DETECTION OF BROKEN ROTOR BARS IN
INDUCTICN MOTORS USING
PARAMETER AND STATE ESTIMATION

by
Kyong Rae Cho

BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
(1987)

Submitted to the Department of Electrical Engineering ana Computer Science
in Partial Fulfillment of the Requirements for the Degree of

MASTERS OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
june, 1989

© Kyong Rae Cho, 1989

The author hereby grants to MIT permission to reproduce and to distribute copies ' this
thesis document in whole or in part.

Signature of Author Be _ ;
padm?‘f of Elecfrical Efigineering and Computer Science
e761 June 12, 1989
Certified by ___
effrey H. Lang, Thesis Supervisor
Associate Professor of Electrical Engineer
Certified by __
Stephen D. Umans, Thesis Supervisor
* >Principal Research Engineer
Accepted by ( B

g “Arthur C. Smith, Chairman
Departmental Committee on Graduate Students

UBRARIES



Detection of Broken Rotor Bars in Induction Motors
Using Parameter and State Estimation

by
Kyong Rae Cho

Submitted to che Department of Electrical Engineering on June 12, 1989 in partial fulfill-
ment of the requirements for the Degree of Masters of Science in Electrical Engineering.

Abstract

This thesis studies the detection of broken rotor bars in induction motors using
parameter and state estimation techniques. The hypothesis upon which detection is based is
that the apparent rotor resistance R, of an induction motor increases as a result of a rotor-
bar breakage. Here, the apparent R, is that found in the standard singia-phase equivalent
circuit of an induction motor operating at a constant velocity. The broken-rotor-bar detector
is novel in that the ideas and tools of parameter estimation theory are combined with the
appropriate electrical and thermal models for the induction motor to produce an estimate of
R, which is in turn compared to its nominal value to detect broken rotor bars.

To detect broken rotor bars, measurements of stator voltage, stator current, and the
rotor velocity are taken over a small range of slip. These measurements are processed by
three different linear-least-square-error (LLSE) estimations schemes. These include LLSE
estimation with estimated stator resistance R;, iterative LLSE estimation with estimated R;,
and LLSE estimation with measured R;. The sensitivity of these estimators to the noise in
the measurements on which they operate is also analyzed. From the sensitivity analysis,
the numerical results predict good estimation of R, on one hand and poor estimation of R
on the other. This is confirmed by experimental results of an induction motor operating at a
particular steady-state thermal operaton. Furthermore, these experiments demoristrate that
the LLSE estimation with measured R case detects one broken bar out of 45 most clearly
among the three types of LLSE estimations.

At the load varies, the temperature profile of the induction motor varies. This can cause
a significant variation in R,, one which could mask the vanation of R, due to a broken rotor
bar. To accommodate this problem, a thermal model is developed and combined with a
temperature-resistance relation of metallic conductors so that the estimates of R, at different
motor loads are standardized to estimates at a reference load, thereby proviaging
temperature-compensation. The thermai model depends on a good estimate of Ry, which
the estimators listed above could not provide. Therefore, the one estimator with measured
R is the only candidate for thermal compensation. Finally, from the physical experiments
at different motor loads, a successful temperature-compensated detection of broken rotor
bars via LLSE estimation of R, with measured R; is clearly demonstrated.

The experimental results show that the estimates of R; based on the thermal model at
various loads are nearly identical to the measured R;. Thus, this thesis also provides a
highly accurate, yet easily implemented method of estimating R;. This method replaces the
less desirable direct measurement of R;, and the detection of broken rotor bars using the
thermally estimated R; is equivalent to that with measured R;.
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Title:  Associate Professor of Electrical Engineering
Thesis Supervisor:  Stephen D. Umans

Title:  Principal Research Engineer
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Chapter 1

Introduction

1.1 Problem Statement

Unexpected motor failures, in particular those of large motors can result in costly repairs or
replacement, degradation in performance, reduction or loss of safety, and extended
downtime. This in turn can lead to large capital losses, sericus inconvenience, and perhaps
other catastrophic failures. Failure monitoring can be used to predict and detect such motor
failures. In this way, failure monitoring increases both the life expectancy and the
reliability of electrical motors, which in turn decreases their overall operating cost. Another
benefit of failure monitoring is to ensure that the motors have been manufactured properly.
This thesis concentrates on induction motors. Specifically, the rotor bar breakage is the
targeted failure for detection. The method of detection as will be discussed shortly is based

on parameter estimation technigues.
According to recent surveys [1, 2, 3] on the reliability of electric motors, bearing-
related failures constitute 41% of all induction motor failure, with stator-related and rotor-

related making up the next 37% and 10%, respectively. The remaining failures (12%) are
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scattered among a variety of effects. Of the rotor-related failures (10%), there are three
main types of failures. These are cage failures (5%}, shaft failures (2%}, and core failures
(1%). The othcr 2% is categorized under others [1]. The cage faults which constitute half
of the rotor related failures, come in the form of broken rotor bars or end rings. The main
sources of these cage faults are design errors, manufacturing defects, misoperation or
misapplication of the motor, improper maintenance, and aging or fatigue factors. Broken
rotor bars increase the vibration of the motor frame, increase the localized rotor
temperature, and can cause further breakage in other bars, all contributing to eventual motor

failure.

1.2  Comparison of Approaches to Broken Rotor
Bar Detection

Two different approaches are prevalent in assessing the condition of operating electric
motors [4]. The first method involves the technique of signature trend analysis. Signature
trend analysis relies on periodic collection of sensor measurements. These measurements
are then processed to identify characteristic "signatures™ associated with different types of
failures. For instance, vibration data can be collected and processed through a Fourier
transform. Each collected data set is processed and compared to previously processed data
sets, and some established baseline is used to determine signatures trends. Based on
experience, certain trends are correlated with impending or existing failures. In such a
way, failures can be predicted or detected. Although this method is widely practiced, the
necessity for a historical data and the experience required to associate signature trends to
specific types of failures presents serious disadvantages. These methods are not
necessarily based on any physical analysis of the failures, and hence do not take advantage

of the information inherent in this analysis.

12



The other method is generally more physically based. It uses mathematical models of
the detailed physics of motors to identify fundamental causes of failures and predict their
effects. This method offers two distinct advantages over the signature trend analysis.
Mathematical models based on the physics of motor operation is absent in the signature
trend analysis. Thus, we expect the mathematical models to produce more sensitive and
accurate picture of the "internal” details of motors. Also, there is less of a need to depend

on empirical intuition or derivation of signature trends for different types of faults.

The broken rotor bar detector developed in this thesis is based on physical models, but
it is based also on parameter estimation. In general, a variety of sensors could be used to
collect measurements from an electric motor for the purposes of failure monitoring. These
sensors might measure stator voltages and currents; air-gap and external magnetic flux
densities; rotor position, velocity and torque; internal and external temperatures; and case
vibrations, for example. Also in general, a failure monitoring system could monitor a
variety of motor failures. These failures might include conductor shorts and opens,
demagnetized magnets, bearing failures, and cooling failures. It is apparent then that a
failure monitoring system should be capable of extracting in a consistent manner the
evidence of many possible failures from measurements from many ohysically different
sensors. The failure monitoring system studied here does so by combining physical
models of the motor which include failure mechanisms and symptoms with the estimation
and evaluation of the states and parameters within the models. It is through the models that
the various sensor measurements are self-consistently analyzed in the process of
monitoring failures. Variations of the states and parameters from their norms are used to
monitor failures and suggest maintenance. This method of failure monitoring is similar in

spirit to that discussed in [5]. Thus, the ultimate goal of this thesis is to illustrate the
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usefulness and applicability of this failure monitoring system for electric motors by using

induction motor as a specific example.

The research effort of this thesis is a part of the ongoing development of a failure
system analysis for electric motors by M.I.T. Laboratory for Elecromagnetic and
Electronic Systems [6,7]. The concept of failure analysis based on parameter estimation is
shown pictorially in Figure 1.1. Note that the foundation of the parameter estimation
algorithm rests on the the physical inodels of the electric motors. The parameter estimation
algorithm takes as its input the sensor data and motor models, and produces as its output
estimates of the parameters in the models. These values are then evaluated as a whole to
determine whether any failure has occurred, and if so, the extent and the type of failure that
has occurred. The power of this general scheme lies in the fact that it can be adopted and

tailored for any type of electric motors, including an induction motor.
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Figure 1.1: The failure analysis system based on parameter estimation.

1.3 Literature Review on Broken-Rotor-Bar
Detection and Parameter Estimation

Broken-rotor-bar detection is an old problem, and its study has a substantial history. For
many years, visual inspection and bench test methods such as "growlers" and related probe
techniques have been applied to disassembled motors [8]. Also, "single phase" tests have
been applied to assembled but non-operating motors [8]. A number of recent studies have
used the physical-model approach to develop theories of the response motor operation due

to broken rotor bars or broken end rings [8,9,10,11,12]. Typical detectors examine the
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axial flux [8,9] or rotor velocity fluctuations [10] which result from unbalanced currents
caused by a broken rotor bar. Even though they are based on physical models, these
studies are limited in that they are specific to rotor cage faults. They cannot be generalized

to other types of faults, such as broken fan blade or bearing-related faults.

Unlike the above studies on detection of broken rotor bars, the ability to ge-eralize
detection for variety of faults can be accompiished through parameter estimation. As
aforementioned, estimation techniques determine the states and the parameter values of
physical models of motors. By understanding how these parameters ard stais change
from their norm values as a result of different types of faults, we have the flexibility to use

number of estimates to monitor variety of faults.

Numerous studies on parameter estimation of induction motor «iso exist. Among those
with a character similar to this thesis are [13,14,15]. All three papers batch process stator
electrical measurements and rotor mechanical measurements. Furilier, all threc papers fit
the measurements to models by minimizing error functions over the parameters using
numerical gradient methods. Reference [13] additionally augments the single-phase
equivalent circuit, the electrical model used in this thesis, to include core losses and
leakage, and presents a method for compensating thermal variations in the measuremer:, ~.
Reference [14] discusses thermal issues pertaining to measurement taking. Reference: {15]
introduces a pseudo-random load torque to guarantee the sufficient richness of the
measurements rather than pre-select specific operating points for measureraent taking as

this thesis and the other two do.

Historically, the development of high performance control algorithms, such as field
oriented control [16,17,18] have made induction motors a competitive alternative to dc

motors for many applications. The success of these algorithms depend on accurate
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knowledge of the motor parameters at all times. Since the parameters can vary significantly
during motor operation, the estimates of the parameters must be updated whenever
significant variations in parameters are detected. Of the estimated parameters, rotor time
constants and rotor resistances are particularly important to the field criented control [19].
Thus, numerous on-line or non-intrusive static estimators presented in [{20,21,22,23] are
primarily concerned with estimations of rotor resistances and rotor time constants, which
are obtained from the measurements of the stator voltage and current, and the rotor speed.
in addition variety of parameter tuning algorithms, based mainly on the theory of Model
Reference Adaptive Systems [24,25] are presented in [26,27]. While all these methods
produce the estimates of rarameters, ney make no attempt io explore detection or

prediction of motor failures.

1.4 Contributions of Thesis

The main contribution of this thesis lies in the way the ideas and tools of parameter
estimation theory are combined with the appropriate physical models for the induction
motor in order to detect a failure. The integration of physical models and estimators otiers
important improvement over previous methods in that the models describe the physics of
the response of the motor in presence of a failure, while the estimator allows flexibility to
include other types of failures as well. This thesis deals with the estimation of rotor
resistance in particular, since the hypothesis is that a broken rotor bar increases the apparent
rotor resistance. The apparent rotor resistance is precisely that of the singie-phase
equivalent circuit of an induction motor. The estimate of this rotor resistance is compared
to its nom:inal value to detect broken rotor bars. In this thesis, one broken rotor bar out of
45 has been clearly detected with estimates at different motor operating conditions as well

as at a constant motor operation.
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Another significant contribution lies in the development of a thermal model. The fact
that an increase in temperature also increases rotor resistance causes a problem in detecting
broken rotor bars, since significant temperature variations can occur over normal operations
of the motor. Hence, a thermal model is needed to temperature-compensate the estimates of
rotor resistances at different operations of the motor to estimates at some reference rotor
temperature. In this manner, meaningful comparisons of standardized estimates to the
nominal value can be made to determine broken rotor bars. While [13] deals with
temperature-compensated measurements it does not deal with temperature-compensated
estimates. In fact, none of the previous work developed thermal models to temperature-

compensate parameter or state estimates for the purpose of detecting failures.

The development of a thermal model is important in two other ways. One, the thermal
model can be used to estimate any temperatures in or on the induction motor. This then can
be used to detect broken fan blade or cooling system obstructions, although this is not
explored explicitly in this thesis. Thus, the methods developed in this thesis can be applied
to detect at least one other failure. Further, the thermal model is used to develop an
accurate, non-intrusive method of estimating the stator resistance R;. The thermal
estimation of R; offers an improvement over existing estimation methods and even non-

intrusive measurement of R; (See Chapter 5).

1.5 Outline of Thesis

This thesis is organized as follows. Chapter 2 introduces the single-phase equivalent
circuit of the induction motor and its system transfer function from the stator voltage to the

stator current. The rotor resistance R, is defined in the context of this model. The system
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used for the physical experiments are also presented in Chapter 2. Chapter 3 discusses
linear-least-square-error (LLSE) estimation schemes used to identify the parameters,
including R,. Included in the chapter is a numerical study of the sensitivity of these
estimation schemes to noise in the measurements on which they operate. Chapter 4
presents and discusses constant-temperature experimental results of the parameter
estimation schemes discussed in Chapter 3. The results conclusively detect a single broken
rotor out of 45 rotor bars for a particular motor loading and its corresponding motor
temperature profile. Chapter 5 develops the temperature compensation technique. To
support this technique a thermal model for the induction motor is developed. The chapter
also presents an alternate, highly accurate estimate of the stator resistance based on the
thermal model. In addition, Chapter 5 gives successful experimental results of the
temperature-compensated detection of a broken rotor bar. Finally, Chapter 6 concludes by

summarizing the thesis and offering future research suggestions.

19



Chapter 2

The Experimental System and
Induction Motor Model

The experimental system for all the physical experiments conducted in this thesis is
presented in Section 2.1. This section includes a description of the power supply, the test
induction motor, and the measuring equipments. In Section 2.2, the single-phase
equivalent circuit of the induction motor and its stator terminal admittance is given in a
general form. The single-phase equivalent circuit is important in that for this thesis, the
rotor resistance is defined in the context of this model and its behavior. The restrictions
and validity of this model are also discussed. Next, experimental information from Section
2.1 is combined with the single-phase equivalent circuit of Section 2.2. In doing so, we
can identify which parameters of the single-phase equivalent circuit are known through
measurements and which are not. The unknown parameters, including the rotor resistance,
must be estimated. Section 2.2 concludes by transforming the stator terminal admittance
equation for the single-phase equivalent circuit of an induction motor to a general form that

is used by the estimators described in Chapter 3.
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2.1 Experimental System

The experimental system for this thesis is shown schematically in Figure 2.1. A
nominally-120-V, 60-Hz power supply is connected to a 3-hp, 4-pole squirrel-cage
induction motor which in turn is connected to a dynamometer. The nameplate information
for the inductior motor is given in Table 2.1. All experiments are conducted with one
stator, and three identically manufactured rotors. A summary of the rotors is given in Table
2.2. Each rotor has 45 rotor bars. In rotor 2, one bar has been broken deliberately by
milling into the rotor surface and through the bar at both of its ends. A Magtrol HD800-8
dynamometer is used to load the motor so that it operates at constant speed. The control
section of the HD800-8 also provides digital readout of the measurements given in Table
2.3. Included in Table 2.3 are the errors of each measurement. For the measurements of
stator current and the stator voltage, the measurement errors depend on the settings of their
range. The measurement errors in Table 2.3 are obtained with the range for the
measurement of the stator voltage set at 150V and the range for the measurement of the
stator current set at 10A. The stator of the induction motor is fitted with 25
thermocouples. Figure 2.2 and Table 2.4 locate these thermocoupies. The temperature
readings from the thermocouples are used to verify the steady-state constant-temperature
motor operation assumed in Chapters 3 and 4, and to verify the temperature compensaticn
method developed in Chapter 5. The thermocouple readings are processed by a computer

and displayed on its screen .

The stator resistance of the motor can be measured. This resistance is measured with
the motor temporarily shut down. Since the resistance of the stator is small, on the order of
0.8 ohms, a typical ohmmeter cannot measure this resistance with sufficient accuracy.
Therefore, a power supply is connected across two stator lines and measurements from a

voltmeter and ammeter are used to calculate the stator resistance. The procedure for
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measuring R; under a steady-state constant-temperature motor operation, is discussed more
fully in Chapter 4. A discussion of the motivation behind measuring R; in this manner, as

well as the merits of making such a2 measurement, is found in Section 3.4.

HD800-8
Dynamometer m&lﬁg?n 0O (\)
l i ¢ Nominally-120V,
Tn Q Ppy 60-Hz Power Supply
Thermocouple
Temperatures
Electrical - : J
Measurements [
rYY Y -
Vel lisl @ P, Electrical
Measurements
RS

Figure 2.1:  Experimental system, see Table 2.3 for the descriptions of HD800-8
measurements.
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Westinghouse Life-Long T AC Induction Motor

3-Phase 230/460 V 3hp 1730 rpm
60 Hz N4/4T A 182T Frame  1.0s.f.

Motor Style: 773B646G41
Catalog No.: 05-3H4SBFC-skB o Eff. 81.5%

Table 2.1: Nameplate information for the induction motor.

Rotors With 45 Bars Each

Rotor 1 No Broken Bars

Rotor 2 One Broken Bar With Both Ends Open

Rotor 3 No Broken Bars

Table 2.2: Rotor summary.
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HDS800-8 Measurements

Electrical Measurements
| vd Stator Phase Voltage Magnitude (£ 0.3 V rms)
| i Stator Phase Current Magnitude (1 0.04 A rms)
L] Power Factor (£ 0.005)
Ps =|vl|is| @ Stator Phase Power (£ 15 W rms)
Mechanical Measurements
Tm Rotor Shaft Torque (£0.01 N-m)
Q= 6(;?:" Rotor Speed (£ 1 rpm)
P =Ty Mechanical Power (t0.5W)

Table 2.3: HD800-8 measurements.
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Stator Shell

4 | 9"
et o
I 3/ " 3/ "
Rotor Shaft | l } i
Side A B C
. 8 —o S
| 412" '
3 3/16"
\_ | | J
E

Fan Side

\‘
Stator Teeth

258"

Figure 2.2: Thermocouple locations; see Table 2.4.
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TC,
TC,
TCs
TC4
TCs
TCs
TC,
TCs
TCy
TCro
TCn
TC2
TCy3

AR*
BR*
CR*
AS
BS
CS
DT
DU
DV
DW
ET
EU
EV

Thermocouple  Logation

TCi4
TCys
TCy
TCy7
TCs
TCyo
TCx
TC2
TC2
TCy3
TC2;
TCys

End Turn (Fan Side)

End Tum
(Rotor Shaft Side)

* TC,, TC,, TC;3 are in holes drilled into the stator shell

t TCy;, TC22, TCy3 are in the middle of stator winding

Table 2.4: Thermocouple locations; see Figure 2.2.
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2.2  Single-Phase Equivalent Circuit of an
Induction Motor

Induction motors as a class of electrical machines have been modcled extensively. The
resulting models can be found in numerous texts [28,29,30]. In this thesis, the single-

phase equivalent circuit for an induction motor, shown schematically in Figure 2.3, serves

as the definitive model of the induction motor.

R -M L -M
— M«%—fm—
+
R,
Vg M %T

Figure 2.3: Single-phase equivalent circuit of an induction motor.

In the model, v, is the line-to-neutral stator terminal voltage, i is the stator terminal
current, R, is the stator resistance, R, is the rotor resistance, L is the stator inductance, L,
is the rotor inductance, M is the mutual inductance between the stator and the rotor, and s is

the slip. The slip is in turn defined by

5 = (W, - Poy,)/w, (2.1)

where @, is the frequency of electrical stator excitation, @y, is the mechanical rotor speed,
and P is the number of magnetic pole pairs in the induction motor. The importance of this
model for broken-rotor-bar detection lies in the rotor resistance. R,. It is hypothesized that

this resistance will increase when a rotor bar breaks.
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In general, an induction motor is modeled with different self inductances for the stator
and rotor, as shown in Figure 2.1. However, this thesis is concerned with parameter
estimation based on electrical measurements of the stator only. With these measurements,
it is not possible to uniquely determine the three inductors in Figure 2.1. Therefore, in
order to avoid an ill-posed estimation problem, the mode! in Figure 2.1 must be reduced.
The exact form of this reduction, however, is a matter of convenience. Many reductions
lead to the same stator terminal behavior in the model. Without loss of generality, then, it

is assumed here that

Lg=L,=L (2.2)

where L is a self-inductance of both the stator and rotor. Other assumptions such as Ly = M

or L, = M could also be used.

The transfer function of the single-phase equivalent circuit from the stator voltage to the

stator current is given by

is _Y2)is[e® _ 1 +jw,s7,
Vs VAvdl (R, +jw.d)+ w,s'(jRSt, - weg—)
,

(2.3)

where 7, = L/R,, K = L% - M2, and 6 is the phase angle between the stator voltage and
current [28,29]. Note that 7, is the rotor time constant and that cos8 = &@. In (2.3),|vsl
and |is| denote the rms magnitudes of the stator voltage and stator current.. Equivalently,

(2.3) is the admittance of the induction motor at the stator terminals.

28



The corresponding mechanical power equation for a sinusoidally-excitated N-phase

induction motor is

1-5),.
Pp = Ty = N(—sslllrler (2.4)

where 1, is the mechanical torque and |/ is the rms magnitude of the rotor current [28,29].

Thus, the mechanicai torque 7, is

1-5),. . iR
T = N(——s)|1,|2R,= N-I—(:)I—’ )

W (2.5)

The single-phase equivalent circuit of an induction motor is strictly valid for balanced
excitation and constant motor velocity. Note that the rotor resistance in the model is
assumed to be constant. Hence, the model ignores the effect of the magnetic diffusion in
the radial direction into the rotor bars. This assumption, however, is only valid over a
small range of slip. In reality, the apparent resistance of the rotor bars is a function of slip;
as the slip changes, the resulting change in skin depth in the radial direction changes the
apparent resistance of the bars [13,28]. Consequently, over a large range of slip, the
resistance of the rotor bars is not constant. However, if the range of slip is kept small, this
model is valid. For the purpose of this thesis and all the experiments conducted in it, the
range of slip is sufficiently small (0.0 to 0.04) to justify the assumption of constant rotor

resistance.

In addition, the single-phase equivalent circuit ignores the effect of core loss. The core

loss, if considered, can often be modeled as a resistor in parallel with the mutual inductor
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{13]. Core loss is important for the thermal model in Chapter 5. However, since the core
loss resistance is typically large relative to other electrical parameters in the model, for the

purpose of parameter identification in Chapter 3, the core loss resistance is not included.

At this point, it is useful to substitute data from Section 2.1 concerning the experimental
system into (2.2). By differentiating the knowns from the unknowns of (2.2), we can
properly gather a number of independent equations based on (2.2) into a form to which the
estimators of Chapter 3 can be applied. From Section 2.1, the frequency of the stator

excitation, ., is known to be 60 Hz. Furthermore, since the test motor is a 4-pole

induction motor, (2.1) becomes
5 = (W, - 20)/ @, = (1800 rpm - €2)/1800 rpm . (2.6)

Hence, s is determined by €2, which is measured by the dynamometer. Finally, since the

test motor is a 3-phase motor, (2.4) and (2.5) become

Pm = Tnpy = 3 (1 ;- S) Iirler

2.7
and
T = 51 's)'i,|2R,=3|_‘r_P__Rr.

WS | s ' (2.8)

respsctively. In addition to @, and s are the measurements Ivgl, ligl, and 6 = cos (),

which are obtained from the dynamometer.

Given the above measurements, the remaining unknown parameters of Equation (2.3)

are R, R,, L, and M. Admittedly, R;can be treated as a known parameter, since Section
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2.1 outlines an experimental procedure for measuring R;. However, to make the analysis
most general at this point, R; is treated as an unknown parameter. The measurement of R,

is important to one of the parameter estimators examined in Chapter 3.

As stated before in this section, the hypothesis upon which broken-rotor-bar detection
is based is that R, will increase when a rotor bar breaks. To monitor the evolution of this
failure, R, is estimated from the measurements @,, s, Ivg, liJl, and @. This estimation is
based on (2.3) which in turn is based on the electrical model in Figure 2.3 and the
definition (2.2). Note that (2.3) is actually two independent equations, one based on the
real part of (2.3) and the other on the imaginary part of (2.3). The information that (2.3)
provides with one set of measurements is therefore insufficient to uniquely determine the
four unknown parameters R;, R,, L, and M; we have 2 independent equations to solve for
4 independent unknowns. Additional information is required. Since the measurements @,,
8, Ivsl, lisl, and @ are the only ones available, the additional information must come from
additional sets of measurements taken with the induction motor at different operating
points. An operating point is defined by v;, @, and the mechanical load on the motor. As
presented in Section 2.1, the experimental setup for this thesis is such that the operating
poin't varies as a result of a varying load; Ivy and @, remain fixed, but as the load varics, li,
s, and @ will vary. As a minimum, measurements must be taken at two different operating
points. This gives four independent equations for four independent unknowns. However,
by using sets of measurements from more than two operating points, immunity to
measurement noise is obtained; the parameters become over-specified in this case. A
parameter estimator which uses many sets of measurements is therefore desirable. The
degree of overspecification is 2 measure of how well the operating points have been
chosen. Equivalently, it is a measure of the richness of the measurements. To determine
the degree of overspecification or the richness of the measurements, the linear algebraic

concepts of singular value decomposition (SVD) and condition number are introduced.
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The relevant discussion of SVD and condition number with respect to the sufficient

richness of the measurements is deferred until Section 3.1.

As mentioned, Equation (2.3) is actually two independent equations. The real part of
(2.3) yields

li,|OR, + 0fisW 1-D°L - w2 isldﬁg- + i,V 1-@* R, =|v,|

2.9
and the imaginary part of (2.3) yields
-0 vs|t, - RY iV 1-0% + ] is|PL + w2s iV 1-¢>2§— + @8l ig|PR,1T, = 0. 2.10)
r .

In general, m sets of independent measurements, presumably obtained at /n different
mechanical loads or slips, produce 2m independent equations, m from (2.9) and m from

(2.10). The resulting collection of these equations can be written as

o e odial(1-08  -oxsliler  aslialf1-0f L
0 lid®,  0didV1-0? -widide®:  ousdidV1-07 Ivsti
. N . . . Vs2
. . . . . .xl E
0 |iom]| P in...lh-cp}. - 25w ian| D w,s,,j,;nw 1-p2 || X2 |V

-esilval -l 107 i 02s)ialV1-07  wsiinld X4 g
wstval -lid(1-07  olide 0lidV1-07  wsdider | :

| - @esmivon] - iV 1-02  Odim|Pn  025imV1-D2  Wasmlion]Dm | (2.11)

where the numerical subscripts index the measurement sets, and the unknown parameters

are defined according to
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R, (2.12)

where 7, = L/R,, and K = L2 - M2, Equation (2.11) takes the general form

where A is a matrix based on the measurements, X is a vector based on the unknown
parameters, and y is a vector based on the measurements. At this point, the precise
definition of independent measurements used throughout this thesis can be discussed in
terms of (2.11) and (2.13). By m independent measurements, we mean m measurements
used to produce 2m linearly independent rows of A in (2.11). The estimation problem is
fully defined by (2.11) from which given A and y , X can be estimated. Various estimators
are described in Chapter 3 and experimental evaluation of these estimators are found in
Chapter 4. Combinations of measurements and physical models for other types of motors
can also be reduced to the general form of (2.13). Therefore, the estimation analysis for
the induction motor could just be similarly applied to other types of motor. In this sense,

the estimators developed in this thesis need not be motor-specific.

Finally, it should be emphasized that, for the purpose of estimation, (2.11) is assumed
to contain data that is collected at a constant temperature. Since (2.11) contains data
obtained from different operating points, it is therefore assumed that the motor is first run at
one operating point and allowed to reach steady-state temperature distribution. Following
this, it is assumed that the data from the other operating points are obtained very quickly so
as not to affect this temperature distribution. The selection of the operating point which

determines the temperature distribution is arbitrary.
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Chapter 3

Constant-Temperature Estimation
Theory

3.1 Introduction

In this chapter, we examine the three different parameter estimators used for estimating the
rotor resistance, R, and the other parameters. These estimators assume a steady-state
constant-temperature operating condition of the induction motor. As stressed before, the
rotor resistance increases both as the temperature rises and as rotor bars break. Thus, to
simplify analyses and gain insight, temperature issues are deferred until Chapter 5 by
assuming steady-state constant-temperature operation of the motor. It should be clear that
if we cannot develop an estimator which detects broken rotor bars at motor constant-
temperature, we certainly cannot develop an estimator which detects broken rotor bars at

arbitrary temperatures.

In Chapter 2, given the availability of m independent sets of measurements from an

induction motor consisting of @,, s, v, lisl, and @, Equation (2.11) is derived from the

single-phase equivalent circuit of the induction motor. The general form of (2.11) is given
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by (2.13), in which A is a matrix based on the measurements, X is a vector based on the
unknown parameters, and ¥ is a vector based on the measurements. Given A and ¥, ¥ can
be estimated. This is nearly a linear-least-square-error (LLSE) problem [31]; it is not
because there is uncertainty in both A and ¥ as opposed to in y alone. Also, the elements
of the vector X are not independent. Nonetheless, we might treat it as a LLSE estimation
problem with the expectation that the resulting estimator will be an adequate estimator of X.

In this case, the appropriate estimator of X is

f=(ATAJ'ATy (3.1)

where a superscript ~ denotes an estimate, and a superscript T denotes algebraic
transposition [31]. In general, given the presence of noise in the measurements, no value
of X satisfies (2.13) exactly. The value of % in (3.1) is a compromise in the sense that it
minimizes the length of the error vector y - AX. To emphasize this compromise we call ¥
an estimate. Equation (3.1) can also be used for the discussion of sufficient richness of the
measurements. A singular value decomposition can be applied to the matrix ATA of (3.1)
to determine singular values that correspond to each row of ATA [31]. These singular
values in turn determine the degree of overspecification of the parameters in X. In order for
the estimate in (3.1) to be well-behaved, the matrix ATA must be invertible. The
magnitudes of the singular values indicate the invertibility of ATA. As the magnitude of
any singular values becomes progressively smaller than the others, ATA becomes
progressively closer to dropping one in rank. When this happens ATA no longer invertible
as required by (3.1). The condition number, defined to be the magnitude of the ratio of the
maximum singular value to the minimum singular value, is used as a convenient quantity to
measure the invertibility of ATA, and hence the sufficient richness of the measurements.

As the condition number becomes smaller, the mairix becomes more invertible, and
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equivalently the measurements become richer. The three estimators presenied in this

chapter are all developed in this spirit of LLSE estimation.

The first estimator is simply (3.1) which neglects the dependence of the all five
parameters appearing in (2.12). Given the LLSE estimate of X to Equation (2.11) by (3.1),
the fundamental parameters, R, R,, L, and M can be determined by (2.12), although not
uniquely. This estimator thus ignores the fact that the parameter x5 is the product of the

parameters x; and x,. This estimator is discussed in detail in Section 3.2.

The second estimator is an iterative LLSE estimator which follows the first. This
estimator recognizes the dependence among the parameters x;, x7, and x5 that the first
estimator ignores. By enforcing this dependence cn the estimator, we expect that it would
produce better estimates over the first estimator; in reality, however, we will see that this
expectation is not always met. To tegin, one of the parameters, x;, x;, or xs, is selected
and evaluated from the other two. LLSE estimation of the other four parameters then
proceeds iteratively following a method similar to (3.1). The resulting estimates are used to
re-evaluate the evaluated parameter, and the process is repeated until sufficient convergence
of all five parameters is obtained. This iterative procedure is developed and discussed for

each of parameters xi, x3, and x5 in Section 3.3.

The third estimator also follows the first. However, it assumes knowledge of the stator
resistance R;. Given R, the estimation problem underlying the first estimator reduces to
the estimation of three parameters, %,, L, and K/R,. The three unknown fundamental
parameters L, M, and R, are then uniquely determined from the estimates of the reduced set
of parameters. The main reason for developing this estimator is that R; cannot be estimated
well by either of the two estimators mentioned above. This important resuit is predicted in

Section 3.5 and shown experimentally in Chapter 4. Since all the parameters are estimated
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collectively, we expect that inadequate estimation of R, will have a negative effect on the
estimation of R, as well. Again a LLSE estimator in the spirit of (3.1) is used to estimate
the new parameters. This estimator seems to require a measurement beyond w,, s, v, liJ,
and @, and thus appears to violate the spirit of this thesis. We want to deiect broken rotor
bars using only the electrical measurements from the stator terminals and the measurement
of the rotor speed; we do not want to be intrusive to the operation of the motor. However,
it is shown in Chapter 5 that an excellent iterative estimate of R, can be obtained from only
these measurements and an initial measurement of R with the help of a thermal model of
the induction motor. In practice, this cstimate is substituted for a measurement of R;. The

third estimator and measurement issues of R, are described in detail in Section 3.4.

To summarize, three estimators have been introduced. They use the following
estimation methods: (1) LLSE estimation with estimated R;, (2) iterative LLSE estimation
with estimated Ry, and (3) LLSE estimation with known R;. To determine the merits of
each estimator, Section 3.5 analyzes their sensitivities by numerically evaluating the effect
of inherent errors in the collected measurements on the estimated parameter vaives. An
important prediction by the sensitivity analysis is that the first two estimators will produce
inadequate estimates of R;. This prediction is confirmed by experimental results in Chapter
4. Consequently, when used in the thermal model developed in Chapter 5, R, should be
either measured or better estimated by a different method such as the non-intrusive
measurement of R; discussed in [32] or temperature-based estimation of R described in

Chapter 5.

3.2 LLSE Estimation with Estimated R,

As outlined in the introduction of this chapter, the first estimator independently

estimates all five parameters defined by (2.12). Given the collection of equations in the
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forrn of (2.11), which in turn takes the form of (2.13), the estimate of ¥ is given by (3.1).
This estimator is naive in that it ignores the dependence among the parameters x;, xz, and
Xs; parameter xs is the product of the parameters x; and x;. Since the estimator ignores
this dependence, five parameters are independently estimated instead of four. This
necessitates the collection of three or more sets of independent measurements, each set
consisting of @, s, v, ligl, and @, since as noted in Chapter 2, each set of measurements
produces two independent equations. Consequently, the subscript m denoting the number
of independent sets of measurements in (2.11) must be 3 or more. If the measurements
were perfect, m = 3 would yield a perfect estimate of . However, the presence of noise in
the measurements is unavoidable. Thus, to minimize the effects of error, m should be
sufficiently larger than 3 to over-constrain the estimate of X; larger the m, better the
estimate. As more independent measurements are made, the condition number of ATA in
(2.11) becomes smaller and hence its invertibility becomes better. This in turn produces

better LLSE estimates of X.

To summarize, the corresponding LLSE estimate of X is

T
o _ Az _ _( T )—l T
X=|x3|=| L =\A'A)J Ay, 3.2)
X4
| X5 _ ,}K‘r
R,

where the A is the measurement matrix and y is the measurement vector of (2.12). Once ;4

is determined, all the estimates of R, R,, L, and M can be determined. However, these
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latter estimates are not unique, since the dependence among the parameters x;, X, and xs is
not enforced on the estimator. To cobtain the estimates of the four fundamental parameters,
Rs, R,, L, and M, only the estimates of any four independent parameters of (2.14) is
needed. More specifically, since there are three parameters of the five that share a
dependence, namely, x;, x7, and x5, only two of these three are needed. Hence, there are
three different ways of obtaining the estimates of Ry, R,, L, and M, each corresponding to
not using different one of the estimates X}, X3, and Xs. Again, we do not expect the
resulting three sets of estimated values for the fundamental parameters to be equal, since the

dependence of x;, x3, and x5 is not taken into account by this estimator.

For the estimator used experimentally in this thesis, X5 is not used to determine the four
fundamental parameters. For this case, the estimates of the fundamental parameters are as

follows. First, the estimates of R, and L are given by

Ry=%,, L=1 (3.3)
Using (3.3), the estimate of R, can then be obtained from
R=L
X1 (3.4)
Finally, the estimate of M uses both (3.3) and (3.4) to give
—~ f-.2 o
M=VL"-Rx; . (3.5)

This estimator is a convenient place to start the progression of analysis, but the decision not

to use the dependence among the three parameters in shaping the estimator seems
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unwarranted. The next section describes an estimator which uses this dependence as a

constraint on the estimation process.

3.3 Iterative LLSE Estimation with Estimated R;

As seen in the last section, an LLSE estimator can be used to estimate al! the fundamental
parameters. However, as discussed in the last section, x5 = R7,, for example, is really a
dependent parameter; it is just the product x,x,. We can use this extra constraint to iterate
on the LLSE estimation. If this extra constraint is forced on the estimator, we expect the
iterative LLSE estimates to yield better results than those of the non-iterative LLSE
parameter estimator of Section 3.2. This intuition is proven with the experimental results in

Chapter 4.

As stated earlier, x5 = x;x,. Thus, either x,, x,, or x5 can be considered the extra
constraint. This then specifies the three possible iterative schemes. For each of these three
possible schemes, the starting point is the estimate of X given by (3.2) using the LLSE
estimator in Section 3.2. If the measurements were perfect, we could stop there. This
single-step LLSE estimation of the parameters will be consistent in that the fifth term will
indeed be equal to the product of the first two terms. The measurements, however, are not
perfect. So, the problem of matching the dependence of the estimates is necessarily an
iterative one. Therefore, one of the parameters x;, x,, or xs, is selected as the extra
constraint, and is evaluated in terms of the estimates of the other two parameters. For
example, given that we choose xs, it is evaluated as the product ¥,x,. This new value for
the parameter designated as the extra constraint is then treated as a known measurement and
LLSE estimation of the other four parameters proceeds iteratively. At each iteration, the

evaluated parameter is updated from the new estimates of the other parameters, and the
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other parameters are re-estimated using this update. The resulting estimates at the ith
iteration are compared to those of (i-1)st iteration, and the process is repeated until
sufficient convergence of ali the estimates is obtained. Note that a minimum of three sets of
measurements are necessary for these iterative estimators, since the initial estimates come
from (3.2). An alternative way of iterating is to set the constrained parameter to a nominal
value or to zero before the first iteration. This then only requires two independent sets of

measurements.

Three possible iterative estimators have been applied to ideal data, that is, noiseless data
generated numerically from the single-phase equivalent circuit. Two of the iterative
estimators are stable and one is unstable. If x; =7, is taken as the dependent variable, then
the estimation process diverges rapidly. The rate of convergence for ihe other two are
nearly equal, but the case when x3 = R; is taken as the evaluated variable seems to produce
slightly better resuits in terms of estimator performance. Hence, although all three iterative
estimators are given here, only the iterative estimator with R as the extra constraint is

considered for all physical experiments as well as the sensitivity analysis in Section 3.5.

For the first of the three possible iteration schemes, x5 = R;7,is chosen as the
dependent variable. It is considered as a known measurement and is substituted by the
product XX in the iterations. At this point, for notational purposes, let A of (2.11) be

given by
A=[alaylaslaslas) , (3.6)

and

A=[lalalazlay) 3.7
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where g; is the ith column vector of A. Thus, at the it iteration, the estimate of x;, x3, X3,

and x4 for this particular iterative estimator is

-
El Ri o
BB el 2
2 X
X4
&
&) (3.8)

where the superscripts i and i-1 denote the corresponding iteration step, as is defined in
(3.6). The iteration is considered to have converged sufficiently if the following condition

is satisfied:

~ini silaill
Rs% -Rs 1,

A‘A‘

Rs%

<é.

(3.9)

Of course, we can specify how well the terms must converge by picking the value of 4. In
testing the iterative estimators, & is set to 0.001 for all three estimators. As long as the
condition (3.9) is not satisfied, the process iterates. When the condition (3.9) is satisfied,
the fundamental parameters are determined uniquely from the final result of (3.8). This
particular iteration scheme is numerically stable and converges rapidly for the specific
induction motor used in this thesis. Hence, the stability is not proven for all other

induction motors. The general study of stability is suggested as a topic for future work.

For the second iteration, which is unstable for the motor used in this thesis, x; = 7, is

chosen as the evaluated dependent variable. This exira constraint is evaluated as the
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quantity Xs/X in the iterations. Thus, at the ith iteration, the estimate of x5, X3, x4, and x5

is

X

)

. - (A&’A:)‘*A%(v- Ez) al)

~i-1

Rs

>0

R.%)
| &) (3.10)

where
Az =[azl a3l asl as) 3.11)

with each a; found again in (3.6). For this second iterative estimator, the iteration is

considered to have converged sufficiently if

Rl - @R R
(Rs%)IRs | (3.12)

Unfortunately, when tested with ideal data and perturbed initial guesscs, this estimator is
numerically unstable and thus the estimation process actually diverges. This means that the
convergence condition (3.12) is never satisfied. This estimation scheme should not be
used for this motor. For other induction motors, however, the instability has not been

proven. This is also left for future work.
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The third iterative estimator yields stabie estimates and is deveioped in the same way as
for the first two. This estimator uses x; = R; as the dependent variable, which is evaluated

as the quantity Xs/X;. Here, at the ith iteration, the estimate of xp, x3, x4, and x5 is

-
~g
T,
3 ~i :
% L -1 R.) !
;: = . = (A;Ag) A;(y - (—-i lil— a
2s K\ -
R,
& (3.13)
where
A3=[a1Ia3|a4la5] (3.14)

with each a; found again in (3.6). This iteration is considered to have converged

sufficiently when

Rew)/% -Rew) 15| _
CEAT (3.15)

is satisfied. The third iterative estimator is stable like the first, and the four fundamental
parameters R;, R,, L, and M are determined uniquely once (3.15) is satisfied. Given the
same & and given that both the first and the third iterative estimators are applied to matrices
that have been formed by perturbing the ideal data, the estimates of the third iteration

scheme are slightly better than those of the first when the convergence conditions of (3.9)
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and (3.15) are met for the first ime. Thus, only this estimator is actually used out of the

three iterative estimators in the remainder of this thesis.

3.4 LLSE Estimation with Known R;

At this point, another estimator is examined, namely the estimator with an R_that is

assumed 1o be known. This means that R is no longer a parameter to estimate. Since there

is one less parameter to estimate, our intuition leads us to believe that the corresponding
estimator should do better than the two that also estimate R;. This primary reason for
considering this estimator is the fact that the estimation of R turns out be quite
unsatisfactory for the previously discussed LLSE and iterative LLSE estimators. This
result is predicted by the sensitivity analysis in the next section and shown experimentally
in Chapter 4. Furthermore, this result has been observed in other studies [33,34] as well.
This is important because for the thermally-compensated detector in Chapter 5 to work, we
need good estimates of R;. Although the inability to estimate R_ well has not been fully
explained, it appears related to the fact that core losses are not included in the single-phase
equivalent circuit in Figure 2.3. However, preliminary investigation into augmenting the
single-phase equivalent circuit by placing a core-loss resistor in parallel with the mutual

inductor has not produced any improvements over the existing estimators. To deal with

this problem, the unsatisfactory estimation of R is replaced by accurate knowledge of R_.

For the experimental results in Chapter 4, and for much of the experimental results in

Chapter 5, the knowledge of R comes from an actual measurement of R.. This seems to
violate the spirit of this thesis in that an intrusive measurement is needed beyond @, s, Iv4l,
lig, and @. To be a useful tool, the estimation technique should be non-intrusive to the

machine operation; the operation of the motor must not be interrupted by the measurement
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of R;. Recently, a non-intrusive method of measuring R;has been developed [32).
Therefore, the intrusive measurement of R, given in Chapter 4 can be used to approximate
the implementation of the non-intrusive measurement setup described in [32]. More
importantly, as stated in the introduction of this chapter an excellent iterative estimate of R_
can be obtained from only the measurements @., s, Ivgl, ligl, and @, and an initial
measurement of R, with the help of a thermal model of the induction motor. This is
developed in Chapter 5. Since this increases in only a minor way the complexity of the
algorithm used to thermally compensated the estimates, instead of the additional hardware
setup required by [32], the thermal estimation of R is recommended as a standard
procedure and substituted for a measurement of R; in practice. The measurements of the
R as described in Chapter 4 is then necessary to prove the validity of the thermally-based

estimation of R;, since before it can be used, it must be verified.

If we assume the availability of Ry, then a new estimator can be developed using R as a
known parameter. In this case, the collection of equations in (2.11) can be reduced.
Specifically, x; = R; becomes a known, and x5 becomes Rgx; which can then be combined
with x;. Thus, only three parameters need be estimated. The comresponding collection of

measurements and equations that is re-derived from (2.11) by using R; as a known is
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where the notation of symbols and the subscripts are the same as those of (2.11). Equation
(3.16), like (2.11), is in the form of (2.13), with A the reduced measurement matrix and

measurement vector y.

Equation (3.16) is also a near-LLSE estimation problem. Further, the estimator for
(3.16) requires no iteration. Consequently, the issues associated with iteration, such as
stability and rate of convergence need not be addressed. Yet, since we have more
information, namely the value of Ry, this estimator should yield better results. Thus, if we
assume a negligible cost of acquiring an accurate value of R, which is the case with
thermally estimated R;, we expect the known-R; estimator to give us the best of both

worlds: ease of estimation and more accurate results.

Applying the new estimator, the estimate of x;, x3, and x4 as defined in (2.12) is

-
~ ]
~ &
[il}_ ~ _(ATA)-IAT_
| = L = \A4 A4 Ayys4,
X3 .
&)
| _ (3.17)

where A4 is the measurement matrix in (3.16) and y4 is the measurement vector in (3.16).
The estimates of the fundamental parameters R;, R,, L, and M are obtained from (3.17) by

the following:

L=%, R.=LR =L/t M=VL*-R%; . (3.18)
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The three types of estimators, LLSE with estimated R, iterative LLSE with estimated Ry,
and LLSE with known Rj, are now fully developed. In the next section we proceed to
determine the effect of inherent errors in the measurements on the estimation results given
by each of the three estimators developed in this chapter. Also in Chapter 4, these
estimators are used in physical experiments to see whether they can in fact detect a broken

rotor bar.

3.5 Sensitivity Analysis

In the previous sections, three parameter estimators have been developed. These are the
LLSE estimator with estimated R;, the iterative LLSE estimator with estimated R;, and the
LLSE estimator with known R;. In this section, we examine the sensitivity of these
estimators to noise in the measurements on which they operate. In particular, we bound the
variance of the parameter estimates given the variance of the measurements from which the
estimates are derived. It must be mentioned that in this section we are only concerned with
the sensitivity to measurement error and not to modelling error. The sensitivity analysis
presented here is therefore incomplete. As we shall see in this section and in Chapter 4, R,
is not estimated well. While this may result from measurement noise, a phenomenon
which is predicted in this section, it may also result from modelling error. Two known
sources of modelling error are the omission of core losses and the frequency-dependence of

parameters in the electrical model.

It is important to study the sensitivity of the estimators because this sensitivity is a
measure of their potential for their success. In particular, if the variance of the estimate of
R, due to measurement noise is larger than the change in R, that can be expected to come

from a broken rotor bar, then it will be very difficult to observe a broken roter bar via the
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estimate of R,. Since the variance of the estimate of R, can be reduced with more data, the
sensitivity of the estimators can aliernatively be used to determine how inuch data must be
collected before a useful estimate of R, can be made. Finally, since the sensitivities of the
three estimators can be expected to differ, a comparison of sensitivities can be used to select

one over the other two.

Each of the three estimators is analytically complex. Therefore, it is not possible to
determine their sensitivities analytically. Consequently, we employ a numerical method to
approximately evaluate the sensitivities. The numerical method begins with ideal data
which, when processed by each estimator, yields error-free estimates of the parameters.
Next, the ideal data is perturbed and processed again. The sensitivity of an estimator is
judged by the change in its parameter estimates which result from the perturbed data. To
simplify this analysis, data perturbation and estimation processing is carried out several
times. Each time, only one type of measurement is perturbed. In this way, it is also
possible to identify the need for particularly precise instrumentation. Section 3.5.1 outlines
the method of analysis and Section 3.5.2 presents numerical results of the sensitivity

analysis.

3.5.1 Method

The sensitivity method outlined in this section gives upper bounds on the variations of the
estimates given the observed error in the measurements by Table 2.3.
The method here uses all the relevant data from the experimental system given in Section
2.1. Furthermore, it uses the nominal values of the fundamental parameters, R, R/, L,

and M that are averaged from estimates of some preliminary experimental results. This is
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done to simulate the experimental conditions as closely as possible, so that the correlations

of any analytical results from this section o those of the actual experiments are maximized.

First, ideal data composed of measurement vectors is derived from a set of reference
values for the fundamental parameters. These reference values have been obtained
experimentally using the procedure described in Chapter 4. A measurement vector of the
ideai data is then perturbed by the observed maximum error for that particular
measurement. This perturbed data is then used by each one of the estimators to obtain
corresponding estimates. This procedure is repeated for each measurement vector of the
ideal data. Finally, an upper bound of the variation in each of the parameters is computed

from these estimates and the reference parameter values.

To begin, the reference values for the fundamental parameters, R, R,, L, and M, are
given in Table 3.1. From these values an ideal data matrix I can be constructed. The ideal

data I must form the following overconstrained matrix,

lisi] D1 S |val
lin] @2 2 |vs2l

_lisis] P16 €216 |vs16l_ (3.19)

with the numerical subscript indexing the measurement sets and with the measurements as
defined in Table 2.3. Note that there are 16 independent sets of measurements, since in
Chapter 4, each set of estimates are consistently obtained from 16 sets of independent
measurements. The number of independent sets of measurements is important only in that
it must guarantee sufficient richness of the measurements; the choice of 16 measuremenis is

arbitrary. Also, since all the rms magnitudes of the stator voltage are nominally 120 volts
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from Chapter 2, all the | v;il's of (3.19) are kept constant at 120 volts. Moreover, as is
done in the experimental procedure, the rotor speed {2 is decremented by 5 rpm from 1795
to 1720 inclusively. With the two measurement vectors for 2 and|vs| of (3.19) fixed in
this manner, the other two measurement vectors in (3.19) can be determined uniquely by
using the reference values and the two equations, one based on the real part and the other
based on the imaginary part, provided by Equation (2.3) for each set of measurements.
Neglecting the numerical round-off errors, this ideal data is perfect in the sense that
applying any of the two estimators, LLSE with estimated R, and iterative LLSE with
estimated Ry, to it produces the reference values for the fundamental parameters R, R,, L,

and M exactly without any error. In short, the estimates replicate Table 3.1.

pi7| [R#] [ 08650
pref=| A7 (| RIT| | 0.563Q
| (M| L69.87mH

Table 3.1: Reference Values for the Fundamental Parameters

An ideal data similar to (3.19) can be constructed to test the LLSE estimator with
known R quite easily. The ideal data in (3.19) must be augmented by one more
measurement vector for the measurement of R;. All the elements of this vector are the
same, namely the reference value of R, found in Table 3.1. Since the sensitivity analysis
of the LLSE estimator with known R, can be done with minimal modifications to the
sensitivity analysis of the other two estimators, only the estimators with estimated R, will
be analyzed explicitly. However, appropriate comments for the estimator with known R;

are made whenever necessary.
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We can perturb the matrix I one measurement column vector at a time by adding to and
subtracting from all 16 clements of this vector the maximum observed error in that
measurement. The maximum observed measurement errors are taken from Table 2.3. For

instance, a set of perturbed matrices formed by perturbing the £2 column of the I are

Iisil Dy  + AR 'V."II
] Q, + AQ
prag) =| e P h [vsal
L lisisl Pig S+ A2 |vael (3.20)
and
- ;
lisi] D 2 -AQ vyl
j £ -AQ
pag =| 2l P - V2l
L lisi6l Dis  Qe-AQ |vasl (3.21)

Similarly, the matrices P+ and P- can be formed with errors corresponding to the other
measurements. Again, the numerical values of Alis|, AP, AL and Al v,| are found in Table

2.3, and

AR = 0.002 Ohms (3.22)

have also been observed experimentally at constant-temperature operation of the motor.
Each of the perturbed marrices gives rise to corresponding data matrix in the form of A and
y in (2.11) and A4 and y4 in (3.16), which in turn can be used to derive estimates via the
three estimators. Then, for each of the two estimated-R, estimators, we define Ap; the

change in the parameter p; in presence of a Ay; a change in the measurement y; as
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||pAPHAw) - pi|
ApfAp;) = max
IpAP{aw) - o) (3.23)

where the subscript j indexes the fundamental parameters

Pl-l R
'ﬁ = 52 = R’
3J L

Pal M (3.24)

and also the corresponding reference fundamental parameters given by Table 3.1, and

where the subscript i indexes the four measurement errors according to

EIRE™M
Aua AD
Ap =| Aps | =| AQ
Apa Alvs]
[ Aus | L AR | (3.25)

Notice that the fifth element of (3.25) is excluded since R for the two estimators
considered is treated as an unknown fundamental parameter, not a measurement. Similarly

for the LLSE estimator with known R;, Ap{Ay;) in (3.23) can be obtained for all the p;'s

in (3.24) except for that of the first vector element, since R;is now a measurement.

Correspondingly, A extends to include the fifth element of (3.25).

Finally, for the two Rs-estimated estimators, an upper bound on the variation of the

parameter p; to the variations in measurement errors is given by
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i=1 (3.26)

where pj's (j = 1 to 4) are defined in (3.24) and Ay;'s are defined in (3.25). Likewise for
the R-known estimator, the upper limit on the summation for (3.26) is changed from 4 to
5 and pj's are taken for j =2 to 4 instead. One interpretation of (3.26) is that each Ap,(Au,-)
can be seen as a distance between a particular estimate of p; and the expected value of p;,
Thus, each estimate produced from perturbing one measurement vector at a time by the
maximum error in that measurement gives rise to one datum point. Equation (3.26) then
computes the variation, or the square of the standard deviation, for these data points using

pj¢ as the expected value.

Since Ap,(Au.-) in (3.23) takes the maximum, this analysis gives a conservative upper
bound on standard deviations Op;'s. In reality, we do not expect all 16 sets of
measurements to read either all up or all down from their expected values by the maximum
error values given in Table 2.3 and (3.22). Most likely, we will encounter a mixture of
measurements varying in magnitudes and signs, leading to tighter bounds on Op;'s than

given by (3.26).

3.5.2 Numerical Results

For each of the three estimators studied in this chapter, the numerical results of Equation
(3.26) for all the fundamental parameters are given in this section. The results indicate that
detection of a broken rotor bar for the experimental motor is possible since the R,-deviation

bounds for two of the three estimators are less than that which corresponds to about 2%
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change in rotor resistance due to a single broken rotor bar out of 45 bars. The estimation of
R; on the other hand, is shown to be poor. The implication: of the inability to adequately
estimate R; on the thermally-compensated estimation of R, is then discussed. Lastly, since
the bounds and the estimation accuracy itself are functions of measurement errors inherent
in the measuring apparatus, we investigate the type of measuring accuracy needed for an

acceptable corresponding bound on the variation of R;.

The numerical results compiled in this chapter and all future chapters are developed
using MatrixX; see Appendix C for the MatrixX programs of the various estimators
developed in this chapter, and Appendices D and E for the MatrixX programs and their
numerical results of the sensitivity analysis. Figure 3.1 shows the upper bound on the
standard deviation for each fundamental parameter for all three LLSE estimators. As an
alternative presentation, Figure 3.2 gives the bound on the ratio o,/p"# in percentage,
which is named percent-deviation. Percent-deviation measures the deviation of parameter,
p, as a percentage of the reference parameter value, p'¢. Given that a broken rotor bar
increases the R, by 2%, an examination of Figure 3.1 and 3.2 show that the LLSE
estimator with estimated R and the LLSE estimator with known R, can detect one broken
bar, since the upper bounds on their percent-deviations are both less than 2%.
Furthermore, the figures indicate that the LLSE estimator with estimated R seems to

produce the smallest percent-deviation of the rotor resistance.

To begin the comparison of the sensitivity results for the three different types of
estimators, we must recognize that by perturbing the ideal data matrix I, we introduce noise
into the measurements which subsequently corrupts the estimates generated by all three
estimators. The ways in which the three different estimators distribute this noise are used
to explain the numerical results of the sensitivity analysis. Among the three estirnators, the

LLSE estimator with estimated R, has the most degree of freedom in the unknown
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parameters. Thus, for this case, the noise is distributed among five parameters.
Apparently, the estimator distributes most of the noise into the estimate of R; hence, the
bound on the percentage-deviation of R; is 74.4%. On the other hand, the estimator
corrupts the estimates of the other parameters minimally. In particular the bound on the

percent-deviation of R, is 1.4%.

If the degrees of freedom decrease by one as is the case of iterative LLSE estimator
with estimated R;, then the noise is distributed differently. Some of the noise which is
present in the estimate of R, for the first estimator is redistributed into the estimate of R,.
The end result is that whiie the estimate of R becomes better, the estimate of R, becomes
worse. In fact, the 3.9% bound on the percentage-deviation of R,is well above the
required 2% to detect a broken rotor bar for the experimental motor. This result makes
sense in that the iterative estimator, by enforcing a dependerice among the parameters, in
effect balances the overall estimation of R, and R;; the estimator, because of the enforced
dependence, is concerned more about the estimates taken collectively than it is about any
particular estimate. Consequently, the poor estimate of R, for the first estimator is
compensated at a cost of the further corruption of the estimate of R,. Even so, the bound
on the percent-deviation of R is 31%. Thus in both of the cases discussed here, the error
in the estimate of R; is too large to support the temperature-compensated estimation of R,,
in which the thermal model requires good estimates R;. Therefore, even though the 1.4%
bound on the percent-deviation of R, by the first estimator predicts detection of a single
broken rotor bar at a constant temperature, this estimator is not useful in implementing the
methods developed in Chapter 5. Therefore, we expect that the third estimator will be most

successful in Chapter 5.

For the LLSE estimator with known Rj;, the degrecs of freedom in the unknown

pararneters decrease to three from the five in the first estimator and from the four in the
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second. Since this causes a further restriction in the number of different estimates in which
to place the noise, the estimate of R, is corrupted more than that of the first case. This is
seen in the increase of the bound on the percent-deviation of R, from 1.4 for the first
estimator to 1.9 for the third. Note that the 1.9% bound on the percentage-deviation for the
third estimator is better than that of the second estimator, and more importantly, it still
guarantees detection of a broken rotor bar. Therefore, even though the sensitivity analysis
favors the first estimator discussed above for constant-temperature deiection of a broken
rotor bar, we must chcose the LLSE estimator with known R, since the first two
estimators cannot provide the sufficiently accurate estimates of R, which are needed for the

thermally-compensated estimation of R, developed in Chapter 5.

Another issue which is not studied in this thesis must be addressed in future work.
This is the sensitivity of the estimates to modelling errors. Specifically, core loss is not
included in the equivalent circuit model of the induction motor, so the real power into the
motor terminals which corresponds to core loss is associated instead with R and/or R,.

This may explain the inadequate estimates of R as observed in the experimental results in

Chapter 4.
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Bounds on the Standard Deviation of the Estimates

. RN 0.6434
Rs §
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! 0.008 B Estimated-Rs Iterative LLSE

4 0.0211 @ Known-RsLLSE
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mH

Parameter Estimates OChms (Rs, Rr)

Figure 3.1: Bounds on the standard deviation of the parameter estimates.
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Bounds on the Percent-Deviation of the Estimates
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Figure 3.2: Bounds on the percent-deviation of the parameter estimates.

One last interesting analysis that can be performed is to determine the degree of
measuring accuracy needed to ensure a reliable estimate of R;. Note that the error values
given in Table 2.3 and (3.22) need not be same for other type of instrumentation. They are
only characteristic of the HD800-8 instrumentation used for this thesis. Therefore, as
equipment becomes cheaper and more accurate, we can expect the noise limits to be
bounded more tightly and subsequently prod:ice better estimates. A few cases of
improvements in measurement accuracy have been simulated with MatrixX, and a case
which resulis in much better estimate of R, is shown in Table 3.2, Figure 3.3, and Figure
3.4. Note from Table 3.2 the improvements necessary in measuring £2and @. Typically,
given the accuracy of the HD800-8 instrumentation, the estimation inaccuracy is due mostly

to the measurement error in £ But by the time the measurement accuracy in £2 is improved
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to the value given in Table 3.2, the error in the measurement of @ starts to dominate. At
this point, the bound on the percent-deviation of R; is still at 15% for the LLSE estimator
and 10% for the iterative LLSE estimator, thus the measurement accuracy of @ has to be
improved to the value given in Table 3.2 in order to reduce the percent-deviation of R to
2% for the LLSE estimator and 4% for the iterative LLSE estimator. While the desired
accuracy of measuring & seems to be reasonable, the desired accuracy of measuring 2
seems to unreasonable, since the corresponding rotor speed measuring device must be S0
times more accurate than the one used for this thesis. It needs to resolve 0.02 revolutions
per minute. This suggests us that new equipment is not the answer to obtaining reliable

estimates.

Figure 3.4 shows that the iterative LLSE estimator does a better job of estirnating R,
than the non-iterative LLSE estitnator. This opposes the findings in Figure 3.2. Thus, in
view of this contradiction, the sensitivity analysis in general is shown to be amplitude
dependent. The reason for this is that the noise enters nonlinearly into the estimation
process. The results given in Figures 3.1 and 3.2 are then specific only to the reference
values and the measurement errors used in the sensitivity analysis. General conclusions
cannot yet be drawn and are left for future work, but one peint is clear. For the
experimental system used in this thesis, we must use the LI.SE estimator with known Rj,
since the other two estimators produce inadequate estimates of R which becomes important

in the thermal model.

Having completed the development of the estimators, namely the LLSE estimator with
estimated R, the iterative LLSE estimator with estimated R, and the LLSE estirnator with
known R;, and the their sensitivity analysis under the assumption of steady-state constant-

temperature operation of the induction motor, we are ready to apply these estimators in



actual constant-temperature experiments. Chapter 4 presents these constant-temperature

experimental results.
Origiral Measurement Errors Modified Measurement Errors
Alig| =+ 0.04 A rms A=+ 0.04 A rms
A @] = £ 0.005 A @] = + 0.0005
AI.Ql::tlrpm AI.Q|=i0.02rpm
Alvg|=20.3 V ms Avg|=%0.3 Vrms

Table 3.2: Necessary bounds on the measurement errors for a reliable estimation of R;.

Bounds on the Standard Deviation of the Estimates

(L, M)
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Figure 3.3: Bounds on the standard deviation of the parameter estimates for
error deviation in Tabie 3.2.
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Bounds on the Percent-Deviation of the Estimates

SR RS 4.6
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Figure 3.4: Bounds on the percent-deviation of parameter estimates for
error deviations in Table 3.2.
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Chapter 4

Constant Temperature Experimental
Resuits

4.1 Introduction

In this chapter, we experimentally study the performance of the three estimators developed
in Chapter 3. The experimental conditions are restricied to steady-state constant-
temperature motor operation. In this chapter we apply the three estimators developed in
Chapter 3. The experiments involve three rotors. Rotor 1 and rotor 3 are healthy while
roter 2 has a broken bar. In each of the test experiments, measurement data is coliected at
16 different motor slips and then is processed by each of the three estimators to yield the
estimates of R, and R;. The expected values and the standard deviations of these estimates
are cornputed and examined to determine the success of broken-rotor-bar detection for each

estimator.

The experimental results are important, because they justify the theories developed in
Chapter 3. In general, the experimental results correspond closely to the results of Chapter

3. From the physical experiments conducted in this chapter, several important conclusions
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arise. Firstly, the stator resistance R;is poorly estimated as is predicted in the sensitivity
Section 3.5. Thus R;must either be measured or be estimated more accurately by some
other method. Secondly, LLSE estimator with known R, and the iterative LLSE estimator
with estimated R, both detect the broken bar in retor 2, although the estimator with known
Rgdetects it much more clearly than the other. Finally, for the LLSE estimator with

estimated R;, the detection of a broken rotor bar is not clear; its success is arguable at best.

The chapter is organized as follows. Section 4.2 discusses the experimental procedure
for constant temperature tests which have been conducted with the experimental system
described in Section 2.1. This section discusses the maintenance of the constant
temperature condition, the measurement of R;, and the collection of the experimental data.

Section 4.3 then presents and discusses the experimental results of the three estimators.

4.2 Experimental Procedure

4.2.1 Maintaining a Constant Temperature Operating

Conditicn

To simplify matters, the experiments reported here are set up so that thermal variations of
R, are not an issue. A way to remove the effects of temperature variation is to bring the
induction motor to a steady-state temperature for all tests. Since the resistive power
dissipations are the main source of temperature for the induction motor, the motor should
come to the same steady-state temperature for each experiment as long as the power
dissipations are kept constant. This is easily achieved by keeping the stator voitage and the

mechanical power, P, at some predetermined values until the targeted steady-state
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temperature is reached. The thermocouples are used to determine when this condition has

been reached.

In this chapter, the stator voltage |v]| is held constant at 120V rms line-to-neutrzl .nd
P,, as read by the dynamometer is held at approximately 700W; the actual power is
somewhat higher as described in Appendix B. The choice of P,, = 700W is limited in the
experimental system by the amount of heat which can be removed from the dynamometer
and not by some property of the motor itself. Hence, even though the motor can operate at
higher P,,, the mechanical power is limited to 700W when there is no cooling system for
the dynamometer. For the experiments conducted in Chapter 5 we needed sufficient
richness in the measurements of motor temperatures, so the limit on P,, is subsequently
relaxed by installing an air-cooling system for the dynamometer. With the aid of the air-
cooling system, P, is raised safely to 1.7kW. In order to determine when the steady-state
temperature condition has been reached, thermocouples TC;, TC;s, and TC;, are

monitored until they indicate constant temperature readings; see Figure 2.2 and Table 2.4.

To illustrate the thermal time constants of the experimental induction motor, Figure 4.1
shows a graph of the temperatures in degrees Celsius above the ambient temperature at
TC,, TCys, and TCy,. For this graph, |v| is 120V, P, is 1500 watts, and the ambient
temperature, T4, is 24 °C. This experiment is the only one in this chapter in which P, is
not 700W. It therefore has been conducted after the installation of the air-cooling system
for the dynamometer. Note that although this experiment has been performed with P, =
1500W, as opposed to the standard of 700W, the thermal time constants should be nearly
equal to that of 700W operation. However, because the temperatures at different points of
the motor are larger at P,, = 1500W than at P,, = 700W, the thermal time constants can thus
be illustrated more clearly with P,, = 1500W. Recall from Chapter 2 that the computer

gives a digital display of the thermocouple temperature measurements relative 1o the
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ambient temperature. Notice that all the thermal equilibrium is reached in about 75 minutes.
To ensure that the motor reaches constant temperature condition, the induction motor is

always left running for 90 minutes before each set of tests are conducted.

Thermal Time Constant

45
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!g: 101 ' —e— Thermocouple 16
E2 —@——  Thermocouple 22
- 5
=
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Minutes

Figure 4.1: Thermocouple temperature versus, | vs| = 120V, P, = 1500W, Ty,p = 24°C.

After 90 minutes, with the mechanical load at 700W, the thermocouple readings are:
TC, = 18 °C, TC;6 = 21 °C, and TCy2 = 22 °C above the ambient temperature of 24 °C.
Since it is crucial to be at the same steady-state motor temperature before and during each
data collection, the thermocouples TC;, TC¢, and TCy; are checied to make sure that they
read approximately the same absolute temperature of TC, = 42 °C, TC; = 45 °C, and
TC>2 = 46 °C before and throughout the data collection process. As discussed earlier, this

requires waiting approximately 75 to 90 minutes after turning the motor on.

66



4.2.2 Measurement Procedure

Once we are confident that the motor is operating at a steady-state constant-temperature
condition, we can proceed with the collection of data. From Chapter 3, we know that for
the estimators with estimated R,, the measurements of | is|, | vs|, £2, and @ must be made,
and for the estimator with known R, the measurements of | ig|, | vsl, £2, @, and R must be
made. For the measurement of K, we have for the purpose of estimator development
assumed that a method of on-line measurement of R; is available [32]. In Chapter 5, an
alternative way of obtaining accurate estimates of R; based on the thermal model is

discussed.

Instead of implementing the instrumentation for the non-intrusive measurement of R; as
it is described in [32], R is measured off-line using the setup shown in Section 2.1. This
measurement process for R required that the motor be temporarily shut down. However,
once the motor reaches the constant temperature condition, the measurements of R must be
made quickly enough, typically within 10 to 20 seconds, so that the thermocouple readings
do not indicate a drop in temperature of more than 1°C from their steady-state values. Once
the measurements are made, the motor is restarted and left alone until the constant
temperature condition prevails. Since the resistance of the stator is small, on the order of
0.8 ohms, a typical ohmmeter cannot provide sufficient accuracy. Therefore, a DC supply
is connected to the stator winding and both a voltmeter and an ammeter are used to calculate

the stator resistance.

Once the motor reaches its steady-state constant-temperature operation again, sets of

measurements ( |is|, |vs|, 2, @) are made at different slips to ensure that these sets of
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measurements are independent. Enough independent sets of measurements are collected,
so that the measurement matrix, A in Equation (2.11) or A4 (3.17) is overconstrained; if A
or A4 is not overconstrained, the estimations cannot work. Here, we ccllect 16
independent sets of measurements. In each of the tests, we decrement the rotor speed {2
from 1795 to 1720 rpm in steps of 5 rpm while holding the stator voltage nominally at
120V. Recall that each set of measurements gives rise to two independent equations, one
for the real part of the system function of the single-phase equivalent circuit, and the other
for the imaginary part. Therefore, in all, the collection of 16 independent sets of
measurements gives rise to 32 independent equations or row vectors for the measurement
matrix A or A4, which more than satisfies the necessary condition of overconstraining A
or A4. Once A or A, is overconstrained, the LLSE estimators can be used to estimate the

parameter values.

One critical point is that each excursion from the original £2 that corresponds to P, of
700W to a different £2 must be brief. This is necessary to keep from violating the steady-
state temperature condition. The danger is that if the data collection at a different £2 and
hence, different P, takes too long, the motor will deviate from its original constant
temperature state to another constant temperature state. Again, to make sure that the
readings are taken at the same constant temperature condition, the thermocouples TC;,
TC,¢, and TCy; are monitored throughout the data collection procedure. The measurements
are considered valid if and only if they are obtained at the same thermocouple temperatures
as those at the original steady-state constant-temperature condition of the motor. If the
thermocouple temperatures deviate from their corresponding steady-state temperatures at
any time during the data collection, the mechanical loading is set back to 700W and this

point is maintained until the motor returns to the original steady-state temperature.
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As long as the other measurements, | ig|, |vs|, £2, @, are collected under the constant
temperature condition, the value of R; is kept constant also. Hence, only a measurement of
R, in the beginning of each test is needed. However, to double-check, at end of each test,
R, must be measured again and compared to the measurement made at the beginning of the

test. In general, the two measurement of R, have been kept close to each other.

4.3 Experimental Results

In order to determine whether a change in the apparent rotor resistance is sufficient to
conclude that a rotor bar has been broken, we used a single stator and tested three rotors of
the same type. Rotors 1 and 3 have no broken bars while rotor 2 has one broken bar; see
Table 2.2. The reason for testing two healthy rotors is to investigate the effects of

variations in the rotors due to the manufacturing process.

Each rotor is tested four times. As described in the last section, each test is conducted
under the constant temperature condition of |vg| = 120V and P,, = 700W, and each test
comprises 16 independent sets of measurements taken at 16 different slips. From each test,
three estimates for the rotor resistance are obtained numerically using MatrixX programs;
see Appendices C, F, and G. These estimates correspond to LLSE estimation with
estimated R;, iterative LLSE estimation with estimated R, and LLSE estimation with
known R;. Furthermore, the measurements from each test are used to produce two

estimates of R; that correspond to LLSE and iterative LLSE estimations.

The experimental results of R, and R; estimates using different estimators are shown in
Figure 4.2, 4.3, and 4.4 for the R, estimates and Figure 4.5 and 4.6 for the R, estimates.

The results in each figure correspond to a particular estimator. In each figure, the numbers
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1" "2", and "3" Jocate the rotor or the stator resistance estimated from independent
measurements taken with one of three different rotors. The numbers "T", "2", and "3"
locate the average estimate of the rotor or the stator resistance for each rotor. The standard
deviation of the rotor or the stator resistance estimates for each rotor is indicated by
horizontal line segments on both sides of the average of the estimates. Tables 4.1, 4.2,
4.3, 4.4, and 4.5 provide the numerical values for the experimental results shown in
Figures 4.2, 4.3, 4.4, 4.5,and 4.6 respectively. In the tables, the average of the estimates
is denoted by ”Ave(ﬁ,]" or "Avc[ﬁs}" and the experimental standard deviation of the

estimates by the symbol Gexp.

Each table provides two additional pieces of information not found in each figure. An
estimate labeled "ﬁ, from average data" or "ﬁs from average data" is obtained for each rotor
by first averaging all the measurement data matrices for the four tests and then producing
estimates of R, or R, based on this averaged data matrix. None of averaged-data estimates
are shown in the figures, since they closely approximate Avc{ﬁ,] or Avc[ﬁs]. The other
information is the numerically simulated bound on the standard deviation, labeled Grum,

from Figure 3.3 in the last chapter.
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Figure 4.2: Experimental results of R, estimates, LLSE with estimated Rj.
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2 = Broken Rotor of ith rotor

Figure 4.3: Experimental results of R, estimates, iterative LLSE with estimated R;.
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Rotor Resistance (Ohms) i = rotor resistance estimate of ith rotor
1,3 = Healthy Rotor TI= average of rotor resistance estimates
2 = Broken Rotor of ith rotor

Figure 4.4: Experimental results of R, estimates, LLSE with known R;.
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Rotor Resistance Estimates (Ohms)
Rotor 1 | Rotor 3 | Rotor 2

Estimate 1 0.565 | 0.543 | 0.600
Estimate 2 0.585 | 0.567 | 0.588
Estimate 3 0.580 | 0.554 | 0.587
Estimate 4 0.549 | 0.565 | 0.600
Ave(R,) 0.570 | 0.557 | 0.594
R, fromaverageddata | 0.568 | 0.556 | 0.592
- 0.016 | 0.011 | 0.007
Grum 0.008 | 0.008 | 0.008

Table 4.1: Experimental data for R, estimates, LLSE with estimated Rj.
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Rotor Resistance Estimates (Ghms)

Rotor 1 Rotor 3 | Rotor 2

Estimate 1 0.553 | 0.553 | 0.571
Estimate 2 0559 | 0554 { 0576
Estimate 3 0.568 | 0.555 | 0.565
Estimate 4 0.563 0.565 | 0.586
Ave(R,) 0561 | 0.557 | 0.575

R, fromaverageddata | 0.561 | 0.557 | 0.574

O exp 0.006 | 0.006 | 0.009

c 0.021 0.021 | 0.021
num

Table 4.2: Experimental data for R, estimates, iterative LLSE with estimated R;.
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Rotor Resistance Estimates (Ohms)
Rotor 1 | Rotor 3 | Rotor 2
Estimate 1 0.559 | 0.562 | 0.575
Estimate 2 0.559 | 0.561 |} 0.580
Estimate 3 0.564 | 0.563 | 0.575
Estimate 4 0.564 | 0.567 | 0.578
Ave(R;) 0.562 | 0.563 } 0.577
R, from averageddata { 0.561 | 0.563 | 0.577
Cexp 0.003 | 0.003 | 0.002
Orum 0011 | 90011 | 0.011

Table 4.3: Experimental data for R, estimates, LLSE with known R

B 2 :
: 3 |
1 3 3123 21 31 22
Lo e ey
L B NN BN I R B BN B N N
0.50 0.70 0.90 1.10 1.30 1.50 1.70 1.90
Stator Resistance (Ohms) i = stator resistance estimate of ith rotor
1,3 = Healthy Rotor
2 = Broken Rotor

1 = average of stator resistance estimates
of ith rotor

Figure 4.5: Experimental results of R; estimates, LLSE, measured R = 0.864 Q.
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Stator Resistance (Ohms) i = stator resistance estimate of ith rotor
1,3 = Healthy Rotor T = average of stator resistance estimates
2 = Broken Rotor of ith rotor

Figure 4.6: Experimental results of R; estimates, iterative LLSE, measured R; = 0.864 €2.

Stator Resistance Estimates (Ohms)

Rotor 1 | Rotor 3 | Rotor 2

Estimate 1 1296 | 0798 | 1.691
Estimate 2 1362 | 1346 | 1247
Estimate 3 0960 | 1.067 | 1.692
Estimate 4 0587 | 0924 | 1.001
Ave(R;) 1.051 | 1.034 | 1.408

Srom—

R fromaverageddata | 1.020 | 1.018 | 1.377

c 0.356 0.235 | 0.343

Onum 0.643 0.643 | 0.643

Table 4.4: Experimental data for R, estimate, LLSE, measured R; = 0.864 Q.
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Stator Resistance Estimates (Ohms)

Rotor 1 | Rotor 3 | Rotor 2

Estimate 1 1044 | 1091 | 0986
Estimate 2 0852 | 1.028 | 0953
Estimate 3 0717 | 1072 | 1.117
Estimate 4 0.880 | 0928 | 0.659
Ave(R.] 0.873 | 1.030 | 0929

R, fromaverageddata | 0.879 | 1.032 | 0.932

Oexp 0.134 0.073 | 0.193

Cnum 0.267 0.267 | 0.267

Table 4.5: Experimental data for R; estimate, iterative LLSE, measured R = 0.864 Q.

The first thing to notice from the experimental results is that, to some degree, all three
estimators can detect a broken rotor bar. However, the LLSE with known R; shows
superior broken rotor bar detection over the other two estimation schemes. The others, in
particular the iterative LLSE estimator and arguably the LLSE estirnator with estimated Ry,
seem to detect a broken rotor bar as well, but not as unambiguously as the LLSE estimation
with known R,. Note that by testing rotors 1 and 3 an additional good rotor is tested so
that the variation of parameters due to manufacturing process is also taken into account. As

we have postulated, all three estimatiors generally produced increased estimates of R, for
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rotor 2 over those of the other two healthy rotors. The only minor exception is one stray
rotor 2 estimate for the iterative LLSE estimated R;case. Certainly, if only Avc(ﬁ,] is
considered, all three estimators produce increased estimates for the broken rotor, rotor 2, as
compared to those of the two healthy rotors, rotor 1 and rotor 3. Note also that the
estimated increase is on the order of 2.5%, which is consistent with breaking one bar out of
45. In conclusion though, the LLSE estimator with known R; is clearly the best choice for
detection of broken rotor bars. For the purpose of an unambiguous detection of a broken
rotor bar, an important conclusion is that we must either measure R or develop an alternate

and more accurate way of estimating it.

The tables and the figures indicate that the magnitude of Oexp is on the same order as the
magnitude of op,m. However, the order of the estimators in which the standard deviations
increase is different for the experimental and numerical cases. This is not surprising, since
there are other sources of estimation error in addition to measurement noise that the
sensitivity analysis is concerned with. For example, as we have mentioned, modelling
error is not taken into account in the sensitivity analysis. One experimental result is clear,
though. Note that the lowest Gexp corresponds to the LLSE estimator with measured R;.
Therefore, we again expect the LLSE estimator with known R;to produce the best R,

estimates.

For both estimators that estimate R, the estimates are poor in that they are much larger
than the actual measured value of R,. This demonstrates that R cannot be estimated well
experimentally as expected in Chapter 3. The experimental and the numerically-bound
standard deviation of R; estimates on the other hand, are in reasonable agreement. Both
Oexp and Gpum for the Ry estimates decreases by a factor of about three as we go from the
LLSE estimator to the iterative LLSE estimator. As hypothesized in Chapter 3, iterative

LLSE estimator should produce better estimates as compared to just the LLSE estimator,
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since an additional dependence among the parameiers xj, X3, and x5 of (2.12) is taken into
account by the iterative estimator. Comparing further, the values for O.xp for £, are
approximately half the corresponding values of G,,,m. This increase in accuracy from the
numerically bound case to the experimental case is to be expected because the numerical

bounds are conservative.
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Chapter 5

Temperature Compensation

5.1 Introduction

In Chapter 4, a broken-rotor-bar detector is successfully demonstrated while the induction
motor operated at constant temperature. Such a detector has a limited scope; we must detect
broken rotor bars over the entire temperature range asscciated with motor operation. This
poses a new problem for the broken-rotor-bar detector described in Chapter 3 because a
typical variation in rotor temperature can cause a significant variation in the rotor resistance.
A thermally induced variation in rotor resistance can thus be misinterpreted as a broken

rotor bar.

One solution to the detection problem posed by thermal variaton in rotor resistance is to
first determine reference rotor resistances of "healthy" rotors for every operating condition,
and then compare all estimates of rotor resistance to these references so as to examine rotor-
bar breakage. This solution requires an enormous data base, and seems unnecessarily
cumbersome. If we can instead incorporate a thermal model into the detector to thermally

compensate its estimates of rotor resistance, then the detection of broken rotor bars at any

79



arbitrary operation conditions of the induction motor is possible without an extensive data
base. The effect of temperature on rotor resistance is thus taken into account and factored
out by the thermal model. This chapter then has two goals: to develop a temperature-
compensation method for the estimates of R, and to experimentally demonstrate the

thermally-- )mpensated detection of broken rotor bars.

Section 5.2 discusses the foundation of temperature compensation, which is the relation
between the resistivity of a material and its temperature. This relation is then generalized to
describe the resistance of volumes of materials with non-constant temperature profile. This
is necessary, since we are interested in rotor resistance rather than rotor resistivity. Chapter
3 provides a method of estimating the rotor resistance, but the rotor temperature must be
known in order to use this method. This problem of circular reasoning is solved in Section
5.3. Section 5.3 outlines a method of obtaining estimates of the rotor temperature. This
necessitates the development of a thermal model and the estimation of its parameters. Once
the rotor temperature estimates are known, they can be used with the rotor resistance
estimates to produce resistance estimates that correspond to a reference rotor temperature.
This compensation is carried out via the relation developed in Section 5.2. The
experimental thermally-compensated estimates of R, for rotors 1, 2, and 3 are shown and
discussed in Section 5.5. All experiments uses LLSE estimation with known Ry, and all
estimates of R, are transformed to estimates corresponding to the load of 700W as
measured by the dynamometer. The thermally compensated estimates of R, for rotor 2, the
broken rotor, are located well above the range of the estimates of R, for the two healthy
rotors, rotor 1 and rotor 3. Thus, a successful thermally-compensated detection of the

broken rotor bars is demonstrated.

As a by-product of the development of the thermal model and temperature

compensation, an effective method of estimating R is also developed and discussed in
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Section 5.4. In Section 5.5, the experimental estimates of R; based on the thermal model
are shown to be virtually identical to the measured R, values. In effect, this dernonstrates
that in terms of the R, estimation, there is no difference between using either the
temperature-based R estimation or measurements of R,. This is verified experimentally in
Section 5.5. The important conclusions are that the thermally-compensated detection of a
broken rotor bar is successful and that the recommended estimation scheme for the rotor

resistance is that of LLSE estimation with thermally based R, estimates.

5.2 Temperature-Resistance Relation

This section examines the relationship between the resistivity and the temperature of a
conductor. This relationship is then generalized to one between the resistance of a
conductor and its temperature, since the single-phase equivalent circuit deals with rotor
resistance. For the induction motor used experimentally in this thesis, the rotor bars are
made of aluminum. Since these bars give rise to the rotor resistance, knowing the
dependence of the resistance of aluminum conductors on the temperature should provide
sufficient information to compensate for thermal variations in the estimate of R,. The

stator windings, which are considered later, are made of copper.

In general, the relationship between the resistivity p and the temperature T of many

conductors is governed by

T, .r+ T
T,.) = Lref7T 10
PATre) = pT) T+, 5.1
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over some range of temperature in the neighborhood of T, [35,36]. For both aluminum
and copper, this range extends beyond the typical temperatures experienced inside

induction motors. In (5.1),

228.1 °C for aluminum
To = ’
234.5 °C for copper (5.2)

T,ef is an arbitrary conductor temperature in °C, and T is the conductor temperature also in
°C; see Appendix A. Given Ty and the resistivity of the conductor at temperature T, (T),
Equation 5.1 rescales p(T) 1o p(T,), the resistivity at temperature Tref. This is the basis

for temperature compensation.

Given an aluminum conductor such as the rotor bars, a temperature rise from 20°C to
100°C resuits in a 34% increase in resistivity. Such an increase dominates the equivalent
increase caused by a broken rotor bar. In Chapter 4, it is observed that a broken bar
changed the estimated rotor resistance by approximately 2%. Thus, the thermal variation in

rotor resistance must be compensated if the broken-rotor-bar detector is to be successful.

Equation 5.1 is concerned with material property of resistivity, rather than resistance.
We, therefore, need to generalize Equation 5.1 to resistances, since our single-phase

equivalent circuit deals with stator and rotor resistances, not resistivities. In general,

R(T(x)) = f A o

Cx) (5.3)
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where the resistance R is an integral of the temperature-dependent resistivity p(T") divided

by the cross-section area A(x) of the conductor along the path C(x) which defines the

resistor. The variable of integration x is a spatial variable defined along the path C. Note

that the resistivity p is a function of temperature, which is in turn a function of x.

Rearranging (5.1) and substituting it into (5.2) yields

R(T(x)) = f Alre) [”"’*Tﬂdx.

A(x)
Qx)

Equation (5.4) can be rewritten as

R(Tw) = AT j ) e s

Tuf + Ty A(x )
Cx)

Since
AT . _
I Ag) = R
Qx)
Equation (5.5) becomes

RT) = 2T j Tx) 4y 4 _To

T+ To] Alx)
ax)

Finally, rewriting (5.7), yields

Trer + To)
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R(T, .
T,¢f+ To ( ref)

To j P(Tref) dx .

(5.4)

(5.5)

(5.6)

(5.7



= T, T+T,
Rx=RT(T+ 7 = RO 71
(T( )) ( "’f) \T,er+ To T,er+ To ( ’e)T,ef+ Ty (5.8)
or
R(Trg) = RI) Tt To
+T0 (59)
where
)
f ax) &
F= ) = Ty + AT
dx_
A(x)
) (5.10)

Even though the conductor has a distributed temperature profile, for the present purposes,
it can be thought of as a conductor with a lumped-parameter temperature T = Trer + AT.
This lumped-parameter temperature Tis actually 2 weighted-average temperature over the

conductor. In this way, the thermal equation (5.1) is generalized to resistances.

Equation (5.9) provides a means for compensating for the thermal variation in rotor
resistance. If the weighted-average rotor temperature, T, is known, then the estimated
rotor resistance can be transformed using (5.9) to an estimated resistance at a reference
temperature, thereby providing compensation. To determine T, the broken-rotor-bar
detector is expanded to include weighted-average temperature estimation based on a thermal
model of the induction motor. The estimated rotor temperature is then used in (5.9). From

here on, the weighted-average temperature of the rotor is simply referred to as the rotor
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temperature and, likewise, the weighted-average temperature of the stator winding is

simply referred to as the stator winding temperature.

5.3 Thermal Model

To use the relation between resistance and temperature derived in Section 5.2 for
compensation, the rotor temperature must be known. This chapter develops a means of
estimating this rotor temperature using a thermal model. The accuracy of the rotor-
temperature estimation is then verified using temperature measurements provided by
thermocouples located at various points of the motor; see Chapter 2 for a discussion of the
thermocouples. Finally, the temperature-compensation of estimated R, is described in full.
Experimental results of the temperature-compensated R, estimation are presented in Section

3.5.

The rotor temperature must be estimated rather than measured because it is difficult to
implement an effective method of measuring the rotor temperature directly. Even if we
could attach a thermocouple, or even several thermocouples, the readings from these only
describe point temperatures. It is unciear how these readings can be transformed to yield
the lumped temperature T described in Section 5.2 except through an appropriate estimation
scheme. Since the rotor temperature is estimated and not directly measured, the accurrcy of
tae rotor-temperature estimates must be evaluated indirectly using the temperature estimates
of thermocouples at various points of the stator. Experimentally, as is discussed later, the
thermal model predicts the thermocouple temperatures all to within 2°C of the actual
temperatuce readings. Thus, a successful estimation of the rotor temperature can be
inferred. As a final test of the success, Section 5.5 demonstrates both an accurate

estimation of the stator resistance based on the thermal model and successful temperature-
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compensated detection of broken rotor bars. Both the thermal-based estimation of R, and
temperature-compensated estimation of R, depend on good estimations of the rotor
temperature. Hence, the positive results in Section 5.5 ultimately suggest a successful

estimation of the rotor temperature.

In order to estimate the rotor temperature, a thermal model is developed here. The
thermal model relates the increase in the rotor temperature to a linear combinaticn of heat
sources and their corresponding equivalent thermal resistances. The thermal model allows
estimation of the thermal resistances via LLSE estimation operating on data specifically
collected for this purpose. Once these thermal resistances are known, the rotor temperature

can be estimated at any arbitrary steady-state motor operation.

To simplify the thermal model, linear steady-state thermal operation of the motor is
assumed. This assumption of linearity is justified experimentally with thermocouple
measuremerits later in this section. The steady-state 2ssumgtion is somewhat limiting, but
could be lifted with a more involved dynamic model. The development of a dynamic model
is left for future werk. Three sources of heat are included in the model. These are the total
dissipation in the stator winding, Pj, the total dissipation in the rotor bars, P,, and the total
core loss, P.. Given these assumptions, the temperature rise of the rotor, or the

temperature rise at any point in the induction motor, is given by

AT= Pses"'Prer"'Pcec (5.11)

where AT is the temperature rise of the point in question above the ambient temperature, as
defined in (5.11), ancd each ©is an appropriate thermal resistance. The therrnal resistances
and AT are functions of space for point-wise interpretation of AT but are lumped-

parameters for the weighted-average interpretation of AT. The dissipations are totals, and
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so are independent of space. Since the total core loss occurs primarily in the stator, we

arbitrarily simplify (5.10) to

AT=Pr8r+(Ps+Pc)95 . (5.12)

Equation (5.12) is used instead of (5.11) for one main reason. It turns out that the use of
(5.11) yields negative values for the estimates of seme of the thermal resistances while
(5.12) produces all positive values. The troublesome implication of the negative estimates
of thermal resistances produced by (5.11) is that under certain conditions, the points in the
induction motor that are associated with these negative thermal resistances actually take
away heat rather than generate it which is a physical impossibility. Even though this is
counter to physical argurment, the use of these estimated thermal resistances nevertheless
provides estimates of the thermocouple temperatures that are just as good as those estimated
from (5.12). Since, (5.11) and (5.12) are equally effective in estimating temperatures in
the motor, we choose (5.12) because it also satisfies our physical understanding of the

induction motor.

To justify the use of (5.12), the induction motor is studied experimenially. As shown
in Figure 2.2 of Chapter 2, the motor is fitted with 25 thermocouples. The induction motor
is then operated at constant a|vs| of 120 volts and ®, of 120x rad/sec, with loads of 250W,
700W, 1.2kW, and 1.7kW as read by the dynamometer. Next, the motor is allowed to
come to thermal equilibrium, and for each operating condition, AT from eacit
thermocouple, Ry, |Vsl, |4sl, £2, @, and the mechanical torque are measured. Care must be
taken to add the pre-measured bearing and windage torques, collectively denoted as Zp toss
to the measured mechanical torque 7, meqs to produce the total mechanical torque 7,. Since
the loading P, measured by the dynamometer is computed from 7, qs alone, we must be

careful not to associate this measured value to the total mechanical loading. There are other
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loads from bearings and windage that are not registered in 7, meqs- Finally, the
measurements are used to justify and establish the accuracy of (5.12). By assumption, if

the thermal model works well for points in the stator, then it works well for the rotor aiso.

For each operating condition, AT and P = 3is{2Rs can be computed directly from the
measurements. Further, P, = 3i,[2R, can be computed from (2.?) to be

P, =3 irler = (—I{T)fmwm = (T'ET)(Tmma:"'Tm.loss)wm , 5.13)

where T, 1oss = 0.3796 N-m; see Appendix B. P.is a core loss function, which is
dependent on the | V| and @,. To determine P,, the peak magnetic flux density in the stator
core is approximated given |vs|. Using this flux density, the known @,, and the known
stator core volume, P, is determined from core-loss specifications for the steel from which

the induction motor is manufactured. Thus, P, for the induction motor is computed to be

61.7 "Vatts. In this way, &;and 6, are the only unknowns in (5.12).

To justify the linearity of equation (5.12), the thermal resistances &; and ©, are first
estimated with four sets of measurements at mechanical loads of 250W, 700W, 1.2kW,
and 1.7kW as measured by the dynamometer. The estimated thermal resistances are then
used to blindly estimate the thermocouple temperatures at three other loads. Finally, the
measured and the estimated thermocouple temperatures at each of these three loads are

compared to check the validity of (5.12).
To estimate the thermal resistances 8;; and 8,; for any thermocouple TC; listed in Table

2.2 and shown in Figure 2.2, (5.12) is transformed to the near-LLSE estimation problem

of the form
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ATj
AT
AT
AT s

[-(1—‘5:1_31)(1:”"‘“8“'“‘l +Tm'lo-’-’)wml i is1 IZRsl +P. ]
{ lfiz)(TmJﬂeaJZ"' Tm.doss)®Om2 Y is2 |2R 2+P.

(l_ls_‘i;j(fm.meaﬂ"'fm.los )me 3“:3 ‘ZRS3+P c

s 3
(1-s4) (Tm.measa* Tm,Joss)Oma 3 isaPRsa+Pc
L.

(5.14)

The subscripts "1", "2", "3", and “4", correspond to the data collected at the dynamometer

loads 250W, 700W, 1.2kW, and 1.7kW, respectively. This can be summarized by ¥; =

AX; where

( .s-‘-ls'l) Tm'mea’l+fm.loss)wml 3“31 |2R31+Pc
s ‘ -
(1-22) Tm.meas2+1'm'[on)wm2 Yis |2Rs2+P c

_s ‘ .
( 1 -;3) Tm’me“3+1”"!°-"-’)wm:5 3| Is3 lZR s3+P.

RY .
-I_L“j(fm,measnt'*' Tm.loss)wnut 3’ Is4 |2R satP.

Xj= (6 asi]T:
and

¥i = [AT;; ATiy ATz AT4)T.

Again, this estimation problem is only nearly a LLSE estimation problem because of the

uncertainty in A. Nonetheless, we treat it as one. In this way, the LLSE estimates of the

thermal resistance become
i |=(aTal'ATy,
esi
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for the ith thermocouple. Having obtained the 8; and 8,; for each thermocouple, these

estimates are then used with (5.12) to estimate each AT; for the dynamometer loads of

S500W, 950W, and 1450W. Thus, with the subscripts "S", "6", and "7" denoiing the
dynamometer loads of SO0W, 950W, and 1450W, respectively, the estimated AT; are

given by

Af (ls_._is)(fm.measﬁ*‘ 1v'm.lo.s's)a)ms Yiss IZR ss+tP ] .
i5
A?EG = (ls__:,ﬁj(fm.meaﬂ"' Tm.loss)wm6 3| is6 |2R s6+P foy ?’i
A. S . .
AT L(l-_;‘))(TMMGS7+ Tm.loss)wm7 3' Is7 I2R s1HPc | o (5.16)

Given an evaluation of (5.16) and the actual measurement of each AT}, the residuals can be

computed, where each residual, DT;, is defined by

DT;s AT;s AiiS
DTis AT | - | ATis
DTg

AT AT (5.17)

DT; has been computed of all 25 thermocouples for rotor 1, rotor 2, and rotor 3. For every
case, the maximum magnitude of DT; never exceeds 2 °C, and generally, the values of cach
DT; is under 1 °C. The temperature residuals at the data points that correspond to P, of
250, 700, 1200 and 1700 watts are even less than for those that correspond to P, of 500,
950, and 1450 watts. The results justify the use of the linear thermal model in (5.12),

since the use of this assumption produced accurate estimates of thermocouple temperatures.
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In addition, the above results demonstrate that the thermal resistances are the same for
all three rotors, including rotor 2, which has a broken bar. This is to say that in terms of
thermal source and conductance, the three rotors are identical. Furthermore, in terms of the
resistance of an aluminum conductor such as in the rotor, a worst-case DT; of 2 °C with
Trer of 24.5 °C resulis in an increase of 0.79% of its reference value. Consequently, if the
thermal model works as well for the rotor as it does for the stator, the temperature-
compensation of the estimated rotor resisiances should work without limiting the accuracy
of the estimator developed in Chapter 3. Note that each point temperature which is
measured by a thermocouple relates to resistivity. However, as generalized in Section 5.2,
the temperature-compensation extends to resistance also. Thus the utility of the thermal

model in estimating the rotor temperature is justified.

At this point, the use of (5.12) has been justified. In order to estimate the rotor
temperature which is a weighted-average value, we proceed in the same manner as for each

thermocouple location. Then, with superscript r denoting a rotor variable, (5.14) becomes

_ i i‘("v'm.me::l.s'l"‘'z'm.lo.s's)wml 3is1 |2R51+Pc ]
( AT l’ (1 ) )
AT 2' _ (_—2-_(16-‘5'2) Trn,meas2+ 1"m,lo.t'.r)wm2 3! is2 |2R s2+P¢ [ err ]
AT£ (l‘i—zsj(fm,meaﬂ"'fm.loss)wna 3ig |2R s3+P 9,:
L AT, i ;_—4m(7m.mem4+fm,loss)wm4 3!is4|2R54+Pc | (5.18)
and (5.15) becomes
?rr = (ATA)‘IATyr )
O, (5.19)
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The matrix A is the same in (5.14) and ¥" = [AT\" AT," AT3" AT4iT with subscripts "1",

"2", "3", and "4" again corresponding to measurements at dynamometer loads of 250W,

700W, 1.2kW, and 1.7kW.

A problem occurs because the rotor temperatures, AT ", ATy, AT3", and AT4", cannot
be measured directly with thermocouple readings. However, an indirect way to measure
them is possible by first estimating the rotor resistance at the ambient temperature. Then, at
each load, the rotor resistance is estimated again. Given the ambient temperature, the
estimated rotor resistance at ambient temperature, and the estimated rotor resistance at any
load, (5.9) produces the necessary rotor temperature at that load from which AT can be
computed. Effectively, this method measures the average rotor temperature at various
loads. These rotor temperature measurements are then used in (5.18) and (5.19) to

~r ~r
estimate the rotor thermal resistances, €&, and 6;.

The experimental procedure for estimating the rotor resistance at room temperature is
the same as the one for constant-temperature estimation at an arbitrary lnad outlined in
Chapter 4, with one important exception. Once the motor has started, the measurements
used to estimate the rotor resistance at ambient temperature are made quickly before the
motor has a chance to heat up, rather than waiting for the motor to reach a steady-state
temperature operation. By doing so, we ensure that the estimated rotor resistance
corresponds to the ambient temperature. As in Chapter 4, a test consisis of collecting Ry,
lisl, |vsl, @, and 2 measurements at 16 different slips. Before and during each
measurement, the thermocouples are monitored so as to keep the motor approximately at
the ambient temperature. If I?,“"'b denotes the estimated rotor resistance at the ambient
temperature T gmp, and ﬁ,f denotes the estimated rotor resistance at each load, j =1 to 4,
then by rearranging (5.9) for an aluminum rotor conductor, the estimated rotor temperature

f,’ becomes
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S
T} =B (1 +228.1°C)- 228.1°C .
R; (5.20)

Thus,

”~ ”~

AT =T7 - Tams (5.21)

Notice that the room temperature experiment itseif does not contribute directly to (5.18),
since this case corresponds to non-operation, but it is necessary in order to determine each
~r ~r

Af",—’. Once all Aﬁ’ are known, (5.19) can be evaluated to give & and 6;.

Experimentally, these two rotor thermal resistances have been determined using rotor 3, a
healthy rotor.

~r ~r
The parameters 6, and 6; can now be applied to produce the estimated rotor
~r ~r
temperatures at any load for any of the three rotors. Given &;, 6; and measurements of
R, lisl, £, and Ty meas at an arbitrary load, the corresponding estimate of the rotor

temperature f‘,’ is
Tr = ATY + Tomp (5.22)

where

~r
~ S .
ATjr = r‘;_)(fm,measj"‘ Tm.loss)a-’mj 1 bsj |2R sj+P c 9”.
! 2 (5.23)
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Thus by combining the results of Chapter 4 =nd this chapter, we can estimate the rotor
resistance, the rotor temperature, and via (5.9), the estimated rotor resistance can be
transformed to an estimated resistance at a reference temperature, for arbitrary operation of
the induction motor. This has the desired effect of temperature-compensation. The
experimental results of this thermally-compensated broken-rotor bar detector are presented

and discussed in Section 5.5.

To summarize, to compensate an estimate of R, (5.23) is evaluated with the data of the
corresponding operating point, and AT is determined. Next (5.22) is evaluated to
determine 7. Finally, (5.9) is evaluated with T=Trto perform the compensation. Note
that at this point the temperature compensation requires a measurement of torque and stator

resistance. These requirements are relaxed in Section 5.4.

5.4 Estimation of Stator Resistance Based on
the Thermal Model

The stator temperature can be estimated in much the same way that the rotor temperature is.
This estimated stator temperature in turn can be used to estimate the stator resistance with
(5.9). As is seen experimentally in Section 5.5, this method provides an accurate and
readily applicable way to estimate the stator resistance. This method is accurate because it
actually approximates closely the values of stator resistance obtained by off-line
measurement procedure described in Chapter 4; see Section 5.5 for a comparison. Ii is
readily applicable, since it uses only the same data that the temperature-compensation
scheme requires. Moreover, it has the desired characteristic of being non-intrusive to the
motor operation. Thus, we no longer need to assume as we have in Chapter 3 and 4 that

we can obtain measurements of R, that are non-intrusive to the motor operation. Finally,
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this method offers advantages over that proposed in [32], since this method does away
with the need to build the instrumentation necessary in [32] to collect the stator resistance
measurements. Basically, an accurate estimate of the stator resistance is obtained with
minimal computational cost. In this manner, a highly accurate, yet easily implementable

method of estimating the stator resistance is proposed.

Unlike that for obtaining the rotor resistance, the room temperature experiment for
obtaining the stator resistance is much simpler. The only requirement is that the
measurement of the stator resistance at the room temperature, as opposed to the series of
measurements that are needed estimate the rotor resistance. Following the rotor analysis,
let R,amb denote the measured stator resistance zt the ambient temperature T,,,,p and Ry
denote the measured stator resistance at each load j; j = 1,2,3,4 for the dynamometer loads
of 250W, 700W, 1.2kW, 1.7kW, respectively. Then, from (5.9) for a copper stator
winding, the compensated stator temperature 7;° becomes
R{

(Tams +234.5°C)- 234.5°C .
Rgmb (5.24)

T} =

The thermal model of the stator is given by

(I_‘ilgl_)(fm.measl+fm.loss)wml 3| i.\'l [stl'*'P c
ATy 5o _—
T, +17, @, is2[°Rso+P
AT; _ (1-_82)( m.meas2 m.loss) m2 3' s2| 278 ¢ [ 9:]
AT; (l_fi_ﬂ(rm,meaﬂ"‘fm.loss)wnﬁ 3| is3 |2Rs3+P c 9:
ATS .
4 _u%"‘)(fm.meaﬂ"' Tm.loss)wnut 3‘ Isq IZR sa+P. | (5.25)

where AT is known from (5.24), where
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ATF =TF - Tamp - (5.26)

Again, this results in a near-LLSE estimation problem for 8,5 and 6. Thus, the stator

~s ~s
thermal resistances ©; and ©, are estimated as

~s
6,
~s
6;

=(ATA)'ATy*

(5.27)

with A the same in (5.14) and % = [AT5 AT,® AT» AT45]T. Again, the subscripts "1",
"2","3", and "4" correspond to measurements at the dynamometer loads of 250W, 700W,

1.2kW, and 1.7kW.

~s s

Given 6, 6, and measurements of Ry, |isl, £2, and Ty, meqs at an arbitrary load, the

corresponding estimate of the stator temperature f'f is

Tp = ATS + Tump (5.28)
where
5 o
A?f = u_:’;i(fmmasf*' 7m,lo:s)wmj 3| isj |2st+P c] ?’s
! 8, (5.29)

At the motor load that produces the stator temperature 7%, the corresponding estimate of

the stator resistance is

R = gamo 1j +2345°C

Toms + 234.5°C (5.30)
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The accuracy of this estimation method is explored and shown to be highly accurate in the
next section. This estimate of the stator resistance works for any of the three rotors, since

as far as the stator temperatee is concerned, all three rotors are the same.

One problem with estimating the stator resistance thermally as described above, is that
we use measurements beyond @, s, lvgl, lisl, and @. In particular, we use torgue
measurements in place of 3i;[2R,. This is limiting for on-line implementation of broken-

rotor-bar detection. However, a related estimation method in which only the measurements

W, S, vy, lid, and P are needed is presented here. At any arbitrary thermally-steady-state

operation of the motor, Equation (5.11) can be written as

AT* = 8(3i 2R + P.) + 8 (3i,PR,) (5.31)

where |i/| is determined from the equivalent circuit model to be

Iirl = |is|

wM
R,
V(wLp + (Bef (5.32)
Also, by combining (5.24) and (5.26) another expression for AT* is obtained, namely that

amb
AT’ = (Toms +234.5°CR- R
Rgmb (5.33)

Equations (5.32) and (5.33) can be combined to solve for the stator resistance R by

eliminating AT*. Thus, R; becomes
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p _ pant\Tams_+234.5°C)+ YiR,6; + 6P
s - s .

Note that (5.54) is an explicit equaticn for R, and we shall use this equation as our
thermally-based estimate of Ry, so R; in (5.34) becomes R s. However, note that (5.34)
depends on R,. Note also that only the measurements @,, s, v, lisl, and & are needed,
since the values for P, 8; and 6, R, and Tz can be determined before the motor
operates on-line and can thus be treated as known constants. As described in Section 3.4,
the thermal estimate of R; is then used to estimate R, via (3.17). This< appears circular
because i?s in (5.34) depends on R, and I?, in (3.17) depends on R;. Therefore, both
equations (5.34) and (3.17) must be solved seif-consistently with l?, substituted for R, in
(5.34) and R s substituted for R in (3.17). We use an iterative process to self-consistently

solve these equations; and it is found to converge rapidly.

As an example, the particular load of P, = 500W is examined. The iteration starts by
substituting Rs27 = 0.8043 Q for R; in (3.17). This yields the estimate R, = 0.5815Q.
Next, the estimated Rr is substituted into (5.34) to yield the estimate R, = 0.8735Q. The
new estimate of R, s 1s substituted into (3.17) and the resulting estimate of i?, is substituted
(5.34). This round of iteration yields 0.8735Q for ﬁs and 0.5787X2 for I?,. The final
round of iteration yields 0.873152 for R s and 0.5787Q2 for ﬁ,. The estimation process has
thus converged in three steps. Note that the estimated value for R, is very close to 0.5788Q2
as estimated in the next section with measured R;. Note also that the estimated value for R
is very close to 0.87 1€} as measured in the next section. Thus, this method can in practice
eliminate the need for torque and stator resistance measurements. Therefore, an important
conclusion is that a broken rotor bar can still be detected with the iterative temperature-

based estimator presented here.
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5.5 Experimental Resulits

This section presents the experimental results of the temperature-compensated broken-
rotor-bar detector described in Sections 5.3. It also presents experimental results of the
stator resistance estimation. Measurements at dynamometer loads of 250W, 700W,
1.2kW, and 1.7kW for rotor 3, a healthy rotor, are used to compute the rotor thermal
resistances, é,' and 5,' as discussed in Section 5.3. Using (5.9), all the estimated rotor
resistances are then transformed to equivalent estimated resistances at the teraperature
corresponding to the dynamometer load of 700W. Only the LLSE estimator with known
R; is considered, since it produces the best experimental results in Chapter 4. Later in this

section, the experimental results demonstrate that the temperature compensation is

successfully implemented to detect a broken rotor bar.

Also, the temperature-based estimation of R, is compared to the measured R; at various
loads. This comparison shows that the estimation scheme for R produces very accurate
estimates of R;. In light of this result, it makes sense to employ the LLSE estimator with
known R, strictly, since in effect, the temperature-based estimation of R, produces

estimates of R; that are equivalent to measurements of R;.

Figures 5.1 and Table 5.1 show the results of the temperature-compensated rotor
estimates for rotors 1, 2, and 3. Table 5.2 shows the uncompensated rotor estimates for
comparison with Table 5.1. The format for the figure is much like the ones presented in
Chapter 4. The numbers “1", "2", and "3" locate the thermally-compensated rotor
resistance estimated from independent measurements taken with one of the three different
rotors. Each estimate corresponds to a different load and hence for a different rotor

temperature. The numbers "1", 2", and "3" locate the average estimate of the temperature-
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compensated rotor resistance for each rotor. The standard deviation of the rotor resistance
estimates for each rotor is indicated by horizontal line segments on both sides of the

average of the estimates.

Tables 5.1 provides the numerical values for the experimental results shown in Figures
5.1. In Table 5.1, the average of the estimates is denoted by "Ave({R,}", the experimental
standard deviation of the estimates by the symbol G,xp, and the numerically simulated
standard deviation of the estimates by Gnum. Temperature-compensated estimates of R, for
rotor 2, as shown by Figure 5.1 and Table 5.1, are located decidedly above the R,
estimates for rotors 1 and 3. Thus, the detection of the broken-rotor-bar in rotor 2 is
demonstrated via thermal compensation of the LLSE with known R; estimates of R,. Note

that all the loads quoted in this section refer to those measured by the dynamometer, the

actual loads are somewhat higher.

—f—— 73— .
3
1 1 31 g g 33 2 %
0.570 0.575 0.580 0.585 0.590 0.595
Rotor Resistance (Ohms) i = rotor resistance estimate of ith rotor
1, 3 = Healthy Rotor = average of rotor resistance estimates
2 = Broken Rotor of ith roter

Figure 5.1: Experimental results of temperature-compensated rotor estimates, all
the estimates scaled to load of 700W, LLSE estimation with known R;.
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Table 5.1:;

Temperature-Compensated
Rotor Resistance Estimates (Ohms)

Scaled to the Load of 700W
Loads Rotor 3 | Rotor 1 § Rotor 2
S00W 0.585 0.578 0.591
950W 0.577 0.574 0.5%1

1450W 0.582 0.576 § 0.589

ow 0.583

250W 0.583

700W 0.582

1200W 0.584

1700W 0.583

Ave(R;) 0576 | 0.582 | 0.590

Cexp 0.002 0.002 § 0.061

S 0011 | 0011 | 0011

Experimental datz of temperature-compensated rotor estimates, ali
the estimates scaled to load of 700W, LLSE estimations with known R;.
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Uncompensated
Rotor Resistance Estimates (Ohms)
Loads Rotor 3 | Rotor 1 | Rotor 2
500W 0.579 0.571 § 0.583
950W 0.586 0.582 § 0.600
1450W 0.623 0.618 | 0.632
ow 0.541
250w 0.573
700W 0.582
1200W 0.610
1700W 0.658

Table 5.2: Uncompensated estimates of rotor resistance, LLSE estimations with known R;.

Table 5.3 shows the comparison between the two sets of stator resistance values for all
three rotors. For each rotor at various loads, the column marked "Estimated” shows the
thermal-based estimated values of the R, and the other marked "Measured” shows the
measured values of R,. The two values are in good agreement. In fact, there is no
significant difference between the two values. Given the previously discussed advantages
of temperature-based estimation over the measurement scheme for R, Table 5.3 strongly
supports adoption of the temperature-based estimation of R; as a standard procedure. To
conclude, the temperature-compensated detection of broken rotor bar via LLSE estimation

of R, with temperature-based estimation of Ry is successfully demonstrated.
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Stator Resistance, Estimated and Measured (Ohms)

Loads Rotor 1 Rotor 2 Rotor 3
Estimated | Measured | Estimated | Measured }| Estimated | Measured

500w 0.871 0.867 0.870 0.867 0.874 0.871
950W 0.886 0.883 0.888 0.892 0.888 0.882
1450W| 0916 0913 0.917 0914 0.916 0.911
250W 0.870 0.869
700W 0.880 0.882
1200W 0.904 0.902
1700W 0.948 0.948

Table 5.3: Thermal model based estimations of R, versus measurements of Rj.
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Chapter 6

Conclusions and Recommendations
for Future Research

6.1 Summary of Thesis

The purpose of this thesis was to study the detection of broken rotor bars in induction
motors using staie and parameter estimation techniques. The hypothesis upon which the
detection was based is that the apparent rotor resistance of an induction motor increases as a
result of a rotor-bar breakage. Here, the apparent rotor resistance was that found in the
standard single-phase equivalent circuit of an induction motor operating at a constant
velocity. To carry out this detection process, it was necessary to develop a thermal model
of the induction motor which was used to track variations in rotor and stator resistances.
Thus, in this thesis, we have combined the concepts and tools of state and parameter
estimation theory with the appropriate electrical and thermal modeis for the induction motor
to derive an estimate of rotor resistance which is in turn compared to its nominal value to

detect broken rotor bars.
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In Chapter 2, the single-phase equivalent circuit of an induction motor was introduced
and its system transfer function from the stator voitage to stator current was presented.
This model was important for broken-rotor-bar detection in that the rotor resistance R, was
defined by the model. Also in Chapter 2, the physical experimental system used in this

thesis was described.

In Chapter 3, we concentrated on the case of ccnstant-temperature induction motor
operation. This assumption allowed us to defer until Chapter 5 consideration of thermal
effects on the estimation of rotor resistance operating at different motor loads. In Chapter
3, three parameter estimators were derived for estimating R, based on the single-phase
equivalent of Chapter 2. They were all based on linear-least-square-error (LLSE)
estimation. Specifically, they were a LLSE estimator with estimated stator resistance Ry,
an iterative LLSE estimator with estimated R;, and a LLSE estimator with known R;. Four
parameters, R,, the stator resistarce R, the mutual inductance M, and the self-inductance L
of both rotor and stator, were estimated with the first two estimators. The three

parameters, R,, M, and L, were estimated with the third estimator.

The three estimators were driven with measurement sets of @,, s, |isl, |Vs|, and @ for
the first two and @., s, |isl, |vsl,®@ , and R, for the third. Each independent set of
measurements gave rise io two independent equations via the electrical model of Chapter 2.
Therefore, the first estimator needed at least three independent sets of measurements while
each of the other two estimators needed at least two independent set of measurements to
estimate the fundamental parameters. We actually always collected 16 independent sets of

measurements to ensure sufficient richness of data.

Finally, Chapter 3 examinied the sensitivity of three estimators to the noise in the

measurements on which they operate. From the sensitivity analysis, which was performed

105



numerically, upper bounds on the percent-deviation of R, were determined to be 1.4%,
3.8%, and 1.9%, for the LLSE estimator with estimated Ry, the iterative LLSE estimator
with estimated R;, and the LLSE estimator with known R,, respectively. These results
indicated that at least the first and the third estimators should successfully detect broken
rotor bars in the test motor, since the breakage of one bar in 45 should increase R, by
approximately 2%. The upper bounds on the percent-deviation of R;, on the other hand,
were determined to be 74% for the LLSE estimator and 31% for the iterative-LLSE
estimator. To summarize the sensitivity analysis, the numerical results predicted that R,

could be estimated well while R, could not.

Chapter 4 presented the experimental results based on an induction motor operating at
constant temperature. The induction motor was operated at a constant stator voltage of 120
volts and at the load of 700W as measured by the dynamometer. Three rotors of the same
type, the two "healthy" rotors, 1 and 3, and the "unhealthy" rotor 2 with one broken bar
out of 45, were tested four times each. With each test, the rotor resistance was estimated
three times, one time for each of the three types of estimators discussed in Chapter 3. In
addition, with each test, the stator resistance was estimated twice, once using the LLSE
estimation with estimated R, and once, using the iterative-LLSE estimation with estimated
R,. Numerical and graphical results of the all the experimental estimates as well as the

average and the standard deviation of these estimates were given in Chapter 4.

In terms of average and standard deviation of the R, estimates, the detection of a broken
rotor bar was demonstrated quite clearly with the LLSE estimator with known R;. The
detection of a broken rotor bar was still possible with the iterative LLSE estimator with
estimated R;, albeit less clearly. Finally, the detection of a broken rotor bar with LLSE
estimator with estimated R, was least clear, and was arguable at best. For the LLSE

estimator with known R;, the ratio of the difference of the averages of the independent R,
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estimates of the "healthy" and "unhealthy" rotors to the average of R, estimates of the
"healthy" rotor was 2.7%, while the ratio of standard deviation of the R, estimates to the
average valuc of the R, estimates for each rotor was only 0.3%. The observed change was
consistent with what we expected to see when one bar breaks out of 45 bars; and the

standard deviation was such that it was seen clearly.

With respect to the stator resistance, the results of sensitivity analysis in Chapter 3 were
confirmed. The stator resistance could not be estimated well experimentally by either the

LLSE or the iterative-LLSE estimator.

With different steady-state loads, the induction motor exhibits different steady-state
temperatures. This poses a problem for broken-rotor-bar detector in that a variation in rotor
temperature causes significant variation in the estimate of R,. In response, Chapter 5
proposed a way to thermally-compensate the estimators of Chapter 3 so that the estimates
of R, at different loads can ail be standardized to estimates at a reference load and hence
reference temperature. The proposed compensation was based on a temperature-resistance
relation for metallic conductors. This temperature-resistance relation required the
knowledge of the rotor temperature, which was estimated. The estimation of the rotor
temperature in turn was based on a thermal model of the induction motor. Here, a linear
model was used and its parameters were determined experimentally using LLSE estimation.
The thermal model itself was verified experimentally by comparing point-wice estimates of
temperatures with actual thermocouple temperature readings. The two were within 2 °C of
each other for all 25 thermocouples over the range of O to 1.7kW. This error corresponded
to an estimation eivor in R, by 0.8% of its reference value if the reference R, value was
0.565 Q2 at 24.5°C, which was the case for the experimental motor. This result indicates
that the thermal compensation scheme should work without limiting the estimators

developed in Chapter 3.
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Next, the temperature-compensated estimator of R, was examined experimentally.
First, the thermal model parameters were estimated at dynamometer-measured loads of OW,
250W, 700W, 1.2kW, and 1.7kxW. Then, using these parameters, the temperature-
compensated R, estimates of rotors 1, 2, and 3 were obtained at loads of 500W, 950W,
and 1450W as measured by the dynamometer. Only the LLSE estimator with known R;
was studied. Numerical and graphical results of all experimental estimates as well as the
average and the standard deviation of these estimates were given in Chapter 5. The
temperature-compensated detection of broken rotor bars via LLSE estimation of R, with
known R, was demonstrated clearly with the experimental results. The ratio of the
difference of the averages of R, estimates of a "healthy" and "unhealthy” rotors to the
average of R, estimates of the "healthy" rotor was 1.9% while the ratio of standard

deviaticn of R, estimates to the average value of R, estimates for each rotor was only 0.2%.

Also in Chapter 5, a study of temperature-compensation led to development of an
estimation method for the stator resistance based on the thermal model. Using the thermal
model, the stator temperature was estimated using the same technique employed for the
rotor temperature. This involved estimating additional model parameters. The stator
temperature estimate was then used to estimate the stator resistance. This method of
estimating the R; at various motor loads produced R; estimates that were very close to the
actual measured values of R;. Typically, the difference between the two were less than
0.5% of their values. Hence, in terms of the detection of broken rotor bars, estimation
schemes using estimation of R; based on thermal model or a measurement of R are
equivalent. Finally, one problem with thermally estimating the stator resistance as it was
originally introduced was that we used measurements beyond @, s, Iv/, li,l, and @. In
particular, we used torque measurements in place of 3is[2R;. Hence, an iterative

estimation method which used only the measurements @,, s, v/, ii,l, and @ was developed
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to self-consistently estimate R, and R, by iterating between a thermal model and an
electrically-based estimator. This iterative procedure produced stable estimates of R, and R,
whose values were again very close to the estimates produced by the LLSE estimator with

measured R;.

6.2 Conclusion

The temperature-compensated detection of broken rotor bars via LLSE estimation of R,
with estimation of R, based on a thermal model has been clearly demonstrated. One broken
bar out of 45 appears easily detectable. While R, is easily estimated electrically, R; is not.
Therefore, R, must be either measured or estimated by some other means; recall that R; is
necessary in the thermal model which is used to compensate R,. Estimation of R, based on
the thermal model becomes a natural choice, since this method provides an ease of
implementation, yet retains the accuracy equal to that of actual measurements of R;. The
detection of a broken rotor bar in an induction motor using a thermal model and the single-
phase equivalent circuit as the basis proves to be theoretically satisfying and in the end

provides an effective means of detection.

There are two main limitations to the broken-rotor-bar detectors proposed in this thesis.
One, the thermal model is a steady-state model and two, we need more than one set of
stator terminal electrical measurements to produce estimates. In fact, we use 16
independent sets of measurements. Thus, in terms of practicality, an on-line detector is
nearly but not completely possible with the results described in this thesis. The limitations
and the possible solutions for them will be discussed more fully in the next section which

deals with suggestions for future research.
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6.3 Recommendations for Future Work

As mentioned in the conclusion section of this chapter, one problem is that of practical
application. We want to monitor broken rotor bar on line, but the need for many
independent sets of measurements makes this difficult. We do not want to disturb the
normal operation of the motor but this is unavoidable in the process of collecting
sufficiently rich steady-state data; in order for the LLSE estimators to work, several

independent sets of steady-state data are necessary.

There are two important issues which limit the practicality of the broken rotor bar
detector as it is presented in this thesis. The first is that data from different operating points
must be coliected before estimation can proceed. This data is then organized as in (2.11).
In order for R, and R, to be factored out of (2.11), they must be the same R, and R, for all
equations, that is, for all operating points. Therefore, they must be at the same temperature
even though they correspond to different loads. This is why the 16 measurements at
different operating points, around the operating point which established motor temperature,
were taken so quickly. This is the second limitation. To accommodate both limitations

requires further study.

To accommodate the first limitation, one should first determine the spread of operating
points that is necessary to provide data of sufficient richness for successful estimation. Itis
possible that this spread of operating points may arise naturally during the operation of the
motor. To accommodate the second limitation, it is necessary to combine the thermal and

the electrical models so that a thermally-compensated R, and R, can be factored out of
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(2.11). In doing so, each equation can be evaluated with data which is in thermal as well

as electrical steady-state.

There is yet another, although less severe, lirnitation, namely the need to collect data
while the motor is in constant-temperature electrically-steady-state operation. To relax this
limitation, dynamic electromechanical and thermal models should be developed and

incorporated into the estimators.

The inability to estimate the R, well using the electrical LLSE estimators was shown by
the sensitivity analysis in Chapter 3 and by the experimental results in Chapter 4. This has
yet to be explained theoretically, and it should be explained. In addition to the noise
studied in Chapter 3, modelling error such as the omission of core loss is suspected of

contributing to errors in the estimation of R, and R,.

A general stability study should be done for all the iterative estimators. We also stated
that the sensitivity analysis is in general amplitude dependent. This should be investigated
to draw general conclusions. In addition, we emphasized at various points that the
estimation problem addressed in this thesis in nearly LLSE estimation problem. Perhaps a
study using other types of estimation schemes, such as total-least-square-error estimation,

would be profitable.

The tests were conducted using two healthy rotors and one broken rotor. If all the tests
were conducted again, first by testing two healthy rotors and then breaking a rotor bar in
one of the two healthy rotors, this would give a better indication of how rotor-bar breakage
is observed by the various estimators. In this thesis, we have no estimation results for

rotor 2, the broken rotor, prior to its breakage. In addition, this could be followed by the
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successive breakage of more bars, so that the effect of continued breakage on the

incremental increasc of the estimate of R, could t:: quantified.

Lastly, the thermal model gave us an effective means of predicting the motor
temperature. If, for example, a the fan blade broke, we expect the temperatures at various
points of the mc. .. at a given motor load to exceed their nominal values. Thus, a broken
fan blade or obstruction of the fan-cooling system should also be detected by all the tools

developed in this thesis. Detection of this type of fault could be investigated next.
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Appendix A

Derivation of the Temperature-
Resistance Relation

The resistance of metals increases with temperature. For many metals, the resistance at any

temperature ¢ in °C over the range of 0°C to 100°C is approximately
R =Rl + o) (AL1)

where Ry is the resistance at 0°C and « is the temperature coefficient of resistance[36].

Thus, (Al.1) can be expressed at two different temperatures, and the resulting ratio

becomes

&=Ro(1 +a:1)=(_’é'+‘1,
Ry R{l + aty) (fi'"tz)'

(A1.2)

The constant -1/a is referred to as the inferred absolute zero, since this value for

temperature ¢ in (Al.1) corresponds to the resistance of zero. For copper, this value is -

234.5 and for aluminum, it is - 228.1[35]. Therefore, for copper (A1.2) becomes
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Ry (2345+1)
Ry (234.5+1) (A1.3)

and for aluminum (A1.2) becomes

Ry _ (228.1+1)

Ry (228.1+1))° (Al.4)

Equations (A1.3) and (A1.4) are precisely the Equations (5.1) and (5.2), the temperature-

resistance relation for copper and aluminum conductors.
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Appendix B

Calculation of Tu,ioss

The total mechanical torque 7, that the test motor produces is not equivalent to 7, ,eqas, the
mechanical torque that the dynamometer measures. Part of 7, is consumed by windage
and bearing losses, and the remaining part drives the load of the dynamometer. Since the
dynamometer only reads the part of the total torque that drives it, the windage and bearing
torques, collectively called 7,, j,, are not included in 7, meqs. In order to use Equation

(5.12) for the thermal model, however, T, 1,55 must be calculated.

To calculawe 7, ,5s We use the relation

- = jAOn
Tm.loss Jddt (A2.1)

where J denotes the rotational inertia, @, the mechanical speed in radians per second, and
the variable ¢ denotes time in seconds. This equation holds for an electrically-undriven

motor. The rotational inertia J in (A2.1) for the experimental system is

J=Jr+Jq (A2.2)
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where J, is the rotational inertia of the rotor and Jg4 is the rotational inertia of the
dynamometer. We can calculate J, by treating each of the various parts that make up the
rotor as either a cylindrical rod or an annular ring. The corresponding mass density and
physical dimensions must be taken into account in calculating the rotational inertia of each
cylindrical rod or annular ring. Rotational inertias of all the separate parts of the rotor are
then summed to produce J,. The dimensions and the mass densities of all the annular rings
and cylindrical rods that make up the rotor are given in a computer program called jrotor.r.
This program, which is found at the end of this appendix, uses the method described above
to compute J,. The value for J, as computed by the program is 8.1547x10-3 kgm2. The
value of J4 which equals 6.005x10-3kgm2, has been obtained from Magtrol, the

manufacturer of the dynamometer. Hence, J which is the sum of J, and J,, is equal to

J =0.01416 kgm?2. (A2.3)

To compute day,/dr in (A2.1) the test motor is first operated at no load. The motor is
then turned off and the rotor is allowed to spin down to a halt. Hence, this experimental
procedure is called a "spindown" test. The torque that forces the motor to spin down must
be T loss, since the dynamometer does not actively load the motor in this experiment.
Figure A2.1 shows three such spindown tests, with data taken at one second intervals. For
our purposes we are interested in da,/dt near the no-load speed. We shall compute it using
(A2.1) and (A2.3). The time derivative dw,/dr in (A2.1) is approximated at the no-load
speed from Figure A2.1 as -26.808 rad/s2. By substituting this result we determine that

Tm‘[oss iS giVCn by

Tm'lo_g_g = 0-3796- (A2.4)
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Data from Spindown Tests
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Figure A2.1: Spindown test data
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LILLLLIIIIII11 0777777777777 77777777/77777777777777

/7
/7
/7
Va4

Program jrotor.r (in {cho.matfiles.thermo])) //

Va4
Program to find the rotational inertia //
of the rotor of the induction motor. //

LLVZLLLLLLLLLI I 2777777777777 77 7777777777777 7777 7

clear

diary('djrotor’);

long;

// Constants

// Mass Densities (kg/m"3)

/7 Pss Stainless Steel

// Pms Magnetic Steel

// Pal Aluminum

Pss = 7800

Pms = 7700

Pal = 2700

// inm {conversion factor multiplied to in to get m)
// 1bkg (conversion factor multiplied to lb to get kg)

inm = 1/39.4
lbkg = 1/2.21

7/
/7

Physical Rotor Measurements
Lengths in meters

3.375*inm
8.5*inm
1.625*inm
2*inm
0.3125*inm

Lalring = 0.5+*inm
L7 = 2.5*inm

4

Radii in meters

1.125*inm/2

1.34S5+*inm/2

1.140*inm/2

0.9*inm/2

(0.116731 - 2+G.75*inm)/2

0.116731/2

0.25*inm/2
Vwings = volume of each aluminum wings (16 in all)
Vb = volume of each aluminum cylindrical buttons (16 in all)
RBarea = cross-section area of rotor bar (45 rotor bars in all)
MSarea = cross-section area of magnetic steel
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Vwings = inme*3+((5/8+7/8)*(3/16+3/8)*3/8 + 1,/4%1/8+3/8)
Vb = PI*Rb*#2+Lb

RBarea = {S5+]1/8+*3/4*inm*+*2

MSarea = PI*(R6**2-RS5%**2)-RBarea

// Mass of each component of the rotor

M(l) = Pgg*PI2R1l#**2¢L];

M(2) = Psgs*PI*R2##2eL2;

M(3) = PSS*PI*R3a#2+L3;

M(4) = Pss*PI*R4?*2*L§;

M(S) = PRS*PI*(RS*®%2 - R4##*2)#L7;

M(6) = Pal*(16*(Vvb + Vwings) + PI*(R6**2 - RS5#*#*2)+*Lalring);
M(7) = L7+(Pal*RBarea + Pms*MSarea);

// Rotor weighed 16 lbs as measured. The mass we calculate is the mass of
// of the rotor minus the weight of the 2 bearings.

// RMass in kgs

// RMass converted to lbs

RMass = sum(M)
RMasslb = RMass/lbkg

// Rotational Inertia
// For a solid cylinder J = 1/2*M#R#+*2
// For an annulus disk J = 1/2*M*(Rout*®*2 + Rinw+2)

1/2*M(1)*R1l**2;
1/72*M(2)*R24*2;
1/72%M(3)*R3**2;
1/2*M(4)*R4*=2;
1/2*M(5)*(R5%*2 + R4**2);
1/2*M(6)*(R6**2 R5**2);
1/72*M(7)*(R6**2 + RS#**2);

+

NN e W
—
[ IO BN IO I Y B ]

J{
J(
I
J(
J(
J(
J(
J

Jrotor = sum(J)

// Need to solve for constant accaleration
// since, Jrotor*Accel = Tf(Torque due to friction)

spl = (1798 1570 1293 1058 841 655 490 346 224 123 47];
sp2 = [1798 1544 1272 1041 839 656 494 353 230 129 50];
sp3 = [1798 1564 1293 1060 852 668 505 364 241 137 561;
speed = (5pl;sp2;spl]

save ’‘sjrotor’;

diary(0);
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Appendix C

Programs for the Estimators
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LI11717 7777777777777 77077777/777777777777777/777777777777777/777/777

// Program lsdata.udf (in [cho.scatter.rsparam]) //
/77 /7
// Estimator 1 (LLSE estimator with Estimated Rs) //
// 7/
// Given matrix datmat, output pv, the vector containing the //

// fundamental parameters estimated from datmat //
L1121 277 7777777777777 77777777/ 77777777777777777777//777/7/7/77/777/7

//lpv.x,5,A,WeS) = lsdata(datmat)
We = 376.99;

// We use fake data to check if our least squares algorithm works properly.

// Assume that a data matrix with the rows consisting of

// datmat(T,I,Pe,Pm,pf,rpm) is passed to this function. The least
// squares estimate x will be returned. Realizing that matrix

// datmat = | vl v2 v3 v4 v5 v6 v7| with each vi's corresponding to
// | T I Pe Pm pf rpm V|,

/ we can conveniently write A as a linear combo of these vectors.

// Now, we break x into real and imaginary part, forcing xl1 to be purely real.

// WeS = We - 2*Wm = We ~ 4*Plvrpm/60

[nrows, ncols] = size(datmat);

WeS = We*ONES(nrows,l) - (PI/15)*datmat(:,6);
S = WeS/We;

for isl:nrows,.

pf = datmat(i,S);...

Is « datmat(i,2);...

V = datmat(i,7);

C(i,l) = 0;...

Cli,2) = Is*pf;...

C(i,3) = Is*sqrt(l-pfepf);..
C(i,4) = C(i,2)*WeS(i);...
C(i,S) = C(i,3)*WeS(i);...
D(i,l) = -WeS(i)*V;...
D(i,2) = - C(i,3);...

D(i,3) = C(i,2);...

D(i,4) = - C(i,5);...

D(i,5) = C(i,4);...

end

Yl = datmat(:,7);

Y2 = 0*ONES(nrows,l);

A = [C;D];

Y = [Y1l;Y2]);

xri = A\Y;

x(1l) = xri(l);

x(2) = xri(2) + jay+*xri(3
x{3) = xri(4) + jay+*xei(5S
pv = param(x);

retf

)i
);
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9002220000200 0002000002221y

// Program r2data.udf (in (cho.scatter.rsparam]j) //
// //
// Estimator 2 (Iterative LLSE estimstor with Estimated Rs) /7
// Stable, uses %2 = Rs as the dependent variable /7
// //
// Given matrix datmat, cutput pv, the vector corntaining the //
// fundamental parameters estimated from datmat //

SIIIIIII77 7177707777777 77 77/77 /7777777777777 77777777777/777/77/77

//lpv,x,5,A,WeS] = r2data(datmat)

We = 376.99;

de = 0.001;

// inquire de 'Enter de: '

// We use fake data to check if our least squares algorithm works properly.
// Assume that a data matrix with the rows consisting of

// datmat(T,I,Pe,Pm,pf,cpm) is passed to this function. The least
,/ squares estimate x will be returned. Realizing that matrix

,/ datmat = | vl v2 v3 v4 v5 v6 v7| with each vi’s corresponding to
// i T I Pe Pm pf rpm V|,

// we can conveniently write A as a linear combo of these vectors.
s/ Now, we break x into real and imaginary part, forcing xl to be purely real.
// WeS = We -~ 2*Wm « We - 4*PIl*rpm/60

[nrows, ncols] = size(datmat);

WeS = We*ONES(nrows,l) - (PI/15)*datmat(:,6);

S = WeS/We;

for i=l:nrows,...

pf = datmat(i,S);...

Is = datmat(i,2);...

V = datmat(i,7);

C(i,l) = 0;

C(i,2) = Is*pf;...

C(i,3) = Is*sqrt(l-pf*pf);..
Cli,d) = C(i,2)*WeS(1i);...
C(i,5) = C(i,3)*WesS(i);...
D(i,l) = -WeS(i)*V;.

D(i,2) = - C(i,3):...

D(i,3) = C{i,2);...

D(i,4) = - C(i,5);...

D(i,5) = C(i,4);...

end

Yl = datmat{(:,7);

Y2 = Q0#ONES(nrows,l);

A= (C;D];

Y = {Y1;Y2);

xri = A\Y;

x(1l) = xri(l);

x(2) = xri(2) + jay#*xri(3);

x{(3) = xri(4) + jay#xri(5);

K = imag(x(3))/x(1);

F = [A(:,1) A(:,3) A(:,4) A(:,5)]);

// While x2r does not 'match’ x3i/xl, redo ls estimation with
// x3i/x1 as a measurement

ndif = abs((real(x{(2)) - K)/real(x(2)));
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while ndif > de,...

K = imag(x(3))/x(1);...

72 @ Y - ReA(:,2)i...

xri = P\Z;...

x(1) = xri(l);...

x(3) = xri(3) + jay*xcri(4d}y...

x(2) = imag(x(3))/x(1l) + jay*xci(2?;...
ndif = aba((real(x(2)) - K)/real(x(2)));...
end

pv = parnn(x):

cetf
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LILILLLLL L7077 777777 777777777 777777777777777

// Program irecdata.udf (irn (cho.matfiles.ideal]) /7
/7 4
// Estimator 2 (Iterative LLSE estimator with Estimated Rs) //
// Stable, uses x5 = Rg*L/Rr as the dependent variable //
/7 7/
// Given matrix datmat, output pv, the vector containing thes //
// fundamental paranmeters estimated from datmat //

LIVILLILL L0777 770 1777777777777/ S 7777777777777 7777777

//lpv,%x,A,WeS,S] = irecdata(datmat)

We = 376.99;

V =« 80.;

de = 0.001;

// inquire de ‘Enter de: '

// We use fake data to check if our least squares algorithm works properly.
// Assume that a data matrix with the rows consisting of

// datmat(T,I,Pe,Pm,pf,cpm) is passed to this function. The least

// squares estimate x will be returned. Realizing that matrix

// datmat = | vl v2 v3 v4 v§ v6 | with each vi’s corresponding to

// ] T I Pe Pm pf rpm|,

// we can conveniently write A as a linear combo of these vectors.

// Now, we break x into real and imaginary part, forcing xl to be purely real,.
// WeS = We - 2*Wm = We - 4*PI*crpm/60

[nrows, ncols] = size(datmat);

WeS = We*ONES(nrows,l) - (PI/15)*datmat(:,6);

S = WeS/We;

for i=l:nrows,...

pf = datmat(i,5);...

Is = datmat(i,2);...

C(i,1) = 0;...

C(i,2) = Is*pf;...

C(i,3) = Is*sqrt(l-pf*pf);...
C(i,4) = C(i,2)*WeS(1i);.
C(i,5) = C(i,3)*WeS(i);...
D(i,l) = -WeS(i)*Vv;...
D(i1,2) = - C(i,3);...
D(i,3) = C(i,2);...

D(i,4) = - C(i,5);...
D(i,S5) = C(i,q4);...

end

Yl = V*ONES(ntrows,l);

Y2 = 0*ONES(nrows,l);

A = (C;D];

Y = [Y1;Y2]);

Xri = A\Y;

x(1l) = xri(1);

x(2) = xri(2) + jay*xri(3);

x(3) = xri(4) + jay*xri(S);

K = x{l)*real(x(2));

F = [A(:,1) A(:,2) A(:,3) A(:,4)]);

// While x3i does not ’'match’ xlr+*x2r, redo ls estimation with
// xlr*x2r as a measurement

ndif = abs((imag(x(3)) - K)/imag(x(3}));
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while ndif > de,...

K = x(1l)*real(x(2));...
2 =@ Y = K*A(:,5)5...
xrl = AN\Zj...
x(1) » xci(l);.
x(2) = xgi(2) +
x(3) = xxi(4) +
ndif = abs((ima
end

pv = pacam(x);
tetf

.iaytxrl(J);...
jay*x(l)rreal(x(2));..
g(x(3)) - K)/imag(x(3))});i...
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;;////////////////////////////////////////////////////////////////

Program recldata.udf (in {cho.matfiles.ideal]) //
// //
// Estimator 2 (Iterative LLSE estimator with Eatimated Rs) //
// Unstable, uses zl = L/Rr as the depandent variable /7
// //
// Given matrix datmat, output pv, the vector containing the //
// fundamental parameters estimated {rom datmat //

LILI11701 0777777777777 7 7777777777777/ 77/ 777777777 ///777//////77/

//[x,We§,S] = recldata(datmat)

We = 376.99;

vV = 80.;

de = .001;

// We use fake data to check if our least squares algorithm works properly.
// Assume that a data matrix with the rows consisting of

// datmat(T,I,Pe,Pm,pf,rpm) is passed to this function. The least
// squares estimate x will be returned. Realizing that matrix

// datmat = | vl v2 v3 v4d v5 v6 | with each vi’s corresponding to
// | T I Pe Pm pf rpmj,

// we can conveniently write A as a linear combo of these vectors.
// Now, we break x into real and imaginary part, forcing xl t be purely real.
// WeS = We - 2*Wm « We - 4#*PI*rpm/60

(nrows, ncols] = size(datmat);

WeS = We*ONES(nrows,l) - (PI/l15)*datmat(:,6);

S = WeS/We;

for iml:nrows,...

pf = datmat(i,5);...

Is = datmat(i,2);...

C(i,1) = 0;...

C(i,2) = Is*pf;...

C(i,3) = Is*sqrt(l-pf*pf);...
C(i,4) = C(4,2)*WeS(1);...
C(i,5) = C{(i,3)*WeS(1i);...
D(i,l) @ -WeS(i)*V;...

D(i,2) = - C(i,3);...

D(i,3) = C(i,2);...

D(i,4) = - C(i,5);...

D(4,5) = C(i,4);...

end

Yl = V*ONES(nrows,l);

Y2 = 0*ONES(nrows,l);

A = [C;D]

pause

Y = {(Yl;Y2];

xri = A\Y;

x(1) = xri(l);

x(2) = xri(2) + jay*xri(3);
x(3) = xri(4) + jay*xri(5);
b4

pause .

K = imag(x(3))/real(x(2));
F = [A(:,2) A{:,3) A(:,4) A(:,5)]
pause
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// While x1 does not ’'match’ x3i/x2r, redo ls estimation
// x31/x2r as & measurement

ndif = abs((x(l) - K)/x(1))

while ndif > de,...

K = imag(x(3))/real(x(2));...

Z ayY - X*A(:,1);...

xri « F\Z;...

x(2) = xri(1l) + jay*xri(2};

x(3) = xri(3) + jay*xri(d);...
x{1l) = imag(x(3))/real(x(2));...
ndif = abs((x(1l) - K)/x(1)),

end

retf
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LI1107007 7770777777777 77777/ 777 7 7 777 I 77777/ 77777/77777

// Prograam param.udf (in (cho.scatter.rsparam]) //
// /7
// Given either the estimated vector x from Estimator 1 or /7

// Estimator 2 return the fundamental vector pv = (Rs Rs Rr L M) //
L1117 77777777727777777777777777277777777777777/777777777/77/77777777777

//pvV = param(x)

// pv = (TtRs R8s Rr L M] parameter vector
We = 376.99;

Rs = real(x(2));
L = imag(x(2))/W
Rr = L/real(x(1l)
M = sqrt{Rcereal
pv(l) = real(x(l
pvi(2) = Rs;
pv(3) = Rr;
pvid) = L;

pv(S) = M;

retf

x(3))/We + L*L);

e
)
(
))*Rs;
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L1117 7777777777777/ 77777777 77777777 7/ 7/ /7 777777777777/
// Program rsfdata.udf (in (cho.scatter.rsconst])

// 7/
// Estimator 3 (LLSE estimator with Known RsS) //
/7 //
// Given matrix datmat and Rs, output pv, the estimated fundamental //
// parameter vector 7

LIIIII2 /707 7777 777 /7 7777777777 77 7777777777

//lpv,x,S,A,WeS) = rsfdata(datmat,Rs)

We = 376.99;

// We use fake data to check if our least squares algorithm works properly.

// Assume that a2 data matrixz with the rows consisting of

// datmat(T,I,Pe,Pm,pf,rpn,V) is passed to this function. The least

// squares estimate x will be returned. Realizing that matrix

// datmat = | vl v2 v3 vd4d v5 v6 v7| with each vi’s corresponding to

4 ] T & Pe Pm pf rpm vj,

// we can conveniently write A as a linear combo of these vectors.

// Now, we break x into real and imaginary part, forcing xl to be purely real.
// WeS = We - 2*Wm = We - 4*PI*rpm/60

[nrows, ncels)] = size(datmat);

WeS = We*ONES(nrows,l) - (Pl/15)+datmat(:,6);

S = WeS/We;

for i=l:nrows, ...

V = datmat(i,7);...
pf = datmat(i,S5);..
Is = datemat(i,2);
Ispf = Is*pf;...
krt = sqrt(l-pf*pf);...

Iskrt = Is*krt;...

C(i,l) = Iskrt*WeS(i)®*Rs(i);...
C(i,2) = Iskrt*We;...

C(i,3) = Ispf*WesS(i);...

D(i,1) WeS(i)*(Ispf*Rs(i) - V);...
D(i,2) Ispf*We; ...

D(i,3) -Iskrt*WeS(i);...

E(i,l) VvV - Ispf*Rs(i);...

F(i,l) Iskrt*Rs(i);...

end

A= [C;D];

Y = (E;F];

X = A\Y;

pv = param(x);

recf
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L1071 7 777777777777 777//77/7/77/77707/7//7777///77/7//77/77/

// Program param.udf (in [cho.scatter.rsconst]) V4
// /7’
// Given the estimated vector x from Estimator 3 //

// return the fundamental vector pv = [Rr L H]) //
L1177 7 777777777777 777/777777/77777777777777/777/777/77777777

//pv = paranr(x)

// pv = [Rr L M] parameter vector
We = 376.99;

L = %(2);

Re = L/x(1);

M = sqrt(x(3)*Rr/We + L*L);

pv(l) = Rr;

pv(2) = L;

pv(3) = M;

retf
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LILILLLLLL L2177 70 7770777777777 77777777777777777777777777777777
// Program compdata.ndf (in [cho.scatter.rsparam) directory) ,//
// /7
// Given reference parameter values, computes ideal data //
LIL1LLI1707707077077777777777777777777777777777777777777777777777

//cdata = compdata(pacamet)

// Computes data matrix given the parameter values
long;

Rs
Rr

L
M

paramet(2)

paramet(3)
4);
5)

paramet|(
paramet (

We = 376.99;
vV = 120.;

Tr = L/Rr;
K = (L*L - M#*M);

xl » Tr;
X2 = RS + jay*We+L;
x3 = -We*K/Rr + jay*Rs+*Tr;

rpm(1l,1) = 1795;
for i=2:16,rpm(i,1) = cpm(i-1,1) - 5;

S = ONES(16,1) - rpm/1800;
WeS = WerS;

for i=ml:16,...

Y = Ve(1l + jay*WeS(i,l)*xl);...
A = x2 + WeS(i,1l)*x3;...

x(ill) -Y/A;--.

end

for i=1:16,...

radic = real(x(i))*real(x(i)) + imag(x(i))*imag(x(i));...
Is(i,l) = sqgrt(radic);...

pf(i,1) = real(x(i))/Is(i,1);...

end

zip = 0O0%cones(16,1);

// We’ll round off to 4 significant digits
i = 0;

while Is(8,1) < 1000,...

Is = Is*10;...

i=14+1;...

end

Is = round(Is);

Is = Is/(10%**ji);
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i = 0;
while p£(8,1) < 1000,...

pf = pf*10;...
1 ei +1;...
end

pf = round(pf);

PEf = pf/(10%vi);

i = 0y

while rpm(8,1) < 1600,...
tpa = rpa*l0;...

iei+ ;...

end

tpR « round(cpm);

[pm = rpm/(10%*i);

Vv = Ve*ones(16,1);

cdata = (zip Is zip zip pf rpm vv];
retf
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e
/7
//
/7
7/
vaas

v
/7
/7

//
S/
//
//
/7
/7

defi
defi
defi
defi

/7

Rs
Rr
L
M
L
M
TrRS

para
idea

pv =
tpv

dpv
drpv

/7

LIIIIL71 7777777777777 7 77777777777/ 7777777777777/

Program scatl.r /7

) 74
Programs scatl.r and scat2.r compute numerically the sensitivity //
of Estimators 1 and 2 to noise. //

LILLLIIL P2 7777777777777/ 7777777777777

This _rogram will first take an ideal data matrix generated from
an initial set of electrical parameters of an induction motor such that

Rs = 0.865 Ohn

Rr = 0.563 Ohm

L = 74.13 mH

M = €9.87 mH

V e 120 volts.
Rs value has been measured and the rest of the parameters have been
estimated from stator 1 rotor 3, using the rsconst llse method.

Once we have generated the data matrix, we will test whether we can
get the original parameters back by implementing lsdata.udf and
r2data.udf on the idealdata matrix.

Next, we will perturb the idealdata by maximum and minimum perturbations
of the stator current (I), the stator voltage (V), the power factor (pf),
and the rpm measurements that we observe at steady-state constant
temperature operation of the induction motor. From these perturbed
matrices, we will determine the scatter or the uncertainty of our
measurements in the program scat2.r

ne ‘param.udf’;

ne ‘compdata.udf’;
ne ‘lsdata.udf’;
ne ’'r2data.udf’;

Generate the idealdata and check the validity of lsdata and r2data fcns.

0.865;
0.563;
74.13;
69.87;
L~.001;
M«_001;
= L*Rs/Rr;

met = {TrRs Rs Rr L M]’;
ldata = compdata(paramet);

lsdata(idealdata);
= r2data(idealdata);

= pv - paramet;
= rpv - paramet;

Generate perturbed matrices
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sing = ones(16,1);
zip = O0*sing;

iuv = 0.04*3ing;

ium = {zip iuv zip zip zip zip zip];
piud = idealdata + ium;

pild = idealdata - ium;

pfuv = 0.005+*sing;

pfum = [zip zip zip zip pfuv zip zip];
upfud = idealdata + pfum;

ppfld = idealdata - pfum;

revuv = sing;

revum = [zip zip zip zip zip revuv zip]);
prevud = idealdata + revum;

previd = idealdata - revum;

vuv = (0.3*sing;

vum = (zip zip zip zip zip zip vuv];
pvud = idealdata + vum;

pvld = idealdata - vum;

// Generate corresponding parameters for each of the

piup = lsdata(piud);
pilp = lsdata(pild);
ppfup < lsdata(ppfud);
ppflp = lsdata(ppfld);
prevup = lsdata(prevud);
prevlp = lsdata(prevld);
pvup = lsdata(pvud);
pvlp = lsdata(pvld);

rpiup = cr2data(piud);
rpilp = r2data(pild);
cppfup = r2data(ppfud);
rppflp = r2data(ppfld);
rprevup = c2data(prevud);
rprevlp = r2data(prevld);
rpvup = r2data(pvud);
cpvlp = r2data(pvld);

save ’‘sscatl’;

perturbed

matrices



L0070 077 7770777777777 77777777777777777777777777777777777777777777777777777
// Program scat2.r

//
/7 //
// This program is used to evaluate the matrices generated by scatl.r //
L1177 777777777777777777777777/77777777777/7777777777777777777777777777777

diary(’dscat2’);
load ‘sscatl’;
short;

paramet
pv

rpv

dpv
dcpv

// Compute percentage dev from the original set of parameters

pim = [pilp piup]
for i=l:2,dpim(:,i) = pim(:,i) - pv;end;
for i=1l:5,dppim(i,:) = dpim(i,:)/pv(i);end;

ppfm = (ppflp ppfup]
for i=1:2,dppfm(:,i) = ppfm(:,i) - pv;end;
for i=1:5,dpppfm(i,:) = dppfm(i,:)/pv(i);end;

prevm = (prevlp prevup]
for i=1l:2,dprevm(:,i) = prevm(:,i) - pv;end;
for i=1:5,dpprevm(i,:) = dprevm(i,:)/pv(i);end;

pvm = [pvlp pvup]
for i=1:2,dpvm(:,i) = pvm(:,1i) - pv;end;
for i=1:5,dppvm(i,:) = dpvm(i,:)/pv(i);end;

dpim
dppfm
dprevm
dpvm

dppim
dpppfm
dpprevm
dppvm

rpim = (rpilp rpiup)
for i=1:2,drpim(:,i) = rpim(:,i) - rpv;end;
for i=1:5,drppim(i,:) = drpim(i,:)/rpv(i);end;

rppfm = [(rppflp rppfup)
for i=l:2,drppfm(:,i) = rppfm(:,i) - rpv;end;
for i=1:5,drpppfm(i,:) = drppfm(i,:)/rpv(i);end;

rprevm = [rprevlp rprevup]
for i=1:2,drprevm(:,i) = rprevm(:,i) - rpv;end;
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for i=1:5,drpprevm(i,:) = drprevm(i,:)/rpvii);end;

rpvm = [cpvlp rpvup]
for i=l:2,drpvm(:,i) = rpvm(:,i) - rpv:end;
for im1:5,drppvm(i,:) = drpvm(i,:)/rpv(i);end;

drpim
drppfm
drprevm
drpvm

drppim
drpppfnm
drpprevm -
drppvm k

// Compute the sdev of Rs, Rr, L, and M for the results of lsdata

k(1) = max(abs(dpim(2,:))):

k(1) = k(1)*k(1); .
k(2) = max(abs(dppfm(2,:))); ¥
k(2) = k(2)*k(2); '
k(3) = max(abs(dprevm(2,:)));

k(3) = k(3)*k(3); E
k(4) = max(abstdpvm(2,:)));

k(4) = k(4)*k(4); f
k EX
sdevRs = k(1) + k(2) + k(3) + k{(4d); .
sdevRs = sqrt(sdevRs)

perdevRs = sdevRs/Rs -
k(1) = max(abs(dpim(3,:))); )
k(l) = k(1l)*k(1l);

k(2) = max(abs(dppfm(3,:))); F
k(2) = k(2)*k(2); ,
k(3) = max(abs(dprevm(3,:})); F
k(3) = k(3)*k(3);

k(4) = max(abs(dpvm(3,:))); E
k{d4) = k(4)*k(4); 5
k 3
sdevRr = k(1) + k(2) + k(3) + k(4); }
sdevRr = sqrt(sdevRr)

perdevAr = sdevRr/Rr E

z

max(abs(dpim(4,:)));
k(1l)*k(1l);
max(abs(dppfm(4,:)));
k(2)*k(2);
max(abs(dprevm(4,:)));
k(3)*%k(3);
max(abs(dpvm(4,:)));
k(d)*k(4);

XXX REEX
o~ o o o o~ o~
HDWWNNFEE
— S~
O T I B

sdevl = k(1) + k(2) + k(3) + k(4);
sdevL = sqrt(sdevl)
perdevl = sdevL/L

Mg = e =
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max(abs(dpim(5,:)));
k(l)*k(1l);
max(abs(dppfm(5,:)));
k(2)*k(2);
max(abs(dprevm(5,:)));
k(3)*k(3);
max(abs(dpvm(5,:)));
k(d4)*k(4);

Eoalt i b i i
PASSARPARSA AN AT AR
oD WWNNF -
—— = — - ——
s a8 3

sdevM = k(1) + k(2) + k(3) + k(4);
sdevM = sqrt(sdevi)
perdevM = sdevM/M

// Compute the sdev of Rs, Rr, L, and H for the results of r2data

max(abs(drpim(2,:)));
k(1)*k(1);
max(abs(drppfm(2,:)));
k(2)*k(2);
max(abs(drprevm(2,:)));
k(3)«k(3);
max(abs(drpvm(2,:)));
k(4)*k(4);

o~
AL WW NN
— = —
| IO N N I I B B ]

EREXETREETX

rsdevRs = k(1) + k(2) + k(3) + k(4);
rsdevRs = sqgrt(rsdevRs)
rperdevRs = rsdevRs/Rs

max(abs(drpim(3,:)));
k(l)*k{(1);
max(abs(drppfm(3,:)));
k(2)*k(2);
max(abs(drprevm(3,:)));
k(3)*k(3);
max(abs(drpvm(3,:)));
k(4)*k(4);

AT X
—_— e~~~
L W VVRVVE NN SN o
[N
s R 3 e 0B

rsdevRr = k(1) + k(2) + k(3) + k(4);
tsdevRr = sqrt(rsdevRr)
rperdevRr = rsdevRr/Rr

max(abs(drpim(4d,:)));
k(l)*k(1l);
max(abs(drppfm(4,:)));
k(2)*k(2);
max(abs(drprevm(4,:))};
k(3)*k(3);
max(abs(drpvm(4,:)));
k(4)2k(4d);

—~ o~ —~
E N VY N SN
~—
L IO IO I I B B B )

bt i il i i i .

rsdevlL = k(1) + k(2) + k(3) + k{d);
rsdevlL = sqgrt(rsdevL)
rperdevl = rsdevL/L

k(l) = max(abs(drpim(5,:)));
k(l) = k(1)*k(1);

142



max(abs(drppfm(5,:)));
k(2)*k(2);
max(abs(drprevm(5,:)));
k(3)*k(3);
max(abs(drpvm(5,:)));
k(4)*k(4);

xR KX KKK
o~ o~ —
P W IVEIVY SN N}
— — — - —
L IO B B A |

rsdevM = k(1) + k(2) + k(3) + k(4);
rsdevM = sqrt(rsdevM)
cperdevM = rsdevM/M

diary(0)
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VA A A A A A N A A A A A AR A L A A A A A A A A A 2 A S A 2 d

// Program cscatl.r (in [cho.scatter.rsconstj) //
// /7
// Program cscatl.r and cscat2.r compute numerically the sensitivity //
// of Estimator 3 to noise. //

LIL777 2777777777777 777777777777 77 7 777 7 777/ 77777777777/ 77

// This program will first take an ideal data matrix generated from an
// initial set of electrical parameters of an induction motor such that

/7 Rs = (.865 Ohm
// Rr = 0.563 Ohm
// L = 74.13 mH
// M = 69.87 mH
// V = 120 volts.

// Rs value has been measured and the rest of the parameters have been
// estimated from stator 1 rotor 3, using the rsconst llse method.

// Once we have generated the data matrix, we will test whether we can
// get the original parameters back by implementing rsfdata.udf on
// the idealdata matrix.

// Next, we will perturb the idealdata by maximum and minimum perturbations
// of the stator current (I), the stator voltage (V), the power factor (pf},
// stator resistance, and the rpm measurements that we observe at

// steady-state constant temperature operation of the induction motor.
// From these perturbed matrices, we will determine the scatter or the
// uncertainty of our measurements in program cscat2.r

define ’'param.udf’;
define 'compdata.udf’;
define ’'rsfdata.udf’;

// Generate the idealdata and check the validity of lsdata and r2data fcns.

Rs = 0.865*ones(16,1);
Rr = 0.563;

L = 74.13;

M = 69.87;

L = L*.001;

M = M*_.001;

paramet = (Rr L M}’;

// Need to augment the parameter vector by two zeroes so that the compdata
// will work properly.

augparam = (0 O Rr L M]’;
idealdata = compdata(augparam,Rs(l));

pv = rsfdata(idealdata,Rs);

dpv = pv - paramet;
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// Generate perturbed matrices

sing = ones(16,1);
zip = O%sging;

iuv = 0.04*sing;

ium = [zip iuv zip zip zip zip zip);
piud = idealdata + ium;

pild = idealdata - ium;

pfuv = 0.005*sing;

pfum = (zip zip zip zip pfuv zip zip];
ppfud = idealdata + pfum;

ppfld = idealdata - pfum;

revuv = sing;

revum = (zip zip zip zip zip revuv zip];
prevud = idealdata + revum;

prevld = idealdata - revum;

vuv = 0.3*sing;

vum = [zip zip zip zip zip zip vuv];
pvud = idealdata + vum;

pvld = idealdata - vum;

rsuv = Rs + 0.002*sing;
rslv = Rs - 0.002*sing;

// Generate corresponding parameters for each of the

piup = rsfdata(piud,Rs);

pilp = rsfdata(pild,Rs);

ppfup = rsfdata(ppfud,Rs);

ppflp = rsfdata(ppfld,Rs);
prevup = crsfdata(prevud,Rs);
prevlp = rsfdata(prevlid,Rs);
pvup = rsfdata(pvud,Rs);

pvlp = rsfdata(pvld,Rs);

prsup = rsfdata(idealdata,rsuv);
prslp = rsfdata(idealdata,rslv);

save ‘scscatl’;
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LLLILLL LSS L7777 77 7 7 77 777777777777 77777
// Program cscat2.r (in [cho.scatter.rsconst]) //
7/ 4
// This program is used to evaluate the matrices generated by cscatl.r //
L1177 L7777 7S L7 277777 7777777 S S S S 7/ 7777777777777 )

diary('dcscat2’);
load ’'scscatl’;
short;

paramet
v
dpv

"/ Compute percentage dev from the original set of parameters

pim = (pilp piup]
for i=1:2,dpim(:,i) = pim(:,i) - pv;end;
for i=1:3,dppim(i,:) = dpim(i,:)/pv(i);end;

ppfm = [ppflp ppfup]
for i=1:2,dppfm(:,i) = ppfm(:,i) - pv;end;
for i=1:3,dpppfm(i,:) = dppfm(i,:j/pv(i);end;

prevm = [prevlp prevup]
for i=l:2,dprevm(:,i) = prevm(:,i) - pv;end;
for i=1:3,dpprevm(i,:) = dprevm(i,:)/pv(i);end;

pvm = (pvlp pvup]
for i=1:2,dpvm(:,i) = pvm(:,i) - pv;end;
for i=1:3,dppvm(i,:) = dpvm(i,:)/pv(i);end;

rsm = [prslp prsup])
for i=1:2,drsm(:,i) = rsm(:,i) - pv;end;
for i=1:3,dprsm(i,:) = drsm(i,:)/pv(i);end;

dpim
dppfm
dprevm
dpvm
drsm

dppim
dpppfm
dpprevm
dppvm
dprsm

// Compute the sdev of Rr, L, and M for the results of rsfdata

max(abs(dpim(1l,:)));
k(1)*k(1);
max(abs(dppfm(1l,:)));
k(2)*k(2);

= x x x

(
(
(
(

[ S SN o
~— - —
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max(abs(dprevm(l,:)));
k(3)*k(3);
max(abs(dpvm(l,:)));
k(4)*k(4);
max(abs(drsm{l,:)));
k(5)*k(5);

K RK X R
—~———
DS L wWw
— = =~
a8 20088

sdevRr = k(1) + k(2) + k(3) + k(4) + k(5);
sdevRr = sqrt(sdevRr)
perdevRr = sdevRr/Rr

k(l) = max(abs(dpim(2,:)));
k(l) = k(1)*k(1l);

k(2) = max(abs(dppfm(2,:)));
k(2) = k(2)*k(2);

k(3) = max(abs(dprevm(2,:)));
k(3) o k(3)*k(3);

k(4d) = max(abs{dpvm(2,:)));
k(4) = k(4)*k(4);

k(5) = max(abs(drsm(2,:)));
k(5) = k(5)*k(5);

k

sdevl = k(1) + k(2) + k(3) + k(4) + k(5);
sdevlL = sqrt(sdevlL)
perdevlL = sdevL/L

k(l) = max(abs(dpim(3,:)));
k(1) = k(1)*k(1);

k(2) = max(abs(dppfm(3,:)));
k(2) = k(2)*k(2);

k(3) = max(abs(dprevm(3,:)));
k(3) = k(3)*k(3);

k(4) = max(abs(dpvm(3,:)));
k(4) = k(4)*k(4);

k(S5) = max(abs(drsm(3,:)));
k(5) = k(5)*k(5);

k

sdevM = k(1) + k(2) + k(3) + k(4) + k(5);
sdevid = sqrt(sdevM)
perdevM = sdevM/M

diary(0);
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Appendix E

Numerical Results of the

Sensitivity Amnalysis
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L0077 777777777/ /77
// Numerical results of the sensitivities of /7

// Estimators 1, 2, and 3 Y4
// : //
VORISRV VA A A SN S A A A A R A VARV S I 4

// Sensitivity results for Estimator 1

// Standard deviations SDEVX, and percentage
// deviations PERDEVX,
// where X is Rs, Rr, L, or M

SDEVRS = 0.6434
PERDEVRS = 0.7438
SDEVRR = 0.0080
PERDEVRR = 0.0143
SDEVL = 0.0010
PERDEVL = 0.0142
SDEVM = 0.0013
PERDEVM = 0.0189

// Sensitivity results for Estimator 2
// Standard deviations RSDEVX, and percentage

// deviations RPERDEVX,
// where X is Rs, Rr, L, or M

RSDEVRS = 0.2670

RPERDEVRS = 0.3087
RSDEVRR = 0.0211
RPERDEVRR = 0.0376
RSDEVL = 9.5939D-04
RPERDEVL = 0.0129
RSDEVM = 0.0012
RPERDEVM = 0.0166
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//

4
//
//

Sensitivity results for Estimator 3

Standard deviations SDEVX, and percentage
deviations
where X is

SDEVRR
PERDEVRR

SDEVL
PERDEVL

SDEVM
PERDEVM

PERDEVX,
Rs, Rr, L, or M

0.0109
0.0194

6.8063D-04
0.0092

6.9204D-04
0.0099
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Appendix F

Programs for Constant-Temperature

Experiments
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00Ny

// Program ctlldata.r (in {cho.matfiles.rrbroken}) //
// //
// Computes estimates using Estimator 1 //
// and Estimator 2 at 700 W //
// Note that lsdata.udf = Estimator 1 //

// and r2data.udf = Estimator 2 //
V0000000000000 Nl siiiiiiiiiiseissedssd

// Working with real data of healthy motor (stator 1, rotor 1)
// at constant temp.

/s ti = [T Is Pe Pm pf rpm V|

diary('dctlldata’);
long;

define ‘param.udf’
define 'lsdata.udf’
define 'r2data.udf’
zip = O*ones(13,1)};

// real data l

Isl = [4.280 4.400 4.613 4.926 5.170 5.526 5.906 6.236])';
Is2 = |6.736 7.056 7.513 7.866 8.392]1";

Is = [Isl;Is2];

pfl = [.1751 .2741 .3776 .4766 .5349 .5928 .6349 .6740]’;
pf2 = [.7126 .7312 .7496 .7714 .7809]°;

pf = (pfl;pf2);

// Note that the following rpm vector will be used throughout
// as the controlling test input

rpml = (1795 1790 1785 1780 1775 1770 1765 17601';
rpm2 = (1755 1750 1745 1740 1735]':
tpm = (rpml;crpm2];

vl = (122.7 122.7 122.5 122.6 122.5 122.5 122.6 122.1])";
v2 = (122.2 122.0 122.1 122.7 122.9]1';

v = [vl;v2];

rl = {zip Is zip zip pf cpm Vv];

// real data 2

Isl = [4.313 4.420 4.630 4.863 5.210 5.523 5.910 6.166])";
Is2 =~ {6.653 7.076 7.553 7.886 8.340]"';

Is = [Isl;Is2];

pfl = {.1665 .2788 .3784 .4566 .5326 .5889 .6374 .6702]';
pf2 = [.7064 .7302 .7528 .7692 .77851)';

pf = (pfl;pf2];

vl = [123.1 122.9 123.0 122.7 122.7 122.5 122.6 122.31";
v2 = [122.2 122.3 122.1 122.0 121.9]";

v e {vli;v2];

t2 = [zip Is zip zip pf rpm vl];
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// real data 3

Isl = (4.423 4.540 4.740 4.980 5.320 5.636 6.016 6.420])';
Is2 = [6.783 7.256 7.653 8.163 8.463)"';

Is = [{Isl;Is2];

pfl = [.1550 .2671 .3676 .4533 .5240 .5829 .6292 .6691)';
pf2 = (.7005 .7314 .7510 .7661 .7812]';

pf = (pfl;pf2];

vl = [125.4 125.3 125.4 125.3 125.3 125.2 125.2 125.1]";
v2 = [125.1 125.0 124.8 124.9 124.5])';

v = [vl;v2]);

r3 = (zip Is zip zip pf rpm Vv];

// real data 4

Isl = [4.450 4.566 4.766 5.020 5.310 5.696 6.026 6.403]’;
Is2 = [6.823 7.180 7.653 2.073 8.506])"';

Is = [Isl;Is2]};

pfl = [.1513 .2567 .3648 .4525 .5248 .5899 .6366 .6746)";
pf2 = [.7032 .7270 .7494 .7669 .7791]';

pf = [(pfl;pfz);

vl = [(125.4 125.3 125.3 125.2 125.2 125.1 124.9 124.8])";
v2 = {124.8 124.7 124.6 124.5 124.6})';

v = [(vl;v2]);

rd = (zip Is zip zip pf rpm v];

// do lsdata and r2data on each of the real data to obtain the least
// square and recursive least square approximation of the parameters

(pvl,xl,sll] = lsdata(rl);
[rpvl,cxl,rsll] = r2cata(rl);
[pv2,x2,s12] = lsdata(r2);
{cpvi,rx2,csl12) = r2data(r2);
{pv3,x3,sl3] = lsdata(r3);
{rpv3,rx3,rs13] = r2data(r3);
{pvd,x4,s14] = lsdata(rd);
(rpvd,rxd,rsld] = r2data(rd);

// Take the average of the data, called inave, and perform lsdata and
// r2data on this inave matrix

inave = 0.25*(rl + r2 + r3 + rd);
{pvinave,xinave,sinave] = lsdata({inave);
(rpvinave,rxinave,rsinave] = r2data(inave);
// Print out the lse results

pv = [pvl pv2 pv3 pvd]
pvinave

// Give statistics on the lse output results compared to itself; namely,
// the average, the minimum, and the maximum of each parameter.

pvoutave = 0.25%(pvl + pv2 + pv3 + pvd);
for iwl:5, llim(i,l) = min(pv(i,:));end;
for i=1:5, ulim(i,l) = max(pv(i,:)):end;
outstat = [pvoutave llim ulim]

// Print out the rlse results
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tpv = [rpvl rpv2 rpv3 rpvd]
rpvinave

// Give statistics on the rlse output results; namely, the average, the
// minimum, and the maximum of each parameter

rpvoutave = 0.25*(rpvl + rpv2 + rpv3d + rpvd);
for i=1:5, llim(i,l) = min(cpv(i,:));end;

for i=1:5, ulim(i,l) = max(rpv(i,:));end;
toutstat = [rpvoutave llim ulim]

// Compute the normalized pvinave sensitivity and statistics

for i=1:4, dpvin(:,i) = pv(:,i) - pvinave;end;

for i=1:5, dpvin(i,:) = dpvin(i,:)/pvinave(i);end;

dpvin

dpvinave = 0.25*(dpvin(:,1) + dpvin(:,2) + dpvin(:,3) + dpvin(:,4));

adpvinave-(abs(dpvin(:,l))+abs(dpvin(:,2))+abs(dpvin(:,3))+abs(dpvin(:,4)))/4.;

for i=wl:5, llim(i,l)} = min(dpvinii,:));end;
for i=1:5, ulim(i,1l) = max(dpvin(i,:));end;
dpvinstat = (dpvinave adpvinave llim ulim]

// Compute the normalized rpvinave sensitivity and statistics

for iw=1:4, drpvin(:,i; = rpv(:,i) - rpvinave;end;
for i=1:5, drpvin(i,:) = drpvin(i.:)/rpvinave(i);end;
drpvin

drpvinave = 0.25*(drpvin(:,1)+drpvin(:,2)+drpvin(:,3)+drpvin(:,4));
adrpvinave-(abs(drpvin(:,1))+abs(drpvin(:,2))+abs(drpvin(:,3)));
adrpvinave = (adrpvinave + abs(drpvin(:,4)))*%0.25;

for iwl:5, 1lim(i,l) = min(drpvin(i,:));end;

for i=1:5, ulim(i,l) = max(drpvin(i,:)):end;

drpvinstat ~ [drpvinave adrpvinave 1llim ulim]

// Compute the normalized pvoutave sensitivity and statistics

for iml:4, dpvout(:,i) = pv(:,i) - pvoutave;end;

for i=1:5, dpvout(i,:) = dpvout(i,:)/pvoutave(i);end;

dpvout;

dpvoutave = 0.25*(dpvout(:,1)+dpvouc(:,2)+dpvout(:,3)+dpvout(:,4));
adpvoutave-(abs(dpvout(:,1))+abs(dpvout(:,2))+abs(dpvout(:.3)));
adpvoutave = (adpvoutave + abs(dpvout(:,4)))*0.25;

for i=1:5, llim(i,l) = min(dpvout(i,:));end;

for i=1:5, ulim(i,l) = max(dpvout(i,:));end;

dpvoutstat = {dpvoutave adpvoutave llim ulim};

// Compute the normalized rpvoutave sensitivity and statistics

for iml:4, drpvout(:,i) = tpv(:,i) - rpvoutave;end;

for iwl:5, drpvout(i,:) = drpvout(i,:)/rpvoutave(i);end;

drpvout;

drpvoutave = 0.25*(dtpvout(:,1)+drpv0ut(:,2)+drpvout(:,3)+drpvout(:,4));
adrpvoutave = (abs(drpvout(:,l))+abs(drpvout(:,2))+abs(drpvout(:,3)));
adrpvoutave = (adrpvoutave + abs(drpvout(:,4)))*0.25;

for i=1:5, llim(i,l) = min{drpvout(i,:));end;

for i=1:5, ulim(i,l) = max(drpvout(i,:));end;

drpvoutstat = (drpvoutave adrpvoutave llim ulim];

save ’'sctlldata‘’;
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//////////////////////////////////////////////////////////
// Program ctb2ldata2.r (in {cho.matfiles.crbroken]) //

/7 //
// Computes estimates using Estimator 1 //
// and Estimator 2 at 700 W //
// Note that lsdata.udf = Estimator 1 and /7

// r2data.udf = Estimator 2) /7
//////////////////////////////////////////////////////////

// Working with broken bar data (rotor 2, stator 1) at const. temp.

// ti = [T Is Pe Pm pf rpm V]

/s Date: April 30, 1988. Dynamometer fixed, Bar cut at the other end
// on April 15, 1988.

diary(’'dctb2ldata2’);
long;

define ’'param.udf’
define ‘lsdata.udf’
define ‘r2data.udf’
zip = O*ones(16,1);

// real data 1l

Isl = [4.406 4.501 4.713 4.976 5.205 5.563 5.990 6.325]"';
Is2 = (6.646 7.073 7.478 7.948 8.436 8.821 9.226 9.610]";
Is = [Isl;Is2];
pfl = [.1810 .2745 .3887 .4604 .5269 .5919 .6392 .6745)’;
pf2 = [.7020 .7255 .7459 .7643 .7768 .7912 .8002 .8072]';
pf = (pfl;pf2);

// Note that the following rpm vector will be used throughout
// as the controlling test input

rpml = [1795 1790 1785 1780 1775 1770 1765 1760])':
rpm2 = [1755 1750 1745 1740 1735 1730 1725 1720)";
rpm = (cpml;cpm2];

vl = (125.6 125.6 125.5 125.4 125.4 125.3 125.3 125.2]";
v2 = [125.0 124.9 124.9 124.8 124.5 124.5 124.5 124.3)';
v = [(vl;v2];

rl = [zip Is zip zip pf rpm Vv]};

// real data 2

Isl = [4.403 4.548 4.631 4.931 5.225 5.556 5.983 6.346)"';
Is2 = [6.668 7.081 7.451 7.940 8.320 8.821 9.180 9.620]";
Is = (Isl;Is2]);

pfl = [.1692 .2877 .3584 .4510 .5219 .5846 .6363 .6730]';
pf2 = (.6995 .7282 .7474 .7646 .7836 .7909 .7994 .8056])';
pf = [pfl;pf2);

vl = [125.7 125.6 125.6 125.5 125.4 125.3 125.2 125.1]"';
v2 = {125.0 125.0 124.8 124.7 124.7 124.7 124.7 124.7})";
v = [vl;v2];

r2 = (zip Is zip zip pf rpm Vvi;
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// real data 3

Isl = (4.215 4.333 4.520 4.760 5.041 5.456 5.785 6.148)";
Is2 = (6.531 6.950 7.358 7.805 8.228 8.603 9.018 9.535]";
Is = [Isl;Is2];

pfl = [.1880 .2905 .3886 .4697 .5412 .6058 .6505 .6874)’;
pf2 = [.7139 .7340 .7516 .7700 .7829 .7923 .8027 .8115}';
pf = [pfl;pf2];

vl = (123.9 123.7 123.5 123.6 123.6 123.5 123.6 123.3]';
v2 = (123.3 123.3 123.4 123.,5 123.5 123.4 123.3 123.3}°';
v = [vl;v2];

r3 = (zip Is zip zip pf rpm vi;

// real data ¢

Isl = [(4.338 4.460 4.688 4.910 5.235 5.560 5.876 6.240)";
Is2 = (6.640 7.126 7.545 7.991 8.385 8.795 9.246 9.688]';
Is = [Isl;Is2];

pfl = [.1451 .2706 .3733 .4529 .5273 .5782 .6195 .6595)’;
pf2 = [.6961 .7248 .7463 .7639 .7795 .7908 .7973 .8069])’;
pf = {pfl;pf21];

vl = {125.4 125.5 125.4 125.1 125.1 125.2 125.2 125.1)';
v2 = [125.2 125.1 125.1 125.0 124.5 124.3 124.6 124.6)';
v = [vl;v2]};

t4 = [(2ip Is zip zip pf rpm v};

// do lsdata and c2data on each of the real data to obtain the least
// square and recursive least square approximation of the parameters

[pvl,xl] = lsdata(rl);
[rpvl,rxl] = r2data(rl);
{pv2,x2) = lsdata(r2);
(rpv2,rx2)] = r2data(r2);
{pv3,x3] = lsdata(r3);
[cpv3,rx3] = r2data(r3);
{pvd,xd4) = lsdata(rd);
[rpvd,rxd4] = r2data(rd);

// Take the average of the data, called inave, and perform lsdata and
// r2data on this inave matrix

inave = (rl + r2 + r3 + rd)/4.;
[bpvinave,bxinave] = lsdata(inave);
[brpvinave,brxinave] = r2data(inave);
// Print out the lse results

bpv = [pvl pv2 pv3 pv4]
bpvinave

// Give statistics on the lse output results compared to itself; namely,
// the average, the minimum, and the maximum of each parameter.

bpvoutave = (pvl + pv2 + pvi + pvd)/4.;
for i=1:5, llim(i,l) = min(bpv(i,:));end;
for i=1:5, ulim(i,l) = max(bpv(i,:));end;
boutstat =« [bpvoutave llim ulim)

// Print out the rlse results
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brpv = [rpvl crpv2 rpv3 rpvd]
brpvinave

// Give statistics on the rlse output results; namely, the average, the
// minimum, and the maximum of each parameter

brpvoutave = (rpvl + rpv2 + rpv3 + rpvd)/4.;
for i=1:5, llim(i,l) = min(brpv(i,:));end;
for i=1:5, ulim(i,l) = max(brpv(i,:));end;
broutstat = [brpvoutave llim ulim]

// Compute the normalized bpvinave sensitivity and statistics

for i=1:4, dbpvin{(:,i) = bpv(:,i) - bpvinave;end;

for i=1:5, dbpvin(i,:) = dbpvin(i,:)/bpvinave(i);end;

dbpvin

dbpvinave = (dbpvin(:,1)+dbpvin(:,2)+dbpvin(:,3)+dbpvin(:,4)
adbpvinave-abs(dbpvin(:,1))+abs(dbpvin(:,2))+abs(dbpvin(:,3)
adopvinave = {(adbpvinave + abs(dbpvin(:,4)))/4.;

for i=1:5, llim(i,l1) = min(dbpvin(i,:));end;

for i=l:5, ulim(i,l) = max{(dbpvin(i,:}));end;

dbpvinstat = [(dbpvinave adbpvinave 1llim ulim}

// Compute the normalized brpvinave sensitivity and statistics

for i=1:4, dbrpvin(:,i) = brpv(:,i) - brpvinave;end;
for i=1:5, dbrpvin(i,:) = dbrpvin(i,:)/brpvinave(i);end;
dbrpvin

dbrpvinave = (dbrpvin(:,1)+dbrpvin(:,2)+dbrpvin(:,3)+dbrpvin(:,4))/4.;
adbtpvinave-abs(dbrpvin(:,1))+abs(dbrpvin(:,2))+abs(dbrpvin(: 1)
adbrpvinave = (adbrpvinave + abs(dbrpvin(:,4)))/4.;

for i=1:5, 1llim(i,l) = min(dbrpvin(i,:));end;

for i=1:5, ulim(i,l) = max(dbrpvin{(i,:));end;

dbrpvinstat = [dbrpvinave adbrpvinave 1lim ulim)

// Compute the normalized bpvoutave sensitivity and statistics

for i=1l:4, dbpvout(:,i) = bpv(:,i) - bpvoutave;end;

for i=1:5, dbpvout(i,:) = dbpvout(i,:)/bpvoutave(i);:end;

dbpvout;

dbpvoutave = (dbpvout(:,l)+dbpvout(:,2)+dbpvout(:,3)+dbpvout(:,4))/4
adbpvoutave-abs(dbpvout(:,1))+abs(dbpvout(:,2))+abs(dbpvout(:,3));
adbpvoutave = (adbpvoutave + abs(dbpvout(:,4)})/4.;

for i=1:5, 1llim(i,l) = min(dbpvout(i,:));end:

for i=1:5, ulim(i,l) = max(dbpvout(i,:));end;

dbpvoutstat = (dbpvoutave adbpvoutave llim ulimj;

v 2

// Compute the normalized brpvoutave sensitivity and statistics

for i=1:4, dbrpvout(:,i) » brpv(:,i) - brpvoutave;end;

for i=1:5, dbrpvout(i,:) = dbrpvout(i,:)/brpvoutave(i);end;

dbrpvout;

dbrpvoutave = (dbrpvout(:,1)+dbrpvout(:,2)+dbrpvout(:,3)+dbrpvout(:,4))/4.;
adbrpvoutave = abs(dbrpvout(:,1))+abs(dbrpvout(:,2))+abs(dbrpvout(:,3)),
adbrpvoutave = (adbrpvoutave + abs(dbrpvout(:,4)))/4;

for i=1:5, 1llim(i,l) = min(dbrpvout(i,:));end;

for i=1:5, ulim(i,l) = max(dbrpvout(i,:));end;

dbrpvoutstat = [dbrpvoutave adbrpvoutave llim ulim];
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// Load healthy rotor data from sctlldata.dat
load ’'scti3ldata2’

inm = [(bpv bpvinave];
rinm = {brpv brpvinave]);

// Compute the normalized inm sensitivity and statistics

for i=1:5, dinm(:,i) = inm(:,i) - pvinave;end;

for i=1:5, dinm(i,:) = dinm(i,:)/pvinave(i);end;

dinm

dinmave = (dinm(:,l)+dinm(:,2)+dinm(:,3)+dinm(:,4))/4.;

adinmave = (abs(dinm(:,l))+abs(dinm(:,2))+abs(dinm(:,3))+abs(dinm(:,4)))/4.;
for i=1:5, 1llim(i,l) = min(dinm(i,:));end;

for i=l:5, ulim(i,l) = max(dinm(i,:));end;

dinmstat = {dinmave adinmave llim ulim)

// Compute the normalized inm sensitivity and statistics

for i=1:5, drinm(:,i) = rinm(:,i) - rpvinave;end;
for i=1:5, drinm(i,:) = drinm(i,:)/rpvinave(i};end;
drinm

drinmave = (drinm(:,1l)+drinm(:,2)+drinm(:,3)+drinm(:,4))/4.;
adrinmave = (abs(drinm(:,1))+abs(drinm(:,2))+abs(drinm(:,3)));
adrinmave = (adrinmave+abs(drinm(:,4)))/4.;

for i=1:5, 1lim(i,l) = min{(drinm(i,:));end;

for i=1:5, ulim(i,l) = max(drinm(i,:));end;

drinmstat = (drinmave adrinmave 1llim ulim])

save ’'sctb2ldata2’;
diary(0);
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SILLIL 777772/ S 77777 S S/
// Program ct3ldata2.r (in {cho.matfiles.rrbroken])

/7
//
7/
/7
/7

/7
//
4

//

diary('dct3ldata2’)
long;

define ‘param.udf’
define ‘lsdata.udf’
define 'r2data.udf’
zip = O*ones(16,1);

Date:

// veal data 1

1

1988.

Computes estimates using Estimator 1
and Estimator 2 at 700 W

Note that lsdata.udf = Estimator 1 and
r2data.udf « Estimator 2)

/7
LILLLL127 7777777077777 7777 S/ /7777777777777

ri = [T Is Pe Pm pf{ rpm V}

Isl = (4.323 4.431 4.663 4.943 5.231 5.628

Is2 = [6.748 7.130
Is = (Isl;Is2];
pfl = (.1642 .2727
pf2 = [.7147 .7351
pf = [pfl;pf2];

// Note that the following rpm vector

7.536

.3785
.7575

7.965 B8.433 8.848

.4735 .5375 .6050
.7740 .7871 .7980
will

// as the controlling test input

rpml ~ (1795 1790 1785 1780 1775 1770
rpm2 = (1755 1750 1745 1740 1735 1730

rpm = {rpml;rpm2];

1765
1725

Working with real data of healthy motor (stator 1,
at constant temp.

April 30, Dynamometer fixed.

//
//
//
/7
/7

rotor 3)

5.913 6.353]";
9.230 9.656);

.6405
.80458

.6841)";
.8141)";

be used throughout

17601’ ;
172017 ;

vi = [123.5 123.4 123.6 123.5 123.5 123.4 123.1 123.2]";
v2 = (123.2 123.0 123.0 122.9 123.0 122.6 122.9 122.6]}";

v = (vl;v2);

rl = (zip Is zip zip pf rpm v};

// real data 2

Isl = (4.388 4.485 4.720 4.980 5.263 5.650 5.995 6.375}"';
7.660 8.055 8.488 8.860 9.385 9.768])"';

Is2 = [6.816 7.226
Is = [(Isl;Is2)]);
pfl = [.1774 .2832
pf2 = (.7116 .7370
pf = (pfl;pf2};

.3872
.7565

.471¢
.7708

.5362
.7855

.5985
.7976

.6427
.8078

.6777)";
.81451";

vl = [124.2 123.9 124.3 124.1 124.1 124.2 124.1 124.0}';
v2 = {124.0 124.0 123.8 123.8 123.6 123.5 123.4 123.4]";

v = [vl;v2];
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t2 = (zip Is zip zip pf rpm v|;
// real data 3

Isl = [4.526 4.5650 4.830 5.106 5.391 5.768 6.156 6.558]';
Is2 = [6.908 7.358 7.763 8.163 8.690 9.005 9.525 9.875]';
Is = [Isl;Is2];

pfl = [.1704 .2844 .3747 .4562 .5242 .5898 .6414 .6774})';
pf2 = (.7057 .7341 .7544 .7689 .7843 .7934 .8041 .8126]’;
pf = [pfl;pf2];

vl = [126.0 126.0 125.9 126.0 125.8 125.8 125.6 125.6]";

v2 = {125.5 125.3 125.4 125.4 125.3 125.3 125.3 125.1}’;

v = [vl;v2];

r3 = [zip Is zip zip pf rpm v];

// real data 4

Isl = (4.571 4.681 4.861 5.118 5.386 5.751 6.105 6.570]";
Is2 = [6.903 7.341 7.701 8.235 8.625 9.028 9.455 9.943]’;
Is = [Isl;Is2];

pfl = [.1574 .2693 .3650 .4519 .5264 .5849 .6293 .6751]';
pf2 = (.7028 .7306 .7468 .7670 .7807 .7941 .8029 .8104]';
pf = [pfl;pf2];

vl = [126.4 126.5 126.3 126.3 126.0 126.2 126.1 126.0})"';
v2 = [125.9 125.9 125.9 125.8 125.7 125.7 125.4 125.5]’;
v = [(vl;v2];

r4 = [zip Is zip zip pf rpm vi;

// do lsdata and r2data on each of the real data to obtain the least
// square and recursive least square approximation of the parameters

{pvl,xl,sll] = lsdata(rl);
{rpvl,cxl,rsll] = r2data(rl);
(pv2,x2,s12) = lsdata(r2);
[cpv2,rx2,rs512] = r2data(r2);
(pv3,x3,s13) = lsdata(r3);
(rpv3,rx3,rs513] = r2data(r3);
(pvd,xd,sld) = lsdata(rd);
(cpvd,rx4,rs14] = r2data(rd);

// Take the average of the data, called inave, and perform lsdata and
// r2data on this inave matrix

inave = 0.25%*(cl + r2 + 3 + rd);
(pvinave,xinave,sinave| = lsdata(inave);
{rpvinave,rxinave,rsinave] = r2data(inave);

// Print out the lse results

pv = (pvl pv2 pv3 pvd]
pvinave

// Give statistics on the lse output results compared to itself; namely,
// the average, the minimum, and the maximum of each parameter.

pvoutave = 0.25*(pvl + pvZ + pv3 + pvd);
for i=1:5, 1lim(i,1) = min(pv(i,:));end;
for i=1:5, ulim(i,l) = max(pv(i,:));end;
outstat = [(pvoutave llim ulim]
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s/ Print out the rlse results

rpv = (rpvl rpv2 cpv3 rpvd]
rpvinave

// Give statistics on the rlse output results; namely, the average, the
// minimum, and the maximum of each parameter

rpvoutave = 0.25#(rpvl + rpv2 + rpv3 + rpvd);
for i=1:5, llim(i,l) = min(rpv(i,:));end;

for i=1:5, ulim(i,l) = max(cpv(i,:));end;
routstat = [rpvoutave llim ulim]

v/ Compute the normalized pvinave sensitivity and statistics

for i=1:4, dpvin(:,i) = pv(:,i) - pvinave;end;
for i=1:5, dpvin(i,:) = dpvin(i,:)/pvinave(i);end;
dpvin

dpvinave = 0.25%(dpvin(:,l) + dpvin(:,2) + dpvin(:,3) + dpvin(:,4));
adpvinave=(abs(dpvin(:,1l))+abs(dpvin(:,2))+abs(dpvin(:,3))+abs(dpvin(:,4)))/4.;
for i=l1:5, 1llim(i,1l) = min(dpvin(i,:));end;

for i=1:5, ulim(i,l) = max(dpvin(i,:));end;

dpvinstat = [dpvinave adpvinave llim ulim]

// Compute the normalized rpvinave sensitivity and statistics

for i=~1:4, drpvin(:,i) =« rpv(:,i) - rpvinave;end;
for i=1:5, drpvin(i,:) = drpvin(i,:)/rpvinave(i);end;
drpvin

drpvinave = 0.25*(drpvin(:,l)+drpvin(:,2)+drpvin(:,3)+drpvin(:,4));
adrpvinave=(abs(drpvin(:,1))+abs(dcpvin(:,2))+abs(drpvin(:,3)));
adrpvinave = (adrpvinave + abs(drpvin(:,4)))#0.25;

for i=1:5, 1lim(i,1l) = min(drpvin(i,:));end;

for i=1:5, ulim(i,1l) = max(drpvin(i,:));end;

drpvinstat = [drpvinave adrpvinave llim ulim]

// Compute the normalized pvoutave sensitivity and statistics

for i=1:4, dpvout(:,i) = pv(:,i) - pvoutave;end;
for i=1:5, dpvout(i,:) = dpvout(i,:)/pvoutave(i);end;
dpvout;

dpvoutave = 0.25*(dpvout(:,1)+dpvout(:,2)+dpvout(:,3)+dpvout(:,4));
adpvoutave=(abs(dpvout(:,1))+abs(dpvout(:,2))+abs(dpvout(:,3)));
adpvoutave = (adpvoutave + abs(dpvout(:,4)))*0.25;

for i=1:5, 1lim(i,l) = min(dpvout(i,:));end;

for iwl:5, ulim(i,l) = max(dpvout(i,:));end;

dpvoutstat = [dpvoutave adpvoutave 1llim ulim};

// Compute the normalized rpvoutave sensitivity and statistics

for i=1:4, drpvout(:,i) = rpv(:,i) - rpvoutave;end;
for i=1:5, drpvout(i,:) = drpvout(i,:)/rpvoutave(i);end;
drpvout;

drpvoutave = 0.25*(drpvout(:,l)+drpvout(:,2)+drpvout(:,3)+drpvout(:,4));
adrpvoutave = (abs(drpvout(:,l))+abs(drpvout(:,2))+abs(drpvout(:,3)));
adrpvoutave = (adrpvoutave + abs(drpvout(:,4)))*0.25;

for i=1:5, 1llim(i,l) = min(drpvout(i,:));end;

for i=1:5, ulim(i,l) = max(drpvout(i,:));end;

drpvoutstat = [drpvoutave adrpvoutave llim ulim];
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save ’'sctlldata2’;
diacy(0);
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//////////////////////////////////////////////////////////////////
// Program ctlldata.r (in [cho.matfiles.rrbroken.rsconstl) //

// //
// Computes estimates using Estimator 3 at 700W //
// Note that rsfdata.udf = Estimator 3 //

//////////////////////////////////////////////////////////////////

// Working with real data of healthy motor (stator 1, rotor 2)
// at constant temp.

s/ i = (T Is Pe Pm pf rpm V]

diary(‘dctrslldata’);
long;

define ‘param.udf’
define 'rsfdata.udf’
zip = O*ones(13,1);

// real data l

Isl = [4.280 4.400 4.613 4.926 5.170 5.526 5.906 6.236]';
Is2 = [6.736 7.056 7.513 7.866 8.393])';

Is = (Isl;Is2]);

pfl = [.1751 22741 .3776 .4766 .5349 .5928 .6349 .67401";
pf2 = {.7126 .7312 .7496 .7714 .78091';

pf = [pfl;pf2]:

// Note that the following rpm vector will be used throughout
// as the controlling test input

rpml = {1795 1790 1785 1780 1775 1770 1765 1760])’;
rpm2 = {1755 1750 1745 1740 17351';
cpm = (crpml;cpm2];

vl = [122.7 122.7 122.5 122.6 122.5 122.5 122.6 122.1]';
v2 = (122.2 122.0 122.1 122.7 122.91';

v = [vl;v2];

tl = [zip Is zip zip pf rpm vl;

// real data 2

Isl = [4.313 4.420 4.630 4.863 5.210 5.523 5.910 6.166]";
Is2 = [6.653 7.076 7.553 7.886 8.3401";

Is = [Isl;Is2];

pfl = [.1665 .2788 .3784 .4566 .5326 .5889 .6374 .6702]";
pf2 = (.7064 .7302 .7528 .7692 .7785}’;

pf = [pfl;pf2l:

vl = {123.1 122.9 123.0 122.7 122.7 122.5 122.6 122.31';
v2 = [122.2 122.3 122.1 122.0 121.91";

v = [vl;v2];

r2 = [zip Is zip zip pf rpm vl};

)/ real data 3
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Isl = (4.423 4.540 4.740 4.980 5.329 5.636 ©.016 6.420]";
Is2 = (6.783 7.256 7.653 8.163 8.463)";

Is = {Isl;Is2);

pfl = [.1550 .2671 .3676 .4533 .5240 .5829 .6292 .6691]';
pf2 = [.7005 .7314 .7310 .7661 .7812]";

pf = [pfl;pf2}];

vl = [125.4 125.3 125.4 125.3 125.3 125.2 125.2 125.1]’;
v2 = [125.1 125.0 124.8 124.9 124.5]';

v m (vl;v2];

r3 = (zip Is zip zip pf rpm v];

// real data 4

Isl = (4.450 4.566 4.766 5.020 5.310 5.696 6.026 €.403}’;
Is2 = [6.823 7.180 7.653 8.073 8.506}"';

Is = [Isl;Is2);

pfl = [.1513 .2567 .3648 .4525 .5248 .5899 .6366 .6746]';
pf2 = [.7032 .7270 .7494 .7669 .7791]';

pf = {pfl;pf2];

vl = [125.4 125.3 125.3 125.2 125.2 125.1 124.9 124.8]’;
v2 = [124.8 124.7 124.6 124.5 124.6]";

v = (vl;v2];

r4d = {zip Is zip zip pf rpm v];

// do rsfdata on each of the real data with known, measured Rs

.859*0ones(13

Rsl - 11);
Rs2 = .859*ones(13,1);
Rs) = .858*ones(13,1);
Rs4 = .858*ones(13,1);

[pvl,x1l,sl]
[pv2,x2,s2]
(pv3,x3,s3]
{pvé,x4,s54]

vrsfdata(rl,Rsl);
csfdata(r2,Rs2);
rsfdata(r3,Rs3);
rsfdata(r4,Rsd);

rinave = 0.25*(rl + r2 + r3 + rd);
Rsave = 0.25*(Rsl + Rs2 + Rs3 + Rs4);
[pvinave,xinave,sinave] = rsfdata(rinave,Rsave);

// Print out the results

pv = [pvl pv2 pv3 pvd]
pvinave

// Give statistics on the output results compared to itself; namely,
// the average, the minimum, and the maximum of each parameter.

pvoutave = 0.25*%(pvl + pv2 + pv3 + pvd);
for i=1:3, llim(i,1) = min(pv(i,:));end;
for i=1:3, ulim(i,i) = max(pv(i,:));end;
outstat = {pvoutave llim ulim]

// Compute the normalized pvinave sensitivity and statistics

for i=1:4, dpvin(:,i) = pv(:,i) - pvinave;end;

for i=1:3, dpvin(i,:) = dpvin(i,:)/pvinave(i);end;

dpvin

dpvinave = 0.25+*(dpvin(:,1) + dpvin(:,2) + dpvin(:,3) + dpvin(:,4));
adpvinave=(abs(dpvin(:,1))+abs(dpvin(:,2))+abs(dpvin(:,3))+abs(dpvin(
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for i=1:3, llim(i,l) = min(dpvin(i,:));end;
for i=1:3, ulim(i,l) = max(dpvin(i,:));end;
dpvinstat = {dpvinave adpvinave llim ulim]

// Compute the normalized pvoutave sensitivity and statistics

for i=l:4, dpvout(:,i) = pv(:,i) - pvoutave;end;

for i=1:3, dpvout(i,:) = dpvout(i,:)/pvoutave(i);end;

dpvout;

dpvoutave = 0.25*(dpvout(:,1)+dpvout(:,2)+dpvout(:,3)+dpvout(:,4));
adpvoutave-(abs(dpvout(:,1))+abs(dpvout(:,2))+abs(dpvout(:,3)));
adpvoutave = {adpvoutave + abs(dpvout(:,4)))*0.25;

for i=1:3, llim(i,l) = min(dpvout(i,:));end;

for i=i:3, ulim(i,l) = max(dpvout(i,:));end;

dpvoutstat = [dpvoutave adpvoutave 1lim ulim};

save ’'sctrslldata’;
diary(0);
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LILILILI 07707771777 7777777777777 7777/ 77777777777

// Program ctb2ldata.r (in [cho.matfiles.rrbroken.rsconst]) //
// //
// Computes estimates using Estimator 3 at 700W 7/

// Note that rsfdata.udf = Estimator 3 //
L1117 77 777777777 777777 77 7 7777777777777 777777/77777/777/7/777/7777

7/
7/
//
/7

Working with broken bar data (stator 1,
at constant temp.
Date:

ri = (T Is Pe Pm pf

rotor 2)

rpm V]

diary(’dctrsb2ldata2’);
long;

define 'param.udf’
define ‘rsfdata.udf’
zip = O*ones(16,1);

// real data 1

Isl = [4.406 4.501 4.713 4.976 5.205 5.563
Is2 = (6.646 7.073 7.478 7.948 8.436 8.821
Is = [Isl;Is2j;
pfl = [.1810 .2745S
pf2 = [.7020 .725S
pf = (pfl;pf2];

5.990 6.325)';
9.226 9.610])";

.3887
-7459

4604
.7643

.5269
.7768

.5919
.7912

.6392
.8002

.6745])’;
.8072)’;

// Note that the following rpm vector will be used throughout
// as the controlling test input

cpml = (1795 1790 1785 1780
cpm2 = (1755 1750 1745 1749
cpm = [rpml;rpm2]);

1775 1770 1765
1735 1730 1725

1760 ;
1720]';

vl = {125.6 125.6 125.5 125
v2 = [125.0 124.9 124.9 124
v s [vli;v2];

rl = (zip Is zip zip pf rpm

// real data 2

.4 125.4 125.3 125.3 125.2])°;
.8 124.5 124.5 124.5 124.3])";

v);

Isl = [4.403 4.548 4.631 4.931 5.225 5.556 5.983 6.346]"';
Is2 = (6.668 7.081 7.4S51 7.940 8.320 8.821 9.180 9.620])';
Is = [Isl;Is2];
pfl = {.1692 .2877
pf2 = [.6955 .7282
pf = [pfl;pf2];

vl =« {125.7 125.6 125.6 125.5 125.4 125.3 125.2 125.1}"';
v2 = [125.0 125.0 124.8 124.7 124.7 124.7 124.7 124.7)";
v e [vl;v2];

r2 = (zip Is zip zip pf rpm v];

.3584
.7474

.4510
.7646

.5219
.7836

.5846
.7909

.6363
.7994

.6730)’;
.80S61)’;

// real data 3
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Isl = (4.215 4.333 4.520 4.760 5.041 5.456 5.785 6.148)";
Is2 = [6.531 6.950 7.358 7.805 8.228 8.603 9.018 9.535)’;
Is = [Isl;Is2);

pfl = [.1880 .2905 .3886 .4697 .541z .6058 .6505 .6874)";
pf2 = {.7139 .7340 .7516 .7700 .7829 .7923 .8027 .8115]";
pf = [pfl;pf2);

vl = [123.9 123.7 123.5 123.6 123.6 123.5 123.6 123.3);
v2 = [123.3 123.3 123.4 123.5 123.5 123.4 123.3 123.3);
v = [v]l;v2];

r3 = (zip Is zip zip pf rpm v];

// real data 4

Isl = [4.338 4.460 4.688 4.910 5.235 5.560 5.876 6.240)';
Is2 = [6.640 7.126 7.545 7.991 8.385 8.795 9.246 9.688])';
Is = {Isl;Is2];

pfl = [.1451 .2706 .3733 .4529 .5273 .5782 .6195 .6595]";
pf2 = [.6961 .7248 .7463 .7639 .7795 .7908 .7973 .8069)';
pf = [pfl;pf2];

vl = (125.4 125.5 125.4 125.1 125.1 125.2 125.2 125.1])7;
v2 = [125.2 125.1 125.1 125.0 124.5 124.8 124.6 124.6)';
v = [(vl;v2];

r4 = (zip Is zip zip pf rpm v]);

// do rsfdata on each of the real da:a with known, measured Rs

Rsl
Rs2
Rs3
Rs4

.869*0nes(16,1)
.869%ones(16,1)
1)
1)

.B65%0nes(16,1);
.863*0ones(16,1);
rsfdata(rl,Rsl)

(pvl,xlj H
rsfdata(r2,Rs2);

(pv2,x2]}
[pv3.x3)
(pvd,xd])

rsfdata(r3,Rs3);
rsfdata(rd4,Rs4)

rinave = (rl + r2 + r3 + r4)/4.;
Rsave = (Rsl + Rs2 + Rs3 + Rsd)/4.;
(bpvinave,bxinave} = rsfdata{rinave,Rsave);

// Print out the results

bpv = {pvl pv2 pv3 pvd]
bpvinave

// Give statistics on the output results compared to itself; namely,
// the average, the minimum, and the maximum of each parameter.

bpvoutave = (pvl + pv2 + pv3 + pvd)/4.;
for i=1:3, 1lim(i,1) = min(bpv(i,:));end;
for i=1:3, ulim(i,l) = max(bpv(i,:));end;
boutstat = (bpvoutave 11lim ulim)

// Compute the normalized bpvinave sensitivity and statistics

for i=1:4, dbpvin(:,i) = bpvi:,i) - bpvinave;end;

for i=1:3, dbpvin(i,:) = dbpvin(i,:)/bpvinave(i);end;

dbpvin

dbpvinave = (dbpvin(:,1)+dbpvin(:,2)+dbpvin(:,3)+dbpvin(:,4))/4.;
adbpvinave-abs(dbpvin(:,1))+abs(dbpvin(:,2))+abs(dbpvin(:,3));
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adbpvinave = (adbpvinave + abs(dbpvin(:,4)))/4.;
for i=1:3, llim(i,l) = min(dbpvin(i,:));end;

for i=1:3, ulim(i,l) = max(dbpvin(i,:));end;
dbpvinstat = [dbpvinave adbpvinave llim ulim]

// Compute the normalized bpvoutave sensitivity and statistics
for i=1:4, dbpvout(:,i) = bpv(:,i) - bpvoutave;end;

for iw=1:3, dbpvout(i,:) = dbpvout(i,:)/bpvoutave(i);end;
dbpvout;

dbpvoutave = (dbpvout(:,1)+dbpvout(:,2)+dbpvout(:,3)+dbpvout(:,4))/4.;
|

adbpvoutave=abs(dbpvout(:,1))+abs(dbpvout(:,2))+abs(dbpvout(:,3
adbpvoutave = (adbpvoutave + abs(dbpvout(:,4})))/4.;

for i=l1:3, 1llim(i,l) = min(dbpvout(i,:));end;

for i=1:3, ulim(i,l) = max(dbpvout(i,:));end;

dbpvoutstat = (dbpvoutave adbpvoutave llim ulim];

// Load healthy rotor data from sctrslldata.dat

load ’sctrs3ldata2’

inm = [bpv bpvinave];

// Compute the normalized inm sensitivity and statistics
for i=1:5, dinm(:,i) = inm(:,1i) - innave;end;

for i=1:3, dinm(i,:) = dinm(i,:)/pvinave(i);end;

dinm
dinmave = (dinm(:,1)+dinm(:,2)+dinm(:,3)+dinm(:,4))/4.;

adinmave = (abs(dinm(:,l))+abs(dinm(:,2))+abs(dinm(:,3))+abs(dinm(:,4)))/4.;

for i=1:3, llim(i,l) = min(dinm(i,:));end;
for iwl1:3, ulim(i,l) = max(dinm(i,:));end;
dinmstat = [(dinmave adinmave llim ulim]

save ’‘sctrsb2ldata2’;
diary(0);
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// Program ct3ldata.r (in [cho.matfiles.rrbroken.rsconst]) //
// //
// Computes estimates using Estimator 3 at 700W //

// Note that rsfdata.udf = Estimator 3 /7
VIV 00200000020 00000 i it iiiis

// Working with real data of healthy motor (stator 1, rotor 3)
// at constant temp.

// Date: April 30, 1988. Dynamometer fixed.

// i = [T Is Pe Pm pf rpm V]|

diary(’'dctrs3ldata2’);
long;

define 'param.udf’
define ’'rsfdata.udf’
zip = O*ones(16,1);

// real data 1

Isl =» [4.323 4.431 4.663 4.943 5.231 5.628 5.913 6.353]’;
Is2 = (6.748 7.130 7.536 7.965 8.433 8.848 9.230 9.656]"';
Is = (Isl;Is2);
pfl = [.1642 .2727 .3785 .4735 .5375 .6050 .6405 .6841})’';
pf2 = [.7147 .7351 .7575 .7740 .7871 .7980 .8048 .8141]';
pf = (pfl;pf2];

// Note that the following rpm vector will be used throughout
// as the controlling test input

rpml = (1795 1790 1785 1780 1775 1770 1765 1760]°;
rpm2 = (1755 1750 1745 1740 1735 1730 1725 1720}’;
rpe = [cpml;rpm2];

vl = {123.5 123.4 123.6 123.5 123.5 123.4 123.1 123.2]';
v2 = [123.2 123.0 123.0 122.9 123.0 122.6 122.9 122.6]';
v e {vl;v2]:

rl = (zip Is zip zip pf rpm v];

// real data 2

Isl = (4.388 4.485 4.720 4.980 5.263 5.650 5.995 6.375]";
Is2 ~ {6.8i6 7.226 7.660 8.055 8.488 8.860 9.385 9.7681]"';
Is = [{1s1;Is82];

pfl = [.1774 .2832 .3872 .4710 .5362 .5985 .6427 .6777]';
pf2 = [.7116 .7370 .7565 .7708 .7855 .7976 .8078 .8145])’;
pf = (pfl;pf2];

vl = (124.2 123.9 124.3 124.1 124.1 124.2 124.1 124.0]’;
v2 = [124.0 124.0 123.8 123.8 123.6 123.5 123.4 123.4]";
v = (vl;v2];

r2 = (zip Is zip zip pf rpm vi;

// real data 3
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for i=1:3, llim(i,l) = min(dpvin(i,:));end;
for i=1:3, ulim(i,l) = max(dpvin(i,:));end;
dpvinstzt = [dpvinave adpvinave llim ulim]

// Compute the normalized pvoutave sensitivity and statistics

for i=1:4, dpvout(:,i) = pv(:,i) - pvoutave;end;

for im1:3, dpvout(i,:) = dpvout(i,:)/pvoutave(i);end;

dpvout;

dpvoutave = 0.25*(dpvout(:,l)+dpvout(:,2)+dpvout(:,3)+dpvout(:,4));
adpvoutave-(abs(dpvout(:,1))+abs(dpvout(:,2))+abs(dpvout(:,3)));
adpvoutave = (adpvoutave + abs(dpvout(:,4)))*0.25;

for i=l:3, 1llim(i,l) = min(dpvout(i,:))};end;

for i=l1:3, ulim(i,l) = max(dpvout(i,:));end;

dpvoutstat = [dpvoutave adpvoutave llim ulim];

save 'sctrs3ldata2’;
diary(0);
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Isl = [4.526 4.650 4.830 5.106 5.391 5.768 6.156 6.558}";
Is2 = [6.908 7.358 7.763 8.163 8.690 9.005 9.525 9.875])';
Is = {Isl;Is2];

pfl = [.1704 .2844 .3747 .4562 .5242 .5898 .6414 .6774)';
pf2 = [.7057 .7341 .7544 .7689 .7845 .7934 .8041 .8126]}';
pf = (pfl;pf2];

vi = [126.0 126.0 125.9 126.0 125.8 125.8 125.6 125.6)';
v2 = (125.5 125.3 125.4 125.4 125.3 125.3 125.3 125.1]’;
v e [(vl;v2];

t3 = (zip Is zip zip pf rpm vi:

// real dJata 4

Isl = [4.571 4.681 4.861 5.118 5.386 5.751 6.105 6.570)";
Is2 = [6.903 7.341 7.701 B8.235 B8.625 9.028 9.455 9.943)';
Is = [Isl;Is2];

pfl = [.1574 .2693 .3650 .4519 .5264 .5849 .6293 .6751)’;
pf2 = (.7028 .7306 .7468 .7670 .7807 .7941 .8029 .8104]1';
pf = (pfl;pf2];

vl = {126.4 126.5 126.3 126.3 126.0 126.2 126.1 126.0]";
v2 = {125.9 125.9 125.9 125.8 125.7 125.7 125.4 125.5)';
v = [vl;v2]);

rd = [2ip Is zip zip pf rpm v};

// do rsfdata on each of the real data with known, measured Rs

Rsl = .863*ones(16,1);
Rs2 = .863*ones(16,1);
R§3 = .865*0nes(1l6,1);
Rs4 = .865*ones(16,1);

[pvl,xl,sl]) = rsfdata(rl,Rsl);
(pv2,x2,s2] = rsfdata(r2,Rs2);
(pv3,x3,s3] = rsfdata(r3,Rsl);
fpvd,xd4,s4] = rsfdata(rd4,Rsd);

rinave = 0.25#(rl + r2 + 3 + r4);
Rsave = 0.25*(Rsl + Rs2 + Rs3 + Rsd);
(pvinave,xinave,sinave] = rsfdata(rinave,Rsave);

// Print out the results

pv = [pvl pv2 pvi pvd}
pvinave

// Give statistics on the output results compared to itself; namely,
// the average, the minimum, and the maximum of each parameter.

pvoutave = 0,25%(pvl + pv2 + pv3 + pv4);
for i=l:3, 1llim(i,l) = min(pv(i,:));end;
for i=1:3, ulim(i,l) = max(pv(i,:));end;
outstat = [(pvoutave llim ulim]

// Compute the normalized pvinave sensitivity and statistics

for i=l:4, dpvin(:,i) = pv(:,i) - pvinave;end;
for i=l:3, dpvin(i,:) = dpvin(i,:)/pvinave(i);end;
dpvin

dpvinave = 0.25+(dpvin(:,1) + dpvin(:,2) + dpvin(:,3) + dpvin(:,4));
adpvinaves=(abs(dpvin(:,1))+abs(dpvin(:,2))+abs(dpvin(:,3))+abs(dpvin(
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Appendix G

Results from Constant-Temperature

Experiments
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R A A N Y A VI S VI I NI I VI N SR A A 20 2 4

// Experimental estimates for rotors 1, 2, an

// using Estimator 1

//

// For each rotor
// PV = |pv(rl) pv(r2) pv(r3) pv(r4))|

// where pv(ri) = parameter vector estimated from
// data matrix ri found in ctlldata.r, ctb2ldata2.r,

// and ct3ldata2.r

// pv = [Rs Rr L M]’, where ' denotes transposition
// and pvinave is x(E(A)), where x = Rs, Rr, L, or M

d 3

I//
/7
//
4
//
//
/7
/7
//
//

L1110 77 7777777777777 7777777 777777777777/ 77/77777/77/7/77/77

// Rotor

PV =

[= NN 3 o

PVINAVE

OOOkr

// Rotor

BPV

OO

BPVINAVE

1.
0.
0.
0.

l experimental estimates

.2955
.5648
.0751
.0702

.0195
.5675
.0750
.0703

2 experimental estimates

.6914
.5995
.0752
.0703

3774
5919
0759
0712

1.3619
0.5846
0.0755
0.0767

1.2474
0.5882
0.0752
0.0706

0.9596
0.5804
0.0750
0.0706

1.6917
0.5868
0.0772
0.0722
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.5867
.5488
.0744
.0698

.0008
.5995
.0759
.0715



// Rotor 3 experimental estimates

PV -
0.7977 1.3461 1.0671 0.9236
0.5426 0.5666 0.5544 0.5648
0.0748 0.0742 0.0729 0.0730
0.0703 0.0697 0.0685 0.0687

PVINAVE =

1.0178
0.5561
0.0737
0.0692
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//////////////////////////////////////////////////////////
// Experimental estimates for rotors 1, 2, and //

// using Estimator 2 //
// : //
// For each rotor //
// RPV = |pv(rl} pv(r2) pv(r3) pv(rd)| //
// where pv(ri) = parameter vector estimated from //
// data matrix ri found in ctlldata.r, ctb2ldata2.r, //
// and ct3ldata2.r /7
// pv = [Rs Rr L M]’, where ’ denotes transpositicn //

// and rpvinave is x(E(A)), where x = Rs, Rr, L, or M //
L7077

// Rotor 1 experimental estimates
RPV =

1.0438 0.8515 0.7169 0.8800
0.5527 0.5593 0.5682 0.5630
0.0751 0.0755 0.0750 0.0744
0.0702 0.0708 0.0706 0.0698

RPVINAVE =

0.8791
0.5605
0.0750
0.0703

// Rotor 2 experimental estimates

BRPV -

0.9861 0.9530 1.1166 0.6588
0.5705 0.5762 0.5651 0.5855
0.0754 0.0753 0.0775 0.0760
0.0707 0.0707 0.0726 0.0717

BRPVINAVE =
0.9320
0.5741

0.0761
0.0714
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// Rotor 3 experimental estimates
RPV =

1.0910 1.0281 1.0722 0.9275
0.5534 0.5543 0.5546 0.5649
0.0747 0.0744 0.0729 0.0730
0.0701 0.0699 0.0685 0.0687

RPVINAVE =
1.0324
0.5567

0.0737
0.0693
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//////////////////////////////////////////////////////////

// Experimental estimates for rotors 1, 2. and 3 /7
// using Estimator 3 //
// . //
// For each rotor /7
// PV = |pv(rl) pv(r2) pv(r3) pv(rd)| //
// where pv(ri) = parameter vector estimated from //
// data matrix ri found in ctlildata.r, ctb2ldata2.r, //
// and ct3ldata2.r //
// pv = [Rr L M]'’, where ' denotes transposition //

// and pvinave is x(E(A)), where x = Rr, L, or M //
L1777 7777777777777 77777 7777 77/ 7/ 77777 7

// Rotor 1 experimental estimates
PV =
0.5589 0.5591 0.5635 0.5638
0.0755 0.0755 0.0747 0.0744
0.0709 0.0708 0.0701 0.0699
PVINAVE -
0.5612

0.0750
0.0704

// Rotor 2 experimental estimates

BPV =
0.5751 0.5795 0.5750 0.5775
0.0757 0.0755 0.0781 0.0755
0.0712 6.0710 0.0735 0.0710
BPVINAVE =
0.5767

0.0762
0.0716
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// Rotor 3 experimental estimates
PV -
0.5624 0.5608 0.5628 0.5674
0.0752 0.0748 0.0734 0.0732
0.0709 0.0705 0.0692 0.0689
PVINAVE - '
0.5633

0.0741
0.0699
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Appendix H

Programs for the

Thermally-Compensated

Detector of Broken Rotor Bar
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LILLLLLL LIS 7777777077777 777777777777777777777

// Working with data

Program t3l.r (in (cho.matfiles.thermo.rdata]))

Experimental data at 250w, 700W, 1.2kW, 1.7kW
to be used to determine the thermal resistances

of all the thermocouples as well as for the

rotor and stator weighted-average temperatures

Note that lsdata.udf in this directory is
Estimator 3

L1100 7771770777777 7 777777777207 777777777777 77/77/77/7/777/

(stator 1,

rotor 3)

.6991
.8287

/7
/’/
/’/
/7
/7
’/
’/
/7
//

L7311}
.8371];

1085.1 1302.2 1412.91’;
2230.1 2379.1 2339.81';

12.30 13.16 12.98]"';

// at constant temps.

define ‘param.udf’

define ‘lsdata.udf’

// i = [Is V pf Pm Torque rpm]

// real data matrix (at room temp)

Isl = (3.720 3.990 4.101 4.455 4.791 5.378 5.896 6.166]"';
Is2 = (6.400 6.965 7.541 8.040 8.378 8.845 9.423 9.495]";
Is = (Isl;Is2]);

vl = (122.3 123.5 121.5 122.2 122.1 124.2 125.7 124.7})";
v2 = {121.4 121.6 125.0 124.6 122.2 123.1 123.9 119.9]';
v m (vl;v2];

pfl = [.2247 .3605 .4528 .5367 .6078 .6605

pf2 = (.7559 .7784 .7877 .8017 .8146 .8249

pf = [pfl;pf2];

Pml = {159.90 371.44 505.10 679.04 859.44

Pm2 = [1478.8 1639.6 1872.7 2027.8 2045.6

Pm = [Pml;Pm2];

Torquel = (0.850 1.980 2.700 3.640 4.620 5.850 7.040 7.660]";
Torque2 = [8.040 8.940 10.24 11.12 11.2°%

Torque = [Torquel;Torque2];

cpml = (1795 1790 1785 1780 1775 1770 1765
rpm2 = {1755 1750 1745 1740 1735 1730 1725
rpm = [{rpml;rpm2];
totenp = (Is V pf Pm Torque cpm];

7/

Isl
1s2
Is
vl
v2
v
pfl
pf2
pf
Pml

At power of 250 watts.

[4.066 4.216 4.416
[6.536 6.920 7.360
[1sl;1s2);

[124.3 124.2 124.2
[124.0 124.1 123.9

[vl;v2];
.2323 .3511 .4308
.7331 .7571 .7742

{
(
{pfl;pf2]);
(129.80 285.15 443

4.796 5.073 5.373
7.760 3.116 8.636

124.4 12¢.2 124.2
123.5 123.9 123.8

.5311
.7892

.5869
.7999

.6297
.8122

.36 611.88 775.73

181

t760]";
1720)";

5.783 6.153]';
9.003 9.383]';

124.3
123.7

.6771
.8198

914.53

124.0)';
123.71";

.7088]";
.8254]";

1108.0 1222.9]';



Pm2 = (1359.2 1491.1 1624.0 1745.1 1860.1 1969.0 2075.4 2170.3}';
Pm = [Pml;Pm2);

Torquel = [0.690 1.5..0 2.370 3.280 4.170 4.930 5.990 6.630]";
Torque2 = {7.390 8.130 8.880 9.570 10.23 10.86 11.48 12.04]’;
Torque = [Torquel;Torquel];

templ = (Is v pf Pm Torque rpm]);

// At power of 1200 watts

Isl = (4.410 4.620 4.946 5.183 5.570 5.936 6.296 6.660)';

Is2 = (7.033 7.373 7.786 B8.196 8.623 9.040 9.366 9.713})’;

Is = (Isl;Is2];

vl = [124.5 124.2 124.0 123.9 124.0 123.8 123.8 123.8]';

v2 = (123.6 123.6 123.3 123.3 123.5 123.4 123.2 123.1]1';

v - [vl;v2];

pfl = [.4371 .5088 .5810 .6197 .6657 .7023 .7296 .7492)';

pf2 = (.7688 .7840 .7957 .8064 .8176 .8251 .8300 .8343}':

pf = (pfl;pf2];

Pml = {169.31 303.91 460.20 626.81 768.29 901.54 1024.7 1176.81]";
Pm2 = [1307.7 1426.9 1549.0 1677.7 1778.3 1892.8 1979.6 2101.8});

Pm = (Pml;Pm2];

Torquel = (0.900 1.620 2.460 3.360 4.130 4.860 5.540 6.380]';
Torque2 = (7.110 7.780 8.470 9.200 9.780 10.44 10.95 11.66}';
Torque = [Torquel;Torque2);

cpmn = rpm - i0*ones(16,1);

temp3 = [Is V pf Pm Torque rpmuj;

// At power of 700 watts

Isl = {4.130 4.296 4.493 4.783 5.073 5.376 5.773 6.106]’;

Is2 = [6.546 6.956 7.326 7.703 8.133 B8.506 8.886 9.270)’;

Is = (Isl;Is2];

vl = [125.2 125.3 125.1 125.1 125.0 125.0 124.9 124.8)';

v2 = {124.6 124.6 124.5 124.5 124.4 124.2 124.2 124.1}';

v a [vl;v2];

pfl = [.2281 .3443 .4382 .5195 .5809 .6262 .6750 .7046)';

pf2 = {.7360 .7560 .7735 .7867 .8010 .8094 .8167 .8238}';

pf = [pfl;pfl);

Pml = (124.16 296.40 462.07 600.69 751.55 907.11 1050.6 1173.1]1':

Pm2 = (1311.4 1447.0 1576.4 1679.5 1811.0 1936.4 2041.0 2125.3]';
Pm « {Pml;Pm2];

Torquel = [0.660 1.580 2.470C 3.220 4.040 4.890 5.680 6.360]';
Torquez = [7.130 7.890 8.620 9.210 9.960 10.68 11.29 11.79]';
Torque = [Torquel;Torque2};

temp2 = [Is V pf Pm Torque rpmj;

// At power of 1700 watts

Isl = (5.330 5.693 6.026 6.330 6.676 7.076 7.396 7.773j’;

Is2 = {8.140 8.510 9.273 9.636 9.966 10.33 10.70 4.820])';

Is = [Isl;Is2);

vl = (123.6 123.5 123.4 123.2 123.0 123.2 123.0 122.9]"';

v2 = (122.9 122.9 122.8 122.8 122.8 122.8 122.8 123.9]";

v = {vl;v2];

pfl = [.6518 .6889 .7189 .7389 .7610 .7780 .7903 .8014}';

pr2 = (.8128 .8262 .8324 .8360 .8415 .844% .8459 .5708]';

pf = [pfl;pf2];

Pml = (141.09 243.87 432.14 600.69 714.34 881.11 1021.0 1130.7)';
Pm2 = (1276.4 1384.7 1505.1 1619.3 1716.5 1840.3 1938.0 2017.1})";
Pm =~ (Pml;Pm2]};

182



Torquel

Torque = [Torquel;Torque2});

cpmnl = (1765 1760 1755 1750 1745 1740 1735 1730);
rpmnZ = (1725 1720 1710 1705 1700 1695 1690 1775])’;
rpmn = (cpmnl;rpmn2]);

tempd4 = (Is Vv pf Pm Torque rpmn];

// Measured Rs values

Rsrt = (0.805 + 0.804 + 0.804)/3;
Rs(l) = (0.871 + 0.872 + 0.865)/3;
Rs(2) = (0.883 + 0.883 + 0.879)/3;
Rs(3) = (0.903 + 0.903 + 0.899)/3;
Rs(4) = (0.951 + 0.949 + 0.945)/3;

// We need to obtain estimates of each Rri’s. (We measure Rs’'s)

[pvrt,ecrrrt] = lsdata(rmtemp,Rsrt);
{pvl,errl] = lsdata(templ,Rs(1l));
[pv2,err2) = lsdata(temp2,Rs(2));
{pv3,err3] = lsdata(temp3,Rs(3));
[pvd,errd)] = lsdata(tempd,Rs(4));

Rrct = pvrt(l);
Rr(l) = pvl(l);
Rr(2) = pv2(l);
Rr(3) = pv3(l);
Rr(4) = pvd(l);

// We need stdata in the form |Is V pf Pm Torque rpm|

// and TempM which is converted from TempF

// where TempF = (dTl1 dT2 ... dT26 Tamb|

// The delta Ti’s are in F, but Tamb is in C. Hence, we
// need to convert the TempF so that it reads in C (the
// transformed temp matrix will be called TempM.

// TempM = |trl(250W) tr2(700W) tr3(1200W) tc4(1700W) |’
// tri = |tl ... t9 Tamb|

/7 tl = |tel te2 tc3|, t2 = |tcd tcS tc6|, t3 = |tcll tcl2

= [0.750 1.300 2.130 3.220 3.840 4.750 5.520 6.130])';
Torque2 = [6.940 7.550 8.230 8.880 9.440 10.15 10.72 11.19)’;

tc2l]

// td = |tcl0 tclB tcl9], t5 = |tc9 tcld tc20], t6 = |[tclld tc2S tc26|

// t1 = |tc] tc23 tc24|, tB = |tc8 tcl7|, t9 = |tclS tclé tc22]
tl = [30.0 30.0 28.0]);

t2 = {21.5 22.5 22.5);

t3 = [32.5 32.5 31.5);

td = [27.0 32.5 34.0];

tS = [29.0 26.5 32.5];

t6 = (31.0 35.5 32.0];

t7 = (31.5 35.5 35.0};

t8 = [31.0 34.5};

t9 = [34.5 35.0];

Tamb = 24.6;

trl = {tl t2 t3 t4 t5S t6 t7 t8 t9 Tamb];
tl = (35.5 35.5 33.5];
t2 = (26.0 27.5 27.5];
t3 = (40.0 40.0 38.5];
t4 = [33.0 39.5 40.5};
£S5 = [35.5 32.0 40.0);
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té (37.0 44.0 39.5];

t7 =~ [38.5 43.5 43.5);
t8 = (38.5 42.5];
t9 = [41.5 43.0];

Tamb = 24.4;
tr2 = [tl t2 t3 t4 t5 t6 t7 t8 t9 Tamb];

tl = {45.0 44.5 43.0];
t2 = [33.0 35.0 34.5]);
t3 = [S51.0 S51.0 48.5];
t4 = (42.5 50.5 52.5]);
tS = {45.5 40.5 51.0);
t6 =~ [47.0 58.0 52.0];
t7 = (49.5 56.5 56.5];
t8 = [48.5 52.5];

t9 = (53.0 55.5]);

Tamb = 25.2;
trd = (tl t2 t3 t4 t5 t6 t7 t8 t9 Tamb};

tl = [64.0 64.0 61.5];
t2 = (46.0 49.5 49.0);
td = [(75.0 75.0 72.5];
t4 = [60.5 73.5 76.0]};
tS = {66.5 58.0 73.0);
t6 = (68.0 86.5 77.0);
t7 = (72.5 82.5 82.5);
t8 = [71.5 76.0);

t9 = (76.0 82.0];
Tamb = 25.6;
trd = [tl t2 t3 t4 t5 t6 t7 t8 t9 Tamb);

TempF = (trl; tr2; tr3d; trd};

// Delta of temp in ¢ = S[(dF + Famb) -32]/9 - Camb
/7 = 5«dF/9 + S(Famb - 32)/9 - Camb = S5dF/9
// Note tempF(:,26) = Ambient Temp, is in degrees Celsius

for i = 1:4,...

for j = 1:25,...

TempM(i,j) = S*tempF(i,j)/9;...
end

end

TempM = [TempM TempF(:,26)];

// Recall that stdata = |I V pf Pm Torque rpm|
stdl = [4.153 124.2 0.3041 253.54 1.350 1792];
std2 = {4.840 124.8 0.5428 700.64 3.760 1778];
std3 = ({5.936 123.8 0.7023 1197.1 6.490 1760};
stdd = (7.513 123.2 0.7924 1704.6 9.380 1734];
stdata = [stdl; std2; std3; stddi];

save ’'st3l’;
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LILLLL1 LI 7777777777777 777 77777777 77777777777777
// Program rthest.r (in [cho.matfiles.thermo.rdata]) //

/7 /7’
// Takes the data generated from t3l.r and computes /7
// the thermal resistances of all the thermocouples Vo4
// and of the rotor and the stator weighted-average //

// ‘temperatures /7
LILLL1 7772000777277 77777777777 777 7777777777777/ 7

// Working with stator 1 and rotor 3, the thermal resistances will be
// estimated.

clear

diary('drthest’);
long;

// First, retrieve the necessary data, assuming that the data are stored

// in the file ct3l.dat. Three principle matrices tl t2 t2 t4 are recalled.
// Mdata is the data matrix which has for each of its rows the steady state
// measurements for each set of temp .

load 'st31’ stdata TempM Rsrt Rs Rrcct Rr;

// Get the dimension for the matrix mdata

(nrows, ncols) = size(stdata);

// Assuming that stdata is of the form

// stdata = |Is V pf Psh Torque rpm|,

// 1 2 2 4 S €

// we can manipulate this data to obtain slips and Pe.

// S =1 - rpm/1800

for i=l:nrows,...

S(i) = 1 - stdata(i,6)/1800;...

end

S

// Now the payoff: We obtain the thermal resistance parameters.

// The following are thermal sources for each matrix

// Pir = slip*Pm/(1l-slip), where Pm = (Torqg,meas + Torg,loss) *Wm
// = (2*PI*rpm/60)*{Torq,meas + Torq,loss) where Torq,loss = 0.3796
// Pis = 3%Ig*Ig*Rsi

// T = Pr*Rthr + Ps*Rths + Pc*Rthc, Pc*Rthc = const = Pc*Rthc

// which is approx. Pc*Rths, with Pc = 23.51b*2.6W/lb

Torql = 0.3796;

Pc = 23.5%2.6;

for i=l:nrows,...

Pm = PI*(stdata(i,5) + Torgl)*stdata(i,6)/30;...
slip = S(i);.
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Is = stdata(i,l);...

°c(i) = slip*Pm/(l-slip);...
Ps(i) = 3*Is*Is“Rs(i) + Pc;...
end

A = (Pr Ps]

for i=1:25,...

Yy = TempM(:,1);...

Tparam = A\Y;...

Rth(2#¢i-1) = Tparam(l);...
Rth(2+i) = Tparam(2);...
Teddy(i) = Tparam(2)*Pc;...
end

Rth

Teddy

maxTeddy = max(Teddy)
minTeddy = min{Teddy)

// We also know Tsw, Tro (inferred from the R(T,material) equation).
// Here is the first time we needed the room temp. experiment.

// The room temp exp. gave us the Rrrt estimate which is used to infer
// the rotor temps at different set of heat input values.

// Tambrt = ambient temp. for room temp experiments

Tambrt = 24.2;
Tambv = TempM(:,26);

for i = l:nrows,...

Tsw(i) = Rs(i)*(234.4 + Tambrt)/Rsrt - 234.4;
Tro(i) = Rr(i)+*(228.1 + Tambrt)/Rrrt - 228.1;...
end

// Let’s check to see how well cur equation works for at least the Rs
// values., 1 is the shaft side, 2 is the middle, 3 is the fan side.

dTswl =~ Tsw - TempM(:,21) - Tambv
dTsw2 = Tsw TempM(:,20) - Tambv
dTsw3 = Tsw TewmpM(:,25) - Tambv

// The only time the result of the room experiment effects any of the
// other results. Scale such that Tsw and Tro are incremental temp from
// the Tambient.

Tsw - Tambv
Tro - Tambv

Tsw
Tro

Rthsw = A\Tsw
Rthro = A\Tro

TsWEst = A*Rthsw;
TroEst = A*Rthro;

dTsw = Tsw - TswWEst
dTro = Tro - TroEst

for i = l:nrows,...
RsEst(i) = Rsrt*(TswEst(i) + Tambv(i) + 234.4)/(Tambrt+ 234.4);.
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RrEst(i) = Rrrt*(TroEst(i) + rambv(i) + 228.1)/(Tambrt + 228.1);.
end

Rs
RsSEst
Rr
RrEst

dRs = Rs - RSEst
dRr = Rr - RrEst

for i = l:nrows,...
perRs(i) = dRs(i)/Rs(i);...
perRr(i) = dRr(i)/Rr(i)j...
end

petRs
perRr

// We want to scale all the estimated resistances back to a reference
// temperature and compare the deviance from each other. 1In this case,
// the reference Temp is the temperature at which the Pm was 700W.

Tswnorm = TswEst(2) + Tambv(2) + 234.4;
Tronorm = TroEst(2) + Tambv(2) + 228.1;

for i=l:nrows,..

RssCc(i) = Rs(i)*Tswnorm/(TswEst(i)+Tambv(i)+234.4);...
Rrsc(i) = Rr(i)*Tronorm/(TroEst(i)+Tambv(i)+228.1);.
end

Rssc{nrows+l) = Rsrt*Tswnorm/(Tambrt + 234.4);
Rrsc{nrows+l) = Rrrt*Tronorm/(Tambrt + 228.1);

RsscC
Rrsc
Rsnorm = (Rssc{l)+Rssc(2)+Rssc(3)+Rssc(4)+Rssc(5))/5
Rrnorm = (Rrsc{l)+Rrsc(2)+Rrsc(3)+Rrsc(4)+Rrsc(5))/5

for i = l:nrows+l,...

dRssc(i) = Rssc(i) - Rsnorm;...
dRrsc(i) = Rrsc(i) - Rrnorm;...
perRssc(i) = dRssc(i)/Rsnorm;...
perRrsc(i) = dRrsc(i)/Rrnorm;...
end

dRssc

dRrsc

perRssc

perRrsc

save ‘srthest’;

diary(0);
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LI1777777770077 7707777777 777777777777//7777777777777/7777777
// Program ctldata.r (in [cho.matfiles.thermo.rdatal) //

// 7/
// Experimental data from rotor 1 at //
// loads of 500W, 950W,and 1450W //

// Used by Program anl.r //
L1177 7777777777777 7777777777777777/77777777777/77777777777

// Working with real data of healthy motor (stator 1, rotor 1)
// at constant temp.

// Date: April 30, 1988. Dynamometer fixed.

// i = (T Is Pe Pn pf rpm V)

clear;

long;

define ‘param.udf’
define ‘lsdata.udf’
zip = O*ones(16,1);

// rteal data 1, Pm = 501.26 W

Isl = [4.018 4.176 4.408 4.668 4.988 5.376 5.745 6.093)';
Is2 = [{6.435 6.913 7.253 7.636 8.155 8.555 8.951 9.361)";
Is = [Isl;Is2];

pfl = [.2601 .3647 .4632 .5385 .6035 .6568 .6924 .7195])';
pf2 = [.7433 .7654 .7808 .8004 .8086 .8183 .8237 .83161]';
pf = (pfl;pf2];

rpml = (21795 1790 1785 1780 1775 1770 1765 17601’;

cpm2 = (1755 1750 1745 1740 1735 1730 1725 1720])’;

rpm = [rpml;rpm2];

vl = [124.3 124.3 124.2 124.2 124.1 124.0 124.1 124.0)';

v2 = (123.7 123.7 123.7 123.6 123.5 123.5 123.,5 123.3}';

v s [vl;v2]);

rl = [(Is v pf zip zip rpm];

// real data 2, Pm = 951.63 W

Isl = [3.990 4.146 4.316 4.610 4.863 5.200 5.656 6.001]";
Is2 = (6.335 6.730 7.173 7.590 7.951 8.323 8.823 9.175)';
Is = (Isl;Is2];

pfl = [.2558 .3706 .4469 .5378 .5884 .6494 .6931 .7194]';
pf2 = [.7437 .7659 .7841 .7974 .8080 .8189 .8205 .83061';
pf = [pfl;pf2];

vl = (124.4 124.4 124.2 124.1 123.9 123.4 123.8 123.7}";

v2 = (123.6 123.4 123.5 123.6 123.4 123.4 123.2 123.3]"';

v = [vl;v2];

r2 = (Is v pf zip zip rpm];

// real data 3, Pm = 1453.5 W
Isl = [4.280 4.555 4.788 5.098 5.423 5.735 6.15) 6.523}";
1s2 = (6.871 7.283 7.695 8.083 8.486 8.886 9.266 9.715)';

Is = (Isl;Is2};
pf£l = [.4294 .516S5 .5785 .6280 .6735 .7012 .7360 .7538]';
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pfz = [.7722 .7894 .8022 .8134 .B215 .8270 .8325 .8375]";
pf = (pfl;pf2];

vi = [124.8 124.8 124.6 124.4 124.3 124.3 124.1 124.0]7;
v2 = [123.8 123.8 124.0 123.9 123.8 124.0 123.9 123.8]';
ve [vl;v2);

rpml = rpm - 10*ones(16,1);

t3 = (Is v pf zip zip cpml];

// We need stdata in the form |Is V pf Pm Torque rpm|

// and TempM which is converted from TempF

// where TempFf = |dT1l 4T2 ... dT26 Tamb|

// The delta Ti’s are in F, but Tamb is in C. Hence, we
// need to convert the TempF so that it reads in C (the
// transformed temp matrix will be called TempM.

// TempM = |trl(501W) tr2(951W) tr3(1451) "
// tri = |tl ... t9 Tamb|

// tl = |tcl tc2 ted}, t2 = |tcd tcS tc6b|, t3 = |tecll tcl2 te2l]
// t4 =« jtcl0 tclB tcl9|, t5 = [tc9 tcld tc20|, t6 = |tclld te2S tc26|
// t1 = {tel tec23 tc24|, tB = |tc8 tecl7|, t9 = | tclé tec22|
tl = {31.5 31.5 29.5};

t2 = (23.5 24.5 24.5]);

td = (35.5 35.5 33.5];

td = (29.0 35.5 36.5];

tS = (31.0 29.5 35.0];

t6 = (33.0 38.5 35.0);

t?7 = {33.5 38.5 36.0];

t8 = (33.5 37.0]);

t9 = [37.0 38.0};

Tamb = 24.0;
tel = (tl t2 €3 td tS t6 t7 €8 t9 Tamb];

tl = (39.0 38.5 36.5);
t2 = {28.5 30.5 30.5);
t3 = [44.5 44.5 42.0);
td = {36.0 43.0 46.0];
tS5 = {(39.0 36.0 44.0];
t6 = [41.0 4B.5 44.0);
t7 = (42.5 48.0 48.0);
t8 = (42.5 45.5);

t9 = (45.5 47.5);

Tamb = 24.2;

tr2 = [tl €2 t3 t4 t5 t6 t7 t8 t9 Tamb];

tl = [{52.5 S2.5 49.9];
t2 = {39.0 41.0 41.0];
t3 = [61.0 61.0 57.5);
td = {49.0 59.% 62.5);
tS = [54.0 49.0 59.95);
t6 = (55.5 69.5 62.5];
t?7 = [59.0 67.5 67.5);
t8 =« {58.5 62.5);

t9 = [62.5 67.0]);

Tamb = 24.2;

tc3 = [(tl t2 t3 t4 t5 t6 t7 ¢8 t9 Tamb];
TempF = [trl; tr2; trld);

{Trows,Tcols) = size(TempF);
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// Delta of temp in c = 5[ (dF Famb) -32}1/9 - Camb
// = 5+#dF/9 + S(Famb - 32)/9 -~ Camb = 5dF/9
// Note tempF(:,26) = Ambient Temp, is in degrees Celsius

for i = 1l:Trows,...

for j = 1:25,...

TempM(i,j) = S5*TempF(i,j)/9;.
end;...

end

TempM = [TempM TempF(:,26)];

// Recall that stdata = (I V pf Pm Torque rpm|

stdl = [(4.328 123.1 0.4826 501.36 2.680 1785]);

std2 = (5.233 125.5 0.6352 949.24 5.120 1769];

stdl = (6.573 123.8 0.7606 1450.9 7.920 1748]);

stdata = [(stdl; std2; std3);

// do lsdata on each of the real data with known, measured
Rsl (.867 + .868 + .865)/3;

Rs2 (.895 + .895 + .885)/3;
Rsd = (.915 + .914 + .912)/3;

pvl = lsdata(rl,Rsl);
pv2 = lsdata(r2,Rs2);
pvl = lsdata(r3,Rs53);

rinave = (rl + r2 + c3)/3;
Rsave = (Rsl + RS2 + Rs3)/3;
pvinave = lsdata(rinave,Rsave);
pv = [pvl pv2 pvi];

Rs = [Rsl Rs2 Rs3]’;
Rr = [pvl(l) pv2(1l) pv3il)}’;

save 'sct2data’;
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LIELLIII 717717 LSS0/ 777777777777/

// Program anl.r (in {cho.matfiles.thermo.rdata]) //
// //
// Use the rotor 1 data collected in ctldata.r and //
// Computes DT's of the thermocouples and gives the V4

// thermally-compensated estimates of Rr //
L0117 77 7777777777777 77777777 /77777777777/77/7//777/

// Take data from ct3data.r and do various analyses

clear;
diary('danl’);
long;

load ‘srthest’ Rth Rthsw Rthro Rsnorm Rrnorm Tswnorm Tronotm;
loud 'sctldata’ pvl pv2 pv3 pv stdata TempM Rs Rr;

load ’‘st3l' Rsrt Rrrt;

// Get the dimension for the matrix mdata

[nrows, ncols) = size(stdata);

// Assuming that stdata is of the form

// stdata = |Is V pf Psh Torque rpm|,

// 1 2 3 4 5 6

// we can manipulate this data to obtain slips and Pe.
// § =1 - rpm/1800

for isl:nrows, ...

S(i) = 1 - stdata(i,6)/1800;...
end

// The following are thermal sources for each matrix

// Pir = slip*Pm/(1l-slip), where Pm = (Torqg,meas + Torqg,loss)*Wm
/7 = (2+PI*rpm/60)*(Torq,meas + Torq,loss) where Torqg,loss = 0.3796
// Pls = 3*Is*Is*Rsi

// T = Pr*Rthr + Ps*Rths + Pc*Rthc, Pc*Rthc = const = Pc*Rthc

// which is approx. Pc*Rths, with Pc = 23.51b*2.5W/1lb

Torql = 0.3796;

Pc = 23.5%2.6;

for i=l:nrows, ...

Pm = PI*(stdata(i,5) + Torql)*stdata(i,6)/30;...
slip = S(i);...

Is = stdata{i,l);...

Pr(i) = slip*Pm/(1l-slip);...

Ps(i) = 3~Ig*Is*Rs(i) + Pc;...

end

A = [Pr Ps]|

// Thermal stuff
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for i=l:nrows,...

for jm1:25,...

EstTempM(i,j) = A(i,l)*Rth(2%*j-1) + A(i,2)*Rth(2+*j);...
end,...

end

EcstTempM = [EstTempM TempM(:,26)];

Tambrt « 24.2;
Tambv = TempM(:,26);

for i = l:nrows,...

Tsw(i) = Rs(i)*(234.4 + Tambrt)/Rsct - 234.4;...
Trc.i) = Rr(i)*(228.1 + Tambrt)/Rrrt - 228.1;...
end

TSWwEst = AwRthsw;
TroEst = A*Rthro;

DT = TempM - EstTempM
DTsw = Tsw - TSwEsSt - Tambv
DTro = Tro - TroEst - Tambv

// Scale all the rotor resistances back to the 700W case

for i = l:nrows,...

RsEst(i) = Rsrt*(TswEst(i) + Tambv(i) + 234.4)/(Tambrt+ 234.4);...
RrEst(i) = Rrrt*(TroEst(i) + Tambv(i) + 228.1)/(Tambrt + 228.1);...
erd

Rs

Rr

RSEst

RrEst

Rsnorm

Rrnorm

dRs = RS - RsEst
dRr = Rr - RrEst

for i = l:nrows,...
perRs(i) = dRs(i)/Rs(i);...
perRr(i) = dRc(i)/Rr(i);...
end

perRs
perRr

// We want to scale all the estimated resistances back to a reference
// ‘temperature and compare the deviance from each other. 1In this case,
// the reference Temp is the temperature at which the Pm was 700W.

for i=l:nrows,...

Rssc(i) = Rs(i)*Tswnorm/(TsSwEst(i)+Tambv(i)+234.4);...
Rrsc(i) = Rr(i)*Tronorm/(TroEst(i)+Tambv(i)+228.1);...
end

Rssc
Rrsc

for i = l:nrows,...
dRssc(i) = Rssc(i) - Rsnorm;...
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dRrsc(i) = Rrsc(i) - Rrnorm;...
perRssc(i) = dRssc(i)/Rsnorm;...
perRrsc(i) = dRrsc(i)/Rrnorm;...
end

dRssc

dRrsc
perRssc
perRrsc

save ‘sanl’;

diacy(0);
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L1177 7777777/ 77/ 7777777777777
// Program ct2data.r (in (cho.matfiles.thermo.rdata)) //

// /7
// Experimental data from rotor 2 at //
// loads of S00W, 950W,and 1450W ,/

// Used bv Program an2.r
//////////////////////////////////////////////////////////

// Working with real data cof healthy motor (stator 1, rotor 2)
// at constant temp.

// Date: April 30, 1988. Dynamometer fixed.

// ti = [T Is Pe Pm pf rpm V)

clear;
long;
define 'param.udf’
define ’'lsdata.udf’
zip = Ovones(16,1);

// real data 1, Pm = 501.36 W

Isl = (3.856 4.036 4.328 4.483 4.773 5.120 5.541 5.915]’;
Is2 = [6.321 6.755 7.098 7.506 7.861 8.258 8.626 9.100)’;
Is = {Isl;Is2];

pfl = [.2546 .3696 .4826 .5339 .5951 .6572 .6932 .7211]°;
pf2 = (.7506 .7684 .7831 .7970 .8060 .8145 .8238 .8269]’;
pf = (pfl;:pf2];

cpml = [1795 1790 1785 1780 1775 1770 1765 1760)°;

cpm2 = [1755 1750 1745 1740 1735 1730 1725 1720]*;

rpm = (rpml;rpm2];

vl = [123.7 123.6 123.1 123.4 123.3 123.2 123.3 123.3)’;
v2 = (123.2 123.2 122.9 122.9 122.7 122.7 122.7 123.1])’;
v e [vl;v2];

tl = (Is v pf zip zip rpm];

// real data 2, Pm = 949.24 W

Isl = (4.083 4.250 4.450 4.663 4.970 5.283 5.606 5.986]’;
Is2 = (6.343 6.730 7.126 7.533 7.880 8.313 8.710 9.080]"';
Is = (Isl;Is2];

pfl = [.2479 .3653 .4473 .5298 .5887 .6329 .6748 .7087)';
pf2 = (.7333 .7595 .7719 .7879 .7997 .8044 .8165 .8258]';
pf = (pfl;pf2];

vl = (125.9 125.9 125.8 125.6 125.6 125.4 125.4 125.3)’;
v2 = [125.3 125.3 125.1 125.2 125.2 124.9 124.9 124.8]";
v = (vl;v2];

t2 = [Is v pf zip zip rpm]};

// real data 3, Pm =~ 1450.7 W
Isl = [4.196 4.481 4.676 5.081 5.351 5.656 6.016 6.418}';
Is2 = [6.783 7.155 7.576 7.975 8.326 8.640 8.998 9.446)';

Is = [Isl;Is2];
pfl = [.4285 .5175 .5663 .6328 .6691 .6963 .7254 .7494)‘;
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pf2 = {.7677 .7841 .7975 .8072 .8154 .8218 .8289 .e331}';
pf = (pfl;pf2];

vl = [124.4 124.3 124.2 124.3 124.1 124.0 124.0 123.9);
v2 = [123.9 123.6 123.8 123.7 123.6 123.5 123.5 123.5]";
v = [vl;v2);

tpml = rpm - 10%*ones{l16,1);

t} = (Is v pf zip zip rpml];

// We need stdata in the form |[Is V pf Pm Torque rpm|

// and TempM which is converted from TempF

// where TempP = |dTl dT2 ... dT26 Tamb|

// The delta Ti’s are in F, but Tamb is in C. Hence, we
// need to convert the TempF so that it reads in C (the
// transformed temp matrix will be called TempM.

// TempM = |trl(501W) tr2(951wW) tr3(1451,;|"
// tri = |tl ... t9 Tamb|

// tl = |tcl tc2 tc3d|, t2 = jtcéd tcH te6|, t3 = |tcll tcl2 tc2l|
// t4 = |tcl0 tclB tcl9|, t5 = |tc9 tcld tc20f, t6 = |tcll tc25 tc26|

// t1 = jtel tc23 tc2d|, t8 = |tc8 tcl?7], t9 = | tclé tc22!
tl = [31.5 31.5 29.0);

t2 = (23.0 24.5 23.5]);

tl = {35.0 34.5 33.5]);

te = (29.5 34.5 35.5);

ts = (31.5 28.5 34.5);

t6 = (33.0 37.5 34.0);

t?7 = (33.5 38.0 37.5);

t8 = (33.5 36.5];

t3 = (36.5 37.5]);

Tamb = 24.0;

trl = {tl t2 t3 t4 tS t6 t7 t8 t9 Tamb];
tl = (40.0 40.0 37.5);
t2 = (29.5 30.5 30.5);
t3 = [45.5 45.5 43.0);
t4d = (37.5 45.0 46.5);
tS = {40.0 36.0 45.0);
té = (42.5 50.0 45.5]);
t7 = {43.5 49.5 49.5);
t8 = (43.0 47.0);

t9 = (46.5 49.0]);

Tamb = 24.2;

tr2 = {tl t2 t3 t4 t5 t6 t7 t8 t9 Tamb};
tl = [(52.5 52.5 50.0];
t2 = (38.5 39.5 39.5];
t3 = {61.5 60.5 57.5]);
t4d = [(49.5 60.0 62.5]);
tS = (54.5 48.5 59.5);
t6 = [56.0 69.5 62.5);
t7 = [59.5 68.0 67.5]);
t8 = (57.5 62.5];

t9 = (62.0 68.01;

Tamb = 24.4;
trd = [tl t2 t3 t4 t5 t6 t7 t8 t9 Tamb];

TempF = [trl; tr2; tr3];

{Trows,Tcols] = size(TempF);
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// Delta of temp in ¢ = S5((dF + Famb) -32]/9 - Camb
Va4 = 5¢dF/9 + S(famb - 32)/9 - Camb = Sdf/9
// Note tempF(:,26) = Ambient Temp, is in degrezes Celsius

for i = 1l:Trowsa,...

for j = 1:25,...

TempM(i,j) = SeTempF(i,j)/9;.
end; ...

ena

TempM = (TempM TempF(:,26)};

// Recall that stdata = |I V pf Pm Torque rpm|

stdl = ([4.408 124.2 0.4632 501.36 2.680 178S8};

std2 = [5.200 123.4 0.6494 951.63 5.130 1770};

stdl = [6.590 124.0 0.7584 1453.5 7.930 1749]};

stdata = (stdl; std2; stdl]:

// do lsdata on each of the real data with known, measured Rs
Rsl = (.867 + .867 + .866)/3;

Rs2 (.884 + .884 + .88l)/3;
Rs3 = (.914 + .914 + .912)/3;

pvl = lsdata(rl,Rsl);
pv2 = lsdata(r2,Rs2);
pv3 = lsdata(c3,Rs3);

rinave = (rl + 2 + £3)/3;
Rsave = (Rsl + Rs2 + Rs3)/3;
pvinave = lsdata(rinave,Rsave);
pv = [(pvl pv2 pvil;

Rs = [Rsl Rs2 Rsl)’;
Rr = [pvl(l) pv2(1l) pvi(l)]’;

save ’‘sctldata’;
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SILLLIL LSS0 7 /IS S 777777777/ 777777

// Program an2.r (in [(cho.matfiles.thermo.rdata]) //
/7 //
// Use the rotor 2 data collected in ctldata.r and /7
// Computes DT's of the thermocouples and gives the 4

// thermally-compensated estimates of Rr //
VI R R N AR AR R N N N AR N VS A AR AR RN i A d e e a

// Take data from ct3data.r and do various analyses

clear;
diary('dan2’);
long;

load ’'srthest’ Rth Rthsw Rthro Rsnorm Rrnorm Tswnorm Tronorm;

load ’sct2data’ pvl pv2 pvl pv stdata TempM Rs Rr;
load *st3l’ Rsrt Rrrt;

v/ Get the dimension for the matrix mdata

[ntows, ncols] = size(stdata);

// Assuming that stdata is of the form

// stdata = |Is V pf Psh Torque rpm!},

/7 1 2 3 4 5 6

// we can manipulate this data to obtain slips and Pe.
// S = 1 - rpm/1800

for i=l:nrows,.

S(i) = 1 - stdata(i,6),1800;...
end

// The following are thermal sources for each matrix

// Pir = slip*Pm/(l-slip), where Pm = (Torg,meas + Torqg,loss)*Wm
// ma (2*PI*rpm/60)*(Torq,meas + Torq,loss) where Torg,loss = 0.3796
// Pigs = 3#]s*Is*Rsi

// T = Pr*Rthr + Ps*Rths + Pc*Rthc, Pc*Rthc = const = Pc*Rthc

// which is approx. Pc*Rths, with Pc = 23.51b+*2.5W/lb

Torgl = 0.3796;

Pc = 23.5%2.6;

for i=l:nrows,...

Pm = PI*(stdata(i,5) + Torqgl)*stdata(i,6)/30;...
slip = S{i);...

Is = stdata(i,l);...

Pr(i) = slip*Pm/(l-slipi};..

Ps(i) = 3*Is*Is*R3(i) + Pc;...

end

A = [{Pr Ps]

// Thermal stuff
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for i=l:nrows,..

for j=l1:25,..

EstTempM(i,j) = A(i,l)*Rth(2*j-1) + A(i,2)*Rth(2+*5);...
end, ..

end

EstTempM = [EstTempM TempM(:,26)};

Tambrt = 24.2;
Tambv = TempM(:,26);

for i = l:nrows,...

Tsw(i) = R8(i)*(234.4 + Tambrt)/Rsrt - 234.4;...
Tro{(i) = Rr(i)*(228.1 + Tambrt)/Rrrt - 228.1;...
end

TSwWwESt = A*Rthsw;
TroEst = A*Rthro;

DT = TempM - EstTempM
DTsw = Tsw - TswEst - Tambv
DTro = Tro - TroEst - Tambv

,/ Scale all the rotor resistances back to the 700W case

for 1 = l:nrows,...

RSEst(i) = Rsrt*(TsSwEsSt(i) + Tambv(i) + 234.4)/(Tambrt+ 234.4);...
RrEst(i) = Rrrt*(TroEst(i) + Tambv(i) + 228.1)/(Tambrt + 228.1);...
end

RS

Rr

RSEst

RrEst

Rsnorm

Rrnorm

dRs = Rs - RSEst
dRr = Rr - RrEst

for i = l:nrows,...
perRs(i) = dRs(i)/Rs(i);...
perRr(i) = dRr(i)/Rr(i);...
end

perRs
perRr

// Ve want to scale all the estimated resistances back to a reference
// temperature and compare the deviance from each other. 1In this case,
// the reference Temp is the temperature at which the Pm was 700W.

for i=l:nrows,...

Rssc(i) = Rs(i)*Tswnorm/(TswEst(i)+Tambv(i)+23<.4);...
Rrsc(i) = Rr(i)*Tronorm/(TroEst(i)+Tambv(i)+228.1);...
end

Rssc
Rrsc

tor i = l:nrows, ...
dRssc(i) = Rssc(i) - Rsnorm;...
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dRrsc(i) = Rrsc(i) - Rrnorm;...
perRssc(i) = dRssc(i)/Rsnorm;...

perRrsc(i) = dRrsc(i)/Rrnorm;...

end

dRssc

dRrsc
perRssc
perRrsc

save ‘'san2’;

diaryi0);
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LLLLLSLLSL LIPS 7 777777777777 7772777777777777
// Program ctidata.r (in (cho.matfiles.thermo.rdata)) ,/

// //
// Experimental data from rotor 1 at /7
// loads of S00W, 950W,and 1450w s/

// Used by Program anl.t //
LILL L7707 P I 77777 7777 7 7777777777777 777

// Working with real data of healthy motor (stator I, rotor 3)
// at constant temp.

// Date: April 30, 1988. Dynamometer fixed.

// i = [T Is Pe Pm pf rpm V)

clear;

long;

define 'param.udf’
define ‘lsdata.udf’
zip = O*ones(16,1);

// real data 1, Pm = 501.36 W

Isl = (4.100 4.253 4.483 4.726 5.046 5.343 5.753 6.090]"
Is2 = [6.453 6.796 7.240 7.650 8.146 8.456 8.926 9.373}"
Is = {Isl;Is2];

pfl = [.2448 .3455 .4485 .5187 .5879 .6328 .6758 .7050);
pf2 = (.7308 .7550 .7742 .7884 .8031 .8134 .8180 .8249)';
pf = (pfl;pf2);

cpml = [1795 1790 1785 1780 1775 1770 1765 1760’ ;

rpm2 = (1755 1750 1745 1740 1735 1730 1725 1720)’;

tpm = [(cpml;crpm2];

vl = [124.5 124.5 124.3 124.1 124.0 124.0 124.2 124.1)';
v2 = (123.9 123.4 123.6 123.6 123.6 123.4 123.6 123.5]’;
v « [(vl;v2};

rl = (Is v pf zip zip rpm];

// real data 2, Pm = 952.94 W

Isl = (4.100 4.226 4.443 4.683 4.970 5.326 5.663 5.996}"';
Is2 = (6.380 6.790 7.213 7.593 8.036 8.340 8.830 9.153)';
Is = {1Isl;Is2);

pfl = [.2516 .3517 .4457 .5196 .5812 .6387 .6751 L7072} ;
pf2 = (.7366 .7548 .7736 .76888 .8036 .8100 .8205 .8216)';
pf = (pfl;pf2);

vl = [124.5 124.4 124.2 124.1 124.1 123.8 123.9 123.6]';

v2 = [123.7 123.7 123.7 123.7 123.5 123.3 123.3 123.4);

v e [vl;v2]);

t2 = [Is v pf zip zip rpm);

// real data 3, Pm = 1450.7 W
Isl = [4.396 4.621 4.873 5.223 5.493 5.870 6.240 6.598]";
Is2 = [6.971 7.386 7.806 B8.148 B8.523 8.888 9.306 9.738)';

Is = (Isl;Is2];
pfl = [.4247 .5099 .5638 .6266 .6657 .7023 .7312 .1517)"
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pf2 = [.7727 .7880 .8000 .8095 .8181 .8257 .8310 .83761)";
pf = [pfl;pf2];

vi = [125.8 125.6 125.6 125.7 125.3 125.4 125.3 125.3)’;
vZ = (125.1 125.1 125.2 125.1 124.8 124.8 124.9 124.8);
v = [(vl;vZ);

rpml = ¢rpm -~ 10*ones(16,1);

r3 =« {Is v pf 2ip zip rpml];

// We need stdata in the form [Is V pf Pm Torque rpm|

// and TempM which is converted from TempF

// where TempF = [dT1 dT2 ... dT26 Tamb|

// The delta Ti’s are in F, but Tamb is in C. Hence, we
// need to convert the TempF so that it reads in C (the
// ‘transformed temp matrix will be called TempM.

S/ TempM = |trl(S01W) tr2(950W) tr3(1451)]°
s/ tri = [tl ... t9 Tambj|
// tl = |tel tc2 tc3d|, t2 = |tcd tcS tc6b|, t3 = |tecll tcl2

tc2l|

// t4 = [tcl0 tclB tcl9f, tS = |tc9 tcl4 tc20), t6 = jtcl3 tc25 tc26|

S/ t1 = Jtel tc23 tc2d4|, t8 = |tchH tcl7], t9 = | tclé
tl = [32.0 32.0 30.5];

t2 = [23.5 24.5 24.5];

t3 =« (35.5 35.5 34.0]};

td4 = (30.5 36.5 36.5];

tS = [31.5 29.0 36.5);

té = [34.0 39.5 35.5};

t7 = [34.5 39.0 38.5]);

t8 = (34.0 37.5};

t9 = (37.5 38.5]);

Tamb = 24.6;
trl = (&l t2 t3 t4 t5 t6 t7 t8 t9 Tamb};

tl = [38.5 38.5 36.5};
t2 = [{28.5 29.5 29.5);
tl = [43.5 43.5 41.5);
td = (36.5 43.5 44.5);
tS = (39.5 35.0 43.5);
té = [40.5 48B.5 44.0];
t7T = [42.5 48.5 47.5});
t8 = [41.5 45.5);

t9 = {45.5 47.5];

Tamb = 24.2;
tr2 = {tl t2 t3 t4 t5 t6 t7 t8 t9 Tamb] ;

tl = (52.0 52.0 48.0};
t2 = [38.5 41.0 40.5};
td = [60.5 60.5 56.5]);
td = (4R.5 59.5 59.5];
tS5 =« (51.5 47.5 58.0];
t6 = [S55.5 69.0 61.5]);
t7 « (57.5 66.5 66.5);
t8 = (57.5 62.0];

t9 = (62.5 66.0});

Tamb = 24.2;

trd = [tl t2 t3 t4 t5 t6 t7 t8 t9 Tamb];
TempF = (trl; tr2; tr3);

[Trows,Tcols] = size(TempF);
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// Delta of temp in ¢ = S5((dF + Famb) -32]/9 - Camb
/7 = 5*dF/9 + S(Famb - 32)/9 - Camb = 5dF/9
7/ Note tempF(:,26) = Ambient Temp, is in degrees Celsius

for i = l:Trows,...

for j = 1:25,...

TempH(i,j) = S*TempF(i,j)/9;.
end; ...

end

TempM = [TempM TempF(:,26)];

// Recall that stdata = |I V pf Pm Torque rpm|

stdl = [4.483 124.3 0.4485 501.36 2.680 1785};

std2 = [5.330 122.9 0.6375 952.94 5.140 17691 ;

stdl = [6.598 125.3 0.7517 1450.7 7.910 1750];

stdata = (stdl; std2; std3];

s/ do lsdata on each of the real data with known, measured Rs
Rsl = (.872 + .873 + .869)/3;:

Rs2 = (.882 + .882 + .881)/3;
Rs3 = (.912 + .912 + .910}/3;

pvl = lsdita(rl,Rsl);
pv2 = lsdata(r2.Rs2);
pv3 = lsdata(r3,Rs3);

rinave = (rl + r2 + r3)/3;
Rsave = (Rsl + Rs2 + Rsl3)/3;
pvinave = lsdata(rinave, Rsave);
pv = (pvl pv2 pvi];

Rs = [Rsl Rs2 Rs3]’;
Rr = [pvl(1l) pv2(1l) pvi3(l)]';

save ’‘sctidata’;
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LILLLLLILIL LSS TSI/ 7 )/ 77777777777 77777777 7

// Program and.r (in (cho.matfiles.thermo.rdata]) //
’/ 7/
// Use the rotor 3 data collected in ctldata.r and //
// Computes DT’s of the thermocouples and gives the /7

// thermally-compensated estimates of Rr /7
LILLLLLLL 2707777777777 777777777777 77777777777777

// Take data from ct3data.r and do various analyses

clear;
diary(’'dan3’);
long;

load ‘srthest’ Rth Rthsw Rthro Rsnorm Rrnorm Tswnorm Tronorm;
load ’'sctidata‘ pvl pv2 pv3 pv stdata TempM Rs Rr;

load ’st31’ Rsrt Rrrt;

“/ Get the dimension for the matrix mdata

{nrows, ncols] = size(stdata);

// Assuming thi: stdata is of the form

// stdata = |Is V pf Psh Torque rpm|,

/7 1 2 3 4 5 6

// we can manipulate this data to obtain slips and Pe.
// S =1 - rpm/1800

for i=l:nrows,...

S(i) = 1 - stdata(i,6)/1800;...
end

// The following are thermal sources for each matrix

// Pir = slip*Pm/(1l-slip), where Pm = (Torg,meas + Torq,loss)+*Wm
Vo4 = (2*PI*rpm/60)*(Torq,meas + Torq,loss) where Torq,loss = 0.3796
/7 Pis = 3#Is+*Ig*Rsi

// T = Pr*Rthr + Ps*Rths + Pc*Rthc, Pc*Rthc = const = Pc*Rthc

// which is appreox. Pc*Rths, with Pc = 23.51b%2.5W/1lb

Torgl = 0.3796;

Pc = 23,5%2.6;

for i=l:nrows,...

Pm « PI*(stdata(i,5) + Torql)+*stdata(i,6)/30;...
slip = S(i);...

Is = stdata(i,l);...

Pr(i) = slip*Pm/(1l-slip);...

Ps(i) = 3+Is*Is*Rs(i) + Pc;...

end

A = (Pr Ps|
// Thermal stuff

for i=l:nrows, ...
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for j=1:25,...

EstTempM(i,j) = A(i,l)*Rth(2%3j-1) + A(i,2)*Rth(2+j);...
end, ...

end

EstTempM = [EstTempM TempM(:,25)];

Tambrt = 24.2;
Tambv = TempM(:,26);

for i = l:nrows,...

Tsw(i) = Rs(1)*(234.4 + Tambrt)/Rsrt - 234.4;...
Tro(i) = Rr(i)*(228.1 + Tambrt)/Rrrt -~ 228.1;...
end

TSwWEsSt = A*Rthsw;
TroEst = A*Rthro;

DT = TempM - EstTempM
DTsw = Tsw - TswEst - Tambv
DTro = Tro - TroEst - Tambv

// Scale all the rotor resistances back to the 700W case

for i = l:nrows,...

RSEst(i) = Rsrt*(TswEst(i) + Tambv(i) + 234.4)/(Tambrt+ 234.4);...
RrEst{i) = Rrrt*(TroEst(i) + Tambv(i) + 228.1)/(Tambrt + 228.1);...
end

Rs

Rr

RSEst

RrEst

Rsnorm

Rrnorm

dRs = Rs - RsEst
dRr = Rr - RrEst

for i = l:nrows,...
perRs(i) = dRs(i)/Rs(i);...
perRr{i) « dRr(i)/Rr{i);...
end

perRs
perRr

// Wvie want to scale all the estimated resistances back to a reference
// ‘temperature and compare the deviance from each other. 1In this case,
// the reference Temp is the temperature at which the Pm was 700W.

for i=l:nrows,...

Rssc(i) = Rs(i)*Tswnorm/(TSwEsS*(1i)+Tambv(i)+234.4);...
Rrsc(i) = Rr(i)*Tronorm/(TroEst(i)+Tambv(i)+228.1);...
end

Rssc
Rrsc

for i = l:nrows,

dRssc(i) = Rssc(ii.- Rsnorm; ...
dRrsc(i) = Rrsc(i) - Rrnorm;...
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perRssc(i) = dRssc(i)/Rsnorm;...
perRrsc(i) = dRrsc(i)/Rrnorm;...

end

dRssc

dRrsc
perRssc
perRrsc
save ‘sanl’;

diary(0);

205



Appendix I

Results for the Thermally-Compensated

Detector of Broken Rotor Bar
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//////////////////////////////////////////

// Experimental Results for Rotor 1

//////////////////////////////////////////

L1777 077 7777777 /77777777 777777/ 777

’/
//
/7
7/
//
//
//
/7

DTi’s (in Celsius) of thermocouple
TCi computed such that

DTi =

DT

= |DT1]|
|DT2 |

|DT25 |

|500W 950W 1450W| and

//
//
4
//
//
//
//
//

L1117 77 7777777777777 77777/77777777

DT

-0.2208
-0.1557
-0.2686

0.1431

0.0450
0.0840
0.1907
0.1907

-0.1497
-0.1759
0.2867
0.1216

-0.1850

0.5743
-0.1913
-0.0151

-0.0724
0.1205
-0.2797
0.0235

-0.1301
-0.0776
-0.1617
-0.0082

0.0830

(=] [N oo N (=N NN oOoro ~POOOoO [=NoNoNe) [eNoNo N

.5169
.3C60
.2401
.4730

.6796
.7753
.9204
.9204

.4453
.3520
.3254
.1402

.4863
.0237
.7578
~-6948

.3231
.5689
.5893
.5613

.6514
.8707
.4320
.5352

.6213

.3297
.4C17
.1024
.8143

.4691
.6879
.5548
.5548

o [=N oo R [=NoNoNo oo C QOO0 [N NN O OO

.1548
.0570
.2684
.7884

.3944
.1666
.3085
.3933

.5054
.7104
.5345
.8189

.8374
.7128
.6312
.6285

.8851
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L1177/ 77777777777 /77777/777777/77/7//7/777777/
// Thermally Compensated and Thermally /7

// Uncompensated Estimates of Rr S/
// and HMeasured vs Thermally Estimated //
// of Rs Yol
/7 /7
// Rr = |Load Uncompensated Compensated| //
// and //
// Rs = |Load Measured Estimated| //

L1177 7 7777777777/ /7777777777777 77/7777/77/7//77

RR =

500w 0.5705 0.5782
950w 0.5819 0.5737
1450w 0.6184 0.5764

S00wW 0.8667 0.8713
950w 0.8830 0.8857
1450w 0.9133 0.9164
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L1177 7 77777777/ 777777777777/ 7777777777

// Experimental Results for Rotor 2

//

L117777077777777777777777/77/777/77/77777/

L1777 77 7777777777777/ 7 /7777777777777

4
//
//
//
//
//
//
/7

DT

DTi’s (in Celsius) of thermocouple
TCi computed such that

DTi = |500W SS0W 1450W| and

DT

= |DT1|
|DT2 |

| DT25 | //
JIIIIIIIIIIIIIII 77777777 7777777777777777

0.0672
0.1311
-0.2767
0.0755

0.2650
-0.251¢9
0.2270
-0.0508

0.1518
0.3651
0.0445
-0.1089

0.3729
0.2750
-0.1517
0.2819

-0.2860
-0.1266
0.0241
0.0888

-0.0672
0.2232
-0.1036
0.0468

0.1424

0.5437
0.6121
0.2932
0.6450

0.2723
0.3709
0.8762
0.8762

0.4239
0.6922
0.8439
0.8041

0.5084
0.5484
0.7188
0.9743

0.4812
0.7975
0.5647
0.7362

0.8280
0.5758
0.6431
0.4704

0.8039

0.4145
0.4854
0.2437
0.6020

-0.3046
-0.0825
0.8906
0.3350

-0.1010
0.3976
0.6126
0.8589

0.7262
0.9572
0.3843
0.7456

0.5352
0.7441
0.8683
1.1551

0.8911
0.2152
0.7217
0.4348

1.4927
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L1777/ 7777007777/7777777/77//7//777///777/77/

// Thermally Compensated and Thermally

// Uncompensated Estimates of Ry

// and Measured vs Thermally Estimated

/7 of Rs

/7

// Rr = |Load Uncompensated Compensated|

//

RR

S00w
950w
1450w

RS

Soow
950w
1450w

and
// Rs = |Load Measured

L0070 777 7077777777777 77/777777/7/7777/77/77

(=X =N

oQoO

.5828
.6003
.6325

.8667
.8917
.9137

ooQ

(o X=X

.5911
.5905
.5886

.8702
.8877
9167
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L1777 777777 7777777777/ 77/7///7/777/7777/7/

// Experimental Results for Rotor 3

//

L1777 77777 777777777777 777/7777/////777/77

L1117 777 777777777777/ 7 7777777777777

’/
//
//
//
//
//
//
//

DT

DTi’s (in Celsius) of thermocouple
TCi computed such that

DTi = |500W 950W 1450W| and

DT

= |DT1|
[DT2 |

|DT25 | //
S/077 7SS S SS S SSSS

-0.2623
-0.1961
-0.0120
-0.0899

-0.1989
-0.1596
-0.1576
-0.1576

-0.2062
0.3655
0.4948
0.2390

-0.2179
0.0123
0.2900
0.2112

0.1040
0.0561
-0.0610
-0.0792

-0.2302
-0..i333
~C.2563
-0.0996

-0.0131

-0.3216
-0.2531
-0.2932

0.0664

-0.3081
-0.2092
-0.2725
-0.2725

-0.4457

0.1062
-0.0263
-0.3451

0.1972
-0.0362
-0.1512
-0.1708

-0.3958
-0.0746
-0.0272

0.1391

-0.3247
-0.2934
-0.2282
-0.1233

-0.0706

0.0540
0.1269
-¢.92006
0.5338

G.4770
0.4138
0.3207
0.3207

-0.6663
-0.2012

0.3016
-0.8456

-0.9583
0.3437
-0.5014
0.4110

0.3150
0.2256
-0.2565
6.3169

0.3403
0.1961
0.3659
0.6478

0.3885
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(1177777777 777777/777777777777//7777//77/7777/
// Thermally Compensated and Thermally //

// Uncompensated Estimates of Rr //
// and Measured vs Thermally Estimated //
// of Rs //
// //
// Rr = |Load Uncompensated Compensated| //
// and //
// Rs = |Load Measured Estimated| //

L1177 77777 7777777777777/ 7777/77777777//7777/7/

RR -
500w 0.5788 0.5847
950w 0.5862 0.5766
1450w 0.6234 0.5817
Ambient 0.5413 0.5830
250W 0.5725 0.5831
700w 0.5820 0.5820
1.2kw 0.6101 0.5841
1.7kwW 0.6576 0.5826

RS -
500w 0.8713 0.8744
950w 0.8817 0.8878
1450w 0.9113 0.9163
250w 0.8693 0.8696
700W 0.8817 0.8798
1.2kw 0.9017 0.9040
1.7kwW 0.9483 0.9476
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