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ABSTRACT
There have been two main lines of work on estimating Ising mod-

els: (1) estimating them from multiple independent samples under

minimal assumptions about the model’s interaction matrix ; and (2)

estimating them from one sample in restrictive settings. We propose

a unified framework that smoothly interpolates between these two

settings, enabling significantly richer estimation guarantees from

one, a few, or many samples.

Our main theorem provides guarantees for one-sample estima-

tion, quantifying the estimation error in terms of the metric entropy

of a family of interaction matrices. As corollaries of our main the-

orem, we derive bounds when the model’s interaction matrix is

a (sparse) linear combination of known matrices, or it belongs to

a finite set, or to a high-dimensional manifold. In fact, our main

result handles multiple independent samples by viewing them as

one sample from a larger model, and can be used to derive esti-

mation bounds that are qualitatively similar to those obtained in

the afore-described multiple-sample literature. Our technical ap-

proach benefits from sparsifying a model’s interaction network,

conditioning on subsets of variables that make the dependencies

in the resulting conditional distribution sufficiently weak. We use

this sparsification technique to prove strong concentration and

anti-concentration results for the Ising model, which we believe

have applications beyond the scope of this paper.

CCS CONCEPTS
• Theory of computation → Sample complexity and gener-
alization bounds;Models of learning; •Mathematics of com-
puting →Markov networks.

KEYWORDS
Ising Model, Pseudo-Likelihood, Concentration Inequalities, Low

Temperature, Single-Sample Estimation, Dependent Data
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1 INTRODUCTION
Markov Random Fields (MRFs) are a popular framework for rep-

resenting high-dimensional distributions with conditional inde-

pendence structure, represented via an undirected graph [39, 55].

The explicit representation of conditional independences allows

for a more succinct representation of a distribution, decreasing

the computational requirements to do inference. A special case of

MRFs studied in this paper is the celebrated Ising model [34], which
samples a binary vector, 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ {±1}𝑛 , according to a

measure of the following form:

Pr

𝐽 ∗
[𝑥] = exp

(
𝑥⊤ 𝐽 ∗𝑥/2 − 𝐹 (𝐽 ∗) − 𝑛 log 2

)
, (1)

where 𝐽 ∗ is an 𝑛 × 𝑛 symmetric matrix with zero diagonal and

𝐹 (𝐽 ∗) = log

(
2
−𝑛 ∑

𝑥 exp(𝑥⊤ 𝐽 ∗𝑥/2)
)
is the so-called log-partition

function. Notice that the term 𝐽 ∗
𝑖 𝑗
𝑥𝑖𝑥 𝑗 in the exponent of the density

encourages 𝑥𝑖 and 𝑥 𝑗 to have equal or opposite signs depending

on the sign and magnitude of 𝐽 ∗
𝑖 𝑗
, but this “local encouragement”

can be overwritten by indirect interactions arising through paths

between 𝑖 and 𝑗 in the undirected graph defined by the non-zero

entries of 𝐽 ∗. Whenever 𝑖 and 𝑗 are disconnected in this graph, 𝑥𝑖
and 𝑥 𝑗 are independent.

Since its introduction, the Ising model has found profound ap-

plications in a range of disciplines, including Statistical Physics,

Computer Vision, Computational Biology, and the Social Sciences;

see e.g. [13, 20, 22, 25, 26, 28]. These applications have motivated a

long line of research aiming at estimating Ising models using sam-

ples. Some exciting progress on this front has appeared in recent

years, including [11, 33, 35, 48, 50, 54, 57]. Importantly, most prior

work assumes access tomultiple independent samples, targeting esti-
mating the interaction matrix 𝐽 ∗ of a model under some conditions

on 𝐽 ∗. Instead our focus in this work is to estimate Ising models

from a single sample, which as we will shortly explain is a more
general problem:
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Single-Sample Ising Model Estimation: Given a family of

interaction matrices J ⊆ R𝑛×𝑛 and one sample 𝑋 from (1),

where 𝐽 ∗ ∈ J , compute an estimate 𝐽 (𝑋 ) to minimize ∥ 𝐽 (𝑋 ) −
𝐽 ∗∥𝐹 .

Notice that estimating Ising models from one sample generalizes

estimating them from multiple samples. This is because ℓ indepen-

dent samples from an 𝑛-node Ising model with interaction matrix

𝐽 ∗ can be viewed as one sample from an Ising model with 𝑛ℓ nodes,

which belong to ℓ disconnected subnetworks that each have inter-

action matrix 𝐽 ∗.
Moreover, single-sample estimation is motivated by many appli-

cations where we may realistically only collect a single independent

sample from a distribution. E.g., in applications of the Ising model

in social network analysis, a sample from the model represents

some binary behavior of the nodes in a social network, such as

using an Android phone or an iPhone, voting for Democrats or

Republicans, etc. In such applications, if we take a snapshot of

the nodes’ behaviors tomorrow, chances are that very little would

change compared to their behavior today, and we certainly would

not collect an independent sample. More broadly, lack of access to

independent samples is ubiquitous in financial, meteorological, and

geographical data, as well as social-network data [10, 43], where

it has been studied in topics as diverse as criminal activity [31],

welfare participation [6], school achievement [49], retirement plan

participation [24], and obesity [17, 53]. Moreover, it has motivated

a growing literature on single-sample statistical estimation, includ-

ing [5, 7, 9, 12, 14, 15, 18, 21, 27, 30, 36–38, 41, 42, 44–47, 58].

Of course, one sample from (1) only carries 𝑛 bits, while the ma-

trix 𝐽 ∗ to be estimated hasΩ(𝑛2) real entries. Thus, one cannot hope
to estimate 𝐽 ∗ well from one sample without placing constraints

on 𝐽 ∗. Said differently, the error in estimating 𝐽 ∗ from one sample

should depend on how complex 𝐽 ∗ might be. This is the role played

by J in the definition of our estimation problem. Our main result,

presented shortly as Theorem 1, is that there exists an estimator

whose error depends on the metric entropy of J . Instantiating J
in different ways, we obtain strong estimation guarantees when:

(i) J is finite; (ii) it contains linear combinations of known matri-

ces; (iii) it contains sparse linear combinations of known matrices;

and (iv) it is a high-dimensional manifold. These are respectively

Corollaries 1, 2, 3, and 4.

Prior to our work, the single-sample Ising model estimation

literature had only studied quite restrictive special cases of our

problem, namely the case 𝐽 ∗ = 𝛽 𝐽 , where 𝐽 is a known matrix, and

𝛽 is an unknown scalar strength parameter [9, 14], or slightly more

general cases studied by follow-upwork [9, 21, 30]. Restricted to this

special case, our bounds provide quantitative improvements in the

estimation error, as discussed in Section 2.4. However, our general

theorem, as well as its corollaries in Settings (i)–(iv) discussed in

the previous paragraph, provide vast extensions. E.g. (ii) and (iii)

capture settings wherein we might know various social networks

that individuals belong to (Facebook, LinkedIn, etc.) and expect

that these all contribute to their behavior at different strengths.

Setting (iv) captures settings of interest to Spatial Econometrics [2–

4, 40] wherein we might be able to postulate a functional form for

the interaction matrix and might be interested in estimating its

parameters.

On the other hand, multiple-sample Ising model estimation is

a widely studied problem with a long literature, going back to at

least [16]. Yet, an efficient algorithm that learns Ising models on

general (bounded-degree) graphs was only recently given in break-

through work by [11], which has incited a renaissance of work on

this topic [33, 35, 54, 57]. Since single-sample estimation generalizes

multiple-sample estimation, as we have already discussed, our re-

sults for single-sample estimation allow us to obtain reconstruction

guarantees for the following problem for any value of ℓ :

ℓ-Sample Ising Model Estimation: Given a family of interac-

tion matrices J ⊆ R𝑛×𝑛 and ℓ independent samples from (1),

where 𝐽 ∗ ∈ J , compute an estimate 𝐽 to minimize ∥ 𝐽 − 𝐽 ∗∥𝐹 .

Corollary 5 of Theorem 1 quantifies that access to multiple samples

typically decreases the reconstruction error by a factor of Ω̃(
√
ℓ).

As such, we get reconstruction guarantees which smoothly inter-

polate between the single-sample estimation setting considered

by [9, 14, 21, 30] and the more common 𝜔 (1)-sample estimation

setting considered by [11, 33, 35, 54, 57]. Interestingly, instantiat-

ing our result to the latter setting we obtain guarantees which are

competitive to that work, as shown in Corollary 6 and the middle

row of Table 1. Our sample complexity is typically higher, yet we

derive it as a corollary of our main theorem which does not uti-

lize independence between the samples. This further enables us

to obtain similar bounds given two or more dependent samples as

demonstrated by Corollary 7. See Table 1 for a summary of our

results together with a comparison to prior work on estimation

from a single and multiple samples.

Roadmap. In Section 2 we provide the statements of all of our

results and briefly discuss their implications. In Section 3 we pro-

vide a sketch of the proof of our main result, namely Theorem 1,

highlighting the challenges found in its proof and the innovations

needed to overcome them. Finally, in Section 4 we review the most

relevant results from the literature. We defer the complete details

of the proof to the arXiv version of our paper[19].

2 OUR RESULTS
2.1 A General Upper Bound
In this section, we present a general upper bound that is a function

of the covering numbers of the set J , which represents the smallest

number of elements from J that can approximate all elements of

set J . We begin with a definition.

Definition 1. Given a normed space (X, ∥ · ∥), a set V ⊆ X and
𝜖 > 0, we say that a set N ⊆ V is an 𝜖-cover of V if for any 𝑣 ∈ V
there exists 𝑢 ∈ N such that ∥𝑢 − 𝑣 ∥ ≤ 𝜖 . The 𝜖-covering number
ofV with respect to the norm ∥ · ∥, denoted by 𝑁 (V, ∥ · ∥, 𝜖), is the
minimum cardinality of an 𝜖-cover.

Our main result is stated below. As is standard in prior work,

we parametrize our error in terms of a bound 𝑀 on the infinity

norm of the interaction matrices, ∥ 𝐽 ∥∞ = max𝑖
∑

𝑗 |𝐽𝑖 𝑗 |, which is

called “width” in [35] and relaxes placing a bound on the maximum
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Table 1: We state the estimation error | |𝐽 − 𝐽 ∗ | |𝐹 obtained by our work and prior work in different settings, ignoring some
logarithmic factors. We present bounds under the standard assumption that ∥ 𝐽 ∗∥∞ is bounded by some constant𝑀 . Under this
assumption, since ∥ 𝐽 ∥𝐹 ≤

√
𝑛∥ 𝐽 ∥∞ ≤ 𝑀

√
𝑛, a rate smaller than𝑀

√
𝑛 is non-trivial ; see Definition 1/Theorem 1.

* In the first row, 𝑓 (J , 𝜖) = log𝑁 (J , ∥ · ∥2, 𝜖) is the metric entropy of family J under ∥ · ∥2.
** In the last row, we consider the setting J = {𝛽 𝐽 : |𝛽 | = 𝑂 (1)}, where 𝐽 is fixed and the estimation error is with respect to the
parameter 𝛽 . Here, 𝐹 (𝐽 ∗) is the log-partition function, defined earlier.

Family J of matrices Single sample ℓ samples

Arbitrary family J *

√
𝑓 (J , 1/𝑛) (Theorem 1)

√
𝑓 (J,1/𝑛ℓ)

ℓ (Corollary 5)

Finite J
√
log |J | (Corollary 1)

√
log |J |/ℓ (Cor 1 & 5)

Linear combination of

𝑘 known matrices

√
𝑘 (Corollary 2)

√
𝑘/ℓ (Cor 2 & 5)

𝑠-sparse linear combination

of 𝑘 known matrices

√
𝑠 log𝑘 (Corollary 3)

√
𝑠 log𝑘/ℓ (Cor 3 & 5)

All matrices

(unconstrained) impossible

𝑛
√
log(𝑛ℓ)/ℓ (Corollary 6)

√
𝑛(log𝑛/ℓ)1/4

[35]

Scalar multiples of

a known matrix **

1/
√
𝐹 (𝐽 ∗) (Corollary 10)

1/
√
𝐹 (𝐽 ∗) (under additional
assumptions) [14]

[9]

1/
√
ℓ𝐹 (𝐽 ∗)

(follows from our

one-sample result)

degree [11, 54]. As shown in prior work [50], our single exponential

dependence on𝑀 is necessary.
1

Theorem 1. Let 𝑀 > 0 and let J ⊆ {𝐽 : ∥ 𝐽 ∥∞ ≤ 𝑀} denote a
collection of interaction matrices. There is an algorithm which, given
a single sample 𝑥 ∼ Pr𝐽 ∗ where 𝐽 ∗ ∈ J , outputs 𝐽 such that with
probability ≥ 1 − 𝛿 :

∥ 𝐽 − 𝐽 ∗∥𝐹 ≤

𝐶 (𝑀)
√
log𝑁 (J , ∥ · ∥2, 1/𝑛) + log(1/𝛿) + log log𝑛,

where𝐶 (𝑀) is an (single) exponential function of𝑀 and ∥ · ∥2 denotes
the spectral norm on matrices. Moreover, 𝐽 is the minimizer over J of
a convex function on the space of matrices, R𝑛×𝑛 . It can be computed
in polynomial time if J is convex and projection onto J is efficiently
computable.

Theorem 1 guarantees that we can find a matrix 𝐽 that is close

to the true interaction matrix 𝐽 ∗ in Frobenius norm. In this general

formulation, the error depends on the covering numbers of the set

J . In many interesting scenarios, the 𝜖-cover of J will have size

of the order of (1/𝜖)𝑘 , where 𝑘 is a notion of dimension that is

specific to each case. By applying Theorem 1, we obtain an error of

the order of

√
𝑘 log𝑛 for constant𝑀 . If 𝑘 is significantly less than

𝑛, this is a non-trivial bound, since both matrices 𝐽 , 𝐽 ∗ can have a

Frobenius norm as high as Ω(
√
𝑛). We present examples where this

is the case in the next section.

1
While [50] provide a lower bound for multiple-sample estimation, their lower bound

applies to our case as well because as we have explained single-sample estimation is

more general than multiple-sample.

Remark 1 (Tightness of the bound). It is reasonable to expect that
Theorem 1 is not completely tight. Tight upper bounds based on cov-
ering numbers are usually proved via the technique of chaining. How-
ever, technical difficulties arise once one tries to apply it in our scenario.
Still, in all examples presented in the next section, this technique could
remove only logarithmic factors, as our near-tight lower bounds pro-
vided in Section 2.3 establish.

2.2 Applications of the Upper Bound
To showcase the power of Theorem 1, we now apply it to some

concrete families J . The families we consider capture both single-

sample and multiple-sample Ising model estimation problems, in

Sections 2.2.1 and 2.2.2 respectively. In all cases, we parametrize our

bounds in terms of a bound𝑀 on the infinity norm of the matrices

in J and a function𝐶 (𝑀) of which appears in our estimation error,

as in Theorem 1.

2.2.1 Estimation from a Single Sample. The simplest case is when

J is finite. Then, 𝑁 (J , ∥ · ∥2, 𝜖) ≤ |J | for all 𝜖 ≥ 0 and we have:

Corollary 1. If J is finite and all its elements 𝐽 satisfy ∥ 𝐽 ∥∞ ≤ 𝑀 ,
our estimator satisfies

∥ 𝐽 − 𝐽 ∗∥𝐹 ≤ 𝐶 (𝑀)
√
log |J | + log(1/𝛿) + log log𝑛,

with probability ≥ 1 − 𝛿 . Moreover, 𝐽 can be computed in time
poly( |J |, 𝑛) (i.e. polynomial time in |J | and 𝑛).

Next, we consider settings where 𝐽 ∗ is a linear combination of 𝑘

known matrices, with unknown coefficients.

Corollary 2. Let 𝐽1, . . . , 𝐽𝑘 be fixed matrices and let J = {𝐽 =∑𝑘
𝑖=1 𝛽𝑖 𝐽𝑖 : ∥ 𝐽 ∥∞ ≤ 𝑀, ®𝛽 ∈ R𝑘 }. Then, our estimator 𝐽 satisfies ∥ 𝐽 −

𝐽 ∗∥𝐹 ≤ 𝐶 (𝑀)
√
𝑘 log𝑛 + log(1/𝛿), with probability ≥ 1 − 𝛿 , and 𝐽

can be computed in time poly(𝑛, 𝑘).
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This can be extended to when 𝐽 ∗ is a 𝑠-sparse linear combination

of 𝑘 known matrices, which enables us to obtain a bound with only

a logarithmic dependence on 𝑘 . For any ®𝛽 ∈ R𝑘 denote by ∥ ®𝛽 ∥0 the
number of nonzero coordinates of

®𝛽 . The result is given below.

Corollary 3. Let 𝐽1, . . . , 𝐽𝑘 be fixed matrices, 𝑠 > 0, and let J =

{𝐽 = ∑𝑘
𝑖=1 𝛽𝑖 𝐽𝑖 : ∥ 𝐽 ∥∞ ≤ 𝑀, ∥ ®𝛽 ∥0 ≤ 𝑠}. Then, our estimator 𝐽 satis-

fies
∥ 𝐽 − 𝐽 ∗∥𝐹 ≤ 𝐶 (𝑀)

√
𝑠 (log𝑛 + log𝑘) + log(1/𝛿),

with probability ≥ 1−𝛿 , and 𝐽 can be computed in time poly(𝑛, 𝑠) ·
(𝑘
𝑠

)
.

While Corollary 2 considers linear combinations of 𝑘 known ma-

trices, one can also consider non-linear settings, where, in general,

the matrices lie in a 𝑘-dimensional manifold. We consider manifolds

that are images of Lipschitz functions from convex subsets of R𝑘

to the set of matrices. For this class, the following bound can be

derived :

Corollary 4. Let ℎ( ®𝛽) be a function from [−1, 1]𝑘 to the set of 𝑛×𝑛

matrices, that satisfies ∥ℎ( ®𝛽) − ℎ( ®𝛽 ′)∥2 ≤ 𝐿∥ ®𝛽 − ®𝛽 ′∥∞ for some
𝐿 > 0. Define J = {𝐽 = ℎ( ®𝛽) : ®𝛽 ∈ [−1, 1]𝑘 , ∥ 𝐽 ∥∞ ≤ 𝑀}. Then our
estimator 𝐽 satisfies

∥ 𝐽 − 𝐽 ∗∥𝐹 ≤ 𝐶 (𝑀)
√
𝑘 (log𝑛 + log𝐿) + log(1/𝛿),

with probability ≥ 1 − 𝛿 .

2.2.2 Estimation from Several Samples. When we are given access

to several independent or dependent samples, we can utilize them

to obtain stronger guarantees. This is done via a reduction to the

single-sample setting. As a first example, assume that ℓ independent

samples from an 𝑛-dimensional Ising model are obtained. Notice

that these can be viewed as a single sample from an 𝑛ℓ dimen-

sional model. Thus, an application of Theorem 1 results in a gain

of approximately

√
ℓ in the rate.

Corollary 5. Let 𝑀 > 0 and let J ⊆ {𝐽 : ∥ 𝐽 ∥∞ ≤ 𝑀} denote a
collection of interaction matrices. Assume that ℓ independent samples
are obtained from Pr𝐽 ∗ where 𝐽 ∗ ∈ J . There is an estimator 𝐽 such
that, with probability ≥ 1 − 𝛿 ,

∥ 𝐽 − 𝐽 ∗∥𝐹 ≤

𝐶 (𝑀)
√

log𝑁 (J , ∥ · ∥2, 1/(𝑛ℓ)) + log(1/𝛿) + log log𝑛

ℓ
,

where the same comments for𝐶 (𝑀) and the complexity of computing
𝐽 made in Theorem 1 apply.

Notice that Corollary 5 is phrased in terms of a general set J .

In particular, it can be applied to learn Ising models from multiple

samples in the same setting studied by [35], where they learn 𝐽 ∗

while only assuming that ∥ 𝐽 ∗∥∞ ≤ 𝑀 . Utilizing the fact that the

space of interaction matrices is an𝑂 (𝑛2)-dimensional vector space,

one obtains (similarly to Corollary 2):

Corollary 6. Let J = {𝐽 : ∥ 𝐽 ∥∞ ≤ 𝑀} and assume that ℓ indepen-
dent samples from Pr𝐽 ∗ where 𝐽 ∗ ∈ Jare obtained. Then, there is a
polynomial time algorithm that finds 𝐽 ∈ J such that, w.p. ≥ 1 − 𝛿 ,

∥ 𝐽 − 𝐽 ∗∥𝐹 ≤ 𝐶 (𝑀)
(√

𝑛2 log(𝑛ℓ) + log(1/𝛿)
ℓ

)
.

This provides a new polynomial-time algorithm for this problem.

Compared to bound, [35] achieved an error of

√
𝑛(log𝑛/ℓ)1/4, as

also stated in Table 1.

Interestingly, as we discuss next, our results can be extended to

settings where the samples are not independent.

Beyond Independent Samples. In many applications the learning

task involves either a few or many dependent samples. For the

sake of presentation, we assume time-series dependencies although

other dependencies of a more complex structure can be studied in

a similar fashion. Given an interaction matrix 𝐽0 that controls the

dependencies within each sample and 𝐽1 that controls dependen-

cies between consecutive samples, we define the following joint

distribution over samples 𝑥1, . . . , 𝑥 ℓ ∈ {−1, 1}𝑛 :

Pr

𝐽0,𝐽1,ℓ

[
𝑥1 · · · 𝑥 ℓ

]
∝

ℓ∏
𝑡=1

exp

(
−(𝑥𝑡 )⊤ 𝐽0𝑥𝑡/2

) ℓ−1∏
𝑡=1

exp

(
−(𝑥𝑡 )⊤ 𝐽1𝑥𝑡+1/2

)
.

The following statement bounds the learning error, that can be

meaningful even for ℓ = 2:

Corollary 7. Let ℓ ≥ 2, let J0 and J1 be collections of interac-
tion matrices of infinity norm bounded by𝑀 , and let (𝑥1, . . . , 𝑥 ℓ ) ∼
Pr𝐽 ∗

0
,𝐽 ∗
1
,ℓ for some 𝐽 ∗

0
∈ J0 and 𝐽 ∗

1
∈ J1. Then, there exists an estima-

tor (𝐽0, 𝐽1) such that, w.p. ≥ 1 − 𝛿 , both ∥ 𝐽 ∗
0
− 𝐽0∥𝐹 and ∥ 𝐽 ∗

1
− 𝐽1∥𝐹

are bounded by

𝐶 (𝑀)
√
ℓ

√
C0 + C1 + log log𝑛 + log(1/𝛿),

where

C0 := log𝑁

(
J0, ∥ · ∥2,

1

𝑛ℓ

)
C1 := log𝑁

(
J1, ∥ · ∥2,

1

𝑛ℓ

)
.

2.3 Lower Bounds
We first present a general lower bound based on the metric entropy

of J and then we show that our lower bound is strong enough to

provide nearly tight results for the cases of linear subspaces and

finite sets. The following can be shown.

Theorem 2. Let 𝑟 > 0 and suppose there exists some 𝑅, 𝛼 > 0 and
a family J of interaction matrices such that: (1) for all 𝐽 ∈ J the
infinity norm of 𝐽 is bounded by 1 − 𝛼 and the diameter2 of J is
bounded by 𝑅; and (2) it holds that

log𝑁 (J , ∥ · ∥𝐹 , 2𝑟 )
2

≥ 𝐶 (𝛼)𝑅2 + log 2,

where 𝐶 (𝛼) is a specific constant determined in the proof. Then, any
estimator 𝐽 (𝑥) based on a single sample attains a minimax error of
max𝐽 ∗∈J E𝑥∼𝑃 𝐽 ∗ [∥ 𝐽 (𝑥) − 𝐽 ∗∥𝐹 ] ≥ 𝑟/2.

Using Theorem 2, one can derive a nearly-tight lower bound on

the estimation error for linear combinations of 𝑘 known matrices

𝐽1, . . . , 𝐽𝑘 :

2
A set K has diameter at most 𝑅 if for any𝐴, 𝐵 ∈ K we have ∥𝐴 − 𝐵 ∥𝐹 ≤ 𝑅.
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Corollary 8. Let 𝑘 ∈ N, let 𝐽1, . . . , 𝐽𝑘 be interaction matrices with
disjoint supports3 such that ∥ 𝐽𝑖 ∥∞ ≤ 1 and ∥ 𝐽𝑖 ∥𝐹 ≥ 𝑘 for all 𝑖 . Define
J = {𝐽 =

∑
𝑖 𝛼𝑖 𝐽𝑖 : 𝛼𝑖 ∈ R, ∥ 𝐽 ∥∞ ≤ 1}. Then, any one-sample esti-

mator 𝐽 (𝑥) has a minimax error of sup𝐽 ∗∈J E𝑥∼Pr𝐽 ∗
[
∥ 𝐽 − 𝐽 ∗∥𝐹

]
≥

𝑐
√
𝑘.

In the proof of Corollary 8, one constructs a lower bound for

a family of size exp(𝑂 (𝑘)). Hence, we derive the following tight

lower bound of Ω(
√
log |J |) on estimation from finite families of

distributions:

Corollary 9. Let 𝑚 > 0. There exists a family J of cardinality
|J | =𝑚 that satisfies sup𝐽 ∈J ∥ 𝐽 ∥∞ ≤ 1/2, such that the minimax
error satisfies max𝐽 ∗∈J E𝑥∼𝑃 𝐽 ∗ [∥ 𝐽 (𝑥) − 𝐽 ∗∥𝐹 ] ≥ 𝑐

√
log𝑚 (where

𝑐 > 0 is a universal constant).

2.4 Improved Bounds for Estimating a Single
Parameter

We further present an application of our results to the single-sample

setting studied in prior work [9, 14], namely estimating a single

parameter 𝛽 . The proof of the following statement follows from the

main lemmas in the proof of Theorem 1.

Corollary 10. Let𝑀 > 0, let 𝐽0 be a fixed matrix with ∥ 𝐽0∥∞ ≤ 1

and let 𝛽∗ be some unknown parameter satisfying |𝛽∗ | ≤ 𝑀 . Then,
there exists an estimator ˆ𝛽 from a single sample 𝑥 ∼ Pr𝛽∗ 𝐽0 such that
w.p. ≥ 1 − 𝛿 ,

| ˆ𝛽 − 𝛽∗ | ≤ 𝐶 (𝑀)𝐹 (𝛽∗ 𝐽0)−1/2 (log log𝑛 + log(1/𝛿)) ,
where 𝐹 (·) is defined as in (1).

Notice that the bound is inversely proportional to the square

root of the partition function 𝐹 (𝐽 ∗), which captures the strength

of dependencies between the nodes and this bound is generally

stronger than the one obtained using the Frobenius norm. Corol-

lary 10 improves over prior work that required further assumptions

to hold and obtained no guarantees at the vicinity of some phase

transitions (see Section 4 for a comparison).

3 OVERVIEW OF TECHNIQUES
We start by presenting the main techniques used in this paper in

Section 3.1 and proceed with a proof sketch in Section 3.2.

3.1 Key Technical Insights and Vignettes
From Low-Temperature to High-Temperature (Dobrushin). While

nodes of the Ising model can be complexly dependent, when the cor-

relations are sufficiently weak, the model shares important similari-

ties to product measures. A well-studied mathematical formulation

of weak dependencies for general random vectors is Dobrushin’s

uniqueness condition. For Ising models, a sufficient condition im-

plying Dobrushin’s is ∥ 𝐽 ∗∥∞ = 𝛼 < 1, where 𝛼 is a constant; see

e.g. [23, 52].
4
While Dobrushin’s condition implies multiple desir-

able properties (see e.g. [13, 56]), wewill specifically use the fact that

3
The support of a matrix 𝐽 is defined as the set of its non-zero elements.

4
Dobrushin’s condition is slightly more general and defined in terms of a bound on

the total influence exercised to any one node by the other nodes. However, as is often

done in the literature, we use the slightly stronger but easier to interpret bound on

∥ 𝐽 ∗ ∥∞ .

functions of the Ising model concentrate well under this condition;

see e.g. [1, 13, 20, 29, 32]. Unfortunately, the regimes we are con-

sidering in this paper may lie well outside Dobrushin’s condition,

and the tools available to handle Ising models that do not satisfy

Dobrushin’s condition are significantly weaker and restricted, and

concentration does not hold in general.

In this work, we prove concentration inequalities for Ising mod-

els outside of Dobrushin’s condition via reductions to the Dobrushin

regime: we show that we can condition on a subset of the variables,

such that in the conditional distribution, the unconditioned vari-

ables satisfy Dobrushin. A basic example where we can see such be-

havior is when 𝐽 is the incidence matrix of a bipartite graph, namely,

there exists a set 𝐼 ⊆ [𝑛] such that 𝐽𝑖 𝑗 = 0 whenever either 𝑖, 𝑗 ∈ 𝐼

or 𝑖, 𝑗 ∈ [𝑛] \𝐼 . If we condition on 𝑥−𝐼 := 𝑥 [𝑛]\𝐼 , then {𝑥𝑖 : 𝑖 ∈ 𝐼 } are
conditionally independent and particularly, satisfy Dobrushin. The

following lemma generalizes this intuition. For the purposes of this

lemma, we work with Ising models with external fields. Given an

interaction matrix 𝐽 ∗ and a vector ℎ of external fields, we define the

distribution over 𝑥 ∈ {±1}𝑛 by Pr𝐽 ∗,ℎ (𝑥) ∝ exp(𝑥T 𝐽 ∗𝑥/2 + ℎ𝑇 𝑥).

Informal Lemma 1 (Conditioning Trick). Let 𝑝 𝐽 ∗,ℎ (𝑥) be an Ising
model with interaction matrix 𝐽 ∗ satisfying ∥ 𝐽 ∗∥∞ = 𝑀 and any
external field vector ℎ. Then there exist ℓ = 𝑂 (log𝑛) sets 𝐼1, . . . , 𝐼ℓ ⊆
[𝑛] such that:

(1) Each 𝑖 ∈ [𝑛] appears in exactly ℓ ′ = ⌈ℓ/(16𝑀)⌉ different sets
𝐼 𝑗 .

(2) For all 𝑗 ∈ [ℓ], the conditional distribution of 𝑥𝐼 𝑗 , conditioning
on any setting of 𝑥−𝐼 𝑗 , satisfies Dobrushin’s condition.

We apply this lemma repeatedly in our proof, as it allows us to

tap into the flexibility of dealing with weakly dependent random

variables. As a first application, given a vector 𝑎 ∈ R𝑛 , we obtain
a lower bound on the variance of 𝑎⊤𝑥 . It is well known that if 𝑥

is an 𝑖 .𝑖 .𝑑 . vector of binary random variables, each with variance

𝑣 , then Var(𝑎⊤𝑥) = 𝑣 ∥𝑎∥2
2
. Furthermore, if 𝑥 satisfies Dobrushin’s

condition, then the entries of 𝑥 are nearly independent and we

can also show that Var(𝑎⊤𝑥) ≥ Ω(∥𝑎∥2
2
). We will use Informal

Lemma 1 to show that a similar lower bound holds even beyond

Dobrushin’s condition.

Informal Lemma 2 (Anti-Concentration). Suppose that 𝑥 is sam-
pled from an Ising model whose interaction matrix satisfies ∥ 𝐽 ∗∥∞ =

𝑂 (1) and whose external field vector satisfies ∥ℎ∥∞ = 𝑂 (1). Then,
for all 𝑎 ∈ R𝑛 ,

Var(𝑎⊤𝑥) ≥ Ω(∥𝑎∥2
2
) .

Proof sketch. To prove this lemma, consider the sets 𝐼1, . . . , 𝐼ℓ
from Informal Lemma 1. First, we claim that there exists 𝑗 ∈ [ℓ]
such that ∥𝑎𝐼 𝑗 ∥22 ≥ Ω(∥𝑎∥2

2
). Indeed, by linearity of expectation, if

we draw 𝑗 ∈ [ℓ] uniformly at random then,

E𝑗 [∥𝑎𝐼 𝑗 ∥
2

2
] = E

[
𝑛∑
𝑖=1

1(𝑖 ∈ 𝐼 𝑗 )𝑎2𝑖

]
=

𝑛∑
𝑖=1

ℓ ′

ℓ
𝑎2𝑖 =

ℓ ′

ℓ
∥𝑎∥2

2

≥ Ω(∥𝑎∥2
2
) .

Hence, there exists a set 𝐼 𝑗 that achieves this expectation, namely,

∥𝑎𝐼 𝑗 ∥22 ≥ Ω(∥𝑎∥2
2
). Now using that, conditioning on 𝑥−𝐼 𝑗 , 𝑥𝐼 𝑗 has

a low Dobrushin coefficient, as implied by Informal Lemma 1, we
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can bound Var[𝑎⊤𝑥 | 𝑥−𝐼 𝑗 ] ≥ Ω(∥𝑎𝐼 𝑗 ∥22) as discussed above, us-

ing weak dependence. Since conditioning reduces the variance on

expectation, we conclude that

Var(𝑎⊤𝑥) ≥ E𝑥−𝐼 𝑗 [Var[𝑎
⊤𝑥 |𝑥−𝐼 𝑗 ]] ≥ Ω(∥𝑎𝐼 𝑗 ∥

2

2
) ≥ Ω(∥𝑎∥2

2
).

□

Measure Concentration for Non-Polynomials. There are multiple

recent works studying the concentration of polynomial functions

of the Ising model [1, 20, 29, 32]. Here, we would like to bound

the tails of general functions, in terms of their polynomial Taylor

approximations. By a simple modification to the proof of [1], we

can derive the following:

Theorem 3. Let 𝑓 : {0, 1}𝑛 ↦→ R be an arbitrary function and 𝑋 be
sampled from an Ising model which satisfies Dobrushin’s condition.
Then

Pr[|𝑓 (𝑋 ) − E𝑓 (𝑋 ) | > 𝑡] ≤

exp

(
−𝑐 min

(
𝑡2

𝑈𝑓

,
𝑡

max𝑥 ∥𝐻 𝑓 (𝑥)∥2

))
,

where
𝑈𝑓 := ∥E𝑋𝐷𝑓 (𝑋 )∥2

2
+max

𝑥
∥𝐻 𝑓 (𝑥)∥2𝐹 .

Here 𝐷𝑖 𝑓 (𝑥) = (𝑓 (𝑥𝑖+) − 𝑓 (𝑥𝑖−))/2 is the discrete derivative, where
𝑥𝑖+ and 𝑥𝑖− are obtained from 𝑥 by replacing the value of 𝑥𝑖 with 1

and −1, respectively. The vector of discrete derivatives is denoted by
𝐷𝑓 and 𝐻 𝑓 is the 𝑛 × 𝑛 matrix of second discrete derivatives.

Theorem 3 can be trivially extended to derive bounds based

on higher order Taylor expansion, extending [1, Theorem 2.2] for

multi-linear polynomials.

3.2 Proof Sketch of Our Upper Bound
Using the tools from Section 3.1, we present a sketch of the proof of

our main results. We start by describing the algorithm that is going

to be used. A standard approach is maximum likelihood estimation
(MLE), which outputs the maximizer 𝐽 of the probability of the

given sample 𝑥 , namely, 𝐽 := argmax𝐽 Pr𝐽 [𝑥]. Unfortunately, for
Ising models, the MLE requires computing the partition function

which is computationally hard to approximate [51]. A recourse,

suggested by [14], is to compute the maximum pseudo-likelihood
estimator (MPLE) of [7, 8] instead. One typically minimizes the

negative log pseudo-likelihood,

𝜑 (𝑥 ; 𝐽 ) := −
𝑛∑
𝑖=1

log Pr

𝐽
[𝑥𝑖 | 𝑥−𝑖 ], (2)

where Pr𝐽 [𝑥𝑖 | 𝑥−𝑖 ] is the probability of Pr𝐽 to draw 𝑥𝑖 conditioned

on the remaining entries of 𝑥 , denoted 𝑥−𝑖 . If J is a convex set, then

this is a convex function which can be optimized using appropriate

first-order optimization techniques to find an optimum 𝐽 .

A bound on the error can then be proved by the following steps.

First, we show that for every 𝐽0 ∈ J that is far from 𝐽 ∗ we have

𝜑 (𝑥 ; 𝐽0) ≥ 𝜑 (𝑥 ; 𝐽 ∗) + Ω(1) (3)

with high probability. One can prove this using a Taylor approx-

imation of 𝜑 , while utilizing the first directional derivatives of 𝜑

that we define as

𝜕𝜑 (𝑥 ; 𝐽 )
𝜕𝐴

:= lim

𝑡→0

𝜑 (𝑥 ; 𝐽 +𝐴𝑡) − 𝜑 (𝑥 ; 𝐽 )
𝑡

and the second directed derivatives that we similarly define. Evalu-

ating the Taylor approximation of 𝑡 ↦→ 𝐽 ∗ + 𝑡 (𝐽0 − 𝐽 ∗) at 𝑡 = 1, one

obtains that

𝜑 (𝑥 ; 𝐽0) = 𝜑 (𝑥 ; 𝐽 ∗) + ∥ 𝐽0 − 𝐽 ∗∥𝐹
𝜕𝜑 (𝑥 ; 𝐽 ∗)

𝜕𝐴

+ 1

2

∥ 𝐽0 − 𝐽 ∗∥2𝐹
𝜕2𝜑 (𝑥 ; 𝐽𝑥 )

𝜕2𝐴
(4)

, where 𝐴 =
𝐽0 − 𝐽 ∗

∥ 𝐽0 − 𝐽 ∗∥𝐹
and 𝐽𝑥 is a point in the segment connecting 𝐽0 with 𝐽 ∗. Hence, to
show a large gap between 𝜑 (𝑥 ; 𝐽0), 𝜑 (𝑥 ; 𝐽 ∗) we need a good upper

bound on the absolute value of the first derivative and a good lower

bound on the second derivative.

We now turn to the specific challenges encountered when trying

to prove these bounds. The first derivative takes the form

𝜕𝜑 (𝑥 ; 𝐽 ∗)
𝜕𝐴

=

𝑛∑
𝑖=1

𝜑 ′
𝑖 (𝑥 ; 𝐽

∗),

, where

𝜑 ′
𝑖 (𝑥 ; 𝐽

∗) := − 𝜕

𝜕𝐴
log Pr

𝐽
[𝑥𝑖 | 𝑥−𝑖 ]

��
𝐽 =𝐽 ∗ .

We notice that E[𝜑 ′
𝑖
(𝑥 ; 𝐽 ∗) | 𝑥−𝑖 ] = 0, hence it suffices to show

concentration of the derivative around its mean to obtain a good

upper bound. However, tail bounds on the gradient from prior work

do not lead us to the optimal bound on the derivative in our setting.

Instead, we use Lemma 1 to select a number of subsets 𝐼1, . . . , 𝐼𝑙
of [𝑛], such that conditioned on 𝑥−𝐼 𝑗 , 𝑥𝐼 𝑗 satisfies Dobrushin’s

condition. The lemma also guarantees that each 𝑖 ∈ [𝑛] belongs to
ℓ ′ different subsets 𝐼 𝑗 where ℓ ′ is a constant fraction of ℓ , which

means we can write���� 𝜕𝜑 (𝑥 ; 𝐽 ∗)𝜕𝐴

���� = ����� 𝑛∑
𝑖=1

𝜑 ′
𝑖 (𝑥 ; 𝐽

∗)
����� =

������ 1ℓ ′ ℓ∑
𝑗=1

∑
𝑖∈𝐼 𝑗

𝜑 ′
𝑖 (𝑥 ; 𝐽

∗)

������
≤ ℓ

ℓ ′
max

𝑗

������∑𝑖∈𝐼 𝑗 𝜑 ′
𝑖 (𝑥 ; 𝐽

∗)

������
≤ 𝑂

©­«max

𝑗 ∈[ℓ ]

������∑𝑖∈𝐼 𝑗 𝜑 ′
𝑖 (𝑥 ; 𝐽

∗)

������ª®¬ . (5)

Hence, it suffices to bound each one of the terms that appear in the

maximum. In fact, since each term

∑
𝑖∈𝐼 𝑗 𝜑

′
𝑖
(𝑥 ; 𝐽 ∗) has zero mean

conditioned on 𝑥−𝐼 𝑗 , it suffices to show that it concentrates around

its expectation conditioned on 𝑥−𝐼 𝑗 . Given that conditioning on 𝑥−𝐼 𝑗 ,
𝑥𝐼 𝑗 satisfies Dobrushin’s condition, we can use the concentration

inequality from Informal Theorem 3, to derive that������∑𝑖∈𝐼 𝑗 𝜑 ′
𝑖 (𝑥 ; 𝐽

∗)

������ ≤ 𝑂

(


E [
𝐴𝑥

��� 𝑥−𝐼 𝑗 ]



2

+ ∥𝐴∥𝐹
)
,
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with high probability. Applying (5) and union bounding over 𝑗 ∈ [ℓ],
we deduce that with high probability,���� 𝜕𝜑 (𝑥 ; 𝐽 ∗)𝜕𝐴

���� ≤ 𝑂

(
max

𝑗 ∈[ℓ ]




E [
𝐴𝑥

��� 𝑥−𝐼 𝑗 ]



2

+ ∥𝐴∥𝐹
)
. (6)

We now show a lower bound on 𝜕2𝜑 (𝑥 ; 𝐽𝑥 )/𝜕2𝐴, where 𝐽𝑥 is in

the segment connecting 𝐽 ∗ and 𝐽0. Some simple calculations show

that for every 𝐽 in this segment,

𝜕2𝜑 (𝑥 ; 𝐽 )
𝜕2𝐴

≥ Ω
(
∥𝐴𝑥 ∥2

2

)
. (7)

We then proceed by showing that: (a) the expectation of ∥𝐴𝑥 ∥2
2
is

lower bounded appropriately; and (b) it concentrates around its

expectation. Note that (a) reduces to showing an expectation bound

for a sum of squares of linear functions. This can also be phrased as

a variance bound for linear functions of the Ising model, which is

exactly the type of result that Informal Lemma 2 provides. Using it,

we manage to prove that the expectation of the second derivative

conditioned on 𝑥−𝐼 𝑗 is at least

E
[
∥𝐴𝑥 ∥2

2

���𝑥−𝐼 𝑗 ] ≥ Ω

(


E [
𝐴𝑥

��� 𝑥−𝐼 𝑗 ]


2
2

+ ∥𝐴∥2𝐹
)
. (8)

By concentration of polynomials under Dobrushin’s condition [1],

we will show that ∥𝐴𝑥 ∥2
2
is at least the right hand side of (8) with

high probability, and taking a union bound over 𝑗 ∈ [ℓ], we derive
that w.h.p.,

𝜕2𝜑 (𝑥 ; 𝐽𝑥 )
𝜕2𝐴

≥ ∥𝐴𝑥 ∥2
2

≥ Ω

(
max

𝑗 ∈[ℓ ]




E [
𝐴𝑥

��� 𝑥−𝐼 𝑗 ]


2
2

+ ∥𝐴∥2𝐹
)
. (9)

If ∥ 𝐽 ∗ − 𝐽0∥𝐹 = Ω̃(1), we derive by (4), (6) and (9) that that inequal-
ity (3) holds w.h.p. Moreover, the further 𝐽0 is from 𝐽 ∗, the higher
is the probability.

We now have to use (3) to derive the error bound. To do that, we

would like to show that for all 𝐽 that are far from 𝐽 ∗ in Frobenius

norm, 𝜑 (𝑥 ; 𝐽 ) > 𝜑 (𝑥 ; 𝐽 ∗). Since 𝜑 (𝑥 ; 𝐽 ) ≤ 𝜑 (𝑥 ; 𝐽 ∗), this would
imply that 𝐽 is close to 𝐽 ∗. Proving that this statement holds with

high probability for all far enough points requires more than a union

bound, since there might be infinitely many points. Instead, we will

construct a finite subsetU of these points such that every point is 𝜖

close to one inU (U forms an 𝜖-net). By a union bound overU we

prove that with high probability (3) holds for all points inU. Since

𝜑 is Lipschitz as a function of the matrix 𝐽 , this suffices to argue that

for all far enough points, their𝜑 value is much larger than that of 𝐽 ∗.
We note that union bounding (3) over |U| events corresponding to

all possible 𝐽 ∈ U, requires each event to hold with sufficiently high

probability, and this holds whenever ∥ 𝐽 ∗ − 𝐽 ∥𝐹 ≥ Ω(
√
log |U|).

4 COMPARISON TO PRIORWORK
Comparison with multiple-sample bounds. An important line of

previous work focuses on learning Ising models from multiple in-

dependent samples. The first work that gives a polynomial-time

algorithm for this problem is[11] and improved results were ob-

tained by [33, 35, 54] and others. [35] showed that under the com-

mon assumption ∥ 𝐽 ∗∥∞ ≤ 𝑂 (1), it is possible, using ℓ samples,

to learn each row of 𝐽 ∗ up to an error of 𝑂 ((log(𝑛)/ℓ)1/4), which

translates to a Forbenius norm error of 𝑂 (𝑛1/2 (log(𝑛)/ℓ)1/4). In
comparison, Corollary 5 can derive better guarantees even with

one or a few samples, assuming additional structural assumptions

on 𝐽 ∗. Further, Corollary 6 that assumes the same setting as [35],

retains polynomial-time learnability, while reducing to a single-

sample algorithm that does not utilize independence. This enables

to consider dependent samples with only a small overhead.

Comparison with single-sample bounds. Another interesting line

of work involves learning the Ising model from a single sample of

the distribution. The first to work on this problem was [14], who

assumed a single-parameter family, J = {𝛽 𝐽0 : |𝛽 | ≤ 𝑀} where
the goal is to learn 𝛽 . In subsequent work, [9] derived an improved

bound and [30] presented an algorithm that jointly learns 𝛽 and an

external field 𝜃 , assuming that Pr[𝑥] ∝ exp(−𝛽𝑥⊤ 𝐽𝑥/2 + 𝜃
∑
𝑖 𝑥𝑖 ).

Further, [21] studied linear regression with Ising model depen-

dencies, which corresponds to learning 𝛽 together with multiple

external field parameters. In comparison, Theorem 1 is the first

to learn Ising models using one-sample from a complex family of

matrices.

We further discuss the improvements over the prior work on

single-sample estimation that are apparent in Corollary 10 and

are essential for obtaining the results of this paper: (1) Removal of

additional assumptions that require the log partition function 𝐹 (𝐽 ∗)
to bewell behaved, yielding no guarantees in scenarios such as at the
vicinity of some phase transitions. (2) Obtaining high probability

estimates on single-parameter families that enables generalizing

to arbitrary families via a union bound. These two improvements

necessitates a new proof approach as presented in Section 3.

5 CONCLUSIONS AND FUTUREWORK
We obtained non-asymptotic rates for estimating the interaction

matrix of an Ising model from a single sample, which are tight or

near-tight in many interesting settings. An important feature of our

analysis is that it also covers low temperature regimes, where our

understanding is generally quite limited. A challenging problem

for future investigation is obtaining estimation algorithms when

the temperature is not bounded below. In this regime, we expect

many interesting phenomena to arise, such as phase transitions,

which might make the analysis more challenging. Another natural

question is whether we could obtain similar results to ours with-

out using a conditioning argument to handle the low temperature

regime. This would further our understanding of the estimation

problem and lead to a unified analysis for both low and high temper-

atures. Finally, building on this line of work, one could consider the

task of performing statistical estimation when some of the nodes

in the graph are not observed. In this setting we immediately lose

some important properties of the full sample regime, such as the

convexity of the log-likelihood function. As such, a broader set of

tools might be required to tackle this more challenging setting.
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