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ABSTRACT

A vortex lattice lifting surface model is developed and applied to the analysis of marine
propellers in both steady and unsteady flow. The model employs Lan’s so-called quasi-
continuous method to capture more accurately the square-root character of the lifting
surface’s loading. A vortex wake model is incorporated which allows for spanwise vortic-
ity resulting from the time varying blade loading. Local self-induction of the finite-core
tip vortices is included. Vortex amalgamation is used to avoid the difficulties connected
with representing the detailed structure of the sheet rollup.

Measurements of the instantaneous geometry of the tip vortices from a propeller
operating in a nonuniform flow field are described. TLe techniques of laser doppler
anemometry are employed to map the vortex structures.

The code which implements the numerical model, called PUF5, is exercised with four
problems. First, comparison is made to unsteady propeller thrust and side force mea-
surements with good agreement. Second, calculations are made: of the wake geometry
corresponding to the tip vortex measurements reported here. Finally, PUF5 is applied
to the problem of a helicopter rotor in hover.
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Chapter 1

Introduction

This work addresses the need to understand the unsteady behavior of marine propellers
and, in particular, the vortex wake structures they produce. The flow regime in which
the typical marine propeller nperates is highly nonuniform. The propeller is located in
close proximity to the ship’s hull. Figure 1.1 shows a typical stern configuration. The
flow field around the hull provides a nonaxisymmetric inflow to the propeller which is
often quite pronounced in its variation around the propeller disc. As an example, the
wake in Figure 1.2 is characteristic of a large, single screw commercial ship. The severe
unsteadiness this will present to the propeller is apparent in the ~ 70 — 80 percent wake
defect near zero degrees.

The ship’s wake is not the only cause of nonuniformity in the flow to the propeller.
There will often be struts to support the propeller shaft. These cause local deformations
in the velocity field, particularly if they are acting as lifting devices as well as supports.
There may be an inclination of the shaft to the main flow either because of the design
or, transiently, such as during a maneuver. Multistage devices such as pre-swirl stators
and vane wheels (e.g., the so-called Grim wheel) are now being used more frequently.
Counter-rotating propellers are also of current interest. ‘The downstream stage in these
arrangements encounters multiple localized wake defects from the upstream blades.

Froin these complicated environments, the naval architect and marine engineer will

11
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CHAPTER 1. INTRODUCTION 13

typically want to know the magnitudes of the unsteady forces as input to fatigue strength
studies of the propellers’ blades as well as for the thrust and journal bearings. The
environmental consequences of unsteadiness must also be considered. Various regulatory
bodies place limits on noise levels within the ship. The noise may be transmitted from
the propeller as machinery vibration. It may also arise from cavitation on the propeller
and be transmitted through the water and hull surface. In all of these phenomena, the
interaction of the vortex wake with downstream structures, including other blades on
the same propulsor stage, must be understood.

It can be imagined from the forgoing that the accurate analysis of marine propellers
in unsteady flow is a complicated problem which will provide engineers with tests of their
skills for many years to come. Nevertheless, there have been some significant advances
in the last twenty-five years. Most of these advances have been brought about by the
application of increasingly powerful computers to numerical propeller models of growing

sophistication.

1.1 Momentum Theory

Marine propellers of the screw type have been in use for over a hundred years. Rankine
[66] probably was the first to give a legitimate analysis of their function. He was followed
some years later by Greenhill [23] and Froude [16]. These were so-called momentum
theories or actuator disk theories, A more accessible presentation of the essentials of the

theory can be found in Milne-Thomson [52].

1.2 Lifting Line Theory

Around the turn of the century the work by Helmholtz and Kelvin on vortex flows
was introduced into propeller analysis. Theories treating the blades of propellers as

lifting devices are said to have their foundation in Lanchester’s vortex theory of flight
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(43]. While not specific to propellers, this is the first known work to invoke the concept
of circulation in connection with lifting bodies. Milne-Thomson notes that Lanchester
presented this work in 1894,

The “German school” of Joukowski, Prandtl, Kutta, von Mises and others established
this lifting line construct on more solid mathematical footing. Circulation theory found
its way to propeller analysis in works by Betz, Glauert, Lerbs and others (6,5,18,47,19)].
With some elaborations, these theories dominated propeller design and analysis until
very recently. In fact, they are still the basis of even the newest preliminary design

techniques such as in [35] by Kerwin, Coney and Hsin.

1.3 Lifting Surface Theory

The germ of lifting surface theory can be seen in much of the work mentioned above but
its application had to wait for the arrival of the modern computer. Strscheletzky and
Guilloton presaged this movement but had to work their calcuiations on hand calculators
[73,25]. Sparenberg presented a theory of lifting surfaces [72] in 1959. This was pro-
grammed later for computer. Modern numerical propeller lifting surface theory begins
in 1961 with Kerwin (34] and Pien [63] who were quickly followed by Cox, English and
Nelson [10,13,59]. An unsteady lifting surface theory for propellers was first put forward
in 1968 by Tsakonas, Jacobs and Rank [77] using an acceleration potential approach.
The linearized problem was treated in the frequency domain. A priori knowledge of the
wake geometry is required. Tsakonas, Breslin and Jacobs [76] have extended the method
to permit perturbations of the wake geometry from the linearized position.

In 1978, Kerwin and Lee published a signal work in modern propeller analysis [36).
The blades and wake sheets were represented by vortex lattices. Rollup of the vortex
wake into hub and tip vortices was modelled. Both steady and unsteady motions were
considered. The code derived from that work, PUF2, has been very successful and serves

as a baseline against which other codes are compared. The PUF2 model was extended
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to incorporat. unsteady cavitation by Lee [45). That code, called PUF3, has also been

well received.

1.4 Free Wake Models

It was urderstood from the beginning that the vortex wake shed behind a lifting surface
has a prominent role in the hydrodynamics of the problem. All of the propeller lift-
ing line analyses assumed that the vortices shed from the lifting surface are convected
downstream along constant radius and pitch helices. Indeed, until Kerwin and Lee’s
1978 paper all lifting surf: ce models made those same assumptions. The “lifting-liners”
knew that the pitch of the vortices was not constant but the nonlinear coupling of the
wake geometry with the loading on the lifting surface prevented any direct analytical
attack on the problem. Significant progress had to await the development of the modern
computer.

Nevertheless, the problem of predicting the ultimate confguration of a lifting body’s
vortex wake was of sufficient interest that as early as 1935 Westwater [78] attempted
to compute the Trefftz plane structure of the vortex sheet behind an elliptically loaded
wing. He discretized the sheet into a small number of point vortices and then integrated
their motions due to mutual induction by hand calculation. The results were plausible
but fortuitous. The small number of vortices and the short time interval of their motion
cloaked the chaotic behavior which was later observed when Takami [74] and Moore [53]
repeated the calculation.

These first few efforts have bred an entire industry of “vortex chasers”. The body of
work associated with this field is enormous and cannot be completely reviewed here. For
those interested, two reviews of the literature can be especially recommended. These
are by Hoeijmakers and Fokkerweg [27]) and Sarpkaya [68]. The reader will find several
hundred references in those works.

The classical problems in the field of free wake analysis are three. One is the West-
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water problem of computing the Trefftz plane structure of the wake from a lifting line
with a specified steady load. Besides Westwater, Takami, and Moore, the problem has
been examined by Chorin and Benard [9), Fink and Soh [15], and Krasny [39]. Another
classical problem is leading edge vortex sheet separation. Here one wishes to compute
the trajectory of the vortex sheet which comes off the swept ieading edge of a delta-wing
lifting surface. The details of the sheet roll-up close aboard the delta wing greatly affect
its lift characteristics. An unsteady variant of this is also reported by McCune and
Tavares [51). Vortex shedding from bluff bodies, such as from the bilges of ship hulls, is
closcly related to this problem in that one must model fairly well developed vortices in
close proximity to the body. Faltinsen and Pettersen [14] describe a method which they
have applied to a number of problems of interest to naval architects.

These problems, while appearing different at first, share the common feature that
they may, with suitable assumptions, be treated as two-dimensional. The third type of
problem requires the computation of vortex wake evolution in fully three-dimensional
circumstances. A typical problem falling into this category is predicting the transient
forces and moments on complete airframes during maneuvers, such as reported by Katz
and Maskew [31]. Helicopter aerodynamics is another field rich with applications that
require fully three dimensional treatment. Graber and Rosen [21] have looked at rotors
in hover. Morino and Bharadvaj [56,57] and Morino, Kaprielian and Sipcic [58] have
developed a comprehensive potential based panel method applicable to rotors in general
maneuvers. Katz and Maskew also applied their methods to the helicopter rotor in
hover.

The earliest free wake analysis applied to marine propellers was in 1968 by Cum-
mings [11]. He was able to compute the steady geometry of a propeller’s tip vortex, The
propeller was represented as a lifting line. Gradients in the streamwise direction were
assumed to be small so that the problem could be transformed into an unsteady one in

two dimensions. Cummings’ calculated values for the tip vortex’ radial position agreed



CHAPTER 1. INTRODUCTION 17

well with observations. He also attempted to implement a fully three dimensional wake
relaxation scheme for a lifting line wing but at that early date the computational burden
was deemed to be excessive.

Greeley and Kerwin [22] developed a semi-free wake model for propellers in steady
flow. In their work, radial positions for the trailing vortices are prescribed. The pitch is
then obtained from requiring that the vortices line up with the local axial and tangential
components of the flow. By using clever interpolation of induced velocities along with
assigned parameters to describe the radial distribution of the wake, they were able to
keep the computational effort small enough so that the model could be implemented in
an interactive design method.

In the remainder of this work a model of marine propellers is developed which incor-
porates the nonlinear behavior of the vortex wakes. A vortex lattice numerical model is
chosen. Such a representation is desirable for several reasons. Experience with similar
models shows them to be robust. They have good convergence properties; thus, fairly
accurate results can be obtained with reasonable computational effort. Earlier codes
developed at MIT use similar representations so extending the current code to handle

cavitation and ducted propellers can be done from a familiar foundation.



Chapter 2

Lifting Surface Theory for Marine
Propellers

The purpose of this chapter is to place the vortex lattice representation of marine pro-
pellers on a rational basis. In the development which follows, three key components of
the flow will be examined. The first aspect of the problem which needs to be considered
is the rotational nature of the flow. As noted in Chapter 1, the model of the propeller
and wake will depend fundamentally on potential theory so the rotational part of the
flow must be separated out. Next, representation of the propeller and wake in terms of
vortex segments lying on their surfaces will be derived. This will follow in a natural way
from consideration of Green’s 2" Identity. Lastly, the rules governing the evolution of
the wake vorticity will be established. After this development, some ancillary formulae

will be derived in order that forces may be computed.

2.1 Inflow to the Propeller

To begin, it is assumed that the fluid is incompressible and inviscid (except insofar as
viscosity is required to produce the lifting phenomena of interest), that only one phase

of the fluid is present (i.e. cavitation is ignored) and that the domain is unbounded. A

18



CHAPTER 2. LIFTING SURFACE THEORY FOR MARINE PROPELLERS 19

fluid flow meeting these assumptions obeys the vorticity equation

%?-%V-Vw:w-vv. (2.1)

The vorticity can be thought of as arising from two sources: that generated at the
surfaces in the flow, especially, on the lifting hody, and that carried into the region of
interest from elsewhere. The vorticity from the lifting surface will be confined to thin
sheets with dimensions comparable to the boundary iayer thickness on the body. The
vorticity transported from upstream into the region of interest will generaily be diffuse
and weak relative to the body’s vortex wake. It comes from the boundary layer of the
ship’s hull. These observations motivate the following development.

Divide the flow into two parts so that

V=vi+v;
for which
wp, =V X v, n=1,2
Then
?%'*'VI -le—wl-Vv, = —‘?g':—z—V1'VWQ—V2'Vw1 —vz-ng
4wy Vvy+w; - Vv + w; - Vv, (22)

The velocity field v, represents the background flow which is assumed to satis(y

%:1 + vy Vwy; =wjy Vv, (2.3)

That being the case, the perturbation flow must satisfy

Ow
——a—tl+v1-Vw1—w1'Vv1 = —V]'VwQ"'VQ'V‘UI

4wy - VVQ + wy - VV]. (2.4)



CHAPTER 2. LIFTING SURFACE THEORY FOR MARINE PROPELLERS 20

Let T’ be some measure of the circulation on the propeller blade, Uy be a measure of
the background flow velocity, A be a length scale which characterizes the spacial extent
of the background vorticity c.g., the width of the viscous dent of the ship’s wake, and §
measure the thickness of the vortex sheet from the propeller. If the terms in equation

(2.4) are estimated by these quantities, the following ratios may be formed

'Vlnv‘l.’gl ~ (i)? éUo

Vi - V| A T

o Yool 5,
[vi - V| ~ r°
lwy - Vv, ~ _{ §-U
Vi V| (A) r°

lwe- Vvl (6) &,
[vy - V| - \A r°

Retaining terms to o(U,6/I") reduces equation (2.4) to

%%—‘--{-vwal = W) 'Vvl"v2'vwl
or
%‘? +V . Vw, =w; Vv, (2.5)

Equation (2.5) shows that the background flow enters the problem only through the
boundary conditions for the perturbation flow, either by modifying the normal velocity
on the body or the convection velocities for the wake sheets. The terms that have
been dropped represent the stretching and convection of the background vorticity by
the perturbation flow. The effective wake problem described by Kerwin (33] and Shih
[69] has its origin in these phenomena.

It should be understood that the division of the flow does not necessarily correspond
to propeller/wake flow and background flow. It may be that upstream phenomena
produce compact regions of vorticity that are carried into the propeller flow as from an
upstream lifting device. Although not generated by the propeller, this vorticity would

be included in w;.
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i A

Figure 2.1: General arrangement for the application of Green's 2™ Identity.

2.2 Green’s Theorem Formulation for the Pertur-
bation Flow

At large Reynold’s numbers, the vorticity generated at the body surface will not prop-
agate out into the flow domain in time scales important to the other aspects of the
problem. Thus, the regions where w, is significant are confined to thin layers adjacent
to the body surface and trailing downstream from its aft edges. The bulk of the per-
turbation flow is effectively irrotational. This circumstance permits application of the
formalisms of potential theory.
The development of the perturbation problem is begun by considering a volume V in
R® with the boundary dV. As sketched in Figure 2.1, the boundary is composed of the
surface 9V and the surfaces QY+ and dV~. The surfaces 9V* are chosen to exclude
the rotational regions of the flow from V.
The perturbation flow v, in V, being incompressible, inviscid and irrotational is
governed by Laplace’s equation
Vip=0 (2.6)
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with
vi = V. (2.7)
The application of Green’s 2"¢ Identity to such an arrangement is classical [4,30,40,55,60).

For a point x in V and not on the surface 9V it gives

— () = [ [=Zgn() Verl) - pl€n€) - Vep—g|d  (28)

The velocity potential at x, p(x), is produced by the distribution of sources and normal
dipoles over the surface V. The gradient V; is taken with respect to the source point
coordinates .

Taking 0V* far enough away so that
Vo —0 on gy*

eliminates the contribution to equation (2.8) from the integral over V. Thus, 9V is
identified henceforth as being the combination of 3V* and 0V~ only. Then, for a point
x on gV

~2mpl) = [ [Zgn(@)- Veple) — pl@n(6) - VepTg |do (29)

Taking the gradient of equation (2.9) with respect to the field point x results in
1 1
- 20 Vp(x) = [ [v,————-n Vepl€) ~ PO Ven(®) - Ve—g|ds (210
‘P( ) oy |X _ el (5) E‘P(f) SO(E) (f) Elx _ €| ( )
In the limit of zero body thickness the surfaces V% and 9V~ coincide and
n* - Vep®(§) =n~ - Vep (§)

so that
- 1
- 27rv,(x) = ./;v(‘P+ - )V, [n . VCI—;:-—?I] do. (2.11)
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Now the integral is restricted to one side of 3V. The normal velocity at x is

~2mn(x) i) = [ WER()- [Vo(nl€) Vepmgp)|de.  @212)

The bracketted expression represents the velocity induced at x by a normal dipole at §.
The quantity p is the potential jump across the surface, equal to p* — ¢~.

The surface @V is again split into two parts. The first is the blade surface Sg on which
V -n will be specified and p is to be determined. The second part is the wake surface Sy
on which g is known as & function of the bedy’s history. Finally, the governing equation

to be solved is

/Sa u(&)n(x) - [V,(n(f) : v‘ITi_GI)] do =

- [, (i) [Vutn(e) - Ver

- )|do
—2rn(x) - vy(x) (2.13)

where n - v, is specified on Sg and p is to be determined.

2.3 Wake Evolution

Because of the interaction of the sharp trailing edge of the body with the fluid’s viscosity,
a surface of discontinuity will develop behind the body. This surface is Sy refeired to

in equation (2.13). Mass conservation requires that for an incompressible fluid
n-vt—vf=n.vi—yf (2.14)

where n is the unit normal to Sy, v* are the fluid velocities evaluated on one or the

other side of Sy and v, is the velocity of the surface itself. Since obviously

vF —v7 =0 (2.15)
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it must be that
n-(vt-v7)=0. (2.16)

Likewise, conservation of momentum requires

pn-vt —vH)vt +ptn=p(n-v- —v;)vt +p™n (2.17)

from which equations (2.15) and (2.16) permit the conclusion that
pt—p” =0. (2.18)

There is no pressure jump across the wake sheet. Furthermore, returning to equa-

tion (2.17) one finds

(n-vt)vt —(n-v)vo —otvt +oiv =0 (2.19)

or again using (2.15) and (2.16)
(vo —v,)(Vt —=v7) =0. (2.20)

One conclusion that may be drawn from Equation (2.20) is that vt — v~ = 0. This is
the trivial result corresponding to no discontinuity at all. More useful is the alternative
that

Vp = U, (2.21)

indicating that the sheet moves with the normal component of local velocity.

To complete the development, it is useful to introduce a Lagrangian curvilinear co-
ordinate system, following Morino and Bharadvaj [56]. Imagine a set of curvilinear
coordinates defined with reference to the surface Sy. In this coordinate system each

fluid particle on Sw is to have constant position, &: i.e.,

o
E—O.
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The base vectors for this coordinate system are given by
Ox

= 36 i=1,2,3, (2.22)

a;

where x is the position of a fluid particle in Cartesian coordinates. Setting w;, = w'a;

(with summation implied) and recalling from equation (2.5) that

Dw

—D?l = (w; - V)vy
leads to

—I—)-(w"a-) = u,v"-al

Dt aE

Noting that D 5 (6x) oV
3 —_ =

Dt~ aL\aE) T ac
one finds the vorticity must satisfy
i +w i w aE" (2.23)
or . 5
Dw' ' V2
a,-—ﬁ = —Ww 66' . (224)
The right hand side has already been assumed negligible so
le
i~ 0. (2.25)

This is the important result that the vorticity associated with the perturbation is con-
vected as a material property of the fluid particles in Sy. Points in the wake sheet move

with the local velocity.

2.4 Tip Vortex Kinematics

The model described thus far represents the vortex wake as a sheet of infinitesimal

thickness. Later, this will be discretized into a net of vortex filaments. In general, the
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Figure 2.2: The coordinate system for calculating local self induction of a vortex filament.

sheet will be curved, implying that the filaments should be as well. It is well known that
a curved vortex filament induces infinite velocities on itself [2,3,4,40,75).

To see the contribution from this self-induction, imagine a local coordinate system
to be set up on the filament at the point X. As shown in Figure 2.2, the base vectors
for this coordinate system are the tangent t to the filament’s space curve, the normal n
and the binormal b. Let x be a point near the filament. Following Batchelor, the local

coordinates of the point x may be expressed as
x = £an + £3b.
The position of a point £ on the filament near X is
§=st+ -;-ern

with & being the curvature of the filament at X. Recall Biot-Savart’s law for the velocity

induced by a vortex filament:

[ rrxds). (2.26)

M e
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r = x — §. Upon substituting the local expressions into equation (2.26) and integrating

over a range of —L < 8 < L one finds the near field contribution to velocity to be

I . &', (L o
9+ on (-é-)b + O(°); (2.27)

€ = |x — X| and 9 is the tangential unit vector in local cylindrical coordinates.

The first term in (2.27), although the more singnlar, is easily dismissed. Since its
induction is anti-symmetric across the filament it is reasonable to conclude that no
translation of the filament occurs due to its action. The more important term is the
second. This term describes a velocity of the fluid near the filament that is normal to
the plane of the filament and symmetric across the filament. A familiar consequence of
this term is the motion of a smoke ring along its axis of symmetry. Loukakis [48] showed
that it also plays a role in establishing the pitch of the vortex wake from a propeller.

One should note that this term (henceforth called the LIA term for ‘local induction
approximation’) is logarithmically singular. Thus, the velocity of an idealized filament
is undefined. The usual procedure for circumventing this difficulty is to assume a finite
core size and vorticity distribution for the filament. This approach “desingularizes” the
vortex velocity but it requires knowledge of the core size and the instantaneous vorticity
distribution. The vortex core size depends on the details of the boundary layer evolution
on the propeller blade and its interior vorticity distribution evolves according to the
Navier-Stokes equations. The development of the tip vortex from the boundary layer
of the propeller blade was studied by Govindan, et. al., [20]. Ting [75] has examined
the dynamics of vortex filaments using LIA with an inner Navier-Stokes solution. These
are complex calculations in their own right and are beyond the scope of this work. For
the purposes of this model it will be sufficient to prescribe a fixed core size. The LIA
contribution to the motion of the filament is taken as that at the core radius. The value

to set for the core radius will be discussed in the next chapter.
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2.5 Boundary Conditions

Because the solution of equation (2.3) was decoupled from that of equation (2.13), v,
may be considered as known, at least for the time being. The following kinematic

boundary conditions may be stated for the perturbation:
vi-n = (U-vy)'n on Sp, (2.28)
vi = 0 at infinity. (2.29)

where U is the velocity of the body surface Sg. The conditions on the wake surface have

already been described.

2.6 Bernoulli’s Equation

While the boundary conditions given above formally complete the statement of the
problem, there are still some important details to work out before the problem can be
said to be solved in an engineering sense. Once the dipole distribution y is found, forces
on the propeller remain to be computed. For reasons that will be discussed in Chapter
3, these forces will be obtained from integration of the surface pressure distribution. In
a purely potential flow, one may obtain pressure immediately from Bernoulli’s equation.
To obtain Bernoulli’s equation one normally assumes that the flow is steady but possibly
rotational or unsteady but irrotational as in, e.g., [60]. Here the flow is unsteady and
rotational. Without further assumption, it can be show from Euler’s equation that

pressure satisfies Poisson’s equation, [1,62]:
Vip = —4nyg. (2.30)

The source function g depends on velocities. To obtain pressure from this expression one
must supply a set of boundary conditions, solve for velocity throughout the flow domain
to obtain the forcing term and then solve equation (2.30). This is an unacceptable

amount of computation.
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However, a second look at Euler's equation with the specific nature of the flow of

interest in mind reveals some useful results. Recall Euler’s equation:

ov
N

The flow is separated as before into the background flow and a perturbation. The

+V.VV= -——Vp (2.31)

background flow was assumed to be unaffected by the perturbation. Such being the

case, it is a small further assumption to say that the background flow is steady, i.e.,

6v2 -
. =0 (2.32)

The vorticity associated with the perturbation flow is assumed to be entirely contained
in the boundary layer on the body and in the thin wake sheets. The perturbation flow

exterior to these thin layers is irrotational:

Vxv,=0. (2.33)
Equation (2.31) becomes
0 1
(,;" (Vi +va) V(v 4 va) = (2.34)
By virtue of equation (2.33)
= VSO
80
dp p
v B + —(vi Vva+v; Vv, +vy - Vva+ vy Vv ). (2.35)
Integrating (2.35) along a streamline produces
de p
m + + 2V V= Cy(t). (2.36)

The streamline dependence is emphasnzed by the subscript on Cy. The final expression

for pressure is

1 dy
P"Pa—ap(vw Vo= V-V 2&) (2.37)
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where p, is the ambient pressure far enough upstream so that 8p/0t may be assumed
small. This differs from the norm.] Bernoulli equation derived for unsteady, purely
potential flow in that the velocities involved are not merely V¢ but include the contri-
bution from the rotational background flow. Equation (2.37) also differs from Bernoulli’s

equation for steady rotational flow because of the dp/dt term.

2.7 Leading Edge Suction

A normal lifting body will have finite thickness and, especially, a rounded leading edge.
Pressures acting on the actual body surface give rise to forces which ray be resolved
into components normal to the body’s camber surface and in-plane w* 1it. Local to the
leading edge, the surface normal is mostly in-plane with the camber .urface. If there is
flow around the leading edge there will be a large pressure drop. The combined effect’
is to produce a significant in-plane force acting on the body at the leading edge. If, as
has been done here, the body is idealized as a zero-thickuess surface, there can be no
in-plane component of force from pressures but this significant contributor to total body
forces must be included somehow. These considerations lead to the well known leading
edge suction force.

Derivations of this force may be found in many classical references. One such is by

Milne-Thomson [52]. The leading edge suction force Fs is

Fs = —%wp C2i (2.38)
where
Cs = lim V3y(s)1 (2.39)

and | is a unit vector directed towards the tip along the leading edge, i is directed
streamwise normal to the leading edge and in the surface Sg. The quantity s is the arc
length from the leading edge measured along a curve on Sg in the i direction; 7 is the

vortex density on Sg.



CHAPTER 2. LIFTING SURFACE THEORY FOR MARINE PROPELLERS 31

Leading
edge

Figure 2.3: Definition of vectors appearing in expressions for leading edge suction.



Chapter 3

Numerical Formulation

This chapter sets out the method by which the equations of Chapter 2 are implemented
in discretized form. First, equation (2.13) will be approximated by dipole quadrilateral
panels of constant strength. An advantageous arrangement for these panels will be
deduced from consideration of the functional form of u on the blade. The proper location
for control points at which n - V will be specified will also come out of that discussion.
By making a small assumption regarding the flow at the trailing edge, a simple and quick
method for the solution of the matrix resulting from the discretized equation (2.13) can
be found.

Forces must be computed once the matrix solution is obtained. These will be got-
ten from integration of pressures on the blades. To complete the calculation of forces
equation (2.38) will be expressed in appropriate discretized form. The free-wake model,
comprising a vortex lattice representation of the geometry and vorticity distribution of
the vortex sheets, will be described. The details of computing induced velocity in the
interior of the sheet and on the tip vortices will be developed and a means to control

the numerical difficulties associated with rollup will be suggested.

32
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3.1 Propeller Geometry

The geometry of the propeller blades is described in a simple way detailed in [36] and
[22]. Figure 3.1 shows how the various quantities are defined. A space curve, the
generator line, is described within the blade-fixed Cartesian coordinate system. This
is done parametrically by the radial distribution of skew, 8,,(r), and rake, z,,(r). The
blade sections are built-up from this line by specifying the values of pitch angle, ¢(r),
chord length, ¢(r), and camber, f(r,s); s is arc length along the pitch helix measured
from the generator line.

Following this procedure, one obtains the coordinates of the leading and trailing

edges,
s = zn ¥ S sing(r) (3.1)
_ e(r)
6y, = 0, F 5 cos ¢ (3.2)
we = rcosl, (3.3)
21y = rsinfpy, (3.4)

and the coordinates of any point on the camber surface:

T, = Tymt+c(s—1/2)sing — fcos¢ (3.5)
. = O +cs—l/2)cos¢+f n¢ (3.6)
yo = rcosf, (3.7)
2, = rsinf, (3.8)

where 6, gives the angular offset for the k** blade relative to the first (equal spacing is

not assumed).
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Figure 3.1: Notation for describing blade geometry.

34



CHAPTER 3. NUMERICAL FORMULATION 35

3.2 Discretization of the integral equation

There are two integrals in equation (2.13); one, Ig, over the body surface and one, Iy,

over the wake sheets. The integration over the body is

I = [ MONG) - [Vo(n(6)  Ver—gr)| o (3.9

The surface Sp is divided into quadrilateral panels whose vertices are placed on the
camber surface according to equations (3.5). The following section will describe how
these panels are to be arranged. The details are not important now. Within each panel,

the dipole strength p is assumed to be constant. The integral Ip becomes

s =T, a00)- [V:(n(6) - Ver—g)]de (3.10)

Ix — &l
The surface Sp is replaced by the collection of surfaces S;. Each panel has an influence

at x given by the integral in the expression above. This influence coefficient,

[ nx)- [9:n(®)- VerTg I)] (3.11)

must be evaluated for each panel. It would seem that the shape of the panel would be
required to do this. There is a fortunate relationship between dipole and vortex distri-
butions that removes this inconvenience. It can be shown that the following theorem,

taken from Lee [46], is true. Referring to Figure 3.2:

Let S be a surface in R® bounded by a simply closed curve C. Suppose this
surface to be covered with a distribution of dipoles of strength u oriented

normal to S. Then

—fcyle_el x dl (3.12)
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dl

C

Cc

Figure 3.2: General open surface in R3.

where Vs is the surface gradient on S, V, is the gradient. in R® with respect
to the source point £, and V with no subscript is the R® gradient with respect
to the field point x.

The proof may be found in [46].

In this application, the integral over S on the right side of equation (3.12) vanishes
since u is constant. The remaining integral over C is simply Biot-Savart’s law for a
vortex filament of strength p lying along C. Thus, the influence coefficient may be

rewritten so that equation (3.10) becomes

Ig = Zl‘t [f Ix €|3 (3'13)

The integrals over the surfaces S; have been replaced by path integrals around the
perimeters of the panels. The reader should keep this equivalence in mind. Sometimes
physical insight is more readily grasped when expressed in terms of one or the other type
of singularity so references to dipole panels and vortex loops will be used interchangeably

hereafter.
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The wake integral can be treated in exactly the same fashion so that equation (2.13)
in (semi-)discretized form becomes

PRSHIEEL S

S wn()- [ s x
—2mn(x) - vi(x). (3.14)

The summation on the left side extends over all panels on the propeller and that on the

right extends over all wake panels.

3.3 QCM Panelling

Equation (3.14) was referred to as semi-discretized because collocation points at which
n-V will be specified are still needed. This has been kept until now because the location
of these points is closely linked to the panel arrangement.

At first glance, it would seem reasonable to place collocation points at the centroids
of the panels and then to lay out panels to minimize the geometric error — that is, to
place more where surface curvature is greatest. This is common practice with potential
based panel methods such as in [30,46,55,56]. However, one gets into trouble with
velocity based methods if this approach is used. Kerwin and Lee [36] demonstrated that
an injudicious placement of the collocation points can badly hamper convergence to an
acceptable solution.

In 1974, Lan [42] showed that one must consider more than geometry when laying out
__panels. The nature of the function to be represented plays at least an equal role. Inthin
wing problems, the dipole panels are being asked to capture a singularity at the leading
edge which behaves like 1//z as = — 0 in the chordwise direction. In the spanwise
direction the loading on the wing goes to zero like \/z. Lan showed that these features

can be captured accurately and the Cauchy singularity in equation (2.13) avoided.
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In two dimensions, the downwash at any point on the foil is given by

_ 1 r(§)d¢
w(z) = o) 2ot (3.15)
The coordinate transformation
= (1-cosf)/2 (3.16)
allows the integral in (3.15) to be written as
_ 1 ¢(f) '
w(0) = 2r /o cos § — cos O’do ' (3.17)
where ¢(8) = v(0)sinf. To eliminate the Cauchy singularity, the Glauert integral
*  cosnf ,
Gn(0) = /o cos 0’ — cos 0d0' (3.18)

is introduced. This vanishes for n = 0. Adding and subtracting g(8) Go(0)/27 to (3.17)

results in
1 g(6) —g(¢)
0)=—— | =————df. 19
w(0) 2m Jo cos@ — cos @ (3.19)
The integrand is now finite so a midpoint trapezoidal integration may be used giving

"9(0)—g(6) 0 . T« 9((2 — 1) /2N)
0 cosO—cE;_d;da = Nz[cos()—cos((i—l/?)w/N)

i=1

_ 9(9) ]
cos — cos((2i — 1) /2N) ]’

Equation (3.20) can follow from (3.19) only if § # ¢'. Lan showed that this is ensured

and the last term of (3.20), corresponding to the previously inserted Glauert integral,

(3.20)

eliminated if # is chosen equal to 8; where
jm :
0j=7v—, ]=1,2,...,N. (321)
This places the discrete vortices at z; and the control points at z; where

2 = %[1 —cos((i —1/2)m/N),  i=1,2,...,N (3.22)

T; = %[1 — cos(jm/N)), j=12,...,N. (3.23)
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0 vortex x control point

Figure 3.3: Schematic representation of QCM panelling.

This arrangement is commonly referred to as cosine spacing and distinguishes the quasi-
continuous method (QCM) from the classical vortex lattice method (VLM) wherein the
panels are of equal size and the control points are placed at their midpoints. Figure 3.3
illustrates how equations (3.22) and (3.23) distribute vortices and control points over
the chord.

In three dimensions, the QCM is applied in the chordwise direction. In the spanwise
direction, there is no square-root singular edge behavior but experience shows that the
spanwise circulation often looks elliptical, meaning that a square-root approach to zero
can be anticipated. Thus, it seems reasonable to accumulate panels towards the tip.
To do this, the “semi-circle” method was suggested by Lan. Lan found that this gave
better results than spanwise uniform spacing. Similarly, Kerwin and Lee found it to have
excellent convergence properties. It has the added benefit over uniform spanwise spacing
of placing panels closer to the tips for a given number of panels thus increasi.g resolution.

Figure 3.4 shows the semi-circle method applied spanwise compared to uniform spacing.
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O vartex x control point

©

uniform spaoing with
same number of panels

Figure 3.4: Spanwise vortex and control point locations for semi-circle and uniform
spacing.

To apply the scheme described above, the grid points which form the vertices of the
panels are laid out first. Their radial positions are given by

m—1/2
My1 "

T‘m=% (R-{-TH)—(R—-'I‘H)COS( )], m=12,...,M, (3.24)

where M is the number of panels in the spanwise direction. Their chordwise position,
s, expressed as a fraction of chordlength from the leading edge, is

n—1/2
N

s,,=%[l-—cos( w)], n=12,...,N, (3.25)

where N is the number of panels over the chord. Equations (3.5) are then applied to rp,
and s, to get the actual coordinates of the grid points. Figure 3.5 shows the resulting
panel arrangement for one blade of a typical propeller.

The next step is to locate the control points. Their radial locations are given by

L
M+1

™Pm =

[(R+ry)—(R—rH)cos( )], m=12,...,M. (3.26)

B =
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[

3
/

Figure 3.5: QCM panelling on a typical propeller blade.

One must proceed carefully from here. Suppose that the control points are placed by
applying equation (3.23) in the chordwise direction. For blades with straight edges there
is no problem but for propeller blades which have curved edges this approach leads to
disaster. Figure 3.6 shows a detail of the tip region of the blade from Figure 3.5 with the
control points placed as described. One iminediately notices that some control points are
actually outside the panels with which they are associated. Realistic solutions cannot
be expected from such an arrangement.

The fault is actually with the panel boundaries and not with the control points.
When the blade outline is not rectilinear, straight vortex elements do not lie at the
correct chordwise positions except at their endpoints. For normal propeller shapes, the
vortices tend to cluster toward the midchord.

There are two possible solutions. One is to use panels with curved edges. This ap-
proach was taken by Guermond [24] in his study of the planar circular wing problem.

Another approach is to take the straight-edged panelling as correctly defining an “equiv-
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Figure 3.6: Control point locations resulting from direct application of QCM to blades
with curved boundaries.

alent” propeller — one with straight, segmented boundaries. The control points for this
equivalent propeller may then be placed correctly by interpolating from the grid point
locations. Guermond’s approach is the more correct and is relatively easy to implement
for planar surfaces. An efficient means of computing the influence coefficients for planar
panels with curvilinear boundaries has been developed by Canteloube and Rehbach [8]
but propellers are notoriously nonplanar so their work isn’t applicable here. This work
applies the second approach.

Consider a single panel within the grid as shown in Figure 3.7. Its defining grid points
are at Xnm, Xnt1,m) Xnm+1 and Xn41,m41. The points €, ., and &, . are interpolated
according to

8¢ — Sp

en.m = Xp,m + (xn+l,m - xn,m) (327)

Sp-1 — Sy

wheren =1,2,...,N-1,m=1,2,...,M 41, s, is from equation (3.25), and s,, the
chordwise QCM control point location, follows from equation (3.23). Additionally, &y,

are placed on the trailing edge at ryy,.
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Figure 3.7: Interpolation of the control point location.

The control point coordinates xp are then calculated as

TPm — Tm
XPam = en.m + ——(En,m-ﬂ - En,m)

Tm4+1 — Tm

43

(3.28)

forn=12,...,Nand m = 1,2,...,M. Figure 3.8 shows the same detail as in Fig-

ure 3.6 after allowing for the straight panel edges. Figure 3.9 shows a complete view

of the same propeller. It is interesting to note that in both [36] and [22] the need to

locate the control points with reference to the “equivalent” propeller was appreciated

intuitively. Hoshino [29] makes no reference to this issue; the algorithm given would

locate the control points incorrectly.

To proceed in the development of the numerical model, consider a streamwise strip

of panels on the blade as shown in Figure 3.10. The vortices at adjacent panel edges

are shown combined to form single lumped vortices. Each I' is the sum of two dipole

strengths. For example,

Fﬁ,m = HPnm — Bn-1m
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+

Figure 3.8: Corrected control point locations.

*4++.|,.|.+

Figure 3.9: QCM panelling with corrected control point locations (control points shown
only on one blade for clarity).
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Figure 3.10: Definition sketch of vortex segments associated with panel boundaries.

and

I‘g.m = —Hnm t Enmil
where the subscripts n and m refer to the n'* panel from the leading edge in the m*h strip
of panels from the blade root. The quantity denoted by vfn'm is the normal component of

velocity induced at the ¢** control point by a unit strength spanwise vortex. Specifically,

vS =n,. /x"'"'“ x—€ . (3.29)

i,n,m Xnm lxl' _ £|3

In this notation, equation (3.14) may be written as

. K M N
—n-vi(x) = Y. szfn,m,kf‘f.m.k

k=1 Llm=1 n=1

M+1 N c c

+ Z va.n.m.kpn,m,k
m=1 n=1
M N,

+ Z z: v;‘vlﬂlmvkr"‘f,m,k
m=1n=1
M+1Ny~1 \ ‘

+ Z Z vi.n,m,krn.m,k (330)

m=1 n=1l
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Tk lE!JI
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Figure 3.11: Vortex seginents organized into closed vortex loops.

where the superscripts on v and I refer to the following orientations:

S = spanwise on blade,
C = chordwise on blade,
t = streamwise in wake,
w = spanwise in wake.

By invoking Kelvin's theorem at each grid point one can write (3.30) as

K N
n; - vi(x;) = Z{ Z {E [ Vinmk T Z (”.'C.:.mﬂ.k - ”gl,m.k) - ”:f'l.m.k]Pf,m.k

k=1\m=1 “n=1 I=n
Nuw
w w t t w
+ Z [vu'.n-l,m,k ~ Yinmk + Vin-1,m+1,k — v:’,u—-l.m,k]/‘n,m,k} . (331)
n=2

The bracketted quantities represent vortex elements organized into closed vortex loops

as indicated in Figure (3.11). Defining the loop influence coefficients

N
S c c
Dinmk = Vipmit Z (vi.l.m+1,k - Ui,:,m,k) - v:",'n,m,k (3.32)

l=n
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w — w w ¢ t
Dmmk = Yin-1mk ~ Yinmk + Yin-1m+1,k ~ Yin-1,m,k (333)

permits writing

Nw

K M N K M
Z Z Z a"»m’C n.m k=T Z Z D:",ln,m,kllwn.m,k —ng- Vl(xl')' (334)

k=1 m=1n=1 k=1m=1

3
[
~

Thus the boundary value problem of equation (2.13) is reduced to solving a set of
K x M x N simultaneous equations for the unknown I'S’s.

By writing equation (3.32) in the form shown above one feature becomes evident.
The matrix to be inverted includes the influence of the first shed vortex in the wake,

¢ It has already

i,1,m,

Each O;, .« (read “loop”) on the blade includes the quantity v
been shown that the vorticity in the wake is convected with the local velocity. Therefore
the position of the first shed vortex depends on the induced velocities near the trailing
edge which in turn depend on the position of the first shed vortex.

The computational implications of the wake’s involvement in the self influence matrix
are great. If the vortex’ position is allowed to vary with time then the O;,, ., x must be
obtained iteratively, requiring many matrix inversions — at least one per time step.
This cost combined with that of calculating the downstream wake position would make
the model prohibitively expensive. If the position of the first shed vortex was constant,
then an LU decomposition of the matrix could be done once with only back-substitution
required at each time step. To gain this computational advantage the vortex’ position is
fixed on an extension of the blade’s camber surface. Its position relative to the trailing
edge is given by

XWim = Xeenn + % V. bte. (3.35)

The unit vector e is tangent to the blade surface at the trailing edge and V, is the

“convection” velocity given by

V, = (V2 4 Xee, % £2) - (3.36)
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Figure 3.12: Blade grid including the first shed vortex in the wake.

where V; is the circumferential mean background velocity and §2 is the angular velocity
of the propeller. The factor of 1/4 was motivated by 2D studies done by Frydenlund and
Kerwin {17] which found this to give good agreement with analytical results for unsteady
motion. One can see in Figure 3.12 the grid formed by this inethod. One feature
immediately noticeable is the growing size of the trailing edge panel with increasing
radial position. Hoshino [29] sought to avoid the resulting extreme jump in panel size
by placing the first shed vortex on the camber surface extension, at a fixed fraction of
chord length
le(r

3w=81c+— .

4 N

While this gives more attractive panel size adjacent to the trailing edge it has the effect
of varying the time reference radially. That is, the outer radii feel variations in the inflow
earlier than do inboard sections. Chapter 5 discusses this further,

After the first wake grid points are set as described above, the remainder of the wake

is prescribed. This prescribed wake geometry is an adaptation of the so-called transition



CHAPTER 3. NUMERICAL FORMULATION 49

Figure 3.13: Panelling for blade and initial prescribed wake.

wake model described in [22]. It is used only to provide an initial approximate steady
solution from which the unsteady free wake calculation is developed. Figure 3.13 shows

this panelling.

3.4 Matrix Solution

With the wake positioned, the right hand side vector b may be computed. Recall from
equation (3.34) that

-

b= — Z Z Z D:",Jn,m,k BWami — D v,(x.v). (3.37)
m=1n=2

k=1

SinceV=vi+vyand V.-n=U.n, (3.37) is

KN M
bi= =3 3 Y Ok i Wnmk — M+ [ X X = va(xi)]. (3.38)

By suitably arranging the indices n,m, k, the matrix equation may be placed into
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the form
(An) ... (Awx) (IY) (b1)

: " : : : (3.39)
(Ak1) ... (Akk) ) \ (%) (bx)
Each block in the matrix corresponds to the influence of one blade on another. Suppose

that the diagonal blocks of the matrix are separated so that

(Au) 0 (r?) )
0 (Akk) (')
(by) (0 ... (Ai) (Iy)
S e s (3.40)
(bk) \ (Ak1) ... O (I'y)
then equation (3.39) breaks down into the following series of K sub-equations:
K
(Aw) (TF) = (b) = > (Aw)(TY), k=1,2...,K (3.41)

i=1

The form of equation (3.41) hints at a substantial computational savings. If the I'’s
appearing on the right side were known the matrix solution could be reduced from an
(N x M x K)? effort to K x (N x M)?. Fortunately, for a normal propeller, the blade-to-
blade influence represented by the summation on the right is small. This circumstance
permits use of a block Gauss-Seidel iterative solution which works as follows, At a
given time step, the vortex strengths on the right-hand side are approximated as those
prevailing at the previous time step. Equation (3.41) is solved for each blade in turn,
As soon as a new solution for any blade is known it is used to update the estimated
solution on the right. The process is then repeated until the desired tolerance for I is
achieved.

The speed-up over direct solution of the full matrix equation is, in fact, even greater

than suggested above. Each (A;;) is constant in time by virtue of the placement of the
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1** shed vortex so an LU decomposition may be performed once at the beginning of the
calculation. Only back-substitution is required at each time step thereafter. For normal
propellers, a further advantage accrues from the fact that each blade is the same shape.
That means that each (Ay;) is the same — only one block needs to be decomposed. The
resulting scheme is very fast. Computation of the vector b takes far longer than does

extracting I'> once b is known.

3.5 Blade Loading

Once the discrete vortex strengths are known, the blade forces may be calculated. Pre-
vious implementations of vortex lattice lifting surface models have obtained blade forces
from the “rotating bedspring” analogy (a term coined by J. E. Kerwin) [22,29,36]. In
that approach, one imagines the lifting surface to be replaced by the array of singular-
ities. The forces computed are those arising from the application of Joukowski’s rule
to each vortex segment using velocities evaluated at the vortex segment (usually on its
midpoint). Guermond has correctly criticized this approach. Its fault lies in the fact
that velocities calculated on the body anywhere away from the control points do not
satisfy the kinematic boundary condition (2.28). Kerwin has observed that the effect is
to distribute the leading edge suction to each vortex position over the chord in propor-
tion to the vortex’ contribution to total section circulation [32]. Thus, moments will be
incorrect even if total forces are accurate.

Two alternative methods of calculating force distributions may be suggested as being
correct. One may interpolate the velocities correctly computed at the control points to
the vortex elements or one may evaluate vorticity at the control points. The latter
approach is taken here. Also, rather than apply the Joukowski rule, local pressures will
be evaluated. This is seen as a convenience since one often requires surface pressures
anyway for additional studies. The remainder of this section will develcp the required

expression for the surface pressures. The following section will examine the leading edge
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suction.
Having solved equation (3.39), the velocities at the control points on the blade are

immediately available as

1 K M N Ny
M s] S Ow
\4 (X.‘) =V2— 5; Z [Z vi.n.m.kr\n.m,k + 2 Vi.n,m.kuwn,m,k] (342)
k=1 m=1"n=1 n=1
where v .\, v . are the vector influences at x; of the unit strength vortex loops

defined in Figure 3.11. The velocity is written as VM to emphasize that it is the mean
velocity at the control point. There is also a local jump in velocity caused by the local

vortex density v, ., , which is
2Av"umlk = 7n,m,k X nn,m,k- (3.43)

Leaving the discrete problem momentarily, note that the velocity on the blade sur-

faces is
vVE = v2+vit
= v+ Vst (3.44)
The + signs refer to the back and face of the blades and Vs, is the gradient on Sg.
Thus, the velocity jump across Sp is also given by
28v = Vsa(p" —¢7)
= Vspp. (3.45)
Now consider the curvilinear coordinate system on Sg formed by taking the tangents

to lines of constant radius and chord as the basis vectors. Derivatives of u along these

lines are related to Av by

op .
7 20v - € (3.46)
Ou = 2Av-7. (3.47)
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+ control
point

Figure 3.14: Jump velocities from consideration of the potential gradient.

Figure 3.14 shows a detail of the grid. Panel boundaries are indicated along with level

curves of £ and 7. The quantities £0p/0¢ and ndu/dn may be approximated as:

T vt (3.4)
R (349
o (330)
A 331)

The relation between u and I'S can be used to write
S
a_/‘ ~ I‘n+l.m
66 n+l prn+l.m - xpn,ml

Writing the denominator in terms of the Cartesian coordinates of the control points

(3.52)

simplifies the implementation. The order of the approximation is preserved. Similar

expressions hold for the remaining gradients of p.
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Figure 3.15: Relation of interpolated vortex density components to total vortex density.

These jump velocities correspond to the component vortex densities v, and -, also
shown in Figure 3.14. Finally, the desired vortex density is found by interpolating Yn
and -, to the the control point where the local grid angle A allows v, . to be deduced
as shown in Figure 3.15.

Bernoulli’s equation (2.37) also includes a term 0y /3t which must be evaluated for
unsteady flows. Unsteady in this sense refers to the ship-fixed, inertial coordinates so,
in this model, propellers operating in axisymmetric inflows are unsteady (although we
speak of such cases as steady flows, having in mind the blade loading as a function of
time).

To compute ¢ /0t, suppose that at time ¢y the control point at which pressure is to
be computed is at (z,r,0,). If the propeller loading is constant in time and its rotation
speed is {) that potential will prevail at a later time ¢ at the location (z,r,0 + t, 1o).
That is,

o(z,r,0,t) = p(z,r,00 + N, ). (3.53)
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TE

Figure 3.16: A section through the blade showing the contour for calculating potential
jump at a.

If, however, the loading is unsteady then
1t B
= Ot,t —dr. 3.54
o(z,r,0,t) = p(z,r,00 + N, o)'i'/t0 o T ( )

The new term on the right represents the accumulated change of potential at the blade-

fixed point of interest. It follows that

8p 00 | By
at()o(mara(-)i ) 66 at + a . (3'55)
which can be rewritten as
Oy
6t = r{u g+ '_ (3.56)

The quantity u, is the tangential velocity induced by the singularities on the propeller.
Now consider a section through the blade at constant radius. The velocity at a point
a, say, is given by

V = vy + VSO .
With reference to the contour shown in Figure 3.16, one may write
at
/_ Ve-dl = ¢t -~
a + _ _ )
/L (Vv -v7)de. (3.57)
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The integral on the left is over one side, from the leading edge to a. Substituting for the

velocity jump from equation (3.43) gives
o= [ - de. 3.58
ot = = [ (yxn)-de (3.58)
The vortex density can be written as
¥ = Y€ + Ve (3.59)

where the unit vectors e, and e, are tangents to the constant radius and constant chord
curves, respectively. The components of vortex density used here are related to v, and

7y defined previously by the relations

Ys = TYesecA (3.60)
Yo = “psecA. (3.61)

By construction, dc = e;dc from which it follows that
A - (n x dc) = —y,cos Adc. (3.62)

Thus, at the n** control point

n
oF —pn =Y 7jAcicos A, (3.63)
i=1
But
I‘f = 7s;Ac;jcos A
so that
- ‘Pn E PS (364)
Finally, <
dp* 1 & ory
'a—t rﬂug + - 2 4 Z ot . (3.65)

j=1
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Return once again to equation (2.37). The pressure at points on the propeller is

related to that far upstream by

Loz, 00* o 1 a2
5PVt p + P =5pV +p*. (3.66)
The pressure jump across Sg is then
o1 -2 2\, 1 2 2 0 -
+ _ - + : + - (% _
pt—p —?‘p(Voo +Vw)+2p(V +V )+”at(“’ ) (3.67)

assuming p}, = p3. The rotationality of the background flow requires that V. be
distinguished from each other but if, as has been assumed, the vorticity in the background

is weak then the difference V. — V#? is small, giving
_ 1 2 2 0 -
pt—p =~ -2-p[(VM +4v) — (VM - Av) ]+ 5 (¢t —¢7) . (3.68)

The pressure jumps are combined with the corresponding panel area and unit normal
to obtain an incremental force AF which acts at the control point.

Kim and Kobayashi [37] report a similar method for computing pressures based
on the steady lifting surface code PSF2 [22]. Their method appears to be in error
in two respects: first, spanwise gradients corresponding to equations (3.50) and (3.51)
are approximated by taking ér as the denominator rather than the actual curvilinear
distance and, second, the mean velocity is computed on the vortex segment, a location
where flow tangency does not obtain. Direct comparison between their results and this
work are unavailable since they included thickness effects which are not considered here.
It is clear, though, that when the propeller is raked ér will differ from 67 thus causing

the chordwise vorticity component to be overestimated.

3.6 Leading Edge Suction

Recall from Chapter 2 that the leading edge suction force is given by

Fs = -imc;i
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Figure 3.17: Coordinate system and blade grid for leading edge suction.

where
Cs = lim /5 y(s)1

Lan showed in his analysis of the QUM that the value of Cs could be obtained directly
by computing the downwash at the leading edge. Guermond has noted in [24] that
this method cannot be applied to quadrilateral panels. Because of the mislocation of
the straight edges of the panels a logarithmic error is produced in the calculation of
nearfield velocities. At the leading edge, in particular, the vortex strengths are large
and the required downwash point very close by. Thus, leading edge suctions calculated
in this way are likely to produce large errors, particularly where the leading edge has
large curvature. Additionally, it requires computing an extra set of influence coefficients.

In this work, a direct application of the limit process expressed in equation (2.39)
is employed. Figure 3.17 shows a detail of the leading edge. To evaluate the limit, the
vorticity - is calculated at the control points along a streamwise strip. Near the leading

edge, the distances from the leading edge to the n** control point measured along a grid
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curve, s,, and in the i direction, ¢, are related according to ¢, = s, cos A where ) is
the angle that the constant radius grid line makes with the unit vector i.

The vortex strength at the leading edge is estimated by v, = v,, - 1. Now

Cs = Veamn (3.69)

must be evaluated for n — C. This requires extrapolation since the quantities called for
are only known inboard of the leading edge. The extrapolation can be made reliable if
it is assumed that v may be expressed as
1
(c) = 7

where P(c) is a polynomial to any degree in c. If this is the case, the slope of the curve

P(c) (3.70)

/¢y vanishes at the leading edge. The assumption is not very restrictive. It is true for
a flat plate and for parabolic camber. It strictly fails for NACA a-series loadings but
these are mathematical idealizations, requiring a logarithmic singularity in camber at the
leading edge. The loading actually achieved is probably closer to something expressible
by (3.70). The force finally calculated is then scaled by the length of the leading edge
vortex segment and applied at a point which lies on the leading edge of the “equivalent
propeller”, that is, at a point obtained by interpolating from the leading edge positions
at the adjacent grid point radii as shown in Figure 3.18.

This approach is computationally effective in that it obtains Cg directly from already
known quantities: no additional influence coefficients need be calculated. It, of course,
does nothing to capture the contribution to Fgs due to the curvature of the leading edge.

This is left as future work.

3.7 The wake

The wake sheet evolves from its initial prescribed geometry according to

O XWnmk

S = Vo (3.71)
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Figure 3.18: Interpolation to locate the point of action for the leading edge suction.

where xw is the position of a grid point on the wake sheet and V is the total velocity
at that point. This simple equation contains a Pandora’s box of trouble.

A typical grid point is at the junction of four vortex segments. Strictly, the induced
velocity is undefined here. To avoid this difficulty, the contributions from the attached
vortex segments are often simply ignored [11,22,56]). The only real attraction of this
approach is that it gives induced velocity at the grid points directly. It cannot be

justified as a correct quadrature for the wake integral

1
Vame = [, PV Ve ——)do
It also has the drawback of effectively doubling the panel size.

The Cauchy singularity can be handled without wasting panels by simply computing
wake induced velocities at the panel centroids. The required grid point velocities are
then obtained by interpolation. Recalling that the first shed vortex in the wake was
placed at the 1/4-chord of the panel swept out by the trailing edge in one time step, this

simple mid-point rule places wake control points at the 3/4-chord location.
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As discussed in Chapter 2, the self-induction associated with the curvature of the tip
vortex, at least, must be accounted for. The induced velocity at grid points along the tip
vortices are obtained by interpolation from values calculated directly at the midpoints
of the tip vortex segments. To these values are added the LIA contribution, u;. Recall

from equation (2.27) that this is given by

kIl L
w = H'“(Z) b. (3.72)

This contribution is estimated by fitting to the tip vortex a circular arc which passes
through the desired grid point and its immediate upstream and downstream neighbor.
The values of the curvature &, the arc length L, and the direction of the binormal b are
then immediately available. The core size ¢ is assigned as discussed in Chapter 5.

Besides the local effects of the sheet on itself dealt with above, a free-wake model
must anticipate a more pernicious problem — the close approach of one part of the sheet
to another. Close approach is normally seen in the rolling-up part of the sheet where
discrete vortices in one turn of the rollup spiral are brought into close proximity with
vortices in an adjacent turn. As important length scales become comparable to panel
dimensions the quality of the near field representation deteriorates, spurious velocities
result, and the integrity of the sheet’s structure is destroyed.

Various techniques have been proposed to deal with near-field modelling. Chorin and
Benard [9] introduce a finite core to the vortices. Krasny [39] takes a similar approach
to desingularizing the Cauchy integral. Combining vortices that approach each other
too closely into a single “equivalent” vortex has been used by Smith [71] and Moore [54].
This method has been applied to adjacent vortices on the same sheet but not, to the
author’s knowledge, when the nearby vortices are on different sheets. Maskew [49)
introduced the so-called sub-vortex technique. In his method, when a field point at
which velocity is to be calculated is too close to the vortex sheet, the sheet is subdivided
into smaller panels until the field point distance is sufficiently large compared to the

local subpanel size. Fink and Soh [15] periodically regrid the vortex sheet to preserve
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the order of the geometric aproximation. Hoeijmakers and Vaatstra [28] use a higher-
order representation of the vortex distribution in combination with adaptive panelling
and amalgamation.

These approaches have been motivated by the need to capture in some detail the
structure of the rollup spiral. It is fortunate that this work does not require that infor-
mation. Leading edge vortex sheet separation, while important to propeller performance,
is not contained in this model. Therefore, detailed resolution of the leading edge vortex
is not required. Even when the propeller is operating at a low advance coefficient so
that tip vortices might be expected to pass close aboard the following blades, the dis-
tances are great enough so that a far-field approximation of the tip structure is all that
is needed.

In this work, the simplest model possible has been chosen. A cutoff radius is pre-
scribed for application of the Biot-Savart integration. If a point is within this radius
of a vortex segment, the induced velocity contribution is set to zero. The value of the
cutoff radius is taken to be quite small compared to typical panel dimensions.

After all induced velocities have been calculated at the wake grid points there will
be found some less extreme but still unacceptable induced velocities. To deal with
these, an ad hoc damping function is applied to the induced velocities before they are
combined with the background to form the convection velocities. With this damping
the “corrected” induced velocities v., are obtained from the directly calculated v,'s

according to

_ U]
Ve = Vy [1 - exp( p” vg) (3.73)

where ay is a damping parameter which controls the range of induced velocities affected

and Up is a reference velocity given by

Up = /VZ+ (0.TRQ)2. (3.74)

Vs is the speed of advance of the propeller (ship speed), R is the tip radius of the
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Figure 3.19: Reduction in magnitude of induced velocities for various values of ay.

propeller, and 2 is its angular speed. Figure 3.19 shows the effect of various values of
aq. Figure 3.20 shows the distribution of induced velocities in the wake of a propeller
blade with greater than design loading. The wake comprised 180 grid points of which
176 have induced velocities less than Ug, most are less than 0.2Ug. Comparing this
figure with Figure 3.19 shows that oy = 1.0 damps only the most extreme values by any
significant amount.

The treatment of the induced velocities in the wake described above is intended to
supress spurious extreme velocities. It alone is not sufficient to ensure orderly evolution
of the wake sheet. The discrete vortices in the rollup region have a natural tendency to
orbit about each other. The period of this orbitting motion, governed by panel size and
vortex strengths, forces a local time scale which must be considered when time step size
is selected during the integration of equation (3.71). If the time step is large compared
to the local time scale, the vortices near the tip deviate from their proper paths and

the wake structure is destroyed. If the length of the time step is adjusted to keep it
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Figure 3.20: The distribution of induced velocities in the wake of a one-bladed NSRDC
4118 propeller at J = 0.83.

appropriately small, the integration grinds to a halt as the tip spiral rolls up tighter and
the panel size shrinks.

Rather than try to chase the vortex sheet into an infinite spiral it has become almost
universal practice since Ham [26] and Smith [71] (at least in 2D) to collect the inner-
most part of the spiralling sheet into a single vortex. In a simple example, when the
amalgamation criterion is triggered, the tip vortex and its nearest neighbor on the sheet
are replaced by a single vortex placed at the center of vorticity. The wake sheet is then
often repanelled so that the total number of vortices remains constant.

Applying this process in three dimensions has its advantages. The time step can
be kept conveniently large and the number of panels (hence the number of influence
coefficients to be calculated) is reduced. Since the calculation time goes like N? times
the number of time steps, reducing N and increasing 6t has an irresistable attraction.

The amalgamation process as implemented here proceeds as follows. At each time
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XWm ¢~ wake sheet midspan

Figure 3.21: Schematic showing how rollup is measured.

step, the extent to which the sheet has rolled up about the tip vortex is examined. This
value is expressed as the accumulated spanwise folding referred to a location near the
midspan of the sheet. See Figure 3.21. The amalgamation process is triggered if this
value exceeds a specified limit. Amalgamation consists of collapsing the two outermost

grid points so that

XWasa1 (1) } _ IPhega| XxWaraa(8) + [Py xwaa () (3.75)
xwp(tt) IThssal + [Thal



Chapter 4

Unsteady Wake Geometry
Measurements

Experimental data regarding the wake geometry, in particular, the tip vortex geometry,
of marine propellers is scarce. Virtually all data refer to steady flow situations. Loukakis
[48] made direct observations of the steady geometry of cavitating tip vortices from an
NSRDC 4118 propeller at various advance coefficients. Okamura {61} and Shih [70] made
measurements using laser doppler velocimetry (LDV) techniques.

Okamura measured the radial position of the tip vortices for a model propeller de-
scribed as being designed for a 50,000 dwt ship. He also inferred the pitch of the wake
sheets from circumferential mean velocities measured in the wake of the propeller. Un-
fortunately, the particulars of the propeller design given in that paper are incomplete.

Shih made measurements of wake pitch for an NSRDC 4644 propeller under both
uniform and steady shear flow conditions. Two techniques were used. The so-called laser
beam crossing method he used locates the vortices by dropping the propeller tunnel pres-
sure until the vortex cores cavitate. The LDV sampling volume is then positioned on the
vortex and its location obtained from the LDV’s positioning apparatus. Corresponding
pitch measurements are also reported. These were derived from consideration of the

phase relationship of time varying velocities in the vicinity of the tip vortex at various

66
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points along the slipstream.

One expects the free wake analysis method described in Chapters 2 and 3 should
match steady flow data such as these but it. must also be compared to unsteady flow
cases. Loukakis, in the work previously cited, observed but did not measure the tip
vortex geometry for the NSRDC 4118 propeller operating behind a wake screen which
produced a 30% wake defect over one quadrant of the propeller disk. These observations
showed the same kind of distortion of the wake geometry by the local wake defect as is
produced by a ship’s wake.

This well-known propensity of vortex sheets to conform to the local velocities ac-
cents the importance of more detailed information on the transient configuration of the
wake. Such data are required to validate any unsteady free-wake model. To this end an
experiment was performed to quantify the instantaneous tip vortex wake geometry for
a representative propeller operating in a nonuniform inflow. To the author’s knowledge,

no other studies of tip vortex geometry for unsteady flow have been reported until now.

4.1 Apparatus

An NSRDC 4497 propeller as described in Table 4.1 was available and was judged to
be representative of the type that the code would be required to analyze. All tests were
conducted in the MIT Variable Pressure Water Tunnel. This tunnel has a 20 inch square
test section with observation windows that permit approximately 12 inches of vertical
and 18 inches of streamwise travel for the LDV sampling volume. Both the tunnel and
the LDV apparatus have been described by Kobayashi [38]. A description of the theory
behind laser doppler velocimetry (zlso called laser doppler anemometry) may be found
in reference [12].

A smoothly varying wake profile would be desirable as a test case but wake screens
don’t lend themselves to creating truly smooth wakes. It is even more difficult to “grow”

a ship wake by placing a body upstream of the propeller. In the end, the inflow to the
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Number of blades: 5

Hub/Diameter ratio: 0.2

Expanded area ratio; 0.725

Section meanline ; NACA a=0.8

Section thickness Distribution: NACA 66 (modified)
Design advance coefficient, J4 : 0.889

r/R | P/D [rake/D]| O, C/D | fo/C | to/D

0.20 || 1.455 0.000 | 0.000 | 0.174 | 0.0430 | 0.0434
0.25 || 1.444 0.000 | 2.328 | 0.202 [ 0.0395 | 0.0396
0.30 || 1.433 0.000 | 4.655 | 0.229 | 0.0370 | 0.0358
0.40 [ 1.412 0.000 | 9.363 | 0,275 | 0.0344 | 0.0294
0.50 |l 1.361 0.000 | 13.948 | 0.312 ] 0.0305 | 0.0240
0.60 |j 1.285 0.000 | 18.378 | 0.337 | 0.0247 | 0.0191
0.70 {| 1.200 0.000 | 22.747 | 0,347 { 0.0199 | 00146
0.80 f 1.112 0.000 | 27,145 [ 0,334 | 0.0161 | 0.0105
0.90 || 1.027 0.000 | 31.575 [ 0.230 | 0.0134 | 0.0067
0.95 || 0.985 0.000 | 33.788 | 0,210 | 0.0140 [ 0.0048
1.00 || 0.942 0.000 | 36.000 | 0.0001 | 0.0001 | 0.0029

Table 4.1: Particulars of the test propeller.

68

propeller was configured by a wake screen designed to split the flow into two regions of

approximately +12 per cent of the volumetric mean flow.

The design method for the wake screen is described by McCarthy [50]. By judicious

selection of screen material with appropriate combinations of wire diameter and spacing

one can control the pressure drop across the screen surface. The pressure drop is virtually

independent of Reynolds number in the range of interest for these tests. The screen was

mounted upstream by means of a collar attached to the propeller shaft. The perimeter

of the screen was supported by a ring held by struts cantilevered from this collar as

shown in Figure 4.1. Figure 4.2 shows the results of axial velocity measurements in the

propeller plane.
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Figure 4.1: Construction of the wake screen and support.

4.2 Inflow Characteristics

The gross characteristics of the velocity field are as designed. There are localized jets
downstream of the support struts which were unanticipated. These are the result of
the nonlinear interaction of the screen with the stagnation zone at the leading edges of
the struts. As noted above, while the pressure drop effected by the screen is linear in
approach velocity over a wide range of Reynolds number it tends to decrease with R for
smaller R. The stagnation zone near the blunt leading edge of the strut prevented the
screen from causing any significant pressure drop. The downstream velocity recovery in
the strut’s potential flow field transforms this nil pressure drop into a jet. (Anecdotally,
it should be pointed out that the detailed shape of the strut leading edge can change this
effect radically. These struts had a squared off leading edge. Shih [69], for a similarly
constructed screen having struts with rounded leading edges, shows velocity defects

Lzhind the struts). These jets were considered unobtrusive enough 3o that no effort was
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Figure 4.2: Axial velocity in the propeller plane.
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Figure 4.3: Performance of 4497 propeller in open water and behind wake screen.

made to eliminate them.

4.3 Propeller Operating Point

Performance tests for the model propeller were conducted in open water and behind the
wake screen. The 4497 is designed for an advance coefficient of J = 0.889. At this J, the
measured thrust coefficient was K, = 0.235. The advance coefficient in the screen wake,
J,, corresponding to this thrust value was determined to be J, = 0.906. This operating
point was used throughout the experiment. Figure 4.3 shows the results of these tests.
Propeller tests in the MIT facility are normally run at a minimum of 1000 RPM to avoid
Reynolds number scaling problems as much as possible. In this experiment, the rotation
speed of the propeller was limited to 900 RPM. This was for two reasons. The wake
screen blockage required that the tunnel impeller RPM be doubled (as compared with
an open water test) to produce a given mean flow. Also, at this operating point the

screen structure was at its strength limits. This gives a Reynolds number of about 10°
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based on the .7R blade section.

4.4 Wake Surveys

Once the operating point for the propeller/wake screen combination was determined,
three wake surveys were made in or near the plane of the propeller. First, a nominal
wake survey in the plane of the propeller was done. Axial veloci.y downstream of the
wake screen was mapped. Second, an unsteady axial velocity map was obtained at a
station 1.5 inches upstream of the nominal propeller plane. These measurements were
made with the propeller installed and running at its operating point. The third set of

measurements was a steady axial velocity map in the same location as the unsteady.

4.5 Measurement Paradigm

In a variable pressure water tunnnel, it is common practice to locate propeller tip vortices
by lowering tunnel pressure until the high velocity vortex cores reach incipient cavitation.
Shih used this technique in his steady measurements. This method of visualization can
lead to trouble in the presence of a wake screen. It can happen that the cavitation
number for the screen wires is reached before that for the vortex cores. This was the
case in this experiment. The result of wake screen cavitation was a complete “white-out”
of the tunnel test section, obscuring the vortices altogether. A more elaborate indirect
measurement technique was developed to circumvent this problem.

In the new technique, it is assumed that the tip vortex structure can be modelled as
discrete helices having finite cores of constant vorticity, i.e., as Rankine vortices. This
paradigm allows us to understand how velocity measurements may be used to locate the
vortices. The essence of the technique is to interpret the characteristics of unsteady axial
velocity measurements near the boundary of the slipstream in light of this vortex model.

To locate a point on a vortex is then a two step process. The first step is to obtain the
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Figure 4.4: Schematic velocity waveforms for positioning LDA in streamwise direction.

correct axial position. Assuming the LDA’s sampling volume is located outside but near
the race one expects the axial velocity waveform to show a velocity decrement when a tip
vortex is close aboard. By observing the phase relationship of this event with respect to
the trigger pulse one can “home in” on a particular blade’s tip vortex. Figure 4.4 shows
schematically how the waveforms arc interpreted for axial positioning. This technique
works best by starting near a blade tip. This eliminates the possibility of confusing the
vortices from different blades.

Having established the axial location of the vortex one then traverses the LDA sam-
pling volume radially to find the remaining two coordinates. This part of the process
is an extension of the technique described by Shih [70]. Again, the axial velocity is
observed. As the sampling volume passes from outside to inside the tip vortex position,
the Rankine vortex model predicts a progression of waveforms such as sketched in Fig-
ure 4.5. One first observes a growing amplitude as the outer boundary of the vortex

core is approached. Then the amplitude decreases as the vortex core is traversed. After
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Figure 4.5: Schematic velocity waveforms for positioning LDA radially.

passing through the center of the vortex core the amplitude increases but with oppo-
site sign. The vortex location is defined to be that point at which the amplitude is a
minimum,.

In practice, the process is not so simple. It is necessary to iterate the axial and radial
traverses several times for each data point. A large number of factors conspire to conceal
the clean waveforms of Figures 4.4 and 4.5 from the observer. The vortex location is
not exactly repeated from one revolution to the next due to general fluctuations in the
flow as well as to the natural instability of the vortex line. The detailed structure of the
vortex core differs from the Rankine idealization. There is a vortex sheet shed from the
inboard portions of the propeller’s trailing edge. This sheet is attached to the tip vortex

and is being rolled up into it. There is some phase noise in the triggering mechanism.

The LDA traverse carraige was somewhat flexible and permitted fairly large oscillations
of the sampling volume (especially in the streamwise direction). Figure 4.6 shows some

actual velocity waveforms such as were observed during the positioning process.
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The poor quality of the real-time velocity signal necessitated a period of operator
training in order to learn to interpret the velocity waveforms. Fortunately, a small region
of the tip vortex structure could be made to cavitate without producing massive screen
cavitation. This afforded the opportunity to compare positions obtained by the method
described above with direct observation. After some hours of training it was possible to

obtain consistent results.

4.6 Instrumentation

To employ this indirect measurement technique requires careful triggering and real-time
signal processing. Figure 4.7 shows the setup used. A magnet on the drive shaft is sensed
by the trigger pickup once per revolution. The pulse from the pickup is compressed in
time and amplified. This signal is used to fire a strobe lamp which illuminates the test
section of the tunnel. The strobe flash is observed by a photocell whose output is used as
the data processing trigger. This triggering setup has the virtue that the variable delay
of the strobe can be used to adjust the propeller’s angular position during measurements.

For the tip vortex iocation and strength measurements, a 15mW He-Ne laser was
employed in back-scatter mode. The photomultiplier signals were aquired and condi-
tioned by a TSI 1057 signal conditioner and TSI 1090 LDA signal processor. These,
and the integral monitor, comprise the tracker identified in Figure 4.7. The resulting
veldcity waveform was sent to a PAR TDH-9 waveform eductor which averaged the
signal over several revolutions. The averaged signal, along with the trigger pulse, was
observed on a Tektronix 561B oscilloscope during the tip vortex mapping procedure.
Concurrently, the velocity signal was captured by a DEC MINC computer and averaged
over 800 revolutions. The sampling rate was such that one revolution is represented by
128 points. Another Tektronix oscilloscope was used to monitor the raw photomultiplier

signal directly for burst quality.
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4.7 Tip Vortex Geometry Measurements

Trigger pulse adjustment placed the propeller at a nominal angle of 64.5 degrees during
all tip vortex geometry measurements (referred to the coordinate system defined in
Figure 3.1 of Chapter (3). The test propeller has 36 degrees of skew so the tip of the
corresponding blade was at 100.5 degrees.

Since data-taking would extend over several days it was important to check repeata-
bility. Figure 4.8 shows position data taken for one vortex one two separate days. From
this, one can see that day-to-day repeatability is fairly good. Figure 4.9 shows the vor-
tices’ positions in the X-Y plane as viewed from the positive Z axis. Note the change
in pitch from the upper (slower flow) region to the lower. The contraction of the race is
also apparent. Figure 4.10 shows a view of the vortices in the X-Z plane as viewed from
the positive Y axis. In this view the effect of the strut jets is evident in the streamwise
deflection of the vortices near Z = 0. Figure 4.11 shows the same data as Figures 4.9 and
4.10 replotted to display the regions of differing pitch. Finally, Figures 4.12, 4.13, 4.14,
4.15 and 4.16 show these data looking at the Y-Z plane from ahead of the propeller.
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Chapter 5

Calculations

The numerical model developed in the earlier chapters of this document has been imple-
mented in a code called PUF5 (for Propeller Unsteady Forces, version 5). Two groups
of calculations will be presented in this chapter. The first group comprises various con-
vergence studies while the second group compares the code’s results to experimental

data.

5.1 Convergence of Blade Forces

The results from a numerical model cannot be completely understood without the per-
spective lent by study of the scheme’s convergence properties. This section will examine
PUF5's convergence characteristics. The propeller used for these studies will be an
NSRDC 4118. Table 5.1 lists the properties of this propeller. A single blade was used

for reasons of economy.

5.1.1 Convergence with number of panels

One of the attractive features of vortex lattice models using the QCM is their rapid
convergence. This is exhibited in Figures 5.1 and 5.2 which were obtained using a

fixed wake geometry in umform flow. Overall blade forces are mostly a function of the
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Number of blades: 3

Hub/Diameter ratio: 0.2

Expanded area ratio: 0.6

Section meanline : NACA a=0.8

Section thickness Distribution: NACA 66
Design advance coefficient, J,, : 0.833

r/R | PJD [rake/]D] ©, | C/D [ fo/C | to/D |
0.20 [ 1,086 0.000 | 0.000 { 0.3198 | 0.0219 | 0.0414
0.25 |f 1.085 0.000 | 0.000 | 0.3420 | 0.0227 | 0.0337
0.30 | 1.084 0.000 | 0.000 | 0.3635 | 0.0232 | 0.0282
0.40 || 1.082 0.000 [ 0.000 | 0.4048 | 0.0233 | 0.0239
0.50 {| 1.080 0.000 [ 0.000 | 0.4392 [ 0.0218 | 0.0198
0.60 {| 1.078 0.000 | 0.000 | 0.4627 | 0.0205 | 0.0160
0.70 { 1.077 0.000 | 0.000 | 0.4622 | 0.0200 { 0.0125
0.80 || 1.075 0.000 | 0.000 | 0.4347 | 0.0197 | 0.009]
0.90 §f 1.073 0.000 | 0.000 | 0.3613 | 0.0182 | 0.0060 |
0.95 [ 1.072 0.000 { 0.000 | 0.2775 { 0.0189 | 0.004"
1.00 j| 1.071 0.000 | 0.000 | 0.0278 | 0.0001 | 0.00ul

Table 5.1: Particulars of the NSRDC 4118 propeller.
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Figure o.1: Convergence ot the spanwise circulation distribution vs. aumber of spanwise
panels.
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Figure 5.2: Convergence of a typical sectional pressure distribution vs. number of panels
in the chord.

spanwise distribution of circulation. In this regard, Figure 5.1 is noteworthy showing as
it does that even a 6 x 6 grid can give fairly precise results. Figure 5.2 demonstrates the
ability of the QCM panelling to capture the flat-plate loading at the leading edge.
Rig#ractice, the process is not so simple. It is necessary to iterate the axial and radial
traverses several times for each data point. A large number of factors conspire to conceal
the clean waveforms of Figures 4.4 and 4.5 from the observer. The vortex location is
not exactly repeated from one revolution to the next due to general fluctuations in the
flow as well as to the natural instability of the vortex line. The detailed structure of the
vortex core differs from the Rankine idealization. There is a vortex sheet shed from the
inboard portions of the propeller’s trailing edge. This sheet is attached to the tip vortex
and is being rolled up into it. There is some phase noise in the triggering mechanism.
The LDA traverse carraige was somewhat flexible and permitted fairly large oscillations
of the sampling volume (especially in the streamwise direction). Figure 4.6 shows some

actual velocity waveforms such as were observed during the positioning process.
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Figure 5.3: Side view of a one-bladed 4118 showing the hub and tip vortex locations for
various panellings. J is 0.833, uniform flow from left to right.

is a fixed-wake vortex lattice model that is known to give accurate results for the full
4118 propeller. One expects it to be a good reference for the one-bladed case as well.
Figure 5.4 compares PUF2.1's prediction of spanwise circulation with that from PUFS5.
In this example, PUF5 was run using 9 panels spanwise and 10 chordwise. It also
includes the effects of the free wake. Figure 5.5 compares thrust predicted by the two
over a range of advance coefficient.

A complete, three bladed 4118 is compared to experimental data in Figure 5.6. This
case used 9 panels spanwise, 9 panels chordwise, 30 time steps per revolution and a
wake length of approximately 4 propeller radii. One notices immediately that thrust
is underpredicted in the heavy load case and overpredicted in the light load case. The
error in the former case can be identified with the phenomenon of leading edge vortex
separation. As the loading increases, there comes a point when the adverse pressure
gradient behind the leading edge produces a separation bubble. This has the effect of

rotating the leading edge suction force to a direction normal to the lifting surface at
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Figure 5.4: Circulation as a function of span for PUF5 and PUF2.1

the leading edge. The thrust is increased, as is the torque. Greeley and Kerwin [22)
examined this extensively and have developed a numerical model which accounts for the

global effects well.

5.1.3 Convergence vs. Time

PUF5 has the option of starting its unsteady calculations from an estimated steady
solution or with an impulsive start analogous to the Wagner pr_blem. By selecting the
impulsive start, certain issues related to the wake may be illuminated.

First consider convergence to the steady solution. Figure 5.7 shows the circulation
at about 0.7R as a function of time for 15, 30 and 50 time steps per propeller revolution.
The number of panels over the span is fixed at 6. The chordwise panelling is adjusted
so that the ratio of the sizes of the last blade panel and the first wake panel is roughly

constant. Convergence is virtually complete after a third of a revolution. The different
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Figure 5.7: Circulation as a function of time at r/R = 0.69.

levels achieved has to do with the accuracy of the wake representation. Approximating
the wake helix with 15 segments rather than 50 effectively increases the wake contraction
which in turn reduces the angle of attack of the blade sections.

The initial values of circulation in Figure 5.7 relate to the streamwise location of the
first shed vortex. There is a limit on how near ¢ = 0 one can look. Imagine observing
an actual foil undergoing such a maneuver. The circulation would be seen to start from
zero, rising abruptly as the startup vortex is shed from the trailing edge. The numerical
model must represent the cumulative effect of all the shed vorticity produced during
one time step as a single discrete vortex. Thus, the earliest time one may examine
is approximately ¢ = O(6t). This is seen in the figure; smaller time steps produce a
smaller initial value of I as should be the case. Figures 5.8 and 5.9 show the circulation
developed at other radii for the same three panellings. Near the tip, the circulation is
fully developed at earlier times. This is the physically correct trend because, for short

times, the phenomenon is actually governed by the number of chordlengths the section
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Figure 5.8: Circulation as a function of time at r/R = 0.96.

has advanced rather than by the propeller angle. The tip sections, being at a greater
radius and normally of smaller chord, travel a greater number of chords per 6¢.

It was pointed out in Section 3.3 that locating the first shed vortex as a fixed fraction
of chordlength leads to erroneous behavior. Figure 5.10 shows results obtained by setting
the first wake panel size equal to a fixed fraction of that of the last blade panel. All three
calculations were run at 30 time steps per revolution. Figure 5.11 shows corresponding
calculations obtained by holding the blade panelling — and the location of the first wake
vortex — fixed while varying the time step size. Looking at Figure 5.10, notice that the
rate at which circulation is developed varies significantly with the number of chordwise
panels as does the initial value of circulation even though the size of the time step is
fixed. As for Figure 5.11, one sees that no matter how much the step size is refined, one
cannot resolve the earliest development of circulation. These are undesirable behaviors: a
marine propeller often is placed in an environment which produces rapid load variations.

The magnitude and phase of the circulation reeponse is central to resolving blade forces
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Number of blades: §

Hub/Diameter ratio: 0.2

Section meanline : NACA a=0.8
Section thickness Distribution:
Design advance coefficient, J4: 0.727

r/RTP[DTrake/DT 6, | C/D | [oJC | to/D |
(020 ][0.765 ] 0.00 [ 0.0 [0.1846 ] 0.0064 ] 0.0498 |
0.30 [[0.803] 0.00 | 0.0 | 0.2043 | 0.0174 | 0.0462
040 [[0.836 | 0.00 | 0.0 | 0.2220 | 0.0252 | 0.0415
0.50 | 0.864 | 0.00 | 3.0 | 0.2369 | 0.0305 | 0.0356
0.60 [| 0.862 | 0.00 |10.7 | 0.2478 | 0.0327 | 0.0284
0.70 || 0.825 [ 0.00 | 23.4 | 0.2522 | 0.0323 | 0.0203
0.80 [[0.746 | 0.00 |39.2 | (.2454 | 0.0292 | 0.0143
0.90][0.610 | 0.00 | 554 |0.2139 | 0.0223 | 0.0096 |
1.00 [ 0400 | 000 | 72.0 | 0.0000 | 0.0100 | 0.0060

Table 5.2: Particulars of the OBO propeller.

into shaft side forces and moments.

Before leaving the impulsive start problem, consider Figures 5.12 and 5.13. These
are results obtained from an impulsive start calculation for one blade of the propeller
described in Table 5.2. Figure 5.12 shows the thrust developed during an impulsive start
compared to that part of the thrust generated by circulation alone, the latter obtained
by setting J,p/8t = 0. Here one sees that, as in the classical Wagner problem, there is
an immediate, finite thrust developed from the d¢/0t term in Bernoulli’s equation even
though the circulation is negligible.

Finally, Figure 5.13 shows another way to look at convergence of circulation during

runup to the steady state. Plotted here is the log of the maximum change of any IS

fiom one titne step to the next:
GDIF = max{[TS,,(t) = TS (¢ — 61)]}.

This is actually a much more sensitive indicator of convergence and is not always so
well behaved. The blade in this case happens to be fairly lightly loaded; for heavily

loaded propellers the wake geometry tends to remain unsettled longer causing ultimate
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Figure 5.12: Thrust developed during an impulsive start in uniform flow.
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Figure 5.13: Convergence of circulation during an impulsive start.

convergence to be delayed.

5.1.4 Tip vortex core size

In Chapter 2, the local induction of a vortex filament was introduced as a correction
to the behavior of the vortex wake at its edges. Loukakis [48] found this term to be
essential to predicting the steady wake pitch. Recall from equation (2.27) that the
relevant contribution involved a In (1/¢) behavior where ¢ is identified as the tip vortex
core radius.

To compute this radius as part of the solution would require a detailed viscous flow
model similar to that developed by Govindan, et. al. that could capture the development
of the core structure from the boundary layer behavior on the blade . Its subsequent
evolution might then be treated using the methods of Ting, say. Fortunately, such
detailed calculations aren’t necessary for the present model.

Loukakis, in his studies of the fully developed wake structure, performed extensive
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Figure 5.14: Self-induced axial velocity of an infinite helical filament including local
effects.

calculations looking at the effect of the local induction on the wake pitch. Modelling
the fully developed wake as a constant radius helical vortex filament of infinite extent,
he computed self-induced velocities on the vortex. His calculations were done by fitting
a circle to the helix at the point of interest, computing the induction from an arc of
the circle using Lamb’s classical result, and adding in the helix’ far field induction by
numerical integration. Some of these calculations have been repeated here with the LIA
part calculated analytically for the helix. The results for axial velocity as a function
of helix pitch are shown in Figure 5.14. As expected, these are virtually identical with
Loukakis’ data. Figure 5.15 shows more directly the dependence on €. The induced
velocities are only weakly dependent on core radius: an order of magnitude change in
¢ produces only small changes in u,. These data were obtained using a wake pitch of
tan g, = 0.4.

Employing the LIA approximation requires piecing together an inner and an outer

solution. This naturally involves the matching length L appearing in equation (3.72).



CHAPTER 5. CALCULATIONS

1. 00
>
S 0. 80}
(8]
o -
—
o
> 0. 60
8]
1]}
8]
9
0 0. 40F
o
—4
8]
o B
’ 0. 20
o
1 " 1 N

0.02 0. 04 0. 06 0.08 0.10

core radius,

Figure 5.15: Sensitivity of self-induced velocity to core radius.

e/R

102



CHAPTER 5. CALCULATIONS 103

1. 00~

0. 601

0. 40 k

0. 20

oxial induced velocity

Ll l A l A l 1 l A l
0.10 0.20 0. 30 0. 40 0.50

matching length, L/R

Figure 5.16: Sensitivity of self-induced velocity to matching length.

Calculations to check sensitivity to changes in L were done for a wake pitch of tan g, =
0.40 with a core radius of 0.02 times the helix radius. Figure 5.16 shows that matching
length has virtually no effect. |

All of the foregoing is presented in order to make a case for the following: if a rea-
sonable guess for € can be made it is good enough for the present application. This esti-
mate may be approached from two directions. First, there is phenomenological evidence.
Loukakis and later, Greeley and Kerwin [22], found good agreement with experimental
wake pitch data with ¢ = 0.02R although they had to estimate the strength of the tip
vortex making it hard to separate the effects. Second, there is analytical evidence. Using
energy arguments with an outer potential flow and an inner viscous model of the tip
vortices from a wing, Roberts [67] was able to calculate the radius of maximum velocity
which is identified here as the core radius. It is € = 0.018R.

With regard to the streamwise variation of ¢, it should be noted that casual direct

observation in the propeller tunnel seems to indicate that the core radius may be con-
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sidered constant over almost the whole length of the tip vortices. This is buttressed
by Roberts’ calculations which indicate that the region of persistence of the vortex core
structure is on the order of ten spans. A core radius value of 0.02R is used in the present

work at all positions along the vortex.

5.2 Unsteady Problems

The full unsteady code was tested against two groups of experimental data. In one
case, comparison is made to unsteady force measurements. In the other case, computed
wake geometry is matched against data from the measurements described in Chapter 4.
Lastly, PUF5 is applied to the case of a five bladed propeller operating in a ship wake

with an extreme wake defect.

5.2.1 Forces on the 4118 propeller

Boswell and Miller {7] studied unsteady loading on a series of propellers that included the
4118 described above. They tested the propellers in wakes generated from wake screens
constructed to produce square wave azimuthal variation in the flow. Two screens were
used, with periods 27/3 and 27 /4. Unsteady thrust and torque were measured and
harmonically analyzed.

PUF5 was run for each case using nine panels spanwise, nine chordwise and thirty
panels streamwise in the wake. There were forty-five time steps per revolution. Integra-
tion of the wake trajectory was accomplished in a three part process within each time
step. First, forward Euler was applied with step size 6t and the result saved. Next,
forward Euler was twice applied starting from the original position using a step size of
1/26t. Finally, Richardson extrapolation was applied to the two results to obtain the
new wake position with second order accuracy in time.

The results are summarized in three figures showing propeller forces in an inertial

reference frame. Figure 5.17 resolves the axial force into harmonics of shaft rate. Since
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Figure 5.17: Thrust harmonics for 4118 propeller in a three cycle wake.

this is a three-bladed propeller in a three cycle wake, the third harmonic dominates.
Figures 5.18 and 5.19 refer to the four cycle wake. Here the third harmonic dominates
as well. The experimental data shows strong mean value, particularly in the vertical
force, which does not appear in the PUF5 data. Boswell and Miller attribute this to
the weight of the propeller and shaft. The appearance of a first harmonic in both side
forces is apparently due to a mean side force measured in the rotating reference frame.
The origin of the 20 per cent discrepancy in the third harmonic of horizontal side force

is not clear.

5.2.2 Tip vortex geometry from the 4497 propeller

The velocity profile measured in the propeller plane, presented as Figure 4.2, was pro-
vided as input to PUF5 in the form of Fourier harmonics. Table 5.3 lists these. Only
coefficients for axial velocity are given. The axial inflow velocity is calculated as

Ve =V, Y _[Ancos(nb) + By sin(n0)].

n
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Figure 5.19: Vertical side force on the 4118 propeller in a four cycle wake.
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-0.009
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-0.007

0.021 | -0.009
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-0.004

0.032
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-0.005

0.034 | -0.004

0.039

-0.005

0.049

-0.002
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0.003

0.002 | -0.012

0.000

-0.009

0.001

-0.016

0.003
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-0.001
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-0.002

0.001
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0.95

An B

B

By

An

B,

0.999 | 0.000

0.000
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0.000

0.975

0.000

-0.120 | -0.001

-0.003

-0.127

-0.002

-0.124

-0.001

-0.015 | -0.006

0.000

-0.005

0.002

-0.002

0.006

0.034 | -0.006

-0.009

0.046

-0.002

0.052

-0.002

0.046 | -0.004

-0.002

-0.002

0.034

-0.003

0.032

-0.004

-0.004 | -0.008

-0.005

-0.005

-0.003

-0.001

-0.004

-0.002

Ot da | WO~ | O

-0.002 | -0.001

-0.002

-0.002

0.000

-0.001

0.00!

i

-0.002

Table 5.3: Harmonic analysis of screen-generated wake profile.
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The propeller used in the experiment was modelled by PUF5 using nine panels over

the span, nine chordwise, and thirty along the streamwise direction in the wake. There

were forty-five time steps per revolution. The calculation was started from an estimated

steady solution to speed convergence. Two revolutions were executed.

Figure 5.20 shows the experimental data overlayed onto the calculated tip vortex

locations from PUF5. Flow is from left to right and the low speed region of the flow is

in the upper half of the plot. No interpolation of the tip vortices’ positions was deemed

necessary since the propeller angle it one time step nearly matched the experimental

propeller position. The overall features of the experimental data are reproduced. In

particular, the different pitch in the two inflow regions is captured. Figure 5.21 shows

this in a different view. One can also see the effect of the jet flow at zero and 180 degrees.
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Figure 5.21: Pitch of the tip vortices.

There are two discrepancies that should be noted. The radial contraction of the
slipstream is under-predicted. Some part of this is likely due to the truncation of the
wake. There would also be a contribution if the calculated rollup is proceeding too slowly
since during rollup the tip vortex tends to migrate inboard. The other discrepancy is
that the pitch is slightly overpredicted. It doesn’t seem very significant at first glance but
- if one were to add a far-wake model to improve the radial contraction it would increase
the pitch further. There would be an indirect effect: the induction at the propeller plane
added by the far wake would reduce the loading. Weaker tip vortices would result in

less pitch.

5.2.3 The wake from a helicopter rotor

Virtually all three dimensional free wake analyses known to the author comes from

the aerodynamics field. That portion most closely related to this work has te do with
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Figure 5.22: Initial prescribed rotor wake geometry.

helicopter rotors. For the purposes of comparison with that larger body of literature,
PUF5 was exercised on a simple rotor problem. The rotor consisted of a single blade
with a tip radius was 17.5 feet; the root cut-out was 2.33 feet. It had a chord of 1.083
feet, a collective pitch of 10.61° and a linear twist of —5°. It was rotated at 355 RPM.

The rotor was panelled with three panels over the chord and seven over the span.
Twelve time steps per revolution were used. Each time step was divided into three
substeps wherein the singularity strengths were kept constant but the geometry was
advanced. Four revolutions per represented in the wake. The problem was started from
a steady solution obtained with a prescribed wake geometry shown in Figure 5.22. Forty
time steps were carried out. The data presented are for the last time step.

Landgrebe [44] has proposed a wake model based on fitting experimental data which
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Figure 5.23: Cross-sections of the rotor wake at 90° and 450° behind the first shed vortex
compared with Landgrebe empirical model.

is used here as a basis for comparison. Morino, Kaprielian and Sipcic [58], from whom the
rotor model was taken, compare their data to the Landgrebe model as well. Figure 5.23
shows a section through the first two turns of the wake at 90° behind the first shed
vortex. The outer radii appear well represented but the interior of the sheet seems to
suffer from too much downwash. Figure 5.24 reproduces a similar plot from [58). On
balance the two versions are about equal. One notable difference arises from the fact
that PUF5 and Morino, et.al. use different spanwise arrangements of vortices. Morino,
et.al. have used half-cosine spacing so that the root panels are quite large. This appears
to suppress the tendency of the inboard edge of the sheet to rollup.

Figure 5.25 shows the tip vortex' radial position as a function of rotor angle. Com-
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Figure 5.26: Rotor wake pitch compared with Landgrebe empirical model.

parison to Landgrebe’s data is excellent up to about 300°. The data from [58] do not
match so well. Figure 5.26 makes clear what is happening at 300°. The wake remains
well structured for about one revolution but then begins to feel the lack of an ultimate
wake model: there is no mechanism to transport the older part of the wake down, away
from the rotor. As a result, the downstream end is convected back up into the nearfield,
destroying the sheet’s coherence. Morino, et.al. note the same effect and point out that
the length of the coherent part depends on how many turns of the wake are represented.

This backwash effect is even more pronounced at the root radius, especially with the
smaller panels used by PUF5. Figure 5.27 shows the wake structure as a function of
time. At each time step, the wake is sectioned at the location of every third shed vortex,
corresponding nearly to every 90°. The four sets of such sections available at egch time
step are overlayed. One can clearly see the root and tip vortices being convected back

up to the rotor disk where eventually they will be ingested into the upstream end of the




CHAPTER 5. CALCULATIONS

)

Figure 5.27: Evolution of the wake structure with time.
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wake solenoid.




Chapter 6

Conclusions

A vortex lattice representation for marine propellers in unsteady flow has been developed.
In doing so, a number of issues which have been lightly regarded in earlier work have
been placed into proper perspective. The role of rotationality in the background flow
has been described. The assumptions made illuminate the origin of the effective wake
problem.

The vortex lattice model is shown to follow naturally from consideration of Green’s
2nd jdentity. By formulating the problem in this way some errors extant in the literature
have been uncovered. In particular, the proper calculation of the downwash on the body,
and from it, corrected pressure formulae are shown.

The wake model incorporates the effects of local curvature at the edges of the wake
sheet. The coupling with the large circulation of the tip vortices makes this important.
To avoid the problem of multiple time scales inherent in vortex flows, a simple panel
amalgamation scheme is introduced which extends the two-dimensional implementation.
This permits the use of comfortably large time steps.

In comparing PUF5’s performance to experiments, one is generally encouraged. The
wake modelling appears effective. The most apparent inadequacies are readily addressed.
Several features could be added to the code to enhance its accuracy. Some are planned for

immediate implementation. One expects that thickness effects, particularly cavitation,
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will be straightforward to implement. A far-wake model is one such feature. A simple
source disk representation can be used for conventional flows. Flows with a strong
sideways component, as during a turn, will require a more careful treatment. One
obvious deficiency of the model is the lack of representation for the hub and shaft. The
absence of the potential field they produce leads the root vortices to migrate too far
outboard. Coupling a hub representation to a free-wake model will involve repeated
re-panelling of the hub surface to allow the adjoining wake panels to respond to the
varying inflow.

Another feature which must be added is leading edge separation. One thinks immedi-
ately of extending the wake model to allow its separation from the tip- and leading-edges.
However, doing so involves all the issues associated with the close approach of the vor-
tices to the body surface. A simpler approach may be to implement the leading edge
suction analogy of Polhamus [41,64,65].

The code has been structured to permit easy adaptation. Currently, it is being
coupled to MIT’s propeller duct model. Eventually, one wants to treat the effective
wake problem more carefully. The treatment given here leaves open the opportunity
to couple the vortex lattice representation for compact vortical regions with a finite

difference Euler or Navier-Stokes representation of the background flow.
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