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Abstract
Existing single-stream logging schemes are unsuitable for in-memory

database management systems (DBMSs) as the single log is often

a performance bottleneck. To overcome this problem, we present

Taurus, an efficient parallel logging scheme that uses multiple log

streams, and is compatible with both data and command logging.

Taurus tracks and encodes transaction dependencies using a vector

of log sequence numbers (LSNs). These vectors ensure that the de-

pendencies are fully captured in logging and correctly enforced in

recovery. Our experimental evaluation with an in-memory DBMS

shows that Taurus’s parallel logging achieves up to 9.9× and 2.9×
speedups over single-streamed data logging and command logging,

respectively. It also enables the DBMS to recover up to 22.9× and
75.6× faster than these baselines for data and command logging,

respectively. We also compare Taurus with two state-of-the-art

parallel logging schemes and show that the DBMS achieves up to

2.8× better performance on NVMe drives and 9.2× on HDDs.

1 Introduction
A database management system (DBMS) guarantees that a trans-

action’s modifications to the database persist even if the system

crashes. The most common method to enforce durability is write-
ahead-logging, where each transaction sequentiallywrites its changes
to a persistent storage device (e.g., HDD, SSD, NVM) before it com-

mits [29]. With increasing parallelism in modern multicore hard-

ware and the rising trend of high-throughput in-memory DBMSs,

the scalability bottleneck caused by sequential logging [16, 35, 37,

43] is onerous, motivating the need for a parallel solution.

It is non-trivial, however, to perform parallel logging because

the system must ensure the correct recovery order of transactions.

Although this is straightforward in sequential logging because the

LSNs (the positions of transaction records in the log file) explicitly

define the order of transactions, it is not easy to efficiently recover

transactions that are distributed acrossmultiple logswithout central

LSNs. A parallel logging scheme must maintain transactions’ order

information across multiple logs to recover correctly.

There are several parallel logging and recovery proposals in

the literature [16, 35, 37, 43]. These previous designs, however, are

limited in their scope and applicability. Some algorithms support

only parallel data logging but not parallel command logging [14,

35, 43]; some can only parallelize the recovery process but not the

logging process [8, 30]; a few protocols assume NVM hardware but

do not work for conventional storage devices [3, 4, 6, 10, 15, 21,

22, 36]. As such, previously proposed methods are insufficient for

modern DBMSs in diverse operating environments.

To overcome these limitations, we present Taurus, a lightweight
protocol that performs both logging and recovery in parallel, sup-

ports both data and command logging, and is compatible with mul-

tiple concurrency control schemes. Taurus achieves this by tracking

the inter-transaction dependencies. The recovery algorithm uses

this information to determine the order of transactions. Taurus

encodes dependencies into a vector of LSNs, which we define as

the LSN Vector (LV). LSN Vectors are inspired by vector clocks to

enforce partial orderings in message-passing systems [11, 27]. To

reduce the overhead of maintaining LVs, Taurus compresses the

vector based on the observation that a DBMS can recover transac-

tions with no dependencies in any order. Thus, Taurus does not

need to store many LVs, thereby reducing the space overhead.

We compare the performance of Taurus to a sequential logging

scheme (with and without RAID-0 setups) and state-of-the-art par-

allel logging schemes (i.e., Silo-R [35, 43] and Plover [44]) on YCSB

and TPC-C benchmarks. Our evaluation on eight NVMe SSDs shows

that Taurus with data logging outperforms sequential data logging

by 9.9× at runtime, and Taurus with command logging outperforms

the sequential command logging by 2.9×. During recovery, Taurus

with data logging and command logging are 22.9× and 75.6× faster

than the serial baselines, respectively. Taurus with data logging

matches the performance of the other parallel schemes, and Taurus

with command logging is 2.8× faster at both runtime and recov-

ery. Another evaluation on eight HDDs shows that Taurus with

command logging achieves 9.2× and 6.4× faster than these parallel

algorithms in logging and recovery, respectively.

The main contributions of this paper include:

• We propose the Taurus parallel scheme that supports both

command logging and data logging. We formally prove the

correctness and liveness in Appendix A.

• We propose optimizations to reduce the memory footprint of

the dependency information that Taurus maintains and exten-

sions for supporting multiple concurrency control algorithms.

• We evaluate Taurus against sequential and the parallel logging

schemes, and demonstrate its advantages and generality.

• We open source Taurus and evaluation scripts at https://github.

com/yuxiamit/DBx1000_logging.
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Figure 1: Data Dependency in Parallel Logging — Transaction T2 de-

pends on T1. The two transactions write to different logs.

2 Background
We first provide an overview of conventional serial logging proto-

cols and then discuss the challenges of extending a logging algo-

rithm to support a parallel environment.

2.1 Serial Logging
In a serial logging protocol, the DBMS constructs a single log stream

for all transactions. The protocol maintains the ordering invariant

that, if T2 depends on T1, then the DBMS writes T2 to disk after T1.
The DBMS ensures a transaction commits only after it successfully

writes the transaction’s log records to disk. During recovery, the

DBMS reads the log sequentially, starting from the last checkpoint.

The DBMS replays each transaction sequentially until it encounters

an incomplete log record or the end of the file.

In general, there are two categories of logging schemes. The first

is data logging, where log records contain the physical modifications

that transactions made to the database. The recovery process with

this scheme is to re-apply these changes back to the database. The

other category, called command logging [26], reduces the amount

of log data by only recording transactions’ high-level commands

(i.e., invocations of stored procedures). The log records for these

commands are typically smaller in size than the physical changes

made to the database. The recovery process involves more computa-

tion, as all transactions are re-executed sequentially. When the disk

bandwidth is the bottleneck, command logging can substantially

outperform data logging.

Although serial logging is inherently sequential, one can improve

its performance by using RAID disks that act as a single storage

device to increase disk bandwidth [31]. Serial logging can also

support parallel recovery if the DBMS uses data logging [33, 35, 43].

But the fundamental property that distinguishes serial logging from

parallel logging is that it relies on a single log stream that respects

all the data dependencies among transactions. On a modern in-

memory DBMS with many CPU cores, such a single log stream

is a contention point that becomes a scalability bottleneck [35].

Competing for the single atomic LSN counter inhibits performance

due to cache coherence traffic [42].

2.2 Parallel Logging Challenges
Parallel logging allows transactions to write to multiple log streams

(e.g., one stream per disk), thereby avoiding serial logging’s scal-

ability bottlenecks to satisfy the high throughput demands of in-

memory DBMSs. Multiple streams inhibit an inherent natural or-

dering of transactions. Therefore, other mechanisms are required

to track and enforce the ordering among these transactions. Fig. 1

shows an example with transactions T1 and T2, where T2 depends
on T1 with a read-after-write (RAW) data dependency.

In this example, we assume that T1 writes to Log 1 and T2 writes
to Log 2 and they may be flushed in any order. If T2 is already

persistent in Log 2 while T1 is still in the log buffer (shown in Fig. 1),

the DBMS must not commit T2 since T1 has not committed. Fur-

thermore, if the DBMS crashes, then the recovery process must be

aware of such data dependency and therefore should not recover T2.
Specifically, parallel logging faces the following three challenges.

Challenge #1 –When to Commit a Transaction: The DBMS

can only commit a transaction if it is persistent and all the transac-

tions that it depends on can commit. In serial logging, this require-

ment is satisfied if the transaction itself is persistent, indicating all

the preceding transactions are also persistent. In parallel logging,

however, a transaction must identify when other transactions that

it depends on can commit, especially those that are storing their

log records on other log streams. For the example shown in Fig. 1,

the DBMS can commit T2 only after T1 is already persistent.

Challenge #2 – Whether to Recover a Transaction: A tech-

nique like Early-Lock-Release (ELR) prevents transactions fromwait-

ing for log persistency during execution by allowing a transaction

to release locks early before the log records hit disks [8]. But this

means that during recovery, the DBMS has to determine whether

transactions successfully committed before a crash. The DBMS

ignores any transaction that fails to complete properly. For the

example in Fig. 1, if T2 is in the log but T1 is not, then the DBMS

should not process T2 during recovery.

Challenge #3 – Determine the Recovery Order: The DBMS

must recover transactions in the order that respects data dependen-

cies. If both T1 and T2 are persistent and have committed before

the crash, the DBMS must recover T1 before T2, since T2 reads the
value that is written by T1.

One can resolve some of the above issues if the DBMS satisfies

certain assumptions. For example, if the concurrency control al-

gorithm enforces dependent transactions to write to disks in the

corresponding order, then this solves the first and second challenges:

the persistence of one transaction implies that any transactions that

it depends on are also persistent. If the DBMS uses data logging,

then it needs to handle write-after-write (WAW) dependencies, but

not read-after-write (RAW) or write-after-read (WAR) dependen-

cies. For example, consider a transaction T1 that writes A=1, and a

transaction T2 that reads A and then writes B=A+1. Suppose the

initial value of A is 0, and the DBMS schedules T2 before T1, result-
ing in A=1 and B=1. With this schedule, T1 has a WAR dependency

on T2. If the DBMS does not track WAR dependencies and perform

command logging, running T1 before T2 will result in A=1 and B=2,

which violates correctness. But if the DBMS performs data logging,

then T1 will have a record of A=1 and T2 will have a record of B=1.

Regardless of the recovery order between T1 and T2, the resulting
state is always correct. Supporting only data logging simplifies

the protocol [35, 43]. These assumptions, however, would hurt

either performance or generality of the DBMS. Our experiments in

Sec. 5 show that Taurus command logging outperforms all the data

logging baselines by up to 6.4× in both logging and recovery.
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Figure 2: LSN Vector (LV) example — The 𝑖𝑡ℎ element of transaction T ’s
LV is an LSN of log𝑖 , indicating that T depends on one or more transactions

(rendered in dark blue) in log𝑖 before that LSN.

3 Taurus Parallel Logging
We now present the Taurus protocol in detail. The core idea of

Taurus is to use a lightweight dependency tracking mechanism

called LSN Vector. After first describing LSN Vectors, we then ex-

plain how Taurus uses them in Sec. 3.2 and Sec. 3.3 during runtime

and recovery operations, respectively. We then discuss how Taurus

supports index operations like range scan, insertions, and deletions.

Lastly, we describe limitations of Taurus and potential solutions.

Although Taurus supports multiple concurrency control schemes

(see Sec. 4.3), for the sake of simplicity, we assume strict two-phase

locking (S2PL) in this section unless otherwise stated. We also

assume that the DBMS usesmultiple disks with each log file residing

on one disk. Each transaction writes only a single log entry to

one log file at commit time. The design of a single log entry per

transaction simplifies the protocol and is used by other in-memory

DBMSs, including Hekaton [9], Silo [35, 43], and H-Store [19].

3.1 LSN Vector
An LSN Vector (LV) is a vector of LSNs that encodes the dependen-
cies between transactions. The DBMS assigns it to either (1) a trans-

action to record its dependency information or (2) a data item to cap-

ture the dependencies between transactions accessing it. The dimen-

sion of an LV is the same as the number of logs. Each element of LV
indicates that a transaction T may depend on transactions before a

certain position in the corresponding log. Specifically, given a trans-

action T and its assigned LV: T.LV = (𝐿𝑉 [1], 𝐿𝑉 [2], . . . , 𝐿𝑉 [𝑛]),
for any 1 ≤ 𝑖 ≤ 𝑛, the following property holds:

Property 1. Transaction T does not depend on any transaction
T′ that maps to the 𝑖-th log with LSN > 𝐿𝑉 [𝑖].

Fig. 2 shows the LV of an example transaction T . The second
element in T.LV is 7, meaning that T may depend on any transaction

that maps to Log 2 with an LSN ≤ 7 but no transaction with an

LSN > 7. In this example, T depends on two transactions in Log 2
with both LSNs no greater than 7. The semantics of LV is similar to

vector clocks [11, 27]. In particular, the following two operations

will be frequently used on LVs: ElemWiseMax and comparison. The
ElemWiseMax is the element-wise maximum function:

𝐿𝑉 = ElemWiseMax(𝐿𝑉 ′, 𝐿𝑉 ′′) ⇒ ∀𝑖, 𝐿𝑉 [𝑖 ] = max(𝐿𝑉 ′ [𝑖 ], 𝐿𝑉 ′′ [𝑖 ])

For comparison, the relationships are defined as follows:

𝐿𝑉 ≤ 𝐿𝑉 ′ ⇐⇒ ∀𝑖, LV[𝑖 ] ≤ LV′ [𝑖 ] .

Following the semantics of vector clocks, LV captures an approxi-

mation of the partial order among transactions — LVs of dependent

transactions are always ordered and LVs of independent transac-

tions may or may not be ordered.

An LV of a transaction is written to the log together with the

rest of the log entry. The dependency information captured by the

partial order is sufficient for resolving the three challenges from

Sec. 2.2. Taurus’s LV s address these challenges in the following

way: (1) A transaction T can commit if it is persistent and each

log has flushed to the point specified by T .LV , indicating that all
transactions that T depends on are persistent. (2) During recovery,

the DBMS determines that a transaction T has committed before

the crash if each log has flushed to the point specified by T .LV . (3)
The recovery order follows the partial order specified by LVs, and

the DBMS can recover unordered transactions in parallel.

3.2 Logging Operations
The Taurus protocol is based on workers and log managers (denoted
as 𝐿1, 𝐿2, . . . , 𝐿𝑛). Each log manager writes to a unique log file. Each

worker is assigned to a log manager and we assume every log man-

ager has exactly 𝑝 workers. The log managers and workers run

on separate threads. We first describe the protocol’s internal data

structures and then explain its algorithms.

Data Structures: On top of a conventional 2PL protocol, Taurus

adds the following data structures to the system.

• T .LV – Each transaction T contains a T .LV encoding its de-

pendency as discussed in Sec. 3.1. When T initially starts, T .LV
is a vector of zeroes.

• Tuple.readLV /writeLV – Each tuple contains two LVs that serve

as a medium for transaction LV s to propagate between transac-
tions. Intuitively, these vectors are the maximum LV of trans-

actions that have read/written the tuple. Initially, all elements

are zeroes. This does not necessarily incur extra linear storage

because the DBMS maintains this metadata in its lock table (cf.

Sec. 4.1).

• L.logLSN – The highest position in the log file that has not been

allocated for log manager L. It is initialized as zero. Workers

reserve space for log records by incrementing L.logLSN.
• L.allocatedLSN – A vector of length 𝑝 that stores the last LSN

allocated by each worker of log manager L. Initially, all ele-
ments of allocatedLSN are∞.
• L.filledLSN – A vector of length 𝑝 , storing the last LSN filled by

each worker of log manager L. Initially, all elements are zeroes.

The purpose of L.allocatedLSN and L.filledLSN is to determine

the point to which the log manager L can safely flush its log.

They are irrelevant to the idea of LV but are important for the

correctness of Taurus.

• Global.PLV – PLV stands for Persistent LSN Vector that is a
global vector of length 𝑛. The element PLV 𝑖 denotes the LSN

that log manager 𝐿𝑖 has successfully flushed up to.

WorkerThreads:Worker threads track dependencies by enforc-

ing partial orders on the LSN Vectors. The logic of a worker thread

is contained in the Lock and Commit functions shown in Alg. 1.

The 2PL locking logic is in the FetchLock function (Line 2); Tau-

rus supports any variant of 2PL (e.g., deadlock-detection, no-wait,

wait-and-die). After a worker thread acquires a lock, it executes

Lines 3–5 to update the LV of the transaction. It first updates T.LV
to be the element-wise maximum of the current T.LV and the tu-

ple’s writeLV (Line 3). This enforces T .LV to be no less than the

LV of previous writing transactions. If the access is a write, it also

updates T.LV using the tuple’s readLV .
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The DBMS calls the Commit function shown in Lines 6–18 when

the transaction finishes. At this moment, T has locked tuples it

accessed. Since the DBMS updates T.LV for each access, it already

captures T’s dependency information. The DBMS first checks if

T is read-only, and skip generating log records if so. Otherwise,

it creates the log record for transaction T (Line 8). The log record

contains two parts: the redo log and a copy of T’s LV at this moment.

The contents of the redo log depends on the logging scheme: the

keys and values that T modified (for data logging), or the informa-

tion sufficient to reconstruct T (for command logging). The DBMS

writes the record into the corresponding log manager’s buffer by

WriteLogBuffer (Line 10). The algorithm then updates the 𝑖-th di-

mension of T .LV to the returned LSN (Line 11), thereby allowing

future transactions to capture their dependencies on T. This update
only changes T .LV , while the copy of T .LV in the buffer does not

contain this update. Lines 12–17 update the readLV and/or writeLV
of each tuple that T accessed before releasing the locks on those

tuples. If T reads a tuple, it updates the tuple’s readLV using T .LV ,
indicating that the tuple was read by T and future transactions

must respect this dependency. Similarly, if T has written a tuple,

the tuple’s writeLV is updated accordingly. Updating the LVs and

releasing the lock must be executed in an atomic section, other-

wise multiple transactions simultaneously updating the readLV can

cause race conditions leading to incorrect dependencies. As most

2PL protocols use latches to protect the release function, updating

LVs can be piggybacked within those latches. For simplicity, we

present a long atomic section covering Lines 12–17 (shaded in gray).

After the DBMS releases transaction T’s locks, it has to wait for

PLV to catch up such that PLV ≥ T.LV (indicating T is durable).

All transactions within the same log manager commit sequentially.

Since each log manager flushes records sequentially, this does not

introduce a scalability bottleneck. We employ the ELR optimiza-

tion [8] to reduce lock contention by allowing transactions to re-

lease locks before they are durable.

The Commit function callsWriteLogBuffer (Lines 19–24) to write
a log entry into the log buffer. It first allocates space in the log

manager’s (𝐿𝑖 ) buffer by atomically incrementing its LSN by the

size of the log record (Line 21). It then copies the log record into

the log buffer (Line 22). Lines 20 and 23 are indicators for the log

manager to decide up to which point it can flush the log buffer

to disk. Specifically, before a transaction increments the LSN, it

notifies the log manager (𝐿𝑖 ) that its allocated space is no earlier

than its current LSN (Line 20). This leads to allocatedLSN[ 𝑗] ≥
filledLSN[ 𝑗], which instructs 𝐿𝑖 that the log buffer contents after

allocatedLSN[ 𝑗] are unstable and should not be flushed to the disk.

After the log buffer is filled, the transaction updates 𝐿𝑖 .filledLSN[ 𝑗]
so that allocatedLSN[ 𝑗] < filledLSN[ 𝑗], indicating that the worker
thread has no ongoing operations on the log buffer.

To demonstrate how Taurus tracks dependencies, we use the

example in Fig. 3 with three transactions (T1, T2, T3) and two data-

base objects A,B. WLOG, we assume T1 and T2 are assigned to Log

1 and T3 is assigned to Log 2. In the beginning, A has a writeLV
[4,2] and a readLV [3,7] while object B has [8,6] and [5,11]. 1 The

DBMS initializes the transactions’ LV s as [0,0]. 2 T1 acquires an ex-

clusive lock on A and writes to it. Then, T1 updates T1.LV to be the

element-wise maximum among A.writeLV , A.readLV , and T1.LV .
In this example, T1.LV=[max(4,3,0), max(2,7,0)] = [4,7]. Enforcing

Algorithm 1: Worker Thread — We assume the worker is the

𝑗-th worker for log manager 𝐿𝑖 .

1 Function Lock(key, type, T)
# Lock the tuple following the 2PL protocol.

2 FetchLock(key, type, T);
3 T.LV = ElemWiseMax(T.LV, DB[key].writeLV);
4 if type is write then
5 T.LV = ElemWiseMax(T.LV, DB[key].readLV);

6 Function Commit(T)
7 if T is not read-only then

# Include T’s LV into the log record.
8 logRecord = {CreateLogRecord(T), copy(T.LV)};
9 recordSize = GetSize(logRecord);

10 LSN = WriteLogBuffer(logRecord, recordSize);
11 T.LV[𝑖 ] = LSN# Update T.LV[𝑖 ] in the memory.;

12 for key ∈ T’s access set do
13 if T reads DB[key] then # Atomic Section
14 DB[key].readLV = ElemWiseMax(T.LV, DB[key].readLV);

15 if T writes DB[key] then
# T.LV is always no less than DB[key].writeLV

16 DB[key].writeLV = T.LV ;

17 Release(key)

18 Asynchronously commit T if PLV ≥ T.LV and all transactions in
𝐿𝑖 with smaller LSNs have committed;

19 FunctionWriteLogBuffer(logRecord, recordSize)
20 𝐿𝑖 .allocatedLSN[ 𝑗 ] = 𝐿𝑖 .logLSN ;

21 lsn = AtomicFetchAndAdd(𝐿𝑖 .logLSN, recordSize);
22 memcpy(𝐿𝑖 .logBuffer + lsn, logRecord, recordSize);
23 L𝑖 .filledlSN[ 𝑗 ] = lsn + recordSize;
24 return lsn + recordSize

these partial orders enforcesWAR andWAWdependencies. Namely,

any previous transactions that ever read or wrote A will have an LV
no greater than T1.LV. 3 T1 acquires a shared lock on B and then

reads it. Then, T1 updates T1.LV to be the element-wise maximum

among 𝐵.writeLV and T1.LV. This is to track RAW dependencies.

Now T1.LV=[max(8, 4), max(6, 7)] = [8,7]. 4 T2 wants to read A but

has towait for T1 to release the lock. 5 Similarly, T3wants towrite B
but has to wait as well. 6 After T1 finishes, T1writes its redo record
and a copy of T1.LV into the log buffer. After successfully writing to

the buffer, T1 learns its LSN in Log 1 is 16. Then, T1 updates the first
dimension of T1.LV to be 16, resulting in T1.LV=[16,7]. 7 For each

item T1 accessed, T1 updates the readLV (or writeLV ) accordingly.
T1 updates 𝐴.writeLV = ElemWiseMax(𝐴.writeLV, T1.LV) = T1.𝐿𝑉
= [16,7], and 𝐵.readLV = ElemWiseMax(𝐵.readLV, T1.LV) = [16,11].

Then, T1 releases the locks. After this, T1 waits for itself and all

the transactions it depends on to become persistent, equivalently,

PLV ≥ T1.LV. The workers can process other transactions, and

periodically check if T1 should be marked as committed. 8 T2 ac-
quires the shared lock on A. T2 then updates T2.LV=ElemWiseMax
(T2.LV , A.writeLV ) = [16,7]. This update enforces the partial order

that T1.LV ≤ T2.LV because T2 depends on T1. Since T2 is read-
only, it does not create a log record. It also enters the asynchronous

commit by waiting for PLV ≥ T2.LV. 9 T3 acquires an exclusive

lock on B and updates T3.LV = ElemWiseMax( T3.LV, 𝐵.readLV,
𝐵.writeLV) = [16,11]. The fact that T3 depends on T1 reflects on
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Figure 3: Worker Thread Example – Three transactions (T1, T2, and T3)
are accessing two objects A and B. Transactions are logged to two files. The

diagram is drawn in the time order with the axis on the left.

Algorithm 2: Log Manager Thread 𝐿𝑖

1 readyLSN = 𝐿𝑖 .logLSN ;

2 foreach worker thread j that maps to 𝐿𝑖 do
# We assume 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐿𝑆𝑁 [ 𝑗 ] and 𝑓 𝑖𝑙𝑙𝑒𝑑𝐿𝑆𝑁 [ 𝑗 ] are fetched
together atomically;

3 if 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐿𝑆𝑁 [ 𝑗 ] ≥ 𝑓 𝑖𝑙𝑙𝑒𝑑𝐿𝑆𝑁 [ 𝑗 ] then
4 readyLSN = min(readyLSN, 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐿𝑆𝑁 [ 𝑗 ])

5 flush the buffer up to readyLSN ;

6 PLV[𝑖 ] = readyLSN ;

T3.LV ≥ T1.LV. 10 The logging threads have flushed all transac-

tions before T1.LV = T2.LV = [16,7] and updated PLV . Observing
PLV ≥ [16,7], Taurus marks T1 and T2 as committed. 11 T3 writes
its redo record and a copy of T3.LV to the buffer of Log 2, and gets

its LSN as 21. T3.LV increases to [16,21]. 12 T3 sets B.writeLV to [16,

21] and releases the lock. 13 When PLV achieves T3.LV = [16, 21],
Taurus commits T3.

Log Manager Threads: We use a dedicated thread serving as

the log manager for each log file. The main job of the log manager

is to flush the contents in the log buffer into the file on disk. It

periodically invokes Alg. 2 when a timeout period has passed or

when the buffer is half full, whichever happens first. The algorithm

identifies up to which point the DBMS can flush to the disk so that

it does not flush data that active transactions are still processing.

Taurus uses two arrays, allocatedLSN and filledLSN, to achieve

this goal. readyLSN is the log buffer position up to which the DBMS

can safely flush; its initial value is logLSN [𝑖] (Line 1). For each

worker thread 𝑗 that belongs to 𝐿𝑖 , if allocatedLSN[ 𝑗] ≥
filledLSN[ 𝑗], then the transaction in thread 𝑗 is filling the log buffer

at a position after allocatedLSN[ 𝑗] (Alg. 1, Line 20 and Line 23), so

readyLSN should not be greater than allocatedLSN[ 𝑗]. Otherwise,
no transaction in worker 𝑗 is filling the log buffer, so readyLSN is

not changed (Lines 2–4). Lastly, the log manager flushes the buffer

to the disk up to readyLSN and updates PLV[𝑖] (Lines 5–6).
The frequency that the DBMS flushes log records to disk is based

on the performance profile of the storage devices. Although each

flushmight enable a number of transactions to commit, transactions

in the same log file still commit in a sequential order. This removes

Algorithm 3: Log Manager Recovery for Thread 𝐿𝑖 .

1 while T = 𝐿𝑖 .DecodeNext() and T.LV ≤ ELV do
2 pool.Enqueue(T);
3 pool.maxLSN = T.LSN ;

ambiguity of transaction dependency during recovery. Sequential

committing will not affect scalability because ELR prevents trans-

actions waiting for log record duration or sequential committing

from being on the critical path.

3.3 Recovery Operations
Taurus’ recovery algorithm replays transactions following the par-

tial orders between their LV s, which is sufficient to respect all the

data dependencies. This is equivalent to performing topological

sorting in parallel on a dependency graph. Each log manager thread

reads log records from a file, and the worker threads recover trans-

actions by re-applying the log records.

Data Structures: The recovery process contains the following:

• L.pool – For each log manager, pool is a queue containing

transactions that are read from the log but not recovered.

• L.maxLSN – For each log manager, maxLSN is the LSN of the

latest transaction that has been read from the log file.

• Global.RLV – RLV is a vector of length 𝑛 (𝑛 is the number of

log managers). An element RLV 𝑖 means that all transactions

mapping to 𝐿𝑖 with LSN ≤ RLV𝑖 have been successfully re-

covered. Therefore, a transaction T can start its recovery if

T.LV ≤ RLV, at which point all transactions that T depends on

have been recovered. Initially, RLV is a vector of zeroes.

• Global.ELV – ELV is a vector of length 𝑛. An element ELV 𝑖 is

the number of bytes in Log i. The DBMS uses this vector to

determine if a transaction committed before the crash. Before

the recovery starts, Taurus fetches the sizes of the log files to

initialize ELV , namely, ELV[𝑖] is the size of Log i.
Log Manager Threads: In Alg. 3, the thread reads the log file

and decodes records into transactions (Line 1). For a transaction T,
if T.𝐿𝑉 ≤ ELV, then T committed before the crash and is therefore

considered for recovery; otherwise, T and transactions after it are

ignored for recovery. A transaction is enqueued into the tail of 𝑝𝑜𝑜𝑙

and the value of maxLSN is updated to be the LSN of T (Lines 2–3).

It is important that the thread updates maxLSN after it executes

Enqueue, otherwise the DBMS may recover transactions in an in-

correct order. If the pool is empty after the DBMS updates maxLSN
but before it enqueues T, then it sets RLV [i]=T.𝐿𝑆𝑁 to indicate

that T is recovered; this prevents another worker from recovering

a transaction that depends on T before T is recovered.

Worker Threads: In Alg. 4, the worker threads keep executing

until the log manager finishes decoding all the transactions and the

pool is empty. A worker thread tries to get a transaction T from 𝑝𝑜𝑜𝑙

such that T.LV ≤ RLV (Line 2). Then, the worker thread recovers

T (Line 3). For data logging, the data elements in the log record

are copied to the database; for command logging, the transaction

is re-executed. During the re-execution, no concurrency control

algorithm is needed, since Taurus guarantees no conflicts during

recovery. Then, RLV[𝑖] is updated (Lines 4-7). If pool is empty,
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Algorithm 4: Worker Recovery Thread

1 while not IsRecoveryDone() do
# FetchNext atomically dequeues a transaction T such that
T.LV ≤ RLV;

2 T = pool.FetchNext(RLV);
3 Recover(T);
4 if pool is empty then # Atomic Section
5 RLV[𝑖 ] = Max(RLV[𝑖 ], pool.maxLSN);
6 else
7 RLV[𝑖 ] = Max(RLV[𝑖 ], pool.head.LSN - 1)

then the thread sets RLV[𝑖] to pool.maxLSN, the largest LSN of

any transaction added to pool, if it is larger; otherwise, RLV[𝑖] is
set to one less than the first transaction’s LSN, indicating that the

previous transaction has been recovered but not the one blocking

the head of pool. In the pseudo-code, the code for RLV update is

protected with an atomic section for correctness. We use a lock-free

design to avoid this critical section in our implementation.

The pool data structure described above can become a potential

scalability bottleneck if a large number of workers are mapped to a

single log manager. There are additional optimizations that address

this issue. For example, we partition each 𝑝𝑜𝑜𝑙 into multiple queues.

We also split RLV into local copies and add delegations to reduce

false sharing in CPU caches.

3.4 Supporting Index Operations
Although our discussion has focused on read and update operations,
Taurus can also support scan, insert, and delete operations with an

additional index locking protocol.

For a range scan, the transaction (atomically) fetches a shared

lock on each of the result rows using the Lock function in Alg. 1.

When the transaction commits, it goes through the Commit func-
tion and update the readLV ’s of the rows. To avoid phantoms, the

transaction performs the same scan again before releasing the locks

in Commit function. If the result rows are different, some other

transactions have inserted or deleted rows within the scan range,

we abort the transaction. This scan-twice trick is from Silo [35]. We

notice that, assuming 2PL, the transaction only needs to record the

number of rows returned. During the second scan, it’s guaranteed

that the rows in the previous scan still exist because shared locks

are held by the transaction. Therefore, if the row count is still the

same, the result rows are not changed.

If a transaction T inserts a row with primary key key, it initializes
DB[key].readLV and DB[key].writeLV to be 0. Because the index

for DB[key] is not updated yet, other transactions will not see the

new row. In Commit function after T releases the locks, it updates

DB[key].writeLV = T.LV. Finally, T inserts key into the index.

When a transaction T deletes a row with primary key key, it first
grabs an exclusive lock of the row. And updates T.LV = 𝐸𝑙𝑒𝑚𝑊𝑖𝑠𝑒𝑀𝑎𝑥

(T.LV, 𝐷𝐵 [𝑘𝑒𝑦] .𝑟𝑒𝑎𝑑𝐿𝑉 , 𝐷𝐵 [𝑘𝑒𝑦] .𝑤𝑟𝑖𝑡𝑒𝐿𝑉 ). Any other transaction
trying to access this row will abort due to lock conflicts. In the Com-
mit function before T releases the locks, it removes key from the

index.

3.5 Limitations of Taurus
We now discuss the limitations of Taurus’s design and potential

ways to mitigate them.

One potential problem is that the size of LV is proportional to the

number of log managers. For a large number of log managers, the

computation and storage overhead of LV will increase. In contrast,

serial logging maintains a single LSN and therefore avoids this prob-

lem. Although we believe most DBMSs will use a relatively small

number of log files and thus this overhead is acceptable, Taurus

can also leverage LV compression (Sec. 4.1) and SIMD instructions

(Sec. 5.6) to partially resolve this issue. If necessary, a dependency-

aware transaction-to-log mapping mechanism can also potentially

reduce inter-log dependencies.

Another limitation of Taurus is the amount of parallelism during

recovery for workloads with high contention. For these workloads,

the inherent recovery parallelism can be lower than the number of

log managers. During recovery, a large number of inter-log depen-

dencies will exist. In Taurus, the dependencies propagate through

RLV (Alg. 4), which leads to inter-thread communication, incur-

ring relatively long latency between the recovery of dependent

transactions. In contrast, a serial recovery scheme has no delay

between consecutive transactions and, therefore, may deliver better

performance. To address this, when the contention is high, Taurus

will degrade to using serial recovery. Specifically, a single worker

recovers all the transactions sequentially. The worker checks every

pool of log managers and recovers the transaction that satisfies

T.LV ≤ RLV; this approach incurs no delay between two consecu-

tive transactions. We evaluate this aspect in Sec. 5.6.

During recovery, if the pool size is large and contention is high,

workers might need to scan the whole pool to find the next trans-

action that is ready to be recovered. Heuristic optimizations like

zig-zag scans could help. We defer the problem of developing a data

structure specialized for Taurus recovery to future work.

4 Optimizations and Extensions
We now discuss optimizations to reduce Taurus’ LV storage over-

head and computational overhead, and two extensions to support

Optimistic Concurrency Control (OCC) and MVCC.

4.1 Optimization: LV Compression
The design of Taurus as described in Sec. 3 has two issues: (1) the

DBMS stores readLV and writeLV for every tuple, which changes

the data layout and incurs extra storage overhead; (2) the trans-

action’s LV is stored for each log record, which can significantly

increase the log size especially for command logging where each

log record is relatively small. We describe optimizations that ad-

dress these problems.

Tuple LV Compression: To reduce a tuple’s LV storage, we

observe that keeping LV s for tuples that were accessed a long time

ago is unnecessary. The LV s in these tuples are too small to affect

active transactions. This optimization thus stores LV s only for

active tuples in the lock table. For these tuples, transactions operate

on their LV s following Alg. 1. If the DBMS inserts a tuple into the

lock table, then the algorithm assigns its readLV and writeLV to be

the current PLV . The system can evict a tuple from the lock table if
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Algorithm 5: LV Compression for Log Records – Each log

manager 𝐿𝑖 periodically calls FlushPLV. The worker threads

mapped to 𝐿𝑖 call Compress and Decompress.

1 Function FlushPLV()
2 currentPLV = Global.PLV ;
3 logBuffer.append(currentPLV);
4 LPLV = currentPLV ;

5 Function Compress(LV)
6 compressedLV = LV ;
7 foreach LV[ 𝑗 ] ∈ LV do
8 if LV[ 𝑗 ] ≤ 𝐿𝑖 .LPLV[ 𝑗 ] then
9 compressedLV[ 𝑗 ] = NaN ;

10 return compressedLV ;

11 Function Decompress(compressedLV)
12 LV = compressedLV ;
13 foreach LV[ 𝑗 ] ∈ LV do
14 if LV[ 𝑗 ] = NaN then
15 LV[ 𝑗 ] = 𝐿𝑖 .LPLV[ 𝑗 ];

16 return LV ;

no transactions hold locks on it and both its readLV and writeLV
are not greater than the current PLV .

For the tuples previously evicted from the lock table and later

inserted back, the optimization increases the readLV andwriteLV of

these tuples and also the LV s of transactions accessing them. This

modification makes transactions depend on more transactions than

before. To make the trade-off between higher compression ratio and

fewer artificial dependencies, we introduce a new parameter 𝛿 and

evict a tuple from the lock table only if ∀𝑖, PLV[𝑖] −LV[𝑖] ≥ 𝛿 is true

for both readLV and writeLV . Accordingly, a newly inserted tuple

will have readLV[𝑖] = writeLV[𝑖] = PLV[𝑖] − 𝛿 . Larger 𝛿 means

fewer artificial dependencies, but more tuples will stay in the lock

table waiting for eviction, and vice versa.

Log Record LV Compression: We next address the second

issue that each log record must store the LV of the transaction.

We propose an optimization where each log record stores only a

few but not all dimensions of a transaction’s LV . The motivating

insight is that for workloads with low to medium contention, most

dimensions of a log record’s LV are too small to be interesting. For

example, suppose that a transaction T depends on a committed

transaction T′. It is not critical to remember precisely which T′

that T depends on, but only that T depends on some transaction

that happened before a specific point in time. Therefore, we can

set anchor points (in the form of LV s) into each log such that, if T
depends on only transactions before an anchor point, it stores the

anchor point instead of the detailed LV .
In Alg. 5, we introduce a variable LPLV as the anchor point.

L.LPLV is an LSN Vector that is maintained by each log manager 𝐿.

It keeps a copy of the most recent PLV written into 𝐿’s log buffer.

Periodically, the log manager appends PLV into the log buffer and

updates 𝐿.LPLV (Lines 1–4).

To compress a transaction T’s LV , we check for every dimension

if T.LV is no greater than 𝐿𝑖 .LPLV. If this is true for dimension 𝑗 ,

namely, T.LV[ 𝑗] ≤ 𝐿𝑖 .LPLV[ 𝑗], we can artificially increase T.LV[ 𝑗]
to 𝐿𝑖 .LPLV[ 𝑗]. Since 𝐿𝑖 .LPLV is already in the buffer, the system

…
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Figure 4: LV Compression – Example of Taurus’s compression method.

no longer needs to store T.LV[ 𝑗] (Lines 6–9). During recovery, the

DBMS performs the opposite operation; if the 𝑗-th dimension of

an LV was compressed, it replaces it with the value of LPLV[ 𝑗]
(Lines 12–15). If it reads an anchor from the log, it updates LPLV .

Fig. 4 shows an example of LV compression. In Fig. 4a, transac-

tion T’s LV = [4, 45, 1, 2] is written to the log. The system compares

it against LPLV and finds that T.LV has only one dimension (the

2nd dimension with value 45) greater than LPLV . Only the 2nd

dimension is written into the log. During recovery, Fig. 4b shows

that Taurus fills in the blanks with the most recently seen anchor,

LPLV = [7, 16, 2, 4]. The compressed LV is decoded into [7, 45, 2,

4]. Note that the 1
𝑠𝑡
, 3

𝑟𝑑
, and 4

𝑡ℎ
dimension of the decompressed

LV are greater than the original T.LV.
The frequency of LPLV flushing makes a trade-off between par-

allelism in recovery and LV compression ratio. When the frequency

is high, a dimension of LV is smaller than LPLV and thus it enables

better compression, but some amount of recovery parallelism is

sacrificed since the decompressed LV s have larger values.

4.2 Optimization: Vectorization
The logging overhead mainly consists of four parts: (1) the overhead

introduced by Taurus where we calculate LV s and move them

around; (2) the overhead of creating the log records and writing

them to the in-memory log buffer; (3) for lock-based concurrency

control algorithms, the extra latency caused by (1) and (2) will

result in extra lock contention; (4) the time cost in persisting the

log records to the disk. Among them, (4) is moved off the critical

path by ELR; (2) and (3) are shared by essentially all the write-

ahead logging algorithms. These overheads will not block the

DBMS from scaling up. Overheads (1) and (2) are linear in the

number of total transactions executed. Overhead (1) is also related

to the number of log files. If the system is writing to many log

files and the transactions have a short execution time, it is up to

13.8% of the total execution time if implemented naively. We can

exploit the data parallelism in the LSN Vector as the values within

a single vector are processed independently. Modern CPUs provide

SIMD extensions that allow the DBMS to process multiple vector

elements items in a single instruction. For example, the instruction

_mm512_max_epu32 can compute the element-wise maximum of

two vectors of 16 32-bit integers. In Sec. 5.6, we show that switching

to vectorized operations reduces Taurus’ overhead by 89.5%.

4.3 Extension: Support for OCC
Our overview of Taurus thus far assumes that the DBMS uses 2PL.

Taurus is also compatible with other schemes. We next discuss how

Taurus can support Optimistic Concurrency Control (OCC) [24].
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Algorithm 6: OCC Logging for Worker Threads

1 Function Access(key, T)
2 value, readLV, writeLV = load(key) # load atomically;
3 T.LV = ElemWiseMax (T.LV, writeLV);
4 return value

5 Function Commit(T)
6 for key ∈ sorted(T.writeSet) do
7 DB[key].lock();

8 for key ∈ T.readSet do
9 foreach dimension i of LV do
10 if 𝐷𝐵 [𝑘𝑒𝑦 ] .readLV[𝑖 ] < T.𝐿𝑉 [𝑖 ] then # Atomic
11 𝐷𝐵 [𝑘𝑒𝑦 ] .readLV[𝑖 ] = T.𝐿𝑉 [𝑖 ]

12 if not ValidateSuccess()) then
13 Abort(T);

14 Create log record and write to log buffer similar to Lines 8–11 in
Alg. 1;

15 for key ∈ T.writeSet do
16 DB[key].writeLV = ElemWiseMax (DB[key].writeLV, T.LV);
17 DB[key].release();

18 Asynchronously commit T if PLV ≥ T.LV and all transactions in
𝐿𝑖 with smaller LSNs have committed;

Alg. 6 shows the protocol for a worker thread. Different from

a 2PL protocol (Alg. 1), an OCC transaction calls Access when ac-

cessing a tuple and Commit after finishing execution. The read-
Set and writeSet are maintained by the read/write functions in the

conventional OCC algorithm, from which Access is called. In the

Access function, the transaction atomically reads the value, readLV ,
writeLV , and potentially other auxiliary data. Commonly seen in

OCC algorithms, the ValidateSuccess function returns true if the

values in the readSet are not modified by other transactions. The

atomicity is guaranteed through a latch, or by reading a version

number twice before and after reading the value [35].

For high concurrency, we choose a reader-lock-free design of

the Commit function. The transaction first locks all the tuples in

the writeSet (Lines 6–7). Before validating the readSet (Line 12),

it updates the readLV of tuples in the readSet one dimension at a

time (Lines 9–11). Each update happens atomically using compare-

and-swap instructions. This is necessary because the data item

might appear in the readSet of multiple transactions, and concurrent

updates of readLV might cause loss of data. The reason that the

readLV extension must occur before the validation is to enforce

write-after-read dependencies. To see a failure example, consider a

transaction T1 modifying the data after T2’s validation but before

T2s updates on readLV . Then, it is possible that T1 does not observe
the latest readLV and therefore fails to capture the write-after-read

dependency to T2. Note that updating readLV before the validation

might result in extra non-existing dependencies (i.e., LV s larger
than necessary) where the transaction aborts later in the validation

but has already updated the readLV of some data tuples. Such

aborts only affect performance but not correctness. The design of

log managers stays the same as in Alg. 2.

4.4 Extension: Multi-Versioning
We next discuss how Taurus works with MVCC. We assume the

recovery process also uses multi-versions. Otherwise, the DBMS

has to reorder the transactions either by changing already persis-

tent data or appending extra information. Concurrency control

algorithms based on logical timestamps allow physically late trans-

actions to access versions early and commit transactions logically

early. The DBMS, however, creates log records and flushes them in

the physical time order. Solving the decoupled order requires extra

design. Allowing multi-versions in the recovery process relaxes

the decoupling by allowing physically late transactions to commit

logically early in the recovery. This assumption frees Taurus from

tracking the WAR dependencies because the read operation can

still fetch the correct historic version even after the tuple has been

modified. Therefore, Taurus only needs to track WAW and RAW

dependencies. Different from Sec. 3.1, Taurus for MVCC only adds a

single metadata field for the data versions, the LSN Vector LV . Our
discussion is based on the MVCC scheme [25] used in Hekaton [9].

The algorithm adds three extra fields to the data version tuples,

namely, Begin Timestamp, End Timestamp, and a hash pointer.

Whenever a transaction reads a data version 𝑣 , the transaction

updates T.LV to be ElemWiseMax(T.LV, 𝑣 .LV) to catch RAW depen-

dencies. When a transaction updates the data by adding a new data

version 𝑣 after the old version 𝑢 during normal processing phase, it

first updates the timestamps as in MVCC, then it updates T.LV to

be ElemWiseMax(T.LV, 𝑢.LV), and 𝑣 .LV to be empty.

In the postprocessing phase, if the transaction T commits, before

it replaces its transaction ID with its end timestamp, it iterates

data versions in the writeSet. For a data version 𝑣 in the writeSet,
it replaces 𝑣 .LV to be T.LV. The log records of T contains T.LV and

the commit timestamp of T. The former identifies whether T should

recover and the recovery order, and the latter determines the visible

version when reading the data as well as the logical timestamp of

the new versions when writing the data.

During recovery, Alg. 3 and Alg. 4 are executed. Only the visible

version is returned for read operations. Whenever a write happens,

the transaction writes a new version with the commit timestamp.

Different from MVCC, transactions no longer acquire locks during

recovery because Taurus guarantees no conflicts will occur.Without

Taurus, the log records described in [25] contain only the payload

and the logical timestamps, enforcing a total order among trans-

actions. Taurus exploits the parallelism to recover non-conflicting

transactions in parallel.

5 Evaluation
We implemented Taurus in the DBx1000 in-memory DBMS [1]

to evaluate its performance. We include both the 2PL and OCC

variants of Taurus in the evaluation. We evaluate the DBMS on

three storage devices: (2) NVMe SSDs, (2) hard drives (HDDs), and

(3) Persistent Memory (PM) simulated by a RAM disk. The perfor-

mance profiles of these devices highlight different properties of the

logging algorithms. As the mainstream fast storage, NVMe SSDs

provide a high bandwidth, affording insights of the performance

in production. HDDs have limited bandwidth, which is better for

command logging. The cutting-edge PM largely eliminates disk

bandwidth restrictions and exposes CPU and memory overheads.
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We compare Taurus to the following protocols all in DBx1000:

No Logging: The DBMS has all logging functionalities disabled.

It does not incur any logging-related overhead and therefore serves

as a performance upper bound.

Serial Logging: This is our baseline implementation that uses a

single disk and supports both data logging and command logging.

For data logging, the DBMS saturates the 160 MB/s bandwidth.

With command logging, the DBMS generates a smaller log and its

performance is limited by the atomic increment of the central LSN.

Serial Logging with RAID-0 Setup: This is the same configu-

ration as Serial Logging, except that it uses a RAID-0 array across

the eight disks using Linux’s software RAID driver.

Plover: This a parallel data logging scheme that partitions log

records based on data accesses [44]. It uses per-log sequence num-

bers to enforce a total order among transactions. Each transaction

generates multiple log entities.

Silo-R: Lastly, we also implemented the parallel logging scheme

from Silo [35, 43]. Silo uses a variant OCC that commits transactions

in epochs. The DBMS logs transactions in batches that are processed

by multiple threads in parallel. Silo-R only supports data logging

because the system does not track write-after-read dependencies.

5.1 Workloads
We first describe the benchmarks used in the evaluation:

Yahoo! Cloud Serving Benchmark (YCSB): This benchmark

simulates the workload pattern of cloud-based OLTP systems [7].

In our experiments, we simulate a DBMS with a single table. Each

data row has 10 fields and each field contains 100 bytes. We evaluate

two databases with 10 GB and 500 GB of data. We build a single

index for the table. The access pattern of transactions visiting the

rows follows a Zipfian distribution; unless otherwise stated, we set

the distribution parameter to 0.6 to simulate moderate contention.

By default, each transaction accesses two tuples and each access

has a 50% chance to be a read operation and a 50% chance to be

a write operation. We will perform sensitivity studies regarding

these workload parameters in Sec. 5.6. The size of each transaction’s

command log record is smaller than that of its data log records.

TPC-C: This is the standard OLTP benchmark that simulates a

wholesale company operating on warehouses [34]. The database

has nine tables covering a variety of necessary information and

transactions are performing daily order-processing business. We

simulate two (Payment and New-Order) out of the five transaction

types in TPC-C as around 90% of the default TPC-C mix consists

of these two types of transactions. When Taurus is running in

command logging mode, each transaction log record consists of the

input parameters to the stored procedure. The workload is logically

partitioned by warehouses. We use 80 warehouses in the evaluation.

We evaluate the full TPC-C workload in Sec. 5.5.

The choices of the benchmarks provide a comprehensive evalua-

tion of Taurus and baselines. YCSB, TPC-C Payment, and TPC-C

New-Order represent short transactions with moderate contention,

short transactions with low contention, and long transactions.

5.2 Performances with NVMe SSDs
We run the DBMS on an Amazon EC2 i3en.metal instance with
two Intel Xeon 8175M CPUs (24 cores per CPU) with hyperthread-

ing (96 virtual cores in total). The server has eight NVMe SSDs.

Each device provides around 2 GB/s bandwidth and in total the

server has theoretically 16 GB/s I/O bandwidth. We run the DBMS

with at most 80 worker threads and 16 log manager threads. Every

disk contains two log files to better exploit the bandwidth.

Logging Performance: Our first experiment evaluates the run-

time performance of Taurus by measuring the throughput when

the number of worker threads changes. We test the logging pro-

tocols with YCSB-500G and TPC-C benchmarks. We measure the

throughput by the number of transactions committed by the worker

threads per second. We keep the 2PL and OCC results separate to

avoid comparisons based on the concurrency control algorithm

performance. We show the 2PL results in Fig. 5 and the OCC results

in Fig. 6. The x-axes are the number of worker threads (excluding

the log managers), and the y-axes are the execution throughput.

Fig. 5a presents the logging performance for the YCSB-500G

benchmark. Taurus with command logging scales linearly, while

Taurus with data logging plateaus after 48 threads because it is

bounded by the I/O of 16 dedicated writers. The serial command

baseline also reaches a high throughput due to the succinctness

of the command logging. It grows slower after 48 threads. This

is not because of the disk bandwidth because it achieves similar

performance with the RAID-0 disk array. It is instead because every

transaction that spans multiple threads increments the shared LSN;

this leads to excessive cache coherence traffic that inhibits scalabil-

ity [35]. Taurus command logging is more scalable as the number

of worker threads increases because each log manager maintains

a separate LSN. Serial data saturates the single disk’s bandwidth.

Similar to Taurus, Plover writes records across multiple files. For

every transaction, it generates a log record for each accessed par-

tition, and accesses the per-log LSN to generate a global LSN for

the transaction. The DBMS then uses this global LSN to update the

per-log sequence numbers. These updates are atomic to prevent

data races. Plover is limited by the contention of the local counters.

Taurus with command logging is up to 2.4× faster than Plover.

Fig. 5b shows the performance for the short and low-contended

Payment transactions. These results are similar to YCSB. All the

logging baselines incur a significant overhead compared to No

Logging. The gap between No Logging and Taurus reflects the

overheads discussed in Sec. 4.2. The LV maintenance in Taurus

only costs 1.6% of the running time. Taurus with command logging

has the best performance. Plover suffers from the increased data

accesses, causing the worker threads to compete for one of the few

latches on the local sequence numbers, essentially downgrading to

a single stream logging. Fig. 5c shows the comparison for the TPC-C

New-Order transactions. These transactions access a larger number

of tuples (∼30 tuples per invocation) than the previous workloads.

The overall throughput is lower, making it difficult for the DBMS

to hit the LSN allocation bottleneck. Therefore, serial command

logging scales well. The gap between serial command with RAID-0

and Taurus command corresponds to LV-related overheads. Taurus

with command logging shows advantages when the number of

workers is adequate. We project that the serial command logging
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Figure 5: Logging Performance (2PL) – Performance comparison on YCSB-500G, TPC-C Payment, and TPC-C New-Order on NVMe drives.
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Figure 6: Logging Performance (OCC) – Performance comparison on YCSB-500G, TPC-C Payment, and TPC-C New-Order on NVMe drives.
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Figure 7: Recovery Performance (2PL) – Performance comparison on YCSB-500G, TPC-C Payment, and TPC-C New-Order on NVMe drives.
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Figure 8: Recovery Performance (OCC) – Performance comparison on YCSB-500G, TPC-C Payment, and TPC-C New-Order on NVMe drives.

will plateau reaching the cache traffic limit when there are more

than 120 workers whereas Taurus should still scale. Similar to

Payment transactions, Plover is bounded by the contention.

Fig. 6 shows the comparison between the OCC variant of Taurus

and Silo-R. The No Logging baseline also uses the OCC algorithm to

keep comparison fair. For all the benchmarks we observe that both

Silo-R and Taurus data logging plateaus at a similar level, saturating

the disk bandwidth. Before they saturate the bandwidth, Silo-R per-

forms slightly better than Taurus because it does not need to track

LSN Vectors. However, Silo-R cannot track RAW dependencies, so it

is incompatible with command logging. Taurus command logging,

benefiting from the conciseness of the log records, outperforms

Silo-R in every benchmark, by up to 2.8×.
Recovery Performance:We next evaluate the DBMS’s recov-

ery time for all the protocols. We use the log files generated by 80

worker threads for better recovery parallelism. These files are large

enough for steady performance measurements and are stored in

uncompressed bytes across the disks with I/O caches cleaned.

Fig. 7a shows the recovery peformance on YCSB-500G. Plover

outperforms Taurus below 80 threads because it does not need

to resolve dependencies. Every Plover log file corresponds to a

partition that contains totally ordered records, which is sufficient

to recover transactions independently. Plover saturates the disk’s

16 GB/s bandwidth after 48 threads and plateaus. Taurus command

scales linearly and exceeds Plover at 80 threads. The serial baselines,

regardless of data or command logging, with a RAID-0 setup or

not, are limited by the total sequence order of transactions. Taurus

recovery is up to 42.6× faster than the serial baselines.

The recovery performance of TPC-C Payment is in Fig. 7b. Both

Plover and Taurus data logging hit the I/O bottleneck quickly, while

Taurus command logging scales linearly. Fig. 10f shows the com-

parison for TPC-C New-Order. Taurus command scales well and

outperforms Plover by up to 2.4×. The gap between Plover and

Taurus data logging corresponds to dependency resolution and the

resultingmemory overhead. Taurus command is slower than Taurus

data at 16 threads due to the cost of re-running the transactions.

Fig. 8 presents the comparisons for the OCC baselines. Similar

to Plover, Silo-R requires data logging and therefore falls behind

Taurus command logging in all three benchmarks. But Silo-R does

not require dependency resolution so it outperforms Taurus with

data logging when the number of transactions is large. Silo-R uses

latches when transactions update tuples to ensure that they only

perform updates with a higher version number. This overhead is

more significant when the transactions are long. Taurus command

logging outperforms Silo-R by up to 9.7×.

5.3 Performance with Hard Disks
To better understand the performance of baselines with limited

bandwidth, we performed the evaluation on anAmazon EC2 h1.16xlarge
machinewith eight HDDdrives. Each disk provides around 160MB/s

bandwidth and in total the server has 1.3 GB/s I/O bandwidth. Be-

cause the server only has 256 GB memory, we use YCSB-10G. The
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(e) TPC-C Payment Command
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(f) TPC-C New-Order Command

Figure 9: Data and Command Logging Performance – Performance comparison on YCSB-10G, TPC-C Payment, and TPC-C New-Order on HDDs.
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Figure 10: Data and Command Recovery Performance – Performance comparison on YCSB-10G, TPC-C Payment, and TPC-C New-Order on HDDs.

data logging and command logging baselines differ in absolute

throughput on HDDs, so we present them separately. Silo-R is

bound by the disk bandwidth often, and the difference in concur-

rency control does not contribute to the relative order. Therefore,

we display the results for Silo-R and 2PL baselines together.

Logging Performance: Fig. 9a shows the logging performance

of data logging baselines for YCSB-10G. We observe that serial

data saturates the bandwidth of a single disk quickly. Taurus Data

achieves 7.1× higher throughput than serial data as it writes to

eight disks in parallel. Serial data logging on RAID-0 delivers similar

performance since the bandwidth of the disk array is 8× greater.

Silo-R and Plover also write the log across eight disks uniformly,

thereby achieving similar performance to Taurus. In Figs. 9b and 9c,

we also observe this pattern for the TPC-C transactions except that

Plover plateaus because of the high contention.

Fig. 9d shows the command logging baselines for the YCSB bench-

mark. Serial command logging outperforms serial data logging, ben-

efiting from the smaller log record sizes. Starting from 16 threads,

its performance is limited by the bandwidth of a single disk. The

serial command baseline on a RAID array plateaus after 24 threads,

limited by the cache coherence traffic. Taurus with command log-

ging is 9.2× faster than Silo-R and Plover. Fig. 9e shows the DBMS’s

throughput for the TPC-C Payment transaction. Taurus plateaus

after 16 threads, limited by the disk bandwidth, achieving 5.2×
speedup over Silo-R. Serial command logging suffers from NUMA

issues between 16 threads and 48 threads as the log buffer resides on

a single socket. For the TPC-C New-Order workload in Fig. 9f, both

serial command logging on the RAID-0 array and Taurus command

logging have good scalability.

Recovery Performance: Fig. 10 presents the recovery perfor-

mance on HDDs. The serial baselines are again limited by the

transaction total order. For Taurus, we can see that the recovery

performance of data logging plateaus after the number of worker

threads exceeds 8. It is up to 1.7× faster than the serial data logging

on a disk array. Taurus data logging achieves similar throughput as

Silo-R, while Taurus command logging is up to 6.3× faster than Silo-
R for recovery. Plover parallels Silo-R except for Payment, where

the contention devolves Plover to single stream logging.

The peak performance of Taurus command logging and Taurus

data logging are 11.3× and 5.5× faster than serial baselines for

YCSB recovery. For TPC-C Payment in Fig. 10e, the DBMS achieves

its peak recovery performance using Taurus command logging

where it is 7.1× faster than the serial command logging baseline.

The performance of Taurus command logging decreases when the

number of workers increases beyond 24 because the parallelism is

fully exploited and more threads will only incur more contention.

For TPC-C New-Order, the performance ratios between Taurus

and the serial baselines are 17.5× and 6.7× for command logging (or

data logging lifted by disk arrays) and data logging (without disk

arrays), respectively. If the DBMS uses Taurus command logging

protocol instead of its data logging protocol, then it improves the

performance by 7.7×. This is up to 56.6× better than serial data

logging. Databases with limited bandwidth can benefit from Taurus

supporting command logging.

5.4 Performance with PM (RAM Disk)
Since emerging Persistent Memory (PM) has higher I/O bandwidth

than of SSDs and HDDs, we evaluated the performance of Taurus
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Figure 11: DRAM Performance – Performance comparison on DRAM

filesystems.
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Figure 12: TPC-C Full Mix Time Breakdown – Time cost breakdown

by different TPC-C transaction types.

on DRAM filesystems to simulate a PM environment. Every opera-

tion to this filesystem goes through the OS. This overhead is also

shared in the architecture with a real PM. The PM incurs a higher

latency (<1 us for 99.99%) and has a bandwidth 3 − 13× lower than

DRAM [39]. We conjecture that Taurus command logging would

perform relatively better than other baselines on a real PM because

the bandwidth might become the bottleneck.

The results on the DRAM filesystem are shown in Fig. 11. The

advantage of command logging over data logging is greatly reduced

when the bandwidth is sufficient. Taurus command logging scales

linearly, while the serial command logging is again restricted by

the contention of the single counter. All the parallel algorithms

scale well in recovery. Silo-R outperforms Taurus slightly because

it does not have to resolve dependencies during recovery. We can

infer that Taurus does not incur observable overhead that would

preclude it from a PM-based DBMS.

5.5 TPC-C Full Mix
To demonstrate the generality of Taurus and to evaluate Taurus

in a more realistic DBMS OLTP workload, we added the support

for range scans, row insertions, and row deletions. We implement

all the types of transactions from the TPC-C benchmark with the

2PL concurrency control algorithm. The full TPC-C mix consists

of 45% New-Order, 43% Payment, 4% Order-Status, 4% Delivery,

and 4% Stock-Level. Among them, Order-Status and Stock-Level

are read-only transactions, and therefore Taurus does not create

log records for them. Figure 16 shows the logging performance and

recovery performance. We observe that, starting from 32 threads,

the logging algorithms are limited by the workload parallelism

since the no logging baseline plateaus at a similar level. Compared

to the no logging baseline, the overhead caused by Taurus is around

11.7%. In recovery, the serial algorithms are again limited by the

loss of parallelism. Taurus command logging outperforms the serial

baselines by 12.8×. Fig. 12 shows the time breakdown among all

the five TPC-C transactions. Although Stock-Level transactions are

read-only, they take a significant proportion of the total running

time. This proportion increases with the number of threads because

Stock-Level transactions perform massive read operations.
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Figure 13: Contention – Zipfian Theta in YCSB.
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Figure 14: Transaction Impact –We vary the number of tuples per trans-

action touches from 2 to 2000.
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overhead for Taurus Data Logging.

5.6 Sensitivity Study
In this section we show that Taurus robustly provides relatively

good performance even when various factors change.

Contention:Weuse the YCSB-10G benchmark on the h1.16xlarge
server to study how the contention level impacts performance. We

control the contention level by adjusting the 𝜃 parameter of the Zip-

fian distribution. A higher 𝜃 value corresponds to more contention.

We include a baseline (No Logging) to provide an upper bound at

different contention levels. Every baseline uses 56 worker threads.

Fig. 13 shows the DBMS’s throughput measurements when vary-

ing the Zipfian 𝜃 parameter for the logging and recovery procedures.

The gap between Taurus and No Logging is insensitive to data con-

tention. When 𝜃 is greater than 1.0, the performance of all logging

schemes decreases due to the reduced parallelism in the workload.

Fig. 13b shows the recovery measurements when the contention

level increases. These results indicate different trends for serial algo-

rithms and Taurus. For Taurus, the performance drops when 𝜃 goes

beyond 0.8 because of the inter-log dependency problem (Sec. 3.5):

dependencies between transactions spanning different logs incur

extra latency that hurts performance at high contention. In contrast,

serial algorithms have low throughput at low contention, but their

throughput increases with higher 𝜃 . This is because higher data

skew makes the working set fit in on-chip caches, resulting in a

higher cache hit rate and thus better performance. Since the recov-

ery proceeds sequentially, contention does not introduce data races,

so it does not harm the performance of the serial baselines. When

the contention level is high (i.e., 𝜃 > 1), we run Taurus with serial

recovery to avoid the high latency between dependent transactions.

As shown in Fig. 13b, this configuration enables Taurus to achieve

good performance under high contention.
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Figure 16: TPC-C Full Mix Performance (2PL) – Performance compar-

ison and scalability on TPC-C Full Mix.
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Figure 17: Vectorization – The LV Update overhead (in nanosec).

Transaction Impact We evaluate how Taurus performs when

every transaction touches a large number of tuples. We ran YCSB-

500G on anAmazon EC2 i3en.metal instance and vary the number

of tuples every transaction accesses from 2 to 2,000. Fig. 14 shows

the throughput is inversely proportional with the transaction length.

Fig. 15 shows the time breakdown of Taurus data logging for YCSB-

10G. We can observe that when the number of tuples accessed

per transaction increases from 2 to 200, the LV update overhead

stays fixed at 0.6%, while the tuple tracking overhead of the 2PL

implementation increases from 10.7% to 72.8%. With the NO_WAIT
policy [42] to prevent deadlocks, the abort rate grows quickly with

the number of tuples accessed. At 2000 tuples per transaction, the

abort rate is high, causing the overhead distribution to change

greatly because overheads grow differently. Some overheads like

writing the log buffer only occur after a transaction finishes, some

overheads like tuple tracking occurs linearly in the number of tu-

ples accessed, and some overheads like getting the lock are more

sensitive to the growing contention. At 2,000 tuples per transaction,

the LV updating overhead is around 2.1%.

Number of Log Files We also evaluate the effectiveness of the

SIMD optimizations. We run Taurus command logging with SIMD

on and off against the YCSB-10G workload with 64 threads. The

results are shown in Fig. 17. The x-axis is the number of log files

Taurus used, and the y-axis represents the time (in nanoseconds)

consumed in the LV operations and updates per transaction. The

gap between the two baselines increases with the number of log

files. Turning on SIMD reduces the overhead by up to 89.5%.

6 Related Work
Early-lock-release (ELR): ELR [8, 13, 23, 32] allows a transaction

to release locks before flushing to log files. Controlled Lock Vio-

lation [12] is similar. It permits the acquisition of locks if the lock

holder has appended its log record into the buffer. Taurus includes

ELR in its design for high performance.

Single-Storage Logging Algorithms:ARIES [29] has been the
gold standard in database logging and has beenwidely implemented.

However, ARIES does not scale well on multicore processors, as

many recent works have observed [16, 35, 37, 43]. C-ARIES [33]

was proposed to support parallel recovery, and CTR [2] improves

the recovery time by using multi-versioned concurrency control

and aggressive checkpointing, but the contention caused by the

original ARIES logging remains.

Aether [16], ELEDA [18], and Border-Collie [20] have opti-

mized ARIES by reducing the length of critical sections during

logging. But these protocols still use a single storage device and suf-

fer from the centralized LSN bottleneck. TwinBuf [28] uses two log

buffers to support parallel buffer filling. Besides the single storage

bottleneck, TwinBuf relies on global timestamps to order the log

records. Aether, ELEDA, Border-Collie, and TwinBuf are similar

to the serial data baseline we evaluated in Sec. 5.

Single-Stream Parallel Logging Algorithms: P-WAL [30] re-

alizes parallel logging but relies on a single LSN counter to order

transactions, which will incur scalability issues. Besides, the en-

forced order causes serial recovery. Adaptive logging [40] achieves

parallel recovery for command logging in a distributed partitioned

database. Different from Taurus, it infers dependency information

from the transactions’ read/write set. This approach requires that

the DBMS maintain each transaction’s start and end times to detect

dependencies. PACMAN [38] enables parallel command logging

recovery by using program analysis techniques to determine what

computation can be performed in parallel, while Taurus does not

require any program analysis and is simpler to implement. Also,

Taurus supports both parallel logging and recovery, while [38] only

supports parallel recovery.

Logging Algorithms for Modern Hardware: Fast recovery
based on non-volatile memory (NVM) is an active research area [3,

4, 6, 10, 15, 21, 22, 36]. This line of work leverages the high read-

/write bandwidth and byte-addressable nature of NVM to improve

the logging and recovery performance. Taurus, in contrast, can be

applied to both traditional HDD/SSD devices and the new NVM

devices. Since NVM devices are randomly accessible, Taurus can

work with multiple log files per NVM device.

Dependency-TrackingAlgorithms: Similar to Taurus, [8] also

uses dependency tracking to log to multiple log files, but does not

log dependency information to the log records. This leads to two

shortcomings: (1) transactions with dependencies have to be logged

in order, which leads to significant performance overhead when

there are many inter-log dependencies; (2) they do not support

parallel recovery. DistDGCC [41] is also coupled with a depen-

dency tracking logging scheme, but it logs fine-grained dependency

graphs . A transaction visiting lots of items results in a huge log

record, which may potentially incur scalability issues. In contrast,

Taurus only logs LSN Vectors to enforce dependencies. In [17],

Johnson et al. proposed a parallel logging scheme that relies on a

single-dimension Lamport clock to achieve a global total order of

transactions. Taurus uses multi-dimension vector clocks and only

preserves partial orders between dependent transactions, enabling

moderate parallelism in recovery. Enforcing a total order can accel-

erate the recovery if the inherent parallelism is significantly low,

where a serial recovery is expected to outperform parallel recovery

because of the extra inter-thread communications. Taurus provides

a serial recovery fallback to fit low-parallelism workloads.
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Kuafu [14] presents an algorithm for replaying transactions in

parallel on a secondary database. Similar to Taurus, Kuafu also

encodes dependency information in the log to replay transactions

in parallel. Kuafu supports data logging but not command logging,

and it maintains the whole dependency graph while Taurus main-

tains only minimal dependency information. Therefore, Kuafu will

suffer from a bandwidth bottleneck if applied to our setting.

Multi-Partition Logging: Bernstein et al. present a logging al-

gorithm [5] for multi-partition databases. They distinguish transac-

tions that only visit a single partition from those that visit multiple

partitions. These single-partition transactions are sent to the log

file corresponding to the partition (called a single-partition log)

as no cross-partition dependencies will occur. All the transactions

that visit multiple partitions are sent to a single log file (called

the multi-partition log). Their design also uses vector clocks—two-

dimensional vector clocks are maintained by each log to keep a

partial order between the multi-partition log and the correspond-

ing single-partition log. Given a partitioning scheme, picking out

transactions without cross-log dependencies is orthogonal to the

problem we solve here; Taurus can be plugged in to better deal with

multi-partition transactions by enabling multiple-stream logging.

7 Conclusion
We presented Taurus, a lightweight parallel logging scheme for

high-throughput main memory DBMSs. It is designed to support

not only data logging but also command logging, and is compatible

with multiple concurrency control algorithms. It is both efficient

and scalable compared to state-of-the-art logging algorithms.
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A Proof of Correctness & Liveness
In this section, we prove both the correctness and liveness of the

Taurus protocol. Specifically, we prove that (1) data dependencies

are correctly enforced during recovery; (2) all and only commit-

ted transactions will be recovered; and (3) the protocol will not

deadlock or livelock during forward execution and recovery if the

concurrency control protocol does not deadlock or livelock. We use

T.LSN to denote T’s position in the corresponding log.

Theorem 1. [Correctness of Recovery Order] Data dependen-
cies are correctly enforced during recovery: for any transaction T2
that depends on T1, T2 is recovered after T1.

Proof. We prove the theorem in two steps. First, we prove that

for any transaction T2 that depends on T1, Taurus enforces that
T2.LV[𝑖] ≥ T1.LSN, where T1 logs to the 𝑖-th log manager (i.e., 𝐿𝑖 ).

Then, we prove that if T2.LV[𝑖] ≥ T1.LSN, T2 will be recovered

after T1.
Step 1:W.l.o.g., we consider a RAW dependency where T1writes

to tuple𝐴 and then T2 reads𝐴 (proofs for write-after-read or write-

after-write dependencies are similar). According to Lines 10, 11

and 16 in Alg. 1, 𝐴.writeLV[𝑖] = T1.LSN when T1 releases its write
lock on𝐴. When T2 reads𝐴 at a later time, Line 3 in Alg. 1 enforces

that T2.LV[𝑖] ≥ 𝐴.writeLV[𝑖]. Since writeLV can only monotoni-

cally increase, we have T2.LV[𝑖] ≥ T1.LSN.
Step 2: During recovery, T2 can be recovered only if T2.LV ≤

RLV, which means T2.LV[𝑖] ≤ RLV[𝑖] (Line 2 in Alg. 4). Given

T1.LSN ≤ T2.LV[𝑖], the recovery of T2 requires T1.LSN ≤ RLV[𝑖].
According to Lines 4–7 in Alg. 4, all transactions in 𝐿𝑖 with LSNs

no greater than RLV [𝑖] have been recovered. Therefore, T1.LSN ≤
RLV[𝑖] means T1 is already recovered. The recovery of T2 requires
the recovery of T1. □

Theorem 2. [Correctness of Completeness] All and only com-
mitted transactions will be recovered.

Proof. Given that Taurus in-order commits transactions that

map to the same log manager (Line 18 in Alg. 1), we must find the

last committed transaction T and prove that T and all transactions

before T are recovered and no transaction after T is recovered.

Based on Line 1 in Alg. 3, the transaction T that we are looking for
is the transaction right before the first transaction T′ that violates
T′.LV ≤ ELV. If no such T′ exists, we choose T as the last transaction
in the log file. Given this, we prove the following three properties:

Property #1: T is the last committed transaction before the

crash. Since T is the transaction right before the first transaction

T′ violating T′.LV ≤ ELV, all transactions before T′ satisfy this

inequality. Therefore, before the crash, for all of them we have

T.LV ≤ PLV. By Line 18 in Alg. 1, these transactions have committed

before the crash. We then prove that T′ did not commit before the

crash. There are two cases to consider. If T′ does not exist in the log

file, then T′ was not persistent and thus never committed before

the crash. Otherwise, T′ exists but T′.LV > ELV. This means during

forward processing, we have T′.LV > PLV, indicating that T′ never
committed before the crash.

Property #2: All transactions before T′ will be recovered. Dur-
ing recovery, T and transactions before T form a directed depen-

dency graph where each element in an LV indicates an edge in the

…

T2
…

Log 1

T1

…

T3
T4
…

Log 2

…

…

Figure 18: A Hypothetical Deadlock Situation – The dependencies of

transactions form a cycle.

graph. Later, in Theorem 4, we prove that the dependency graph is

acyclic, which means that each transaction will be recovered.

Property #3: No transaction after T will be recovered. By Line 1

in Alg. 3, all transactions after T are ignored and will not be recov-

ered. □

Theorem 3. [Liveness in Forward Processing] The protocol
will not deadlock or livelock during forward processing if the concur-
rency control protocol does not deadlock or livelock.

Proof. Assuming that no thread will be indefinitely suspended,

we show that the system will eventually make progress (e.g., com-

mitting a transaction). We prove this in three parts:

First, if there are transactions in the log buffer, they will even-

tually be flushed to disks. The only possibility that data in the

log buffer is not flushed is because readyLSN is throttled by al-
locatedLSN (Line 4 in Alg. 2). This throttling can happen only if

𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐿𝑆𝑁 [ 𝑗] ≥ 𝑓 𝑖𝑙𝑙𝑒𝑑𝐿𝑆𝑁 [ 𝑗] which means a transaction is in

the middle of filling a log record. This process, however, completes

in a short period of time, since all the operations between Lines 20

and 23 in Alg. 1 are non-blocking.

Second, active transactions will eventually be written to the log

buffer. Assuming the concurrency control algorithm does not incur

deadlocks/livelocks, the logic in Alg. 1 is combinational and non-

blocking, and the conditional statements are independent from the

concurrency control algorithm. Since a log buffer will finally flush,

it will contain space for an active transaction to write to.

Finally, an active transactionwill eventually commit assuming no

system failure. Since transactions in each log buffer will eventually

be flushed, for each transaction T, PLV will exceed T.LV. This will
also be true for transactions in the same log manager with smaller

LSNs. Following Line 18 in Alg. 1, this means T will eventually

commit. □

Theorem 4. [Liveness in Recovery] The protocol will not dead-
lock or livelock during the recovery process.

Proof. The recovery follows a directed dependency graphwhere

each node is a transaction and each edge corresponds to a value in

LV . Now, we prove that the graph is acyclic.

Fig. 18 shows a hypothetical deadlock situation that may occur

if Taurus is incorrectly designed. A cycle is formed between the

four transactions: T1← T2 ← T3 ← T4 ← T1. Although all the

transactions are in the pools, none of them is able to make any

forward progress. Note that, the correctness of the concurrency

control algorithm is not sufficient to rule out this situation because

Taurus adds extra dependencies while logging.

To prove that no dependency cycles exist in Taurus, we define a

commit time, ct(T), to each transaction T. We show that every edge
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in the graph follows the order of commit time, namely, an edge

T2→T1 exists⇒ct(T2) > ct(T1). Since time specifies a total order,

proving this inequality means cycles are impossible. In particular,

we choose the time when T’s log record is allocated in the log buffer

(i.e., right after atomically incrementing LSN in Alg. 1, Line 21) as

its commit time ct(T).
As we proved in Theorem 1, T2 depending on T1 mapped to log

manager 𝑖 ⇒ T2.LV[𝑖] ≥ T1.LSN. It is clear that for transactions
mapping to the same log manager, their ct order is the same as their

LSN order; thereforect(T’) > ct(T1), where T′ is the transaction on

𝐿𝑖 with T′.𝐿𝑆𝑁 = T2.𝐿𝑉 [𝑖]. According to Line 11 in Alg. 1, a tuple

may have its readLV [𝑖] or writeLV [𝑖] equal a particular LSN only

after the log record has been written to the log buffer at that LSN.
T2.LV [𝑖] must be copied from a tuple and thus must occur at a

even later time, so ct(T2) > ct(T′) > ct(T1). Therefore, if T2.LV [𝑖] ≥
T1.LSN, we have ct(T2) > ct(T1) proving the theorem. □

B Correctness Proof of LV Compression
We next prove that the theorems in Appendix A still hold with the

two optimizations discussed above. Both optimizations share the

same basic idea: if a LV is too small, it suffices to store an upper

bound of it, which can be shared by multiple LV s. Therefore, for a
transaction T with LV before the optimizations and LV′ after the
optimizations, we must have LV′ ≥ LV. The optimizations will

not affect the correctness of Theorem 1 since it does not violate

existing dependencies. Theorem 2 is also not affected since LV′ will
never exceed PLV and thus ELV as well. Theorem 3 is not affected

by the second optimization; for the first optimization, it will not

block the asynchronous commit of transactions since an increased

LV of a transaction is not higher than the current PLV . Finally,
Theorem 4 is not as straightforward — since the optimizations make

transactions depend on more transactions, it may potentially create

cycles in the dependency graph. In the following, we will prove

that although it increases LV s, it only increases them to the point

that the dependencies still follow the real-time order. Therefore,

following the proof of Theorem 4, no cycle may exist.

For the first optimization, the DBMS may copy the tuple’s LV
from PLV . For the second optimization, the DBMS increases some

dimensions of a log record’s LV to the corresponding values of

the PLV . In both cases, the log record of a transaction T will have

an LV no greater than the current PLV when the DBMS writes

T’s log records to the buffer. Therefore, for each T′ in Log i s.t.
T′.𝐿𝑆𝑁 ≤ T.LV[𝑖], we still have 𝑐𝑡 (T) > 𝑐𝑡 (T′).

As an intuition, the increment of a tuple’s LV is equivalent to

having a dummy transaction that reads a tuple and later writes the

same values back to it. Similarly, the increment of a transaction’s

LV is equivalent to having the transaction visit a dummy tuple

with PLV as its LV . Inserting such dummy transactions or visiting

dummy tuples only causes LV s to artificially increase in the same

way. These operations do not affect the correctness of the database,

because the same tuple accesses and transaction interleavings form

valid runtime events for the un-optimized Taurus described in Sec. 3,

and it can handle them by the proofs in Appendix A.
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Figure 19: LV Compression – (a) PLV Flush Frequency (𝜌) vs. the average

size of metadata in a high-contention workload; (b) PLV Flush Frequency

(𝜌) vs. the recovery throughput; and (c) lock table eviction threshold vs. the

average bucket volume.

C Evaluation of the LV Compression
We next evaluate the scalability optimizations that we presented in

Sec. 4.1 with a high-contention workload. We use a single byte to

denote the number of elements in the compressedLV, and a 64-bit

integer for each element. Without compression, the LV would take

64 bytes to store the eight 64-bit integers. We test the effect of the

compression with long YCSB transactions (each visiting 16 rows).

Wemeasure how the amount of metadata is affected when adjusting

the flush frequency. We vary the PLV Flush Frequency 𝜌 through a

large range. The DBMS writes a PLV anchor for every 𝜌 bytes of

the log. The DBMS tracks both the LSN Vectors of transactions and

the PLV s when computing the metadata size.

From Fig. 19a, we observe that even for a high-contention work-

load, when we set 𝜌 appropriately, on average the DBMS only has

to write 3.5 bytes of metadata per log record for Taurus data log-

ging, and 9.1 bytes per log record for Taurus command logging.

When 𝜌 is small, the average metadata size can be significant be-

cause the DBMS flushes too many PLVs, causing extra overhead

amortized on each record. As PLV Flush Frequency grows beyond

10
6
, the size of the metadata increases and finally reaches a steady

value. The Taurus data logging curve is “right-shifted” compared

to that of Taurus command logging because a data logging record

is about 26× larger than a command logging record. Therefore, the

same 𝜌 results in more frequent PLV flushes for command logging

than data logging. We see in Fig. 19b that a larger 𝜌 tends to bring
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better recovery performance
1
because the PLV s are flushed less

frequently, resulting in fewer artificial dependencies. This is not

observed in Taurus data logging as the recovery is bounded by the

I/O bandwidth.

We also examine how the DBMS’s lock table eviction thresh-

old 𝛿 affects the average volume of the lock table buckets. The

results in Fig. 19c indicate that a larger 𝛿 threshold results in a

larger lock table. Qualitatively, when 𝛿 is large, we expect Taurus

to perform better during the recovery because the DBMS enforces

fewer extra dependencies. We contend that such a difference is only

possible when the recovery manager is not the bottleneck, and the

underlying workload has a moderate level of contention.

1
To fully exploit the recovery parallelism, we use more threads in recovery

than in logging: 56 workers in recovery and 8 workers in logging.
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