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Abstract

Clinicians in the Emergency Department want to efficiently provide and document
high-quality care but cannot, mainly due to challenges exacerbated by Electronic
Health Records. For each patient, clinicians have to review the patient history,
perform a physical exam, synthesize findings into a differential diagnosis and care
plan; coordinate care with other specialists; order and document tests, labs, proce-
dures, and medications; and finally discharge the patient. Existing EHRs have poor
usability, time-consuming data entry, and fragmented information exploration and
documentation interfaces. As a result, clinicians struggle to synthesize the patient’s
history and care plan into a concise and clear data-driven narrative. Additionally, in
an Emergency Department Environment, Clinicians often see 35 patients in a single
shift and generally have no prior knowledge of any patient’s medical record. With
limited time, clinicians often have to satisfice their information needs and synthesis,
potentially leading to errors, harm, or non-optimal care.

Clinical tools must enable rapid contextual access to the patient’s medical record
with techniques that do not disrupt existing workflows to better support informa-
tion exploration and documentation. This thesis outlines the development of such a
tool, MedKnowts. MedKnowts is an integrated note-taking editor and information
retrieval system which unifies the documentation and search process and provides con-
cise synthesized concept-oriented slices of the patient’s medical record. MedKnowts
automatically captures structured data while still allowing users the flexibility of nat-
ural language. MedKnowts leverages this structure to enable easier parsing of long
notes, auto-populated text, and proactive information retrieval, easing the documen-
tation burden.

Thesis Supervisor: David R. Karger
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Electronic Health Records (EHRs) have been adopted in the hope that they would

improve patient care, save time, support collaboration and data sharing, and prevent

clinical errors [32, 94, 52, 3]. However, current EHR platforms have largely failed to

achieve these goals. EHR adoption can enable easy access to accurate documentation

of patient records, reduce medical errors, standardize practice, improve quality of

patient care, and provide better support for billing [74, 106]. However, in practice,

EHRs increase documentation time, impede existing workflows and the delivery of

informal care, reduce collaboration, increase interruptions in medical workflow, intro-

duce errors, and decrease face-to-face time with patients [74, 34, 71, 15, 10, 51, 89].

As a result, EHR usage is a leading cause of physician burnout, stress, and clinician

professional dissatisfaction [67, 98, 69, 38].

Despite being laborious to create, well-written clinical documentation is invalu-

able. At their best, clinical narratives can help clinicians understand a patient’s

case [76, 63], function as a powerful communication method between clinicians [31],

and serve as learning tools to improve future care practice [20]. But EHRs rarely

achieve this and arguably interfere with it. The issue lies in the fragmentation among

views in the EHR for the two processes underlying the clinical workflow: (i) infor-

mation retrieval and data exploration over a patient’s history and (ii) information

entry. Because structured and unstructured data can be hard to reconcile, EHRs of-

ten store and display information in separate pages or windows, and physicians have
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to synthesize the patient narrative by navigating across a variety of sources [92, 11].

This creates an increased cognitive burden to discover unstructured information, and

studies have shown that clinicians spend more time reading past notes than doing any

other activity in the EHR [27]. Further, the fragmented interfaces hinder comprehen-

sibility and necessitate frequent task-switching [124, 63, 31]. To avoid this context

switching, clinicians have developed coping mechanisms such as copying from previ-

ous notes or using autofill techniques for naive pre-population of text [45, 61, 91].

Unfortunately, indiscriminate use of these auxiliary functions causes documentation

to become bloated, making it difficult for clinicians to parse important clinical infor-

mation, and potentially even propagating errors [108, 91, 47, 114].

Contribution

This thesis documents the design, implementation, deployment, and evaluation of a

In this work, we propose a novel documentation system for EHRs, MedKnowts, which

passively assists clinicians by seamlessly integrating an editor for clinical documenta-

tion with a concept-oriented view [121] of the patient’s medical history. MedKnowts

provides contextual autocomplete (Fig. 1-1A) for clinical terms (e.g. conditions,

symptoms), saving precious documentation time. The autocomplete works without

a trigger character—so it does not disrupt the prior documentation workflow—and

displays options for structured data entry (e.g. lab values) as the user types, removing

the need to memorize content importing phrases. When autocomplete is not used, we

employ keyword matching, which we call post recognitions, to automatically identify

clinical terms as the clinician types. Both auto-completed and post-recognized terms

are transformed into structured interactive elements which we call chips. We leverage

this structure for live semantic highlighting that enables easier parsing of long notes

and for automatic population of repetitive text fields, easing documentation burden.

Therefore, MedKnowts retains some of the benefits of structured data entry, while

still allowing users the flexibility of natural language to describe the subtleties of

complex patient narratives.

Further, we use the structured data to automatically surface information cards

14



Figure 1-1: The MedKnowts interface containing sections of the clinical note on the
left, and an integrated sidebar on the right. The user is typing WBC and triggering
autocomplete (A). Detail text in the autocomplete is used to differentiate clinical
terms and provide additional context such as result counts. The card for the most
recent identified term, CK, is displayed in the preview pane (C) with values displayed
as a line chart, and abnormal values highlighted in red. The preview pane history can
be navigated using the backwards and forwards buttons at the top of (C). Below the
preview pane the doctor has pinned a card for oxycodone (D), which displays note
snippets relevant to oxycodone. A search bar at the top of the sidebar can be used
as an alternative method to add cards to the preview pane. A transcluded card for
cardiac conditions (B) shows labs, cardiology reports, and note snippets relevant to
congestive heart failure in a single interface.
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in an attached preview pane (Fig. 1-1C) as the doctor types. Proactively displayed

cards provide concise summaries of relevant medical history, reducing the context-

switching required to synthesize a note. Each card is a concept-oriented view [121]

such that information is grouped by underlying concept (e.g. the labs, medications,

and notes related to a condition) rather than by data modality (all medications at

once). Concept-oriented views have been shown to help physicians work faster and

make fewer errors [95]. In addition to the automatically surfaced cards, chips embed-

ded in the note and in cards serve as links to related cards, providing direct access

to the relevant medical history from the note context and other cards. Cards can be

surfaced in-line by hovering on a chip (Fig. 1-1B) or in the preview pane by clicking

on a chip. This provides an additional avenue for contextual information retrieval

without dividing attention between views. Finally, cards can be pinned to an at-

tached sidebar (Fig. 1-1D), which persists the card to a view shared by the clinical

care team, allowing for easier bookmarking, collaboration, and data sharing without

directly copying to contribute to note bloat.

We present the following contributions to enhance the EHR note taking experi-

ence:

• We provide passive and automatic methods to insert and disambiguate clinical

terms as the note is written and transform them into chips—interactive, struc-

tured elements which provide information scent about recognized vocabulary,

semantic highlighting, access to inline documentation, and contextual informa-

tion retrieval. We therefore retain benefits of structured data entry without

sacrificing the flexibility or ease of natural language.

• We augment the EHR note-taking interface with a shared sidebar to which clin-

icians can pin cards. Each card presents a concept-oriented view for a particular

clinical term. The sidebar provides clinicians with a shared and persistent space,

integrated with the documentation interface, where they can add and remove

cards. It thereby situates, beside the semi-structured note, a collaborative, cus-

tomizable, and context-specific view of structured data in a patient’s medical

16



record.

• We proactively display a preview card of the most recently identified concept

which updates as the user types. The preview card provides a consistent passive

display of detailed information immediately relevant to the clinician’s current

decision making context, reducing the need for the physician to manually forage

for information.

• We present findings from a year long iterative prototyping and design process

and a one month evaluation with four medical notetakers.

We implemented these designs in a prototype system which we deployed live among

scribes in an Emergency Department (ED) at a Level I trauma center and tertiary,

academic, adults-only, teaching hospital. Our system was designed over the course of

a year, in collaboration with an emergency physician with over a decade of experience

designing and deploying EHRs, and with ongoing feedback from stakeholders includ-

ing scribes, medical students, and physicians. In practice, scribes found MedKnowts

easy to use with a quick learning curve and and indicated that they would use it fre-

quently. Further, they found the features of MedKnowts well-integrated, saving them

time over their previous workflows both for documentation and information retrieval.
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Chapter 2

Related Work

2.1 The Evolving Nature of Medical Records

Medical records were initially introduced as educational tools but have evolved over

time to become highly formalized and structured documents [68]. The first examples

of Medical Records appear in 1600 B.C. in Egypt where they were used to docu-

ment interesting cases for teaching purposes [13]. They were adopted in the west

in the 17th century, where they existed as largely free-form and post-hoc summaries

of cases until the 19th century [42, 68]. In the 19th century, fears of insurance and

malpractice lawsuits, and the growing importance of evidence based medicine, caused

health records to become more verbose, structured, and standardized [42]. However,

up until the 20th century medical records remained standalone documents, main-

tained and used by individual doctors or departments in hospitals. In 1907 hospitals

realized the benefits of aggregating all patient records from each department in one

place [86]. Medical records evolved from standalone documents, into large heteroge-

neous collections of all the written, typed, or electronically served information about

a patient [23]. At the same time, health care became increasingly specialized and

fragmented. As a result, modern medical records can no longer be characterized as

centralized or static. Rather they are distributed and continuously updated living

records and maintained by a distributed group of care providers and specialists [68].

Despite their evolving nature, each note in a medical record, should at the very
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least clearly document the clinician’s understanding of a patient and communicate

that understanding effectively [97]. However, many medical records fail to accomplish

this basic task due to misaligned billing incentives and fear of legal repercussions [32].

Reimbursement guidelines [3] encourage such verbose notes, that physicians rely on

templates, macros, or copy and paste to quickly add the necessary information [97, 91].

The resulting notes are often described as “data-rich and information-poor” [97, 36].

So much boilerplate and standard detail is added that important clinical information

is obscured, potentially leading to errors [38, 15]. Figure 2-1 exemplifies this issue,

showing how a standard template for the Review of System section, used to meet

reimbursement guidelines, obscures key clinical information. Additionally, billing

guidelines require that each note stand on its own [119]. As a result, notes contain

large amounts of duplicated and redundant information. One study found that 78%

and 54% of information contained in average sign out and progress notes is dupli-

cated [119]. The large amount of required duplication creates an intense documen-

tation burden for authors writing the note, and magnifies information overload chal-

lenges for downstream clinicians reading the note. A tool used to highlight changes

between notes was found to reduce incorrect clinical assumptions by a factor of two,

and increased the amount of references clinicians made to information available in

past notes [35]. However, these technical solutions, while helpful, alleviate symptoms

rather than the root cause of data redundancy, duplication, and information overload

in clinical notes.

In light of these issues, it is worth looking back at some of the advantageous qual-

ities of paper records. Paper records have many inherent issues. They suffer from

illegibility, fragmentation, are often unavailable, and are difficult to transfer between

hospitals and offices [42, 30]. However, because paper records often exist as a single

collection of documents shared by all care providers, clinicians using the record are

incentivized to minimize documentation time and reduce multitasking and context

switching between patients, so that the record can be returned to its central location

for use by other care providers [74, 68]. The centralized location of records provides a

physical space for spontaneous communication and collaboration between distributed
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Figure 2-1: An example of a standard review of systems document that meets CMS
billing level 5 documentation standards by documenting ten organ systems [3]. The
fifth line (starting with CV) has been modified to include the text ”severe chest
pain starting this morning”, all other text comes from a standard Review of Systems
template [9]. In a normal interface, the changed text would not be highlighted and
the single piece of meaningful information becomes impossible to spot due to the
boilerplate text surrounding it. The clinicians rely on templates to document this
type of boiler plate, and receive higher reimbursement for meeting documentation
guidelines, but the resulting note is noisy, difficult to parse, and does not clearly or
effectively communicate the patient’s condition.
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care teams [74]. Although paper records lack affordances for easily importing large

quantities of data [91, 97] the resulting notes are limited to relevant clinical informa-

tion and may be more valuable to downstream physicians. In studies of hospitals that

use paper records, doctors cite previous notes, specifically progress notes, as the most

important part of the record [68, 53]. Doctors find these notes particularly valuable

because they summarize findings and decisions made at each event in the patient’s

clinical story [68]. In an electronic health record, the same notes are considerably

less valuable. One study found that 54% of the information documented in progress

notes was copied from previous notes [119]. Clinicians using electronic health records

find notes so verbose and repetitive, that some authors have called for a new note

format, which places sections that tend to be unique at the top of the note where

they can easily be found by downstream care providers [97]. Other authors have pro-

posed interfaces which change the format of the note display to better highlight useful

sections or pieces of clinical information [36]. Although Electronic Health Records

present more information to clinicians than paper records, extracting information out

of EHRs and utilizing it to make clinical decision may be more challenging due to

information overload, potentially leading to clinical errors [30, 36, 79].

In comparison to the slow adoption and formalization of paper medical records, the

shift from paper medical records to digital records has been remarkably fast [42, 30].

In 2009 only 1.5% of U.S hospitals had electronic records adopted in all units, and

7.6% had electronic records adopted in at least one unit [55]. As of 2017, 85% of U.S.

office base physicians [8] and 96% of U.S. non federal acute care hospitals use EHRs [7].

Driven by legislation such as the Health Information Technology for Economic and

Clinical Health (HITECH) Act [87], and financial incentives, such as Meaningful Use

Criteria [2], EHRs have over the course of less than 10 years, been adopted by nearly

every clinical care environment in the United States. Despite the challenges posed so

far by misaligned legislation, there is reason to be optimistic. 2021 documentation

guidelines, for office based visits, try to reduce documentation burden, and realign

reimbursement criteria with the realities of clinical work [4]. Verbose documentation

requirements such as those exemplified in Figure 2-1 have largely been removed. It
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remains to be seen if these guidelines will be adopted in hospital environments, and

how much they will reduce clinician’s documentation burden in practice.

2.2 The Impact of Electronic Health Records

Outside of regulatory challenges, questions remain about the impact Electronic Health

Records have on clinical practice. While clinicians approve of the idea of EHRs, due

to their ability to ease workflows and improve quality of care, the current state of

EHRs has greatly worsened their professional satisfaction [38, 65, 119]. Clinicians find

that EHRs have poor usability, time consuming data entry, lead to inefficient and less

fulfilling work content, reduce communication between clinicians, reduce the quality

of documentation, and introduce errors [15, 30, 38, 74, 110]. Clinician dissatisfaction

with EHRs may have significant financial impacts. One paper estimates that clini-

cian burnout in the United States costs $4.6 Billion every year [46] and the massive

increase in clinician burn out in the United States is suspected to be attributed to the

corresponding widespread adoption of EHRs [101]. Studies have shown that spending

more than 90 minutes per day on an EHR outside work, or more than 60 minutes per

day on clerical work (non-physican work, such as calling for appointments, requesting

records) are found to be major factor contributing to burnout [77].

One commonly cited failure for EHRs is that their design fails to match clinical

work practices [62, 15, 20, 62, 74, 89, 94, 115]. EHRs often assume that clinical work

is an isolated and linear process where clinicians sit by themselves, fully concentrated

on screens, completing tasks one-at-a-time [78, 15, 73]. In reality clinical work is often

highly interruptive and collaborative [15, 74, 110]. One study showed that residents

spent 40.6% of their shift time speaking with others in person and 7.5% of their shift

time speaking with others on the phone [62]. EHRs often replace communication with

data entry, but fail to provide feedback mechanisms to ensure that communication has

been received or an action has been taken [15]. Furthermore, communication provides

an opportunity for people to check their collective assumptions and understanding of

a situation, learn from each other’s collective knowledge, and establish cross-specialty
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or cross-department relationships [15, 74]. EHRs overemphasize structure and com-

plete information entry, forcing professionals to devote significant cognitive effort to

retrieving and documenting arcane details, that may be irrelevant to the patient con-

text [15, 78, 74, 32, 110]. EHRs tend to persist source-oriented patterns, where data

is stored in separate screens based on its source or type (radiology, labs, medications)

rather than its relevance to current context [110, 105, 91]. Clinicians have to spend

significant time gathering data from multiple interfaces, and complain that this frag-

mentation leads to a loss of overview [15, 89, 62, 96, 89]. EHRs assume that one

person, a doctor, is performing all of the clinical decision making, ignoring the built

in fault tolerance, distributed processing, and cooperative problem solving, encoded

in informal care practices in most health care environments [15]. In one study, after

switching to an EHR, a physician had to spend significant time typing out notes,

rather than dictating them to an assistant, because the system did not allow anyone

other than the physician to access documentation [71]. In another example, nurses,

who often had more experience than junior physicians, were unable to administer

common medications to treatments at the bedside after the adoption of an EHR

because medication orders had to come directly from doctors in the new system [15].

The overall impact of EHRs remains unclear. EHRs enable easier information

access and eliminate issues due to poor penmanship [67] however in practice there

are limited open standards for key clinical data so exchanging and maintaining infor-

mation sharing between systems has to be performed per system [20]. EHRs enable

clinical decision support systems which can help close the gap between evidence based

medicine and the realities of clinical [52, 94]. In practice it takes approximately 5

years for evidence based guidelines to be adopted in routine practice and even when

guidelines are accepted they are often not followed [21]. The hope is that clinical de-

cision support can drastically improve these issues but results have been mixed [103].

For example up to 65% of patients are exposed to potentially harmful drug-drug in-

teractions [111]. However, in a study performed in a pharmacy, pharmacists were

overwhelmed by so many alerts from a clinical decision support system that they

overrode one third of warnings that prescriptions may have life threatening interac-
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tions [10]. In another more positive example, guidelines were implemented to reduce

the number of unnecessary rheumatologic tests being given at a hospital. Although

the system resulted in an 11-fold increase in canceled orders, not a single physician

saw the decision support screen. The increase was completely due to the barrier of

entering information needed to support the clinical decision support system [100].

Medical records should be evaluated based on how well they improve patient

care, patient outcomes,and clinician satisfaction. However in practice EHRs focus on

improving financial outcomes [20, 59] because financial outcomes are easier to mea-

sure [32] and the purchases of EHRs, hospital administrators, have different incentives

than the users, clinicians [59, 110].

2.3 Narrative In EHRs

One of the major challenges in improving the impact of EHRs is utilizing information

currently hidden in unstructured form in clinical notes [54]. Unstructured clinical

notes contain rich details about the patient conditions, symptoms, treatments, and

care plans, but have to be read manually to access these details [54, 90, 110]. As a

result, clinicians providing care, researchers analyzing clinical data sets, and software

creators building decision support systems, are often unable to extract and utilize

information stored in clinical notes [54, 90]. One study showed that only 38% of

health provider notes and 20% of nurse notes are ever read by anyone [50]. Because

unstructured free text is difficult to reuse and reason about, many EHRs have spent

significant effort in building structured data documentation systems [90]. However

clinicians find structured data capture systems idiosyncratic, inflexible, and ineffi-

cient [90]. These systems place a large burden on authors, who are often operating

in a highly time constrained environment [90].

Even if structured data capture systems improve, the value of narrative to medical

reasoning and sense-making cannot be understated [110, 90, 72]. Narrative text is

able to capture nuances, tone, and gray areas that help convey what is really under-

stand what is going on with a patient [110, 90]. Clinical notes containing prose have
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been found to be more accurate, more reliable for identifying conditions in patients,

and more understandable to healthcare providers reviewing records [90]. Clinicians

use narrative to gather small pieces of information from across the medical record and

mold them together into the patient’s story [110, 68, 53]. Each clinician approaches

the patient story from their own perspective [23]. Narrative can contextualize in-

formation, helping downstream providers understand why certain information was

relevant [85]. A well constructed patient’s story serves as a mental model for under-

standing a patients and can be thought of as the cognitive structure through which

clinicians interpret and act on new data [110]. Novice clinicians rely on reading well

written narrative to share occupational knowledge and develop inter-professional un-

derstanding [110]. The use of narrative to synthesize information about a patient into

a coherent plot could be thought of as the key sense-making activity clinicians engage

in [110, 53, 68].

One study found that clinicians spent 50.6% of their shift time reading or writ-

ing information on computers, and 17.9% of their shift time documenting informa-

tion [62]. Other studies find that medical documentation takes a quarter [14, 40], to

half of doctors’ time [49]. Clearly a significant amount of clinician time and effort

goes into constructing patient narratives, however EHRs have struggled to provide

interfaces that let downstream users take advantage of prior clinical reasoning efforts.

Hypothetically, as more data is gathered on a patient, the additional data should

lead to better insight about the patient’s problem [30]. However, in practice, EHRs

make it difficult to search for information in narrative text, EHR documents are for-

matted in a way that is hard to read [36]. As a result, clinicians often only read

the most recent note closely, and skim any subsequent notes, if they skim those at

all [36]. Attempts to extract structured information from narrative have had limited

use, and some authors have proposed that narrative may simply more efficient at

expressing the complexities have medicine than structured interfaces [53]. However,

semi-structured narrative interfaces, such as transforming long-form narrative into

bullet points organized by date, remain potentially promising [65].
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2.4 How to Visualize Clinical Data

The amount of data gathered during the course of patient care continues to increase,

with one study estimating that ICU patients generate more than 1,348 data points per

day [64]. As a result, it is increasingly important for clinicians to not just have access

to data, but also have the right data presented to them in a presentation format that

suits their information needs [37, 54, 22]. When information is poorly displayed it can

cause information overload [15, 30, 58, 89] or loss of overview [15, 89]. However there

is no one size fits all solution for displaying clinical data. Display needs vary based

on setting (e.g. emergency vs. internal medicine), context (e.g. time constraints),

and clinician needs (e.g. monitoring vs. diagnosis) [82]. Understanding all these

needs, and the actual impact of display choices, requires understanding of real clinical

conditions, which may be hard to replicate in a laboratory [107, 22]. As an example,

lab studies have shown that clinicians prefer graphical views (e.g. line charts) to

tabular views of lab results, and are able to perform tasks faster with graphical

views [22]. However, in interviews with practicing clinicians, clinicians expressed a

preference for tabular views, noting that the graphical view in their EHR required

manual selection of labs to display from a large and hard to parse list [107]. Thus it is

important for the entire context of use to be considered when evaluating the efficacy

of data displays [22].

The way data is presented can strongly effect how information is perceived and the

ease or difficulty of a task, a phenomenon known as the representational effect [29, 22].

Displays are most effective when they represent all the information necessary for a

task, rather than placing a burden on the user to build an internal representation [123,

22]. Well designed graphical displays of clinical information can significantly lower the

cognitive workload for clinicians [83], however designing and deploying such displays

remains challenging.

Consider the hypothetically simple challenge of displaying laboratory data. Lab-

oratory data typically consists of numbers [22] and is often displayed in a list, table,

or line chart [107]. Although modern labs can often record highly precise measure-
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ments, in some cases precise numbers may be more distracting than valuable [22]. As

a result, clinicians may want to round numbers to clinically relevant significant digits,

or even replace the numbers entirely with semantic values such as abnormal/normal,

significant/insignificant change, and improving/worsening [82]. Abnormal labels are

often supplied using reference ranges from a healthy population, but patients of-

ten have chronically abnormal values, and clinicians would rather understand what

is abnormal for this patient [107]. Another challenge with laboratory results is se-

mantically grouping relevant information [82, 107]. Some results or trends are only

clinically relevant when displayed in conjunction with other results [82, 107]. An even

larger challenge is contextualizing lab results with external values [107]. For example,

doctors often want to understand lab values in the context of patient medications,

symptoms, and illnesses [107]. For example, clinicians often want to understand lab

values in the context of the treatments the patient was on at any given time [107].

Several systems have explored summarizing the entire patient medical record into a

single display [81, 48], but these views may contain much more information than nec-

essary. More targeted small bundles of highly relevant information may be enough to

provide relevant context, but determining what data goes into those bundles remains

challenging [107, 44, 16].

2.4.1 How to Organize and Select Clinical Data to Display

The challenges inherent in displaying lab data showcase the level of detail that must

be considered when designing visualization for an EHR. However even if a best possible

display exists for any individual data type, the question remains, how should these

displays be composed together, how should clinical information be organized and

presented to users, and when and what information should be shown in the EHR

at any given time? The organization and presentation of data in health records is

critical for information seeking and for the creation of overview [53].

Medical records are often organized in one of three ways, source oriented (which

organize data based on where it was collected), time oriented (which organize data

based on when it was collected), and concept oriented (which organize data based
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on its relevance to clinical concepts) [105, 122]. Source oriented records evolved from

paper records, which were stored in folders, with separate sections for each depart-

ment in a hospital [105]. In electronic form, source records could be thought of as

"database centered" where the data type (e.g. labs, vital signs, medications) de-

termines where and how it is presented [78]. One benefit of source records is that

the location of data is predictable, if the clinician knows what something is then the

clinician knows where to find it [105]. On the other hand, this fragmentation of data

into hierarchies may inhibit clinician’s abilities to draw connections between various

pieces of data [30, 110]. Time oriented records were developed in 1971 to facilitate

the care of chronic patients [39]. Many EHRs struggle with providing overviews of

chronic patients because they fail to highlight how data has changed over time [53].

However, while the location of data in time oriented records is predictable, the pre-

sentation of data is hard, due to the challenges in presenting large amounts of het-

erogeneous and often unstructured clinical data in a succinct and cohesive timeline

[81, 48, 88]. In the early 1970s Weed proposed the notion of problem-oriented medical

records [113]. In the problem-oriented medical record, all information is organized

around patient problems. Problem-oriented medical records were designed to reflect

the way the physician thinks [105], but did not survive. A major reason for their

failure is that they require physicians to enter and maintain data organized around

problems—often requiring multiple steps to input a single piece of data, while com-

peting chronologically-oriented medical records offered unstructured text entry which

was lightweight and fast in comparison [104].

Problem-oriented medical records (POMR), problem-oriented views, and concept-

oriented views are very similar but have slight distinctions. Problem-oriented medical

records refers to original idea proposed by Weed [113] to organize medical records

around a problem list. Problem-oriented views (POV), introduced by Buchanan [26],

dynamically generate problem-oriented displays of information from a traditionally

organized medical record. POVs do not require the user to input information orga-

nized around problems. POVs place the the burden of organizing information around

problems on the computer not the user. Concept-oriented views (COV) introduced
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by Doré [33], are an extension of POVs to all concepts not just problems.

2.5 Information Capture

Early EHRs were expected to transform clinical care by transitioning medical records

from manually-organized and paper-based to automatic and digitized [17]. Many

early EHRs were built around forms and structured data entry in order to capture

structured records, but few modern EHR systems retain these designs [90]. Structured

data entry is far more cumbersome and time consuming to input than unstructured

text [104, 90, 66]. Clinicians prefer recording information with unstructured narra-

tive [109, 84] because of the increased expressivity of free-text [117, 56]. However

even clinicians who want the flexibility and efficiency of free-text when documenting

information prefer structure and standards when revisiting old notes to parse the

patient’s medical history [90, 56]. MedKnowts lets clinicians seamlessly access and

capture structured patient information and clinical terms while writing free text nar-

rative. MedKnowts additionally synthesizes the existing patient medical record into

concept-oriented cards which provide the clinician with a standardized and structured

view of data extracted from a pre-existing EHR system.

2.6 Automatic Term Recognition

Most clinical recognition systems are designed for post-processing rather than real-

time analysis [93, 5]. They extract structured information from unstructured narrative

and free text after it has been authored [56, 90]. Systems such as Doccurate [102]

have been designed to validate, augment, and visualize post-processed labels but few

systems close the loop and enable clinicians to take advantage of identified structure

in the medical note during the process of documentation [90].

Of the few proposed EHR paradigms that do implement real-time entity recogni-

tion during notewriting, they either fail to map to standard clinical ontologies [24],

neglect to use this structured data capture to support clinical decision-making [56], or
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do not provide concept disambiguation (Fig. 3-3) which is crucial given the overload-

ing of medical terminology and limited accuracy of post-hoc clinical concept recog-

nition [93, 24, 56, 5]. Active Notes [116] inspires the design of several features in

MedKnowts such as tagging clinical concepts and displaying related information in

an attached sidebar. However Active Notes requires users to manually initiate data

queries and tag concepts with a hot key, and does not visually distinguish clinical

vocabulary until it is tagged, making it hard for clinicians to learn the recognized

vocabulary. In contrast MedKnowts is designed to passively and automatically as-

sist users without active participation. MedKnowts provides live semantic syntax

highlighting for clinical terms indicating concept type, negations, and potential am-

biguities; and automatically transforms autocompleted and post-recognized clinical

terms into interactive chips which can be used to resolve ambiguities, and view rele-

vant patient information inline as a tooltip or persisted in an integrated sidebar.

2.7 Structured Data Capture

Many modern EHRs support multiple modalities for inserting structured data into

the note [61]. Some tools support carry-forward techniques where data is copied

or paraphrased from previous notes [45]; others let clinicians insert structured values

into the note by clicking in the patient’s history or typing special characters to trigger

macros [118, 91]. Still others require the user to specify the template structure using

a complex interface of forms [18].

MedKnowts differs from previous carry-forward techniques [91] by autofilling using

information captured earlier in the note, rather than limiting autofill to information

that appears in the patient’s prior medical record. This is particularly pertinent to

documentation in an ED environment, since clinicians often have to repeat informa-

tion within the same note in order to meet regulatory and billing requirements, and

previous notes may not be applicable to the current visit, let alone exist.

MedKnowts supports structured data capture for clinical terms (conditions, symp-

toms, medications), lab results, and vital signs with a machine learning-driven auto-
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complete interface based on Gopinath et al. [43]. The autocomplete interface displays

completions of clinical terms as the user types, which provides information scent for

the available clinical vocabulary. Structured data capture is a common feature in

EHRs often referred to as dotphrases because the data is conventionally inserted with

a phrase that starts with a period (e.g. .meds) [91]. MedKnowts differs from previ-

ous systems because the structured data insertions do not require a trigger character

or memory of content-importing phrases. Trigger characters were unpopular in our

deployments, since they require foresight to enter and knowledge of valid phrases.

Additionally, structured data templates, documented in Rule et al. [91], work

well in medical specialties such as ophthalmology, where many standard structured

measurements are taken before the patient sees the doctor. However, in clinical

settings such as the ED, the vast majority of structured data entry opportunities

are contextually dependent on information needs arising after the clinician begins

documentation. Thus, our more fluid workflow for structured data insertion within

narrative text is an important extension to Rule et al.’s structured templates.

2.8 Information Fragmentation in EHRs

Studies of EHR usage have shown that separation of documentation interfaces from

patient data cause clinicians to frequently task switch, creating cognitive overload and

increasing the likelihood of clinical errors [63, 75, 11]. Some previous EHR systems

attempt to resolve this by presenting the entire medical record next to the docu-

mentation interface in complex interface of tabs, lists, and tables [56, 35]. These

interfaces are hard to parse, require manual navigation, and leave the complex work

of synthesizing data from across the medical record to the clinician [63]. Other EHR

systems, such as the one in use at the hospital in which we deployed, provide dash-

boards summarizing high value information next to documentation [11, 78]. In an ED

these summary displays rarely include all the information clinicians need to access

throughout the course of a visit. Still other research systems allow users to inter-

actively filter a view of the patient’s medical record to display data relevant to a

32



particular concept[118, 94, 48]. These systems allow users to filter by one concept at

a time and do not persist the data for later reference.

MedKnowts lets clinicians access a curated subset of the medical record, displayed

as a collection of concept-oriented cards. Each card provides a succinct display of high

value information curated for a single clinical concept. The card relevant to the most

recently recognized term is automatically displayed next to the note in a preview

pane, providing a passive stream of relevant information to the clinician. Previous

work has shown that clinicians are much less likely to perform manual actions to see

information [120]. Cards can also be manually pinned to the sidebar where they can

be seen by all users working on the note. Pinned cards act as a persistent and shared

collection of data which is particularly pertinent to a given patient’s context.

2.9 Information Foraging Theory

Information foraging theory draws parallels between how humans hunt for information

and how animals hunt for food—in particular, it identifies that users rarely find

information in a completely linear process. Instead, useful information often appears

in patches for which the user must forage, using clues in the user interface referred to

as information scent [80].

Previous research into information foraging theory in EHRs highlights that the

value of clinical information is not intrinsic but rather dynamic and task-specific [41].

Information that is relevant and important for one patient during one visit may not be

relevant or important for another patient or in another clinical context. MedKnowts

presents a consistent stream of context-specific cards in a preview pane. Each card

is analogous to an information patch, and the user can quickly determine if the card

is worth foraging in and exploiting by reading the card title or scanning the card

content which is consistent across cards. If a card is useful, the user can exploit the

information patch by persistently pinning the card to their sidebar.

MedKnowts encodes information scent within the documentation interface by pro-

viding semantic syntax highlighting for clinical terms in the form of chips. Terms are
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colored based on their concept type, whether or not they are negated, and whether

or not they collide with other terms—these clue the user into how we have inserted

structure into the note and what downstream information benefits to expect. Small

visual indicators next to clinical terms, and detail text in the UI provide additional

information scent and inform clinicians about whether a card is likely to contain

information from the patient’s medical record. Users can easily navigate between

information patches. Users can navigate to cards by clicking or hovering on clinical

terms embedded within both cards and the note taking interface, or by searching for

a clinical term in the sidebar.
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Chapter 3

Design and Implementation

3.1 Environment

3.1.1 Clinical Workflow

While MedKnowts was designed for use in a particular hospital’s ED, here we describe

a high-level clinical workflow that is generally common across EDs. During a typical

day in a hospital ED, clinicians may evaluate, treat, and document up to 35 patients.

The note is used for various purposes: as a tool for communication and collaboration

between present and future clinicians; as a document of the evidence-based decision

making process the clinician utilizes to construct a care plan; and as a record for legal

and reimbursement purposes [32, 3]. Before the clinician evaluates a patient, a triage

nurse first prioritizes a patient, taking vital signs, assigning a chief complaint, and

writing a brief triage note. The clinician then evaluates the patient and reviews the

patient’s prior medical record. As in almost all healthcare settings, time is limited and

must be balanced between bedside care and reviewing the patient medical record. The

main sections expected in the final documentation then closely mirror the underlying

clinical workflow after triage [3]:

History of Present Illness (HPI). The HPI serves as a chronological narrative of the

patient’s reason for the visit, including the presence, onset, severity, and duration of

symptoms. Additionally, it involves surfacing medical history that may be relevant
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for contextualizing the patient’s condition. Unlike in specialties that provide longi-

tudinal care, emergency visits are episodic and unscheduled; emergency physicians

are often meeting a patient for the first time, forcing them to quickly synthesize a

patient’s medical background from various sources, including past medical records.

Review of Symptoms (ROS). The ROS contains an inventory of symptoms, docu-

mented per body system (e.g. cardiovascular, gastrointestinal). Information from the

HPI is often repeated here.

Medical Decision Making (MDM). MDM is the complex process by which the clinician

reaches a diagnosis and treatment plan. Within the MDM section, physicians need to

enumerate the differential diagnosis, consider risks associated with various diagnostic

and treatment options, and settle on the labs, tests, medications, and scans that must

be conducted as part of the workflow.

The sections above provide a comprehensive view of the patient’s visit by cor-

responding to the systematic and thorough process behind patient evaluation and

management. However, there is often overlapping information in the sections above

due to billing requirements [1], e.g. the ROS may include symptoms that were already

mentioned in the HPI, the MDM often contains elements of the past medical history,

leading to complaints of excessive, often repetitive data entry [60].

3.1.2 A Variety of Documentation Processes

The documentation process described here is based on observations at the ED in

which MedKnowts was deployed. Some aspects of this process, such as the use of

scribes, may not generalize to other EDs. There is marked inter- and intra-provider

variation in the processes to reach the final documentation based on individual clin-

ician preferences, resources, and schedules. Some clinicians write the majority of

notes after their shift, jotting details during to jog memory later. In addition to the

final note, there exists an additional Clinician Comment box which can be used for

such intermediate thoughts, and is often additionally used as scratch space between

members of the care team (e.g. an attending physician, a resident, a medical student)

that are not part of the medical record. Others choose to write the majority during
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the shift, only revisiting the notes to make small edits and submit their notes to the

official record.

On another dimension, alternatives to keyboard text entry include (i) the use of

voice dictation software and (ii) the employment of a scribe. Scribes shadow the clin-

ician, recording what they observe during patient encounters as well as discussions

with other clinicians, and drafts notes for each of the patients that the clinician is

seeing. These notes are then handed over to the clinician, who will edit and augment

to prepare the note for official recording in the patient’s medical record. Since a

lot of information communicated during the visit is irrelevant to the patient’s care,

the scribe acts as a filter that determines, documents, and relays clinically-relevant

information. Experienced scribes may even search and synthesize the patient’s past

medical records themselves. Because scribes were already writing notes at the ED

MedKnowts was deployed in, they were the target subjects for our study. However

in other hospitals where clinicians act as their own scribes, the clinicians would be

the target users. Voice dictation software can be used as an alternative text entry

method when scribes are not available. But voice dictation does not fulfill other

roles the scribe performs in the clinical workflow. In this study, due to incompat-

ibilities in the deployed commercial dictation software, we specifically focused on

scribe-physician workflow. However, we note that interaction with dictation software

is an infrastructural challenge and not a fundamental obstacle to using our system.

3.1.3 Study Environment

The study described in this work was performed within a single Level I trauma center

and tertiary, academic, adults-only, teaching hospital which provides care for 55,000

patients per year. The existing deployed web-based EHR was custom developed at

the institution, but uses a commercially available documentation module. The study

was approved by our institutional review board with a waiver of informed consent.

MedKnowts was developed through prototypal deployments over the course of

a year, during which a clinician and the clinician’s scribes used the tool as their

predominant note system. We report on lessons learned from the iterative prototyping
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process, as well as usage data collected from a one month long deployment at the end

of the year.

3.2 Design and Implementation

The overall goal of our system is to reduce the effort clinicians must invest in retriev-

ing information from the EHR, synthesizing that information into knowledge, and

recording it into patient notes. We do so via a combination of interacting features:

1. We use autocomplete as well as post recognition to recognize meaningful con-

cepts from a large, standard medical ontology. Autocomplete can save users

keystrokes. More importantly, these standard concepts provide an indication of

the problem the clinician is addressing for the current patient and are inserted

as structured chips.

2. We use the recognized concepts to pre-populate other portions of the note that

require duplication of that information, relieving clinicians and scribes of that

burden.

3. We introduce a preview pane and persistent sidebar for delivery of standardized

cards of contextual information relevant to recognized concepts. When a con-

cept is recognized, the relevant card is automatically introduced in the preview

pane, proactively providing clinicians with information they are likely to need to

address the problem whose description they are currently typing in their note.

Cards also group and organize this information to help clinicians gain insight

about long-term trends and associations. Clinicians can additionally pin cards

to the sidebar to create a persistent shared collection of information pertinent

to the patient context.

4. We provide all these affordances with a passive and automatic design, which

does not require active participation from the user.
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Figure 3-1: Autocomplete in the same context without filters and with filters. The
"/m" command is used to limit the clinical terms displayed to medications.

In this way, we can simultaneously decrease documentation burden on physicians

and use the captured clinical terms to aid physicians in information retrieval while

typing a note. We elaborate on these features below.

3.2.1 Autocomplete

The backbone of the structured data capture within MedKnowts is a contextual

autocomplete mechanism. We hypothesized autocomplete would enable structured

clinical data capture without disrupting the existing documentation workflow and

potentially even decrease keystroke burden on clinicians. Autocompleted terms could

then be used to facilitate information retrieval and clinical decision support, offering

longer term benefits.

We bootstrapped our autocomplete with a subset of clinical terms pulled from the

SNOMED and UMLS medical ontologies [25, 6]. The ontologies contain abbreviations

and synonyms for each term, allowing users to employ the language they are most

comfortable with.

In our initial prototypes we use a single character trigger / to start the auto-

complete, similar to dotphrases commonly found in EHRs [91]. When triggered,
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the autocomplete displayed a dropdown filtered to terms whose prefix matched the

characters following the initial trigger. The clinician and scribes disliked the trigger

because it required foresight that they were entering structured data or typing a rec-

ognizable concept and a priori knowledge of the set of recognized concepts. When no

suitable term existed, users had to manually delete the trigger character.

Therefore, our next iteration, outlined in Gopinath et al. [43], replaced the char-

acter trigger with a collection of rule-based triggers based on particular phrases,

word boundaries, and punctuation. As an example within this paradigm, the phrase

“presents with" is likely followed by a symptom, so the algorithm will show the au-

tocomplete dropdown with symptoms listed first. User feedback indicated that rule

based ranking is insufficient—the autocomplete often failed to display desired terms;

and the boundary and punctuation triggers cause autocomplete to appear, unneces-

sarily, distracting the user.

To improve on the rule-based approach, we replaced the rules with a one-dimensional

convolutional neural network model that predict when to trigger, and what type of

clinical concept to prioritize, since a learned model can encode nuanced syntactical re-

lationships. It significantly outperforms the rule-based triggering approach described

in [43], achieving a precision of 43% versus 7%. Precision is defined as the fraction

of times the user wanted to type a clinical concept when the autocomplete was trig-

gered. In addition, after optimization, inference of this model requires an average

autocomplete latency of about 18 milliseconds, which is close to the screen refresh

rate and therefore perceived as instantaneous to the user.

While the model based approach works well, users indicated a desire to manually

override the model—either forcing autocomplete to trigger or specifying the clinical

concept to rank first. In these cases, we resort to slash filters: /labs or /l can be

used to trigger an autocomplete context which is limited to labs. An empty slash

forces autocomplete to trigger with the default ranking. An example of why filtering

is useful can be seen in Figure 3-1. These filter shortcuts give users the fine-grained

ability to easily insert structured information at any place in the note.
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3.2.2 Post Recognitions

During prototyping users disliked that MedKnowts only identified clinical concepts

entered with autocomplete. Unrecognized terms could appear because the user opted

not to use autocomplete or because the user pasted text into the note. This issue was

particularly noticeable when we used recognized terms to pre-populate later sections

of the note. Some scribes would spend time re-entering unrecognized terms using

autocomplete because they perceived the unrecognized term to be an error or wanted

to generate the correct text later in the note. To resolve these issues, we implemented

a version of the Aho-Corasick algorithm to automatically identify clinical terms from

the text that has already been typed [12]. We dub this tagging mechanism post

recognition.

3.2.3 Semantic Highlighting and Concept Disambiguation

As clinical jargon is notoriously overloaded, it is often the case that the same string

can describe multiple terms [99]. For example, Pt can refer to a patient, physical

therapy, or prothrombin time. While clinicians generally have the domain expertise to

disambiguate between similar terms, jargon can create confusion for patients, medical

trainees, and clinicians of a different specialty [112]. Therefore, MedKnowts needs

to be able to correctly disambiguate each written term to its underlying clinical

concept in the ontology in order for users to reap the benefits of contextual information

retrieval features that our system offers.

MedKnowts uses live syntax highlighting to provide visual information scent about

terms the system recognizes. MedKnowts supports six concept types: conditions,

labs, medications, symptoms, procedures, and vital signs. When the user accepts an

auto completion, the system inserts a chip—a highlighted block of text that can be

copied, moved around, or deleted like other text. Each chip is highlighted with a

color associated with its concept type; an example from each of the six concept types

MedKnowts supports can be seen in Figure 3-2.

Post recognized phrases are also replaced with chips. However, while auto-completed
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Figure 3-2: Autocomplete inserts terms as highlighted immutable chips. They can be
deleted, moved around and copied like other text, but they cannot be modified.

phrases map to unique ontology items specified by the user’s selection, post-recognized

phrases can be ambiguous. In the case that a post recognition requires disambigua-

tion, the user can click on the chip to select from the relevant set of candidate terms.

Post recognitions are differentiated from autocomplete chips with a dotted border.

When possible, the border also indicates the concept type with color: if multiple clin-

ical terms match a post recognition but each clinical term is from the same concept

type, the color for that concept type is applied to the entire post recognition. If clin-

ical terms from multiple concept types match the post recognition then we display

the recognition with a grey background. An example can be seen in figure 3-3.

Clinicians often reference clinical terms to indicate the absence of something, for

example "no fever". In our initial prototyping we used double click to toggle chips

between "positive" and "negated". When negated the chip is highlighted with an

underline, and the text is transformed—for example "fever" becomes "no fever".

Additionally, we provided autocompletions for each clinical term prefixed with "no"

so that users could insert negated chips with autocomplete, but clinicians found this

method of indicating negations brittle and disliked that lists of negated terms such as

"no A, B, or C" had to be written as "no A, no B, no C" to comply with MedKnowts’

simple negation implementation. To resolve these issues we implemented a modified

version of negex [28] to automatically identify and highlight negated chips based on

the surrounding text.
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Figure 3-3: Post recognitions are automatically recognized clinical terms. They are
rendered with a dotted border and can be disambiguated through a popup menu on
click. Negated post recognitions are rendered with an underline.

In the autocomplete dropdown ambiguity can arise when a string refers to multiple

terms. For example, potassium refers to multiple labs measured with various fluids,

so we display this disambiguating information as detail text in the dropdown, as seen

in Figure 3-1.

3.2.4 Context-specific information retrieval

To further aid clinicians, we automatically retrieve and display context-specific in-

formation from a patient’s medical record. As an example, when a medication, pro-

cedure, or condition appears in the autocomplete dropdown, we use detail text—"in

patient medical record" to indicate whether it previously appeared in the patient’s

medical record. We provide similar information scent next to chips with a small grey

circle indicator.

This structured retrieval and display is particularly handy for documenting labs—

after receiving requests to automatically insert quantitative lab results using auto-

complete, we implemented a tree-based lab selection menu, displayed in figure 3-4.

This hierarchical menu can be used to insert structured data associated with an auto-

complete term. The user can select the name of the lab, a time frame based aggregate,
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Figure 3-4: An example of context-specific information retrieval. Autocomplete in-
sertion of lab results using a tree based menu with support for aggregation at multiple
time frames and specific values

or individual statistics within a time frame. The time frame aggregate is inserted as

a string LAB_NAME (MIN_VALUE - MAX_VALUE) AVG_VALUE and individual statistics

are inserted as a string LAB_NAME STAT_NAME STAT_VALUE. We also added the ability

to insert vitals (pulse, heart rate, etc.) using the same methods, completing our set

of clinical concept types.

3.2.5 Default Text

Medical notes are often pre-filled with boilerplate default text, but this text is often

overwritten because it does not incorporate enough patient-specific context. Med-

Knowts further reduces data entry by taking advantage of structured data capture

and using it to fill in later sections of the note. To this end, we created templates

for each of the sections of the notes based on clinician input. When the user clicks

on a blank note section the section is autopopulated with the template text, which is
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Figure 3-5: An example of the review of systems section

constructed using a mix of structured information parsed from the patient’s medical

record as well as clinical terms previously captured in the note. As an example, the

Review of Systems (ROS) section (Fig. 3-5) is a boilerplate list of ten systems, and

for each system the clinician has to describe the presence or lack of symptoms related

to that system. MedKnowts automatically generates this ROS text for the clinician

from text entered in previous sections—when a symptom is documented in the note,

it is added to the appropriate line of the ROS template.

The addition of pre-populated text brought additional feedback from clinicians.

Clinical terms are often associated with clarifying modifiers and specifiers and it is im-

portant to retain these modifiers and specifiers when copying forward clinical terms.

For example "left lower abdominal pain" is more informative in diagnosing a condi-

tion than simply "abdominal pain". Expanding the ontology to include all possible

combinations of modifiers for each term is not feasible. Instead we use a simple greedy

algorithm to attach modifiers as prefixes to clinical concepts. This algorithm could
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be replaced with more advanced NLP methods but we chose to use this lightweight

approximation to satisfy run-time requirements. The use of algorithms to detect

negated and modified terms helps retain the nuance and meaning of the original text

when copied across sections.

3.2.6 Concept-Oriented Views

Although there are multiple documentation systems in use at the hospital for writing

ED notes, none of them are integrated with tools to view the patient’s prior medical

history. While some documentation systems provide limited views of a patient’s

information for the current hospital visit (e.g. recent labs or imaging), this does not

help a clinician with reviewing and synthesizing the medical history. In order to

access additional data, clinicians must still navigate through multiple different pages.

Some clinicians place two browser windows side by side and access data in one

window and their note in another, others flip between pages and use their short-

term memory to synthesize information. Both paradigms are error-prone—clinicians

evaluate multiple patients in a shift and can easily navigate to the wrong patient’s

data or mis-remember details of patients with similar presentations. In addition, when

interesting data such as a relevant note or lab trend is found by a clinician, there is no

way to bookmark it for later use. All the computers in the hospital implement session

timeouts to prevent the inadvertent sharing of patient information, so clinicians copy

potentially relevant data into their note to preserve it and the surrounding context is

lost.

MedKnowts reduces the need for clinicians to hunt for and retrieve data from

multiple sources by proactively fetching relevant data and surfacing it just-in-time.

To achieve this, we introduce the notion of a card for each clinical term in our ontology.

Cards unify diverse information fragments related to the term in a single, templated,

format. Each card has a header with the common name for the clinical term and

synonyms for the clinical term from our ontology:

• Condition cards (e.g. diabetes)—display relevant medications from the pa-
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tient’s medical record, relevant vital signs, related procedures, and relevant

snippets from notes in the patient’s medical record.

• Labs and Vitals cards (e.g. creatinine, blood pressure)—display a box and

whisker chart of lab values.

• Procedures and Medications cards (e.g. hysterectomy, metformin)—contain

a list of relevant note snippets from the patient’s medical history.

Note snippets are surfaced if they contained a mention of the term or a closely linked

term and are ordered chronologically. The set of closely linked terms was algorith-

mically mined and a sample was validated by a clinician. Based on feedback, we

excluded symptoms from our set of cards, as clinicians rarely needed medical history

to contextualize symptoms.

3.2.7 Surfacing Cards

In our early prototypes we displayed cards in an attached sidebar when clinicians

clicked on an associated chip within the note or another card. However this created

a two step process to see any card—first type the term with autocomplete and then

select the term to see the card. To reduce friction we automatically added a card to

the sidebar for any term inserted with autocomplete. However autocomplete is a poor

signal for whether a card is useful is in the long term. Cards added to the sidebar

are displayed in a scrolling vertical stack. Cards can be removed, but left alone, they

persist next to the note for the duration of the note authoring process, and useful

cards can be pushed out of view as more cards are added. Some clinicians found this

method of adding cards to the sidebar unintutive or confusing, and other clinicians

felt like they were seeing too much irrelevant information. Additionally this method

fails to surface post recognitions.

We eventually streamlined our approach to surfacing sidebar cards to a two-step

process. Any time a term is recognized before the user’s selection, we display the

card for that term in a preview pane at the top of the sidebar. The preview pane
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displays one card at a time, and the card is not shared between users. Clinicians can

pin a card displayed in the preview pane to move it to the sidebar. The cards pinned

in the sidebar are persistent and are shared between multiple users. In this way, the

sidebar becomes a collaborative record of the fragments from the patient’s medical

history that clinicians identify as being particularly important or relevant.

Cards are surfaced in the preview pane in one of three ways: first, they are auto-

matically displayed when an autocompleted or post-recognized term appears before

the user’s selection; second, they are manually surfaced by users clicking on a chip

within the note or another card; third, they are manually surfaced via a search bar

at the top of the sidebar. Post recognitions with naming collisions (e.g. pt) must be

disambiguated by the user before the associated card is surfaced.

3.2.8 Hand Designed vs Automatically Generated Cards

Ideally, we could create individually designed and physician curated cards for all

possible clinical concepts. But we do not have the resources to take that approach.

Instead, during initial prototyping we created a meta-cards for each clinical concept

(labs, conditions) which act as templates for all clinical terms within that clinical

concept. We describe the contents of the meta-card for each clinical concept in Section

3.2.6.

Automatically generated cards help solve a cold-start problem, as we hypothesized

that users would be unlikely to adopt the system if the majority of clinical terms

were associated with empty cards. But cards generated for a large number of clinical

terms are slow to iterate on. For example, clinicians asked for certain labs to be

added to cardiac cards. This type of change, if abstracted to all conditions, requires

the development of a dataset to relate labs and conditions. While possible, finding or

creating this type of dataset takes time. Conversely, adding lab values manually to

cardiac cards is light weight and easy to validate with users. In the long term hand

designed features could be replaced with generic models or datasets but in the short

term we can iterate faster by taking a manual approach.
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3.2.9 Card Design

Throughout the prototyping process clinicians consistently displayed strong prefer-

ences about the content of cards. We hypothesized that showing synonyms within

cards would familiarize users with our ontology of terms. But clinicians found the

inclusion of synonyms condescending because they already knew that. We received

a similar response when we listed names of labs related to a condition on condition

cards. However, clinicians reacted positively when we listed the names of labs along

with their values since this is proactively fetching relevant information. Clinicians

want to see information relevant to their decision making and other information is

seen as noisy or unnecessary.

In addition, clinicians want information presented in the immediate format that

they require; as an example, if the most recent lab value is the only useful piece of

information, that is the only lab value that should be displayed. Conversely, some

lab values can only be properly interpreted in the context of other lab values. For

example, interpreting an elevated troponin values requires both prior troponin values

and prior creatinine values. In that case both lab values must be displayed. We

provided feedback forms on cards and accumulated various requests for data to be

displayed on particular cards. However implementing granular changes for generic

classes of cards is difficult..

To address this, in our second iteration of cards we chose to specifically focus on

two types of cards: lab cards, and cards related to cardiac conditions. In the long run

we expect that a set of a few thousand cards targeting individual clinical terms as

well as general classes of clinical information (such as cardiac function) could support

clinician’s needs. While it is beyond our capacity to create an exhaustive set of cards,

we can learn about and demonstrate the value of cards by creating a few for common

terms. If proven valuable, other cards could be created by a small engineering team

with clinical guidance, or even by clinicians themselves if given suitable authoring

tools.

We worked in collaboration with three physicians to design a card which presents
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Figure 3-6: An example card surfaced for Congestive Heart Failure, which contains
pertinent lab values, links to recent echocardiography reports, and recent notes that
mention the condition.
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information relevant to cardiac conditions. Our cardiac card includes labs and snip-

pets from cardiac tests (EKG and Echocardiogram) and other free-text notes. An

example of the cardiac card can be seen in Figure 3-6.

We augmented our lab card template to support multiple views of lab results. A

table view can be used to see individual result values. When applicable, contextual

labs that are useful for understanding the primary lab are added as columns to the ta-

ble display. A zoomable line chart displays lab values over time and a box and whisker

plot is used to display aggregate lab values over various time frames. Additionally we

provided support for contextual lab results in the table view. For example, Kidney

failure, which is measured by an elevated creatinine, leads to a build up of potassium,

causing elevated potassium levels, a life-threatening condition that must be treated

immediately. Whenever an abnormal potassium level is encountered, the next piece

of information that is needed is what the kidney function is. We proactively provide

this information by displaying creatinine levels directly on the potassium lab card.

3.2.10 Inline Display of Cards

Early on we realized it would be useful to access cards from within the note itself.

We added the ability to hover on a chip to see a preview of the card.
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Chapter 4

Evaluation

4.1 Evaluation

As described previously, MedKnowts was deployed in two major iterations—one year

of iterative prototyping and a one month evaluation. For approximately 7 months the

prototypal deployments were used as the primary documentation tool by 1 physician

(who is also a co-author) and 4 scribes across 1185 patients; the evaluation lasted

1 month and was used by the same physician and 4 scribes (2 scribes had partici-

pated in the prototypal deployments) across 234 patients. Our prototypal deployment

ended after the hospital stopped using scribes in the wake of COVID-19; the second

deployment began soon after scribes returned to the hospital. We could not do a

comparative study against the baseline documentation system due to legal limita-

tions disallowing modifying the commercial note taking tool in use at the hospital,

but we describe our evaluation below.

User Patients Shifts Pins
P 150 12 58
S1 69 3 1
S2 50 4 0
S3 43 2 1
S4 33 3 15
Totals 75
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User Autocomplete Post Recognition
P 71 7
S1 35 0
S2 27 0
S3 6 0
S4 4 0
Totals 143 7

User Search Autocomplete Post Recognition Note Snippet
P 127 30 21 3
S1 4 4 25 0
S2 0 0 9 0
S3 0 1 7 0
S4 43 0 12 21
Totals 174 35 74 24

Prior to using the tool live in the ED, the scribes were introduced to the tool in

thirty minute training sessions. In each training session, one co-author showed the

scribe how the tool worked and explained its available features. After working in the

ED the same co-author followed up with the scribes to get their feedback. At the

time of the follow up the scribes each had used the tool for an average of 3 shifts (min

2, max 4) and completed an average of 46.5 notes (min 33, max 69). In the study

follow-up, scribes filled out a system usability scale (SUS) [57] as seen in Figure 4-1,

and answered questions from a script.

The final SUS scores were [77.5, 77.5, 85, 95] (avg. 83.75), the physician did

not fill out a SUS scale. A score in the high 70s to upper 80s is considered to be good

while a score above 90 is excellent [19]. These responses indicate that scribes found

the tool relatively intuitive and useful enough to use frequently.

Feature usage, documented in Table 4.1, 4.1, and 4.1 as well as qualitative inter-

views yielded several takeaways. In both the tables and the rest of the evaluation we

refer to the users as Physician (P) or Scribe 1-4 (S1-S4).

Most scribes described that autocomplete sped up their workflows but adoption

of autocomplete changed based on scribe experience. S1, the least experienced scribe

in the evaluation, noted that they liked autocomplete because they no longer needed
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1 2 3 4 5

Would use frequently

System was unecessarily complex

System was easy to use

Need technical support to use

Features well integrated

System has too much inconsistency

System has quick learning curve

System is cumbersome

Felt confident using the system

Needed to learn alot to use

1.0

2.0

Number of Ratings

Questionnaire Ratings

Figure 4-1: Scribes’ System Usability Scale scores with medians displayed as black
bars for each question

to conduct internet searches to find correct spellings and obtain an understanding of

the underlying concept space. S4, the most experienced scribe, found autocomplete

less useful due to familiarity with terms, but still found utility for longer terms.

As users acclimated to the tool’s functionality their usage changed. For example,

S1 used autocomplete 8 times in their second shift and 27 times in their third shift.

The increase in usage in the third shift was due to the use of autocomplete to insert

lab values. It was unclear if the scribe had discovered this functionality on the third

shift or had become familiar enough with the tool to adopt more advanced features.

Some of the differences in feature usage across scribes may be attributed to dis-

coverability. For example S2 found card transclusion to be very helpful, especially for

getting more familiar with unknown terms while S4 did not realize that they could

hover on chips to see cards inline. S3 stated that card transclusion was helpful to

quickly hover and get a sense of how central the concept is to the patient’s history.

The lack of disambiguations for post recognitions may be due to the fact that

post recognized chips both behave and look very similar to chips inserted with au-

tocomplete. For example, if an ambiguous term is highlighted correctly and copied

appropriately in default text, the scribe may not have any need to disambiguate it.

Both S3 and S4 were happy that the system recognized terms but were unaware that

post-recognized terms could be disambiguated.
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Scribes appreciated the colored highlighting of embedded chips in the notes. They

found that it allowed them to quickly scan what had occurred so far. For example,

they could quickly skim through symptoms to orient themselves, and it was helpful

that negated symptom mentions were visualized differently. One scribe mentioned

that they could use the colors as an automatic visual aid to determine what compo-

nents had been completed in the Medical Decision Making section, and what was left

to be documented. This quick skim approach wasn’t necessary for certain concept

types (e.g. medications), but some scribes still found it useful for organization.

Scribes universally appreciated the default text that was auto-populated due to

the structured data capture from autocomplete and post recognitions. This was

most appreciated in Physical Exam and Review of Systems, despite imperfections in

the default text. One scribe (S3) said it “made them much more efficient" allowing

them to “get through charts faster." Another noted that the checkbox-based systems

employed in the hospital’s commercial EHR made it really easy to skip and miss an

item, indicating the new system felt less error-prone due to its data entry.

At a high level, scribe experience correlated to the amount of synthesis of a pa-

tient’s past history that was conducted, as advanced scribes had accrued more of the

requisite clinical knowledge and reasoning and could handle documentation and syn-

thesis simultaneously. S4 was the only scribe to examine past notes to try and find

relevant information to share with the clinician. S4 liked the note snippets stating

that "it saves me a lot of time compared to reviewing all of the patient’s prior notes

to simply be able to click...and have notes show up." In contrast S2 did not pay much

attention to cards or read note snippets because they were focusing on documenting

what the clinician was saying.

More experienced scribes were more likely to pin cards to the shared space. The

more advanced scribe, S4 described their job as filtering information for clinicians

based on relevancy and importance. Less advanced scribes perceived their role as

recording rather than synthesizing or finding information.

Scribes integrated cards into documentation and retrieval processes for multiple

concept types. For example, scribes mentioned using lab cards to compare a patient’s
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current value to their baseline, clicking on a past procedure chip to pinpoint its date

from surfaced notes, and leveraging condition cards to determine the extent and

severity of a patient’s existing condition. This indicates such cards act as information

scent to guide scribes to important content. S4 described that they would use cards

to dig into particularly relevant medical history; for example, if a patient with chest

pain had past cardiac disease, the scribe would utilize the card to review "their

previous work-up, notes from cardiology, and any prior surgeries/procedures." S3

noted particular utility in associated medications that were surfaced on condition

cards; it prompted them to document, and the concept-oriented view also served an

educational purpose of teaching them what was relevant, potentially aiding future

synthesis.

While multiple scribes noted it was less useful for medications and symptoms,

condition cards aided scribes in understanding the extent and trajectory of a patient’s

past condition. S4 noted that they "use it when... interested in more information

about a patient’s medical history, especially in a complex patient or a patient that is

unable to provide a history due to acuity or altered mental status."

During the deployment MedKnowts proactively displayed 3614 cards to scribes

as they typed, with a range of frequencies. For example, 53 hypertension cards were

surfaced after typing "htn", while 144 terms were displayed only once each; these rarer

terms included "spine fracture" and "lumbar spinal stenosis". Some short phrases

that overlap with common language e.g. as as atrial stenosis were mistakenly

tagged as clinical terms, but future iterations of MedKnowts can recognize these and

omit them.

Experienced scribes tended to familiarize themselves with a patient’s medical his-

tory prior to writing a note, and thus used the search bar to display cards prior to

note-writing rather than triggering them automatically during the course of documen-

tation. Future iterations of MedKnowts may want to support this workflow, since the

existing information capture is focused on displaying information as the physician

types rather than before the physician starts the note, which misses an opportunity

to provide information scent before documentation begins. Less experienced scribes
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were more likely to click on chips within the note to see relevant cards. All scribes

used chips to manually view cards in the sidebar, and all but one (S4) used chips as

the primary tool for bringing up cards in the sidebar. The usage data reveals that

users are willing to adopt a wide variety of techniques for accessing documentation,

but appear to have significant preferences for one technique or the other.
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Chapter 5

Discussion

5.1 Discussion

MedKnowts explores several interaction paradigms by enabling live automatic recog-

nition of clinical terms within a medical note and displaying patient medical history in

concept-oriented cards. Our iterative design process for MedKnowts underscored the

need for EHR systems to embrace and augment, rather than replace existing clinical

workflows. Our features were well received when they synergized with existing docu-

mentation practices. Implementing changes in a clinical environment is challenging,

and clinicians and scribes are more receptive to such changes when presented with

tools that are familiar and intuitive.

In future iterations of MedKnowts, we hope to expand on the possibilities enabled

by fine grained linking of chips, in both the note and card interfaces, to standard

medical ontologies. MedKnowts can leverage existing health knowledge graphs or

outside resources that clinicians use, aiding their decision-making during documen-

tation. Normalization to a standard ontology also allows notes to be translated to

different audiences; medical acronyms can be automatically unravelled to layman’s

terms if a patient wants to understand their note. Clinicians with specific language

preferences can also personalize note templates and autocomplete functionality with

the vocabulary choices that they prefer.

Our observations from user interviews and interaction data have additionally
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presented new avenues for future work that could push forward these interaction

paradigms. Clinicians often chunk information together. When a clinician wants to

view a Hemoglobin lab, they are likely to search for CBC (Complete Blood Count),

a set of laboratory tests, since Hemoglobin is recorded as part of a CBC lab group.

MedKnowts could support such lab groups by adopting a wider clinical ontology, or

even allowing clinicians to merge or combine cards within the user interface, dragging

and dropping multiple lab cards together to create higher level lab groups. These

modifications do not have to be limited to labs. Clinicians could, for example, group

a glucose card with a diabetes card because the medication is directly treating th

condition.

Providing clinicians with the ability to mold their information displays could not

only help physicians synthesize medical records, but also create new possibilities for

crowdsourcing rich labeled datasets of clinical relationships. Clinician-curated content

would also be a potential solution for how to scale from a handful of manually curated

cards to thousands of cards, and even create cards that serve different roles for differ-

ent types of users (less granular for generalists like emergency physicians or primary

care physicians, more granular for specialists like oncologists or immunologists).

In the opposite direction, clinicians sometimes want to refer to a specific value

or event when recording information. When the clinician writes "patient has high

glucose" it would be helpful if the system identified exactly which glucose lab was

high, autocompleting not just glucose as a clinical term, but a specific measurement.

By allowing clinicians to refer to granular as well as chunked information, we can get

closer to the ideal of presenting information to the clinician in a way that mirrors

their clinical thought process.

Cards could be improved by offering further custom views of the patient medical

record, and providing context-dependent defaults. For example, the existing lab cards

in MedKnowts display a table of result by default, but can display a line chart, and

box and whisker plot as well. For some labs the most recent value is the only value

that matters, and a table is appropriate, but for other labs, the trend over time is

what matters, and a line chart would be more useful. A clinician’s mental model of the
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patient becomes more refined over a patient’s visit, resulting in different information

needs as the visit progresses. An area of future work would be to investigate how

to support this change. Contextual display of information in cards is challenging,

but would continue to shift some of the cognitive burden of synthesizing the patient

medical record onto the EHR.

We noted several occasions where usage differed based on clinical experience.

However, even advanced clinicians can be novice users of the tool — experience level

with MedKnowts is thus another dimension of the overall user experience. Ideally, a

user interface would be intuitive for the novice user and provide support to help them

grow into advanced users for the tool. Future work could expand on the logging we

have implemented here to see how a user’s usage of the tool changes over time, and

what strategies we could employ to improve adoption of more advanced features.

There is a practical burden in scaling cards. However, because we use standard

ontologies, we can leverage ongoing efforts to open-source physician-curated [95] and

machine learned [70] concept maps. Users may benefit from the ability to manually

author and customize default text templates and card contents but we hypothesize

that a relatively small set of cards could cover most referenced terms. Semanik et

al. estimate that 150-200 concept maps could be used to cover the most commonly

encountered conditions for a range of clinical specialties [95].

There is some risk that the automation provided by MedKnowts could lead to

errors. For example a post recognition may be incorrect, modifiers may be skipped or

added unnecessarily, and auto populated text could contain errors. Auto populated

text requires manual verification, but this is an existing step in physician workflows,

since the current system provides naive boilerplate text for modification. The risk of

incorrect tags is lower than comparable clinical recognition systems [5, 93] because

users are able to disambiguate terms and have information scent about the recognized

terms.

There is additional risk that adopting MedKnowts could impede usability. To that

end we have designed MedKnowts’ features to be opt-in, leaving existing workflow

unimpeded. Lastly we must consider if using MedKnowts could impact the responsible
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practice of medicine. The literature considers the risks of passive clinical decision

support (CDS) like our concept-oriented cards to be minimal compared to active

CDS [95]. While cards provide synthesized evidence, the responsibility is on the

clinician to explore as needed, and data on cards links to the original source, e.g.

note snippets expand to the full note.
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Chapter 6

Conclusion

6.1 Conclusion

MedKnowts captures structured clinical terms embedded within a free-text narrative

and then links these terms to a concept-oriented, dynamic display of patient informa-

tion that appears alongside a medical note. Thus, MedKnowts provides clinicians with

a unified interface for writing a clinical note and exploring and navigating a patient’s

medical record. By integrating documentation and patient information MedKnowts

lowers the cognitive burden of synthesizing the medical record, and demonstrates the

possibilities of an EHR documentation system that can better serve clinicians.

We capture these clinical concepts via autocomplete and post recognition, and

map them to standardized ontologies. This allows us to connect captured concepts

with other medical databases and translate clinical terms for a variety of audiences.

We provide patient information in a preview pane next to the note as the clinician

types, proactively displaying contextual information when needed. A persistent side-

bar of cards helps multiple clinicians develop a shared understanding of the patient

and highlights important information. We prove the feasibility of our approach in

a months-long deployment in an active ED, and demonstrate in our evaluation that

clinicians are receptive to this approach.

Ultimately, we believe that MedKnowts has the potential to make clinical docu-

mentation truly work for clinicians by creating a live document that supports cus-
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tomized information retrieval, note-taking, and collaboration while simultaneously

improving the final note that is shared with downstream doctors and patients.
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