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Abstract

While researchers and policy-makers traditionally rely on survey methods as they
seek to understand preferences, user-generated data on social media—coupled with
advanced methods of Natural Language Processing—can, in certain cases, serve as a
valid alternative. In this thesis, I introduce a novel data set of global social media
content and present a multilingual algorithmic method of text analysis which provides
valuable insights into population well-being and public opinion at a global scale. I
conduct three validation tests to assess the extent to which metrics computed from
social media data are consistent with more traditional methods of measurement such
as census population counts, well-being surveys, and political polls.
I go on to present two case studies which rely on social media-based metrics. In the
first, we evaluate the effect of temperatures on subjective well-being worldwide. We
find a non-linear, inverse U-shaped relationship and estimate high-temperature dam-
ages in a large selection of countries. In the second, we connect subjective perception
of climate events with real estate market outcomes. We find that while objective
temperature stress is consistently associated with lower location value, regions where
sentiment is most sensitive to climate discomfort are also the ones where these shocks
are the strongest. Both empirical studies confirm the strong potential of social media
data for policy-makers and researchers alike.
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Chapter 1

The Advent of Social Media:
Opportunities and Challenges for
Policy-Makers

The rise of social media worldwide has radically altered the ways in which we commu-
nicate, interact, and inform ourselves. Every day, active social media users share con-
tent on their favorite platforms, thereby generating data which reflects their thoughts
at a specific point in time. Simultaneously, advances in the field of Machine Learning
(ML) and Natural Language Processing (NLP) have made the automated analysis of
large quantities of text data possible.

Policy-makers and researchers alike have always been interested in understand-
ing public opinion, measuring well-being and satisfaction, and collecting feedback to
events or interventions. And while they have traditionally relied on surveys to do
so, these methods present important limitations. As social media is increasingly used
across the world, the digital data generated on these platforms has become a valuable,
alternative resource to understand public opinion and subjective well-being.

This introductory chapter frames the extent to which social media data can be
used for impactful research that informs policy decisions. I start by describing lim-
itations of traditional data collection approaches (Section 1.1.1), then present the
relative advantages of social media data (Section 1.1.2.1). Social media data is not
immune to problems of its own (Section 1.1.2.2)—but important validation studies
have confirmed its relevance as a proxy measure for satisfaction and well-being (Sec-
tion 1.1.2.3). Finally, I review the growing computational social science literature
that uses social media data for analyses (Section 1.2), and present the contributions
of my thesis to the field (Section 1.3).
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1.1 Social media data as a source of public opinion

1.1.1 Limitations of traditional survey methods

Policy-makers and researchers have always looked to measures of subjective well-
being or satisfaction to assess the value of public goods or evaluate policy alternatives
[78, 139, 48]. Traditionally, they have relied on self-reported metrics collected by sur-
veys. Survey methodology relies on representative samples to collect a comprehensive
overview of the opinions shared by a population of interest [57]. However, surveys
face a number of challenges today. They are an expensive enterprise, and are lengthy
to run. As technological shifts have progressively replaced telephone landlines with
mobile devices, and have democratized caller screening, response rates have declined
sharply [34]. Non-response rates make it hard to construct representative samples,
potentially biasing the survey results [58, 82].

Since surveys are an intentional data collection process, they are constrained by the
questions they pose and the ways in which they are formulated [57]. Survey wording
has been found to influence survey results [119]. Desirability bias—where respondents
answer survey questions in ways that they believe agree with the organization that
conducts them—also has the potential of skewing results, especially when it comes to
sensitive topics such as mental and physical health or political preferences [127, 16].

More fundamentally, surveys can provide poor measures of real-time well-being,
which can be difficult to disentangle from long-term happiness when analyzing self-
reported responses [71]. Traditional surveys only reach out to a respondent pool
once, making them inadequate at tracking individual-level changes in sentiment, be-
havior, and opinion [33]. Even longitudinal surveys, which offer a valid alternative
for individual-level analysis, can’t necessarily accurately time data collection phases
around sometimes unpredictable events.

1.1.2 Social media as an alternative data source

1.1.2.1 Advantages of social media data

Given these limitations in survey methodology, social media offers an appealing alter-
native as a measure of public opinion. Data acquisition is cheap1 [109], and analysis
can be quasi-instantaneous. Social media platforms are “always on”, continuously col-

1This is true notwithstanding the fixed costs to set up social media data harvesting systems, and
the computational costs linked to transforming data for analysis.
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lecting user-generated information [117]. Instead of requiring researchers to specify
when and where to conduct surveys, social media facilitates the study of a wide range
of unexpected events after-the-fact. Social media data is by nature unsolicited, and
therefore not prone to the same response and question-wording biases as survey an-
swers [31]. Add to that the fact that data collection can be quasi-instantaneous, and
social media can be seen as a real-time sensor of human activity and conversations.

The most appealing aspect of social media data lies in the sheer quantity of data
provided. Twitter, for instance, has over 330 million monthly active users across the
world2 [128]. Weibo, a microblog platform used mostly in China, reported 462 million
monthly active users in 2018 [138]. A significant subset of these posts are geolocated,
meaning that precise location information is collected at the time of the post (for
more information about geolocation, see Section 2.1). The underlying data sets of
social media posts have a geographical and temporal density far superior to even the
largest-scale surveys. This level of coverage allows for studies with precise granularity,
all the while remaining relevant at a high level as well.

While this scale of data might have been previously impossible to analyze, recent
developments in the fields of computer science, ML, and NLP have made it possible to
automatically extract information from social media posts. For instance, quantifying
expressed sentiment in text—a field known as sentiment analysis—can be conducted
by dozens of openly available models [83].

1.1.2.2 Limitations to the use of social media data

Beyond the important question of privacy and data ownership [12], social media data
is not necessarily a perfect substitute for surveys. First off, it presents the risk of
being inaccurate: logics of expansion have pushed social media platforms to prioritize
ease and ergonomics over accuracy in user sign-up. Users can usually provide false
names, location, or demographic information. According to one report, 46% of social
media users have multiple accounts on at least one platform [116].

While traditional surveys strive to construct representative samples of the popu-
lation, social media user pools guarantee nothing similar. Giant social networks bring
together millions of users across the world, but accessibility issues still restrict access
for specific population groups. At a global scale, developed countries are overrep-
resented on Twitter [90], and there is a significant bias towards urban regions [62].
One recent review of Twitter users in Italy found them to be on average younger and
more highly educated [131]. Similarly, Pew Research Center found US Twitter users

2As reported in Q4 of 2018.
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to be more wealthy than the average [140]. People with disabilities have also been
historically disenfranchised by the internet and digital platforms [114].

Just as surveys rely on important theoretical frameworks for developing questions,
conducting interviews, and aggregating information [57], extracting information from
social media data requires adequate technical tools and statistical methods. While
much hope is placed on the use of NLP for automatic analysis of social media content,
these methods might not capture subtleties of speech. Ceron and Negri (2016), for
example, assert that natural language on social media can evolve over time, differ
across topics, and make use of irony or other nuances that are not necessarily captured
by NLP algorithms. Human input is regularly required to calibrate sentiment analysis
model [26].

1.1.2.3 Validating the use of social media

Despite these challenges, social media’s relevance for research is supported by a num-
ber of validation studies. Global mobility patterns observed using geotagged Twitter
posts have been found to closely match global tourism statistics [61]. Within urban
areas, spatial distributions of Twitter users reflect those observed with census or cell-
phone data, according to Lenormand et al. (2014). Their validation is conducted
using data from the municipalities of Barcelona and Madrid, at a high level of spatial
(up to the square-kilometers) and temporal granularity. High correlation levels are
observed between the three data sources on population concentration and temporal
distribution patterns, and the three data sources yield similar mobility networks [77].
In Section 2.3, we use a similar approach to test spatial coverage and distribution of
our social media data.

NLP-based sentiment analysis on social media data has also been shown to be
a valid measure of subjective well-being. By collecting Facebook profile information
from survey respondents, Settanni and Marengo (2015) find that automated methods
of emotion detection3 applied to publicly shared content yield similar results to self-
reported levels of depression, anxiety, and stress [120]. At the aggregate level in
the United States, county-level happiness surveys correlate strongly with NLP-based
measures of sentiment [68]. We conduct a similar validation test using state-level
happiness-survey results in Section 2.3.

Combining topic modeling with sentiment analysis also provides similar measures
of subject-specific public opinion. In the field of politics, social media-based sentiment

3Settanni and Marengo (2015) rely on the LIWC software [106] to compute emotion scores to
social media content.
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on candidates closely tracks preference levels captured by traditional polls [97] or
survey-based approval ratings [25]. Here too, Section 2.3 presents a similar analysis
using 2020 US presidential election data to validate our sentiment measure.

1.2 Existing applications of social media research

Therefore, while the limitations of social media data are important to keep in mind—
especially when disenfranchised groups are a critical component of a research project’s
agenda—validation work has confirmed the potential of social media data as a strong
and reliable proxy of population well-being and public opinion. Subsequent research
in the fields of computational social science and economics has used social media data
to study a wide variety of phenomena, with direct insight for policy-makers [76].

The network structure of social media is at the source of important findings in
social sciences. Park et al. (2018) use Twitter data to study the strength of long-
range ties, for instance, with important implications regarding the spread of culture or
epidemics [104]. Social media structures have also contributed to the understanding of
political polarization [6]. Tracking content diffusion on social networks has been used
to study structural virality [54], the spread of misinformation [134], or the diffusion
of lexical changes [43].

Building on validation studies that find that social media is an accurate reflection
for population concentration and movement, urban science research frequently relies
on geotagged posts of users over time. Jurdak et al. (2015), for instance, examine the
mobility patterns of social media users in Australia, characterizing both inner-city
and between-city movement [69]. While socioeconomic indicators are not available
on Twitter, Huang and Wong (2015) match user profiles to census data and compare
(social media-based) activity patterns by (census-based) income levels [66]. Their
empirical study in the Washington, DC, area highlights that poorer populations travel
the greater distances between home and work. Llorente et al. (2015) use social
media mobility patterns—as well as diurnal rhythm and communication styles—to
predict regional unemployment rates, highlighting low-cost (and public) alternatives
to traditional economic indicators [80].

An important body of research has focused on topic prevalence using classification
techniques. Qian et al. (2015) use supervised Latent Dirichlet topic modeling to
examine the prevalence of social events—such as the Occupy Wall Street movement
or the Syrian Civil War—on Flickr [108]. Driss et al. (2019) collect data from
Tunisian citizen-group Facebook pages and classify content into policy-relevant areas
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[10]. Finally, Paul and Dredze (2014) use topic modeling to uncover public health
discussions on Twitter, and track the prevalence of the seasonal influenza or allergies
across the United States [105].

Other analyses focus on extracting sentiment from social media data [40]. In their
seminal paper on Twitter-based sentiment, Golder and Macy (2011) use millions of
public posts to emphasize high-level daily and seasonal trends and point out cultural
differences [56]. Mitchell et al. (2013) correlate sentiment from geotagged Twitter
data with dozens of demographic and health characteristics in the United States [91].
Sentiment analysis techniques on Twitter data have been used to track the spread of
racism and hate speech [21] or levels of political trust [24].

Social media-based sentiment can inform government on reactions to policy imple-
mentations: in Italy, Ceron and Negri (2016) use Supervised Aggregated Sentiment
Analysis to measure citizen satisfaction during two important policy reforms led by
the Renzi government in 2014 and 2015 [26]. Wang et al. (2022) examine sentiment
reactions to the first COVID-19 wave and to lockdown policies that were implemented
at the time [135].

One application area of particular interest is the use of social media sentiment to
measure well-being responses to climate amenities. Kryvasheyeu et al. (2016) use
social media data to assess the damage of Hurricane Sandy, for instance [74]. Using
sentiment measured on Twitter, Bailys (2020) finds that extreme temperatures are
associated with significant drops in population well-being [9]. Wang, Obradovich,
and Zheng (2020) find similar results using Weibo data in China [136]. Again in the
context of China, Zheng et al. (2019) use social media data to measure the impact
of air pollution on subjective well-being in China [146].

1.3 Thesis Contributions

The current thesis contributes to this growing body of work. First, I introduce a novel
data set of social media content which combines geotagged Twitter data (with global
coverage from 2015 to 2021) [79] and Weibo data (covering China between 2018 and
2021) [27]. Text from social media posts is encoded into machine-readable embeddings
using a transformers model for text representation. My main methodological contri-
bution is the elaboration of a multilingual sentiment imputation algorithm—which
supports over 50 of the most common languages worldwide—to assign a sentiment
score to every social media post. Post-level sentiment scores are aggregated to con-
struct spatial and temporal indices. To support external validity of my subsequent
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results, I conduct three tests assessing the extent to which metrics computed from
social media data are consistent with more traditional methods of measurement such
as census population counts, well-being surveys, and political polls. The data and
methods, along with these validation studies, are presented in Chapter 2.

I go on to present two applications of the use of social media data. In Chapter
3, I use global social media data to examine the impact of extreme temperatures on
well-being across the world. This study is made possible by the multilingual aspect
of our sentiment imputation algorithm, and contributes to the literature by assessing
well-being costs in less wealthy countries that are traditionally excluded from similar
analyses. In Chapter 4, I examine the impact of subjective perception of temperature
stress on real estate value. Here, we contribute to the literature by using sentiment
damages—measured on social media—as an input to real estate value models, and by
examining whether subjective perceptions drive real-world outcomes. I discuss the
different results and conclude in Chapter 5.
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Chapter 2

Natural Language Processing on a
Novel Social Media Data Set

This chapter presents the rich social media data set that I use for the subsequent
case studies of my thesis. Seven years of Twitter data (2015–2021) and four years of
Weibo data (2018–2021), with full text, user information, and precise geolocation were
incorporated into the different case studies. The full data is presented in Section 2.1.
Relevant features (in particular, sentiment) are extracted from the social media posts
using advanced methods of NLP, and aggregated to spatial and temporal indices—I
present these methods in Section 2.2. Finally, before presenting our case studies, we
would be remiss not to test the validity of our data and features as accurate proxies
of public opinion. I present three frameworks for comparing our social media-based
sentiment index to more traditional outcomes in Section 2.3.

2.1 A global data set of social media content

The Twitter data set was collected by the Harvard Center for Geographic Analysis
(CGA) as part of the Geotweet Archive [79], a large scale project aimed at collect-
ing geolocated posts, or tweets, over time. It was generously shared with the MIT
Sustainable Urbanization Lab in the context of an ongoing collaboration. The Weibo
data was collected by the MIT Sustainable Urbanization Lab [27].

Both data sets come with a variety of fields, summarized in Table 2.1. The main
content field is the full post text, which includes emojis, hashtags, and URL links
posted by the user. Twitter text fields are limited to 280 characters1 (Weibo has no

1Until 2018, Twitter’s character count limit was 140 characters. See Gligorić, Anderson, and
West (2018) for a study of how doubling the character limit affected post quality [52].
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such limitation). The unique user ID—which we have for both Weibo and Twitter—
tracks users over time in the data, allowing us to conduct longitudinal studies or
include user-level fixed effects in our analyses.

Since our data set is made up of only geolocated posts, each social media entry is
assigned a precise latitude and longitude position. On Weibo, this information reflects
the user’s exact location at the time of the post, and is available for users who consent
to sharing their location. Geolocated posts reflect 1% of all Weibo content shared in
China [41]. On Twitter, precise location information was collected until 2019 for users
who had enabled background GPS data collection. Starting in 2019, however, GPS
tracking was disabled. Current location information on Twitter results from one of
three possible mechanisms: (1) the user tags themselves at a point of interest (POI),
thereby generating an approximate location; (2) the user shares a geolocated photo
taken through the Twitter mobile application; and (3) the tweet is posted through a
third-party application (such as Instagram) that collects precise geolocation. Hu and
Wang (2020) provide a detailed analysis of the impacts of Twitter’s policy change
for researchers. While the new POI geotagging mechanism does increase noise on
location, it is precise enough when data is aggregated to a unit of analysis larger than
the city [65]. Based on a sample of 2018–2019 data, Baylis (2020) finds that the share
of posts on Twitter where location is provided represents only 4.5% of all tweets, but
also that this content is typically very similar to non-geotagged posts [9].

Variable Description Notes

post_id Unique ID of the post
user_id Unique ID of the user
lat Latitude of user at time of post For Twitter, location is approximate since 2018
lon Longitude of user at time of post For Twitter, location is approximate since 2018
text Full post text

Table 2.1: Social media data core fields

Based on the information provided by users, additional features are generated to
facilitate subsequent analysis of the data. These imputed features are detailed in
Table 2.2. Reverse geocoding techniques on the GPU-based OmniSci software2 are
used to locate the post within administrative bodies (country, administrative-1 region
equivalent to the largest sub-national division, administrative-2 region equivalent to
the second-largest sub-national division). From the text field, we impute the language
of the content, and we restrict to the 50 languages most used in the data (covering
more than 99% of the content for which language is imputable). We also impute a

2https://www.omnisci.com/
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sentiment score based on an NLP method described in the following section (Section
2.2).

Variable Description Notes

language Post text language Imputed based on post text
country Country of user Imputed based on latitude and longitude
admin1 Administrative-1 region of post Imputed based on latitude and longitude
admin2 Administrative-2 region of post Imputed based on latitude and longitude
sentiment Sentiment score Imputed based on post text and language

Table 2.2: Social media data imputed features

The main novelty of these data sets is the extent of geographic coverage they allow.
As indicated in the introductory chapter, social media data has already been used
for research—but these projects have mostly focused on data-rich countries like the
United States [91, 9], Europe [26], or China [146, 136]. Here, we collect observations
from across the world into a single, comprehensive, global data set. Fig. 2-1 illustrates
the data coverage using a sample of data from 2020. Content is posted across the
world, and dense areas of coverage can be found in all inhabited continents worldwide.
However, regions with lower social media penetration are also clearly visible: rural,
developing, and non-English speak countries all present lower Twitter and Weibo
use. A more extensive analysis the geographic coverage of our data set is provided in
Section 2.3.1.

Figure 2-1: Social media data set geographic coverage (2020)
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2.2 Natural Language Processing and sentiment im-

putation

A rich data set of social media offers important research possibilities. Tracking sen-
timent and topic distribution over time can inform on population well-being or on
public opinion. Given the quantity of data at hand, however, these analyses require
computational methods of NLP, which extract semantic characteristics of text at a
large scale. The first step is to convert the text into machine-readable representa-
tions which are indicative of semantic meaning: this is done in Section 2.2.1 using
the Transformer model BERT. From these representations we can extract topical in-
formation, but also sentiment scores by training a classifier on labeled data (Section
2.2.2). Finally, we aggregate sentiment features to relevant spatial and temporal units
of analysis using methods detailed in Section 2.2.3.

2.2.1 Semantic representations of social media posts using the

BERT Transformer model

One of the main objectives of NLP is converting human-readable text into a machine-
readable numerical sequence. This process is known as text representation and can
be done in a variety of ways. Trivial text representation, for instance, is conducted
based on word occurrence in the text: a sentence might be encoded into a list of 1’s
and 0’s based on whether a list of given words are in the sentence or not. Resulting
representations can be thought of as a vector of coordinates for the text, within a
high dimensional space called the embedding space.

Representations are useful for classification only to the extent that they reflect
semantic meaning. Texts that have similar representations (i.e., are nearby in the
embedding space) ought to have similar semantic meanings, and vice versa. While
the word-occurrence based model described in the previous paragraph might seem
like an appealing choice (sentences that are made up of the same words will have the
same coordinates in the embedding space), there are important shortcomings: the
method does not account for synonyms, word order, or sentence construction.

Training relevant representation models for classification has become an important
field of research in NLP [3]. Moving beyond word-occurrence models, the word2vec
framework first used neural networks to learn word representations which account for
synonymy and semantic similarities. The neural network is trained on a large text
corpus, and representations are based on a words “context”, or surrounding words
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[88, 89]. Transformer models, which have emerged in recent years, allowed text rep-
resentation models to increase the width of the context window, vastly improving
performance by accounting for long-range interactions between words [132]. In these
models, word representations depend on their entire sentence, not just their nearest
neighbors.

Bidirectional Encoder Representations from Transformers, or BERT, is a word
representation method developed by Google in 2018 [38]. BERT reads in sentences
as sequences of words, preceded by a start-of-sentence token referred to as the [CLS]
token. A Transformer architecture assigns contextual embeddings to words based on
how frequently they appear in the same sentences as other words within the training
corpus3. Dozens of pre-trained BERT-based models are hosted (and openly shared)
on the HuggingFace Model Hub [141]. The Python SentenceTransformers frame-
work greatly facilitates the use of BERT for text representation by sequencing input
sentences, imputing BERT representations, and pooling these representations into a
single high-dimensional embedding representative of the entire initial text [112]. An
illustrative diagram of the BERT-based text representation process, which we apply
to each social media post, is provided in Fig. 2-2.

3BERT models are usually pre-trained on millions of data entries from BooksCorpus and
Wikipedia.
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Figure 2-2: Text representation using BERT and the SentenceTransformers frame-
work

Social media posts (bottom left of the diagram) are converted into a sequence of
word tokens, starting with a [CLS] token. The BERT neural network reads in the
sequence of tokens, and imputes embeddings to each. A pooling layer combines the
different embeddings into a single representation. The representation can be seen
as the coordinates of the post within the embedding space. Within the embedding
space, similar-meaning posts appear nearby.

One of the main characteristics of BERT models (and therefore of the Sentence-
Transformers framework) is that it allows for multilingual text encoding, meaning
that direct translations across different languages are encoded similarly by multi-
lingual modules of BERT [107]. Therefore, once text is converted into the BERT
embedding space, a single classification model can be used for prediction regardless
of the underlying language. Currently, BERT is known to support 50 languages.

Using a pre-trained multilingual BERT model, we create representations of every
social media post in our data set. These representations are stored as a set of post-
level features, and feed into models that we use throughout this thesis. Within
the embedding space, clustering based on representation coordinates groups together
content of similar semantic meaning—this can be used for topic modeling, for instance.
Coordinates in the embedding space can also serve as inputs to train a supervised
classifier: we use this property to train the sentiment analysis model described in the
next section.
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2.2.2 Sentiment analysis of social media data

Our sentiment analysis model builds on the post-level BERT representations that we
previously computed, using the dimensions of the representations as a set of features
for supervised classification. We train our classifier on the representations of a set
of labeled Twitter posts, then predict sentiment scores of the unlabeled social media
posts of our data set.

The training data we use is Sentiment140, an English-language sentiment-labeled
data set of 1.6 million Twitter posts [53]. The data set was constructed by imputing
the sentiment of every tweet based on the occurrence of positive or negative emojis
with the text—allowing the imputation of sentiment scores at a large scale with lim-
ited human intervention4. We compute the S-BERT embeddings of every observation
of the Sentiment140 data set, then train a classifier on 80% of the data (training set).
Our classifier is a Machine Learning pipeline made up of a dimensionality reduction
step (we keep the first 100 principal components of the representations), and a lo-
gistic regression model. The output can take the form of either a binary prediction
(0 for negative, 1 for positive), or of a continuous score (between 0 and 1, equal to
the estimated probability that the post is positive). For validation, we run binary
predictions on the training set, as well as on the remaining 20% of the data (test set).
Performances are assessed using simple accuracy5, and provided in Table 2.3.

Data set Nb of Observations Accuracy

Training set 1,280,000 0.81
Test set 320,000 0.80

Table 2.3: Sentiment analysis model performance on the training and test sets

To check for potential overfitting of the classifier on the Sentiment140 data set,
we also evaluate our model’s performance on an alternative English-language labeled
data set provided by CrowdFlower6. Although our model is trained on English-
language data, it predicts in over 50 languages supported by multilingual BERT.
We test for potential linguistic bias by evaluating the performance of our model in

4This training data set, constructed by Go, Bhayani, and Huang (2009) relies on the assumption
that sentiment in the text will reflect sentiment in the emojis. After being used to impute the
sentiment, emojis are removed from the data set’s text field, and the sentiment score is associated
to the remaining text entry. We too remove them from our data as part of our data cleaning steps.

5Model accuracy is defined as the number of correct predictions over the total number of predic-
tions.

6We use the “Sentiment Analysis: Emotion in Text” data set.
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different languages, including on sentiment-labeled Portuguese data [17], and similar
data in European languages [94]. Model performance on the alternative English data
set and on foreign languages is presented in Table 2.4.

Language Source Nb of Observations Accuracy

ALBANIAN Mozetič et al., 2016 1,866 0.722
BOSNIAN Mozetič et al., 2016 1,872 0.788

BULGARIAN Mozetič et al., 2016 1,101 0.723
CROATIAN Mozetič et al., 2016 6,890 0.819
ENGLISH CrowdFlower 3,152 0.840
GERMAN Mozetič et al., 2016 1,865 0.813

HUNGARIAN Mozetič et al., 2016 4,071 0.767
POLISH Mozetič et al., 2016 11,049 0.766

PORTUGUESE Brum & Nunes, 2017 15,047 0.750
RUSSIAN Mozetič et al., 2016 3,592 0.748
SERBIAN Mozetič et al., 2016 345 0.643
SLOVAK Mozetič et al., 2016 6,154 0.819

SLOVENIAN Mozetič et al., 2016 5,927 0.761
SPANISH Mozetič et al., 2016 9,247 0.720
SWEDISH Mozetič et al., 2016 2,590 0.725

Table 2.4: Sentiment analysis model performance by language

Traditionally, sentiment or emotion indices are conducted using dictionaries-based
approaches, such as LIWC [106]. In these models, lists of words that are pre-
established as positive or negative are matched to words in the text content, and
scores are established based on match counts. These methods are highly dependent
on the aforementioned word lists and on the specific language of analysis, and are
therefore not adapted to global, multilingual studies. Prior research has also found
that, when analyzing sentiment and measuring well-being, ML-driven models [68] and
BERT-based models in particular [126] perform better than more trivial word-based
methods such as LIWC.

However, as a measure of validation and as a means of building on more tradi-
tional sentiment-analysis research, we also compute LIWC-based sentiment scores on
a sample of English-language posts in our Twitter data set. We test the correla-
tion between BERT-based and LIWC-based sentiment indices in Appendix Section
A.2. We find that both indices are strongly correlated, with a Pearson’s coefficient of
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Figure 2-3: Two-step sentiment aggregation diagram

In step (1), we average the sentiment scores of every individual user into a user
sentiment score. In step (2), we average user scores regardless of the number of posts
shared by the user. This two-step aggregation method equally weighs social media
users instead of posts, and avoids over-emphasizing frequent users.

𝑟ℎ𝑜 = 0.74 (𝑝 < 0.001). Given the broad acceptance of LIWC as an accurate measure
of expressed sentiment, our BERT-based index is a valid measure as well.

2.2.3 Aggregating post-level sentiment scores to sentiment in-

dices

The trained classifier predicts a sentiment value on each post of our social media data
set. Post-level sentiment scores are then aggregated into spatial and temporal indices.
Since individuals are not equally active on social media, however, a simple average
would overweight the most frequent posters in our sample. This becomes especially
problematic with the rise of social media robots (or “bots”). These programmed
mega-posters are usually driven by political motives, and have been found to spread
misinformation [121] and disrupt democratic processes [13].

Instead, aggregation is conducted by weighting each post by the inverse-frequency
of the user within the time-space unit of aggregation. Our aggregation mechanism
can be understood as a two-step process where, for a given location 𝑙 and time 𝑡, we
(1) average each individual user’s sentiment based on their posts during that time;
and (2) compute the unweighted sentiment average of all users in that location. The
process is illustrated in Fig. 2-3.

The two-step process can be formalized by the following formula:
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𝑠𝑒𝑛𝑡𝑙,𝑡 =
Σ𝑗∈𝑈𝑙,𝑡

Σ𝑖∈𝑇𝑗
𝑠𝑒𝑛𝑡(𝑡𝑤𝑒𝑒𝑡𝑖,𝑗)

𝑇𝑗

𝑈𝑙,𝑡

(2.1)

where 𝑠𝑒𝑛𝑡𝑙,𝑡 is the sentiment index value of location 𝑙 at time 𝑡. 𝑈𝑙,𝑡 is the number of
users in a location 𝑙 during time 𝑡, 𝑇𝑗 is the number of tweets by user 𝑗, and 𝑡𝑤𝑒𝑒𝑡𝑖,𝑗

is the 𝑖-th social media post by user 𝑗.

2.3 Validating our social media data set and senti-

ment analysis approach

The generalization power of our social media data-based findings depends on the
extent to which our measures proxy actual public opinion and well-being. While our
results are indicative of the behavior of social media users, these might not reflect the
general public. Verifying whether our results align with alternative, more traditional
methods (i.e., census data, surveys, or polls) is essential for our results to be of use
to policy-makers and researchers.

Here, I offer three potential avenues to test the generalizability of our results. First,
I compare the coverage of our data set to population numbers across the world. I find
strong correlations both globally (between different countries) and within countries at
regional level. The last two validation approaches focus on validating our sentiment
score by comparing it to other measures of satisfaction. First, I compare aggre-
gate social media-based measures of well-being to survey-based “happiness scores” in
the United States. Strong correlation between the two measures indicates that our
sentiment measure is in fact capturing a similar measure of population well-being.
Second, I compare topical aggregates of our sentiment score to election polls in the
United States in 2020. State-level sentiment on content mentioning specific candi-
dates (“Biden” or “Trump”) is again found to be highly correlated to traditional public
opinion polling measures.

2.3.1 Validating the spatial distribution of social media data

One important limitation of social media data is that it does not guarantee spatial
representativity. The digital divide has historically led to disparities in internet access
and digital platform penetration rates, especially between developing and developed
nations or urban and rural areas [62]. However, the last decade has seen significant
increases in social media use in developing countries [1].
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We test the representativity of our social media data set by comparing the aver-
age number of daily social media users to official population statistics. Country-level
population numbers are provided by the World Bank, based on national Census re-
ports [143]. Our social media-based user count is the number of daily summed over
the entire year users in each country. Since Twitter and Weibo user numbers are
not necessarily comparable, we only use Twitter data for this analysis (we therefore
exclude China from the results) and restrict to the year 2019.

Country-level population and social media user numbers are plotted in Fig. 2-
4. The regression line, computed on the non-logged measures and plotted in black,
highlights a positive relationship between the two measures. Disparities do emerge,
however, between different continents. Observations above the regression line are
countries where the population is disproportionately large compared to the social
media user base: this group is almost entirely made up of developing countries from
Africa and Asia. The furthest outliers include Ethopia (ETH), the People’s Republic
of North Korea (PRK), Bangladesh (BGD), and India (IND). In Ethiopia, for in-
stance, current social media penetration rate is a whooping 983 times lower than in
the United States (USA). However, the two measures are overall highly correlated,
with a strong and significant Pearson correlation coefficient (𝜌 = 0.34, 𝑝 < 0.001).
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Figure 2-4: Number of social media users by country population, worldwide

Both measures are logged. A regression line is plotted in black. Observations are
colored by the countries continent to facilitate the observation of geographic trends.
The Pearson correlation coefficient between the two non-logged measures is 𝜌 = 0.34
(𝑝 < 0.001).

To test for the prevalence of an urban-rural divide in our data, we run similar
analyses within four case countries (United States, Spain, Brazil, and Nigeria). Here,
we compare regional population to the number of social media users we observe in
those sub-national divisions. Results are provided in Fig. 2-5. In highly developed,
western countries, such as the United States and Spain, the correlation between so-
cial media penetration and population is almost perfect. Rare outliers, such as the
District of Columbia, attest of exceptional situations—in this case, the prevalence of
social media in American political communication. The relationship between social
media users and population is noisier in developing countries like Brazil and Nigeria.
Some outliers, such as the state of Bahia in Brazil, highlight poorer regions where
digital penetration rates are still low. However, these countries still present high and
significant correlation rates (𝜌 = 0.60 and 𝜌 = 0.56 in Brazil and Nigeria, respec-
tively). Comparing these rates to the global, country-level correlation rate we found
above (𝜌 = 0.34) illustrates that the within-country digital divide is less of an ob-
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stacle to homogeneous coverage than between-country inequalities. This informs our
subsequent analyses, where we consistently estimate global results with, at minimum,
country-level fixed effects.

Figure 2-5: Number of daily social media users by regional population in four case
countries

2.3.2 Validating sentiment scores based on happiness survey

results

In addition to verifying the geographic coverage of our data, we attempt to validate
the sentiment index we compute based on our NLP algorithm. The first generalizabil-
ity test consists in comparing social media-based sentiment measures to traditional
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surveys of happiness and satisfaction. The conceptual framework is presented in Fig.
2-6. Since we are interested in overall well-being for this validation, we aggregate
sentiment scores from all social media data, regardless of the content’s topic.

Figure 2-6: Conceptual framework for validating social media data with happiness
surveys

Prior research has already documented a positive relationship between the two:
Jaidka et al. (2020), for instance use the county-level Gallup-Sharecare Well-Being
Index in the United States to test the accuracy of Twitter-based emotions using a
number of different NLP models [68].

Here, we use the Gallup annual “State of the States” poll (2019 data), which
assigns a score to US states according to their reported well-being. We create a
Twitter-based alternative sentiment measure by aggregating the sentiment scores of
every 2019 Twitter post at the state level. Consistently with the aggregation method
described in the previous section, we avoid frequent user oversampling by weighting
post scores by the inverse posting frequency of the user. Fig. 2-7 plots, for every
US state, the survey-based well-being score by the Twitter-based sentiment measure.
We also report the regression line in black: full regression results are provided in
Appendix Section A.3.
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Figure 2-7: Social media-based well-being score by survey-based well-being score

Both sentiment scores are standardized. We find a strong and significant correlation
between the two (Pearson correlation coefficient 𝑟 = 0.37, 𝑝 < 0.01).

We characterize the correlation between the two by calculating the Pearson cor-
relation coefficient of the two scores. The coefficient we obtain is positive (𝑟 = 0.37)
and significant (𝑝 < 0.01). Some of the outliers in the data (Maine, Alaska, West
Virginia) are among the most rural states of the country. Others (Utah) are among
the states where we noted the lowest number of social media users per capita in the
previous section. Further analysis on these results could shed light on other factors
that might influence the precision of our social media estimates. Overall, however,
these results support the idea that our sentiment analysis model and the underlying
social media data are a close approximate of overall well-being in the United States.
The correlation we obtain is also similar to the results of Jaidka et al. (2020): using
state-of-the-art NLP models, they achieve a Pearson correlation of 𝑟 = 0.51 between
US county-level survey and social media happiness [68].
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2.3.3 Validating sentiment scores based on election polling

An alternative way of validating our social media sentiment score is by comparing it to
topical surveys or public opinion polls. In this case, social media sentiment aggregates
can be built off of topical content—or based on a subset of posts mentioning a specific
topic. Aggregate sentiment of topic restrictions can be interpreted as measures of
support for specific topics, instead of overall measures of well-being. An illustrative
pipeline of the process is provided in Fig. 2-8.

Figure 2-8: Conceptual framework for validating social media data with topical polls

In the context of the US presidential elections, hundreds of state-level polls are
conducted regarding citizen preferences for candidates. These polls are referenced and
aggregated by analytics websites like FiveThirtyEight7. FiveThirtyEight’s presiden-
tial election forecast, which is based on polling aggregation from all of the largest US
pollsters, has become something of a reference in the political world [30]. During the
2020 election year, the election forecast provided readers with national predictions,
as well as final polling average for every state of the country [122]. We collect final
polling averages, and compute a polling-based preference measure in state 𝑠, marked
𝑝𝑜𝑙𝑙𝑖𝑛𝑔𝑠, such that:

𝑝𝑜𝑙𝑙𝑖𝑛𝑔𝑠 = 𝑝𝑜𝑙𝑙𝑖𝑛𝑔(𝐵𝑖𝑑𝑒𝑛)𝑠 − 𝑝𝑜𝑙𝑙𝑖𝑛𝑔(𝑇𝑟𝑢𝑚𝑝)𝑠 (2.2)

where 𝑝𝑜𝑙𝑙𝑖𝑛𝑔(𝐵𝑖𝑑𝑒𝑛)𝑠 and 𝑝𝑜𝑙𝑙𝑖𝑛𝑔(𝑇𝑟𝑢𝑚𝑝)𝑠 are final polling number for Biden and
Trump, respectively. A positive polling score indicates that the state has more support
for Biden than Trump. A negative polling score, on the other hand, indicates that
Trump is polling above Biden in that state.

We construct an alternative measure of public preference by aggregating the
candidate-specific sentiment of Twitter users in every US state over a 3-month period

7https://fivethirtyeight.com/
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preceding the US elections (August 1st–October 31, 2020). Topical samples specific
to a candidate are constructed using string matching in the raw tweet text field: in
our sample period, 832,653 tweets (posted by 127,083 users) mention “Biden” and
2,935,239 tweets (posted by 236,754 users) mention “Trump”. The distribution of
users discussing Biden or Trump during our sample period—hereafter referred to as
“topical users”—by state is provided in Appendix Section A.4 (Fig. A-2). State-level
topical sentiment is constructed for both Biden-related and Trump-related tweets by
aggregating the sentiment scores, with 𝑠𝑒𝑛𝑡(𝐵𝑖𝑑𝑒𝑛)𝑠 (respectively, 𝑠𝑒𝑛𝑡(𝑇𝑟𝑢𝑚𝑝)𝑠) the
aggregated sentiment score of Biden (respectively, Trump) in state 𝑠. Again to avoid
oversampling of frequent posters, we use the two-step aggregating method described
in Section 2.2.3 and Equation 2.1. We finally compute a social media-based preference
measure in every state 𝑠, marked 𝑠𝑜𝑐𝑖𝑎𝑙𝑚𝑒𝑑𝑖𝑎𝑠, such that:

𝑠𝑜𝑐𝑖𝑎𝑙𝑚𝑒𝑑𝑖𝑎𝑠 = 𝑠𝑒𝑛𝑡(𝐵𝑖𝑑𝑒𝑛)𝑠 − 𝑠𝑒𝑛𝑡(𝑇𝑟𝑢𝑚𝑝)𝑠 (2.3)

A positive social media score indicates that Biden-related discourse is more posi-
tive than Trump in a given state. A negative social media score, on the other hand,
indicates that social media users in that state are more positive in their discussions
about Trump.

The two preference scores (𝑝𝑜𝑙𝑙𝑖𝑛𝑔𝑠 and 𝑠𝑜𝑐𝑖𝑎𝑙𝑚𝑒𝑑𝑖𝑎𝑠) are mapped on in Fig. 2-9.
To allow for more intuitive comparison, we standardize both measures and examine
the correlation by plotting the two scores in Fig. 2-10.

Figure 2-9: Mapping 2020 election preference scores

Survey-based 2020 election-preference score (left) and the social media-based 2020
election-preference score (right).
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Figure 2-10: Social media-based preference by survey-based preference

Scatter plot of the social media-based preference score by the survey-based preference
score. We find a strong correlation between the two (Pearson correlation coefficient
𝑟 = 0.72).

We obtain a strong positive correlation of 𝑟 = 0.72, and highly significant (𝑝 <

0.001). Some of the outliers we obtain are states with particularly low social media
coverage—Delaware, Wyoming, South Dakota, and Hawaii, for instance, all have fewer
than than 1000 topical users during our sample period. Other outliers we obtain are
similar to the ones we had in our previous validation study (Utah, West Virginia).
Again, poorer estimations in these states align with existing literature on the digital
divide between urban and rural areas—however, further research is required to fully
interpret these results.

To limit the impact of our noisy estimates on the overall results, we conduct our
regression analysis by weighting the observations by the number of topical users in
each state. The regression line is plotted in black Fig. 2-10, and full regression results
can be found in Appendix Section A.4. The main coefficient of interest, reported in
Table 2.5, is highly significant and the regression has an 𝑅2 value of 0.74.
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Baseline 1: Tweet Counts Baseline 2: Tweet Sentiment Main: Sentiment Index

Description Share of tweets on each can-
didate

Simple average of sentiment
scores

Two-step weighted average
of sentiment scores

Correl. coef. -0.06 0.42** 0.72***

Reg. coef. -0.23 0.73*** 1.01***

Reg. 𝑅2 0.02 0.50 0.74

Note: *p<0.01; **p<0.005; ***p<0.001

Table 2.5: Comparing social media-based preference methods

We use the Pearson coefficient for correlation. The regression model is run by weight-
ing each state by the number of topical users. Baseline 1 (a non-NLP method which
relies on counting topical tweets regardless of sentiment) is not correlated with the
survey results. Baseline 2 (simple aggregation of sentiment scores that therefore
overemphasizes frequent users) has lower correlation with survey results and lower
regression 𝑅2 than our main, two-step aggregation method.

Baseline levels of correlation can be provided by non-NLP methods of social media
preference analysis—based on topical tweet counts, for instance. We define a baseline
preference metric as the share of tweets in each state that are on Biden, among all
tweets that are on Biden or Trump. The correlation between this metric and the
survey-based preference is basically null (see the first column of Table 2.5, and see
Section A.4 for full results). The sentiment component that our scores provide is
therefore the main driver of the correlation between social media content and survey
results.

We can also test the relevance of our two-step aggregation method: we compute a
trivial sentiment aggregation on the same data (average of all tweet scores), which does
not account for user posting frequency, and calculate the correlation with the survey-
based preference scores. Results are also presented in Table 2.5 (second column).
Here, the correlation is positive and significant (𝑟 = 0.42, 𝑝 < 0.01), but lower than
what we obtain using the two-step aggregation method. Regressions using this more
trivial aggregation are presented in Appendix Section A.4: we obtain an 𝑅2 coefficient
of only 0.50, signaling that the two-step aggregation method reflects more accurately
the state of public opinion and political preferences.

2.4 Chapter conclusion

This chapter presents the social media data we collect, the methods of feature ex-
traction that we implement to analyse it, and makes the case for its use as a proxy
for public opinion and well-being. We harness a novel data set of Twitter and Weibo
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content, covering billions of posts globally, over several years. Our main method-
ological contribution is the NLP sentiment extraction algorithm, which relies on the
state-of-the-art Transformer model BERT to provide sentiment scores to our social
media posts in 50 languages. We aggregate the post-level sentiment scores to spatio-
temporal indices using a two-step method that better accounts for user representation.
Finally, we validate our approach by successfully correlating our social media-based
indices to traditional survey measures of well-being and preferences.

The sentiment score data set that we constructed provides, we hope, future re-
searchers with a relevant additional feature when using social media data. As part of
our collaboration with Harvard CGA, we intend to make the sentiment scores avail-
able to researchers using the Geotweet Archive, and we have shared a procedure to
access the data on the Dataverse [59]. In the following chapters, we lead the way in
using the data and sentiment index in a series of case-study applications.
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Chapter 3

Case Study: The global effect of
temperature on subjective well-being

This chapter is derived from a manuscript co-authored with Jianghao Wang, Juan
Palacios, Yichun Fan, Devika Kakkar, Nick Obradovich, and Siqi Zheng.

Abstract

Existing studies assessing the impact of climate change on well-being usually center
on wealth, data-rich countries. However, these countries may differ substantially in
how they cope with climate events. Here, we use a novel data set of 1.2 billion
social media posts from 157 countries, coupled with daily meteorological data, to
estimate how sentiment is affected by extreme temperatures. We rely on multilingual
NLP to compute expressed sentiment in 50 identifiable languages. Combining these
metrics in a fixed effect time-series regression model, we find that extreme temperature
produce substantial drops in expressed sentiment: temperatures above 35°C reduce
sentiment by 18.2% of a standard deviation (relative to moderate temperatures). The
trend holds in most countries across the world, despite strong heterogeneity in the
magnitude of the effect. Overall, our results corroborate the idea that that climate
change harms mental well-being. Assessing these psychological factors and well-being
costs is critical to properly adopting and targeting effective resiliency policies.
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3.1 Introduction

Continued global warming increases the pervasiveness, frequency, duration, and in-
tensity of extreme weather events, putting both earth systems and human societies
in jeopardy [67]. A wealth of evidence demonstrates that warmer temperatures due
to climate change have significant social impacts [22, 5]. Exposure to abnormally
warm conditions increases the mortality burdens [137, 8, 133], lowers economic growth
[20, 73], reduces agricultural productivity [95, 100], threatens food security [49, 60],
and increases domestic violence [32]. Together, these disruptions to health, eco-
nomics, and social stability may induce stress and anxiety, and cause damages to
mental well-being.

To encourage policy action mitigating the threat of climate change, it is necessary
to understand how it is subjectively perceived by people [39, 28, 123]. Though the
impacts of abnormal climatic conditions on mental health and psychology are accu-
mulating evidence [11, 29, 19], there remains limited quantitative evidence linking
extreme temperatures to human well-being.

Recent research, already cited in Chapter 2, has harnessed social media data and
NLP to quantify the effects of climate amenities on sentiment with unprecedented
spatial and temporal resolution. Zheng et al. (2019) quantified the well-being impacts
of air pollution in China [146]. Baylis (2020) and Wang, Obradovich, and Zheng
(2020) find that higher temperatures worsen expressed sentiment in the US and China,
respectively [9, 136]. For reasons of data availability, however, these studies have
focused mostly on wealthier, data-rich countries with high social media penetration
rates.

The global nature of climate change means that all countries are impacted by ris-
ing temperatures—not just developed nations. Numerous anthropological, cultural,
political, and socioeconomic factors may also lead different regions to have dissimilar
perceptions of climate change [64, 93, 55]. Generalizing estimates from data-rich soci-
eties to inform the potential impact of climate change globally is thus unsuitable. And
while the existing literature is unanimous in its assessment of the negative impact of
climate change on expressed sentiment, heterogeneities between countries on a global
level—which might inform projected well-being costs—have yet to be investigated.

Here, we conduct the first global analysis of the impact of ambient temperature
on expressed sentiment. We harness a sample of our rich geotagged social media
data set, composed of 1.2 billion Twitter and Weibo posts shared between January 1,
2019, and December 31, 2019, to investigate how daily maximum temperatures alter
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individual’s expressed sentiment at a regional, country, and global scale. Social media
posts, shared in 50 identifiable languages and in 156 different countries worldwide,
are assigned sentiment score based on the sentiment imputation model described in
Section 2.2.2. Sentiment scores are then aggregated to nearly 3000 daily location
indices, corresponding to the largest sub-national units (or administrative-1 regions)
of those countries. We couple this data with corresponding-level measures of daily
temperature, as well as other environmental variables, in a fixed-effect regression
estimator. The daily change of expressed sentiment in each locality is modeled as a
non-parametric function of temperature exposure, and we include other environmental
variables as flexible controls. Our data and model allow us to observe large spatial
and temporal variations in temperature, and we assess how responses differ across
different climate zones and countries.

3.2 Data

3.2.1 Temperature and environmental data

The temperature and environmental data are extracted from the NASA Modern-Era
Retrospective Analysis for Research and Applications, or MERRA-2, project [50].
Based on atmospheric reanalysis of satellite data, this model provides hourly grid-
level measures of a number of environmental variables. The native spatial resolution
of MERRA-2 is 0.5° latitude x 0.625° longitude (approximately equivalent to 50km x
50km), meaning that the entire globe is divided into 576 x 361 grid boxes.

The MERRA-2 model provides three hourly measurements of temperature: maxi-
mum temperature, minimum temperature, and mean temperature. We maintain this
distinction as we aggregate data to daily level: daily minimum temperature is defined
as the lowest of the hourly minimum temperatures in that grid unit, daily maximum
temperature is the highest of the hourly maximum temperature measures, and daily
mean temperature is the average of the hourly mean temperature measures. For the
purpose of this study, maximum temperature is most likely to reflect temperatures
during the day-time, and these are the temperatures individuals are most likely to be
exposed to. We therefore use the maximum daily temperature as our main measure
of temperature, and we include the difference between the daily maximum and min-
imum temperature (or temperature range) as a control. We run robustness checks
using minimum and maximum temperature as our main independent variable, to
similar results (see Appendix Section B.3.6).
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In addition, we collect a series of hourly environmental controls: precipitation,
humidity, cloud coverage, wind speed, and 𝑃𝑀2.5 air pollution (particulate matter
with an aerodynamic equivalent diameter of less than 2.5 𝜇𝑚). All are aggregated
to daily grid-level, either by averaging over the hourly measures (humidity, cloud
coverage, wind speed, 𝑃𝑀2.5 air pollution) or by summing them (precipitation).

Daily grid-level measurements are finally aggregated to our relevant geographic
unit of analysis (global administrative-1 regions) by averaging the values of the grid
boxes comprised in these regions. Overall, we obtain 930,033 daily regional me-
teorological measurements. Summary statistics of the administrative-1 level daily
environmental measures are provided in Table 3.1.

Table 3.1: Daily Environmental Data Summary Statistics

Variable Period Obs. Mean Std. Dev. Min. Max.
Max Temperature (in °C) January-December 2019 920033 21.80 10.29 -39.8 47.5
Temperature Range (in °C) January-December 2019 920033 6.59 3.40 0.2 25.5
Cloud Coverage (in %) January-December 2019 920033 0.53 0.29 0.0 1.0
Air Pollution (𝑃𝑀2.5, in 𝜇𝑔/𝑚3) January-December 2019 920033 23.15 25.85 0.3 1411.9
Wind Speed (in 𝑚/𝑠) January-December 2019 920033 5.25 2.22 0.6 30.8
Humidity (in 𝑔/𝑚3) January-December 2019 920033 10.24 5.26 0.1 23.6
Precipitation (in 𝑚𝑚) January-December 2019 920033 0.03 0.07 0.0 3.5

There is important global heterogeneity when it comes to temperature exposure.
Daily maximum temperatures range from almost -40°C (in the Russian region of
Tomsk on February 1, 2019) to 47.5°C (in Dhi-Qar, Irak, on August 27, 2019). Fig.
3-1 (top panel) plots the yearly average of the daily maximum temperature in each
administrative-1 region. Consistent with prior literature [4], we define extreme-warm
days as days where the maximum daily temperature is above 30°C, and Fig. 3-1 (bot-
tom panel) visualizes the annual number of “extreme-warm” days per administrative-1
region during our study period. While most of North America, Europe, and Asia wit-
ness fewer than 100 extreme-warm days a year, some parts of Africa experience over
300.
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Figure 3-1: Global temperature distribution (2019)

Average day-time temperature is calculated as the average of daily maximum tem-
peratures by region. The number of extreme-hot days is the number of days with
maximum temperatures over 30°C.

3.2.2 Social media data

The social media data we base this study on is a subset of the geolocated social
media data set that I present in Chapter 2. Only post from Twitter and Weibo
shared between January 1, 2019, and December 31, 2019 are included in the sample.
We exclude data from countries for which we have fewer that 100 daily observations
on average, and are left with 157 analysis countries (the complete list is provided
in Appendix Section B.2.1). Over 1.2 billion geotagged Twitter and Weibo posts
are included in the study period. Fig. 3-2 plots the number of social media posts
collected every day—while we usually obtain around 3.5 million posts every day,
occasional issues in the data harvesting process result in lack of data for short period
(part of June 2019, for instance).
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Figure 3-2: Number of social media posts collected by day (2019)

The data is usually composed of around 3.5 million daily social media posts. Occa-
sional periods where no data is collected are due to data harvesting issues.

Sentiment scores are imputed on every post using the NLP-based sentiment analy-
sis method described in Section 2.2.2, and aggregated to administrative-1 level using
the two-step aggregation mechanism formalized in Section 2.2.3. At that level of
analysis, we have 872,705 observations overall, each comprised of, on average, 1473
posts and 412 users. The daily regional sentiment index ranges from 0.0 to 1.0 (see
Table 3.2), although the bulk of the distribution is between sentiment scores of 0.5
and 0.75 (see Fig. 3-3).

Table 3.2: Social Media and Sentiment Data Summary Statistics

Variable Period Obs. Mean Std. Dev. Min. Max.
Number of Posts January-December 2019 872705 1473.00 7991.75 1.0 298326.0
Unweighted Sentiment Score January-December 2019 872705 0.62 0.09 0.0 1.0
Number of Users January-December 2019 872705 411.86 2122.59 1.0 65657.0
Weighted Sentiment Score (main) January-December 2019 872705 0.63 0.09 0.0 1.0
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Figure 3-3: Histogram of sentiment index values

The sentiment index is created by aggregating sentiment scores to daily, regional
values. The aggregation process is detailed in Section 2.2.3. 872,705 daily regional
sentiment index values are computed. The index ranges from 0.0 to 1.0, although
most of the scores are between 0.5 and 0.75 (10th percentile: 0.54; 90th percentile:
0.72).

Fig. 3-4 illustrates the geographic coverage of our social media data set. The
overall yearly number of social media posts in each region is provided in the top
panel, and ranges from fewer than 100 posts to over 50 million in the administrative-
1 regions of California (USA), England (UK), and Rio de Janeiro (Brazil). Our
data set largely covers all habitable continents, and while user distribution does not
entirely reflect population, most administrative-1 regions have at least 10,000 posts
overall during our study period.

The bottom panel of Fig. 3-4 plots the yearly sentiment score average for each
administrative-1 region globally. While most scores fall in a relatively narrow range
of 0.56–0.70, there is important global heterogeneity in sentiment scores with some
countries (like Brazil or Russia) displaying consistently lower sentiment scores than
others (like India). While this could be interpreted as inherent differences in popula-
tion happiness, we do not make this claim. Instead, different cultural and linguistic
norms might influence our NLP sentiment analysis algorithm in ways that are hard to
correct. Therefore, we prefer to leverage changes in sentiment within specific regions
following exposure to climate events, instead of between regions exposed to different
climate conditions. We standardize sentiment by administrative region and include
regional fixed effects in all of the models we run.
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Figure 3-4: Geographic distributions of the social media data

Only countries with over 100 daily social media posts are included in the analysis.
Overall average sentiment scores are calculated by averaging the daily sentiment index
in each region over the entire year. Sentiment index values are weighted by the
number of social media users in that region that day. For ease of visualization, scores
are winsorized at the 5th and 95th percentiles.

3.3 Econometric Modeling

The impact function of temperature on expressed sentiment is estimated by applying
a fixed effect time-series regression model to our social media and climatic data.
Equation 3.1 formalizes our econometric model.

𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑖𝑡 = 𝛼0 + 𝛼1𝑓(𝑇𝑚𝑎𝑥𝑖𝑡) + 𝛼2𝑋𝑖𝑡 + 𝑇𝑡 + 𝛾𝑖 + 𝜖𝑖𝑡 (3.1)

The dependent variable 𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑖𝑡 stands for our measure of sentiment at lo-
cation 𝑖 and on calendar date 𝑡, respectively. The independent variable of interest,
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𝑇𝑚𝑎𝑥𝑖𝑡, represents the daily maximum temperature of each location, measured in
°C (we also run robustness checks using the daily mean temperature 𝑇𝑚𝑒𝑎𝑛𝑖𝑡 and
the daily minimum temperature 𝑇𝑚𝑖𝑛𝑖𝑡; results are robust with both measures; see
Appendix Section B.3.6).

The function 𝑓 transforms continuous values of temperature into discrete 5°C
bins, and 𝛼1 is a set of coefficients associated with each one of those bins. In each
regression, one temperature bin is omitted and serves as the reference sentiment
measure (in the global results of Fig. 3-5, for instance, the reference temperature bin
is 15°C-20°C). Therefore, the 𝛼1 coefficients can be interpreted as the marginal effect
of a given temperature bin relative to the reference bin. This method allows for a
flexible, non-linear estimation of the relationship between temperature and expressed
sentiment.

𝑋𝑖𝑡 are environmental controls including temperature range, precipitation, wind
speed, cloud coverage, humidity, and 𝑃𝑀2.5 air pollution levels. Unobserved factors
specific to locations and calendar dates might affect sentiment in ways that correlate
with temperature and environmental measures. Different locations might have inher-
ent differences in sentiment levels linked to economic or cultural factors. National
holidays or seasonality might also alter expressed well-being. We account for these
spatial and temporal cofounders by including date (𝑇𝑡) and location (𝛾𝑖) fixed effect.
Finally, the main regression is run weighting location-days by the number of social
media users recorded within that location and on that day. Different sets of controls,
fixed effects, and weighting schemes are tested in robustness checks, and presented in
Appendix Section B.3.

3.4 Results

3.4.1 The global effect of temperature on expressed sentiment

The panel regression model presented in Section 3.3 is estimated on our entire data
set to assess the global effect of 5-degree temperature bins on expressed sentiment.
In Fig. 3-5, we report a non-linear relationship between daily maximum temperature
and the sentiment index. The 95% confidence interval (CI) for each bin is provided
in shaded blue around the bin’s estimate—highlighting that our results are strongly
significant. The figure also includes a histogram underneath the plot to visualize the
temperature distribution, and the 95th percentile is marked with a vertical dotted
red line.
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The relationship between temperature and sentiment resembles an inverse-U curve.
Sentiment increases when temperatures increases from cold to temperate and peaks
between 15°C and 20°C (we this temperature bin temperatures as our omitted refer-
ence bin). Subsequent increases in temperature are associated with sharp drops in
sentiment. Daily maximum temperatures of 35°C–40°C reduce global sentiment by
18.2% of a standard deviation (95% CI: 17.3%–19.1%).

The magnitude of the effect is similar to the results found by Baylis (2020) in
the United States, where extreme-warm temperatures are associated with sentiment
drops of 21% of a standard deviation [9]. As a measure of interpretation, in Appendix
Section B.3.3, we find in our data set that sentiment is on average 17.2% of a standard
deviation (95% CI: 16.9%–17.4%) lower on weekdays (Monday–Friday) than on week-
ends (Saturday and Sunday). The sentiment drop associated with temperatures over
35°C is therefore equivalent to 105% of the average weekend-to-weekday difference.
Similarly, Wang et al. (2020) find the sentiment drop associated with temperatures
over 35°C in China to be equivalent to over 89% of the average Sunday-to-Monday
sentiment difference [136].

Full regression results are provided in Table B.2 of Appendix Section B.3.1. Esti-
mates for our environmental controls are also provided, indicating that air pollution,
precipitation, and higher wind speed all significantly worsen sentiment as well.

3.4.2 Robustness by weighting scheme

In our main regression, daily-regional observations are weighted by the number of so-
cial media users in a given location on a given day. However, social media penetration
rates may differ greatly by region. Chapter 2—and more specifically Section 2.3.1—
highlights that while social media use is overall significantly correlated to population,
the digital divide still results in important disparities, especially between countries
worldwide. This may lead to our results being mostly driven by highly-connected,
data-rich nations (like the United States and China), as well as urban areas. To
address this, we test out four distinct weighting schemes: (1) weighting all regions
equally regardless of social media activity or population; (2) weighting by social me-
dia posts (instead of users); (3) weighting by social media users (our default); and
(4) weighting by regional population. Apart from the weighting scheme, the four
estimations are run with the same model specifications (see Equation 3.1). Results
are presented in Fig. 3-6, with full results provided in Appendix Section B.3.4.

We find that the results are mostly robust by weighting scheme. All four esti-
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Figure 3-5: The global effect of temperature on expressed sentiment

The temperature measure we use is daily maximum temperature, measured in 5-
degree bins. The regression model includes environmental controls (temperature
range, air pollution, wind speed, cloud coverage, humidity, and precipitation), and
location and date fixed effects. The temperature bin coefficients are plotted in blue,
along with their 95% CI (in light blue). The 15°C-20°C bin serves as the omitted tem-
perature bin, and the coefficients of the other bins are expressed as relative changes
(in percentages of a standard deviation) compared to the omitted bin. The bottom
histogram plots the temperature distribution in countries of our sample, weighted by
the number of social media users. The 95th percentile of temperature is marked with
a vertical dotted red line.

mations yield a similar inverse-U curve, with significant sentiment drops associated
to both high and low temperatures relative to the omitted 15°C-20°C bin. Unsur-
prisingly, weighting by social media users (in blue) and posts (in red) produce very
similar results. The unweighted estimate presents less variation and larger confidence
intervals—which are likely the result of increased noise due to the weight of very small
regions with scarce data in this specification. The population-weighted estimates are
similar to our main estimates in both extreme-low and extreme-high temperatures;
however, sentiment peaks in the 25°C–30°C bin, instead of the omitted reference bin
of 15°C–20°C. While extreme temperatures are consistently associated with sentiment
drops, results of the population-weighted estimate indicate that there exists a wide
range of temperatures that might be regionally considered as “most comfortable”. In
country-level regressions that we present in Section 3.4.6, we account for this by al-
lowing a wide range of temperature bins (any of the four bins between 10°C and 30°C)

53



to serve as the country’s reference bin.
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Figure 3-6: Robustness by weighting scheme

Equation 3.1 is estimated using four distinct weighting schemes. In purple, observa-
tions are unweighted. In red, they are weighted by the number of social media posts.
In blue, they are weighted by the number of social media users (as in the main results
of Fig. 3-5). Finally, in green, they are weighted by regional population, regardless
of social media usage.

3.4.3 Individual-level results

We recognize that the relationship between temperature and sentiment could be at-
tributed to compositional changes in the user pool: for instance, individuals more
sensitive to extreme temperatures post on social media more frequently on days when
the weather is exceptionally cold or warm. We address this potential endogeneity is-
sue by estimating the model restricted to a random sample of 100,000 frequent social
media users1 and by including user fixed effects. Results are presented in Figure 3-7
(with full results provided in Appendix Section B.3.2).

1Frequent users are selected by randomly sampling users from the raw post-level data. Therefore,
the probability of a given user being selected is proportional to the overall number of posts from
that user.
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Figure 3-7: Individual-level effect of temperature on expressed sentiment

The model specifications are the same as those of Fig. 3-5, with additional user fixed
effects. The sample is restricted to a sample of 100,000 frequent social media users.

We find similar patterns, with sentiment peaking for mild temperatures. Tempera-
tures below -5°C are associated with significant sentiment drops of 3.7% of a standard
deviation (95% CI: 1.1%–6.3%), and temperatures above 35°C result in an (insignif-
icant) sentiment drop of 1.9% of a standard deviation (95% CI: 0.0%–3.8%). The
magnitudes are smaller than for the original sample, consistent with prior findings
using user-level fixed effects. Baylis (2020), for instance, finds a high-temperature
sentiment drop of 10% with user fixed-effects, down from 21% for the overall sample
[9]. This could support the hypothesis of some compositional change during extreme
temperatures, but could also be the result of increased noise due to the constraining
user-level fixed effects.

3.4.4 Climate zone heterogeneous effects

We go on to investigate how the effects of extreme temperatures on sentiment vary
based on a region’s climate characteristics. We sort our nearly 3000 regions into
climate zones based on a generalization of the Köppen-Geiger map [72]. Each region
is assigned a main climate feature which can take one of six values: equatorial, arid,
warm, snow, or polar. We estimate our econometric model in each global climate
zone separately, and present the results in Fig. 3-8.

Here, we find general trends consistent with our global results, but regional hetero-
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geneities start to emerge in the magnitude of sentiment damage. All regions display
a most-comfortable temperature of 15°C–20°C (arid, warm, snow, polar) or 25°C–
30°C (equatorial). In colder temperature ranges, sentiment drops are steeper in Arid,
Equatorial, and Warm climate zones. Snow zones, on the other hand, show only lim-
ited sentiment declines even as temperatures reach -15°C. High temperatures above
25°C are associated with significant sentiment drops in all non-polar climate zones,
but the decrease is more gradual in Arid regions where these high temperatures are
more common. These results suggest reference-based utility patterns in which the
emotional impacts of temperature are contingent on a region’s usual temperature
range.
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Figure 3-8: Climate zone-specific effect of temperature on expressed sentiment

The effect of maximum daily temperature on expressed sentiment (Equation 3.1) is
estimated separately out each different climate zone: (a) Equatorial climate zone;
(b) Arid climate zone; (c) Warm climate zone; (d) Snow climate zone; and (e) Polar
climate zone. Density plots under the coefficient plots display the distribution of
temperatures for each climate zone. The mapping of these climate zones is provided
in the bottom right-hand corner.
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3.4.5 Development stage heterogeneous effects

Subjective perception of temperature stress may differ largely between regions at
different development stages. Disparities might be due to availability of mitigation
and adaptation technologies, such as heating or air conditioning, to infrastructure
resiliency, or to expected economic losses resulting from climate events. In a seminal
paper, Mendelsohn, Dinar, and Williams (2006) argue that poor countries will suffer
the most from climate change damages [86].

To shed light on these potential disparities, we investigate heterogeneity by re-
gional wealth. Using the grid-level GDP measures developed by Kummu et al. (2018)
[75], we compute an administrative-1 regional GDP measure. Regions are then split
into “High GDP” and “Medium-to-Low GDP”2, and independently estimate the effect
of temperature on sentiment in both sets of regions.

The results are provided in Fig. 3-9. We obtain inverse-U-shaped curves in both
High and Medium-to-Low GDP regions, with sentiment peaking around 15°C-20°C in
both zones. However, sentiment drops associated with high and low temperatures are
significantly larger in Medium-to-Low GDP regions. Temperatures below 0°C reduce
sentiment by over 35% of a standard deviation (95% CI: 33.2%–36.0%) in less wealthy
regions—the drop is of only 8.2% of a standard deviation (95% CI: 6.1%–10.2%) in
richer regions. Similarly, temperatures above 35°C are associated with 25.3% (95%
CI: 24.1%–26.5%) and 5.2% (95% CI: 2.9%–7.4%) sentiment standard-deviation drops
in low GDP and high GDP regions, respectively.

These results are consistent with prior literature on wealth-dependent adaptation
mechanisms. Wang et al. (2020) find that poorer cities display sharper sentiment
drops under cold temperatures than rich cities, and that this could be explained in
part by winter-heating ownership. They also find positive—if insignificant—effects of
AC unit ownership on sentiment during high temperature days [136].

2We split administrative-1 regions based on a threshold value of $40,000 of GDP per capita.
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Figure 3-9: Development zone-specific effect of temperature on sentiment

The effect of maximum daily temperature on expressed sentiment (Equation 3.1) is es-
timated separately in high GDP-per-capita regions (above $40,000, in green) and low
GDP-per-capita regions (below $40,000, in red). The mapping of the administrative-1
regions by GDP level is provided on the left.

3.4.6 Heterogeneous effect across countries

Analyses conducted in the previous sections have highlighted that both climate char-
acteristics and development stage play a role in determining a region’s temperature
damage function. These factors point to expected differences in country-level dam-
age functions. To assess country-level heterogeneity, the baseline regression function
(defined in Section 3.3) is estimated separately in the 157 countries where our data
coverage allowed for modeling.

Fig. 3-10 presents the damage functions we obtain in eight example countries—
covering all inhabited continents and a wide range of climatic and economic char-
acteristics. As in previous result visualizations, sentiment levels are expressed as
marginal changes relative to an omitted reference temperature bin. Here, and the
reference bin is chosen in each country as the bin associated with the highest value
of sentiment, within a range of moderate temperatures3. In the United States, for
instance, the reference temperature bin is 20°C–25°C; in Argentina, maximum senti-
ment is achieved under temperatures of 15°C–20°C and in Great Britain, the reference
bin is 10°C–15°C. South Africa presents the highest reference bin, with temperatures
between 25°C and 30°C considered most comfortable.

General trends in the damage curves are consistent with the inverse-U shape of
global results: all countries present negative sentiment impacts associated with their
highest temperature bins. However, the value of the damage varies considerable. In
the United Kingdom, temperatures in the 25°C–30°C bin are already associated to

3We define moderate temperatures as comprised between 10°C and 30°C. Therefore, the reference
bin is either the 10°C–15°C bin, the 15°C–20°C bin, the 20°C–25°C bin, or the 25°C–30°C bin.
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Figure 3-10: Country-specific effect of temperature on expressed sentiment
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sentiment drops of 28.8% of a standard deviation (95% CI: 23.3%–34.3%). In most of
the other countries however, sharp drops in sentiment: temperatures above 35°C in
sentiment drops of 18.5% of a standard deviation in Brazil (95% CI: 17.3%–19.8%),
and of 12.7% of a standard deviation in Australia (95% CI: 10.5%–14.9%). Country-
specific temperature histograms are provided in the lower section of the plot, and
may provide a first intuition to the heterogeneous results we observe: while the 95th
percentile of temperature is equal to only 21.5°C in the United Kingdom, its value is
above 34°C in Australia.

Country-level high-temperature damage coefficients are constructed by estimating
the value of the coefficient associated with the temperature bin of the 95th temper-
ature percentile. A negative damage coefficient implies that relatively high tempera-
tures in that country are associated with a sentiment drop, while a positive damage
coefficient indicates higher sentiment under relatively hotter temperatures. In Japan,
for instance, the 95th temperature percentile is 30.4°C, and damage coefficient—the
sentiment change associated with the 30°C–35°C bin—is -8% of a standard deviation.
Under relatively hot temperatures, most countries display negative sentiment reac-
tions: 139 out of the 157 countries of our analysis have negative damage coefficients.
The bulk of the countries have a damage coefficient between -25% of a standard de-
viation (25th percentile) and -8% of a standard deviation (75th percentile). Global
heterogeneity of these coefficients is summarized in Fig. 3-11. The upper panel plots
the map of the damage coefficient value by country, and the lower panel plots the
damage coefficient values for a selection of countries, along with the 95% CI to inform
on statistical significance of the results.
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Figure 3-11: Country-specific sentiment change at 95th temperature percentile

Top panel: Mapping the effect size across countries. The effect size is defined by
sentiment change (in % of a SD) between the country’s reference bin and their 95th
percentile of temperature. Bottom panel: Comparing the sentiment changes of a
select countries. The dots represent the point estimates, the lines are the 95% CI.

3.5 Chapter conclusion

To the best of our knowledge, this study represents the largest and broadest-scale
investigation of potential subjective well-being impacts associated with extreme am-
bient temperatures. We observe that high temperatures substantially depress ex-
pressed sentiment on social media—days above 35°C are associated with a drop of
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18.2% of a standard deviation compared with pleasant temperatures. The trends
hold in most countries across the world, although the magnitude of the sentiment
drop varies significantly.

The trends observed in the main findings are consistent with previous studies,
especially results obtained in data-rich countries such as the United States or China
[9, 136]. However, our use of a novel social media data set—which provides abundant
observations at a global level—and of multilingual sentiment analysis models allows
us to generalize these findings to country-specific damages, and to highlight important
heterogeneity between regions and nations.

Some assumptions and limitations should be acknowledged. First, only 2019 data
feeds into our analysis. This allows us to include more countries in our analysis—since
data quality decreases with earlier years of data—but also prohibits us from studying
longer term trends. Therefore, we are unable to properly investigate adaptation mech-
anisms that alter reactions to extreme temperatures, and we are unable to confidently
make future projections of climate damages. Subsequent studies could incorporate
additional years of data into the analysis, and assess how damage coefficients change
over time.

Second, our sentiment measure is derived from individuals who post on social
media. Although this fraction represents a substantial portion of global residents,
it is not necessarily representative of overall population (see Section 1.1.2.2 for more
information about the demographic characteristics of social media users). Our results
might reflect this sample selection bias. Elders and children, who are less likely to
use social media, are also the most vulnerable to extreme temperatures—potentially
leading us to underestimate the overall negative effect of adverse temperatures on
individual sentiment. Here, further research could look into correcting selection biases
in social media data—by combining it with more traditional survey data, for instance.

Finally, given the range of sentiment drops in different countries associated with
the 95th percentile of temperature, in depth heterogeneity analysis is required. Cli-
mate and development factors might be at play, and we explore these two potential
sources of variation in Sections 3.4.4 and 3.4.5. However, we would also expect more
unconventional attributes—such as belief in climate change or anticipated future cli-
mate damages—to affect sentiment reaction to extreme temperatures.

In summary, this study offers a comprehensive characterization of extreme-temperature
impacts on expressed sentiment. Results are subject to a number of implications and
considerations. We highlight a global emotional toll to climate change. This addi-
tional well-being cost is important for policymakers to account for when considering
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resource allocation and policy alternatives on the topic. More broadly, given the grow-
ing use of social media worldwide, monitoring communication on these platforms can
provide researchers and policymakers with insight into levels of public support or dis-
satisfaction. In this context, studies such as this one should incentivize governments
all over the world to act on climate change.
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Chapter 4

Case Study: Temperature stress
perception and location attractiveness

This chapter is derived from a manuscript co-authored with Fátima Trindade Neves,
Mauro F. Pereira, Juan Palacios, Miguel de Castro Neto, and Siqi Zheng.

Abstract

As anthropogenic climate change disrupts cities worldwide, increasingly severe wea-
ther events and temperature discomfort pose potential harm to location attractive-
ness, and therefore to real estate value. However, the extent to which climate events
affect markets depends highly on the subjective perception of these events by local
inhabitants. This study proposes a model examining the impacts of temperature
stress on real estate value which incorporates subjective measures of these climate
events, in the form of a social media-based sentiment index. We run an empirical
study in the largest metropolitan areas of Portugal, and find that temperature dis-
comfort has a significant, negative impact on housing prices. Different regions are
impacted at different scales though, and municipalities with the strongest subjective
sentiment reactions to temperature discomfort also witness the sharpest drops in real
estate value. These result reinforce the importance of including subjective percep-
tions when assessing the impacts of climate change, and the relevance of social media
data to do so.
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4.1 Introduction

The frequency and intensity of climate events have soared in recent years, and ex-
treme temperature are increasingly affecting cities across the world. Between 2000
and 2016, the number of people subject to heatwaves increased by 125 million world-
wide, and it is projected to reach over 1.6 billion people by 2050 [129]. This growing
exposure is introducing substantial burdens to societies, and has been linked to in-
creased health risks and criminality, as well as lower food security, water supply,
and economic growth [22]. Understanding the full array of societal costs, as well
as the effectiveness of interventions, is essential for policymakers to develop effective
mitigation and adaptation strategies that cope with these events.

Real estate markets are key when it comes to assessing the economic impacts
of weather events on cities. The long-term nature of real estate assets means these
properties are exposed to the long-term changes in the distribution of temperature.
Real estate asset value is also closely tied with household financial stability: in the
European Union, for instance, 75% of the population live in cities [142] and 70%
are homeowners [45]1. Temperature discomfort is already challenging real estate
markets, as urban development and planning struggle to mitigate the impacts on well-
being and infrastructure [2]. Costly adaptation measures incur a burden on urban
households: extreme temperatures are have increased dependence on residential air
conditioning units [8], increased residential energy consumption [37], and increased
electricity demand [36]2. These additional costs, coupled with subjective costs to well-
being, may make locations less desirable altogether, depreciation real estate value in
the area.

This chapter investigates the impact of temperature stress on real estate markets
in urban settings. We contribute to the literature by accounting for heterogeneous
perceptions of these events: we explore the role of subjective measures of temperature
discomfort in explaining observed price drops on the real estate market. Using a rich
data set of social media posts combined with NLP methods, we estimate the damage
to extreme-hot and extreme-cold weather on expressed sentiment locally3 and use it
as a factor of price changes associated with temperature stress.

1In the United States, over 80% of the population is urban [130] and 65% owns property [18].
2Lower income individuals are at risk of being excluded from these adaptation mechanisms: Kahn

(2016) estimates that it would cost at least $120 per year for poorer households to operate an AC
unit [70].

3Social media expressed sentiment indices have been increasingly used by computer and social
scientists as indicator of expressed well-being, and validated with traditional survey measures of
happiness [68]
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We conduct our empirical study in the context of Portugal, one of the most vul-
nerable European countries with regard to extreme heat in particular, and climate
change in general [44]. One hundred and thirty heatwaves were detected in the coun-
try between 1981 and 2010, and the frequency is expected to increase further by
the end of the 21st century [103]. High temperatures are specially detrimental in
metropolitan areas: a July 2006 heatwave resulted in significant excess mortality
in Porto, for instance [92]. Exposure to extreme weather—as well as flooding and
wildfires—already has adverse effects on the economy, health and well-being of the
country’s citizens [101]. Our unique, multi-layer data set provides novel estimates of
the impact of temperature stress on the four largest urban areas in Portugal, covering
around 50% of the population and 25% of the housing units of the country: Greater
Lisbon, Greater Porto, Coimbra, and Braga4.

The remainder of this chapter is organized as follows. Section 4.2 provides an
overview of the literature examining the impacts of weather events on real estate
value and introduces the role of subjective well-being in shaping price discounts in
housing markets. Section 4.3 introduces the data that we use in our analyses. In
Sections 4.4 and 4.5, we describe the methodology and results of our three empirical
analyses: the direct impact of temperature discomfort on real estate value (Section
4.5.1), the direct impact of temperature discomfort on well-being (Section 4.5.2), and
the integrated model combining the effects of sentiment damages and weather events
on real estate value (Section 4.5.3). In the last section (Section 4.6), we discuss our
results and conclude.

4.2 Literature Review: The impact of temperature

stress on real estate value and well-being

To understand the effect of heterogeneous subjective damages of temperature stress on
real estate prices and guide our empirical investigation, we build a conceptual model
of the housing market in Fig. 4-1. Extreme temperature events have a direct impact
on location value (arrow 1). Temperature stress also has an impact on well-being:
however, households can differ in their perception of temperature stress—leading to
heterogeneous well-being damages across different municipalities (arrow 2). These
damages capture the direct emotional impact of temperature stress on individuals
as well as the costs for associated behavioral change triggered by temperature stress

4In Portugal, only Greater Lisbon and Greater Porto are qualified as metropolitan areas. Coimbra
and Braga are next largest municipalities.
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(e.g., not leaving the house to avoid extreme heat), and can be higher in municipal-
ities with poorer mitigation options5. Given these disparities, the direct impact of
temperature stress on the real estate market can be seen as a coarse approximation.
In our integrated model (arrow 3), the impact of temperature stress on location value
is moderated by the subjective perception these events by the inhabitants of that
municipality.

Figure 4-1: Conceptual Framework

Temperature stress can be modeled as having a direct impact on location value (arrow
1). Temperature stress also has a heterogeneous, localized effect on expressed well-
being, or sentiment (arrow 2). In our integrated model, the effect of temperature
stress on location value is moderated by sentiment damages (arrow 3).

Prior research has documented the case of temperature as an urban amenity, of-
ten finding a negative link between temperature stress and real estate value (arrow
1 of Fig. 4-1). An overview of the literature is provided in Appendix Section C.2
(Table C.1). In the United States, temperatures have been found to influence both
wages and house prices [113, 14, 35]. Fan, Klaiber, and Fisher-Vanden (2016) find
that extreme temperature drives residential sorting, with household willingness to pay
(WTP) increasing by $144 and $91 to avoid an additional extreme-hot and extreme-
cold day, respectively6 [46]. Still in the context of the United States, Albouy et al.

5A higher sentiment damage can indicate, for instance, that a municipality is less prepared to
handle extreme temperature: for example, the municipality has poor housing infrastructure (no
central heating or air conditioning) or lacks green areas to mitigate heat island effects [125].

6Estimates are even more important for college-educated households, with are slightly lower for
the overall population, with WTP decreases of $203 per warm day and $326 per cold day.
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(2016) examine American households’ WTP to live in different areas depending on
climate characteristics and find that Americans have a preferred temperature of 65°F
(equivalent to 18°C), and that extreme-high temperatures have a stronger negative
impact on WTP than extreme-cold temperatures [4]. Smaller scale studies in Euro-
pean countries—such as Italy, Germany, and Great Britain—have also yielded similar
results [81, 111, 85].

The mechanism by which climate or weather events impacts real estate prices
depends highly on information availability and interpretation. This is consistent with
the idea that climate risks are often inappropriately reflected in asset pricing: Hong,
Li, and Xu (2019), for instance, show that stock markets are ineffective at discounting
drought-related risk [63]. Baldauf, Garlappi, and Yannelis (2020) claim that local
subjective perception of climate change is a key driver in the poor forecasting of
climate risks on assets. They find that increased climate risks impact real estate prices
only to the extent that buyers believe in climate change and expect future climate
events to have a negative effect on their well-being. Their hedonic model estimates
that a one standard-deviation increase in the share of climate change believers is
associated with a 7% decrease in the prices of houses projected to be affected by
inundation [7].

Therefore, real estate value discounts due to temperature discomfort ought to de-
pend on the subjective perception of these events by local inhabitants. Prior literature
has attempted to quantify these subjective impacts, paying a particular focus to the
effect of climate events on expressed well-being, or happiness (arrow 2 of Fig. 4-1).
Studies have traditionally relied on surveys to measure the subjective responses of
individuals to weather or climate events. Rehdanz and Madison (2005), for instance,
evaluate the impact of temperature and precipitation on self-reported levels of hap-
piness in 67 countries, as measured by the “World Database of Happiness” survey
[110]. More recently, researchers have looked to social media as a valuable resource
in understanding public perception and behavior of climate events. Its spatial and
temporal granularity largely exceeds that of survey data, meaning the derived in-
sights are localized and relevant for real estate studies. Since social media platforms
are used globally, results can be compared between countries with a large degree of
consistency (see Section 1.1.2).

Measures of expressed well-being are extracted from social media text using senti-
ment analysis methods of NLP7. Based on textual analysis of social media data from

7These can range from dictionary-based approaches, like LIWC [106] or Hedonometer [40], to
more complex algorithms like the one use here (described in Section 4.3.3).
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Twitter in the United States, Baylis (2020) documents a relationship between temper-
ature and sentiment in the form of an “upside-down U shape”: sentiment initially rises
with temperature, plateaus around 20°C–25°C, then decreases sharply. Temperatures
above 40°C are associated with a drop of up to 20% of a standard deviation compared
to days with 20°C–25°C temperature [9]. Using data from Weibo, Wang, Obradovich,
and Zheng (2020) also finds that extreme temperatures have a negative impact on
expressed sentiment in China: temperatures above 35°C (compared to 20°C–25°C)
reduce sentiment by over 89% of what they find as the typical Sunday-to-Monday
difference. They also find important heterogeneity in the impact of extreme tem-
peratures (especially extreme-heat)—based on genders and access to air conditioning
units, for instance [136]. Finally, in Chapter 3 of this thesis, we conduct a global
study that compares the damages of extreme temperatures on climate events across
the world. While most countries exhibit significant drops in expressed well-being
under extreme temperatures, perception of temperature stress also differs based on
climate zone and income level.

Our integrated model (arrow 3 of Fig. 4-1) describes how heterogeneity in these
well-being damages may impact urban real estate market value. Similarly to climate,
happiness is an urban amenity that can be offset by real estate value or wages [51].
Therefore, while the hedonic preference for moderate temperature ranges expressed
by urban populations guarantee that temperature stress commands a price discount
everywhere, this ought to especially be the case in regions with poor adaptation or
mitigation mechanisms. Sentiment, which captures subjective perception of temper-
ature amenities, can serve as a proxy for adaptation capacity. Localized sentiment
damage measures can moderate the impact of temperature stress on real estate value,
or serve to identify regions where real estate value is especially at risk from changing
climate.

4.3 Data

This section describes the data sources of each variable included in our analysis, and
the construction of the different indices to measure temperature stress, and monitor
real estate and sentiment changes in the Portuguese municipalities that are part of
our sample. We construct a unique data set combining three layers of geocoded
information: weather data, real estate data, and social media-based sentiment data.
We also include a rich set of municipality-level characteristics as controls for our
analyses to ensure that our estimates are not driven by differences in observable
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attributes. Table 4.1 contains the summary statistics of the different variables of the
analysis.

Table 4.1: Data Summary Statistics

Variable Period Obs Mean SD Min Max
Panel A: Daily Weather Data
Maximum Temperature (in °C) 2015-2019 537884 19.36 6.75 1.4 42.8
High-Temperature Day (above 30°C, dummy) 2015-2019 537884 0.08 - - -
Low-Temperature Day (below 10°C, dummy) 2015-2019 537884 0.06 - - -
Air Pollution (𝑃𝑀2.5, in 𝑚𝑢𝑔/𝑚3) 2015-2019 537884 18.46 43.69 1.2 4138.9
Precipitation (in 𝑚𝑚) 2015-2019 537884 0.02 0.06 0.0 1.3
Humidity (in 𝑔/𝑚3) 2015-2019 537884 64.11 1.31 60.1 68.7
Panel B: Yearly-Aggregated Weather Data
Average Daily Humidity (in 𝑔/𝑚3) 2015-2019 1540 64.11 0.39 63.3 65.3
Annual Precipitation (in 𝑚𝑚) 2015-2019 1540 8.45 3.84 0.1 18.0
Annual Air Pollution (𝑃𝑀2.5, in 𝜇𝑔/𝑚3) 2015-2019 1540 6445.92 2591.61 179.4 16017.1
Average Daily Maximum Temperature (in °C) 2015-2019 1540 19.39 1.61 16.0 26.6
Number of High-Temperature Days (above 30°C) 2015-2019 1540 27.40 23.59 0.0 100.0
Number of Low-Temperature Days (below 10°C) 2015-2019 1540 20.76 24.97 0.0 118.0
Average Winter Temperature (in °C) 2015-2019 1540 13.05 2.14 8.1 17.9
Average Summer Temperature (in °C) 2015-2019 1540 26.36 2.91 20.6 33.0
Summer Discomfort Index 2015-2019 1540 5.56 2.91 0.0 12.4
Winter Discomfort Index 2015-2019 1540 4.31 2.11 0.0 8.9
Temperature Discomfort Index 2015-2019 1540 7.31 2.99 0.0 12.8
Panel C: Real Estate Data
Total Number of Dwellings Sold 2015-2019 141 2839.03 2770.74 62.0 14179.0
Average Price per Square Meter (in Euros) 2015-2019 141 1171.62 521.56 595.1 3772.0
Mean Absorption Time (in months) 2015-2019 114 7.91 2.64 4.2 15.8
Panel D: Social Media Data
Number of posts 2015-2019 228070 34.66 147.57 1.0 5498.0
Sentiment Score 2015-2019 315784 0.57 0.14 0.0 1.0
Panel E: Municipality Characteristics
Population Time-invariant 219 160964.29 104007.19 19148.0 544851.0
Share of Green Areas (in 2015) Time-invariant 219 10.52 7.95 0.0 31.9
Share of Adults with Higher Education Time-invariant 219 17.78 6.25 9.1 33.6
Airport (dummy) Time-invariant 219 0.22 - - -
Port (dummy) Time-invariant 219 0.29 - - -
Beach (dummy) Time-invariant 219 0.78 - - -
Median Income (in 2015) Time-invariant 219 1110.82 230.48 856.3 1775.9

4.3.1 Weather data

Similarly as in Chapter 3, the weather data is retrieved from the NASA MERRA-
2 project [50] (see Section 3.2.1 for more details). We construct daily aggregates
for each municipality from the raw grid-level and hourly MERRA-2 data8. Panel A
in Table 4.1 includes the Summary statistics of these variables. Municipality-level
daily temperatures range from 1.4°C to 42.8°C, and the 5th and 95th percentiles of
temperature are reached at 9°C and 31°C, respectively. The sample period includes
472 days with temperatures above 30°C (which we define as warm days) and 513 days

8Hourly humidity is averaged to daily level. Precipitation and 𝑃𝑀2.5 levels are summed. We
construct three measures of temperature: maximum, minimum, and mean. Maximum tempera-
ture, however, is most likely to reflect the day-time temperature that people actually interact with.
Therefore, we use maximum temperature as our main daily temperature measure.
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with maximum daily temperatures below 10°C (which we define as cold days)9.
For our real estate analysis, we build annual measures of temperature stress from

the daily data. Panel B in Table 4.1 describes the distribution of the annual measures
of temperature stress in Portugal during the sample period. We compute annual aver-
ages of humidity, and aggregate measures of precipitation and air pollution. Fig. 4-2
illustrates the average annual number of warm days by municipality (with tempera-
tures above 30°C, left), and the average annual number of cold days by municipality
(with maximum temperatures below 10°C, right). Yearly counts of warm days range
from fewer than 5 in some municipalities of Leiria, to 100 in the municipality of Serpa
during the year 2017. Most municipalities in the region of Faro are never exposed to
cold temperatures, while the municipality of Bragança has over 90 cold days per year
on average.

Figure 4-2: Weather data in Portugal

Left, the number of annual days with maximum temperatures above 30°C. Right,
the number of annual days with maximum temperatures below 10°C. Numbers are
averaged over the five years of our analysis (2015–2019).

9These definitions are similar to those used by Albouy et al. (2016) in a USA setting, where
temperature is split into four bins with breakpoints at 45°F (7°C), 65°F (18°C), and 80°F (27°C) [4].
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In addition, we construct yearly measures of summer and winter temperatures,
by averaging temperature in summer-months (June to August) and winter-months
(December to February), respectively. Summer temperatures range from 20.6°C to
33°C in the country, while winter temperatures are comprised between 8.1°C and
17.9°C. These ranges highlight substantial heterogeneity within the country in terms
of exposure to extreme temperatures.

Building on the temperature discomfort index proposed by Zheng, Fu, and Liu
(2009) [144], and used in prior literature on the impact of extreme temperatures on
real estate value [145], we define season-specific “summer discomfort” and “winter
discomfort” indices. The summer discomfort index (𝑆𝐷𝐼𝑖𝑡) quantifies how warm a
given municipality’s summer is compared to the municipality with the coolest sum-
mer in the country that year. Therefore, a municipality with a summer discomfort
index value of 2 denotes that the average summer temperature in that municipality
that year were 2°C above the the average summer temperature in the municipality
with the lowest average summer temperature. Similarly, the winter discomfort index
(𝑊𝐷𝐼𝑖𝑡) describes how cold their winter is compared to the municipality with the
most temperate winter in the country that year. Season discomfort indices take a
high values when the municipalities have especially harsh summers (for 𝑆𝐷𝐼𝑖𝑡) or
winters (for 𝑊𝐷𝐼𝑖𝑡). These municipalities make for more unpleasant places to live
during those seasons.

More formally:

𝑆𝐷𝐼𝑖𝑡 =
√︀

(𝑠𝑢𝑚𝑚𝑒𝑟𝑇𝑖𝑡 −𝑚𝑖𝑛𝑖(𝑠𝑢𝑚𝑚𝑒𝑟𝑇𝑖𝑡))2 (4.1)

𝑊𝐷𝐼𝑖𝑡 =
√︀
(𝑤𝑖𝑛𝑡𝑒𝑟𝑇𝑖𝑡 −𝑚𝑎𝑥𝑖(𝑤𝑖𝑛𝑡𝑒𝑟𝑇𝑖𝑡))2 (4.2)

where 𝑠𝑢𝑚𝑚𝑒𝑟𝑇𝑖𝑡 (respectively, 𝑤𝑖𝑛𝑡𝑒𝑟𝑇𝑖𝑡) is the mean temperatures in the summer
(respectively, winter) of municipality 𝑖 in year 𝑡.

We also compute an “overall temperature discomfort index” (𝐷𝐼𝑖𝑡, at location 𝑖

and in year 𝑡), defined by Zheng, Fu, and Liu (2009) [144], which combines the two
seasonal indices, such that:

𝐷𝐼𝑖𝑡 =
√︀
(𝑤𝑖𝑛𝑡𝑒𝑟𝑇𝑖𝑡 −𝑚𝑎𝑥𝑖(𝑤𝑖𝑛𝑡𝑒𝑟𝑇𝑖𝑡))2 + (𝑠𝑢𝑚𝑚𝑒𝑟𝑇𝑖𝑡 −𝑚𝑖𝑛𝑖(𝑠𝑢𝑚𝑚𝑒𝑟𝑇𝑖𝑡))2

(4.3)
This overall temperature discomfort index accounts for municipality-level dis-

comforts due to relatively-warm summers and relatively-cold winters. High levels
of overall temperature discomfort mean harsher seasonal temperatures, and denotes
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a municipality as a less desirable place to live throughout the year.
Distributions of the summer and winter discomfort indices are provided in Fig.

4-3 (left). Consistent with season temperature ranges, the summer discomfort in-
dex presents more variation between different municipalities. A large part of the
municipalities is concentrated around index values of 4 to 8, indicating summer tem-
peratures 4°C–8°C higher than the coolest summer temperatures in the country that
year. The distribution of the winter discomfort index is concentrated around several
distinct peaks, highlighting different winter regimes in different parts of the country.
The distribution of the overall temperature discomfort index is provided on the right-
hand side panel of Fig. 4-3. A standard deviation change in the overall discomfort
index is equivalent to a value change of 3—which represents a significant change in
environmental conditions for average seasonal temperatures.

Figure 4-3: Distribution of temperature discomfort indices

Left, the distributions of the summer and winter discomfort indices, calculated based
on Equations 4.1 and 4.2, respectively. Right, the distribution of the overall temper-
ature discomfort index, calculated based on Equation 4.3.

4.3.2 Real estate data

Several characteristics of Portugal’s real estate market make it a specifically relevant
country for our analysis. The population of Portugal is highly urbanized: 61% of
the population in Portugal live in cities [23], and around 50% of the population is
concentrated in the four urban areas of our analysis. Portugal is among the European
countries with the highest housing stock per 1,000 citizens [99]10.

10National policy-making has encouraged the rehabilitation of the housing stock, facilitated access
to bank credit and low-interest rates on mortgages, and promoted affordable housing [47, 118]. While
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Portuguese residential real estate market data is retrieved from the Residential In-
formation System (SIR), provided by Confidencial Imobiliário11. SIR data aggregates
information reported by more than 600 real estate agents, developers, investors, and
credit institutions in the country. SIR provides statistical data by location, typology,
and market range. It is the reference database for housing asset transaction prices
in Portugal, and is used by all major Portuguese banks to analyze financing oppor-
tunities and to monitor the market. Our final data set consists of yearly aggregates
covering the geographical areas of Great Lisbon, Great Porto12, Braga, and Coimbra,
collected between the first quarter of 2015 and the last quarter of 2019. A map of
the data coverage is provided in Fig. 4-4. According to the preliminary results of the
Portuguese 2021 Census, our data set contains the ten most populous municipalities
of Portugal and accounts for 50% of the residential population of the country. The
raw data is pooled at a municipality level—the second-largest subnational tier in Por-
tugal (or administrative-2 level). Our final data set accounts for 29 municipalities in
our four urban areas.

The real estate data set includes a number of annual indicators describing the
state of the market that year. The total number of sold dwellings is an estimation
of the total number of housing transactions in the municipality that year: it ranges
from 62 in the municipality of Espinho (Greater Porto) in 2017 to 14,179 in central
Lisbon, also in 2017. While Greater Lisbon and Porto dominate the housing market,
all four urban areas saw increases in the number of sales in the study period. We
also collect the yearly mean price per square meter of real estate transactions in each
municipality. This metric is constructed by calculating the ratio between the offer
value of the dwelling (in euros) and its private gross area (in square meters). The
mean price per square meter rose in all four metropolitan areas between 2015 and
2019, with Lisbon displaying the highest values (see Fig. C-1 in Appendix Section
C.3.1). Finally, we include the absorption time—defined as the time passed between
the initial dwelling offer and the transaction—as a control in our models. Absorption
time is accounted for in months, and municipality-level average yearly values for that
variable range from 4 months to 16 months. More detailed summary statistics of all
three variables are included in Table 4.1 (Panel C).

this has stimulated house ownership in the country—77% of the population are homeowners [45],
well above the 70% European Union average—it also make the Portuguese population highly exposed
to the financial risks of weather events on real estate.

11https://www.confidencialimobiliario.com/
12For reasons of data availability, we only have data for 10 of the 17 municipalities in Greater

Porto, including the most populous ones of Porto and Vila Nova de Gaia
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Figure 4-4: Real estate data coverage

Real estate data covers the four largest metropolitan areas in Portugal: Greater
Lisbon, Greater Porto, Braga, and Coimbra.

4.3.3 Social media data and sentiment imputation

We rely on a sample of the novel social media data set presented in Chapter 2 to
study perception of temperature discomfort. This data captures changes in individual
sentiment at high frequency and high spatial resolution, and provides flexibility when
matching to the real estate and weather data. Our data extraction covers Twitter
posts shared in Portugal between January 1, 2015, and December 31, 2019. In the
study period, nearly 8 million geotagged posts were collected.

Geographic distribution of Twitter users (aggregated to municipality-level) is pro-
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vided in Fig. 4-5 (left). We test the spatial representativeness of our sample by
comparing, at municipality level, the sample size of social media users13 with the
population size reported in the 2021 census of the Portuguese population. The sam-
ple size of Twitter users closely tracks the overall population, as indicated in Fig. 4-5
(right): the Pearson correlation coefficient between the two is 𝜌 = 0.81 (𝑝 < 0.001).

Figure 4-5: Social media data coverage

Logged-Number of daily tweets by municipality (left) and logged-Number of daily
tweets by logged-population (right). Data coverage is restricted to Portugal, over
the 2015-2019 period. The distribution of social media data is concentrated around
the main coastal cities of the country. The Pearson correlation coefficient of the two
variables in the right-hand panel is 𝜌=0.81 (𝑝 < 0.001).

The sentiment of every social media post is imputed using the NLP method de-
scribed in Chapter 2 (Section 2.2.2). We aggregate our post scores to the daily-
municipality level using the two-step aggregation method described in Section 2.2.3.
Summary statistics are provided in Table 4.1 (Panel D). At the municipality level,
the average daily sentiment score is 0.57, based on an average of 35 daily posts by
municipality. Fig. 4-6 provides some additional explanatory trends in the sentiment
index we obtain. On the left, the distribution of daily municipality-level sentiment
index values indicates that most of the scores are concentrated between 0.5 and 0.7

13The sample size of social media users is the sum of unique users every day, so represents an
inflated number of overall users.

77



(on a scale from 0.0 to 1.0)14. The right-hand side panel illustrates important weekly
cyclicity in the data. Sentiment drops 6.2% of a standard deviation between an av-
erage Sunday and an average Monday, and 16.0% of a standard deviation between
an average Sunday and an average Tuesday. Seasonal cyclicity is also present; month
and day-of-week fixed effects are included in our weather and sentiment models to
avoid cyclical trends from impacting our results.

Figure 4-6: Daily, municipality-level sentiment score description

Left: Distribution of the social media-based sentiment index, weighted by the number
of social media users. Most sentiment index values are concentrated between 0.5 and
0.7. Right: Effect of weekday on sentiment levels. This reveals high levels of weekly
cyclicity in the data.

4.3.4 City-level controls data

The real estate market is highly influenced by location-specific attributes. To account
for this, we collect an extensive set of municipalities characteristics for our real es-
tate model. The set of controls we include replicates—to the extent that the data
was available—the conceptual framework of Zheng, Kahn, and Liu (2010)15 [145].
The presence in the municipality of a beach (dummy), airport (dummy), and port
(dummy) are all collected from the OpenStreetMap portal16. The availability of green
areas by municipality is collected from the “Observatório do Ordenamento territorial
e urbanismo”17. Information relative to employment and income (in 2015) is provided

14The distribution is weighted by the number of social media users, consistently with all of the
modeling performed in the latter sections of this chapter.

15Foreign direct investment per municipality, which was used as a control in Zheng, Kahn, and
Liu (2010), was unavailable for Portugal.

16https://www.openstreetmap.org
17https://www.dgterritorio.gov.pt/
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by the “Pordata” platform18. Finally, we use data from the national Portuguese cen-
sus to include the municipality-level share of population with higher education as a
control. A detailed description of how these features were extracted is provided in
Appendix Section C.3.2, and summary statistics are provided in Table 4.1 (Panel E).

4.4 Methods

Our econometric analysis is conducted in two steps, following the logic of our concep-
tual framework (Fig. 4-1). In the first part, we estimate the direct damage function
of temperature discomfort on real estate prices by applying a regression model (see
Section 4.4.1).

In the second part, we construct an integrated model to estimate how perceived
(sentiment) damages of temperature stress moderate changes in real estate prices
induced by climate events (see Section 4.4.2). In this part of the analysis, we first
estimate the direct damage of temperature discomfort on sentiment; then, we con-
struct municipality-specific sentiment-damage coefficients; and finally, we inject these
coefficients into the real estate regression model.

4.4.1 Direct impact of temperature stress on real estate value

We first estimate the impact of temperature discomfort on real estate value. Given
the temporal granularity of the real estate data, these models are run at a yearly,
municipality-level scale:

𝑣𝑎𝑙𝑢𝑒𝑖𝑡 = 𝛼0 + 𝛼1𝐷𝑖𝑡 + 𝛼2𝑋𝑖𝑡 + 𝑇𝑡 + 𝜖𝑖𝑡 (4.4)

The dependent variable 𝑣𝑎𝑙𝑢𝑒𝑖𝑡 stands for the natural logarithm of the average
price per square meter in municipality 𝑖 and at year 𝑡. The independent variable
of interest 𝐷𝑖𝑡 is a measure of temperature discomfort for municipality 𝑖 at year 𝑡.
We measure temperature discomfort in multiple ways to ensure the robustness of our
results. In particular, we define it either with the overall Discomfort Index (𝐷𝐼𝑖𝑡), with
the Summer and Winter Discomfort Indices (𝑆𝐷𝐼𝑖𝑡 and 𝑊𝐷𝐼𝑖𝑡), or as the number
of hot and cold days (𝐻𝑜𝑡𝑖𝑡 and 𝐶𝑜𝑙𝑑𝑖𝑡). We standardize all explanatory variables to
facilitate coefficient comparisons across different definitions of temperature stress.

Our coefficient of interest, 𝛼1, characterizes the nature of the relationship between
temperature discomfort and real estate value. A negative value of 𝛼1 means that, all

18https://www.pordata.pt
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other things being equal, an increase of one standard deviation in the temperature
discomfort index is associated with a percentage drop in the mean square-meter real
estate price of that value.

The observed relationship between temperature discomfort and real estate value
might be due to omitted factors, such as concurrent weather events or intrinsic city
characteristics. For example, cities that are exposed to extreme weather might be
poorer and offer fewer amenities. To mitigate these effects, we include several con-
trols (𝑋𝑖𝑡): yearly weather aggregates (air pollution, precipitation, and humidity,
described in Section 4.3.1), municipality-level characteristics (green area, share of
population with higher education, presence of airports, ports, and beaches, popula-
tion, and income level, described in Section 4.3.4), and additional real estate controls
(total number of dwellings sold and mean absorption time, described in Section 4.3.2).
All non-dummy controls are standardized.

To account for overall trends in the real estate market, we also include year fixed
effects (𝑇𝑡). The standard errors are clustered at the municipality level to account for
the correlation of transactions within the municipality.

4.4.2 Incorporating subjective perceptions of temperature dis-

comfort in real estate value modeling

In a second step of our analysis, we quantify to what extent perceived temperature
damages on individual sentiment in each municipality serve as a predictor of the
damages in real estate value. To build this model, we start by estimating the main
effect of temperature on sentiment, then construct municipality-specific sentiment-
damage coefficients. These coefficients are then incorporated into updated real estate
value estimations.

4.4.2.1 Effect of temperature on sentiment

To study the main effect of temperature on expressed sentiment, we estimate Equation
4.5 using a fixed effect time-series regression model similar to that used in Baylis
(2020) [9] or Wang, Obradovich, and Zheng (2020) [136]:

𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑖𝑡 = 𝛼0 + 𝛼1𝑓(𝑇𝑒𝑚𝑝𝑖𝑡) + 𝛼2𝑋𝑖𝑡 + 𝑇𝑡 + 𝛾𝑖 + 𝜖𝑖𝑡 (4.5)

The dependent variable 𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑖𝑡 stands for our standardized19 measure of sen-
19Standardization is conducted at the municipality-level to account for inherent differences in
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timent in municipality 𝑖 and on date 𝑡. 𝑇𝑒𝑚𝑝𝑖𝑡, represents the maximum daily temper-
ature measured in a given municipality, and the function 𝑓 transforms the continuous
values into discrete 5°C bins. Each bin’s impact on sentiment is estimated by the
set of coefficients 𝛼1. This method allows for a flexible, non-linear estimation of the
relationship between temperature and expressed sentiment. In each regression, one
temperature bin is omitted and serves as the reference sentiment measure (in the
results of Fig. 4-8, for instance, the reference temperature bin is 15°C–20°C). There-
fore, the coefficients of interest 𝛼1 can be interpreted as the marginal effect of a given
temperature bin relative to the reference bin.

𝑋𝑖𝑡 is a set of daily and municipality-level environmental controls including air pol-
lution (𝑃𝑀2.5), precipitation, wind speed, cloud coverage, and humidity. Unobserved
factors specific to locations and time periods might affect sentiment in ways that cor-
relate with temperature and environmental measures. Different municipalities might
have inherent differences in sentiment levels linked to economic or cultural factors.
Seasonality might also alter expressed well-being. We account for these spatial and
temporal cofounders by including temporal (𝑇𝑡 for year, month, and day-of-week) and
location (𝛾𝑖, at municipality level) fixed effects.

Here too, standard errors are clustered at municipality level. Finally, the main
regression is run by weighting each observation by the number of social media users
recorded within that municipality and on that day.

4.4.2.2 Heterogeneous effects of temperature on well-being: Damage co-
efficients at municipality-level

Estimating the binned regression model presented in Equation 4.5 on our data set
provides a non-linear response function linking temperature stress to sentiment in
the entire country. However, this might overlook important heterogeneity between
regions—due to differences in adaptation and mitigation mechanisms, for instance.
We construct a single heat-related damage coefficient in each municipality by charac-
terizing the sentiment shock associated with temperatures beyond a given threshold
of 30°C. Equation 4.6 is estimated in each of the 29 municipalities of our real estate
data coverage, using daily measures of sentiment and temperature.

𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑖𝑡 = 𝛼0 + 𝛼1𝐻𝑜𝑡𝑖𝑡 + 𝛼2𝑋𝑖𝑡 + 𝑇𝑡 + 𝛾𝑖 + 𝜖𝑖𝑡 (4.6)

The left side of the equation is the sentiment index described above for Equa-

happiness levels between cities.

81



tion 4.5. For the main independent variable, we replace temperature bins with a
dummy variable (𝐻𝑜𝑡𝑖𝑡) equal to 1 if the maximum temperature of location 𝑖 on
day 𝑡 is above 30°C20. Similarly to Equation 4.5, we include environmental controls,
year, month, day-of-week fixed effects, and municipality-level location fixed effects.
The 𝛼1 coefficient we obtain for each region is the sentiment drop associated with
extreme warm temperatures in that municipality, and we interpret this coefficient as
the location-specific sentiment damage of extreme warm temperatures.

The distribution of the coefficients for the 29 municipalities of our real-estate
analysis is provided in Fig. 4-7. All but 3 of the damage coefficients are strictly
negative, indicating that high-temperature days are consistently associated with a
drop in expressed well-being21. A sentiment-damage dummy is defined based on the
median sentiment damage value (the vertical red line in Fig. 4-7): the dummy is equal
to 0 in low-damage municipalities, where 𝛼1 less negative than the median (or above
the median, right-hand side of the graph), and to 1 in high-damage municipalities,
where the coefficient is more negative than the median (or below the median, left-hand
side of the graph).

Figure 4-7: Histogram of the sentiment damage coefficient

The red line marks the median value. Municipalities with damage coefficients more
negative than the median are classified as “high sentiment-damage”, whereas munic-
ipalities with damage coefficients above the median are flagged as “low sentiment-
damage”.

20The choice of 30°C is based on the temperature distribution described in Section 4.3.1)
21Of the three municipalities where the damage coefficient is positive, two have very high P-values

(above 0.8), so are insignificant under any threshold. Only one municipality has a significant positive
effect.
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4.4.2.3 Adding sentiment to real estate modeling: Moderated effect of
temperature stress on location value

The core analysis of our study investigates whether perceived sentiment responses
to temperature discomfort contribute to the price drop we observe in the real estate
market. We integrate the municipality-level sentiment damage dummy into our real
estate model in two ways: first as a moderator (by interacting it with the value of
temperature discomfort), and secondly as a classifier (by splitting our municipalities
based on the value of the sentiment-damage dummy and running separate estimations
on the high- and low-damage groups).

To test the relevance of our sentiment damage as a moderator, we define a new
real estate value model (Equation 4.7) where municipality-level sentiment damage is
interacted with temperature discomfort.

𝑣𝑎𝑙𝑢𝑒𝑖𝑡 = 𝛼0 + 𝛼1𝑆𝐷𝑖 *𝐷𝐼𝑖𝑡 + 𝛼2𝑋𝑖𝑡 + 𝑇𝑡 + 𝛾𝑖 + 𝜖𝑖𝑡 (4.7)

Equation 4.7 is a slight modification of Equation 4.4: the additional indepen-
dent variable 𝑆𝐷𝑖 is the value of the sentiment-damage dummy in location 𝑖—or
whether extreme warm temperatures in municipality 𝑖 are associated with a higher-
than-median sentiment drop. The coefficient 𝛼1 is an updated estimation of the
impact of temperature discomfort on real estate which accounts for heterogeneous
subjective perception of these climate events.

Finally, we test whether the real-estate value drops associated with tempera-
ture discomfort are more substantial in specific municipalities where the sentiment-
damage coefficient is higher. We split the sample into high sentiment-damage and
low sentiment-damage municipalities, based on the value of the sentiment-damage
dummy variable. We estimate weather damages separately in the two samples using
the model defined in Equation 4.4 (direct effect of temperature discomfort on real
estate value). We obtain two separate estimate equations:

𝑣𝑎𝑙𝑢𝑒𝑖𝑡 = 𝛼0,𝑙𝑜𝑤 + 𝛼1,𝑙𝑜𝑤𝐷𝑖𝑡 + 𝛼2,𝑙𝑜𝑤𝑋𝑖𝑡 + 𝑇𝑡 + 𝜖𝑖𝑡 (4.8)

𝑣𝑎𝑙𝑢𝑒𝑖′𝑡 = 𝛼0,ℎ𝑖𝑔ℎ + 𝛼1,ℎ𝑖𝑔ℎ𝐷𝑖′𝑡 + 𝛼2,ℎ𝑖𝑔ℎ𝑋𝑖′𝑡 + 𝑇𝑡 + 𝜖𝑖′𝑡 (4.9)

Equation 4.8 is run only on municipalities 𝑖 that are in the half of the sample
where the sentiment-damage dummy is equal to 0—i.e., with a sentiment-damage
below the sample median. Similarly, Equation 4.9 is only run on the other half of
the municipalities 𝑖′, where the sentiment-damage dummy is equal to 1—i.e., with a
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sentiment-damage above the sample median. Comparing the values and significance
of 𝛼1,𝑙𝑜𝑤 and 𝛼1,ℎ𝑖𝑔ℎ informs on the relative impact of weather events on real estate
value in each subset of municipalities.

4.5 Results and discussion

This section presents the results of our econometric analysis. We first describe the
estimates of the damages of temperature on real estate value, and then incorporate
the role of sentiment damages as predictor of real estate value drops.

4.5.1 Temperature stress and real estate value

Table 4.2 presents the results linking objective measures of temperature discomfort to
real estate prices varying the sets of controls included in the regression model. Column
(1) reflects the baseline effect of temperature discomfort on the mean square-meter
value. Column (2) includes additional weather controls: yearly aggregates of PM-2.5
air pollution and precipitation, and average humidity. In Column (3), we replace the
weather controls with time-invariant municipality characteristics: the share of green
areas in the district, the logged share of the professional population with a higher
education degree, the logged population, and the median income of the municipality
in 2015. Column (4) introduces a final set of controls linked to the location’s real
estate market that year: overall number of dwellings sold, and average absorption
time (in months). Finally, Column (5) includes all the controls.

The results are presented in the form of three panels for the three measures of
temperature discomfort. Panel A uses the Temperature Discomfort Index (𝐷𝐼) as the
main independent variable. In Panel B, we decompose the overall index into Summer
and Winter Discomfort indices (𝑆𝐷𝐼 and 𝑊𝐷𝐼) to understand if the effect is driven
by one of the two seasons exclusively. In Panel C, we opt for a combination of the
number of hot days and the number of cold days (𝐻𝑜𝑡 and 𝐶𝑜𝑙𝑑) as a robustness
check.
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Table 4.2: Impact of Temperature Discomfort on Mean Square Meter Price

Dependent variable:

Logged Price per Square Meter
(1) (2) (3) (4) (5)

Panel A

Discomfort Index −0.20*** −0.20*** −0.15*** −0.16*** −0.14***

Air Pollution −0.06*** 0.005
Precipitation 0.10 0.01
Humidity 0.11* 0.03
Logged Green Area −0.03 −0.02
Logged Higher Ed 0.18*** 0.21***

Airport (dummy) −0.02 −0.02
Port (dummy) 0.03 0.01
Beach (dummy) −0.03 −0.03
Logged Population 0.01 −0.06
Median Income 0.07 0.002
Total Dwellings Sold 0.14*** 0.11**

Mean Absorp. Time −0.05 −0.01

Panel B

Summer Discomfort −0.19*** −0.20*** −0.14*** −0.15** −0.14***

Winter Discomfort −0.18*** −0.20* −0.12*** −0.16*** −0.33**

Air Pollution −0.05** 0.01
Precipitation 0.07 −0.002
Humidity 0.02 −0.21
Logged Green Area −0.03 −0.02
Logged Higher Ed 0.18*** 0.21***

Airport (dummy) −0.01 −0.02
Port (dummy) 0.03 0.01
Beach (dummy) −0.03 −0.03
Logged Population 0.02 −0.07
Median Income 0.05 −0.003
Total Dwellings Sold 0.15*** 0.12**

Mean Absorp. Time −0.06 −0.02

Panel C

Nb of Hot Days −0.12*** −0.14*** −0.09*** −0.07* −0.08***

Nb of Cold Days −0.16*** −0.14*** −0.11*** −0.16*** −0.15***

Air Pollution −0.04 0.0001
Precipitation 0.05 0.02
Humidity 0.06 −0.02
Logged Green Area −0.05 −0.03
Logged Higher Ed 0.21*** 0.22***

Airport (dummy) −0.02 −0.03
Port (dummy) 0.01 −0.01
Beach (dummy) −0.03 −0.03
Logged Population 0.04 −0.05
Median Income 0.04 −0.01
Total Dwellings Sold 0.17*** 0.12**

Mean Absorp. Time −0.08** −0.02

Weather Controls No Yes No No Yes
City Controls No No Yes No Yes
Housing Controls No No No Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 156 156 156 120 120

Note: *p<0.1; **p<0.05; ***p<0.01

The estimates of Panel A describe that the Temperature Discomfort Index has
a significant and negative impact on real estate value in Portugal. One standard
deviation increase in the discomfort increase is associated with a 14% to 20% drop in
mean square-meter price, depending on the controls that are included (the coefficient
is significant at the 1% level regardless). Air pollution is also associated with a
significant drop in real estate value (5% drop for an increase of one standard deviation)
when included with other weather controls—however, this effect disappears when
including additional city and real estate market controls.

In Panel B, both summer and winter discomfort are associated with significant
drops in real estate value, although the summer discomfort coefficient is more robust
to different model specifications. With the full set of controls, a standard deviation
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increase in summer discomfort is associated with a 14% drop in real estate value.
These results hold in Panel C: a 1 standard deviation increase in the number of hot
(equivalent to 3 days, based on an average of 5) or cold (equivalent to over 2 days,
based on an average of 4) days is also associated with significant drops in real estate
value. In sum, the results consistently indicate that experiencing higher temperature
distress is associated with price discounts in real estate markets.

The magnitude of these results are in line with the findings of Albouy et al. (2016)
in the United States: individuals are willing to pay 0.1 standard deviations more to
avoid extreme-cold days and 0.2 standard deviations more to avoid extreme-hot days,
relative to moderate days [4]. When we express our results in terms of standard
deviations, we find that a standard deviation increase in the number of extreme-
warm days (above 30°C) is associated with a drop of 0.14 of a standard deviation in
real estate value (standardized estimation results are presented in Appendix Section
C.4.1). While the magnitudes seem large in terms of absolute changes in real estate
value, the increase in the temperature discomfort indices also represents a significant
change in weather conditions. For the summer discomfort index, for instance, it would
be equivalent to an increase of 3°C in average summer temperature—a substantial
change even compared to the current projections of climate change. Similarly, when
considering the extreme-temperature days, a standard deviation increase represents
a 60% increase in the number of hot days compared to the mean.

4.5.2 Temperature stress and subjective well-being

Incorporating subjective perceptions of climate events in our analysis, we start by
evaluating the direct effect of temperature on sentiment in Portugal. Fig. 4-8 docu-
ments the sentiment response to each temperature bin using Equation 4.5. Because
the 15–20°C bin is used as our reference temperature bin, estimates can be interpreted
as a change in sentiment relative to having the same day under 15–20°C temperatures.
The figure also includes a histogram underneath the plot to visualize the tempera-
ture distribution, and the 95th and 99th percentiles of temperature are marked with
vertical two dotted red lines. Since our sentiment measure is standardized, the values
are expressed in standard deviation (SD) percentages. The 95% confidence intervals
of the estimates are visualized in shaded blue.

Consistent with prior literature on the impact of temperature on sentiment [9, 136],
we find that high temperatures are associated with a significant drop in expressed well-
being compared to the reference temperature bin of 15-20°C. The difference between
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Figure 4-8: Impact of temperature on sentiment

Based on data from 2015-2019.

the warmest days (above 35°C) and the days in the reference temperature bin is
around 45% of a standard deviation. These results are highly significant, despite
confidence intervals widening slightly for the highest temperatures.

The magnitude of the results is also of the same order of magnitude–if slightly
more substantial—that results from the prior literature. Using the same model speci-
fications, Baylis (2020) finds temperatures above 40°C are associated with a sentiment
drop of 21% of a standard deviation in the United States, and a drop of between 10%
and 30% of a standard deviation in Australia, India, and South Africa [9]. Wang,
Obradovich, and Zheng (2020) express their sentiment drop in absolute terms, and
find a 2% drop in sentiment when temperatures are above 35°C [136]: when express-
ing our results in absolute terms, we find a slightly larger drop of 3% in sentiment for
the same temperature bin (see Appendix Section C.4.2).

We also examine the impact of other weather events on sentiment in Portugal,
such as air pollution. We find that increases in 𝑃𝑀2.5 levels are also associated with
decreased well-being. These results are presented in the Appendix Section C.4.3.
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4.5.3 Integrated model of temperature discomfort, sentiment,

and real estate value

The full-sample analysis we conduct in Section 4.5.2 highlights important sentiment
damages associated with high temperatures in Portugal. However, these damages
differ by municipality, and we estimate municipality-level damages in Section 4.4.2.2.
Here, these municipality-level damages feed into an updated real estate analysis: first
as moderators of the direct impact of temperature stress on real estate value, and
then as classifiers distinguishing high sentiment-damage from low sentiment-damage
municipalities.

4.5.3.1 Sentiment damage as a moderator

Table 4.3 presents the results when we incorporate the municipality-level sentiment-
damage dummy as a moderator in the real estate estimation model (Equation 4.7).
Column (1) reproduces the first column of Table 4.2 and estimates the baseline effect
of temperature discomfort of mean square-meter value. Column (2) includes the
additional moderation term, and reflect the baseline effect of our sentiment-moderated
temperature discomfort variable on real estate prices. Columns (3) and (4) add
weather, city, and real estate market controls to estimations (1) and (2), respectively.
Similarly as for Table 4.2, the results are split into 3 panels for different definitions of
temperature discomfort: the Temperature Discomfort Index (Panel A), Summer and
Winter Discomfort (Panel B), and the number of hot and cold days (Panel C).
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Table 4.3: Impact of Temperature Discomfort and Sentiment Damage on Mean Square
Meter Price

Dependent variable:

Logged Price per Square Meter
(1) (2) (3) (4)

Panel A

Discomfort Index −0.20*** −0.14***

High Sentiment Damage (dummy):Discomfort Index −0.27*** −0.10**

Air Pollution 0.005 0.06*

Precipitation 0.01 −0.04
Humidity 0.03 0.04
Logged Green Area −0.02 −0.01
Logged Higher Ed 0.21*** 0.23***

Airport (dummy) −0.02 −0.04
Port (dummy) 0.01 −0.02
Beach (dummy) −0.03 −0.02
Logged Population −0.06 −0.03
Median Income 0.002 −0.03
Total Dwellings Sold 0.12** 0.10
Mean Absorp. Time −0.01 −0.06**

Panel B

Summer Discomfort −0.19*** −0.14***

Winter Discomfort −0.18*** −0.33**

High Sentiment Damage (dummy):Summer Discomfort −0.24*** −0.10*

High Sentiment Damage (dummy):Winter Discomfort −0.17*** −0.08
Air Pollution 0.01 0.06*

Precipitation −0.002 −0.05
Humidity −0.21 0.02
Logged Green Area −0.02 −0.01
Logged Higher Ed 0.21*** 0.23***

Airport (dummy) −0.02 −0.04
Port (dummy) 0.01 −0.01
Beach (dummy) −0.03 −0.02
Logged Population −0.07 −0.04
Median Income −0.003 −0.02
Total Dwellings Sold 0.13** 0.10
Mean Absorp. Time −0.02 −0.06**

Panel C

Nb of Hot Days −0.12*** −0.08***

Nb of Cold Days −0.16*** −0.15***

High Sentiment Damage (dummy):Nb of Hot Days −0.22** −0.08
High Sentiment Damage (dummy):Nb of Cold Days −0.15*** −0.08*

Air Pollution 0.0001 0.05
Precipitation 0.02 −0.04
Humidity −0.02 0.02
Logged Green Area −0.03 −0.01
Logged Higher Ed 0.22*** 0.23***

Airport (dummy) −0.03 −0.04
Port (dummy) −0.01 −0.02
Beach (dummy) −0.03 −0.02
Logged Population −0.04 −0.04
Median Income −0.01 −0.03
Total Dwellings Sold 0.13** 0.11*

Mean Absorp. Time −0.02 −0.05*

Weather Controls No No Yes Yes
City Controls No No Yes Yes
Housing Controls No No Yes Yes
Year FE Yes Yes Yes Yes
Observations 156 156 120 120

Note: *p<0.1; **p<0.05; ***p<0.01

Prior to adding the controls, moderated estimates of the temperature stress impact
(Column 2) are similar to direct estimates (Column 1). Moderated overall discomfort
is associated with a 27% drop in real estate value, up from 20% in the direct model.
When decomposing the temperature stress by hot and cold, the moderated impact
of high temperatures is consistently higher than the unmoderated version (24% up
from 19% for summer discomfort, 22% up from 12% for number of hot days), and
the moderated impact of low temperatures is slightly lower (17% compared to 18%
for winter discomfort, 15% down from 16% for number of cold days). In the presence
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of our complete set of controls, however, the moderated discomfort index loses in
magnitude and significance.

4.5.3.2 Splitting the sample based on sentiment damage level

In the final step of the analysis, we explore the potential of our sentiment-damage
dummy as a classifier, to detect municipalities most exposed to the negative impacts
of extreme temperatures. Splitting the sample into high and low sentiment-damage
municipalities allows us to estimate the effects of temperature stress on real estate
separately for municipalities with high and low sentiment-damage.

The full results are presented in Appendix Section C.4.4 (Table C.4). As in previ-
ous sets of results, Panel A uses the overall discomfort index as a measure of temper-
ature stress. In Panel B, temperature stress is expressed by both summer discomfort
and winter discomfort. In Panel C, we use counts of extreme warm (temperatures
over 30°C) and cold (maximum temperatures under 10°C) as measures of temperature
discomfort. Column (1) estimates the baseline impact of the temperature discomfort
metric on real estate value in low sentiment-damage municipalities. Column (2) runs
the same estimation with the complete set of controls. In Columns (3) and (4), we
include the same estimations on the high sentiment-damage municipalities. A visual
comparison of the coefficients is also provided in Fig. 4-9.

Overall, the results indicate that temperature stress days have a negative impact
on real estate value in both municipality groups. However, the magnitude of the
drop is more sizeable in municipalities with high sentiment-damage: for instance,
an increase of a standard deviation in the number of hot days (with no additional
controls) is associated with a 25% drop in real estate value in these municipalities,
while the same change results in only a 7% drop in low sentiment-damage regions.
In low sentiment-damage regions, the significance of the coefficients associated with
temperature discomfort also reduces as additional controls are added to the model.
In high sentiment-damage municipalities, when all weather, location, and real estate
market controls are included, a standard deviation increase in the number of days
over 30°C is associated with a 9% drop in real estate value (𝑝 < 0.01).

These results highlight the value of our integrated approach. The overall results,
connecting climate amenities to real estate market value, can be decomposed here
based on subjective perception of these climate events. Regions where temperature
stress is most damaging to well-being (or, high sentiment-damage municipalities) also
face the sharpest drops in real estate value.
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Figure 4-9: Impact of temperature discomfort on real estate value
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4.6 Chapter conclusion

Extreme weather events incur important damages on urban environments, with dire
impacts on citizens. Prior research has documented damages on psychological well-
being, health outcomes, and mortality [9, 19, 37]. As weather conditions in cities
become more unbearable, inhabitants are increasingly encouraged to move elsewhere,
influencing local real estate markets in both locations.

Novel data sets offer researchers the opportunity to model and measure such trends
[96]. For example, satellite weather data produces granular maps of exposure to
weather events; geolocated social media data from platforms like Twitter provide local
measures of preferences and subjective reactions to climate events. Prior research,
including Chapter 3 of this thesis, has connected these two data sources to assess the
impact of high temperatures on expressed well-being [136]. In this study, we replicate
these results in the context of Portugal. We also add a layer of real estate data at
the municipality level, and findings suggest that both weather events and subjective
perception of these events are useful predictors of changes in housing value within
Portugal’s largest metropolitan areas. Indeed, we find temperature discomfort to be
associated with significant drops in real-estate value, even after controlling for urban
and real estate market characteristics. Social media-based measures of discomfort
can serve as a useful (leading) indicator for policymakers as they seek to project the
effect of rising temperatures on the real estate market.

The methodological approach of our study contains certain limitations. Con-
trarily to data collected through traditional surveys, our novel data set contains no
socio-demographic information about Twitter users, and therefore about the repre-
sentativeness of our sample. As detailed in Chapter 2, existing research has both
validated the use of social media as a proxy of public opinion [25] and pointed out
its biases [131]. The coverage of our other data sets also restrains us: our real estate
data covers only four urban areas over a period of five years, prohibiting city fixed
effects, for instance. Moreover, as the data we collect only tracks transactions, we do
not have information regarding housing appraisals, raising an ongoing debate about
how best to assess real estate value (see Pagourtzi et al. (2003) for a review of the
literature on this issue [102]).

Our study has important theoretical implications. It clarifies the relevant role of
subjective perception measures of weather events: these act as moderating factors
when assessing the impact of these same events on real estate prices. Our study
also raises practical implications for urban environments facing increasingly frequent
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climate events, especially heat waves. We contribute further to the efforts to quantify
the effects of these events on real estate markets, and propose our social media index
as a relevant indicator for policy-makers to track.

Future work could extend the scope of this study to other countries and exam-
ine longer-term effects over more years. Additional indices of real estate value, for
example, could also be considered (including some based on non-transactional home
appraisals). Sentiment analysis is just one way of measuring subjective perception:
survey-based metrics—like levels of belief in climate change in Portugal—or additional
NLP-based analyses of social media data (such as topic modeling) could provide fu-
ture researchers with a richer understanding of subjective reactions to temperature
discomfort and its impact on real estate value.
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Chapter 5

Conclusion

Social science research that resonates with policy-makers requires a granular under-
standing of individual well-being, preferences, and behavior. Technology shifts have
challenged traditional ways of collecting public opinion (such as surveys and polls)
but have also enabled the widespread adoption of new platforms where people share
content. In this context, user-generated data from social media has emerged as a rich
alternative to understand social dynamics. Further still, these data sets can produce
estimates of policy-relevant metrics—such as real-time well-being—that were previ-
ously immeasurable. Building on this, my thesis has highlighted two case studies that
harness a novel data set of social media content and advanced, multilingual methods
of NLP.

In the first (Chapter 3), we examine well-being damages associated with high
temperatures across the world. In this specific case, relying on global social media data
allows us to study countries where traditional data is scarce, and that were previously
excluded from similar research endeavors. We find important spatial heterogeneity
in reaction to extreme temperature—evidence of how informative global data can be
when addressing global issues like climate change.

In the second (Chapter 4), we go one step further and connect well-being shocks
to real-world outcomes. The sentiment drops we find associated with temperature
stress also drive drops in real estate market location value. Beyond well-being and
mental health costs, social media sentiment is found to be indicative of economic
outcomes—making it all the more relevant for governments and decision-makers to
track it.

Social media data should not be seen as a golden bullet. Inherent biases in the
user pool, as well as more insidious biases in the methods of analysis, make it an im-
perfect resource. Algorithmic vetting and validation studies, like the ones I conduct
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in Chapter 2, are essential to better understanding when social media analysis is a
relevant proxy for public opinion, and when it is not. We find that while there are
strong disparities in social media use between countries worldwide, the data is more
spatially representative within countries—aggregated global analyses should there-
fore systematically explore country-level heterogeneity as well. In highly connected
countries like the United States, we find that social media-based sentiment closely
track more traditional measures of public opinion and well-being. Moving forward,
subsequent research in this field will also need to systematically confront new social
media metrics with results from experiments, surveys, and real-world outcomes.

Social media data is becoming an important asset for academic research, espe-
cially in the burgeoning field of computational social science [76, 42]. With the
growing imperative that policy-making be evidence-based [115], it seems likely that
user-generated data—including from social media platforms—will increasingly make
its way into government decisions as well, complementing more conventional data
sources in impact assessment and policy evaluation pipelines. Global data sets, and
multilingual text-analysis algorithms necessary to their analysis, are especially rele-
vant in countries where traditional data infrastructure is weak.

It should finally be noted that mining user-generated text data is part of a larger
trend incorporating digital platforms and technologies in government operations.
More hands-on approaches—such as online polls, petitioning systems, and large-scale
civic consultations—can also source policy-relevant information from a wide popula-
tion base [15]. Such initiatives are flourishing across the world, on topics like Artificial
Intelligence governance [87], public transport planning [84], or constitutional reform
[98].

All of these mechanisms present some risks that governments will have to grapple
with in the years to come—representativity, algorithmic bias, and data privacy, to
name a few. However, they also provide policy-makers with the chance to account for
increasingly large and diverse groups, as well as previously immeasurable outcomes, in
their decision process. Democratic checks and balances will be necessary to guarantee
that these new technologies carry out their promise of a more inclusive approach to
policy-making.
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Appendix A

Supplementary Material to Chapter 2

A.1 Acknowledgements

We gratefully thank Harvard Center for Geographic Analysis (CGA) for providing
the Twitter data used in this study [79]. We thank Devika Kakkar and the Harvard
CGA team for the support and consultation for scaling the sentiment and geogra-
phy computation on this big data set using Harvard’s High Performance Computing
Cluster, and for developing the scripts for Geography computation on this data set
using GPU based database OmniSci.

A.2 Comparing BERT-based and LIWC-based sen-

timent scores

To test whether our BERT-based sentiment results are consistent with more tra-
ditional sentiment imputation methods, we also compute sentiment on a sample
of English-language content using a dictionary-based sentiment imputation method
which relies on the LIWC emotion dictionaries. Results are provided in Fig. A-1. We
find a strong correlation between the two measures (𝜌 = 0.74, 𝑝 < 0.001).
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Figure A-1: Correlation between BERT-based and LIWC-based sentiment scores

We find a Pearson correlation coefficient of 𝜌 = 0.74 (𝑝 < 0.001).

A.3 Validating sentiment scores based on happiness

surveys: Full results

Table A.1: Social media-based sentiment and survey-based well-being

Dependent variable:

Survey-based happiness

Social media-based sentiment 0.37*

Constant 0.00

Weights None
Observations 50
R2 0.13
Adjusted R2 0.12

Note: *p<0.01; **p<0.005; ***p<0.001
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A.4 Validating sentiment scores based on election

polling: Full results

Since the state-level accuracy of our social media sentiment score will depend con-
siderable on the number of users who post on the different candidates, we check the
distribution of these users by state in Fig. A-2.

Figure A-2: Number of social media users discussion presidential candidates by state

As a measure of interpretation, we create two alternative social media-based pref-
erence metrics to compare with polling outcomes. The first does not rely on NLP,
simply comparing the share of Twitter content posted on Biden to the share of content
posted on Trump. The second uses our sentiment index, but aggregates the post-level
sentiment scores using a simple mean, instead of our two-step aggregation process.
Results for the two benchmarks, and for the main social media-based preference index
presented in Section 2.3.3, are presented below.

Table A.2: Social media-based sentiment and Polling-based preference

Dependent variable:

Difference in polling numbers

(1) (2) (3)

Difference in share of posts −0.23
Difference in tweet score 0.73***

Difference in sentiment index 1.01***

Constant 0.41** 0.28** 0.21**

Weights Nb Users Nb Users Nb Users
Observations 50 50 50
R2 0.02 0.50 0.74
Adjusted R2 0.004 0.49 0.73

Note: *p<0.01; **p<0.005; ***p<0.001

99



Figure A-3: Social media-based preferences and polling results

Left: comparing social media post counts to polling results. We find a negative, in-
significant correlation. Right: comparing (non-weighted) average sentiment scores to
polling results. We find a significant, positive correlation—but below the correlation
level obtained using the two-step aggregation method.
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Appendix B

Supplementary Material to Chapter 3

B.1 Acknowledgements

We gratefully thank Harvard Center for Geographic Analysis (CGA) for providing
the Twitter data used in this study [79]. We thank Devika Kakkar and the Harvard
CGA team for the support and consultation for scaling the sentiment and geogra-
phy computation on this big data set using Harvard’s High Performance Computing
Cluster, and for developing the scripts for Geography computation on this data set
using GPU based database OmniSci.

B.2 Data information

B.2.1 Countries of analysis

Only countries for which we have more than 100 daily sentiment-imputed social media
posts (from Twitter or Weibo) are included in our analysis. The 157 countries for
which that is the case are listed in Table B.1.
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Country Code Country Name Country Code Country Name Country Code Country Name
AFG Afghanistan GGY Guernsey OMN Oman
ALB Albania GUY Guyana PAK Pakistan
DZA Algeria HND Honduras PAN Panama
AND Andorra HKG Hong Kong PRY Paraguay
AGO Angola HUN Hungary PER Peru
ARG Argentina ISL Iceland PHL Philippines
ARM Armenia IND India POL Poland
AUS Australia IDN Indonesia PRT Portugal
AUT Austria IRN Iran PRI Puerto Rico
AZE Azerbaijan IRQ Iraq QAT Qatar
BHR Bahrain IRL Ireland COG Republic of

Congo
BGD Bangladesh IMN Isle of Man REU Reunion
BRB Barbados ISR Israel ROU Romania
BLR Belarus ITA Italy RUS Russia
BEL Belgium JAM Jamaica RWA Rwanda
BLZ Belize JPN Japan SAU Saudi Arabia
BEN Benin JEY Jersey SEN Senegal
BOL Bolivia JOR Jordan SRB Serbia
BIH Bosnia and

Herzegovina
KAZ Kazakhstan SLE Sierra Leone

BWA Botswana KEN Kenya SGP Singapore
BRA Brazil XKO Kosovo SVK Slovakia
BRN Brunei KWT Kuwait SVN Slovenia
BGR Bulgaria KGZ Kyrgyzstan SOM Somalia
KHM Cambodia LAO Laos ZAF South Africa
CMR Cameroon LVA Latvia KOR South Korea
CAN Canada LBN Lebanon ESP Spain
CHL Chile LSO Lesotho LKA Sri Lanka
CHN China LBR Liberia SDN Sudan
COL Colombia LBY Libya SWZ Swaziland
CRI Costa Rica LTU Lithuania SWE Sweden
CIV Côte d’Ivoire LUX Luxembourg CHE Switzerland
HRV Croatia MAC Macao SYR Syria
CUB Cuba MKD Macedonia TWN Taiwan
CYP Cyprus MWI Malawi TZA Tanzania
CZE Czech Republic MYS Malaysia THA Thailand
COD Democratic

Republic of the
Congo

MLI Mali TGO Togo

DNK Denmark MTQ Martinique TTO Trinidad and
Tobago

DOM Dominican
Republic

MUS Mauritius TUN Tunisia

ECU Ecuador MEX Mexico TUR Turkey
EGY Egypt MDA Moldova UGA Uganda
SLV El Salvador MNG Mongolia UKR Ukraine
EST Estonia MNE Montenegro ARE United Arab

Emirates
ETH Ethiopia MAR Morocco GBR United Kingdom
FIN Finland MOZ Mozambique USA United States
FRA France MMR Myanmar URY Uruguay
GUF French Guiana NAM Namibia UZB Uzbekistan
GAB Gabon NPL Nepal VEN Venezuela
GMB Gambia NLD Netherlands VNM Vietnam
GEO Georgia NZL New Zealand YEM Yemen
DEU Germany NIC Nicaragua ZMB Zambia
GHA Ghana NER Niger ZWE Zimbabwe
GRC Greece NGA Nigeria
GTM Guatemala NOR Norway

Table B.1: Countries included in Chapter 3 analysis
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B.3 Supplementary results

Full result tables, as well as additional robustness checks are presented in this section.

B.3.1 Baseline regression full results

To assess the overall impact of temperatures on sentiment worldwide, we estimate
Equation 3.1 on the entire data set. We use the standardized sentiment score as the
dependent variable. The full results are presented here in Table B.2. For each tem-
perature bin and control variable, we report the estimated coefficient, the statistical
significance of the coefficient (with the superscript stars), and the standard errors (in
parentheses). The results are discussed in Section 3.4.1 and visualized in Fig. 3-5.

Table B.2: Max. Temperature and Sentiment

Dependent variable:

Standardized Sentiment Score

Temperature ∈(-10,-5] −0.20***

(0.01)
Temperature ∈(-5,0] −0.19***

(0.01)
Temperature ∈(0,5] −0.18***

(0.004)
Temperature ∈(5,10] −0.10***

(0.003)
Temperature ∈(10,15] −0.03***

(0.002)
Temperature ∈(20,25] −0.01***

(0.002)
Temperature ∈(25,30] −0.05***

(0.003)
Temperature ∈(30,35] −0.14***

(0.003)
Temperature ∈(35,40] −0.18***

(0.005)
trange 0.01***

(0.0004)
Air pollution −0.001***

(0.0000)
Wind speed −0.01***

(0.0003)
Cloud coverage −0.001

(0.003)
Humidity 6.96***

(0.35)
Precipitation −604.74***

(9.06)

Weights Nb Users
Date FE Yes
Admin-1 FE Yes
Observations 850,834
R2 0.34
Adjusted R2 0.34

Note: *p<0.01; **p<0.005; ***p<0.001
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B.3.2 Individual-level regression full results

To account for potential composition changes in our sample that might affect our
results, we run an additional set of regressions on a sample of frequent social users.
Estimates are generated based on Equation 3.1, with additional user fixed effects.
Observations are aggregated to individual user-level instead of geography, and are
unweighted in the regression model. Results are presented below in Table B.3, and
discussed in Section 3.4.3.

Table B.3: Max. Temperature and Sentiment

Dependent variable:

score_stdz

Temperature ∈(-10,-5] −0.03**

Temperature ∈(-5,0] 0.003
Temperature ∈(0,5] −0.002
Temperature ∈(5,10] 0.003
Temperature ∈(10,15] 0.001
Temperature ∈(20,25] 0.002
Temperature ∈(25,30] −0.002
Temperature ∈(30,35] −0.01
Temperature ∈(35,40] −0.01
trange 0.001**

Air pollution −0.0001*

Wind speed −0.001
Cloud coverage −0.01*

Humidity 0.70
Precipitation −56.93***

Weights Nb Users
Date FE Yes
Admin-1 FE Yes
Observations 1,785,825
R2 0.27
Adjusted R2 0.23

Note: *p<0.01; **p<0.005; ***p<0.001
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B.3.3 Weekday relative to weekend sentiment regression

As a measure of comparison to interpret sentiment damages due to temperature, we
also estimate the impact of weekdays and weekends on sentiment. We use a fixed
effect time-series regression model:

𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑖𝑡 = 𝛼0 + 𝛼1𝑤𝑒𝑒𝑘𝑑𝑎𝑦(𝑡) + 𝑇𝑡 + 𝛾𝑖 + 𝜖𝑖𝑡 (B.1)

where 𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑖𝑡 is the value of the standardized sentiment index at location 𝑖 and
on date 𝑡, and 𝑤𝑒𝑒𝑘𝑑𝑎𝑦(𝑡) is a dummy variable equal to 1 if 𝑡 is a weekday (Monday-
Friday) and 0 if 𝑡 is a weekend (Saturday or Sunday). To account for seasonal trends
and location-specific differences, we also include month (𝑇𝑡) and location (𝛾𝑖) fixed
effects.

Table B.4 report the 𝛼1 coefficient estimating the sentiment change on weekdays
relative to weekends. We find a significant drop associated with weekdays equal to
17% of a standard deviation of the sentiment index.

Table B.4: Weekdays (relative to Weekends) and Sentiment

Dependent variable:

Standardized Sentiment Score

Weekday −0.17***

Weights Nb Users
Month FE Yes
Admin-1 FE Yes
Observations 863,052
R2 0.16
Adjusted R2 0.16

Note: *p<0.01; **p<0.005; ***p<0.001
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B.3.4 Robustness by weighting scheme

Our main results, presented in Section 3.4.1, are estimating weighting daily, regional
observations by the number of social media users in that location on that day. How-
ever, social media coverage is not representative of global population, and such a
weighting scheme might skew our results by overemphasizing data-rich countries and
urban areas. To address this, we test out four weighting schemes: (1) weighting all
regions equally regardless of social media activity or population; (2) weighting by
social media posts (instead of users); (3) weighting by social media users (default);
and (4) weighting by regional population. Apart from the weighting scheme, the four
estimations are run with the same model specifications (see Section 3.3 and Equation
3.1). Results are discussed in Section 3.4.2, and full results are provided in Table B.5.

Table B.5: Robustness by Weighting Scheme

Dependent variable:

Standardized Sentiment Score
(1) (2) (3) (4)

Temperature ∈(-10,-5] −0.20*** −0.21*** −0.03*** −0.06***

Temperature ∈(-5,0] −0.19*** −0.20*** −0.01 −0.06***

Temperature ∈(0,5] −0.17*** −0.17*** −0.02** −0.07***

Temperature ∈(5,10] −0.10*** −0.09*** −0.02*** −0.04***

Temperature ∈(10,15] −0.03*** −0.02*** 0.03*** −0.01
Temperature ∈(20,25] −0.02*** −0.01*** 0.02*** −0.001
Temperature ∈(25,30] −0.05*** −0.04*** 0.01** −0.01*

Temperature ∈(30,35] −0.14*** −0.13*** −0.05*** −0.05***

Temperature ∈(35,40] −0.18*** −0.17*** −0.15*** −0.08***

trange 0.01*** 0.01*** 0.01*** 0.001*

Air pollution −0.001*** −0.001*** −0.001*** −0.001***

Wind speed −0.01*** −0.01*** −0.01*** −0.01***

Cloud coverage −0.001 0.004* −0.01*** −0.02***

Humidity 7.26*** 4.21*** 0.62 −1.01
Precipitation −605.10*** −608.46*** −318.08*** −255.88***

Weights Nb Users Nb Posts Population None
Date FE Yes Yes Yes Yes
Location FE Yes Yes Yes Yes
Observations 845,212 845,212 837,846 845,212
R2 0.34 0.34 0.05 0.03
Adjusted R2 0.34 0.34 0.05 0.02

Note: *p<0.1; **p<0.05; ***p<0.01
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B.3.5 Robustness by fixed effects

Our main results are also estimated using date and location fixed effects. To assess the
robustness of our results, we test out four fixed-effect schemes: (1) only location fixed
effects; (2) location and date fixed effects (default); (3) location and year, month, and
day-of-week effects; and (4) no fixed effects at all. Apart from the changes in fixed
effects, all four estimations are run with the same model specifications (see Section
3.3 and Equation 3.1). Results are presented in Fig. B-1 and Table B.6.
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Figure B-1: Robustness by fixed effects

We find that the results are robust by fixed effects. All four estimations yield
a similar inverse-U curve, with significant sentiment drops associated to both high
and low temperatures relative to the omitted 15°C-20°C bin. The magnitude of the
sentiment drop associated with low temperatures is larger for estimations without
temporal fixed effects (Location FEs and No FEs): this reflects strong seasonal sen-
timent trends, and it is consistent with a great amount of existing literature on the
negative impact of winter on subjective well-being [56]. We observe similar-magnitude
drops associated with high temperatures, regardless of the fixed effect specification
chosen.
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Table B.6: Robustness by Fixed Effects

Dependent variable:

Standardized Sentiment Score
(1) (2) (3) (4)

Temperature ∈(-10,-5] −0.36*** −0.51*** −0.23*** −0.20***

Temperature ∈(-5,0] −0.37*** −0.48*** −0.23*** −0.19***

Temperature ∈(0,5] −0.32*** −0.38*** −0.19*** −0.18***

Temperature ∈(5,10] −0.15*** −0.17*** −0.09*** −0.10***

Temperature ∈(10,15] −0.05*** −0.06*** −0.04*** −0.03***

Temperature ∈(20,25] −0.03*** 0.002 −0.01*** −0.01***

Temperature ∈(25,30] −0.09*** −0.04*** −0.05*** −0.05***

Temperature ∈(30,35] −0.18*** −0.15*** −0.15*** −0.14***

Temperature ∈(35,40] −0.12*** −0.10*** −0.18*** −0.18***

trange 0.01*** 0.01*** 0.01*** 0.01***

Air pollution −0.0002*** −0.001*** −0.001*** −0.001***

Wind speed −0.01*** −0.02*** −0.01*** −0.01***

Cloud coverage 0.02*** 0.01 −0.01*** −0.001
Humidity 1.03** 3.80*** 7.47*** 6.96***

Precipitation −627.33*** −591.39*** −606.99*** −604.74***

Weights Nb Users Nb Users Nb Users Nb Users
Location FE No Yes Yes Yes
Year-Month-DOW FE No No Yes No
Date FE No No No Yes
Observations 850,834 850,834 850,834 850,834
R2 0.03 0.06 0.19 0.34
Adjusted R2 0.03 0.05 0.18 0.34

Note: *p<0.01; **p<0.005; ***p<0.001
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B.3.6 Robustness by temperature measure

The MERRA-2 data set from which we collect environmental variables provides three
measures of regional hourly temperature: minimum temperature, maximum temper-
ature, and mean temperature [50]. We maintain this distinction when we aggregate
the hourly MERRA-2 data to daily level, computing the three temperature measures:
(1) the maximum daily temperature is the largest value of all the maximum hourly
temperatures; (2) the minimum daily temperature is the smallest value of all the
minimum hourly temperatures; and (3) the mean daily temperature is the average
of the mean hourly temperatures. As detailed in Section 3.4.1, we use the maximum
temperature in our main results, as this is most likely the temperature during the
daytime that individuals are likely to interact with. In this section, we test the ro-
bustness of our results by changing the temperature variable we use for estimating
Equation 3.1. Apart from the temperature variable, the model specifications are the
same as for our main results (see Section 3.3. Results are presented in Fig. B-2 and
in Table B.7.
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Figure B-2: Robustness by temperature measure

We find robust results by choice of temperature variable. For maximum, minimum,
and average temperature, we observe a U-shaped curve of subjective sentiment. While
sentiment peaks for a maximum temperature of 15°C–20°C, the most comfortable
mean temperature bin is 10°C–15°C and the most comfortable minimum temperature
bin is 5°C–10°C. The magnitude of the sentiment drops, associated to both high and
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low temperatures, are also similar.

Table B.7: Robustness by measure of temperature

Dependent variable:

Standardized Sentiment Score
(1) (2) (3)

Temperature ∈(-20,-15] −0.17***

Temperature ∈(-15,-10] −0.06*** −0.20***

Temperature ∈(-10,-5] −0.04*** −0.15*** −0.20***

Temperature ∈(-5,0] −0.03*** −0.13*** −0.19***

Temperature ∈(0,5] 0.01*** −0.12*** −0.18***

Temperature ∈(5,10] 0.08*** −0.04*** −0.10***

Temperature ∈(10,15] 0.06*** 0.04*** −0.03***

Temperature ∈(20,25] −0.09*** −0.06*** −0.01***

Temperature ∈(25,30] −0.16*** −0.13*** −0.05***

Temperature ∈(30,35] −0.19*** −0.14***

Temperature ∈(35,40] −0.18***

trange 0.01*** 0.01*** 0.01***

Air pollution −0.001*** −0.001*** −0.001***

Wind speed −0.01*** −0.01*** −0.01***

Cloud coverage −0.01*** −0.01** −0.001
Humidity 14.66*** 10.26*** 6.96***

Precipitation −574.33*** −579.37*** −604.74***

Weights Nb Users Nb Users Nb Users
Location FE Yes Yes Yes
Date FE Yes Yes Yes
Observations 853,793 852,561 850,834
R2 0.34 0.34 0.34
Adjusted R2 0.33 0.34 0.34

Note: *p<0.01; **p<0.005; ***p<0.001

110



Appendix C

Supplementary Material to Chapter 4
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C.3 Data

C.3.1 Real Estate Data

Descriptive statistics of the real estate data are provided below.

Figure C-1: Descriptive statistics of the real estate data

C.3.2 City-level controls

The first set of city-level controls were collected from the OpenStreetMap portal1.
These features were extracted from the using the tags key-value selection of Table
C.2.

Key Value Description
aeroway terminal An airport passenger building
amenity ferry_terminal Ferry terminal/stop. A place where people/cars/etc. can

board and leave a ferry.
leisure beach_resort A managed beach, including within the boundary any asso-

ciated facilities. Entry may also require payment of a fee.
natural beach landform along a body of water which consists of sand, shin-

gle or other loose material

Table C.2: Openstreetmap tags selection

We also consider the availability of green areas in the municipalities. For that we
use the proportion of green area considering the urban area in municipalities master

1https://www.openstreetmap.org
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plans. All relevant information is collected from the “Observatório do Ordenamento
territorial e urbanismo”2.

C.4 Supplementary Results

C.4.1 Impact of Weather on Real Estate Value Results, in

Standard Deviations

We also run the main results changing the variable transformations to express the
result in terms of standard deviations (instead of percentage changes). We standardize
the dependant variable, and run the same estimation (see Equation 4.4). Results are
provided in Table C.3.

2https://www.dgterritorio.gov.pt/
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Table C.3: Impact of Temperature Discomfort on Mean Square Meter Price

Dependent variable:

pvm2mean
(1) (2) (3) (4) (5)

Panel A

Discomfort Index −0.44*** −0.41*** −0.31*** −0.35** −0.31***

Air Pollution −0.05 0.06
Precipitation 0.005 −0.15
Humidity 0.10 −0.02
Logged Green Area −0.05 −0.002
Logged Higher Ed 0.32** 0.40***

Airport (dummy) 0.03 0.01
Port (dummy) 0.08 0.03
Beach (dummy) −0.05 −0.07
Logged Population 0.08 −0.20
Median Income 0.22 0.01
Total Dwellings Sold 0.47*** 0.43**

Mean Absorp. Time −0.004 0.07

Panel B

Summer Discomfort −0.41*** −0.43*** −0.27*** −0.31** −0.31***

Winter Discomfort −0.37*** −0.13 −0.28*** −0.35*** −0.64
Air Pollution −0.03 0.06
Precipitation −0.04 −0.17
Humidity 0.21 −0.48
Logged Green Area −0.06 0.01
Logged Higher Ed 0.31** 0.40***

Airport (dummy) 0.06 0.01
Port (dummy) 0.07 0.03
Beach (dummy) −0.03 −0.07
Logged Population 0.12 −0.22
Median Income 0.18 −0.003
Total Dwellings Sold 0.48*** 0.44***

Mean Absorp. Time −0.03 0.06

Panel C

Nb of Hot Days −0.26*** −0.29*** −0.16** −0.13 −0.14**

Nb of Cold Days −0.33*** −0.20* −0.24*** −0.37*** −0.36**

Air Pollution 0.003 0.04
Precipitation −0.08 −0.10
Humidity 0.08 −0.17
Logged Green Area −0.08 −0.01
Logged Higher Ed 0.36** 0.43***

Airport (dummy) 0.03 −0.01
Port (dummy) 0.03 −0.03
Beach (dummy) −0.03 −0.07
Logged Population 0.17 −0.17
Median Income 0.17 −0.03
Total Dwellings Sold 0.52*** 0.47***

Mean Absorp. Time −0.07 0.04

Weather Controls No Yes No No Yes
City Controls No No Yes No Yes
Housing Controls No No No Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 156 156 156 120 120

Note: *p<0.1; **p<0.05; ***p<0.01

C.4.2 Impact of Temperature on Non-Standardized Sentiment

While our main results are presented using a standardized measure of sentiment,
non-standardized sentiment is used below as a robustness check.
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Figure C-2: Impact of Temperature on Non-Standardized Sentiment
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C.4.3 Impact of PM2.5 Air Pollution on Sentiment

In order to assess the impact of other weather events, we estimate the impact of air
pollution on sentiment in Portugal below.

Figure C-3: Annual aggregate air pollution, as measured by 𝑃𝑀2.5.

Figure C-4: Impact of air pollution level on sentiment
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C.4.4 Full results splitting the sample based on sentiment

damage level

Full results for the sample-split regression, visualized in Fig. 4-9 of Section 4.5.3.2,
are presented below.

Table C.4: Impact of Temperature Discomfort on Mean Square Meter Price in Low
and High Sentiment-Damage Regions

Dependent variable:

Logged Price per Square Meter
Low Sentiment-Damage High Sentiment-Damage

(1) (2) (3) (4)

Panel A

Discomfort Index −0.12*** −0.04 −0.28*** −0.14***

Air Pollution 0.09 0.01
Precipitation −0.12 −0.11
Humidity −0.01 −0.06
Logged Green Area −0.08*** 0.05
Logged Higher Ed 0.26** 0.14
Airport (dummy) 0.03
Port (dummy) −0.09*** 0.05
Beach (dummy) −0.0003 0.08**

Logged Population 0.18*** −0.03
Median Income 0.04 0.07
Total Dwellings Sold −0.25** 0.09***

Mean Absorp. Time −0.03 −0.001

Panel B

Summer Discomfort −0.14*** −0.06 −0.26** −0.15***

Winter Discomfort −0.19*** −0.03 −0.17** −0.09
Air Pollution 0.08 0.01
Precipitation −0.11 −0.13
Humidity −0.01 −0.08
Logged Green Area −0.08** 0.05
Logged Higher Ed 0.26** 0.14
Airport (dummy) 0.03
Port (dummy) −0.08** 0.05
Beach (dummy) −0.001 0.09**

Logged Population 0.17** −0.06
Median Income 0.05 0.07
Total Dwellings Sold −0.22 0.10***

Mean Absorp. Time −0.03 −0.01

Panel C

Nb of Hot Days −0.07*** −0.02 −0.25** −0.10**

Nb of Cold Days −0.18*** −0.02 −0.16*** −0.09*

Air Pollution 0.10 0.01
Precipitation −0.14 −0.10
Humidity −0.02 −0.07
Logged Green Area −0.08*** 0.03
Logged Higher Ed 0.27** 0.16*

Airport (dummy) 0.04
Port (dummy) −0.09*** 0.03
Beach (dummy) 0.0001 0.09**

Logged Population 0.19*** 0.01
Median Income 0.04 0.06
Total Dwellings Sold −0.26* 0.08**

Mean Absorp. Time −0.04 0.01

Weather Controls No Yes No Yes
City Controls No Yes No Yes
Housing Controls No Yes No Yes
Year FE Yes Yes Yes Yes
Observations 71 54 85 66

Note: *p<0.1; **p<0.05; ***p<0.01
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