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ABSTRACT

Polymer gels undergo volume phase transition: they can discontinuously change
their volume as much as 1000 times in réspouse to infinitesimal environmental changes.
Light scattering experiments have revealed the divergence of the network density
fluctuation near the critical point. The purpose of this thesis is to experimentally
determine the universality class to which the gel phase transition belongs.

For this purpose, we have studied the criticality of the N- isopropylacrylame gels
by approaching the critical point along the isobar path. The techniques we have used
include calorimetry, static and dynainic laser light scattering, and direct measurement
of the volume of the gels. We obtained the critical exponents along the isobar path,
Qx, Vx, 7r and 6. From these exponents, the conventionally defined exponents are
calculated. The experimental results indicate that the gel system is an Ising-like
system. This result can be understood by using the analogy between the gel phases
and the liquid-gas phases.

We also studied the structure and the mechanical properties of the network system.
The importance of the inhomogeneities of the network system was further revealed.

The work presented in this thesis will help us both in the theoretical understanding

and practical application of the gel systera.
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Chapter 1

Overview

1.1 Phase Transition and Critical Phenomena

1.1.1 Phenomenon

A thermcdynamic system contains many particles. The behavior of the system is
governed by the interaction among these particles and the entropy of the system.
The entropy favors the disorder (well mixing). If the interaction is repulsive, then
‘he system will stay well mixed and there will be no phase transition. But when the
interaction is attractive, i.e, favoring ordered state, then the competition between the
interaction energy and the entropy will determine the state of the system. Under
proper conditions, the phase separation or phase transition can occur.

There are many systems exhibit phase transition and phase separation phenomena,
like liquid-gas transition, binary liquid phase separation, spontareous rnagnetization,
etc. Figure 1.1 is a schematic description of the phase diagram of the ferromagnet

system.

The phases before and after the transition is identified by a characteristic param-

eter m, called order parameter. The change of the order parameter during a phase

1



2 Chapter 1. Overview

Figure 1.1: Schematic sketch of the

0%
-

down phase diagram of the ferromagnet

system.

transition can be either discontinuous or continuous. The discontinuous transition is
called first order transition. The point that separates the continuous transition and

the discontinuous transition is called critical point.

In general, the high temperature state is called disordered state, and the low tem-
perature state ordered state. The order parameter m is related with the symmetry
of the system. In the disordered state, the system has more symmetry than the
ordered state, so the phase transition process is also called a symmetry broken pro-
cess. The order parameter has the property of being single valued in the disordered
state (often 0) and multivalued in the disordered state. For the ferromagnet case,
the symmetry is the spin up-down. In the absence of the external field, when the
temperature is very high, the macroscopic state (m = 0) of the system is the same if
we flip all the up-spins down and down-spins up (up-down symmetry). But when the
temperature is lower than the critical temperature (Curie temperature), there is a
total non-zero spontaneous magnetization m negq 0. If we flip all the spins once, then
the total magnetization will be -m, so the up-down symmetry has been broken. The
order parameter m is zero above the critical temperature and double valued below the

critical temperature. In the case of liquid-gas system, the order parameter is the den-



sity measured from the critical point, p — p.. The symmetry is occupied-unoccupied
symmetry.

The essence of the second order phase transition is that the competition between
the interaction energy and the entropy is very close. Around the critical point, due to
the nearly complete cancellation of these effects, the local property of the system can
fluctuate around the mean value dramatically. It is exactly this fluctuation causes
many macroscopic quantities to have singular behavior. Near the critical point, many
response functions, like the heat capacity C,, susceptibility x, diverge by certain
power. These powers are called critical exponents. It is very important to realize
that although the choice of the order parameter is often obvious, there is no precise

definition and standard ways of identifying it (Anderson 1981).

For a clear chronicle review of the classical phase transition study, see G. E.

Uhlenbeck (1966)

1.1.2 Mean Field Theory

The earlies: successful phase transition theory is the non-ideal gas (liquid-gas) theory
by Van der Waals in 1873. Later Weiss developed the Weiss ferromagret theory and
explained the existence of the Curie temperature in 1907 (Stanley 1971). The binary
alloy phase transition was explain by & theory developed by Bragg and Williams.
All of these theories, including Landau’s second order phase transition theory (L. D.
Landau and E. M. Lifschitz 1959), are mean field theories. The basic assumption
of the mean field theories is that each particle is afflected by an average interaction
provided by all the other particles. The interaction (average field) is in turn rlated
with the average behavior of the particles. This is why the m.au field theories are
also called self-consistent theories. The mean field theory gives us a direct insight of

the physics of the problem. Although the mean field theory can be solved exactily
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around the critical point, because of its basic assumption, it does not describe the
critical phenomena, in particular, the critical exponents well. Some of the exponents

derived from the mean field theory are listed bellow.

C, = |-t° (.1
sp = (-t)°. (1.2)
6P = |6pl’. (1.3)
witht = (T - T,)/T. and
a =10
B =1 (1.4)
5 =3

When the system is very far from the critical point, the mean field theory gives
very satisfactory results. But since the mean field theory neglects the fluctuations
of the density parameters in the system, which is absolutely essential for the critical
behavior of the system, we do not expect it to give good result near the critical point.
The criterion beyond which the mean field theories do not work is given by Ginzburg
(1960). The idea is that in order for the mean field theory to work, the fluctuation of
the density (order parameter) should be much smaller than the average value of it.
In another word, the mean field theory fails when

< (Am)? >

> 1 (1.5)

1.1.32 Renormalization Group Theory

As more and more experiments were done on the critical phenomena, the discrepancy

between the theoretical predictions of the mean-field theories and the experimental



results became more and more apparent (Heller and Benedek 1962). Many experi-
mental results showed that the value of B is around 0.33, rather than 0.5, and the
exponents a is a non-zero in many cases. These discrepancies led the very impor-
tant discovery of the renormalization group theory (RG), which was first initiated
by Kandanoff (1967) and further developed by Wilson (1971). The basic idea of the
renormaliztion group theory is that when the critical point is approached, the cor-
relation length of the system become very large. Since most of the thermodynamic
variables are directly related with the correlation length, we can assume that the
details of the system (molecular distance) is irrelevant. Based on this, we can group
nearby particles together as an effective particle. The interaction among these new
particles is related with the original (bare) interaction among particles. Then we
can group these effective particles into even larger ones, etc. At the critical point,
the correlation length is infinite, so each time after we have performed an grouping
operation, the new system should behave the same as the old one. This means that
the critical point is a fixed point of the renormalization group operation. It has been
shown both theoretically and experimentally that the renormalization group theory
is a very successful theory of critical phenomena.

Form the renormalization group theory, we understand that the important pa-
rameters that govern the critical behavior of a thermodynamic system are very few,
among them, the dimensionality of the space d, the number of the components of the
order parameter n and the symmetry of the system. The fine details, like the whether
it is nearest neighbour or longer ranged interaction, is irrelevant. Although in the
reality, arguably, the dimension of the space and the number of the components of the
order parameter are always integers, it’s been proven mary times that it is beneficial
when we treat them as continuous variables.

The existence of the universality class of the critical phenomena was one of the

most important results of the renormalization group theory. The commonly encoun-
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tered universality classes are d=3, n=1 (Ising), n=2 (X-Y) and n=3 (Heisenberg)
classes. Most of the classical systems mentioned above (liquid-ges, binary mixture,
ferromagnet, etc) are in 3-d Ising universality class. The exponents of the 3-d Ising

universality class calculated by the RG theory is,

a =0.11,
g =035, (1.6)
6 =05.

1.2 Gels

The study of gel network system can be traced back to the rubber elasticity exper-
iment done by Gouth in 1805 (Flory 1953). This experiment demonstrated the fact
that the length of a stretched rubber string become shorter when thz temperature
is increased. This is exactly the opposite of the most of other materials. in 1920,
Staudinger (1920) correctly pointed out that the polymers are flexible chains of cova-
lently connected molecules. Based on Staudinger’s finding, the elasticity of polymers
and network systems were explained successfully. To emphasize the important me-
chanical property of the network system, a terminology elastomer was introduced to
replace the term rubberlike material.

In 1941, James and Guth began developed the Phantom Network Theory to the-
oretically calculate the rubber elasticity (James and Guth 1943, 1947 and 1949 and
James 1947). In this theory, the crosslinks fluctuate over time without being hindered
by the neighbouring chains except for only a few network points on the surface are
fixed to define the shape and the volume of the elastomer. The term phantom derives
from the assumed ability of the crosslinks to move around regardless of the topologi-
cal constraints by the network. Frederick Wall, Paul Flory, and John Rehner in 1942
and 1943 developed the alternative affine network theory (Flory 1953). According
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to this theory, the coordinates of the crosslinkings are transformed linearly with the
macroscopic deformation. Both of these theories gives similar result on the elasticity

calculation.

Figure 1.2: Schematic sketch of

part of a typical gel network.

Gel is a 3-dimensional polymer network immersed in solvent (Fig.1.2). Mechan-
ically, it is very similar to the natural rubber. It has very high deformability and
nearly complete recoverability. Depending upon the solvent and other conditions, the
network chains can either repel each other to be swollen or attract each other to be
very compact. The first statistical mechanical treatment of this problem (aimed at
the polymer solution then) were given independently by Flory (1942) and Huggins
(1941).

The Flory-Huggins theory is a mean-field (molecular) theory which is very similar
to that of the Van der Waals gas-liquid theory. The theory (for a handy reference,
see appendix D) predicted a phase transition (do not be confused by the sol-gel
transition) of the network system between the dense phase and dilute phase. In
1973, Tanaka, Hocker and Benedek observed the collective diffusion motion from gel
network using dynamic light scattering spectroscopy. Since then, gels have been under

intensive study. Tanaka (1979a) and Ilavsky (1982) later experimentally observed the
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transition and showed the existence of the critical point in the gel network system
(Hochberg and Tanaka 1979). The phase transition of gels have been found to be
universal experimentally, i.e, the phase transition has been observed from variety of
gels (Amiya and Tanaka 1987). The gel phase transition can be induced by many
factors, for instance, temperature (Hirotsu and Tanaka 1987), solvent compasition
(Tanaka et al 1980; Ilavsky 1982; Hrouz et al 1981; Ilavsky et at 1982), pH (Tanaka
1981b), electric field (Tanaka et al 1982), external osmotic pressure (Hirotsu 1987;
Y. Li, chapter 10) and mechanical external pressure (Y. Li, chapter 6), etc. Fig.1.3
bellow is a typical first order phase transition of N-isopropylacrylamide gels induced

by the temperature.

T T
i . Iso Gel
T 5ol | NoAc: 32mM |
(I L Figure 1.3: Phase transition of
a T w : . .
g 30 | % i N-isopropylacrylamide gel with
= ! 4 32mM sodium acrylate. No-
10 L a4 tice that the volume change is
0.01 0.1 i 10 160 about 100 times
Volume, VA,

The gels we have studies are mainly two kinds. Ore is acrylamide gel, and the
other is N-isopropylacrylamide gel. They have different properties. In pure water,
acrylamide gel is temperaiure insensitive near the room temperature and the N-
isopropylacrylamide gel is temperature sensitive. Depending upon the experiment, we
use one of them as our sample. These gels are formed by free radical copolymerization.

For detailed information about out gel samples, see appendix A.
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1.3 Motivation

Under proper conditions, the volume of a gel can change discontinuously by a factor as
high as a thousand times. The change of volume corresponds to the change in density
of gel network. Phenomenologically, the two phases of the gel can be identified as a
dense and a dilute phase. These may correspond to the liquid and gas phases of a
liquid-gas system. As we have mentioned before, there exists a second order critical
point in the gel system, which is similar to that found in liquid-gas systems. Lee and
Yang (1952) had shown that the lattice-gas system can be mapped onto the Ising
system and vice versa (see also Huang 1965, chapter 16). Experimental results also
strongly support the argument that the liquid-gas system is in Ising universality class
(Heller 1967; Ma 1976). Hence, the similarity between the gel phase transition and
the liquid-gas phase transition leads us to anticipate that near the critical point the

gel will behave like a 3-d Ising system.

On the other hand, many properties of gel network can be understood by applying
the polymer theories. But there are differences between polymer solutions and gels
(e.g., the existence of the gel shear modulus). So one can ask to what extend the
analogy between the polymer solution and the gel system exist and what are the

effects of the differences between them.

The motivation of the first part of this thesis is to experimentally and quantita-
tively examnine the critical behavior of the gel system. Although the analogy between
the polymer system and the gel network system has helped us a great deal in under-
standing the behavior of the gel network, very little theoretical work has been done
directly for the gels. It is not clear to us that how far can this analogy go and under
what circumstances will the difference between them will appear. We wish our work
can provide some helpfu! information in developing a network critical phenomenon

theory.
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The second part of this thesis is related with the structure of the network. The
study of the gel structure is quite difficulty because the the gel systemn often is not
well defined, in another word, many defects exist inside a network. We have probed

the structure of the gel network by using several techniques.

1.4 Thesis Organization

This thesis mainly contains two parts. One is the study the critical behaviour of
N-isopropylacrylamide gel. The other is the study of the network stru.ture by laser
light scattering and mechanical pressure techniques, and also by varying the ionic
group concentration. Along the course of these studies, some interesting properties
of the gel network system were discovered and studied. The fascinating oscillation of
the scattered light intensity is especially worth mentioning.

The first part of the thesis includes chapter 2, 3, 4 and 5. The measurement of
the critical exponents §, a, and v, and related topics are described in chapter 2, 3
and 4 respectively. Chapter 5 is a final summmary and general discussion of the gel
network criticality. From our experimental data, we concluded that the gel network
system behaves like an 3-dimensional Ising system.

The second part of this thesis includes chapter 6, 7, 8, and 9. The major topics of
this part is the structure of polymer network system. In chapter 6, the inhomogeneity
of the gel system is studied by laser light scattering. The oscillation of the scattered
light intensity from gels is discussed in chapter 7. Chapter 8 is devoted to the me-
chanical study of the network system. We directly measured the shear modulus, bulk
modulus and indirectly measured the friction coefficient between the network and the
solvent. In chapter 9, we discuss the property of the network as a function of the
chemical composition by measuring the swelling ratio and other quantities.

Chapter 10 contains some of the unfinished experiments that we consider them
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worth pursuing.

All the information related with our gel samples are given in the Appendix A. Some
of the experimental setups are also described in appendix A. The critical behavior of
the Flory-Huggins mean-field theory is presented in appendix B. We also calculated
the stretching limit of a polymer chain in the appendix C. Finally, the kinetics of the

volume relaxation of gels with certain geometry has been calculated in appendix D.
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Chapter 2

Critical Isobar

2.1 Introduction

Although there are many ways to approach a critical point in the parameter space,
due to the practical limitations, for different systems, often it is more natural to
approach the critical point along one way than another. The conventional critical
exponents are defined along the isochore (Fig.2.1a) (equivalent of the external field
h=0 for the ferromagnet system). Along this path, the system goes from a two-phase
co-existence state to a single phase state. For T < T, the system has two phases,
as the temperature approaches the critical value, the densities of these two phases
approach the criical point along the co-existence curve. For T > T, the density is
equal the critical density p..

The following exponents are defined along the critical isochore,

c, ~ |t (2.1)
§p ~ (~t)° forT < T. (2.2)

Another popular path is the critical isotherm (Fig.2.1b). Along this path, the

system continuously goes from one phase to the other without any discontinuous

13



14 Chapter 2. Critical Isobar

[a] Isochore p (b} Isotherm _ [c]Isobar

p=pc T=Tc P=P

P p p

Figure 2.1: [a] Critical isochore path. For T < T, the system approaches the
critical point along the co-existence curve. [b] Critical isotherm path. The
critical exponent 6 is defined along the path. [c] Critical isobar path. The
exponent &', which is equal é in value, is defined along this path.

change in the density. The critical exponent § is defined along this path.
6P = |6pl°. (2.3)

For a liquid-gas system, we can also approach the critical point along the critical
isobar P = P.. Along this path, we can define an exponent &' similar to that defined
along the isotherm.

6T = |6p|" . (2.4)

Here 6p = |p — p.| and 6T = |T —T.|. In general, the quantity (3P/3T), is an

anaiytic function of T and p. It has no singularity at the critical point. Near the

critical point let us write

Hence
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5P /}’——

Figure 2.2: Relation between
8T pressure § P and temperature §T
5P for fixed density p. The relation

is linear.

where A is a constant. Thus the intersection of the surface of the equation of state
f(m,p,T) = 0 and the plane p = constant is a straight line (figure 2.2). Substituting
eq (2.6) into eq {2.4), we find immediately that the two exponents defined in eq (2.6)
and eq (2.3) are the same. In later part of this thesis, we are not going to distinguish

between § and &' unless it is necessary.

Figure 2.3: All experiments were

h 4 done with the gels _freely sur-
rounded by water, i.e., the chem-

=0 B0 ical potential of water molecules
~d inside and outside the gels are the

y same. In other words, the osmotic

pressure of the network is zero.

During all of our experiments, the gels were immersed in water (figure 2.3). In

equilibrium, the total osmotic pressure of the gel network is zero. This fact makes
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the isobar (i.e, osmotic pressure ¥ kept constant) path the most natural experimental
path. This experimental condition is different from those of the Ising systems like
liquid-gas or binary liquid, which are usually examined under isothermal or isochoric
conditions. This also makes it difficult to directly measure the conventionally defined
exponents, like , 8 and v, which are measured along the isochoric path.

In general, the equation of state of a gel network systern can be written as

f(=,V,T,0,{yi}) =0, (2.7)

where 7 is the total osmotic pressure, V the volume, T the temperature, 6 is the
network-solvent interaction parameter, {y;} are the network structure parameters,
including the polymer constituent concentration and the network cross-linker concen-
tration. As we have mentioned before, in equilibrium the osmotic pressure 7, as a
function of V, T, @ and {y;}, is zero. The critical isobar of the system is then deter-
mined by @ and {y;}. Although it is common to vary the solvent (0) to investigate
phase transition of gels, in our experiment we have chosen to use water as our solvent
and vary {y;} to achieve the critical point. The advantage of this is that the solvent
is simple and stable. Compared with a complex solvent (mixture of more than one
solvent), preferable absorption of solutes to polymers (see section 9.2), which usually
depends on the temperature, is eliminated. The disadvantage is that many samples
have to be made with varying chemical composition in order to find tke gel that can
reach the critical point.

2.2 Critical Exponents Along Isobar
The critical behavior of a thermodynamic quantity R can be expressed as

Riying ~ As|z|™* 4 higher order terms, (2.8)
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where R,;s, is the singular part of R, z is the path variable, A_ aud A, are the
amplitudes for z < z. and z > z. respectively, s is the critical exponent of R measured
along the path z.

In general, the critical behavior of a thermodynamic quentity is path dependent,
i.e, the critical exponents and the ratio of the amplitudes A /A4 measured from
different paths are different. But so long as the free energy of the system is analytic
everywhere except at the critical point, the expon'ents measured from different paths
are related. ‘

First of all, we would like to point out that the ratio of the amplitudes A_/A, is
an universal constant within an universality class. For liquid-gas system, in the case
of the specific heat, the ratio is: A_/A4 = 1/2. Thé ratio of the amplitudes is related
with the fact that the available states for the fluctuations (excitations) of the order
parameter are different for z < z. and z > z.. Intuitively, it may be remembered as
follows. Imagine a small amount of beat, 6@, is deposited in the system. ForT < T,
the 6Q is shared by the two co-existence phases resulting a smaller 6T (by a factor
of 2), yielding a larger heat capacity. This kind of argument can be applied to other
respoase functions like isotherm compressibility. |

Along the critical isobar, however, the amplitude 'i_rat.io A_[A,, is guaranteed to
be the unity, i.e., the behavior is symmetric. This is pfima.rily because that along the
critical isobar, the system never enters the two phase éo»existence region.

To derive relations among the exponents obtained ﬁom the critical isobar and the

conventionally defined ones, we start from the scaling form of the free energy (Stanley
1971)(note’),

F(t,p) = *=°g(pt™", 1), (2.9)

where t and p are the reduced temperature |T — T¢|/T. and the reduced density

1This is a very natural result of the renormalization group theory.



18 Chapter 2. Critical Isobar

le = pel/pc, respectively, a is the exponent of C, along the isochore and f is the
co-existence curve exponent. g(x, y) is 2 general homogeneous analytic function for

finite x and y, and satisfies (stanley 1971)

Ag(z,y) = g(A°z, \'y), (2.10)

where ) is an arbitrary number, a and b are the intrinsic properties of the function g,
called the degrees of homogeneity of function g. Along the isobar, p ~ t1/é, Since in
general 1/6 is smaller than g the first argument of the function g of eq. (2.9) is infinite
at the critical point and the function is not well defined. It is, therefore, necessary to

rewrite eq. (2.9). Choosing A = y~'/* and A = z~1/°, we get two equations,

9(z,y) = y**g(zy~°", 1) = 2V/°g(1,yz ). (2.11)

From eq. (2.11), eq. (2.9) can be rewritten as

F(t,p) = p'T g(1,tp™1/°). (2.12)
The heat capacity is then
| &F

~ pTg"(1,tp71%).

Here ¢" is the partial derivative of the function g(x,y) wi... respect to y. Along the

critical isobar, p ~ t!/¢, ¢”(1,0) is a finite constant,
C, ~to/P5, (2.14)

The critical exponent of C, along the critical isobar is defined as a,,

«a

5 (2.15)

Qr =

~ e Rwm o e
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By the same argument, the compressibility xr along the critical isobar can be

calculated,
xr ~ t~1%, (2.16)

where 7 is the compressibility exponent along the critical isochore. Thus we have the

exponent of xr along the critical isobar,

=L
Ve = 56" (2.17)
If we define
1
Be =% (2.18)
then, by using the scaling laws:
a+2f+v=2 (2.19)
and
at+pé+1)=2, (2.20)
we have the following scaling laws,
(ar +28. + ‘71)'5- =2, (2.21)
and
foa + Be(6+ IS =2 (222)

Notice the similarity between eq. (2.19)-(2.20) and eq. (2.21)-(2.22).
If we know any two of the exponents above, we can caiculate all the others. In
our experiments, we measured a, and §, so we can determine other exponents:

20,6

C T Britad) 223
2

B = Grivady (224)

26-1) (2.25)

TE G+1ltanb)
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Figure 2.4: 6T, _.. and 8T\ a0bar

measured along co-existence

curve and the critical isobar.

For fixed density, there is a

scaling relation between them.

Another way of deriving the above results js schematically described in figure 2.4.
The relation between the density 6p and the temperature 6T has different power along

the coexistence curve and the critical isobar,

bp ~ (6T.o-s)’, along co — ezistence path (2.26)

ép ~ (6Tisobar)'®, along isobar path. (2.27)

For fixed density ép,

6Tco—et ~ (6Tt'nob¢r)l/ms- (228)

The physical meaning of eq (2.28) is quite clear. Along the critical isobar, the dis-
tance from the critical temperature, §7;,,5,, is closer than that along the co-existence

curve. In another words, the distance has been scaled by power 1/86. The specific
heat diverges as

C ~ (6Tpoue)™® (2.29)

~ (Jy}aobar ) —a/ﬂE.
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So we have the same result as we had before

Qe =

a
5 (2.30)

The same argument will give eq (2.17) and eq (2.18).

2.3 Measurement of the Exponent §

S S T q
10} 0 o} D MMC
1.2}]0 D D MMC
14}0 ] D MMC Figure 2.5: Isobar behavior of
o
% 1.6)0 D o M M C the gels. D stands for dis-
i8] popoooD % C C
20lboppboboDOD g MC ¢ continuous volume transition,
22|00 0DDODDDDMMCC C stands for continuous transi-
40D DDDDDMMCC ) .
24 tion and M stands for marginal
10 14 18 22 26 30 .
BIS transition (hard to tell).

In this experiment, we measured the density of the gels as function of temperature
by measuring the swelling ratio of the samples. Cylindrical N-isopropylacrylainide
(NIPA) gels with different chemical composition were made inside micropipettes at
0°C. The concentration of the network main chain components, N-isopropylacrylamide
(ISO), varied from 78mg/cc to 203mg/cc by 16mg/cc increments. The cross-linking
molecules, N,N-methylenebisacrylamide (BIS), varied from 1.33mg/cc to 4mg/cc by
0.27mg/cc increments. The inner diameter of the micropipettes was 0.508 mm. After
being taken out of the micropipettes, the gels were kept in water for several days

before they were used for the experiments. Then these gels were cut into ~ 1.5mm
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long segments and transferred into a temperature controlled transparent cell which
can hold 24 samples. The temperature of the cell was controlled to within 0.5 mK and
was stable over many hours. The diameter of the gels was measured with a micro-
scope. For each chemical composition three segments were measured and the average
was taken. Near the critical temperature the increment in temperature was 10mK.
The density of the gels was calculated by knowing the pre-gel solution concentration

of the network constituent (7.8%) and the equilibrium gel diameters.

34.5 '0 v L v l- L l. o LB v L]
| ‘\ [a] | | ‘\ [b]
'OG. - b B ) - o .
o ! :, [ %
§ 325} w1 F ‘.
- . o

NS5E, . o

0.55 0.75 0.95 0.55 0.75 0.95
Diameter, D/D, Diameter, D/D,

Figure 2.6: Nearly critical isobars. [a]. Chemical composition: ISO 156mg/cc,
BIS 3.45mg/cc. [b]. Chemical composition: ISO 140mg/cc, BIS 3.45mg/cc.

From these diameter (D) and temperature (T) measurements, D-T curves were
plotted. Some of these curves are continuous and some are discontinuous. Fig.2.5
is a map of the isobar behavior of the gels with different chemical composition. All
the gels with BIS concentration less than or equal to 3.20mg/cc were discontinuous,

whereas all the gels with BIS concentration greater than or equal to 3.7mg/cc were
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continvous. The critical isobar is identified as the curve that is the closest to the
curve which has the smallest discontinuity. Fig.2.6 are the two D-T curves that are
the closest to the critical isobar from the ordered and the disordered phase side.
In Fig.2.6, sample-a is continuous and sample-b is weakly discontinuous. We chose
the sampla-b to be the critical sample. The chernical composition of this gel is ISO
140mg/cc, BIS 3.45mg/cc in water. The technical aspect of the sample preparation

can be found in the appendix A.

’ t 1 ] T M "i
s T¢Te @t
¢ i Te = 33518 C ..Q... 9
g , s = 0182 v 4
(] oo
£
& o ® <
Figure 2.7: Log-log plot of the
0.1 S — critical isobar. The inverse of
-5 -4 -3 -2
10 10 10 10 .
the slope is the exponent 6.
T-Tel/Te

Fig.2.7 is generated from Fig.2.6.b. The critical point is determined such that the
T > T. part of Fig.2.6 is parallel with the T < T, part. The numerical value of T,
and p. are, 33.518 and 0.182, respectively. Fitting the T < T, part of the data in
Fig.2.6 with 2 straight line with a 95% confidence limit a slope 4.2 + 0.5 is obtained.
This is the exponent 6. The value of § for the gel agrees with other measurements
on 3-D Ising systems. We did not fit the T > T, part of the data because the errors

associated with those points were much larger.
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2.4 Summary

o Derived the relations among the isobar exponents and the conventionally defined

ones.

e Mesasured the exponent 6, 6 = 4.2 £ 0.5.



Chapter 3

Measurement of the Specific Heat C,

3.i Introduction

In this section, we shal' emphasize the universal properties of the n-vector systems. It
is very important to realize that there are only very few material dependent parame-
ters in these problems (often 2, see Aharony and Hohenberg 1976). The elimination of
these material dependent parameters by combination of other thermodynamic quan-
tities yield universal (material independent) constants within the universality class.
Ever since the celebrated establishment of the renormalization group (RG) theory
(Kadanaff 1966, 1967; Wilson 1971, 1983), we have gained tremendous amount of
insight of the critical phenomena. In the past fificen years, the study of the critical
behavior of the specific heat has been particularly intense. The calculation of the
critical properties of the n-vector systems has reached high precision (Guillou and
Zinn-Justin 1977; Bagnuls and Bervillier 1985a; Bagnuls et al, 1987). Table 3.1 lists
some of the results obtained by Bagnuls and Bervillier (1985a) and Bagnuls et al

(1987). They are in excellent agreement with experimental results.

25
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Table 3.1: Numerical calculations of the critical properties (Bagnuls
and Bervillier 1985). The numbers in the parenthesis are error bars of
the calculation.

n v K} a A

1 0.6298(7) 1.2407(12) 0.1108(21) 0.496(5) -0.7081(5)
2 0.6689(10) 1.3160(20) -0.0066(30) 0.524(4) -1.057(22)
3 0.7047(9) 1.3864(28) -0.1142(27) 0.3501(3) -1.3785(41)

M

The general critical behavior of the specific heat C can be expressed as

C = Aslt]™ [1 + D4|t|®] + B + Bi,. (3.1)

Where A is the correction-to-scaling exponent, D, and D_ are the amplitudes for
T > T. and T < T, respectively, B, is a non-trivial constant coming from the four-
point correlation function (Bagnuls and Bervillier 1985b; Nicoll and Albright 1986),
B,, is the experimental value of specific heat measured far from the critical point.
The value of A is both theoretically (Saul and Jasnow 1975; Bagnuls 1985a, 1987)
and experimentally (Beysens and Bourgon 1979; Bourgon and Beysens 1981) known
to be very close to 0.51 + 0.01 (varies from model to modei and sample to sample).

Many combinations of the amplitudes, A4, A, D4, D_, etc, have been proven to
be universal constants within an universality class (see table 3.1). An interesting re-
sult has been obtained relating A, /A_ with the specific heat exponent o (Barmatz,
Hohenberg and Kornblit 1975; Aharcay and Hohenberg 1976; Chase and Kaufman
1986) (figure 3.1)



A0 © A * 415
a /_A_/ Figure 3.1: Relation among the
a 0 >8 410 ;:_t amplitude retio A, /A_, the expo-
*  nent a and the number of com-
\° 405 ponents n of the order parameter
d ' : (experimental results).

1 2 3
n

A4/A- =1 = Pa+ 0(c?), (3.2)

with P &~ 4. The ratio of A,/A_ is very interesting since it must be exactly equal
to unity when a = 0 (the critical singularity becomes logarithmic). Hence n = 2
(a = —0.008) is very close to ng at which the value of o vanishes. The ¢ expansion
yields (Bervillier 1986) ng = 1.942 + 0.026.

Table 3.2: Ratio of the specific heat leading am-
plitudes A,/A_ (Bervillier 1986) and the cor-

rection-to-scaling amplitudes D, /D_ (our Pade

n A.lA D,/D_
1 0.524(10) 1.25
2 1.029(13)  1.172
3 1.521(0.022) 1.13

calculation based on the result of Chang and
Houghton 1980)

The ratio of the correction-to-scaling amplitudes are also universal constanis(Aharony
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- and Abler 1986)

&»\"

J

Di/D; = ot O(e), (3-3)

where D, is the amplitude of a thermodynamic quantity with critical exponent A; and
mean field exponent X9, ¢ = 4 — d with d the dimensiorality of the space. For the

same thermodynamic quantity, we have

D./D_ =1+ 0(e). (3.4)

Although the accurate value of D, /D_ is not known, one thing we know well is
that the ratio is a positive value. Table 3.2 lists some of the theoretical results. To
the best of our knowledge, there is no reliable experimental result of D, /D_ at this
stage.

The constant B,,, can also be used to construct universal constants (Bagnuls and

Bervillier 1985; Nicoll and Albright 1986)

_ Ag|Dglol2

+
Rs., aB.

(3.5)

Some of the calculated value of RE_ are also listed in table 3.1.

3.2 General Discussion

Because the gel system constitutes mainly water (solvent), the effective mass is very

small (The singular part of the heat capacity comes from the network and a very thin



Figure 3.2: Specific heat sample
cell. The mass of the empty cell is
1.8970mg. The capacity is 220ul. The
effective resistance of the heater is 320
(total 379, 1.2Q/in). The 6Q de-
posited in the holder is 6.704mJ.

layer of the surrounding solvent). In general, the total mass of a specific heat sample is

Myotal = Meell + Moolvent + Muetwork- (3.6)

Where m,.;; is the mass of the sample container, ~ 2000mg; m,o1pen: is the mass of
the solvent, ~ 220mg. The mass of the network m,.(yorx, Which is primarily where
we are getting the signa! from, is only about 10% of the mass of the solvent, ~ 20myg.
This mass is only about 1% of the total mass. In other words, in order to be detected,
the singular part of the specific heat of the network has to be much larger than that

of the container and the solvent.

Now we wish to do some theoretical discussion about the heat capacity measure-
ment process (figure 3.3). Assuming we have a perfect thermal conducting sample
with heat capacity C, the insulating material has thermoconductivity K (very small),
then we can derive the temperature response function §T'(t) of the system. The resuit

is
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&T

8T(0) ~2

Figure 3.3: Ideal §T(t). The

heater is turned on at ¢ = 0 and

turned off at ¢t = ¢,.

%\Q(l—e‘é‘) for0<t <t
§T(t) = (3.7)
&Q(l —eBro)e-Flt-t) for 40 < t < 0.

Where K and C are the thermoconductivity of the insulator and the heat capacity
of the sample, respectively. The heater is turned on at ¢t = 0 and off at ¢ = to. This
result is plotted in figure 3.3. In the case of to €« 7 = C/K, we have

.%Qt_:. for0<t< to
§T(t) = (3.8)
%e'é(““) for to < t < o0.

At t = to, we have C = 6Q/6T(t;). For a real sample, the thermal conductivity is
finite, then the plot in figure 3.3 will be smeared (in our experiment, ¢, = 20 seconds,

C/K ~ 400 seconds).

In principle, the heat capacity measured this way is always an average of the heat
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capacity from T to T + 6T. This gives a natural limit of the experiment. in other
words, the width of the heat capacity peak will have a lower bound = 6T, which
is about 3mK in our experiment. The portion of the peak within T, & 6T will be
smeared.

Another limiting factor is the response of the instrument. Due to the finite size
(and mass) of the thermistor, there is a time delay between the actual temperature
of the system and the temperature indicated by the thermistor. In our experiment,
the delay is about 2 seconds. Because this instrument is developed on the try-and-
improve basis, there are certain room for future improvement (for instance, using

better thermistor).

3.3 Experimental

In this study we measured the specific heat C, of the critical gel along the critical
isobar path. Figure 3.4 is a schematic description of the experimental procedure. The
calorimeter used in the experiment was computer-controlled. The gel was brought
slowly to equilibrium at temperature T. Then a small amount of heat, GQ, was de-
posited into the system and the temperature increment, 6T, was measuredji The heat
deposited, 6Q, was fixed at 6.7mJ. The temperature jump, 6T, which was around
2 ~4mK, was obtained by fitting temperature response of the system, 6T(t), to an
exponential function and extrapolating the fit to the t = 0 point. Figure 3.5 is a
typical measurement of §T'(¢).

Data were collected three hourr after the equilibrium temperature had been set.
Three response functions were taken at each temperature point, with a thirty minute
time interval between each run. The long time (24hrs) temperature stability of the
sample holder was around £0.5mK, the short time (2hrs) stability was better than
40.2mK. The temperature increment rate decreased from 50mK/5hrs to 3mk/5hrs
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(8Q, 8T) N
\J —

time

.

Figure 3.4: Schematic description of the experimental procedure. The
systemn is brought to equilibrium slowly, then a small amount of heat,
6@, is deposited in to it. The temperature response of the system is
measured and analyzed by fitting to a single exponential function. The
- temperature jump is obtained by fitting the response process to a single

exponential function.

as the critical point was approached. The mass of the sample was about 240mg. The
mass of the sample container (with heating coil, thermistor, leads, etc) was about
1.9g. The sample consisted of hundreds of small pieceé of gel of linear size ~ 0.7 mm.
The small sample size was needed to enhance the equilibration speed. These pieces
were prepared by pressing a bulk gel through a fine sieve mesh twice. Then they were
shrunken by heating to 30 °C and the excess water was removed to increase the sam-
ple network volume fraction. The raw data was processed to obtain the specific heat,
C.. This involved subtracting the heat capacity contributed by the sample container

and the background water according to the the following formula:

Mo GE M VW Meeen oy
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6F R ' '
g T=31°C
'5:; 4 - - Figure 3.5: A typical temper-
- i ) ature relaxation process mea-
s 2 - ) sured at T = 31 °C. The heater
0Fd L was turned on at t = 50 sec-
0 5 10 15 20 onds, turned off at t = 70 sec-
time [min] onds.
Co = — [Coat = Costt = (1 = r)Corn]. (39)

Where Cioral i the total heat capacity, 6Q/6T, Ceu is the heat capacity of the
empty sample container, C,, is the specific heat of water and r is the ratio of the mass
of the gel network to the total mass of gel, m. The parameter r is estimated to be 0.1.
The specific heat of water (blank sample) was measured to be 4.53JK~'g~1. This
is 8% higher than the known value 4.18 JK~*g~!. Since the temperature relaxation
process near time zero is multi-exponential rather than just a single exponential, this
discrepancy could be due to the definition of 6T. In eq. (4.1) we used the specific
heat value 4.53JK~1¢~! to ensure consistent data analysis. The systematic error in
the measurement of the specific heat can be large probably due to the lack of detailed
information about the chemical reaction efficiency (estimate of r) and the effective
resistance of the heating coil. We believe, however, that these factors only add a slow

background contribution to the data. The observed critical behavior of the system

= O TR Bem B G TR RGRER
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should not be affected by them. Fig.3.6 is the specific heat of the sample with the

critical chemical composition along the critical isochore.

di | Tc=332°c

— 30 -
_:_0'0 25.. -
3 20 .
© 15t -
10 | -
SF | ) s

31 32 33 M4 3B 3% 37
TEMPERATURE [°C]

Figure 3.6: Specific heat of N-isopropylacrylamide gel along critical
isobar. The solid curve is the fitted result.

For more detailed information about this instrument», see appendix B.

3.4 Equilibrium

G. Sanchez, M. Meichle, and C. W. Garland (Sanchez 1983} pointed out that heat
capacity data of a non-equilibrium system may exhibit hysteresis between warming
and cooling measurements. In our experiment, however, no hysteresis was observed
(figure 3.7). We also compared the data taken three hours and four and one half
hours after the temperature had been set (figure 3.8). We summed over the differ-
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Figure 3.7: Specific heat of ISO gel with Iso=700mM, Bis=8.6mM.
Open circles and the solid dots are the data collected in the heating

and cooling processes respectively. We have detected no hysteresis.

ences of the §T’s at each point and compa:éd with the average of 6T, we found that
the difference is less than 1%. All these indicate that the data were taken under
equilibrium conditions. This experiment was repeated on another sample with very
similag chemical composition. All the experimental results reported here were fully

reproducible.

Finally, we would like to point out that although the experiment was done along
the * = . (isobar) path, we can consider the volume as a constant during each mea-
surement. This is because the temperature relaxation time, which is approximately

400 seconds, is much smaller than the volume relaxation time, which is approximately
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35 N T . T 1° T ! f v
30 - 3, Is0=18, Bis=2.6
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Figure 3.8: Specific heat measured 3 hours after the temperature had

been set and 4.5 hours after. The difference is found to be less than

1%.

10* seconds (Tanaka 1979b).

3.5 Exponent a,

Theoretically, one of the important aspects of the specific heat singularity along the
critical isobar is that it is totally symmetric. This is because along the isobaric path,
the system never enters the two-phase region (more details later in this section). This
is different from that of the isochoric path, which generally is not symmetric (Chase

1986; Bervillier 1986). In that case the system goes from the ordered state to the
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disordered state, or vice-versa.

We fit the data in figure 3.6 to the following function:

C. = Alt|™ [1 + D|t|*] + B+ ¢(T - To). (3.10)

The correction-to-scaling (Bervillier 1986) exponents, A , was fixed at 0.5 (known
both theoretically and experimentally). The data above and below T. were fitted
simultaneously by a least-squares fit with all the data point weighted equally. The
fitting was carried out for |t| > 3.3x 1075 only. This was done to avoid the fitting error
caused by the finite response of the instrument at the singular point. The quality
of a fit is indicated by the x? value. We first fit all the parameters to the whole
temperature range of the experiment. Then smaller temperature ranges were fitted
with the parameter c fixed at the whole range value. All the fitted parameters were
found to be very stable for all the ranges we tried except when |T" — T.| was less than
0.5°C. When |T —T.| < 0.5°C the tail of the data was too small to allow a reasonable
fit. We also performed the F-test on the exponent a with 95% confidence limit. The
distribution of x? is presented in Fig.3.9. From Fig.3.9, we find that error on ay
with a 95% confidence limit is —0.05 £ 0.13. The large error bar here is probably
due to the fact that our sample is a mixture of small pieces of gel and water. The
thermal conductivity of the sample as a whole is not homogeneous, and the spatial
distribution of the thermal conductivity changes as the gels change their size. Since
the thermal conductivity affects the temperature relaxation time, the change or the
thermal conductivity can change the value of the temperature jump. Using much

smaller gel pieces could be the solution to this problem.

For Ising system, in general, 6 > 1, 80 ay < a. This indicates that o, is 2 lower
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-03 -=0.1 0.1 0.3 Figure 3.9: Normalized x* dis-

exponent o, tribution of the exponent a.

bound on a. After the exponent renormalization (see part C of this section) we have
ax ~ 0.05, which is indeed smaller than the expected Ising value for . The numerical
values of the conventional exponents are calculated by using egs. (2.15)-(2.17) and

are listed in table 3.3.

Now come back to the symmetry feature of the specific heat. To have a quantita-
tive result, we fitted the data to eq (3.1) (with the independent amplitudes for both

T <T,and T > T,), the results are

=099
(3.11)
p= = 0.90.

This result is exactly what we expected for the heat capacity measured along the

critical isobar.
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3.6 Temperature Relaxation and Fisher Renor-

malization
10 LI ML D B ] L] LR B L AL L v | v ¥ v | v
= [o] T=31.0°C [b] Te33.288°C [c) T=36.5°C
T, \
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Figure 3.10: Relaxation process. [a] T €« T; b] T ~ T¢; [¢] T » T.;
[d] William-Watts decay time. [e] William-Watts exponent.

Recently, S. T. Sur, Y. Li, E. Sato-Matsuo and T. Tanaka (Sun 1989) have investi-
gated the inhomogeneities of gels and their critical behavior by light scattering. They
found that gels have inhomogeneities embedded inside the network. Depending upon

the gelation conditions, the inhomogeneities can be very large. They also found that
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when the critical point is approached, that not only does critical opalescence exist,
but also that the intensity of light scattered from the inhomogeneities diverges as
well. The inhomogeneities seem to appear during the temperature relaxation process
(see figure 3.10a-c). In our experiment, we also analyzed our temperature relaxation

data, 8T (t), by the William-Watts relaxation form (Palmer 1984; Lindsey 1980):

6T (t) = 6T (0)ezp [—(t/r)”] . (3.12)

Where S is the William-Watts parameter. In general, when a relaxation process
can be well fitted by eq. (4.3), the process can be explained as a multiple relax-
ation process, and the parameter § is related with the width of the distribution of
the relaxation times 7 (Palmer 1984). The smalier the value of B, the broader the
distribution will be. Fig.3.10d and Fig.3.10e are the fitted parameter # and 7 as a
function of temperature. Clearly the relaxation process is very different when the
critical point is approached. Adopting the argument of Ref.(10), we see that near
the critical point the relaxation process becomes multi-relaxation process. Despite
the large background contributions to our data by water, which constitute 90% of
our sample, and the massive container, we found that the change of the value of 3 is
surprisingly large. In comparison, the decay time of the pure exponential fit in Part
A of this section is constant within 5% for the entire temperature range including
the critical temperature. So the critical slowiag-down was not observed.

The anomaly in the temperature relaxation process may be an intrinsic property
of the second order phase transition, in which case it will be universal and should be
observed in other systems. On the other hand, it could be related with the inhomo-
geneity divergence at the critical point. Near the critical point the density difference
between the static inhomogeneous domains is very large. Domains of different size

will have different relaxation times and thus multiple relaxation processes will be
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observed.
Fisher (Fisher 1968, 1970) pointed out that the critical exponent renormalization
pheromenon may be observed when there exists a hidden variable in the system. The

renormalized exponents can be expressed as

CR =~ T (3.13)
_ p

ﬂR - 1 — a’ (314)
_ v

TR = 1 — ' (315)

where the subscript R indicates the value expected to be observed experimentally
when the system has a hidden variable., called the renormalized parameters. Notice
the minus sign in front of the ar expression. The fisher critical exponent renormal-
ization phenomenon has been observed in many experiments (for instance, Garland,
Rouch, et al, 1988)

In the case of gel, the hidden variable may be the structural inhomogeneity. Fol-
lowing Fisher’s argument, the experimental exponents are in fact the renormalized
exponents. By using eq. (3.13)-(3.15), we get the intrinsic exponents a,f and 7.
They are listed in the last row of table 3.3 below.

Table 3.3: Critical exponents calculated
a B v

-0.08+0.19 0.40+0.08 1.3+0.4
0.09+0.16 0.36+£0.07 1.2+0.3

from experimental value a, and 6. The
last row takes the Fisher renormalization

into account.
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3.7 Summary
o Measured the specific heat of N-isopropylacrylamide gel along critical isobar.
o The specific heat is symmetric with respect to the T, along the critical isobar.
e The direct fit yields an exponent a, = —0.05 3 0.13.

o We observed the critical temperature relaxation anomaly.



Chapter 4

Light Scattering Study of the Gel
Criticality

This chapter is intimately related with chapter 6 and chapter 7, "Light Scattering
Study of the Network Structure” and ”Oscillation of the Scattered Light intensity”.

4.1 Introduction

The scattering of light by a media is caused by the interaction between photons and
the media. Given a media, there are many degrees of freedom for each particle of
the media. The light scattered from each degree of freedom of the particles will give
information about that degree of freedom. For instance, Raman scattering provides
information about the energy spectra of molecules. In general, the absorption of ul-
traviolet, visible, infrared, and microwave radiation can provide detailed information
about electronic, vibrational, and rotational energy levels of molecules. The scatter-
ing related with ihe translational degree of freedom of molecules is commonly called
Rayleigh or Brillioun scattering. In this thesis, we only concentrate on the Rayleight
scattering.

The Rayleight scattering of light by a media is caused be the inhomogeneities of
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i(q, w)

1 1
Wo— Wy Wy Wo+ U

Figure 4.1: A generic light scattering spectrum. The x-axis is the frequency
of the scattered light, wo is the frequency of the incident light. The central
peak is the Rayleigh scattéring (quasielastic light scattering) and the other
two peaks are the Brillioun doublets (Doppler shifts).

the optié index of the media, or the fluctuation of the dielectric constant. There are
many ways of introducing fluctuations in the media, some of them are, for instance,
the thermal fluctuation of the particles in the sample, impurities (or mixture of dif-
ferent substances), etc. Among them, the thermal fluctuation is the most frequently
encountered one. Because of the interaction among the particles in the sample, there
is & correlation among the behavior of the particles. Within the correlation distance,
the particles are strongly correlated, but beyond this distance, they are virtually in-
dependent to each other. The correlation length, £, defines the size of the objects that
will scatter light in a coherent way. When the critical point of a system is approached,
the correlation length becomes larger and iarger, and eventually reach the size of the

order of the incident light wavelength, A, when this happens, tremendous amount of
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light will be scattered. This pheromenon is called critical opalescence.

The dynamic laser light scattering technique can be dated back to 1914, when Leon
Brillouin predicted the doublet, now known as Brillouin-doublet, of the scattered
light spectrum from a thermally excited density fluctuations in an isotropic body
(Brillivon 1914, 1922) (figure 4.1). The doublet symmetrically spaced around the
incident frequency with frequency shift w proportional to the sound velocity ¢ in the
medium and the propagation vector length ¢ of the density fluctuation giving rise to
the scattering:

w = %eq, (4.1)
with g related to the wave length A of the light and the scattering angle 6

q= 3;’5 sin (6/2). (4.2)

So the Brilliuon scattering is essentially the Doppler shifit of the incident light by
sound waves propagating inside the sample. The width of the brillioun peak is the
lifetime of the sound wave.

The first experimental demonstration of frequency distribution was made by Gross
(Gross 1930, 1932). In additicn to the doublet, he also observed a central line
(Rayleight -line). The central line was explained successfully by Landau and Placzek
(1934) (also Kadanoff and Martin 1963, Mountain 1966 for the complete derivation of
the final formula. also see Stanley 1971) as the scattering from non-propagating den-
sity fluctuations caused by the entropy field at a constant pressure field. According to
their theory, the Brilliuon doublet originates from density fluctuations preduced by
propagating fluctuations of pressure at constant entropy (adiabatic sound wave). A
prototype light scattering spectrum is given in figure 4.1. In all of the experiments we
did, we had only concentrated at the central peak, i.e., quasi-elastic light scattering.

Figure 4.2 is a schematic description of a typical laser light scattering setup. There
are two types of scattering related with the central peak of figure 4.1. One is called
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Figure 4.2: A schematic representation of the laser light scattering

experiment

elastic light scattering, which measures the total scattered light intensity at a fixed
angle, I(q), (equivalent of integrating the central peak over frequency w), the other
is the quasi-elastic (or dynamic) light scattering, which measures the spectrum by
either passing the scattered light through a spectrometer (frequency domain, I (w,q))
or measure the auto-correlation function of the scattered field (time domain, I(t,q)).

The dynamic light scattering measures the scattered electric field auto-correlation

function g,(t) from the sample,
91(t) = (E, (1) E,(0)). (4.3)

Where E, is the scattered electromagnetic field. The direct measurement of the
91(t) can be achieved by either the interference between the scattered field and a
reference beam (heterodyne) or the interference between the scattered field only (ho-

modyne). Because of the fact that only the scattered intensity is detectable by most

e (T e A=
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t
g® Figure 4.3: Quasi-elastic dy-

namic auto-correlation func-

tion. The small tail is the de-

time layed baseline for reference.

of the detectors, the heterodyne measurement yields,

9(t) = (EL(t)E,(t)EL(0)E,(0)), (4.4)
= (EL-(t)EL(O))(Ea-(O)Es”))

Const - gy(t).

Where EL os the field of the reference beam (local oscillator). The last step is obtained
by using the fact that the reference beam is always correlated.

The homodyne technique measures the scattered intensity correlation function

92(t)-

9:(t) = (L(t),(0)), (4.5)
= (E."(t)E.(t)E,"(0)£4(0)),
= Const[l + |g:(t)|?].

The last step is obtained by assuming the sample fluctuation is a gaussian process
and the scattered field obeys the gaussian statistics.
Figure 4.3 is a generic curve of the correlation function measured by the laser

light scattering. Usually the heterodyne correlation function can be fitted by a single

o v R

wR TR oW ""



48 Chapter 4. Light Scattering Study of the Gel Criticality

exponential function,

g(t) = Ae™P7t 4+ B, (4.6)

where A is the amplitude and B the background signal. The coefficient D is called
Collective Diffusion Constant in the case of gel. There will be a factor of 2 in front

of the D if the homody:e method is used.

4.2 Critical Behavior of D and 1

In 1973, Tanaka, Hocker and Benedek (Tanaka 1973) developed a theory describing
the behavior of the scattered light from a gel sample. The basic equation from which
they started their analysis is the most general equation of the motion of the gel

network (Newton’s second law)

&u . ,Ou
Pz =V oI5 (4.7)

Where u is the displacement vector of the network element, p the density of the
network, { the friction coefficient between the network and the solvent, & is the stress
tensor. The auto-correlation function of the polarized and depolarized scattered light

they obtained are, respectively,

_ I sing 2 LkT K +4p/3
a1t @t = — (c) Y] (8 )Tp’———K+4”/3ezp( —F ) (4.8)

~  Apiezp (—D,q’t)

cc Ouzy

2
91(4,Qaep = — ::Rf ( CD) LkT.,zp (—E-q’t), (4.9)

~  Adpezp (—Deg’t) .
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Where A is proportional to the scattered intensity and D the collective diffusion

constant. They are,

f A = 5T
= Ryw
3 polarized light scattering,
— K+4u/3
\ - 5
4 A _ LI
)
< depolarized light scattering.
D= 4

(4.10)

(4.11)

These results relate the light scattering quantities with other basic properties of the

network system. By measuring the polarized scattered intensity and the decay time,

we can obtain (K + 44/3) and f.

We can also relate these quantities with the density-density correlation function

of the network g(r) = (1/8) (Ad(r)A¢(0)) (Tanaka 1985),

_ 1
K = = [ gy,

-1 _ g(r)
;.= 6xn,rdr’

Using the Ornstein-Zernike formula

9(r) = C Zezp(~r/),

we have

kT

b 6xy¢’

kT

41’01‘0{2 ’

Where ¢ is the density-density correlation length. Near the critical point

K =

€~ ™.

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

- m- R R R
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So the collective diffusion constant D and the scattered light intensity I have the

behavior

D ~ i, (4.18)
I ~ |tI™ = | (4.19)

So we see that by measure the critical behavior of D or I, we can obtain the ex-
porent v, and 7, (by definition, K~ is proportional to the isotherm compressibility).
In the above, we have used the assumption that the critical behavior of the shear
modulus is gimilar of stronger (bigger exponent) than that of the bulk modulus. Our

assumption is justified by the following,

o Near the critical point, the local network density fluctuates. The elastic property
of the network is determined by the dilute parts of the network (weaker areas).

So near the critical point, both K and g goes to zero.

e Our critical temperature measured during the critical isobar, specific heat, and
the collective diffusion constant are 33.52 °C, 33.32 °C, and 33.52 °C respectively.
Within the experimental error, these values are essentially the same. This is
in contradictory with the basis of Onuki’s assumption (He used the result that
there is 1°C difference in the critical temperatures measured by izobar and the
light scattering, which we believe was due to the fact that the experiment was

not conducted under equilibrium).

4.3 Experimental Results

The sample we used is the same as the ones used in the experiments in chapter 2
and 3 (they all come from one big gel). The sample, with linear size of 8mm, was

immersed in water in a quartz optical cell with side ~ 10mm. The cell temperature is

e
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regulated down to a fraction of 1mK. The details about the control of the temperature

is described in appendix A.

Figure 4.4: Relation between

the collective diffusion constant

and the scattered light inten-

Intensity, | sity.

We have shown recently that there are inhomogeneities inside the gels (Sun 1989,
also chapter 6 of this thesis). The intensity of the scattered light is position dependent.
During the experiment, we discovered that the diffusion constant D is closely related
with the scattered light intensity. Figure 4.3 shows the relation beiween them (the
details can be found in chapter 6). This relationship can be explained satisfactorily by
assuming the inhomogeneities behaves as local oscillators. So the correlation function
is a heterodyne function with the reference beam intensity position dependent. The
lowest value of D corresponds to the ‘pure’ heterodyne correlation function. So the
way we measured the diffusion constant D is by measuring many D’s at different
position, take the smallest D as our experimental result. The temperature dependence
of the D obtained this way is plotted in figure 4.5. The average waiting time between

two temperature points is 4.2 days to ensure the equilibrium.

From figure 4.4, we find that the critical behavior of D started much further away

from the critical point compared with the specific heat behavior. We have fitted the
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Figure 4.5: [a] Collective diffusion constant D and [b] scattered inten-

sity I as a function of temperature.

data by 2 simple function

b { A+B( -T/T.)" for T <T.

4 20)
A forT>T..
Our result is
ve = 0.45 £ 0.07. (4.21)
Similar procedure performed on the scattered intensity data resulted
7= = 0.90 £ 0.25. (4.22)

Using the value of the critical exponents 3 and § we have obtained in chapter 2 and
3, we find

v = 0.67, (4.23)
7y = 13 (4.24)

These are in good agreement with other known Ising systems.
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4.4 Summary

¢ Collective diffusion constant D had been measured as the critical point is ap-
proached. From this experiment, we obtained the correlation length exponent

ve = 0.45 1 0.07.

e Intensity of the scattered light diverges as we approached the critical point. The
isotherm compressibility exponent v, = 0.9 £ 0.25.

e From D and I, we find that the friction coefficient f goes to zero at the critical

point with an exponent ~ 0.45 along the isobar.

o Our results indicates that the critical behavior of the shear modulus u is sim-
ilar to that of the the bulk modulus. This is in contradictory with Onuki’s

assumption.
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Chapter 5

Summary of the Gel Criticality

Table 5.1: Critical exponents of

M
Qx 6 Vx Ix N-isopropylacrylamide gel mea-
-0.05+0.13 4.24£0.5 0.45+£0.07 0.9+0.25  gyred along the critical isobar

-——————_______.—_'—_____————___—'————-—

path.

in table 5.1, we summarized all of the exponents we measured from N-isopropylacrylamide
gel network system. These exponents are measured along the critical isobar curve
(hence the subscript x), which is different from the conventional path. The critical
isobar path was achieved by choosing the gel that has the critical point right on the

x = ( path.

Table 5.2 compares the the conventionally defined critical exponents of the vel systems
derived from table 5.1 with other known Ising systems. Can we conclude nat the gel
system is in the Ising universality class ? To answer this, we have to know how can

one decide if a system in certain universality class or not.

55
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-

system @« B ¥ A
3.dlIsing 011 031 125 &
Co, 0.12 0.3447 1.2 4.2
Xe 0.08 0344 1.203 44
Gel -005 04 1.3 4.2
Gel 0.09 0.36 1.3 4.2

Table 5.2: Numerical calculations of
the critical properties (Bagnuls and
Bervillier 1985).

Within each universality class, there are many universal quantities, including some
exponents, ratio of some amplitudes, combination of amplitudes and exponents, etc.
Ideally, if one can experimentally show that all the measured universal quantities
are the same as the corresponding quantities of a known universality class, then we
say the system: belongs to this universality class. Another way is to approach the
problem from the theoretical point of view. If one can show that the Hamiltonian
of two systems are virtually identical (can be mapped on to one anotker with simple
variable change), or the flow diagrams have the same behavior, then we can also
conclude that the two systems are in the same universality class. One example of
this is the mapping between Lattice-Gas and Ising system demonstrated by Lee and
Yang (1952).

Table 5.3: Numerical calculations of the critical properties (Bagnuls and
Bervillier 1985; Bervilier 1986).

n a B ~ 6§ A /A-
1 01106(21) 03243 1.2407(12) 4.826 0.524
2 -0.0066(30) 0.3453 1.3160(20) 4.811 1.029
3 -0.1142(27) 0.3639 1.3864(28) 4.810 1.521
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Table 5.3 are the numerical results obtained by Bagnuls and Bervillier for a n-
vector system (n=1, Ising; n=2, X-Y; n=3, Heisenberg). Considering the experi-
mental errors one usually encounter, the most sensitive quantities (arguably) are the
exponent a and the amplitude ratio of the specific heat, which varies from -0.11 to
0.11 and 2 to 0.5 respectively. fortunately our experimental result of a, has a big
error and no information can be obtained from the amplitude ratio along the isobar
path (guaranteed to be unity).

There is another important factor in determining the universality class of a sys-
tem, that is, the identification of the order parameter. In the case of gel, the phase
transition is characterized by the volume fraction (density) of the network. So the or-
der parameter is a ccalar. Based on this observation and our experinental exponents,
we conclude that the gel system is an Ising like system.

There are many factors that contribute to the error bars of our results. In the
case of the specific heat experiment, the small filling factor of the sample probably

contributes the most.
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Chapter 6

Gel Inhomogeneities

6.1 Introduction

The inhomogeneities of the gel network system has been noticed and studied for more
than a decade. It has been very bothersome from the light scattering experiment
point of view. But it is very important from both the theoretical and application
point of view to understand the cause of the inhomogeneities. In this chapter, we
discuss the inhomogeneities of the gel network structure. The content of this chapter
is directly related with the measurements presented in chapter 4. The understanding
of the inhomogeneities may help us to understand the oscillation of the scattered light
intensity which will te presented in the next chapter.

Using a further simplified mode] derived from the hetero-structured network model
shown in figure 6.1, Weiss, van Vliet and silberberg successfully explained the perme-
ability of acrylamide gel as a function of chemical composition (Weiss and Silberberg
1975; Weir~, van Vliet and Silberberg 1979). Hsu and colleagues examined the effects
of inhomogeneities of polymer network on the swelling equilibrium of acrylamide gels
and on the diffusion of water molecules within the gels (Hsu 1983). The ring struc-

tures and intramolecular chemical reactions during gelation were studied by Standford

)
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Figure 6.1: Two-phase structure of
heterogeneous gel (schematic). The
spheres are high corcentration regions
(both in monomer units and crosslink-

ers). The flow path is mainly in the

dilute region.

and Stepto (Standford and Stepto 1981). They found that the shear moduli of the
polyester and polyurethane gels were reduced markedly in the presence of elastically
inefficient network loops. Funke reviewed several different polymer networks with
non-uniform cross-links (Funke 1983). Recently Martin and Wilcoxon (1989) had
studied the spatial correlations and the growth in dilute gels near the sol-gel transi-
tion and also encountered the inhomogeneity problem. They coacluded that the cause
of the inhomogeneity as quenched randomness produced by the reaction of diffusion
clusters. To obtain good quality data, they found that it was necessary to average
over 50 scattering volumes to average out the inhomogeneity effect. S. T. Sun, Y. Li,
T. Tanaka and E. Sata-matsuo also studied the inhomogeneities of gels far above the
sol-gel transition in N-isopropylacrylamide and acrylamide gels (1989). They con-
cluded that the inkomogeneities of the gel network with concentration far abéve the
sol-gel threshold (Bansil and Gupta 1980) are caused by the thermal fluctuation and

phase separation of the pre-gel solution.

Our study presented here is a further study of the gel inhomogeneities. In this
chapter, we will discuss the temperature and chemical composition dependence of
the inhomogeneities of gels. We will also discuss the dynamic aspect of the inhomo-
geneities probed by dynamic laser light scattering spectroscopy, which agrees with

the model proposed by Weiss and colleagues (figure 6.1). We also report another
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proper way of obtaining information from a gel network light scattering spectroscopy
(instead of averaging over 50 scattering volumes). The use of this method is demon-
strated by our measurement of the critical exponents v, and v, presented in chapter
4 of this thesis.

This work was initiated by Dr. Shao-Tang Suu several years ago. He observed the
dependence of the inhomogeneities of the network on the gelation temperature. We
continued this work and more information about the network inhomogeneities have
been obtained. The samples we have used here are mainly N-isopropylacrylamide
gels, which is different than Sun’s (acrylamide gel). The author of this thesis is very

grateful to Dr. Sun’s permission of using all the data freely.

6.2 Experimental Method

Figure 6.2: Schematic experi-

mental setup. The sample can

be moved either parallel with
incident light vertical o
motion the incident beam or be moved
verticallyy. The experimental
Sample scattered  results from these two move-
light

ments are the same within the

experimental resolution.

In our experiment, the basic setup is the same as the one described in chapter 4 and in
the appendix A. Figure 6.2 is a schematic representation of our experimental method.
Figure 6.3 demonstrates the scattered intensity as a function of position. There are

two spectra in this figure. The intensity is collected while the sample is moved step

'%
;
B
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70
80
— 90
é‘ 40
= 30 Figure 6.3: The scattered light
20 intensity from an ISO gel.
13 " . R The measurement temperature
0 18 30 45 is 10°C. The reproducibility of

position [12.7 um]

this phenomenon is obvious,

by step by the translator (half turn every five seconds). The second spectrum in
figure 6.3 was taken right after the first one had finished. The reproducibility of the
spectrum is obvious. We also can move move the sample by a syringe pusher with
3 continuously variable speed. The intensity was read by the computer every one
second.

The scattered intensity can be decomposed into two parts, as shown in figure 6.3.
One is scattered from the dynamic thermal fluctuation of the network, which give rise
to the minimum non-zero intensity I;. The other, 1,, is scattered by the static inho-
mogeneities, responsible for the up and down intensity fluctuations. Experimentally,
I, is the variance of the intensity, I, is the average of the minima of the spectrum (14

can also be defined as the difference between the mean and the variance).

6.3 Temperature Dependence of the Inhomogene-
ity Amplitude

The temperature dependence of the scattered light intensity (inhomogeneity ampli-

tude) is illustrated in Fig.6.4. There are two temperatures enter this problem. One
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_ 4 F “4 dence of the scattered light

g .

i 1 F - intensity from an
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L 41T gelation temperature (a, b

and c¢). The measurement
temperature was 10°C. On
the right side (d, e and f),
the position dependence are
shown for different measure-
ment temperatures, but for

the gelation temperature of

0°C.

is the gelation temperature (the temperature at which the gel is made) and the other

is the measurement temperature.

6.3.1 Gelation Temperature

In our experiment, the gelation temperature is controlled by water circulator with

temperature stability +£0.05°C. Because of the fact that the gelation process of the

ISO gel is an exothermal process (releases heat), in principle, the gelation temperature

will be higher than the temperature regulator used to regulate the gelation tempera-

ture. However, with rectangular cells as thin as 0.7mm, and gelation process as siow

as 10 minutes, we still observed the total opacity (white) of all the gels formed at

B R
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temperature higher than 28.5°C. This indicates that the critical temperature of the
late-stage pre-gel solution is several degrees lower than that of the bulk gel (33.5°C).

We shall call this temperature the critical temperature of the pre-gel solution.

The measurement was performed at 10°C. From figure 6.2a, 2b and 3c, it is ap-
parent that the scattered intensity is strongly gelation temperature dependent. These
results can be interpreted as due to the thermal fluctuation and phase separation of

the pre-gel polymer solution.

The gelation temperature dependence of the gel inhomogeneity can be under-
stood as follows. When the gelation temperature is far from the pre-gel solution
critical temperature, the fluctuation of the pre-gel solution is very small, giving fairly
homogeneous network as the final product. On the other hand, when the gelation
temperature is very close to the pre-gel solution critical temperature, in the later

stage of the gel-formation process, many big polymer: and small network pieces ex-

o wme B o7 e
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ist. The critical temperature of these big polymers (and network pieces) is very close
to the gelation temperature, resulting big fluctuations in the polymer distribution.
The final result is a highly inhomogeneous gel network.

The average intensities of the scattered light intensity Iy-and I, are shown in
figure 6.5. Because of the formation of the inhomogeneities, we expect the dynamic
fluctuation of the network will also be affected. Indeed, in figure 6.5, we find that the

dynamic fluctuation grow larger near the critical point as well.

6.3.2 Measurement Temperature

30 R 6 (-] 4
! 3
g of °o ﬁ
Z ° ;o
r
=10 IR
.
0:..!0'1"f..1. M_
30 Ll L} T ] v ¥
F 0 oo ) Figure 6.6: Measurement tem-
E 20 o . ’ perature dependence of the
2 s ] .
:; 10 ua . s scattered light intensity from
) “the static inhomogeneities (I,
%’..o.....ﬂ% ® ()
L E— and dynamic fluctuations (I;) of
10 15 20 25 30 35
o the network.
Tmmm [ C]

The measurement temperature dependence of the scattered light intensity is shown
in figure 6.4 (d, e and f) and summarized in figure 6.6. The sample was made at 0°C
(ice water). As the measurement temperature approaches the critical temperature,
both the intensities scattered from the static inhomogeneities, I,, and the dynamic

thermal fluctuations, Iy, diverge. The divergence of I; can be understood as the
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critical fluctuation of the network. The divergence of the light intensity scattered by
the frozen inhomogeneity, I,, however, is not trivial. In general, the scattering from
the inhomogeneities, impurities, etc, does not have critical behavior. The fact that
the scattered light intensity from the frozen inhomogeneities diverges at the critical
point indicates that the structural inhomogeneities are very much ‘alive’.

The critical behavior of the I, indicates that the basic nature of the inhomo-
geneities is the same as the rest of the network. They can not be due to things like

dusts or sparkles.

6.4 Temperature Dependence of the Spatial Dis-

tribution

From figure 6.3 and 6.4, we noticed that there is a characteristic width and average
distance Between two peaks of the scattered light intensity. This width and distance is
usually several times larger than the biggesi steps of the motion of the sample, which
i8 12.7um (0.5 mil). So this width can not be due to the limitation of the motion or the
light beam size. We have also tried to vary the pin hole in front of the detector, but
found no appreciable difference. From these observations, we conclude that the width
and the _.rage distance of the peaks reflect the domain size of the inhomogeneities.
These linear dimensions may correspond to the dimensions in Weiss’s model shown is
figure 6.1. It is very important to understand the origin of these dimensions to have

a thorough understanding of the network structure.

6.4.1 Gelation Temperature

The way we analyzed the scattered light spatial spectra is by calculating the correla-

tion function C(r),
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Figure 6.7: Two typical correlation functions of 1000 channels spectra with
window width 64 channels wide. They are the samples made at 24 and 25°C,
respectively. The details in the tail is due to the randomness of the inhomo-

geneities.

C(r) =< I(r}(0) >, (6.1)

where r is the distance between two points, brackets <> represents the ensemble
average. The correlation function is calculated by a computer program (not an elec-
tronic correlator). We defined the correlation length here as the distance corresponds
to the half height value of the correlation function. The position of the base line of
the correlation function is often quite apparent. For a spectrum with peaks randomly
distributed, the width of the correlation function reflects the half width of the average
peaks.

Two typical correlation functions are given in figure 6.7. The details of the tails of
these correlation functions are totally random. The gelation temperature dependence
of the correlation length is plotted in figure 6.8. From this figure, we find that,
unlike the amplitude of the scattered light intensity, the spatial distribution of the
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20 22 24 26 28 30  Figure 6.8: Correlation length as a

Gelation Temperature [oc] function of gelation temperature.

inhomogeneities is insensitive to the gelation temperature. The correlation length
from figure 6.8 is about 25um. The error here is very big, because we did not have

enough statistics.

6.4.2 Measurement Temperature

40 1 L I I | 5 n
30| std Iso III ]
E o[ 3 ! i f
g 20 }H i -
[ VY'Y 4
10 ™ -
0 P ' Figure 6.9: Correlation length as a

24 ‘ 26 ‘ 28 . 30 ~ 32 A 34  function of measurement tempera-

ture.

Tnmwu [OC]
The temperature dependence of the correlation length has been extracted in the same

way as has been described above. The result is plotted in figure 6.9. The experimental

value of the correlation length plotted in figure 6.8 and 6.9 are similar.
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Obviously more average is need tc achieve better results.

6.5 Chemical Composition Dependence of the Spa-

tial Distribution

Table 6.1: Variation of the chemi-

Am Bis AP Temed
0.58~2 005~1 05~2 1/128~1

cal components. When one chemi-

cal is varied, all the others are kept

at their standard concentration.

The chemical components effect of the inhomogeneities are also studied. In this
experiment, we varied all the chemical components. Table 6.1 is a list of what we

have done.

6.5.1 Bis dependence

The result here is obtained in collaboration with Terence Hwa, a co-student of the
thesis author. The bisacrylamide dependence of the correlation length is pletted in
figure 6.10.

In this experimeat and the ones that below, we used a gear box to push the
sample slowly and continuously. The speed of the gear box was set at 5.9um/sec in
this experiment. For each sample, twenty spectra were taken. Each point in figure
6.10 is obtained from a correlation function which is the average of twenty individual

correlation functions.

PRI =4
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[
— 40 |
é + \ [
“ 0 " —o -
oF A Figure 6.10: Correlation length
0 0.5 1.0 1.5 as a function of the cross-linking
Bis [8.6mM] molecules concentration.

From figure 6.10, we noticed that the correlation length diverges at the gelation
threshold, which is well known (for instance, de Gennes 1979). Away from the thresh-
old, however, the correlation length is almost independent of the concentration of the

cross-linking molecules. The average correlation length far from the gelation threshold

is about 23um.

Figure 6.11: CUriginal spectrum

(curve) and the spectrum calcu-

lated from the spectrum of the

| [KHz]
O = N L S~ O

1 PR | A 1

fourier transformation. Just for

0 100 200 300 400

position testing purpose.

We also performed Fast Fourier Transformation on our data (figure 6.11). The

correlation function and the fourier transformation is related,
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Figure 6.12: [a] Fourier spectrum of
the sample with bis=0.86mM. [b]
Cross-over length Ao as a function

of cross-linking molecules.

(6.2)

where q is the spatial wavevector (not to be confused by the scattering wavevector).

Figure 6.12a is a typical fourier spectrum. We observed double exponential type

behavior. The cross-over length A is plotted in figure 6.12b.

Figure 6.12 may be explained as follows. Intuitively, we expect that the smallest

structure corresponds the width of the peaks, the fourier spectrum should be fairly

flat in the region smalier than the peak width. On the other hand, since the peaks are

randomly distributed, we expect the intensity of the fourier spectrum decreases as the

frequency (q in this case) increases. These are exactly what we have in figure 6.12a.

The corss-over wavelength Ay corresponds the width of the peaks. As we expected ,

Ag increases as the gelation threshold is approached.
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6.5.2 Other Chemicals

40 C r | | B
: T T
30 I3 I§ .
— : i Ig 1 Figure 6.13: Correlation length
\52 20F 7 dependence on other chemicals,
“a F A ; <
10 b E mﬁ. i including monomers (acry-
r ) lamide), free-radical initiators
VR ST

e {(amonium persulfate), and the

0.001 001 0.1 1 10

Chemical Composition [st d] reaction accelerator (TEMED).

The chemical dependence of the correlation length on other chemicals are plotted
in figure 6.13. We find that the correlation length is not sensitive to any of the
variations of the chemical composition. This may be largely due to the lack of the

enough statistics.

6.8 Dynamic Aspect of the Inhomogeneities

6.6.1 Experimental

The study of the dynamic aspect of a system can often provide important informa-
tion about the system. We have study the inhomogeneities of the network system
by dynamic laser light scattering spectroscopy. Figure 6.14 shows that not only the
static quantity I, the scattered intensity, is 2 function of the position of the scatter-
ing volume, but also the dynamic quantity D, the collective diffusion constant. In
figure 6.14, the scattered intensity and the auto-correlation function were measured
simultaneously. The sample is a N-isopropylacrylamide gel. The measurement tem-

perature was 33°C and the measurement was conducted after the sample has reached
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equilibrium. During each data measurement, the intensity of the scattered light var-
ied more or less, but all the data point were taken in long enough time so that the

actual average was taken. A single exponential function was fitted to the correlation
functions,

G(t) = Go(l + Ae~D9*), (6.3)
Where A is the signal to background ratio. The quality of the fit is indicated by the

maxirnum residual R, defined as

R = maz {l-@‘?‘iﬂ-‘l} . (6.4)

Fig. 6.14a is the spatial distribution of the local collective diffusion constant.

Notice the fact that the value varies by as much as 50%. The Fig. 6.14b is the auto-
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;g A Figure 6.15: Relation of the
20 ) signal to background ratio A

B and the collective diffusion con-
b L|ntens?ty. | l[KHZJL stant D with the scattered light

intensity 1.

correlation signal to background ratio A, which varies by as much as a factor of 2.
Fig.6.14c is the scattered intensity. It is not hard te notice that whenever there is
a peak in the intensity, the D and A are in their minimum. Fig. 6.15 is a replot of
Fig. 6.14. It is clearly shown that the relations among these quantities are very well

defined.

6.6.2 Analysis

First, we noticed that the spatial separation of these peaks are about ~ 50um, or in
another words, there are domains within the gels with linear size ~ 50um. This is a
very large number compared with the length scale of the network pore size ~ 10~2-
19~ um , which can be estimated from the chemical ingredient of the network. Within
each domain, there are roughly 10° network chains (defined as the piece connecting
two adjacent crosslinkers). In Sun’s paper (1989), the inhomogeneities were argued

as caused by the pre-gel solution thermal fluctuation and phase separation. We

[

-

TR WA R WX W R wmoaSTRR SR e T memones e



8.6. Dynamic Aspect of the Inhomogeneities 75

checked the gels made at different temperatures and found no significant domain size
difference. (The domain sizes stay almost the same as the measurement temperature
is changed. This is because within the measurement temperature range, the size of
the gel changes only by a small amount). This result does not support the argument
given by Sun, et al. Maybe this is because our temperature range is not wide enough.
Here, we propose another possible reason for the cause of the domains. Started from
some seeds, branched polymers started to grow and form some local isolated network.
These networks grow bigger and bigger and eventually will be in contact with each
others. Two things can happen, provide given enough monomer units. One is that the
networks just keep growing and penetrate into each other and become structurally
connected, the other is that the live ends of different networks meet and become
chemically connected. We consider the first gelation mechanism to be the dominate
mechanism. Depending upon the amount of monomers given, various kind of domains
can form. If the amount is such that the networks just barely touch each other, then
the domains are basically just the networks themselves. If the amount is big enough
to allow deep penetrations of the chemically individual networks, then the gel should
be more homogeneous. In between these two limits, situations can be complex. At
this stage, due to the limitation of detailed knowledge about the gelation process, it
does not make sense to try to get into the details.

According to Weiss (1979), the variation of the relative network substance in
the two phases (figure 6.1) is fairly small, about a factor of 2 (more in the dense
region). The ratio of the dense domain to the dilute domain is 213 or 1.26, which
is comparable within our experimental error. This r.aybe the reason why we did not
observe any chemical composition dependence of the correlation length.

This domain assumption above does not exclude Sun’s argument. In fact, if
we adopt both argument, we can explain both the intensity dependence and the

domain size independence on the gelation temperature. As each individual network
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forms, the thermal fluctuation and phase separation effects freezes into the network.
These fluctuations within each network has a smaller length scale and is temperature

dependent, reflected by the laser light scattering results.

Figure 6.16: Grid simplifica-

tion of the gel network struc-

ture.

We know that for the same incident light intensity and the scattering angle, the
intensity of the scattered light depends solely on the fourier component of the density
fluctuation corresponding the scattering angle. This component in turn is contributed
by two factors. One is the phase structure of the density fluctuation, the other is
the overall density (or the total number of the scatterers) of the scattering volume
element, which appears as a multiplication factor. So there are two possible reasons
for the scattered light to reach a maximum. But the collective diffusion constant is
independent of the phase of the local fluctuation and is dependent on the structure of
the network. The strong correlation between the scattered intensity and the collective
diffusion constant tell us that the cause of the spatial variation of these quantities can
only be the density variation. We are going to adopt a simplified picture to illustrate
the basic structure of the network. Replace the polymer chain by a straight line,
we picture the network as a 3-d square grid with different grid sizes from piace to

place(Fig.6.16). Now let us make the following assumptinas,

- -

o,
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1) Inside the network, there exist ‘dead’ spots that act like local oscillators;
2) There are much more of these spots in the denser regions than in the diluter regions.
With these assumptions, we can explain the results in Fig.6.14 and Fig.6.15. To
understand these results, we should go back to the basics of ti.c auto-correlation of the
scattered light. In general, there are two types of auto-correlation techniques. COne
is the homodyne mixing, the other is heterodyne mixing (Berne and Pecora 1976).
In the case of homodyne correlation, scattered light correlate with itself, whereas in
the case of heterodyne correlation, the scattered lights correlate with a portion of the
unscattered light (reflected by local oscillator). Because of the existence of the local

oscillators, the light intensity correlation function should be written as
G(t) =< |EL(0) + Es(0)*|EL(t) + Es(t)]* > . (6.5)

Where Er and Egs are the scattered electric field from the local oscillators and the
network, respectively. Notice that in the limit of £y = 0, we get a pure homodyne
correlation function. The equation 6.5 above has 16 terms in it. Among them, 10 are

Z€eros.

Define

a1(t) < Eg(t)Es*(0) >, (6.6)
g2(t) = < Es(t)Es*(t)Es(0)Es*(0) > . (6.7)

Then equation 6.5 can be written as

G(t) = I.>+2I1s+2IL1sa(t) + Is?gs(t) (6.8)
(I + Is)? + 2ILIsqi(t) + Is*g:*(2).

Where I, and Is are the light intensities. The above equation is obtained by using

g2(t) = 1 + g:%(2). (6.9)
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Assume

ai(t) = e~ Do, | (6.10)

then we can write
G(t) = (I + Is)* + 2L Ise~P9"t 4 [g3¢=2De, (6.11)

From eq. (6.11), we know that in general the correlation function is a multi-
exponential function. In the limit of I, Is, we have a heterodyne correlation

function

G(t) = I.*(1 + 2§ﬁe-l’°"), (6.12)
L

and in the limit of Is » I, we get the homodyne correlation function
G(t) = Is*(1 + e~2De™), (6.13)

From the above two equaiions, we know that the apparent diffusion constant frem
the homodyne mixing is bigger than that from the heterodyne mixing by a factor
of 2. When the scattered light from the local oscillator is large, the total scattered
intensity will be large, and the second term will dominate over the third one, so we
get a smaller effective diffusion constant, as we have observed in Fig.6.14a.

The signal to noise ratio A defined in eq.(6.3) can be written as

_ 2l + I
- (IL -I-I_c,')2 )

When the scattered light from the local oscillator is large compared with s, the signal

(6.14)

to background ratio decreases. This is exactly what we have observed in Fig.6.14b.
From Fig.6.14b, the value of A varies from about 50% to 15%. # = Zecreases

from 50% to 15%, we expect to have a better and better single exponenti.i fit to the

correlation function. Fig.6.17 is the maximum residual of the fit plotted against the

signal-to-background ratio A.
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6.7 Other Gels

The chemically cross-linked agrose gels and the gelatin gels have been studied as well
(for sample preparation, see Amiya and Tanaka 1987). Although the agrose poly-
mer gel is opaque and become polymer solution at high temperature, the chemically

crosslinked agrose gel is clear for the whele experimental temperature range.

The inhomogeneities were also observed in these gels even at high temperatures
(above the corresponding polymer gel melting temperature). At low temperature
(say, room temperature), the inhomogeneities are reproducible. However, at high
temperature (50 - 70°C), the scattering is very weak, the inhomogeneities are not,
reproducible. The scattered intensity changes with time for fixed sample position.
We believe that these observations are caused by the dilute chemical crosslinks. At
low temperature, the helical structure of the polymers enhances the crosslinks, make
the network more strongly formed. When the temperature is above the melting tem-
perature, the helical crosslinks disappear, leaving only the dilute chemical crosslinks.

The network now is very mobiie iccally, due to the lack of enough crosslinks.

W MER B
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6.8 Conclusion

We did not observe any significant dependence of the correlation length on tempera-
ture and chemical composition. Much better statistics is needed to do so.

We have further confirmed the existence of the inhomogeueities of the gel network
system. These inhomogeneities are domains with different density. The domain
size is about ~ 50um. The properties of each domain, like the coliective diffusion
constant D, longitudinal elastic modulus, the friction coefficient f, are different. We
have attempted to argue that these domains are related with the individual networks
formed in the early stage of the gelation process. A simplified grid picture was
introduced to help visualize the network structure.

Finally, we would like to comment on the impact of the structure of the gel network
on the laser light scattering spectroscopy. From the results we have presented above,
we know that the data obtained from the laser light scattering on gels will have big
variations from place to place. The proper way to extract meaningful information
is to collect many data points from different portion of the sample under the same
condition, then plot them as a function of scattered light intensity. The value obtained
by extrapolating up to the scattered intensity equal infinite is the value you would
obtain if the experiment were done by ideal heterodyne mixing technique. From
our experience, the convergence of the data behaves well on the high scatied light

intensity side.

i



Chapter 7

Oscillation of the Scattered Light

7.1 Introduction

Ir the course of studying the critical behavior of the gel system using light scatter-
ing technique, we noticed that the intensity of the scattered light from the sample
fluctuates with very large amplitude as a function of time. A comparison with the
scattered intensity from a polystyrene solution, confirmed the fact that the fluctua-
tion was caused by the gel. Further study of this phenomenon revealed the richness
of the information inside the fluctuation. We found that the scattered intensity not
only fluctuates, but also oscillates and beats, with a wide range of periods, which are
astonishingly slow. In fa~t, they were so slow that the attempt of explaining them by
the known mechanical property of the gel was totally out of the question.

We still do not have a satisfactory explanation for this phenomencn. In this chap-
ter, we will p.csent in detail the experimental phenomenon and results. A tentative
explanation will be given in the last section of this chapter.

For demonstration purpose, figure 7.1 is a typical result of the oscillation of the
scattered intensity. Figure 7.1a and 7.1b is the intensity and the Fourier spectrum of

the intensity, respectively. The sample here is a ISO gel with size smaller than the

81
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Figure 7.1: [a] The oscillation of the scattered light intensity as a function of

time. [b] the Fast Fourier Transformation of the scattered intensity on the left.

optical cell that contains it (free of the wall constraint). The period of the oscillation
in figure 7.1a is 13 minutes, or, the frequency is 1.3 x 10-3H..

We would like to point out here that the oscillation can be observed when the
temperature is far from the critical point. This indicates that the oscillation is not a

critical phenomenon.

7.2 Experimental Observations

The experimental setup used in the experiments described in this chapter is the same
as we have descri_ :d in chapter 4 and chapter 6. The intensity of the scattered light is
either collected by a flow chart recorder (in early experiments) or by a computer. All
of the data were collected at 90° scattering angle. The temperature was controlled

within a fraction of 1 mK per day (this is not very essential).

7.2.1 Basic Observation
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0-3 -9
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Figure 7.2: Typical scattered light intensity as a function of time for a long
period. The temperature of the sam:ple was changed from 25°C to 26°C at
t = 0. The time interval of each frame is indicated by the numbers in the

frame.

Figure 7.2 is a typical result of the scattered light intensity in a long time period
after the temperature been changed at ¢ = 0 from 25°C to 26°C. The time interval
of each frame is indicated by the two numbers in the frame. Each frame is three
hours long. The zero intensity is the fourth frame was due to the power off of the
laser. The samples were made in a cylindrical tube first. Then was transferred in to
a optical cell filled of water. The diameter of the gel in the experimental temperature
range was always smaller than the inner diameter of the cell, so it is free from the
wall constraint. The tempc rature of the sample container is changed at time zero. At
the beginning, the scattered light intensity varies very fast, of the order of seconds,
then becomes slower and siower. Eventually stops. We noticed that sometimes the

variation is almost a perfect sinusoidal curve, and other times a noise-type with certain
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peridicity, and yet other times with no peridicity at all.

7.2.2 Frequency Domain

S Figure 7.3: Frequency of the

oscillation as a function of time.

‘ 015 ‘ 1i0 - {5 . 2.L0> The data is obtained by pro-
Time [x104 3ec] cessing figure 7.2

Figure 7.3 is a plot of the frequency of the oscillation as a function of time. From
figure 7.3, we find that the frequency relaxation process is a exponentially decay

process (except at the very begining).

7.2.3 Decreasing Temperature

The data we have presented above are collected after the temperature was increased
et t = 0. In other words, the data was collected from a shrinking process. In figure
7.4, we present the data collected in a swelling process, i.e., the temperature was
decreased at t = 0. From this figure, we know that the oscillation occurs in both
swelling and shrinking processes. This is very important because it eliminates some

of the theories we have thought about.

7.2.4 Beatings
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Figure 7.4: Scattered light intensity after the temperature was decreased at

t = 0. The gel swells when the temperature is decreased.

Figure 7.5 demonstrates the beating phenomenon we observed in the scattered light

intensity. This type of behavior appears quite often.

7.2.5 Wall Confinement

In this experiment, we used a gel which was made in the optical cell and was never
taken out. Very surprisingly, we found that when the temperature is below 30 °C, the
intensity is very stable; above this temperature, the intensity starts to oscillate (Fig.
7.6). The data above can be explained readily nf we notice that the temperature
at which the intensity starts to oscillate is the same as the temperature at which
the swelling ratio of the sample is equal unity, i.e., V/Vp = 1(Fig. 7.7). Below this
temperature, the gel is confined by the wall of the cell (free gel would swell). Above
this temperature, however, the swelling ratio is less than unity, the gel separates from
the wall. At thie point, the confinement no longer exist, the gel behaves the same as

we have described in the first several subsections.
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Figure 7.5: Beating of the scattered light intensity. The two frequencies are

nnnnHz and nonnHz, respectively.

7.2.6 Frequency Localization

In order to understand if the oscillation is propagating within the sample, we used
two PMT detectors simultanecusly, one at 90° scattering angle and the other at
70°. The results are in figure 7.8a. There was no correlation observed. We have
also tried to change the distance between the two scattering volumes, but still no
correlation between the two intensity signals was ever observed. This experiment
directly shows that the oscillation within the sample is totally local. The frequency
is a local quaatity. This also tells us that the oscillation is not due to a globally

propagating wav:.

In figure 7.8b, we find that the oscillation of one scattering volume stopped while
the other is still oscillating. The oscillation is a local behavior, independent of the

neighbours. This confirms the observation presented in the previous subsection.
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Figure 7.6: Effect of the wall confinement on the oscillation of the gel made
in the optical cell. The oscillation only happens when the temperature of the

sample holder is above 30°C. Below this temperature, the gel is confined by

the wall of the optical cell.
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7.3 Theoretical Considerations

7.3.1 What is Oscillating

What the scattered intensity measures is the Fourier components of the dielectric

constant e,

I(q) =< |6e(q)| > . (7.1)
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Figure 7.8: Double detector result. [a] The behavior of the scattered intensity
from these two scattering volumes has no correlation. The frequency is a local

quantity. [b] The oscillation of one position stopped long before the other.

So it has to be the dielectric constant that is oscillation. This is the same as to say

that the density of the network is oscillating,.

7.3.2 Indeed Very Slow

In order to appreciate how slow this is, let us do some exercise. Assume the scattering
volume is about 20um, which is reasonable from chapter 6. A typical oscillation period
of the scattered intensity from a gel is about 1000 seconds. These give us a speed
which is about 2004 /sec, or 4mm/day, or 1.5m/year !

From another point of view, assume the intensity oscillation comes from the sound

wave of the network. Then the frequency is related with the modulus G and the
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density p of the system,

G
f ~ T . (72)

From chapter 8, G ~ 5 x 16 dynes/cm?, the density of the network p is about 0.05
g/cm®. Plug these numbers in eq (7.2), we get f ~ 10° Hz. Our experimental value,
which can be ~ 10-3 Hz, is 10° times smaller than this. If we take the experimental
frequency and the density of the network es given, then we will need a modulus
which is ten orders of magnitude smaller than what we have obtained experimentally
(chapter 8).

From the double-detector experiment, we know that the propagating wave type
of theory will not work because the oscillation of the scattered light is localized.

So we find that it is impossible to understand the oscillation by means of the
mechanical quantities we have measured. A totally different mechanism is governing

the phenomenon.

7.3.3 Inhomogeneities 7

Brenner, Gelman and Nossal (1978) and Nossal and Brenner (1978) had shown that
for soft gels, an external oscillator coupled to the system can force the gel to oscillate
with resonance frequency. They detected the slowest frequency of this oscillation
by means of light scattering. The primary sample they used was agrose gels with
concentration varied from 0.25% to 1%. With the optical geometry similar to the
ones we have used in our experiment, they found that the fundamental (slowest)
frequency is 46Hz for agrose gel with 2% concentration is 1 x 1 X 4 cm cuvette. This
wave corresponds to the fundamental standing wave in the cuvette.

Experimentally the modulus of gel neiwork and the friction coefficient between
the network and the solvent varies with the concentration of the network by similar

power. This is supported by the fact that the collecirve diffusion constant of the
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network system has only & weak dependence on the concentration of the network
compared with the power dependence of the modulus and the friction coefficient. So
we do not think to the first order approximation, there is a big difference between the
soft gels (0.5%) and regular gels (10%). The result of Nosssal et al may be explained
to better satisfactory as due to the sirong external medulation.

7.3.4 Possible Mechanism

We have noticed that started at the time when the temperature of the sample was
changed, the oscillation of the scattered intensity continues for several days. This
time scale is similar to that of the volume equilibration process, which is the same
as the internal osmotic pressure relaxation time. From this, we postulate ihat the
oscillation is directly related with the stress field inside the sample created by the
change of the temperature. This stress field cause the network to move in such a

fashion that the scattered light intensity oscillates with an extremely slow frequency.

Since the relaxation time for the oscillation is similar to that of the stress (osmotic)

field, we can use the stress field as our natural variable.

The stress field will cause the local network move collectively, causing the solvent
to convect. The convection of the solvent in tura will affect the motion of the lecal
network and the neighbours. This is & highly non-linear effect. The velocity of the
solvent flow is directly related with the strength of the local osmotic pressure, and
will become zero when the osmotic pressure field becomnes a constant.

We know there are inhomogeneities in the gel network (chapter 6). The clusters
that are weakly connected with the neighbours will be able to drift with the flow of
the water to certain degree with very small effective friction. The oscillation of the
scattered light may be due to the motion of the clusters caused by the flow.
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7.4 Future Experiment

e Jump size dependence.
o Chemical composition dependence.
e Position dependence.

e Good statistics.
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Chapter 7. Oscillation of the Scattered Light




Chapter 8

Mechanical Study of Gels

8.1 Introduction

In the case of a liquid-gas system, the external pressure, p, plays an importaat role.
It is the same for the gel network system, except now it is the osmotic pressure that
is doing the job. Osmotic pressure of a network system can be defined as the energy
needed to expand the network by unit volume. Following this, the external osmotic
pressure can be defined as the contribution to the csmotic pressure by the sources
other than the interaction among the network and solvent molecules. Some of the
examples of the external osmotic pressure, for instance, can be the network in a high
molecular weight polymer solution (chapter 11; Hirotsu, 1986), ionic gel in electric
field (Tanaka, 1982). In this chapter, we shall concentrate on the mechanically applied
pressure only.

From the application point of view, it is very important to understand the mechan-
ical properties of the material. Especially when we consider the potential applications
of gels in mezhanical devices such as artificial muscles, switches, actuators, etc., this
becomes apparent.

The mechanical study of elastomers staried from the study of the rubber elastic-
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ity. The discovery of the phenomenological Mooney-Rivlin equation (Monney 1940;
Rivlin 1947) marked another beginning of the study. The extensive study of the
elastomer mechanical properties has lead a much better understanding of these mate-
rials. The analogy among the elastomer elasticity and the quantities of other systems
is remarkable (de Gennes 1976). Many experimental methods have been developed to
study the mechanical properties of the elastomers, as we will see later in this chapter.
Most of these techniques measures the shear modulus only. In this chapter, we will

demonstrate a way of measuring both the shear and bulk modulus.

8.2 Theory of Elasticity

This section provides a quick review of the theoretical aspects of the shear and bulk
modulus. The theory of the elasticity is valid usually only under the continuum
(hydrodynamic) limit. For a good reference, see Landau and Lifshitz (1986), ” The
Theory of Elasticity ”.

u,
S5r
or'
—a.
u,

Under small deformation, the volume element at position r will be shifted to a

Figure 8.1: A vector before and after

the deformation.

new position r'. Define the displacement vector u(r) as
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u(r)=r —r. (8.1)

Now consider a small distance vector ér (Fig.8.1). After the deformation, both
the head and tail of the vector will be displaced by uj and uz. Write du = u; — ua,

we can write down the distance vector after the deformation, ér’,

6r' = 6r + du. (8.2)

With the Einstein summation convention, the change of the distance squared ér?

is

& = (6r + du)? (8.3)
= ér? 4+ 2u;dzdz,.

Where u;, is the strain tensor defined as

Ui = % (a“‘ + 8"") : (84)

9z, Oz;
The trace of the the tensor uy is nothing but the divergence of the displacement
vector u, 8o it represents the local fractional volume change. By definition, this is the

hydrostatic compression,

u; = V- ll(l') (85)
V' -8V
8V

The strain tensor can be separated into two parts, pure shear and pure hydrostatic

compression,

1 AN
Ui = (uik - 55.'&“:1) + 3t (8.6)
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The free energy F of the deformation is
1 |
F=p (uik - §5ikun) + EK ui’, (8.7)

where p and K are the shear and bulk modulus respectively. The first term is the
contribution from the shear deformation, and the second term comes from hydrostatic

compression. Related with the deformation, the stress tensor o;x can be defined by

dF = —SdT + ouduik, (8.8)
or,
Oix = (g{:)r (8.9)
So, we have (using &ix[uix — 3iun] = 0),
g = Kunbix + 2p (u.-., - -155.1:“") . (8.10)
The strain tensor can also be expressed in terms of the stress tensor,
Ui = QLK&'I:UM + 51; (0.1: - %5.16") . . (8.11)

Eq (8.10) and (8.11) relate the experimental quantities wik and g by the me-

chanical properties of the material, K and p.

8.3 Experimental Methods

The basic experimental setup is shown in Fig.8.2. The weight of mass m is applied
to the gel via the light weight support rod A. The The tube B, which has a slightly
larger inner diameter than the diameter of the tube A, is used to keep the tube A
stay upright.

When the weight m is placed on the rod A, a pressure p is applied vertically to
the gel. By measuring the change of the height and the diameter of the gel, we can
obtain the moduli K and p.
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Figure 8.2: The schematic sketch of
the setup for the mechanical study of

E" the gel network sysiem. The temper-
atire of the sample can be controlled

with stability +0.05°C.

In this experiment, the deformation is homogeneous, that is, the strain tensor
uix is a constant throughout the system. This tells us that the stress tensor Ot is a
constant too. Because of this, the stress constant can be determined by the boundary
conditions. Since there is no external force on the side of (Le gel, therefore o;n, = 0.
Because the normal unit vector n is perpendicular to z-axis, i.e. n, = 0, it follows
that all the components o,; are zero except o,,. On the end of the gel on; = p, or

s = p. The strain tensor can be obtained using eq (8.11)

1(1 i

Upy = Uge = Uy = :—’- (ﬁ - 5;) P, (8.12)
1(1 1

U, = 5 (g’l? + ’-") p- (3.13)

From these two equations, we can find the shear and bulk modulus

1
B= gu,-—u ’ (8.14)
- p_ 1
K = Tu T (8.15)
The Poisson’s ratio, o, is defined as
o= —— (8.16)
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from eq (8.12) and (8.13)

(8.17)

Since K and u are always positive, Poisson’s ratio ¢ can vary between -1 (for
p = oo) and 1/2 (for K = o0). Using Poisson’s ratio, eq (8.14) and (8.15) and the
ratio u/K can be written

p 1

A 0 +0)u (8.18)
r = P 1
K = M=oy n (8.19)
g 3(1-20)
= re (8.20)
h(t,P)
ho[- Figure 8.3: Definition of the exper-

hl& imental quentities. hg is the initial
hi - -—=== height of the sample. A; is the height
right after the external pressure is ap-

plied. h; is the height at time ¢ = co.

Similar quantities are defined fro the
time radius.

Fig.8.3 is a schematic plot of a typical experimental result. Denote the initial
height and radius by ho and ro respectively, As soon as the external pressure is
applied to the sample, the height and radius will be changed into A, and r,, with the
volume unckanged horo? = hyry2. After the sample has reached its final equilibrium,

the height and radius are denoted by h; and r;, respectively. At any other time, the
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relaxation functions are defined,

Sh(t) = h(t) — hy, (8.21)
6r(t) = r(t) —r,. (8.22)

The change of the gel dimension is measured with a microscope, with resolution
0.05mm. The samples are either polyacrylamide or isopropylacrylamide gels made in
Kimble test tubes with inner diameter ~ 8.5mm, with the standard recipe. The final
equilibrium diameter after the gel has been taken out of the test tube is ~ 9.7mm.
A ~ 9.5mm long segment cof the gel was used for the experiment.

We also have an alternative design which is essentially the same as that in figure
8.2 except the gel holder can hold nine samples at the same time (a later one can hold
19 gels). The device is immersed in a transparent water tank with the temperature
been regulated by a wz‘er circulater with stability +0.05°C.

We will describe two experimental methods in the following. One is used under
the the gel equilibrium condition, from which both K and u can be obtained. The
other is under the quasi-equilibrium condition, from which only the shear modulus
can be obtained. The instantaneous response method has been used for many years
without a solid theoretical justification. So later in this chapter, we will discuss the

validity of this method.

8.3.1 Instantaneous Response Method

In this method, what is measured is the instant response, h;, of the gel under the
uniaxial pressure (see figure 8.3). Because the gel volume relaxation time is much
longer than the time scale involved in this method, we can assume the volume of the

gel is a constant. This tells us that dih, = constant. For a small pressure, we have

Ugey = —hlh—oho, (8.23)
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Uyy P
Upp = -—T. (8.24)

The conventional argument for obtaining the shear medulus is by using eq (8.14)
directly. This gives

=2
M=o (8.25)

The physical justification of this derivation is the following. The moduli of the
system comes from two parts. One is the solvent, the other is the network. The
solvent is incompressible, yielding incompressibility of the whoie system. However,
there is no shear modulus associated with the solvent, so the shear modulus measured
comes from the network solely.

Here we propose another way of thinking. Under the constant volume condition,
from eq (8.10),

o = . (8.26)

When the uniarial pressure p is applied to the gel, a hydrostatic pressure p), is created.

This is a uniform pressure in all directions. Under these two pressures, the gel deforms.

So we have
PHps = 2y, (8.27)
Pr = 2. (828)
From chese two equations,
= Pk |
“1 - 3 ho — h] ] (8'29)
p = =3ps. (8.30)

The first regult here is the same as the one obtained by the conventional argument.
The ratio of the shear moduli u, to g, (by measuring h;) is

ﬁl: 2(1 —d)ho—hz
s2 3 ho—hy

(8.31)
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Since the Foisson’s ratio varies from -1 to 1/2, the first factor is always less than
unity unless the bulk modulus K is infinite. The second factor, on the other hand, is
always larger than unity unless the bulk modulus X is infinite.

From the definition of these two shear moduli, we find that they should be equal in
value. The large vaiue of the friction coefficient provides us a easier way of measuring

the shear modulus ().

8.3.2 Equilibrium Response Method

By equilibrium, we mean that the gel shape ard size is independent of time. Then
what we have measured are two pairs of dimensions, (ko,dp) and (h2,d;) (see figure

8.3). So we have

(8.32)

Uy =

Upp =

(8.33)

The shear and bulk modulus can be directly calculated by using eq (8.14) and
(8.15).

8.3.3 Kinetics

The swelling of a spherical gel with negligible shear modulus was studied by T. Tanaka
and D. J. Fillmore (1979). Peters and Candau (1986, 1988) studied the the swelling
kinetics of sphere, iong cylinder and large disc gels with arbitrary shear modulus. In
their calculation, however, the lengih of the cylinder and the diameter of the disc are
fixed (hence pure two dimensional problems). But it is more common experimentally
to have long gels with free ends and large discs with free rim. We have calculated
the kinetics of the freely immersed gels for the case of long cylinders and large discs

in appendix D. We can treat our samples in this chapter as infinitely long cylinders
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because of the experimental geometry shown in figure 8.2. Notice that both ends of
the sample is in touch with large flat surface. There is no solvent can be transported
in the z-direction. This is the same as a infinitely long cylinder.
From appendix D, the kinetics of the gel shape relaxation process is described by
oo
u(t) = ¥ Boe Pty (a,), (8.34)
a=0
with the a,, = aq, determined by

140
l-0

anJo(ay) + Ji(a,) = 0. (8.35)

So the kinetics is a combination of other quantities. According to appendix D,
the kinetics we measured should be about 3/2 times slower than if the gel were freely

immersed in the solvent.

8.4 Data Analysis

8.4.1 Study of NIPA gel

In this study, we measured both the instantaneous response and equilibrium defor-
mation of the gel, and also the kinetics of the relaxation process. THe sample used
were standard acrylamide gels made in pipettes with inner diameter equal 8.5mm.
The experiment were performed on the swollen gels. The swollen diameter of the gels
were 9.Tmm

Figure 8.4 is the instantaneous response result. From this figure, we find
p1 = (3.09 £ 0.30) x 10*dynes/cm?. (£.36)

Fig.8.5a and 8.5b is the experimental result of u,, (which is (ho — k2)/ko) and u,,
(which is (dp — d;)/dp) as a function of the uniaxial pressure P, respectively. Within
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éh,/hy [X]

o O«

Figure 8.4: Instantaneous response

{ deformation as a function of the ap-

. —te plied pressure (weight). The volume
0 5 100 15 20 .
. of the gel is the same as that before
Weight [q]

the deformation.

this pressure range, the elasticity is in the linear range. From these two figures, we

find

o = 0.40+0.12 (8.37)
p2 = (2.51 £0.43) x 10* dynes/cm?. (8.38)
K; = (11.7 :1.8) x 10* dynes/em?. (8.39)

All of the errors are given by 95% F-test methed. First, we noticed that the two
shear modulus measured above are the same within our experimental error. Secondly,
the bulk modulus K is larger than the shear modulus by a factor of four.

Using o = 0.4 and eq (8.35), we find that a; = 3.0. The time constant of the

process is (using a = 0.5cm)

a?
n = D.a? (8.40)
= 1.85 x 10”7 f cm*/dynes.

Figure 8.6a is a typical measurement of the kinetics. Figure 8.6b is the reiaxation
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Figure 8.5: Equilibrium deformation as a function of the applied pressure

(weight). [a] change of the height; [b] change of the diameter.
tirie of the gels with different weight on top of them. The average relaxation time is
T =32 £ 5 hours. (8.41)
From this, we can obtain the friction coefficient f,
f = 6.2 x 10" dynes sec /dynes . (8.42)

This number is comparabl: with the value of f obtained from the light scattering
data by Tanaka, Hocker and Benedek, which is around 2.2 x 10!* (Tanaka 1973).

8.4.2 Crosslink Effect

We studied the moduli dependence on the concentration of the cross-linking molecules
(figure 8.7a and 8.7b). Only the instantaneous response method was used. In a wide
range, the power law dependence is observed. Then the dependence saturates beyond

the concentration bis,. From these data, we find

g~ bis®7, (8.43)
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Figure 8.6: [a] is a typical measurement of the kinetics. [b] is the relaxation

time of the gels with different weight on top of them.

where bis is the concentration of the crosslink molecules.
The rigidity of the gel network is related with the elasticity of it. From Flory’s ar-
gument, under uniaxial deformation (elongation), the retractive force 7 of the network

per unit initial area can be written as

vkT 1
T = T— (ar - 0—1.'2) ," (8.44)

where v is the total number of chains in the sample, V is the volume, ar is the
deformation ratio defined as

r ry r

aF = — = e (8.45)
To ToTy
= Qp.

Where rg is the reference state in Flory’s calculation and ag = ry/ro. The ro is the
radius of gyration of a free gaussian chain. The r, is the radius of gyration of a chain

when the gel was made, which satisfies the following relation

v(2r)® = V. (8.46)
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Figure 8.7: Shear modulus of acrylamide gel with different crosslink molecules
in the pre-gel solution. The unit of the x-axis is [std), y-axis is pressure. [a)
the skear modulus of gels before they swell. [b] the shear modulus of swollen

gels.

In our experiment, the eflective value of 7 should be the difference between the

deformed state and the initial state,

vkT 2
6r = -‘7— (ao + ;o?_a?) ba. (847)

When the number of the crosslinkers is changed, the total number and length
of the chains is going to change. Assume the gelation efficiency of the crosslink
molecules and the monomer units is 85 and §; respectively, then intuitively we have

the following relations,

v ~ bisﬂp (8.48)
ro ~ n¥% ~ bis~¥5(8,/8g)" (8.49)
rn o~ bis~1PgagV3 (8.50)
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So the ap can be written as
ag ~ bis¥/'8 g/t (8.51)

Equate 67 and P in eq (8.25),

o va(a+ 1 )
# V "% ag?ald

~ bis(bis*/'® and bis~®/1%)

~ bis'? or bis®5.

(8.52)

There are two possible exponents above. The experimental result is in between
these two values. So what we have observed is the cross over between these tow
exponents. In order for the cross-over to happen, ag must have the value of the order

c{ unity. From the experimental recipe,

v = 86-10"3N,Bp/liter = 5.2-10"%8p/ A3, (8.53)
7003,

n = m = 40.7ﬂ1/ﬂ3, (8.54)

r = 29857124, (8.55)

ro = an®/5=6.4a(8/B8p)*°. (8.56)

Where a is the length of a monomer unit. So we find
4.53(A
a0 = 2538 gur g,y (8.57)

The length of a monomer unit is about 54. Our experimental values of A and
Br are close to one. So the value of ay is indeed of the order of one.

If the calculation above is valid, we can conclude that in most of the cases (bis:
0.1 - 1), our samples are nearly perfect networks. A general discussion on the possible

imperfections of a network is given in appendix A.
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3 Figure 8.8: Shear modulus of acry-
3 lamide gel with different menomer
1 molecules in the pre-gel solution.
10‘10’ — 1;; I ‘u;oo The unit of the x-axis is [std], y-axis

fso [mi] is pressure.

8.4.3 Monomer Effect

The effect of the network concentration has been studied be several groups on the
physically connected agrose gel networks (Nassal and Jolly 1988; Masayuki et al 1987;
1985) and chemically crosslinked networks (Richards and Davison 1983). A power law
has been observed by the above groups. Depending upon the experimental condition,
the exponent varies. In general, the phenomenological form of the concentration

dependence can be written as
p=C¢" + Cag¥ (8.58)

with the exponents z and y around 2 and 4, respectively.
Figure 8.8 is the shear modulus of gels with different monomer concentration.
The monomer dependence of the shear modulus 4 is similar to that of the cross-link

molecules.

8.4.4 Ionization Effect

Figure 8.9 shows the ionizable group dependence of the shear modulus of acrylamide

gels. The experiment were done on swollen gels. The gels with different swelling ratio
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Figure 8.9: Shear modulus of acry-

lamide gel with different ionizable

groups attached to the network. The

NN |
1 10
ko [mi]

unit of the x-axis is [std], y-axis is

pressure.

are cut into short cylinders with the same size. The result in figure 8.9 is normalized
shear modulus (modulus per unit network chains).

The shear modulus increases as the ion concentration increases in our case. This
is just the opposite of what Ilavsky (1982) has reported.

For detailed explanation about this data, see chapter 9.

8.4.5 Pulling Experiment

All of the experiments we mentioned so far are related with the gels upper an com-
pression pressure. In this and the next sections, we demonstrate another kind of
experiment, i.e., the puiling experiment. The advantage of the pulling expériment is
that the range of the deformation ratio is much larger, with a bigger linear region.
The difficulty of it has always been finding a way of holding the gel. In our case, the
gel was carefully dried first. Then a small piece of moistened towel paper were used
to wrap the ends loosely. The use sewing string to tie the towel paper. After a short
while, the ends of the gel become swollen. Now the ends of the gel are fairly tightly
held by the paper. Next step is to pull the gel by holding the papers on the two ends.
Figure 8.10a is a schematic sketch of the setup. The result is shown in figure 8.10b.
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Figure 8.10: [2] A schematic sketch of the pulling experiment setup. [b] Elon-

gation of a long cylindrical acrylamide gel under a pulling force.

The time dependence of the elongation in this experiment seemed to be small.

From figure 8.10b, we find

u=3@x\0" dynes fow? (8.59)
8.4.86 Fracturization
. | AR S Y v T ]
ol o .
s Br
10pF
s} I II i Figure 8.11: Fracturization of
o © Bl ases acrylamide gels. The gels were
i A - | 2 S 4 1
20 25 30 35 40 45 SO pulled by hands in water until

Mo, Stratch. Rotio
they broke.



111

In this experiment, each sample was pulled slowly by hands in water until it broke.
The initial and final length was measured. Figure 8.11 is the distribution of the

maximurmn stretching ratio of the samples.

8.5 FExternal Pressure Induced Phase Transition

8.5.1 Theoretical Consideration

This problem can be treated thermodynamically by writing down the free energy of
the system,
F = Fy(e,8,T) + Fu(B). (8.60)

Where a and B are the expansion ratio on the radial and axial direction, respectively.
The T is the temperature of the system. F; is the Flory-Huggins mean-field free

energy of the gel network system,

F,= ukT{Nol —¢ [ln(l -¢)+ %TF¢] + % 202+ 42 -3 (2f + 1)ln(a3ﬂ)]} :

¢
(8.61)
F, is the gravitation energy related with the introduction of the weight,
Fy = wgho(B - 1). (8.62)

Minimize the free energy in eq. (6.1), we will find the thermodynamically stable
states. This problem is mathematicaily identical with the one Tanaka et al solved for
the ionic gel in electric field (Tanaka 1981, the explanation in this paper is not quite
according to the private conversation with Tanaka) .

The result of Tanaka’s calculation is plotted on Fig.8.12. According to their result,
when the weight is sufficiently big, the phase transition will occur.

If carefully designed, this can be a more direct way of studying the critical behavior
of the gel system.
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Figure 8.12: Phase diagram of a gel

system under uniaxial external pres-

sure.

8.5.2 Experimental Observations

J8 88

Figure 8.13: Sequence of the ring formation.

The samples used in this experiment are ionic gels with 32mM sodium-acrylate. The
transition temperature of this sample is around 42 °C when freely immersed in water
(figure 8.12). Since the size of the gels we used in this experiment are very large
(7mm), the kinetics are very slow near the phase transition (more than a month).
The results we present below are hence very preliminary. To increase the visibility of
the network, we have added very small amount of biue dextran polymers (so the gels
looked slightly blue).

We increased the temperature from below and waited at 40 °C for a month. First
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thicker and thicker and the diameter of the gel at the middle became smaller and
smaller. Figure 8.13 Tepresents the sequence of these observations. The lines and
rings appeared on the gels are collapsed regions. So the gels were either in the
coexistence states, or in the process of undergoing a phase transition.

We then increased the temperature to 40 °C. All the gels collapsed at {hijs tem-
perature after one month.

After all the gels had collapsed, the temperature was set o 39 °C. After another

month, all the gels were swollen.

T

42 ¢
Figure 8.14: Comparison between

Mechanically the free gels and the mechanically

Precurired Gel pressurized gels. Notice the transi-

tion temperature difference.

V/, V.

Figure 8.14 summarize what we have observed on the phase transition aspect of
the mechanical Pressure effect. The transitjon ternperature is apparently di%erent.
We noticed that the transition temperature of gels under different mechanice! pressyre

(1mg to 17mg) falls in a region with the temperature span aboyt 2 °C.
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Chapter 9

Study of Polyelectrolyte Gels

In a polyelectrolyte system, several length scales presents (Witten and Pincus 1987).
Upon the changes of the charge concentration, chain length, temperature, etc, these
length scales can change as well. Due to the competition among these length scales,
a polyelectrolyte system can exhibit very interesting behavior.

We studied the swelling ratio and mechanical property of polyelectrolyte gels. Cur
results can be explained by the competition among various length scales (Suzuki et al
1989). In this chapter, however, we will present a different theory to interpret some

of the results we have obtained.

This chapter is organized as follows. Section 1 introduces the elasticity theory
near the stretching limit of a polymer. Section 2 discusses the effect of the sodium
acrylate on the gelation process. Section 3 and  re the major sections related with
the stretching limit observation. The last section discusses the effect of crosslink

molecules on the exponent Suzuki et al observed.

9,1 Stretching Limit Elasticity

115
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Figure 9.1: [a]. Comparisoa of the osmotic pressure obtained from
Flory-Huggins free energy (dash line) and the free energy with the Langevin
elastic term (solid line). [b] Expected elastic constant of a polymer chain as a

function of swelling ratio.

Intuitively, the swelling of a unbreakable network system under positive pressure will
eventually reach a limit at which the network is fully stretched. In this section, we
will give a brief introduction to the elasticity of a highly stretched polymer chain.

The detailed calculation can be found in appendix C.

For a flexible chain with no self-avoiding effect, the configuration distribution func-
tion with end-to-end distance r is a gaussian function with the variance nb?/3. Where
n is the total number of basic units with unit length b. The gaussian approximation
is valid for r € rp,;, with rp,. = nb been the length of the chain. The rigorous
distribution that covers the whole possible range of r is the Langevin distribution

function,

C(r)dr® = Aezp [—n /o""° L-(,\)au] drd. (9.1)
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Where u = L*()) is the inverse of the Langevin function L(u)
A = L{u) = coth(u) — ;1; . 9.2)

The )\ is defined as r/nb. For small r, the Gaussian distribution is recovered.
For large r, i.e., A ~ 1, L*()) diverges, and r is bounded by an upper limit nb.
Qualitatively speaking, the Gaussian form is recovered when \ < 1/2.

A comparison of the osmotic pressure obtained from Flory-Huggins free energy
and the free energy with the Langevin elastic term is shown in figure 9.1a. Figure 9.1b
is the expected elastic constant of a polymer chain as a function of swelling ratio..

When the network reaches the stretching limit, the curve diverges.

9.2 Gelation Analysis

In our experiment, the gel ionization is introduced by substituting certain amount
of acrylamide molecules with sodium acrylate. Since sodium acrylate in water is
dissociated into Na+ and Ac ~, we expect the repulsion among these charged particles
(Ac ™) will affect the network bond formation. The following studied were conducted

to have a more quantitative understanding of this problem.

9.2.1 Dry-Gel Experiment

Gels of varying sodium acrylate with known swelling ratio (V/V;) and weight (m;e)
were dried slowly in an oven at temperature ~ 60°C. Then the weight of the dried
gel (mg,,) were measured. From these information, the network concentration ¢; of

the gel when the size of it is equal V} is

¢ = MK. (9.3)



118 Chepter 8. Study of Polyelectrolyte Gels
1 L L LI R L} LI
(- 4
sl ‘I.Q'Q.O.o-.\.\.‘.

® 4F \'\ . .

i | . Figure 9.2: Normalized network
al \ concentration of acrylamide gel.
1F The concentration of the metwork
o [ 1 '} 1 1 [

02 04 08 023

NoAs moss frectien

material in the pre-gel solution is

5%.

Where V, is the size of the gel when it was made. Fig.9.2 is our experimental result.

At high sodium acrylamide concentration, ¢, decreases dramatically. This indicate

that in the high sodium acrylate region, the gelation process is much less effective,

large amount of monomer chemicals did not become part of the network. Waen the

gel was kept in water for several days, these monomers and short polymer chains were

washed away, causing the decreasing in ¢, in Fig.9.2. We should point out here that

Fig.9.2 gives only the upper limit of ¢;, because there are branched long polymer

chains and small networks trapped in the gel and could not be washed away. The

real situation can be much worse than is indicated by Fig.9.2.

9.2.2 Light Scattering Study

In this experiment, we studied the pre-gel solution without the crosslinking molecules.

» So what we had was a polydisperse polymer solution. The purpose of this study is

again to investigate the probability of forming chemical bonds between molecules.

These probabilities should be related with the length distribution of the polymers.

The solution concentration was 5%. The study on the diluted soluticn (1%) showed

no significant difference.
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Figure 9.3: [a] Hydrodynamic radius of polymer solutions. [b] the amplitude

weight of the slow component of the double exponential fit.

Figure 9.3a is the hydrodynamic radius of the polymers we measured. Figure
9.3b is the relative amplitude of the double exponential fit (slow/total) of the auto-
correlation function. These results indicate that it is harder to form bonds between
sodium acrylate molecules. At high sodium acrylate concentration , the polymers can
not grow too long because the repulsion between sodium acrylate molecules. Also the

system becomes mere polydisperse.

9.3 Swelling Ratio

Figure 9.4 is the equilibrium swelling ration of acrylamide gels as a function of the
concentration of sodium acrylate in preparation. It is clear from this figure that there
exist three regions. For low sodium acrylate concentration (region I), the swelling ratio
increases monotonically, then the curve enters a plateau region (region II), finally, at

very high sodium acrylate concentration, the swelling ratio seems to diverge (region
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Recently Y. Suzuki, et al pointed out that in the first region, the relation between
the swelling ratio and the ion concentration obeys a scaling law. The exponent was
interpreted as due to the charges on the network and the elasticity of the network.
According to their theory, when the concentration of ions is beyond a critical value,
they start to condensate on the network chain forming & charged shield (tube). The
second region ebove can be explained as the condensation of the the ions on the
network chain in their theory. In this chapter, we provide another possible explanation

to this plateau.

Throughout this chapter, we assume that the stretching limit arrives before the
charge condensation occurs (so we can neglect the charge condensation effect). As
we have indicated in the Appendix C, in general, the energy needed to fully stretch
a polymer chain is much less than the strength of the carbon-carbon bond. As the
ion concentration increases, the osmotic pressure due to the ions (and counterions)
increase as well. The network, forced by this pressure, swells larger and larger, until
it reaches its stretcihing limit. Then the swelling ratio will become flat, as we have

observed in the second region of Fig.9.4.
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Figure 9.5: Schematic diagram of a

loosely connected network. Many

dangling bonds exist.

Based on the study of the gelation process in section 9.2, The third region can
be explained as the following. To simplify the argument. we shall call the sodium
acrylate A molecules, and call the acrylamide and bis mclecules B molecules. Due
to the electrostatic repulsion, bonds between two A particles are unfavored. Thus
the maximum amount of A particles we can have without increase the overall bond
energy is equal to the amount of B particles, and the -A-B-A-B- connection will be
adapted to minimize the energy. When the amount of A is more than that of B, a
good part of the excess amount of A may ended up been left alone and washed away
later on. Indeed, from Fig.9.2, we find that the value of ¢; starts to deviate from 5%
at the sedium acrylate fractional concentration around 0.5. So as the concentration
of sodium acrylate increases, the number of effactive monomers decreases. When this
value falls below the gelation threshold, we will not get a gel. Above this threshold,
although we have a gel, but it has many cut bonds. The gel is a very loosely connected
network (Fig.9.5). Effectively, we have a gel with very long chains and very few
crosslinks. Due to the expansion pressure created by the ions, the network can swell

to a very large degree.
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8.4 Shear Modulus
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The experimental technique used here is the same as that described in chapter 8.
The gels of different sodium acrylate were fully swollen in water. From each of these
gels, a small cylindrical piece is cut out. The size of these small cylindrical pieces are
the same for all the concentration of scdium acrylate. Then the instantanecus shear
modulus is measured. This number is then normalized by the swelling ratio to take
care of the network concentration difference. So the final value of the shear modulus
is the shear modulus of unit network concentration.

Figure 9.6 is the shear modulus of polyelctrolyte network as a function of equilib-
rium swelling ratio (controlled by the concentration of the ions). This figure is similar
to figure 9.1b. The shear modulus appears to diverge near V/Vp ~ 30.

This can be explained by the stretching limit theory easily. Since in this experi-
ment the volume is a constant, the sﬁear deformation is related with the compression
in the axial direction and the radial expansion. But near the stretching limit, it is
very hard to expand the network in any direction any further. This yields the high

shear modulus.
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9.5 Crosslinking Molecules Effect
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It is very easy to show that for an ideal network, the swelling ratio is

V Viet V

5t v (84)
_ 61, b2 20,
-3 (a) A

~ ¢, 1SO* BIS~%®,

where V] and V., is the volume of the gel when it was made and the volume of the
network when it was tightly packed. The a and b is the effective radius and length
of the monomer unit (or persistent unit). The exponents v; and vg both are equal to
2/3 in the ideal situation.

Fig.9.7 demonstrates the scaling dependence of the swelling ration on the crosslink
molecules. The power of the behavior is denoted by vg.

The relation between final diameter D and the BIS concentration is analyzed by

fitting a line to the log(D) — log(BIS) plot

log(D) = A(f) — va(f)log(BIS) (8.5)
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Figure 9.8: [a] Sodium acrylate dependence of the parameter A. [b] Sodium

acrylate dependence of the power vg.

Where f is a short Land notation for sodium acrylate. Figure 9.8a and 9.8b is the
parameter A and the exponent vg plotted ageinst the sodium acrylate concentration,
respectively. From our results, we can write down the following phenomenological

relations
D(BIS =1,f) = 104U ~ f* ~ f03, (9.6)
ve(f) = 0.1-f“ =0.1-f°3 (9.7)

The first equation agrees with the result Dr. Suzuki had obtained recently. Com-
bine everything together

D(f, BIS) = 10f*BIS~*Y" (9.8)
For BIS = 1, we can write

10f7(1 + §B)-04/" (9.9)
= 10f*(1 - 0.1f"6B).

D(f, BIS)
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So there is an correction term. In general, the correction term is smaller than the
firat term.

From the discussion above, we find that the exponent v is coupled with v'. The
coupling is weak for small ion concentration. This is clearly shown in figure 9.8b. If

we fit all of these sweiling ratio curves with

log(D) = A+ vlog(f), (9.10)

we will find that the value of the exponent changes

bv~0.1. (9.11)
A more general scaling form is
-zo s’
D ~ f*'Be) (-’1) . 9.12)
Bo

From the fact that D is independent of the reference value B,, we can show that

v(Bo) ~ In(Bo) . (9.13)

Different reference concentration of bis will give different exponent v. Dr. Suzuki’s
result happens to be the result with the reference bis concentration the standard

recipe concentration.
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Chapter 10

Surface Tension of Gels, Etc.

The interfacial energy is directly related with many phenomenon, including surface
wetting, surface tension, liquid crystal, domain formation, etc. In this chapter, we
mainly discuss the surface tension of gels both in solvent and in the saturated vapor
of the solvent. We will show that when the gel size is of the order of several hundred
microns (sub-millimeter), the surface tension is not negligible. We will also explain the
observation first made by Dr. Hirokawa (private conversation) about the collapsing
of gels in saturated solvent vapor.

We will aleo briefly discuss several other experimental results we obtained in the

past several years. They all appear interesting to a greater or lesser extend.

10.1 Surface Tension Theory

Based on the consideration that the interfacial properties of a liquid-gas system are
not independent quantities once the temperature and the pressure is given, Cahn
and Hilliard (1958) derived a very successful theory of the interface between two
co-existence phases. The surface tension of polymer meits has been studied both

theoretically (Poser and Sanchez 1979; Rabin 1984) and experimentally (Wu 1969;

127
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Bhatia et al 1985) with great success.
In this section, we will give a brief introduction to the basic theory of the surface
tension. Then we will apply this theory to gel network system to relate the surface

tension with the swelling ratio of the gels.

10.1.1 General Discussion

Figure 10.1: [a] Density profile of liquid-gas interface. The non-zero thickness
of the interface gives rise of the surface energy and hence the surface tension.

[b] Interface free energy as a function of density (hence distance x).

For a liquid-gas system below the critical point, liquid and gas coexist. Due to their
aifferent density, a definite Interface between them exist. The density profile varies
from the value of liquid phase to the value of gas phase (Fig.10.1a). Related with this
profile, there is a free energy increase. A typical Landau-type formula can be used to

describe the surface energy (Cahn and Hillard 1958):
= + x(dp/dz)?| dz, .
v .L [Af x(dp/ :l:)] x (10.1)

where p(z) is the density profile, A f is the free energy difference between ihe Interface

molecules and the bulk ones (see Fig.10.1b). The system minimizes it’s free energy
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by adjusting the profile p(z). The surface tension is the Interface free energy per unit
surface area. For simplicity, we will use the symbol 4 for both surface energy and the
tension.

In the surface wetting case, there are two contributing factors to the surface en-
ergy, one is the density profile of the liquid film, the other is the wall-film (gel-film)

interaction:

¥y = ®(c,) + /0 " [Af + x(de/dz)?] ds, (10.2)

where the first term is the wall-film interaction and ¢, is the film density at the
surface, the second term is the film free energy. We have assumed that the wall-film
interaction is a short range interaction. We are going to assume that our gel is totally

wet.

10.1.2 Surface Tension of Gels

p (b]

[a ]/ SOLVENT

Figure 10.2: Density profile of a gel [a] in solvent, [b] in saturated vapor.

There are two cases that we are interested in the case of gel (figure 10.2). One is

the gel immersed in solvent, the other is the gel surrounded by the solvent saturated

£
;
L
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; Af

Figure 10.3: Surface tension contribu-

p tion of the gel system.

vapor. There are two density profiles in each case, as shown in figure 10.2. One is
the network density profile, the other is the solvent density profile. Our final goal is
to estimate the surface tension of these profiles.

The surface tension contributed by the network density profile is different from
that of a liquid-vapor interface. The contribution is shown by the shaded area in
figure 10.3. From figure 10.3, we expect the surface tension of a gel system is much

larger than the typical liquid-vapor system.

10.1.3 Effect on the Swelling Ratio

According to Flory-Huggins mean field theory, the osmotic pressure of a gel network

can be written as:

1/3
7= [s+ma -0+ 254 4 [(f+ - (f-) ] . (103)

Where N is Avogadro’s constant, v is the molar volume of the solvent, v is the number
of chains per unit volume at ¢ = ¢,, and f is the number of dissociated counterions
per chain. For a swollen gel, the first term is eq. (10.3) is small and can be neglected

1/3
%:(;+li-(i) : (10.4)
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In general, when the gel is small, the pressure due to the surface tension should

mn=1=-2X ("S )m . (10.5)

Where v is the surface tension of the gel, r; is the radius of the gel at ¢ = ¢, and r

be considered,

is the equilibrium radius. For a liquid-gas system, the surface tension goes to zero as
the system approaches the critical point. When the critical point of the solvent is far
from the experiment region, the surface tension varies very slowly with temperature
and can be treated as a constant. During our experiment, the temperature changes
by several degrees, so in practice kT is a constant as well. Combine eq (10.5) and

eq (10.4), at equilibrium (IT;otar = 0)

2/3 r
(%) =) - (eimn) 109

If we plot (ry/r)? vs ri! for the same kind of gel, we expect to get a straight line.
The slope of it will be proportional to the surface tension of it.

Define a as the relative linear size of the gel,

@ e
a-? = 5%1_ (1 + ;‘szrll) (10.8)
e

So from a a~2 —1/r, plot, we can obtain information about the surface tension + and

gel structure parameter f or v.

a. = \/f_:g (1 - ‘M:_Tr,) . (10.9)

At equilibrium,
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The fractional change of the gel size due to the surface tension can be estimated
from the second term in the parentheses. A typical value of 4 for polymer solution
(CRC Handbook of Chemistry and Physics) is 60 dyne/cm, v is ~ 1 mM, take the

initial radius r to be 0.1cm, we find that the correction term is about 1%.

10.2 Experimental PResults

10.2.1 Gels‘ in Solvent

2.1 [T —r vy o] 0.40 n o r T
20 — 0.35
I ° ~ I
191 oo s 0.30
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Figure 10.4: [a] Linear swelling ratio of acrylamide gels with different initial
diameter (D,) in water. These were ionic gels with 11mM sodium acrylate.
[b] Replot of the figure 10.4a. The slope is proportional to the surface tension
.

Figure 10.4a is a very typical result of our experiment. We noticed that the linear
swelling ratio starts to decrease at ~ 1.2mm as the gel size decreases. The swelling
difference between a large gel and the smallest gel we had (Do = 0.307mm) is about

12%, or the volume swelling ratio is about 36% . This is a very large difference. This
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means that when ever we are dealing with small gels (of the order of 1 mm), the
surface tension can not be neglected.

From figure 10.4b, we find

A = 2f2+l=o.24¢0.01 (10.10)
B = %:o.ouio.oos, (10.11)
or
f = 37402 (10.12)
;le- = 0.014 £ 0.003 . (10.13)

At room temperature (300K), NokT = 2.5 x 10'%ergs, v < 8.6 x 10~%Ny/cc,
80 y ~ 300dynes/cm. This number is much larger than the the value of a typical

liquid-gas interface. The surface tension for water-air interface is about 72 dynes [em

10.2.2 Gels in Saturated Vapor

ionic acrylamide gels [a] in water, [b]

u r1 L L L T .1. . : . T
25t - ® ° * [.]
M - R ® ¢ -
g5} °
wok° () . Figure 10.5: Linear swelling ratio of
M S
0

in saturated water vapor. The initial

Nese [mM] diameter of the gels was 1.28mm.

The samples we used in this experiment were ionic acrylamide gels. In saturated

vapor, all of the gels collapsed (figure 10.5). This indicates that the surface tension
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of a gel in saturated vapor is tremendous

Eourjace > Eeloct- (10°14)

Where E,yrfoce = 4%7r? and Eejo0 = (K/2)(1 — V;/V;)? is the surface encrgy and the
elastic energy of the gels at the collapsed state. From chapter 8, we know that the
bulk modulus of our gels are about 3 x 10*dynes/em?. Take r ~ lmm and V,/V; ~ 0
for the 33mM ionic gel, we find v ~ 10°dynes/cm. This value again is much larger
than the surface tension of a typical liquid-vapor system.

The only possible source of the large value of the surface tension of gels in solvent
(10%) and in vapor (10°) is the density profile of the network at the boundary, as we

have stated earlier.

10.3 Other Miscellaneous Experiments

10.3.1 Gels in Polymer Solutions

® -
.a. w L
40 -
g A . Figure 10.6: Swelling ratio of 32mM
. R f ? ionic Iso gels in Dextran solution. The
o ., . ., 4:1.018‘ - molecular weight of the dextran is
0.01 0.1 i 10 100
vﬂ. 200,000.

The basic procedure of this experiment is the following. First we make a gel in water,

then put it in high molecular weight polymer solution. Because of the large size of
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the polymers, they can not enter the gel network. The presence of these polymers
decreases the chemical potential of the solvent outside the gel, providing an effective
osmotic pressure to the network. This type of work has been done by several people
(Hossian, Hirotsu, and the author of this thesis)

Figure 10.6 is our typical result. We expected at the beginning that the gel
in higher polymer concentration solution should have a smaller volume due to the
larger pressure. In out results, however, we find that there is a cross-over behavior
among these curves. In the swollen state, higher polymer concentration corresponds
to smaller gels, and vice versa. On the other hand, during the transition the cross-over
occurs. The higher polymer concentration corresponds to larger gels instead.

We believe that this cross-over is caused by the absorption of the dextran polymer
on the surface of the gel. The polymers absorbed onto the gel changes the surface
property of the gel. Depending upon the sign of the effect, it can vary the behavior

of the gels in many ways.

10.3.2 Gels in Water-Alcohol Mixture

Figure 10.7: Time dependence of iso

gel in water-alcohol mixture. The tem-

perature of the gel was changed at

time time zero.

Hirotsu (Hirotsu, 1987) had studied the swelling ratio of the isopropylacrylamide gel
water-alcohol mixture. In this subsection, we discuss the stability of the gels in water-

alcohol mixture. Figure 10.7 illustrate time dependence of the size of a gel after the
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temperature had been changed at time zero. In this figure, after the temperature had
been changed, the gel collapsed first, then swelled back to the swollen state again.
This may be the result of the temperature dependent preferential absorption of the

solute molecules on the network.

10.3.3 Gravitational Effect

Figure 10.8: [a] Cylindrical gel in sat-
urated vapor. The gravitational effect
is z-dependent. [b] Expected transi-

tion behavior due to the gravity.

What will happen to a large (can neglect surface tension) upright cylindrical gel in
saturated vapor? What is the effect of the gravity on the swelling ratio of this gel?
These are the questions we raise in this subsection. | |

The chemical potential of solvent molecules In the gravitation fieid varies along
the z-axis. The osmotic pressure due to the gravity will eventually be balanced by
the elasticity of the network. Since the osmotic pressure is linear in z (proportional
to the chemical potential}, this problem can be treated in the way we have described
in section 8.5 about the phase transition of gels induced by the external pressure.
The only difference is that now the -prasure i2 z position dependent. (Actually now
Tanaka’s (198i) result can be used without any modification). We will not go into

the theoretical calculation here.
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Experimental Details

A.1 Gel Recipes

There are many ways to form a network (Mark and Erman 1988). The common way
is tostart from monomers by using the radical copolymerization technique. Another
way is to start from polymers. To chemicaliy link polymers in to a network, we
can use vocanization (sulfer cure), peroxide cure (radical process), and high energy
radiations (e, 4, UV). A network can also be made by physically connect polymers
together. Some common ways are, addition of glue like filling particles, monomers
(links formed by the negatively charged polymer side groups been attracted to the
same positively charged particles), microcrystalization of polymers, hydrogen bonds,
etc. We usually use the copolymerization method to meke geis. Here are the two
recipes referred as the standard (std) recipes in this thesis.

A.1.1 Acrylamide Gel

A. TEMED(240u!), Bis(133mg), Acrylamide(5g) in deionized, distilled wa-
ter(100ml).

B. Amonium Persulfate(400mg) in deionized, distilled water(10mi).

137
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C. Use N; gas to bubble the solution {A] and [B] for several minutes.

D. Mix a portion of [A] with 1% (by weight) of [B], quickly transfer the mixture
into the container in which the gel is going to be made.

E. The gelation process will be completed in about ten hours.

The interaction parameter, x, of the polyacrylamide-water system is 0.45, men-
tioned by Weiss, N., Van Vliet, T. and Silberberg, A., (1879). The reduced tem-
perature appears as 1/2 — ¥, so the acrylamide gel is temperature insensitive in the
room temperature region. A convenient parameter is the solvent concentration (for

instance, aceton-water mixture).

A.1.2 Isopropylacrylamide Gel
A. TEMED(240u!), Bis(133mg), Isopropylacrylamide(7.8g) in deionized, dis-
tilled water(100ml).
B. Amonium Persulfate(400mg) in deionized, distilled water(10ml).
C. Use N, gas to bubble the solution [A] and [B] for several minutes.

D. Mix a portion of [A] with 1% (by weight) of [B], quickly transfer the mixture
into the container in which the gel is going to be made.

E. The gelation process will be completed in about ten hours.

Isopropylacrylamide gel is very sensitive to the change of the temperature in the

25-35°C region. This region becomes higher for ionic gels.

A.1.3 Purification of N-isopropylacrylamide
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Soowl Beaker

1so 629
(2hrs dissolve)

Fitratio
Pet Exher 3000wl Figure A.l1: Purification of Iso
Recrystalline monomers.
) The N-isopropylacrylamide was
Fiker bought from Koduk Chemical
Labs and purified according to
-DTB this diagram.

A.1.4 Related Molecular (Formular) Weights

Molecule MW (FW) Handy Conversions
Acrylamide 71.08 700mM = 5g/100cc

Amonium Persulfate 228.2 1.69mM = 400mg/10cc/100
N,N’-methylenebisacryvlamide 154.17 8.6mM = 133mg/100cc
N-isopropylacrylamide 113.16 610mM = 7.8g/100cc

Sodium Acrylate 94.04 ImM = 9.40mg/100cc
TEMED 116.12 | (2.4%d/116.21)mM = 240u1/100cc

note: To suppress the spontaneous hydrolysis caused by TEMED, 20mg/100cc sodium
pyrosulfite can be used (M. Ilavsky, Macromolecules 15, 782(1982)).

The structure of a polymer network is, in general, quite complex. Fig.A.2 includes

some of the non-ideal features of a real network. There are chains that are entangled
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_
> D) 7

{a] [c]

Figure A.2: Deviation of a real network from a phantom network. (a) Entan-

glemens. (b) Dangling chains. (c) Intramolecular cross-linking.

together, making contribution to the elasticity of the network. Also there are some
unfinished chains that dangling around. There are also intra-cross links that makes a
chain shorter. The length of a chain between two crosslinkers is not a constant. Some
places have more cross-lionkers than others. All of these makes the network system

harder to model theoretically.

A.2 Temperature Control

In many of the experiments mentioned in this thesis, the temperature was controlled
for various purposes. There are two type of temperature controls we have used. One
is rough control by using conmercially avilable water circulator, which usually has a
stability £50mK. The other is precision control, which uses the water circulator to
control the ambient temperature as the first stage. Here we will only discuss the basic

principle of the precision temperature controller.

A.2.1 Sample Holder

All of out sample holders are alike as far as the temperature regulating mechanisim is

concerned. Figure A.3 is a schematic description of our sample holders. Some of the
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Outer Yacket, T,

/

Inner Jacket, T,

Shield

Figure A.3: Schematic sample holder

with Precision temperature control.

general priciples we had kept in mind when we were designing these sample holders

are listed below.
o The setup shoud be two-stage temperature controlled.

¢ In general, the sample holder should have three picces, the inner container,

shield, and an outer container.

o The inner container should be thermally massive to have a long temperature
relaxation, hence to stablize the temperature. Its temperature will be directely

controlled be a heater connected to an electronic system with feed-back featuer.

o The shield is need to decrease the temperature gradient effect and uniformize

the temperature. It should be thermally light weight.

@ The temperature of the outer container will be controlled by a rough tempera-

ture regulator to provide a stable enviorment for the inner container.

A.2.2 FElectronics

We have used several temperature controllers. Figure A.4 is a schematic diagram of

one of themn. The electronic circuit is more or less standard, so we will not go into
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Tor s | Rewer )
| Amplifier by, g‘;’;;)

Load

Figure A.4: Schematics of the

electronic circuit diagram.

the details of it.

A.3 Some Cells

Many cells had been made to contain the samples. We will dJiscuss sore of the cells
we have used for various experiemnts. Figure A.5 below shows the two cells we have

used in the critical isobar and the heat capacity experiment.

[a]

Figure A.5: [a]. Jsobar sample cells. It can hold 64 samples. [b] cell of the

heat capacity experiment.



Appendix B

Criticality of Flory-Huggins’ Mean-Field
Theory

This note is intended to be a handy reference and a confirmation to the people who is
interested in the polymer coil-global and gel network phase transition. The criticality
of Flory-Huggins theory is calculated and discussed. The exponents are found to be
the same as that of a typical mean-field theory. Relations of some experimentally more
accessible quantities and the quantities of the most theoretical interest are discussed.

Some results are compared with the existing experimental data.

B.1 Some General Thermodynamic Relations

For a gel network system, the external pressure, in general, is zero. The convenient
parameter is f, the total number of free ions trapped inside the gel. But in order to
relate the experimentally measured quantities of a gel system with more recognizable
thermodynamic quantities that is related with the external pressure, in this section

we consider the more general case, i.e, leave the external pressure as a function of

143
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other variables. The most general free energy can be written as

F = F(t’vij)’
dF = -8dt— PdV + udf,

(B.1)
(B.2)

where t, V, and { are the temperature, volume and the total number of particles of

one component. From eq. (B.2), we get:

5o -2
oF
P = ‘—=a—v,
_ OF
b= 37
And the Maxwell’s relations:
#),= &,
(8).=- (&),
(%,f:)tv == (a‘)gj'

1 foV . v

Xy == 3 (B_P) y , (isotherm compressibility)
1 foV . -

Ky = v (797) tp , (isotherm expandability)
1 [oV . .

% = 7 (W)” , (isotherm expansion)

and heat capacities:

(B.3)
(B.4)

(B.5)

(B.6)

(B.7)
(B.8)

(B.9)

(B.10)
(B.11)

(B.12)

o
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By using the Maxwell’s relations and the mathematical identities

Ee- e

and
@) -%).+&).5). @2
we can obtain the following relations,
xy = Ku (g{;)w, (B.15)
Xy = ©pf (%);u’ (B.16)
Cpy=Coy = tV (%’; o (B.17)
Cpo—Cpo = —t (%‘ti) i} (%-{-)w. (B.18)

B.2 General Discussion of the Flory-Huggins Mean-

Field Theory

The Flory-Huggins mean-field free energy of 2 gel network system is
t -
F(t.¢.)=3 [2,;‘72:"(1 — ¢) + 3227+ (2f + 1)ln¢] - '-21¢ (B.19)

with
o _%

—

¢ V
Where F(t, ¢, f) is the free energy per chain of a network in the unit of Flory’s

(B.20)

effective polymer-polymer interaction energy AF, 1 = kT/AF is the reduced temper-

ature, { is the total number of free ion particles (free gas) of a chain, n is the effective

TR L

'\ § seT!
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rumber of monomer units in a chain, ¢ is the volume fraction of the network , ¢ is

a reference concentration of the system. From eq. (B.19), we have:

S = -% [2n1 ; "m(l — @) + 3072973 + (2f + l)ln¢] , (B.21)
L I PR $_ iua]__"_z

F = 5 ¢oln(l ) 2n¢0+(2f+1)¢0 2(%) 2%%“3.22)

p = ting. (B.23)

From the renormalization-group (RG) theory point of view, when the external
pressure is fixed, there are only two relevant parameters t and f. So the system has
two degrees of freedom. This tells us that there can exist only two independent critical

exponents. Here we will only concentrate on the relations (B.15)-(B.18). From (B.22)

afy _ Vv

(6), = B
ot 2Vodc!

(a_P), = -ﬁ‘-“;ﬁ. (B.25)

Both (B.24) and (B.25) are finite and non-singular functions around the critical
point. So we know immediately that the critical behavior of the isotherm compress-
ibility x.s, isotherm expandability K, and the thermal expansion a;; are the same,
they all have the same exponent. This critical exponent of x:y, by definition, is v.

Since the entropy depends only on V and f explicitly, we have

Cuj = 0, (B26)

oP -

Cpf = tV (-ét—)!”a,f, (B2l)
_ (% [of

Cpo = t(a-)h (37)”. (B.28)

From (B.22) and (B.23)

(%), = (529
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(%), - -(5).&). @

_n¢
22’
n¢g

Cpu = -2Tln¢ (B31)

Both (B.29) and (B.30) are finite at the critical point. From (B.27) we know that
C,; has the same critical exponent as xis. The quantity C,, is finite. The exponent

of it is zeto. By definition, this exponent is a
a=0 (B.32)

Since there are only two independent exponents, there are relations among differ-

ent critical exponents. Two of them are
a+2B8+v=2, (B.33)

dv=2-a, (B.34)

where d is the dimensionality of the system, v is the exponent of the correlation

length. In general, mean-field predicts

i
(=)

(B.35)

2 ™ 8
]
— o

We should point out that in many ways, the variable f behaves as the external
pressure. Since in gel experiment, usually P = 0, we can drop the subscript p for the
experimentally measured, e.g., Cps, Cpyy Kip, etc. In the liquid-gas transition, P =
P(V, T) is the equation of the state, in the gel transition, we can write f = f(¢,1)
from (B.22).
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Oret

Figure B.1: Flory-Huggins free energy.

The local maximum point has been

¢ choosen as the reference point.
B.3 Phase Diagram

In general, the equilibrium of a gel network system is reached when the osmotic

pressure is zero:

t [ 2n 6 é ¢ n
P=—|-=In(1-¢)—2n— + (2f +1)— =2(—=)"*| - ——¢* =0 (B.36
A n(l -~ ¢) n¢0+(f+ )¢° (%) Weas? (B.36)

In the following part of this note, we will assume P'= 0 unless otherwise mentioned.
The critical behavior of the system is independent of the value of the pressure. For
fixed t and f, the gel adjusts its density ¢ so that at equilibrium, the free energy
is a global minimum. For a specific sample, the { value is fixed, when we change t,
depends on the value of f, we may get either a continuous or a discontinuous change in

¢. The critical point of the system is determined by the equation of the state (B.36)

and :
0*F
Fe) = (34"):: 0, (B.37)
PF
(3) = P = U. .
FO) = (M’)u 0 (B.38)

Where F(™)(c) is the n-th derivative of the free energy evaluated at the critical point.

For n = 40 and ¢o = 0.05 ( the same as S = 10), the numerical value of the critical
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point is:
t.= 0.74723,
¢ = 0.12798, (B.39)
fe= 0.65851.

For t < t. and f > f., the free energy has two minima and one maximum (figure
B.1). At certain value of t = t(f), the free energy of the two minima have the same
value, the two states (corresponds to the two minima) co-exist, and the first order
phase transition occurs. Let’s choose the density at which the free erergy is maximum

to be a reference density, ¢,. Expand the free energy around this point, we have
(3) 4) ‘
Fit, $,f) = F(r) + FO(r)6p + = ")5¢, F (’)545, F (”)5¢, .. (B.40)

Where 6¢, = ¢ — ¢,, and F{™(r) is the n-th derivative of F evaluated at the reference

point.
FO(r) = %:- r-ln(l -¢)—o+ ——(2”1)45- l%”%"*‘] - -f} (B.41)
FO(r) = ;_j zzn(1—¢)+l—§;¢+¢ @f +1)¢+ ¢o”3¢"3]. (B.42)
r
FO(r) = g.f. L-eznu—¢)—41f¢+(1f¢)2-—2¢+ (2f:1)¢ (B.43)
;0¢ 2/3¢l/3]
n
FA(r) = 24In(1 — ¢) + 18 ¢ 6( ¢ )?+2(—¢--)3+6¢ (B.44)
¢5 1-¢ "1-¢ 1-¢
-3 (2f: 1)¢ 440 %2/3¢l/3]

Where F(r) means that the function F is evaluated at the reference point (t, ¢,, f).
F)(r) = 0 by (B.36). Under the condition ¢ ~ ¢, and f ~ f., we will have ¢, ~ 4.,
and 6¢, will be a small number. Up to the fourth power of 6¢,, when F©®)(r) is zero,

eq. (B.40) is symmetric about ¢,, and the two minima of F are the same. So the
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co-existence condition is determined by eq (B.36) and
F®(r)=0. (B.45)

Notice that the reference point under the co-existence condition is uniquely de-

termined. Let us treat first order transition point ({;, f;) as functions of the reference

density ¢,:
it = t,— 1. = bt(¢,), (B.46)
§f = fi—fo=8f(¢r) (B4T)
Then these two functions can be linearized around the critical point:
o = gg (80 (B.45)
= So-(66v), (8.49)
with 6¢,. = ¢, — ¢.. From eq. (B.45) and (B.36), we get:
fo = % ;'2 [ =3in(1 - ¢) - 35 f p + -g-(l f ¢)2 - -24—70’-2-%2’%‘/3 (B.50)
to = g—; = —%fo (B.51)
The numerical value in the case of ¢o = 0.05 and n = 40 is:
to= 3.30832,
{ fo= —6.94707. (B52)
Under the co-existence condition, eq. (B.40) becomes
F-F(r)= -F @(84.)* + —F @ (8¢,)*. (B.53)

This is nothing other than Landau-type free energy. Following the conventional

definition, we define

a = FO(r), (B.54)
1
u = -4—!F(‘)(r), (B.55)
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then,
F = F(r) = 5(6¢.)" + u(6,)", (B.56)

Minimize the free energy of (B.56) with respect to §¢, we get the very familiar equation

5¢vs (a +4u(6¢,)*) = 0. (B.57)
The solutions of (B.57) are
1/2
64 = £(-7) (B.58)
b¢, = 0. (B.59)

Expand F(?)(r) around tk. : critical point, by using eq. (B.58) , we have

(2) = —'.l— —
FO(1, 6., f) = 556t = aobt (B.60)
or
a = aybt. (B.61)

Where ap = n/2¢.t. is a constant. The parameter u = F ()(r) can be replaced by
FW(c) directly. In general, ap and u are constants, and the stability requires that
F)(r) been a positive number. When t > t.,a > 0. There is one solution to (B.57),
i.e, §¢ = 0. On the other hand, when T < 0,a < 0, there are two non-zero solutions to
(B.57). These two solutions are the two co-existence states. In the case of ¢ = 0.05

and n = 40,

a, = 209.13297,
(B.62)

u = 206.35814.
From (B.56), we realize that 6¢, serves as the order parameter of the system. But
in practice, what we can measure is ¢ and ¢, not ¢,. The conventional definition of

the order parameter is

66 = ¢ — é.. (B.63)
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Using (B.49) and (B.31), we find
1/2
s = bus+ 80 =% (32) (=607 = Z(~60) (B.64)

Eq. (B.64) can be re-written as

§¢+ = B(-6t) [1 - Bi(~6t)%], (B.63)
8¢ = —B(=6t)° 1+ By(—61)]. (B.66)
where
B = (%)m, (B.67)
B = tOLB (B.68)

with the critical exponent 3 and the correction-to-scaling exponent A been

8 =5 (B.69)

(B.70)

0.7 ‘7 Ll 1 | ¥ ] LI

g 0.744 N
4 L
0.741 -

<

LA |

Ty T °

Figure B.2: Co-existence curve of

] ] 1 1 1 1 Flory-Huggins network mean field th
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densily, ¢ ory.

The co-existence curve can be solved from (B.65) and (B.66
2

— 6t = B¢ (1 + %w) (B.71)



B.4. Calculation of x,; and C;, for ¢ > t. 153

The result of eq (B.71) is plotted in figure B.2. Finally, using (B.71), let us re-write

é¢
F = 6% (&m) (B.72)

Where g is some nice analytic function with g(0) finite and g(0)6t*> coming from

(B.53) in a scaling form

F(r). Here, We have dropped the trivial constant term and linear in 6t term of F(r).
The linear term contribute a trivial constant to the entropy only. Now we assume
(B.72) is the scaling form of the free energy around the vicinity of the critical point

for ¢t < t.. Compare (4.34) with the well known scaling form of free energy

é
Fu’ngular = 6t2'°g (3‘%) (B.73)

we find immediately that for the Flory-Huggings theory,

(4
(B.74)
>0

B.4 Calculation of x;; and Cy, for t > {,

i
o

W=

Since X1, K and Cyy all have the same critical behavior, we need to calculate only

one of them. Now let’s evaluate the inverse of xuy,

oP
X‘f—l = -V (av) (B.75)

" (%) (%),

= W ——F3)(4,1, f).

Assume we approach the critical point from some path ¢ = ¢(1) and f = f(2).
Expand F() near the critical point, (B.76) becomes

-1 ¢c PO OF(” d¢ dF® df  OF®

(B.76)
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All the derivatives are evaluated at the critical point. The first and the last terms are
zero. The second term should be treated with care. Although 9F(®/8¢ = F® goes
to zero at the critical point, 8¢/3t may go to infinity. From (B.42)

BF(z)(c) i
57 e (B.77)
Re-write (B.76) by using (B.77)
-1 _ ¢¢ @d¢ _ i df
Along the isocore, ¢ = ¢, the first term does not exist. using (B.30), we get
o e
Xty = 2¢0Votc(t tc)s (B.79)
2¢oVot.? -
Xty = ¢‘; < (t—t)7 (B.80)
So, just as expected, we get
v=1 (B.81)

Expand eq (B.31) around the critical point From eq (B.31), the heat capacity at the

critical point is

Cpy = Co. (B.82)
Where Cg is
ne.
Co = 50 —In(¢.). (B.83)

B.5 Calculation of x;y and Cp, for ¢ < i,

The critical exponents are defined along the co-existence curve. Along this curve, ¢

and f are functions of t. From (B.71) and (B.50), (B.51), we have

§¢ = B2, (B.84)

§f = ;‘f’; (B.85)
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From (B.76), we notice that the first term has to be carefully treated.

d¢ L OO df]

F® = F(3)(c) + | F9(c)— ~ar i

(B.86)

The first term in the bracket diverges and the second term is finite, so we can neglect
the second term.

F® = 4'u%‘35t (B.87)

Using (B.43), (B.50), (B.51) and (B.71), we have

-1 mﬁc
= t—1t.), B.88
doVol.
Xy = — (z —t)"L (B.89)

Notice that the amplitude of the compressibility for T < t. is only half of the value
for T > i.. This is a very well known result. This can be explained by the amplitude
of the fluctuation of the system. Expand eq (B.31) around the critical point using
the free energy in eq (B.53)

Cp = Co+2uB*. (B.90)

Compare (B.90) and (B.82), we find that there is a jump in the heat capacity. This

is again standard mean field theory result.
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Appendix C

Highly Stretched Polymer Chains

A long flexiable chain is defined as a mathematical string. In this model, we do not
consider the excluded volume effect. This configuration of the chain can be simulated
by random walk with the number of steps n equal the total number of the monomer
(persistent) units in the chain and the size of each step a equal the length of the
monomer unit. For a long chain, when the end-to-end distance r is small compared
with the totsl chain length na, the distribution of the end-to-end distance of the chain
is (Flory 1953)

W(r) = Const - exp[—Gg(n,r)] 4nridr. (C.1)

Where n is the total number of the steps, Gg(n,r) is

G --3-'22--=32 C.2
G(n,r)—2na2_ a”. ( )

Notice that —kT'Gg is part of the fiee energy of the system. Take derivative of

this term with respect to r, we get

d(kTGg) _ 3kT

or na?

r~a. (C.3)

T

Here 7 is defined as the retractive force . It is well known (James and Guth ?) that

for any r < na, the exact solution to this problem is
W(r) = Const - exp[~GL(n,r)) 47r’dr, (C.49)
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and
10,
Gifn,r) = = fo L*(\)dr (C.5)
A
= n /o L*(\)dX.

Where A = r/na is the scaled chain length, the function L°()) is defined as the inverse

of the Langevin function L(u)

L(u) = coth(u) % =, (C.6)

and
L) =34 23 BTy -
w= L0 =0h 42X+ N e (C.7)

The relation between u and 7 is

a
u= Z'TT. (C8)
So we can write
3 r2 9., 297
Gr(n,r) = 5;{5 +n [%’A + TO—C_;GA + - ] . (Cg)

= Gg(n,r) + higher order terms.

Figure C.1: Comparision between

2 ; ; the retraction force of Gaussian dis-
15F . tribution and the Langevin distribu-
’g: 10 ,. J tion. The striaght line is from Gaus-
5 t _ sian distribution. The solid curve is
. r q from Langevin distributio. The dot-

ted curve is the justified Padé ap-

proximation.
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From this equation we see immediately that the Gaussian distribution function
(C.1) is just the small r limit approximaiton of the Langevin distribution. This is

clearly shown in Fig. C.1.
When r is comparable with the total length of the chain, L*(}X) diverge, the

Taylor expansion no longer valid. A justified Padé approximation was found te be

very satisfactory(see Fig.C.1)

3x—£X3
= e——S
u T (C.10)
This equation can also be written as the Gaussian term and the correction te Gaussian
term
9 A3
u=3\+- 5T (C.11)

The retractive force is

8(kTGL) kT,
S = =) (C.12)

ESA- EA"
a 1-X2

T

So when we increase 7, A increases linearly first but then becomes nonlinear and
will eventually saturate around A < 1. The impact of this is shown in Fig.B.2, which
is a plot of 7 — V curves with end-to-end distance obey Gaussian and Langevian
distribution, respectively.

Now let us do some numerical estimation. The energy neened to stretch the chain

fromr=0tor =na(l —¢)is

Es(f)

na(l-—c¢) .
/ o (C.13)

(1= 3) —
= mr [ =L ket L)

gnkT [—Eln(2£) + 3] .

If we try e = 0.1, we get
Es ~ 6nkT, (C.14)
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Figure C.2: Flory-Huggins = - V
0.1 1 10 100  curve (dotted ) and Langevian mod-
Swelling Ratio, V/Vo ified curve (solid).
or, the stretch energy per bond
% ~ 3kT, (C.15)

We know from the text book (for instance, Kemp-Vellaccio 1980) that the strength
Ep of a carbon-carbon bond is around 82kcal/mol, which is roughly around 150kT at
room temperature. So the strength of the polymer chain in general, is much stronger
than the force needed to stretch a polymer to its full length. In practice, we can
assume that a polymer chain in infinitely strong.

In the case of gel under elogational deformation, 7 is defined as the force per initial

cross section area. For a Gaussian chain

r= i’“;(a-;‘?) (C.16)

The second term comes from the geommetrical consideration. For a Langevin chain

r= iT- ‘/-L “(A) - -) (C.17)

From this equation, we find that the limit exist for gel as well. In another words,

the swelling ratio of a network system has an upper limit.



Appendix D

Kinetics of Gels

In this appendix, we will calculate the kinetics of the sweiling and shrinking process
of free gels of a long cylinder and a large disc. We will choose the final equilibrium
state of the sample to be the reference state.

The free energy related with a strained media is

2
F(r) = %1{ (V- u) + %,u (e - %V u ) (D.1)
Where K and g is the bulk and shear modulus, respectively. The strain tensor u; is
defined as
_ 1 au;, au.-
Uk = -2- (-67. + 6—“) , (D2)

with u the displacement vector, represents the displacement of a point in the network
from its reference position.

The stress tensor o;; is defined as

oF

Cik = a—u;, (D.3)
= KV'U5ek+2#(uik—%V'u5ek),
The equation of motion of the gel network is
f%% =V.5. (D.4)
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The f is the friction coefficient between the network and the solvent. We have ne-
glected the acceleration term pd?u/dt?, which is much smaller than other terms.

By using eq (D.2)-(D.4), and the relation
V x (V xu)=V(V-u) =T, (D.5)

eq (D.4) can be written as

6u  K+3p _ JT—
5= = V(V-u)+ £, (D.6)
= DV(V-u)- --‘;-V x (V x u) (D.7)
Where
p= K43 (D.8)

f

Now let us consider a very long cylindrical gel. In a cylindrical coordinate system,
we expect the radial swelling ratio is independent of the z-coordinate as the length
of the gel approaches infinity. In another word, the displacement vector u can be
approximated as

u = u,(r,t)f + u(z,1)z. (D.9)

With this approximation, the second term in eq (D.2) is zero,

?a—‘t’ = DV(V -u) (D.10)

Using a similar argument, we can show that eq (D.9) and (D.10) hold for large disc

gels as well.

D.1 Long Cylinder Gel

We will assume that the swelling ratio of the gel is isotropic. This assumption will

be justified by the experimental result which will be discussed later. Below is a
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Figure D.1: A small segment of
gel with the height and the diam-
eter about the same. In a swelling
process, the amount of solvent en-
tered the gel through any portion
of the surface is approximately pro-

portional to the area of the portion.

We will assume that the swelling ratio of the gel is isotropic. This assumption will
be justified by the experimental result which will be discussed later. Below is a
hand waving argument, we believe it gives a very good accuracy even quantitatively.
Without losing any generality, we will assume the process is a swelling process with
the linear swelling ratio (1 + ¢).

Now we consider a small gel with height ! and the diameter d (figure D.1). Assume
| ~ d. The amount of the solvent molecules entered the gel through the side and ends
are A(1+¢€)? ~ (1+2¢) and A(1+¢), respectively (A is the proportionality constant).

Now let’s consider the gel in figure D.1 been a portion of a long cylindrical gel.
During the swelling process, the ends effect of a long gel can be neglected. So inside
the gel, there is no relative motion between the network and the solvent molecules in
the z-direction. The solvent molecules can only enter (relative to the network) the gel
through the cylinder side. So the total amount of solvent entered through the side is
A(1+ €)® ~ (1 + 3¢). Or the amount of solvent molecules entered the gel through the
side in this case is 3/2 times larger than that of a small gel with open ends.

This means that in order to achieve the same degree of swelling ratio, the long
cylinder gel network has to feel 3/2 times more frictional force than that of a small
gel. In other words, the effective friction coefficient is 3f/2.

For a long gel, the radial component u, of the displaccment vector is determined
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by
1 Ou, _ 32u,+13u,_u, _ 2
b, ot |o Trar T
with the condition u,(0,¢) = 0 for all t. The effective diffusion constant is denoted
by D., which is equal 2D/3.

(D.12)

The solution of this equation is
u,(r,t) = ZB,,e'D“'?"Jl(anr/a), (D.13)

where a,, is the eigenvalue of the problem, ¢, = a,/a, and a the final radius of the
cylindrical gel.

The swelling ratio along z-axis is independent of z,
u.(t,2) = A(t)=. (D.14)
Following our isotropic swelling assumption, we get
1 1 —D.q3t
A(t) = ;u,(a,t) = EZB"‘B i’ J) (an) (D.15)

The boundary condition of this problem is

=M [6"’ +(1- (— )] =0, (D.16)

or,
apJi(an) +2 (1 — -21-5) Ji(an) = 0. (D.17)

or,
Qn (aﬂ) = 0. (DIS)

where M = K +4p/3 is the longitudinal modulus. When then gel is fixed at the two

ends, A(i) will be zero. Then we recover Peters and Candau’s (1988) result.
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Jo(x)

: 1 » 3 s 5 46 Figure D.2: Bessel function Jo(z)
. and J;(z).

D.1.1 Special Cases

2u/M =1 case

In chapter 8, we obtained the Poisson’s ratio ¢ = 0.40, this corresponds exactly to

2u/M = 1. In this case, eq (D.18) becomes
Ji(an) = 0. (D.19)

From figure D.2, we find a; ~ 1.6 and a; ~ 5.3. The relaxation time is

L

Tlong = D,a? (D?.O)
3
= 029—f.
r
p =0 case
In this case, eq (D.18) becomes
anJo(ay) + 3Jy(a,) = 0. (D.21)

In the above we have used the identity zJ; = J; + zJo.
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From figure D.3, we find a; ~ 2.9 and a; ~ 5.8.

The first solution a; ~ 2.9 is close to the number Tanaka and Fillmore got for a
spherical gel, which is a; = . It is the pre-factor 3/2 in front of the friction coefficient
that makes the relaxation time longer.

a’

T =
ons D.a?

2

a
= 0.8 f.

(D.22)

D.2 Large Disc

Following the same argument, we will find that in this case, the effective friction
coefficient is three times larger than that of a small gel. So the relaxation time is

expected to be three times longer.

D.2.1 Experimental Result

Figure D.3 is our experimental result on the swelling ratio of long and short gels. The
relaxation time of the diameter and the length of the long gel are the same within our
experimental error. This justifies our basic assumption that the swelling is isotropic.
The ratio of the relaxation times of the short gel and the long gel is 0.7, which agrees

very well with our theory.

D.3 Summary

We have calculated the kinetics of the ge! relaxation process. We believe that the
results given by Peters and Candau are not realistic. Our experimental result verifies

our theory.

P L



T .,,gfa,.m,sm sév%r‘%--—i BERY

D.3. Summary 167

1.55 L v T ¥ T T T T
| aupain | 1!50 =
E . d
E 1451 7=31£6 min .
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