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Ahstract

The purpose of this study is the development and analysis o1 2 two-dimensional
particle tracking or random walk model for the simulation of transport in well-mixed
estuaries. A “random walk model” is a model in which transperted mass is represented
by discrete particles which are advected and dispersed at each timestep. The mixing
length approach was used according to which mass transport in estuaries can be
modeled using a locally one-dimensional model where all mixing mechanisms are
combined into a single longitudinal dispersion coefficient. The main assumption in this
theory is that complete mixing is achieved on one tidal cycle over a fraction of the
maximum tidal excursion. The model was tested by comparing simulated
concentrations and residence times with corresponding analytical solutions for the one-
dimensional case. Excellent agreement was obtained. The following questions were
addressed: 1) the number of particles necessary to represent the dispersion, 2) the
length of the timestep in order to obtain acceptable accuracy, and 2) a comparison with
a concentration model. The model was applied in order to predict the entrainment
effects resulting from the operation of a coastal nuclear power plant station at Millstone
Point, Connecticut. Winter flounder larvae represented by particles were the species
utilized in the model to simulate the effects of entrainment. In order to explain the
inconsistencies between the actual larvae length distribution of entrained larvae and the
Onﬁ pregicted by the model two dye studies were conducted and salinity data were
collected.
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1 INTRODUCTION

1.1 Purpose and Scope

The purpose of this study is the development and analysis of a two dimensional
particle tracking or “random walk” transport model. The scope of this study is the
application of this model for the simulation of transport in well-mixed estuaries. The
motivation of this study was a project for the prediction of entrainment rates of winter
flounder larvae through the cooling station of the Millstone Nuclear Power Station
(MNPS). La.rvée are born in the Niantic River (Figure 1) and their behavior depends
on age, tidal phase and time of day. According to this the entrainment rates of the

larvae at the power plant are dependent on their residence time in the estuary.

A “random walk” model is a model in which mass is transported as discrete
particles. At each timestep the displacement of each particle consists of an advective,
deterministic component and an independent, random Markovian component. A
“random walk” model can be used as an alternative for modeling mass transport io
concentration models, where the dependent variable of concentration is advected and

diffused.

The reasons for using a particle tracking/random wa'k model instead of a

concentration/diffusivity model for simulating mixing in estuaries are the following:

1) The dispersion coefficient in estuaries is not a constant, but varies as a function
of the tidal velocity. This variation in dispersivity is more easily modeled by a random

walk process.

2) Random walk models appear to be a natural choice, where transport processes are
best described by attributes of the individual particles rather than their aggregation

(i.e., concentration). As mentioned above this was the case in the MNPS Case Study,
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Figure 1 Location of Millstone Nuclear Power Station (from Saila, 1976, Figure 1)



where particles represented winter flounder larvae that show distinct behavioral

patterns.

3) The source representation is simple in a random walk model (i.e., introduction of
particles) whereas in concentration models the tepresentation of point sources creates
difficulties since a model is unable to resolve concentration fields, whose spatial extent

is small compared to the spatial scale of discretization.

4) In random walk models the computational effort is concentrated in regions where
most particles are located, i.e., regions with highest concentrations, whereas in
concentration models all regions of the domain are treated equally in terms of

computational effort.

1.2 Organization of Study

In Chapter 2 different models for simulating mixing in estuaries are presented. In

particular the mixing length theory is analyzed and models based on this theory are

- described.

Chapter 3 includes a discussion about the distinctions between concentration and
random walk models, the development of a random walk model and a thorough analysis
of the two dimensional random walk model used in this study and its relation to the

equivalent two dimensional depth averaged transport equation.

Chapter 4 includes the verification of the two dimensional random walk model
developed in Chapter 3. A one dimensional test case simulating mass transport on an
estuary of uniform cross section is used. The results of the random walk simulations
are compared to the results of the analytical solution of the equivalent concentration

model. The sensitivity of the random walk model on the size of the timestep, the

~-11 -



number of the particles and the size of the volume V; over which concentration of

particles is measured is analyzed.

Chapter § includes the analysis and the results of the application of the two
dimensional random walk model MILL in the MNPS Case Study. The purpose of this
study was the prediction of the entrainment effects from the operation of MNPS located
in Niantic Bay on winter flounder larvae spawned in Niantic River (Figure 1). Spatial
variations in mixing within the river is simulated according to a mixing length theory
(consistent with Ketchum’s modified tidal prism model, 1951) and mixing in the bay is
simulated in a manner consistent with a constant diffusion coefficient. The mixing
model for the river is compared with the results of Ketchum’s model and with observed
larval concentrations in the river and the station intake. In order to understand
inconsistencies between model predictions for entrainment rates and actual field data

the results of two dye studies and salinity data are analyzed and conclusions are drawn.

Chapter 6 includes a summary of the study and conclusions.

-12 -



2 ESTUARIES

2.1 Definition and Classification

According to Pritchard (1967) and Cameron and Pritchard (1965) an estuary is
defined as a semi-enclosed body of water having a free connection with the open sea and
within which sea water is measurably diluted with fresh water derived from land
drainage. This definition is very restrictive and does not include water bodies as
Niantic River, where the fresh water inflow is negligible. So we will make the definition
of an estuary broader as to include all water bodies where the flow is primarily driven

by the slope of the tidal wave.

Various attempts have been made to classify estuaries by type. The classification of
Hansen and Rattray (1966) will be mentioned here because it is based on simple
observable quantities and describes a continuum. They classified estuaries in terms of
two dimensionless parameters: the stratification parameter 85/S, and the circulation

parameter Ug/Us where

&S is the difference in salinity between sy:face and bottom

So is the sectional mean salinity

Us is the longitudinal time-mean velocity at the surface z = 0

Us is the integral mean velocity (river discharge rate divided by the cross-sectional

area of the estuary)

According to this classification seven types of estuaries are identified (Figure 2). In
Type 1 the net flow is seaward at all depths and the upstream salt transfer is primarily
due to diffusion. For Type 2 the net flow reverses at depth and toth advection and
diffusion contribute importantly to the upstream salt flux. The distinction between

category a and b in the first two types is that between a well-mixed and a stratified

-13 -
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condition. In Type 3 the upstream salt transfer is due to advection. In Type 3b
estuaries, the lower layer is so deep that in effect the salinity gradient and the
circulation do not extend to the bottom, an important qualitative difference from other
types of estuaries. In Type 4 estuaries (salt-wedge) the stratification is still greater and
the flow grades from a thick upper layer flowing over and little influenced by a thin
lower layer, to a shallow surface layer flowing with little influence over a deep lower
layer. In Niantic River the fresh water inflow is negligible and the stratification
parameter §5/S, according to salinity data (Chapter 5) is less than 0.1. According to

this Niantic River belongs to Type 1a, i.e., it is a vertically well mixed estuary.

2.2 Causes of Mixing in Estuari

Mixing in estvaries is related to the following: 1) the tide, 2) the wind, and 3) the
river (Fisher et al., 1979). Each mixing mechanism is described below and the relative

importance of each mechanism in the case of Niantic River Niantic Bay is estimated.

2.2.1 Mixing Caused by the Tide -

Mixing generated by the tide is caused by the following two basic mechanisms:
1) Dispersion that is generated by the interaction of the tidal wave with the
bathymetry creating non-uniform flow. The effects of dispersion include shear flow
dispersion, “pumping” and “trapping.” 2) Turbulent diffusion that is generated from

the friction between the tide flow and the channel bottom.

The longitudinal dispersion coefficient due to shear effects is given by the expression

(Fisher et al, 1979)

K = 0.1T7T((1/T*){(T")] (2.1)

-15 -



where

T =T/T

T is the tidal period

T. is the cross sectional mixing time estimated by the expression T; = w?2/¢;
w is the width of the estuary

€ is the tranverse mixing coefficient that can be estimated from the expression
¢ = 0.6du*

d is the mean depth

u* is the shear velocity y7o/p (u* can be taken to be equal to 0.1d (Fischer et al.,
1979))

w(y) = u%(y) - @

i is the time averaged velocity that is calculated from the expression i =

T/2
% | uesinwtdt = %uo or equivalently @ = %% (see Equations (2.6)+2.8) later in the
0

text)

ug is the amplitude of the tidal velocity
- 1%(y) is the depth averaged velocity
1’7 can be approximated by 0.2%2
f(T’) is a function

The axis x and y are defined in Figure 4

According to the above we see that the dispersion coefficient K is proportional to

the amplitude of the tidal velocity u, squared.

Niantic River is approximately 6.5 km long and 500 m wide on the average. The
averaged depth is 2 m and the tidal range is approximately 0.8 m. Since the tidal range
is 2/5 of the mean depth the tidal excursion at the mouthk will be approximately 2/5 of

the length or approximately 2.6 km. The mean tidal velocity is @ = 2.6 km/6.2 h =

- 16 -



0.12m/sec. Using Equation (2.1) and the diagram of %n-f(T’) versus T’ from Fischer et
al., 1979 (%-,-f(T’) = 0.1), we end up with K = 1.2 m3/sec.

As tidal “pumping” we mean net, steady circulation (residual circulation) that
results from the superposition on the back-and-forth tidal flow. A first cause of the
residual circulation is the earth’s rotation, whichldeﬂects currents to the right in the
Northern hemisphere and to the left in the southern hemisphere. A second cause is the

interaction of the tidal flow with the irregular bathymetry found in most estuaries.

One form of this circulation is shown in Figure 3. In flood the water comes as a jet
while in the ebb the water comes from all around the mouth in the form of potential
flow to a sink. This results in a residual circulation (an inward flow in the area of the
jet and an outward flow elsewhere). In our case this circulation is expected to play an

important role as a mixing mechanism because of the shape of Niantic River.

“Trapping” results from trapping of low-velocity water along the sides of an
estuary. Okubo (1973) includes the effects of “trapping” in his expression of the
effective longitudinal dispersion coefficient in an estuary where the main channel has a

uniform velocity u = ugsinwt and the traps are uniformly distributed along the sides.

_ K’ g ?
K =171 + I ie 997K (2.22)

where
K’ is the longitudinal diffusivity in the main channel

r is the ratio of trap volume to channel volume

k-t is a characteristic exchange time between traps and main flow

-17 -



By rearranging Equation (2.2a) and neglecting the first term we end up with the

following expression for K

— ru,3
K = s 2k ikr ) (2.2b)

K becomes maximum forr =1k =0
Kpax = 89012 (2.2¢)
Equation (2.2c) indicates as Equation (2.1) that the dispersion coefficient due to

trapping is proportional to the amplitude of the tidal velocity squared.

In the case of Niantic River the trap volume consists of Keeney Cove and Smith
Cove (Figure 17) The ratio of trap volume to channel volume r is equal to 0.08. If we
take a characteristic exchange time k-1 = 104sec (Fisher et al.) we get K = 0.93K’ +
140u¢2. By taking ug = —w%-& where a¢ is the amplitude of the tide elevation and setting
x = 6500 km we get K = 0.93K’ + 4.7 m3?/sec = 4.7 m2/sec.

Turbulence generated by bottom shear stress causes vertical and transverse mixing.
In the case of constant-density tidal flow the vertical mixing coefficient ¢y is given by

the expression (Bowden, 1967)
€y = 0.0025dU, (2.3)
where

d is the depth

U, is the depth mean amplitude of the current

-18 -



and the tranverse mixing coefficient as mentioned before is ¢, = 0.6du* = 0.06d4.

By taking U, = ug = 0.19 m/sec we get ¢y = 0.0009 m2/sec for Niantic River and
e, = 0.0132 m2/sec. Comparing the values of K resulting from Equations (2.1) and
(2.2) to €y and ¢y we see that €y, € € K which means, as expected, that dispersion is a

much more important mixing mechanism than turbulent diffusion.

2.2.2 Mixing Caused by the Wind

Wind may or may not play a significant role in estuary mixing depending on the
shape of the estuary. In a long, narrow estuary the tide is the dominant mechanism
and wind has little chance to generate currents. In a wide estuary or in an estuary
consisting of a series of bays, wind stress can generate currents of considerable
importance. Accordiag to this wind is more likely to be important in Niantic Bay and
less likely to be important in Niantic River. In the case of a floating object wind exerts
a drag on the water surface and moves the object in the wind direction. In the case of a
substance that is well mixed in the vertical direction the important mechanisms are the

currents induced by the wind that cause the mean motion of the water column.

2.2.3 Mixing Caused by the River

The river delivers a discharge of fresh water Qf and thus becomes a source of
buoyancy of magnitude ApgQs where Ap is the difference in density between the river
and the ocean water. In a nearly tideless sea che fresh water forms an upper layer and
flows as a nearly undiluted layer into the sea. The salt water layer is underneath the
fresh water layer and forms a wedge. In the case of a tidal sea, the tide moves the
wedge back and forth and this motion is a source of kinetic energy available to break

down the interface and turbulently mix the fresh and the saline layers. The ratio of the
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input of buoyancy per unit width of channel delivered by the river to the mixing power

available from the tide is given by the dimensionless “Estuarine Richardson Number”

(Fisher, 1979)

Ri = (Ap/p)gQs/wUy3 (2.4)

where
Uy is the rms tidal velocity

w is the channel width

Several attempts have been made to analyze density-driven circulation theoretically
as well as by laboratory studies. Since we are interested in vertically well mixed

estuaries we will not go into detail and present these studies.

2.3 Mixing Length Theory

2.3.1 General

In Section 2.2 the various mechanisms that cause mixing have been described
qualitatively. Various transport models have been used for modeling mass transport in
estuaries. Since we are interested in modeling mass transport in well mixed estuaries
(i.e., Niantic River) the estuary mixing models based on the mixing length theory, a
method for modeling mass transport in well mixed estuaries, will be presented here.
The reason is that this theory is very simple and yet efficient in representing the
physics of mixing in well-mixed estuaries. However, it uses many simplified
assumptions and so it should be seen only as an “attempt to model” mixing and not as

a tool for “predicting” mass transport in any estuary.

-90 -



According to the mixing length theory mass transport in estuaries can be modeled
using a model, where all mixing mechanisms are combined into a single longitudinal
dispersion coefficient D;x. The main assumption in this theory is that complete mixing
is achieved in one tidal cycle over a certain length that is proportional to the local tidal
excursion. The Coriolis forces are neglected. A steady state distribution of fresh and
salt water within the estuary is assumed. This is true over long periods of time.
However over short periods of time an increase in river flow will produce an increase in
the fraction of freshwater throughout the estuary and the steady state distribution
cannot be assumed. This theory was developed by Arons and Stommel (1951) and was
based on Ketchum’s idea, that the element of mixing volume is bounded by the length

of the tidal excursion.

The theory of mixing length by Arons and Stommel will be presented in Section
2.3.2. The tidal prism method by Ketchum and modifications to this model will be

presented in Section 2.3.3

d 2.3.2 Model of Arons and Stommel

We consider an estuary of uniform width (w) and of uniform depth (h) (Figure 4).
If we make the assumption that the length of the estuary is smali compared to the
wavelength of the tidal co-oscillation, the tide is simultaneous and elevations are
uniform over the entire estuary. The tidal amplitude 7, the tidal velocity uxt and the

horizontal tidal displacement ¢ are then given by the expressions:

7 = agcoswt (2.6)
Uyt = ﬂzLxsinwt = ugsinwt (2.7)
= - 2%cosut (2.8)

-21 -
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where

a9 is the amplitude of the vertical tidal movement

ug is the amplitude of the tidal velocity uo = waox/h

The governing equation describing the mass balance for tidal average salinity for

this one dimensional model is the following

F+ug = %[ngi] (2.9)

where
s is the mean point salinity at any point x
u is the time mean velocity at x which we take equal to the river velocity

Dy is the longitudinal dispersion coefficient

In order to define Dy Officer (1976) made the assumption of complete mixing in one

tidal cycle over the maximum tidal excursion 2§, (Figure 5).

According to Figure 5 at the beginning of the tidal cycle the salinity distribution is

given by the expression

51

s(x) = s; + EZZ-;-O—x | (2.10)

If the salinity distribution were uniform at the end of the cycle, the salt flux S during

the cycle would be given by the integral

_ 2| s9-s _ (s9- s
S_-Ti-%zo—‘xdx_-(iﬂ.—‘lﬁ (2.11)
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The salt flux is also given by the expression

S = -ng% = ‘Dx%—;rj-l (212)

Equating Equations (2.11) and (2.12) we get the following expression for the

longitudinal dispersion coefficient Dy

2 2x2
Dx=r§0—=%c— (2.13)

If we make the assumption of complete mixing 6ver a fraction B, of the maximum

tidal excursion 2¢, (i.e., over 2B1§0), Equation (2.13) becomes

Dy = %J:_’ = %;Iuoz = fu,3 (2.14)
where
2
p=3r

From Equation (2.13) we can see that Dx is proportional to distance squared and from
Equation (2.14) we see it is proportional to the amplitude of the tidal velocity squared
which agrees with the expressions for the dispersion coefficient K due to shear flow and

to trapping in Section 2.2.1.

Equation (2.13) can be used in the case of “pumping” (Section 2.2.1) since the
mixing length there is equal to the maximum tidal excursion. In the case of Niantic
River the value of the dispersion coefficient due to “pumping” is equal to 150 m2/sec.

We can see that this value outweighs the values of the dispersion coefficient due to
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shear effects (= 1.2 m?/sec) and due to trapping (= 4.7 m?/sec). From that we can

conclude that “pumping” is the most important mixing mechanism in Niantic River.

We could also arrive at Equation (2.13) using dimensional analysis (Arons and
Stammel, 1951). According to this approach the dispersion coefficient Dy can be
expressed as the product of a characteristic velocity, which is taken to be equal to the
amplitude of the tidal velocity, and a characteristic length, which is taken to be equal

to the total excursion of a particle 2£,. Hence

2
Dy = 2Bafqug = 2B A% BX _ 2Badghu (2.15)

According to Equation (2.14) the factor of proportionality B, is equal to B3/4r.

The steady state form of Equation (2.9), applicable to tidal average concentration

with steady river input and tidal conditions, is:

uds = gE[D,g% (2.16)

The boundary conditions for Equation (2.16) are:

atx=0 s=0

atx=L s=o¢

where

o is the ocean salinity

Equation (2.16) has the following solution
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s/a= eF(1-1/3) (2.17)

where
A=T
F = il is called the flushing number

The family of curves on the relation of A to s/ is shown in Figure 6 fo: various
values of the flushing number F (Arons and Stommel, 1951). From this Figure we see

that the curves are most sensitive to F in the region 0.1 < F < 10

Arons and Stommel calculated the values of the constant B, for the Raritan River,
New Jersey, and the Alberni Inlet, Vancouver. There was an order of magnitude
difference in the results that according to them might be due partly to the rather
unnatural assumptions of the analysis (uniform geometry) and to the form of the
longitudinal dispersion coefficient. On the other hand the shape of the theoretical
curves appeared to be in good agreement with the observations at hand. This leads to
" the conclusion that the flushing number may be a convenient concept to characterize
estuaries but, without calibration, it cannot be used to predict salinity distributions.
However, the model of Arons and Stommel can be viewed as semi-empirical, where the
constant B, in Equation (2.15) is the empirical coefficient. B; depends on the different
mixing mechanisms that are caused by the tide (Section 2.2.1). Since their magnitude
varies from site to site, B3 should be established using fieid data. This suggests why,
although the shape of the salinity distributions were well predicted by the model, the

values of F could be an order of magnitude different.

From Equation (2.17) we can also estimate the flushing time of an estuary, which is

defined as the time required to replace the existing fresh water in an estuary at a rate
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F=50
F=10

Figure 6 Family of curves showing relation of A to s/
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equal to the river discharge. According to this definition the flushing time tres of an

estuary is given by the expression:

tres = ¥ (2.18)

where
V¢ is the total freshwater volume of the estuary
R is the river runoff flow = u/A

A is the crossectional area of the estuary

The total freshwater volume V¢ of an estuary is given by the integral over the

volume of the estuary
Ve= [1dV (2.19)

where

f is the freshwater fraction f = 1;—8'-

According to Equation (2.17) the fresh water fraction along the estuary is given by:

f=1-eF(1"1/) | (2.20)

According to Equations (2.18), (2.19), and (2.20) the flushing time is given by

tres = % [1-eF(1-1/)] 4y (2.21)

oOt——
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Equation (2.20) can be used for estimating the distribution of a conservative
pollutant in an estuary where the outfall of the pollutant is located at x = 0. Atx =0

the concentration of the pollutant is equal to cg
=g (2.22)
where

W is thé rate of supply of the pollutant in mass of pollutant per unit time

At x = L the concentration of the pollutant is taken to be equal to ¢ = 0. At any

location x (0 < x < L) the conceniration of the pollutant will be given by the equation
e(x) = f(x) 3t | (2.23)
According to Equations (2.21), (2.22), and (2.23) we have
¢(x) = co [l-eF(l'l/’\)] (2.24)

2.3.3 Ketchum’s Model

Ketchum’s model (1951) describes the exchanges between various parts of an
estuary as a result of tidal oscillations. It calculates the average distribution cf fresh

and salt water within the estuary. It is a modification of the tidal prism method.

According to Ketchum the estuary is divided into volume segments. In every
segment the tidal prism volume will be designated as P and is equal to the volume
- entering into the segment on a flood time. The low tide volume of every segment will

be designated as V. The innermost volume segment, called segment 0, is defined as
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that for which the entire intertidal volume P, is supplied by the river flow over a tidal

cycle

Po=V (2.25)

Consecutive volume segments are defined so that the distance between their inner and
outer boundaries is equal to the average excursion of a particle of water on the flooding
tide. The average excursion is found as follows. If the assumption is made that the
entire volume of the seaward segment acts like a piston, displacing and pushing its
volume of water to fill the high-tide volume of the landward segment, the distance
moved would be the average excursion of a particle of water on the flood tide in that
part of the estuary. According to this each segment is so defined that the high-tide
volume in the landward segment is equal to the low-tide volume in the adjacent

seaward segment. So we have

Vi=Vy+ Py

Vo=V +P1=Vo+Po+ P,y (2.26)
n-1 n-1

Va=Vo+ ) Pa=Vo+V,+ ) Pa
n=1 n=1

The exchange ratio r, for each segment n is defined as

In = b (2.27)

~ PatVa

The tidal flushing time t, for segment n is given by



tn = 'f_n (2.28)

The accumulated fresh water in each volume segment Vyy is given by

\'

=

v
an=tn'R=’f—nT£= (2.29)

L |

n

\%
where R is the discharge rate of the river R = TE' The freshwater fraction f, of each
segment, at high tide, is then equal to

Vin Vi Vi Va (2.30)

fn=.In + 0n=rn(Pn +Vn)=fnvnil=P:

The salinity sp of each segment is given by

sn = a(l - fp) = a'[l - zﬁ] (2.31)

n

where ¢ is the ocean salinity.

Ketchum (1955) extended these mixing concepts to estimate the distribution of both
conservative and non-conservative pollutants in an estuary, where the outfall for the

pollutant may be at any given location along the estuary.

At the location of the outfall, a conservative pollutant will become mixed and its

average concentration cq after steady-state conditions are reached is given by

¢o = ho (2.32)
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where

W is the rate of supply of the pollutant

R is the rate of the river flow

fy is the average fraction of fresh water in the complete cross section of the estuary

which passes through the outfall location
The down-estuary distribution of a conservative pollutant is given by
fhn _ W
Ch = (:01'!0l = an (2-33)
The up-estuary distribution of a conservative pollutant is given by

Cn = co:—‘o" (2.34)

In order to account for vertical stratification effects Dyer and Taylor (1973) used a
modification of Ketchum’'s model. They consider the vertical stratification effects in
terms of a parameter M which represents, physically, the fraction of the low tide
volume that is “active.” This parameter (0 < M < 1) is related to mixing processes in

the estuary and approaches unity for a well mixed estuary.
So Equations (2.26) change to:

Vi=Vo+ Py

MV2 = Pl + le
(2.35)

MVn = Pn + MVn
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Thus the exchange ratio r, for each segment n is

P
In = P:q_—nmr—l (236)

Since M accounts for vertical stratification effects it should decrease as the vertical
salinity differences increase. Wang et al. (1985) adopt a linear relationship between M

and local stratification dS for the Bay. They propose the following expression for M

dS

M =1- S-O- (237)
where

Sq is a constant

dS is a characteristic vertical salinity difference at some location of the Bay.

Procedures such as these predict that tidal flushing improves as the vertical
stratification increases, which is consistent with observations. However, the additional
mixing is simulated to take place entirely through increased mixing (M < 1) without

the density-driven circulation known to occur in real estuaries.

2.3.4 Comparison between Arons and Stommel’s Model and Ketchum’s Model

In order to find the longitudinal dispersion coefficient that corresponds to
Ketchum’s model we make the following assumption. We consider an estuary with
rectangular sides of uniform cross sectional area. The tidal prism volume P; of section i

is equal to

Pi = (2{0)(2&0)1” (2.38)
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According to Equations (2.30), (2.33), and (2.38) the down-estuary concentration of the

pollutant at section n is given by the expression

Cn = WT (250‘})V'{2a0)w (Wii‘%h’Ti (2.39)
For steady state the diffusive flux - Draz is equal to the rate of supply of the

pollutani

-Dxﬁ w (2.40)
According to Equations (2.39) and (2.40) we have

p, WARTL W (2.42)
Solving Equation (2.42) for Dy we get

De = 22080 = Ty (2.43)

Comparing Equation (2.43) with Equation (2.14) we see that in Ketchum’s model
By = 1/7 which means that in the case of a rectangular channe! Ketchum’s model
makes the assumption of complete mixing over twice the length of the maximum tidal

excursion.
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3 DEVELOPMENT OF RANDOM WALK MODEL
3.1 Diffusivit ncentration Models

Diffusion is a microscopically observed phenomenon, attributed to the Brownian
motion of microscopic particles. It accomplishes a net transport of a macroscopic
property such as concentration, heat, or vorticity through a material continuum
without a coherent displacement of that continuum (Ghoniem et al., 1985). From now

on we will refer to concentration as the macroscopic property.

In order to simulate diffusion we make use of the diffusivity D, which is the factor of

proportionality between the diffusive flux F and the concentration gradient Ye.

F = -D¥pc (3.1)

oo

DO
whereD=| 0D
- 00

Equation (3.1) is known as Fick’s Law. The diffusivity D is proportional to the
product wlp where 1, is the mean free path of the molecules and w is a represeniative
velocity. Under certain conditions, Fick’s law can also be used to describe mixing due
to bulk fluid motion (Fischer et al., 1979). For example, three-dimensional mass flux
due to turbulent diffusion and depth-averaged mass flux due to horizontal dispersion
can be simulated using the same approach if D in Equation (3.1) is replaced by the

turbulent diffusion tensor E and the dispersion tensor K respectively where E =

Exx Exy Exz Kxx Kxy
EyxEyy Eyz | and K = [ Kyx Kyy ] Recognizing the fundamental difference in the

Ezx Ezy Ezz
nature and magnitude of the various processes, we will from now on use the symbol D

to represent molecular diffusion, turbulent diffusion, and dispersion coefficient, and we

will simply refer to “diffusion” in order to describe all these mechanisms.

-35-



When diffusion is the only transport mechanism the conservation of mass is given

by the following equation:

lw

Equatior (3.2) is well known in mathematical physics and a large body of analytical
and numerical methods exists for its solution. We will call models based on Equation

(3.2) diffusivity/concentration models

When other transport mechanisms besides diffusion are involved, and domains are
irregular, analytical methods have limited applications and standard numerical
algorithms suffer from problems associaied with the use of grids and the discretization
of gradients. Good examples are convection dominated problems, where the convective
displacements by far exceed displacements due to diffusion everywhere in the fluid
except in regions close to the boundaries, where diffusion becomes the dominating
mechanism. In these cases a fixed Eulerian grid runs into difficulties because: 1) it is
“ hard to provide sufficient grid refinement, where it is needed because that increases the
computational effort per timestep and the storage requirements and 2) the proper
direction of discretization of the convective derivative may result in excessive numerical

diffusion. In these cases the following alternatives are used:

e use of Lagrangian grid schemes, where the computational grid follows the motion of

the flow

o use of Eurerian-Lagrangian schemes, where the mass transport equation is decoupled
into a pure-advection componert that is solved using a Lagrangian scheme and a

pure-diffusion component that is solved using an Eulerian scheme
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o use of adaptive-grid techniques, where the computational grid adapts itself to the

evolving distribution of gradients

e use of particle tracking methods (random walk models), where the computational

effort and the storage requirements are proportional to the number of particles

A second problem with concentration models arises when the diffusivity varies over
spatial scales too small to be accurately resolved in a discretized numerical model. A
usual procedure in these situations is to consider a number of homogeneous layers or
zones and assign different values of diffusivity to each element or node in a traditional
finite element or finite difference grid. Using this approach fine variations of the
diffusivity within the elements or between the nodes are ignored. The alternative in
this case is the use of 2 particle tracking model, which accounts for these small-scale

variabilities without any grid resolution expense.

A third limitation of concentration models arises when we are more interested in the
behavior of individual particles in.a transport problem rather than their aggregation
(concentration). In these cases particle tracking models are a better choice. This was
the case in the MNPS Case Study where particles represented winter flounder larvae

which show distinct behavioral patterns.

A fourth limitation of concentration models is the representation of point sources
since a model is unable to resolve concentration fields whose spatial extent is small
compared to the spatial scale of discretization. In order to resolve this problem some
hybrid models have been developed (e.g., Pinder and Cooper, 1970; Konikow and
Bredehoft, 1978; Neuman, 1981) where, near sources or zones of high spatial gradient,
mass is represented by a large collection of particles, each of which is assigned a “value”

of concentration. This procedure is somewhat awkward and suffers from mass
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conservation problems that arise from the translation of particle concentrations to node
concentrations and in the case of the models of Pinder and Cooper, 1970, and Konikow
and Bredehoft, 1978, the use of particles to represent concentration rather than mass.

Particle tracking models are the best choice in this case.

A fifth limitation of concentration modeis is the fact that all regions of the domain
are treated equally in terms of computational effort. In particle tracking models the

computational effort is concentrated in regions where most particles are located.

3.2 Particle Tracking/Random Walk Models

3.2.1 General

From now on the terms random walk model and particle tracking model will be used
interchangeably. In random walk models mass is represented by a large amount of
particles. Each particle represents a constant mass (total mass released divided by the
total number of particles). These particles are moving in the domain according to the
following general rule: The displacement Ax of each particle in a time-step At is
decomposed into two components: the deterministic advection component and the
probabilistic diffusion component (random displacement). The random component has
an associated probability density function. The positions of the particles are found at
every timestep. The concentration at a certain point x at a time t is found by dividing
the number of particles in the interval V; around point x by the volume V. In the case
of a two dimensional model the volume V; is replaced by an area Ag and in the case of a

one dimensional model by a length l5.

An interesting aspect of random walk models has to be mentioned at this point.
Instead of using particles representing the property whose distribution we are interested

in, we can use particles representing the gradient of this property, and afterwards
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perform the integration. These models are called Gradient Random Walk Models.
Such a model has been used by Chorin (1973) for the solution of the incompressible
Navier-Stokes equation. In this model particles are used to transport elements of
vorticity—a derivative of the velocity—and an integration process is performed to
evaluate the latter. The advantage of this method is that the process of integration

diminishes most of the statistical error introduced in the random displacements.

3.2.2 Applications of Random Walk Models in Environmental Engineering

A short and by no means complete review of random walk models in Environmental

Engineering is given below.

Subsurface Waters. Random walk models have been extensively used in modeling
one-, two-, and three-dimensional solute transport in groundwater (e.g., Ahlstrom et
al., 1977; Prickett et al., 1981, Ackerer and Kinzelbach, 1985; Uffink, 1987; Tompson et
al., 1988). The motivation for using random walk models instead of diffusivity models

can be summarized in the following reasons.
¢ Avoidance of amplitude and phase errors

o In groundwater problems we encounter small scale variabilities. Using a random

walk model this variability can he modeled without grid resolution expense.

Surface Waters. In surface water the following applications of random walk models can
be mentioned. Bugliarcello and Jackson {1964) used a random walk model to simulate
neutrally buoyant solute in a laminar shear flow. Sullivan (1977) simulated the same
problem in a turbulent shear flow. The random displacement is allowed in vertical
direction only and is related to the turbulent length scale. The results of the model are

in agreement with open channel experiments.
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Jeng et al. (1987) applied a two-dimensional depth averaged random walk model in
a natural river with variable curvature, depth, and velocity, and constant mixing
coefficients. The motivation for using a random walk model versus a diffusivity model
was to avoid amplitude and phase errors produced by fixed grid numerical methods in
the case of advection dominated problems. The initial conditions considered in this
work are restricted fo a slug-type release of inert, neutrally buoyant pollutant into a
steady natural river. A three-point probability density function is used for the random
walk component. Concentration distributions at different locations as a function of
time are compared with experimental data from dye studies in a straight channel, a

straight natural river and a meandering laboratory channel.

3.3 Random Walk Model
3.3.1 Development of Random Walk Model

The procedure for proving the equivalence between a random walk model and a
diffusivity model is shown below. For simplicity the one-dimensional analysis is
presented. Using the exact same procedure we could show the analogy for the three-
dimensional case. At the end of this section only the results for the three-dimensional
case are presented. For a more thorough analysis the reader is referred to Gardiner

(1985).

Let’s consider a system that is described by a state variable x(t), where x(t)
represents the position of a particle in a one dimensional space. The position of the

particle x(t) is modeled by the nonlinear Langevin equation

& = a(x,t) + b(K1)E() (3.3)
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where

a(x,t) is a known function representing the deterministic forces that act to change x(t)

b(x,t) is a known function that characterizes the random forces

&(t) is a random number that represents the rapidly changing forces, that act to change

x(t). &(t) must satisfy the following conditions:

<{(t)>=0
<{(t) &(t7)> = §(t-t’)

which means that for t # t’ ¢(t) and £(t’) are statistically independent.

Ictegrating Equation (3.3) we get the following equation
t t

x(t) - x(0) = Ja(x(s),s)ds + Jb(x(s),s){(s)ds
0 0

The quantity

t

W(t) = jf(s)ds
0

is known as a Wiener process.

According to Equation (3.7) we have
dW(t) = W(t+dt) - W(t) = £(t)dt

and Equation (3.6) can be written in the following form:
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t+dt
x(t+dt) - x(t) = a(x(t),t)dt + j b(x(s),s)&(s)ds (3.9)
| t

In order to derive Equation (3.9) we made the assumption that a(x,t) is a smooth
function so its integral can be estimated as adt. In order to estimate the integral in

Equation (3.9) we use the so called Ito assumption:

t+dt t+dt
j b(x(s),s)é(s)ds = b(x(t),t) J £(s)ds = b(x(t),t)dW(t) (3.10)
t t

According to the Ito assumption Equation (3.9) becomes:
dx = x(t+dt)-x(t) = a(x(t),t)dt +b(x(t),t)dW(t) (3.11)

Equation (3.11) shows that the displacement of a particle consists of a deterministic
component a(x(t),t)dt and a random component b(x(t),t)dW(t). The random Wiener

process can be shown to have the following properties (Gardiner, 1985)

<dW> =0 :mean zero
<dWdW> =dt :mean square proportional to dt
The second property shows that dW(t) is approximately O(dt!/2)

Let’s consider now an arbitrary function f(x), that does not explicitly depend on t.
Expanding df(x) to second order in dW(t) and discarding higher order terms
O(dtdW,dt?) we get the following expression:
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dffx(t)] = flx(t)+dx(t)}-{x(t)]
= {7 [x(t)]dx(t)+ 4" [x(t)]dx(t)2+ ...
=/ [x(t)]{a[x(t),t]di+b[x(t),t]dW(t)}
+4"[x(t)]b[x(t),t)[dW(t)]2 + ...

Using <dWdW> = dt Equation (3.12) becomes

dffx(t)] = {a[x(t),t]f" [x(t)]+4b[x(t),t]2" (7}t
+b[x(t),t]f' [x(t)[dW(t)

(3.12)

(3.13)

Equation (3.13) is known as Ito’s formula. Let’s consider now the time development of

fx(t)]

<df£}tc(t)1> Odf[x(t)ll <f[x(t)]>

la[x(t) t]a; + $bx(t),t]2 i,

If p(x,t| xo,t0) is the conditional probability density for x(t) we have:

F<x(t)]> = [axt(x) BLatlxatd
= fdx[a.(x,t)-g’-fc- + ,}bﬁ(x,t)gg] p(x,t|xo,t0)

Integrating Equation (3.15) by parts and discarding surface terms we obtain:

jdxf(x)g% = jdxf(x){'a%’(cx’t)pl + % ai[bz(aj:;t)]?l}

jacipe){Jo deftiol . ) ZRetill - o

or
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Since f(x) is arbitrary we get:

2
_g%= _ Blagxztm | %_62|b§x:t! p] (3.17)

Equation (3.17) is known as the Fokker-Planck equation. The above analysis shows
that the stochastic process described by a conditional probability satisfying the Fokker-
Planck equation is equivalent to the Ito stochastic differential Equation (3.11). In
other words the distribution of particles that move according to an equation such as
Equation (3.11) satisfies a diffusive type conservation law (3.17) similar in form to the

conservative form of the mass transport equation:

%=-i%9+§;[13§,%] (3.18)

A thorough analysis for the analogy between the Fokker-Planck equation and the three
dimensional form of Equation (3.18) is given by Tompson et 2l. (1988). A summary of

this analysis for the one dimensional case is preseni.u velow

In a discrete sense Equation (3.11) can be written as:
Axh = Xp - Xp-1 = a.(Xn-[,tn-l)At+b(Xn-l,tn-[)AW(tn) (3-19)

Let us identify the position x(tn) = xy of a particle at time t, = T, that at time t, is
located at xo and that moves according to Equation (3.19), i.e., its displacement at
every timestep consists of a deterministic component a(xp-1,tn-)At and an independent,
random Markovian component b(xp-1,tn-1)AW(tn). If we repeat this experiment with
the same initial condition N times the spatial density of these N particles at time t = T

will be a function p(x,t) which satisfies Equation (3.17) according to a zero boundary

- 44 -



condition {(w,t) = 0 on the infinite domain and a “point source” initial condition
p(x,to) = N&(x-x0). The equivalence of the particle spread and the “ideal” nature of
the function p(x,t) will be exact only in the limit as N + @ and At - 0. The same
analysis can be applied when instead of repeating the same experiment N times we take
N particles at the same initial location x, at to and move each of them according to
Equation (3.19) up to the same time t = T. Again the equivalence between the “ideal”
_nature of the function p(x,t) in Equation (3.17) and the particle spatial distribution

function will be exact in the limit as N - @ and At = 0.

The expected number of particles N located in a (infinitesimal) length 15 centered

at x at time t is approximately
Ne = N p(x,t) Is (3.20)

If these particles represent a fixed amount of total solute mass M in the domain then

each particle represents a mass m = %— and the expected mass M. in 15 is equal to:
Me = mNe = MNe/N (3.21)

using the particle approach. Using the continuum approach the amount of mass M; in

the infinitesimal length 15 is
M. = pclq (3.22)
Setting M = M; we get

Mp(x,t) = pc (3.23)
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Substituting Equation (3.23) into the Fokker-Planck Equation (3.17) and assuming that

the mass M and the density p are constant we get the following equation:
1 gb2 d [1,,0
G- & &)+ & 10 (3.24)

In order to have a complete analogy between Equation (3.19) and the mass

transport equation (3.18) we have to choose the terms a(x,t), b(x,t) and AW(t)

By comaring Equations (3.18) and (3.24) we get the following expressions for a(x,t)

and b(x,t)
a=u+ gg (3.25)
b =D (3.26)

According to the properties of the Wiener process AW(t) the normalized random

displacement AW(t 11) in Equation (3.19) is given by the exp.ession:

AW(tn) = ZnyBE ' (3.27)

where

Zy is a random number with the following properties (Tompson et al., 1988)
<Z>=0

<Z17Z>=1

Figures 7 and 8 show the equivalence between the Ito differential equation, the
Fokker-Planck equation, and the mass transport equation for the one-dimensional and

the three-dimensional case respectively.
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Ito Stochastic
Differential
Equation

Fokker-Planck
Equation

Transport
Equation

One-dimensional Case

dx = a(x(t),t)dt + b(x(t),t)dW(t)

At-0

() = - D faleti(x)] + 5 Salbot)ix,)]

D=%b2

&G0+ &%)

Figure 7 Equivalence between the Ito Differenetial Equation, the Fokker-Planck
Equation, and the Transport Equation for the one-dimensional case
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Three-dimensional Case

Differential N-o
Equation At -0

Fokker- Planck o 8,4, 02 R ) —
T + E(Alf) - a‘{&}(fBlkBjkf) =0

Equation
v=A-7(BB")
D=4BB"
Bation 09)+ Tem) - 1) = 0

Figure 8 Equivalence between the Ito Differenetial Equation, the Fokker-Planck
Equation, and the Transport Equation for the three-dimensional case
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3.3.2 Application in the Two-Dimensional Depth-Averaged Transport Equation

The conservative form of the two-dimensional depth-averaged mass transport

equation is given by the following expression (Daily and Harleman, 1966)

Och) | Huch) | dgh) _

H[th + hDyy 3?] + 3}—,[hDyx + hDyy 5?]+Q (3.28)

where

¢(x,y,t) is the depth-averaged concentration

u(x,y,t) is the x-component of the depth-averaged velocity
‘ v(x,y,t) is the y-component of the depth-averaged velocity
h(x,y) is the depth (mean sea level)

Dxx, Dxy, Dyx, Dyy are dispersion coefficients

Q represents sources, sinks and vertical boundary fluxes

For a coordinate system along the principal axes (i.e., Dxy = Dyx = 0) and

assuming that there are no sources or sinks (Q = 0) Equation (3.28) takes the form:

d(ch) | agich) 3(VCh) a?[hD , x ] + .Ji[h])yy '5?] (3.29a)

which can also be writien (see Appendix A) as

& ch) + %[[%—E%— + 9D+ u]ch] + %[[%ﬂ% +&Dy + v] ch]

= Z(Daxch) + S Dyych) (3.29b)

Following Section 3.3.1 the random walk analog to Equation (3.29) is:
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dx = [11?—"—’5% + %Dn + u] dt + v2 yDxx VBT Zn (3.30)
dy = [%ﬁ%H Dy + v]dt + V3 VDyy VBT Z (3.31)

Looking at Equation (3.30) (the same applies for Equation 3.31) we see that the
deterministic or “advective” velocity of a particle in the x direction ax is given by the

relation

a = [0 B+ GeDax + 4] (3.32)

which consists of three components:
e the component u that is due to the advective velocity u

e the component ngn that is due to the spatial variation of the diffusion coefficient

DII

e the component «Eﬁ o that is due to the spatial variation of the water depth

The significance of the second two components can be analyzed using the general
‘moment analysis. For simplicity we will neglect the advection terms and the

y-component of the diffusion terms such that Equation (3.29) reduces to:

eh) _ 3 i, & (339

The spatial moments of the distribution of the depth integrated concentration ch, in a

laterally unbounded domain, are defined as:
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®
zeroth moment = Mo = Jc(x,t) h(x) dx (3.34)
@

11}
first moment = M, = Jx c(x,t) h(x) dx (3.35)
@

@
second moment = M, = jx* ¢(x,t) h(x) dx (3.36)
1]

The mean p and the variance o2 of a distribution are found from the moments by

the equations:

b= M; (3.37)
o1 = J’(x-p)zc(x,t)h(x) dx /M =11‘,4[02- u3 (3.38)

Muitiplying Equation (3.35) by x, integrating over x, and using Equations (3.34)-

(3.38) we get the following set of equations:

:ac}lxdx=-gf J.chxdx=gl\:[—‘=Mo(al-% (3.39)
; - ® ® ®

9 Dy 99 xdx = J x & hDyx Xax = J Dix Medx+ J Psshedx  (3.40)
-® @O ™

-@®
Equating Equations (3.39) and (3.40) we get:

(1]

[Dex Bedx+ [ Prxneds
d @ -® 341
&= M, (3.41)
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In Equation (3.41) (al% represents the velocity of the center of mass of the ch
distribution. Comparing Equations (3.41) and (3.30) we see that the center of inass
moves with a velocity equal to the average value of the deterministic velocity ay of

particles in the domain -0 < x < «.

In the case where the depth h is constant Equation (3.32) becomes:
=97 |
a= T xx +u (342)

If the diffusion coefficient Dxy is also constant then the deterministic velocity of a

particle becomes equal to the advection velocity u.

Following the same procedure we can also find an expression for g‘:—z. Multiplying
Equation (3.33) by x3, integrating over x and using Equations (3.34)+(3.38) we get the

following set of equations:

@
d(ch _0 _ dM, _ do? du?
J.—gt—)xzdx—-ai J.Chxzdx—a—t——MoaT--i-Moat& (343)
1]

@ @ [11]
J 9 0D 9 x2x = 2 j Dxxchdx + 2 J Dix Fhexdx + 2 Jg%zchxdx (3.44)
-® @® @® [11]

From Equation (3.41) we have

@ ah @
~®

gtﬁz = 2‘[%-% = —2 0 (345)

Equating Equations (3.43) and (3.44) and using Equation (3.45) we get:
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@
49 = %] o) By + (x-1)Dax g + Dache|dx (3.46)

If h is constant Equation (3.46) reduces to
do? _
I = (x—,u) XXhc + Dxxhe|dx (3.46)

If the diffusion coefficient Dy is also constant we get the familiar expression:

2
42 _ 9D, (3.47)

3.3.3 Implementation of Boundary Conditions

A transport problem described by Equation (3.18) requires an initial condition for c
in the domain . as well as boundary conditions on the domain boundary 9. (Figure
9). The boundary conditions are usually a combination of Dirichlet conditions
(specified c) on a part Q¢; of Q¢ and Neuman conditions or normal flux conditions
(specified n-F), n being an outward normal vector to 0€c on the complementary part of

0Q¢, and F being the mass flux.

A thorough analysis for the implementation of boundary conditions in random walk
models is given by Csanady (1972), Ghoniem et al. (1985), and Tompson et al (1988).
Here the implementation of Dirichlet boundary conditions, zero flux boundary
conditions, and inflow flux boundary conditions is presented, since these are used in the

case of estuary mixing.
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Figure 9 Implementation of boundary conditions in a random walk model

B' B

Figure 10 Representation of a zero flux boundary condition in a random walk model
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Dirichlet Boundary Conditions on the boundary dQ¢: ¢ = ¢o x € Q. In the one
dimensional case we have ¢ = ¢y at x = x,, where xg is a boundary node. Let’s say that
the concentration of particles is measured over cells of volume Vs in the three-
dimensional case or over cells of area A or over cells of length 15 in the two- and one-
dimensional cases respectively (see Section 3.3.1). To each cell in /2 a number of
particles that represent the concentration cq in the cell is assigned. These particles are
randomly distributed over the boundary cells. At the beginning of a new timestep the
particles that remain in the boundary cells are removed and the boundary condition is
reinstated as before. In the case of ¢y = 0 the particles that reach these boundary cells
are removed from the domain. According to the above the implementation of the first
type boundary condition is very sensitive to the size of the boundary cell and the

timestep At.

Zero-Flux Boundary Conditions on the boundary dQ2: n-F = 0 x € Q. In the one-
dimensional case we have -g)% = 0 at x = x, where x¢ is 2 boundary node. A zero-lux
boundary is a boundary across which no mass can cross. Particles may be “forced” to
move across such a boundary due to their diffusive displacement. Any particles moving
across a zero-flux boundary cell will be reflected back into the domain as shown in
Figure 10. In the case of highly irregular boundaries (e.g., the area around the mouth
of Niantic River in Figure 18) the implementation of a zero-flux boundary condition

may cause problems because of the many particle reflections.

Inflow-Flux Boundary Condition on the boundary dQ3: n-F = Fn. This boundary
condition involves specifying a certain amount of mass (i.e., number of particles) that
must flow into the system through a certain area over some span of time (Tompson et

ai., 1988). It is implemented by introducing the corresponding particles on the
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boundary cells in 0Q; every timestep, distributing them randomly over these cells and

letting them advect and diffuse.

From the above we can conclude that the implementation of flux boundary.
conditions in a random walk model is easier than the implementation of first type

boundary condition because it is not sensitive to cell size.
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4 TEST CASE VERIFICATION OF RANDOM WALK MODEL IN 1-D ESTUARY

A one-dimensional random walk model developed for the simulation of mixing of a
conservative pollutant in an estuary is presented in this chapter. The one-dimensional
model is a limiting case of the two-dimensional random walk model presented in the
following chapter and is used for veriﬁcation purposes since there exists an analytical
solution for the one-dimensional concentration model to which the results frbm the
random walk model could be compared. The longitudinal concentration distributions
and the flushing time that results from the integration of the concentration distribution
(Equation 2.21) were compared. The model was also used in order to investigate the
sensitivity of the random walk model to parameters such as the timestep At, the
number of particles, and the size of the length lg over which the concentration of
particles are measured. The physics of the model are based on the mixing length theory
described in Section 2.3.2 and the numerical aspects are based on the random walk

theory described in Chapter 3.

According to Section 2.3.2 the concentration (mass of pollutant per unit length) of a
conservative pollutant discharged at a constant rate W (mass of pollutant per unit
time) at x = 0 along an estuary of uniform crossection with unit crossectional area and

length L is given by the following governing equation

%+ % = 5| (41)

where
u is the river velocity and

Dy = %—2 (see Equation 2.13) is the longitudinal dispersion coefficient.

Boundary conditions are
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at x=0 (4.2)
c=0 at x=L (4.3)

)
I
o

0=

w
u

Since the injection is continuous we may assume steady-state tidal averaged conditions

at a certain time after the beginning of the injection. In this case Equation (4.1)

reduces to
o = &[0 (44)

The analytical solution to Equation (4.4) is given by Equation {2.24)
= e[t - O] (49

The flushing time of the estuary is given according to Equation (2.21) given by

(1-F(1-1/3)) gy

u

t =

The integral in Equation (4.6) was estimated using Gaussian quadrature.

Compa.nson between the concentration d.lStl'lbllthIlS of the two models was made

using normalized concentration of the two models ie.,

o for the concentration model (analytical solution) ¢(x) was normalized by dividing by

the injection concentration, cg

o for the random walk model, particle concentration (particles/distance) was
normalized by dividing by the particle injection rate (particles/time) and

multiplying by the river velocity u (distance/time)
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The flushing time using the random walk model was estimated by adding the
number of particles in the estuary after steady state was reached and dividing by the

particle injection rate.

For all runs the following parameters were used

L =7000 m
ag _ 1
h—2
h=10m

In order to simulate the longitudinal distribution of a conservative pollutant given
by the governing Equation (4.4) and satisfying the boundary condition given by
Equations (4.2) and (4.3) using a random walk model the following aspects have to be

resclved

o random walk algorithm

¢ simulation of continuous release using particles reaching steady state
e implementation of boundary conditions

e volume over which the concentration of particles will be measured

e time stepping method

¢ number of particles necessary for expected accuracy

e dependence of accuracy on the flushing number

4.1 Ra.ndom Walk Algorithm

According to the analysis in Section 3.3.1 Equation (4.1) is equivalent to the

Fokker-Planck equation (Equation 3.17) if a(x,t) and b(x,t) are chosen so that
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1=2a- -gi{ﬂﬂ] (4'6)
Dy = $b2 (4.7)

According to Equations (4.6) and (4.7) a(x,t) and b(x,t) are given by the expressions

b= ﬂD:—JTﬁ-x_ W0y F (4.8)
a—u+—ETx (49)

According to the above equations and Equation (3.19) the particles move accoirding to

the following step equation

x(tn) = x(ta-1) + [ 4 gl ]At+j_ 0 x/AT ps (4.10)

where pj is a random number that must satisfy the conditions: <p;> = 0 and

<pipi> = 1. We chose p; to have a normal N(0,1) distribution.

4.2 Convergence tc Steady State for a Continuous Release

In order to simulate a continuous release a certain number of particles are released

at x = 0 every timestep.

Steady state is reached when the concentration ¢ does not change appreciably as a
function of time. Since the concentration ¢ at a position x = x; in a random walk
model is equal to the number of particles over some length lg, ¢ depends on 1 (see
Section 4.4) and might fluctuate over time more or less according to whether I is
“small” or “large” respectively. So instead of comparing concentrations we chose to

estimate the spatial integral of concentration, (i.e., the number of particles over the
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entire estuary) as a function of time for testing convergence to steady state. Figure 11
shows how the number of pa.fticles N in the domain changes as a function of time (u =
0.005 m/sec, At = 3h, 6 particles per timestep). If we define as Atg the flushing time

of the estuary due to the advection velocity u, i.e.,

Ats =

Sl

(4.11)

from Figure 11 we see that steady state is reached before time t = Ats. In order to

guarantee convergence the simulation time was set equal to 2Ats.

In order to show the significance of the second term of the advective displacement
('HJ'ED" = ﬂ%g-x see Equation (4.9)) we neglected this term in one run. Figure 12 shows
that the average concentration in the estuary continues to increase; i.e., steady state is
never reached. The physical interpretation is that, for this run, an additional velocity

wa g

equal to - _'ETE has been added to the mean velocity u, tending to prevent flushing.

- 4.3 Implementation of Boundary Conditions

According to Equations (4.4) and (4.5) we have two first-type (Dirichilet) boundary

conditions at x = 0 and x = L. The flux Fx- at x = 0 is given by
Fxz:0 = ucy - Dxai' _ \ (412)
From Equations (4.7) and (4.8) we can see that Dy = 0 at x = 0, 50 Fx-o simplifies to

Fx:o = llCo (4.13)
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Figure 11 Number of particles in the domain as a function of time for At = 3h,
injection rate 6 particles per timestep, u = 0.005 m/sec
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Figure 12 Number of particles in the domain as a function of time for At = 3h,
injection rate 6 particles per timestep, u = 0.005 m/sec in the case where the
advection step is taken to be equal to uAt
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Equation (4.13) implies that we can implement the first type boundary condition ¢ = ¢,
at x = 0 by specifying a constant flux and implementing the inflow flux boundary
condition. As mentioned in Section 3.3.3 flux boundary conditions are easier to
implement than first type boundary conditions. So the first-type boundary condition

¢ = ¢ at x = 0 is simulated by introducirg a certain number of particles every timestep
at x = 0. The first-type boundary condition ¢ = G at x = L is implemented by
removing from consideration particles that exceed x = L during a timestep. In case
particles are forced to move across x = 0 due to their diffusive displacement they are

reflected back since x = 0 is a zero diffusive flux boundary.

4.4 Length over which Concentration of Particles will be Measured

In a random walk model a fixed amount of mass M of the pollntant is represented
by N particles. So each particle represents a mass m = % The concentration ¢ of the
pollutant per unit length (1-D model) at a point x is represented in a random walk
model as the number of particles in a length I centered at x. The larger l; is, the larger
the number of particles found within it will be and so the more smoothly varying the
concentration will be. However if lg is too large, all the mass will be found within it
and so little sense of its spatial distribution will be discerned. Figure 13 shows a
comparison between the concentration distributions for I3 = L/100, L/20, and L/10, for
u = .005 m/s, At = 0.5h and 8 particles released every timestep. We see that, as Ig

becomes smaller, the solutions become more “noisy.”

4.5 Time Stepping Method

Ideally a particle should follow a streamline in a steady-flow pure-advection
problem. If finite time steps are used then small spatial overshoot errors will occur due

to the incremental nature of the timestep. Since the dispersion displacements are a
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LEGEND

S Ls = L/100
. Ls = L/220

I ~ Le = L/10
. anal. solution

NORMALIZED CONCENTRATION

Figure 13 Sensitivity on ls u = 0.005 m/sec, At = 0.5 h, injection rate 16 particles per
hour
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function of a dispersive velocity that varies spatially the same considerations are made

for the dispersive displacements as for the advective displacements.

The magnitude of this problem can be reduced by using infinitely small time steps
or adopting an improved integration (particle tracking) scheme, such as a Runge-Kutta
method. For this example a single first-order integration scheme (i.e., constant velocity

over the interval At) was used.

Figure 14 shows the comparison between the concentration distribution for At =
3h, 1.5h, and 0.5 h in the case where u = .005 m/s s = L/10 and two particles are
released every hour; i.e., 6 particles per timestep for At = 3h, 3 particles per timestep
for At = 1.5h, and 1 particle per timestep for At = 0.5h. We see that as At becomes
smaller the curve becomes smoother and resembles in shape the analytical solution.
Also the flushing time approaches the flushing time resulting from the analytical

solution.

4.6 Number of Particles

As mentioned in Section 3.3.1 the random walk algorithm becomes equivalent to the
mass transport equation as the number of particles N - . So the more particles we use
the more accurate our solution becomes. In Figure 15 a comparison is made between
solutions for u = .005 m/s, At = 0.5 h, and 13 = L/10 in the cases where one, two, and
eight particles per timestep are released. We see that as the number of particles
increases the distribution becomes smoother, so the statistical error is decreased. In
terms of flushing times there is no difference between the three cases which implies that
the error in the flushing time evaluation is more related to time discretization than the

number of particles.
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1\ LEGEND

~ At = 3h

: - At = 1.5h
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. \ At=1.5h 3.94d
\ At=0.5h 3.84d

anal.sol. 3.76d

NORMALIZED CONCENTRATION

Figure 14 Se]nsitivity on At u = 0.005 m/sec, injection rate 2 particles per hour, I =
L/10
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2 part/timestep 3.94d
8 part/timestep 3.87d
- anal.sol. 3.76d

NORMALIZED CONCENTRATION

Figure 15 Sensitivity on the number of particles released per time u = 0.005 m/sec,
At =0.5h,15=L/10
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] LEGEND flushing times (d)
 anal. sol. F an.sol ran.walk
. random walk 2.581 0.62 0.60

] 0.2538 2.74 2.75

1 0.128 3.76 3.84

NORMALIZED CONCENTRATION

Figure 16 Dependence of accuracy on flushing number At = 0.5 h, s = L/10, injection
rate 1 particle per timestep
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4.7 Dependence of Accuracy on the Flushing Number

The flushing number F is a measure of the relative importance between the
advective and the diffusive displacement. As F increases, advection becomes more
important. Figure 16 shows a comparison between three runs with u = 0.1 (F = 2.551),
0.01 (F = 0.255), and 0.005 m/sec (F = 0.128) where At = 0.5 h and one particle was
introduced every timestep. We can see that as F increases, the distribution becomes
noisy because there are fewer particles are in the domain. (As before, howevsr, the
flushing time, which is proportional to the spatial integration of concentration, is less
affected.) To maintain accuracy of the concentration distribution, we must therefore
increase the number of particles introduced per time step in proportion to u such that
the average particle density remains constant. As a conclusion we can say that the
important factor governing accuracy of the concentration distribution is the number of

particles per “cell” or Ny4/u where Ny is the number of particles released per time.
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5 MILLSTONE POINT CASE STUDY

5.1 Purpose and Scone

A major objertive of this project was to develop the model MILL, based on the two-
dimensional random walk model described in Section 2.3.2, to simulate the entrainment
effects from the operation of MNPS (Figure 1). A study of regionally important species
subject to entrainment in the Millstone Point area identified winter flounder as the
species to be modeled. Several shallow areas in the vicinity of MNPS (including Niantic
River and Outer Jordan vae) serve as spawning areas for winter flounder. A fraction
of lacvae, hatched in these areas, is expected to be entrained, and hence killed, through

entrainment at the station.

5.2 Background

The large effort devoted to winter flounder studies is related to its importance for
the Connecticut sport and commercial fisheries. It is the most valuable commercial
finfish in Connecticut and on average makes up about 20% of the total finfish landings.
The winter flounder is also one of the most popular marine sport fishes in the state with
an estimated annual catch in 1979 of almost 1.4 million fish with a total weight of
412,243 kg. Its particular life history also makes it potentially susceptible to various

types of impacts (NUEL Annual Report 1988).

The MNPS is Jocated on the north shore of Long Island Sound in Waterford,
Connecticut (Figure 1). The station consists of three operating units: Millstone Unit 1
commenced commercial operation in 1970, Unit 2 in 1975, and Unit 3 in 1986.
Extensive studies of the potential impacts of MNPS on local marine flora and fauna have
been conducted since 1968. During this period studies have consistently been reviewed

and updated to assure that the best available methods were used. Preliminary field
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studies to estimate abundance of the winter flounder population in 1973-74 were
expanded in scope in 1975, v?hen surveys using mark and recapture techniques were
initiated. An adult abundance survey was completed each year through the present. In
many years, studies of age structure, reproductive activity, growth, survival,
movements, early life history, and stock identification were couducted. For plant
impact, impingement and entrainment estimates are available for each year (NUEL
Annual Report 1988). Data from manry of these studies have been used in a predictive
mathematical population dynamics model developed by the University of Rhode Island
(Saila, 1976). This model formed the basis for earlier MNPS impact assessments,
including that for Unit 3. The present analysis is based on the MIT model MILL. Model
MILL is a two-dimensional random walk model based on the Eulerian-Lagrangian finite
element transport model ELA (Baptista et al., 1984). This circulation model the
narmonic finite element model TEA (Westerink et al., 1984; Westerink et al., 1985;
Westerink, 1986) is used. The input of the model consists of the continuous
distribution of larvae hatching over time, the larval behavior as a function of age, tidal
and diurnal phase, and natural mortality. The output of the model gives the locations
and fate of the larvae at a specific time after the start of the simulation. As described
in more detail, MILL is similar in many ways to Saila’s model (1976) but also includes
some major differences. The major differences between the model MILL and the mode!

used by Saila (1976) are the following:

1) Differences in grid used: MILL is a finite element model and uses irregular,
triangular grid elements whereas Saila’s model is a finite difference model and uses
regular, square grid elements. This configuration allows for easy grid refinement in

critical regions, such as the Niantic River and the plant intake area (Figure 19).

2) Differences in larval distribution: In Saila’s analysis larvae were hatched

instantaneously over a prescribed spatial distribution whereas in MILL larvae are
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hatched over a 2-month period in three stations A, B, C (Figure 18) according to

temporal and spatial distributions provided by NUEL.

3) Differences in larval behavior: In Saila’s analysis larvae were passive (i.e., they
follow the motion of the water) throughout their development. However according to
studies larvae show a specific tidal and diuraial behavior that is a function of their age.

This behavior is simulated in model MILL.

4) Difference in model: Saila uses an Eulerian model, where larvae are simulated as
mass of larvae and c'oncentration is found at every grid point. This model uses a
Lagrangian approach, where larvae are simulated by particles and followed around the
waterway. The location of these particles is found at every timestep. Saila (1973)
admits that the Lagrangian approach is preferable for describing larvae, but he does not
follow this approach because of the long computer times required. MILL takes
advantage of newly developed computational methods, which provide uigher speed for

extended simulations.

5.3 Grid

The Mi]létone grid used to study the thermal plume at Millstone (Adams and
Cosler, 1987) was extended to include the northern reaches of Niantic River where
larvae are spawned (Station A) (Figure 18). It was also extended further south and
east in Niantic Bay to enlarge the domain, thus reducing the frequency of simulated
larval losses at the open boundaries. Figure 17 shows the domains covered by the
different grids used in the Millstone area: 1) the grid used by Saila (1976), 2) the grid
used by Adams and Cosler (1987), and 3) the grid used in this study. Figures 18, 19

show the grid used in this study and the locations of:
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— Saila, 1976
.- Adams, Cosler, 1987

= MILL, 1989

Jordan Cove

Millstone Point

Goshen Point
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s —

Long Island Sound

Figure 17 Comparison between the three grids
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e Station

® Dye Injection Location (Dec. 88 — Jan. 89)

1 A Dye Injection Location (June—July 75, Mar.76)
A
B
5 C

2
2

1

3 4

Figure 18 Locations of Stations A, B, C. Dye injection locations for dye studies
conducted in December 1988 - January 1989 and June-July 1975, March
1976
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®  Current Meter Station
® Tide Gauge Station

== [.and Boundary

8
4
Goshen Point
7 5 3
9 b 4
73cm
6 3
Black Point 6
23.7min
84cm
1 2
20min 6.7min

Figure 19 Current meter locations, tidal current meter locations, tide gauge locations
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¢ Larvae hatching stations A, B, C (see Section 5.6.2)
¢ Current water stations, tidal meter stations, tide gauge stations (see Section 5.4)
¢ Dye injection locations for studies in 1975-1976 (see Section 5.4.2)

o Dye injection locations for studies in 1988-1989 (see Section 5.8)

5.4 Flow Model

5.4.1 General

The linear version of the two-dimensional (depth-averaged) harmonic finite element
circulation model TEA was used. The equations to be solved are the depth-averaged
continuity and Navier Stokes equations under the assumption of constant fluid density,
small tidal amplitude, hydrostatic pressure distribution, negligible convective
acceleration and momentum dispersion, and constant pressure at the air-water interface

(Westerink et al., 1984). These equations are

nt + (uh)x + (vh)y =0 (5.1)
u; + gng - fv - %E('r?g - rliny = ¢ (5.2)
1 )li
vy + goy - fu - EE-(T‘;. - rilin) = ¢ (5.3)
where

u,v are the depth-averaged velocities in the x and y directions respectively
n is the surface elevation above the mean water level
h is the mean water depth

t is the time
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g is the acceleration due to gravity

p is the density of water

f is the Coriolis parameter

7% and 7§ are the surface stresses in the x and y directions respectively

72'1i% and 79'1in are the linearized bottom stresses in the x and y directions respectively

The bottom friction has been linearized as

Tbslin by lin
"p = Au and —Yp—=,\v (5.4)

A is the iinearized friction coefficient and has the form
A = Unax o |
= Upax T Cf (5~5)

where
Unax i8 the representative maximum velocity during a tidal cycle

¢t is the friction factor.
The following assumptions were made:

o No tributary inflows. Average freshwater inflow from Lattimer Brook and Jordan
Brook are about 10 cfs and 2 cfs respectively and generally have a negligible effect

on circulation compared to tidal currents.

e Circulation induced by winds was ignored because they generally have only a
secondary influence on the circulation (Saila, 1976). Furthermore, the effects of
extreme winds are manifest in vertical as well as horizontal gradients of velocity;

the former are not properly represented in a depth-averaged model. To the extent
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they are important, both freshwater inflow and wind-driven circulation must be

accounted for by mixing in the transport model.

For the simulation of the flow in Niantic River and Bay two runs of TEA were
necessary. In the first run the tidally induced circulation was simulated. In the second
run the steady-state depth-averaged circulation due to the operation of the three units
was simulated following Adams and Cosler (1987). The result of the two runs were

superimposed.

5.4.2 Boundary Conditions

For specifying the boundary conditions, data from two hydrographic surveys,
conductad during summer (8 Aug to 10 Sept, 1973) and winter (6 to 20 Feb, 1974),
were used. The data from the tide elevations were used to specify tide amplitude and
phase lag at the boundary nodes and velocity current data were used to check the
accuracy of the model. In Figure 19 the configurations of shoreline tide gauging

stations and current meters for the winter survey are shown.

As shown in Figure 19 there are not enough tide elevation data in order to specify
boundary conditions for the present domain. So the boundary conditions were chosen

to achieve a reasonable fit in terms of flood and ebb current speed and direction.

The tide range was taken to increase linearly across the boundary from the value
R; = 73 cm at Goshen Point to the value R; = 84 cm at Black Point (Figure 19); i.e.,
n = R, + x(R2-R,) where x is the dimensionless disiance from Black Point to Goshen

Point.
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The phase lag ¢ was also chosen to vary linearly from Goshen Point to Black Point
with the phase at Goshen Point occurring 23.2 min later than Black Point (Figure 19),

¢ (min) = 23.7 min.
A constant friction factor of f = 0.0001 was used.

In Figure 20 the flow field due to tidal currents at time t = 3.1 h after high tide is

plotted.

5.4.3 Intake and Discharge Flux Conditions

The condenser water intake flow for three units is about 118 m3/sec. This flux was
evenly distributed among four nodes (Figure 21). Adams and Cosler (1987) calculated °
that the near field volumetric dilution due to the surface discharge is about 3.
Therefore the plume entrainment rate is twice the intake flow rate and is evenly
distributed among three entrainment nodes on the left and three entrainment ncdes on
the right of the discharge. The discharge is distributed among four nodes (Figure 23).
In Figure 21 the flow field due to the steady-state operation of the three units is

plotted.

In Figure 23 the flow field from the superposition of the flow fields of Figures 20, 22

is plotted.

5.5 Transport Model

A two-dimensional depth-averaged random walk transport model was used. The
governing equation is given by Equation (3.29) and the random walk algorithm is given

by Equations (3.30) and (3.31). It remaius to specify the dispersion coefficients D..x
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Figure 21 Intake and discharge
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Figure 22 Flow field due to steady-state operation of the three units
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and Dyy. In order to do that the domain was divided into two regions: Niantic River

and Niantic Bay.

Niantic River was treated as an estuary using the mixing length theory. According to

this tidal mixing is represented by a Iongitudinal dispersion coefficient given by

D= ﬂllo2 (58)

In the case of irregular geometry we make the assumption that Equation (5.8) still
holds. Since the dispersivity tensor D is diagonal we can evaluate Dxx and Dyy using

the expressions

Dyx = fug? (5.9)
Dyy = ﬂvoz (510)

where

ug and v, are the maximum tidal velocities in the x and y direction respectively

Thus the randuin walk algorithm is given by

dx = [u+ u°2ah+§-‘g;—‘ﬂl]dt+v‘ﬂiuompi (5.11)
dy = [v+ V°2ah+ﬁ%}]dt+m?vo VA&t p; (5.12)

u and v in Equations (5.11) and (5.12) are the steady state velocities from the plant

operation
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The gradients %, %, 6(%02), 3(g;'°2) are estimated at every node using a finite
element code. For estimating these gradients at intermediate points in the domain,
quadratic interpolation functions are used. The deterministic component of the random
walk algorithm is estimated using the fifth-crder Runge-Kutta method nsed in ELA

(Baptista et al., 1987).

The mixing parameter 4 in our model for Niantic River was computed using
Ketchum'’s theoretical model. The reason for using Ketchum’s model is that it can be
used for estimating longitudinal cdncentration distributions and flushing times in
estuaries of irregular geometry and bathymetry. Ketchum’s model has been previously
used for the prediction of flushing times and longitudinal salinity distributions in
Niantic River (Kollmeyer, 1972), but without any field verification. According to

Equation (2.43), which was developed for estuaries of uniform crossection, § = T/72.

Because § was computed from Ketchum’s theoretical model, it was useful to
compare modeled residence times with those computed with Ketchum’s model.
- Accordingly, Ketchum’s expression (Equation 2.28) was used to compute residence
times corresponding to the location of dye injection from Study 1 conducted in Niantic
River in 1988 (Figure 18). (Bathymetric data were obtained from Kollemyer, 1977, see
Section 5.8.1 for a detailed description of the dye study.) The computed residence time

was 15 days and the model segmentation is shown in Figure 24.

This theoretical estimate can be compared with our model flushing time in the
following way. Several particles are released at the injection point. For each of these
particles a residence time is recorded. By residence time we mean the time it takes ior
a particle to leave the estuary (pass south of Mijoy Dock). As flushing time of the
estuary we designate the mean of the resulting residence time distribution. The

flushing time from the model MILL (calibrated by using Ketchum’s model) is equal to

- 86 -



2
3
4
5
6
- /
/
7 / 8//
/
//
VAR
// -

10

Figure 24 Estuary segmentation using Ketchum’s model

- 87 -



14 days. The small difierence may be due to the fact that we are using an ideal
geometry for calibrating the parameter f, while for estimating the flushing time we are

using the actual irregular geometry and bathymetry.

Niantic Bay was assumed to have a constant dispersion coefficient Dxx = Dyy = D.
The value of 21.9 ft2/sec from Saila’s model was used. The advective velocities u and v
were obtained from the superposition of the tidal velocities and the velocities from the

power plant operation.
Accordingly this the random walk algorithm is given by

dx = udt + v2D VAT p; (5.13)
dy = vdt + 2D /At ps (5.14)

5.6 Modeling Larval Behavior

5.6.1 General

Larval growth and behavior are modeled according to data provided by NUEL. This

information is based on field data collected from Niantic River and Bay and includes

e estimates of the temporal and spatial distribution of yolk-sac larvae from which

hatching rates may be estimated
o daily growth rates as a function of temperature
o average weekly water temperature
e daily larval survival rates as a function of age

e diel and tidal behavioral responses as a function of larval size
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s mortality due to entrainment as a function of larval size

The general approach followed in the simulations is the following. Particles are
released at a fixed rate from several points in space that approximate a spatial
distribution of hatching of winter flounder larvae. Each particle represents a certain
number of larvae corresponding to the temporal distribution of hatching winter flounder
larvae. The larvae in each “larval cohort” represented in one particle may have one of

the following fates:
e Die because of natural mortality.

e Go through the intake. In this case, if the length of the larvae in the cohort is less
than 7 mm we have 100% .-ortality so we stop tracking the particle. Otherwise we -
have 20% mortality so the particle is placed in the discharge plume and we continue
tracking the particle that now represents 20% fewer larvae than in the timestep

before entrainment.
¢ Go out of the model boundary (i.e., are flushed out) in which case tracking stops.

e Reach the length of 8 mm. In this case larvae are considered juveniles and we s'top

tracking them.

According to the above, if we designate the survival factor SF(i,t) as the fraction ox
larvae in cohort i which are alive and in the domain at time t after they were born, then

SF(i,t) is given by the expression

SF(i,t) = NSF - ESF - FSF - JSF (5.15)
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where
NSF is the fraction not dead due to natural mortality
ESF is the entrainment survival rate. It can take the following values:
ESF = 1 if the particle representing the larvae cohort did not go through the intake
ESF = 0 if the particle representing the larvae cohort goes through the intake and
the length of the larvae is less than 7 mm
ESF = (0.8)n if the particle representing the larvae went through the intake n times
and the length of the larvae was more than 7 mm the first time it was entrained
FSF is “flushing” survival rate that takes the values 0 or 1 if the particle has or has not
been flushed out of the domain
JSF is the “juvenile” survival factor that takes the value 0 if the larvae reach the length

of 8 mm; otherwise it is equal to 1

5.6.2 Larval Hatching Distribution

Estimated larval hatching was based on the abundance of yolk-sac larvae (larvae
less than ten days old) in the Niantic River in Stations A, B, C (Figure 18) during
1984-87. Abundance is expressed as density/500m3. Figure 25 shows the average

temporal abundance of yolk-sac larvae for the four-year period for Stations A, B, and C.

Daily larval hatching rates were estimated from daily abundance data according to
the following procedure. If we call N(i,10) the cumulative number of larvae born per

500 m3 on the days j where i-10 < j < i and alive on day i then

10
N(,10) = )} B(i - L)ekll (5.16)
=1
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Figure 25 Average temporal abundance of yolk-sac larvae for the period 1984-87 for
stations A, B, and C (data from NUEL)
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where
B(i-11) is the number of larvae born on day i - 1l
k is the natural mortality rate for larvae less than ten days old. According to data k =

0.105d-! (NUEL, personal communication).

If we approximate B(i-11) in Equation (5.16) by B(i-5) Equation (5.16) becomes

10
N(i,10) = B(i-5)) eIl (5.17)
I1=1

and after some algebraic manipulations

N(i,10) = B(i-5)2 70— (5.18)
Solving for B(i) we get
B(i) = 0.17N[[%U + 1] 10] (5.19)

i.e., the daily birth rate is about 17% of the abundance ten days later.

In the simulations a 3-hr timestep is used so according to Equation (5.19) the

number of larvae b(t) born in every 3-hr timestep is given by

b(t) = 0.0213N[HTj + 1] 10] (5.20)

Figure 26 shows the average birthrates (number of larvae born per day in 500 m3) for

the period 1984-87 for Stations A, B, and C.
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Figure 26 Averaged birthrates (number larvae born per 3 hr in 500 m3) for the period

1984-87 for Stations A, B, and C
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5.6.3 Larval Growth Rate

Annual larval growth rates were calculated by NUEL from twelve years (1976-87) of
entrainment data and the annual rates were found to be correlated to seasonal water
temperatures. According to these data the growth rate in units of mm/day is given as
a function of temperature by the following expression

mm/day = $% = -0.0145 + 0.0134T (5.21)

where T is given in ° C.

It was assumed that the length of the larva at the time it is born is 3 mm.

5.6.4 Daily Survivel Rates

According to data the average daily survival factor was taken equal to 0.9 for larvae

of length between 3-4 mm and 0.97 for longer lengths.

5.6.5 Diel Behavioral Respornse

According to a comparison of samples collected during daylight and at night, larvae
become less available to capture during daylight as they increase in length. Larvae
begin to develop this diel behavior at about 5 mm in length. The proportion of larvae
(y) available for tidal transport during daylight as a function of length is given by the

expressions

y=10 (L < 5mm)
(5.22)
y = 0.985 - 0.094.L (L > 5mm)
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This diel behavior was apparent at all stations in the Millstone area except at Station C
(Figure 18). Larvae diel behavior was simulated as follows. The displacement for
larvae of length more than 5 mm that are located in any area in our domain except near

Station C was multiplied by the factor y. So Equaticns (5.11) and (5.12) become

dx = y[u + fu,? %_gh}_{ + ﬂ-g;ﬁ] dt + yy20 uo/At py (5.23)
dy = y[v + fvg2 115% + Q(%ﬁ)] dt + yv2B vo/At pi (5.24)

5.6.6 Tidal Behavioral Response

Larvae in Station C also show vertical migration, but as a function of tidal stage
rather than light: they fall to the bottom during ebb and rise within the water column
during flood tide. Again larvae begin to develop this behavior at about 5 mm in length.
The proportion of larvae y available for transport during an ebb tide is given by the

expression

y=1.0 (L < 5mm)
y = 1.696 - 0.221-L (L > 5mm)

Larvae tidal behavior was simulated by diel behavior, i.e., in the same manner as
multiplying the advection and random-~walk components by the factor y during ebb for

larvae of length more than 5 mm that are located in Station C (Figure 18).

5.6.7 Alternative Solution for Millstone Case Study

Before proceding, it is worth comparing our random walk model with a
concentration or “diffusivity” model which could have been used. The question is what

“concentration” represents. It can represent mass of larvae per unit volume of water or
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number of larvae per unit volume of water. In this case number of larvae per unit
volume should be used since we are not interested in the mass of larvae in the domain.

The governing equation is Equation (3.28) or its nonconservative form

5 g+ Vg = %%—c[th,%] P [hDy 6°] Q (5.26)

The problem using this method, as written, is that larvae behavior can not be modeled.

Since larvae show strong behavioral patterns this approach is not appropriate.

Larvae behavior can be taken into account using a concentration model if a group of

equations of form (5.26) is used

aci dc; dcij _ 14 aci
& tug tvg = EHE[hD“’c’)‘x_]
14 aci o
53;[ ”HT]J“Q‘ i=1,...n (5.27)

where c; is the number of larvae of length group i per unit volume of water Lj; < Lj <
* Lyi, Ly; and Lyj being the lower and upper limit cf length of group i. As mentioned
before we are interested in larvae of length L = 3 mm (length of larvae at the spawning
time) to lengtu L = 8 mm. It is enough if we take five groups, i.e., n = 5 (1-mm

increments).

The term Qj is equal to

1

Qi = ki- (Ci-1 - kici + a- 2 Queei d(x-x1)(y-y1) + dici (5.28)
i=1
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where

ki-Ci-1 is a source term and represents the number of larvae per unit volume per time
that reach length L);

kici is a sink term and represents the number of larvae per unit volume per time, that

reach length Ly;

1
a T Qicif(x-x1)(y-y1) is a sink term and represents the entrainment of larvae through
i=n

the cooling station
aisequal to 1if Lj; < 5 mm and equal to 0.2 of L;; > 5 mm

dic; is a sink term for the natural mortality

The tidal and die! behavicr would be simulated in the same way as in the random

walk model.

This method was not applied so a comparison can not be made with the random
walk method. Generally we could summarize the disadvantages nf this method as

follows:

e the representation of source and sink terms is easily modeled in the random walk

model

e the computational effcrt increases linearly with n whereas in the random walk
model the length of each larvae is computed exactly without any additional

computational effort
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5.7_Model Simulations

5.7.1 Simulations

Three simulations were made using the 2-D random walk model. These simulated
the fate of larvae born in Stations A, B, and C, respectively. The simulation time was
equal to 131 days for each simulation covering the period between February 16, when
larvae spawning starts, to June 26, when the last larvae spawned have become

juveniles.

Particles were released over a two-month period (February 16 to April 26 which
equals the spawning period) at a rate of 1 particle per timestep. The timestep was
taken equal to 3h. Every particle represented the number or larvae born at that station
in a 3-h period per 500 m3. The birth rate distribution was calculated following the |
procedure described in Section 4.2 (Figure 26). Every particle was advected and
diffused according to the algorithm described in Section 5.5. The diffusion parameter J

for Niantic River was calculated according to Equation (2.43) to be equal to

f=T =120 _ 1 o5n (5.29)
5.7.2 Input

The model requires the following input
1 Flow field data. These data are given from the circulation model TEA (Section 5.4).

2 The diffusion parameter fj, the simulation time (131 days in this case), and the time
over which particles are released which equals the time that larvae are spawned (70

days in this case).
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3 Number of larvae/500 m? spawned every timestep. Spatially averaged temperature

values at every timestep, and data concerning larvae behavior.

5.7.3 Output
The output of every run includes the following information:

At each timestep the position of all particles released through that time is recorded.
In addition, at the end of the simulation the following information is summarized for

each particle.
e #: number of the particle
e DOB: date of birth

o COHORT: Number of larvae/500 m3 that are represented by the particle at the

time the particle is released
e NSF: NSF of the cohort at the end of the simulation (Equation (5.15))

o FSF: flushing survival factor. FSF can take the following value: 0 if the particle

was flushed out of the domain or 1 if the particle was not flushed out

o ISF: intake survival factor. ISF can take the following values: 0 if the particle was
entrained when the length of the larvae represented was less than 7 mm, 1 of the
particle was not entrained, (0.8)® if the particle was n times entrained after the

larvae reached the length of 7 mm.
o NENT: number if times particles has gone through the entrainment (Figure 21)

o AGE: age of particle at the time when the program stopped tracking it
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*» LENGTH: length of the particle at the end of its simulation. LENGTH is less than

8 mm
e #LEFT: number of larvae a particle represents at the end of the simulation
o DATE: last date of simulation for the particle
e LOC: location of particle when the program stopped tracking it (Section 4.1)
Figure 27 shows a page of the output file from the simulation of Station A.

After this list of information for every particle, cumulative statistics of larval fate
are given. The length distribution is given for larvae entrained, flushed from the
domain, and still in the domain at the end of the simulation. Also the number of larvae

that died due to natural mortality and the number of larvae that matured are given.

5.7.4 Compariscn with Data

Verification of the model was attempted by comparing the length distribution of the
larvae entrained resulting from the model simulation to the length distribution data of
the larvae entrained provided by the NUEL (personal communication). Table 1 shows
the two length distributions. It is clear that the two length distributions are very
different: the model simulations for year 1984-87 indicate that about 92% of the
entrained larvae have a length between 3 mm and 4 mm, while the data from NUEL
show only 12.4% of larvae entrained have a length between 3 mm and 4 mm. There is
also a corresponding discrepancy in the times of peak entrainment with model times
being much quicker than observed times. (In fact, the agreement between dates of peak

abundance and mean larval length is quite good, confirming the growth relationship
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Table 1a

Comparison of Length Distribution of Entrained Larvae by Station (simulation)
to Data from NUEL
(percent)

Sta 3-4 4-5 9-6 6-7 7-8

A 852 54 71 22 0.1
B 935 28 22 16 0.
C 946 30 12 11 0.1
ave. 91.7 35 3.0 17 0.1
Data 124 186 243 231 149

Table 1b

Total Number of Larvae Entrained

Total Percent of
St number larvae hatched

(x10%)
A 305 5.2
B 802 6.0
C 377 8.8
total 1484 6.7
Data 98000 490.
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used in the model.) Finally, and importantly, the number of larvae entrained predicted

by the model is considerably lower than the number indicated by data (Table 1b).

There appear to be three possibilities for explaining the early entrainment times
(and hence “short” lengths) of the model. The first possibility is that the simulated
larval residence times within the estuary are too small. This could be due to one or

both of the following reasons:

a) The random walk model was calibrated using Ketchum’s tidal mixing model.
This model is an idealized 1-D model that is based on the assumption of complete
mixing of water within every volume segment. It requires validation for complex real

estuary mixing.
b) The larval behavior data were not correct.

The second possibility is that some of the entrained larvae were imported from other
areas and do not come from Niantic River. Since these other areas are further away,
the time of travel would be longer, which could explain why observed entrainment
times exceed our simulated times. It would also explain the undersimulation of

entrained larvae.

The third possibility is that the mortality rates (see Section 5.6.4) are too high.
Larvae mortality would allow older larvae to survive, thus shifting the entrainment
distribution to longer lengths. Table 2a shows the length distribution and Table 2b the
total number of the larvae entrained for zero mortality rate. In this case the length
distribution is more uniform but still there is a maximum (59.8%) at the lower lengths
(3-4 mm). From the above we can conclude that a discrepancy in the mortality rates

does not explain alone the difference in the resulting length distributions.
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Table 2a

Length Distribution of Entrained Larvae by Station (simulation) .
with zero mortality rate (percent)

Station 3-4 4-5 5-6 6-7 7-8

]

444 123 272 148 13
B 66.2 114 94 112 18
C 63.8 14.7 79 93 4.3
average 59.8 12.8 13.5 115 25

Table 2b

Total Number of Larvae Entrained
with zero mortality rate

Total Percent of
Station number larvae hatched
(x103)
A 1507 25.7
B 2728 20.4
C 987 23.0
total 5222 21.0
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The first step taken to diagnose the discrepancy was to conduct a dye study within
Niantic River. The purpose of this study was to measure the flushing time and hence
calibrate the random walk transport model of the estuary. This flushing time could
then be compared to the flushing time resulting from Ketchum’s model. An additional
dye study was also conducted to estimate transport between the estuary mouth and the

intake.

5.8 Tracer Studies

Two dye studies were conducted in the Niantic River area during the period

November 16, 1988, through January 11, 1989.

5.8.1 Dye Study 1

The motivation for the first study was the estimation of the estuary flushing time.
As mentioned in Section 5.7.4, the length distribution of entrained larvae that resulted
from the model simulation was different from the actual data. The random walk
transport model used for these simulations was calibrated using an idealized model for
tidal mixing in an estuary. With data from a dye study, the model could be calibrated
from field data.

Dye Study 1 was conducted from November 16 through December 15, 1988. During
this period 359 1bs of 20% Rhodamine WT dye solution was injected from a location
near the head of the river (Figure 18). So dye was injected at an average rate of

0.0468 kg of pure dye per hour. The following data were measured:

¢ Continuous concentrations during this period at the Mijoy Dock (Figure 28) and the

Millstone Quarry
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Figure 28 Dye concentrations at the Mijoy Dock in the period from December 1 to
December 15
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* Transverse concentrations across the river at 2-ft depth on high slack (Figure 29)

and low slack (Figure 30) on December 15, 1988

o Vertical profiles of concentration at Stations 1 througk 11 (Figures 29, 30) at high
slack (Figure 31) and low slack (Figure 32) on December 15, 1988

Figure 28 shows dye concentrations at Mijoy for the period between December 1,
1988, and December 14, 1988. From Figure 28 we can assume that quasi-steady-state
conditions were reached after December 5, 1988. As a check, we can perform the
following mass balance. If we designate as ¢ the dye concentration at Mijoy and Q the

flow at Mijoy then the integral

T
J Q-c-dt (5.30)
0

represents the net mean of dye that is flushed out of the river during one tidal cycle T.
If dye is conservative this mass should be equal to the mass of dye injected during one
tidal cycle m;, which is equal to
- k -
Min = 0.0468p8 - 12.4h = 0.58 kg pure dye (5.31)
We approximate the time variations of dye concentration at Mi joy varies as

¢ =T + Caax[sin(wt - ¢)] (5.32)

and the flow at Mijoy varies as
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Q = Quax * sinut (5.33)

The value of Qnax is found by integrating Equation (5.33) over the duration of ebb flow
and setting the resuit equal to the average tidal prism. The unknown parameters of
Equation (5.32) are determined by a least squares regression analysis between the
theoretical concentration variation described by Equation (5.32) and the observed
variation at Mijoy. The result is: € = 0.49 ppb; cpax = 0.3266 ppb; ¢ = 0.331 rad.
Equation (5.32) is plotted using these parameters in Figure 33. According to Equation

(5.32), in order to find the mass of dye flushed out we have to estimate the integral
T
J- Qmax‘SinUt'[é + Cmu * Sin(wt - ¢)]dt (5.34)
5 :

With the above parameters found by the regression analysis, the evaluation of Equation
(5.30) equals 0.7 kg which is actually 21% larger than the mass injected. This
agreement is not bad for a study of this magnitude and the discrepancy could easily be

attributed to:

o discrepancies in the measurements and/or

o background concentrations in the estuary

o tendency for the least squares analysis to overestimate the amplitude of the

sinusoidal concentration distribution in arriving at parameters

Using the transverse concentrations across the river and the vertical concentration
profiles, the flushing time of the estuary was calculated. Flushing time for our purposes

is defined as the mean time required to replace the existing dye in an estuary at a rate

-112 -



~ LEGEND

0 ~~ observed

& . " regr.analysis

v/

Z

Q1

E14

x

-

Z

w s o

Q ]

Z - ]

0

o u &1

O T l LB l 14 ’
) 100 200 300
Dec5, 7:26 TIME ( h )

Figure 33 Comparison between steady-st

results from regression analysis

-113 -

400

ate concentration data at Mi Jjoy Dock and



equal to the dye injection rate. If we designate the dye injection rate by W
(mass/time) and the total dye mass iz the estuary after a tidal steady state has been

reached by Vg4 the flushing time treg according to Equation (2.18) will be

tres = %g (5.35)
If we designate the dye concentration at any given location in the estuary as c, the mass

of dye in the estuary is given by the integral
Va=[cdV (5.36)

where the integral is taken over the entire volume of the estuary.

The following remarks can be made regarding the concentration data used to
evaluate Equation (5.36). Concentrations at every cross section show little variation
which means that we have complete transverse mixing. In the vertical profiles at
sections upstream from Sandy Pt. (Sections 11, 10, 9, 8 for high slack and Sections 5, 4,
1 for low slack), near-bottom concentrations are up to a factor of 10 higher than surface
concentrations. This probably occured because the dye is negatively buoyant, so close
to the injection point it fell to the bottom. In the sections that are located south of
Sandy Point (i.e., Sections 7, 6 for high slack (Figure 29) and Sections 2, 3 for low slack
(Figure 30)) concentration is essentially vertically uniform. So we conclude that we
have complete vertical mixing in the lower part of the estuary that is located beneath

Sandy Pcint.

The following technique was used to evaluate V4 (Equation 5.36). The river was
divided into n sections, corresponding to the measured concentrations, and at every

section i the integrated concentration was approximated as ¢;Vi. Different assumptions
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were made concerning the segment average concentration c; upstream and downstream
from Sandy Pt. Downstream the segments were defined by the location of the lateral
transects; the concentrations measured at 2-ft intervals were averaged laterally and
assumed to be uniform over depth. Upstream from Sandy Pt. the segments were
defined by the vertical profile; concentrations were averaged over the depth and were
assumed to be uniform laterally. Figures 29 and 30 show the sections for high and low
slack respectively. V4 was then found by summing the mass from each segment and the

flushing time was calculated usirg Equation (5.36).

Using this method the flushing time for the low slack data was 2.6 d, the flushing

time for the high slack data was 3 d, and the mean was about 2.8 d.

5.8.2 Salinity

Vertical salinity profiles (Figure 34) at locations indicated in Figure 35 were taken
at high tide on December 15. Salinity can be used as an alternative to dye for
estimating flushing times of estuaries. If we designate the total river inflow rate by R
and the total freshwater volume of the estuary by Vr the flushing time t according to

Equations (2.18), (2.19) is given by

_ Lpf[! | (5.37)

where R is the discharge from Lattimer Brook.

R was determined from discharge rates for Pendleton Brook for the period
November - December 1988 (Table 3). Using linear regression, the discharge rates of
Lattimer Brook are related to the discharge rates of Pendleton Brook by (NUEL,

personal communication):
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Figure 35 Locations of salinity measurements at high slack on December 15, 1988
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Table 3

Flow Data for Latimer Brook

Date Pendleton Brook Lattimer Brook
T T ey (mis)
12/1/88 18 1.53
12/2/88 15 1.27
12/3/88 13 1.11
12/4/88 12 1.02
12/5/88 11 0.94
12/6/88 9.9 0.85
12/7/88 9.6 0.82
12/8/88 9.1 0.78
12/9/88 8.4 0.72
12/10/88 7.7 0.67
12/11/88 7.0 0.61
12/12/88 5.9 0.52
12/13/88 5.9 0.52
12/14/88 12 1.02
12/15/88 11 0.94
12/16/88 8.7 0.75
12/17/88 7.1 0.62
12/18/88 6.2 0.54
12/19/88 5.8 0.51
12/20/88 5.7 0.50
12/21/88 5.8 0.51
12/22/88 5.8 0.51
12/23/88 5.8 0.51
12/24/88 5.8 0.51
12/25/88 5.8 0.51
12/26/88 5.9 0.52
12/27/88 6.0 0.52
12/28/88 6.0 0.52
12/29/88 6.0 0.52
12/30/88 6.0 0.52
12/31/88 6.1 0.53
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CFSiatimer = 0.795 + 2.948 - CFSpendleton (5.38)

The flushing time was calculated by dividing the estuary horizontally into seven
sections (Figure 35) and the volume V; of each section was calculated. At each section
and depth, values of freshness were computed. The ocean salinity was taken as the
salinity of Station 1 (Figure 34). Values at different depths were then averaged to
determine a section-average freshness, f;. The value of R was hased on the flow
averaged over n days préceding measured salinity. Table 4 shows the sensitivity of the
flushing time on the value of n. We see that the values of the flushing time are between
3.9 d and 5.3 d which is a little higher than the flushing time of 2.8 d we get from Dye
Study 1.

Flushing times were also determined from earlier salinity data at Stations A, B, C,
and Niantic Bay for the period Feb.-April 1985, 86, 87, 88. Salinity data are given at
surface, middepth, and bottom, although for some sections the middepth data are
missing. The value of R was taken equal to the averaged flow over the week preceding
measured salinity. In Table 5 the values of flushing times for different days are shown.
We can see that the values of the flushing time are between 1.4 d and 4.5 d which is

also consistent with the flushing time of 2.8 d that we get from Dye Study 1.

5.8.3 Comparison between Flushing Time Estimated from Tracer Studies and Model
MILL

From Sections 5.8.1 and 5.8.2 we see that the observed flushing times using either
dye or salinity are considerably smaller than the theoretical time based on Ketchum’s
model (and hence the time to which the model MILL has been calibrated). This may be

due to vertical stratification, uneven bathymetry (resulting in tidal pumping), or other
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Table 4

Sensitivity of Flushing Time on the Number of Days n Used to Average Flow

n flushing time

(days) (days)
1 4.1
2 3.9
3 47
5 5.2
6 5.3
7 5.2
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date

21 Mar 85
28 Mar 85
4 Apr 85

12 Apr 85
18 Apr 85
6 Mar 86

20 Mar 86
3 Apr 86

14 Apr 86
24 Apr 86
12 Mar 87
26 Mar 87
7 Apr 87

16 Apr 87
3 Mar 88

17 Mar 88
11 Apr 88
21 Apr 88

Table 5
Flushing Times Using Salinity Data

discharge discharge R

Pendelton
Brook
(cfs)
16.79

6.87
7.79
6.21
4 39
8.53
29.14
10.17
8.67
6.55
15.14
7.37
50.14
21.00
9.03
8.4
10.81
6.67

Latimer
Brook
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flushing
time
(days)
4.4
3.7
4.5
2.1
5.9
14
1.5
3.2
1.8
4.5
1.9
3.7
3.0
2.4
3.6
3.6
3.5
4.5



effects that allow mixing to take place over distances larger than a theoretically
computed tidal excursion. The effect is that the longitudinal dispersion coefficient Dyy,
and hence the model mixing parameter [ should be increased in order to match the
observed flushing rates. All else equal, this would decrease the average time it takes for
larvae to be entrained at the intake, leading to a greater discrepancy between the
simulated and observed distribution of entrained larval length. As mentioned in
Section 5.7.4 the majority (91.7%) of the larvae entrained according to the model
simulation had a length between 3-4 mm while the data showed that only 12.4% of
larvae entrained having a similar length. This discrepancy is discussed further in

Section 5.9.

5.8.4 Dye Study 2

Dye Study 2 was conducted from January 11-17, 1989. The motivation for the
second study was to better understand the residence time of larvae between the mouth
of the Niantic River and the intake as well as to measure the percentage entrainment.
In this regard, dye studies had been done in the past. Specifically Ocean Systems, Inc.,
conducted four dye experiments during June and July 1975 and a fifth study in March
1976. Figuré 18 shows the locations of tiiese studies. The purpose of these studies was
to verify the previous concentration models by comparing the percentage of dye

entrained to the percentage of larvae entrained.

During ebb tide (1300 to 1700 hrs) on January 11 307 lbs of 20% Rhodamine WT
dye solution were injected in the vicinity of the NRRR Bridge (Figure 18).
Fluoromeiers with strip chart recorders measured dye concentrations at tﬁe station
quarry and at Mijoy. Concentration measurement started one day before the dye
release (January 10, 11:20) and continued for 6.5 consecutive days (until January 15,

22:18). During this time the station experienced full operation from all three units.
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The concentration of dye at the quarry as a function of time is shown in Figure 36.
Time 0 corresponds to the time of the dye release. The background concentration was
estimated from measerements on the day before the dye release. According to these
data the background concentration changes as a function of the tidal cycle, and ranged
from 0 to 0.18 ppb, with an average of 0.12 ppb. The percent of injected dye that
passes through the intake is calculated as

tend
Qo J (c-cp)dt
0 _10-8kg
M, m3-ppb 100% (5.39)

where Qg the condenser flow rate = 118 m3/s, cy, is the background concentration, tend -
is the end of the survey (6.5 d), and M, is the mass of pure dye injected = 28 kg. Using
our best estimate of cp = 0.12 ppb, the percentage recovery is 20.6%. A sensitivity
analysis was made in order to estimate the relationship between the background
concentration and the amount of dye entrained. The results are shown in Table 6. It
can be concluded from Table 6 that a variation in the background concentration
between 5% and 15% results in a variation in the percentage of dye passing through the
intake of between 25% and 15%.

The results of the second dye experiment were compared with Study No. 5
conducted by Ocean Systems, Inc., on March, 11 1976 (Ocean Systems, Inc., 1976).
The earlier study involved 25.9 kg of pure dye discharged over 12.5 hour's at the
location shown in Figure 18. Concentrations were measured at Mijoy and the quarry
for only three days after the dye release because of pump and power supply failures.
Assuming a plant flow of 61 m3/s (only two units were operating at that time) OSI
calculated that 6.8% of the dye was entrained. Taking into account that: 1) three units

were operating (118 m3/s) during the second dye experiment and 2) concentrations at
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Figure 36 Dye concentration measurements at the Mijoy Quarry during Dye Study 2
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Table 6

Sensitivity of Entrainment Percentage of Dye to Background Concentration

Background concentration % of dye entrained

0.05 34.0
0.08 28.3
0.1 24.4
0.12 20.6
0.15 14.9
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the quarry were measured for 6.5 days after the dye release, our estimate of between

34% and 15% entrainment seems reasonable.

5.9 Conclusions of Study

Mathematical model simulations have been performed to simulate the entrainment,
at the Millstone Station, of larvae hatched within Niantic River. As discussed
previously the simulations suggest that the larvae are arriving significantly earlier, and
in smaller numbers, than indicated by observations at the intake. The first dye study
suggests that the hydrodynamic flushing time is actually less than what was simulated
s0 this does not provide an answer. The other two possibilities-~discussed in Section
5.7.4--are that larval behavior has not been adequately taken into account and/or,
larvae are being imported from outside Niantic River. These two hypotheses are

discussed below.

5.9.1 Import Hypothesis

The import hypothesis is strongly supported by comparing the average total number
of larvae born per year during the period 1984-87 to the average number of larvae

entrained during the same period (NUEL Annual Report, 1988, p184).

According to the procedure described in Section 5.6.2 the average total number of
larvae born per year during the period 198487 per 500 m3 is about equal to 1500. By
multiplying with the volume of Niantic River we find the total number of larvae born,

i.e.,

1477 larvae/500m3 = 5.58 x 108m3 ~ 20 x 106 Jarvae born
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According to Table 12 of the NUEL Annual Report 1988 (p184) the average annual
number of larvae entrained during tke same period is equal to 98 x 108. This number

by far exceeds the number of larvae born.

The import hypothesis is also supported by considering the foliowing mass balance

equation for larvae in the bay:

(aifcbay = (¢r - Cba.y)%r - kCbay - onc;l_)&x +5/s (5.40)

where

Cbay = density of larvae in bay
cr = density of larvae in river
P = tidal prism volume of river
¥ = volume of bay

T = tidal period

k = natural mortality rate

Qo = flow rate

s/s = source!*) /sink( - for larvae from/to Long Island Sound

The s/s term has been calculated as the residual term needed to close Equation
(5.40) using data provided by NUEL for the remaining terms. Appendix B shows
calculations for 1987. It is clearly seen that for late times s becomes a source term. For
earlier times s is a sink term. A reasonable explanation for this is that at early times
the entrained larvae come from the river. As seen, entrainment begins as soon as
spawning starts, which is consistent with the approximate three-day residence time.

At later times s becomes a source term which may mean that larvae are imported. A
problem that appears in this interpretation is the very large number of larvae entrained

during the first forty days after beginning of spawning in 1988.
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5.9.2 Hypothesis Explaining Flushing Time Differences

Table 7 shows dates of peak abundance of winter flounder larvae for the years 1983-
1988 at the three Niantic River Stations (A, B, and C) and for Niantic Bay. These

peak abundances suggest the following average residence times

between Station A and B 5.7d
between Station B and C 14.5d

between Station C and Niantic Bay 24.5d

According to this the average residence time of larvae in Niantic River is equal to 45 d
which is about fifteen times bigger than the flushing time of the estuary obtained from _
the dye study and about three times as large as the time simulated in the model (15 d).
The facts that more larvae were entrained than would be expected based on hatching
rates, plus the considerably larger residence time of larvae relative to dye, could both be
explained if it were determined that the younger as well as the older larvae were found
predominantly near the bottom, where they might be undersampled and transported

more slowly than dissolved dye.
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Peak Abundances of Winter Flounder Larvae

Table 7

(from NUEL, personal communication)

Estimated dates of peak abundance of winter flounder larvae at the three Niantic River
stations (A, B, and C) and for Niantic Bay (entrainmenat and mid-Niantic Bay combined).

Year Sta A StaB StaC Niantic Bay
1983 Mar 6 Mar 20 Apr© Apr 17
1884 Mar 4 Mar 12 Apr 4 Apr 22
1886 Mar 9 Mar 14 Mar 18 Apr 12
1986 Feb 26 Feb 28 Aprl Apr 23
1987 Mar 8 Mar 9 Mar 17 Apr 17
1988 Feb 29 Mar 5 Mar 3 Apr 18
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6 SUMMARY AND CONCLUSIONS

Mixing in estuaries is a very complicated phenomenon because of the various
mechanisms causing mixing (i.e., wind, tide, internal density variations caused by the

river) and the complicated character of each of these mixing mechanisms.

Various models have been used for modeling mixing in estuaries. In our model we
use a mixing length approach. According to the mixing length theory mass transport in
estuaries can be modeled using a locally one-dimensional model, where all mixing
mechanisms are combined into a single longitudinal dispersion coefficient Dy. The main
assumption in this theory is that complete mixing-is achieved on one tidal cycle over a
fraction of the maximum tidal excursion. According to this Dy is given by the

expression

Dy = fuo? (6.1)

where
(3 is a constant

U is the amplitude of the tidal velocity.

The two-dimensional depth-averaged mass transport equation for a conservative

substance is given by the expression

k) , Hych) , Areh) _ 4 fyp, 5] 4 2 [hp,, & (6.2)

where
¢(x,y,t) is the depth-averaged concentration

u(x,y,t) is the x component of the depth-averaged velocity
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v(x,y,t) is the y component of the depth-averaged velocity
h(x,y) is the depth (mean sea level)

Dyxx, Dyy are dispersion coefficients

In an estuary transport model Dxx and Dyy are chosen so that they are consistent with

Equation (6.1)

In a “random walk” model the transported mass m of the conservative substance is
represented by N particles. The position x(t) of each particle is described by the

nonlinear Langevin equation
dx _
& = A(xt) + B(xt)E(t) (6.3)

where

A(x,t) is a known vector representing the deterministic forces that act to change x(t)
B(x,t) is a known tensor that characterizes the random forces

- £(t) is a random number that represents the microscopic rapidly changing forces that

act to change x(t)

In our analysis we defined A(x,t), B(x,t), and (t) as functions of u, v, Dxx, and Dyy

so that Equations (6.2) and (6.3) are equivalent:

Dyxx 0h BDxx
F_'BJ'E gx T U [ﬂ,/Dn 0 ’!

A= §= (64)
Doy % gD ty 0 2Dyl

The random walk model was tested by comparing simulated concentrations and

residence times with corresponding analytical solutions for the one-dimensional case of

-131 -



Equation (6.2) (v =0,Dyy = 0,h = constant). Excellent agreement was obtained.

The following conclusons were drawn:

¢ As the timestep At becomes smaller the concentration distribution curve becomes
smoother and resembles in shape the analytical solution. Also the flushing time
that results from the integration of the concentration distribution approaches the

flushing time resulting from the analytical solution.

¢ The important factor governing accuracy of the concentration distribution is the
number of particles per “cell” or N tls/u where N, is the number of particles released
per time, I is the length over which concentration is measured or “cell” length, and

u is the advection velocity.

The model was applied to the Millstone Point Case Study in order to predict winter

flounder larvae entrainment rates.

It was calibrated using Ketchum’s tidal mixing model. Verification of the model
was attempted by comparing the length distribution of the larvae entrained resulting
from the model simulation to the length distribution data of the larvae entrained
provided by the NUEL. In order to explain the early entrainment times and the lower
number of entrained larvae predicted by the model three possibilities were examined.
The first possibility was that the underestimation of the river flushing time was due to
the assumption of estuary mixing in Ketchum’s model. In order to investigate this
possibility two dye studies were conducted and salinity data were measured along the
river. These studies showed that the river flushing time is even less than predicted by
the model. The second possibility was that the data concerning larvae abundances and
behavior are not correct, which means that either larvae are imported from other parts

of the bay or larvae stay longer in the bottom of the estuary. The latter might result in
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underestimation of the larvae sampled and higher residence time of the larvae in the
river. The third possibility was an overestimation of the mortality rate which would
have as result a shift of the length distribution of the entrained larvae to smaller

lengths. By setting the mortality rate to zero we concluded that the third possibility

does not explain alone the observed inconsistencies but it could be part of the answer.

The main advantages in using a particle model as developed for this study are the
representation of sources and sinks and the simulation of larvae behavior. However,
two problems were encountered. First, particles had to be reflected several times
because of the large lateral random walk displacements close to the mouth of the
estuary. A remedy for this is to use small timesteps or use higher-order integration
schemes, but these increase the computational effort. A second problem was the
number of particles necessary to simulate the behavior. Only one particle per timestep -
was released. An increase in the number of particles or a repetition of the same
simulation, in order to obtain an ensemble average, increases linearly the computational

effort so it was avoided.

A useful task for further research would be a comparison, in terms of accuracy and

efficiency, between our particle model and an equivalent concentration model.
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APPENDIX A

Derivation of Displacement Equation for a 2-D Depth Averaged Random Walk Model

In order to find the random walk algorithm

dx = A(x(t),t) + B(x(t),t)-dW(t) (A.1)

that corresponds to the two-dimensional depth-averaged transport equation

Och) , Aych) , Aveh) _ & 1up,. 2] + & fhp,, o (A2)

where

== 3]

represents the displacements in the x and y direction

- [ 2

2= 5]

and B is a diagonal tensor
_[bx0
~ L0 by

I

we must find the coefficients of A and B so that Equation (A.2) is equivalent to the

Fokker-Planck equation (see Figure 8, Section 3.3.1)

% + g,-((axf) + gy(ayf) = Q’%}?"—’i + 6—’%,—‘,’1—’1 (A.3)

In order to do that we follow this procedure: we set f = ch, transform Equations
(A.2) and (A. 3) using integrations by parts and then set equal the coefficients of c, K,
-g%, -g%(,:, -5}7, We see that we have to determine four coefficients, ax, ay, bx, by,

using five equations.
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From Equation (A.3) we get

LSS Y DLW PR
+ [ggx]’h +3y—,lbyh+2b,§§!%+9§3§;-l}- Oa -agly’-]

H[zb,g%h b2 - ach
[2bra;,!h + byl - ayh]
B0 -5

From Equation (A.2) we get

%:c[-%h-u%-%h-v%]
+H[§&x-h+nnb§ ]

+ Ze5{Dxah] + F5{Dyyh]

dec dc 03¢ 0Jc

(A4)

(A.5)

By setting the coefficients of c, & Ty P oyl in Equations (A.4) and (A.5) we get

by = y2Dxx
by = v2Dyy
ax = DyxpX + DFF + 1
ay = Dyt + D7 + v
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APPENDIX B

Calculation of Source/Sink Term in Equation (5.40) (NUEL, personal communication)
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