaneous improvements of revenue, traffic conditions and social
welfare. Equity improvement is also discovered as travelers with lower values of time
are presented lower tolls.

The developed methodologies for behavioral analysis and personalized pricing
could be directly adapted for other applications in transportation and beyond.
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Chapter 1

Introduction

1.1 Background

1.1.1 Managed Lanes

Transportation networks worldwide are plagued by congestion and inefficient usage of

existing infrastructure, which lead to increased energy consumption, emissions, and

economic costs. In 2019, the congestion in U.S. is estimated to cost travelers in total

$88 billion [5]. Despite the COVID-19 pandemic that caused a significant drop in

traffic in 2020 [6], it has been widely observed that congestion has gradually returned

to pre-pandemic levels [1, 7, 8].

Among various solutions to mitigate congestion, road pricing schemes have at-

tracted the most attention. In the U.S., road pricing is commonly implemented on

highway corridors in urban areas, in the form of managed lanes (henceforth referred

as ML) that are separate and tolled lanes in parallel to free general-purpose lanes

(henceforth referred as GP) [107]. Figure 1-1 shows an example of such a facility near

the Atlanta metropolitan area [4].

ML are often constructed and operated through concessions between private oper-

ators and the regulator [3]. The private operator is responsible for the ML’s construc-

tion and the maintenance of the highway corridor, in return for the right to collect

toll revenue over a long period of time, commonly several decades.
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Figure 1-1: Managed Lanes near Atlanta, GA

For network management and revenue generation, the operator typically adjusts

the toll on ML dynamically according to the demand and traffic conditions, commonly

every 5 minutes. The toll in effect are communicated to the travelers via dynamic

message signs (e.g., the white board in Figure 1-1). A single toll is often applied to

all travelers, sometimes with pre-determined group-level discounts and exemptions.

Commonly, the concession agreement includes regulations on how frequent the

toll is allowed to change, target level of service on the ML (e.g., minimum speed),

and the maximum toll. When excessive demand is encountered, the maximum toll

constraint is relaxed to guarantee that no congestion appears on the managed lanes.

In terms of benefits, ML provide additional capacity to the corridor and actively

manage the induced demand with tolling. They are therefore expected to reduce

congestion, allow more efficient usage of system capacity, and provide a faster, safer

and more reliable travel option. The partnership with private sectors on construction

investment and toll revenue also serves as an effective financing mechanism for network

capacity expansions and renovations.
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1.1.2 Tolling Challenges

As exepected, setting the toll is not a simple task. In addition to the traffic uncertain-

ties, a key fundamental challenge is how to align the interests among the operator,

the travelers, and the regulator, summarized in Table 1.1. On ML, toll is the critical

economic instrument determining how these interests are balanced and satisfied. The

tolling algorithm affects the total benefits to the society as a whole, but also how

they are distributed between the operator and the travelers, as well as among the

travelers.

Stakeholders Primary interests

operator revenue

travelers travel time
cost

regulator

congestion
utilization
energy and emission
equity

Table 1.1: Primary interests of different stakeholders in managed lanes projects

A tolling algorithm to make everyone happy is very challenging, if not impossible.

For instance, some managed lanes projects are criticized for creating “Lexus lanes”

that mainly serve wealthy travelers, as it is sometimes observed that ML is under-

utilized while the majority of drivers are stuck in the GP congestion. In this case,

the toll is set high to ensure ML condition and earn sufficient revenue from the highly

inelastic travelers, yet unfortunately reject the elastic travelers as a by-product. While

the operator and the wealthy travelers are winning, other travelers are relatively at

loss which causes equity concerns. The GP congestion that could have been reduced

also yields more emission and energy consumption.

1.1.3 Typical Tolling Algorithms

On operational ML facilities, typical tolling algorithms reactively adjust the toll as

rule-based functions of traffic metrics based on the real-time sensor measurements

17



(typically from the ML, sometimes also the GP) [31, 111]. These algorithms are

designed with objectives in mind, for example the conditions on ML and revenue, yet

do not have the capabilities for their explicit optimization. Further, no personalization

is considered.

In the literature, the state-of-the-art algorithms distinguish themselves by deter-

mining the toll through solving explicitly defined optimization problems formulated

on real-time short-term traffic predictions, hence being proactive rather than reactive

and are more adaptive in dealing with traffic uncertainties. They also have the po-

tential to be equipped with multi-component objectives for balancing the interests of

different stakeholders, although it has been rarely considered and developed. More

details are reviewed later in this thesis.

1.2 Proactive Personalized Pricing as a Solution

How could we improve the status quo, and resolve the conflicts of interests among

the operator, the travelers, and the regulator? This thesis is going to show that

proactive personalized pricing—done intelligently with a multi-component objective—

is a promising answer.

Building on the literature of proactive toll optimization, our algorithm first con-

siders a multi-component objective that incorporates the interests of different stake-

holders. The algorithm’s proactiveness refers to considerations of not only short-term

traffic predictions (common in the literature), but also long-term revenue predictions

based on a dynamic choice model for how a traveler’s future usage would be affected

by current toll levels (because of habit and loyalty). Further, more importantly, the

tolling algorithm provide travelers with personalized discounts. These discounts are

optimized based on individual-specific preferences, and jointly with the optimization

of proactive toll aiming for the same system-level objective. The system interacts

with the travelers as Figure 1-2.

With a properly designed objective, personalized discounts are expected to attract

travelers who always use GP to ML, which lead to five potential benefits:

18



Figure 1-2: Proposed personalized tolling system

1. Capacity utilization (increased ML volume)

2. Reduced congestion on GP

3. Increased revenue from the increased ML volume

4. Customer acquisition and retention: if the usage of ML cultivates habit

and loyalty, the attracted travelers would be more likely to continue using ML,

leading to future revenue potential.

5. Improved equity: as the attracted travelers are likely of lower income in the

population, personalized discounts alleviate the equity concerns around the ML.

In the general literature beyond transportation, some concerns are raised against

the application of personalized pricing, arguing that some customers might feel being

treated unequally. We respond it from the perspectives of fairness and equity:

1. Fairness: the proposed algorithm treats everyone fairly in the sense that the

same personalized pricing algorithm will be applied to all travelers based on

their preferences. Two travelers with the same characteristics and conditions

will receive the same price.

2. Perceived fairness: the proposed algorithm practices personalized pricing in

the form of discounts, which should only cause minimal perceived unfairness, as

could be seen from the e-commerce space where targeted promotions are widely

applied and accepted.

3. Equity: the proposed algorithm is expected to improve equity as it would offer
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cheaper tolls for travelers who would not want or afford to use ML otherwise.

These points are further supported by a recent review [71] that classifies personalized

pricing based on willingness to pay—like ours—as value-based, in contrast to risk-based

pricing based on estimated costs such as in lending, and summarizes that fairness

concerns mainly appear in risk-based personalized pricing.

The implementation feasibility of a personalized tolling system is supported by

the emergence of mobile tolling that collects tolls through mobile apps. For example,

a mobile tolling app, GoToll, is available in more than 50 tolled facilities across 6

states as of Dec, 2021 [9]. More broadly in the transportation industry, thanks to the

advancements in Information and Communications Technologies, various personalized

app-based on-demand mobility services have been proposed, implemented, and widely

used [110]. There is therefore no good reason to believe that the implementation of

personalized tolling would be prevented by any technological barriers.

1.3 Research Questions and Gaps

To design a personalized tolling algorithm that delivers the expected benefits, we need

to address two key research questions:

1. Behavioral modeling of managed lanes choices : How do travelers decide

whether to use ML or GP? How do their choices correlate over time?

2. Personalized tolling algorithm design: How should the toll and discounts

be optimized considering travelers’ preferences and real-time traffic condition?

What objectives should we consider?

Now we provide an overview of what has been done in addressing these questions,

and the identified research gaps. A more detailed literature review will be provided

in chapter 2.
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1.3.1 Behavioral Modeling of Managed Lanes Choices

To analyze the choice between ML and GP, classical models specify it to be primarily

based on a simplified trade-off between cost and time saving, where the heterogeneity

among individuals is assumed to be mostly accounted for with observed character-

istics. Interestingly, empirical data often suggest unexpected high serial correlations

among choices made by the same traveler, even after conditioning on the attributes

and observed characteristics, as if the travelers were not making deliberate and ra-

tional decisions. Specifically, from 24 million trip records, [38] discovered that most

travelers only used either GP or ML in a 3-month period. This observation is not

well-understood in managed lanes, yet has been analyzed extensively in other fields

of applied econometrics. Two competing latent behavioral factors could be in play:

(1) preference heterogeneity : unobserved individual-specific preferences dominate the

range of attributes variation in the data so that switchings are seldom observed; (2)

state dependence: people prefer sticking to the previous choices because of brand

loyalty, habit, perceived reliability and switching cost [65].

The quantification of state dependence and preference heterogeneity is crucial for

personalized pricing. Consider under a simple example of revenue maximization; an

operator offers large discounts to travelers as they think significant effects of state

dependence are in play and would like to invest for future revenue. If the actual

effects of state dependence is minimal, such investments will return nothing, as the

attracted travelers will stop purchasing once the discounts are removed.

To model the choice between ML and GP, the other issue is the quantification of

price elasticity under dynamic pricing. A number of previous studies found counter-

intuitive positive price response from empirical data [70, 74]. Explanations have been

given that some travelers use price as an indicator for congestion. However, it is

hard to believe the pervasiveness of such behavior under the high penetration of

real-time travel information system like Google Maps, especially to flip the sign of

price response. [34] first identified it as an endogeneity problem caused by dynamic

pricing, yet has remained the only work to the best of my knowledge. The importance
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of treating price endogeneity is obvious in pricing analysis.

There has been no previous work addressing these econometric issues for the de-

velopment of a choice model that is suitable for personalized pricing analysis.

1.3.2 Personalized Tolling Algorithm Design

There exists an extensive literature of tolling algorithms [82]. Progressing from fixed

toll schedules, the common existing tolling algorithms in research and practice fo-

cus on dynamic pricing models that modify tolls in real time, as they have greater

flexibility in coping with traffic uncertainties.

With more details to be provided in chapter 2, we identify four research gaps in

the existing literature:

1. Simplified travel behavior: most studies focus on the optimization side of

the problem and traffic dynamics, with simplified travel behavior. A number of

studies assume simple choice models that only consider the trade-off between

cost and travel time with insufficient considerations of heterogeneity.

2. Single-component objective: most studies use single-component objectives,

such as revenue or throughput maximizations. The literature lacks a discus-

sion of how to design the objective to balance the interests among different

stakeholders identified in Table 1.1.

3. Considerations of long-term performance: no study considers the proba-

ble state-dependent choice behavior and its impact on pricing decisions. Under

state dependence, myopic objectives will lead to sub-optimal long-term perfor-

mance.

4. Personalization: studies regarding personalized tolling has been scarce. The

only previous work is [115] that shares the three above-mentioned gaps.

1.4 Research Approach and Thesis Outline

First, we start out with a detailed literature review regarding the above-mentioned

research gaps in chapter 2.
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Second, with the end goal of developing a personalized tolling algorithm, chapter 3

and chapter 4 develop a comprehensive managed lanes choice model to understand

how travelers decided whether to use ML, highlighting the proper quantifications of

heterogeneity and state dependence. These two chapters are organized as follows:

• Chapter 3: the workhorse for quantifying unobserved heterogeneity and state

dependence is the dynamic choice model with random parameters. Unfortu-

nately, these models are challenging to estimate. Because we often do not ob-

serve the individual’s time-ordered choice sequence from an exogenous starting

point, special econometric treatment is needed in constructing the likelihood,

without which large biases would appear in parameter estimates. This is an

endogeneity problem, well known as the initial condition problem. Therefore,

chapter 3 investigates the performance of existing solutions to the initial condi-

tion problem, and proposes an alternative solution based on the Control Func-

tion method that is commonly used for endogeneity problems in choice models

[109]. The proposed and existing solutions are compared through theoretical

analysis and Monte Carlo studies. The study considers the general case of dy-

namic models with random parameters instead of the ones with only random

intercept which are widely analyzed in the literature.

• Chapter 4: building on the analysis of chapter 3, through modeling trip records

from an existing managed lanes facility, chapter 4 develops a comprehensive dy-

namic model for the choice of whether to use ML or GP. The model is estimated

with methods analyzed in chapter 3 for initial condition, as well as correction

of price endogeneity caused by dynamic pricing.

Then, the thesis culminates with the development and testing of a dynamic per-

sonalized tolling algorithm in chapter 5. Leveraging our comprehensive behavior

analysis in previous chapters, the algorithm is designed based on an online bi-level

optimization paradigm termed Tri-POP that stands for prediction, optimization and

personalization [19]. Specifically, we focus on the joint optimization of personalized

discounts and system-level toll, as well as the design of a multi-component objective
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that includes considerations for long-term performance and the interest reconciliation

among the operator, the travelers, and the regulator. The pricing system is tested

with closed-loop simulation experiments where the simulation laboratory is calibrated

with real-world data.

Finally, chapter 6 concludes the thesis and discuss future directions of research.

1.5 Thesis Contributions

The proposed research has the following contributions to three research areas:

• The initial condition problem in dynamic model estimation

– analyzed the widely used correction methods under the case of dynamic

models with random parameters, instead of with only random intercepts

– proposed a Control Function solution that is general and applicable to

multinomial choice

– compared the Control Function method with common methods analyti-

cally and through Monte Carlo studies where the recoveries of random

parameters’ population distribution are considered, and showed improve-

ment of Control Function over Wooldridge’s method in [108]

• Managed lanes travel behavior modeling

– quantified significant unobserved heterogeneity and state dependence from

empirical data on the managed lanes travel behavior

– demonstrated largely overstated state dependence when unobserved het-

erogeneity is not modeled or the initial condition is not corrected

– discovered and corrected price endogeneity caused by dynamic pricing

– provided a modeling manual for managed lanes trip records that have

limited characteristics and potential price endogeneity

• Personalized toll optimization
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– formulated a scalable real-time optimization problem with personalization,

based on a multi-component objective function that includes the interests

of the operator, the travelers and the regulator, and future revenue con-

siderations based on state-dependent choice behavior

– demonstrated that the proposed personalized tolling algorithm could im-

prove operator revenue, improve managed lanes usage, reduce congestion,

and improve traveler’s benefit all at the same time

– demonstrated that the proposed personalized tolling algorithm would give

more benefit to travelers with lower values of time and hence improve

equity
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Chapter 2

Literature Review

2.1 Dynamic Choice Model

Panel discrete choice data, especially the ones from real-life situations, often exhibit

strong correlations among choices made by the same individual, even after properly

conditioning on observed alternative attributes and characteristics. Nobel laureate

James Heckman, attributed such correlations of intricate causes to two latent factors:

structural state dependence and unobserved heterogeneity [65]. Commonly, dynamic

discrete choice models with random parameters are used to capture and identify both

factors. The discussions on this topic may appear abstract to readers without previous

exposure, but will become clear in chapter 3 where detailed equations are provided.

2.1.1 State Dependence and Unobserved Heterogeneity

State dependence exists when past choices or experience structurally affect future

choices as they alter the associated preferences, attributes, or constraints. Support-

ing behavior theories include learning, inertia, habit formation, and switching costs

[12, 102]. State dependence has been discovered and studied in a variety of fields,

such as consumer behavior [48], labor participation [65, 98], and public health [95].

Mathematically, structural state dependence is represented by including the lagged

choices of the same individual into the utility equation as explanatory variables. The
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constructed choice models are hence dynamic, distinguished from the common static

ones. For simplification, a first-order Markovian assumption is typically invoked that

specifies the utility at time period m to only directly depend on the most recent choice

at time period m − 1, but not the choices even before. Other studies have used the

number of times an alternative has been chosen in the past [11] or the attributes of

previously chosen alternatives [53, 59].

On the other hand, unobserved heterogeneity refers to the latent features of an

individual that affects choices. These features are not affected by the individual’s pre-

vious choices. Unobserved heterogeneity is handled by including individual-specific

effects in the utility equation, either through alternative-specific constants or more

generally the vector of preference parameters. These effects can be estimated either

as fixed or random. Fixed effects models consider the individual-specific parameters

as fixed parameters, but have been shown to give inconsistent estimates for finite sam-

ples with a limited choice history because of the incidental parameter problem [80].

Random effects models consider the individual-specific parameters as random vari-

ables whose specified distribution contains unknown parameters, and are commonly

adopted (e.g., logit mixture). We consider random effects models as the default way

to estimate unobserved heterogeneity.

To successfully identify state dependence, one must first properly consider hetero-

geneity. Failing to do so will cause spurious state dependence in parameter estimates

that overstates the structural state dependence effect, in which case past choices

statistically serve as proxies for the uncaptured heterogeneity [65].

2.1.2 The Initial Condition Problem

If no unobserved heterogeneity is present, consistent estimation of dynamic choice

models is simple with standard procedures for static models [102]. However, no

unobserved heterogeneity is a strong and often unrealistic assumption, as it implies

heterogeneity is sufficiently explained by observed variables.

The consistent estimation of state dependence with unobserved heterogeneity—

dynamic choice models with random parameters—has long been recognized as a chal-
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lenging problem due to endogeneity known as the initial condition problem. This

problem occurs when the individuals’ time-ordered choices are not observed from ex-

ogenous starting point, as is often the case in empirical datasets where the analyst

often only observes a limited period of a person’s choice history. In this case, the first

observed choice (initial condition) is endogenous because it correlates with the random

parameters for unobserved heterogeneity. Ignoring this correlation—using standard

approach for estimating static models with random parameters—causes largely biased

estimates.

Two methods for dynamic choice models with random parameters have been

widely adopted in the literature. The first method, commonly referred as the Heck-

man’s method, is to construct the joint likelihood of the initial condition and sub-

sequent choices [66]. The second method, commonly referred as the Wooldridge’s

method, is to construct the conditional likelihood of subsequent choices on the initial

condition with proper treatment of the correlation between the initial condition and

unobserved heterogeneity, namely the endogeneity of the initial condition [108]. Both

methods involve analytically intractable elements in the likelihoods they considered

respectively, which are resolved by different forms of approximations in their original

works and the following research [13, 14, 18, 55, 77, 81, 88, 95]. More details are

provided in chapter 3.

2.1.3 Summary

In quantifying state dependence, the importance of capturing unobserved heterogene-

ity and the need for initial condition correction have been widely acknowledged and

analyzed. Widely adopted solutions for the initial condition problem look at ways for

constructing (approximating) the correct likelihoods.

Although initial condition problem is a special form of endogeneity, the Con-

trol Function—a common tool for endogeneity in choice models—has rarely been

applied. We found that [81] developed a method that is essentially the Control Func-

tion method, without using the term Control Function.

Further, previous works commonly consider dynamic binary choice models with
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random intercepts, instead of the general case of (multinomial) choice models with

random parameters.

2.2 Managed Lanes Travel Behavior Modeling

Managed lanes travel behavior modeling considers the choice between managed lanes

(ML) and general purpose lanes (GP).

The most common data source is stated preference (SP) surveys, as many studies

investigate responses to infrastructures and policies that have not yet been imple-

mented [67, 85]. In general, SP studies have the limitation of hypothetical bias,

which can be alleviated by combining SP with revealed preference (RP) data of the

existing situation [24, 27, 28, 69]. On managed lanes, the actual behaviors found in

RP are especially different from the presumptions and conclusions of many SP stud-

ies [38, 101]. This motivates the use of RP data, which is also becoming increasingly

available as more operational managed lanes come to existence. In contrast to tra-

ditional RP data collected with travel surveys [33, 35], the electrification of tolling

facilities has made a massive amount of directly collected RP trip records available,

presenting new opportunities. Behavior studies based on this type of RP data are

mainly limited to exploratory analysis, but not econometric modeling [37]. One main

challenge of using these trip records is the absence of travelers’ characteristics. In ad-

dition, compared to SP experiments, RP data could be subject to different forms of

endogeneity. Despite these challenges, RP data are more relevant to dynamic pricing

as they are constantly observed by toll operators and could be pipelined into online

pricing systems.

In the following sections, we review existing choice models for managed lanes and

other related applications from three crucial aspects to personalized pricing: how they

capture and learn heterogeneity, how they consider state dependence, and how they

treat price endogeneity.
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2.2.1 Heterogeneity

In the general econometric literature, while traditional models have put their pri-

mary focus on estimating average preferences towards (effects of) service level and

policy variables, recent efforts have emerged to elicit heterogeneity and learn indi-

vidual preferences [15]. Two types of preference heterogeneity are commonly con-

sidered: inter-consumer heterogeneity that accounts for preference variations among

individuals, and intra-consumer heterogeneity for preference variations of the same

individual among choice situations (trips, for example). Intra-consumer heterogene-

ity has received less attention in the literature, but its importance has nonetheless

been acknowledged [28, 32, 68]. Both types of heterogeneity could be incorporated

in two ways. First, they could be specified as a function of observed socio-economic

characteristics and attributes. Further, unexplained (i.e., unobserved) variations in

preferences could be accounted for with random parameters, commonly by using a

logit mixture.

Inter-consumer preference heterogeneity has been widely considered in the con-

text of managed lanes [96, 101], which has become a standard procedure in dealing

with panel data that is crucial for welfare analysis and a basis for individual-level

parameter inference [27]. Intra-consumer heterogeneity has been considered when it

is observed [32] and unobserved [68]. However, as these literatures are limited to SP,

it is unclear to what degree the discovered intra-consumer heterogeneity exists in real

choice situations.

For a model that captures heterogeneity with random parameters, their condi-

tional (posterior) distribution on past choices—individual-speicific parameters—could

be acquired by Bayesian inference. This idea initially attracted attention in market-

ing applications, as marketers are often interested in determining consumer preference

at individual and household levels for the purpose of differentiating product offerings

[15, 16]. In transportation, as real-time communications between travelers and service

operators are becoming more efficient, ideas have been proposed to learn individual

preferences online and use them to tailor products and services to different travelers

31



with varied preferences to maximize profit or welfare [44, 110].

In the context of managed lanes, capturing heterogeneity and learning individual

preference are of obvious importance for personalized pricing. It’s hard to imagine a

useful personalization strategy based on models that only measure the average effects

in the population.

2.2.2 State Dependence

Although it has been hypothesized that state dependence plays a role in managed

lanes choices [38], barely any efforts have been put to identify its magnitude, with

the exception of [115] who specifies a flat logit model that includes personal trip

history as explanatory variables but not considering unobserved heterogeneity. As

reviewed previously, the drawback of using flat logit to identify state dependence is

being susceptible to spurious state dependence—the past choices would statistically

serve as proxies for the omitted unobserved heterogeneity and exaggerate the actual

state dependence effects [65]. A model with spurious state dependence might predict

as well under the existing pricing policy if the data distribution in prediction remains

the same as in training, but it will fail miserably under new policies [10, 52].

2.2.3 Price Endogeneity

Modern managed lanes facilities often practice dynamic pricing that modifies tolls

in response to real-time demand. Regardless of the specific algorithms, tolls are

commonly raised as the demand for managed lanes increases. This presents a typical

case of price endogeneity caused by the simultaneity between price and demand. In

fact, a number of previous studies discovered positive price elasticities and simply

explained them with price being congestion indicators [70, 74].

To the best of my knowledge, [34] is the first and only publication that deals with

the endogeneity issue in RP data from dynamically priced managed lanes. With first

differencing and using downstream traffic as instruments, [34] estimated the aggregate

toll elasticity on Seattle SR16 HOT lanes to be -0.16 to -0.21, which is in similar ranges
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from relevant natural experiments that avoid endogeneity concerns [36, 54, 56]. For

example, [36] estimated the elasticity on toll bridges in Florida to be -0.076 to -0.15,

and [56] estimated the price elasticity under congestion pricing to be -0.304 in Milan,

Italy.

2.2.4 Summary

There is clearly a scarcity of literature in rigorous econometric modeling for managed

lanes behavior based on RP data, with proper considerations of heterogeneity, state

dependence and price endogeneity.

2.3 Road Pricing and Toll Optimization

The idea of road pricing traces back at least to Adam Smith who considers toll

on a facility as a way to defray its own expenses [73, 97]. The concept was then

revolutionized by Pigou who views road charges as a tax that would help achieve

economic efficiency [87]. With increasing traffic congestion, modern road pricing has

become an essential tool for travel demand management. The application of pricing

measures is expected to modify temporal and spatial dimensions of travel [92]. As

toll roads directly generate revenue, they are also considered as a classic model for

public-private partnerships to finance highway projects.

2.3.1 Dynamic Pricing

Leveraging real-time information, dynamic pricing constantly modifies prices [17, 91].

It could be classified as proactive or reactive based on whether prices are functions

of future predictions [45].

Reactive strategies determine price solely based on just observed network condi-

tion. To name a few, [112] outlined a simple feedback-control approach where the toll

is adjusted as a function of observed occupancy from loop detectors and the desired

occupancy. [75] presented a reactive self-learning approach where a homogeneous de-
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mand model based on value of time is learned online and coupled with a multi-lane

kinematic wave supply model to maximize corridor throughput. More recent work

[84] developed a deep reinforcement learning approach where states are defined as

network cells and a deep neural network is trained to learn the optimal toll rates

(policy) given states, building on their earlier formulations in [83]. Other examples

of reactive pricing algorithm include [40] and [113].

As suggested by [31, 111], typical state-of-the-practice tolling algoritms on man-

aged lanes are mainly simple reactive algorithms that modify toll based on real-time

traffic metrics measured on the managed lanes to keep them from congestion.

Compared to reactive pricing strategies, proactive ones have been investigated less

frequently as they involve complex prediction models. [46] compared a reactive and a

proactive strategy for maintaining link density and showed the superior performance

of the latter. [100] presented a proactive tolling framework supported by a dynamic

traffic assignment (DTA) model. [116] showed that more accurate prediction by

online calibration of DTA yields better revenue performance. [115] advanced [116] to

formulate a bi-level optimization problem to offer personalized prices based on system

and individual-level prediction. [62] used the same DTA platform as [115, 116], and

formulated a genetic algorithm-based solution approach for toll optimization. The

same DTA platform is also used in [72] to investigate systematic definitions of tolling

zones.

Clearly, if the supporting prediction models are accurate, proactive strategies

would have superior performance compared to reactive methods as they price the

future based on predictions of it. Reactive approaches are widely adopted because

they are easy to implement. However, a salient limitation of previous proactive pricing

literature is the use of simplified supply and choice models that ignore heterogeneity to

different extent, which limits the benefit of being proactive and especially hampers the

potential of personalized pricing. This could be seen from a summary of the above-

mentioned literature in Table 2.1, where a “VOT model” refers to a homogeneous

choice model with only price and time saving.
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Reference Objective Method Supply Model Demand Model

Reactive strategies

[112] occupancy localized freedback-
control

\ \

[75] throughput (VOT) learning with
Kalman filter

kinetic wave VOT model

[84] revenue or travel time deep reinforcement
learning

cell transmission \

Proactive strategies

[46] target link density toll as a function of
predicted density

DTA simulation VOT model

[100] revenue, welfare or
throughput

simulation-based opti-
mization

cell transmission VOT model

[115] revenue online bi-level opti-
mization

DTA simulation dynamic logit with ob-
served heterogeneity

Table 2.1: Selected references on managed lanes dynamic pricing

2.3.2 Considerations for Long-term Performance

Moreover, existing ML pricing strategies are myopic in that they only consider im-

mediate returns. This is a natural result of neglecting state dependence in choice

modeling. On the other hand, pricing strategies for long-term benefits appeared in

marketing literature. For example, [49] formulated it as a dynamic programming

problem and concluded that considering brand loyalty motivates price reductions.

The research context was then extended by [42] to consider the case of multiple man-

ufacturers. Other contexts of pricing considering long-run dynamics include continued

borrowing and preventive health interventions [71].

In practice, to price for long-term performance, many firms consider customer

lifetime value (CLV) that measures the return over a customer’s lifetime [63]. See

[39] for CLV considered in airline industry, and [2] for that in transportation network

companies.

2.3.3 Personalized Pricing

Personalized pricing strategies have been barely explored in ML except [115] that

shows personalized pricing could improve operator’s revenue. In transportation, [106]

explored air fare personalized pricing, and [21] investigated personalizing sustainable
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travel incentives. In addition, Airline, car rental, and transportation network compa-

nies often offer targeted promotions that are common marketing strategies nowadays.

Driven by advancements in technology, algorithmic personalized pricing based on

big data is especially gaining popularity in online applications such as e-commerce

[93].

While traditional personalized pricing literature takes on the viewpoint of revenue-

maximizing firms and illustrates revenue improvements [90, 94], a hot ongoing debate

is found regarding how personalized pricing would affect consumer benefits and related

ethical and legal issues [103]. For instance, based on experiments with a large digital

firm, [50] shows that while personalized pricing would yield 19% extra profit compared

to uniform optimal price, total consumer surplus declines 23%. On the other hand,

over 60% of consumers benefited from lower prices under personalization so total

welfare could as well increase under inequity-averse welfare functions. These findings

suggest cautions need to be taken for the benefit analysis of personalized pricing, and

the potential advantages of incorporating welfare components into the objective.

The other related issue in personalized pricing is fairness and equity. [71] differ-

entiates value-based personalized pricing based on willingness to pay from risk-based

personalized pricing based on estimated cost such as in lending and insurance. Al-

though some may argue that personalized pricing introduces perceived unfairness for

charging different price for the same product, value-based personalized pricing ac-

tually improves access and equity because lower income people tend to have lower

willingness to pay. As transportation systems are public resources, we would argue ac-

cess and equity to be more important and relevant to consider compared to perceived

fairness.

In the general literature of personalization, various strategies based on consumer

behavior theory have been proposed [79]. In applications such as personalized online

recommendation, data-driven methods are widely used to personalize service based

on the revealed preferences of similar customers, with collaborative filtering being a

typical example [44].

36



2.3.4 Summary

In summary, four limitations are identified in the dynamic pricing literature:

1. Simplified travel behavior: most studies focus on the optimization side of

the problem and traffic dynamics, with simplified travel behavior. A number of

studies assume simple choice models that only consider the trade-off between

cost and travel time with insufficient considerations of heterogeneity.

2. Single-component objective: most studies use single-component objectives,

such as revenue or throughput maximizations. The literature lacks a discus-

sion of how to design the objective to balance the interests among different

stakeholders identified in Table 1.1.

3. Considerations of long-term performance: no study considers the proba-

ble state-dependent choice behavior and its impact on pricing decisions. Under

state dependence, myopic objectives will lead to sub-optimal long-term perfor-

mance.

4. Personalization: studies regarding personalized tolling has been scarce. The

only previous work is [115] that shares the three above-mentioned gaps.
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Chapter 3

The Initial Condition Problem in

Dynamic Choice Models

3.1 Introduction

Dynamic models with random parameters are widely adopted for quantifying unob-

served heterogeneity and state dependence, and we are going to use them to under-

stand managed lanes choice behavior in chapter 4. However, it is well-known that

these models’ consistent estimations are challenging due to endogeneity known as the

initial condition problem [66]. Therefore, this chapter analyzes the initial condition

problem from a general context and proposes an alternative solution with the Con-

trol Function method [109]. The proposed method is applicable to multinomial choice

models in addition to the commonly considered binary ones. This chapter advances

previous literature also through the considerations of dynamic models with general

random parameters instead of only random intercepts.

This chapter starts with mathematical explanations of the initial condition prob-

lem, followed by popular solutions, namely the one by Heckman [66] and the one

by Wooldridge [108]. Then, the proposed Control Function solution is outlined and

compared with the Heckman’s and Wooldridge’s methods, both from an analytical

view and Monte Carlo experiments. Control Function is shown to be closely related

to the Wooldridge’s method, and Monte Carlo experiments suggest its improvements.
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3.2 Mathematical Background

3.2.1 The Initial Condition Problem

We consider the working example to be a simple dynamic binary choice model with

a first-order Markovian assumption as shown in Equation 3.1. The generalization to

multinomial choice is discussed in subsection 3.3.5.

Unm = ζASC
n + ζdndn(m−1) + ζX′

n Xnm + εnm

dnm = 1[Unm > 0]
(3.1)

A decision-maker is indexed n and a choice situation is indexed with m. The

choice is denoted with dnm ∈ {0, 1}. The utility corresponding to dnm = 1 is denoted

with Unm, and the utility corresponding to dnm = 0 is normalized to zero. Xnm

is a vector of exogenous explanatory variables. ζASC
n is a scalar alternative-specific

constant. ζdn is a scalar random dynamic parameter reflecting the extent of state

dependence. ζXn is a random vector compatible with the dimension of Xnm. The

parameter vector ζn = (ζASC
n , ζdn, ζ

X
n ) is individual-specific and follows a population

distribution G whose parameters are to be estimated. In this work, we consider G

being a gaussian distribution with mean µ and covariance matrix Ω. Note that we

consider a full random parameter vector compared to previous studies that limit their

random parameter to only the alternative-specific constant.

Following random utility theory, εnm is a random error term specified with inde-

pendent and identical (i.i.d.) logistic distributions with location zero and unit scale.

The resulting choice probability is logit as shown in Equation 3.2.

P (dnm = 1|ζn, Xnm, dn(m−1)) =
exp(ζASC

n + ζdndn(m−1) + ζX′
n Xnm)

1 + exp(ζASC
n + ζdndn(m−1) + ζX′

n Xnm)
(3.2)

For a given individual, we observe the choices dn = (dn0, dn1, ..., dnMn), as well as

exogenous variables Xn = (Xn0, ..., XnMn). As the model has a first-order state depen-
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dence, the initial condition is dn0. The likelihood of all observed choices conditional

on Xn is shown in Equation 3.3.

L(dn0, dn1, ..., dnMn |Xn) =
!

ΠMn
m=1P (dnm|ζn, Xnm, dn(m−1))P (dn0|ζn, Xn)g(ζn)dζn

(3.3)

The difficulty in computing this expression comes from the fact that P (dn0|ζn, Xn)

is generally unknown. Except the rare case where dn0 is the actual first choice made

in the stochastic process, this probability depends on the information regarding the

pre-sample period (e.g., distribution of exogenous attributes) that is unknown to

the analyst. Commonly used alternative estimation methods instead consider the

likelihood conditional on dn0 as shown in Equation 3.4.

L(dn1, ..., dnMn |Xn, dn0) =
!

ΠMn
m=1P (dnm|ζn, Xnm, dn(m−1))f(ζn|Xn, dn0)dζn

(3.4)

However, as shown in Equation 3.5, the conditional distribution f(ζn|Xn, dn0) is

hard to compute and depends on P (dn0|ζn, Xn) that causes difficulty with Equa-

tion 3.3 from the first place.

f(ζn|Xn, dn0) =
P (dn0|ζn, Xn)g(ζn)"
P (dn0|ζn, Xn)g(ζn)dζn

(3.5)

If P (dn0|ζn, Xn) is known, it is easier to directly use it in the joint likelihood.

Therefore, methods with the conditional likelihood seek to directly approximate

f(ζn|Xn, dn0). A naive approach is to directly use g(ζn), as if dn0 is exogenous.

Unfortunately, this replacement is only valid if dn0 is indeed exogenous and hence

independent from ζn, i.e., g(ζn) equals f(ζn|Xn, dn0).

Naturally, solutions to the initial condition problem construct (often approximate)
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either the joint likelihood (Equation 3.3) or the conditional likelihood (Equation 3.4).

[95] refers to them accordingly as joint likelihood solutions and conditional likelihood

solutions.

3.2.2 Joint Likelihood Solutions

Straightforward estimation with the joint likelihood (Equation 3.3) is prevented by

the unknown quantity P (dn0|ζn, Xn). Its computation is prohibitive for requiring

marginalizing (integrating) the choice model over the pre-sample period where distri-

butional assumptions of exogenous attributes also need to be made.

Heckman proposed a useful approximation solution [66]. He considered a special

case of our model where the preference parameters are not distributed, and serial

correlation is captured by scalar i.i.d. deviates ∆ζASC
n as in Equation 3.6—this is

equivalent to only keeping ζASC
n distributed, but we use this deviation form for con-

sistency with [66]. This model is often analyzed and used in the literature and we

refer it as the dynamic binary choice model with a random intercept.

Unm = ζASC + ζddn(m−1) + ζX′Xnm +∆ζASC
n + εnm (3.6)

A choice model is used to approximate the probability of the initial condition as

Equation 3.7. Fixed parameters cASC and cX can differ from those of the following

choices (ζASC and ζX). The error term (en0) can be freely correlated with those of

the following choices (∆ζASC
n + εnm, ∀m ∈ {1, ...,Mn}).

Un0 = cASC + c′XXn0 + en0 (3.7)

This approach was sometimes considered to be computationally intensive because

it requires Mn dimensional integration. This challenge has been much alleviated with

recent advances in estimation software and computation. On the other hand, other

approaches have been proposed to restrict the way in which total errors are correlated

to improve statistical efficiency and simplify computation [13, 18]. Specifically, en0
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is restricted to follow the same i.i.d. distribution as εnm, and the correlation of total

errors is captured by including ∆ζASC
n also into the initial condition model as a

common factor with a new scaling parameter rζ (Equation 3.8). A similar approach

was adopted by [55, 81] in which two correlated random intercepts were used for the

initial choice and subsequent choices.

Un0 = cASC + c′XXn0 + rζ∆ζASC
n + εn0 (3.8)

This restricted form is generally preferred and used in the literature [14, 95].

It could as well be easily generalized to account for preference heterogeneity in all

parameters as shown in Equation 3.9. ∆ζXn and ∆ζdn respectively denote deviations

of ζXn and ζdn from population mean. Additional parameters cASC , cX , rASC , rX and

rd need to be estimated for the initial condition model.

Unm = ζdndn(m−1) + ζX′
n Xnm + εnm; ∀m > 0

Un0 = cASC + rASC∆ζASC
n + (cX + rX∆ζXn )′Xn0 + rd∆ζdn + εn0

(3.9)

3.2.3 Conditional Likelihood Solutions

As overviewed, conditional likelihood solutions to the initial condition problem use

Equation 3.4 with approximated f(ζn|Xn, dn0). We denote the density function ap-

proximation as f̂(ζn|Xn, dn0).

Wooldridge proposed a popular method, in which f̂Wool(ζn|Xn, dn0) is specified as

the sum of the conditional expectation E[ζn|Xn, dn0] and a random i.i.d. error vWool
n

as Equation 3.10 [108]. vWool
n is specified to follow a normal distribution N(0,ΩWool)

to be estimated. The conditional expectation is often specified as a linear function

but could potentially incorporate more flexible forms.

ζn = E[ζn|Xn, dn0] + vWool
n (3.10)

The performance of this approach depends on how well Equation 3.10 approxi-

mates f(ζn|Xn, dn0) [95]. [18] found that the Wooldridge’s method produced smaller
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biases for short panels than common factor models, and similar, insubstantial bias for

longer panels. [77] suggested constraining this model by using the means of exoge-

nous attributes across all observations of individual n, denoted X̄n. However, [14, 88]

showed that such a model will be overly constrained, leading to noticeable bias. In

Monte Carlo experiments, [14] showed that this approach worked very well for panels

longer than 5-8 periods, but was inferior to Heckman’s reduced-form approximation

for shorter panels. Similarly, [78] showed that Heckman’s method is hardly subject

to any bias, while the constrained Wooldridge’s method and [81] deliver estimators

that can be subject to substantial bias and low precision. In these two methods, the

bias does not seem to decrease as sample size increases. To reduce this bias, [88]

proposed including the initial period explanatory variables as additional regressors in

the auxiliary model proposed by [77]. This specification is shown in Equation 3.11,

where the exogenous attributes of initial condition denoted as Xn0. We consider it

as our working model for the Wooldridge’s method. k denotes the dimension of the

random parameter vector.

ζkn = αk
0 + αk

ddn0 + αk′
XXn0 + αk′

X̄X̄n + vWool,k
n ; ∀k ∈ {1, ..., K} (3.11)

The popularity of the Wooldridge’s method largely comes from its ease of appli-

cation with canned software, especially when the unobserved heterogeneity is only

considered in the random intercept of a binary model as Equation 3.6.

3.3 Methodology

In this paper, we propose a Control Function (CF) solution to the well-known initial

condition problem. First, the initial condition problem is analyzed from an endogene-

ity perspective. Then the CF solution is presented and analyzed. A similar method

is proposed by [81], which applies to the case of binary choice model with a random

intercept. This work extends [81] to the general case of random parameters, com-

pares it closely with the Wooldridge’s method, and at the end extends it to the case
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of multinomial choice in subsection 3.3.5.

3.3.1 Endogeneity of the Initial Conditions

Endogeneity occurs when some explanatory variables are correlated with the unob-

served factors of utility [86]. In our working example Equation 3.1, the random

parameter ζn and lagged choice dn(m−1) are correlated as dn(m−1) was driven by the

same ζn. Note that this is different from the common case where some explanatory

variables are correlated with the error term εnm in utility as the problematic random

component is the random parameter ζn.

For choices driven by a dynamic model, endogeneity occurs for all observations—

corr(dn(m−1), ζn) ∕= 0, ∀m ∈ {1, ...,Mn}—but only that of the second observed choice

(m = 1) requires correction because the endogeneity of following choices are automat-

ically treated by including the probability of their previous choice into the likelihood

function.

The Heckman’s method corrects the endogeneity by including the probability of

initial condition. Using the conditional likelihood with a marginal distribution of

random parameters incurs bias due to the ignorance of endogeneity. The Wooldridge’s

method solves the endogeneity from a rather uncommon approach by considering

the distribution of unobserved factors (i.e., random parameters) conditional on their

correlated explanatory variable (i.e., the initial condition).

3.3.2 A Control Function Solution

The Control Function (CF) method addresses endogeneity by using extra variables—

controls—in the utility specification that are obtained using exogenous instruments.

Such methods have been applied extensively in the literature [30, 58, 60, 61, 86, 104,

109].

This method consists of two steps. In the first step, the endogenous variable is

fitted as a function of exogenous instruments to acquire controls (residuals in the

case of continuous endogenous variable). Then in the second step, these controls are
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added as explanatory variables to the model of interests to capture the correlation

between the endogenous variables and unobserved factors, such that the endogeneity

is removed.

To apply Control Function for the initial condition, we first need to find valid

instruments. The two requirements of valid instruments are: (1) exogeneity—they

have to be uncorrelated with the random components of the utility (ζn and εnm),

and (2) relevance—they have to be sufficiently correlated with dn0. The exogenous

attributes associated with the initial condition (Xn0) naturally meet these require-

ments. As the exogenous attributes across observations of the same individual are

commonly correlated, the average exogenous attributes (X̄n) are also expected to

be a valid instrument as it reflects conditions in pre-sample period. Unsurprisingly,

these instruments have also been used in applications with the Wooldridge’s method,

although not being explicitly referred as instruments.

With the Control Function method, the first step is to fit a choice model predicting

the initial condition (choice) as a function of the instruments as Equation 3.12. Like

Heckman’s method, this step considers an initial condition model, but the involved

computation is much simpler as it is estimated separately from the choice model of

interest and does not contain any random parameters. The intuition is that as Ṽn0

only contains fixed parameters, so the correlation of dn0 and ζn is encapsulated in the

error term δn.

dn0 = 1[Ũn0 > 0]

Ũn0 = Ṽn0 + δn

Ṽn0 = τASC + τ ′XXn0 + τ ′X̄X̄n

(3.12)

Given the estimated first step model, and the observed initial condition dn0, we

define the control as the posterior conditional mean of δn that is δ̂n = E[δn|dn0]. This

treatment of discrete endogenous variable with Control Function follows [109].

The computation of E[δn|dn0] depends on the distribution specification for δn.

The most well-known result is that when δn follows a standard normal distribution (a
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probit initial condition model), E[δn|dn0] could be computed with the inverse Mills

ratio as Equation 3.13 [109]. λ denotes the inverse Mills ratio, defined as the ratio

between the standard normal density function φ and the standard cumulative density

function Φ. In estimation, Ṽn0 is computed from the estimated Equation 3.12. A

related more general result is by [81] who derived a general expression for censored

normal linear models.

δ̂n = E[δn|dn0]

δ̂n = dn0E[δn|dn0 = 1] + (1− dn0)E[δn|dn0 = 0]

δ̂n = dn0E[δn > −Ṽn0] + (1− dn0)E[δn < −Ṽn0]

δ̂n = dn0λ(Ṽn0)− (1− dn0)λ(−Ṽn0)

where λ(x) =
φ(x)

Φ(x)

(3.13)

When δn follows an extreme value distribution (in a logit initial condition model),

E[δn|dn0] could be computed with results from [51]. Their results are also applicable

to the case of multinomial choice where we have one error term corresponding to each

alternative, to be detailed in subsection 3.3.5.

Further, arguably the most general approach for computing E[δn|dn0] is to use

simulations. In principal, it is applicable to any error distribution and number of

choice alternatives. Taking any estimated first step model, we can simulate T draws of

the utility error(s), and correspondingly T choices. Then we can select the simulations

that generated the observed dn0 and compute the average simulated error term(s)

among them, which serves as an unbiased estimator of E[δn|dn0]. The computation

here is quite manageable as the model has already been estimated. This method

could also be used to validate any derived closed-form expressions.

Then, the second step of Control Function considers the conditional likelihood of

Equation 3.4, assuming that conditional on δ̂n, the actual random parameter now

denoted as vCF,k
n in Equation 3.14 is independent from the initial condition dn0. vCF,k

n

across k is denoted as vCF
n and specified to follow a normal distribution N(0,ΩCF ).
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ζkn = γk
0 + γk

h δ̂n + vCF,k
n ; ∀k ∈ {1, ..., K} (3.14)

The modified conditional likelihood to use is presented in Equation 3.15, where

density f̂CF (ζn|δ̂n) replaces f(ζn|Xn, dn0). It implies the assumption that the depen-

dence between dn0 and ζn is fully encapsulated in the residuals δ̂n.

L(dn1, ..., dnMn |Xn, dn0) =
!

ΠMn
m=1P (dnm|ζn, Xnm, dn(m−1))f̂CF (ζn|δ̂n)dζn

(3.15)

To summarize, the Control Function solution to the initial condition problem

consists of two steps as follows:

• Step 1: estimate an auxiliary model for the initial condition as Equation 3.12,

and then acquire the control δ̂n as Equation 3.13.

• Step 2: plug the acquired δ̂n into the choice model through ζn as Equation 3.14,

such that the resulted new random component of vCF
n could be more justifiably

assumed to be independent from dn0.

Essentially, compared to the Wooldridge’s method, it models the conditional den-

sity f(ζn|Xn, dn0) with only controls from dn0, instead of dn0 itself. By bringing in

the additional structural equation (the first step) that reflects our understandings of

the initial condition problem, the proposed method is expected to offer comparable

or improved performance in terms of consistency and efficiency. Compared to the

Heckman’s, this method is simpler to apply as it doesn’t require joint estimation with

the auxiliary model.

3.3.3 Estimates of Population Distribution

One issue of the conditional likelihood methods, namely the Wooldridge’s and the

Control Function, is that they only directly estimate the conditional distribution
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f̂(ζn|Xn, dn0), but not the population (marginal) distribution g(ζn) as in the joint

likelihood approach. Despite the conditional distribution could be directly used for

prediction, the population distribution might be still of interest for some applications.

As the previous literature often look at dynamic models with only random intercepts,

the recovery of population distribution is commonly not discussed.

Through our Monte Carlo studies, we found that estimates of g(ζn) could be

acquired through a post processing procedure as follows. After applying the Con-

trol Function method to a sample of N individuals, we first acquire estimates of

γ̂k
0 , γ̂

k
h ∀k ∈ {1, ...K}. Then for each individual in the sample, we can compute the

fitted value of conditional mean E[ζkn|δ̂n] as γ̂k
0 + γ̂k

h δ̂n. An estimate of Mean(ζn)

could be then acquired from the sample average of γ̂k
0 + γ̂k

h δ̂n. Combining with the

estimates of the conditional variance Ω̂CF , an estimate of the population covariance

matrix Cov(ζn) could be acquired by computing the sample covariance matrix of the

fitted conditional expectation Cov(γ̂k
0 + γ̂k

h δ̂n) plus Ω̂CF .

The same trick could be applied for the Wooldridge’s method as well. With

Equation 3.11, denote the estimates of α’s as α̂’s, and ΩWool as Ω̂Wool. An estimate

of population mean would be the sample average of α̂k
0+ α̂k

ddn0+ α̂k′
XXn0+ α̂k′

X̄
X̄n, and

an estimate of population variance would be the sample covariance matrix Cov(α̂k
0 +

α̂k
ddn0 + α̂k′

XXn0 + α̂k′
X̄
X̄n) plus Ω̂Wool.

3.3.4 An Analytical Comparison to the Wooldridge’s Method

As the Control Function and the Wooldridge’s method both use the conditional like-

lihood L(dn1, ..., dnMn |Xn, dn0), in this section we analyze how they are connected and

how they differ.

As the Wooldridge’s method commonly uses a linear function for f̂(ζn|Xn, dn0),

and for the sake of more straightforward intuition, in this comparison we specify the

first step of Control Function to also be a linear function (Equation 3.16) instead of

a choice model.
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dn0 = τASC + τ ′XXn0 + τ ′X̄X̄n + δn (3.16)

We can then write the residual as δn = dn0 − τASC − τ ′XXn0 − τ ′
X̄
X̄, and plug it

into the expression for f̂CF (ζn|δ̂n), as Equation 3.17.

ζkn = γk
0 + γk

h(dn0 − τASC − τ ′XXn0 − τ ′X̄X̄) + vCF,k
n ; ∀k ∈ {1, ..., K}

ζkn = γk
0 − γk

hτASC + γk
hdn0 − γk

hτ
′
XXn0 − γk

hτ
′
X̄X̄ + vCF,k

n ; ∀k ∈ {1, ..., K}
(3.17)

Comparing Equation 3.17 with Equation 3.11, we can establish the following equal-

ities in Equation 3.18.

γk
0 − γk

hτASC = αk
0

γk
h = αk

d

−γk
hτX = αk

X

−γk
hτX̄ = αk

X̄

(3.18)

Therefore, for a given set of parameters γ and τ with the CF method, there exists

a unique set of parameters α with the Wooldridge’s method.

On the other hand, given a set of Wooldridge parameters α, we might not always

be able to find a set of equivalent γ and τ with the CF method. To see this, we can

substitute the second equality from Equation 3.18 into the third and forth equalities,

which gives τX = −αk
X/α

k
d and τX̄ = −αk

X̄
/αk

d across all the random parameters

k = {1, ..., K}. For K > 1, we cannot guarantee to always find values for γX and γX̄ .

Therefore, coincided with our intuition, the CF method imposes additional structural

theory-driven constraints compared to the Wooldridge’s method.

The constraints by Control Function are not only expected to reduce the stan-

dard errors, but also crucial for identification under an extreme case where for each
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individual only one choice is observed after the initial condition. To illustrate this,

consider a simple true model with one exogenous attribute xnm as in Equation 3.19

and we only observe 2 choices per individual.

Unm =ζASC
n + ζdndn(m−1) + ζxnxnm + εnm (3.19)

The Wooldridge’s method fits the conditional likelihood of dn1 with Equation 3.20.

Un1 =(αASC
0 + αASC

d dn0 + αASC
x xn0 + αASC

x̄ x̄n + vWool,ASC
n )+

(αd
0 + αd

ddn0 + αd
xxn0 + αd

x̄x̄n + vWool,d
n )dn0+

(αx
0 + αx

ddn0 + αx
xxn0 + αx

x̄x̄n + vWool,x
n )xn1

(3.20)

Note that αASC
d and αd

0 enter Un1—hence the likelihood—exactly the same way, and

therefore cannot be identified. This is not merely a nuance of normalization because

αd
0 is the important policy parameter that is subject to bias in the first place. This also

explains why the Wooldridge’s method is only applicable to common initial condition

problems where the panel is not extremely short, but not to general endogeneity

problems in other contexts.

3.3.5 Extension to Multinomial Choice

In this section, we extend the previously developed Control Function solution to the

case of multinomial choice.

The considered multinomial choice model is presented in Equation 3.21. The

alternatives in choice set Cn for individual n is indexed with i. ζ i,ASC
n and ζdn are

scalars and ζXn is a vector. Denote ζn as the vector collecting (ζ i,ASC
n ∀i, ζdn, ζXn ). The

choice at situation m is denoted with indicators yinm collected into a vector dnm.

Uinm = ζ i,ASC
n + ζdnyin(m−1) + ζX′

n Xinm + εinm ∀i ∈ Cn

yinm = 1[Uinm = max(Ujnm∀j ∈ Cn)]
(3.21)
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Same as before, observing a sequence of choices (dn0,dn1,...,dnMn), the initial con-

dition is dn0. Endogeneity known as the initial condition problem occurs because dn0

is correlated with ζn. The Control Function uses a two-step procedure to capture this

correlation. The difference is that now dn0 is no longer a binary scalar, but a vector

of choice indicators.

Naturally, a multinomial choice model could be specified as the initial condition

model, outlined in Equation 3.22. The instruments in this model are the same as

the binary case—exogenous attributes of the initial condition and average attributes

across all observations of n, and they enter the utility of their associated alterantives.

In this model, the error term δin captures the individual-specific random parameters.

The coefficients of instruments could be further made alternative-specific.

yin0 = 1[Ũin0 = max(Ũjn0∀j ∈ Cn)]

Ũin0 = Ṽin0 + δin

Ṽin0 = τi,ASC + τ ′XXin0 + τ ′X̄X̄in

(3.22)

Different from the binary case where we would just acquire a scalar control, in this

case, we have one control for each alternative δ̂in = E[δin|dn0] ∀i ∈ Cn. To compute

these expectations, in addition to the previously outlined general simulation method,

closed-form results are directly available when δin follows i.i.d. extreme value distri-

butions EV (−γ, 1) where γ is the Euler’s constant ≈ 0.577 to make the unconditional

mean of δin zero. The results from [51] are shown in Equation 3.23 where Pn0(i) is

the predicted probability of alternative i by the initial condition model.

δ̂in = E[δin|dn0] =

#
$%

$&

−lnPn0(i), if yin0 = 1

Pn0(i)
1−Pn0(i)

lnPn0(i), if yin0 = 0

(3.23)

Denote δ̂n the vector collecting δ̂in ∀i ∈ Cn. The second step is to specify ζn as a

function of δ̂n with the assumption that ζn conditional on δ̂n is no longer correlated

with dn0. One specification is provided in Equation 3.24 where k index the dimension

of ζn. Compared to the binary case, as δ̂n becomes a vector, γk
h also becomes a vector.
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vCF,k
n is the new random components that are assumed to be uncorrelated with dn0.

ζkn = γk
0 + γk′

h δ̂n + vCF,k
n ; ∀k ∈ {1, ..., K} (3.24)

Normalizations of the specification for ζ i,ASC
n are required. For example, one of the

γi,ASC
0 needs to be fixed to zero, and any element of control cannot enter all the ζ i,ASC

n .

One sparser specification of the ζ i,ASC
n could be ζ i,ASC

n = γi,ASC
0 +γi,ASC

h δ̂in+vCF,i,ASC
n

which makes an alternative-specific constant only a function of that alternative’s

expected error in the auxiliary initial condition model.

3.4 Monte Carlo Experiment

3.4.1 Experimental Setup

We consider a choice between two routes, each of which is associated with a cost and

travel time. The utility of route 1 for individual n and choice situation m is specified

in Equation 3.25 where xtime
nm denotes the travel time saving of route 1 compared to

route 2, and the xcost
nm denotes for extra cost of route 1 compared to route 2. The cost

coefficient is normalized to -1 to make the utility money metric and a scale parameter

is estimated. ζscalen and ζtime
n enter the utility with exponentiation to ensure logical

sign constraints. The utility of route 2 is normalized to zero.

Unm = ζdndn(m−1) + ζASC
n − xcost

nm + exp(ζtime
n )xtime

nm + εnm/exp(ζ
scale
n ) (3.25)

For each person, we first generate 100 unobserved choice situations as the pre-

sample period. For the utility of the first-ever choice, its lagged choice dn(m−1) is

valued zero. As explained, the existence of these unobserved choices realistically

mimics the actual situation of empirical datasets, and is the source of the initial

condition problem. Then, we further generate M following choices for each individual

and these comprise the observed data. Following our notation, these are denoted from
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dn0 to dn(M−1).

We generate two datasets with different distributions specified for exogenous

attributes xcost
nm and xtime

nm and for the individual-specific random parameters ζn =

(ζdn, ζ
scale
n , ζASC

n , ζtime
n ) as follows:

• Dataset 1: ζn follows a normal distribution with a diagonal covariance matrix.

The exogenous attributes are generated from i.i.d. standard normal distribution

(i.e., N(0,1)).

• Dataset 2: ζn follows a normal distribution with a full covariance matrix. The

exogenous attributes are generated with respective individual-specific mean to

incorporate serial correlation in the exogenous attributes. We first draw xcost
n ∼

N(0, 0.5) and xtime
n ∼ N(0, 0.5), and then for each choice situation draw xcost

nm ∼

N(xcost
n , 0.5) and xtime

nm ∼ N(xtime
n , 0.5).

3.4.2 Estimation Methods

Four previously explained estimation methods are respectively deployed. Additional

specifications of the Wooldridge’s Method and Control Function are tested for dataset

2, to be introduced later:

1. No Correction: it considers the conditional likelihood in Equation 3.4, but uses

a marginal density f̆(ζn) in place of f(ζn|Xn, dn0).

2. Heckman’s Method: it considers the joint likelihood in Equation 3.3 with the

model for initial condition as Equation 3.26 where ∆ζ denotes the difference

between ζn and the population mean.

Un0 =r0∆ζdn + (c1 + r1∆ζASC
n )− xcost

n0 + exp(c2 + r2∆ζtime
n )xtime

n0

+ εn0/exp(c3 + r3∆ζscalen )
(3.26)

3. Wooldridge’s Method: it considers the conditional likelihood with f(ζn|Xn, dn0)
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approximated by f̂Wool as Equation 3.27, where k ∈ {d, scale, ASC, time}.

ζkn = αk
0 + αk

1dn0 + αk
2x

cost
n0 + αk

3x
time
n0 + αk

4x̄
cost
n + αk

5x̄
time
n + vWool,k

n
(3.27)

4. Control Function: it considers the conditional likelihood with f(ζn|Xn, dn0) ap-

proximated by f̂CF as Equation 3.28, where k ∈ {d, scale, ASC, time}.

dn0 = 1[τ0 + τ1x
cost
n0 + τ2x

time
n0 + τ3x̄

cost
n + τ4x̄

time
n + δn > 0], δn ∼ N(0, 1)

δ̂n = E[δn|dn0]

ζkn = γk
0 + γk

1 δ̂n + νCF,k
n

(3.28)

For dataset 1, as the true population distribution of random parameters has a

diagonal covariance matrix, for the No Correction and Heckman’s Method, diagonal

covariance matrices are directly specified for ζn. For the Wooldridge’s Method and

Control Function, because they approximate the conditional distribution of random

parameters on the initial condition, we first estimate full covariances matrices for

νWool
n and νCF

n where the covariances are then found to be insignificant, so we change

to diagonal covariance matrices. Results of the Wooldridge’s Method and Control

Function with full covariance matrices are available in Table A.1 and Table A.2 of

Appendix A.

For dataset 2, as the true population distribution of random parameters has a

full covariance matrix, full covariance matrices are directly specified for the random

paramters in all methods.

3.4.3 Computation

To estimate the model with the listed methods, we use the Hierarchical Bayes pro-

cedure described in [102] that uses Gibbs Sampling and an embedded Metropolis-

Hastings (MH) step. For a model with random parameters ζn ∼ N(µ,Ω), the algo-

rithm generates draws from the posterior distribution of the parameters by iterating

the following steps:
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• Step 1: drawing from the conditional posterior of the population mean µ|Ω, ζn
using the posterior formula for a Normal distribution with unknown mean and

known variance.

• Step 2: drawing from the conditional posterior of the covariance matrix Ω|µ, ζn
using the posterior formula for a Normal distribution with known mean and

unknown variance.

• Step 3: drawing from the conditional posterior of the individual-specific param-

eters ζn|µ,Ω using the Metropolis-Hastings (MH) algorithm.

Then, estimates of population mean and variances are acquired by averaging

the generated draws, excluding draws generated from the beginning burn-in itera-

tions. The Bayesian method is used to replicate maximum simulated likelihood esti-

mates with a lower computation cost. With uninformative priors and a large sample,

Bayesian estimates should be identical to the classical method [27].

For the No Correction method, the outlined Sampler could be directly used. As the

Heckman’s Method involves additional fixed (non-random) parameters that appear in

the auxiliary Equation 3.9, these fixed parameters are drawn using an additional sep-

arate MH step as in [22], where the jumping distribution’s covariance is also adapted

during the burn-in stage to facilitate convergence. For the Wooldridge’s Method and

Control Function, as the ζn follows conditional distributions whose means are linear

functions of regressors, the Step 1 is replaced with drawing from the posterior formula

of multivariate regression in [89]. The first step of Control Function is performed with

the standard glm package in R as it doesn’t involve random parameters.

3.4.4 Results

Dataset 1: 5 observed choices, 5000 individuals

The estimation results on dataset 1 is shown in Table 3.1, with RMSE of the esti-

mators in Table 3.2. Standard errors from the Monte Carlo repetitions are shown in

brackets. In terms of performance, the No Correction significantly overestimates the
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state dependence effect ζdn. The three correction methods offer overall similar per-

formance in bias reduction. The proposed Control Function yields smaller standard

errors compared to the Wooldridge’s Method, thanks to its incorporation of addi-

tional structural knowledge. Comparing the RMSE, the Control Function is slightly

better than the Wooldridge’s Method and comparable to the Heckman’s Method.

True
Value

No
Correction

Heckman’s
Method

Wooldridge’s
Method

Control
Function

Population mean

ζscalen
1 0.866 0.992 1.01 1.00

(0.0632) (0.0741) (0.0789) (0.0724)

ζdn
1.5 2.14 1.48 1.48 1.47

(0.0531) (0.0504) (0.0526) (0.0476)

ζASC
n

-0.5 -0.836 -0.487 -0.493 -0.495
(0.0309) (0.0374) (0.0330) (0.0326)

ζtime
n

0 -0.00173 0.00389 0.0118 0.0135
(0.0338) (0.0321) (0.0384) (0.0331)

Population variance

ζscalen
0.5 0.458 0.506 0.570 0.544

(0.0928) (0.112) (0.121) (0.112)

ζdn
0.5 1.14 0.485 0.472 0.427

(0.111) (0.109) (0.0936) (0.0922)

ζASC
n

1 0.419 1.06 1.03 0.989
(0.0519) (0.0983) (0.0977) (0.0860)

ζtime
n

1 1.16 1.00 0.986 0.951
(0.0841) (0.0716) (0.0808) (0.0756)

60 repetitions, 5 observed choices, 5,000 individuals

Table 3.1: Dataset 1 estimates (5,000 individuals)
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No
Correction

Heckman’s
Method

Wooldridge’s
Method

Control
Function

Population mean

ζscalen 0.148 0.0746 0.0794 0.0725

ζdn 0.643 0.0541 0.0569 0.0558

ζASC
n 0.337 0.0397 0.0337 0.0329

ζtime
n 0.0339 0.0323 0.0401 0.0358

Population variance

ζscalen 0.102 0.113 0.140 0.121

ζdn 0.651 0.110 0.0978 0.118

ζASC
n 0.584 0.115 0.101 0.0867

ζtime
n 0.181 0.0716 0.0820 0.0903

60 repetitions, 5 observed choices, 5,000 individuals

Table 3.2: Dataset 1 RMSE (5,000 individuals)

Dataset 2: 5 observed choices, 5000 individuals

To further investigate their performance under more involved situations, we move

on to dataset 2 where the true distribution of ζn has nonzero covariances and the

exogenous attributes have individual-specific mean.

The results are shown in Table 3.3 and Table 3.4. It is first worth noting that

under this setting the Heckman’s Method shows convergence problems, likely due to

the joint estimation with the initial condition model and specifying a full covariance

matrix. Out of 60 repetitions, only 16 have converged for the Heckman’s approach

and the results for the Heckman’s approach are based on these converged repetitions.

This convergence issue disappears when the number of observations per individual or

the number of individuals increases.

As expected, bias of the No Correction method increases, as the past choices could

also capture correlations in the exogenous attributes. The three correction methods

all reduce the bias. For population mean of the random parameters, all these meth-

ods provide estimates close to the true value considering the standard errors. For

population variances and covariances, Wooldridge’s Method and Control Function

have larger biases compared to the Heckman’s Method, likely due to the approxima-
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tions of ζn’s conditional distribution are not good enough and that the population

distributions are computed from post-processing as described in subsection 3.3.3.

True
Value

No
Correction

Heckman’s
Method

Wooldridge’s
Method

Control
Function

Population mean

ζscalen
1 0.839 1.00 0.967 0.982

(0.0974) (0.0980) (0.102) (0.0932)

ζdn
1.5 2.50 1.52 1.57 1.49

(0.0780) (0.0549) (0.0882) (0.0629)

ζASC
n

-0.5 -0.899 -0.505 -0.523 -0.482
(0.0367) (0.0453) (0.0554) (0.0449)

ζtime
n

0 0.00826 0.00617 0.0764 0.0567
(0.0434) (0.0507) (0.0550) (0.0436)

Population variance

ζscalen
0.5 0.539 0.648 0.670 0.662

(0.149) (0.165) (0.172) (0.158)

ζdn
0.5 3.18 0.637 0.693 0.505

(0.275) (0.122) (0.208) (0.169)

ζASC
n

1 0.476 1.07 0.894 0.918
(0.0909) (0.139) (0.165) (0.119)

ζtime
n

1 0.962 1.07 0.788 0.785
(0.0974) (0.0835) (0.0992) (0.0879)

Population covariance

ζscalen , ζdn
0.1 0.268 0.0123 0.00354 0.0111

(0.128) (0.102) (0.101) (0.0916)

ζscalen , ζASC
n

0.3 -0.0500 0.347 0.316 0.348
(0.0876) (0.141) (0.124) (0.116)

ζscalen , ζtime
n

0.2 0.180 0.0822 0.0895 0.0621
(0.0819) (0.0846) (0.0859) (0.0784)

ζdn, ζ
ASC
n

-0.1 -0.831 -0.0862 -0.0180 -0.0116
(0.111) (0.0953) (0.123) (0.104)

ζdn, ζ
time
n

-0.15 -0.759 -0.132 -0.217 -0.179
(0.109) (0.0855) (0.0917) (0.0785)

ζASC
n , ζtime

n
-0.5 0.0265 -0.550 -0.328 -0.364

(0.0610) (0.0912) (0.101) (0.0700)

60 repetitions, 5 observed choices, 5,000 individuals

Table 3.3: Dataset 2 estimates (5,000 individuals)
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No
Correction

Heckman’s
Method

Wooldridge’s
Method

Control
Function

Population mean

ζscalen 0.188 0.0981 0.108 0.0950

ζdn 1.01 0.0592 0.112 0.0642

ζASC
n 0.401 0.0456 0.0598 0.0485

ζtime
n 0.0442 0.0511 0.0941 0.0715

Population variance

ζscalen 0.154 0.221 0.242 0.226

ζdn 2.69 0.184 0.284 0.169

ζASC
n 0.531 0.155 0.196 0.144

ζtime
n 0.105 0.112 0.234 0.232

Population covariance

ζscalen , ζdn 0.211 0.134 0.140 0.128

ζscalen , ζASC
n 0.361 0.148 0.125 0.126

ζscalen , ζtime
n 0.0844 0.145 0.140 0.159

ζdn, ζ
ASC
n 0.740 0.0963 0.148 0.137

ζdn, ζ
time
n 0.619 0.0874 0.114 0.0837

ζASC
n , ζtime

n 0.530 0.104 0.200 0.153

60 repetitions, 5 observed choices, 5,000 individuals

Table 3.4: Dataset 2 RMSE (5,000 individuals)
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Dataset 2: 5 observed choices, 10,000 individuals

As significant biases of population variances are observed with the Wooldridge’s

Method and Control Function on dataset 2 with 5,000 individuals, we increase the

number of individuals to 10,000 to check whether the bias would decrease as sample

size increases. Unfortunately, based on results in Table 3.5 and Table 3.6, no no-

ticeable bias reductions of these two methods are observed as sample size increases.

Therefore, the advantage of Heckman’s Method in estimating population variances

becomes clearer.

Dataset 2: flexible correction specifications

Attempting to improve the Wooldridge’s Method and Control Function, we performed

further experiments with the specifications listed below:

• Flexible Wooldridge: add to Equation 3.27 the polynomials and interactions of

the instruments xcost2
n0 , xtime2

n0 , x̄cost2
n , x̄time2

n , xcost
n0 xtime

n0 , x̄cost
n x̄time

n , and interac-

tions between the instrument and initial condition xcost
n0 dn0, xtime

n0 dn0, x̄cost
n dn0,

x̄time
n dn0.

• Flexible Control Function: add to the first step of Equation 3.28 the polynomials

and interactions of the instruments listed in Flexible Wooldridge, and add to

the second step δ̂2n, δ̂n/xcost
n0 , δ̂n/xtime

n0 , δ̂n/x̄cost
n , δ̂n/x̄time

n . The inclusions of these

ratios are motivated by that the random parameter ζtime
n is expected to enter the

error term δn in the initial condition model as a product with attributes, and the

variance of ζtime
n is especially biased under the previous simpler specification.

When computing these ratios, for numerical stability, constants are added to

the instruments such that their minimum values are one in the dataset.

20 repetitions are done for these methods and compared with the previously pre-

sented simpler specifications under 5,000 and 10,000 individuals. The results are

shown in Table 3.7 and Table 3.8. Compared to the previous simple specifications,

these flexible specifications reduce the large bias in var(ζtime
n ), but seem to incur
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True
Value

No
Correction

Heckman’s
Method

Wooldridge’s
Method

Control
Function

Population mean

ζscalen
1 0.846 0.992 0.978 0.991

(0.0546) (0.0500) (0.0650) (0.0567)

ζdn
1.5 2.48 1.53 1.58 1.51

(0.0619) (0.0601) (0.0667) (0.0575)

ζASC
n

-0.5 -0.897 -0.508 -0.533 -0.497
(0.0364) (0.0399) (0.0447) (0.0396)

ζtime
n

0 0.0102 0.0116 0.0731 0.0560
(0.0243) (0.0241) (0.0341) (0.0222)

Population variance

ζscalen
0.5 0.533 0.601 0.651 0.650

(0.109) (0.0918) (0.120) (0.113)

ζdn
0.5 3.22 0.597 0.751 0.591

(0.262) (0.143) (0.159) (0.138)

ζASC
n

1 0.491 1.06 0.882 0.915
(0.0615) (0.0649) (0.0927) (0.0747)

ζtime
n

1 0.903 1.04 0.743 0.751
(0.0732) (0.0754) (0.0652) (0.0672)

Population covariance

ζscalen , ζdn
0.1 0.243 -0.0137 -0.0258 -0.0124

(0.114) (0.0783) (0.102) (0.0912)

ζscalen , ζASC
n

0.3 -0.0173 0.345 0.336 0.369
(0.0613) (0.0765) (0.0906) (0.0854)

ζscalen , ζtime
n

0.2 0.217 0.152 0.136 0.102
(0.0547) (0.0568) (0.0556) (0.0555)

ζdn, ζ
ASC
n

-0.1 -0.860 -0.0759 -0.0567 -0.0439
(0.105) (0.0885) (0.102) (0.0915)

ζdn, ζ
time
n

-0.15 -0.774 -0.163 -0.250 -0.212
(0.0751) (0.0480) (0.0435) (0.0453)

ζASC
n , ζtime

n
-0.5 0.0311 -0.535 -0.298 -0.343

(0.0445) (0.0504) (0.0553) (0.0453)

30 repetitions, 5 observed choices, 10,000 individuals

Table 3.5: Dataset 2 estimates (10,000 individuals)
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No
Correction Heckman’s Wooldridge’s Control

Function

Population mean

ζscalen 0.163 0.0506 0.0687 0.0575

ζdn 0.983 0.0672 0.103 0.0578

ζASC
n 0.398 0.0407 0.0554 0.0397

ζtime
n 0.0264 0.0267 0.0807 0.0602

Population variance

ζscalen 0.114 0.137 0.193 0.188

ζdn 2.73 0.173 0.297 0.165

ζASC
n 0.512 0.0884 0.150 0.113

ζtime
n 0.122 0.0873 0.266 0.257

Population covariance

ζscalen , ζdn 0.183 0.138 0.162 0.145

ζscalen , ζASC
n 0.323 0.0888 0.0977 0.110

ζscalen , ζtime
n 0.0572 0.0742 0.0851 0.112

ζdn, ζ
ASC
n 0.767 0.0917 0.111 0.107

ζdn, ζ
time
n 0.629 0.0498 0.109 0.0765

ζASC
n , ζtime

n 0.533 0.0612 0.210 0.164

30 repetitions, 5 observed choices, 10,000 individuals

Table 3.6: Dataset 2 RMSE (10,000 individuals)

63



larger bias in the other variances. Further, the biases still persist when the num-

ber of individuals increases. Therefore, these results indicate no significant further

improvements over the previously presented simpler specifications.

True
Value

Flexible
Wooldridge
(5,000 ind.)

Flexible
Wooldridge
(10,000 ind.)

Flexible
Control Function

(5,000 ind.)

Flexible
Control Function

(10,000 ind.)

Population mean

ζscalen
1 1.04 1.02 1.03 1.02

(0.121) (0.0698) (0.0868) (0.0484)

ζdn
1.5 1.54 1.57 1.54 1.55

(0.103) (0.919) (0.0730) (0.0671)

ζASC
n

-0.5 -0.539 -0.563 -0.513 -0.530
(0.0700) (0.0706) (0.0415) (0.0469)

ζtime
n

0 0.0567 0.0517 0.0518 0.0541
(0.0695) (0.0230) (0.0437) (0.0226)

Population variance

ζscalen
0.5 0.810 0.710 0.723 0.680

(0.241) (0.121) (0.188) (0.0996)

ζdn
0.5 0.762 0.771 0.619 0.652

(0.259) (0.131) (0.213) (0.142)

ζASC
n

1 0.901 0.834 0.861 0.879
(0.154) (0.0931) (0.131) (0.0648)

ζtime
n

1 1.11 1.01 0.963 0.919
(0.125) (0.0816) (0.106) (0.0629)

Population covariance

ζscalen , ζdn
0.1 -0.0384 -0.0209 -0.0123 -0.0242

(0.113) (0.116) (0.117) (0.104)

ζscalen , ζASC
n

0.3 0.281 0.282 0.283 0.318
(0.137) (0.0859) (0.125) (0.0744)

ζscalen , ζtime
n

0.2 0.133 0.196 0.118 0.168
(0.119) (0.0705) (0.101) (0.0594)

ζdn, ζ
ASC
n

-0.1 -0.0307 -0.0638 -0.0868 -0.115
(0.120) (0.115) (0.112) (0.114)

ζdn, ζ
time
n

-0.15 -0.218 -0.250 -0.183 -0.199
(0.143) (0.0745) (0.105) (0.548)

ζASC
n , ζtime

n
-0.5 -0.441 -0.386 -0.402 -0.401

(0.131) (0.0533) (0.0809) (0.0428)

20 repetitions , 5 observed choices

Table 3.7: Dataset 2 estimates (Flexible correction specifications)
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Flexible
Wooldridge
(5,000 ind.)

Flexible
Wooldridge
(10,000 ind.)

Flexible
Control Function

(5,000 ind.)

Flexible
Control Function

(10,000 ind.)

Population mean

ζscalen 0.127 0.0738 0.0911 0.0513

ζdn 0.113 0.113 0.0836 0.0831

ζASC
n 0.0800 0.0945 0.0435 0.0557

ζtime
n 0.0897 0.0566 0.0678 0.0586

Population variance

ζscalen 0.393 0.242 0.291 0.206

ζdn 0.368 0.301 0.244 0.208

ζASC
n 0.183 0.190 0.192 0.138

ζtime
n 0.166 0.0820 0.112 0.103

Population covariance

ζscalen , ζdn 0.178 0.168 0.162 0.162

ζscalen , ζASC
n 0.138 0.0877 0.126 0.0766

ζscalen , ζtime
n 0.136 0.0706 0.130 0.0676

ζdn, ζ
ASC
n 0.139 0.121 0.113 0.115

ζdn, ζ
time
n 0.159 0.125 0.111 0.0734

ζASC
n , ζtime

n 0.144 0.126 0.127 0.108

20 repetitions, 5 observed choices

Table 3.8: Dataset 2 RMSE (Flexible correction specifications)
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3.5 Conclusions

In this chapter, a Control Function solution is proposed to the well-known initial

condition problem in the estimation of dynamic choice model with random parame-

ters. The proposed method is compared with existing solutions, namely the one by

Heckman [66] and the one by Wooldridge [108], both from an analytical view and

Monte Carlo experiments. Instead of dynamic models with only random intercepts

that are commonly considered in the literature, our analysis considers the general case

of random parameters and the estimation of their population distributions. Further,

the Control Function solution is extended for dynamic multinomial choice models.

Compared to the Wooldridge’s method, Control Function provides similar bias

reductions with smaller standard errors as it incorporates more structural knowledge

regarding the source of endogeneity. Compared to the Heckman’s Method, Con-

trol Function has similar performance in estimating the population mean of random

parameters, but gives considerably larger bias in estimating population covariance

matrix (similar to Wooldridge’s method). This covariance matrix bias does not seem

to decrease as the number of individual increases. More flexible modeling assumptions

could potentially alleviate this problem, for example trying to use semi-parametric

distribution specifications (for example [43]) for the conditional distributions.

The impact of the covariance matrix bias on personalized pricing is not imme-

diately clear and requires further investigation. Nevertheless, the corrected models

should at least be much better to use than the uncorrected model with largely biased

population mean. Further, as will be introduced in chapter 5, to predict a new choice

by a given individual, our personalized pricing methodology uses the posterior distri-

bution of individual-specific parameters (ζn) on previous choices from that person. In

this case, the population distribution only serves as a prior, and hence its influence

should decrease to none when a large amount of observations from the individual

becomes available.
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Chapter 4

Managed Lanes Travel Behavior

Modeling

4.1 Introduction

This chapter develops a comprehensive choice model for whether a traveler uses the

managed lanes (ML), as opposed to general purpose lanes (GP). The choice situation

is shown in Figure 4-1. A corridor consists of tolled ML and free GP that run in

parallel. Travelers who opt to use ML are required to pay a toll. The study is based

on empirical data that are detailed in section 4.2.

Figure 4-1: Choice situation between ML and GP
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Aiming to develop a useful choice model for personalized pricing analysis, we

have two main objectives. The first objective is to quantify the extent of unobserved

heterogeneity and state dependence. Incorporations of unobserved heterogeneity al-

low estimation of individual-level parameters that better predict choices of specific

individuals. Quantification of state dependence is particularly important when the

price is determined considering future returns (for example, a discount program that

tries to cultivate travel habit or brand loyalty). The second objective is to correctly

estimate the price elasticity, the importance of which is obvious.

In this study, we extend the model specification developed by [115] which used the

same data to estimate a flat logit model with a comprehensive list of state-dependent

variables that capture past choices and their interactions with past experience. We

build on their work first by including random parameters to capture unobserved

heterogeneity. This incurs the initial condition problem we analyzed in chapter 3,

and the Wooldridge’s and Control Function corrections are applied and compared. In

addition, we analyze the price endogeneity problem caused by dynamic pricing, and

find suitable instruments for its correction.

In this chapter, we start by describing the data. Then the choice model is specified,

followed by methods for correcting the initial condition problem and price endogeneity.

The chapter concludes with a discussion of estimation results and implications.

4.2 Data Description

The study is based on empirical trip records from an operational ML facility near the

Dallas/Fort Worth Airport, which is a 13.3-mile corridor on I-635 and I-35E in Dallas,

Texas (Figure 4-2). The toll on ML is adjusted dynamically according to demand.

We acquired the data of westbound trips that start before U.S. Route 75 (east

of toll segment 3) and continue beyond I-35E (west of toll segment 2). These trips

are recorded by Automatic Vehicle Identification (AVI) sensors. Each trip record

includes anonymized unique transponder IDs, trip start time, actual travel time on

the chosen paths, pre-trip travel time (processed by the data provider to approximate
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Figure 4-2: Case study network

Google Maps predictions), the displayed toll, and the traffic condition (flow, speed

and density) at the decision point. Unlike common choice datasets in transportation

or applied econometrics, our data have no observed characteristics of the traveler

(e.g., income, occupation), but only trip attributes including toll, travel time, and

time of day, which highlights the need for considering unobserved heterogeneity. Five

months of data from Sep, 2017 is available. The trips during holiday and weekends

are excluded as the study focuses on typical weekdays. The range of toll in our data

is between $1.9 to $8.25.

4.3 Model Specification

A traveler n makes trip m and considers a binary choice between ML and GP. We

normalize the utility of GP to zero and specify the utility of ML as Equation 4.1.
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UML,nm = βASC
nm − exp(βtoll

nm)x
toll (boxcox)
nm + exp(βtime

nm )xtimeSaving
nm

− exp(βDPspeed
nm )xDPspeed

nm + εnm

where xtoll (boxcox)
nm =

(xtoll
nm + 1)b

boxcox − 1

bboxcox

(4.1)

The utility has four components constructed by trip-specific sensitivity functions

denoted with βnm and trip attributes denoted with xnm. x
toll(boxcox)
nm denotes box cox

transformed toll rates with fixed parameter bboxcox. xtimeSaving
nm denotes the time saving

of managed lanes. xDPspeed
nm denotes personalized decision point speed that equals the

decision point speed minus the average of traveler’s past experienced ones in the

previous 90 days.

In estimating heterogeneous preferences towards the attributes, it is important to

place logical sign restrictions. A rational traveler should perceive toll to generate neg-

ative utility, time saving to generate positive utility, and higher decision point speed

to generate negative utility of ML relative to GP. These sign restrictions are specified

through the exponential function, which is convenient for Bayesian estimation [27].

To capture the state dependence effects, we allow the current choice to depend on

previous 90 days’ trip history denoted as set Dn(m−1). State-dependent variables are

considered as characteristics and denoted with letter s, in contrast to the attributes

denoted by x. Dn(m−1) enters βnm with transformations that map it to a vector of

state-dependent variables listed in Table 4.1. Each of these variables is generated from

one of the three time spans of previous history: (a) previous 90 days, (b) previous 30

days, and (c) last choice in the previous 90 days. These variables are either purely

based on past choices, or are interactions of past choices with past travel time for

measuring previous experiences of the traveler.

To capture the unobserved heterogeneity among individuals (inter-consumer

heterogeneity), βnm includes individual-specific random parameter ζn =

(ζASC
n , ζtolln , ζtime

n , ζDPspeed
n ) ∼ N(µ,Ωb). To capture unobserved heterogeneity among

trips made by the same individual (intra-consumer heterogeneity), βnm includes trip-
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Variable Definition

Based on choices in the previous 90 days

sloyal90nm ln((1 + sMLtrips90
nm )/(1 + sGPtrips90

nm ))

where sMLtrips90
nm and sGPtrips90

nm are respectively the numbers of ML and GP
trips in the previous 90 days

shadMLtrip90
nm 1 if had ML trips in the previous 90 days, 0 otherwise

shadGPtrip90
nm 1 if had GP trips in the previous 90 days, 0 otherwise

Based on choices in the previous 30 days

sloyal30nm similar to sloyal90nm except based on the previous 30 days

shadMLtrip30
nm similar to shadMLtrip90

nm except based on the previous 30 days

shadGPtrip30
nm similar to shadGPtrip90

nm except based on the previous 30 days

Based on the last choice in previous 90 days

slastChoiceML
nm 1 if had trip in the previous 90 days and the last choice was ML

slastChoiceGP
nm 1 if had trip in the previous 90 days and the last choice was GP

Based on experiences in previous 90 days

shistMLtimeDiff
nm Experience on ML trips in the previous 90 days, which is measured by the

average difference between actual travel time and the expected travel time. 0
if the traveler didn’t have ML trips in the previous 90 days

shistGPtimeDiff
nm similar to shistMLtimeDiff

nm except based on GP trips

Based on experience of the last trip in previous 90 days

slastTripMLDiff
nm Difference between actual travel time and the expected travel time for the last

trip, if that trip was ML. 0 for travelers whose last trip is GP or didn’t travel
in previous 90 days

slastTripGPDiff
nm Similar to slastTripMLDiff

nm if the traveler’s last choice was GP

Table 4.1: State-dependent variables
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specific random parameter ηnm = (ηASC
nm , ηtollnm, η

time
nm , ηDPspeed

nm ) ∼ N(0,Ωw). ζn and

ηnm enter βnm linearly, as specified in Equation 4.2, Equation 4.4, Equation 4.5, and

Equation 4.6.

We specify βASC
nm as Equation 4.2. It includes βH

nm which is a function of the listed

state-dependent variables (to be further specified in Equation 4.3). The time of day

ranging between 0 (00:00) and 1 (24:00) is denoted as xtod
nm and enters utility through

a Fourier series as introduced in [23]. In estimation, ηASC
nm is normalized to zero, as

the alternative-specific variance of a binary choice model could not be identified from

the scale of εnm [105].

βASC
nm =βH

nm +
6'

k=1

[bsink sin(2kπxtod
nm) + bcosk cos(2kπxtod

nm)]+

ζASC
n + ηASC

nm

(4.2)

As in Equation 4.3, βH
nm includes the full list of state-dependent variables in Ta-

ble 4.1. Further, the effects of the last choice and experience is specified to dimin-

ish as the last trip is more distant from the current choice. This is reflected by

exp(−bmemory)sdaysSinceLastTrip
nm where sdaysSinceLastTrip

nm is the number of days since the

last trip in previous 90 days and we expect bmemory to be positive.

βH
nm =bloyal90sloyal90nm + bhadMLtrip90shadMLtrip90

nm + bhadGPtrip90shadGPtrip90
nm +

bloyal30sloyal30nm + bhadMLtrip30shadMLtrip30
nm + bhadGPtrip30shadGPtrip30

nm +

bhistMLtimeDiffshistMLtimeDiff
nm + bhistGPtimeDiffshistGPtimeDiff

nm +

(blastChoiceML + blastChoiceMLMemorysmemory
nm )slastChoiceML

nm +

blastChoiceGPMemorysmemory
nm slastChoiceGP

nm +

blastTripMLDiffsmemory
nm slastTripMLDiff

nm +

blastTripGPDiffsmemory
nm slastTripGPDiff

nm

smemory
nm = exp(−bmemory)sdaysSinceLastTrip

nm

(4.3)
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We specify βtoll
nm as Equation 4.4, a function of the traveler’s trips per day in

previous 90 days (denoted as sfreqnm ), sloyal90nm (defined in Table 4.1), and whether the

traveler had any trip in the previous 90 days (denoted as snoTrip
nm that equals 1 if the

person did not). Note that sfreqnm and snoTrip
nm are in fact not state-dependent because

they are independent from previous choices.

βtoll
nm =btoll,freqsfreqnm + btoll,loyal90sloyal90nm + btoll,noTripsnoTrip

nm +

ζtolln + ηtollnm

(4.4)

We specify βtime
nm as Equation 4.5, a function of sfreqnm , sloyal90nm and snoTrip

nm that ap-

peared in βtoll
nm, as well as time period indicators xnight

nm , xAM
nm and xPM

nm that respectively

represent time periods 7 PM to 5:30 AM, 5:30 AM to 10 AM, and 3 PM to 7 PM.

The time-of-day effect during midday (10AM to 3PM) is normalized to zero.

βtime
nm =btime,freqsfreqnm + btime,loyal90sloyal90nm + btime,noTripsnoTrip

nm +

btime,night
nm xnight

nm + btime,AM
nm xAM

nm + btime,PM
nm xPM

nm +

ζtime
n + ηtime

nm

(4.5)

We specify βDPspeed
nm as Equation 4.6, a simple function that does not involve

interactions. Based on the prevalence of real-time traffic information systems, we

expect most travelers make their choice based on travel time rather than the decision

point speed.

βDPspeed
nm =ζDPspeed

n + ηDPspeed
nm

(4.6)

Finally, we specify the error term of utility εnm to follow a logistic distribution

that makes the model a logit mixture with inter- and intra-consumer heterogeneity.

To make the notation succinct, we use Xnm to denote the vector of all attributes

relevant to individual n and trip m. The probability of choosing ML conditional on
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ζn and ηnm is shown in Equation 4.7, as a function of Xnm and Dn(m−1) .

P (dnm|Xnm,Dn(m−1), ζn, ηnm) =
1

1 + e−V (Xnm,ζn,ηnm,Dn(m−1))
(4.7)

We can integrate out ηnm with its marginal distribution N(0,Ωw) as it’s by def-

inition independent from Xnm, Dn(m−1), and ζn. This gives Equation 4.8. Then,

as ζn and Dn(m−1) are not independent, we encounter the initial condition problem.

Solutions under this context are outlined in subsection 4.4.1.

P (dnm|Xnm,Dn(m−1), ζn) =

!
P (dnm|Xnm,Dn(m−1), ζn, ηnm)f(ηnm)dηnm (4.8)

4.4 Model Estimation

In estimating the specified model, we face two econometric issues. The first is the

initial condition problem, and the second is price endogeneity from dynamic pricing.

4.4.1 The Initial Condition Problem

In this application, the state dependence effects are not only on the previous choice,

but the previous 90 days. Denote dn1 the first choice of individual n made after the

beginning 90 days of the observed sample, then the initial condition is Dn0—the 90

days previous to dn1. Note that for different individuals, the initial condition is always

defined as the previous 90 days to that person’s first trip after the beginning 90 days

of the data. For example, for a traveler whose first trip after the beginning 90 days

is at day 93, their initial condition would be day 3 to day 92.

With P (dnm|Xnm,Dn(m−1), ζn) derived in Equation 4.8, the probability of observ-

ing the choices of individual n after the initial condition is expressed in Equation 4.9,

where Mn denotes the number of observations from individual n after the first 90
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days, and Xn denotes the collection of Xnm across all the observations of n.

P (dn1, ..., dnMn |Xn,Dn0, ζn) =
Mn(

m=1

P (dnm|Xnm,Dn(m−1), ζn) (4.9)

The initial condition problem occurs when we integrate out ζn during estimation,

for its correlation with Dn0. In chapter 3, we discussed three ways of addressing the

initial condition. The Heckman’s method considers the joint likelihood of the initial

condition and following choices is as Equation 4.10. In this case, a model needs to be

constructed for set Dn0 and jointly estimated with the choice model of interest. We

have not pursued this idea and adopt the simpler Wooldridge’s method and Control

Function.

L(Dn0, dn1, ..., dnMn |Xn) =

! Mn(

m=1

P (dnm|Xnm,Dn(m−1), ζn)P (Dn0|ζn, Xn)g(ζn)dζn

(4.10)

The Wooldridge’s method and Control Function consider the conditional likeli-

hood in Equation 4.11.

L(dn1, ..., dnMn |Xn,Dn0) =

! Mn(

m=1

P (dnm|Xnm,Dn(m−1), ζn)f(ζn|Xn,Dn0)dζn (4.11)

The Wooldridge’s approach models f(ζn|Xn,Dn0) directly, and we specify it as

Equation 4.12. The variables are described in Table 4.2. Dn0 is summarized in a

parsimonious manner based on the observed log odds (slogOdds
n0 ), which should approx-

imate the average utility (and hence the individual-specific parameter) for n during

the initial condition well (as when p = 1
1+e−v , ln p

(1−p)
= v). The instruments are the

ratios of time saving over toll, averaged across the initial condition (xavgTSoverToll
n0 )

and across all observations of n (xavgTSoverTollAll
n ). They should be strong indicators

for the worthiness of using ML during the initial condition and overall. For travelers

who had no trip during the initial condition, we allow a different intercept reflected

by αk,noTrip for their joint considerations with other travelers.
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ζkn =αk,0 + αk,logOddsslogOdds
n0 + αk,onlyMLsonlyML

n0 + αk,onlyGP sonlyGP
n0 + αk,noTripsnoTrip

n0 +

αk,avgTSoverTollxavgTSoverToll
n0 + αk,avgTSoverTollAllxavgTSoverTollAll

n +

vk,Wool
n

where k ∈ {ASC, toll, time, DPspeed}

vWool
n = [vASC,Wool

n , vtoll,Wool
n , vtime,Wool

n , vDPspeed,Wool
n ] ∼ N(0,ΩWool)

(4.12)

Variable Definition

slogOdds
n0 !

0 if sMLtrips90
n0 = 0 or sGPtrips90

n0 = 0,
ln(sMLtrips90

n0 /sGPtrips90
n0 ) otherwise

where sMLtrips90
n0 and sGPtrips90

n0 are respectively the number of ML and GP
trips in Dn0.

sonlyML
n0 1 if had and only had ML trip in Dn0

sonlyGP
n0 1 if had and only had GP trip in Dn0

snoTrip
n0 1 if no trip in Dn0

xTSoverToll
nm ratio of time saving over toll

xavgTSoverToll
n0 the average of xTSoverToll

nm across all trips in the initial condition

xavgTSoverTollAll
n the average of xTSoverToll

nm across all trips of n

Table 4.2: Variables for initial condition correction

Then the Control Function method has two steps: in the first step we acquire

controls from an auxiliary model predicting the initial condition Dn0 with the instru-

ment, then in the second step these controls are used to specify ζn to capture its

correlation with Dn0 for solving endogeneity.

In the first step, we specify the model for each choice in the initial condition Dn0
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to be a probit model of the instruments as Equation 4.13. τTSoverToll is estimated to

be 0.271 with standard error 0.00581, and τavgTSoverTollAll is estimated to be 0.735

with standard error 0.0106. These estimates indicate that the instruments are very

strong and the signs of their effects are intuitive. For this first-step model, more

instruments could be easily incorporated, but we keep using the same instruments as

Wooldridge’s method for their direct comparison.

∀m ∈ Dn0 δnm ∼ N(0, 1)

dnm = [τ 0 + τTSoverTollxTSoverToll
nm + τavgTSoverTollAllxavgTSoverTollAll

n + δnm]
(4.13)

Then, the control δ̂nm is computed with the inverse Mills ratio as discussed in

chapter 3. The structural equation for ζn is specified as Equation 4.14, where we use

the average δ̂nm across Dn0 denoted as δ̄n. Similar to the specification of Wooldridge,

for travelers who had no trip during the initial condition, we allow a different intercept

rk,noTrip and their δ̄n’s are zero.

ζkn =γk,0 + γk,controlδ̄n + γk,noTripsnoTrip
n0 + vk,CF

n

where k ∈ {ASC, toll, time, DPspeed}

vCF
n = [vASC,CF

n , vtoll,CF
n , vtime,CF

n , vDPspeed,CF
n ] ∼ N(0,ΩCF )

(4.14)

In addition to the Wooldridge’s method and Control Function, we also directly

estimate the model with no correction for comparison in section 4.5.

4.4.2 Price Endogeneity from Dynamic Pricing

As reviewed in subsection 2.2.3, low elasticity or even positive price response are often

discovered on empirical managed lanes studies, with [34] being the only work that

viewed it as an endogeneity problem and corrected it with instrumental variables in

the case of aggregate demand models.

The speculated source of endogeneity is that the dynamic pricing schemes on

managed lanes cause the error term of utility to be correlated with price. The demand

77



and pricing system under the case of dynamic pricing is shown in Figure 4-3. The

toll at interval t is determined as a function of the demand just observed at interval

t − 1 (each time interval corresponds to a toll change, in our case 5 minutes). We

denote this relationship by tollt = fprice(demandt−1), where tollt denotes the toll at t,

fprice denotes the pricing function that should have a positive derivative with respect

to demand, and demandt−1 denotes the total demand to ML at the previous interval.

Now suppose that the demand is affected by unobserved factors that are not captured

by the attributes in the demand model (examples in next paragraph). These factors

would affect tollt through their influence on demandt−1 and fprice, as well as appear

in the utility error terms of people who travel at time t. Because the pricing function

has a positive derivative, a positive correlation would appear between tollt and the

error term of demand, which makes the estimated toll sensitivity less negative or even

positive.

Figure 4-3: Interactions between demand and toll in dynamic pricing

In essence, under dynamic tolls that depend on ML demand, if there exist unob-

served factors (factors that are not in the demand model) that affect demand and

persist more than one time interval (5 minutes), endogeneity exists and gives positive

bias to toll sensitivity. These unobserved factors could be of multiple sources. A first

example is the incidents and traffic disruptions upstream to the ML entrance. These

incidents make the travelers perceive high congestion, or in more rush, and hence

increase ML demand, but would not be captured by the specified demand model.

A second example is the unobserved variations in trip purpose at a given time and

day. As in Figure 4-2, the westbound trips we have are heading towards Dallas/Fort

Worth International Airport. When there are more departure flights, or disruptions
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in those flights, the ML demand is expected to increase as it offers shorter and much

more reliable travel time for people to catch their flights.

To fix the endogeneity problem, we apply the Control Function method. Unlike

the case of initial condition problem where instruments are readily available from the

attributes, the challenge here is to find instruments that are correlated with tollt,

but uncorrelated with the unobserved factors that affect demand. A common type

of instruments for price endogeneity is the Hausman type that uses the price of the

same or similar product in other markets as instruments [60, 64]. Following this

idea, we tested the toll rate from the opposite direction of the corridor at the same

interval, denoted as toll∗t . toll∗t should correlate with the endogenous tollt, as they

are set by the same operator under various considerations of historical patterns and

same rules. Further, it is reasonable to assume toll∗t being uncorrelated with the

error term of the demand model, as it is on the opposite direction of the modeled

demand. Specifically, going back to the facility map in Figure 4-2, the tollt is the toll

associated with gantry 7 plus gantry 10, and the toll∗t we selected is the toll associated

with gantry 1A. Intentionally, toll∗t is not exactly associated with the opposite origin-

destination pair of the demand we are modeling, which further supports its exogeneity.

To statistically test the exogeneity of toll∗t , overidentification tests could be used, but

they require at least one other instrument of a different nature [57]. This could be

further investigated if other potential instruments are identified.

The control function is applied in two steps. In the first step, we use a linear

regression model to fit the endogenous variable xtoll
nm on the instrument xtoll∗

nm and

other exogenous variables already in the choice model (time saving, decision point

speed, and time-of-day Fourier series). The adjusted R2 of this regression model is

0.933, suggesting that the instrument and exogenous attributes explain most of the

variations in xtoll
nm. The estimated coefficient for xtoll∗

nm is 1.28 with a standard error of

0.0107, indicating that the instrument is strong and has a positive correlation with

the endogenous variable xtoll
nm, which coincides with our intuition. The estimates of

this model is presented in Appendix B.

The second step of control function uses the fitted model of the first step to com-
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pute residuals ŵnm that capture the endogenous part of the toll. These residuals are

used as an additional variable (a control) in the choice model estimation as Equa-

tion 4.15. The assumption is that the original error term εnm that is correlated with

xtoll
nm is decomposed into the control function bwŵnm that is correlated with xtoll

nm, and

a new error term ε̃nm that is no longer correlated with xtoll
nm. This therefore solves the

endogeneity problem. ε̃nm is specified to still follow a logistic distribution for keeping

the model a logit mixture.

UML,nm = βASC
nm − exp(βtoll

nm)x
toll (boxcox)
nm + exp(βtime

nm )xtimeSaving
nm

− exp(βDPspeed
nm )xDPspeed

nm + bwŵnm + ε̃nm

where xtoll (boxcox)
nm =

(xtoll
nm + 1)b

boxcox − 1

bboxcox

(4.15)

4.5 Estimation Results

4.5.1 Overview

This section presents the estimated logit mixture model with three methods of treating

the initial condition problem:

• No correction: assume that the initial condition is exogenous and directly

estimating the model by integrating Equation 4.8 on the marginal (population)

distribution of ζn.

• Wooldridge’s method: use the correction specified in Equation 4.12.

• Control Function: use the correction specified in Equation 4.13 and Equa-

tion 4.14.

In addition, to compare the estimated state dependence effects under different con-

siderations of heterogeneity, we also present a flat logit model which differs from the

logit mixture specification only in that it does not include unobserved heterogeneity

(Ωb = 0,Ωw = 0).

As the specified state dependence is of previous 90 days, the first 90 days of the

data are only used as the initial condition, and the day 91 to day 120 are used as the
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training data. Data from day 121 to 144 are used as the testing data.

Similar to subsection 3.4.3, the Hierarchical Bayes procedure is used to estimate

the outlined logit mixture model under different treatements for the initial condition

problem. The difference here is that we have fixed parameters in addition to random

parameters, and unobserved intra-heterogeneity in addition to inter-heterogeneity.

Therefore, a 5-step Gibbs Sampling procedure developed in [22, 44] is used. The flat

logit model is estimated with Biogeme [29].

All the models are corrected for price endogeneity. As shown by Table 4.3, the

estimated coefficients (bw) of the control for price endogeneity are always positive

and significant. This confirms our theory that the control should capture the posi-

tive correlation between toll and the error term of utility. Because if there was no

endogeneity, the coefficients of the control should not appear to be significantly dif-

ferent from zero. Further, to validate the effects of correction, a flat logit model

without price endogeneity correction is estimated for comparison. The uncorrected

model has a price elasticity of -0.227 whereas the corrected flat logit has a price elas-

ticity of -0.428. This clearly indicates a significant price endogeneity problem and

that our method addresses it. Under no price endogeneity correction, the specified

logit mixture for price endogeneity shows convergence issues as the distribution of

toll sensitivity is constrained to be negative in the utility specification Equation 4.1.

Parameter Flat Logit Logit Mixture
No Correction

Logit Mixture
Wooldridge

Logit Mixture
Control Function

bw
0.242 0.306 0.300 0.311

(0.0336) (0.0388) (0.0483) (0.0434)

Table 4.3: Coefficient estimates of the price endogeneity control

The fit of the four estimated models is shown in Table 4.4. The training data

contains 120,193 observations from 53,966 individuals. The logit mixture models with

corrections perform the best. The Wooldridge’s correction fits slightly better than

the Control Function. A comparison of predictions on the testing data is discussed

in subsection 4.5.3.

Despite that the fit is not very different across the 4 models, it is not correct to
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say that the four models are of similar qualities, as we know that the Wooldridge’s

and the Control Function corrections address endogeneity, and in the next section we

will show that the flat logit and uncorrected logit mixture estimated very different

state dependence effects compared to the corrected mixture models.

Flat Logit Logit Mixture
No Correction

Logit Mixture
Wooldridge

Logit Mixture
Control Function

Number of parameters 41 54 78 62

Log-likelihood -40,073 -39,655 -39,382 -39,519

AIC 80,228 79,418 78,919 79,161

BIC 80,625 79,941 79,676 79,762

ρ̄2 0.5185 0.5234 0.5264 0.5249

Table 4.4: Model fit and comparison

4.5.2 Parameter Estimates

In the following paragraphs, we present, analyze and discuss parameter estimates in

four groups that exhaustively include all the parameters in the utility specifications:

• State dependence effects

• Unobserved heterogeneity

• Time of day effects

• Toll, time and decision point speed sensitivities

State dependence effects

As previously listed in Table 4.1, each state-dependent variable is specified either

based on the previous 90 days history, the previous 30 days history, or the last trip

in the previous 90 days. Parameter estimates are shown in Table 4.5, which will be

discussed block by block in the following paragraphs. A comparison of the overall

estimated state dependence effects across models will be provided at the end.

The main effects of choices in previous 90 days and 30 days have intuitive signs,

except for Wooldridge’s estimate of bhadMLtrip90 that is negative and more than two
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Parameter Flat Logit Logit Mixture
No Correction

Logit Mixture
Wooldridge

Logit Mixture
Control Function

Main effects of choices in the previous 90 days

bloyal90
0.626 0.943 0.799 0.701

(0.0311) (0.0572) (0.102) (0.0851)

bhadMLtrip90 0.708 0.514 -0.629 -0.182
(0.0809) (0.134) (0.234) (0.186)

bhadGPtrip90 -0.711 -0.713 0.142 -0.280
(0.0474) (0.0786) (0.173) (0.112)

Main effects of choices in the previous 30 days

bloyal30
0.452 0.279 0.297 0.227

(0.0308) (0.0602) (0.0767) (0.0723)

bhadMLtrip30 -0.0686 -0.0610 0.204 0.232
(0.0533) (0.0927) (0.126) (0.116)

bhadGPtrip30 -0.0207 -0.0802 -0.133 -0.226
(0.0500) (0.0765) (0.0949) (0.0910)

Main effects of last choice in the previous 90 days

blastChoiceML -0.0841 0.00937 -0.126 -0.228
(0.0875) (0.118) (0.149) (0.150)

blastChoiceMLMemory 0.512 0.328 0.708 0.730
(0.152) (0.304) (0.333) (0.313)

blastChoiceGPMemory -0.358 -0.165 -0.260 -0.233
(0.0679) (0.117) (0.144) (0.127)

bmemory 0.0880 0.245 0.196 0.182
(0.0215) (0.132) (0.0802) (0.0782)

Main effects of experiences in the previous 90 days

bhistMLtimeDiff -0.136 -0.216 -0.280 -0.270
(0.0242) (0.0392) (0.0532) (0.0535)

bhistGPtimeDiff -0.00206 -0.00206 0.00725 0.00150
(0.00719) (0.0116) (0.0150) (0.0146)

Main effects of experience of the last trip in the previous 90 days

blastTripMLDiff -0.0112 -0.00382 0.0277 0.0398
(0.0452) (0.0930) (0.104) (0.0970)

blastTripGPDiff 0.00526 0.0147 0.0250 0.0175
(0.0101) (0.0204) (0.0228) (0.0204)

Interaction effects of choices in the previous 90 days

btoll,loyal90
-0.220 -0.533 -1.21 -0.643

(0.0295) (0.0729) (0.227) (0.130)

btime,loyal90 -0.158 -0.0870 -0.571 -0.128
(0.0219) (0.0377) (0.159) (0.0598)

Table 4.5: Estimated state dependence effects
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standard errors away from zero. However, this estimate is not as unintuitive as it

seems as the corresponding variable shadMLtrip90
nm is by definition correlated with other

state-dependent variables. When a person’s history in the previous 90 days changes

from not having ML trip to having one, their sloyalnm must increase ln(2)−ln(1) = 0.693

(see its definition in Table 4.1), which makes the overall effect less negative, not to

mention that if this change comes from the previous 30 days, sloyal30nm and shadMLtrip30
nm

will also increase.

For the effects of last choice in the previous 90 days, the parameter not interacted

with memory effect, blastChoiceML, is close to zero in terms of the standard errors. The

parameter interacted with memory effects blastChoiceMLMemory and blastChoiceGPMemory

have expected signs and are in general more distant from zero. The memory effect

bmemory is estimated to be positive which means more distant last choices have less

effect.

The effect of ML experiences in the previous 90 days (bhistMLtimeDiff ) has a neg-

ative sign, meaning if the actual travel time in those ML trips were longer than

expected, the traveler would be less likely to use ML. On the other hand, the effect of

GP experiences (bhistGPtimeDiff ) is very close to zero. This makes sense because the

travelers would be disappointed if they had large experienced travel time on the ML

as they are tolled. As the GP are free, such disappointment might not occur or might

only have minimal effects on a new choice. The additional effects of previous ML and

GP experiences (blastMLtimeDiff and blastGPtimeDiff ) are discovered to be practically

zero as well.

For the interaction terms, the choices in the previous 90 days affect toll and time

sensitivities. A traveler with higher ratio of ML usage is less sensitive to both toll

and travel time.

Finally, to analyze the overall state-dependence effects, we compute the change in

the aggregate ML market share in the testing data with respect to perturbations of

each observation’s previous trip history, presented in Table 4.6. With perturbations,

the four models all suggest that there is a positive state dependence—travelers who

used ML more in the past have higher utility in continue using it. However, the
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estimated magnitudes of the state dependence effects are different across models.

Pertubations Predicted changes in managed lanes demand [%]

Flat Logit Logit Mixture
No Correction

Logit Mixture
Wooldridge

Logit Mixture
Control Function

Previous choice changed to ML +38.4 +28.2 +14.2 +16.9

Previous choice changed to GP -16.8 -11.5 -7.88 -8.47

+ 1 ML trip 30 days ago +20.1 +16.5 +8.82 +10.3

+ 1 GP trip 30 days ago -16.2 -14.3 -9.39 -10.4

+ 1 ML trip 90 days ago +14.0 +13.9 +4.92 +6.54

+ 1 GP trip 90 days ago -9.98 -11.0 -6.38 -6.89

Numbers are % changes in proportion to base case (original test data)
Computed among travelers who have at least one trip in the previous 90 days

Table 4.6: Comparison of overall state dependence effects on prediction

Specifically, the flat logit suggests the largest state dependence. This is not a

surprise as in this case the omitted unobserved heterogeneity is statistically mis-

interpreted as state dependence, which is widely known as spurious state dependence

[65]. Comparing the logit mixtures, the one that does not correct for initial condition

estimats the largest state dependence effects. This is also as expected as the initial

conditions are endogenous and the same direction of bias is observed in the Monte

Carlo experiments of chapter 3. Comparing the Wooldridge’s method and Control

Function, they both estimate smaller state dependence effects compared to the flat

logit and logit mixture without initial condition correction. The Wooldridge method

estimates overall smaller effects of choices in the previous 90 and 30 days, which are

results of its reversed signs of bhadMLtrip90 and bhadGPtrip90 estimates.

Unobserved heterogeneity

The unobserved heterogeneity is represented by ζn ∼ N(µ,Ωb) for inter-heterogeneity

and ηnm ∼ N(0,Ωw) for intra-heterogeneity.

Without initial condition correction, the population distribution of ζn is directly

estimated. With the Wooldridge’s method or Control Function, the conditional distri-

bution of ζn on the initial conditions are estimated. For these two methods, we acquire

the estimates of unconditional (population) distribution as explained and verified in
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subsection 3.3.3, which evaluates the population distribution based on the param-

eter estimates of the conditional distribution in Equation 4.12 and Equation 4.14,

and the sample distribution of explanatory variables in those equations. Estimates

of standard errors are acquired based on the posterior distribution of parameters in

Equation 4.12 and Equation 4.14.

The estimates of N(µ,Ωb) is presented in Table 4.7. The estimates by Wooldridge’s

method and Control Function are overall close considering the standard errors. Across

all methods, the variances are significantly different from zero, which suggest the

large extent of unobserved inter-heterogeneity. The No Correction appears to under-

estimate the variances. A positive correlation between ζASC
n and ζtolln is discovered,

suggesting a traveler who is more sensitive to toll prefers ML more when all the utility

computed on attributes are equal. A positive correlation between ζtolln and ζtime
n is

discovered, suggesting a traveler who is more sensitive to toll is also more sensitive to

travel time. Estimates of the conditional distribution—Equation 4.12 for Wooldridge

and Equation 4.14 for Control Function—are presented in Appendix B.

The estimate of N(0,Ωw) is shown in Table 4.8. Ωw is specified to be a diagonal

matrix, and as explained eariler ηASC
nm is normalized to zero for identification. The

variances appear to be significantly different from zero, suggesting the existence of

intra-heterogeneity.

Time-of-day effects

This section presents and analyzes the estimated Fourier series in Equation 4.2. The

estimated parameters are in Table 4.9 and the overall effect is plotted in Figure 4-4.

Clearly, travelers prefer ML during the AM and PM peak periods. This could be

explained by trip purpose and expectations of congestion levels. During the AM and

PM peak, the proportion of commuters should be much higher than leisure travelers.

Commuters would want to arrive on time in the morning and get home quickly in the

evening, and hence favor the congestion-free and more reliable ML. As trip purpose is

not observed, its average variations are captured by the time-of-day variable. Further,

in general, travelers would expect the GP during peak hours to be congested and some

86



Parameter Flat Logit Logit Mixture
No Correction

Logit Mixture
Wooldridge

Logit Mixture
Control Function

Population mean

ζASC
n

-0.837 -0.906 -1.25 -1.16
(0.0861) (0.0715) (0.134) (0.0961)

ζtolln
-3.88 -4.40 -4.76 -4.65

(0.541) (0.257) (0.400) (0.301)

ζtime
n

-2.06 -2.20 -3.01 -2.32
(0.0822) (0.107) (0.273) (0.146)

ζDPspeed
n

-3.46 -5.06 -5.24 -4.75
(0.0713) (0.283) (0.433) (0.324)

Population variance

ζASC
n

0 1.46 4.66 3.33
(0.189) (0.780) (0.485)

ζtolln
0 1.58 2.85 2.88

(0.277) (0.689) (0.545)

ζtime
n

0 0.845 2.16 1.42
(0.142) (0.501) (0.261)

ζDPspeed
n

0 3.84 4.22 3.96
(0.743) (0.994) (0.770)

Population covariance

ζASC
n , ζtolln

0 0.663 1.29 1.02
(0.145) (0.386) (0.284)

ζASC
n , ζtime

n
0 -0.182 -0.575 -0.0728

(0.119) (0.240) (0.169)

ζASC
n , ζDPspeed

n
0 -0.166 -0.165 0.332

(0.352) (0.595) (0.471)

ζtolln , ζtime
n

0 -0.861 1.67 1.59
(0.177) (0.464) (0.320)

ζtolln , ζDPspeed
n

0 -0.461 -1.22 -0.418
(0.457) (0.781) (0.678)

ζtime
n , ζDPspeed

n
0 -0.291 -0.786 -0.300

(0.381) (0.666) (0.770)

Table 4.7: Estimated unobserved inter-heterogeneity

Parameter Logit Mixture
No Correction

Logit Mixture
Wooldridge

Logit Mixture
Control Function

Variance

ηtollnm
0.345 0.574 0.578

(0.0989) (0.220) (0.164)

ηtime
nm

0.115 0.298 0.109
(0.0351) (0.119) (0.0335)

ηDPspeed
nm

2.20 2.42 1.13
(0.620) (0.814) (0.538)

Table 4.8: Estimated unobserved intra-heterogeneity
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of them might decided to use ML without checking real-time travel information.

Figure 4-4: Overall time-of-day effects

Toll, time, and speed sensitivities

The toll sensitivity function is specified in Equation 4.4. The corresponding parame-

ters are shown in Table 4.10. The box-cox parameter is larger than 1, meaning that

the marginal disutility of toll increases as toll increases. Travelers with higher fre-

quency are toll-sensitive, which is likely a reflection of unobserved budget constraints.

Loyal travelers are less toll-sensitive.

The time sensitivity function has been specified in Equation 4.5. The correspond-

ing parameters are shown in Table 4.11. Travelers with higher trip frequency and

lower loyalty, and who had no trip in previous 90 days are more time-sensitive. These

travelers are likely the ones who check travel time before making the choice. Travelers

are more time-sensitive during peak hours and night compared to midday.

The estimated distributions of value of time—willingness to pay for travel time

saving—is shown in Figure 4-5. As the marginal disutility of toll increases as toll

increases, the marginal willingness to pay decreases as time saving increases. The flat

logit omits significant amounts of heterogeneity.
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Parameter Flat Logit Logit Mixture
No Correction

Logit Mixture
Wooldridge

Logit Mixture
Control Function

bsin1
-0.199 -0.288 -0.314 -0.316

(0.0278) (0.0419) (0.0479) (0.0480)

bsin2
-0.312 -0.401 -0.489 -0.473

(0.0356) (0.0509) (0.0632) (0.0607)

bsin3
0.0440 0.0855 0.0553 0.0579

(0.0341) (0.0460) (0.0549) (0.0509)

bsin4
0.110 0.160 0.227 0.200

(0.0296) (0.0392) (0.0492) (0.0449)

bsin5
-0.729 -0.107 -0.103 -0.101

(0.0243) (0.0345) (0.0423) (0.0392)

bsin6
0.00590 -0.0300 -0.0366 -0.0316
(0.0185) (0.0268) (0.0331) (0.0310)

bcos1
-0.924 -1.19 -1.40 -1.36

(0.0543) (0.0704) (0.0997) (0.0849)

bcos2
-0.658 -0.850 -1.02 -0.962

(0.0434) (0.0563) (0.0775) (0.0696)

bcos3
0.523 0.693 0.804 0.776

(0.0437) (0.0559) (0.0713) (0.0663)

bcos4
0.0543 0.0450 0.0822 0.0822

(0.0258) (0.0373) (0.0453) (0.0432)

bcos5
-0.0835 -0.157 -0.195 -0.178
(0.0251) (0.0358) (0.0428) (0.0403)

bcos6
-0.0408 -0.0308 -0.0420 -0.0514
(0.0179) (0.0267) (0.0317) (0.0308)

Table 4.9: Estimated time-of-day effects

Parameter Flat Logit Logit Mixture
No Correction

Logit Mixture
Wooldridge

Logit Mixture
Control Function

bboxcox
2.26 2.32 2.33 2.32

(0.236) (0.0854) (0.101) (0.0875)

btoll,freq
1.25 2.43 2.33 2.51

(0.228) (0.393) (0.715) (0.489)

btoll,loyal90
-0.220 -0.533 -1.21 -0.643

(0.0295) (0.729) (0.227) (0.130)

btoll,noTrip -0.548 0.280 0.296 0.487
(0.0795) (0.125) (0.254) (0.215)

mean(ζtolln ) -3.88 -4.40 -4.76 -4.65
(0.541) (0.257) (0.400) (0.301)

var(ζtolln ) 0 1.58 2.85 2.88
(0.277) (0.689) (0.545)

var(ηtollnm) 0 0.345 0.574 0.578
(0.0989) (0.220) (0.164)

Table 4.10: Estimated toll sensitivity function
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Figure 4-5: Estimated value of time distributions
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Parameter Flat Logit Logit Mixture
No Correction

Logit Mixture
Wooldridge

Logit Mixture
Control Function

btime,freq 1.18 2.54 1.54 2.12
(0.145) (0.300) (0.559) (0.353)

btime,loyal90 -0.158 -0.0870 -0.571 -0.128
(0.0219) (0.0377) (0.159) (0.0598)

btime,noTrip -0.276 -0.0395 0.618 0.619
(0.0947) (0.134) (0.340) (0.264)

btime,night 0.409 0.235 0.110 0.216
(0.117) (0.122) (0.104) (0.134)

btime,AM 0.188 0.198 0.391 0.271
(0.0758) (0.0784) (0.0769) (0.0799)

btime,PM 0.151 0.106 0.282 0.216
(0.0867) (0.0914) (0.0835) (0.0843)

mean(ζtime
n ) -2.06 -2.20 -3.01 -2.32

(0.0822) (0.107) (0.273) (0.146)

var(ζtime
n ) 0 0.845 2.16 1.42

(0.142) (0.501) (0.261)

var(ηtime
nm ) 0 0.115 0.298 0.109

(0.0351) (0.119) (0.0335)

Table 4.11: Estimated time sensitivity function

The decision point speed sensitivity function has been specified in Equation 4.6.

The corresponding parameters are shown in Table 4.12. Larger unobserved hetero-

geneity and lower mean are found compared to the toll and time sensitivity, suggesting

some travelers use decision point speed to make the choice while some do not.

Parameter Flat Logit Logit Mixture
No Correction

Logit Mixture
Wooldridge

Logit Mixture
Control Function

mean(ζDPspeed
n ) -3.46 -5.06 -5.24 -4.75

(0.0713) (0.283) (0.433) (0.324)

var(ζDPspeed
n ) 0 3.84 4.22 3.96

(0.743) (0.994) (0.770)

var(ηDPspeed
nm ) 0 2.20 2.42 1.13

(0.620) (0.814) (0.538)

Table 4.12: Estimated speed sensitivity function

4.5.3 Prediction

The prediction performance on the testing data is shown in Table 4.13. For the

logit mixture models, predictions are performed based on the personalized posterior
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parameter distribution from the previously observed trips of the same traveler. The

detailed procedure is described in subsection 5.2.2 and [44]. Across all models, the

predictions are better for travelers from whom we observe more trips. For the flat

logit, this is due to that the state-dependent variables based on more frequent previous

trips become more predictive. For the logit mixture models, this trend is also a result

of improved parameter personalization as more trips are observed. The logit mixture

models perform better than the flat logit model. The corrected logit mixture models

perform slightly better than the one without correction.

Note that the testing data here is the month after training data, so the training

and testing data have similar traffic conditions and tolling policy. This is not as ideal

as testing data from completely different distributions of exogenous attributes (which

we do not have). As shown in [52], if the training and testing data follow the same data

generation process, an endogenous model might predict better as the misinterpreted

correlation could exist in both data. Therefore, we expect the corrected logit mixture

models to perform much better for the analysis of tolling algorithm.

Flat Logit Logit Mixture
No Correction

Logit Mixture
Wooldridge

Logit Mixture
Control Function

Avg. predicted choice probability 0.7906 0.8026 0.8041 0.8041

Accuracy 0.8535 0.8549 0.8553 0.8560

Table 4.13: Prediction performance on testing data

4.6 Conclusions

This chapter developed a comprehensive model for the choice between managed lanes

and general purpose lanes based on empirical data.

Both significant state dependence and unobserved heterogeneity are found from

empirical data. By comparing different modeling assumptions of the state dependence

and unobserved heterogeneity, omission of unobserved heterogeneity or the initial

condition problem lead to spuriously overstated state dependence. The predicted

impact of past choices on market share is about doubled compared to the models with
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proper unobserved heterogeneity and initial condition corrections. The Wooldridge’s

method and Control Function method for initial condition correction overall give

similar results.

It was also found that choice data under dynamic pricing are subject to price

endogeneity. A Hausman-type instrument—toll on the opposite direction—is found

useful for correction.
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Chapter 5

Personalized Toll Optimization with

Long-Term Objectives

5.1 Introduction

In chapter 4, we analyzed how travelers choose between managed lanes (ML) and gen-

eral purpose lanes (GP), and discovered significant preference heterogeneity and state

dependence. From a tolling perspective, the discovered heterogeneity further moti-

vates the potential of personalized pricing that were discussed in chapter 1, namely

that personalized pricing would effectively improve the capture rate of ML and hence

better satisfy the interests of the operator, the travelers, as well as the regulator. Fur-

ther, the state-dependent choice behavior suggests the need to consider a long-term

objective for the impact of current pricing decisions on future choices of the travelers.

This chapter culminates the thesis with the development of a personalized real-

time prediction-based pricing system for managed lanes, to better achieve comprehen-

sive short- and long-term operation objectives. As has been presented in chapter 1,

Figure 5-1 illustrates how the proposed personalized tolling system would interact

with travelers. In addition to the displayed toll, personalized discounts are offered

upon arrivals of travelers who wish to receive them and have downloaded a specialized

mobile app. We refer to these travelers with the app as the subscribers, and others

as non-subscribers.
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Figure 5-1: Proposed personalized tolling system: Overview

In real time, the personalized tolling algorithm needs to jointly optimize the dis-

played toll and personalized discounts. To this end, our method is based on an online

bi-level optimization paradigm that combines three key online capabilities: prediction,

optimization and personalization. This paradigm is hence termed Tri-POP [19].

The key contribution of this chapter is the application of Tri-POP to ML person-

alized pricing with a multi-component objective for the benefits of all stakeholders,

where detailed choice behaviors with unobserved heterogeneity and state dependence

are considered based on chapter 4. Our development advances [115] which considered

the same bi-level formulation to ML personalized pricing but only with revenue as a

single-component objective and did not consider the detailed choice behaviors.

This chapter first presents the methodology of designing the proposed tolling

algorithm with Tri-POP, followed by a closed-loop simulation case study investigating

its performance.

5.2 Methodology

5.2.1 Overview

For effective real-time optimization of the displayed toll and personalized discounts,

Tri-POP exploits the bi-level nature of the decision variables—displayed toll at the
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system level and discounts at the individual level—and formulates the operation prob-

lem into two connected sub-problems with consistent objectives: system optimization

and user optimization.

Figure 5-2 shows the bi-level architecture of Tri-POP. The system optimization

is triggered periodically (e.g., every 5 minutes, termed as a roll period) to optimize

the displayed toll and a discount control parameter based on traffic prediction. It

works within a rolling horizon framework where the optimization is performed on

a horizon including the next three roll periods (e.g., next 15 minutes, Figure 5-3).

The optimized discount control parameter is fed to user optimization to consider

traveler interactions and achieve the system objective at the individual level. The user

optimization is triggered upon detection of each subscriber to offer a tailored discount

based on individual-level choice prediction and the discount control parameter.

Figure 5-2: Tri-POP: Overall framework

The optimization problems are formulated and solved based on individual- and

system-level predictive models. Individual-level behavior prediction is supported by

the one developed in chapter 4. The system-level traffic predictions are generated

by a simulation-based dynamic traffic assignment (DTA) system. One key feature of

Tri-POP is that these predictive models are updated (calibrated) with real-time data

from the mobile discount app and network surveillance in an online setting.
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Figure 5-3: Tri-POP in action

The analytics involved in Tri-POP are developed in a series of studies summa-

rized in [19], which includes the individual-specific choice prediction to be outlined

in subsection 5.2.2 and the system-level traffic prediction to be outlined in subsec-

tion 5.2.3. A key contribution—the design of multi-component objectives—is dis-

cussed in the formulations of system and user optimizations in subsection 5.2.3 and

subsection 5.2.4.

5.2.2 Online Estimation and Prediction of Choices

The choice model for whether a traveler uses ML is introduced in chapter 4. Both

system and user optimizations are formulated based on its predictions, as will become

clear in subsection 5.2.3 and subsection 5.2.4. For better predictions, the model

predicts based on individual-level parameters that are updated as more data become

available from a given user. To this end, we adopt the online estimation and prediction

framework by [22, 44]. The fact that user preferences keep being updated and used

for system and user optimizations are reflected by the green arrows in Figure 5-2.
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We first summarize the choice model with a general utility specification. A traveler

n makes trip m and considers a binary choice between ML and GP. The probability

of choosing ML, denoted as πnm, is given by the logit formula in Equation 5.1, where

V represents the systematic utility function of ML. Xnm is a vector representing

trip attributes (e.g., toll rate, travel time saving, decision point speed) including an

intercept. βnm is a vector of corresponding sensitivity functions.

πnm = 1/(1 + e−V (Xnm,βnm)) (5.1)

βnm is specified as Equation 5.2, a linear function of Snm that includes observed

characteristics (e.g., state-dependent variables) and contextual variables (e.g., time

of day), coefficient matrix b, and trip-specific random parameter vector ηnm. We

specify ηnm to follow two hierarchical levels of distribution: ηnm ∼ N(ζn,Ωw) that

represents unobserved preference variations at individual level and ζn ∼ N(µ,Ωb)

that represents those at the population level. This notation differs from chapter 4

that uses ηnm to denote the deviates of trip-specific preference from ζn. The two

are equivalent mathematically and we change the notation here for consistency with

[22, 44].

βnm = bSnm + ηnm, ηnm ∼ N(ζn,Ωw), ζn ∼ N(µ,Ωb) (5.2)

There are three levels of unknown parameters:

• Population-level parameters: b, µ, Ωb Ωw

• Individual-level parameters: ζn

• Trip-level parameters: ηnm

Two interacting estimation procedures with Gibbs Sampling are used:

• Offline estimation: It updates (estimates) all the parameters. It uses all the ob-

served trips and is computationally expensive. It is only performed periodically

such as once a week.
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• Online estimation: It updates (estimates) only ζn and ηnm. Population parame-

ters b, Ωb Ωw are fixed to values from last offline estimation. When a new trip is

made by a traveler, online estimation is triggered only for them based on their

data. As such, online estimation is computationally cheap, highly scalable, and

hence manageable in real time.

Choice probability prediction of a new trip (denoted as M+1) is based on the latest

population-level parameters from offline estimation b̂, and the latest posterior draws

of ηnm of previous observations from online estimation (denoted as ηrn, r ∈ {1, ..., R}

where R is the number of draws) as Equation 5.3.

πn(M+1) =
1

R

R'

r=1

1

1 + e−V (Xn(M+1),b̂Sn(M+1)+ηrn)
(5.3)

5.2.3 System Prediction and Optimization

To be proactive, Tri-POP optimizes the system-level decision variables—displayed

tolls and a discount control parameter—based on real-time traffic predictions on a

rolling horizon. In this section, we first introduce our method for system prediction,

and then the optimization formulations.

System Prediction

For real-time traffic prediction, we rely on DynaMIT 2.0, a simulation-based dynamic

traffic assignment system with online calibration of supply, demand and choice model

parameters [25]. It utilizes a rolling horizon framework, and is triggered periodically

(every 5 minutes, a roll period). In each execution cycle, it performs traffic state

estimation of the previous interval, and predicts the state of the system for the next

3 intervals.

System optimization is performed on the second and third prediction intervals

allowing for execution time. To evaluate the objective function on given values for

the displayed tolls and discount control parameter, prediction intervals are executed

with those candidate values implemented in P2 (O1) and P3 (O2). For example, in
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cycle 2 of Figure 5-4, the values of tolls and the discount control parameter for P1

are their previously optimized and applied values from cycle 1, and their values for

P2 (O1) and P3 (O2) are their candidate values for the current cycle. These are

illustrated in Figure 5-4.

Figure 5-4: System prediction and optimization with rolling horizons

To achieve desirable prediction accuracy and hence better optimization of system

objectives, DynaMIT uses online calibration that adjusts its simulation parameters

in real-time to match the simulated and observed surveillance data. Specifically, the

online calibration problem is formulated as a state space model and solved using

Extended Kalman Filter (EKF) [114].

System Optimization Formulation

Notations for the system optimization are summarized in Table 5.1

The system optimization solves a simulation-based optimization problem based on

traffic prediction. Its input, output and constraints are first summarized as follows:

• Input

– historical demand, supply and preference estimates

– real-time data from network surveillance

• Output

– displayed toll (decision variable pD)
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notation description

pD displayed toll rates matrix; dimension equals the number of optimization intervals
by number of toll segments

x discount control parameter vector; dimension equals the number of optimization
intervals

Ot0 set of optimization intervals at real-world time t0

Nt set of simulated travelers at optimization interval t

n individual index

an subscription status; 1 if n is a subscriber, 0 otherwise

d∗n discount given to simulated user; by user optimization for subscribers and 0 for
non-subscribers

zn system objective evaluated at individual n

t(n) arrival time interval when n enters corridor (detected)

k(n) n’s origin-destination pair (destination is inferred)

pDt(n),k(n) displayed price for the ML path to anticipated destination of n; output from system
optimization

xt(n) discount control parameter for the arrival interval of n

πn n’s predicted probability to choose ML

∆RF
n expected revenue improvement from n in future 90 days if they choose ML for the

current trip

R
F |ML
n expected revenue from n in future 90 days if they choose ML for the current trip

R
F |GP
n expected revenue from n in future 90 days if they choose GP for the current trip

δW welfare policy hyperparameter

Nt(n) predicted number of travelers in interval t(n)

δV customer retention policy hyperparameter

mn n’s expenditure on ML in the past 90 days

T route attributes (e.g. travel time, decision point speed) vector

Bn choice model parameters and characteristics

UML ML speed vector

D O-D demand matrix

H supply parameters matrix

pcap toll cap

ULB lower bound on ML speed

Table 5.1: Notations for system and user optimization

102



– discount control parameter (decision variable x)

– traffic prediction

• Constraint: maximum toll and ML speed requirement

At real-world time t0, the system optimization optimizes the displayed toll pD

and discount control parameter x based on simulations of the next 15 minutes by

DynaMIT. As explained earlier, the optimization intervals Ot0 are the next 5 to 15

minutes, which leaves the first 5 minutes of the prediction horizon as execution time.

Each simulated traveler n in the optimization intervals is associated with subscription

status (an = 1 if subscribed). The simulated discount d∗n is offered by the user

optimization if n is a subscriber, and otherwise set to zero.

The system objective is defined in Equation 5.4, as the sum of zn over all the

simulated travelers in the optimization intervals. zn is the system objective value

evaluated at each individual, as a function of the simulated discount d∗n, the dis-

played toll pDt(n),k(n) of their arrival time t(n) and origin-destination pair k(n), and the

subscription status an. zn is in the form of expectation over n’s choice probability

πn. The objective function if n chooses ML is defined as a sum of four components,

explained below.

max
x,pD

'

t∈Ot0

'

n∈Nt

zn(d
∗
n, p

D
t(n),k(n), an)

where zn = πn[(1− d∗n)p
D
t(n),k(n) +∆RF

n + δW
1

Nt(n)

+ anδ
Vmn]

(5.4)

Objective components:

• Short-term revenue (1 − d∗n)p
D
t(n),k(n) is the revenue to be collected for the

current trip equals the toll rate offered to n.

• Future revenue improvement ∆RF
n is the expected future revenue improve-

ment if traveler n chooses ML for the current trip as opposed to GP, calcu-

lated by Equation 5.5 with the respective conditional future revenue R
F |ML
n and

R
F |GP
n . The future revenue depends on the current choice because of state-
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dependent travel behavior.

∆RF
n = RF |ML

n −RF |GP
n (5.5)

R
F |ML
n and R

F |GP
n need to be computed based on future trip projections. Given

a future horizon (e.g., next 90 days), we assume that the future trip-making

(frequency, trip attributes) to be the same as the observed personal history

(e.g., past 90 days), but with new future choices to be simulated with the

choice model conditional on the current choice being ML or GP.

For example, a person with three trips in the previous 90 days respectively

60, 40 and 20 days ago, is assumed to travel and encounter the same choice

situations in the 30 (=-60+90), 50 (=-40+90) and 70 (=-20+90) days from

now. To improve the quality of future projections for them to reflect the most

recent conditions, trip attributes of recent days could be matched to projected

future trips instead of directly using the exact historical attributes.

To compute R
F |ML
n , we simulate choices and revenue in the future horizon as-

suming ML is selected for current trip. To compute R
F |GP
n , we do the same

except assuming GP is selected for current trip. The random seed is fixed to be

the same for the simulations of RF |ML
n and R

F |GP
n to reduce simulation variance.

• Capture rate bonus δW 1
Nt(n)

is a bonus term for capture rate with a policy

parameter δW . It allows operators to shift some focus from revenue to social

welfare at their discretion.

• Subscriber lifetime value anδ
Vmn is designed to retain high-value customers

measured by their expenditure in the previous 90 days (mn). Commonly used

in marketing, a customer’s lifetime value is defined as their expenditure until

they no longer consider ML in their choice set or have quit using the corridor.

If a subscriber constantly receives high prices and hence, has a relatively lower

probability of using ML, it is more likely that they would become inactive sooner

thereby reducing their lifetime value. Therefore, δVmn captures the impact of

current price (choice) on a customer’s lifetime value. mn reflects the value
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of a customer per time period. δV is a policy hyperparameter that reflects

the influence of current price on the customer’s lifetime value and the level

of emphasis that the operator desires. From a pure optimization perspective,

δVmn could be understood as a personalized capture rate bonus (δW ) for the

loyal customers that is proportional to mn.

The full optimization problem is presented in Equation 5.6.

max
x,pD

'

t∈Ot0

'

n∈Nt

zn(d
∗
n, p

D
t(n),k(n), an)

where zn = πn[(1− d∗n)p
D
t(n),k(n) +∆RF

n + δW
1

Nt(n)

+ anδ
Vmn]

s.t ∀n d∗n = an ∗ UO(xt(n), p
D
t(n),k(n),∆RF

n , T, Bn, Nt(n))

∀n πn = choiceprob(d∗n, p
D
t(n),k(n), T, Bn)

(UML, T ) = traffic(πn∀n,D,H)

∀t pDt ≤ pcap, UML
t ≥ ULB

(5.6)

The first constraint with UO(·) reflects that the simulated discounts are from the user

optimization. Note that in this problem, by design, the discount control parameter

affects the system objective only through user optimization, the way of which will be

outlined in the next section. The second constraint with choiceprob(·) reflects that πn

is the choice probability computed for a simulated traveler (Equation 5.3). The third

constraints with traffic(·) reflects that the objective is evaluated by traffic prediction

simulated with DynaMIT.

Further, we consider two regulatory constraints that commonly appear in ML

facilities operations: a cap (upper bound) on displayed toll (pDt ≤ pcap) and a lower

bound on ML speed (UML
t ≥ ULB). The toll cap is enforced through the feasible

region of decision variables. The ML speed requirement is implemented as a very

large penalty on the objective value.

Under ML congestion, the system enters a mandatory mode where the system

optimization is skipped and the toll is raised as a function of the excessive demand and

speed violations to ensure that the ML become uncongested quickly, in which case no
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discounts are offered (equivalent of x → ∞ as will be shown in subsection 5.2.4). This

mechanism is based on existing regulation agreements and discussions with private

operators. It is implemented but not encountered in the case study.

The system optimization is solved with a simple grid search algorithm for compu-

tation considerations. The grid size could be determined based on available compu-

tation resources. More sophisticated methods could be used to improve performance

such as genetic algorithms or Bayesian optimization.

5.2.4 User Optimization

For a subscriber indexed by n entering the corridor at t(n) with origin-destination

pair k(n), user optimization solves for a personalized discount d∗n. Its input, output

and constraints are first summarized as follows:

• Input

– predicted network condition (from system optimization)

– displayed toll (from system optimization)

– discount control parameter (from system optimization)

– traveler-specific behavioral information including preference estimates and

trip history

• Output: personalized discount (decision variable dn)

• Constraint: 0 ≤ dn ≤ 1

We consider the optimization problem defined in Equation 5.7. The objective

function is a personalization of the system objective. It is in the form of expectation

over n’s choice probability πn that is computed by the online prediction procedure

in subsection 5.2.2. The objective function if n chooses ML is defined as a sum

of five components, where first four components are the same as zn in the system

optimization.

max
dn

πn(dn, p
D
t(n),k(n))[(1−dn)p

D
t(n),k(n)+∆RF

n +δW
1

Nt(n)
+δVmn−xt(n)p

D
t(n),k(n)] (5.7)
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The added fifth component xt(n)p
D
t(n),k(n) captures the loss of system objective—

externality. With a limited capacity of supply, the choice of n affects other travelers’

choices, and we need to take this into account when optimizing the discount for a

specific individual. A lower discount to n might incur a loss to the system objective

because more travelers on ML reduce the difference in traffic conditions between ML

and GP, and hence decrease the attractiveness of ML. To achieve desirable system-

level performance, we need to consider the loss of system objective caused by n

performing a ML trip. This loss is unknown, and we model it to be proportional to

the displayed toll pDt(n),k(n), as pDt(n),k(n) carries OD and congestion information. The

proportionality factor xt(n) is the discount control parameter solved from the system

optimization problem which should estimate its optimal value for system objective.

To solve the user optimization, we experimented with the Newton method for

the first order condition as used in [115]. However, this method is observed to have

similar results but slower than a grid search of the discount up to two decimal points—

a reasonable precision to show to a subscriber—leveraging vectorized operations for

simultaneous evaluations of the grid. This observation could also be potentially due to

the fact that the objective function has very flat regions as the choice model contains

significant unobserved heterogeneity. The grid search is adopted in the case study.

5.3 Case Study

We test the proposed pricing system in a closed-loop simulation environment, where

a microscopic traffic simulator, SimMobility Short-Term [20] is used as a digital twin

of a ML facility in the real world. This setting is shown in Figure 5-5.

By design, SimMobility Short-Term and DynaMIT (in Tri-POP) are both traf-

fic simulators, but with different purposes and models. DynaMIT is designed for

real-time predictions of traffic and optimizations of control policies. Therefore, for

real-time performance, DynaMIT uses mesoscopic simulation models for queueing

and the relationships among traffic flow, speed, and density. On the other hand,

SimMobility Short-Term is designed to be a high-fidelity digital urban laboratory, so
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Figure 5-5: Closed-loop simulation environment

it simulates detailed driving behaviors of individual drivers, which is more realistic

yet of higher computation cost. These differences explain why Tri-POP, as a real-

time optimization system, uses DynaMIT, and SimMobility Short-Term is used in

the closed-loop experiments as a surrogate for the real world.

5.3.1 Network and Data

We consider the managed lanes facility shown in Figure 5-6, which is the same network

where the data for choice model estimation is collected in chapter 4.

The network consists of three toll segments, corresponding to three displayed

tolls to be managed and optimized (see the legend in Figure 5-6). The displayed

tolls from different ramps within the same toll segment are converted with fixed

factors depending on the distance of ML usage. In our study, based on availability

of calibration data, we limit our scope to the westbound direction, and consider the

scope of the operation problem as optimizing the displayed tolls on segment 2 and 3

(the horizontal corridor in Figure 5-6), while considering the toll on segment 1 to be

the same as existing tolling policy. The considered network has 74 origin-destination

pairs and 90 sensors that provide count and speed measurements every 5 minutes.

One month of sensor data and toll under the existing tolling policy are made

available to us. As incident data are not available, we detect the probable incidents
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Figure 5-6: Case study network

based on flow and speed drops from time-of-day- and day-of-week-specific averages.

The measurements from time periods with suspected incidents are then imputed with

the compared averages.

To simplify the calibration process and scope of the study, the demand and supply

of SimMobility is calibrated towards average sensor measurements across weekdays.

Further, the choice data in chapter 4 (of a sample of actual travelers) are used to con-

struct the synthetic population database for simulation. The travelers are selected

based on trip frequency and time of day to match the calibrated average demand.

Each simulated traveler hence is associated with a trip history from an actual trav-

eler. More details regarding the setup of SimMobility and Tri-POP parameters are

presented in subsection C.0.1 of Appendix C.

In order to simulate scenarios with discounts, we need to know who are the sub-

scribers. Unfortunately, no data on the subscription choice are available. Therefore,

the model is specified purely under assumptions that are deemed reasonable by us,

and calibrated for a 25% penetration rate among all travelers.

Specifically, the subscription probability is determined by a Gompertz curve in
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Equation 5.8. Gompertz curve is commonly used in growth analysis, whose shape

could be more flexibly specified compared to the logit and probit curves. The variables

enter this subscription model are stripsML
n and stripsGP

n respectively for the ML and

GP trips that traveler n performed during the pervious 90 days under the existing

scenario.

Pn(subscribe) = a exp(−b exp(−sn))

where sn = c1s
tripsML
n + c2s

tripsGP
n

(5.8)

The model has four parameters a, b, c1 and c2. a is the asymptote of the sub-

scription probability as sn → ∞. As we do not want travelers in any case to deter-

ministically subscribe, a is set to 0.95. b, c1 and c2 jointly determine the shape of the

probability curve. After some exploration and calibrating for a 25% penetration rate,

we set b = 2.65, c1 = 0.3 and c2 = 0.05 which gives the subscription probability as

Figure 5-7. The ratio of c1 and c2 are determined to make the two variables to have

similar influence.

Figure 5-7: Subscription probability
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5.3.2 Scenario Design

To investigate the benefit of our proposed system, we consider four scenarios with

different tolling policies:

• Base case: existing toll, no discounts

• Three scenarios with Tri-POP:

− Scenario A: optimized toll, no discounts (system optimization only)

− Scenario B : existing toll, optimized discounts (user optimization only)

− Scenario C : optimized toll, optimized discounts (system and user opti-

mization combined, full Tri-POP)

As the demand and supply in simulation are calibrated towards an average week-

day, the existing toll is considered to be the average existing toll across the corre-

sponding days.

5.3.3 Selection of Policy Hyperparameters

The policy hyperparameters include the welfare hyperparameter δW that controls the

weight of capture rate in the objective, and the customer retention hyperparameter

δV that controls the weight of subscriber lifetime values. In this section, we present

the effects of their values on the performance of Tri-POP scenario C where Tri-POP

is in full effect, and discuss their selections.

As the tolling policy would be determined by the operator, we consider the overall

selection criterion is to improve performances in other aspects without significant rev-

enue loss. The selection of hyperparameter is ultimately a judgement of the operator

and ours serves as a typical example. The different results under various values of

hyperparameters showcase the flexibility of the system.

Selection of Welfare Policy Hyperparameter δW

For this analysis, we experiment δW at 0, 1250, 2500, 3750 and 5000, with the other

hyperparameter δV being 0.5. Because the application of δW to peak periods (6 to
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10 AM, and 3:30 to 7 PM) causes more revenue loss, and that in those period the

capture rate is already high, we only set the nonzero values of δW to off-peak periods.

The performance is presented in Table 5.2. Overall, Tri-POP is able to increase

revenue, increase ML usage, and reduce peak-hour congestion all at the same time.

A further discussion of this is provided in the comparison across scenarios in subsec-

tion 5.3.4. As δW increases, the toll decreases, the revenue decreases and ML usage

(in counts, equivalent to capture rate as total demand is fixed) increases. For various

values of δW , the changes in peak-hour travel time are small, because nonzero δW is

only applied to off-peak periods and therefore only affects the very beginning of peak

hours.

The trade-off between revenue and ML usage is visualized in Figure 5-8. Clearly,

the loss of revenue is minimal with a very small δW , but significantly increases for

δW = 3750 and 5000 after an inflection at 2500. This is further explained with a

visualization of displayed toll in Figure 5-9. The higher values of δW start to result

in significant toll drops during the mid-day. As our selection criterion is based on

containing revenue loss, the optimal value of δW is selected to be 2500. A larger

δW and its application to the peak periods would be preferred if more focus on the

improvement of ML usage is desired.

Scenario Short-term
revenue

Future
revenue
improv.

Long-term
revenue ML usage Peak-hour

travel time

Average price charged

Non-sub. Subscriber

δW = 0 +2.88 +73.5 +19.3 +5.79 -10.7 +28.9 -34.6
δW = 1250 +2.33 +74.5 +19.1 +7.03 -11.0 +27.3 -36.1
δW = 2500 +2.14 +75.2 +19.1 +7.64 -10.7 +26.2 -36.5
δW = 3750 +0.45 +76.2 +18.0 +8.37 -10.8 +22.4 -37.5
δW = 5000 -0.58 +75.6 +17.1 +8.94 -11.8 +20.3 -38.5

numbers are % changes in proportion to base case (existing toll, no discounts)
Long-term revenue = short-term revenue + future revenue improvement (second component of objective)
Peak-hour travel time is computed for 6 – 10 AM (the most congested period)
Tri-POP (C), optimized toll, optimized discounts offered to 25% subscribers

Table 5.2: Performance under various δW
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Figure 5-8: Revenue and ML usage under various δW

Figure 5-9: Displayed toll under various δW
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Selection of Customer Retention Policy Hyperparameter δV

For this analysis, we experiment δV at 0, 0.25, 0.5, and 1, with δW being 2500.

The customer retention consideration could be understood as a subscriber-specific

capture rate bonus (the δW just discussed) that is proportional to their past expen-

diture. A larger value of δV dictates relatively lower toll to high-value customers

for their retention. On the other hand, these high-value customers are most likely

the ones from whom we could acquire more revenue, so a higher value of δV would

inevitable incur revenue loss. The rationale behind δV ’s inclusion is that if the loyal

customers are always getting much higher toll, they are likely to feel being treated

unequally and stop using ML or the corridor at all (churn). So, an ideal value of δV

needs to be determined based on the observed churn rate or complaints in the field.

Lacking this feedback, the criterion for δV is to achieve a more balanced profile of

presented toll without excessive revenue loss.

The impact of δV on the distribution of toll presented to subscribers is shown

in Figure 5-10. First, even under the existing toll with no discounts, high-value

customers are getting higher toll as they are more likely to appear during the peak

hours. Then, as expected, this trend is largely accentuated with Tri-POP (δV =0) that

does not consider customer retention. An increasing value of δV works to balance

the profile of presented toll across levels of past usage. The trade-offs in revenue

are summarized in Table 5.3. As expected, δV decreases the price charged to the

subscriber and revenue. The optimal values selected in this case is δV = 0.5, as it

provides the most balanced toll profile without have less short-term revenue compared

to the base case.
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Figure 5-10: Toll presented to subscribers under various δV

Scenario Short-term
revenue

Future
revenue
improv.

Long-term
revenue ML usage Peak-hour

travel time

Average price charged

Non-sub. Subscriber

δV = 0 +8.30 +68.3 +22.2 +5.38 -9.86 +27.3 -23.7
δV = 0.25 +4.34 +68.8 +19.3 +6.76 -11.1 +26.3 -31.5
δV = 0.50 +2.14 +75.2 +19.1 +7.64 -10.7 +26.2 -36.5
δV = 1 -2.22 +76.1 +16.0 +8.06 -11.1 +24.6 -43.3

numbers are % changes in proportion to base case (existing toll, no discounts)
Long-term revenue = short-term revenue + future revenue improvement (second component of objective)
Peak-hour travel time is computed for 6 – 10 AM (the most congested period)
Tri-POP (C), optimized toll, optimized discounts offered to 25% subscribers

Table 5.3: Performance under various δV
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5.3.4 Comparison of Tolling Policies

For the following results, we use the selected policy hyperparameter δW = 2500 and

δV = 0.5. Different selections of these hyperparameter across the Tri-POP scenarios

could be further investigated.

An overview of results is presented in Table 5.4. Compared to the base case,

the system optimization only (Scenario A) improves revenue and decreases ML us-

age, which is a result of the revenue-focus selection of δW . On the other hand, the

discounts by user optimization (Scenario B) are able to maintain long-term revenue

under the existing toll, while increasing ML usage and reducing congestion. Compar-

ing the effects of system and user optimization, it is clear that discounts by the user

optimization specifically work towards a reconciliation of the interests of travelers

and the operator. The combined system and user optimization (Scenario C) increase

long-term revenue, increase ML usage and reduce peak-hour congestion all at the

same time.

Scenario Short-term
revenue

Future
revenue
improv.

Long-term
revenue

ML
usage

Peak-hour
travel time

Average price charged

Non-sub. Subscriber

A: opt. toll
no discounts +12.6 +27.4 +16.0 -7.13 +2.82 +25.6 +14.4

B: existing toll
opt. discounts -10.2 +42.2 +2.0 +13.5 -11.9 -0.1 -44.0

C: opt. toll
opt. discounts +2.14 +75.2 +19.1 +7.64 -10.7 +26.2 -36.5

numbers are % changes in proportion to base case (existing toll, no discounts)
Long-term revenue = short-term revenue + future revenue improvement (second component of objective)
Peak-hour travel time is computed for 6 – 10 AM (the most congested period)
Optimized discounts offered to 25% subscribers

Table 5.4: Performance comparison across Tri-POP scenarios

Figure 5-11 shows the average toll presented by the time of day. Overall, the

optimized tolls are higher compared to the existing tolls, which explains the revenue

improvements. Further, more interestingly, under the same mechanism for displayed

toll, discounts mainly reduce the average toll during the AM peak. This is because

for the direction we simulated, in general, AM peak corresponds to the period with

more regular travelers with high trip frequencies. They have higher future revenue
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potential and hence are offered with more discounts. A very nice outcome of these

high discounts is the congestion reduction during this most congested period, which is

visualized in Figure 5-12 that shows the average speed across all travelers by time of

day. The future revenue consideration is designed for optimal long-term revenue, but

it naturally leads to congestion reductions as regular travelers appear at the congested

period.

Figure 5-11: Average toll presented by time of day

Figure 5-12: Average speed by time of day

Further, as we investigate the performance of personalized pricing, it is important
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to analyze the distribution of toll, ML usage, travel time, and net benefit among

travelers, for us to understand who benefit and who lose under different scenarios,

and how personalized tolling would affect equity.

First, we would like to see how the benefits vary across travelers with different

values of time, as the value of time should be positively correlated with the traveler’s

income that is unobserved. Second, we would like to see how the benefits vary with the

traveler’s previous GP frequency (number of GP trips in the previous 90 days), where

we would expect that the travelers with higher previous GP frequency receive more

benefit as the long-term-oriented tolling algorithm should give them higher discount

for their conversion.

The distributions of toll presented to all travelers are visualized in Figure 5-13

and Figure 5-14. Under no discounts (left of the figures), the different toll levels are

results of the variations in traveler characteristics by the time of day. Under discounts

(right of the figures), Figure 5-13 shows that the travelers with lower values of time

are presented lower tolls, because these travelers are less likely to use ML. Figure 5-14

shows that the travelers with more GP trips in the previous 90 days are presented

lower tolls. There are three reasons: first, these travelers are less likely to use ML;

second, they have greater future revenue potential; third, based on the subscription

model, they are more likely to be subscribers (when everything else including ML trip

frequencies are equal)—this is a result of our assumption but is logical.

The distributions of ML usage are visualized in Figure 5-15 and Figure 5-16. The

idea of these visualizations comes from the Lorenz curve for the analysis of income

inequality [47]. Because the horizontal axes are essentially sorted travelers, a straight

line of cumulative usage would indicate uniform usage across the population. In Fig-

ure 5-15, the four usage curves are all convex with respect to travelers’ values of time,

meaning that the travelers with higher values of time use ML more. Under scenarios

with discounts, as the travelers with lower values of time are presented lower tolls,

we can see that the ML usage improvements come from these travelers (curvature

differences appear at the left of horizontal axis). This confirms our prior belief that

personalized tolling, if done properly, would open the managed lanes to more trav-
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Figure 5-13: Toll presented by value of time

Figure 5-14: Toll presented by GP trip frequency
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elers that are less wealthy. Similarly, Figure 5-16 shows that without discounts the

travelers with more GP trips in the previous 90 days are less likely to use ML, but

are successfully converted to ML users under scenarios with discounts.

Figure 5-15: ML usage by value of time

Figure 5-16: ML usage by GP trip frequency

Next, the distributions of travel time are visualized in Figure 5-17 and Figure 5-

18. Comparing before and after discounts, overall the travelers that enjoy most travel

time reductions are the ones who switch from GP to ML, and the other GP travelers
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because ML is not congested in all scenarios. We compute these distributions among

peak travelers with the through OD (the origin-destination pairs from the rightmost

to leftmost on Figure 5-6). Figure 5-17 shows that discounts generate travel time

reductions that are slightly more for travelers with lower value of time. Figure 5-

18 shows that the travel time reductions are more for travelers with higher GP trip

frequency.

Figure 5-17: Travel time by value of time

Figure 5-18: Travel time by GP trip frequency
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Finally, we analyze the distribution of net benefits to travelers under the Tri-POP

scenarios. The net benefit to a traveler is the change in the expected maximum utility

(computed with the logsum formula [26]) relative to the base case. It is expressed

in equivalent minutes in the following analysis. Its distribution by traveler’s value

of time is shown in the following slides for four groups, where the peak refers to the

most congested hours (6 - 10 AM):

• Peak subscribers

• Peak non-subscribers

• Off-peak subscribers

• Off-peak non-subscribers

The distributions of net benefit during peak hours (to the first two groups) are

presented in Figure 5-19 and Figure 5-20. Figure 5-19 shows the cumulative net bene-

fit where the curvatures indicate the most benefited value-of-time segments. Overall,

the optimized tolls without discounts provide less benefits compared to existing tolls

as they are higher. With discounts, the peak subscribers (left of Figure 5-19) ben-

efit from the reductions of toll and congestion, especially the ones with lower value

of time. In addition, the discounts also benefit the peak non-subscribers (right of

Figure 5-19) as they reduce congestion.

Figure 5-20 presents the same data but changes the vertical axis to the cumulative

moving average. For sorted data points x1, ..., xn, the cumulative moving average to

the tth data point is (x1 + ... + xt)/t. Therefore, in this figure, the height of a curve

at the 20th percentile is the average net benefit for all the travelers with values of

time below or equal to the 20th value of time percentile. At the 100th, the height is

simply the average net benefit across population. A decreasing slope of cumulative

moving average means that travelers with higher values of time benefit less, and

vice versa. Note that a declining cumulative moving average does not necessarily

mean that the corresponding travelers lose, but just that their benefits are less. The

signs of benefits (winning or losing) to a specific percentile could be more clearly see

from the slopes in previous cumulative plots (Figure 5-19). The purpose of showing

122



Figure 5-19: Cumulative net benefit during peak

Figure 5-20: Cumulative average net benefit during peak
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cumulative moving average is to directly compare average benefit across scenarios.

With discounts, it is clear that the peak subscribers receive more benefit compared

to non-subscribers. Among peak subscribers, the clearly declining slopes of scenarios

with discounts demonstrate again that the discounts benefit especially travelers with

lower values of time.

With the same visualization methods, the distributions of net benefit during off-

peak are presented in Figure 5-21 and Figure 5-22. As there is lower congestion in

the off-peak compared to peak, there are overall less benefit with discounts. Even

so, the subscribers benefit because of the lower tolls they are presented. For the

non-subscribers, although the optimized toll and discounts make them lose compared

to existing toll with no discounts, discounts still benefit them compared to optimized

toll with no discounts.

Figure 5-21: Cumulative net benefit during off-peak

In summary, subscribers benefit from personalized discounts, especially the ones

with lower values of time. This feature improves the equity of managed lanes facilities

that are sometimes criticized for serving the rich. Non-subscribers also benefit from

congestion reduction. The benefit of discounts is larger during peak hours where

the congestion is higher. Subscribers benefit more than non-subscribers, as they
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Figure 5-22: Cumulative average net benefit during off-peak

receive discounted tolls—this is not a concern as the non-subscribers could improve

their benefit simply by subscribing, which actually is beneficial for increasing the

subscription rate.

5.4 Conclusions

This chapter develops a personalized real-time prediction-based pricing system that

jointly optimizes displayed toll and personalized discounts. The formulation is based

on the Tri-POP online bi-level optimization paradigm that combines prediction, op-

timization and personalization. Two connected optimization problems are solved:

system optimization that is solved every 5 minutes for displayed toll and a discount

control parameter, and user optimization that is solved upon arrivals of subscribers for

personalized discounts. The system optimization problem is based on simulations of

real-time traffic predictions within which the simulated subscribers receive discounts

by user optimization. The user optimization problem is based on individual-specific

choice predictions and the discount control parameter that is optimized from system

optimization to consider the system objective.
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A key contribution is our design of a multi-component objective that includes

short-term revenue, future revenue improvement from increased loyalty, capture rate,

and subscriber lifetime value for customer retention. The consideration of future

revenue improvement is based on the discovered state-dependent choice behaviors in

chapter 4 where travelers previous ML usage structurally increases their probability

of using the ML, which motivates lower price in exchange for future revenue potential.

The inclusion of capture rate with a policy hyperparameter allows the operator to

shift focus towards social welfare and promote ML usage. The case study shows that

it could improve capture rate under minimal costs of revenue. The consideration of

subscriber lifetime value mitigates the undesirable pattern that more loyal subscribers

are presented higher toll because of their tendency to keep using ML.

A closed-loop simulation case study based on data from a real facility shows and

dissects the performance of Tri-POP. Optimized tolls from system optimization is

shown to improve revenue. Optimized discounts from user optimization is shown to

increase ML usage and reduce congestion. Combined system and user optimizations

increase long-term revenue, increase ML usage, and reduce congestion.

Under discounts, the lower tolls benefit subscribers, while the congestion reduction

benefit all travelers. Further, discounts encourage ML usage by travelers with lower

values of time who are less likely to use ML under no discounts. Higher net benefits are

also observed to subscribers with lower value of time. This indicates that personalized

tolling based on individual-specific preferences are able to improve equity on ML.

In the case study, the weights (hyperparameters) of different objective components

are chosen with a primary focus on revenue. The proposed system could be further

tested under different criteria for their determinations, which would further showcase

the flexibility of our framework.
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Chapter 6

Conclusion

6.1 Summary of Contributions

This thesis investigates the tolling algorithm on managed lanes (ML) that are tolled

and in parallel to general purpose lanes (GP). The objective of this thesis is to develop

a personalized adaptive tolling algorithm that meets the interests of the operator, the

travelers and the regulator. For this purpose, chapter 3 and chapter 4 develop a

comprehensive managed lanes choice model to understand how travelers choose be-

tween ML and GP, with a focus on the proper quantifications of heterogeneity and

state dependence that are crucial in personalized pricing. It is shown that improper

modeling assumptions tend to overstate the state dependence, which could make

the operator overinvest in customer loyalty. Then, chapter 5 develops the proposed

tolling algorithm based on Tri-POP, an online bi-level optimization framework that

combines prediction, optimization and personalization. The contributions are sum-

marized chapter by chapter in the following paragraphs.

Chapter 3 investigates the initial condition problem in the estimation of dynamic

choice model with random parameters—the workhorse model for quantifying unob-

served heterogeneity and state dependence. The initial condition problem is a special

form of endogeneity that is hard to avoid and causes overestimation of the state de-

pendence. Our contribution is that we propose a Control Function solution that is

applicable to the general case of random parameters and multinomial choice. The pro-
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posed method and widely used current methods are compared in Monte Carlo studies

where we found improvements of the Control Function over Wooldridge’s Method.

These two methods appear to be inferior than the Heckman’s method for estimating

the population variances of random parameters, but are comparable for estimating

the population means and simpler to use.

With revealed preferences data, chapter 4 develops a comprehensive dynamic

choice model with random parameters for managed lanes choices. The Wooldridge’s

method and Control Function corrections for the initial condition problem both are

applied and conclude the presence of significant unobserved heterogeneity and state

dependence. We show the dangers of omitting unobserved heterogeneity or improper

treatment of the initial condition problem, which largely overstate the state depen-

dence. In the literature of managed lanes behaviors, this work is the first to distinguish

between state dependence and unobserved heterogeneity, and hence uncover what

drive the commonly observed high correlation among choices by the same traveler.

Further, price endogeneity under dynamic pricing is found and corrected, which is

the first to address this in managed lanes choice models to the best of my knowledge.

Chapter 5 develops the personalized adaptive tolling algorithm. An online bi-

level optimization problem is formulated based on Tri-POP that jointly optimizes the

displayed toll and personalized discounts in an online setting. The key contribution

is the design of a multi-component objective with flexible policy hyperparameters.

It considers short-term revenue, the impact on future revenue based on the state-

dependent choice behavior, capture rate, and loyal customer retention. Through

closed-loop simulation studies, the developed algorithm is shown to increase long-

term revenue, increase ML usage, and reduce congestion in the corridor. From an

equity perspective, the personalized discounts based on individual preferences are

shown to encourage ML usage by travelers with lower value of time, and benefit them

relatively more. This would help to change the impressions that ML mainly serve the

wealthy travelers.

Overall, this research shows that personalized discounts can benefit both the op-

erator and the travelers, and are therefore very useful in addressing the interests of
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the operator, the travelers, and the regulator. It challenges the traditional view of

personalized pricing being a tool only for revenue generation.

6.2 Future Research Directions

For the initial condition problem treated in chapter 3, the remaining research problem

is seeking further bias reductions and hopefully consistent estimators. We think that

the Control Function still has untapped potentials, considering its convenience and

flexibility. Further flexible specifications are worth trying. In addition, the Monte

Carlo studies could be extended to multinomial choices to investigate the performance

of different solutions.

For the modeling of managed lanes travel behavior, first, more thorough selections

could be performed on the definitions of state-dependent variables, and analyze how

those definitions would change the estimated effects. Second, the Heckman’s correc-

tion could be applied in comparison to the Wooldridge’s method and the Control

Function. Third, compared to the adopted normality assumptions on unobserved

heterogeneity, more flexible distribution assumptions and latent class could be ex-

perimented. One popular theory is that there exists a class of travelers who do not

factor toll into their decisions as the toll is paid by someone else (i.e., a company car,

corporate reimbursement policies). It would be interesting to see the estimated share

of these travelers after the price endogeneity has been corrected.

For the personalized tolling algorithm with Tri-POP, different methods could be

explored to reduce the real-time computation in system optimization, as the current

formulation with Dynamic Traffic Assignment (DTA) system requires real-time traf-

fic simulations. This is not an easy task as cautions are required to not lose the

theory-driven tractability of the DTA system. Tolling significantly affects road con-

gestion and arbitrary tolls by black-box models are especially harmful for the public

acceptance of road pricing. One possible idea is model-based reinforcement learn-

ing, where the system dynamics of traffic simulation models could be incorporated

into a reinforcement learning model via offline interactions between the simulator and
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the learning agent [99]. Other related ideas include the recent proposal by [82] that

solves the system optimization problem based on a metamodel that is specified to

incorporate traffic dynamics and trained with simulations.

Further, a lot more research could be done into the adoption and attrition behav-

iors under personalized pricing, as well as the perception and acceptance towards it.

These questions are important for validating the benefit and feasibility of personalized

pricing, and to answer them specific data need to be collected from stated preference

surveys or field experiments.
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Appendix A

Supplementary Results for the Initial

Condition Problem

True
Value

No
Correction Heckman’s Wooldridge’s

(Full Cov.)
CF

(Full Cov.)
Wooldridge’s
(Diag. Cov.)

CF
(Diag. Cov.)

Population mean

ζscalen
1 0.866 0.992 1.01 1.00 1.01 1.00

(0.0632) (0.0741) (0.0821) (0.0789) (0.0789) (0.0724)

ζdn
1.5 2.14 1.48 1.50 1.49 1.48 1.47

(0.0531) (0.0504) (0.0709) (0.0572) (0.0526) (0.0476)

ζASC
n

-0.5 -0.836 -0.487 -0.502 -0.499 -0.493 -0.495
(0.0309) (0.0374) (0.0382) (0.0358) (0.0330) (0.0326)

ζtime
n

0 -0.00173 0.00389 0.0139 0.0164 0.0118 0.0135
(0.0338) (0.0321) (0.0379) (0.0325) (0.0384) (0.0331)

Population variance

ζscalen
0.5 0.458 0.506 0.602 0.567 0.570 0.544

(0.0928) (0.112) (0.149) (0.137) (0.121) (0.112)

ζdn
0.5 1.14 0.485 0.576 0.504 0.472 0.427

(0.111) (0.109) (0.158) (0.132) (0.0936) (0.0922)

ζASC
n

1 0.419 1.06 1.04 1.00 1.03 0.989
(0.0519) (0.0983) (0.112) (0.0962) (0.0977) (0.0860)

ζtime
n

1 1.16 1.00 0.991 0.958 0.986 0.951
(0.0841) (0.0716) (0.0863) (0.0823) (0.0808) (0.0756)

60 repetitions, 5 observed choices, 5000 individuals

Table A.1: Dataset 1 estimates with full covariance matrices
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No
Correction Heckman’s Wooldridge’s

(Full Cov.)
CF

(Full Cov.)
Wooldridge’s
(Diag. Cov.)

CF
(Diag. Cov.)

Population mean

ζscalen 0.148 0.0746 0.0829 0.0791 0.0794 0.0725

ζdn 0.643 0.0541 0.0710 0.0588 0.0569 0.0558

ζASC
n 0.337 0.0397 0.0382 0.0358 0.0337 0.0329

ζtime
n 0.0339 0.0323 0.0404 0.0365 0.0401 0.0358

Population variance

ζscalen 0.102 0.113 0.180 0.153 0.140 0.121

ζdn 0.651 0.110 0.175 0.132 0.0978 0.118

ζASC
n 0.584 0.115 0.120 0.0962 0.101 0.0867

ζtime
n 0.181 0.0716 0.0868 0.0926 0.0820 0.0903

60 repetitions, 5 observed choices, 5000 individuals

Table A.2: Dataset 1 RMSE with full covariance matrices
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Appendix B

Supplementary Results for Managed

Lanes Travel Behavior Modeling
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Variable Coefficient Estimate Standard Error

Intercept 1.61 0.0179

xtoll∗
nm 1.28 0.0107

xtimeSaving
nm 0.0930 0.000947

xDPspeed
nm 0.00232 0.000367

sin(2πxtod
nm) 0.210 0.00442

sin(4πxtod
nm) -0.5494 0.00189

sin(6πxtod
nm) 0.3498 0.00279

sin(8πxtod
nm) 0.3332 0.00207

sin(10πxtod
nm) -0.1542 0.00208

sin(12πxtod
nm) -0.1748 0.00178

cos(2πxtod
nm) -0.7996 0.00665

cos(4πxtod
nm) -0.6980 0.00479

cos(6πxtod
nm) 0.7978 0.00362

cos(8πxtod
nm) -0.2057 0.00168

cos(10πxtod
nm) -0.2430 0.00196

cos(12πxtod
nm) 0.0847 0.00195

Adjusted R2 0.933

Table B.1: Estimates of the Control Function first step for price endogeneity correc-
tion
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Parameter Estimate Parameter Estimate

ASC Toll

αASC,0 -1.17
αtoll,0 -4.21

(0.265) (0.384)

αASC,logOdds 0.374
αtoll,logOdds 0.476

(0.0931) (0.144)

αASC,onlyML 2.11
αtoll,onlyML 0.529

(0.310) (0.333)

αASC,onlyGP -0.777
αtoll,onlyGP -0.727

(0.233) (0.378)

αASC,noTrip -0.0740
αtoll,noTrip -0.668

(0.262) (0.403)

αASC,avgTSoverToll -0.938
αtoll,avgTSoverToll -0.275

(0.194) (0.248)

αASC,avgTSoverTollAll 0.287
αtoll,avgTSoverTollAll -0.0192

(0.198) (0.246)

Time DPspeed

αtime,0 -0.824
αDPspeed,0 -4.46

(0.246) (0.573)

αtime,logOdds 0.372
αDPspeed,logOdds 0.0743

(0.123) (0.0915)

αtime,onlyML -0.116
αDPspeed,onlyML -0.571

(0.336) (0.0356)

αtime,onlyGP -1.49
αDPspeed,onlyGP -0.957

(0.369) (0.329)

αtime,noTrip -2.87
αDPspeed,noTrip 0.620

(0.514) (0.504)

αtime,avgTSoverToll -1.10
αDPspeed,avgTSoverToll 1.24

(0.239) (0.565)

αtime,avgTSoverTollAll -0.0233
αDPspeed,avgTSoverTollAll -1.84

(0.233) (0.721)

Table B.2: Conditional distribution of ζn by Wooldridge (fixed parameters)

ASC Toll Timesaving DPspeed

ASC 3.78 0.919 -0.832 -0.254
(0.594) (0.293) (0.204) (0.545)

Toll 0.919 2.56 1.32 -1.25
(0.293) (0.607) (0.355) (0.774)

Timesaving -0.832 1.32 1.35 -0.717
(0.204) (0.355) (0.248) (0.632)

DPspeed -0.254 -1.25 -0.717 3.78
(0.545) (0.774) (0.632) (0.927)

Table B.3: Conditional distribution of ζn by Wooldridge (covariance matrix)
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Parameter Estimate Parameter Estimate

ASC Toll

γASC,0 -1.39
γtoll,0 -4.46

(0.128) (0.270)

γASC,control 1.15
γtoll,control -0.123

(0.174) (0.278)

γASC,noTrip 0.361
γtoll,noTrip -0.374

(0.125) (0.263)

Time DPspeed

γtime,0 -1.80
γDPspeed,0 -4.87

(0.112) (0.307)

γtime,control 0.277
γDPspeed,control 0.378

(0.188) (0.151)

γtime,noTrip -1.10
γDPspeed,noTrip 0.215

(0.263) (0.393)

Table B.4: Conditional distribution of ζn by Control Function (fixed parameters)

ASC Toll Timesaving DPspeed

ASC 2.94 1.07 -0.0857 0.201
(0.416) (0.247) (0.150) (0.450)

Toll 1.07 2.80 1.48 -0.390
(0.247) (0.522) (0.302) (0.671)

Timesaving -0.0857 1.48 1.06 -0.276
(0.150) (0.302) (0.194) (0.510)

DPspeed 0.201 -0.390 -0.276 3.87
(0.450) (0.671) (0.510) (0.767)

Table B.5: Conditional distribution of ζn by Control Function (covariance matrix)
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Appendix C

Supplementary Results for

Personalized Toll Optimization

C.0.1 Setting Up the Closed-Loop Environment

To set up the closed-loop simulation, there are overall two tasks. First, we need to

calibrate SimMobility, for it to mimic the real-world conditions. Second, we need to

prepare the parameters in the pricing system Tri-POP.

Calibration of SimMobility Short-Term

Calibration is the process of adjusting simulation parameters to minimize the dis-

crepancy between observed and simulated sensor measurements. To simplify the

calibration process, we first compute observed measurements across one week with

the least irregular flow and speed drops, and then try to match these measurements

so that we have the simulation parameters for an average day. The following three

groups of parameters in SimMobility Short-Term are calibrated, explained one by one

as follows:

• Driving behavior models : SimMobility Short-Term uses comprehensive driving

behavior models to capture the reaction time, car following and lane changing

behaviors of drivers. The model parameters are calibrated with SPSA [76] that

minimizes the measurements discrepancy based on gradients computed from
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SimMobility simulations with perturbed parameters. There are more than 100

parameters in these models, which makes the calibration problem challenging

for SPSA due to the noise in gradient. To reduce the dimension of calibration,

based on evidence in [41], we only calibrate a subset of important parameters

that are likely to vary from study to study. In addition, we noticed that the

calibration of parameter heterogeneity among different ODs has a major effects

on matching different levels of congestion at different on- and off-ramps.

• Trips with origin, destination, start time: we represent the trips as an origin-

destination (OD) matrix and calibrate it with the W-SPSA algorithm that im-

proves the the efficiency of SPSA [76]. W-SPSA is particularly suitable for OD

calibration as it utilizes structural knowledge of the network via adjusting the

simulation-based gradient so that the measurement discrepancy on a particular

sensor is only attributed to OD pairs that have paths passing it.

• Route choice model: the route choice model is from chapter 4 where the model

estimation data includes a subset of ODs on the network. Therefore, to use

the model, a new set of gantry-specific constants are incorporated to the model

to capture the ML preference difference among ODs associated with differ-

ent on-ramps. To calibrate the model efficiently without repetitively running

SimMobility, we record the route attributes faced by each traveler during the

simulation, and minimize the ML capture rate discrepancy between observed

and simulated choices only based on these records. This approximation allows

us to compute the analytical gradient with the choice model, unlike SPSA and

W-SPSA.

The calibration results, i.e. the matching between simulated and observed sensor

measurements, are shown in subsection C.0.2. Overall, we are able to capture the

traffic and congestion patterns on the corridor.
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Preparation of Tri-POP Parameters

Tri-POP’s predictive models—the personalized choice model and the DTA system

in DynaMIT—need to be learnt from the real world, which in this study means

SimMobility. To facilitate the closed-loop study, we assume Tri-POP to have overall

good but not perfect knowledge of the parameters in these predictive models. This

is not an unreasonable assumption as in reality Tri-POP would be exposed to vast

amount of data from the site of study, the process of which is yet difficult to simulate

within a short period of time. The specific assumptions as listed as follows:

• Personalized choice model: Tri-POP (both in user optimization and system

optimization) uses the true fixed parameters, and the random individual-specific

parameters are learnt from 6 months of choice data with the procedure outlined

in subsection 5.2.2.

• Demand OD matrix : the system optimization by DynaMIT uses a demand

matrix generated by introducing noise into the actual demand in SimMobility.

The level of noise is computed from day-to-day variations in the observed sensor

data from the actual facility.

• Supply parameter: the system optimization by DynaMIT uses supply parame-

ters calibrated based on the observed sensor data from the actual facility.

• Online calibration parameters : as outlined in subsection 5.2.3, DynaMIT on-

line calibrates the above-mentioned simulation parameters as part of Tri-POP’s

online operation. The online calibration procedure involves parameters that

specify the underlying process of how the simulation parameters evolve over

time. These parameters for online calibration are estimated on the observed

sensor data from the actual facility.

C.0.2 Calibration Results

To visualize the level of matching between simulated and observed sensor measure-

ments of count and speed, the westbound corridor considered in the study is divided
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into 9 parts, from upstream to downstream. In each parts, the sensor measurements

from ML and GP are respectively grouped into averages.

Figure C-1: Calibration for closed-loop: simulated versus observed speed (GP)

Figure C-2: Calibration for closed-loop: simulated versus observed speed (ML)
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Figure C-3: Calibration for closed-loop: simulated versus observed flow (GP)

Figure C-4: Calibration for closed-loop: simulated versus observed flow (ML)
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