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Figure 1: Infographics effectively convey messages using a mix of text and pictures (a). Automatically parsing infographics is challenging due to
abstract concepts and diverse visual styles. We present an approach to detect and tag icons in infographics (see Fig. 8 for final results). We
accomplish this by curating and annotating a dataset of infographics called Visually29K (b), and training an icon detection model on synthetic data
generated by pasting icons onto patches of infographics (c). We also present three demo applications: topic prediction, multi-modal summarization
- outputing text tags and visual hashtags representative of an infographic’s topics (d), and multi-modal search - prioritizing infographics containing
both visual and textual elements matching a query. ©oceanservice.noaa.gov, Evanmade Graphic Design, Walker Sands, Overson Roofing.

ABSTRACT

Widely used in news, business, and educational media, infographics
are handcrafted to effectively communicate messages about complex
and often abstract topics including ‘ways to conserve the environ-
ment’ and ‘coronavirus prevention’. The computational understand-
ing of infographics required for future applications like automatic
captioning, summarization, search, and question-answering, will de-
pend on being able to parse the visual and textual elements contained
within. However, being composed of stylistically and semantically
diverse visual and textual elements, infographics pose challenges
for current A.I. systems. While automatic text extraction works rea-
sonably well on infographics, standard object detection algorithms
fail to identify the stand-alone visual elements in infographics that
we refer to as ‘icons’. In this paper, we propose a novel approach to
train an object detector using synthetically-generated data, and show
that it succeeds at generalizing to detecting icons within in-the-wild
infographics. We further pair our icon detection approach with an
icon classifier and a state-of-the-art text detector to demonstrate three
demo applications: topic prediction, multi-modal summarization,
and multi-modal search. Parsing the visual and textual elements
within infographics provides us with the first steps towards automatic
infographic understanding.

Index Terms: Human-centered computing—Visualization—
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1 INTRODUCTION

Consider the infographic in Figure 1a listing ten things you can do to
help protect the planet. The bold and bright icons representing con-
crete objects (e.g., the bike) and abstract concepts (e.g., recycling)
draw you to the infographic and guide you through the text descrip-
tions. Icons (or pictograms) can serve a powerful communicative
purpose in informational and promotional media (e.g., visualizations,
articles, and presentations), by directing attention to key messages
or take-aways and making those messages more memorable and
effective [6, 10, 11, 34]. Though unless supporting text (e.g., ALT
tags) is present, the information encoded in icons is inaccessible
to some human consumers, as well as to computational systems
that may need to caption, search, summarize, or categorize such
multi-modal media. Indeed, a domain gap prevents current computer
vision models (e.g., object detectors) trained on natural images from
generalizing to the abstract and diverse styles in graphic designs and
infographics [37, 38, 77].

Infographics can enable the communication of complex informa-
tion through concise, data-driven messages which can be understood
both quickly and easily [43,71]. There is a growing body of research
which propose the use of infographics for communicating vital infor-
mation for better healthcare, education, business and public policy
outcomes. This includes increasing public access to medical infor-
mation [4, 50, 60, 68], summarizing medical literature [49], helping
to improve learning outcomes in classrooms [8, 18, 40, 56, 75], and
effectively disseminating complex public policy information [7, 55].
However, designing effective infographics is often challenging and
time consuming [13, 47, 61]. As a result, techniques that provide



support for infographic designers, such as machine learning driven
authoring tools [17, 61, 84], are increasingly important. Our work
adds to the current body of work through automatic detection and la-
beling of icons, which can allow designers to search for semantically
meaningful icons in real world infographics.

In this paper, we tackle the challenge of identifying stand-alone
visual elements, which we call icons. To adapt to the stylistic, se-
mantic, and scale variations of icons in infographics (Fig. 2), which
differentiate them from objects in natural images, we propose a
synthetic data generation approach. We paste Internet-scraped icons
onto background patches in infographics to create training data for
an icon detection model (Fig. 1c). Our resulting icon detections
outperform models trained on natural images, achieving 38% preci-
sion and 34% recall. In comparison, a popular object detector [62]
reaches 14% precision and 7% recall, demonstrating a representation
gap between objects in natural images and icons in graphic designs.

For training computational models, we curated a novel dataset
of 29K infographics from the Visual.ly design website [1] (Fig. 1b),
covering diverse topics, including health, technology, and weather.
Each infographic is annotated with 1-9 tags, out of a set of 391 tag
categories. For 1,400 infographics, we collected a total of 21,288
human-annotated bounding boxes of icon locations. For a subset of
544 infographics, we collected 7,761 tags for icon bounding boxes1.
We used these annotations to evaluate our automatic approaches.

Finally, using our automatic icon detections and tags in combi-
nation with text extraction, we present three proof-of-concept ap-
plications: topic prediction, multi-modal summarization, and multi-
modal search. Given an infographic as input, we predict the topics
depicted in an infographic, and individually tag the automatically
detected icons. Our multi-modal summarization demo automatically
outputs the text tags and visual hashtags that are most representative
of an infographic’s topics (Fig. 1d). Our multi-modal search demo
re-ranks the infographics in a database based on whether the text
and visual elements within an infographic match a query.

These applications present a first step towards combining textual
and visual information for a computational understanding of info-
graphics. Paired with text extraction, our automatic icon detection
can increase accessibility to information stored in graphical form.

Contributions: In this paper, we introduce: (a) Visually29K, a
novel dataset of curated and annotated infographics; (b) an auto-
mated model for icon detection; (c) demo applications (topic pre-
diction, summarization, and search) that become possible once the
visual and textual elements inside an infographic can be parsed. Our
dataset annotations and model code are available at:
https://github.com/diviz-mit/visuallydata.

2 RELATED WORK

Computer vision in the service of graphic design: Computer vi-
sion has traditionally focused on understanding natural images. How-
ever, there is a growing interest in graphic designs, which motivates
a new set of research questions and technical challenges. Prior work
has introduced models that take a graphic design or data visual-
ization as input and produce a saliency/importance map as output,
for retargeting and thumbnailing applications [14, 54]. Other work
predicts the saliency of mobile user interfaces [31], webpages [82],
and comics [5]. Zhao et al. [81] predict the personality of a graphic
design (futuristic, cute, romantic, etc.) and produces a map of the
regions of the graphic design contributing most to the classifica-
tion. These approaches make high-level predictions about a graphic
design as a whole, but do not parse individual design elements.

Other work has leveraged computer vision tools to parse and
transcribe textbook diagrams into structured tables for question
answering [39, 69, 70], to parse graphs and charts for retargeting
applications [59, 67], and to solve graphical reasoning tasks (e.g.,

1Our Visually29K dataset is available at: [http://visdata.mit.edu].

quantity estimation) [32]. Recent work focusing on synthesis has in-
volved training models on graphic designs to learn to modify existing
layouts [57, 73] or to generate novel layouts [44, 83]. To the best of
our knowledge, there is no work on automated understanding of the
elements inside infographics or using computer vision techniques to
identify icons in graphic designs. The closest application is that of
Liu et al., who produce semantic segmentations of mobile UI screen-
shots [45]. This involves a detection of mobile application icons,
which are much more limited in appearance, location, and scale.
In contrast, our icons can be simple or complex, photographic or
abstract, large or small (Sec. 4). Detecting and recognizing abstract
visual representations across diverse styles has also been tackled by
prior work on sketches [79, 80], art [76], and illustrations [25, 26].

Datasets of graphic designs: In the space of graphic designs,
Zitnick et al. introduced abstract scenes to study higher-level image
semantics (relationships between objects, storylines, etc.) [85,86].
Wilber et al. presented an Artistic Media Dataset to explore the
representation gap between objects in photographs versus in artistic
media [77]. Iyyer et al. built a COMICS dataset and made predic-
tions about actions and characters using extracted visual and textual
elements from comic panels [38]. Hussain et al. presented a dataset
of advertisements and described the challenges of parsing sym-
bolism, memes, humor, and physical properties from images [37].
Borkin et al. collected thousands of data visualizations (including
infographics) with element annotations (titles, axes, etc.), memory
scores, and eye movements on a few hundred visualizations [10, 11].
Saleh et al. collected a large-scale dataset of infographics along with
crowdsourced similarity judgments in order to present an application
that can group graphic designs by style similarity [65]. Unlike prior
datasets, the dataset of infographics presented in this paper contains
very rich meta-data with titles, category labels, and curated tags,
and a subset of infographics densely annotated with bounding boxes
around icon-like elements. Related large-scale data collection ef-
forts include Webzeitgeist [42] - a repository of 100K webpages, and
RICO [20, 45] - a dataset of 9.7K mobile apps covering 72K unique
UI screens, both datasets collected to enable statistical analysis of
design patterns and design-driven search and machine learning.

Document parsing: An infographic is part image and part docu-
ment. Related work on document understanding includes classifying
documents by type (e.g., email, news article, presentation, scientific
publication) [33], separating figures from text in articles [74] and
more fine-grained region classification problems [3], where docu-
ment regions are labeled as text, image, graphic, table, math, etc.
There are also vision-based and DOM-based approaches that decom-
pose a website into sub-parts for further analysis [15]. A separate
class of approaches transcribe the text from document pages into
characters (i.e., optical character recognition methods) [72]. Most
document analysis and retrieval methods, however, stop short of
processing the semantics of the individual document elements [48].

Synthetic training data: The use of synthetically generated data
to train deep neural network models has been gaining popularity, e.g.,
for learning optical flow [12], action recognition [19], overcoming
scattering [66], and object tracking [24]. Simulated environments
like video games have been used to collect realistic scene images for
semantic segmentation [64]. Our work was inspired by a text recog-
nition system which was trained on a synthetic dataset of images
augmented with text [30]. Related to our approach, Dwibedi et al.
insert segmented objects into real images to learn to detect natural
objects in the wild [22]. We leverage the fact that infographics are
digitally-born, so augmenting them with more Internet-scraped de-
sign elements is a natural step. Tsutsui and Crandall synthesize com-
pound figures by randomly arranging them on white backgrounds to
learn to re-detect them [74]. However, the icons we aim to detect
occur on top of complex backgrounds, so we need our synthetic data
to capture the visual statistics of in-the-wild infographics.

https://github.com/diviz-mit/visuallydata


Dataset # of
tags

Images
per tag

Tags per
Image

Aspect
ratios

63K
(full) 19469

min=1
max=3784
mean=7.8

min=0
max=10

mean=3.7

from 1:20
to 22:1

29K
(curated) 391

min=50
max=2331
mean=151

min=1
max=9

mean=2.1

from 1:5
to 5:1

Table 1: Dataset statistics. We curated the original 63K infographics
available on Visual.ly to produce a representative dataset of 29K
infographics with consistent tags and sufficient instances per tag.

Figure 2: Examples of stylistic and semantic variations in our icons.
a) Visually similar icons corresponding to different but semantically
related tags medical, doctor, health, hospital, medicine. b) Icons
with varied styles for the tag dog. c) Icons with varied semantic
representations for the tag accident.

3 VISUALLY29K: A LARGE-SCALE CURATED INFOGRAPH-
ICS DATASET

To facilitate the development of automated systems for parsing in-
fographics, we assembled the Visually29K dataset. We obtained
63K static infographic images from the Visual.ly website, a commu-
nity platform for human-designed visual content. Each infographic
comes categorized, tagged, and described by a designer, making it
a rich source of annotated data. We curated this data to obtain a
representative subset of 28,973 images, ensuring sufficient instances
per tag (Table 1). The existing tags are free-form text, so many of
the original tags were either semantically redundant or had too few
instances. We reduced the original 19K tags down to 391 tags with at
least 50 exemplars each by merging redundant tags manually using
WordNet [52] (e.g., equating web and website; grouping cellphone
with mobile phone; combining social marketing, online marketing,
and content marketing under the single tag marketing). Tags range
from concepts which have concrete visual depictions (e.g., car, cat,
baby) to abstract concepts (e.g., search engine optimization, fore-
closure, revenue). Metadata for this dataset also includes labels
for 26 categories (for 90% of the infographics), titles (99%) and
descriptions (94%), available for future applications.

The infographics in Visually29K are very large: up to 5000 pixels
per side. Over a third of the infographics are larger than 1000×1500
pixels. Aspect ratios vary between 5:1 and 1:5. Visual and textual
elements occur at a broad range of scales. This needs to be taken
into account in the design of computational systems that parse the
infographics. We filtered out infographics from the original set that
had even more extreme aspect ratios, as they are rarer and would
create technical challenges during automatic parsing.

4 TRAINING AN ICON DETECTION MECHANISM

We use icon to refer to any visual element with a well-defined closed
boundary in space and different appearance from the background
(i.e., can be segmented as a stand-alone element), similar to how an
object is defined by Alexe et al. [2]. While icons can be detected in
different graphic designs, we train and test a model for infographics.

Training an object detector often requires a large dataset of anno-
tated instances, which is a costly manual effort. We took a different
approach, leveraging the fact that infographics are digitally-born to
generate synthetic training data: we augmented existing infograph-
ics with Internet-scraped icons. The advantage of this approach is
that we can synthesize any amount of training data by re-sampling
infographics and selecting appropriate regions to paste new icons.

Collecting icons: Starting with the 391 tags in the Visually29K
dataset, we queried Google with the search terms ‘dog icon’, ‘health
icon’, etc. for each tag. The search returned a wide range of stylis-
tically and semantically varied icon images (Fig. 2). We obtained
250K icons with both transparent and non-transparent backgrounds2.
For instance, the first icon in Fig. 2b has a non-transparent back-
ground, while the second icon has a transparent background. Pho-
tographic elements are also considered icons as long as they have
a well-defined boundary and are not part of the infographic’s back-
ground. Only transparent-background icons were used to train the
icon proposal mechanism described in this section, while all 250K
icons were used to train an icon classifier (Section 7).

Synthesizing training data: To generate our synthetic data, we
randomly sampled 600×600px windows from the Visually29K in-
fographics and pasted icons onto patches free of texture, to avoid
overlap with other visual and textual elements (Fig. 3b). For this,
Canny edge detection was applied to the patch, followed by Gaus-
sian blur centered on the patch, and finally summed to quantify the
local entropy of the patch. Only patches with entropy lower than a
threshold were selected. A randomly selected icon from our icon
collection (Fig. 3a) was then pasted onto each valid patch, while
ensuring that it contrasted sufficiently with the background to be
visible. This process was repeated until a desired number of icons
were added per window (Fig. 3c). Parameters corresponding to the
number and size of icons to add per window, as well as contrast
and entropy thresholds, were all tested to find the best setting for
generating synthetic data (details in the Supplemental Material).
Using this approach, we generated 10K training instances. Each
instance corresponds to a window sampled from an infographic with
4 icons pasted into it. The coordinates of each pasted icon are used as
ground truth annotations to train the icon detector. Although a patch
can contain additional un-annotated icons native to the infographic,
this is similar to object detection with partial labels, which has been
shown to successfully generalize [22, 27, 78].

Training an icon detector: We chose the Faster R-CNN neural
network architecture [63] for our task, although our methodology of
training with synthetic data is agnostic to the choice of architecture.
This model puts more emphasis on the local visual appearance of an
object rather than the global scene layout [22], which is important
given that icons can occur at any location in an infographic. We
changed the last layer of the network to classify only two categories:
icon versus background. We trained the model for 30K iterations on
our 10K synthetic training instances. Training details are provided
in the Supplemental Material.

Producing icon detections: To handle the large infographics in
the Visually29K dataset containing visual features at different scales,
we sample windows at 3 different scales as input to our trained
icon detector. The first scale spans the entire image. For the two
subsequent scales, we sampled 4 and 9 windows, respectively, such
that windows at each scale jointly cover the entire image, and neigh-
boring windows overlap by 10%. Before being fed into the detector,
every window is rescaled to 600×600px. The predicted detections
per window are then thresholded. To address the common problem
in detection algorithms whereby the same object may be detected
multiple times at different scales, non-maximum suppression (NMS)
with a value of 0.3 was used [16, 53]. For detections which overlap
above this threshold (as measured by intersection-over-union), NMS

2Our icon dataset is available at: https://github.com/diviz-mit/
visuallydata/blob/master/links_to_data_files.md.

https://github.com/diviz-mit/visuallydata/blob/master/links_to_data_files.md
https://github.com/diviz-mit/visuallydata/blob/master/links_to_data_files.md


Figure 3: Synthetic data generation pipeline: a) Icons with transparent
backgrounds from Google. b) Patch candidates to paste icons into,
chosen using different threshold settings (e.g., the approach on the
right is more conservative). c) Icon-augmented infographics windows
for training. Infographic by ©Overson Roofing.

suppresses all detections which do not have the maximum detec-
tion score. Further, NMS is applied once again to combine smaller
detections (often parts of icons).

5 HUMANS AS ICON DETECTORS

To produce ground-truth for evaluating computational approaches,
we designed two crowdsourcing tasks to collect human annotations
of icons for a subset of the infographics from Visually29K (Fig. 4).
In the first task, we asked participants to annotate all the icons in an
infographic. In the second task, we asked participants to annotate
only the icons corresponding to a particular tag (e.g., only icons
related to gaming) in an infographic. We use the annotations from
the first task to evaluate our automatic icon detection results, and the
second task to evaluate our multi-modal summarization application.

Task 1. Generic icon detection: For a set of 1,400 infographics
from Visually29K, we asked participants to “put boxes around any
elements that look like icons or pictographs” (Fig. 4). No further
definitions of “icon” were provided. A total of 45 participants
were recruited via student mailing lists, and each spent 0.5-3 hours
annotating icons in as many infographics as they wanted. Pay varied
between $10-20 per hour as the data collection effort progressed. An
average of 15 icon bounding boxes were annotated per infographic.
Each infographic was annotated by a single person, resulting in a
total of 21,288 bounding boxes across the 1,400 infographics. We
refer to these annotations as the “evaluation set". We split this
“evaluation set" further into 400 infographics for validation (model
tuning) and 1,000 for testing (final model evaluation).

Human consistency: Because no definition of “icon" was pro-
vided during the annotation task, we evaluated whether people an-
notated the same regions in infographics. For instance, people
sometimes disagreed about whether a map, embedded graph, or
photograph should be counted as an icon. They also occasionally
disagreed about the boundaries of the icon (Fig. 5). Each infographic
in our “evaluation set" was only annotated by a single person, so
to measure human consistency we collected an additional set of

Figure 4: User interface for collecting human ground truth to evaluate
icon detection and classification. Participants were asked to either
annotate all icons on an infographic (left panel), or only icons corre-
sponding to a specific tag (right panel) (e.g., gaming). ©SonyPS4.com

annotations on a subset of infographics. Out of the 1,400 annotated
infographics, we randomly selected 55 infographics for which we
collected annotations from an additional 5 participants each. We
then measured the overlap in the bounding boxes generated by each
of these 5 participants and the bounding boxes in the “evaluation
set". The results of this analysis, averaged across participants and in-
fographics, are reported as “human consistency" in Table 2. We used
these scores as an upper bound for computational models, which
similarly need to decide what counts as an icon.

Task 2. Topic-specific icon detection: We used a similar anno-
tation set-up as in task 1, but this time asked participants to mark
bounding boxes around icons that correspond to a specific topic
(Fig. 4). Recall that the infographics in our dataset contain an aver-
age of 2 tags each (Table 1). We used 544 infographics along with
their associated Visually29K tags to produce 1,110 separate annota-
tion tasks, each task corresponding to a single image-tag pair. If an
image had multiple tags, each image-tag pair would be shown to a
different participant so participants would not annotate the same im-
age more than once. For 275 (25%) of these 1,100 annotation tasks,
participants indicated that there were no icons on the infographic
corresponding to the specified tag. For instance, an infographic
with the tag investing may not necessarily contain visual elements
corresponding to this tag. For remaining 835 image-tag pairs, we
collected a total of 7,761 bounding boxes from 45 undergraduate stu-
dents, averaging 9 bounding boxes per image-tag pair. To compute
human consistency for this task, we similarly collected annotations
from an additional 5 participants each for 55 infographics (a total
of 172 separate image-tag annotation tasks x 5 participants). The
results of this analysis, averaged across participants and image-tag
pairs, are reported as “human consistency" in Table 3.

6 EVALUATION

In this section, we evaluate our trained icon detector compared
to alternatives at detecting icons in our annotated test set of 1,000
infographics (Section 5, Task 1). We report standard object detection
metrics: precision (Prec), recall (Rec), F-measure (Fβ ), and mean
Average Precision (mAP). We compute the Intersection Over Union
(IOU) of icon bounding boxes, threshholding the IOU at 0.5 to
evaluate precision and recall [23]. F-measure is defined as:

Fβ =
(1+β 2)Prec×Rec

β 2Prec+Rec

We set β = 0.3 to weight precision more than recall [9].
Icon detection is related to objectness, general object detection,

and object segmentation. We ran 5 methods spanning these different
tasks, originally trained on natural images, to evaluate the represen-
tation gap when applied to infographics. We used objectness [2],
state-of-the-art object detectors YOLO9000 [62], SSD [46], and
Faster R-CNN [63], and class-agnostic object masks [58]. To ac-
count for the fact that some methods are trained to detect multiple
object classes, we considered a detection of any object class with
score above a threshold as a detected icon. Default parameters were



Figure 5: Human consistency in annotating icons is not perfect be-
cause people have different notions of what should be counted as
an “icon". Here we include 3 crops from annotated infographics. For
instance, in the world map we notice three strategies: labeling the
entire map as an icon, labeling individual continents, and labeling
the circle graphics superimposed on the map. The set of participant
annotations belonging to the “evaluation set" are indicated in red. The
other colored boxes depict annotations from additional participants
recruited for consistency analyses. Crops from infographics by ©Lisa
Mahapatra, Computeach.co.uk, Learning Fundamentals.

used for Faster R-CNN and YOLO9000. We tried SSD with three
thresholds: 0.01, 0.1 and 0.6 (default), and report results on the best
setting (0.01). From Table 2, we find that the icon detector trained on
our synthetic data significantly outperformed all other models trained
on natural images. These results confirm that a representation gap
exists between objects in natural images and icons in graphic designs.
Our contribution was to show how synthetically-generated data can
be used to retrain an object detection model originally designed for
natural images, and adapt it to detecting icons in infographics.

Discussion: There are several attributes of icons which make
their detection challenging for existing algorithms trained on natural
image datasets like ImageNet [21] and CIFAR [41]. Firstly, most
natural image datasets contain smaller images with average size
under 500x500px, and networks are often designed to be trained by
downsizing these images to around 250x250px. Infographics are fre-
quently very large, and downsizing them to these resolutions makes
visual elements too small to be identifiable. Secondly, icons occur at
a large range of scales. Modern convolutional neural networks are
not scale invariant, in that they struggle to generalize to scales be-
yond those seen during training. Thirdly, the wide range of stylistic
and semantic variation among icons present a major challenge. For
instance, Fig. 2—row (a) shows visually similar icons corresponding
to different but related tags like medical, doctor, health, hospital,
medicine; row (b) shows icons with varied styles for the tag dog;
row (c) shows icons with varied semantic representations for the tag
accident. By augmenting infographics with internet scraped icons at
multiple scales during training, we’re able to mimic these attributes
of icons in the training data. This allows our models to detect icons
across these variations which is not possible for models trained on
natural image datasets.

Ablation experiments: In generating our synthetic training data,
we made three design choices: (i) pasting icons into existing info-
graphics, (ii) using icons with transparent backgrounds, (iii) pasting
icons onto regions of infographics where they do not overlap with
other elements. To evaluate the contributions of these respective
design choices, we trained three alternative variants of our model
(Fig. 7): (i) “blank background": pasting icons onto plain white
backgrounds, instead of existing infographics (similar to [74]); (ii)
“non transparent icons": using icons with their original backgrounds,

so that when pasted into an infographic there are visible boundaries;
(iii) “random locations": adding icons at random locations inside
the infographics, disregarding any overlap. All three model variants
performed significantly worse than our final model (Table 2). The
worst-performing variant was the one trained on blank background
images, demonstrating a failure to generalize to infographics.

7 APPLICATIONS

To facilitate automated applications for infographics like topic pre-
diction, summarization, and search, the visual and textual compo-
nents inside the infographics need to first be detected and recognized.
Here, we put together a number of automatic modules (in bold, be-
low; visualized in Fig. 6) to make these applications possible. Given
an infographic, we use our icon detector to locate icons, which
we then classify into one of 391 tag categories using a separately-
trained icon classifier. We simultaneously run a text detector and
feed its output to a topic prediction module. The result is a full
annotation of the infographic as in Fig. 8 that can be used as input to
different applications. In this section, we provide proof-of-concept
demonstrations of topic prediction, multi-modal summarization, and
multi-modal search.

Figure 6: Overview of different neural network models. Our icon de-
tector is used to locate icons, which are then classified into one of 391
tag categories using a separately-trained icon classifier. We simulta-
neously run a text detector and feed its output to a topic prediction
module. Together, these models open new avenues for summarizing
and parsing infographics as presented in our applications.

7.1 Topic prediction

Automatically predicting topics that an infographic depicts would
facilitate applications that categorize, search through, and caption
infographics. The Visually29K dataset contains multiple tags per
infographic, and provides valuable data for training a topic prediction
model. We use the text detected inside an infographic to predict the
topics depicted in it, and then automatically tag all detected icons
inside the infographic to provide finer-grained annotations.

Predicting topics from text: Given an infographic as input, text
extracted from the infographic is used to predict topics depicted in
the infographic. We used Google’s Cloud Vision optical character
recognition [28] as our text detector, as it is one of the best publicly-
available text detection and parsing systems, capable of generalizing
to different fonts and text sizes. We extracted on average 236 words
per infographic. Individual words were then converted into their
word2vec feature representations [29] (for all words for which such a
representation was available). This feature space commonly used for
natural language processing has been trained to embed semantically
related words close together [51].

For our topic prediction module, we compute the average
word2vec representation across all the extracted words, and use
it as input to a small neural network to predict tags (details in the
Supplemental Material). We used 26K infographics from our Visu-
ally29K dataset for training this model. Each infographic comes
with 1-9 tags (2 on average). The output of our model is a 391-
dimensional vector of probabilities, corresponding to the 391 unique
tags in our dataset. The trained model can then output the top N
tags predicted most likely for a given infographic. Evaluating the
top-1 predicted tag, we achieve 42.6% average precision and 24.6%
average recall at predicting tags for the infographics in our test set.
Fig. 10 illustrates the top 3 tags predicted for 5 sample infographics
(the original infographics can be found on Visual.ly by their titles).



Figure 7: Three alternative icon detection models were trained by
modifying synthetic data generation: a) pasting icons onto plain white
backgrounds instead of infographics; b) using icons without trans-
parent backgrounds, i.e., with visible boundaries; c) pasting icons
in random locations, disregarding overlap with other infographic ele-
ments. These variants performed significantly worse than our model.

Figure 8: a) The output of our fully-automatic annotation system, run-
ning text detection and OCR [28] (semi-transparent green boxes), with
our own icon detection and classification (red outlines). We trained an
icon detector with synthetic data to make this system possible. The
underlying infographic has been faded for visualization. b) Our multi-
modal summarization application uses the detected text and icons to
produce the text tags and visual hashtags most representative of the
infographic’s topics. ©oceanservice.noaa.gov

Tagging icons: Given an infographic as input, we predict tags for
all the automatically-detected icons inside it. We used the same icon
dataset that we trained our icon detector on to additionally train an
icon classifier that takes a detected icon as input, and predicts the
most likely tags. Since the icon dataset was collected by searching on
Google using tags as queries, we use these queried tags as the ground
truth labels to train our icon classifier. Of the total 250K icons, with
a few hundred icons collected on average for each of the 391 unique
tags, we used 80% icons for training and 20% for validation. Our
icon classifier is a ResNet18 architecture [35] re-trained on these
200K icons (training details in Supplemental Material).

On the validation set of 50K icons, our icon classification network
achieved 19.1% top-1 accuracy at predicting the correct tag, where
chance performance is 1 in 391, or 0.2%. We also evaluated the joint
performance of the icon detector and classifier at retrieving relevant
icons across infographics. Fig. 9 contains top-ranking icons for a
few tags automatically extracted from our infographics dataset.

Discussion: In this section, we showed how the icon detector in-
troduced in this paper can be bundled together with an icon classifier
and a text detection system to predict the topics that an infographic
is about, as well as to automatically annotate the individual elements,
the text and icons, within an infographic. A sample output of this
fully-automated system is visualized in Fig. 8a. The output of such
a system can now serve as input for future applications seeking to
caption, answer questions about, or extract information from info-

Model Prec. Rec. F0.3 mAP

Final model (ours) 38.8 34.3 43.2 44.2
Random locations 29.1 15.1 29.6 32.5

Non transparent icons 24.6 17.1 25 26.1
Blank background 7.9 24.3 10.1 10.3

YOLO9000 [62] 13.6 7.1 12.6 13.7
Faster R-CNN [63] 11.0 6.0 10.2 11.4

SSD [46] 9.3 34.2 10.0 11.4
Objectness [2] 2.9 5.6 3.1 3.0

Sharpmask [58] 1.1 1.4 1.2 1.1

Human consistency 63.1 64.7 61.8 66.3
Table 2: Model performance at detecting icons in infographics. First 4
models were trained with synthetic data containing icons. The next
5 models were trained to detect objects in natural images. Human
consistency was computed by comparing icon annotations of multiple
annotators. All listed values are percentages. Top scores are bolded.

Figure 9: Visual hashtags for different concepts. We include 6 different
topic tags, sorted by mAP scores. For each tag, depicted are the top
4 icons classified most confidently as belonging to the tag, sampled
out of automatically detected icons from our infographics test dataset
(the total number (N) of icon detections per tag is also listed).

graphics. This can increase availability to information that may have
otherwise been previously stored in inaccessible, graphical form. In
the next two sections, we present two proof-of-concept applications
that make use of the text and icons in infographics for respectively
summarizing and searching infographic images.

7.2 Multi-modal summarization

Just as video thumbnails facilitate the sharing, retrieval, and orga-
nization of complex media files, we propose to create multi-modal
summaries that can be used for effectively capturing a visual di-
gest of complex infographics. Given an infographic as input, our
multi-modal summary consists of textual and visual hashtags repre-
sentative of an infographic’s topics. We define “visual hashtags" as
icons that are most representative of a particular text tag.

Predicting visual hashtags: Given an input infographic, we use
topic prediction from the previous section to output the set of most
representative topics (text tags). We then use our icon classifier
to identify the most representative icon for each predicted text tag.
We do this by passing all the detected icons to the icon classifier
and automatically selecting the icon with highest probability for the
tag - this is the visual hashtag. The automatic output of our system
is visualized in Fig. 10: for each infographic, we output the top 3



Figure 10: Examples of our automated multi-modal summarization pipeline, which given an infographic as input, predicts text tags and
corresponding visual hashtags. Sources: a) "What women want in men" (Parship.de), b) "Interesting facts about internet threats and security"
(Hotspot Shield), c) "Monolingual VS Bilingual" (Technovate Translations), d) "Facts About AACSB International Accreditation: A Closer Look"
(Howard University), e) "Eligibility for Federal Student Aid" (StudentAid.gov).

Model Top-1 Prec. mAP

Icon detections + classification 27.2 18.0
Random locations + classification 16.7 14.2

Non transparent icons + classification 15.9 14.5
Blank background + classification 16.2 14.5

Icon detections only 16.2 14.5

Human consistency 55.4 57.2

Table 3: Given an infographic and text tag as input, we evaluate the
visual hashtags returned. For each image-tag pair, we compute IOU
with the ground truth bounding box annotations. Precision is measured
as the percent of instances with IOU > 0.5. Human consistency was
evaluated by comparing the annotations of multiple annotators. All
listed values are percentages. Top scores are bolded.

predicted topics and their corresponding visual hashtags.
To evaluate the ability of our computational system to output a

relevant visual hashtag for a given infographic and tag, we compare
against the human annotations from Section 5, Task 2. Similar to the
task that our computational system receives, participants were asked
to annotate all icons corresponding to a particular text tag on an
infographic. Note that we excluded instances where no icon could
be found to correspond to the text tag. We used the remaining 835
image-tag pairs with human annotations. For each image-tag pair, we
passed the image to our icon detector, and used our icon classifier to
select the detected icon most representative of the tag. We computed
the intersection-over-union (IOU) of each of our predicted hashtags
with ground-truth human annotations. We report precision as the
percent of predicted visual hashtags that have an IOU > 0.5 with
at least one of the ground truth annotations (Table 3). We also
include the mAP score by considering all our icon detections per
image-tag pair, sorted by the icon classifier’s confidence. From
Table 3 we see that sorting the icon proposals using our icon classifier
produces more relevant results (mAP = 18.0%) for a given tag than
just returning the most confident icon detections (mAP = 14.5%).
We compare to our other baseline models, to once again validate our
synthetic training design choices.

Compared to icon detection (Table 2), the performance is worse
for icon classification (precision of 27.2% versus 38.8%). Correctly
predicting what an icon depicts, rather than just locating the icon,
is a significantly harder task, compounded by the abstract nature
of some of the icons and their diverse styles (Fig. 2). We leave
improving the performance of icon classification to future work.

Browsing infographic collections: We hypothesize that multi-
modal summaries, containing both text tags and visual hashtags,

may be able to facilitate the sharing, browsing, or organizing of
large collections of infographics. To evaluate the potential utility
of multi-modal summaries we also ran a small pilot study. We
asked 10 participants to browse through an online collection of 138
infographics from Visually29K, presented as thumbnails. For half the
infographics, hovering over the thumbnails showed the infographic’s
title, while for the other half, hovering over showed both the title and
our automatically-computed multi-modal summary with two text
tags and corresponding visual hashtags. The next day, we showed
participants another page with 138 infographics, half of them were
from the previous day, and the other half were new. Participants were
asked to select all infographics they remembered seeing before. Our
preliminary results show that the multi-modal summaries increased
recall of infographics previously seen by 19.6%, over just seeing the
thumbnails and titles of the original infographics (more details in
the Supplemental Material). This supports prior work showing that
icons can improve the memorability of content [6, 10, 11, 34].

Discussion: In this section, we introduced a potential application
of using icons extracted from within infographics to create multi-
modal summaries, containing text and visual hashtags to represent
the infographics’ topics. We evaluated the quality of the visual
hashtags retrieved, and discussed the challenges of icon classification
over icon detection. We also provided some very preliminary results
to support the hypothesis that multi-modal summaries may be able
to facilitate the browsing of infographics collections, by increasing
recall. It remains up to future work to more rigorously evaluate the
benefits and shortcomings of multi-modal summaries for facilitating
the sharing, browsing, and organizing of infographic collections.

7.3 Multi-modal search

Search engines typically use text-based metadata (e.g., captions, ti-
tles, ALT tags) to determine which images to retrieve for a particular
search query. Given the infrastructure we have developed to detect
the text and icons in infographics, we propose to retrieve results
relevant to a search query by looking inside the image.

As a proof-of-concept, we developed a small demo at http:
//visdata.mit.edu/explore.html which retrieves the top 30
infographics for 344 tags in our dataset (removing tags for which
we did not find high-confidence icon predictions, or matching text).
We sort infographics by total relative area covered by tag-related
icons or text. In other words, search results high on the list would
correspond to infographics that have text and icons matching the
query take up a larger portion of the design. For this demo, we
only include text exactly matching the tag, though extensions could
include related terms and matching word stems. We pass all icons
detected in the infographic to our icon classifier and return those for

http://visdata.mit.edu/explore.html
http://visdata.mit.edu/explore.html


a)

b)

Figure 11: Automatically-retrieved results for tags a) healthcare and
b) vehicle, chosen as infographics with the largest area covered by
tag-related icons and text matching the tag. Red bounding boxes
represent icons automatically detected and classified as the queried
tag by our synthetically-trained model. Blue bounding boxes local-
ize text regions where the OCR results match the tag text. More
results available at: http://visdata.mit.edu/. ©ScrubMed.com,
ImmediateClinic.com, TopMastersInHealthcare.com, CureMD.com,
TwinStateFord.net, Diana L. Lyons, Andrea Davis, mrmatt.

which the query tag occurs in the top-5 most confident predictions.
In these cases, the icon is considered relevant to the search query.

Fig. 11 visualizes the top 3 infographics returned by our demo
search application for two tags: healthcare and vehicle. Note how
the query text might only occur sparsely in the infographic’s text,
while a large icon or multiple related icons might be an indication
that the infographic contains relevant content. In comparison, the
Visual.ly search3 returns infographics where the search term is part
of the title. Looking inside the image for retrieval is especially useful
if the infographic contains terms that are associated but not exactly
matching the search phrase (e.g., urgent care, HIPAA, medical pro-
fessions for the query healthcare), for technical terms that might not
be in a lexical database (e.g., FORD F-150 for the query vehicle),
or if the infographic contains illegible text (due to automatic text
parsing failures or an unfamiliar language). In such cases, an icon
detector can help retrieve relevant content, independently of the text.

8 DISCUSSION

From the results of the evaluation in Table 2, we find that our trained
icon detector performs over three times better as compared to exist-
ing object detection approaches trained on natural images accord-
ing to all four metrics. We were able to achieve these gains by
re-training an existing Faster R-CNN model using our synthetic
training methodology, with some modifications to the architecture,
training, and testing steps. While our methodology has significantly

3e.g., https://visual.ly/search/node?keys=healthcare

improved performance (e.g., precision increased from 11.0% to
38.8%), there is still room to grow. As presented in Fig. 2, the stylis-
tic and semantic variations depictions of icons make icon detection
an extremely challenging problem for neural networks. Here, we
have presented a first stab at how this problem can be tackled using
data augmentation via internet scraped icons. Our findings support
related work showing that there is a big domain gap that prevents
models designed for natural images from being usable, out-of-the-
box, on graphic designs [37, 38, 77]. We have also demonstrated,
via our ablation experiments (and further tests described in the Sup-
plemental Material), that the design of the synthetic training data
requires great care for the final trained model to generalize properly
to real-world data. While our top precision score on icon detection
is 38.8%, we note that humans also occasionally disagree about
what constitutes an icon and where its boundaries lie, leading to an
upper-bound precision score of 63.1% (when humans are compared
to other humans). Our model thus captures 61.4% of this upper
bound. We hope that future work building on top of our findings can
help close this performance gap.

9 LIMITATIONS AND NEXT STEPS

This paper contributes an approach to detecting and classifying icons
within infographics. We demonstrate the importance of training a
model specifically on icons in infographics, since object detectors
trained on natural images were shown not to generalize to infograph-
ics. While we succeed at detecting many of the icons in infographics,
classifying them correctly is more challenging (Fig. 8). There are
several aspects which make icon detection and classification chal-
lenging for object detectors trained on natural image datasets like
ImageNet [21] and CIFAR [41]. These include variation in scale,
stylistic and semantic variations as depicted in Fig. 2, and the vari-
ation in number of instances per infographic. While a pictogram
like the bike icon represents the object it refers to, an ideogram like
the recycling symbol is not a depiction of any one object, but rather
of an idea [36]; and while the recycling symbol is a commonly-
encountered ideogram, the icon of the hands, to represent the idea of
volunteering, is not. Moreover, each infographic comes in its own
unique visual style, adding to the complexity of the task.

At the same time, there is quite a bit of context available within
infographics that we have not capitalized on in this work. While we
take the approach of individually classifying each icon, knowing the
identities of the other icons in an infographic can constrain the pos-
sible labels for the remaining icons. The text inside the infographics
can also be used to disambiguate interpretations. The spatial location
of the elements inside an infographic, and the proximity of text to
icons, can signal a relationship between the text and visuals. Further,
not all text concepts can be visually represented - an aspect that
poses a limitation for our multi-modal summarization. However,
when considered together, the text and icons in an infographic can
paint a more complete picture about the topics of an infographic.

The three demo applications in this paper serve in support of our
main contributions, namely a dataset and tools to support the pars-
ing of infographics. We provided proof-of-concepts for how icon
detection, classification, and text parsing can be used for the topic
prediction, summarization, and search of infographics. More com-
prehensive applications like captioning, question-answering, and
knowledge extraction will require additional computational modules
which are beyond the scope of the present paper. To facilitate future
developments, we make all resources developed in this paper avail-
able to the broader research community, including our Visually29K
dataset, dataset of 250K icon images with tags, as well as the code
and technical details of our icon detection, icon classification, and
text-based topic prediction models. More results and demos of our
applications are provided at http://visdata.mit.edu/.

http://visdata.mit.edu/
https://visual.ly/search/node?keys=healthcare
http://visdata.mit.edu/


10 CONCLUSION

The space of complex visual information beyond natural im-
ages has received less attention in computer vision, but this is
changing with the increasing popularity of work on graphic de-
signs [37–39, 77, 85, 86]. Within this space, we presented a novel
dataset of infographics, Visually29K, containing a rich mix of tex-
tual and visual elements. We developed a synthetic data generation
methodology for training an icon detector. We showed that key de-
sign decisions for this methodology included augmenting icons with
transparent backgrounds onto appropriate regions of infographics.
Our trained icon detector successfully generalized to real-world in-
fographics, and together with a text parsing system [28] and an icon
classifier, was used for annotating infographics. Facilitated by these
computational tools, we presented three demo applications: topic
prediction, multi-modal summarization, and multi-modal search.

Infographics are specifically designed with a human viewer in
mind, characterized by higher-level semantics, such as a story or a
message. Beyond detecting and classifying the elements contained
within, an understanding of these infographics involves understand-
ing the included text, the layout and spatial relationships between
the elements, as well as the intent of the designer. Human designers
are experts at piecing together elements that are cognitively salient
and memorable, to maximize the utility of the presented informa-
tion. This new space of multi-modal data can give researchers the
opportunity to model and understand the higher-level properties of
textual and visual elements in the story being told. At the same time,
our automated tools allow this story, previously stored in graphical
form, to start to become more broadly accessible.
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