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Abstract
Suppose that we are given sample access to an unknown distribution p over n elements and an
explicit distribution q over the same n elements. We would like to reject the null hypothesis
“p = q” after seeing as few samples as possible, when p 6= q, while we never want to reject the
null, when p = q. Well-known results show that Θ(

√
n/ε2) samples are necessary and sufficient

for distinguishing whether p equals q versus p is ε-far from q in total variation distance. However,
this requires the distinguishing radius ε to be fixed prior to deciding how many samples to request.
Our goal is instead to design sequential hypothesis testers, i.e. online algorithms that request i.i.d.
samples from p and stop as soon as they can confidently reject the hypothesis p = q, without
being given a lower bound on the distance between p and q, when p 6= q. In particular, we want
to minimize the number of samples requested by our tests as a function of the distance between
p and q, and if p = q we want the algorithm, with high probability, to never reject the null. Our
work is motivated by and addresses the practical challenge of sequential A/B testing in Statistics.

We show that, when n = 2, any sequential hypothesis test must see Ω
(

1
dtv(p,q)2 log log 1

dtv(p,q)

)
samples, with high (constant) probability, before it rejects p = q, where dtv(p, q) is the—unknown
to the tester—total variation distance between p and q. We match the dependence of this
lower bound on dtv(p, q) by proposing a sequential tester that rejects p = q from at most
O
( √

n
dtv(p,q)2 log log 1

dtv(p,q)

)
samples with high (constant) probability. The Ω(

√
n) dependence

on the support size n is also known to be necessary. We similarly provide two-sample sequential
hypothesis testers, when sample access is given to both p and q, and discuss applications to
sequential A/B testing.
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1 Introduction

A central problem in Statistics is testing how well observations of a stochastic phenomenon
conform to a statistical hypothesis. A common scenario involves access to i.i.d. samples from
an unknown distribution p over some set Σ and a hypothesis distribution q over the same
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set. The goal is to distinguish between p = q and p 6= q. This problem, in myriads of forms,
has been studied since the very beginnings of the field. Much of the focus has been on the
asymptotic analysis of tests in terms the error exponents of their type I or type II errors.

More recently, the problem received attention from property testing, with emphasis on
the finite sample regime. A formulation of the problem that is amenable to finite sample
analysis is the following: given sample access to p and a hypothesis q as above, together with
some ε > 0, how many samples are needed to distinguish, correctly with probability at least
2/3,1 between p = q and d(p, q) > ε, for some distance of interest d? For several distances
d, we know tight answers on the number of samples required. For instance, when we take
d to be the total variation distance, dtv,2 we know that Θ(

√
n/ε2) samples are necessary

and sufficient, where n = |Σ| [7, 27, 33]. Tight answers are also known for other distances,
variants of this problem, and generalizations [15, 8, 32, 9, 29, 13, 2, 1, 10, 12, 11], but our
focus will be on distinguishing the identity of p and q under total variation distance.

While the existing literature gives tight upper and lower bounds for this problem, it still
requires a lower bound ε on the distance between p and q when they differ, aiming for that
level of distinguishing accuracy, when choosing the sample size. This has two implications:
1. Even when p and q are blatantly far from each other, the test will still request Θ(

√
n/ε2)

samples, as the distance of p and q is unknown to the test when the sample size is
determined.

2. When p 6= q, but dtv(p, q) ≤ O(ε), there are no guarantees about the output of the test,
just because the sample is not big enough to confidently decide that p 6= q.

Both issues above are intimately related to the fact that these tests predetermine the
number of samples to request, as a function of the support size n and the desired distinguishing
radius ε.

In practice, however, samples are costly to acquire. Even, when they are in abundance,
they may be difficult to process. As a result, it is a common practice in clinical trials or
online experimentation to “peek” at the data before an experiment is completed, in the hopes
that significant evidence is collected supporting or rejecting the hypothesis. Done incorrectly
this may induce statistical biases invalidating the reported significance and power bounds of
the experiment [25].

Starting with a demand for more efficient testing during World War II, there has been a
stream of work in Statistics addressing the challenges of sequential hypothesis testing; see,
e.g., [34, 35, 28, 30, 26, 24, 36, 23, 22, 6, 31, 18, 20, 3, 5] and their references. These methods
include the classical sequential probability ratio test (SPRT) [34, 35] and its generalizations [22,
6], where the alternative hypothesis is either known exactly or is parametric (i.e. p either equals
q, or p is different than q, but belongs in the same parametric class as q). An alternative to
SPRT methods are methods performing repeated significance tests (RST) [28, 26, 24, 36, 18, 5].
These methods target scalar distributions and either make parametric assumptions about p
and q (e.g. Bernoulli, Gaussian, or Exponential family assumptions), or compare moments
of p and q (usually their means). In particular these methods are closely related to the task
of choosing the best arm in bandit settings; see, e.g., [17] and its references.

In contrast to the existing literature, we want to study categorical random variables, and
do not want to make any parametric assumptions about p and q. In particular, we do not

1 As usual the probability “2/3” in the definition of the problem can be boosted to any constant 1− δ, at
a cost of an extra log 1

δ factor in the sample complexity.
2 See Section 2 for a definition.
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want to make any assumptions about the alternatives. If the null hypothesis, p = q, fails, we
do not know how it will fail. We are simply interested in determining whether p = q or p 6= q,
as soon as possible. Our goal is to devise an online policy such that, given any sequence of
samples from p, the policy decides to
(i) either continue, drawing another sample from p; or
(ii) stop and declare p 6= q.

We want that our policy:
1. has small error rate, i.e. for some user-specified constants α, β > 0,

a. If p = q, the policy will stop, with probability at most α; i.e. the type I error is α.
b. If p 6= q, the policy will stop (i.e. declare p 6= q), with probability at least 1− β; i.e.

the type II error is β.
2. draws as few samples as possible, when p 6= q, in the event that it stops (which happens

with probability at least 1− β).

In other words, we want to define a stopping rule such that, for as small a function
k = k(n, ·) as possible, the stopping time τ satisfies:
(i) Prq[τ = +∞] ≥ 1− α, and
(ii) Prp[τ < k(n, dtv(p, q))] ≥ 1− β for all p 6= q,
where n is the cardinality of the set Σ on which p and q are supported. Henceforth we will call
a stopping rule proper if it satisfies property (i) above. We want to design proper stopping
rules that satisfy (ii) for as small a function k(·, ·) as possible. That is, with probability at
least 1− β, we want to reject the hypothesis “p = q” as soon as possible. As we focus on the
dependence of our stopping times on n and dtv(p, q), we only state and prove our results
throughout this paper for α = β = 1/3. Changing α and β to different constants will only
change the constants in our bounds. Our results are the following:3
1. In Theorem 1, we show that, when n = 2, i.e. when p and q are Bernoulli, and

even when q is uniform, there is no proper stopping rule such that k(2, dtv(p, q)) <
1

16dtv(p,q)2 log log 1
dtv(p,q) .

4,5 Our lower bound is reminiscent of the lower bound on the
number of samples needed to identify the best of two arms in a bandit setting, proven
in [17]. This was shown by an application of an information theoretic lower bound of
Farrel for distinguishing whether an exponential family has positive or negative mean [14].
Farrel lower bounds the expected number of observations that are needed, while we show
that not even a constant probability of stopping below our bound can be achieved. This
is a weaker target, hence the lower bound is stronger. Finally, our goal is even weaker
as we only want to determine whether p 6= q, but not to identify the Bernoulli with the
highest mean. Our proof is combinatorial and concise.

2. In Theorem 2, we construct, for any q and n, a proper stopping rule satisfying k(n, dtv(p, q))
< c

√
n

dtv(p,q)2 log log 1
dtv(p,q) , for some constant c. By Theorem 1 the dependence of this

bound on dtv(p, q) is optimal. Moreover, it follows from standard testing lower bounds,
that the dependence on n is also optimal.6 In fact Theorem 2 achieves something stronger.
It shows that, whenever p 6= q, with probability at least 2/3, the stopping rule will actually
stop later than Ω

( √
n

χ2(p,q) log log 1
χ2(p,q)

)
and prior to O

( √
n

dtv(p,q)2 log log 1
dtv(p,q)

)
.

3 The formal statements of our theorems are given in the notation introduced in Section 1.1.
4 Note that for Bernoulli’s dtv(p, q) equals the difference of their means.
5 Throughout the paper, we assume that log means logarithm to the base e.
6 In particular, as we have already noted, it is known that Ω(

√
n/ε2) samples are necessary to distinguish

p = q from dtv(p, q) > ε, for small enough constant ε. As our task is harder than distinguishing whether
p 6= q for a fixed radius of accuracy ε, we need to pay at least this many samples.

ESA 2017
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3. In Theorem 3, we study two-sample sequential hypothesis testing, where we are given
sample access to both distributions p and q. Similarly to the one-sample case, our goal is
to devise a stopping rule that is proper, i.e. when p = q, it does not stop with probability
at least 2/3, while also minimizing the samples it takes to determine that p 6= q. That
is, when p 6= q, it stops, with probability at least 2/3, after having seen as few samples
as possible. We show that there is a proper stopping rule which, whenever p 6= q, stops
after having seen Θ

(
n/ logn
dtv(p,q)2 log log 1

dtv(p,q)

)
samples, with probability at least 2/3. The

dependence on dtv(p, q) is optimal from Theorem 1. As our tight upper and lower bounds
on the number of samples allow us to estimate dtv(p, q) to within a constant factor, the
lower bounds of [32] for estimating the distance between distributions imply that the
dependence of our bounds on n is also optimal.

4. The dependence of our upper bounds on dtv(p, q) is reminiscent of recent work in the
bandit literature [19, 17] and sequential non-parametric testing [5], where stopping times
with iterated log complexity have appeared. These results are intimately related to the
Law of Iterated Logarithm [21, 4]. Our results are instead obtained in a self-contained and
purely combinatorial fashion. Moreover, as discussed earlier, our testing goals are different
than those in these works. While both works study scalar distributions, distinguishing
them in terms of their means, we study categorical random variables distinguishing them
in terms of their total variation distance.

1.1 Model
Let p, q be discrete distributions over Σ = [n], where [n] = {0, 1, . . . , n− 1}. We assume that
n ≥ 2. In the one-sample sequential hypothesis testing problem, distributions q and sample
access is provided to distribution p. Our goal is to distinguish between p = q and p 6= q.
Since p and q could be arbitrarily close even when they differ, our goal is to reject hypothesis
p = q as soon as possible when p 6= q, as explained below.

Let [n]∗ be the Kleene star of [n], i.e., the set of all strings of finite length consisting
of symbols in [n]. A function T : [n]∗ → {0, 1} is called a stopping rule if T (x1 · · ·xk) = 1
implies T (x1 · · ·xkxk+1 · · ·xk+`) = 1 for any integers k, ` ≥ 0 and xi ∈ [n] (i = 1, . . . , k + `).
For all sequences x ∈ {0, 1}∗, T (x) = 1 and T (x) = 0 mean respectively that the rule
rejects hypothesis p = q or it continues testing, after having seen x. For an infinite sequence
x = (x1x2 . . . ) ∈ [n]N, we define the stopping time to be the min{t | T (x1 · · ·xt) = 1}. Let
N(a | x) be the number of times symbol a ∈ [n] occurs in the sequence x ∈ [n]∗. Let τ(T, p)
be a random variable that represents the stopping time when the sequence is generated by p,
i.e, for all k:

Pr[τ(T, p) ≤ k] =
∑
x∈[n]k

(
T (x)

∏k
i=1 pxi

)
=
∑
x∈[n]k

(
T (x)

∏
i∈[n] p

N(i|x)
i

)
.

With the above notation, our goal in the one-sample sequential hypothesis testing problem is
to find, for a given distribution q, a stopping rule T such that
(a) Pr[τ(T, q) ≤ k] ≤ 1/3 for any k, and
(b) Pr[τ(T, p) ≤ k] ≥ 2/3 for k as small as possible whenever p 6= q.
We call a stopping rule proper if it satisfies the condition (a).7

We also consider the two-sample sequential hypothesis testing problem where p and q are
both unknown distributions over [n], and sample access is given to both. For simplicity,
this paper only studies stopping rules that use the same number of samples from each

7 As noted earlier there is nothing special with the constants “1/3” and “2/3” here. We could turn these
to any constants α and 1− β respectively at a cost of a constant factor in our sample complexity.
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distribution. This assumption increases the sample complexity by a factor of at most 2.
Then a stopping rule T is defined as a function from

⋃
k∈N([n]k × [n]k) to {0, 1} such that

T (x, y) = 1 implies T (xz, yw) = 1 for any strings x, y, z, w ∈ [n]∗ with |x| = |y| and |z| = |w|.
Here, |x| represents the length of x ∈ [n]∗. The stopping time for infinite sequences x, y ∈ [n]N
is given by min{t | T (x1 · · ·xt, y1 · · · yt) = 1}. Also, the stopping time τ(T, p, q) is a random
variable such that

Pr[τ(T, p, q) ≤ k] =
∑
x∈[n]k

∑
y∈[n]k

(
T (x, y)

∏
i∈[n] p

N(i|x)
i

∏
j∈[n] q

N(j|y)
j

)
.

Now, our task is to find a stopping rule T such that
(1) Pr[τ(T, p, q) ≤ k] ≤ 1/3 for any k whenever p = q, and
(2) Pr[τ(T, p, q) ≤ k] ≥ 2/3 for k as small as possible whenever p 6= q.

Before describing our results, we briefly review notations and definitions used in the
results. The total variation distance between p and q, denoted by dtv(p, q), is defined to be
dtv(p, q) = 1

2
∑
i∈[n] |pi − qi| =

1
2‖p− q‖1. The χ2-distance between p and q (which is not a

true distance) is given by χ2(p, q) =
∑
i∈[n](pi−qi)2/qi =

(∑
i∈[n] p

2
i /qi

)
−1. Note that these

two distances satisfy dtv(p, q)2 ≤ 1
4χ

2(p, q) for any distributions p, q by Cauchy–Schwartz
inequality.

1.2 Our results
We first prove that any proper stopping rule for the one-sample sequential hypothesis testing
problem, must see 1

16·dtv(p,q)2 log log 1
dtv(p,q) samples before it stops, even when n = 2, i.e.

both distributions are Bernoulli, and the known distribution q is Bernoulli(0.5).

I Theorem 1 (One-Sample Sequential Hypothesis Testing Lower Bound). Even when n = 2
and q = (1/2, 1/2), there exist no proper stopping rule T and positive real ε0 such that

Pr
[
τ(T, p) ≤ 1

16 · dtv(p, q)2 log log 1
dtv(p, q)

]
≥ 2/3 (whenever 0 < dtv(p, q) < ε0). (1)

Here, we remark that dtv(p, q) = |1/2− p0| = |1/2− p1|.

As we noted earlier, our lower bound involving the iterated logarithm appears similar to
that of Farrel [14], but it is a slightly stronger statement. More precisely, he proved that
lim supp→q

dtv(p,q)2·E[τ(T,p)]
log log 1

dtv(p,q)
≥ c for a certain positive constant c. Theorem 1 implies the

result but not vice versa. Also, our proof is elementary and purely combinatorial. It is given
in Section 3.

We next provide a black-box reduction, obtaining optimal sequential hypothesis testers
from “robust” non-sequential hypothesis testers. In particular, we use algorithms for robust
identity testing where the goal is, given some accuracy ε, to distinguish whether p and q are
O(ε)-close in some distance versus Ω(ε)-far in some (potentially) different distance [32, 1].
We propose a schedule for repeated significance tests, which perform robust identity testing
with different levels of accuracy ε, ultimately compounding to optimal sequential testers. In
the inductive step, given the current value of ε, we run the non-sequential test with accuracy
ε for Θ(log log 1/ε) times, and take the majority vote. If the majority votes ε-far, we stop the
procedure. Otherwise, we decrease ε geometrically and continue. The accuracy improvement
by the Θ(log log 1/ε)-fold repetition allows the resulting stopping rule to be proper.

Our theorems for one-sample and two-sample sequential hypothesis testing are stated below
and proven in Section 4. As noted earlier, stopping times involving the iterated logarithm
have appeared in the multi-armed bandit and sequential hypothesis testing literature. As

ESA 2017
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explained, our testing goals are different than those in this prior work. While they study
scalar distributions, distinguishing them in terms of their means, we study categorical random
variables distinguishing them in terms of their total variation distance. Moreover, our results
do not appeal to the law of the iterated logarithm and are obtained in a purely combinatorial
fashion, using of course prior work on property testing.

I Theorem 2 (One-Sample Sequential Hypothesis Testing Upper Bound). For any known
distribution q over [n], there exists a proper stopping rule T and positive reals ε0 and c such
that

Pr
[ √

n

c · χ2(p, q) log log 1
χ2(p, q) ≤ τ(T, p) ≤ c

√
n

dtv(p, q)2 log log 1
dtv(p, q)

]
≥ 2/3 (2)

holds for any p satisfying 0 < χ2(p, q) < ε0. Note that 0 < dtv(p, q) < √ε0/2 holds when
0 < χ2(p, q) < ε0 since dtv(p, q)2 ≤ 1

4χ
2(p, q).

I Theorem 3 (Two-Sample Sequential Hypothesis Testing Upper Bound). There exists a proper
stopping rule T and positive reals ε0 and c such that

Pr
[

n/ logn
c · dtv(p, q)2 log log 1

dtv(p, q) ≤ τ(T, p, q) ≤ c · n/ logn
dtv(p, q)2 log log 1

dtv(p, q)

]
≥ 2/3 (3)

holds for any unknown distributions p, q over [n] satisfying 0 < dtv(p, q) < ε0.

Since the lower bounds on the stopping time in both (2) and (3) go to infinity as p goes
to q, the stopping rules never stop with probability at least 2/3 when p = q. Hence, the
stopping rules are proper. As noted earlier, we can improve the confidence from 2/3 to 1− δ
at the cost of a multiplicative factor log(1/δ) in the sample complexity. The dependence of
both upper bounds on dtv(p, q) is tight as per Theorem 1. The

√
n dependence in Theorem

2 is tight because it is known that testing whether dtv(p, q) = 0 or dtv(p, q) ≥ 1/2 requires
Ω(
√
n) samples [15, 8]. In addition, Theorem 3, allows us to estimate the total variation

distance between p and q because the stopping time and the total variation distance satisfy
the relation τ(T, p) = Θ

(
n/ logn
dtv(p,q)2 log log 1

dtv(p,q)

)
. This and the lower bounds for estimating

the `1 distance of distributions provided in [32], imply that the dependence of Theorem 3 on
n is also optimal.

As a simple corollary of the above results, we can also provide an efficient algorithm for
sequential A/B testing, replicating the bounds obtainable from [19, 17, 5], without appealing
to the Law of the Iterated Logarithm.

I Theorem 4. There exists an algorithm that distinguishes between the cases (a) p > q and
(b) q > p, using Θ

(
1

|p−q|2 log log 1
|p−q|

)
samples for any unknown Bernoulli distributions

with success probabilities p and q.

2 Known Results

In this section, we state known results for robust identity testing, which we use in our upper
bounds.

I Theorem 5 ([2]). For any known distribution q, there exists an algorithm with sample
complexity Θ(

√
n/ε2) which distinguishes between the cases

(a)
√
χ2(p, q) ≤ ε/2 and

(b) dtv(p, q) ≥ ε,
with probability at least 2/3.
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I Theorem 6 ([32]). Given sample access to two unknown distributions p and q, there exists
an algorithm with sample complexity Θ( n

ε2 logn ) which distinguishes between the cases
(a) dtv(p, q) ≤ ε/2 and
(b) dtv(p, q) ≥ ε,
with probability at least 2/3.

We remark that, even though the proofs of Theorems 5 and 6 may use Poisson sampling,
i.e., the sample complexities are Poisson distributed, we can assume that the numbers of
samples are deterministically chosen. This is because the Poisson distribution is sharply
concentrated around the expected value.

In our analysis of the upper and lower bounds of sample complexities, we use the following
Hoeffding’s inequality.

I Theorem 7 (Hoeffding’s inequality [16]). Let X be a binomial distribution with n trials and
probability of success p. Then, for any real ε, we have Pr [X ≤ (p− ε)n] =

∑b(p−ε)nc
i=0

(
n
i

)
pi(1−

p)n−i ≤ exp(−2ε2n).

3 Lower bound

In this section, we prove Theorem 1, i.e., our lower bound on the sample complexity for the
binary alphabet case n = 2. We abuse notation using p, q to denote the probabilities that
our distributions output 1. In particular, 1− p and 1− q are the probabilities they output 0.

We first observe that, for any stopping rule T , the stopping times τ(T, p) and τ(T, q) take
similar values when p, q are close.

I Lemma 8. Let p < 1/2, q = 1/2, 1 > α > 0 and s, t be positive integers such that s > t.
If Pr [t ≤ τ(T, p) ≤ s] ≥ α, then we have

Pr [t ≤ τ(T, q) ≤ s] ≥ (α− α2) · (1/e)4( 1
2−p)2·s+4( 1

2−p)
√
s log(1/α)

.

Proof. Let A = {x ∈ {0, 1}s | T (x1 . . . xt−1) = 0 and T (x1 . . . xs) = 1}. Then the stopping
probability for p can be written as

Pr [t ≤ τ(T, p) ≤ s] =
∑
x∈A

pN(1|x)(1− p)N(0|x).

Recall that N(a | x) is the number of times a symbol a ∈ {0, 1} occurs in a string x ∈ {0, 1}∗.
Note that |x| = N(1 | x) +N(0 | x). Let A1 = {x ∈ A | N(1 | x) < p · s−

√
s log(1/α)} and

A2 = {x ∈ A | N(1 | x) ≥ p · s−
√
s log(1/α)}. By using Hoeffding’s inequality, we have∑

x∈A1

pN(1|x)(1− p)N(0|x) ≤
∑

x∈{0,1}s: N(1|x)<p·s−
√
s log(1/α)

pN(1|x)(1− p)N(0|x)

≤
bp·s−

√
s log(1/α)c∑
k=0

(
s

k

)
pk(1− p)s−k ≤ exp

−2
(√

s log(1/α)
s

)2

· s

 = α2.

Hence, it holds that∑
x∈A2

pN(1|x)(1− p)N(0|x) =
∑

x∈A\A1

pN(1|x)(1− p)N(0|x) ≥ α− α2. (4)

ESA 2017
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In what follows, we bound the value Pr [t ≤ τ(T, q) ≤ s]. Since A2 ⊆ A and s = N(1 |
x) +N(0 | x), we have

Pr [t ≤ τ(T, q) ≤ s] =
∑
x∈A

1
2s ≥

∑
x∈A2

1
2s =

∑
x∈A2

1
4N(1|x) ·

1
2N(0|x)−N(1|x) .

Since p(1− p) = −(p− 1/2)2 + 1/4 ≤ 1/4, it holds that

∑
x∈A2

1
4N(1|x) ·

1
2N(0|x)−N(1|x) ≥

∑
x∈A2

pN(1|x)(1− p)N(1|x) ·
(

1
2

)N(0|x)−N(1|x)

=
∑
x∈A2

pN(1|x)(1− p)N(0|x) ·
(

1/2
1− p

)N(0|x)−N(1|x)
. (5)

Note that, for x ∈ A2, we haveN(0 | x)−N(1 | x) = s−2N(1 | x) ≤ s−2(p·s−
√
s log(1/α)) =

2(1/2− p)s+ 2
√
s log(1/α) since s = N(1 | x) +N(0 | x) and N(1 | x) ≥ p · s−

√
s log(1/α).

Also, we have 1/2
1−p = 1

1+(1−2p) < 1 since p < 1/2. Thus, we get

(
1/2

1− p

)N(0|x)−N(1|x)
≥
(

1
1 + (1− 2p)

)2(1/2−p)s+2
√
s log(1/α)

. (6)

Applying (6) and (4) to (5) yields

∑
x∈A2

pN(1|x)(1− p)N(0|x) ·
(

1/2
1− p

)N(0|x)−N(1|x)

≥
∑
x∈A2

pN(1|x)(1− p)N(0|x) ·
(

1
1 + (1− 2p)

)2(1/2−p)s+2
√
s log(1/α)

≥ (α− α2) ·
(

1
1 + (1− 2p)

)2(1/2−p)s+2
√
s log(1/α)

.

Here, 1 + (1− 2p) ≤ e1−2p holds since 1 + x ≤ ex for any x. Therefore, we conclude that

Pr [t ≤ τ(T, q) ≤ s] ≥ (α− α2) · (1/e)4(1/2−p)2s+4(1/2−p)
√
s log(1/α)

,

which is our claim. J

Next, we see that the stopping time τ(T, p) is not so small when T is proper.

I Lemma 9. Suppose that 1/4 < p < 1/2, q = 1/2, and T is a proper stopping rule. Then
we have Pr

[
τ(T, p) ≤ 1

10000·|p−1/2|2

]
≤ 1/2.

Proof. Let s =
⌊

1
10000·|p−1/2|2

⌋
and B = {x ∈ {0, 1}s | T (x) = 1}. By the assumption that

the rule is proper, we have Pr
[
τ(T, q) ≤ 1

10000·|p−1/2|2

]
= Pr [τ(T, q) ≤ s] = |B|/2s ≤ 1/3.

Let B1 = {x ∈ {0, 1}s | T (x) = 1, |N(1 | x) − ps| > 2
√
s} and B2 = {x ∈ {0, 1}s | T (x) =

1, |N(1 | x) − ps| ≤ 2
√
s}. Then we have Pr [τ(T, p) ≤ s] =

∑
x∈B p

N(1|x)(1 − p)N(0|x) =∑
x∈B1

pN(1|x)(1−p)N(0|x) +
∑
x∈B2

pN(1|x)(1−p)N(0|x). We bound the two terms separately.
By using Hoeffding’s inequality, we have

∑
x∈B1

pN(1|x)(1− p)N(0|x) ≤ 2 exp
(
−2
(

2
√
s

s

)2

· s

)
= 2
e8 < 0.1.
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Also, we have∑
x∈B2

pN(1|x)(1− p)N(0|x) ≤
∑
x∈B2

pps−2
√
s(1− p)(1−p)s+2

√
s

≤
∑
x∈B

(p(1− p))ps · (1− p)(1−2p)s ·
(

1− p
p

)2
√
s

≤ 2s

3 ·
(

1
4

)ps
· (1− p)(1−2p)s ·

(
1 + 1− 2p

p

)2
√
s

= 1
3 · (1 + (1− 2p))(1−2p)s ·

(
1 + 1− 2p

p

)2
√
s

≤ 1
3 · exp

(
(1− 2p)2s+ 8 · (1− 2p)

√
s
)

(7)

≤ 1
3 · exp

(
4

10000 + 16
100

)
= e0.1604

3 < 0.4.

Here, (7) holds since 1 + x ≤ ex for any x ≥ 0 and 1/4 < p < 1/2.
Therefore, we obtain

Pr
[
τ(T, p) ≤ 1

10000 · |p− 1/2|2

]
< 0.1 + 0.4 = 1

2 . J

Now we are ready to prove Theorem 1. Recall that q = 1/2.

Proof of Theorem 1. To obtain a contradiction, suppose that a proper stopping rule T

satisfies Condition (1) for some ε0, i.e., Pr
[
τ(T, p) ≤

log log 1
|p−1/2|

16|p−1/2|2

]
≥ 2

3 holds for any p such

that 0 < |p − 1/2| < ε0. By Lemma 9, we have Pr
[
τ(T, p) > 1

10000·|p−1/2|2

]
≥ 1

2 holds for
any p such that 1/4 < p < 1/2. Hence, we have

Pr
[

1
10000 · |p− 1/2|2 < τ(T, p) ≤

log log 1
|p−1/2|

16|p− 1/2|2

]
≥ 2

3 + 1
2 − 1 = 1

6

for any p such that 1/2−min{ε0, 1/4} < p < 1/2.
Let p(k) = 1/2−1/Mk2 where k is a natural number andM is a real number that satisfies

M > max{ee32
, 1/ε0}. Since 0 < 1/2 − p(k) < 1/M < min{ε0, 1/ee

32} ≤ min{ε0, 1/4} for
any k ≥ 1, we have

Pr
[
M2k2

10000 < τ(T, p(k)) ≤ M2k2

16 log logMk2

]
≥ 1

6 .

Let Uk be the interval
(
M2k2

10000 ,
M2k2

16 log logMk2
]
. Then Ui ∩ Uj = ∅ holds, for any distinct

natural numbers i, j, because we have

M2(k+1)2

10000 = M2k2+4k+2

10000 = M2

10000 ·M
2k2
·M4k >

M2k2

16 log logMk2
.

Here, we use the facts that M2/10000 > 1/16 and M4k > log logMk2 . The former fact holds
by M > ee

32
> 25 =

√
10000/16. The later fact holds since M4k = M3k ·Mk > 2Mk >

M +Mk > log logM + log k2 = log logMk2 by M > ee
32
> 2.
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In what follows, we produce a contradiction by evaluating the probability

P (`) = Pr
[
τ(T, q) ≤ M2`2

16 log logM `2

]

for a sufficiently large integer `. As the intervals Ui are disjoint, we have

P (`) ≥ Pr
[
τ(T, q) ∈

⋃̀
k=1

Uk

]
=
∑̀
k=1

Pr [τ(T, q) ∈ Uk] .

Applying Lemma 8 with p = 1/2 − 1/Mk2 , s = M2k2

16 log logMk2 , t = M2k2

10000 , and α = 1/6,
we have

Pr [τ(T, q) ∈ Uk] ≥ 5
36 ·

(
1
e

)4· 1
M2k2 ·M

2k2

16 log logMk2
+4· 1

Mk2

√
M2k2

16 (log logMk2 ) log 6

≥ 5
36 ·

(
1
e

) 1
4 log logMk2

+
√

2 log logMk2

.

Since 1
4 log log x ≥

√
2 log log x holds for log log x ≥ 32 (i.e., x ≥ ee32), we have

1
4 log logMk2

+
√

2 log logMk2 ≤ 1
2 log logMk2

.

Hence, we obtain

P (`) ≥
`∑

k=1

5
36 ·

(1
e

) 1
4 log logMk2

+
√

log logMk2

≥
`∑

k=1

5
36 ·

(1
e

) 1
2 log logMk2

=
`∑

k=1

5
36 ·

(
1

logMk2

)1/2

= 5
36
√

logM

`∑
k=1

1
k
≥ 5

36
√

logM

∫ `+1

1

dx

x
= 5 log(`+ 1)

36
√

logM
.

By choosing ` = bMc, we get P (bMc) ≥ 5 logM
36
√

logM
= 5

36
√

logM > 5
36

√
log ee32 > 1, which

is a contradiction. J

4 Upper bounds

In this section, we give stopping rules for testing identity with small sample complexity.

4.1 The case when q is explicit but p is unknown
In this subsection, we first provide a framework to obtain stopping rules from algorithms for
robust identity testing and then prove Theorem 2.

We state a lemma to improve the success probability of a test by repeatedly running the
test and taking a majority vote.

I Lemma 10. Suppose that we have an algorithm for a decision problem with success
probability at least 2/3. Then, by running the algorithm d18 log(3k)e times and taking the
majority, the success probability increases to at least 1− 1

9k2 .
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Algorithm 1: Stopping rule T q induced by T q,ε

input : x1 · · ·xt ∈ [n]∗, distributions q over [n] output: 0 or 1
1 Let s0 = 0;
2 for k = 1, 2, . . . do
3 Let εk = 1/2k and sk = sk−1 + f(q, εk) · d18 log(3k)e;
4 if sk > t then return 0;
5 else if T q,εk (xsk−1+1 · · ·xsk

) = 1 then return 1;

Suppose that we have an algorithm, for a given q, with sample complexity f(q, ε) that
distinguishes between the cases
(a) d1(p, q) ≥ ε and
(b) d2(p, q) ≤ ε/2,
with probability at least 2/3, where d1 and d2 are distance measures that depend on the
application. Then, by Lemma 10, we can obtain a stopping rule T q,ε such that

Pr
[
τ(T q,ε, p) ≤ f(q, ε) · d18 log(3k)e

]
≥ 1− 1

9k2 if d1(p, q) ≥ ε, and

Pr
[
τ(T q,ε, p) ≤ f(q, ε) · d18 log(3k)e

]
≤ 1

9k2 if d2(p, q) ≤ ε/2.

We then formulate a stopping rule T q for identity testing as follows. The tester guesses ε
and then tests identity of p, q by using T q,ε. If T q,ε does not stop with f(q, ε) · d18 log(3k)e
samples, it reduces ε to half and continue the procedure recursively. The stopping rule T q is
summarized as Algorithm 1.

We show that T q is the desired stopping rule.

I Lemma 11. If p 6= q, the stopping time τ(T q, p) for T q in Algorithm 1 satisfies Pr[sa ≤
τ(T q, p) ≤ sb] ≥ 2/3, where a = blog2

1
2d2(p,q)c, b = dlog2

1
d1(p,q)e, and s` =

∑`
k=1 f(q, εk) ·

d18 log(3k)e.

Proof. Since d1(p, q) ≥ 1/2b = εb by b = dlog2
1

d1(p,q)e, the stopping time is larger than sb
with probability at most

Pr [τ(T q, p) > sb] = Pr [τ(T q, p) ≥ sb] · Pr [τ(T q, p) 6= sb | τ(T q, p) ≥ sb]
= Pr [τ(T q, p) ≥ sb] · (1− Pr [τ(T q, p) = sb | τ(T q, p) ≥ sb])
≤ 1− Pr [τ(T q, p) = sb | τ(T q, p) ≥ sb]

= 1− Pr
[
τ(T q,εb , p) ≤ f(q, εb) · d18 log(3b)e

]
≤ 1

9 ·
1
b2 ≤

1
9 .

On the other hand, since d2(p, q) ≤ 1
2 ·

1
2a ≤ εk/2 for any 1 ≤ k ≤ a by a = blog2

1
2d2(p,q)c,

the stopping time is smaller than sa with probability at most

Pr [τ(T q, p) < sa] =
a−1∑
k=1

Pr [τ(T q, p) = sk] ≤
a−1∑
k=1

Pr [τ(T q, p) = sk | τ(T q, p) ≥ sk]

=
a−1∑
k=1

Pr
[
τ(T q,εk , p) ≤ f(q, εk) · d18 log(3k)e

]
≤
a−1∑
k=1

1
9 ·

1
k2 <

∞∑
k=1

1
9 ·

1
k2 = 1

9 ·
π2

6 <
2
9 .
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Hence, the stopping time of T q satisfies

Pr[sa ≤ τ(T q, p) ≤ sb] = 1− Pr[τ(T q, p) > sb]− Pr[τ(T q, p) < sa] ≥ 1− 1
9 −

2
9 = 2

3 ,

which completes the proof. J

Next, we prove Theorem 2. To provide stopping rules, we use robust identity testing
algorithm in Theorem 5. When T q is the stopping rule induced by the algorithm in Theorem
5, we have d1(p, q) = dtv(p, q), d2(p, q) =

√
χ2(p, q), and f(q, ε) = b cq

√
n

ε2 c for a constant cq,
which depends only on q. Note that maxq cq = O(1). Then, we have

s` =
∑̀
k=1

⌊
cq
√
n · d18 log(3k)e

ε2k

⌋
=
∑̀
k=1

⌊
cq
√
n · 4k · d18 log(3k)e

⌋
= Θ(

√
n · 4` log `).

Here, the last equality holds since

4` log(3`) <
∑̀
k=1

4k log(3k) <
∑̀
k=1

4k log(3`) = 4
3(4` − 1) log(3`) < 4

3 · 4
` log(3`).

By setting a =
⌊

log2
1

2
√
χ2(p,q)

⌋
and b =

⌈
log2

1
dtv(p,q)

⌉
, we have

sa = Θ
( √

n

χ2(p, q) log log 1
χ2(p, q)

)
and sb = Θ

( √
n

dtv(p, q)2 log log 1
dtv(p, q)

)
,

and hence, we obtain Theorem 2.

4.2 The case when p and q are both unknown
We next consider the case when p and q are both unknown. We build a similar framework
for the case and then provide a stopping rule for Theorem 3.

Suppose that we have an algorithm with sample complexity g(ε) that distinguishes
between the cases
(a) d1(p, q) ≥ ε and
(b) d2(p, q) ≤ ε/2,
with probability at least 2/3. Then, by Lemma 10, we can obtain a stopping rule T ε such
that

Pr
[
τ(T q,ε, p) ≤ g(ε) · d18 log(3k)e

]
≥ 1− 1

9k2 if d1(p, q) ≥ ε, and

Pr
[
τ(T q,ε, p) ≤ g(ε) · d18 log(3k)e

]
≤ 1

9k2 if d2(p, q) ≤ ε/2.

Our framework is almost the same as Algorithm 1. The stopping rule T induced by T ε is
shown as Algorithm 2.

Then we can prove the following lemma in the same way as the proof of Lemma 11.

I Lemma 12. If p 6= q, the stopping time τ(T, p, q) for T in Algorithm 2 satisfies

Pr[sa ≤ τ(T, p, q) ≤ sb] ≥ 2/3

where a =
⌊
log2

1
2d2(p,q)

⌋
, b =

⌈
log2

1
d1(p,q)

⌉
, and s` =

∑`
k=1 f(q, εk) · d18 log(3k)e.
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Algorithm 2: Stopping rule T induced by T ε

input : x1 · · ·xt ∈ [n]∗ and y1 · · · yt ∈ [n]∗ output: 0 or 1
1 Let s0 = 0;
2 for k = 1, 2, . . . do
3 Let εk = 1/2k and sk = sk−1 + g(εk) · d18 log(3k)e;
4 if sk > t then return 0;
5 else if T εk (xsk−1+1 · · ·xsk

, ysk−1+1 · · · ysk
) = 1 then return 1;

When T q is the stopping rule induced by the algorithm in Theorem 6, we have d1(p, q) =
d2(p, q) = dtv(p, q) and g(ε) = b cn

ε2 lognc for a constant c. Then, we have

s` =
∑̀
k=1

⌊
cn · d18 log(3b)e

ε2k logn

⌋
=
∑̀
k=1

⌊
cn · 4k · d18 log(3b)e

logn

⌋
= Θ

(
n · 4` log l

logn

)
.

By setting a =
⌊
log2

1
2dtv(p,q)

⌋
and b =

⌈
log2

1
dtv(p,q)

⌉
, we have

sa = Θ
(
n/ logn
dtv(p, q)2 log log 1

dtv(p, q)

)
and sb = Θ

(
n/ logn
dtv(p, q)2 log log 1

dtv(p, q)

)
.

Hence, we obtain Theorem 3.
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