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Accelerating Robot Dynamics Gradients
on a CPU, GPU, and FPGA

Brian Plancher1, Sabrina M. Neuman1, Thomas Bourgeat2,
Scott Kuindersma1,3, Srinivas Devadas2, Vijay Janapa Reddi1

Abstract—Computing the gradient of rigid body dynamics
is a central operation in many state-of-the-art planning and
control algorithms in robotics. Parallel computing platforms
such as GPUs and FPGAs can offer performance gains for
algorithms with hardware-compatible computational structures.
In this paper, we detail the designs of three faster than state-of-
the-art implementations of the gradient of rigid body dynamics
on a CPU, GPU, and FPGA. Our optimized FPGA and GPU
implementations provide as much as a 3.0x end-to-end speedup
over our optimized CPU implementation by refactoring the
algorithm to exploit its computational features, e.g., parallelism at
different granularities. We also find that the relative performance
across hardware platforms depends on the number of parallel
gradient evaluations required.

Index Terms—Computer Architecture for Robotics and Au-
tomation, Hardware-Software Integration in Robotics, Dynamics

I. INTRODUCTION

SPATIAL algebra-based approaches to rigid body dynam-
ics [1] have become a central tool for simulating and

controlling robots due their ability to efficiently and exactly
compute dynamic quantities and their gradients [2], [3], [4],
[5]. Despite being highly optimized, existing implementations
of these approaches do not take advantage of opportunities
for parallelism present in the algorithm, limiting their perfor-
mance [6], [7], [8]. This is critical because computing the
gradient of rigid body dynamics accounts for 30% to 90%
of the total computational time of typical nonlinear model-
predictive control (MPC) implementations [9], [10], [7], [11].

Furthermore, these algorithms are typically run on off-the-
shelf CPUs, but the performance of CPU hardware has been
limited by thermal dissipation, enforcing a utilization wall that
restricts the performance a single chip can deliver [12], [13].
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Alternative computing platforms such as GPUs and FPGAs
provide opportunities for higher performance and throughput
by better exploiting parallelism.

In this work, we describe and compare the design of three
accelerated implementations of the gradient of rigid body
dynamics targeting three different computing platforms: a
CPU, a GPU, and an FPGA. Each platform requires different
design trade-offs (e.g., how to exploit parallelism), as specific
algorithmic features map better or worse to each platform.

Our contribution is an optimized implementation of the
gradient of rigid body dynamics for the GPU with a 6.5x
speedup over an existing state-of-the-art GPU implementation,
and end-to-end speedups of up to 3.0x over an optimized
CPU implementation. We show that changing the problem
partitioning to target the specific hardware platform can im-
prove performance, enabling us to achieve a 2.8x speedup
between our own initial and final GPU designs. We compare
our final GPU design to an optimized FPGA implementation
and find that while both outperform the CPU, the application
context in which the kernel is run impacts which hardware
platform performs best. In our experiments, at low numbers
of parallel computations the FPGA outperforms the GPU,
while the GPU scales better to higher numbers of parallel
computations. We provide source code accompanying this
work at http://bit.ly/fast-rbd-grad.

II. RELATED WORK

Prior work on GPUs implemented sample-based motion
planning largely through Monte Carlo roll-outs [14], [15],
[16], [17], [18], [19], [20], while FPGAs have predominantly
been used for fast mesh and voxel-based collision detec-
tion [21], [22], [23], [24], [25], [26], [27]. For dynamic
trajectory optimization, several recent efforts leveraging multi-
core CPUs and GPUs indicate that computational benefits from
parallelism are possible [28], [2], [3], [29], [11], [30].

However, current state-of-the-art rigid body dynamics pack-
ages are not optimized for GPUs [11], and no packages
exist for FPGAs. Prior examples of FPGA and accelerator
implementations of MPC are either limited to linear dynamics
or target cars, drones, and other lower degrees of freedom
systems with only one or two rigid bodies [31], [32], [33].

GPUs and other parallel architectures have historically been
used to accelerate gradient computations through numerical
differentiation [34], [35]. However, these methods have been
shown to have less favorable numerical properties when
used for nonlinear MPC applications. By contrast, automatic

http://bit.ly/fast-rbd-grad
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differentiation of differentiable rigid body physics engines
has shown promise for real-time nonlinear MPC use on the
CPU [36]. Existing differentiable physics implementations
for the GPU, however, were designed for machine learning,
computer graphics, or soft robotics [37], [38], [39], [40],
[41], [42]. As such, they are optimized for simulating large
numbers of interacting bodies through contact using maximal
coordinate and particle-based approaches. These approaches
have been shown to produce less accurate solutions when
used for rigid body robotics applications over longer time step
durations [43].

III. RIGID BODY DYNAMICS AND ITS GRADIENTS

In this section we provide background on rigid body dy-
namics and its gradients, describing the algorithm and its key
features.

A. Algorithm Overview

State-of-the-art recursive formulations of rigid body dy-
namics are described using spatial algebra [1]. These formu-
lations operate in minimal coordinates and compute the joint
acceleration q̈ ∈ Rn as a function of the joint position q ∈ Rn,
velocity q̇ ∈ Rn, and input torque τ ∈ Rm. These formula-
tions leverage either the Articulated Body Algorithm (ABA)
or a combination of the Composite Rigid Body Algorithm
(CRBA) and the Recursive Newton-Euler Algorithm (RNEA),
as follows:

q̈ = ABA(q, q̇, τ, fext)

q̈ =M−1(τ − c) where M = CRBA(q)

c = RNEA(q, q̇, 0, fext).

(1)

The RNEA is shown in Algorithm 1.
Spatial algebra represents quantities as operations over

vectors in R6 and matrices in R6×6, defined in the frame of
each rigid body. These frames are numbered i = 1 to n such
that each body’s parent λi is a lower number. Transformations
of quantities from frame λi to i are denoted as iXλi and can be
constructed from the rotation and transformation between the
two coordinate frames, which themselves are functions of the
joint position qi between those frames and constants derived
from the robot’s topology. The mass distribution of each link
is denoted by its spatial inertia Ii. Si is a joint-dependent term
denoting in which directions a joint can move (and is often a
constant). vi, ai, fi represent the spatial velocity, acceleration,
and force of each rigid body.

Finally, spatial algebra uses spatial cross product operators
× and ×∗, in which a vector is re-ordered into a matrix,
and then a standard matrix multiplication is performed. The
reordering is shown in Equation 2 for a vector v ∈ R6:

v× =


0 −v[2] v[1] 0 0 0
v[2] 0 −v[0] 0 0 0
−v[1] v[0] 0 0 0 0
0 −v[5] v[4] 0 −v[2] v[1]
v[5] 0 −v[3] v[2] 0 −v[0]
−v[4] v[3] 0 −v[1] v[0] 0


v×∗ = −v ×T .

(2)

Algorithm 1 RNEA(q, q̇, q̈, fext) → c

1: v0 = 0, a0 = gravity
2: for link i = 1 : n do
3: Compute iXλi , Si, Ii

4: vi =
iXλivλi + Siq̇i

5: ai =
iXλiaλi + Siq̈i + vi × Siq̇i

6: fi = Iiai + vi ×∗ Iivi − f ext
i

7: for link i = n : 1 do
8: ci = STi fi

9: fλi += iXT
λi
fi

Algorithm 2 ∇RNEA(q̇, v, a, f,X, S, I) → ∂c/∂u

1: for link i = 1 : N do

2: ∂vi
∂u = iXλi

∂vλi
∂u +


(
iXλivλi

)
× Si u ≡ q

Si u ≡ q̇

3: ∂ai
∂u = iXλi

∂aλi
∂u +

∂vλi
∂u ×Siq̇i+


(
iXλiaλi

)
× Si

vi × Si
4: ∂fi

∂u = Ii
∂ai
∂u + ∂vi

∂u ×
∗ Iivi + vi ×∗ Ii ∂vi∂u

5: for link i = N : 1 do
6: ∂ci

∂u = STi
∂fi
∂u

7:
∂fλi
∂u += iXT

λi
∂fi
∂u + iXT

λi
(Si ×∗ fi)

Algorithm 3 ∇Dynamics(q, q̇, q̈, fext) → ∂q̈/∂u

1: v′, a′, f ′, X, S, I ← RNEA(q, q̇, q̈, fext)

2: ∂c′/∂u = ∇RNEA(q̇, v′, a′, f ′, X, S, I)

3: ∂q̈/∂u = −M−1∂c′/∂u

Previous work showed that by using the q̈ = M−1(τ − c)
approach and applying insightful linear algebra simplifications,
the computation of the gradient of robot dynamics can be
greatly accelerated on a CPU [7]. The results of that work
include simplified analytical derivatives of the RNEA shown
in Algorithm 2 (where u represents either q or q̇), and a sim-
plification of the overall gradient computation to a three step
process shown in Algorithm 3. This process first computes the
values v′, a′, f ′, X, S, I by running the RNEA (Algorithm 1)
with q̈ used as an input (instead of 0 as shown in Equation 1).
It then uses those values as inputs to the simplified analytical
derivatives of the RNEA (Algorithm 2), and then transforms
the resulting gradient, ∂c′/∂u, into the final output ∂q̈/∂u by
multiplying it by −M−1. Our implementations are based on
this approach.1

B. Key Algorithmic Features

In order to design accelerated implementations of the
gradient of rigid body dynamics for use with nonlinear MPC,
it is important to identify its key algorithmic features. These
structural properties of the algorithm interact and impact the

1In this work we do not focus on the computation of M−1 as this can be
cached from a previous step in many nonlinear MPC implementations.
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computation differently on each hardware platform, as will be
discussed in Section IV.

Coarse-Grained Parallelism: Many modern nonlinear
MPC implementations have a step that requires tens to hun-
dreds of independent computations of the gradient of rigid
body dynamics [44], [45], [46], [11], [47], offering parallelism
across these long-running, independent computations.

Fine-Grained Parallelism: The dynamics gradient algo-
rithm contains opportunities for additional shorter-duration
parallelism between each column j of the computation of
∂c′/∂uj , and also in low-level mathematical operations, e.g.,
between the many independent dot-product operations within
a single matrix-vector multiplication.

Structured Sparsity: The underlying matrices used
throughout the algorithm exhibit sparsity patterns that can
be derived from the robot’s topology. For example, robots
with only revolute joints can be described such that all
Si = [0, 0, 1, 0, 0, 0]T . In this way, all computations that are
right-multiplied by Si can be reduced to only computing and
extracting the third column (or value). There are also op-
portunities to exploit structured sparsity in the transformation
matrices and cross product matrices as shown in Equation 2.

Data Access Patterns: The gradient of rigid body dynamics
exhibits regular access patterns through its ordered loops (as-
suming the local variables for each link j are stored regularly
in memory). This enables quick and easy computations of
memory address locations, batching of loads and stores, and
even “pre-fetching” of anticipated memory loads in advance.
However, the cross product operations are reorderings, leading
to irregular memory access patterns.

Sequential Dependencies: Throughout the dynamics gra-
dient algorithm, local variables have references to parent links
whose values are computed in previous loop iterations.

Working Set Size: The dynamics gradient algorithm has a
relatively small working set. It most frequently accesses only a
few local variables between loop iterations, and a set of small
matrices, in particular, Ii and iXλi ∈ R6×6.

I/O Overhead: Depending on the hardware partitioning of
the algorithm, the gradient of rigid body dynamics can require
that a substantial amount of input and output (I/O) data is sent
to and received from the GPU or FPGA coprocessor.

IV. CPU, GPU, AND FPGA DESIGNS

This section describes the designs of our optimized CPU,
GPU, and FPGA implementations of the gradient of rigid
body dynamics for use with MPC. In these designs we ad-
vantageously mapped the algorithmic features of the dynamics
gradient algorithm, presented in Section III-B, to each hard-
ware platform. Table I offers qualitative assessments of how
well these features can be exploited by the different hardware
platforms, which informed which advantageous features we
leveraged, or disadvantageous bottlenecks we mitigated, in
each implementation.

A. CPU Design

Our CPU implementation is based on Algorithm 2. In order
to efficiently balance the coarse-grained parallelism exposed

TABLE I
ALGORITHMIC FEATURES OF THE GRADIENT OF RIGID BODY DYNAMICS

AND QUALITATIVE ASSESSMENTS OF THEIR SUITABILITY FOR DIFFERENT
TARGET HARDWARE PLATFORMS.

Algorithmic Features CPU GPU FPGA

Coarse-Grained Parallelism moderate excellent moderate
Fine-Grained Parallelism poor moderate excellent

Structured Sparsity good moderate excellent
Irregular Data Patterns moderate poor excellent
Sequential Dependencies good poor good
Small Working Set Size good moderate excellent
I/O Overhead excellent poor poor

by tens to hundreds of computations of the dynamics gradient
across a handful of processor cores, each core must work
through several computations sequentially.

Efficient threading implementations can have a large impact
on the final design. We designed a custom threading wrapper
to enable the reuse of persistent threads leading to as much as
a 1.9x reduction in end-to-end computation time as compared
to continuously launching and joining threads.

We used the Eigen library [48] to vectorize many linear
algebra operations, taking advantage of some limited fine-
grained parallelism by leveraging the CPU’s modest-width
vector operations.

The current fastest CPU forward dynamics package, RobCo-
Gen, exploits structured sparsity to increase performance [6],
[8]. Building on this approach, we wrote custom functions to
exploit the structured sparsity in the dynamics gradient using
explicit loop unrolling and zero-skipping.

While this approach creates irregular data access patterns,
this is not a problem for the CPU, as the values are small
enough to fit in the CPU’s cache hierarchy. The sequential
dependencies and small working sets are also handled well
by the CPU’s fast clock rate, large pipeline, and sophisticated
memory hierarchy. With all operations occurring on the CPU,
there is no I/O overhead or partitioning of the algorithm across
different hardware platforms.

B. GPU Design

As compared to a CPU, a GPU is a much larger set
of very simple processors, optimized specifically for parallel
computations with identical instructions over large working
sets of data (e.g., large matrix-matrix multiplication). For
maximal performance, the GPU requires groups of threads
within each thread block to compute the same operation on
memory accessed via regular patterns. As such, it is highly
optimized for some types of native parallelism present in our
application, but is inefficient on others.

As noted in Table I, the GPU can use blocks of threads
to efficiently take advantage of large-scale, coarse-grained
parallelism across many independent dynamics gradient com-
putations. However, the fine-grained parallelism within each
computation can be harder to exploit effectively on a GPU as
there are many different low-level operations that can occur
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Algorithm 4 ∇RNEA-GPU(q̇, v, a, f,X, S, I) → ∂c/∂u

1: for link i = 1 : n in parallel do
2: αi =

iXλivλi βi =
iXλiaλi γi = Iivi

3: αi = αi × Si βi = βi × Si δi = vi × Si
ζi = fi × Si ηi = vi×∗

4: ζi = −iXT
λi
ζi ηi = ηiIi

5: for link i = 1 : n do

6: ∂vi
∂u = iXλi

∂vλi
∂u +

αi u ≡ q

Si u ≡ q̇

7: for link i = 1 : n in parallel do

8: µi =
∂vi
∂u ×

∗ ρi =
∂vλi
∂u × Siq̇i +

βiδi
9: for link i = 1 : n do

10: ∂ai
∂u = iXλi

∂aλi
∂u + ρi

11: for link i = 1 : n in parallel do
12: ∂fi

∂u = Ii
∂ai
∂u + µiγi + ηi

∂vi
∂u

13: for link i = n : 1 do
14:

∂fλi
∂u += iXT

λi
∂fi
∂u + ζi

15: for link i = n : 1 in parallel do
16: ∂ci

∂u = STi
∂fi
∂u

simultaneously. Without careful refactoring, the algorithm re-
quires frequent synchronization points and exhibits low overall
thread occupancy. This is the major performance limitation of
current state-of-the-art GPU implementations [11].

To address this bottleneck, the core of our optimized GPU
implementation is a refactored version of Algorithm 2, shown
in Algorithm 4. In this refactoring, we moved computations
with (nearly) identical operations into the same parallel step
to better fit the hardware’s computational model. For example,
Line 3 computes a series of cross products. While some of
these operations could be executed in parallel with the matrix-
vector multiplications in Line 2, this would lead to thread
divergence and was thus avoided.

Out-of-order computations and irregular data access patterns
are also inefficient to compute on a GPU. It is important to
avoid these, even at the expense of creating large numbers of
temporary variables. Therefore, in our GPU implementation,
unlike on the CPU and FPGA, we did not exploit the sparsity
in the X , ×, and ×∗ matrices. Instead, we used standard
threaded matrix multiplication for the X matrices. For the ×
and ×∗ matrices we used a two-step process to first create
temporary matrices to capture the re-ordering, and then used
standard threaded matrix multiplication to compute the final
values. For example, the temporary value µi = ∂vi/∂u×∗,
computed on Line 8, takes as an input n values of ∂vi/∂u,
each having 2i columns ∀i ∈ (1, n), and produces a matrix
∈ R6×6 for each column. The most efficient GPU solution
is to compute each matrix in parallel with a loop over the
entries to avoid thread divergence, even though each entry in

each matrix is naturally parallel.
The sequential dependencies within each dynamics gradient

computation are challenging for the GPU, as it must introduce
synchronization points at every data dependency. Additionally,
GPUs typically run at about half the clock speed of CPUs (e.g.,
1.7GHz versus 3.6GHz for the GPU and CPU evaluated in
Section V), further hindering their performance on sequential
code. Therefore, in our implementation we re-ordered the com-
putations to minimize the amount of work done in serial loops,
the main driver of sequential dependencies, at the expense
of generating even more temporary values. For example, we
precomputed α in Line 2 of the initial parallel computation on
Lines 1-4 to reduce the amount of work done in the later serial
loop in Lines 5-6. Due to the small working set size, even
after generating these additional temporary values we were
able to fit everything in the GPU’s shared memory (cache),
minimizing latency penalties. Even so, due to the highly
serial nature of the algorithm, many serial operations and
synchronization points still existed in our final implementation.

Finally, because data needs to be transferred between a
coprocessor board and a host CPU, I/O is a serious con-
straint for GPUs and FPGAs. We implemented both split and
fused GPU kernels to analyze the I/O and compute trade-
offs induced by different problem partitionings of Algorithm 3
between the CPU and the coprocessor. In the split kernel we
only computed the most parallel and compute-intensive section
of the algorithm on the accelerator, the ∂c′/∂u computation.
In the initial fused kernel we minimized I/O by computing
both the v′, a′, f ′ and ∂c′/∂u computations on the accelerator.
We also designed a completely-fused kernel computing all of
Algorithm 3. This lead to an increase in I/O as compared to the
fused kernel, but reduced both the number of synchronization
points with the host CPU, as well as the total amount of
computation done on the CPU. To further reduce the total I/O
in our GPU and FPGA implementations, we computed the
transformation matrices X on-board, even in the split kernel
where it was already computed on the CPU.

On the GPU, we used the NVIDIA CUDA [49] library’s
built-in functions for transferring data to and from the GPU
over PCIe Gen3. As suggested by GPU manufacturers, we
copied all of the needed data over to the GPU memory once,
let it run, and then copied all of the results back. Finally, to
better leverage the PCIe data bus, we ensured that all values
were stored as a single contiguous block of memory.

C. FPGA Design
FPGAs have reconfigurable logic blocks and programmable

interconnects that allow them to implement custom hardware
functional units, data flows, and processing pipelines. FPGA
designs often also use fixed-point arithmetic to perform math
faster while using less energy and area per computation as
compared to floating-point arithmetic. The trade-off is that
the dynamic range and precision of fixed-point numbers are
reduced. However, for many applications, this reduction still
produces high quality end-to-end solutions (e.g., quantization
for neural networks) [50], [51], [52].

To leverage this feature, we first validated that a fixed-
point implementation of the dynamics gradient kernel would
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Algorithm 5 ∇RNEA-FPGA(q̇, v, a, f,X, S, I) → ∂c/∂u

1: for link i = 1 : N do
2: αi = Iivi

∂vi
∂u = iXλi

∂vλi
∂u +

iXλivλi × Si u ≡ q

Si u ≡ q̇
3: βi =

∂vi
∂u ×

∗ αi γi = Ii
∂vi
∂u

∂ai
∂u = iXλi

∂aλi
∂u +

∂vλi
∂u × Siq̇i +

iXλiaλi × Si
vi × Si

4: ∂fi
∂u = Ii

∂ai
∂u + βi + vi ×∗ γi

5: for link i = N : 1 do
6: ∂ci

∂u = STi
∂fi
∂u δi =

iXT
λi
∂fi
∂u ζi =

iXT
λi

(Si ×∗ fi)
7:

∂fλi
∂u += δi + ζi

provide sufficient end-to-end accuracy. We solved a trajectory
optimization problem from previous work [11] that involved
moving a Kuka LBR IIWA-14 manipulator [53] from a start
to goal state, sweeping the numerical data types used in the
gradient computation. A wide range of fixed-point data types
were able to solve the problem successfully.2 Fixed-point
conversion on the CPU incurred considerable overhead, so we
instead used dedicated Xilinx IP cores on the FPGA, reducing
overhead latency by as much as 3.6x.

We designed custom functional units and datapaths to
exploit fine-grained parallelism. As with our GPU design, we
refactored the algorithm to enable the FPGA to better exploit
these structures, as shown in Algorithm 5. For example, we
computed each column j of ∂c′/∂uj in parallel datapaths
routed through the hardware. Within each ∂c′/∂uj column we
exploited parallelism between brief linear algebra operations,
as well as within those operations, by instantiating many
multiplier and adder units in parallel. We were also able to
almost entirely overlap the computation of v′, a′, f ′ with the
computation of ∂c′/∂u by using additional parallel datapaths.

As Table I indicates, unlike the GPU, the FPGA can fully
exploit the fine-grained parallelism between different linear
algebra operations as operations are not performed by threads,
but instead are performed natively in independent, heteroge-
neous, parallel hardware circuits. For example, in Lines 3 and
6, cross products and matrix-vector products are executed in
parallel using different custom hardware circuits.

Coarse-grained parallelism, however, was limited in our
particular FPGA design because we made a design choice to
prioritize reducing latency. This resulted in heavy utilization
of limited digital signal processing (DSP) resources, even on
a large FPGA platform: 77.5% of the 6840 DSP blocks for
our final design used in Section V. This is despite careful re-
use or folding of multiplier resources, which, e.g., reduced
the resource requirements of the forward passes of Algo-
rithms 1 and 2 by about 7x in our design. Because of this
high utilization we were only able to compute one dynamics
gradient calculation at a time on the FPGA, and thus were

2We used a 32-bit integer with 16 bits before and after the decimal point.
This is safely in the valid datatype range (as low as 12 bits before and 5 bits
after), and integrates easily with the CPU’s 32-bit floating-point math.

unable to exploit coarse-grained parallelism between gradient
computations. Leveraging this paralleism would have required
either substantially more DSP resources (perhaps offered on
future FPGA platforms or though an ASIC design), or further
aggressive pipelining and folding of the circuits in our current
design, at the expense of latency.

Using the reconfigurable connections of the FPGA, we were
also able to exploit the sparse structure of the X , ×, and
×∗ matrices by pruning operations from trees of multipliers
and adders, further decreasing latency. For example, when
multiplying variables by the X matrices, we were able to
reduce some of the R6 dot product operations from a 4-level
tree with 6 multiplications and 5 additions to a 3-level tree with
3 multiplications and 2 additions. Implementing this sparsity
in hardware datapaths not only decreases latency, but also
helps our implementation avoid irregular data access patterns
by encoding them directly in the circuit routing.

By creating processing units tailored to the dataflow of the
algorithm, our implementation streamlines sequential chains of
dependencies between links by creating dedicated hardware to
iterate over those loops with minimal overhead.

All of these reductions in overhead are crucial to obtaining
a performance advantage on an FPGA, as designs on the
reconfigurable circuit fabric typically have substantially slower
clock speeds than the highly-optimized circuit routing within
CPUs and GPUs (e.g., 55.6MHz for our design versus 1.7GHz
and 3.6GHz for the GPU and CPU in Section V).

We used a framework called Connectal [54] to implement
the I/O transfer between the FPGA and a host CPU. Con-
nectal’s support for the FPGA platform we used is currently
restricted to PCIe Gen1, limiting our I/O bandwidth. There-
fore, a major choice in our design was how to partition the
algorithm between hardware and software to balance the total
amount of I/O overhead with our other hardware constraints
(e.g., DSPs). Based on the results of our problem partitioning
experiments done on the GPU in Section V-C, we chose to use
a completely-fused kernel, implementing all of Algorithm 3
on the FPGA. By using this partitioning and by pipelining the
I/O with the dynamics gradient computations, we were able
to achieve I/O overhead comparable to that of the GPU.

Note that in general, the FPGA development process is
considered more challenging than the process for CPUs and
GPUs. Since it is difficult, time-intensive, and error-prone, it
is advisable to perform thorough design analysis in advance of
implementation, to minimize the number of design revisions
when possible.

V. EVALUATION

We evaluated two timing metrics to understand the perfor-
mance of our designs: the latency of a single computation
of the algorithm, and the end-to-end latency (including I/O
and other overhead) to execute a set of N computations. We
compared our optimized implementations on a CPU, GPU,
and FPGA against baseline implementations, against each
other, and against different problem partitionings of our own
implementations. Source code accompanying this evaluation
can be found at http://bit.ly/fast-rbd-grad.

http://bit.ly/fast-rbd-grad
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Fig. 1. Latency of one computation of the gradient of rigid body dynamics
for the Kuka manipulator across hardware platforms.

A. Methodology

Our designs were implemented using a Kuka LBR IIWA-
14 manipulator as our robot model. All CPU results were
collected on a 3.6GHz quad-core Intel Core i7-7700 CPU
running Ubuntu 18.04 and CUDA 11. Our GPU and FPGA
results used a 1.7GHz NVIDIA GeForce GTX 2080 GPU
and a Virtex UltraScale+ VCU-118 FPGA. The FPGA design
was synthesized at a clock speed of 55.6MHz. For clean
timing measurements on the CPU, we disabled TurboBoost
and fixed the clock frequency to the maximum. Code was
compiled with Clang 10 and g++7.4, and time was mea-
sured with the Linux system call clock_gettime(), using
CLOCK_MONOTONIC as the source. For single computation
measurements on the CPU and GPU, we took the average of
one million trials. For the FPGA, we extracted the timing from
cycle counts. For end-to-end results on all platforms, we took
the median of one hundred thousand trials. These end-to-end
latency results include I/O and any other overhead needed to
execute N = 16, 32, 64, and 128 computations because, as
mentioned earlier, many nonlinear MPC robotics applications
use tens to hundreds of dynamics gradient computations.

B. Single Computation Latency

The latency for a single computation is shown in Figure 1.
These times represent the computation performed in a single
run of the baseline or optimized implementation on its target
hardware platform, excluding overheads. The three colors
represent the three steps of Algorithm 3.

By leveraging the optimizations in Section IV-A, our CPU
implementation is 1.5x faster than the state of the art [7].

The GPU implementations struggled in this single com-
putation test as GPUs derive their benefit from throughput
offered by extreme parallelism. However, for our optimized
implementation, while the GPU v′, a′, f ′ latency is 8.0x slower
than the CPU, the ∂c′/∂u latency is only 2.0x slower. This
improved scaling is the result of the re-factoring done in

Fig. 2. Runtime of N = 16, 32, 64, and 128 computations of our
accelerated implementations of the dynamics gradient kernel for the Kuka
manipulator using different problem partitionings between the CPU and [G]PU
coprocessor: the [s]plit, [f]used, and [c]ompletely-fused kernels as described
in Section IV-B.

Section IV-B to expose more parallelism, reducing the com-
putations done in serial loops. Leveraging these optimizations,
our GPU implementation is 6.4x faster than the existing state-
of-the-art [11], driven by a 9.2x speedup in the ∂c′/∂u step.

The FPGA implementation is significantly faster than either
the CPU or GPU, with speedups of 5.6x and 13.8x over our
optimized CPU and GPU implementations, respectively.3 This
is because the dedicated datapaths in the FPGA implemen-
tation handle sequential operations well, and the fine-grained
parallelism allows for the execution of many densely-packed
parallel operations (Section IV-C). Parallelism exploited in
the design process also overlapped most of the computation
of v′, a′, f ′ with the computation of ∂c′/∂u. Therefore, the
v′, a′, f ′ times shown represent only the small additional
latency incurred by this design choice.

All three of our designs, as described in Section IV,
leveraged the interactions between the algorithmic features
described in Section III-B to achieve faster than state-of-the-art
performance.

C. Problem Partitioning

Figure 2 explores the impact of changing the problem
partitioning between the CPU and the coprocesser on the
end-to-end latency of our accelerated implementations. We
compare (from left to right within each group) the “[s]plit”,
“[f]used”, and “[c]ompletely fused” accelerated [G]PU kernels
as described in Section IV-B.

Moving more of the computation onto the GPU increased
the computational latency. However, since the ∂c′/∂u com-
putation is by far the most expensive computation, and the
GPU can easily compute many computations in parallel, the
increase is quite small. This can be seen in the slight increase
from the blue to green to teal bar in each group.

At the same time, the fused kernels have reduced I/O over-
head, which is more important as N increases. Furthermore,
removing the high-level algorithmic synchronization points

3No baseline implementation exists in the literature for the FPGA.
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between the CPU and GPU, and the corresponding batched
CPU computations, shown by the checkered orange and yellow
bars, greatly reduced overall latency.

By changing our problem partitioning and moving more
computation onto the GPU (moving from the “Gs” to “Gc”
kernels), we improved the end-to-end latency of the optimized
GPU designs substantially: by 1.9x for N = 16, up to 2.8x
for N = 128.

D. End-to-End CPU, GPU, and FPGA Comparisons

Figure 3 compares our most-optimized implementations
across all hardware platforms: the [C]PU implementation and
the [G]PU and [F]PGA [c]ompletely-fused implementations.

Within each group, the first bar is the CPU design, where the
entire algorithm is computed in 4 persistent threads to make
full use of the 4 processor cores without overtaxing them with
additional threads.

The second bar is the “Gc” kernel which was able to provide
a 1.2x to 3.0x performance improvement over the CPU design
for N = 16, 128 respectively. The GPU performed better
as the number of computations increased and was the top
performer at higher numbers of computations (N = 64, 128),
where its support for massive amounts of both coarse-grained
and fine-grained parallelism prevailed.

The third bar is the FPGA “Fc” kernel which was also able
to outperform the CPU in all cases, ranging from a 1.9x to
1.6x improvement. The FPGA was the top performer at lower
numbers of computations (N = 16, 32) due to our minimal-
latency design, but could not exploit coarse-grained parallelism
at higher numbers of computations as it could only process
one dynamics gradient calculation at a time due to resource
limitations (see Section IV-C).

Note that the best results were achieved by exploiting
opposing design trade-offs to map opportunities for parallelism
onto each hardware platform (e.g., exploiting high throughput
on the GPU versus low latency on the FPGA). These results
illustrate how successful acceleration on different hardware
platforms depends on both the features of the algorithm,
and the application context in which the kernel will be run
(Table I). It is critical to design software with the strengths
and weaknesses of the underlying hardware platform in mind.

VI. CONCLUSION AND FUTURE WORK

In this work, we accelerated rigid body dynamics gradients
through the development of hardware-optimized implemen-
tations targeting a CPU, GPU, and FPGA. We showed that
using these hardware-accelerated implementations can lead to
performance improvements both in the runtime of individual
kernels and in overall end-to-end timing of multiple computa-
tions. Our best GPU and FPGA performance results showed
end-to-end improvements of as much as 3.0x over our faster
than state-of-the-art CPU design.

Promising directions for future work include the develop-
ment of a full robot dynamics package with code generation
for the CPU, GPU, and FPGA, to enable researchers to easily
target and utilize these different hardware platforms with
their own robot models. Alternate formulations of rigid body

Fig. 3. Runtime of N = 16, 32, 64, and 128 computations of the accelerated
dynamics gradient kernels for the Kuka manipulator for the [C]PU, [G]pu, and
[F]PGA using the [c]ompletely-fused kernel.

dynamics can also be explored, which may expose additional
parallelism [55], [56], [57], [58]. Implementing a custom
accelerator chip for our FPGA design would further reduce
the latency of a single computation and allow multiple com-
putations to occur in parallel, increasing throughput. Finally,
integrating these accelerated dynamics gradient implementa-
tions into existing MPC software frameworks [59], [60], [11]
would increase their ease-of-use and applicability to other
robot platforms.
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