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1 Introduction

Foundation models [1], which are large neural networks trained on massive datasets, have shown
impressive generalization in both the language and vision domain [2][3]. While fine-tuning foundation
models for new tasks at test-time is impractical due to billions of parameters in those models, prompts
have been employed to re-purpose models for test-time tasks on the fly. In the language domain, a
prompt can be an incomplete sentence for a large language model to auto-complete as seen in Fig.
2 (a) [2] [4]. In the vision domain, a prompt can be some pixels added to an image for a generic
large vision model to perform specific classification tasks as seen in Fig. 2 (b) [5]. In both cases,
prompts re-purpose generically trained foundation models with frozen weights to generate conditional
distributions that solve specific downstream tasks.

Figure 1: (a) Language prompts in the format of a question turn a foundation model into a question-
answering machine, while prompts in the format of a long paragraph followed by a summary request
turn the model into a reading comprehension engine. The model was originally trained on neither
task. Figure borrowed from [4]. (b) Image prompts in the format of boundary pixels can condition the
same model trained for generic classification to detect different but specific aspects of the same image.
Figure borrowed from [5].

In this report, we ideate the equivalent foundation model for motion generation and the corresponding
formats of prompt that can condition such a model. The central goal is to learn a behavior prior that can
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be re-used in a novel scene. Note the space of all possible trajectories is exponentially large depending
on the number of discrete time steps, and a learned distribution of only meaningful trajectories can
significantly reduce the search space given a new scene.

2 Problem Formulation

The ideal behavior of a universal motion generator is illustrated in Fig. 2. The model inputs (1) a
RGBD image or a point cloud that encodes the geometry of a scene, and (2) an initial partial motion
trajectory that encodes the intention of the user in the scene. The model should then auto-complete
a collision-free trajectory that meaningfully manipulates objects in the scene as seen in Fig. 2(a)(b).
The scene input should capture sufficient information about how to manipulate objects in the scene in
a collision-free manner, while the trajectory input should narrow down the possible set of behaviors a
user intends. Note there might be more than one behavior that can complete an initial partial trajectory,
and the model should output a distribution over meaningful behaviors, e.g, object rearrangement [6].
Not meaningful behavior includes but is not limited to back-and-forth reaching or jittering without
actually rearranging any objects.

Another possible way to use the model is to elicit cooperative/assistive behavior [7]. For example, if
the model is trained on trajectories of two hands demonstrating a task together (e.g., setting a table),
the user can give the trajectory of one hand as the initial trajectory prompt and the model should output
the trajectory of the other hand to help with the task as seen in Fig. 2(c)-(d).

Figure 2: The desired behavior of a learned motion generator. (a)(b) Given the initial trajectory in yel-
low and the scene geometry in a depth image, the model auto-completes the green trajectory that both
continues the intention of the yellow trajectories and avoids collisions in the depth image. Concretely,
a sampled behavior from the model includes picking and placing different objects circled in scene
(a), and pushing in a chair or tossing trash (b). (c)-(d) Given a demonstration of cooperative behavior
with two hands, the model learns to control one hand (green) to help with the human-controlled hand
(yellow) in a table-setting task.
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3 Method

To model the behavior described in the previous section, we observe trajectory data share the same
sequential nature as the language data [8]. We propose using the same architecture of large language
models to model the distribution of meaningful behaviors. Specifically, we consider the architecture
of [9], which handles both image and language prompts concurrently. In our setting, a similar model
should handle both a scene prompt (we will use a depth image as an example) and a motion prompt (a
partial trajectory in the form of a sequence of a robot end-effector poses) as shown in Fig. 3. During
training, we tokenize the scene prompt and the motion prompt and feed them into a large language
model to predict the future trajectory in a dataset autoregressively. During testing, we prompt the
model with a scene and a partial trajectory to sample meaningful behaviors. Note the model rollout
can deviate from a human user’s intention, and in that case, the user will need to inject additional
motion projects (e.g., through a VR controller) every a fixed number of time steps.

Figure 3: A schematic of model training and testing. Black trajectories come from a dataset, the yellow
trajectory is generated by a human user, and the green trajectory is the prediction of the model.

4 Data Collection

In order to test the generalization of a foundation model of motion priors to novel scenes and motion
prompts, we first need to collect large motion trajectory data to learn such a model. Existing datasets
[10, 11, 12, 13] either focus on macro actions (not at the motion trajectory level) or contain only limited
trajectories. Consequently, neither is suitable to train a foundation model at the motion level. We will
explore generating data either through a task-and-motion planning (TAMP) algorithm [14] or human
agents using a VR hand controller in a visually realistic simulator [15]. The benefits of using a planner
to generate data are 1) scalability 2) embodiment in a robot. However, a planner may not be able to
solve arbitrarily complex tasks and can be slow if the number of objects is large. Humans, on the
other hand, are good at reasoning about a cluttered environment and can generate a demonstration fast.
However, human demonstrations are not always directly transferable to a robot (lack of embodiment)
and are less scalable.
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The tasks we consider for the data generation are household activities in procedurally generated kitchen
environments. Specifically, unpacking groceries, cooking a meal, serving a meal, and cleaning up.
These long-horizon tasks provide a natural curriculum and hierarchy of subtasks (e.g., pick-and-place,
open drawers) commonly tested in skill learning benchmarks [16, 17]. These benchmarks only test
single skills in isolated environments (e.g. single kitchen appliance by itself). In contrast, all the
motion trajectories are generated in a cluttered kitchen environment with many distractor objects.
Thus it is critical for the model to infer intent from human motion prompts. Also giving high-level
task goals such as cooking a meal can elicit very different demonstrations from different human agents,
making a human dataset more diverse than a TAMP-generated dataset.

5 Conclusion

This blue-sky paper outlines our idea and a plausible implementation of a foundation model that learns
re-usable motion priors. We discuss how to collect data to train such a model, and how to prompt the
model to generalize to novel scenes as well as novel tasks once we have it. We hope this paper spurs
research in the largely overlooked area of using large language models to learn motion trajectories in
cluttered kitchen environments so that the community will have a pre-trained model for manipulation
skills in the future.
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