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ABSTRACT

Let G be a compact Lie group and let X be a
space on which G acts continuously. Choose a classifying
bundle PG —+ BG for principal G-bundles. G acts freely
on the contractible space PG,Gand there is a diagonal action
of G on PG x X . Let PG x X denote the orbit’ space
of this diagonal action. Let p be a prime integer.

The mod-p equivariant cohomology ring of the G-
space X 1is defined by the formula

HX(X, Z/pZ) = H*(X <% G, 2/p2).

One result of this thesis gives a lower bound on
the depth of HE(X, Z/pZ). "

Theorem: The depth of H%(X, Z/pZ) is greater
than or equal to the maximum rank og a central p-torus acting
trivially on X.

The second result of the thesis concerns the
differentiable action of a p-torus A on a manifold M .
We define a filtration on H#*(M, Z/pZ) and identify the
successive quotients of this“filtration as the equivariant
cohomology rings associated to tertain subsets of M . As
a consequence of this , we obtain an equation that expresses
the Poincare series of the graded ring H*(M, Z/pZ) in terms
of the Poincare series of the cohomology %ings of these sub-
sets.
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Introduction

Let G be a compact Lie group and let X be a space
on which G acts continuously. Choose a classifying bundle
PG » BG for principal G-bundles. The group G acts free-
ly on the contractible space PG , and there is a diagonal
action of Gon PG x X . Let PG x° X denote the orbit
space of this diagonal action.

Let p be a prime integer. The mod-p equivariant co-_

homology ring of the G-space X 1is defined by the -formula

HA(X, Z/p2) = H*(PG <% X, z/p2).

In a series of papers [Ql, Q2] Daniel Quillen investi-
gated the algebraic structure of this ring. For example,
suppose X has finite~dimensional mod-p cohomology. 1In
this case Quillen proves the following

Theorem: (Theorem 7.7 of [Ql]) The Krull dimen-
sion of the commutative ring
ev

HG(XI Z/PZ) = HG (X, Z/PZ) p odd

HX (X, 2/p2Z) p =2
is equal to the maximum rank of a p-torus A of G such that
x* # g,

Here a p-torus is a direct product of cyclic groups of
order p , and the rank of a p-torus A is the number of
cyclic factors of A .

Chapter Two of this thesis contains a result in the

same spirit as the above theorem of Quillen's. This result



gives a lower bound on the depth of Ha(x, Z/pZ). The main

theorem of Chapter Two is

Theorem 2.l1l: The depth of Hé(X, Z/pZ) is great-

er than or equal to the maximum rank of a central p-torus

acting trivially on X .

The second result of the thesis, contained in Chapter
Three, concerns the differentiable action of a p-torus A on
manifold M . In this section, we allow p = 0 , and inter-
pret a O-torus as an ordinary torus, i.e. a product of cir-
cles. Also, we do not consider the case p = 2 . The main
theorem, Theorem 3.13, defines a filtration

0=F

<F < ... < F__,<F_ =HiM, k)

0 1 - m=-1l— "m

on HK(M, k) (where k 1is a field of characteristic p ),
and identifies the successive quotients of this filtration
as the equivariant cohomology groups associated to certain
subsets of M . As a consequence of this theorem we obtain
an equation (Theorem 3.14) that expresses the Poincaré series
of the graded ring HK(M,Z/pZ) in terms of the Poincaré ser-
ies of the cohomology rings of these subsets.

In case M 1is totally non-homologous to zero in the
fibration PA M= M, *= BA, we recover (Corollary 3.17)
a result of Borel's [Bl]; namely,

dim_ H*(M, k) = dim_H*(M*, k).

In addition, we obtain in this corollary equations relating

the k-Euler characteristics of M and MA .



Chapter One

The purpose of this preliminary chapter is to state some
basic definitions and results, and to set notation.

Let G be a compact Lie group. There is a‘classifying
bundle PG * BG for principal G-bundles with paracompact
base. The spaces PG and BG may be assumed to be (para-
compact) CW complexes. This bundle is characterized up to
homotopy equivalence as the orbit projection PG T PG/G
of the free action of G on a contractible space PG
(e.g., see [H]).

Suppose that G acts continuously on a topological
space X . We define

XG = PG xG X
to be the orbit space of the diagonal action of G on
PG x X. We assume that the space X is such that XG is
a paracompact, locally contractible Hausdorff space. For
example, take X to be locally compact, paracompact, local-
ly contractible and Hausdorff.

If R is a commutative ring, define the equivariant
cohomology ring of the G-space X with coefficients in R
to be

HE(X, R) = H*(XG, R),
where the right hand side of the equation is ordinary sing-
ular cohomology with coefficients in R. The restrictions

on X enable us to say that this definition of equivariant

cohomology agrees with that of Borel [B1l] and Quillen [Q1]
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(they use sheaf cohomology); so we may use some results of
their work.

We will make use of the following properties.

1.k [0l, sect. 1] Ha(x, R) is independent of the
choice of classifying bundle for G .

1.2) [Ql, (1L.5)] Functoriality: If u:G + G' 1is a
homomorphism of compact Lie groups and £f:X - X' is u-equi-
variant, then there is a homomorphism (u,f)*:Ha.(X', R) -
HE(X, R). If £ and wu are inclusions, this homomorphism
will be denoted "res".

1.3) If X = pt 1is a point, then Hé(pt, R) =
H*(PG x° X, R) = H*(BG, R). So, if G is finite, Hf =
H&(pt, R) is classical group cohomology with coefficients in
the trivial G-module R.

We will continue the list of properties after introdu-
cing some notation.

Let =xeX be a point of X . Then

Gx {gx] geGl is the orbit of x
and

G, = {geG|] gx = x } is the isotropy group at x.

The orbit Gx is homeomorphic to the homogeneous space
G/GX. Denote the orbit space of the G~action on X by
X/G.

1.4) If xeX, Hé(Gx, R) = H*(BGX, R). This is be-
cause Gx = G/Gx ,and PG/Gx ~ PG xG (G/GX) is a classify~-
ing space for Gx .

1.5) [@1, (1.10), (l.11)] Consider the two maps



BG + XG - X/G "

Each of these maps has an associated spectral sequence.
a) There is the Serre spectral sequence of the fibra-
tion XG + BG =
H*(BG, {H*(X, R)}) z H*(X,, R) .
Here, {++} denotes local coefficients.
b) For the map XG g X/G we have the Leray spec-
tral sequence:

RGBTz B (Xg, B |
The cohomology on the left is sheaf cohomology with coeffi-
cients in the sheaf associated to the presheaf
-1
U e jﬂé(q (U), R)
on X/G. The stalk of this sheaf at xeX is H*(BGX, R)
[@l; ps 553].
l.6) If G acts freely on X, then

H* (X/G, R) HE(X, R)

(We assume that X i1s paracompact, locally contractible,
and Hausdorff; since the action of G on X is free,
X/G 1is also paracompact, locally contractible and Haus-
dorff.) This follows from 1.5b) (see [Q1l, (1.12)1).

1.7) If G acts with finite isotropy groups on X ,
and R is a field of characteristic zero, then

jH*(X/G, R) z HE (X, R) .

The Leray spectral sequence gives the isomorphism (e.g., see
[01l]) because Hi(BGX, R)y = 0 if 1i>0 since R has

characteristic zero, and GX is finite [C-E]. Again,
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jfi*(X/G, R) denotes sheaf cohomology with constant coeffi-
cients. The only place we use 1.5) - 1.7) is in Chapter
Three, and there we do not denote the distinction between
XH*(X/G, R) and H*(X/G, R) .

1.8) If G acts trivially on X , and R is a field,
then H*(X,, R) = H*(BG, R) @ H*(X, R) . This is the
Kunneth isomorphism for XG = BG x X .

Next, we discuss orientability, G-vector bundles,
and characteristic classes.

A real vector bundle (or a disk bundle) Vv:E - X of

constant fibre dimension n is R-orientable if there is

a class UEHn(E, EO’ R) (E0 = E - X, where X 1is consi-
dered as the O-section of v) such that for each =xeX, the
image of U under

res:H"(E, E,, R) + HY(uw(x), v(x) - {0}, R) = R

0’
is a generator of R . The cohomology class U is called
an orientation class for v . Of course, if v has different
fibre dimensions over different components of X , we will
say that v 1s R-orientable if and only if the restriction
of Vv to each component is R-orientable.

A complex vector bundle is R-orientable for any ring
R, and any vector bundle is Z/2Z~orientable [M]. Also,
a vector bundle is R-orientable if and only if its associa-
ted disk bundle is R-orientable.

For an R-orientable real vector bundle v:E -+ X of

constant fibre dimension n , there is an Euler class,

e(v) € Hn(X, R) [M,S]. Also, there is the Thom isomorphism
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for U [M, S]:

i, rn 3 55, n 3 5%, ., R .
P U 0
L 2y
T
The composition of T and res:Hk+n(E, EO’ R) =~ Hk+n(X, R)
is multiplication by e(v) = (p )-l(U) [M,S].

If Vv:E » X 1is a complex vector bundle of constant
fibre dimension n , there are Chern classes (e.g., see

21,

[H]) ci(v) e H" (X, 2) of v. Via the map Z -+ R, we con-

sider ci(v) e H (X, R). Regard Vv as a real vector bundle
of dimension 2n . It is R-orientable, so we have an Euler
class e(v) & H®(X, R). The Euler class e(v) is egual to
cn(v) , the top Chern class of v [H, M].

We define real or complex G-vector bundles over the
G-space X as in Atiyah [Al]and Atiyah and Segal [A-S].
Namely, a real (or complex) G-vector bundle £:E -+ X over
X consists of a G-space E and an equivariant map E + X
such that &:E - X 1is a real (or complex) vector bundle
over X , and for each geG , the map £ (x) - &(gx) 1is
a vector space map. Here, £(x) is the fibre of £:E - X

over xeX .

If E£:E - X 1is a G-vector bundle over X , then
G G

EG:EG =PGx E -»> PGx X = XG
is a vector bundle [A-S].with the same fibres as £& ; i.e.,
iG([p,x]) = Eg(x) -for [p}x] e PG xG X. As usual, we have

chosen a classifying bundle PG » BG for G .
The assignment £ I+ EG' has at least the following two

properties:



1) (v \)')G = Vg @ \’(';

and

2) If Y < X 1is G-invariant, then

Wigde = vely



(3

Chapter Two

The main theorem of this chapter is Theorem 2.1. In
the proof of Theorem 2.1, we construct a regular sequence
of length n in HE(X, z/pZ) , where n 1is the rank of

a central p-torus acting trivially on X .

Section One: A Regular Sequence in Hé(x, 2/p2)

Let G be a finite group acting on a space X . In
this section, the cohomology groups have coefficients in

Z2/p%Z, where p 1is a fixed prime, unless otherwise indi-

cated.
Let
Hgv = & Hél(pt) p odd
H = i>0
— i _
Ha = ’6 HG(pt) p = 2
i>0

H is a commutative ring. The graded group HE(X) may be
considered as an H-module via the map X + pt . An H-se-

quence on M = Ha(x) (or on any H-module M) may be de-

fined in the following way I[X].

A sequence of elements Xir Xyr « o« 4 X

r L] . L]

n

of positive degree in H is said to be an H-sequence on M

(or a regular sequence on M) if
Xq is not a zero divisor on M
and if for each i>1,

x, is not a zero divisor on M/(xl,...,xi_l)M .
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Let n >0 . For each 1 such

that 1<i<n , the sequence of elements Xpr eee 1 Xy of

H is an H-sequence on Hé(x) if and only if xl, cee o1 Xy

is an H-sequence on Hé(x) and Kippe o0 0 Xy is an H-
sequence on Hé(x)/(xl, cww xi)Ha(X) .

Theorems of Evens [E] and Venkov ([V], see also [Ql])
show that H is Noetherian and that HE(X) is a finitely
generated H-module if H*(X) is finite dimensional over
Z/pZ. In this case, any two maximal H-sequences have the
same length (e.g., see [K]; in Theorem 121, take the ideal
I to be the positive degree elements of H ). This com=~
mon length we call the depth of HE(X) -

Here is the main theorem.

Theorem 2.1 Let A be a p-torus that is contained

in the center of G . Suppose also that A acts trivially
on X . Then there is a regular sequence on HE(X) af
length greater than or equal to rank(A). Thus if H*(X)
is finite dimensional over Z/pZ , then
depth HZX(X) > rank (&) .

This theorem will be proved by induction on the rank
of A .

Proof:

Case One: Rank(A) = 1 .

Let A be a cyclic group of order p contained
in the center of G , such that XA =X . Let £ = N/p

be the index of A in G , where N is the order of G.
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Consider the representation p:A + IT* given by |
pla) = eZWi/p where a 1is a fixed generator for A .
Corresponding to this one-dimensional representation of A
there is the f-dimensional induced representation, ind(p),
of G .

The representation p of A gives an A-action
on €. Using this action, we may define a one-dimensional

vector bundle, also called p , over the classifying space

BA for A :

+©

PA x> BA [A2].

Similarly, there is an ¢-dimensional complex vector

bundle, ind(p), over the classifying space BG for g :

G -

PG x (€ ind(p) BG -
There are Chern classes for these vector bundles,

ci(p)e BN (pt, 2) = H°M(BA, 2) and c (o) e H 1 (BG, 2) [A2].

Via the homomorphism Z + Z/pZ , we obtain mod-p Chern

classes ci(p) € HZl(BA) = Hil and c.(ind(p)) € HZl(BG) =
2i
HG -
In Corollary 2.4 we will prove that e = cg(ind(p))

is a non-zero-divisor on Hé(x). The key result used to
prove this Corollary is Lemma 2.2. Before stating Lemma
2.2, we must state some results of Section Two of this chap-
ter.

Since A acts trivially on X , we have the spectral
sequence of Section Two:

EE* = H*(XG/A ’ {Hz}) = H*(XG) .

We also show in Section Two that because A is central
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in G , and coefficients are in a field, that
eS’d = mP(x

g, . P aq
2 e/ar Ha) ¥ B (Xg,) &0 Hy -
Now, it is well known that

2/pZlcqy (p) ] @Z/pzl\ [x] p odd

(a polynomial algebra on c, (p) ten-
sored with an exterior algebra on
A X = B(cl(p)), the Bockstein of cl(p))

2/22[y] p =2
(a2 polynomial algebra on y , where
yry = o4 {p} )
(see, e.g. [0Q1l1).
Lemma 2-2 (Evens [E]) Let ae HéM(X) be any cohomology
class such that HéM(x) - HiM = Eg'zm takes o to
cl(p)M where M>0. ‘I'hefl;es
a) cl(p)M > ES’ZM for every r>2 ,

~

b) Multiplication by cl(p)M induces an isomorphism

% % o * 3

E rJ - B »j+2M for every r>»2 and j>0 (E 3 =
¥ o r - - r
@3,

: E

i>0

and c) Eif&_‘_z = Eg* .

Proof of Lemma 2.2:
a) We have the fibration (see Section Two!)
BA -+ PG x° X - p(c/a) x°/P x
giving rise to the spectral seguence. It is enough to note

that that cl(p)M is the restriction to the cohomology of

the fibre of the class @ in the cohomology of the total
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space. Thus, for every r>2 , dr(cl(p)M) = 0 , where dr

is the r-th differential of the spectral sequence.

b) Multiplication by cl(p)M is an isomorphism
3 J+2M
e/a) € pz Ha c/a) & pz Ha

for every 3j>0, since cl(p) is a polynomial generator of

H* (X > H* (X

HK . So, for r=2 , b) is true.

Suppose b) has been proven for r>2 . Suppose J>0.

Consider the following diagram:

i-r,j+r-1+2M
r

T rey (o)™ T-cl(mM )[ cep ()™

i-r,j+r-1 & Ei,j " Ei+r,j—r+l
r :

dl‘ dr

i,j+2M i+r,j-r+l1+2M

r

E E

E

dr is the differential of the spectral sequence. The dia-
gram is commutative since
M _ M M, |
d_(cy(p)»x) = cy(p)ed _(x) + d.(eq (P)7) -x
by the multiplicative property of dr, and since
M
dr(cl(p) ) = 0
If j-r+1»0, then by induction all the vertical maps

are isomorphisms, so the induced map on homology,
i,j+2mMm

i,j
Er-l-l - M Er+l ’

-cl(p)

is an isomorphism.

: g .
If Jj-r+l<0 , E;+r’3 . . 0 , and a diagram chase
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shows that E;;i S E;;i+2M is an isomorphism in
cl(p)
this case also.
il i+2M+2,j-2M-1
€ dyyyriEonio ~ Eom+2 .

& 4
2M+2(E2ﬁ12) = 0 since the

spectral sequence is first quadrant. If 3j>2M, there is an

Suppose that j<2M , then 4

integer m>0 such that Jj = 2mM + k , where k<2M . Let

Y € E%ﬁiz = E%&igM+k ; then b) and induction on m show
that vy = (cl(p)M)m-x , for some .XEE%ﬁfz - S0 dypyuo ()

e )™, 1)+ Ay ole@™ex = 0 & 0 = 0.
So, d2M+2 = 0, and E§ﬁ+2 = Ex* . QED

Corollary 2.3 The cohomology class o of Lemma 2.2
is not a zero divisor on HE(X) .

Proof: Lemma 2.2 shows that multiplication by cl(D)M
is injective on EX** . So multiplication by a , which
restricts to cl(p)M , must be injective on HE(X) . QED

Getting back to the case at hand, we have

Corollary -2.4 The cohomology class e = cg(ind(p))
is a non—~zero-divisor on HE(X) .

Proof: Since A 1is contained in the center of G,

the Mackey induction formula [Se] shows that

resA_+G(indA+G(p)) = %p = p ®‘p @...Pp .
2 times
Thus
res(c, (ind(p)) = c,(res(ind(p))) = c (Lp) = ¢ (p)ﬁ
2 2 2 1
by wvarious properties of Chern classes (see, e.g., [H]) .

Now use Corollary 2-3.QED



Thus, Theorem 2.1 is true in case rank(A) equals one.
To complete the proof of Theorem 2.1 we prove

Case Two:- Rank(A) =

Proof: Let A be a p-torus of rank n , n>1 , con--

tained in the center of G such that

¥ = [xeX | ax=x VaeA} = X .

Let & = N/pn be the index of A in G . Let A be a
subgroup of rank 1 in A and write A = Al x B , where
B is a p-torus of rank n-1 .

The;e’is a one-dimensional representation
E:Al XxB » C* of A given by p on A, (p is the same
representation as in Case One ) and the trivial repre-
sentation on B . Let e = cg(indA+G(3)) £ Hégi H be the

top Chern class of the {~dimensional representation

i D 17 % *
1ndA+G(p) of G . If resAl+G.HG +A HAl , then we have

res (e) = cl(p)ﬁ . This. follows from the Mackey induc-

A1+G

tion formula, which implies that

- resAl+G(1ndA+G(p)) = resAl+A(resA+G(1ndA+G(p))
res, +A(RE)

1
= QJp %

and standard properties of Chern classes.

By Corollary 2-4, e is not a zero divisor on HX(X) .

The finite group G acts on ?*  via indA+G(E) and
therefore on ng x X diagonally. So there is a vector bun-
dle

pe x° (€%t x x) % PG x° X ,

i
(PG x X) SO ot
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and the associated (orientable) sphere bundle is

pc x¢ (5% ; x) 5 PG x° X ;

recall that indA#G(E).is~unitary; since p is unitary.

Associated to this sphere bundle £° is a mod-p Euler class;
it is the top Chern class of the vector bundle & . There-

fore this Euler class is equal to e .

There is the exact Gysin sequence for §&7[S] :

b

; N ; _
X.) - HJ(XG) > gd ((s2%"1 4 X)g)* eee s

j-2¢
( G

eee + H

j—24

The map H (XG) -+ HJ(XG) is multiplication by e as

indicated, and since e 1is a non-zero-divisor, this map is

injective. So there is a short exact sequence of H-modules

e 9 20-1
0 > HF(X) =+ H*(Xl) =+ H*((S x X) > 0,

G

where H*(XG) = @H(X.,) . Multiplication by e is an
i>0

G
H-module map since e has even degree.

This short exact sequence shows that there is an H-mod-
ule isomorphism

1

ae((8*¥ Tt x 0 ) ¢ ER(XQ/()EF(XY)

induced by 6.
The isomorphism ® provides the inductive step. For,

how does B act on 522_1 x X 2?2 In fact, B acts trivially.



To show this, it is enough to note that

1) (ind

me(®) = %

IESB+G

(the ¢-dimensional trivial representation) .

(Proof: B 1is central since A is. So

resB+G(indA+G(E)) = resB+A(resA+G(indA#G(B))

= resB+A(£E)
= 2-resB+A(5)
= Lp . )

and

2) XB = X ; this follows because XA = X and B<A .
Since rank (B) < rank(A) , B is central, and
(522_l be X)B = 521—1 x X , we may use: induction to obtain

an H—-seguence

€1/ €y -+ o« e
of length n-1 on g*((s24L « X)) - Using the isomor-
phism 8§ ;

e, el’ 62, . = . r en_l

is an H-sequence of length n on H*(XG).

So, Theorem 2.1 is proved. QED

It is nice to notice that it is possible to actually
write down an H-sequence on H*(XG) . Write

A = Al X A2 X « o » X An

as a direct product of cyclic groups of order p . For
1 <i<n, let pi:A + {£* Dbe the one-dimensional repre-
sentation of A given by the trivial representation of A

on all but the i-th factor of A and by (our usual) o

on A. . If e. = ¢, (ind
i 2

i (pi)) , the proof of Theorem

A~>G
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2.1 shows that s ¢ - - , @ is an H-sequence on H*(XG).

n
Also,
HE(X)/(eq, «.. , e )HE(X) e
B (st x o x8?Th xwy
i factors
28=-1_1 ; 2 ;

where G acts on (S ) via lnd(oj) on the j-th fac-
tor (for 1<j<i) and on e L diagonally.

Section Two: A Spectral Sequence

This section constructs the spectral sequence used in
the proof of Lemma 2.2 of Section One.

Let G be a compact Lie group acting on a space X .
Suppose that N is a closed normal subgroup of G that acts
trivially on X .

In this section we point out that there is a fibration

BN > XG - XG/N

giving rise to a Serre spectral sequence

EE* = H* (X {Hﬁ}) > H*(XG)

G/N’
({+} denotes local coefficients.)
We assume that cohomology has coefficients in a fixed
commutative ring R , unless otherwise noted.
To get the fibration

-
BN XG > XG/N



g
we start with a classifying bundle P(G/N) -+ B(G/N)
for principal G/N-bundles. Then, there exists a classify-
ing bundle PG » BG for principal G-~bundles and a comm-

utative diagram

PG - P (G/N)
® e
BG > B (G/N)

£

with £ a fibration.
To see this, use Borel's diagram [B2]. Namely, let
P - B be any classifying bundle for principal G-bundles.

Form the diagram

PTrq pT,

P < P x P(G/N) > P (G/N)

| } X:

B = P x% P(G/N) > B(G/N) ;
prl Prz

Here G acts on P(G/N) via the homomorphism nw:G -+ G/N;
and the space P xG P(G/N) 1is, as usual, the orbit space of
the diagonal action of G on P x P(G/N) .

Then the right half of the above diagram

PI,
PG = P x P(G/N) o P(G/N)
L b
BG = P x° P(G/N) - B(G/N)
pT,

is the desired diagram C) . We must verify
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1) that P x P(G/N) - P x° P(G/N) is a classifying

bundle for G and

2y that Efz is a fibration .

Now, P x P(G/N) 1is a contractible space on which G
acts freely, and P XG P(G/N) its orbit space. Therefore,
PG - BG is a classifying bundle for G . So 1) is true.

To see 2) , we show that P XG P(G/N) -+ BI(G/N) is

pr,

locally a product. Since ¢ 1is locally a product, suppose
et [ 4 am open sek in BIE/ND) wikh U G = E (0 .
The action of G/N , and hence of G , 1s given by transla-
tion on the second factor in this product. So

§f;l(U) = px® WxemN) = @®xeN xU
and is locally a product. The fibre is

PxGG/N = P/N = BN ,

a classifying space for N .

Since N acts trivially on P(G/N) there is a comm-

utative diagram

PG
_:::Q:__‘“““‘**—*——~—-_&~. £
PG/N = P/N x P(G/N) o P (G/N)
D) l £ O 'la
BG - B (G/N)
P, = £

and the big square [l is cartesian.
Now, replace the fibres of the principal G/N-bundles

£ and &~ by the G/N-space X , forming the commutative



diagram of fibrations

£
P/N = BN - pa/n x°/N g = p(a/N) x°/N g
p x° (G/N) = BN - BG > B (G/N) )
£

The indicated square is cartesian. The only thing left to do

/N X is homeomorphic to PG xG X.

is to notice that PG/N x
So, rewriting the diagram @3 as C:) , we have a comm-

utative diagram of fibrations, with the indicated square

cartesian:
e 7 XG ” Xa/n
e ! =R
BN - BG > B(G/N) .

The fibration XG - XG/N

BG -+ B(G/N) . Therefore, if the local coefficient sys-

is induced from the map

tem {Hﬁ} is trivial for the latter fibration, it is trivial
for the former fibration [S].
From this it follows that if N is central in G , and

coefficients are in a field F , then
% ~ * e
B3* = H*(Xg,) ®p HY .
For, {Hﬁ} is trivial for BG -+ B(G/N) since N is

central (see, e.g. [ 1), so

Ef* = H*(Xg o HE) = EY(Xg ) ®gp HY -



Chapter Three: Smooth Actions

Let A Dbe a p-torus where p 1is zero, or an odd
prime. We consider smooth actions of A in this chapter.

The main result is Theorem 3.13 of Section Three.

Section One: Gysin Sequences

Section One constructs the Gysin sequences for the em-
bedding of a closed invariant submanifold in a differentia-
ble manifold. The results of this section are well known.
Since they hold for smooth compact Lie group action, and not
just toral actions, we let G be a compact Lie group acting
smoothly on a differentiable manifold M . The manifold
M has a smooth G-invariant Riemannian metric. If Y is
a closed G-invariant submanifold of M , then the normal
bundle Vv:N -+ Y 1is a G-vector bundle since the metric de-
fining Vv is G-invariant.

Let R be a fixed commutative ring. We assume that v,
and also

G

V.:PG x° N+ PG x° ¥
G 1! t

Ng e

are R-orientable wvector bundles (see Chapter One). In this
section, cohomology groups will have coefficients in the
ring R .

Proposition 3.1 Suppose that v and v have con-

G
stant fibre dimension d over R . Then there is an exact




equivariant Gysin sequence for the embedding ¥ -+ M :

@

4 G i res ; 5
i 1+d i+d i4+1
il +HG(Y) - HG (M) -~ HG (M-Y) - HG (¥) = ... .
« 1% * i ] —
If res” Y.HG(M) - HG(Y) , then res}:I v © @G is multi
plication by the Euler class of Vg -

Proof: To get the exact sequence, start by considering
the total space D of the disk bundle associated to v as
being smoothly and equivariantly embedded as a closed G-in-
variant tubular neighborhood of Y [Br]. There is the exact
sequence of the pair (MG, (M—Y)G):

i4d i+d

- +HG (M, M-Y) =~ HG (M)

By excision of the open set U

= (M"D)G ’

G
i i
Hg (M, M-Y) +  Hg(D, D-Y)

for every i. The space YG is equivariantly embedded in

D as the zero section of the disk bundle associated to

so there is a Thom isomorphism

Gf
gt (yv) - gitd(p, p-v)
G G r :
L
The composition
i i+d i+d
HG(Y) T+ HG (D, D=Y) - HG (Y)
e res

is multiplication by the Euler class of v. . The Gysin

G



sequence is:

)

. G . res ‘ i

i i+d i+d _ i+1
. .-:-HG (Y) - HG (M) - HG (M=Y) - HG (Y) ..

)
b_L Tg T ‘L 8 :51_\ (1)

8%, p-v) » witdm, m-v) gt (v, M-v)auttl(p, pey)
G o~ G G e
QED.

More generally, we have

Proposition 3.2 Suppose that Y = H{ X, is the finite

disjoint union of closed G-invariant submanifolds Ya such

that v|, has constant fibre dimension d, . Then
o
1l) there is an exact Gysin triangle of R-modules
*
HG(M)
s /‘ \
% * -
HG(Y) S HE (M-Y)
i
where H*(-) = @®H,(-) ,
G >0 ©
and
2) the composition
* * * *
HG(YOL) - HE (Y) g HE (M) - HG(YB)

G res

is zero if o # B and is multiplication by the Euler class

of

AY) I Twm T =

G (Ya)G = (\)|Y )G if a B .
o

Here the inclusion Ha(Ya) + HE(Y) comes from the

isomorphism
Goga res
* *
HG(Y) % % HE(Yy) .
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Proof: To see this, note that we may assume that the
closed invariant tubular neighborhood D of Y 1is the dis-
joint union of invariant tubular neighborhoods D, of Y, -
Proceeding as in Proposition 3.1, start with the exact se-

quence of the pair (MG, (M-Y)G); and then use the isomor-

phisms
HX(Y) + ® BX(Y ) + ®HX(D , D =Y )
G ® & G Ta o ¥ G g a a
res
a G,Of- Is p
HE(D, D-Y) s
The map Ta is the Thom isomorphism for (Ya)G - (Da)G #

G,a

It is clear that 2) holds since the Da's are dis-
joint. The Gysin map @G mixes degree, as does the map
HE(M-Y) + HE(Y) in the Gysin triangle, if the du's
are different. QED

For later use, we note that the Gysin triangle
(for G = [e] , the identity group) implies that if any two
of the three groups H*(M), H*(M-Y), or H*(Y) , is finite

dimensional over the coefficient field R , then so is the

third group.

Section Two: The Decomposition of the Normal Bundle

In this section we go back to considering smooth toral
actions. Let M be a differentiable manifold on which a
p-torus A (p 1is zero, or an odd prime) acts smoothly.

As in Section One, assume that M has a smooth A-invariant
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Riemannian metric.

Let B be a nontrivial subtorus of A, and let Y be
a smooth closed A-invariant submanifold of M on which B
acts trivially. If v:N =+ Y is the normal bundle to Y,
the subtorus B acts (by restriction of the A-action) on
N. This B-action is an automorphism on each fibre of v
since B acts trivially on Y . Throughout this section we
assume that the actions of B on the fibres of Vv have no
nonzero fixed vectors. Let C = A/B, and fix once and for
all an isomorphism A = B x C . The p-torus C acts by
restriction on N and Y making v into a C-vector bundle.

Proposition 3.3 gives a decomposition of the normal
bundle corresponding to the irreducible nontriwvial real
characters of B . Under "constant codimension”" assump-
tions on Y , we then get a factorization of the Euler class
of v (Proposition 3.6). Finally, we show that this Euler
class acts as a non-zero-divisor on Hi(Y) (Propositions
3.9 and 3.10).

We begin by listing the irreducible nontrivial complex
characters of B. They are one-dimensional and occur in
conjugate pairs: {xj, ij} . Since p#2 , the nontrivial
irreducible real characters of B are two-dimensional; they
are {Xj +§j} . Given the list { Xy Yj} of irreducible
complex characters, X + ij is the character associated
to the real representation pj:B > GLGVj) given by

(here, Vj = Rz):
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Re y . (b) Imy.(b)||x

-Im Xj(b) Re Xj{b) Yy

for each b:B .

The real vector space Vj has a natural complex
structure J:Vj - Vj given by J(x,y) = (-y, x). DNote
that b.J(x,y) = Xj(b)-i(x+iy) = ixj(b)-(x+iy) =
J(bs (x,¥)), if DbeB . Let Yy be the B-vector bundle
¥ x Vj Y? Y ; the action of B is given by pj on Vj "
The vector bundle Yj of course has a complex structure
given by J .

Proposition 3.3 (Atiyah, [Al]) Let Y be a smooth

closed A-invariant submanifold of M on which B acts
trivially, with normal bundle v:N =+ Y. Then (recall
that the indices j 1index the nontrivial irreducible real
characters of B )

a) e, = Hom_(y;,v) = [Hom(y;, v)1)®
is a (real) vector bundle over Y . There is an action of
C on the total space of sj making Ej into a C-~vector
bundle. Also, the vector bundle Ej has a complex struc-
ture given by J.

b) The vector bundle Y5 @% 5 has a complex structure
and an A-action making it ipte an A-vector bundle over Y.

c) If the actions of p on the fibres of v have no non-
trivial fixed vectors, then v = ? Yj @% Ej as A-bundles.

Thus, v has a complex structure.
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Proof: a) For the fact that € 5 is a vector bundle over
Y ,see Atiyah [Al] . If f ¢ HomB(Yj(y), v(y)) , for yey,
and if <cegC, then cf ¢ HomB(yj(cy), v(ecy)) is given by
(cf) (cy,v) = c-£f(y,v) . Since A 1is abelian and £ is
a B-homomorphism, cf is a B-homomorphism. The complex
structure on €5 is given by J; i.e., if

£e HomB(yj(x), v{x)) then Jf ¢ HomB(Yj(x), v(x)) is given

by (Jf) (x,v) = £(x, Jv) . J°(f) = -f since f is
linear, and Jf 1is a B-homomorphism since J(bv) = bJ(v)
£ V., = ; .

or ve Vy YJ(X)

b) It is clear that Y 5 @%:Ej has a complex structure;
the A-action on ¥y @%:Ej is given by the isomorphism

c) There is a natural map

E

r yj(x) & HomB(Yj(X). vix)) =~ v (x)
for xeY¥ . This map is an isomorphism because

1) There are no nonzero fixed vectors in the
B-action on wv(x) , so that v(x) = z nj(x)vj as B=-vec-

J
tor spaces. (The nonnegative integers nj(x) are constant

on the A-orbit (=C-orbit) of a component of Y.)

( 0 j#k

and

2) By Schur's Lemma,

]

(o]

HomB(vj, vk)

o



Now, follow Atiyah [Al] to show that v = % Yj @% Ej
as B-vector bundles. Using the isomorphism A = B x C,
it is easy to see that the isomorphism is A-equivariant
too. QED

Now, for each subtorus B of A, the fixed point set
M = {meM | am=m VYaecB} is a smooth closed submanifold
of M [Br]l. The fixed point set MB is A-invariant since
B is normal in A. Proposition 3.3 has two immediate cor-
ollaries that we use later on in Section Three.

Corollary 3.4 For each subtorus B of A, the normal

bundle v:N = MB has a complex structure.

Proof: Consider N as being equivariantly embedded
as an invariant open tubular neighborhood of Mg . Since
B has no fixed points on N—MB the B-action on N has no
nonzero fixed vectors. Proposition 3.3 c¢) shows that v
has a complex structure. QED

Corollary 3.5 1) Every component of MB has even

codimension in M , and 2) v is an R-orientable vector
bundle for any commutative ring R.

Proof: Corollary 3.4 shows that v has a complex
structure. QED

We now look at some Euler classes. We fix a field k
of characteristic p and consider cohomology with coeffi-
cients in k .

First, suppose that A acts transitively on the set of

components of Y . Then each subbundle Y4 @h €5 in the
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decomposition v = %-ijgm Ej has constant fibre dimension
sj over . So v has constant fibre dimension d = 2% sj
over @R .

Proposition 3.6 Suppose A acts transitively on the

set of components of Y , and the sj's are as above. Let

2s

ej g HA I(¥, k) be the top Chern class of the bundle

2 \
(Yj @& gj)A . If e g HAd(Y, k) 1is the top Chern class of

J

v , then e = e, .
.3 7
Proof: Since v = 3 14 @%:ej , we have

= = -
Va . (Yj @% Ej)A . The result follows from the sum form
ula for Chern classes. QED

Before stating Proposition 3.7 we note that for any A-
space W (no smoothness restrictions) on which B acts tri-

vially, that there is a Kunneth isomorphism

(*) HE(W, k) ¢ HE(pt, k) &) HE(W, k) .
To see this, suppose PB, PC are total spaces of classifying
bundles for B, C respectively. Then PB x PC is the total
space of a classifying bundle for A . Since there is a
homeomorphism

PB/B x (PC xC W) = (PB x PC) xA W

h
the isomorphism (*) 1s a consequence of the ordinary Kun-
neth isomorphism.
Now we state

Proposition 3.7 Suppose A acts transitively on the

set of components of Y and the sj's and e.'s are as

in Proposition 3.6 . Then, using the Kunneth isomorphism



*) .

s
2’ ¥.)" @ [(e)) ]
e. = 6. TY. S €.

J =0 1773 sj r Jj'cC
for each 3j, where csj_r{(ej)c} is the (sj-r)-th Chern
class of (Ej)c and cl(Vj) is.the’first Chern class of

Y.:PB x° v, - PB/B .
J J

(Here, B acts on Vj via the character X5 )

Proof: Let pry and pr, be the projections

PB/B * PB/B x Y > Y .
C C
Pry BEq

Under the homeomorphism

1

h:PB/B x Y ¥ 7

5 A
the vector bundle (Yj @% Ej)A over YA corresponds to

* (v *
the vector bundle prl(Yj) @& prz((ej)c) over PB/B x YC

(compare fibres). Since ?j is a complex line bundle, the
proposition follows from the well known

L.emma:. 3.8 If €:E - X 1is an r-dimensional complex
vector bundle over X and v:L -+ X is a line bundle,
then the top Chern class c_(y ®¢) ¢ Hzr(x, k) of vy ®¢

equals
- i
Loy T e @)

i=0

where crmi(i) g Hz(r-l)(x, k) is the (r-i)-th Chern class
of & and clty) is the first Chern class of .

Proof: We may use the splitting principle [H] to reduce



to the case where f is a direct sum of line bundles. The
result follows from a straightforward calculation. QED

Proposition 3.9 If A acts transitively on the set

of components of Y , then the Euler class e of the normal
bundle to Y is a non-zero-divisor on Hi(Y, k) .

Proof: Proposition 3.6 shows that e = ] ej ¥
J

We show that each e, 1is a non-zero-divisor on H*(Y, k).
Fix an. index j . If p 1is odd, we may regard
Hg(pt, k) = Hg as the tensor product over k of a
polynomial algebra on cl(?j) and (rank(B)) - 1 other
polynomial generators, and an exterior algebra on (rank(B))
generators of degree one. If p is zero, Hg is a poly-
nomial algebra on cl(Vj) and (rank(B)) - 1 other poly-

nomial generators of degree two. We write this as

yk[cl(?j') poeee 1B A p odd
Hg = ﬁ
(\ k[cl(?j) roree ] p=20.

(see, e.g. [QLl]).
The Kunneth isomorphism (*) gives

Hi{Y, k)

[

*
HE (Y, k) @k HX .
Proposition 3.7 shows that ej is a monic polynomial

in cl(?j) ,therefore it cannot be a zero-divisor in
" —_
HC(Y' k) @C A @k k{cl (’Yj); _._..]
HK(Y, k) = p odd

H*(Y, k) klc, (y:), -1 p = 0.
QED c % 173



We generalize Proposition 3.9 by weakening the hypothe-
sis of a transitive A-action on the set of components of Y.

Proposition 3.10 Suppose Y has constant codimension

d in M , and has only a finite number of components. Then
e, the Euler class of v:N = Y , is a non-zero-divisor
on HK(Y, k).

Proof. We write Y = \é YOL as the finite disjoint
union of A-invariant closed submanifolds Yu such that
A acts transitively on the set of components of each Ya.

Then, the following diagram commutes, where e, is the

Euler class of v_| = (v]gy ) :
al(r)), Y 'a
. gresa . | ‘Ie, 1+d
HA(Y,k) % @ HA(Ya, k) - % Hp (Ya, k)
E.T ? res
- Hz’j'd(y, k) _

Since each ea is a non-zero-divisor on Hi(Ya, k) by
Proposition 3.9, & e, is a non-zero-~divisor on %»Hi(Ya, k),

so e 1s a non-zero-divisor on HK(Y, k). QED

Section Three: A Filtration on HK(M)

Let A and M be as in Section Two. Suppose n =
rank(A) and r = dim(M) . The cohomology groups in this
section have coefficients in a field k of characteristic
p (p is zero, or an odd prime). In this section we define

a filtration on HK(M); in Theorem 3.13, we identify the
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successive quotients of this filtration using the results
of Sections One and Two. In the last part of this section
we obtain an expression for the k-Poincare series of
HK(M, k) (Theorem 3.14) and make some calculations using
this series.

For each point meM, define an integer, rkm , as
follows. Let A = {aeA | am=m} be the isotropy group at
m . If (Am)0 denotes the connected component of the

identity in A s define

rank (A_) p odd
m

rk m =

rank((Am)o) p=20 .
For 0 < i <n+l , let
M, = {meM | rk m > i} .
Then
My=M > M > My2>2 »o0 2 Moo> M, =2

is a decreasing filtration of M by A-invariant subsets.

Proposition 3.11 Each Mi is closed in M .

Proof: Any meM has an open neighborhood U such
that for each xeU , AX is a subgroup of Am([Br, pg. 861,
this theorem is a consequence of the existence of slices for
differentiable actions). Thus if rk m < i , then rk x < i
for =xeU . 5o Mi is closed. QED

So, we have an increasing filtration of M by open
A-invariant submanifolds:

g < M-M, < see < M-M < M .

b 1 = 5 n =

Let My, = {meM | rk m = i} for each i such that



0 <1<n. We have M(i) = Mi = Mi+l < M ~-M .

Let 5 = {(A), | meM} .

Proposition 3.12 Suppose that S 1is finite. Then for

each i such that 0 < i < n , M(i) is a smooth closed

A-invariant submanifold of M - Mi+l 7

Proof: We need only show that M is a submanifold

(1)
of M - Mi+l . We use the fact that the fixed point set of

a smooth action of a compact Lie group on a differentiable

manifold is a submanifold [Br] . Given this fact we proceed.
Let r
A | rkm=1i} p odd
s, = =
i
{(Am)o[ rk m= i} p=20 .
The set S is finite for each i . We claim that
My = U IR R
B&S- =
i
and that this union is disjoint, so that M(i) is a sub-
manifold of M - Mi+l .
The equality holds because
B
X € M - M )
L) i+l
iff B < AX for some B ¢ Sy and x g M - Mi+l
iff rk x » rank(B) = i for some B ¢ Si and
rk x < i+l
AEE rk x = 1 .
The union is disjoint, because if
e (M - M )B (M - M )B‘ th
% i+ N gt 1 Heen
B<A_  and B” <A_ . So, { B , B”», the subgroup gen-
erated by B and B , is in Ax . If B # B , then
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rk <B, BD> i + SO rk x > 1 , contradicting xeM(i) . QED
Define an increasing filtration on HK(M):
= - e e = * = j
Fn—t—l 0 S Fn = Fn—l 2 e F0 HA(M) @ HA(M)
3>0
res

= * * -

by F?._ ker (HX (M) -~ HY(M - M;)) .

From now on we assume that the set S = {(Am)ol meM}
is finite. Let the sets Si +for i such that 0 < i <n,
be defined as in Proposition 3.12.

Theorem 3.13 1If M(i) has only a finite number of

components for every i , then

1) F; ) H*(M,..) as k-modules
- o AV (1)
i+l
and
res
* * - 1
2) HA(M) > HA(M Mi) is
surjective for 0 < i < n .
Proof: Let Efi = {c} be the set of components of
M,... If cse ﬁl, let ¢ = as*c . Then ¢ 1is a closed
(1) i
ach
A~-invariant submanifold of M(i) , and M(i) is the dis-

joint union of ¢ 's . Note that the normal bundle to each
c in M - M,,, has constant fibre dimension.
By Proposition 3.2 of Section One, there is an exact

Gysin triangle for each i such that 0 < i < n:



% Sy X
Hy(M =M, .,

A ///” \\\§

Hi(M ) b eSS HE(M = Mi) .

®

(i)

We will show that @A is injective. Given this, there

are short exact sequences of k-modules

0 - HK(M(i)) -+ Hi(M - M

°a

i¢1) T HRM - M) - 0

for each 1 such that 0 < i < n. Since

Hi(M - M )y = Hi(M - Mi) is surjective for each i such

i+l
that 0 < i < n, by induction we see that

HAOD = EEOU- M

is surjective, yielding part 2) of the theorem. Part 1)

) + Hx(M - Mi)

of the theorem follows in view of the following commutative

diagram of exact sequences for 0 < i <n :

0 0
¥ i
0+ Fypg * Fy > Fy/Fyyg + 0
! !
* - *
HA(M) HA(M)
! !

0 - HE(M(i)) -+ HK(M - Mi+1)+ Hﬁ(M - Mi)+ 0.

y Y

0 0 .



So, it remains to show that @A is injective. We

use the results of Section Two.

For each d such that 0 < d < r , let Yird be
- - r

the union of the components of M of codimension d

(1)
in M - Mi+l . The set Yi is a closed A- invariant sub-

manifold of M - M.
i+

,a
l -
For each Bssi ; let

Y = ¥

B
B,d 1,0 O M0-m 0%

Then

a) Y is a closed A-invariant (smooth) submanifold

B’d
of M - Mi+l'

b) B acts trivially on Y .
Bd

c) since Y is a submanifold of (M - M B

B,d i+l) k

the normal bundle to Y in M - M, has no nonzero
B,d i+l

fixed vectors under the action of B (Corollary 3.4),

d) has a finite number of components, each of

Ty

which has codimension d in M - M, .
1%l

We have verified the hypotheses of Proposition 3.10 of

Section Two, and may conclude that ey g 7 the Euler class
r
of the embedding YB,d > M—Mi+l ; 1s a non-zero-divisor
*
on HA(YB,d) .
We also have
r
e) M(i) = LJ k} . YB g , and this union
BeS; d=0 7’

is disjoint.

Using this decomposition of M(i) + Proposition 3.2



shows that the composition

5 ~ .
* - Gy
Hf (Y q) » @ @ my(¥, o) = HEM)) - HE(M - M;,)
BeS.d=0
i o) '
A
V
*
HR (M (1))
\Lls
@& @ H*Y )
Bes,d=0 =+ B2r9
T
v
*
HA(¥B‘,d‘)
is multiplication by es g if (B,4) = (B”, 47) ; and is
!

zero if (B, d4) # (B, 4°) . Thus @A is injective. For,

identify Hg(M ) with

(1)

¥
® @Hi(YB,d) ;

Besi d=0
Then
(res = o) ( 2 ¥y ) = (( £ res_,. ,.)e0 )( L ¥y )
A B,d B,d B-,a- B’ ,d A 54 B,d
= I {res_. +.°28.3}( L ¥, 4)
= ILe y .
B8,d B,d “B,d
Since multiplication by es 4 is injective,
r
BEd eB,d YB,d = 0‘ if and only if each YB,d is zero.
r
Therefore, resed is injective, so ¢ is injective. QED

A A

The k-Poincare series of a graded k-module H* = C)I-I:L
i>0



that is finitely generated in each dimension is defined as
P.S. H* = g (dimkHl) £t .
i> 0
If H*(M) is finite dimensional over k , then H;(M)
is finitely generated as a ring over k [E,V], so the

Poincare’series of HK(M) is defined.

Theorem 3.14 Suppose that H*(M) is finite dimensional

over k . Using the hypotheses and notation of Theorem 3.13

we have
rank (A) dim M td
i *
P.S. HF(W = . 7 E e t€>i P.S. H (YB'd/A)
i=0 Bgsi d=0
where ¢ = 1 p odd
2 p=0

Proof: For each i such that 0 < i < n , there is a

short exact sequence

dim M
0 » @® @ HA(Y, ) > HAM-M ) -+ HA(M-M) >0

using Theorem 3.13. The Gysin map 2p raises degree by d

on the summand HK(Y Basic properties of Poincaré

B,d) )

series and the short exact sequences above yield

rank (A) dim M
a

* - *
(A) P.S. HA(M) T ¥ ¥ & P.S.HA(Y

Y =
i=0  BeS;  d=0 Bt

To prove the theorem, we need to calculate P.S. Hi(YB d)
r



4s

(which is defined in view of the equation (A)) for a fixed
B € Si and 4 such that 0 <d < dim M .

For a fixed pair (B, 4), Y is an A-inwvariant

B,d
space on which the p-torus B of rank 1 acts trivially.

Write A =B x C, where (C 1is a p-torus of rank n-i .
By the Kunneth formula (Equation (*) of Section Two) ,

* o~ * * 1
HA(YB’d) HC(YB'd) ®k HX . If p 1is odd, C acts

freely on Y . If p=0, C acts with finite iso-

B,d

tropy groups on Y Thus by 1.6 and 1.7 of Chapter

B,d °
One, we have that

H*(YB d/ )
sl o

Since B acts trivially on YB,d' YB'é//= YB'%// )
'C A

R

*
HE (YB,d) .

so,

* ~ * *
HY(Yp o) = H*(¥p 4/A) @, H} . _
Since P.s. HY =_ 1 where e = 1l p odd
(1 -t5H* 2 p=0

(this follows from the structure of H*; see proof of Prop-

B
osition 3.9),

] = 1

%*
P.S. HA(Y
(1 - %)

*
B,d P.S5. H (YB,d/A) .

i

The theorem follows. QED

Corollary 3.15 Suppose that H*(M) is finite dimen-

sional over k , and the hypotheses of Theorem 3.13 are sat-



.
'G\_

isfied. Then

a) lim (1 - &)Fp.s. HE (W) 5 dimkH*(MB/A) , p odd,

t>1 BESr
b) lim (1 - £)"P.s.HA(M) =1 &  QimH*(MP/A), p=0,
t=+1 »T BES
r
and ¢) lim (1 + t)rP.s.HK(M) =1 x (M° /) ; p=0.
t+-1 oT Besr

Here, r = max {rk m | meM} and

MB/a)= & (~1)* dimkHl(MB/A) is the k-Euler char-
i

acteristic of MB/A .
Proof: For each i such that 0 < i <n, each
BESi , and each d such that 0 < d < dim M , assume that

H* (Y )  and H*(YB d/A) are finite dimensional over k
I

B,d
(We show this in Lemma 3.16 following the proof of this co-

rollary.)

Since YB g = g for d odd (Corollary 3.5 of Section
r

Two) , and Si =@ for i>r , Theorem 3.14 shows that

(B) (1 - t5)Tp.s.H*(M) = 3 T th.S.H*(YB 4/3)

A BeS d even
r
€
i (L - &7)jale) ,
where Q(t) is a polynomial in ¢t

For each Besr ’ MB is the disjoint union

a4 Sven YB,d (Proposition 3.12) since M =M - Mr+l’ so
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MB/A is the finite disjoint union k) Yo d7A -
d even !

Therefore, H*(MB/A) 2 &) H*(YB d/A) for BeSr . Now,
d r

simply calculate the limits of the Corollary by substituting

t=1 (ort=-1, for c) if ¢ 2) in the right hand side
of equation (B) . QED

Lemma 3.16 Using the notation and assumptions of

Corollary 3.15, H* (Y ) and H*(Y /A) are finite dim-~
B;d Bld
ensional for each B and 4 . (For the characteristic

zero case, this Lemma uses the fact that § ={(Am) meM }

ol
is finite.)

Proof: If X 1is an A-space with H*(X) finite dim-
ensional then

1) H*(x™ is finite dimensional [Ql] (this is where

we need finiteness of 8)

and

2) The cohomological dimension of X/A over k 1is
finite: cdk(X/A) < = . [0l].

So, suppose H*(M) is finite dimensional over k .
Then M(n) = M has finite dimensionai cohomology (we

abbreviate this to: M(n) has FDC) by 1) . The Gysin tri-

angle of Proposition 3.2 shows that M - MA has FDC . Thus

U M - M8 has FDC by 1) and so M - M

M
(n-1)
BeS, 1

=,

has FDC wusing the Gysin triangle of Proposition 3.2. Cont-
inuing in this manner, we see that (M - Mi)B and each of

its finitely many components has FDC for every 'Bési+l,and
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every 1 such that 0 < i < n. ~Therefore- + which

B

Ep 4

if BeS.

141 a8

is the union of components of (M - Mi)
FDC for every. B and d .

Now, by 2) Cdk{YB,d/A) < ® ., But the equation of
Theorem 3.14 shows that P.S.H*(YB’dZA) is defined, so

that YB d/A must have FDC . QED
I

Corollary 3,17 Suppose that H*(M) 1is finite dimen-

sional. If M is totally non-homologous to zero in the

fibration M - BA, then

A
1) dim H*(M) = dim B*(M™) (Borel [Bl])
_ n
2) XD = XM+ 2 XM g)) ... 27X (M gy)
p n
P
n i
= g 27 X(M(n—i)) if p 1is odd.
i=0 i
P
3) X = x if p is zero.

Proof: The hypothesis that M is totally non-homolo-

gous to zero in MA * BA implies that

H{(M) = H*(M) @% Hf{ . So,
P.S. Hi(M) = 1 P.5. H*(M) , where
L= &) 0

oo rl p odd
iZ p=0
Therefore, Theorem 3.14 implies that (n = rank A)

dim M .

_ d € n-i
(C) P.s. H¥(M) = 5 5 p £ (1=t )7TTP.S.H* (Y, L/A) -
. 1 d=0 r

Since P.S. H*(M)* 0, we must have MA # 0 (as in Borel



(B1]).

Evaluating (C) at t=1 , we get

dim H* (M) = dimkH*(MA)

If p is odd, € =1 . So, evaluating (C) at t = -1,

we (recall that YB q - g 1f d 1is odd) have

XM = oy o+ 2X M1y /B) + ..+ 2% 00 /A) .

Each M(i)/A is the finite disjoint union

U

YB ; since each p-torus A/B
Bes, d *7 n/B

of rank n-i acts freely on Y 7
B,d

x (¥ ) = 1 X (Y ) .
B'ﬁ/i/s ;h—i B,d

S0

Xx(Mgy/A) = 1 x(M(.)) Equation 2)

n-i
follows.

For Equation 3), evaluate (C) at t = -1, and note

that ¢ = 2 1if p

0 . QED
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