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Abstract

The solubility of organic molecules is crucial in organic synthesis and industrial

chemistry, it is important in the design of many phase separation and purification

units, and it controls the migration of many species into the environment. To decide

which solvents and temperatures can be used in the design of new processes, trial and

error is often used, as the choice is restricted by unknown solid solubility limits. Here

we present a fast and convenient computational method for estimating the solubility of

solid neutral organic molecules in water and many organic solvents for a broad range

of temperatures. The model is developed by combining fundamental thermodynamic

equations with machine learning models for solvation free energy, solvation enthalpy,

Abraham solute parameters, and aqueous solid solubility at 298K. We provide free

open-source and online tools for the prediction of solid solubility limits and a curated

data collection (SolProp) that includes more than 5,000 experimental solid solubility

values for validation of the model. The model predictions are accurate for aqueous

systems and for a huge range of organic solvents up to 550K or higher. Methods

to further improve solid solubility predictions by providing experimental data on the
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solute of interest in another solvent, or on the solute’s sublimation enthalpy, are also

presented.

Introduction

The solubility of solids in organic solvents plays a huge role in various chemical systems such

as organic chemistry, environmental chemistry, organo(photo)catalysis, and (petro)chemical

industry. Solid-solution equilibria are, for example, used in the design of flow batteries,

purification units, extraction units, and liquid phase chemical processes. Specific to the

pharmaceutical industry, the solubility of active pharmaceutical ingredients (API) in a va-

riety of organic solvents is an important property in the development of new drugs. Many

curated databases (e.g. the AqSol database1) are available for the aqueous solid solubility of

API’s as this property is of interest in the initial screening process of potential drugs. Fur-

ther in the drug development chain during lab-scale synthesis, purification, crystallization,

and scale-up from batch to continuous processes, information on the solubility of the API’s

in organic solvents other than water is required.

Many methods exist for the prediction of the solubility of solids in specific organic sol-

vents. A recently published review by Kuentz et al.2 summarizes recent advances in solubility

predictions. The main limitation of existing methods is that they require physical properties

of the solute, such as the fusion enthalpy and/or melting temperature (e.g. the well-known

NRTL method3) or empirical solute parameters (e.g. in the relationships developed by Abra-

ham et al.4). Other methods for the direct prediction of solid solubility are always limited

to one or a few solvents. For example, the aqueous solid solubility is important in many

applications, including the initial screening of potential API’s, and thus there are enough

data available to train deep neural networks for the prediction of this property. Some exam-

ples of recent successful data-driven predictors for the aqueous solid solubility are AquaSol

developed by Lusci et al.,5 the models of Cui et al.6 and by Boobier et al.,7 and SolTranNet
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developed by Francoeur and Koes.8 Despite of the tremendous progress made in machine

learning for molecular and material science,9 for the direct prediction of solid solubility in

organic solvents, the application of data driven methods is limited by data scarcity.2 Many

have applied machine learning for the prediction of properties related to the solubility of

gaseous solutes in organic solvents and water.10–14 Recently, one attempt has been made by

Boobier et al.7 to also use machine learning for the direct prediction of solid solubility in

organic solvents using experimental data and computational descriptors. Machine learning

models were built for the prediction of the solid solubility in water, ethanol, benzene, and

acetone. For each of those solvents, a separate dataset was built and a different machine

learning model was trained. While a good performance was achieved, data availability limits

the application of this method to a narrow range of solvents and temperatures. Because

solid solubility data at elevated temperatures are even more scarce, thermodynamic mod-

els such as NRTL, UNIFAC, and UNIQUAC are typically used to predict the temperature

dependence of solubility;15,16 nonetheless, these models are limited by the availability of em-

pirical parameters. The physics based computation of solubility has significant potential as

demonstrated by, for example, Fowles et al.17 for the aqueous solid solubility. However, the

large computational cost is a limiting factor for the fast screening of the solid solubility in

different solvents.

In this work, we provide a method, software package, and online tool for the prediction of

the solid solubility for moderate temperatures up to 350K without the use of any empirical

parameters. Additionally, a more accurate method to predict the temperature dependence

of solubility for a broader temperature range even approaching the critical point of the

considered solvent is available for ∼100 solvents whose critical temperature and critical

density are known. To compensate for the lack of available data, we use machine learning

for the fast prediction of several properties, and thermodynamic equations to relate those

properties to the solid solubility. The main advantage of this method is that only the molecule

identifiers (SMILES or InChI) of the solute and solvent are required to make the predictions.
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With additional user information on the solid solubility of the solute in one organic solvent

at room temperature, the accuracy of the method can be improved. The main limitation

of the model is that the predictions are limited to neutral solvents in the liquid phase and

neutral solutes in the solid phase. The proposed method could be extended to the solubility

of ions in organic solvents, for example for applications in nonaquous redox flow batteries.18

Many correlations and machine learning models are combined to calculate the solid sol-

ubility in organic solvents at different temperatures. An overview of the different models,

and the inputs and outputs to the method are given in Figure 1. We use thermodynamics

to relate the solid solubility of solutes in organic solvents to properties for which plenty

of experimental data are available, i.e. (i) the aqueous solid solubility log(Saq), (ii) the

gas-solution solvation free energy ∆Gsolv,
19–21 and (iii) the gas-solution solvation enthalpy

∆Hsolv. Besides the solid solubility, the model and online tool also provide values for other

thermodynamic properties that are used in the calculation of the solid solubility, for exam-

ple thermodynamic properties related to the solubility of gases (solvation free energy and

enthalpy, gas-solution equilibrium coefficients), related to the partitioning of solutes between

solutions (dry partitioning coefficient), and related to solid state phase transitioning (sub-

limation enthalpy and heat capacity at 298K). All datasets that are constructed as part of

this work are made publicly available in the SolProp data collection.

The Gibbs free energy required to dissolve a solute from the ideal gas phase into a

solution, both at a standard state of 1 mol/L, is the solvation free energy ∆Gsolv. Eq.

1 relates the solvation free energy in the molar standard state to the dimensionless gas-

solution partitioning coefficient K and the molar concentrations of the solute in the gas

phase cgas and in solution csolution. If the gas-solution partitioning coefficient is known for

multiple solvents (KX1 and KX2), the dry partitioning coefficient for the solute between those

solvents (Pdry,X1−X2) and the relative solid solubility in two different solvents (
SX1

SX2
) can be

calculated from Eq. 2. The solvation free energy at 298K in a variety of organic solvents

is a property that can be predicted with a deep neural network because of data availability.
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Figure 1: Overview of the models used to compute SX,T , the solid solubility of a solute in
solvent X at temperature T . Inputs are in blue italic text. Existing models are in grey boxes,
new models are in black boxes. Outputs are in red bold text. If either the solid solubility
of the solute in some other solvent at 298K or the critical density and temperature of the
solvent are available, one can optionally use those inputs to compute SX,T more accurately.

Recently, we published two databases, CombiSolv-QM and CombiSolv-Exp, with 1 million

quantum chemical (COSMO-RS) and 11 thousand experimental datapoints respectively for

the solvation free energy in close to 300 solvents.22 A transfer learning method was employed

where the deep neural network was pre-trained on quantum chemical data and fine-tuned

with experimental data. The final model can predict solvation free energies at 298K with a

RMSE/MAE lower than 0.44/0.21 kcal/mol.22 The transfer learning approach improves the

performance on higher molar mass solutes compared to direct training of the deep neural

network on experimental data. With the published transfer learning model, ∆Gsolv,298K (Eq.

1) can be predicted, and KX1 , KX2 , and Pdry,X1−X2 (Eq. 2) can be calculated.

K = exp

(
−∆Gsolv

RT

)
=

csolution
cgas

(1)
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log(
KX1

KX2

) = log(Pdry,X1−X2) = log(
SX1

SX2

) (2)

To calculate the molar solid solubility of solutes, we relate the unknown solid solubility

of the solute in one organic solvent to its known solid solubility in another solvent. The

solid solubility in both solvents (SX1 and SX2 , in mol/L) are related to the dry partitioning

coefficient of the solute between both solvents (Pdry,X1−X2) and hence to the gas-solution

partitioning coefficients of the solute in both solvents (KX1 and KX2) (see Eq. 2). With

the transfer learning model, ∆Gsolv,298K can be predicted. Thus, given the solubility in a

reference solvent log(Sref,298K) at 298K, the solid solubility in a different solvent at 298K

can be calculated using Eq. 3. In this work, we consider a reference solid solubility acquired

from experimental measurements in organic solvents and from machine learning predictions

of the aqueous solid solubility. Even though some models exist for the prediction of aqueous

solid solubility, for consistency among the machine learning models in this work, a new and

improved model for the prediction of aqueous solid solubility is constructed. The model is

trained on the novel AqueousSolu-Exp database compiled in this work with 11804 unique

components. This database is a curated collection of data from ALOGpS,23 drugbank,24 the

DLS-100 dataset,25 the AqSol dataset,1 the PHYSPROP dataset,26 and OChem.27

log(SX,298K) = log(Sref,298K) + log(KX,298K) − log(Kref,298K)

= log(Sref,298K) − (∆GX,solv,298K − ∆Gref,solv,298K)

R · 298K

(3)

Even though Eq. 2 is valid for a broad temperature range, the available machine learning

models for the solvation free energies and aqueous solid solubility are restricted to 298K. To

calculate the solid solubility at temperature T , the enthalpy required to dissolve a solute

from the solid phase into the organic solvent at the specified temperature (i.e. the disso-

lution enthalpy, ∆Hdiss,T ) is required. Those are related through the modified Van ’t Hoff
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equation28 (Eq. 4), with R the ideal gas constant. Integration of Eq. 4 between 298K and

the required temperature T yields Eq. 5.

d ln(ST )

dT
=

∆Hdiss,T

RT 2
(4)

ln(
ST

S298K

) =

∫ T

298K

∆Hdiss,T

RT 2
dT (5)

With the temperature dependent dissolution enthalpy (∆Hdiss,T ) and the solid solubility

at 298K (S298K), the solid solubility at another temperature (ST ) can be calculated. The

determination of ∆Hdiss,T is more challenging. Since no or limited experimental data are

available for ∆Hdiss,T , we relate it to other properties through the thermodynamic cycle.

Thermodynamics relate the enthalpy changes between the ideal gas, the solution, and the

solid phase at 298K and temperature T as can be seen in Figure 2. Through this cycle,

the dissolution enthalpy can be written as a summation (see Eq. 6) of (i) the enthalpy

change associated with cooling the solid solute from temperature T to 298K (∆Hs,T→298K),

(ii) the sublimation enthalpy at 298K (∆Hsub,298K), (iii) the enthalpy change associated

with heating the gas phase solute from 298K to temperature T (∆Hg,298K→T ), and (iv) the

enthalpy required to dissolve the solute from the gas phase into the organic solvent (i.e. the

solvation enthalpy) at temperature T (∆Hsolv,T ). Some of the enthalpy terms can further

be replaced by the temperature difference and the heat capacity of the solute in the solid

phase (Cp,s) and in the gas phase (Cp,g) (see Eq. 7). The temperature-dependence of the

heat capacities is neglected for this work. We confirmed that this is a valid assumption, as

explained further in the results and the supporting information (section S.13).
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Figure 2: Thermodynamic cycle for enthalpy changes between the ideal gas phase, the
solution, and the solid phase at room temperature (298 K, blue boxes) and a different
temperature (T , red boxes), used to compute ∆Hdiss,T (bold font). In the boxes, the phase,
the temperature, and the reference state used to calculated the phase change are indicated.
The shaded boxes indicate the solution, i.e. the presence of a solvent.

∆Hdiss,T = ∆Hs,T→298K + ∆Hsub,298K + ∆Hg,298K→T + ∆Hsolv,T

=

∫ 298K

T

Cp,s dT + ∆Hsub,298K +

∫ T

298K

Cp,g dT + ∆Hsolv,T

(6)

∆Hdiss,T ≈ Cp,s(298K − T ) + ∆Hsub,298K + Cp,g(T − 298K) + ∆Hsolv,T (7)

For the remainder of this work, we make a distinction between two different methods

for the calculation of ∆Hdiss,T . Since the temperature dependence of ∆Hsolv,T can currently

only be calculated for some common solvents, our first method neglects the temperature

dependence of the dissolution enthalpy. In the second method, the temperature dependence

is accounted for through numerical integration. Other properties (∆Hsub,298K, Cp,g, and Cp,s)

can be calculated using recently published correlations by Abraham and Acree29,30 combined
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with machine learning predictions of solute parameters.31

Results and Discussion

The SolProp Data Collection

In order to assess the accuracy and robustness of the predictions of the new methods, and also

to train some of the machine learning submodels we employed, extensive quantum chemical

and experimental datasets were constructed or compiled in this work. They are all collected

in the SolProp data collection (https://zenodo.org/record/5970538), and an overview of

the different databases is given in Table 1. More details on the databases in SolProp that

are developed as part of this work are given in the supporting information (sections S.2, S.3,

and S.5), while some important details are given below.

For the CombiSolu-Exp database, solid solubility data in pure organic solvents are ex-

tracted from 105 different literature sources. The temperatures in this database are between

243 and 364K. To compare both methods for the calculation of ∆Hdiss,T described before,

experimental data at a broader temperature range are required. However, for drug-like so-

lutes in organic solvents those experimental data are scarce. For this reason, additional

datapoints, for example, for the solid solubility of polyaromatic hydrocarbons in water are

collected at higher temperatures in the CombiSolu-HighT-Exp database. The data in the

CombiSolu-HighT-Exp database are from 68 different sources for temperatures up to 593K.

The data in both databases are converted to have unique molecular identifiers (InChI) for

solvent and solute. The solid solubilities are reported in the units of the original data source

such as mole fraction, g/kg, and mol/kg. They are also converted to molar units required

for model comparison log10(molsolute/Lsolution) (further referred to as log(mol/L)). Ideally,

the density used for conversion of the units should be the density of the solute and solvent

mixture. However, those densities are in most cases not available, and thus the density of the

pure solvent is used. The distribution of the log(S) values in the CombiSolu-Exp database

9
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Table 1: Overview of the databases in the SolProp collection

Name Description Data entries Reference

CombiSolv-QM
Quantum chemical database

(COSMO-RS) for ∆Gsolv,298K

1000000 data
284 solvents
11029 solutes

22

CombiSolv-Exp
Experimental database

for ∆Gsolv,298K

10145 data
291 solvents
1368 solutes

22

CombiSolvH-QM
Quantum chemical database

(COSMO-RS) for ∆Hsolv,298K

800000 data
284 solvents
10891 solutes

This work

CombiSolvH-Exp
Experimental database

for ∆Hsolv,298K

6322 data
1432 solvents
1665 solutes

31

SoluteDB
Empirical Abraham Solute
Parameters (E, S, A, B, L)

8366 solutes 31

AqueousSolu-Exp
Experimental database
for aqueous solubility

11804 data This work

CombiSolu-Exp

Experimental database
for solid solubility
in organic solvents

(243-364K)

4953 data
97 solvents
115 solutes

This work

CombiSolu-HighT-Exp

Experimental database
for solid solubility
in organic solvents,

higher T up to 593K

1306 data
15 solvents
67 solutes

This work

is added to the supporting information (Figure S4) and compared to the distribution of

the log(S) values in the AqueousSolu-Exp database. Duplicate entries are retained in both

datasets to better analyze the effect of different experimental data sources and associated

experimental uncertainties. For 12% of the duplicate data, the absolute deviation between

log(S) data points is >0.2. The uncertainties in the experimental data are significant and

affect the performance of the models, see supporting information (Figure S5).
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Performance of the New Models for Aqueous Solid Solubility and

Solvation Enthalpy

Our method for computing the solid solubility in organic solvents, Figure 1, requires new

models for the aqueous solid solubility and the enthalpy of solvation, both at 298K. Below, the

results of those models are shortly discussed. A more comprehensive discussion is provided

in the supporting information (sections S.2 and S.3).

Aqueous Solid Solubility at 298K

The performance of the aqueous solid solubility model is tested against randomly selected

experimental data and against a separate test set with lower experimental uncertainty (579

data points). To model the performance against the test set with lower experimental un-

certainty, the solutes present in the test set are removed from the training and validation

set. Note that those solutes are only removed to assess the model performance and they are

included in the training set of the final model. A detailed description on the construction of

this test set and details on the model performance are included in the supporting information

(sections S.2.1 and S.2.3). In short, the model can predict the aqueous solid solubility at

298K for the random test set with a RMSE/MAE of 0.75/0.49 log(mol/L) and for data in

the more accurate test set with a RMSE/MAE of 0.49/0.34 log(mol/L). These results show

how the experimental uncertainty in the test set influences the model performance. The new

model outperforms two publicly available models on the test set with lower experimental un-

certainty: (i) the ALOGpS implementation from VCCLab,23 and (ii) the recently published

machine learning model SolTranNet.8 Those predict log(Saq) of the same more accurate test

set with a RMSE/MAE of 0.79/0.55 and 0.76/0.58 log(mol/L) respectively.

Solvation Enthalpy at 298K

The new transfer learning model for ∆Hsolv,298K is accurate to an RMSE/MAE of 0.81/0.49

kcal/mol on a randomly selected test set. The COSMO-RS method, as a comparison, can
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compute the experimental data with a RMSE/MAE of 1.14/0.64 kcal/mol. The new model

is comparable to the model published by Chung et al.31 for small molecules; however it is

expected to be more robust for solutes with a higher molar mass because of the employed

transfer learning method.22

Performance of the New Models for Predicting Solid Solubility in

Organic Solvents

Predicting Solid Solubility in Organic Solvents at 298K

The CombiSolu-Exp database has 1053 datapoints at 298K that are used for evaluation. The

subset contains 98 unique solutes, 88 unique solvents and originates from 87 different sources.

The solubility model is used to calculate log(SX,298K) with Eq. 3 using (i) the transfer learning

model for ∆Gsolv,298K,22 and (ii) the machine learning model for log(Saq,298K) developed as

part of this work as the reference solid solubility. The standard deviation of the predictions

of the different models in the model ensembles are used to estimate the model uncertainties

for the predictions of ∆Gsolv,298K and log(Saq,298K). Those model uncertainties are further

used to calculate the uncertainty on log(SX,298K). In case the uncertainty is too large, the

calculated solid solubility is not used for evaluation. This is the case for 2 solvent/solute

combinations.

The performance of the model for solid solubility in organic solvents when using the

model predictions for the aqueous solubility as the reference solid solubility is given in Figure

3 (left, blue). The solid solubility of the 1051 datapoints at 298K can be predicted with a

RMSE/MAE of 0.89/0.62 log(mol/L). When the results for individual solutes in a range

of organic solvents are studied in detail, trends are observed in the deviations from the

experimental data. This can be seen in Figure 4 for 1-chloroanthraquinone, phenothiazine,

benzoin, and 4-nitrobenzoic acid. The experimental data for those solutes originate from the

publications by Dai et al.,32 Flanagan et al.,33 Grubbs et al.,34 Hoover et al.,35,36 Saifullah et
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al.,37 Stephens et al.,38 Strickland et al.,39 Yang et al.,40 and Zhu et al.41 In the supporting

information (Figure S6), the same analysis is made for the 40 solutes that are most common

in the database at 298K. As can be seen in Figure 4 (blue), the solid solubility of some

solutes is predicted very well, whilst a constant deviation from the parity line is observed for

others. In the latter case, the absolute value of the predicted solid solubility is off, but the

relative solid solubility between various organic solvents is well captured by the model. This

is the case, for example, for benzoin and 4-nitrobenzoic acid in Figure 4 (blue). The main

reason for the constant deviation of log(SX,298K) in different solvents from the parity line is

the inaccurate prediction of the aqueous solid solubility of that solute.

Figure 3: Parity plot for the performance of the solid solubility model at 298K using a model
prediction for the aqueous solid solubility log(Saq,model) (left, blue), and using experimental
data for the solid solubility in ethanol at 298K log(SEtOH,exp) when available (right, red).

Predictions of log(SX,298K) can be improved by using experimental data for the solid sol-

ubility of that solute in a different solvent as the reference solid solubility in Eq. 3. This is

demonstrated by using all experimental data in the CombiSolu-Exp database that are mea-

sured in ethanol at 298K as a reference for the calculations of log(SX,298K) in other solvents.

Experimental data in ethanol at 298K (log(SEtOH,exp)) are available for 44 solutes. These

data are used in Eq. 3, together with the model predictions of ∆Gsolv,298K, to calculate

the solid solubility of those solutes in 76 different solvents for a total of 785 datapoints.
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Figure 4: Parity plot for the performance of the solid solubility model at 298K for four
individual solutes in a variety of organic solvents. The model uses model predictions for the
aqueous solid solubility log(Saq,model) (blue), or experimental data for the solid solubility in
ethanol log(SEtOH,exp) at 298K (red).

A comparison between the model predictions and experimental measurements is given in

Figure 3 (right, red). The overall predictions for log(SX,298K) improve to a RMSE/MAE of

0.29/0.16 log(mol/L). Using experimental data in other common solvents (methanol, ace-

tonitrile, ethyl acetate, and toluene) as a reference gives similar results that are presented

in the supporting information (Figure S7). In Figure 4, values for log(SX,298K) calculated

using log(SEtOH,exp) are indicated in red. The calculated solid solubility shifts towards the

parity line compared to the calculations that use the model predictions for log(Saq,model). In

general, using experimental data for the solid solubility in one solvent as a reference in Eq.
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3 significantly improves the model predictions on the solid solubility in different solvents for

the same solute. However, one should note that the experimental data used as a reference

often originate from the same source as the other experimental data that are used to evalu-

ate the model performance. As a result, some consistent errors specific to the experimental

unit or procedure are compensated for and the model performance might be overestimated.

This is demonstrated in the supporting information (Figure S8) by using experimental aque-

ous solid solubility data from both the CombiSolu-Exp and the AqueousSolu-Exp database

as a reference. With aqueous solid solubility experimental data from the CombiSolu-Exp

database, similar errors are obtained as compared to using experimental data measured

in ethanol (RMSE/MAE equal to 0.27/0.06). When experimental aqueous solid solubility

from a different source (AqueousSolu-Exp) is used, the model error increases significantly

(RMSE/MAE of 0.56/0.35). The difference between both is related to the experimental

uncertainty for aqueous solid solubility data. When comparing the overlapping experimen-

tal aqueous solid solubility data between the CombiSolu-Exp and the AqueousSolu-Exp

databases, a RMSE/MAE of 0.27/0.17 is obtained (Figure S9).

Predicting Temperature-Dependent Solid Solubility

First method: neglecting the temperature dependence of ∆Hdiss(T )

The temperatures in the CombiSolu-Exp database range from 243 to 364K. Since these

temperatures are close to room temperature (298K), it is assumed reasonable to neglect the

temperature dependence of the dissolution enthalpy. To calculate log(SX,T ) at temperature

T with Eq. 9, the solid solubility at 298K from section is used together with the dissolution

enthalpy ∆Hdiss,298K. The dissolution enthalpy at 298K is calculated from (i) the new transfer

learning model predictions for ∆Hsolv,298K, (ii) the machine model predictions for solute

parameters,31 and (iii) the correlation for ∆Hsub,298K published by Abraham and Acree30

(Eq. 10).

The calculation of log(SX,T ) is done for the complete CombiSolu-Exp database and the
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results are given in Figure 5. First, log(Saq,model,298K) is used to calculate log(SX,298K) unless

the standard deviation of the ensemble of model predictions for log(SX,298K) is too large.

For 4922 datapoints with 115 unique solutes and 95 unique solvents, the results are given

in Figure 5 (left) and the solid solubility is predicted with a RMSE/MAE of 1.49/0.99

log(mol/L). Similar to the calculation of log(SX,298K) (see Figure 3), the results significantly

improve if experimental data for the solid solubility at 298K is used. This is demonstrated

using the experimental solid solubility in ethanol at 298K if available in the CombiSolu-

Exp database for that solute. The calculated values of log(SX,T ) using log(SEtOH,exp,298K)

are compared to experimental data in Figure 5 (right) for 3071 datapoints with 44 unique

solutes and 83 unique solvents. The model performance improves to a RMSE/MAE of

0.44/0.29 log(mol/L).

Figure 5: Parity plot for the performance of the solid solubility model at different tem-
peratures (243-333K) using a model prediction for the aqueous solid solubility at 298K
log(Saq,model,298K) (left, blue-yellow gradient), and using experimental data for the solid sol-
ubility in ethanol at 298K log(SEtOH,exp,298K) when available (right, red-yellow gradient).

Similar to log(SX,298K), trends are observed when model calculations are compared to the

experimental data for individual solutes. This is demonstrated in Figure 6 for n-acetylglycine,

benzoin, bezafibrate, and chlorpropamide. The experimental data for these solvents originate

from the publications by Dai et al.,32 Guo et al.,42 Guo et al.,43 Liu et al.,44 Liu et al.,45

Stephens et al.,38 Strickland et al.,39 Yang et al.,46 Yang et al.,40 and Zhu et al.41 For the
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40 most common solutes in the CombiSolu-Exp database, the same analysis is added to the

supporting information (Figure S10). Replacing log(Saq,model,298K) with experimental data

log(SEtOH,exp,298K) for the calculation of log(SX,298K) shifts the prediction results to the parity

line, which is in line with the results for log(SX,298K). The solid solubility trends with respect

to temperature are well captured for most solutes in Figure 6. In case of bezafibrate, a slope

that deviates from the parity line is observed when the model calculations are compared to

the experimental data as a function of temperature. Because the slope is very similar for

the solid solubility of bezafibrate in 16 solvents, we infer that the deviating slope is caused

by a misprediction of the sublimation enthalpy of bezafibrate.

Second method: using the temperature dependent ∆Hdiss,T

The temperature dependence of ∆Hdiss can be neglected when the temperature does not

deviate too much from room temperature. In Figures 5 and 6 it is demonstrated that this

method works for a temperature between 243 and 364K. However, to calculate the solid

solubility at higher temperatures, the temperature dependence of the dissolution enthalpy

has to be considered through numerical integration, Eq. 11. For this method, we use (i) the

machine learning model predictions for the solute parameters31 (ii) the correlations published

by Abraham and Acree29,30 for ∆Hsub,298K, Cp,g, and Cp,s, (iii) the transfer learning model

predictions for ∆Gsolv,298K
22 and ∆Hsolv,298K, and (iv) the method published by Chung et

al.47 to calculate the temperature dependent solvation enthalpy using critical properties of

the solvent for calculation of the saturation density. Since the critical properties of the

solvent are only collected for a limited set of solvents considered in this work, this method

is currently restricted to ∼100 solvents with tabulated critical properties.

The calculated ∆Hdiss(T ) is used to predict the experimental solid solubility in the

CombiSolu-Exp database. A RMSE/MAE of 1.49/0.98 log(mol/L) is achieved in case

log(Saq,model,298K) is used to determine log(SX,298K), and 0.44/0.29 log(mol/L) in case log(SEtOH,exp,298K)

is used. No significant performance improvement is observed compared to Figure 5 where

∆Hdiss,T ≈ ∆Hdiss,298K, which confirms that the temperature dependence of the dissolution
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Figure 6: Parity plot for the performance of the solid solubility model at different tempera-
tures (273-364K) for four individual solutes in a variety of organic solvents. The model uses
model predictions for the aqueous solid solubility at 298K log(Saq,model,298K) (blue-yellow
gradient), or experimental data for the solid solubility in ethanol at 298K log(SEtOH,exp,298K)
(red-yellow gradient).

enthalpy can be safely neglected between 243 and 364K.

To compare the performance of both methods at higher temperatures, model predictions

are compared to the experimental data in the CombiSolu-HighT-Exp database. Compared

to the CombiSolu-Exp database, many of the solutes in this database are not drug-like

components but e.g. polyaromatic hydrocarbons, and the majority of the data are measured

in water rather than other organic solvents. A comparison of the different methods is given

in Figure 7 for selected solvent/solute pairs (isophathalic acid in water, 4-formylbenzoic acid

in acetic acid, phenothiazine in water, and 2-methylanthracene in water). The experimental
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data for those solvent/solute pairs originate from Sheehan et al.,48 Long et al.,49 Han et

al.,50 Cheng et al.,51 Lyu et al.,52 Li et al.,53 Sun et al.,54 Ahmadian et al.,55 Karasek et

al.,56,57 and Dohanyosova et al.58

Figure 7: Solid solubility as a function of temperature for four solvent/solute pairs with four
different methods. Model predictions are done with the temperature dependent dissolution
enthalpy (∆Hdiss = f(T ), red) or the dissolution enthalpy at 298K (∆Hdiss,T ≈ ∆Hdiss,298K,
blue). The model uses experimental data for the solid solubility at 298K (log(SX,exp,298K), full
lines) or the model predicted solid solubility at 298K based on the aqueous solid solubility
and solvation energy (log(Saq,model,298K), dashed lines)

In Figure 7, four different methods for the prediction of log(SX,T ) are compared to exper-

imental data as a function of temperature. If the temperature dependence of the dissolution

enthalpy is accounted for (∆Hdiss = f(T )) and the experimental solid solubility at 298K for

that solvent/solute pair (log(SX,exp,298K)) is used for Eq. 11, the best results are obtained
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(Figure 7, full red line). In case the experimental solid solubility at 298K is replaced by

the model solid solubility log(SX,model,298K) calculated based on the aqueous solid solubil-

ity log(Saq,model,298K) and ∆Gsolv,298K predictions, the trends of log(SX,model,T ) as a function

of temperature are well captured, but the absolute values are off in some cases (Figure 7,

dashed red line). The blue lines in Figure 7 do not account for the temperature dependence

of the dissolution enthalpy (∆Hdiss,T ≈ ∆Hdiss,298K). For most solvent/solute pairs, this

approximation causes significant deviations in log(SX,T ) predictions above 350K.

The different methods are compared for 60 additional solvent/solute pairs in the sup-

porting information (Figure S11). While the temperature dependence of the solid solubility

is predicted well for most pairs, there is one pair, namely 5-fluorouracil in water, whose pre-

dicted temperature gradient shows an opposite trend (∆Hdiss,T < 0) with the experimental

data. It is found that the sublimation enthalpy of 5-fluorouracil is substantially underpre-

dicted by our model as 20.8 kcal/mol compared to the reported experimental value of 31.8

kcal/mol.59 This experimental ∆Hsub,298K value is used to recalculate log(SX,T ) according

to Eq. 11, which significantly improved the model performance (see supporting information

Figure S12).

Alternatively, it is possible to derive a more reliable value for ∆Hsub,298K from the mea-

sured solid solubilities across a range of temperatures. The dissolution enthalpy at 298K

(∆Hdiss,298K) can be estimated from the temperature gradient of the experimental solid sol-

ubility data near 298K using Eq. 8 and ∆Hsub,298K can be subsequently estimated using

Eq. 9 based on the estimated ∆Hdiss,298K and the predicted ∆Hsolv,298K. New predictions

are made based on this approach for the solute/solvent pairs whose temperature gradient at

298K could be approximated from the experimental data. The resulting plots can be found

in the supporting information (Figure S13). As can be seen, substantial improvements are

made using this approach for several pairs such as budesonide in water, 4-formylbenzoic acid

in 1-methyl-2-pyrrolidinone, paracetamol in water, and propazine in water. However, solid

solubility data sometimes have high experimental uncertainties and accurate measurements
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are needed to correctly estimate the temperature gradient. Moreover, if the main source of

error is the ∆Hsolv,T term, this approach will not be able to improve the predictions at high

temperatures.

To conclude this discussion, the contribution of each term of the dissolution enthalpy in

Eq. 7 is further analyzed. The dissolution enthalpy is calculated using the four thermody-

namic processes involving Cp,s, ∆Hsub,298K, Cp,g, and ∆Hsolv,T , respectively. The individual

contribution of these terms to the predicted solid solubility is plotted as a function of tem-

perature for four solute/solvent pairs and presented in the supporting information (Figure

S14). From the the plot, it can be seen that the contribution from the Cp,s and Cp,g terms

(heating of the solid- and gas-phase solutes) is much smaller than that of the ∆Hsub,298K

and ∆Hsolv,T terms. Subsequently, the solid solubility prediction is made using the ∆Hdiss,T

that includes only ∆Hsub,298K and ∆Hsolv,T and excludes the heat capacity terms and com-

pared with the prediction made using the full ∆Hdiss,T expression. The resulting plot can be

found in the supporting information (Figure S15). The two predictions using the partial and

full ∆Hdiss,T expressions are nearly identical, confirming that the heat capacity terms, and

especially the temperature dependency of the heat capacity, can be safely neglected when

computing ∆Hdiss,T .

Conclusions

Thermodynamics, machine learning, and known correlations are combined to build a pre-

dictive tool for the solid solubility of neutral solutes in many organic solvents over a wide

temperature range. This is the first modeling tool that can predict the solid solubility for

a broad range of solvents and temperatures without the necessity for empirical parameters.

Data scarcity for the solid solubility in different solvents and at different temperatures has

limited the use of machine learning for the direct prediction of this property. A software pack-

age and an user-friendly web interface are designed and publicly available for the prediction
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of solubility of gaseous and solid solutes.

Three new datasets are compiled and provided as part of this work. The CombiSolu-Exp

database contains 4953 solid solubility datapoints for 115 unique solutes and 97 unique sol-

vents. The CombiSolu-HighT-Exp database contains 1306 high temperature solid solubility

datapoints with 67 unique solutes and 15 unique solvents. The AqueousSolu-Exp database

provides data specifically for aqueous solid solubility at 298K, and contains 11804 unique

solutes. All datasets used for validation and construction of the models in this work are

provided as part of the SolProp data collection.

Based on only molecular identifiers for a solute and a solvent, our new machine learning

models predict log(Saq,298K) and ∆Hsolv,298K. Those new models are combined with existing

models for ∆Gsolv,298K, ∆Hsub,298K, Cp,g, Cp,s, and the temperature dependence of ∆Gsolv

to construct a model for the solid solubility of any neutral organic solute in many organic

solvents X over a range of temperatures T ; log(SX,T ). One of the strengths of this method

is that intermediate outputs are also provided to the user. Several of those are interesting

properties by themselves. They are further used for the calculation of log(SX,T ), but if

experimental data are available for any of those properties the solid solubility output can

be corrected to gain more accurate predictions. The main downside of this method is that

it relies on the predictions of several submodels to calculate log(SX,T ). If one of those

submodels fails, also the prediction of log(SX,T ) will be off unless experimental input can

compensate.

The new model predicts the solid solubility at 298K log(SX,298K) with a RMSE/MAE of

0.89/0.62. Even in cases where the prediction of the absolute solid solubility is poor, the

model captures the relative solubility between different solvents accurately. If experimental

data are available for the solid solubility of the solute in at least one different solvent at

298K, the RMSE/MAE improve to 0.29/0.16. The solid solubility at temperatures below

approximately 350K can be calculated for the same broad range of solutes and solvents

based on only the molecular identifiers. Below 350K, the temperature dependence of the
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dissolution enthalpy can be neglected. In this case, machine learning models are used for

the prediction of ∆Hsolv,298K and solute parameters E, S,A,B. Together with log(SX,298K)

and the published correlation for ∆Hsub,298K, the temperature dependent solid solubility can

be calculated. In case the model for Saq,298K is used for the calculation, log(SX,T ) can be

predicted with a RMSE/MAE of 1.49/0.99. If experimental data for the solid solubility

of the solute in at least one solvent are available, the RMSE/MAE of log(SX,T ) improve to

0.44/0.29. At temperatures higher than 350K, the temperature dependence of the dissolution

enthalpy has to be accounted for. This requires the calculation of the saturated solvent

density and information on the critical properties of the solvent. If those are available, our

method can calculate the solid solubility of solvent/solute pairs at elevated temperatures

even approaching the critical point of the solvent.

The developed model has an excellent performance in predicting solubility trends in

different solvents at 298K and as a function of temperature. Even though the absolute

solid solubility prediction can be off in some cases, the ability to predict solubility trends

has tremendous applications, including but not limited to pharmaceutical production and

solvent selection, the design of redox flow batteries, and organophotocatalysis.

Computational Methods

First method: neglecting the temperature dependence of ∆Hdiss,T

For the first method, we neglect the temperature variation of the dissolution enthalpy

(∆Hdiss,T ≈ ∆Hdiss,298K). This assumption results in Eq. 8 and is valid as long as the

temperature T does not deviate too much from 298K. For the calculation of ∆Hdiss,298K,

we need the sublimation enthalpy at 298K (∆Hsub,298K) and the solvation enthalpy at 298K

(∆Hsolv,298K). Abraham and Acree30 developed a correlation to calculate ∆Hsub,298K based

on solute parameters as shown in Eq. 10. The first four solute parameters (E, S, A, B)

can be predicted with the machine learning models developed during our earlier work,31 and
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the solute parameter V can be calculated using the McGowan method.60 The additional

parameters introduced by Abraham and Acree,30 i.e. I(OH,adj), I(OH,non), and I(NH) in

Eq. 10, are indicator variables for the presence of aliphatic diols with adjacent OH groups,

aliphatic diols with non-adjacent OH groups, and aliphatic amine groups, respectively. In

our earlier work,31 we also published a model for the prediction of ∆Hsolv,298K. Even though

a good model performance was achieved, to obtain an improved performance for solutes

with a higher molar mass, a new model is built for ∆Hsolv,298K using a transfer learning

methodology similar to the one we used for the prediction of ∆Gsolv,298K.22 In the support-

ing information (section S.3) more information can be found on this transfer learning model

architecture and the quantum chemical and experimental databases employed.

ln(
ST

S298K

) =
−∆Hdiss,298K

R

(
1

T
− 1

298K

)
(8)

ln(
ST

S298K

) =
− (∆Hsub,298K + ∆Hsolv,298K)

R

(
1

T
− 1

298K

)
(9)

∆Hsub,298K[kJ/mol] = 9.96 − 2.10 E + 24.10 S + 13.70 A + 0.79 B

+ 38.71 V − 1.36 S · S + 36.90 A ·B

+ 1.86 V · V − 10.89 I(OH,adj)

+ 14.74 I(OH,non) + 9.69 I(NH)

(10)

Neglecting the temperature dependence of the dissolution enthalpy allows us to use the

machine learning models developed in earlier work for a broad range of organic solvents;

however, this method is expected to yield a high error if the temperature deviates significantly

from 298K.
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Second method: using the temperature dependent ∆Hdiss(T )

With the second method, the temperature dependence of ∆Hdiss,T is accounted for through

numerical integration and the solid solubility can be calculated for a broader temperature

range, but a limited amount of solvents. To calculate the solid solubility at temperature

T with the second method, the expression for ∆Hdiss,T given in Eq. 7 is plugged into the

integral in Eq. 5. After integration, this yields Eq. 11. ∆Hsub,298K is defined as the enthalpy

of sublimation at 298K and is independent of temperature.

ln(
ST

S298K

) =
−Cp,s · 298K − ∆Hsub,298K + Cp,g · 298K

R

(
1

T
− 1

298K

)
+

−Cp,s + Cp,g

R
· ln

(
T

298K

)
+

∫ T

298K

∆Hsolv,T

RT 2
dT (11)

Similar as with the previous method, ∆Hsub,298K is estimated from the correlation pub-

lished by Abraham and Acree30 (Eq. 10). Also Cp,g and Cp,s at 298K are estimated using

a correlation recently published by Abraham and Acree29 (Eqs. 12 and 13) using the same

solute parameters as in Eq. 10. Other methods such as the group additivity method in

RMG61 are available for estimating heat capacities of gaseous compounds across tempera-

tures. However, as the temperature dependence of heat capacities is neglected, Cp,g at 298K

from Eq. 12 is used instead in this work.

Cp,g[J/K/mol] = −8.62 − 24.33 E − 15.83 S + 12.35 A + 13.27 B

+ 160.00 V + 10.66 S · S − 2.11 A ·B + 0.41 V · V
(12)

Cp,s[J/K/mol] = 11.63 − 34.18 E − 1.20 S − 1.09 A + 12.28 B

+ 181.69 V + 2.32 S · S + 4.24 A ·B − 1.85 V · V

− 28.50 I(OH,non)

(13)
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∆Hsolv,T is predicted using our previous work on the temperature dependence of solva-

tion free energies.47 This method can predict temperature-dependent solvation free energies

∆Gsolv,T up to the critical temperature of a solvent along the saturation curve. This can be

done for any solvent-solute pair if ∆Gsolv,298K, ∆Hsolv,298K, and the temperature-dependent

saturation density of the solvent in the gas and liquid phase are known. Both ∆Gsolv,298K

and ∆Hsolv,298K can be predicted by the transfer learning models from our previous22 and

current work. The solvent saturation density is estimated using the open-source thermophys-

ical property software CoolProp62 and the critical temperature and density of the solvent.

Details on the estimation method for the saturation density of the solvent can be found in

the supporting information (section S.4). Based on this method, ∆Gsolv,T is predicted across

temperatures, and ∆Hsolv,T is computed using the temperature gradient of ∆Gsolv,T and the

relationship ∆H = ∆G − T d∆G
dT

. Since ∆Hsolv,T has a complex temperature dependence,

the last term of Eq. 11 is obtained from numerical integration. The downside of this second

method is that the critical temperature and critical density of the solvent are required to

calculate ∆Hsolv,T . We have collected the critical properties of approximately 100 organic

solvents from various literature sources for this work.

Although the method by Chung et al.47 evaluates the temperature-dependent solvation

free energy at a solvent’s saturation pressure, they showed that the method could also provide

a reasonable prediction for a range of pressures as long as the temperature is not too close

to the critical temperature of the solvent (i.e. T < 0.8Tc). They indicated that the pressure

effect becomes more pronounced at elevated temperatures and that the method should be

used for pressures close to the saturation pressure in the high temperature region (i.e. P <

1.3Psat for 0.8Tc < T < Tc). Hence our method using Eq. 11 is expected to be valid for

similar conditions.
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Supporting Information Available

The software used to construct the models for ∆Gsolv,298K, ∆Hsolv,298K, and log(Saq,298K), and

to calculate log(SX,T ) is open-source available on github (https://github.com/fhvermei/

SolProp_ML). The software together with the trained models are compiled in a conda

package that can be used for predictions of log(SX,T ) (https://anaconda.org/fhvermei/

solprop_ml). A notebook with examples for the calculation of log(SX,T ) is provided on

github. This notebook also provides examples of how experimental data can be used to im-

prove model performance. The SolProp data collection (see Table 1) is available as part of

the supporting information and on Zenodo (https://zenodo.org/record/5970538), also

the machine learning models and solid solubility predictions for the CombiSolu-Exp and

CombiSolu-HighT-Exp are made available. The databases are open access and distributed

under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) license

(https://creativecommons.org/licenses/by/4.0/). Citations should refer directly to

this manuscript. A user-friendly interface for the calculation of log(SX,T ) and related prop-

erties using the different methodologies described in this work are also available on our
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website (https://rmg.mit.edu/database/solvation/searchSolubility/).

The supporting information contains a comprehensive discussion on the curation of

datasets and on the training of the machine learning submodels for the prediction of aqueous

solid solubility and solvation enthalpy. Additional validation of the models for the calcula-

tions of solid solubility is presented for more solvent-solute pairs at various temperatures.
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