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ABSTRACT

A computerized framework for incorporating available geotechnical infor-
mation, subjective input, and probability-based profiling into the geo-
metric modeling of soil stratigraphy for site characterization is
developed. The developed techniques are demonstrated using typical
geotechnical test data from selected case histories.

Existing surface modeling algorithms are reviewed with respect to their
applicability to soil profiling. Selected analytical techniques includ-
ing hand contouring are compared. Existing surface modeling techniques
are shown to exhibit unacceptable results with respect to strata overlap
and continuous models of discontinuous strata. Currently available
probability-based mapping techniques are reviewed and assessed with
respect to their applicability to soil profiling.

Clustering and regional merging techniques are applied, separately and in
combination, as soil data preprocessing methods using visual description
information to identify potential soil strata. Probabilistic profiles
are developed treating the single surface models as random variables and
assuming the geologic sequence is known. Probabilistic relaxation meth-
ods are applied to the probabilistic profiles to resolve the strata over-
lap and discontinuity issues.

The surface modeling and profiling methods are applied to two case his-
tory data sets. The case history applications demonstrate the relative
performance of the developed soil data preprocessing, probabilistic
profiling and probabilistic relaxation methods.

Thesis Supervisor: Dr. Gregory B. Baecher
Title: Professor of Civil Engineering
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CHAPTER 1
INTRODUCTION

1.1 Introduction

A common element to most design and construction projects is the acknowl-
edged need for an accurate definition and understanding of existing soil
and rock conditions and their impact on project design and construction.
In geotechnical engineering this process is referred to as site charac-
terization. Although site characterization is applied to every geotech-

nical design project, formal understanding of the process is limited.

A schematic of the general site characterization process is shown in Fig-
ure 1.1. The schematic presents the major activities in the site charac-
terization process. Although the activities are presented in a segmented
fashion, often several of the activities are performed concurrently with

little distinction between them.

The inherent complications in the process of site characterization (dis-
cussed below), coupled with the fact that no two sites are identical, and
that the process, as it is practiced, is largely subjective, have

restricted the development of objective site characterization procedures.
1.2 "Typical" Problems in Site Characterization

The process of site characterization has inherent complications, which
are present to varying extents on all sites. These complications
include:

1) sparse data,

2) 3D conditions which vary in space,

3) necessity of judgement in data interpretation, and

4) the empirical and heuristic (rule of thumb) nature of

many analytical geotechnical models.
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Geotechnical data is gathered in the field using various exploration

techniques, most commonly test borings. Test borings are drilled for the
purpose of gathering information for the evaluation of soil stratigraphy
and soil properties. The geotechnical engineer relies on the information

from the test borings as the main basis of the site characterization.

The horizontal spacing of test borings depends on the project. In prac-
tice, the horizontal spacing of the test borings is determined by the
geotechnical engineer based on his experience with similar types of
projects, the anticipated soil/rock conditions, and truthfully, at times,

the budget available for explorations.

In addition to the spacing between test borings, the information obtained
in the test borings is both objective and subjective. Objective informa-
tion is obtained when Standard Penetration (SPT) tests (ASTM D-1586) are
performed to quantify‘the resistance of the soil to a 1-1/2 foot
penetration of a standard sampler, and to obtain a soil sample for visual
classification and possible laboratory testing. The resistance is mea-
sured by the number of blows with a 140 pound hammer falling freely 30
inches, required to drive the sampler 1-1/2 feet into the soil. Even
this relatively objective information can be biased by, among other
things, deviations from the specified amount of energy applied to the

sampler.

The vertical frequency of testing is variable and could, in fact, be
continuous; however, in practice, it is common to perform Standard Pene-
tration tests at five foot intervals (see Figure 1.2). Regular sampling
intervals facilitate the field work, but it is unlikely that all soil
strata changes will fall within the sampling interval of 1-1/2 feet in
every 5 feet. Therefore, if there is a change in soil strata between
samples, other information must be used by the driller to try to identify

the elevation of the soil strata interface.
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In addition to the objective SPT information, subjective information con-
cerning the soil conditions is obtained by observing the performance of
the drilling equipment, advance rate of casing, and other observations
which indirectly reflect changes in the soil conditions with depth. Due
to the nature of the information and the range of skill and experience in
the drillers, this information is very subjective. It is this informa-
tion which is used by the driller to estimate the strata change eleva-
tion, if the change does not fall within a SPT sampling interval. Often,
in practice, the strata change is arbitrarily indicated by the driller.
Therefore, as a consequence of the process of planning and performing the
test borings, the resulting information is sparse with respect to spatial

concepts and relatively subjective as well.

Soil and rock conditions need to be assessed in 3 dimensions as part of
site characterization. As discussed above, the spacing between test bor-
ings and between samples is established in part in response to the antic-
ipated spatial variation of the soil/rock stratigraphy. In general the
test borings produce objective and subjective information, which the
geotechnical engineer uses to infer the conditions between test borings

with a considerable amount of personal judgement and experience.

The combined effect of sparse 3D data is that developing profiles as part
of the site characterization process requires, by necessity, judgement in
data interpretation. It is this need for judgement based on experience
that makes this a challenging, and yet frustrating, area for the applica-
tion of expert systems (Rehak, 1985). 1In fact, the application of expert
systems to site characterization may be questioned by some due to the

highly subjective nature of the process.

Although the site characterization process is subjective, there are sev-
eral steps which are common to almost all projects (see Figure 1.3). The
data obtained in the exploration and sampling, and measurement of
properties phases of the site characterization process (see Figure 1.3)
are used to develop design values needed for the implementation of geo-

technical models for the analysis of the specific design issues. These

17



models are usually based upon empirical relationships and heuristics.
Therefore, it is difficult at the completion of a project to assess
whether differences in predicted vs. observed behavior can be attributed
to the level of uncertainty in the general site characterization process,
the geotechnical model itself, or a combination of the two. As a result,
while ideally our understanding of the general site characterization pro-
cess should improve by evaluating prediction versus performance, the rate
of advancement in understanding is slowed by the inherent complexity of

the process.

This research addresses the expanded steps of the site characterization
process, and demonstrates that computerized techniques can be developed
and applied to the process to not only improve the process, but at the

same time improve our understanding of the process.

In Figure 1.3 there are several phases to the expanded site characteriza-
tion process; however, all of these phases are concerned with assessing
soil properties and soil stratigraphy which are discussed in the next two

sections.
1.3 Scil Properties
1.3.1 Evaluation of Uncertainty

Samples obtained from the test borings are selectively tested in the lab-
oratory to classify the soils and to evaluate their engineering proper-
ties. The number of tests performed varies considerably depending in
part on the project and the soils encountered. However, in general, more
classification type tests (Atterberg Limits, grain size analyses, etc.)
are performed than tests of engineering properties (deformability,

strength and permeability).

The difference in the testing frequency is due in part to the lower cost
of the classification tests. Less expensive classification tests and
empirical relationships between classification test results and estimated

engineering properties are often used.

18



Engineering property tests are normally performed at a higher cost on
"undisturbed” soil samples. Using classification test results to iden-
tify similar soils, the results of the engineering tests are used to
develop design properties for soil strata or possibly sub-strata.
Although the engineering tests typlically indicate some uncertainty in
their results, this uncertainty is often not extended into the analysis

of the soil properties for the design soil strata.
1.3.2 Determination of Design Parameters

Assuming that classification tests have been performed to assist with the
identification of design soil strata, design parameters are usually
assigned to each soil stratum using the results of the engineering tests,
if any, and a considerable amount of personal judgement by the geotechni-
cal engineer. In the absence of engineering test results, empirical
relationships between classification tests and engineering properties
developed for "similar" soils are often used, along with even more per-

sonal judgement, to assign design parameters.

Decisions concerning whether or not soils are similar are made in a sub-
jective manner by the geotechnical engineer using the available informa-
tion (test boring logs, classification test results, and engineering test
results), which may have been used also to develop design profiles. This
process would be advanced considerably if by using the same available
information the identification of "similar" soils could be handled in an
objective fashion. However, regardless of the method, the geotechnical
engineer must always be given the opportunity to input his personal

judgement and experience.
1.4 Soil Stratigraphy
1.4.1 Test Borings

Soil stratigraphy is normally assessed using the results of the field and

laboratory programs. Strata change information from the test boring log
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is typically used with little questioning of the strata change informa-
tion. The geotechnical engineer normally reviews the test boring infor-
mation, particularly the visual descriptions of the recovered soil

samples, and develops the soil stratigraphy in a very subiective manner.

To aid in the process of assessing the soil stratigraphy, the geotechni-
cal engineer prepares soill profiles. These profiles are vertical sec-
tions through the site at selected locations with the adjacent test
boring information projected into the plane of the profile. Based on
judgement, the geotechnical engineer decides which test borings are close
enough to a particular profile to be used in assessing soil stratigraphy
in that profile. The geotechnical engineer also decides the number and
orientation of the profiles that are developed to assess the soil stra-

tigraphy for the project.

Once the test boring information is projected into the profile plane,
soil stratigraphy is developed using techniques considered acceptable to
the state of practice in geotechnical engineering. When the soil stratum
being considered is continuous, straight lines are normally drawn from
test boring to test boring connecting the observed stratum top and bottom
elevations. If the stratum appears to be discontinuous, the geotechnical
engineer uses personal judgement as to the interpretation that is shown

and the manner, if any, in which the level of uncertainty is indicated.

1.4.2 Stratum Thickness

Another potential complication in assessing the soil stratigraphy is the
fact that the test borings are usually drilled to varying depths. Thus,
unless the test boring is drilled to the top of rock or below, the boring
only partially penetrates the deepest soil stratum encountered. There-
fore, the boring provides limited information concerning the total thick-

ness of the deepest encountered stratum.
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1.4.3 Discontinuities

Identification of discontinuous soil strata and representation of the
strata in geotechnical models is one of the most difficult, and challeng-
ing, phases of site characterization. The geologic sequence of the
strata encountered in the test borings provides some information on the
continuity of a particular stratum; however, due to the spacing between
the test borings, the lateral extent of a discontinuous stratum is

largely undetermined.
1.4.4 Evaluation of Uncertainty

During the development of the soil profiles, the level of uncertainty in
the information is assessed subjectively by the geotechnical engineer.

However, once the soil profiles are developed, too often the information
is treated as deterministic data with no quantifiable attention given to

the level of uncertainty.
1.5 Objectives of Stratigraphy Assessment

Ideally, the assessment of soil stratigraphy should include an objective
consideration of all the available information. This should include the
test boring log data, the visual description of the recovered soil sam-
ples, and laboratory test results. The geotechnical engineer should have
the opportunity during the process to input his personal judgement and
experience. The stratigraphy should be developed by considering numerous
soll profiles, not just those that are most convenient or that were

selected prior to starting the test boring program.

Soil profiles should be developed objectively in an efficient manner so
that more profiles can be considered as part of resolving the soil stra-
tigraphy issues. The soil profiles should reflect the level of uncer-

tainty in both the information and interpretation.
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1.6 Geologic ¥~deling
1.6.1 Intrcoduction

Geologic modeling, as the term is used here, is the process of gathering
the available geology information concerning a specific site for the
ultimate purpose of site characterization. One of the challenging tasks
facing the engineer responsible for site characterization is to develop a
preliminary concept of site conditions based on the available geology
information, and then to modify this preliminary concept using the actual

site information as that information is available.

The preliminary concept of the site conditions may be relatively sketchy
on a site with little background information, or it may be fairly
detailed if there is site characterization data available for the subject
site or adjacent sites. It is the obligation of the geotechnical engi-
neer to gather and assimilate available information as the first part of

the site characterization process.
1.6.2 Objectives of Geologic Modeling

The objective of the preliminary geologic modeling is to develop an
understanding of the anticipated geologic environment. The geologic
environment may be very complex depending on the depositional environ-
ment. Other factors, such as changes in the site conditions by man (de-

velopment, filling, etc.), may also contribute to the complexity.

The preliminary geologic model will be modified as the site specific
information (test borings, laboratory data, etc.) becomes available, but
it represents the geotechnical engineer’s working hypothesis of the con-

ditions.

It is very important to develop the preliminary geologic model prior to
the planning of the field exploration program. When properly developed,
the preliminary geologic model will heavily influence the scope of the
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field exploration program. Anticipated geologic conditions influence the
type, spacing, and depth of the field explorations, as well as, the

equipment required and the anticipated costs.

Geologic modeling continues throughout the site characterization process.
Any surface modeling and profiling of the subsurface conditions must be
consistent with the overall geologic model concepts for the site. There-
fore, throughout the site characterization process, the preliminary geo-
logic model is revised as additional information is available. The
revision process should include a review of the preliminary geologic
model to make sure that the final geologic model is developed in an

objective fashion.
1.7 Organization of Thesis

Although extremely complex as practiced, site characterization and in
particular, the development of soil stratigraphy models, can be conceptu-
alized. In simplest terms developing computerized models of soil stra-
tigraphy consists of using the available information and general geology
concepts to develop stratigraphic models based on a combination of

mathematical reasoning and geology principles.

Computerized stratigraphic modeling can be conceptualized as indicated in
Figure 1.4. This is a representation of a very complex process; however,
the conceptual approach provides a basis for explaining the methodology
of this research. Each of the modules shown in Figure 1.4 has been
researched separately with the goal of ultimately combining the modules
into an integrated computerized method for stratigraphic modeling of geo-

technical data.

The chapters following this introduction provide a detailed statement of
the research objectives (Chapter 2), summary of research by others in
topics related to stratigraphic assessment (Chapter 3), a detailed pre-
sentation of the methods and results of this research regarding computer-
ized modeling of geotechnical stratigraphic data (Chapters 4, 5 and 6),

and summary and conclusions (Chapter 7). References to and critical
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results from two applied case histories are presented throughout Chapters
4, 5 and 6. Detalls of the two applied case histories are presented in

Appendices A and B.
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CHAPTER 2

2.1 Statement of Overall Objectives

The objectives of this thesis research are (1) to develop a computerized
framework for incorporating available information, the engineer’s subjec-
tive input, and probability-based profiling into the geometric modeling
of soil stratigraphy, and (2) to demonstrate the application of the
developed techniques using typical geotechnical test data from selected

case histories.

The overall objectives can be further sub-divided into more specific

objectives, which are discussed in the following section.

2.2 Statement of Specific Objectives

Surface Modeling:

Review existing surface modeling algorithms and assess their applicabil-
ity to the development of geotechnical stratigraphic models - Numerous
algorithms have been developed for modeling surfaces in disciplines other
than geotechnical engineering. Some of these algorithms have been
applied by geotechnical engineers to model soil strata interfaces. How-
ever, no thorough study of the algorithms applied to geotechnical strati-
graphic modeling has been performed. This research includes an
assessment of existing algorithms with respect to modeling soil strata
surfaces and the applicability of various techniques to two applied case

histories.
Profiling:

Assess the applicability of probability-based mapping techniques to the
process of soll profiling - Review available probability-based mapping
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techniques and apply appropriate techniques to the process of soil pro-
filing. Assess the applicability of the selected techniques to soil pro-
filing.

Develop computer techniques for probabilistic soil profiling - Soil pro-
files in practice today are generally accepted to have a level of uncer-
tainty; however, the level of uncertainty is not indicated or quantified.
Develop a computerized, efficient method for the assessment of soil

stratigraphy with a direct expression of the uncertainty level.

Develop methods for incorporating discontinuity into stratigraphic models
- Mathematical models of single surfaces typically imply continuity of
the surface over space. This is a serious deficiency when the models are
applied to soil stratigraphy, which is often discontinuous due to geo-
logic formation processes. This research summarizes methods for identi-
fying potentially discontinuous soil strata, and developed methods for

creating a discontinuous model in an objective fashion.

Develop methods for incorporating available stratigraphic data as well as
subjective input from the engineer knowledge - Computer techniques used
to develop probabilistic profiles should include direct consideration of
the available data. The considerations should be objective, and yet

allow for the input of the engineer’s personal judgement and experience.
Case Histories:

Demonstrate the application of existing and developed techniques for sur-
face modeling and profiling using actual case history data - The existing
and developed techniques should be applied to create surface models and
profiles for case histories to demonstrate the relative advantages and

disadvantages of the existing and developed methods.

Demonstrate the Influence of the interpretation of available data and the

engineer’s subjective input on the results of the surface modeling and
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profiling - The case history applications should be used to demonstrate
the ability of the developed techniques to incorporate the influence of

available information as well as the engineer’s subjective input.
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CHAPTER 3

3.1 Introduction

This chapter presents an overview of the existing literature concerning
theoretical and applied research in areas which are addressed in Chapters
4, 5 and 6. The material in this chapter is presented at an introductory
level for the benefit of the reader. Numerous references are provided so
that the reader can consult the original publications for additional

detail.
3.2 Surface Modeling
3.2.1 Introduction

The objective of surface modeling is to develop a mathematical represen-
tation of a "real" surface using the available data. The process of
surface modeling is complicated by the typically sparse, irregular data

that is obtained in the site characterization process.

There are a variety of methods that have been proposed for surface model-
ing. Many of these have been developed for the purpose of contouring
surfaces. Dowd (1985) and Sabin (1985) have prepared detailed summaries
of methods for the purpose of contouring for general and geostatistical
problems. Several of the methods discussed by Dowd and Sabin are dis-

cussed in the following sections.
3.2.2 Triangulation (Piecewise Planar)

Automatic triangulation of irregularly spaced points has been summarized
by others (Watson and Philip, 1984b). The size of the data set
influences the complexity of triangulation since a data set containing N
points has N(N-1)/2 possible edges and N(N-1)(N-2)/6 possible triangles
(Watson and Philip, 1984b).
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Watson and Philip identify three basic triangulation methods - Optimal,
Greedy and Delaunay. The methods are briefly described in the remainder

of this section.

Optimal triangulation is accomplished by minimizing the length of the
resulting edges. The Optimal triangulation is not unique since there may
be at least two different triangulations witl the same minimal edge
length.

Greedy triangulation is controlled by the requirement that no edge can be
included if there exists a shorter edge which intersects the first. The
Greedy triangulation is accomplished by searching for the longest edge
which can not be intersected by a shorter edge and then repeating the
search with the longest edge removed from the search. The Greedy trian-
gulation algorithm is neither unique (two edges may be the same length)
nor efficient (considerable ordering of lengths is required for large

data sets).

Delaunay triangulation is achieved by triangulating the points such that
no data point lies within the circumcircle of any other triangle. This
requirement maximizes the smallest interior angle. The data points at
the vertices of the Delaunay triangulations are in a sense nearest natu-
ral neighbors since they are closer to their circumcenter than to any of
the other data points. Delaunay triangulation is unique unless four or

more of the data points are cocircular.

Figure 3.1 shows the Optimal, Greedy and Delaunay triangulation of a
small data set. The ramifications of the different triangulation methods
are significant with respect to triangulation based surface models.

Since the methods are piecewise planar, the inclination of the base
triangle at any point is a function of the spatial orientation of the
three vertices. Therefore, these three different triangulation methods
can potentially result in significantly different contours using the same

data set.
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It should be noted that "linear interpolation", a common method of sur-
face modeling in geotechnical engineering, is in practice a
triangulation-based methed. The actual triangulation is performed, in a
highly arbitrary fashion, by the individual who decides between which
data points to apply linear interpolation. In practice it is typical to
select by eye only those data points in the neighborhood of a central
point. This selection is a crude form of triangulating (i.e., determina-
tion of triangle side). Therefore, the surface model resulting from lin-
ear interpolation is not consistent and reproducible between users (see

Chapter 5 and Appendix A for an applied example).

Miles (1970) derived expressions for the expected values and variances of
critical properties of Delaunay triangles formed from random points cho-
sen from a Poisson process. The expected values of the properties are

as follows:

Equation 3.1:
E(A)=1/(2p)

Equation 3.2:
E(S)=32/(3nyp)
Equation 3.3:
E(R)=3/(4Vp)
Equation 3.4:
E(D=1/(4Jp)
Equation 3.5:
E(L)=32/(91yp)
where
A=the triangle area,

S=the triangle perimeler,

Rw=the circumcircle radius,
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I=the inradius,
L=the length of any arbitrary side,

p=the Poisson intensily of points.

Recent research in triangulation algorithms has concentrated on the
Delaunay triangulation method and the development of numerous algorithms
with varying efficiencies (Aurenhammer and Edelsbrunner, 1984; Fortune,
1987; Green and Sibson, 1978; Lee and Schachter, 1980; Preparata and Sha-
mos, 1985; and Watson and Philip, 1984a).

3.2.3 Dirichlet Polygons

If the subject area is sub-divided into polygons with a single data point
within each polygon such that all points within any polygon are closer to
the enclosed data point than any other data point, the polygons which
result are known as Dirichlet polygons. Dirichlet polygons have also
been referred to as Voronoi polygons, Thiessen polygons, Wigner-Seitz

polygons, cell-model, and S-mosai:s (Upton and Fingleton, 1985).

Dirichlet polygons are constructed using the following steps (see Figure

3.2 for examples of Dirichlet polygons and Delaunay triangles):

1. Identify the nearest neighbors to the subject data point using the
Delaunay triangulation method.

2. Connect the subject data point to its nearest neighbor.

3. Construct the perpendicular bisectors to the lines connecting the
nearest neighbors.

4. The intersection of the perpendicular bisectors forms a polygon with
the subject data point in the interior. This is the Dirichlet poly-

gon for the subject data point.

Various properties of Dirichlet polygons have been determined by other
researchers (Meijering, 1953; and Gilbert, 1962). These properties are

summarized as follows:
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Equation 3.6:

E(N)=6

Equation 3.7:

E(A)=1/p
Equation 3.8:

E(S)=4/\p
Equation 3.9:

E(A%)=1.28/p%

where

A= the polygon area,
Ssthe polygon perimeter,
p=the Poisson inlensity of points.

Dirichlet polygons are in some disciplines the desired end product. They
have been used in research areas as diverse as the study of ancient cul-
tures and commerce (Hodder and Orton, 1976), and plant ecology and terri-

torial animals (Pielou, 1977).

Watson and Philip (1984a) present a thorough presentation of triangle-
based interpolation including methods which are based upon Delaunay
triangulation of the initially irregularly spaced data points. According
to Lee and Schachter (1980), the Delaunay triangulation is an "excellent"
choice for terrain fitting and display since the minimum angle is maxi-

mized and the resulting visual characteristics are good.
3.2.4 Trend Surface Analysis

Trend surface analysis as it is applied in geology is the process of
using mathematical models to separate known data into a regional trend
and a local variation. The process is somewhat arbitrary due to the
subjective nature of the concepts of regional and local.
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Trend surface analysis has been applied in geology since the mid-1960's
(Harbaugh and Merriam, 1968; Whitten, 1975). Reasons for the early
apparent popularity of trend surface analysis included its relatively
simple mathematical expressions and ease in computerization. However,
with the increase in computer computation resources other surface model-
ing methods discussed below have grown in popularity to surpass trend

surface analysis.

Mathematical expressions for surface modeling normally take the form z =
f(x,y) where z is the elevation of the surface being modeled, and x and y
are Cartesian coordinates. The function used to model the surface can
take any mathematical form. A unique solution can be obtained as long as
the number of parameters in the mathematical function is less than or

equal to the number of known data points.

When the number of known data points exceeds the number of parameters in
the modeling function, the method of least-squares is typically used to
determine the values for the function parameters which result in the
minimum sum of squared deviations between the known data points and the

surface model.

It should be noted that all of the data points are used in the calcula-
tion of the function parameters regardless of the spacing between data

points or the distance from an unknown value location.

The method of least-squares does not limit the form of the modeling func-
tion. Either linear or non-linear functions could be used. However,
linear models are more typically used due in part to their simpler form.
Polynomial expressions of degree 5 or less are the most common modeling
functions. Polynomial expressions are used as a matter of convenience

since they have the ability to fit reasonably complicated surfaces.

The degree of the polynomial expression used for trend surface analysis
determines the general shape of the surface that will be fit to the data.

Minimization of the least square error determines the coefficients of the
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parameters in the pclynomial expression. Figure 3.3 demonstrates the
general shapes that result from changing the degree of the polynomial

expression from one to three for up to three independent variables.

Another example of the surface shapes that result from changes in the
degree of the polynomial expression is shown in Figure 3.4. Ripley
(1981) analyzed the data from Davis (1973, Table 6.4) using trend surface
analysis with first through fifth degree polynomials with the results as
shown in Figure 3.4.

Linear models can be interpreted as (Watson, 1972):
Value at any point = Value of deterministic function + Random error
which can be also expressed as

Value at any point = Regional component + Local residual

When the random error terms are uncorrelated, have zero mean, and the
same variance, it can be proved that the least-squares estimators of the
function parameters are best linear unbiased estimates. If the error
terms are also normally distributed, then the least-squares estimator is

also the maximum-likelihood estimator (Tipper, 1979).

According to Tipper (1979), the least-squares estimators are optimal only
when the error terms are truly random. If they are spatially autocorre-
lated (which 1s generally true unless the number of degrees of freedom
used in the function is almost as great as the number of data points),
then the assumptions of the least-squares method are violated, and the
estimated parameters are neither unbiased nor of minimum variance. The
error terms of any application of least-squares should be tested for spa-
tial autocorrelation, using appropriate methods (Cliff and Ord, 1975).
Tipper (1979) further states that failure to appreciate this point has
caused most of the misuse of the least-squares method in surface fitting,

including most of the earlier geological work using trend surfaces.

The process of trend surface analysis is highly dependent on the spatial
distribution of the data set. One relatively early study of the effects

of the spatial data distribution on trend surface analyses is the work by
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Shaw (1977). However, although there is a spatial distribution effect,
Shaw concluded that for the particular data set analyzed the measurable
amount of distortion did not influence the interpretation of the struc-

tural data.

After further research by others in the more general field of regression
analysis, Unwin and Wrigley (1987) present a discussion of the spatial
problems with regression analysis. The spatial difficulties that they
addressed included edge effects and the consequences of highly clustered
data. Their analysis is based on the application of leverage methods to
geologic data. Leverage is a means of assessing the relative influence
of individual data points based on their spatial relationship to the
"center of the data" (Hecaglin and Welsch, 1978; Belsley, Kuh, and Welsch,

1980).
Unwin and Wrigley (1987) conclude, in part, that:

"The analyses reported here should make it clear that the edge,
frame shape, and data-point clustering effects noted by previous
workers are an endemic feature of polynomial trend-surface mod-
els. The concept of the leverage of the data point provides an
analytical framework for discussion of these effects. In
particular, it demonstrates clearly that, unless a buffer region
is created around the area of interest into which the worst edge
effects can be concentrated, higher order surfaces are almost
certain to give excessive influence to points lying at the

extreme of the distribution of control."

Olea (1975) summarized the limitations of trend surface analysis as fol-

lows:

1. Trend surface analysis is based on the method of least squares and
as such results in mathematical models without physical meaning.

2. Trend surface analysis is not statistically optimal.

3. Trend surface analysis does not provide a measure of the error of

the estimate.
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4. Trend surface analyses are unstable on the fringes of the data and
can have severe edge effects.

5. The only controlled parameter in trend surface analysis is the order
of the polynomial.

6. Although trend surface analysis uses all the data points, it does
not use the information concerning the relationships of data points

like the kriging methods discussed below.

3.2.5 Kriging

Kriging, which is discussed in this section, is a subset of a larger
field known as geostatistics or regionalized variable theory. The meth-
odology described here was developed by Matheron (1965 and 1971) for the
purpose of estimating spatial functions to develop mines. Since its
inception, geostatistics has grown to be a major field of research.
Although originally developed for the purpose of mineral exploration,
regionalized variable theory has been applied to diverse problems asso-

clated with spatially distributed data.

In order to present the basics of kriging, it is necessary to discuss the
fundamental principles of regionalized variable theory. The following is
a synopsis of discussions found in a couple of sources (Dowd, 1984; Olea,
1982). The reader is referred co Rendu (1978) for a thorough, yet brief,

presentation of the subject of regionalized variable theory.

A surface model can be developed as realizations of a random variable
over x,y locations of interest. This can also be expressed as the value
z measured at location x (bold indicates vector) as a value of the random
variable Z(x). There are, however, many random variables all belonging

to a random function which could result in the observed values.

Due to the spatial variation of the random variable Z(x), conventional
statistical methods of either describing the mathematical model or devel-

oping a model based on relative frequency analysis are not possible. The
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complexity of spatial functions nearly precludes developing a
mathematical model, and relative frequency analysis is not plausible

since there is only a single observation at each point.

In order to overcome the difficulties with conventional statistical meth-
ods, geostatistics imposes a restraint of stationarity in order to use
observations to estimate the first two moments of the random variable.
The "intrinsic hypothesis" is the assumption that all the observations
are from the same population. This assumption results in an increase in

the sample size to the number of observations.

Assuming that the distributions of all the random variables are identical
(the stationarity hypothesis) results in the following equations for the

first two moments of linear estimators:
Equation 3.10:

E{Z(x)]=m (a constant)

Equation 3.11:
Cou[Z(x,)Z(x )= E(Z(x)Z(x,)]-m?

Cou[Z(x‘)Z(x,)]=C(h)
where
h=|x,-x,

The covariance depends on the vector distance h which separates the two
locations, Z(x;) and Z(x,;) and not on the actual locations x; and x;. The

variance of Z(x) is G(0).

If the random variable does not have a finite variance, the stationarity
hypothesis is replaced by the intrinsic hypothesis under which stationar-

ity is limited to the first order differences:
Z(x)-Z(x))

With the intrinsic hypothesis, the corresponding moments of the differ-

ences are:
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Equation 3.12:
E[Z(x,)-Z(x,)=0

Equation 3.13:
Var[Z(x,)-Z(x,)]=2v(h)

and the variance of the differences exists and depends only on the vector
distaace h which separates Z(x;) and Z(x,) and not on the particular
locaticns x, and x,. This variance is known as the variogram. The vari-
ance is related to the variogram by:
Equation 3.14:

C(h)=C(0)-v(h)

where

vy(h)=the variogram
With the variogram defined as above, the variogram is 1/2 the variance of
the differences.

Geostatistics can be applied to special cases where the intrinsic hygoth-
esis is not wvalid. Of interest here is the special case where removal of
drift from the raw data results in resfduals which satisfy the intrinsic

hypothesis (see Figure 3.5).

Every regionalizcd variable which is second-order stationary satisfies
the intrinsic hypothesis; however, the converse is not true. If the

second order stationary conditions are satisfied , then

Equation 3.15:
6?=vy(h)+cou(h)

where

o’=the population variance
cov(h)=the classical statistics autocovariance for a lag of h

Y(h)=the semivariance
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The semivariance term is often studied with the use of semivariograms
(Clark, 1979; Chung, 1984; Dowd, 1984; Huijbregts, 1975; Omre, 1987).
The purpose of this process known as structural analysis is to interpret
the available information regarding the regionalized variable, and to
determine parameters for the estimation of the variable at unknown loca-

tions.

Kriging is a minimum variance, unbiased, linear method of estimating the
value of a random variable at one location using values available at
surrounding locations. More complex forms of kriging will permit the
estimation of values over areas or volumes. However, these methods are

more applicable to mining applications and will not be addressed here.

Kriging has desirable statistical properties. It minimizes the variance
of the estimate at.unknown locations which is a desirable property (mini-
mum variance). It also is unbiased, meaning that the expected value of
the unknown parameter is equal to the actual value of the parameter. In
addition to these desirable statistical properties, kriging has addi-
tional advantages. It is an exact interpolator (i.e., it honors the data
points), and it provides an estimate of the variance or uncertainty of

the estimate #t any location.
The estimated value of a random variable Z(x) at the location x, is

Fquation 3.16:
n
Z7(x,)= ) NZ(x))
i=1

A, = weights

where for x,, i = 1, ... n are the locations of the observed values.
The weights are determined by minimizing the estimation variance

Equation 3.17:

Var[Z(xo)- ik,-Z(x.-)] = Var[Z(x,)-2(x,)]
=i
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with the unbiasedness constraint that

Equation 3.18:
E[2(x,)]=E[Z(x,)]=m

where m is the mean value of the observations.

The constrained minimization results in a set of simultaneous equations

of the form

Equation 3.19:
n
le,c,,+u=coz
]-

for i=1,...n

Equation 3.20:

where

Cu-clxl_xl

and

Co=Clx,— x|

The kriging variance or minimum estimation variance is

Equation 3.21:
2 n
03=C(0)-p-) NCy
i=1

Using the relationship between the covariance/variogram stated above, the

simultaneous equations can be re-written as:

Equation 3.22:

Z?x,yu—u=ym for i=1,...n
j=1
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Equation 3.23:

M=
el
I

-
]
—

Equation 3.24:
n
=D MYoi~t
i=1

There are two alternatives to evaluate the simultaneous equations - eval-
uation of either the variograms or the covariances. In mining applica-
tions the common practice is the evaluation of the semivariogram (see
Figure 3.6). This process is usually greatly facilitated by the
relatively dense data which is often available. Irregularly spaced data

can present problems in the interpretation of the semivariograms.

Various statistical methods including jackknifing and robust statistics
have been used for ths purpose of estimating the variogram (Chung, 1984;
Dowd, 1985; Omre, 1984). The major difficulty with the variogram

approach to kriging is that it requires considerable judgement in devel-

oping and evaluating the variogram model.
The variogram can be expressed in a general form as:

Equation 3.25:
2
Var[Z(x)-Z(x;)]= VarI:Z B‘Z(xi)jl with B,=1, B,=-
i=1

Equation 3.26:

2

2
Var[Z(x)-Z(x)]= Z ZB,B,C(Ixrx;l)

Constant drift is filtered out in the stationary case by the first order
difference, Z(x,) - Z(x,). However, in a non-stationary case, higher
order differences are required to remove the drift. This approach is the
method of generalized covariances proposed by Matheron (1973, 1976) and
Delfiner (1976).
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An intrinsic random function of order K is defined as a random function
whose k-th order Increments are second order stationary. This is

expressed mathematically as:

Equation 3.27:
m
E[Zfstz(xt)]=o
i=

Equation 3.28:

m A
Var[;B,Z(x,-)J

exists and does not depend on the location of x,.

The higher order differences filter out polynomial drifts, just as the

intrinsic random function of order zero removes the constant mean.

Matheron (1973) and Delfiner (1976) express the most common form of the

generalized covariances as polynomials of the general form:

Equation 3.29:

K
cch)=bo*;,(-1)"*"b,+ 1[R[0

The coefficients of the common form of the generalized covariance func-
tion are controlled such that C(h) is conditionally positive definite.

The conditions for the common values of K (0 to 2) are as follows:

K=0
C(h)=b,-b,|h|

>0, 5,20

C(h)=b°-b||h| +b2|h|3
bo20, b,20, b,20
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C(h)=b,-b,|h| +b2|h|3'b3|h|5

5,20, 5,20, 5,20, b,2-2{(b,b3)

If the estimation variance is minimized adhering to the constraint of

unbiasedness, the simultaneous equations result in:

Equation 3.30:
Z(x°)=z}"iz(xi)
i=1
Equation 3.31:
n K
Z)‘Icii"'zukfk(xz):C(o for i=1,2,...n
j=1 k=0
Equation 3.32:
DA Fi(x) = fulx,) for k=0.1,..K
(=
Equation 3.33:
2 N K
0% =C(0)= ) MCio= ) efr(X0)
in =

where C;, signifies the generalized covariance C(|xi-xj|). Using the
generalized covariance, the simultaneous equations no longer require an

estimation of the drift, but do require the generalized covariance.

Kafritsas and Bras (1981) developed the program AKRIP (A Kriging Program)
which performs point kriging using the method of generalized covariance
as originally described by Matheron (1970, 1979) and Delfiner (1976). In
summary AKRIP has options for the performance of the following steps to
krige a set of observations:

1. Up to 15 structural models (consisting of the order of the intrinsic

function and the generalized covariance) can be compared by kriging
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the data using each structural model. AKRIP then ranks the models
based on the relative error at each known point to select the pre-
ferred structural model.

2. AKRIP determines the coefficients of the generalized covariance
model by using the results from the structural model comparison.
These results are used to generate differences of order k and than
the unknown coefficients are calculated by minimizing the sum of the
squares of the differences between the kriging errors and the corre-
sponding estimation variances. Iteration can be continued until the
user decides whether the solution has converged.

3. Once the order of the intrinsic function and the coefficients of the
generalized covariance are determined, AKRIP has an option for
assessing the parameters. This is done by estimating values at each
data location, subdividing the data points into two groups and

determining a jackknife estimator.

Various forms of kriging have been developed to address applications with
differing assumptions regarding the distribution and stationarity of the
data (see Figure 3.7). For a more detailed discussion of the various
kriging methods as they may be applied to surface modeling, the reader is
referred to Clark (1979), Rendu (1978), Olea (1975), and Dowd (1985).

Kriging studies have been performed using numerous data sets from a wide
variety of disciplines. Cf interest here are two studies, one on large
data sets and one on very small data sets. Davis and Culhane (1984)
researched the application of kriging for contouring large data sets.
The specific problem they addressed was the analysis of extremely large
offshore seismic data sets. They concluded in part that large kriging
systems could be solved without numerical instability if local or moving

neighborhood methods were properly applied.

Of more interest to geotechnical engineering, where the data sets are
usually very small, is the research by Puente and Bras (1986). They
concluded that universal (linear) kriging using the program AKRIP
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resulted in better estimates using small data sets than disjunctive (non-
linear) kriging or local mean estimators for both stationary and non-
stationary fields. Based on their analysis of predicted estimation
error, Puente and Bras conclude that predicted errors should not be used
in an absolute sense, but as a relative measure of spatial estimation

accuracy.
3.2.6 Other Methods

In addition to trend surface analysis and kriging, discussed above, there
are a variety of other methods commonly used for surface modeling based
on irregularly spaced data points. These methods include cubic splines,
weighted or unweighted inverse distance, inverse distance with weighted
gradients, and additional forms of polygonal interpolation. Detailed
discussions of these methods are presented elsewhere (Henley, 1981;

Ripley, 1981; Sabin, 1985; Watson and Philip, 1984a).
3.2.7 Comparison of Surface Modeling Methods

The relative advantages/disadvantages of a surface modeling method are
highly dependent on the background of the user, access to computer code
and resources, and ultimate objective of the application (contouring,
point estimation, etc.). Although the comparative studies have been
somewhat limited, there are a number of references that have used a par-
ticular data set from Davis (1973) (Ripley, 1981; Watson, 1982; Watson
and Philip, 1984a). Surface contours generated by applying a variety of

techniques to the same data set are shown in Figure 3.8.

The surface models shown in Figure 3.8 have been developed using a vari-
ety of analytical methods. Selection of the "best" model is primarily
personal preference. However, in geotechnical engineering practice with
sparse data, it is believed that the surface model must honor the few
available data points. Using this criteria, the acceptable methods shown

in Figure 3.8 are the manual, inverse distance, and kriging models.
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There appear to be two factions in the area of surface modeling. Those
who proposed kriging methods, and those that proposed one of the other
methods. The comparative studies have typically been undertaken by a
member of one of the factions in an effort to substantiate their claims
of a "superior®” method. It appears that the two factions differ in two
other regards. Those that propose kriging appear to be much more mathe-
matically inclined and are satisfied with extremely complex mathematical
methods which require considerable computer code and resources to
perform. The non-kriging faction appears to be satisfied with geometry
based methods which are easily implemented on the computer and require

limited computer resources to perform.
3.3 Profiling/Mapping
3.3.1 Introduction

There are several analytical methods developed for a variety of other
applications, which have been used for the purpose of identifying soil
stratigraphy. For discussion purposes, these methods have been separated
into the categories of non-spatial and spatial methods. The distinction
between the groups is arbitrary; however, the inclusion or exclusion of

spatial considerations is significant.
3.3.2 Non-Spatial Methods
3.3.2.1 Introduction

Non-spatial, or object-oriented, methods, which are described in this
section, treat the available data as a set of individual objects each
with a vector of measured attributes. The key distinction in this dis-
cussion is that the object-oriented methods do not necessarily include
any consideration of the spatial relationship between the objects.
Depending on the method, this lack of consideration of spatial relation-

ships may be artificially imposed.
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3.3.2.2 Clustering Techniques

Clustering is the process of assigning objects to clusters based on the
similarity between cbjects. The clustering process may be based on divi-
sive or agglomerative methods using multidimensional data. The applica-
tions of agglomerative clustering techniques are considerably greater
than for divisive methods, and therefore, the following discussion is

limited to agglomerative methods.

Agglomerative methods can be simplified into four major steps. First,
calculation of a distance (similarity) matrix between the objects. Sec-
ond, identification of the minimal element in the distance matrix.
Third, clustering the two most similar objects or clusters and
calculation of a new distance matrix. Fourth, repetition of steps two

through four as necessary until all objects have been clustered.

The two most critical stages for the application of agglomerative clus-
tering techniques are steps one and three. In step one it is necessary
to quantify the similarity between the objects being considered. 1In step
three the similarity between objects and newly formed clusters must be
updated as the clustering process continues. There are documented meth-
ods for performing these two critical stages (Sneath and Sokal, 1973).
The selection of the technique for a specific application is largely

dependent on the judgement of the researcher.

The results of the clustering process are usually presented in the form
of a dendrogram (see Figure 3.9), which is a representation of the hier-
archical clustering of objects into groups. The vertical axis of the
dendrogram is either distance between the objects or its inverse
similarity. In clustering vernacular distance refers to the inverse of

similarity, and not the Euclidean distance that first comes to mind.

The dendrogram is often referred to as a "tree" with the initial objects

being the "leaves" and the connectors between groups the "branches". The
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"root" is the vertex at which all the objects have been joined into a
single group. The maximal distance between the root and leaf, measured

in the number of vertices, is called the "height" of the tree.

If the grouping is restricted such that there are only two bramnches from
each vertex, then the tree is called a binary tree. In most applications
binary trees are used because higher order trees can usually be substi-
tuted by binary trees, and binary trees lend themselves to computer

implementation (Zupan, 1982).

In a binary tree with N original objects, there are 2N-1 vertices regard-
less of the branching or clustering method. The maximal height of the
tree is N-1. The minimum height (fully balanced tree) is the smallest

integer greater than the base 2 logarithm of N (Deo, 1974).

Considering agglomerative methods, there are seven common methods for the
calculation of the similarity between clusters. These methods are:
single linkage, complete linkage, group average, weighted group average,
centreid, median and Ward’'s (Zupan, 1982). The methods are presented
elsewhere (Sneath and Sokal, 1973; Zupan, 1982) along with discussions of

the relative merits of the techniques.

Of interest, particularly in Chapter 4, is Ward’s method which is known
by various other names including minimum variance, sum of squares, error
sum of squares, and optimal agglomeration (Grimm, 1987). In Ward's
method the central point is calculated for any possible combination of
two clusters and then the total sum of squared distances from this point
to all cbjects in the hypothetical cluster is evaluated. The association
of the two clusters with the smallest sum of squares is then taken as the
next cluster. In Ward’'s method the distance between two clusters has no
geometric meaning. According to Zupan (1982), Ward’s method is commonly
regarded as a very efficient clustering technique although it often

results in the clustering of small groups.
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The majority of the applications of clustering techniques to soils data
to date have dealt with the ecological characteristics of the soil (An-
derson, 1971; Muir et al., 1970; Rayner, 1966). While these studies have
demonstrated the application of clustering to soils data in general, they
address the problem of identifying surficial soil series for agricul-

tural/ecology purposes.

Grimm (1987) presents a method for analyzing biostratigraphic sequences
using cluster techniques that are stratigraphically constrained. The
specific application in the work is analysis of pollen count data using
Ward’'s method (incremental sum of squares) to define groups. Grimm ref-
erences research by Birks and Gordon (1985) regarding unconstrained clus-
tering of data from more than one stratigraphic section to identify

regional zones.

As stated previously, calculation of the similarity matrix is one of the
more critical, and complicated, steps of cluster analysis. One reason
for this is the variety of the data types. With respect to geotechnical
data, there are three types of characters: two-state, multistate (ordered
and qualitative), and quantitative. Two-state characters may be the
presence or absence of a particular soil component. Characters, such as
soil density based on Standard Penetration test blow counts or color, are
multistate ordered and qualitative characters, respectively. Quantita-
tive characters are typically Standard Penetration test blow counts or

laboratory test values.

Quantification of the similarity between objects (soil samples) to be
clustered is complicated by the three types of characters typically pres-
ent in geotechnical data. There are numerous methods (Sneath and Sokal,
1973) for calculating similarity coefficients between the objects;
however, many of the methods are not applicable if the character types

are mixed.
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Sneath and Sokal (1973) in their landmark text on numerical taxonomy
state that clustering analysis should use one of the extensively used
assoclation (similarity) coefficients so that the ensuing results can be
understoed and reviewed by others. They recommend using one of the basic

similarity coefficlents in consideration of "ease of interpretation."

One of the similarity coefficients presented for review and use by Sneath
and Sokal (1973) is the General Similarity Coefficient of Gower (Gower,
1971). Gower'’s coefficient is one similarity coefficient which is appli-
cable to all three character types. In principle the Gower similarity
coefficient 1s calculated between two objects by comparing the various
attributes and assigning a score for the level of agreement. Then a
weighted average of the various scores is calculated by summing the prod-
uct of the scores and weights for each attribute and dividing by the sum
of the weights.

Mathematically, the Gower Similarity Coefficient is calculated between
objects j and k by assigning a score, 0 < s;;, < 1, and a weight w,;, for

the attribute i. The coefficient is then defined as

Equation 3.34:

n
Z Wik Sijk

_i=1

- n
Ezluuk
i=1

Typically the weight w,,, is set to 1 when the comparison is considered

Se

valid for the two objects and 0 when the comparison is inappropriate
regardless of the character type. The score is dependent on the type of
characters being compared. Usually s,; is set to 1 for a match between
two-state characters and 0 if there is no match. The same process is
typically used for multistate characters, and no consideration is given

to the number of possible matches due to the multistates. With quantita-
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tive characters it is normal practice to weight the score by dividing the

difference between the two observations being compared by the observed

range.

Gower'’s coefficient has been used in a variety of studies including two

studies on soils (Rayner, 1965 and 19566).

According to Sneath and Sokal (1973) there have been repeated attempts by
various researchers to define a probabilistic similarity index. One of
the other coefficients discussed by Sneath and Sokal is a probability
based coefficient proposed by Goodall (1966). In principle, Goodall'’s
probabilistic similarity index computes the cumulative probability that a
pair of objects will be as similar or more similar than can be empiri-
cally ascertained for each attribute on the basis of the observed distri-
bution of the attributes in the total set of objects. Sneath and Sokal
(1973) indicate serious reservations with the Goodall probabilistic
similarity index since it gives a greater weight to the rarer occur-
rences, a contradiction with the basic principles of phenetic (overall)

similarity to use unequal weights for the attributes.
3.3.3 Spatial Methods
3.3.3.1 Introduction

Spatial methods discussed in this section include methods which
inherently treat the objects (samples) with consideration of spatial
relationships with other objects. Most of these methods, including
regional merging which is discussed below, have been developed in the
study of pattern recogni(ion and image processing/enhancement as applied
to the general problem of scene analysis (Duda and Hart, 1973; Pavlidis,
1977).

Scene analysis is the process of using the information available at the

pixel level to identify objects, boundaries or shapes in the scene. The
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available information at the pixel level may be the result of remote
observations, such as satellite observations. Therefore, the information

is often incomplete or in the vernacular of scene analysis "fuzzy".

By its nature, scene analysis is limited to dealing with two dimensional
pictures. In most applications scene analysis is also limited to a
single observation at each location or pixel. This observation may be
color, but in most research the more general problem observation of shade

of grey (often referred to as brightness) is addressed.

Scene analysis is accomplished by a variety of techniques including
splitting/merging regions based on scme form of "average" shade of grey
for the regions. Since the problem of soil stratigraphy is mainly one of
joining regions to identify natural strata, the following section pres-

ents a discussion of the process of regional merging.
3.3.3.2 Nearest Neighbor (Switzer Model)

Switzer (1965, 1967) performed research on the problem of using discrete,
irregularly spaced data to estimate the state of unsampled points. The

research was limited to two color mapping in two dimensions.

Simply stated Switzer’s model assumes that points close to observed data
points (nearest neighbors) tend to be of the same class as the observa-
tion. Points further away from a known data point will be less likely to

be of the same class as the observed point.

Switzer’s model is for two class (i and j), isotropic, two dimensional
maps. For an existing two color map the major class i and the minor
class ] are defined as follows:
Equation 3.35:

p=A/A

Equation 3.36:
p,=A,/A
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Equation 3.37:
A+A,=A
Equation 3.38:
pPi+p;=1
wbere A, is the area belonging to class i, A, is the area belonging to
class j, and A is the total area of the map.

If a two color map is sampled at discrete locations, the probability of
any point being of the same class (1) decreases asymptotically to the
global frequency p,; as the distance from the known data point of class i
increases. Switzer (1967) suggested that the decay function is of the

form:

Equation 3.39:
Pu=p+(1-pe™™”
Equation 3.40:
Pi1=P1(1_e(-yr))
yYy=the decay parameler,

where p;; is the probability of both the known point and a point at dis-
tance r belonging to class i; and p,; is the probability that the point

at distance r is in class j while the known data point is in class i.
The relationships can be extended to:

Equation 3.41:
Py=p;+(1-pye™™”
Equation 3.42:
Py=p(1-e"")
Equation 3.43:

Py*py=1
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Equation 3.44:
P+py=1

Figure 3.10 shows the relationships of the decay functions and demon-
strates that p,; and p,;, as well as p,, and p,; are non-intersecting func-
tions. Since p, > p;, py; and p,;; intersect at probability = 0.5 where r
= r.. Therefore, at distances greater than r., from a known point
belonging to class j, the probability of an unknown point belonging to
the major‘class i is greater than the probability of belonging to the

minor class j.

The rate of decay in the Switzer model is governed by the value of the
decay parameter. Tﬂe work by Nucci (1979) described in more detail below
confirmed the visual properties of the effects of the decay parameter on
isotropic maps. If the areas of a class are small, the decay parameter
will be smaller since the extrapolation distance is less. Irregular or
convoluted boundaries should also tend to reduce the value of the decay

parameter, as well, for the same reason.

The Switzer model is based on isotropic conditions (i.e., the decay func-
tion is independent of direction). Schematic examples of an isotropic
map and trending map were given by Nucci (1979) (see Figure 3.11).
According to the Switzer model, the shapes of the two classes should be
isotropic and therefore, the decay parameter will be isotropic. However,
in a trending map the extrapolation distance will be greater in the
direction of the trend and consequently the decay parameter will be ani-

sotropic.

In the applied studies of the Switzer model performed by Nucci (1979) and
Lee (1982) the maps chosen for study were selected to generally satisfy

the isotropy assumption.

Baecher (1972) describes two methods (direct and indirect) for evaluating
the decay parameter for known maps. The direct method requires knowledge
of the entire "true" map; while the indirect method requires knowledge of

a finite number of data points.
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In the direct method selected sampling locations are chosen and a series
of concentric circles is constructed centered on the sampling point (see
Figure 3.12). A frequency diagram of the percentage of the circle perim-
eter belonging to class i and j is plotted versus the circle radius (see
Figure 3.13). The value of the decay parameter can then be estimated

using nonlinear regression techniques and the appropriate equation for

Pi1» Pi1js P3ys Or Py;. The value of the decay parameter should be indepen-

dent of the value of r.

The accuracy of the direct method estimate of the decay parameter can be
improved by increasing the number of circle centers used and by increas-

ing the radii by smaller increments.

The indirect method of estimating the decay parameter, described by
Baecher (1972) and Nucci (1979), is based on statistical estimation based
on a finite number of observed points. The indirect method consists of
calculating the distance between all the known data pairs and classifying
the pairs inte one of three groups (ii, jj, or either ij or ji). Plots
similar to Figure 3.8 can then be constructed and the decay parameter can

be estimated using non-linear regression analysis.

Nucei (1979) studied the application of the Switzer model to two color,
isotropic geology maps to evaluate the ability of the model to predict
known "true" maps using discrete sample points. The influence of the
sampling pattern and density on the resulting error between the predicted

map and the known "true" map was also evaluated.

Nucci’s analysis included evaluating eight separate "true" maps using six
different square grids and five random sampling patterns of varying sam-
pling densities.. All of the analysis was the indirect method except for

a single direct method evaluation of one map.

Nucci’s conclusions are summarized as follows:
1. A better approximation of the true maps is achieved if the decay

function is a first order function of r rather than r2.
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2. The single map comparison of the decay parameter estimated by direct
and indirect methods was 11.76 + 3.93 (90% confidence limits) and
10.68 + 2.76, respectively.

3. 1f fewer than 50 data points are used to estimate a map, 20 to 30%
of the area may be misclassified. The accuracy of the estimated map
can be improved by increasing the number of data points used for the
analysis; however, the marginal improvement decreases as the number
of points increases.

4. The Switzer model provides a reasonable estimate of the error in an
inferred map. Typically the model over estimated the error. The
overestimation was attributed to data scatter, model variance, and

uncertainty in the decay parameter.

Lee (1982) applied the Switzer model to the prediction of states at unob-
served points along a line of known state and between two parallel lines
of known states. Lee used several of the same maps as Nucci (1979). Lee
concluded that the line-pair applications resulted in more accurate pre-
dicted maps than the methods used by Nucci, and that the actual error,
which was typically less than 10%, was lower in small or convoluted

regions.

Another application involving the Switzer mode was performed by Solow
(1986) following the application of thé kriging algorithm to indicator
data by Switzer (1976). Solow used simple indicator kriging (classifica-
tion into binary states) on isotropic binary maps with stationarity.
According to Solow, the benefit of the indicator kriging is that it
allows the estimated probability at an unmeasured location to be based on
samples of n > 2, which presents problems with estimating the misclassif-
ication probability and with the combination of n > 2 samples when using
models similar to the Switzer model. Solow’s study was based on the

analysis of parametric (known distribution) random fields.
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3.3.3.3 Cross-Correlation and Cross-Association

Cross-correlation is a process of comparing a time series to itself while
incrementing the shift distance between the two. The process is
described by Davis (1973). Cross-correlation was a predecessor in terms

of geology applications to cross-association.

Cross-association as applied to geology problems is the comparison of two
series of states (mutually exclusive, and incapable of meaningful rank-
ing), such as the lithographic states identified in two boreholes. The
process consists of shifting the one sequence past the other and
measuring the degree of agreement between the two series. The results of
cross-association are typically calculated as the ratio of number of

matches to number of comparisons for a range of match positions.

According to Davis (1986), the early statistical geology literature is
full of applications of cross-correlation (eg, Matuszak (1972)). How-
ever, Davis states that since the process of cross-correlation assumes
that the sampling is uniformly spaced with respect to time, applications
using cross-correlation procedures are valid only under special condi-

tions, such as with varved deposits.

Applications of cross-association techniques to geologic data include
Sackin, Sneath, and Merriam (1965); Harbaugh and Merriam (1968); Merriam
(1971); and Davis (1973, 1986).

3.3.3.4 Dynamic Programming

Considerable proprietary'research has been performed in the area of stra-
tigraphy assessment by mineral and oil exploration companies. Due to the
highly competitive nature of resource evaluation, this work is

essentially unreported in the open literature.

Before discussing several of the more recent publications in the area of
stratigraphic correlation, it is important to point out some of the dif-
ferences between stratigraphic studies in resource exploration and geo-

technical engineering. In resource exploration, the potential cost
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benefit is a real incentive for the application of sophisticated and
expensive testing in boreholes that are often very deep and expensive to
drill offshore. This testing is typically continuous downhole testing
using a variety of geophysical techniques simultaneously. In comparison
to the high cost of drilling the borehole, the cost of the downhole test-

ing 1s relatively small.

By comparison, in geotechnical engineering applications, which are the
subject of this research, the boreholes are typically relatively inexpen-
sive when compared to the structure. Also, the testing in the boreholes
is limited to non-continuous empirical type testing (i.e., Standard

Penetration tests on five foot spacings) in many applications.

As a result of these differences, the methods developed for resource
exploration, such as dynamic programming, are not readily or practically

adaptable to geotechnical engineering.

Howell (1983) and Waterman and Raymond (1987) present research on the
problem of stratigraphic correlation of borehole data using dynamic pro-
gramming methods. The advantage of the dynamic programming methods over
previous works using cross-association were that the methods could handle
"gaps"” in the correlated sections. Both papers deal with correlation of
stratigraphy in sedimentary rock, typical of the conditions encountered

in 0il and gas exploration.
3.3.3.5 Stratigraphic Models

Jones et al. (1986) present a very thorough discussion of contouring geo-
logic surfaces with the ultimate goal of developing stratigraphic models
for use in oil exploration. Their recommended approach for the analysis
of rock stratigraphy consists of geologic interpretation of the available
data followed by the identification of conformable surfaces. These sur-
faces are then modeled using conventional contouring techniques such as
those described in Section 3.2. Truncated or baselap surfaces are then
modeled by adding or subtracting stratum thickness from the respective

adjacent conformable surface.
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Since the methods proposed by Jones et al. (1986) are based on globally
conformable surfaces, the methods may be more properly applied to oll
exploration, which is the specific problem that they have researched,

than the assessment of soil stratigraphy in geotechnical engineering.
3.3.3.6 Regional Merging

Simply stated regional merging is the process of joining adjacent regions
into a single combined region based on an arbitrarily determined criteria
such that the uniformity of the newly formed region satisfies the objec-
tives of the process. 1It is important to note that the regions must be
adjacent (i.e., share a common boundary) in order to even be considered

for merging.

The criteria for decisions concerning merging are referred to as unifor-

mity predicates. Pavlidis (1977) defines the uniformity predicate as:

Let X denote the grid of sample points of a picture, i.e., the set of

pairs

(i,j) i=1,2, ...N, j=1,2, ... M

Let Y be a subset of X containing at least two points. Then a uniformity
predicate P(Y) is one which assigns the value true or false to Y, depend-
ing only on the properties of the brightness matrix f(i,j) for the points
of Y. Furthermore, P has the property that if Z is a non-empty subset of

Y then P(Y) = true implies always P(Z) = true.

Erikson (1985) researched methods for determining soil profiles.

Included in his work was a study of the application of regional merging
techniques to the problem of identifying soil stratigraphy. Specifi-
cally, Erikson used a search process to identify reciprocating optimality
between regions before merging decisions were made based on the
difference between average properties of the regions and the possible

merged region. The method was applied to two case histories to develop
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soil profiles based on single attribute data vectors (shear strength and
Standard Penetration test blow count data). The issue of multidimen-

sional data or non-quantitative data was not addressed.
3.3.3.7 Probabilistic Relaxation

Digital image processing techniques have been the subject of intense
research during the 1970's and 1980’s. In many cases the objective of the
techniques is to take a "fuzzy" or low quality image and improve the
image using numerical techniques including segmentation, pattern recogni-
tion, and other techniques. One area of research has been image enhance-
ment, where numerical techniques are used to improve the "quality" of an

image through iterative processes.

Probabilistic relaxation (Rosenfeld and Kak, 1982) is an iterative pro-
cess of calculating successive estimates of the probability of n objects
belonging to m classes with the assignments being interdependent. The
compatibility matrix c(i,j;h,k) is a measure of the compatibility of

object i belonging to class j and object h belonging to class k.

The process of probabilistic relaxation is summarized as follows:

1. An initial estimate of the probability of each of the n objects
belonging to each of the m classes is determined. Each of the prior
probabilities must be less than or equal to 1.0 and greater than or equal
to 0.0, and the sum of the prior probabilities for each object belonging

to the m classes must total 1.0.

For objects (A’s):

A, Ay A,
For classes (C's):
CI'CZ' 'Cm
(0)

is the initial probability that
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where

for each 1

ospP{P<1

and

M

Z PO =

2. The compatibility matrix c(i,j;h,k) is developed for the neighboring
cells (maximum of eight for the two dimensional problem common to image
enhancement) surrounding any cell. The value of c(i,j;h,k) is limited to
the range -1 to +1. Incompatibility is indicated by a low value (-1) and
compatibility by high values (+l1). Neutrality is indicated by a value of
0.0 .

3. The increment q,; is defined as follows:

Equaticn 3.45:

qy=1/(n-1) ) (Zc(t.j:h.k)m)

he=1 hot\ k=1
such that

-1<q;<+1

4. By applying the increment to the current estimate of p,;, revised

probabilities are estimated:

Equation 3.46:

P("*'l)_P(r) (l_,_q("))/Z(P(") (1+q(")))

where

(r)
QI[
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is defined in 2 above.

Note that prior probabilities of 0 and 1 will not be changed by any

iterations.

Rosenfeld and Kak (1982) outlined several analytical methods to define
the compatibility matrix c(i,j;h,k). However, they also indicate that
the coefficients of the compatibility matrix can be assigned arbitrarily
or by measuring the individual and joint frequencies of the events A,

belonging in C; in a single picture.
Rosenfeld and Kak (1982) address performance evaluation as follows:

"Ideally, we would like a probability adjustment scheme of (pro-
babilistic relaxation) to exhibit the following type of behavior;
During the first few iterations, appreciable changes in the
estimates should occur, as 'noisy’ initial estimates are brought
in line with the concensus of evidence from their neighbors.

Cnce this has happened, there should be little further change;
the estimates should be relatively stable. We would also expect
these ‘final’ estimates to be less ambiguous than the initial

ones.

Quantitatively, we expect the sum of absolute probability differ-

ences

Equation 3.47:

;Ipf,”-p.‘,-””

to become small after a few iterations. At the same time, the
final preobabilities should not be too far away, on the average,
from the initial ones; we would not be satisfied with the process
if it converged to an arbitrary set of final probabilities unre-
lated to the initial ones. Thus
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Equation 3.48:

| p{-
L)

should not become very large. In addition we expect the entropy
of our probabilistic classification to decrease; in other words,

we expect

Equation 3.49:

- r), r)
ZPU In py;
i.J

to be smaller than
Equation 3.50:

-5 P InpgP
L, J

Rosenfeld and Kak also indicated that it is customary to use only the
eight adjacent neighbors when evaluating the revised probabilities for a
given cell. They also state that typically the maximum number of itera-

tions is ten or less.
3.4 Summary

The literature review in this chapter presents a variety of analytical
techniques which will be referenced in Chapters 4, 5 and 6 describing
this research. Specific discussion of the previous research by others

will be included where appropriate in those chapters.
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Figure 3.1 - Optimal, Delaunay, and Greedy Triangulation of a Small Data
Set (Watson and Philip, 1984b): Optimal triangulation
(ABC/ACE/CDE), Delaunay triangulation (ACD/ABC/ADE), and
Creedy triangulation (BCD/ABD/ADE). (Interior points indi-

cate center of circumcircles.)
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Figure 3.3 - General Shapes of Functions of One to Three Inderendent

Variables for First through Third Degree Polynom

sions (Davis, 1986).
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Figure 3.4 - Trend Surfaces of Polynomials of Degrees One (a) through
55‘8’2) (e) for Data Set from Davis (1973, Table 6.4) (Ripley,
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Figure 3.5 - Basic Elements in the Theory of Regionalized Variables: a)
Regionalized variable and the drift, b) Residual after
removal of the drift (Olea, 1984).
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Figure 3.6 - Examples of Variogram Models (after Clark, 1979).
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Figure 3.7 - Kriging Methods Available When Stationarity Assumptions or
Distribution Assumptions Are Not Satisfied (Henley, 1981).

74



300

& 200
i
<
=
(@)
2o
8
o 100
>
»862 °908 352,\910:2
916 o880 *960 )
s940 ° 870 99‘0\
»890 7 »880 860\
0 100 200 300

X COORDINATE (FT.)
(a) Initial Data - Elevations in ft. (Davis, 1986).

300

N
(=4
(=]

100

Y COORDINATE (FT.)

0 1000 200 300
X COORDINATE (FT.)

(b) Manual Contouring - Note inferred effect of streams on the form of

ggchontour lines and smooth, equal spaced contours (after Davis,
). '

Figure 3.8 - Surface Models of the Davis Data Set (1973, Table 6.4).
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Figure 3.8 Continued.
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Figure 3.8 Continued.
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(k) Kriging Estimate Contours - Exponential model of covariance with r, =
2 (after Ripley, 1981).
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(1) Standard Deviation of Prediction Error in (k) (Ripley, 1981).

Figure 3.8 Continued.
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(m) Kriging Estimate Contours - Gaussian model of covariance with r, = 2.
Note greater relief than other models (after Ripley, 1981).
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Figure 3.9 - Clustering Dendrogram: (a) 12 objects in two dimensional
space; (b) Dendrogram for clustering using Ward's method
(after Zupan, 1982).
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CHAPTER 4

4.1 Introduction

This chapter deals with scil data preprocessing which for discussion pur-
poses is defined as the process of assimilating the available soil data
in order to make objective decisions concerning the grouping of the soil

samples into similar groups or strata.

One of the major difficulties in the process of site characterization is
identifying similar soils, meaning soils which in the judgement of the
geotechnical engineer belong in the same soil stratum or sub-stratum.
This process is hindered by factors which are discussed in Chapter 1.

Not only is the available data usually sparse, but the type and amount of
information varies from point to point. Also, the level of uncertainty
in the available information, which is not quantified, is understood to
vary considerably. The objective of soil data preprocessing is to
develop objective analytical techniques that can be used by the geotech-
nical engineer to analyze the information available concerning soil

strata.

The geotechnical engineer commonly has available for analysis the test
boring log including observed strata changes and the Standard Penetration
test blow counts for the samples, the visual description of the recovered
soil samples, and possibly laboratory test data. Not all of the informa-
tion is available for all the soil samples, so the geotechnical engireer
must make judgements using variable amounts of data concerning the
similarity of the different soil samples. More often than not the geo-
technical engineer is biased by the soil strata identified by the driller
and makes decisions concerning whether or not all of the samples belong

to the same stratum identified by the driller.
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4.2 Objectives

The objective of this research in soil data preprocessing is to develop
an objective process for the grouping of soil samples into similar groups
so that the groups could be used to assist with the development of soil
stratigraphy. The developed soil data preprocessing technique must be
capable of using variable type data with flexibility so that the geotech-
nical engineer can input his personal judgement and experience into the

process.

Two distinct approaches to soil data preprocessing, clustering and
regional merging, are presented in this chapter along with applications
using case history data. The research includes separate applications of

the methods, as well as, a combination of the methods.
4.3 Application of Clustering Techniques

Clustering techniques were presented briefly in Chapter 3 including a
discussion of their application by others to problems dealing with soils
in general. As noted in Chapter 3, the previous research with the clus-
tering of soils data has dealt with soil types from the perspective of
agriculture or flora/fauna/pollen contents (Anderson, 1971; Birks and

Gordon, 1985; Grimm, 1987; Muir et al., 1970; Rayner, 1966).

The research presented here uses clustering techniques for the first
time, known to the author, to identify soil strata from the perspective
of the geotechnical engineer, and compares the clustering solutions to
those developed independently by geotechnical engineers using hand meth-
ods. Before discussing the results of the research, a discussion of the

clustering methodology will be presented.

As discussed in Chapter 3, clustering is the process of assigning objects
to clusters based on the similarity between the objects. Agglomerative

methods, which start with all single objects and then iteratively join

87



the most similar objects or groups into larger groups, are the most com-
mon. Divisive methods start with all of the objects grouped and itera-
tively separates the groups into smaller parts until ultimately each
group is a single object. Since the collection of soil samples is
intuitively agglomerative and also since the agglomerative methods are
used much more widely, agglomerative clustering methods were used for the

soil data preprocessing research presented here.

The general algorithm of the agglomerative methods is:
1) Calculate a distance (similarity) matrix between the objects;
2) Identify the minimal element in the distance matrix;
3) Cluster the two most similar objects or groups and
re-calculate the distance matrix considering the grouping; and

4) Repeat steps 2 through 4 until all the objects are clustered.

Step 1 is the calculation of the distance or similarity matrix. If the
data available are of a single type (two-state, multistate (ordered and
qualitative), or quantitative), determination of the distance matrix is
greatly simplified. However, in geotechnical engineering the available
data can be any or all of these types. Exzamples of geotechnical data of
different types are as follows:
Two-state: presence/absence of a soil type
Multistate:
Ordered - soil density based on SPT blow counts
Qualitative - color

Quantitative: SPT blow counts, laboratory test results

As discussed in Chapter 3, the General Similarity Coefficient of Gower

(Gower, 1971) is one similarity coefficient that can accommodate all of
the data types. Therefore, it is an appropriate similarity coefficient
for soil data preprocessing. In principle the Gower similarity coeffi-
cient is calculated between two objects by comparing the various attrib-

utes and assigning a score for the level of agreement. Then a weighted
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average of the various scores is calculated by summing the product of the
scores and weights for each attribute and dividing by the sum of the

weights.

Use of the Gower General Similarity Coefficient requires determination of
the attributes to be considered, and the corresponding weights and scores
for matching. Usually a score of 1 is used for matches, and 0 if there
is no match. If the data are quantitative, the score is usually
expressed as a ratio of the data range such that the score is between 0
and 1. The selection process for the scores and weights is arbitrary,
and when possible, can be adjusted to result in the most satisfactory

clustering.

The similarity coefficient is used only to create the initial distance or
similarity matrix which is the similarity between original objects. Once
the initial matrix has been calculated, updating of the matrix requires
consideration of similarity between objects and groups and, therefore,

the original similarity coefficient can no longer be used.

As discussed in Chapter 3, Ward’'s method combines the groups with the
smallest sum of squares. The method considers potential grouping of all
possible combinations and calculates the squared distance of each point
in the potential group from the group cent:al point. The combined groups
with the smallest sum of squares are then combined and the process is

repeated.
4.4 Case History Examples Using Clustering Techniques
4.4.1 Calculation of the Similarity Matrix

The process of soil data preprocessing using clustering techniques was
studied using the Gower General Similarity Coefficient. The clustering
study is based entirely upon information available in the visual descrip-

tioi. of the soil samples recovered in the Standard Penetration tests.
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In the initial research the clustering was limited to consideration of
the soil consistency/density based on the SPT blow counts, the soil
r~lor, the minor constituent (35 to 50%}, and the major constituent
.~50%). For instance, if the visual description reads: Stiff, olive-gray

silty clay, then the available information is:

Consistency/density: Stiff
Color: Olive-gray
Minor constituent: silt
Major constituent: Clay

The information in the visual descriptions is from two sources. The
consistency/density is based upcn the SPT blow counts and the engineer’s
determination whether the soil is granular or cohesive. The consisten-

cy/density is determined by:

GRANULAR SOILS COHESIVE SOILS
SPT DENSITY SPT CONSISTENCY
Blows/ft Blows/ft
0-4 Very Loose 0-2 Very Soft
4-10 Loose 2-4 Soft
10-30 Medium Com- 4-8 Medium Stiff
pact
30-50 Compact 8-15 Stiff

50+ Very Compact 15-30 Very Stiff

Consistent with the recommendations concerning use of the Gower coeffi-
cient, the score used was 1 for a match and 0 for no match. As discussed
below, various weights were assigned to the attributes to see if the

resulting clustering differed significantly.

Three profiles (Profiles B, M, and 0) from the Cambridge Center case
history (see Appendix B) were used to study the application of clustering
techniques. Visual descriptions of the soil samples were availa . iax
use in the preparation of the similarity matrix. All of the visual
descriptions were originally prepared by the staff of the same geotechni-

cal engineering company using a company visual description procedure.
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The hand drawn profiles for Profiles B, M and O are shown in Figures 4.1
through 4.3, respectively. The locations of the profiles are shown in
Figure B.2. Note that some of the observed strata appear to be discon-
tinuous. The uncertainty in the interpretation of stratigraphy has been
implied by the use of dashed lines which tend to be wavy where the

geotechnical engineer is unsure of the strata interface.

The three profiles were selected for analysis to provide a variety of
subsurface conditions. Profile B (Figure 4.1) has consistent stratigra-
phy with the exception of Stratum IVA (see Appendix B for strata descrip-
tions) which appears to be discontinuous. Profile M (Figure 4.2) has
more discontinuous strata than Profile B. Profile O (Figure 4.3) is
particularly complex with respect to Strata VA and VB, which are both

discontinuous and irregular with respect to the vertical sequence.

Using Gower’'s similarity coefficient and the visual descriptions, an
original similarity or distance matrix was calculated with variations in
the weighting of the attributes (consistency/density, color, minor con-
stituent, and major constituent). Seven different clustering methods
were reviewed and used in the preliminary analysis using the algorithms
presented by Zupan (1982). The preliminary analysis indicated that use
of Ward’s method for clustering resulted in a higher level of agreement
with the hand drawn profiles than the six other clustering methods.
Ward’'s method was selected to be used for the final clustering analysis
for the following additional reasons:
1) 1its use by others (see Chapter 3) on other clustering studies,
2) the grouping is always monotonic (increasing dissimilarity)
(Zupan, 1982),
3) the method is intuitively attractive because it minimizes the
sum of squares in the grouping process, and

4) the method is computationally efficient (Zupan, 1982).
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4.4.2 Analysis of Dendrograms

Figures 4.4 through 4.6 are examples of the dendrograms resulting from
clustering the visual description data for Profiles B, M and O, respec-
tively, using Gower's coefficient and Ward's method of clustering. Note
that the height of the trees has been normalized by the greatest branch
length so that the range of dissimilarity is between 0 to 1. Multiple
objects that are joined on the x axis indicate that the relative dissimi-

larity, based on the scoring and weights, was zero.

The dendrograms for all three profiles visually appear to be nearly bal-
anced considering the theoretical minimum maximum length of the chains
indicated in Figures 4.4 through 4.6 (see Section 3.3.2.2). However, due
to the number of objects joined along the x-axis, the chains are in fact
considerably longer than they appear visually. Intuitively, the trees
should be balanced only when there are the same number of soil samples in
each of the "true" soil strata. It is unlikely that this will occur due
to differences in the strata thicknesses and test boring lengths. A
visual check of Figures 4.1 through 4.3 shows that Stratum IVB (Boston
Blue Clay) is considerably thicker than the other soil strata and there-
fore, has more soil samples taken from it. Consequently, balanced trees

would not be expected.

One of the major disadvantages of clustering is that the clustering nor-
mally continues until all the objects, no matter how dissimilar, are
grouped into a single group. With respect to soil stratigraphy this
presents the problem of determining the level at which to cut the dendro-
gram to identify potentially significant soil strata. By cutting the
dendrograms with a single horizontal line or a series of horizontal line
segments, it is possible to separate the groups into any number of clus-

ters.

92



In order to compare the clusters with the hand drawn profiles, a single
horizontal line was drawn at a level that resulted in the same number of
groups as observed strata in the hand drawn profiles (see Figures 4.4

through 4.6).

By cutting the dendrogram with a horizontal line, it is possible to com-
pare the clusters with the soil strata identified in the hand drawn pro-
files and determine the number of "mis-classified" samples assuming that

the hand drawn profile is the "true" profile.

The level of the horizontal line lies between 0.14 and 0.18 on the nor-
malized dissimilarity scale. In actual similarity distance the horizon-
tal 1line falls in the range of 1.65 to 1.97 (Profile B), 1.68 to 1.71
(Profile M), and 1.96 to 2.32 (Profile 0). These ranges appear to be
fairly consistent with the exception of Profile O, which is anticipated

to be the more difficult profile to develop.

Figure 4.7 presents the results of comparing the clustered groups to the
hand drawn "true" profile using various interpretations of the data as
discussed below. Accepting the hand drawn profile as the "true" profile
and the method discussed above, the percent of the samples mis-classified
ranges from 18 to 28 for the three profiles. As expected the percentage

is higher in Profile O where the apparent soil stratigraphy is more com-

plex.
4.4.3 Alternative Data Interpretations

The dendrograms shown in Figures 4.4 through 4.6 are totally objective in
that the scoring process was strictly 1 for a match and O for no match,
and each attribute is given equal weight. It is possible to modify the
scoring process : » that i1f key attributes of two or more objects match,
then the objects are identified as complete matches and thus grouped at

the x-axis (i.e., totally similar).

The use of key attributes is very attractive from the soil stratigraphy

perspective because there is often a single attribute, such as coclor, or
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a combination of attributes that is used to distinguish a specific stra-
tum. For instance, in the Cambridge Center case history Stratum IVA is a
very stiff to stiff, yellow silty clay which overlies Stratum IVB a
stiff, grey silty clay. Stratum IVA is commonly distinguished from Stra-
tum IVB by the yellow color, which is believed to be a result of oxida-

tion of the Boston Blue Clay during periods of lower groundwater levels.

The clustering algorithm was adjusted by varying the weights assigned to
the attributes and also in the method of determining the matches. It
should be noted that these modifications are made at the sacrifice of
objectivity. However, the sacrifice is considered minor if the result is

an improvement in the mis-classification error.

The data interpretations used in the clustering analysis are summarized

as follows:

Data Intexpretation Bl: Totally objective similarity matrix calculated

using equal weights and scores for each of the four attributes (consiste-

ncy/density, color, minor constituent, major constituent).

Data Interpretation B2: Similarity matrix calculated using three attrib-

utes (color, minor constituent, major constituent) and using selected key
attributes or combinations of key attributes to identify samples from
either Stratum I or II (fill and organic silt) and automatically setting
the distance between the samples to 0 such that they are grouped into

separate groups at the start of clustering.
Data Interpretation B3: Same as Data Interpretation B2 (initial grouping
of samples from Stratum I and Stratum II) except that all four attributes

are used.

Data Interpretation B4: Same as Data Interpretation B3 except that key

attributes are used to initially group samples from Stratum IVA (stiff
yellow clay), Stratum IVC (sandy clay) and Stratum VA (glacial outwash)

in addition to those in Data Interpretation B3.
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Figures 4.7 and 4.8 present the results of the adjustments to the match-
ing process. Depending on the level of adjustment to the matching, it is
possible to reduce the total mis-classification error to about 3 to 1lls.
This reduction in the mis-classification error has been achieved while
still making the horizontal cut in the dendrogram at any arbitrary level
(in this case that level resulting in the same number of strata). If in
fact the cut is made with full knowledge of the profile, the mis-

classification error can be reduced to 0 to 4%.

Using the mis-classification error in the totally objective clustering
(Data Interpretation Bl) as 100%, the mis-classification error with the
other matching options can be normalized (see Figure 4.8). The relative
mis-classification error can be lowered to about 20 to 55% by modifying
the matching options. Using modified matching options and full knowledge
of the profile to establish the dendrogram cut (Data Interpretation B4),
it is possible to lower the relative mis-classification error to 0 to

29%.

Figures 4.7 and 4.8 indicate that the best agreement is consistently with
Profile M which has two apparently discontinuous strata. The only stra-

tum that was mis-classified by all the matching options was Stratum IVC -
Sandy Clay which was grouped with Stratum VB - Glacial Till. This is not
totally unexpected based on the slight differences in the visual descrip-

tions of the strata (see Appendix B).

Profile B, which was anticipated to be the easier profile to model, had a
consistently higher mis-classification error than Profile M. The higher
mis-classification error in Profile B is due to several factors. The
distinction between the lower portions of the Stratum IVC - Sandy Clay
and the upper part of Stratum VB - Glacial Till was consistently mis-
classified. Although in this analysis discrepancies between Strata IVC
and VB were reported as mis-classification errors, it is interesting to
note that the original test boring logs, in fact, refer to the lower
portions of Stratum IVC as "till like". Because the clustering methods

continually group the most similar groups, the clustering of Profile B
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grouped the Stratum IVA samples with Stratum IVB at a relatively low
level (i.e., below the arbitrary horizontal line). Therefore, the appar-
ent inability of the clustering to distinguish these two profile strata

resulted in mis-classification error.

It is interesting to note that although the clustering of Profile B
resulted in mis-classification error, it raised two questions with
respect to the hand drawn profiles (see Figure 4.9). In Boring CCl040W
the highest silty clay sample was included in Stratum IVB Silty Clay even
though the visual description is "stiff, yellow gray, silty clay". The
clustering models consistently correctly placed the sample in Stratum IVA

- Stilff Yellow Clay.

The hand drawn profile refers to the middle stratum as Stratum IVB (Silty
Clay) and IVC (Sandy Clay) indicating that although both soil types were
observed, the mixing of the two types is such that the geotechnical engi-
neer apparently did not want to make the distinction between the two
strata on the profile. The clustering models consistently grouped the
upper portion of the hand drawn profile Stratum IVB and IVC into Stratum
IVB and the lower portion either into a stratum that could be interpreted
to be Stratum IVC or Stratum VB as discussed above. In this case it
appears that due to the totally objective nature of the clustering mod-
els, groupings that may either not be apparent to the engineer or that

the engineer was unwilling or unable to differentiate are distinguished.

The clustering models of Profile O are particularly interesting because
the models were able to group the discontinuous Strata VA and VB with a
relatively low mis-classification error (about 1l% in Figure 4.7). The
total mis-classification error was due to an inability to differentiate
between Strata VA and VB. Although it has been considered mis-
classification error here, this inability could raise ques’ions concern-
ing the ability of an individual to consistently distinguish between

these two strata objectively. Therefore, a portion of the total
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mis-classification error may in fact be due to the differences between
the actual "true" profile, which is unknown, and the assumed "true" pro-

file (hand drawn profile).
4.4.4 Clustering to Estimate Soil Properties

To demonstrate how clustering techniques could be used to assist with the
determination of design soil properties for soil strata, Profiles B, M
and O were used for additional clustering analysis using the available
shear strength and consolidation test data from the Cambridge Center case

history.

The analysis was similar to that described above for the analysis of soil
stratigraphy with one exception. The visual descriptions of all soil sam-
ples for which test data (compressive strength and consolidation proper-
ties) were available were included along with those of the soil samples
for the test borings in three subject profiles. The clustering was
performed using the same procedure (Ward’s method of clustering with Data
Interpretation Bl), and then average soil properties were assigned to the

groups based on the clustering results.

The results are shown in Figures 4.10 through 4.12. There was consider-
ably more data available for the shear strength clustering. Consequently

the clustering results for the shear strength are more conclusive.

The initial observation in Figures 4.10 through 4.12 is that there is
more variation vertically between samples than horizontally. This is
consistent with the intuitive impression of shear strength variation.

The next observation is that the clustering has sub-divided the major
strata into sub-strata based on shear strength. This is a significant
improvement with respect to the selection of design soll parameters
because it provides a rational method for sub-dividing major strata. In
detailed engineering analysis, such as slope stability, it is advanta-
geous to sub-divide the strata if there is a rational basis for doing so.
Often in practice the sub-dividing is very limited or is done based

primarily on elevation.
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The clustering of the consolidation properties appears to less successful
than the shear strength clustering due mainly to the lack of data. It is
interesting to note that the consolidation values are not completely con-

sistent with the shear strength values.
4.5 Discussion of Clustering Applications

It should be noted here that the clustering models are based on the indi-
vidual objects and selected object attributes. The analysis described
above did not include any attributes that indicate the spatial
relationship of the objects. Limited analysis (not reported here) using
sample elevations as another attribute did not result in any noticeable
improvement in the mis-classification error. There is no reason why spa-
tial attributes such as the coordinates of the test boring and/or sample
elevation could not have been included in the analysis. In fact, they
were purposefully excluded from the above analysis in order to see how
successful the cluster analysis approach would be without any spatial

attributes.

The clustering results described above have demonstrated that non-spatial
clustering can very reasonably reproduce hand drawn soil profiles with a
generally acceptable level of mis-classification. In the process the
clustering results have presented additional insight into possible sub-
strata. When applied to the shear strength and consolidation data, the
clustering results provide an objective method for assigning design soil

properties.

Use of the clustering methods requires cutting the resulting dendrogram
to identify the strata. If the "real" profile is completely unknown,
there is no rational basis for determining the level to cut the dendro-
gram. However, the dendrogram itself indicates the relative similarity
level of the groupings so that cuts can be made at a level considered
reasonable: for the application. Also, in actual applications the initial
cuts should be made at a level consistent wic the initial geologic model

hypothesis.
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4.6 Application of Regional Merging Methods

Regional merging methods were discussed in Chapter 3. They represent
another analytical method which can be applied to soil data preprocess-
ing; however, regional merging has distinctly different characteristics
than clustering. Before presenting regional merging applied to soil data
preprocessing, a brief comparison of clustering and regional merging is

merited.

Clustering and regional merging differ with respect to handling spatial
concepts. Clustering typically addresses individual objects independent
of spatial relationships, unless spatial attributes are purposefully
included. It should be noted here that spatial attributes are not nor-
mally included in the conventional use of clustering techniques which are
often applied to taxonomy. In contrast regional merging has definite
spatial relationships since only adjacent regions are considered for

merging.

Another important difference between the methods is that the level of
grouping is typically controlled in regional merging, while clustering
ultimately groups all the objects. Even though the eventual dendrogram
can be cut to sub-divide the groups, the results will be different than
with regional merging where a "2fined merging criteria is used at each

decision point.

One common characteristic of the methods when applied to soil data pre-
processing is that an initial distance (similarity) matrix is needed for
both methods. Therefore, as discussed below, it is possible to compare

the two methods, if the same initial distance matrix is used.
4.7 Case History Examples Using Regional Merging Methods

A regional merging computer program, based on the split-merge methcds
presented by Pavlidis (1977), was developed. Split-merge methods are
used to either divide or join regions to increase the similarity of the

final regions. The code was developed to consider only merging since the
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intuitive process is the combining of samples into soil strata. General
merging techniques consider adjacency in any direction. However, the
code was written so that the regional merging process was restricted to
vertical neighboring cells (samples) so that it could be applied to the
samples from a single boring. Therefore, adjacency was initially

defined as neighboring ~les within a single test boring.

Using this vertical adjacency constraint and regional merging, the test
borings in Profiles B, M and O were evaluated using the same distance
matrix techniques as for the clustering methods. One significant vari-
able in the regional merging application is the predicate, meaning crite-
rion, used to assess whether the regions should or should not be merged.
In the applications discussed here, the predicate was the difference in
similarity between the adjacent samples of the region and the sample

being considered for merging.

Various data interpretations were used with the regional merging analy-

sis. These data interpretations are summarized as follows:

Data Interpretation Cl: Totally objective similarity matrix calculated

using equal weights for the four attributes with merging restricted to

samples in single test borings.

Data Interpretation C2: Same as Data Interpretation Cl except that the

consistency/density attribute was not used.

Data Interpretation C3: Similarity matrix calculated using all four

attributes and using selected key attributes or combinations of attrib-
utes to automatically set distance between samples from Stratum I, II,
IVA, IVC and VA to O before starting regional merging. Additional
merging of samples with the initially defined regions was allowed to

occur.

Data Interpretation C4: Same as Data Interpretation C3 except that merg-

ing of initially defined regions was restricted.
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Figures 4.13 and 4.14 present a summary of the regional merging aiialysis
of the three profiles. Figure 4.13 is a plot of the percent of the
samples mis-classified for various interpretations of the data with dif-
ferent values for the predicate difference. As the predicate difference
is increased (meaning that the acceptable difference between regions is
higher and there will be more merging) the mis-classification error
increases. It should be noted that due to the method of calculating
mis-classification error, by comparison to the hand profiles, the method
is biased in favor of smaller regions. In :the extreme if the regional
merging resulted in no merging, the mis-classification error, as defined
here, would be zero. The major conclusion from Figure 4.13, when com-
pared to Figure 4.7, is that the level of mis-classification error using

regional merging is significantly lower than for the clustering methods.

Figure 4.14 shows the effect of increasing the predicate difference for
the test borings in Profile B. As the predicate difference increases,
the number of regions decreases such that at a level of 1+ there is a
single region in two of the three test borings. The horizontal lines on
Figure 4.14 show the relative number of regions actually observed in the

test borings.

Based on the results of the analysis prezented in Figures 4.13 and 4.14,
a predicate difference of 0.26 was selected for additional analysis of
the three profiles. Since the initial distance matrix is based on four
attributes with equal weights, the 0.26 value means that two samples
would be merged if they match in two or more attributes. The value of
0.26 is therefore dependent on the number of attributes and is not site

specifiec.

Using the 0.26 predicate difference, regional merging/clustering of the
individual test borings from the profiles resulted in the profiles shown
in Figures 4.15 through 4.17. It must be noted that the profiles in

Figures 4.15 through 4.17 were develuped from individual test borings
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using regional merging to identify strata within each individual test
boring, and then strata interfaces between borings were constructed by

hand.
4.8 Discussion of Regional Merging Applications

Based on the results in Figure 4.13, regional merging of the individual
test borings has a lower mis-classification error than the clustering of
all the samples as separate objects. In the process of investigating
regional merging, the flexibility of the method in assigning the predi-
cate difference was a very convenient feature because the level of merg-
ing could be easily controlled unlike the cutting the dendrogram.
Compared to cutting the dendrograms which is arbitrary, assigning the
predicate difference was preferable since the difference can be based on

a level of similarity.
4.9 Combination of Clustering and Regional Merging Methods

Since both clustering and regional merging are based on use of an initial
distance matrix, it is possible with only minor modifications to the pro-
cesses to combine the methods. In the application presented here the
regional merging process was performed first followed by a constrained
clustering which resulted in grouping of all the individual merged
regions. With respect to the objective application, this means that the
samples within all the individual test borings are considered for merg-
ing, and then all of the regions for all the borings are treated as

objects and clustered.

The clustering was constrained in the sense that those objects that
wanted to merge according to the regional merging analysis were initially
forced to be grouped together as totally similar. This was accomplished
by increasing the number of attributes by one with the additional attrib-
ute coded to the regions after regional merging. When calculating the
initial distance matrix for the clustering process, the distance between
samples with the same region attribute was set to 0 (meaning totally

similar) so those regions would be clustered first.

102



Figures 4.18 through 4.20 present a summary of the soil data preprocess-
ing methods discussed in this chapter. The summary is presented as a
plot of the percent mis-classified versus the percent of the total area
in an average region. This plot was selected to summarize the results
because it demonstrates the potential trade-off of mis-classification
error versus region size. The ultimate objective of soil data prepro-
cessing is to determine groups or regions of a size in proportion to the
relative penetrated thickness of each stratum with minimal

mis-classification error.

In Figures 4.18 through 4.20 the results of the clustering methods plot
as vertical lines because the size of the average region is established
by the level of the horizontal cut in the dendrogram. Since the regional
merging process resulted in smaller regions, the results plot to the left
of the clustering methods. Although certainly part of the difference is
due to the biased methods of calculating mis-classification error dis-

cussed above.

The combined regional merging/clustering models are shown in Figures 4.18
through 4.20 with two series of points. One set, referred to as the
estimated cut, represents the results if the dendrogram is cut to create
the same number of strata as the hand profile. These points therefore,
plot on the same vertical line as the results of the clustering model due
to the same underlying assumption. The other set of points, referred to
as the optimal cut, for the regional merging/clustering model is for the
cut of the dendrogram that results in the lowest mis-classification

error.

The results presented in Figures 4.18 through 4.20 demonstrate that when
comparing regional merging/clustering to regional merging alone there is
some increase in the mis-classification erf&f; however, the regional mer-
ging/clustering results in considerable larger average regions. If the

geotechnical engineer can employ personal judgement with respect to the
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level of cut in the dendrogram of the regional merging/clustering pro-
cess, the results in Figures 4.18 through 4.20 show that the mis-
classification error can bz reduced at a slight decrease in the average

reglon size.
4.10 Summary

The research described in this chapter was performed to develop an objec-
tive process for the grouping of soil samples into similar groups to aid
in the analysis of soil stratigraphy. The results of the regional
merging/clustering (i.e., merge samples vertically within separate bor-
ings first then cluster borings horizontally) demonstrate that the devel-
oped methods can be successfully applied to actual case history profiles.
Also, it has been demonstrated that the same methods can be applied to

the determination of soil strata design properties.

Although in selected profiles the clustering and regional merging methods
identified sub-strata missing from the hand drawn profiles or apparent
inconsistencies in the hand drawn profiles, it is difficult to judge
whether the developed computerized methods are better than an experience
engineer. However, it has been demonstrated that the clustering and
regional merging methods can be easily computerized to consider multiple

soil samples/profiles in an efficient, objective manner.

104



PR ), IR,

ny-|j®
Y| i._‘.l__.lnm
1

H
—-r; H
[N -
R o
Ut me sty cuar ]
ll* o s --po g
o
N x'c 8sANDY CLAY =
.-.g
8
e £
et <=0 2
P -_ &
= Y ICICTXC T
]
- - 80
./ — N

"V orocx

50ft

Figure 4.1 - Hand Drawn Profile B, Cambridge Center (see Appendix B for
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Figure 4.2 - Hand Drawn Profile M, Cambridge Center (see Appendix B for
strata descriptions).
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Figure 4.18 - Mis-classification Error and Average Region Size for Vari-
ous Soil Data Preprocessing Methods, Profile B, Cambridge
Center.
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Figure 4.19 - Mis-classification Error and Average Region Size for Vari-
ous Soil Data Preprocessing Methods, Profile M, Cambridge
Center.
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CHAPTER 5
SURFACE MODELING

5.1 Introduction

The purpose of this chapter is to review existing analytical techniques
which may be appropriate for use in surface modeling, to consider the
application of selected techniques to single and multiple surface model-
ing, and to summarize the advantages and disadvantages of the techniques

when applied specifically to soil strata interfaces.
5.2 Objectives

Prior to acssessing various modeling techniques, it is helpful to state
the desirable properties of an "ideal" surface model, and to discuss the
ramifications of compromising these properties. Desirable properties for
the development of soil stratigraphy surfaces are as follows:

Continuous Model:

The surface model should be continuous without unexplained discontinui-

ties.

The surface model should honor the known data points. Honoring the data
points in its strictest definition means that the surface must pass

through the strata change data points. In some of the literature, honor-
ing the data points is interpreted to mean that the interpolated contours

must be such that the data points fall within a proper contour interval.
n n

The number of data points that are used to estimate a surface value at an
unknown tested location is a major variable in the surface modeling pro-
cess. The analytical techniques, described below, vary considerably in
the number of data points used in point estimation, and also, in the
weight given to the points considered. 1In soil stratigraphy evaluation

it is important that the horizontal dimensions of the zone of influence
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around a point to be estimated are consistent with the anticipated dis-
tance of significant geologic change. For example, obviously the influ-
ence zone of the top of a relatively flat lacustrine deposit is greater
than that of a highly eroded, and thus, irregular deposit.

Minimal Estimation Variance:

It is never possible to identify the "real" surface which is being mcd-
eled. However, it is desirable to develecp a surface model which will
have a minimal estimation variance when compare at known locations on the
actual surface.

Coxputational Efficiency:

The practicality of the analytical techniques has been greatly en“anced
by the decreasing cost of computer computation rescurces. Therefyre,
although computational efficierncy was at cne time an important consider-

ation, it is now a relatively minor objective.
5.3 Single Surface
5.3.1 Introduction

The logical initial step in the development of subsurface stratigraphy
models, after an assessment of the local geology, is to develop models of
the soll strata interfaces as single surfaces ignoring for the time being
any interdependence between the strata. The Back Bay case history data
described in Appendix A was analyzed using the interpolation techniques
described in Chapter 3 and below, to develop models of the soil strata as

single surfaces.
5.3.2 Interpolaticn Techniques

Based on the review of existing interpolation techniques (described in
Chapter 3), the following techniques were selected and applied to the
Back Bay test boring data for the purpose of modeling the single sur-

faces:
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1. Trend Surface Analysis
2. Kriging

3. Delaunay Triangulation

The interpolation techniques were applied to the Back Bay test boring
information for the tops of the following soil strata: organic soils,
marine sand, Boston Blue clay, glacial till and rock. The remainder of
this section is a summary of the analytical techniques used to model
these single surfaces.

Irend Surface Analysis:

Trend surface analysis for first through fourth degree least squares
polynomial surfaces was performed. Partial results of the fourth degree
regression analyses are shown in Figure 5.1. The plots in Figure 5.1
demonstrate the ability of trend surface analysis to preduce very smooth,
visually appealing contours. However, it must be remembered that the
gecmetric shape of the trend surface model is set by the degree of the
regression polynomial, and that the regression process determines the
polynomial coefficients that minimize the square of the deviations at the

data points.

All of the data points contribute to the least squares regression coeffi-
cients, and subsequently to the estimation of any interpolation point.
The level of influence for any given data point is referred to as the
"leverage", which is in part a function of the distance of the data point
from the spatial center of the data (Hoaglin and Welsch, 1978; Unwin and
Wrigley, 1987). The leverages of the data points in the trend surface
regressions were analyzed. Figure 5.2 is a typical plot of the resulting
leverages. Since the data point distribution is approximately rectangu-
lar, the leverage increases with the di: ance from the spatial center of
the data. Typically, it is recommended that data points with a leverage
exceeding twice the average be reviewed for data accuracy (Unwin and Wri-

gley, 1987).
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As part of the trend surface analysis, the goodness-of-fit coefficient
was calculated for the Back Bay data. The calculated goodness-of-fit
coefficients are summarized in Figure 5.3. The calculated values range
from 0.03 to 0.9. Relatively high values (0.3 to 0.9 deperding on the
degree of the polynomial) were calculated for the tops of the marine
sand, glacial till and rock strata. Moderately low values (0.03 to 0.40)

were obtained for the tops of the organic soils and tihe Boston Blue Clay.

Assessing goodness-of-fit coefficients is an exercise in sound judgement
since third and fourth degree polynomials will commonly provide high fits
(0.8), and randomly generated data sets within the range of the actual

data can result in goodness-of-fit values of 0.5 to 0.6 (Davis, 1986).

Conclusions concerning the trend surface analysis of the top of soil

strata data for the Back Bay case history are as follows:

1. The goodness-of-fit for the marine sand, glacial till and rock is
higher than for the organic soils and Boston Blue Clay (for fourth
degree polynomials, approximately 0.9 vs. 0.3 to 0.4).

2. The higher goodness-of-fit coefficients were calculated for the
three soil strata with the largest variance in the observed data.

3. All of the trends surface regressions were statistically significant
(alpha = 0.05) with the exception of the first and second degree
regression for the top of the organic soils (see Appendix A for
results).

4. 1Increasing the degree of the trend surface regression was statis-
tically significant (alpha = 0.05) except for the increase from
first to second degree for the organic soils; from second to third
degree for the marine sands, glacial till, and rock; and from third
to fourth degree for the organic soils (see Appendix A).

5. Depending on the distribution of the data points for a particular
stratum, typically 6 to 12% of the data points had leverages in

excess of twice the average leverage.
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Trend surface analysis was also applied to the strata interface and
thickness data from the Cambridge Center case history. The results of

this analysis are summarized in Appendix B.

Figure 5.4 is a comparison of the results for fourth degree trend surface
analysis of both case histories. The basic conclusion drawn from Figure
5.4 is that for those cases where the goodness-of-fit is greater than

0.5, the trend surface models of the Back Bay data were better. When the
goodness-of-fit value was less than 0.5, which really indicates the lack

of any significant fit, neither site was consistently modeled better.

Considering the modeling objectives discussed above, trend surface analy-
sis, as demonstrated by these two case histories, has several strengths
and weaknesses. On the positive side, trend surface analysis results in
a continuous model that is computed efficiently by selecting model param-
eters that minimize the squared residuals. However, the surface model
does not honor the original data points, and contrary to the concept of
"close proximity" data points, the model at any point is based on consid-
eration of all the data points. Another disadvantage of trend surface
analysis is that the general shape of the surface is set by the

polynomial order selected by the user (see Figure 3.3).

Kriging:

Kriging analysis of the soil strata interfaces was performed using the
nmethod of estimating the order of the intrinsic random function and the
generalized covariance. This process was accomplished using a modified
version of the computer program AKRIP developed by Kafritsas and Bras

(1981).

As discussed in Chapter 3, the determination of the structural model
described in Kafritsas and Bras (1981) is based on the research by Del-
finer (1976). The process involves: 1) identification of the order of

the intrinsic random function; 2) determination of the coefficients of
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the general covariance model that are appropriate for the order of the
intrinsic random function; and 3) selection of the "best" generalized

covariance model from those identified in 2.

A slightly modified version of the computer program AKRIP was used to
evaluate the soil strata interface data from the Back Bay case history.
Plots of the estimated surfaces and the variance of the estimates are

shown in Figures 5.5 through 5.9 (see Appendix B for additional results).

Compared to the trend surface models of the same data (Figure 5.1), the
kriging estimates of the strata surfaces show considerably more irregu-
larity and relief. Of the strata tops modeled, the two models for the
top of the glacial till appear visually to be most similar. The kriging
estimate of the variance about the estimated surface can be used as a
measure of the level of uncertainty in the model. The variance is gener-
ally less than 10 for the organic soils, marine sands, and Boston Blue
Clay. However, the variance is greater than 60 for most of the glacial

till and rock models.

Once again, the kriging model can be compared to the model objectives
presented in the introduction to this chapter. The kriging model is
continuous, honors the data points, uses "close proximity" data points,
and minimizes the estimation variance. Also, using the program AKRIP,
the kriging model can be computed efficiently. Therefore, the kriging
mode). satisfies all the objectives of the surface model.

Delaunay triangulation:

Delaunay triangulation can be used as an interpolation technique (Watson
and Philip, 1984a) since it creates a piece-wise planar surface modcl.
However, intuitively Delaunay triangulation models do not satisfy the
surface model objectives stated above with the exception of honoring the
data points and using "close proximity" data points. These are important
objectives; however, since Delaunay triangulation modeling results in a
discontinuous model (piecewise planar), without consideration of minimal

estimation variance, and requires a reasonable amount of computation, it
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obviously satisfies fewer objectives than kriging. Therefore, Delaunay

triangulation was not used directly as an interpolation method in this

research.

Delaunay triangulation methods were used, however, for slightly different
purposes. Delaunay triangulation has been used in this research as a
means of representing the hand methods currently used in practice. This
assumption was made because the triangulation methods honor the original

data and are based on the straight line interpolation of local data only.

Where used in this research, Delaunay triangulation was accomplished
using a computer program developed as part of the research and based on
the algorithm in ACORD (Watson, 1982). Although the Delaunay triangula-
tion technique was not used as an interpolation method, it was used for
the development of surface models and profiles as discussed in the

remaining sections of Chapter 5 and Chapter 6.
5.3.3 Comparison of Interpolation Techniques

The previous section presents the results of applying selected analytical
techniques to the development of single surface models. In order to
compare the results of the various techniques in more detail, a single
soil interface (top of rock in the Back Bay case history) was selected

for further study.

The top of rock data for the Back Bay case history was selected for
several reasons including the relatively large variation in the observed
elevations (El. -80.7 to -154.9), and the number of observations (77)
which while relatively large was still considered to be a manageable num-

ber for hand contouring.

The top of rock data was analyzed using two approaches. First, all 77 of
the available data points (see Figure 5.10) were used to develop single
surface models of the top of rock as described in the previous section.
The models were developed using trend surface analysis, kriging, and
Delaunay triangulation techniques. Second, the total data set (77

points) was randomly divided in approximate halves such that 40 points
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were used to develop models using the same techniques, and then the
resulting models were used to estimate values at the remaining 37 data

locations.

Using the various developed models, estimates of the top of rock were
made at the location of the 37 data points deleted from the original data
set. Residuals were then calculated for each data point location for
each of the models to complete a relative comparison. Where appropriate,

residuals were also calculated at the 40 original data locations.

The residuals for the analytical procedures (trend surface analysis,
kriging, and Delaunay triangulation) are summarized in Figure 5.11 and

Table 5.1.
Conclusions regarding the residuals are as follows:

1. The Delaunay triangulation and kriging procedures honor the data
points completely and, therefore, there are no data point residuals.
The trend surface analysis, based on a least squares fit, minimizes
the square of the residuals at the data points. The 4th degree
least squares regression for the top of rock results in a mean
residual of 2.2 x 1017 ft. and a standard deviation of 5.23 ft. The
standard deviation of the data residuals for lesser degree regres-
sions ranged from 14.58 to 8.92 ft. The standard deviation for the
1st degree trend surface (14.58 ft.) approaches the standard
deviation of the top of rock data (18.22 ft.) disregarding any spa-
tial relationship.

2. The residuals at the interpolated points had larger absolute value
means and standard deviations than the residuals at the data points.
The Delaunay triangulation method had the lowest absolute value mean
residual (0.64 ft.), followed in order by the kriging method (1.00
ft.) and 4th degree trend surface method (1.44 ft.). The standard
deviations of the estimate residuals were 5.71 ft. for kriging, 6.67
ft. for 4th degree trend surface, and 7.52 ft. for the Delaunay

triangulation method.
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3. The standard deviation of the residuals for trend surface models
decreased as the degree of the regression polynomial increased. The
mean residual varied from 1.23 to 1.44 ft. for first through fourth

degree surface models.

Dahlberg (1975) compared the relative performance for contouring data by
hand and computer. Dahlberg concluded that computer generated contouring
is tachnically correct, but may pass over details that were perceived to
be important by the individuals doing the hand contouring. However, he

observed also that the computers were not subject to the biases of man.

In order to assess hand contouring performance and compare it to other
interpolation methods, nine individuals were given the same 40 top of
rock data points (shown in Figure 5.10) and asked to develop 10 ft.
interval contours of the top of rock (see Appendix A for the hand drawn

contour plans).

The hand-drawn contour plans were used for two purposes. Using straight
line interpolation, residuals at the 40 data points were calculated for
each contour plan. Since the hand drawn contour lines differed in their
lateral extent and typically did not extend beyond the convex hull sur-
rounding the data points, residuals could be calculated for 20 to 27 of
the original 40 data points. The mean data point residuals varied from
-0.003 to 0.48 ft. with standard deviations from 0.93 to 1.57 ft. (see
Table 5.2).

Residuals at the 37 interpolated points were calculated using straight
line interpolation and each of the nine hand-drawn contour plans. Due to
the lateral limits of the hand-drawn contours, estimates could be
obtained for only 24 to 31 of the interpolation points. The mean of the
residuals varied from -0.18 to 1.90 ft. and the standard deviation ranged

from 5.20 to 8.02 ft. (see Table 5.2).

Observations concerning the hand-drawn contour plans and the results of

the analysis of data and interpolated points are as follows:
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1. The hand-drawn contour plans honor the data points reasonably well,
as indicated by the residual mean and standard deviation (median
values of 0.20 ft. and 1.09 ft. respectively).

2. The residuals at interpolated points are considerably greater than
at the data points. Both the mean and standard deviation of the
interpolated point residuals are approximately five times those of
the data point residuals.

3. The hand-drawn contour plans appear to have been typically developed
using linear interpolation between selected subsets of the original
data. This observation is inferred from the worksheets provided by
the individuals doing the contouring.

4. A visual review of the hand-drawn contour plans indicates that with
one exception the final contours had been smoothed to provide paral-
lel contours. This indicates that the individuals expect that
although the raw data may not exhibit parallel contours, that the

real surface is composed of parallel contours.

The residuals from the various estimating techniques were further ana-
lyzed to permit comparison of the individual hand-drawn contour plans to
the analytical techniques. Figure 5.11 presents the results of this
comparison as a plot of the mean and standard deviation of the residuals
for the various techniques and the data and estimated points. Table 5.3
was prepared to compare the mean and standard deviation from the individ-
ual hand-drawn contours to those obtained for the same interpolated

points using the analytical techniques.

Of the nine hand-drawn contour plans three (#2, 5 and 8) have mean resid-
uals less than those for kriging, trend surface analysis and Delaunay
triangulation for the same interpolation points. Only one hand-drawn
contour plan (#9) has a lower standard deviation for the interpolated

points than the analytical techniques.

Correlation coefficients were calculated for the interpolated point
residuals for all the estimation techniques (see Table 5.4). The cceffi-

cients indicate the following:
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1. All of the correlation coefficients between the residuals for the
hand-drawn contour plans and the trend surface analyses increase as
the degree of the regression increases. However, the coefficients
for the 4th degree regressions and hand-drawn contours are typically
between 0.7 and 0.8.

2. The correlation coefficients between the hand-drawn contour resid-
uals are typically greater than 0.9 with the exception of those
associated with #5 which are in the range of 0.68 to 0.95 (median of
0.79).

3. The correlation between the kriging residuals and the hand-drawn
contour residuals are in the range of 0.88 to 0.99 (median of 0.95)
with the exception of #5 with a value of 0.76 .

4. The correlation coefficients between the kriging residuals and the
Delaunay triangulation residuals and the 4th degree trend surface
residuals are 0.99 and 0.84 respectively. The latter value is com-
parable to the coefficient of 0.82 between the Delaunay triangula-

tion residuals and the 4th degree trend surface residuals.

Based on the comparison of the various interpolation techniques using the

top of rock data in the Back Bay area, the conclusions are as follows:

1. The interpolation technique with the lowest residual standard devi-
ation (5.71 ft.) is the kriging method.

2. The mean of the residuals for all the techniques was less than 1.5
ft., which is typically within the uncertainty of the strata change
information reported in a test boring log.

3. The interpolation technique with the next lowest residual standard
deviation (based on the observed median value of 6.36 ft.) is the
hand-drawn contour method.

4. The kriging and Delaunay triangulation methods honor the data points
completely, while the hand-drawn contours nearly honor the data
points with a residual standard deviation of 1.09 ft. (based on the

median value).
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5.4 Developed Profiles
5.4.1 Introduction

The interpolation methods described above were applied to the Back Bay
case history data to produce stratigraphic profiles based upon interpola-
tion estimates of the various soil strata interfaces. The profiles were
developed by producing models of each of the soil interfaces and then
plotting the intersection of the model surface with a vertical profile

plane.
5.4.2 Comparison of Developed Sections

Profiles A and B (shown in Figures 5.12 through 5.15) were produced using
the kriging, Delaunay triangulation, trend surface, and hand profiling
techniques for modeling the soil strata interfaces. In this analysis
hand profiles were created using computer code to find test borings
within 100 feet of the profile plane, and to project the located test
borings into the plane. The strata interfaces were then drawn by con-
necting the strata change elevations in adjacent test borings. In each

case the strata interfaces were modeled as continuous single surfaces.

The profiles in Figures 5.12 and 5.14 demonstrate the tendency of the
hand profiling methods to exaggerate the vertical relief along a surface.
Even though the Delaunay triangulation surface is based upon the same
data points, the apparent vertical relief in the profile is much greater
in the hand drawn profile. This exaggeration is due to the practice of
translating the adjacent data points into the profile plane without any
change in the elevation value. Therefore, visually the resulting profile
appears to have a greater vertical relief across a shorter distance. The
top of the organic soils, glacial till and rock, in particular, appear to

have considerably more relief.

136



The smooth profiles of the trend surface models are evident in Figures
5.13 and 5.15. It is interesting to compare the smooth trend surfaces,
which do not honor the data points, to the more irregular kriging sur-

faces which do honor the data points.

The profiles demonstrate two problems that occur when using single sur-
face continuous models to model soil stratigraphy. First, even though
the test boring data indicate that the marine sand stratum is
discontinuous, the stratum has been modeled as continuous. This is
attributed to the convenience of continuous surface mathematical models.
Second, as demonstrated in Figure 5.15, the kriging model results in the
top of rock above the top of the glacial till. This is disturbing from
the geology perspective. Although, there were several test borings where
glacial till was not observed, it is generally expected that glacial till
will be observed continuously above the rock in this area. Therefore,
rock above glacial till, represents a geologic incompatibility in the

stratigraphic model.

Resolution of the discontinuous/continuous and geologic incompatibilities

is addressed in Chapter 6.
5.5 Summary

The research presented in this chapter reviewed existing analytical tech-
niques for surface modeling, and it is concluded that kriging methods
should be used for the modeling of single surfaces for the assessment of
soil stratigraphy. The comparison of kriging to hand contouring of a
selected data set demonstrated that the hand contouring solutions were
fairly accurate, but that the kriging methods resulted in slightly lower
residuals and an estimate of the variance of the estimated surface. How-
ever, when applied to multiple surfaces using actual case history data,
the kriging methods create continuous models of discontinuous strata, and

result in overlapping soil strata interfaces.
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Table 5.1 - Summary of Residuals for Interpolation Methods, Top of Rock,
Back Bay.

Data Points | Interpoiated Points
n(max) = 40 n(max) = 37

| No. ofh Mean § Stand.l No. 6f ib Heﬁn ;.Sfand. ]
! Pts., | (ft) | Dev. | Pts., (ft) | Dev. |
' n 3 | (ft) § n (ft) |

_Trend»Sur-‘
face '

0.0005 14.58 |

0.00025
40 0.00025 8.92
2.2x10-17

{ degree = 3;

idegree = 4

# Delaunay o
| Triangula. |

{ Kriging
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Table 5.2 - Summary of Residuals for Hand Contouring, Top of Rock, Back
Bay.

Individual | Mean

Data Points
n(max) = 40

Standard

Mean

Interpolated Points
n(max) = 37

Standard

1‘(# data pts,i (£t) Deviation (ft) Deviation
f # inter. (fr) (ft)
' pPts) :
: 1 j 1.90 8.02
| (20,29) |
‘ 2 0.08 6.39
! (23,31) |
‘ 3 : 1.73 5.94
' (27,26) |}
: 4 ; .23 .00 1.06 6.27
: (27,30) :
' 5 ' .00 .16 0.03 6.47
(22,24)
6 .21 .19 1.49 7.02
| (21,24)
7 .20 .00 0.88 6.60
(25,30)
8 .09 .09 -0.18 6.14
(24,29)
9 .04 .57 1.20 5.20
Median .20 .09 1.06 6.39
(24,29)
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Table 5.3 - Summary of Residuals for Estimated Points, Top of Rock, Back
Bay.

Mean/Stand. Dev. Using Same

Residual Sample Subset
Delaunay Trend Kriging
Tri. Surface
(4th)
Delaunay 1.44 1.00
Tri. 6.67 5.71
{ Trend Sur- i
' face : -0.64 - 1.00
: (4th 7.52 - 5.71
{ degree) .
-0.64 1.44 -
7.52 6.67 -
Hand Con-
tour 29 1.90 8.02 0.99 1.03 0.67
#1 6.12 5.74 5.90
#2 31 0.08 6.39 0.83 1.33 0.63
I 5.95 5.75 5.70
#3 26 1.73 5.94 1.45 1.68 0.98
5.95 5.88 5.84
#4 30 1.06 6.27 0.06 0.61 0.97
6.68 6.89 5.53
#5 24 0.03 6.47 1.50 1.29 1.31
5.54 5.67 5.79
#6 24 1.49 7.02 1.58 1.27 1.21
6.28 5.87 6.12
#7 30 0.88 6.60 1.16 1.03 0.82
5.98 5.64 5.74
#8 29 -0.18 6.14 1.09 1.02 0.81
6.07 5.74 5.84
#9 28 1.20 5.20 1.23 1.56 1.01
5.88 5.75 5.69
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Table 5.4 - Correlation of Residuals at Estimated Points, Top of Rock,
Back Bay.

é-swuw NE——
.97 1 .95 | .88 | .97
.80 | .75 | .80 | .84
.97 | .95 .88} .97
.92 | .94 | .85 | .87
.98 |1 .97} .90 ] .95
.96 | .93 | .87 | .95
.92 | .90 | .86 | .94
.84 | .81 | .95 ] .86
1 .98 | .94 | .99
.98 1 .92 | .95
.94 | .92 1 .96
.99 | .95 | .96 1

DLT
TS4

anaaapnaoaEe
HEREHHEEE
EI R BN Y BN P 1S )

DLT, Delaunay Triangulation TS4, Trend Surface (4th degree)
KR, Kriging HC-1, Hand Contouring (Individual 1)
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CHAPTER 6

6.1 Introduction

Profiling is the practice of developing a cross section showing the sub-
surface soil and rock conditions. The profiles are developed to assist
with the geotechnical design and also, to evaluate overall design and
construction issues. The number of profiles developed is influenced by
among other things the apparent complexity of the subsurface conditions,
the perceived influence of the subsurface conditions on the overall
design, and the budget for analysis. Generally, a limited number of

profiles are developed along critical orientatiuns.

The objectives of the research on profiling are to assess the applicabil-
ity of existing probability-based mapping techniques to soil profiling,
and develop computer techniques for probabilistic soil profiling.
Additional objectives for profiling are to develop methods for incorpo-
rating strata discontinuities and the engineer’s subjective judgement

into stratigraphic models.

This chapter presents a discussion of soil profile development as it is
done in practice, computerized techniques developed as part of this
research for improvement of the process, and two case history applica-

tions of the improved techniques.
6.2 Methods Used in Practice
6.2.1 Description of Methods

Soil profiles are usually developed by the following steps with some
minor variations:
1) The orientation of the profile in plan is selected;
2) Test borings in the area of the profile plane are
identified;
3) The test borings to be included in the profile are
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selected; and

4) The profile is developed by projecting the selected

test borings into the profile plane.

These steps are shown in Figure 6.1 and discussed in the following sec-
tion. In practice variations in the process include, among others, the

distance and direction that the test borings are projected.
6.2.2 Limitations of Methods

It should be noted that in the process of developing the profile the test
borings are projected varying directions and distances into the profile
plane without any indication of the projection direction or distance.
Once projected into the profile plane, all the test borings are treated
with equal weight regardless of the projection direction or distance.
Examples of the possible ramifications of the common methods for plotting

soil profiles are shown in Figure 6.2.

Once all of the test borings have been plotted in the profile plane, the
strata change elevations indicated in the test boring logs are used to

identify the continuous strata. These strata changes are then connected
using straight lines between the test borings. Discontinuous strata are
handled in methods completely at the discretion of the geotechnical engi-
neer. Common methods for indicating discontinuous strata include the use

of dashed lines, question marks, or non-connected strata lines.

Another common feature of soil profiles is a scale distortion to exagger-
ate the vertical changes in the stratigraphy. Scales of 1:5 (V:H) are
common for soil profiles. Typical examples of hand drawn profiles have

been presented previously in Figures 4.1 through 4.3.

The remaining sections of this chapter will discuss research performed to
develop computerized methods for developing soil profiles and assessing

soil stratigraphy.
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6.3 Stratigraphy Models
6.3.1 Introduction

One possible method for the improvement of the current practice of soil
profiling is to first model the soil strata interfaces as single sur-
faces, and then superimpose the single surfaces to create a model of the
soil stratigraphy. This section presents the development and analysis of
stratigraphy models based upon kriging estimators of the individual sur-

faces.
6.3.2 Definition of Models for Back Bay

The two classes of information available for the development of the stra-
tigraphy models are the observed strata change elevations, and the
observed soil stratum thicknesses. It is possible to model any strata
interface using the observed interface observations. As an alternative,
the interface could be modeled by subtracting the observed strata thick-
ness from the observed interface above the one being modeled. Figure 6.3
shows several alternative methods of modeling the same surface. It is
possible to develop any number of models by considering combinations of

the strata change elevations and strata thicknesses.

Jones et al. (1986) present a discussion of the merits of using stratum
thickness in the stratigraphy models. Probably the most convincing argu-
ment can be made in the case of discontinuous strata. If the observed
strata interface is used for the model, it will be continuous even in
those areas where test borings did not encounter the discontinuous soil
stratum. If the stratum thickness is modeled instead of the interface,
the true value should be 0 in areas where the stratum was not observed.
In fact, modeling of the stratum thickness should result in areas with
predicted thickness less than 0. When using stratum thickness in the
model, it seems appropriate to use the zero contour as the lateral limit

of the soil stratum (see Figure 6.4).
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The Back Bay case history data was used to study the effects of model
definition on the predicted models. Five alternative models (see Figure
6.5) were developed and used to estimate the soil conditions at known
points (test boring locations). These models were developed for various
reasons. Model 1 is based on kriging the observed soil interface eleva-
tions to estimate the soil stratigraphy. Model 2 is based solely on
observed strata thicknesses without any consideration of the observed
interface elevations. Kriging Models 3 through 5 represent several
intermediate alternatives with some of the interfaces based on actual
observations and others based on adding or subtracting observed stratum

thicknesses for observed interfaces.

Additional models could have been developed and evaluated; however, the
following section shows that the models were basicall;- equivalent with

only minor differences.
6.3.3 Comparison of HModels

Before presenting the results of the model comparisons, methods of com-
paring stratigraphic models will be discussed. Several methods of com-
paring the observed conditions to those estimated by a model were
considered. Eventually, the factors were reduced to those shown in

Figure 6.6 and discussed below.

A brief discussion of the factors follows:

Total Agreewent Ratio (TAR): This factor is the ratio of the agree-

ment lengths for all strata to the overall length of the test bor-
ing. By definition the TAR 1s greater than or equal to O and less
than or equal to 1. If any of the strata are relatively thick in
comparison to the test boring length, it is likely that the total
agreement ratio will be high. Similarly, if the strata are rela-
tively thin, it is possible that a small offset in the stratigraphic
model could result in a relatively low total agreement ratio. It
should also be noted that by definition the TAR may be biased toward

high values for short test borings.
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Stratum Agreement Ratio (SAR): This factor is defined as the ratio

of the length of agreement in a particular stratum to the observed
thickness of the stratum. By definition the SAR must be greater

than or equal to 0 and less than or equal to 1.

Stratum Thickness Ratio (STR): This factor is defined as the ratio
of the model stratum thickness to the observed stratum thickness for
those strata that are fully penetrated at a parcicular test boring
location. This factor is thus greater than or equal to 0. A high
STR may be due to a very thin observed stratum or a very high esti-

mate of the stratum thickness.

Stratum Interface Residual (SIR): The stratum interface residual is
the mathematical difference between the model estimate of the top of
a particular stratum and the observed top of the same stratum. By

definition there are no restrictions on the value of the SIR.

Obviously, the factor or factors to be used in a given situation will
depend on the purpose for developing the model. If the objective is to
estimate the thickness of a critical stratum, then the total agreement
ratio would be of less importance than the stratum agreement ratio. Sim-
ilarly, if the purpose of the model was to estimate the top of a critical
stratum, the most important factor would be the stratum interface

residual.

Subsurface stratigraphy is partially known at the test boring locations.
Each of the test boring logs includes strata change elevations.
Obviously strata changes below the bottom of the test boring are unknown.
Therefore, in order to compare models it is necessary to compare esti-
mates of the soil conditions at the known locations and within the pene-

trated depth of the test borings.

This was accomplished by jackknifing the test boring locations such that
a single test boring was removed from the total data set which was then
used to estimate the conditions at the eliminated test boring location.

By repeating the process until each of the test boring locations had been
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individually removed, it was possible to evaluate the models as well as
the surface modeling techniques. It is possible to repeat the jackknif-
ing deleting more than a single point each time. However, this was not
considered to be merited based on the results of the single elimination

discussed below.

There are many methods (see Chapter 5) for modeling single surfaces.
Based on the results presented in Chapter 5, two methods, kriging and
Delaunay triangulation, were selected for use in the stratigraphy models.
Kriging methods were chosen because kriging estimators have desirable
properties as discussed in Chapter 5 and performed best in the analysis
presented in Chapter 5. Delaunay triangulation was chosen as a computer-
ized method that closely simulates hand methods; therefore allowing an
efficient comparison between the "best" analytical modeling method and

"hand" methods.

The models shown in Figure 6.5 were evaluated. Each model was evaluated
using kriging to estimate the necessary strata tops and thicknesses.
Model 1 was also evaluated using Delaunay triangulation to estimate the

strata tops.

The jackknifing procedure was performed using the case history data and
the models shown in Figure 6.5 to compare the stratigraphic models. Sum-
mary statistics of the comparison factors were also calculated (see Table

6.1 for typical results).

The TAR was used to compare the actual overall performance of the models.
A summary of the TAR values for the Kriging Models 1 through 5 and Delau-
nay Triangle Model 1 is presented in Table 6.1. The Kriging models are
compared for all the data points available (156). 1In addition, summary
statistics are presented for the Kriging Models 1 and 5 and Delaunay
Triangle Model 1 for those interior points which the Delaunay triangle

model could predict.
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The mean TAR values are nearly identical for the models considered, rang-
ing from 0.717 to 0.750. The lowest mean value (0.717) is Kriging Model
2, which is based on the subtraction of the estimated stratum thicknesses
from the ground surface. The lower mean can be attributed to the fact
that this model is additive in the estimation variance for each subse-
quently lower stratum. Since the strata thicknesses are estimated by
kriging and then used to estimate the top of each stratum, it is expected
that the performance of the model, particularly on the lower strata,
would be suspect. This expectation was supported by the SIR analysis
where Kriging Model 2 had consistently high mean and standard deviation

values compared to the other models.

The second lowest mean TAR is for the Delaunay Triangle Model 1. Since
the model is triangle based, the interpolated values are based on the
three nearest neighbors only without any influence by the remaining
points. Therefore, it is expected that a triangulation-based model would
on the average not perform as well as kriging models which in this analy-

sis included consideration of the ten nearest data points.

The kriging models, with the exception of Model 2 discussed above, have
almost identical mean TAR values. The slight differences in the means
are most likely due to the subtle differences in the models and the ten-
dency of the model differences to average out over the samples consid-

ered.

It is important to note that the mean TAR values for the models in Table
6.1 range from 0.717 to 0.750 meaning that these models, on the average,
only agree along about three quarters of the test boring length. How-

ever, as stated above, the TAR values may be biased by thin soil strata.

The models were also compared with respect to the STR and SIR values.
Summary statistics for {riging Models 1 and 5, and Delaunay Triangle

Model 1 are presented in Tables 6.2 and 6.3.
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Each of the models in Table 6.2 tends to over estimate the stratum thick-
nesses as indicated by the mean STR values ranging from 1.017 to 1.863.
Each of the three models is reasonably successful modeling the thickness
of the fill, organic soils and Boston Blue Clay. However, the kriging
models, with mean STR values ranging from 1.017 to 1.058, are on the
average better models than the Delaunay triangle model with values from
1.036 to 1.084. With each of the three models the higher STR values
occur with the thinner strata (marine sands and glacial till). For these
strata the mean STR values range from 1.194 to 1.863. Although the mean
STR values appear reasonable for many strata, the maximum and range val-
ues indicate that in the worst case the models can over estimate the

stratum thickness by as much as 34 to 2039 %.

The mean SIR values are all acceptably close to zero. However, the stan-
dard deviations, maximums and ranges are all relatively high indicating
that although the average performance is acceptable, the point by point
performance is poor. It should be noted, however, that even with the
relatively poor performance that the standard deviation of the glacial
till and rock SIR values is less than half of the standard deviation of

the observed strata top values.

Since many of the summary statistics differ only slightly, the results of
the model comparisons are more correctly presented by ranking the various
models for each eliminated test boring location and then comparing the
ranks after each point has been eliminated. The ranking comparisons were
performed for the Total Agreement Ratio, the absolute value of the Stra-
tum Interface Ratio, and the absolute value of 1 minus the Stratum Thick-
ness Ratio. The modifications were made te the SIR and STR values in

order to account for the true optimal values of 0 and 1, respectively.

The results of the ranking comparisons are indicated in Table 6.4. The
ranking relationships are relative and should be judged accordingly. The
fact that a given model ranks better than another gives no information
concerning the absolute performance of either model, or the difference in

actual performance between the two models.
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Although the ranking of the model performance identifies the "best" per-
forming model relatively, it is important to consider the actual values
of the ratios and factors also. As discussed previously, the mean Total
Agreement Ratio for these models was approximately 0.75, which indicates

that they are not particularly good models.

Partial results of the model analysis are presented in Figures 6.7
through 6.9. The results of the "better" models have been presented to

provide an indication of the performance of these models.

Figure 6.7 is a plot of the Kriging Model 5 Total Agreement Ratio versus
the individual point numbers. The plot provides a good visual impression
of the performance of the model with respect to individual points. Ini-
tially it appears in Figure 6.7 that the deeper test borings would tend
to result in higher Total Agreement Ratio values, due in part to the
relatively large thickness of the Boston Blue Clay. However, the corre-
lation coefficient between the Total Agreement Ratio and the test boring
depth was found to be -0.56, indicating a moderate inverse relationship.
This relationship could be due to poor performance of the models with
respect to estimating the glacial till and rock strata (see discussion

below).

Figures 6.8 and 6.9 are plots of the TAR values for the Kriging Models 1
and 5, and Delaunay Triangle Model 1 and Kriging Model 1, respectively.
These figures demonstrate the relationship of the TAR values for the
model comparisons. Figure 6.8 with less scatter around the reference
diagonal demonstrates the close agreement of the two kriging models (Mod-
els 1 and 5). Figure 6.9 with more scatter around the diagoanal illus-
trates the weaker relationship between the Delaunay triangle and kriging
versions of Model 1. Note in Figure 6.9 that there are four outlier
points where the kriging version of the model was considerably better

than the Delaunay triangle version.
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Another way to compare these three models is using the correlation coef-
ficient (see Table 6.5). The correlation coefficlents indicate that
there are very strong linear relationships between the TAR values for all
three models. The relationship between the Kriging Models 1 and 5 is

exceptionally strong.

Relatively small differences were observed in the TAR values for Kriging
Models 1 and 5, and Delaunay Triangle Model 1 with the exception of the
four outlier values that are also observed in Figure 6.9. These outliers
are good examples of the ability of the kriging models, which in this
anzlysis considered the ten nearest data points, to make better estimates
than the Delaunay triangle model which is limited to consideration of the

three nearest neighbors.

Plots of the STR and SIR values for the various strata were prepared as
part of the analysis. The plots, which are not included herein, provide
good visual impressions of the overall performance of the Kriging Model
5. One observation is that the model performs better on the thicker soil
strata with respect to the STR values. The SIR values are relatively
large, and depending on the purpose of the stratigraphic modeling, may be

unacceptable.

One very significant observation of the models is the difference in how
discontinuous strata are considered. Kriging Model 5, which was the
"best" performer, used a continuous kriged surface to model the top of
the marine sand, a stratum that is discontinuous. Therefore, Model 5
contains significant errors of indicating the presence of the marine sand
stratum at test boring locations which indicated its absence. This is a
very serious deficiency with these models that are based on continuous
surface modeling. Other kriging models such as Models 2, 3 and 4 compen-
sated for discontinuity where the estimated thickness of the marine sand
was less than 0. However, when considering the global TAR, these models
did not perform as well as Model 5. This is partially attributed to the

relative thickness of the marine sand.
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The general conclusions which are drawn from the model analyses are as

follows:

1. The models as presented perform on the average at about 75% with
respect to the Total Agreement Ratio.

2. Of the models considered, the Kriging Model 5 performed best based
on a 1 X 1 ranking comparison of the TAR, STR and SIR values. How-
ever, the actual performance of the Kriging Models 1 and 5 was for
all practical purposes the same. The Delaunay Triangle Model 1
performed almost as well as either of the kriging models with four
exception points.

3. The ranking and actual performance comparisons demonstrated that the
"best" model depended on which strata interface or stratum thickness
was being used as the criterion. Therefore, model selection should
be based upon the ultimate objective.

4. Even though the Kriging Model 5 was considered the "best" performer,
this model, which includes a continuous model of the discontinuous
mafine sand stratum, is intuitively unacceptable. This model will
result in errors of absence/presence with respect to the marine sand

stratum.
6.3.4 Summary

The soil stratigraphy models presented in this section demonstrate an
initial effort at soil stratigraphy modeling. The models demonstrated
that kriging models performed slightly better than Delaunay triangle
based models. However, the models have demonstrated a generally unac-
ceptable level of success with respect to being able to predict soil
conditions at known locations. In particular the models have
demonstrated difficulty with presence/absence errors, which are very sig-
nificant errors in the practice of geotechnical engineering, and the mod-
els are still based upon the superimpesing of single surfaces without any

expression of the interaction between the surfaces.
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6.4 Probabilistic Profiles
6.4.1 Introduction

The soil stratigraphy models of the previous section were developed using
kriging analysis of the soil strata interfaces and thicknesses. It was
concluded, however, that the models still lacked quantitative expression
of the level of uncertainty. This section addresses implementation of

the level of uncertainty into multiple surface stratigraphic models.
6.4.2 Multiple Surfaces as Random Variables

Section 6.3 presents modeling of soil interfaces as functions of the
observed soil strata interfaces and thicknesses. Section 6.3 concluded
that the kriging models, at least for the case history considered, per-
formed slightly better than the Delaunay triangle based model which

approximates the current hand methods of assessing soil stratigraphy.

If the strata interfaces and thicknesses are considered to be independent
random variables, it is possible, as shown below, to create probabilistic
soil profiles which will indicate the level of uncertainty in the soil

strata. Before discussing the specific problem of soil stratigraphy, an

introduction of random variable concepts is helpful.

Consider a line on which the locations of two points, X and Y, are known.
The points divide the line into three segments (ignoring the case when
the points are coincident). It is then possible to define the three
segments deterministically knowing the locations X and Y. If the loca-
tions, X and Y, are statistically independent random variables with known
normal distributions, it is possible to define the three segments

probabilistically.

The three line segments defined by the locations of X and Y are:
Segment 1: {i<X, i<Y})
Segment 2: {X<i<Y}

Segment 3: {i>X, Y<i})
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Assuming that locations X and Y are statistically independent with known

normal distributions:

X~N(u,, 02)

2
Y ~N(p,,02)

then ignoring the possibility of the points being coincident and assuming
that Y is always greater than X, the probability of any location, i,

belonging to each of the three line segments can be estimated as:

P(i<X): P(i<Y)

¢(i'“*).¢(i'”’)
g, a,

P(ie Segment 1)

P(ie Segment 1)

P(ieSegment2) = P(X<i):-P(i<Y)

P(ieS t2) = | 1-of THe) | o Tt

(ie Segment?2) = 5. .

P(ie Segment3) = P(i>X) -P(Y Li)

P(ic Segment3) = [1-¢(i—”")]-[1—¢(i_”’)]
o, g,

Making the same assumptions concerning independence and known distrib-
utions of the random variables, an approach similar to the one dimen-
sional example can be applied to two surfaces in space. These surfaces
divide space into three regions. Note that the constraint that surface X
must be above surface Y was imposed. The result of this constraint is
that a potential fourth region, the space below surface Y over surface X,
has been eliminated. This means that the probabilities of the three

regions will not sum to 1 without normalization by their sum.

The three regions defined by surfaces X and Y for any elevation, a, are

as follows:
Region 1: {a>X, a>Y}

171



Region 2: {Y<a<X)}
Region 3. {a<X, asY)

Assuming that surfaces X and Y are statistically independent with known

normal distributions:
X~N(,,062)
Y~N(u’y' 03)

Then the probability of any elevation, a, belonging to each of the three

regions can be estimated as:

P(a2X)-P(aZY)

a-Q, a-
o(22) o(%)
O, a,

P(ae€ Regionl)

P(a e Region 1)

P(acRegion2) = P(a<X) P(Y<a)
P(aeRegion2) = [1—¢(a;:1")].¢(a;f’)
P(aeRegion3) = P(a<X)-P(asY)

P(a e Region3) = [1-¢(a;i‘”)].[1-¢(a;:")]

Using the same methodology, it is possible to extend the equations above
to consider any number of surfaces continuing to impose constraints with

respect to the vertical sequence of the surfaces.

As discussed in Chapter 3, the kriged surfaces result in estimates of the
surface value at any point in space and an estimate of the variance of
the estimate about that surface. Assuming that the location of the true
surface is normally distributed about the estimated surface with a vari-
ance equal to the estimated variance, it is possible to use kriged sur-

faces to subdivide space into regions similar to this approach.
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In addition to subdividing space using the kriged surfaces, estimates of
the probability of any point belonging in any of the regions can be cal-
culated since the mean and variance of the surface is estimated by krig-
ing at any x,y location. Using the probabilities obtained by this
approach, a probabilistic profile can be created using the procedure

presented in the following section.
6.4.3 Examples of Probabilistic Profiles

The creation of probabilistic profiles is based upon the assumptions of
the preceding section. The main assumptions are that the true surfaces
being modeled are normally distributed about the kriged estimate of the

surface, and that a geologic sequence can be imposed on tl : surfaces.

Figure 6.10 shows contours of the probabilities of the six soil strata
for the Back Bay Profile B (mod.). Typically, the individual soil pro-
files exhibit regions with low probabilities and regions with consider-
able transition in the probabilities. The probabilities are double-sided
for the interior strata and single-sided for the upper (fill) and lower
strata (rock). The contours are not parallel due to the change in the

estimated variance about the estimated surface in space.

By essentially overlaying the individual soil types, a probabilistic pro-
file can be created. The probabilistic profile can be interpreted in
several ways. Figures 6.11 and 6.12 are examples of interpretations of
the probabilistic profiles. Figures 6.11 and 6.12 show the regions in
the profile where the individual soil type probabilities exceed 0.1 and

0.5 respectively.

Figure 6.11 shows regions where there are two and three soil types with
probabilities greater than 0.1. The major regions are in the area of the
organic soils/marine sand/Boston Blue Clay and the Boston Blue Clay/gla-
cial till/rock. A minor region is in the area of the fill/organic soils.
The two soil type regions are continuous while the three soil type

regions are discontinuous.

173



Figure 6.12, where the criteria is probabilities greater than 0.5, indi-
cates reglons where there is less uncertainty about the classification.
Note in Figure 6.12 that there are regions where the maximum soil type

probability is less than 0.5.
6.4.4 Overlap and Discontinuity Problems with Probabilistic Profiles

The probabilistic profiles are a major step toward expressing level of
uncertainty in the soil profile. However, there are two significant
problems with the probabilistic profiles as discussed to this point. To
demonstrate these problems, a "best estimate" profile (see Figure 6.13)
can be developsd by assigning the soil type at any location to the soil

type with the maximum probability at that location.

The "best estimate" in Figure 6.13 indicates that the marine sand stratum
is continuous, and also that the rock stratum occurs above glacial till.
The first condition is incorrect based on comparison with actual test
borings close to the plane of the profile. The second condition is geo-
logically unacceptable. Therefore, although the probabilistic profile is
a means of expressing uncertainty in the profile, there are still the
common problems of using a continuous model to model a discontinuous
stratum and of strata overlap resulting in unacceptable profiles that

were also encountered in Chapter 5 (see Figure 5.15).
6.4.5 Summary

Probabilistic profiles as presented in this section represent a major
step toward incorporating an quantitative expression of uncertainty into
soil profiles. This is a significant advancement to the common practice
of soil profiling. In addition to this advancement, extensions of these
concepts could be applied to a variety of geotechnical engineering prob-
lems. For example, using these same concepts, it is possible to model
stratum thickness probabilistically. Therefore, for instance,
probabilistic estimates of excavation volumes or foundation pile lengths

could be developed with a rational basis. These techniques would be
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particularly helpful in estimating quantities and costs for the excava-
tion of contaminated materials where a deterministic estimate may be pro-

hibitively expensive.
6.5 Probabilistic Relaxation Profiles
6.5.1 Introduction

Probabilistic profiles, which are based on kriging continuous surfaces,
attempt to model a discontinuous stratum as a continuous stratum. This
problem is inherent to the use of any continuous model. Ideally, the
modeling would be done with a mathematically restrained model that would
result in a discontinuous model surface. The only reference found in the
literature to this approach was Henley (1981). Henley also discusses
briefly an approach to the problem of multiple surface interpolation. 1In
the absence of a mathematical model for discontinuous surfaces, an alter-
native approach is to modify the probabilistic profile in a rational man-

ner to resolve the identified problems of discontinuity and overlap.

As discussed in Chapter 3, probabilistic relaxation is an image enhance-
ment technique for decreasing the level of uncertainty in an array of
pixels. The process is based on the initial classification probabilities
at each location and a compatibility matrix, which is in effect a set of
constraints. Probabilistic relaxation is an iterative process which is
repeated until the level of uncertainty in the image is reduced to a

satisfactory level.

Th.s section presents the application of probabilistic relaxation to the
resolution of the overlap and discontinuity conditions encountered in the
probabilistic profiles. Before examining applications to actual soil
profiles, the following section presents a preliminary assessment of the

probabilistic relaxation process using contrived data.
6.5.2 Assessing Influence of Compatibility Matrix

The initial assessment of the probabilistic relaxation technique con-

sisted of observing the effects of various compatibility matrices on the
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e3stimated posterior probabilities. The effects of the various
compatibility matrices can be assessed by the rate and direction of
expansion of the P,; contours with successive iterations (see Chapter 3

for an explanation of terms).

Four initial prior probability matrices and four compatibility matrices
(shown in Figures 6.14 and 6.15, respectively) were used to assess the
general effects of the compatibility matrices. The results of the appli-
cation of probabilistic relaxation using the initial probability matrices
and the compatibility matrices are shown in Figures 6.16 through 6.19 as
plots of the estimated probability after the fifth and tenth iteration.
The plots demonstrate that the effect of the compatibility matrix is sig-
nificant on the direction of the expansion of the posterior probabili-
ties. The four initial compatibility matrices demonstrate noticeable

different expansion directions, especially for the Trial 1 data set.

For the trial compatibility matrices where the maximum value was always
+1, the effect of the compatibility matrix is minimal with respect to the
rate of expansion for the posterior probabilities. If the maximum value
‘as less than +1 and varied between the compatibility matrices, it is
anticipated that a more noticeable effect on the rate of expansion would

be observed.

The rate of increase in the posterior probabilities, based on comparison
of the fifth and tenth iterations, is such that typically the estimated

probability will increase from the initial value of 0.50 to greater than
0.95 in five iterations. For any given iteration the transition from

0.50 to greater than 0.95 occurs across typically 3 to 5 nodes.

Boundary effects are relatively minimal as demonstrated by the Trail 2

and Trial 3 data sets.
6.5.3 Combined Effects of Compatibility Matrix and Prior Probabilities

The next assecsment of probabilistic relaxation techniques was to con-
sider the effects of the compatibility matrix (c(i,j:h,k)) and initial

probabilities (P,,(®)) for several basic "typical" geotechnical profiles.
3 YP
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Two of the profiles are shown in Figures 6.20 and 6.21. These profiles
were chosen as examples of geometric relationships which are often
encountered in soil stratigraphy. The objective in this analysis was to
use different initial probabilities and compatibility matrices and assess
the ability of probabilistic relaxation methcds to predict the "true"

maps.

Input variables included the prior probabilities and the compatibility
matrices. The assumed prior probabilities ranged from 0.25 to 0.40. Use
of 0.25 assumes no prior information (P(l) = P(2) = P(3) = P(4) = 0.25)
and thus, the initial probabilities were equal across the maps. If val-
ues higher than 0.25 were assumed, the higher values were assigned based
on the assumption of four equal thickness strata (see Figures 6.20 and
6.21). 1If a value greater than 0.25 was assumed for a stratum, the
initial probabilities of the other three soil types were set to be equal

so that the sum of the initial probabilities at each point was 1.

The "true" maps were sampled by simulatirgz three test borings in each
map. The test borings were equally spaced as indicated in Figures 6.20
and 6.21. The soil conditions in the test boring columns were assumed to
be known so the soil types were given probabilities of either 1 or O

based on the actual soil types in the "true" map columns.

Two compatibility matrices were used to estimate the "true" maps. The
first compatibility matrix, referred to as the isotropic matrix, was com-
posed of values of +1 for consideration of the same soil type at any
neighboring cell as at the central cell. All cther elements in the
isotropic compatibility matrix were -1. The second compatibility matrix
used was based upon complete knowledge of the entire "true" map. In this
case, the compatibility matrix for each soil type was based on the fol-

lowing equation:

Equation 6.1:

(iej,hek)

c(iGJ'vhek):‘DP(iej)P(hek)
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where

imthe central cell,
jr k= soil types,
h=a neighboring cell.

The calculated “true"™ map compatibility matrices differed substantially
from the assumed isotropic matrices. The off-diagonal elements of the
calculated matrices were very close to the assumed -1 values in the iso-
tropic matrices. However, the diagonal elements, which were assumed to
be +1 in the isotropic matrices, were substantially lower. The average
values for the diagonal elements for soil types 1, 2, 3 and 4 for the map
in Figure 6.20 were 0.55, 0.42, 0.76 and 0.55, respectively. By compari-
son the average values for the map in Figure 6.21 were 0.33, 0.89, 0.64
and 0.55.

The results of the application of probabilistic relaxation to “typical"
geotechnical profiles are shown in Figures 6.20 and 6.21. The high mis-
classification error for the isotropic compatibility matrix with the
assumed 0.25 prior probabilities is directly attributed to the effects of
no prior information. When the initial probabilities are all equal
(0.25), points away from the actual data points, where one of the proba-
bilities is 1.0 and the others are 0.0, require several iterations for

the known points to affect the classification.

Use of the isotropic compatibility matrix resulted in consistently lower
mis-classification error than use of the compatibility matrix calculated
from the "true" map. Mis-classification error after sufficient itera-
tions to overcome initial mis-classification was typically 2 to 6% with
the isotropic compatibility matrix compared to 10 to 60% for the "true"

map compatibility matrix.

Mis-classification error for the isotropic compatibility matrix was less

than would occur if the "true" map spatial frequencies were used to esti-
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mate the final map. This is attributed to the tendency of the isotropic
compatibility matrix to cause the probabilities to grow outward from the

data points, similar to Trial Data 4 in Figure 6.19.

With the "true™ map compatibility matrix the mis-classification error was
greater than if the "true" map spatial frequencies were used to estimate

the final map.

The mis-classification error is directly proportional to the prior proba-
bilities for the isotropic compatibility matrix and inversely propor-
tional for the "true" map compatibility matrix. The isotropic
compatibility matrix performs best when the prior probabilities are
equal. This is attributed to the ability of the isotropic compatibility
matrix to expand from the geometry of the known data points and to
reflect that geometry into the regions with lower initial probabilities.
The "true" map compatibility matrix has values of lower magnitudes (i.e.,
closer to 0), and is less successful in reflecting the data geometry into

the full map.

For the example data sets with 10 cells between the data columns, it took
5 to 8 iterations for the mis-classification error to stabilize with the

isotropic compatibility matrix. The number of iterations required corre-
sponds directly with the number of iterations required to "close" the

spacing between the data columns.

Entropy is not a good indicator of mis-classiflication error since entropy
decreases with successive iterations as the posterior probabilities

increase regardless of the mis-classification error.
6.5.4 Comparison Between the Switzer Model and Probabilistic Relaxation

Probabilistic relaxation was used to estimate final probabilities for
Maps 2 and 3 that were used by Nucei (1979) and Lee (1982). These maps
(see Figures 6.22 and 6.23) were selected by Nucci and Lee to assess the
capability of the Switzer model to estimate two state probabilities using
discrete points (random and regular grid) and transect lines, respec-

tively. These maps, and others, were chosen specifically by Nucci and
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Lee because they appeared to be nearly isotropic with respect to the
distribution of the two states that also were nearly equal in their spa-

tial frequency.

Nucci (1979) and Lee (1982) used the maps to study the ability of Switzer
type models to predict two-state, isotropic maps. Nucci (1979) studied
the maps using random and grid sampling patterns with various sampling
intensities to study the performance of the Switzer model in general and
to assess the resulting differences in the model parameters. In each
case, Nucci assumed that the spatial frequency of the two states was

known.

Lee (1982) studied the application of a Switzer model based method to the
estimation of state between parallel sampling lines or transect lines.
Lee'’s model used the information from the transect lines to improve the
estimates of state between the lines. Lee used the actual state fre-
quency observed along the length of a particular sampling line for the
spatial frequency in the model. This is a significant departure from the

assumption of spatial isotropy used by Nucci.

Probabilistic relaxation was applied to the maps in Figures 6.22 and 6.23
by digitizing the maps in a 66 x 66 grid and analyzing the resulting
cellular map. The grid spacing was selected to agree with that used by
Lee. Using the same transect lines as Lee, the mis-classification error
was calculated for probabilistic relaxation iterations using both the

isotropic and, in some cases, "true" map compatibility matrices.

The results of the estimation methods are summarized in Figures 6.24 and

6.25. Conclusions regarding the mapping methods, based on the analysis

performed and indicated by Figures 6.24 and 6.25, are as follows:

1. The magnitude of the mis-classification error decreases for the ran-
domly spaced points and regularly gridded points using Nucci's Swit-
zer type model, transect lines using probabilistic relaxation, and

transect lines using Lee's Switzer type model.
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2. The mis-classification error for the transect lines using probabil-
istic relaxation with the isotropic compatibility matrix and prior
probabilities of 0.5 is approximately 150% of the error for the same
data using the Lee transect line model based on the Switzer mcdel.
However, it should be noted that the Lee model does not use the
spatial frequency for the entire map, but calculates spatial fre-
quencies for each map segment (area between transect lines) using
the observed frequency on the two line transects which border the
map segment to be estimated.

3. The mis-classification error for all four mapping methods decreases
as the relative distance between data points decreases.

4. Plots of the P;;(**1) for Map 3 show the regions of relatively high
probabilities with relatively narrow transition zones between
states.

5. Unlike Lee'’'s model where P,; dropped to the spatial frequency very
quickly moving perpendicular to the transect line, the probabilistic
relaxation model predicts high probabilities between the transect

lines with successive iterations.
6.5.5 Definition of the Compatibility Matrix
6.5.5.1 Introduction

The analysis of the contrived sections and the actual geology maps demon-
strated that the performance of the isotropic compatibility matrices is
better than the actual map compatibility matrices. The isotropic
matrices consistently resulted in lower mis-classification errors. This
is attributed to the tendency of the higher compatibility matrix elements
to expand the regions around the actual data points. The actual map
compatibility matrices with their lower element values have not demon-

strated the ability to expand the regions.
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The definition of the ~ompatibility matrix is relatively easy in the case
of the contrived data or the two-state geology maps. However, definition
of the compatibility matrix for refinement of a probabilistic profile is

another matter.

Conceivably, an isotropic compatibility matrix could be used. However,
there is no basis in the data for the selection of such a matrix. The
definition of the compatibility matrix could be left to the engineer.

The engineer is often aware of the general stratigraphic sequence and
could define general compatibilities and incompatibilities. However, the

definition of the more subtle elements would be totally arbitrary.

Before probabilistic relaxation methods can be applied to the refinement
of probabilistic profiles, it is necessary to define the compatibility

matrix in a rational, repeatable form. This definition should be based
upon the image enhancement research, but should also incorporate geclogy

and geotechnical engineering concepts.

Soil stratigraphy issues, unlike the typical image enhancement problems,
are three dimensional. Therefore, the definition of the compatibility

matrix should also incorporate three dimensional considerations.

The following sections describe a method developed as part of this
research to rationally define the compatibility matrix based on the

information obtained in the test borings.
6.5.5.2 General Considerations

Development of the compatibility matrix definition should include three
dimensional consideration of the available geometry and geolegy informa-
tion. The three dimensional consideration means that the number of
neighbors to a cell is increased to 26 (see Figure 6.26) compared to 8 in
two dimensions. The inclusion of three dimensional considerations will
require a significant increase in the number of calculations. This will

be discussed in more detail in the case history applications.
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The developed compatibility matrix is based upon Equation 6.1, repeated

here.

_Equation 6.1:

(iej. hek)

cles hek)= Py e P(hek)

where

imthe central cell,
j.k=soil types,
h=a neighboring cell.

In image enhancement the numerator of Equation 6.1 is often evaluated
using the "best estimate" probabilities in the map or image. HKowever,
that approach implies a certain level of confidence in the original
image. The definition developed here is based on the test boring data,

not an extension of that data such as a probabilistic profile.

The joint probability in the numerator can be estimated using the avail-
able strata interface and thickness information, considering three dimen-
sional geometry. The individual probabilities in the denominator can be
estimated using the test boring information regarding relative strata
thickness directly. The following sections discuss the development of

the compatibility matrix definition.
6.5.5.3 Consideration of Available Data

The basis of the compatibility matrix is to define the relative compati-
bility of soil types based on the observed spatial relationships. Con-
ceptually, the soil strata interface surfaces have a majcor influence on
the spatial relationships between soil types. Therefore, the definition
of the compatibility matrix should include consideration of the geometry

of the interface surfaces.

183



Test borings provide data regarding strata surfaces in the form of strata
change elevations. Ideally, the definition of the compatibility matrix
should include these observations with a limited amount of interpreta-
tion. Based on the discussion in Chapter 3, the surface modeling methods
with the least amount of interpretation are those that are triangle
based. These methods are attractive for other reasons. Mainly that the
pPilecewise planar surfaces are easily quantifiable for computer use as

compared to continuous surfaces.

Each of the planes separates space into two regions, those on either side
of the infinite plane. These regions in the area of the triangle are, in
fact, regions of different soil types. Considering the three dimensional
array of cells shown in Figure 6.26, the planes which could separate the
center cell from each of the neighboring cells can be defined by a range
of strike and dip angles assuming that the condition of soil type J being

above soil type K is always maintained.

The relationship of the acceptable ranges of strike and dip for the
dividing planes is summarized in Figure 6.27. Note that the definition
of acceptability is based on the relationship of soil type J over soil
type K, and the geometry of the cell arvangements. Since the vertical
scale in profiles is usually exaggerated to 1H:5V, this factor has been

included in defining the ranges of acceptability.

The available strata interface information can be summarized by perform-
ing the Delaunay triangulation, and then calculating the dip vector for
each of the triangles. Delaunay triangulation was chosen due to its
favorable properties discussed in Chapter 3. The dip vectors can be
summarized in a polar plot. Figure 6.28 is a typical dip vector polar
plot for the information from the Back Bay and Cambridge Center case
histories. The dip vector plots for the case histories are discussed in

more detalil below.
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In order for the center cell to be soil type J and any other cell to soil
type K, two conditions must be met. First, the soil interface J/K must
pass between the two cells. Second, soil type J must be penetrated. The
consideration of the soil strata interfaces has addressed the first con-
dition. The strata thickness data can be used to consider the second

condition.

The test borings provide information about the observed stratum thickness
for any stratum that is encountered. The compatibility matrix definition
presented here is restricted to using full penetration data. Partial
penetration data, which is discussed in Chapter 5, could be implemented

into the definition.

The critical thickness with respect to the full penetration of soil type
J is a function of the interface geometry, the cells being considered,
and the observed soil type J stratum thickness (see Figure 6.29). Note
that the definition of the probability is location independent. This was
specifically chosen because the ultimate goal is a global definition of
the compatibility matrix, as opposed to a regional or location dependent

definition.

The analytical methodology presented in Figures 6.27 through 6.29 can be
used to define a joint probability if the assumption is made that the
interface geometry and stratum thickness considerations are independent.
In that case the joint probability is the product of the individual prob-
ability of the interface geometry and stratum thickness considerations.
Transitions from soil type J to L or others are handled using the same

methods.

The individual probabilities of the soil types in the denominator were
estimated by using the relative proportions of the fully penetrated stra-

tum thicknesses from the test boring data.
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6.5.6 Probabilistic Relaxation Profiles - Back Bay
6.5.6.1 Definition of the Compatibility Matrix

Probabilistic profiles of the Back Bay and Cambridge Center case histo-
ries were studied to evaluate the definition of the compatibility matrix

and the performance of probabilistic relaxation.

The compatibility matrix was defined as described in the previous sec-
tion. The image enhancement literature (Peleg and Rosenfeld, 1978;
Fekete et al., 1981; Rosenfeld and Kak, 1982; DiZenzo, 1983; Kittler and
Illingworth, 1985) includes discussion of methods of scaling the compati-
bility matrix such that the range is from -1 to +1. The normal procedure
is to take the logarithm of the probability ratio in Equation 6.1, and
then truncate the results such that the desired range is accomplished.

At this point it should be noted that in image enhancement the truncation

level appears to be arbitrary.

Due to the relatively low probability of the marine sand and glacial till
strata, the probability ratios were comparatively high so it was neces-
sary to adjust the values to achieve *he range from -1 to +1. The image
enhancement approach was applied with variations in the level of
truncation. Varying the truncation limit results in a significant change
in the compatibility matrix. Any logarithm terms above or below the
truncation limits are in effect set to +1 or -1, and those terms within
the limits are scaled accordingly. Therefore, as the truncation limit is
reduced, the tendency of the elements in the compatibility matrix is to
approach an isotropic condition (all +l's for the same soil type and all
-1's elsewhere). This process is discussed in the following section with

examples of the results.
6.5.6.2 Example Profiles

Profile 5 was chosen from the Back Bay case history for an evaluation of
the definition of the compatibility matrix and the application of proba-

bilistic relaxation to the probabilistic profile. This profile was cho-
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sen because it exhibits the conditions of overlapping strata and
continuous models of discontinuous strata. Initially, a probabilistic
profile (using the methods discussed in Section 6.4) was developed for
Profile 5 and for two planes paralleling Profile 5, but offset 25 feet in
either direction. Probabilistic profiles were developed for the three
planes so that three dimensional probabilistic relaxation could be stu-

died, as well as, two dimensional.

A cellular map of the Profile 5 probabilistic profile is shown in Figure
6.30. Also shown in Figure 6.30 are the known conditions at test boring
locations that are closer to the plane of Profile 5 than either of the
other two planes. These test boring columns are in essence known; how-
ever, it must be remembered that the test borings have been shifted into
the nearest plane and therefore, the "true" conditions in the plane may

be different than the known conditions.

Probabilistic relaxation was applied to probabilistic Profile 5 using
various truncation levels in the definition of the compatibility matrix.
The various compatibility matrices were then applied to both Profile 5
alone (a two dimensional precblem), and the three probabilistic profiles
together (a three dimensional problem) with Profile 5 in the middle. The

results of the two dimensional application will be presented first.

One of the objectives of probabilistic relaxation is to refine the proba-
bilistic profile. Ideally, the refinement process will result in a
decrease in soil types with overlaps or that are discontinuous, and a
corresponding increase in the compatible soil types. Therefore, one of
the first performance checks is to observe the tendency of the soil types
to either expand or contract. Figure 6.31 shows the effects of the vari-
ous truncation values on the expansion and contraction of the areas of
the soil types in Profile 5 after 100 iterations of probabilistic

relaxation.
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Of particular interest is the performance of the marine sand and glacial
till strata. The marine sand demonstrates a very consistent tendency to
reduce its area within the range of truncation values analyzed. The
glacial till exhibits a very strong propensity to expand with a corre-
sponding decrease in the adjacent Boston Blue Clay and the rock. Note
that these are the two strata (marine sand and glacial till) with the
lowest probability of occurrence based on the test borings, and there-
fore, the smallest denominator in the probability ratio (Equation 6.1).
It is expected then that these strata would reflect the effects of the
truncation value most since the probability ratios are truncated signifi-

cantly.

The performance of the glacial till is particularly interesting. Due to
the nearly equal probabilities of the Boston Blue Clay, glacial till and
rock, truncation values larger than +1 result in a tremendcus increase in
the glacial till. This is attributed to the condition that at larger
truncation values, the glacial till is given compatibility values of +1
for both the Boston Blue Clay and the rock. Therefore, the probabilities
of the glacial till rise considerably. Of interest also is the sensitiv-
ity of the glacial till to the truncation value. Even though it expands
tremendously with values in excess of +1, it also contracts with values

less than +1.

The marine sand performs differently than the glacial till for two rea-
sons. First, due to its discontinuity as observed in the test borings
and observed stratum thickness, the estimated probabilities for the
marine sand are relatively low, so that with probabilistic relaxation
iterations the marine sand probabilities decrease and it is replaced by
other soil types. Secondly, the relationship of the tendency to expand
is not nearly as strong as the glacial till due to the absence of the

‘marine sand in many locations.

An assessment of the compatibility matrix definitions and the process of
probabilistic relaxation applied to soil profiling must include compari-

son of the results to the "true" profile. However, unlike the probabil-
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ity mapping research by others (Nucci, 1979; Lee, 1982), the "true" map
is unknown in the soil profiling application except for the test boring
data which includes some uncertainty as well. In order co check the
results of probabilistic relaxation, it was assumed that the "true" con-
ditions are those observed in the test borings, which have in turn been
translated into the nearest profile plamne. Since the soil conditions in
the plane may differ from the adjacent test borings, it is impossible to
calculate the actual mis-classification errors. However, use of the test
borings for calculation of the apparent mis-classification errors is the
best alternative. Before discussing the comparisons, however, it is nec-

essary to discuss the types and severity of those errors.

There are two types of errors that occur in mis-classification. First,
and by far more serious, are errors of absence/presence. These are
errors of either predicting the presence of a soil type which was not
encountered in the test borings or the absence of an observed soil type.
These errors have potentially severe consequences on typical geotechnical
engineering analysis such as slope stability or settlement analysis. In
critical applications, these errors could lead to the unnecessary expen-
diture of site characterizations resources. The second type of error is
elevation error. These are errors in the predicted elevation of a soil
strata interface. In most cases the consequences of elevation errors are

much less than for presence/absence errors.

Both presence/absence and elevation errors may occur as a result of the
cellular nature of the probabilistic profiles and probabilistic relax-
ation techniques. For the analysis presented here, the cells are 5 ft.

high and 25 ft. wide (1V:5H).

Figure 6.32 is a summary of the mis-classification errors for the two
dimensional analysis performed on Profile 5 using various compatibility
matrices and compared to the adjacent test borings. The figure shows
plots of the total mis-classification error and the presence/absence
error in terms of both the number of mis-classified cells and the per-

centage of the cells in the test borings that were mis-classified. The

189



difference between the total and presence/absence errors is the elevation
error. The errors are shown for both 20 and 100 iterations of probabil-
istic relaxation with compatibility matrices based on a range of trunca-

tion values.

All three errors (total, presence/absence, and elevation) are minimal at
a truncation value of +1. Higher truncation values lead to a consider-
able increase in error, particularly in the more serious precence/absence
error. In most cases the error for 100 iterations is greater than that
at 20 iterations. Based on this information, it appears that it is not
necessary to perform more than 20 iterations. This same conclusion will
be drawn later when considering other parameters such as entropy and the
rate of change in the probabilities. This conclusion is consistent with
image enhancement literature (Rosenfeld and Kak, 1982; Fekete et al.,

1981) which recommends using approximately 10 iteratioms or so.

The results of probabilistic relaxation with the optimal truncation value
(+#1) are a 50% reduction in the presence/absence error and a 10% reduc-
tion in the elevation error. The reduction in presence/absence error is

particularly significant.

Profile 5 was also analyzed as a three dimensional case. In this appli-
cation three planes with Profile 5 as the interior one were analyzed
concurrently using the same compatibility matrix for all three. Compared
to the two dimensional case with a maximum of 8 neighbors, the three
dimensional case with a maximum of 26 neighbors requires a corresponding

increase in the number of calculatiomns.

Figure 6.33 presents a summary of the mis-classification error as a func-
tion of the compatibility matrix truncation value for the three dimen-
sional analysis. Similar to the two dimensional case, it is possible to
reduce the presence/absence error by 25% and the elevation error by 10%
by choosing the proper truncation value. In this case that value appears

to be 0.9.
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Similar to the two dimensional analysis results, the errors after 100
iterations are generally higher than after 20 iterations. Although, the
three dimensional difference is less than that observed when using two

dimensions.

Another measure of the effects of probabilistic relaxation is the average
entropy of the image or map as a function of the relaxation iterations.
Figure 6.34 is a plot of the average entropy in Profile 5 versus the
number of iterations for the compatibility matrix based on the optimal
truncation values for both two and three dimensional analysis. The pro-
babilistic relaxation with the optimal truncation value compatibility
matrices resulted in nearly identical reduction in the initial entropy,
which is the same for both cases. It should be noted also that the
average entropy was reduced by about 85% of the initial value in the
first 20 iterations. The subsequent 80 additional iterations only low-
ered the average entropy another 10%. The entropy data demonstrate that
the probabilities have increased considerably in the first 20 iterations,

and that only relatively minor changes occur in subsequent iterations.

Average entropy was calculated for each of the compatibility matrices for
100 iterations of probabilistic relaxation of Profile 5 for both two and
three dimensional cases. The results are presented in Figure 6.35. The
results show that the average entropy is less for three dimensional anal-
ysis after 20 iterations, but that the average entropy is about the same

after 100 iterations.

Another method for assessing the benefits of additional iterations is to
review the average rate of change in the probabilities. The average rate
of change for the probabilistic relaxation of Profile 5 using the optimal
two and three dimensional compatibility matrices is shown in Figure 6.36.
The average rate is two orders of magnitude less after about 40 itera-
tions, and then decreases by less than an order of magnitude over the

next 60 iterations.
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The results of probabilistic relaxation with the optimal two and three
dimensional compatibility matrices are presented in Figure 6.37 in the
form of cell me.s after 20 iterations. The cell maps, along with the
analysis presented in this section, demonstrate that both the two and
three dimensional probabilistic relaxation analysis have resulted in a

significant improvement of the original probabilistic profile.
6.5.7 PzclLabiliscic Relaxation Profiles - Cambridge Center

The Back Bay test boring data (see Table A.4) indicates that the geologic
sequence is nearly the same with the exceptions of the discontinuous
marine sand and the glacial till, which was not observed at several loca-
tions. By contrast, the Cambridge Center test boring data (see Table

B.3) indicates considered irregularity in the geologic sequence.

It is expected that application of probabilistic relaxation methods will
be less successful on the Cambridge Center profiles. The major reasons
for this are that the soil strata are interLedded (see Appendix B), and
therefore, the conditions are not consistent with the assumptions in Sec-
tions 6.4 and 6.5.5 concerning the geologic sequence used to develop the

definitions of the probabilistic profiles and compatibility matrix.

Probabilistic relaxation analysis was performed on Profiles B, M and O in
the Cambridge Center case history using the same methods described in
Section 6.5.6. However, as anticipated, the results indicate no improve-
ment in the presence/absence, elevation or total mis-classification
errors. The lack of improvement is attributed to the variable geologic

sequence in the Cambridge Center area.
6.6 Summary

Chapter 6 presents the application of existing surface modeling and prob-
ability mapping methods to soil stratigraphy assessment, and the develop-
ment of new probabilistic relaxation methods. The existing surface

modeling methods result in conditions (continuous models of discontinuous

strata, and strata overlap) which are unacceptable for soil stratigraphy
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models. The existing probability mapping techniques, with their limita-
tions to two colors and assumed isotropic conditions, do not satisfacto-

rily address the soil stratigraphy conditions and issues.

The research results demonstrate that the developed probabilistic relax-
ation methods can significantly decrease the presence/absence, elevation
and total mis-classification errors if the site geologic sequence is

consistent with the assumptions used to develop the approach.
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Table 6.1 - Summary Statistics for the Total Agreement Ratio (TAR) for
Selected Stratigraphic Models.

SUMMARY STATISTICS FCR TOTAL AGREEMENT RATIO (TAR)

: Stratigraphic | No. of Mean Stand. | Median
i Model : . Dev.

Kriging - Model 1 0.750 | 0.185 | 0.826

Kriging - Model 1 140 0.750 | 0.186 | 0.824

Kriging - Model 2 156 0.717 0.197 0.785

Kriging - Model 3 156 0.743 | 0.194 | 0.811 | 0.719

Kriging - Model 4 156 0.750 0.185 0.819 0.661 H

Kriging - Model 5 156 | 0.749 | 0.185 | 0.818 | o0.647 |

Kriging - Model 5 140 0.749 | 0.186. | 0.814 | 0.647 |
Deluunay Tri. - Model | 0. 0.199 | 0.804 | 0.754

1
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Table 6.2 - Summary Statistics of Stratum Thickness Ratio (STR) for Krig-

ing Models 1 and 5, and Delaunay Triangle Model 1, Back Bay.
lﬁ SUMMARY STATISTICS FOR STRATUM THICKNESS RATIO (STR)
KRIGING MODEL 1 No. of Mean Stand. Max. Range
Pts. Dev.

Fill 156 1.040 0.279 2.812 2.426
Organic Soils 156 1.058 0.303 2.356 1.895
Marine Sands 38 1.194 1.226 4.909 4.909

Boston Blue Clay 81 1.031 0.123 1.366 0.630
Glacial Till 72 1.583 2.460 20.394 20.394
SUMMARY STATISTICS FOR STRATUM THICKNESS RATIO (STR)
KRIGING MODEL 5 No. of Mean Stand. Max. Range
Pts. Dev.

Fill 156 1.040 0.279 2.813 2.426
Organic Seoils 156 1.058 0.303 2.356 1.895
Marine Sands 38 1.194 1.226 4.909 4.909

Boston Blue Clay 81 1.017 0.121 1.343 0.633
Glacial Till 72 1.421 1.584 12.286 12.106
SUMMARY STATISTICS FOR STRATUM THICKNESS RATIO (STR)
DELAUNAY TRIANGLE lNo. of Mean Stand. Max. Range
MODEL 1 Pts. Dev.

Fill 140 1.039 0.297 2.860 2.565
Organic Soils 140 1.084 0.349 2.464 2.011
Marine Sands 32 1.863 2.215 9.340 9.340

Boston Blue Clay 69 1.036 0.132 1.406 0.617
Glacial Till 64 1.328 1.285 8.220 8.095
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Table 6.3 - Summary Statistics of Stratum Interface Residual (SIR) for
Kriging Models 1 and 5, and Delaunay Triangle Model 1, Back

Bay.

SUMMARY STATISTICS FOR STRATUM INTERFACE RESIDUAL (SIR)

F KRIGING MODEL 1

No. of Mean Stand. Max. Range

Pts. Dev.
Organic Soils 156 0.038 4,020 12.69 24 .95
| Marine Sands 37 0.127 2.717 7.30 11.74
Boston Blue Clay 157 -0.031 3.386 10.72 20.75
Glacial Till 76 0.044 7.687 22.66 49.72
Rock L 0.226 | 8.431 | 25.54 [ 57.29

SUMMARY STATISTICS FOR

STRATUM INTERFACE RESIDUAL (SIR)

KRIGING MODEL 5 No. of Mean Stand. Max. Range
Pts. Dev.

Organic Soils l 156 0.039 4.020 12.69 24.95

Marine Sands I 37 0.127 2.717 7.30 11.74

Boston Blue Clay | 157 | -0.031 | 3.386 | 10.72 | 20.75

Glacial Till l 76 -0.496 7.925 19.73 49.66

Rock | 77 | -0725 | 8.378 | 18.20 | s1.01

SUMMARY STATISTICS FOR

STRATUM INTERFACE RESIDUAL (SIR)

DELAUNAY TRIANGLE [No. of Mean Stand. Max. Range
MODEL 1 Pts. Dev.

= Organic Soils 140 -0.073 4.182 15.02 25.27

Marine Sands 25 -0.194 2.530 6.41 10.27

Boston Blue Clay 141 -0.021 3.547 11.11 21.71

Glacial Till 66 0.377 7.359 27.59 41.71

Rock 67 0.114 8.171 29.06 58.56
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Table 6.4 - Summary of Model Comparisons Based on 1 X 1 Ranking of
Selected Agreement Ratios and Residuals. (/ indicates that by
model definition mode’s are identical for that particular

stratum)
7 Comparison Model No. In Order
Factor of Decreasing Performance ->
TAR (total boring) 1 4 3 2
|SIR|] (stratum top)
I Organic Soils 1/4/5 3 2 - -
I Marine Sands 1/5 3/4 2 - -
Boston Blue 1/3/4/5 2 - - -
Clay
Glacial Till 3/5 1/4 2 - -
Rock 3/5 1/4 2 - -
|1-STR| (stratum
thick.)
Fill 5 2 3 4 1
Organic Soils 4 1/2/5 3 - -
Marine Sands 2 5 3 4 1
Boston Blue 5 4 1/2 3 -
Clay
I Glacial Till 2 3/5 4 1 i
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Table 6.5 - Correlation Coefficient Matrix for Total Agreement Ratios for
Selected Stratigraphic Models.

Correlation Coefficient Matrix for TAR

@

Delaunay

Tri. - Kriging - Kriging -

Model 1 Model 1 Model 5
Delaunay

Tri. -
Hodel 1 1.000 0.846 0.839
Kriging - I
Model 1 0.846 1.000 0.994
Kriging -
Model 5 C.839 0.994 1.000
N Y
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Stratum C

Typical scale 1H:5V

Figure 6.1 - General Procedure for Developing Soil Profiles.
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Figure 6.2 - An Example of Problems with Common Soil Profiling Methods.
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Figure 6.3 - Examples of Alternative Methods for Modeling a Soil Stratum
Interface.
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Figure 6.4 - Example of a Model Using Thickness of a Discontinuous Stra-
tum
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Figure 6.5 - Models of the Back Bay Soil Stratigraphy.
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Figure 6.10 - Probabilistic Profile Contours of the Probability Individ-
ual Strata, Back Bay Profile B (mod.).
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Figure 6.10 - Continued.
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Figure 6.11 - Probabilistic Profile of P(i) 2 0.1 for Profile B (mod.),
Back Bay.
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(a) Trial Data 1, (b) Trial Data 2,

P000D0000000000060609

‘ooooooooooooooooooo#

(c¢) Trial Data 3, (d) Trial Data 4.
o Initial P(l) = 0, P(2) = 1
® Initial P(1) = 1, P(2) = O

At all other nodes P(l) = P(2) = 0.50

All data arrays are 21 X 21 grids.

Figure 6.14 - Initial Trial Data Arrays.
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Figure 6.15 - Trial Compatibility Matrices.
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(b) Compatibility Matrix II (5 (1) and 10 (r) iterationms),

Figure 6.16 - Contours of P(l) in Increments of 0.005 from 0.50001 to 1.0
for Probabilistic Relaxation of Trial Data 1.
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(d) Compatibility Matrix IV (5 (1) and 10 (r) iterations),

Figure 6.16 - Continued.
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(b) Compatibility Matrix II (5 (1) and 10 (r) iterations),

Figure 6.17 - Contours of P(l) in Increments of 0.005 from 0.50001 to 1.0
for Probabilistic Relaxation of Trial Data 2.
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(c) Compatibility Matrix III (5 (1) and 10 (r) iteratioms),
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(d) Compatibility Matrix IV (5 (1) and 10 (r) iteratioms),

Figure 6.17 - Continued.
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(b) Compatibility Matrix II (5 (1) and 10 (r) iterationms),

Figure 6.18 - Contours of P(l) in Increments of 0.005 from 0.50001 to 1.0
for Probabilistic Relaxation of Trial Data 3.
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(c) Compatibility Matrix III
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(d) Compatibility Matrix IV (5 (1) and 10 (r) iterations),

Figure 6.18 - Continued.
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(b) Compatibility Matrix II (5 (1) and 10 (x) iterations),

Figure 6.19 - Contours of P(l) in Increments of 0.005 from 0.50001 to 1.0
for Probabilistic Relaxation of Trial Data 4.
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(d) Compatibility Matrix IV (5 (1) and 10 (r) iterationms),

Figure 6.19 - Continued.
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Figure 6.20 - Summary of Probabilistic Relaxation Results for Contrived
Map A.
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Figure 6.21 - Summary of Probabilistic Relaxation Results for Contrived
Map C.
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Figure 6.22 - Map 2 (Geology of the Bridgewater Quadrangle, MA USGS Map
GQ-127; Lee, 1982).
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Figure 6.23 - Map 3 (Pre-Quaternary Geology of the Brown’s Mill Quad-
rangle, NJ, USGS Map GQ-264; Lee, 1982).
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Figure 6.24 - Comparison of Probabilistic Mapping Methods for Map 2.
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Figure 6.25 - Comparison of Probabilistic Mapping Methods for Map 3.
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Figure 6.26 - Three Dimensional Cell Arrangement.
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Figure 6.27 - Acceptable Strike/Dip Conditions for 26 Neighboring Cells
with Soil Type J above Soil Type K.
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Figure 6.28 - Typical Equal Area Net Plot of Dip Vectors for Delaunay
Triangles (Top of Organic Soils, Back Bay).

232



P(penetrating soll type J) =
P(observed stratum thickness <ty qr)

o=
B
,”’
eriticad -
"
-
”'
J ”” . -

— g . Yoo, ™ @verage dip angle of observed
strata interface triangles in
appropriate strike range

P(x) A

—
tcrmw Observed Stratum Thickness

Figure 6.29 - Definition of Critical Thickness for Stratum Thickness Con-
siderations.
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Figure 6.31 - Ratio of Soil Type Cells for Various Compatibility Matrix
Truncation Values, Two Dimensional Analysis After 100 Iter-
ations, Profile 5, Back Bay.
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Figure 6.32 - Mis-Classification Error Summary for Various Compatibilit
Matrix Truncation Values, Two Dimensional Analysis After 20
and 100 Iterations, Profile 5, Back Bay.
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Figure 6.33 - Mis-Classification Error Summary for Various Compatibility
' Matrix Truncation Values, Three Dimensional Analysis After
20 and 100 Iterations, Profile 5, Back Bay.
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Figure 6.34 - Average Entropy as Percentage of Initial Entropy versus
Number of Iterations, Probsbilistic Relaxation of Profile

5, Back Bay.
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Truncation Values, Two and Three Dimensional Analysis After
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CHAPTER 7

7.1 Surface Modeling

Existing surface modeling algorithms were reviewed with respect to their
applicability to soil profiling. Selected analytical techniques were
applied to a case history data set for a single surface to assess their
comparative performance. Also included in the comparison were nine hand
drawn contour nlans. The results of the comparison indicated that the
kriging method (using generalized covariances) produced the surface model
with the lowest mean residual; however, the hand drawn contours had only

slightly higher mean residuals.

Single surface modeling techniques, including kriging, trend surface
analysis, Delaunay triangulation, and a computerized version of current
hand techniques, were applied to case history data. The results demon-
strated that multiple surface models, using combinations of single sur-
face models, exhibit unacceptable results with respect to strata overlap

and continuous models of discontinuous strata.

7.2 Profiling

Probability-based mapping techniques were reviewed and assessed with
respect to their applicability to soil profiling. The methods reviewed
were the Switzer model (nearest neighbor) and published variations, which
are two color techniques based on assumptions including map isotropy.

The Switzer model and known variations were considered unsuitable for

soil profiling due to, among other things, the isotropy limitations.

Clustering and regional merging techniques were applied as soil data pre-
processing methods using visual description information. Both techniques
were applied separately and the results were compared to hand drawn
profiles. A combination of the methods, merging samples within single

test borings and then clustering the resulting regions, demonstrated that
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soil profiles, including determination of design soil properties, could

be developed efficiently and that the results were comparable to hand

drawn profiles.

Probabilistic profiles were developed treating the single surface models
as random variables and assuming the geologic sequence is known. It has
been demonstrated that probabilistic profiles, illustrating the level of
uncertainty in the profiling, can be developed based on kriging analysis
of the individual strata interface. Since the kriging models are contin-
uous, the probabilistic profiles may result in continuous models of dis-
continuous strata depending on the strata thicknesses and other factors.
In case history applications, the probabilistic profiles also exhibited

localized strata overlap.

Probabilistic relaxation methods were applied to the probabilistic pro-
files to resolve the strata overlap and discontinuity issues. The appli-
cation of probabilistic relaxation methods significantly improved the
probabilistic profiles, including removal of strata overlap and
transforming continuous models of selected strata into discontinuous mod-

els.

The surface modeling and profiling methods were applied to two case his-
tory data sets. The results demonstrate improvements in surface modeling
and profiling methods including development of computerized profiles
incorporating the available information, probability-based methods modi-

fied for the purpose, and alsc, subjective engineering input.
7.3 Future Research

This research has established fundamental approaches to the development

of a framework for incorporating available information, subjective engi-
neering input, and probability-based analytical methods into the geomet-
ric modeling of soil stratigraphy. The results of the research are very

encouraging; however, there are opportunities for future research.
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Specifically, future research should extend the methods presented here by
incorporating geologic knowledge (regional geology, geomorphology, etc.)
into the definition of the compatibility matrix used for probabilistic
relaxation. Incorporation of geologic knowledge into site characteriza-
tion has always been a difficult and highly subjective process. However,
the probabilistic relaxation methods developed and applied in this

research provide a framework for the incorporation of this knowledge.

Future research should also include relaxing the assumptions of the geo-
logic sequence used here, such that modifications of the same methods can
be applied to sites with more variable geologic sequences. This research
has demonstrated the applicability of the methods to soil profiling on
selected sites (i.e., those with reasonably consistent geologic
sequence). Future research should broaden the applicability of the meth-

ods through relaxation of the assumptions.
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APPENDIX A
BACK BAY CASE HISTORY

A.1 Introduction

Over a hundred years ago a tidal estuary in Boston was filled by man to
create additional land for development. This area, locally known as Back
Bay;is shown in Figure A.1. A detailed account of the development of
Back Bay and the subsurface soil conditions was presented by Aldrich
(1970).

The Back Bay area covers an area of approximately 600 acres which have
been used for development since the sarly 1800’s. Today some of the
tallest, as well as the oldest, bujldings in Boston are located within
the Back Bay area. The Back Bay area has been a very active development
area since the early 1950's. Many of the building sites have been occu-

pied by several structures through time.

For the purposes of this research, a portion of the Back Bay area was
selected as a case history site due to the relative wealth of test boring
data available. Figure A.l1 shows the area of Boston known as the Back
Bay and the general area of the portion chosen for the following case

history.
A.2 Subsurface Conditions

The geclogy and subsurface soil conditions of the Back Bay area are well
documented by Aldrich (1970). A very brief summary of the rock and sub-

surface soil conditions, as reported by Aldrich, follows.

The upper bedrock in the Back Bay area is the Cambridge Slate which
belongs to the Boston Bay Group. Although the Cambridge Slate is slaty
in places, the slaty cleavage is locally absent. As a result the rock is

locally called "argillite".
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Glacial till was deposited by the overlying glaciers which covered the
bedrock during the Pleistocene. Locally the thickness of glacial till
varies from a couple of feet to more than a 100 feet in the general
Boston area, and about 30 feet in the Back Bay. The glacial till is an
unsorted mixture of cobbles and boulders grading to silt and clay, which

is very dense in place.

—_—
—_—

A stratum of sand and gravel overlies the glacial till throughout much of

the Back Bay. This stratum is believed to be glacial outwash deposits.

Clay, locally known as Boston Blue Clay (BBC), overlies the outwash
deposits. BBC is a medium plasticity silty clay deposited in a quiet
marine environment in the general Boston area. In the Back Bay area the
thickness of BBC typically ranges from 50 to 125 ft. with maximum
observed thickness of 180 ft. Locally BBC may contain sand lenses and
occasional boulders. Although the original surface of the BBC was prob-
ably relatively flat, changes in the sea level resulted in weathering and

erosion which altered the surface of the deposit.

In parts of the Back Bay area BBC is overlain by sand and gravel outwash
deposits which were deposited by readvancing glaciers. The outwash
deposits are not continuocus across the Back Bay area. Generally, the
deposits exist in the northwest portion with increasing thickness toward

the west, and are absent in the eastern portion of the Back Bay area.

Foilowing the glaciers, organic soils (fresh water peat, organic silts
and salt marsh peat) were deposited across the Back Bay region. The

observed thickness of the organic soils is from 5 to 25 ft.

The surficial soil deposit in the Back Bay is the fill placed by colo-
nists for the general purpose of developing the land. The fill is highly

variable in composition and density.
A.3 Fileld Investigations
Test boring logs for borings performed in the case history area were

obtained from various sources. The test boring logs were often prepared
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by drilling contractors, and the visual descriptions of the subsurface
soils varied considerably. The logs were reviewed for general consis-
tency and perceived quality of information. Test boring logs which were

judged to be of questionable quality were deleted from the study.

The locations of the selected test borings (see Figure A.2) were obtained
as accﬁfately as possible. Although some of the test boring locations
were given in state plane coordinates, many of the coordinates were

determined by scaling fcom available test boring location plans.
A.4 Summary Statistics

The soil strata information from the case history test borings was ana-
lyzed to determine summary statistics. The summary statistics were cal-
culated for the observed top of the soil strata and the observed
thickness of the soil deposits. The results for the observed strata tops

and thicknesses are given in Tables A.l and A.2, respectively.

The summary statistics for the observed top of the soil strata indicate a
greater level of uncertainty in the top of the glacial till and rock
compared to the other strata. This is primarily reflected by the stan-
dard deviations which are four to five times larger for the glacial till

and rock surfaces than for the other soil interfaces.

Based on the standard deviation statistics, it appears that the thickness
of the Boston Blue Clay is most irregular. However, the coefficient of
variation statistics indicate that the marine sand thickness is most

variable followed by the glacial till thickness.

In addition to the summary statistics for the observed strata tops and
thicknesses, which are non-spatial, a correlation matrix (see Table A.3)

was developed to assess general relationships.

The correlation coefficient analysis indicates generally weak relation-
ships with two exceptlons. First, the correlation between the east coor-
dinate and the top of the marine sand (-0.95) indicates that there is a

strong relationship. The surface of the marine sand apparently slopes
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generally downward in an easterly direction. The other apparently strong
relationship is the top of the glacial till and the top of the rock,
where the correlation coefficient is 0.97. This is a very strong rela-

tionship, indicating that the two surfaces are generally conformable.

The ratio of the coordinates was included in the correlation coefficient
analysis in order to assess general trends in directions other than the
four principal directions (north, south, east and west). The correlation
coefficients for several of the strata tops, particularly the glacial
till and rock, were higher for the ratio. This indicates that the gen-
eral trend of the surfaces is closer to one of the minor directions
(northeast, southeast, southwest or northwest) than one of the principal

directions.
A.5 Transition Matrix

Using the test boring data, a transition matrix was developed based on an
embedded Markov chain approach (Davis, 1986). With an embedded Markov
chain, the transition must be between two states (transitions within the
same state are not permitted). The calculated transition matrix is pres-

ented In Table A.4.

The results of the transition matrix indicate that the stratigraphy in
the Back Bay case history is very consistent with respect to state trans-
itions. The maximum transition probability is greater than 0.94 for all
transitions with the exception of the organic soils to either marine sand
or BBC. The marine sand is the only significant discontinuous stratum.
Technically the glacial till is discontinuous, altihough the low trans-
ition probability (0.06) may be partially attribuced to the possibility
that the glacial till was thin in those locations and either not sampled

or observed.

The consistency of the stratigraphy was one factor for selecting the Back
Bay case history. The continuous stratigraphy is advantageous for the
application of mathematical stratigraphic modeling discussed in Chapters
5 and 6.
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A.6 Trend Surface Analysis

The soil stratigraephy data for the 157 test borings in the Back Bay case
history were analyzed to fit first through fourth degree polynomial sur-
faces to the data using least squares regression techniques and the com-
puter programs TRENDS, JRTRENDS, and LSMODEL developed as part of this

research.

TRENDS is a computer program which calculates first through fourth order
least squares polynomial trend surfaces given irregularly spaced data in
the form of x, y, z. TRENDS calculates regression coefficients, esti-
mated values and residuals at the data points, and summary statistics
(sum of squares and mean square errors for the regression, deviation and

total, and the R2 goodness of fit coefficient).

JRTRENDS is a modified version of the program TRENDS. JRTRENDS uses the
process of jackknifing to sequentially remove a single data point, per-
form first through fourth degree polynomial regression, and estimate the
surface value at the deleted data point. The actual observed value and
the regression estimate at the deleted data point are used to calculate a
"residual™ which is stored in an array. JRTRENDS continues until each of
the data points has been removed separately, storing critical summary

statistics and the "residual"” values in arrays.

LSMODEL is a program developed to use irregularly spaced data in the form
X, ¥y, z to develop a least squares regression model of the surface within
a specified rectangular area. The program input includes the degree of
the polynomial surface to be fit, and data to specify the limits of the
rectangle of interest. The program can accommodate axis rotation and
translation for the specified triangle. LSMODEL estimates the regression
surface values for a specified regular grid in the rectangle. The pro-
gram substitutes each observed data point for the estimated surface value
at the nearest grid node. If there are multiple substitutions at a given

grid node, the final value is the observed value for the closest data
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point. LSMODEL can be used for the preparation of trend surface models,
discussed below, or for the development of regularly spaced data to be

used as input into plotting programs.

The program TRENDS was used to evaluate the case history test boring data
concerning the observed tops of the soil strata and the thickness of the
deposits. The results of the analysis using TRENDS are summarized in

Tables A.5 through A.14, which are discussed separately below.

Using the programs TRENDS and LSMODEL, trend surface analyses were per-
formed using the data from the Back Bay case history test borings. Poly-
nomials of first through fourth degree were fit to the strata top and

thickness data.

The goodness-of-fit coefficient is often used as a means of evaluating
the "success" of an attempt to model a surface using least squares
regression techniques. The goodness-of-fit coefficients for the observed
strata tops data (shown in Table A.5) range from 0.03 tc 0.9. Relatively
high values (0.3 to 0.9 depending on the degree of the polynomial) were
obtained for the strata top regression for the marine sands, glacial till
and rock. Moderate values (0.03 to 0.4) were obtained for the top of the

organic soils and BBC.

In addition to the goodness-of-fit coefficients, the results of the trend
surface analysis were evaluated using the mean squares for the regres-
slons and deviations. The mean square of the deviation is essentially
the variance about the regression line. The mean square of the
regression is the variance of the line about its mean. The mean squares
for the first through fourth order trend surfaces are summarized in Tab-

les A.7 through A.10.

Using mean squares as estimates of the variance, it is possible to com-
pare the variances using the F distribution. Typically for trend sur-
faces, the ratio of the variance due to the regression (mean squares of

the regression) to the variance due to deviation (mean squares of the
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deviation) is used. If the regression is significant, the deviation
about the regression will be small compared to the variance of the

regression.

The F test is used to compare the varlances, and to probabilistically
answer whether or not the regression effect is significantly different
from a random sample from the same population. It is possible to perform
significance tests for both the order of a polynomial and the increase in
the order of the polynomial. The results of the significance testing for
the trend surface analysis of the observed strata tops and thicknesses

are summarized in Tables A.ll through A.l4.

Most of the trend surface polynomial orders were significant with alpha
of 0.05 with the exception of the first and second order polynomials for
the top of the organic soils, and the first through fourth order polymo-
mials for the thickness of the glacial till. It is interesting to note
that the goodness-of-fit coefficients for these cases were all less than

0.21, and in most cases were less than 0.05.

The significance tests for the increase in the order of the trend surface
polynomials were less consistent than those for the order of the polymo-
mials. The increase in order for the polynomials of the thickness of
glacial till were all not significant. Each of the other regressions,
except for those of the BBC (tops and thickness) and marine sand (thick-

ness), were also not significant with one increase or another.

The trend surface analysis included an analysis of the leverages of the
data points for each of the surface models. Partial results of this
analysis are shown in Table A.15. As indicated in the table, typically
10% or more of the data points were in regions where the final leverages
exceeded the recommended limit of 2p/n, where p is the number of explana-
tory terms in the medel and n is the number of data points (Unwin and

Wrigley, 1987).
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A typical plot of the leverages (see Figure 5.2) shows the leverages for
the fourth order trend surface model of the top of rock. Similar plots

were prepared for trend surface models of first through fourth order for
each soil surface. In each case, the points around the perimeter of the

case history area had leverage values exceeding the recommended limit of

2p/n.

Unwin and Wrigley (1987) discuss the effects of the distribution of data
points on trend surface models. Their discussion includes references
regarding the detrimental edge effects and the effects of spatial clus-
tefing. Davis (1973) and others recommend that the area of data collec-
tion should be extended beyond the subject area in order to partially
overcome the negative edge effects. This practice is not usually easily
accomplished in geotechnical engineering studies, due to the need for
access to adjacent properties, perceived unnecessary increase in explora-
tion costs, etc. Unwin and Wrigley (1987) also recommend leverage analy-
sis as a means of evaluating the need and location for additional

exploration.

The application of leverage analysis to trend surface modeling is inter-
esting on an academic level; however, it should be remembered that the
trend surface models do not satisfy the basic objectives of soil

interface surface modeling (see Chapter 5).

Jackknifed trend surface models for the observed strata tops were devel-
oped for polynomials of order one through four. Summary statistics of

the results are presented in Table A.16.

The mean residual values are close to zero and the higher mean residual
values occur with the glacial till and rock as expected. However, the
magnitude of the standard deviations and the rages of the residuals are
high. The standard deviations are higher than the summary statistics,
which are non-spatial, for the organic soils, marine sand and BBC. The

standard deviations are slightly lower than the summary statistics for
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the glacial till and rock. In summary, the jackknifed residuals indicate
the relatively poor performance of the trend surface models as interpola-

tors.
A.7 Delaunay Triangulation Analysis

The available case history data for the observed top and thickness of the
strata was analyzed using Delaunay triangulation. The analysis consisted
of jackknifing the data by sequentially deleting a single observation and
then estimating the surface elevation or thickness at that location and
comparing it with the observation. The results for the Back Bay data are
summarized in Tables A.17 and A.18.

The summary statistics for the jackknifed Delaunay triangulation analysis
appear to be more satisfactory than those for the jackknifed trend sur-
face analysis. It should be remembered, however, that the Delaunay
triangulation method can not estimate values for those points on the
exterior convex hull. Therefore, the statistics can not be directly com-

pared with those in Table A.1l6.

The results of the jackknifed Delaunay triangulation analysis indicate
mean residuals close to zero, and standard deviations that are close to
or less than those of the non-spatial summary statistics. In the case of
the glacial till and rock, the standard deviations are approximately half
of those for the non-spatial summary statistics. The ranges of the
residuals are less for the jackknifed Delaunay triangulation than for the
trend surface analysis. This may be due in part to the local nature of
the Delaunay triangulation compared to the global nature of trend surface
analysis where every data point influences the polynomial coefficients to

some extent.

The results of the jackknifed Delaunay triangulation analysis of strata
thickness are similar to those for the strata tops. In general, the
performance appears to be better than that for the jackknifed trend sur-

face analysis.
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A.8 Kriging Analysis

Kriging analysis was performed on the Back Bay case history data to
assess the performance of kriging as an interpolation method. The analy-
sis was based on the use of a modified version of AKRIP by Kafritsas and
Bras (1981). Partial results for the analysis are presented below

following a brief discussion of the analysis methodology.

As discussed in Chapter 3, Matheron (1973) and Delfiner (1976) express
the most common form of the generalized covariances as polynomials of the

general form:

Equation A.1l:
K - .
C(h)=b,+ ) (1) Vb, +1|n|*"D

i=0

The coefficients of the common form of the generalized covariance func-
tion are controlled such that C(h) is conditionally positive definite.

The conditions for the common values of K (0 to 2) are as follows:

K=0
C(h)=b,-b,|h|
4,20, b,20
K=1
C(h)=b,-b,|h|+b,|r|
b,20, 5,20, b,20
K=2

C(h)=b,-b,|h|+b,|R|°-b,|R|°

b,20, 5,20, by20, b,2-2(b,by)
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The Back Bay case history data for the observed top of soil strata and
observed thickness of soil strata was analyzed using kriging. The analy-
sis was performed using a modified version of AKRIP called KRM (KRiging
Model). The modified code removed much of the user interaction, and
finds the best generalized covariance model automatically. The only
technical change in the code is that the "pure nugget" effect structural
model is precluded. This change was made in order to develop a model
which can always estimate the variance of the estimate. The structural
model coefficients from the analysis using KRM are summarized in Tables

A.19 and A.20.

The structural models from the kriging analysis were all zero order
intrinsic functions with the exception of the model of the glacial till
thickness which was first order. Most of the zero order models did not
have a nugget coefficient (by). The two exceptions were the models of
the top of the marine sand and BBC. These models may have a nugget
coefficient, since both surface appear to be reasonably planar when com-

pared to the other surfaces.

Examples of the surface estimates and the estimated variance about those
surfaces for the Back Bay strata tops are shown in Figures 5.5 through

5.9.

The kriging analysis of the observed strata top data included jackknifing
and calculation of summary statistics for the residuals and the standard-

ized residuals. The results are shown in Tables A.21 and A.22,

The standard deviations of the standardized residuals indicate that the
predictive performance of the jackknifed kriging analyses was fairly sim-
ilar. The higher values f- - the organic soils, glacial till and rock
indicate that there was a broader range and higher uncertainty level in
the predictions for these surfaces. The magnitude of the ranges seems
high, indicating that at least in isolated cases even the kriging inter-

polator does not perform as well as hoped.
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A.9 Comparison of Interpolation Methods

In a general sense, it is possible to compare the performance of the
interpolation methods by comparing the mean and standard deviation of the
jackknifed residuals. The ideal interpolator would have a mean and stan-

dard deviation of zero.

Figure A.3 is a plot of the residual means and standard deviaticns of the
jackknifed analysis using fourth order trend surface, Delaunay triangula-
tion and kriging methods. Figure A.3 demonstrates the relative perform-
ances of the jackknifed interpolation methods on the various soil
interfaces. The performance of all the methods was better for the
organic soils, marine sand and BBC than for the glacial till and the
rock. Based on the mean and standard deviation of the residual, the
performance of the kriging method was typically better than that of the

trend surface and Delaunay triangulation methods.

A.10 Other Analyses

As discussed in Section 5.3.3, a sub-set of the top of rock data (40
pts.) was hand contoured by nine individuals in order to compare hand
methods of surface modeling to analytical methods. The resulting contour

plans are shown in Figure A.4.

The Back Bay case history data were analyzed using the methods described
in Chapter 6 for probabilistic profiles, stratigraphic models and proba-
bilistic relaxation. The significant results of these analyses are pres-

ented in Chapter 6.
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Table A.l1 - Summary Statistics for the Strata Tops, Back Bay.

No;_bf OSQ.,_n .

Mean,
_‘(El.) »

! Stand.
| (ft.)

[ Median, (s1) |
Range, (ft.)

Coef. of Varia- |
tion

Dév.;

Table A.2 - Summary

.' Ofg&hic j.'Héfihe B
{ Soils § Sand §
: 156 I 37. . .

Blue

Boston

Clay

-9.03

-23.88

-29.31

-97.95

§  Till | .
B T B

-106.10

3.72

5.18

4.05

16.80

18.22

-8.65 -25.7 -29.5 -94.6 -100.7
20.65 21.85 21.00 £0.25 74.70
0.217 0.138 0.171 0.171 I

indicates statistics for non-zero data)

Fill ' Organiér Mafiné ?
| Soils Sand

Statistics for Strata Thickness, Back Bay. ({ ]
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No. of Obs., n| 156 156 156 77 |
| ] [38] [72]
| Mean, § 19.45 18.65 1.70 68.66 7.27
A [6.99] [7.78] |
Stand. Dev., [ 7.62 4.72 4.07 16.33 4.60
| (fe.) [5.63] [4.32)
( Median, (ft.) 19.0 18.9 0.0 65.0 7.0 |
- : [5.90] [7.0]
{ Range, (ft.) I 32.0 27.0 21.5 76.0 19.0
: er— : [20.5] [18.5]
[ Coef. of Vari- 0.253 2.394 0.238 0.633
| ation i | [0.805] [0.555] {



Table A.3 - Correlation Coefficient Matrix, Back Bay.

E. N. ECooxdll Top of §Top offTop of} Top of §Top of
Coord. §Coord. |NCoordjOrganicjMarine§} BBC [Glacialf Rock
Soils J Sands Till
E. Coord. 1.00 0.57 0.19 -0.45 | -0.95§ -0.13 0.25 0.32
N. Coord. 0.57 1.00 | -0.70} -0.14 | -0.48 | -0.62 | -0.43 | -0.34
E. GCooxrd. 0.19 | -0.70}| 1.00 -0.22 | -0.25 | 0.63 0.73 0.69
N. Coord.
Top of -0.45] -0.14 | -0.22 1.00 0.65 0.12 -0.41 | -0.49
Organic
Soils
Top of -0.95] -0.48 ]| -0.25 0.65 1.00 0.09 -0.34 | -0.42
Marine Sands
Top of -0.13] -0.62 | 0.63 0.12 0.09 1.00 0.14 0.15
BBC
Top of Gla- 0.25 | -0.431] 0.73 -0.41 | -0.34 | 0.14 1.00 0.97
cial Till
Top of 0.32 | -0.34] 0.89 -0.49 | -0.42 ] 0.15 0.97 1.00
Rock
T T S T Tt
Table A.4 - Strata Change Transition Matrix, Back Bay.
From\To Fill Organic || Marine BBC Glacial Rock
Soils Sand Tiil
Fill 0 1.00 0 0 0 0
Organic Soils 0 0 0.23 0.77 0 0
Marine Sand 0 0 0 1.00 0 0
BBC 0 0 0 0 0.94 0.06
Glacial Till 0 0 0 0 0 1.00
Rock 0 0 0 c 0 0
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Table A.5 - Trend Surface Goodness-of-Fit Values, Strata Tops, Back Bay.

Of&ef 6f Polynomiai
2 3

‘Ofgﬁnid‘éoils

lHarine Sands

yBoston Blue Clay
1Glacial Till
Rock .

Table A.6 - Trend Surface Goodness-of-Fit Values, Strata Thickness, Back
Bay.

Order of Polynomial I
1 2 3 4
Fill 0.1203 0.1430 0.2847 0.4428 ﬂ
Organic Soils 0.1002 0.2597 0.2895 0.3064 |
Marine Sands | 0.2927 0.5402 0.6521 0.6937 |
Boston Blue Clay 0.2811 0.6957 0.7349 0.8401
Glacial Till 0.0329 0.0670 0.1283 0.2052
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Table A.7 - Summary of Mean Squares of Regression for Trend Surface Anal-
ysis, Strata Tops, Back Bay.

I Order of Polynomial |

1

2

3

Organic Soils 29.38 20.28 55.09 43.47
Marine Sands § 300.34 143.13 83.41 60. 24
Boston Blue Clay 188.79 133.14 91.21 72.57
Glacial Till I 3590.41 | 3070.19 | 1770.46 | 1330.46
Rock | 4226.69 | 3260.29 | 1897.64 | 1402.38

Table A.8 - Summary of Mean Squares of Regression for Trend Surface Anal-
ysis, Strata Thickness, Back Bay.

I Order of Polynomial

I 1 2 3 4

Fill 542,09 257.61 284.96 288.14
Organic Soils 173.35 179.74 111.31 75.71
Marine Sands 377.11 278.42 186.73 127.69
Boston Blue Clay 3000.13 2970.34 1743.28 1280.98
Glacial Till 26.43 21.55 22,93 - 23.57
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Table A.9 - Summary of Mean Squares of Deviation for Trend Surface Analy-
sis, Strata Tops, Back Bay.

Order of Polynomial

1 2 3 4
Organic Soils 13.67 13.66 11.33 10.93
Marine Sands 10.69 8.02 7.91 5.49
Boston Blue Clay [ 14.17 12.54 11.83 10.87
Glacial Till 191.53 83.02 79.22 41.58
Rock 202.92 93.23 86.71 49.50

Table A.10 - Summary of Mean Squares of Deviation for Trend Surface Anal-
ysis, Strata Thickness, Back Bay.

r....— Order of Polynomial !
: 2 3 4 i
51.47 44,14 35.28 E
{organic Soils 17.07 16. 84 17.02 |
IMarine Sands 11.91 7.90 6.14 5.60
f Boston Blue Clay 196.77 86.62 79.70 51.73
Glacial Till 21.02 21.14 20.93 20.62
| acla e me— s o
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Table A.11] - Summary of Test of Significance (Alpha = 0.05) of Regression
of Trend Surface Analysis, Strata Tops, Back Bay. (NS = not
significant, S = significant)

Order of Polynomial
2

Organic Soils NS NS
IHarine Saads

Boston Blue Clay
IGlacial Till

Rock

|

mmmmmlu

njnjinjnnjngH

tjnjwvnln
nniwminiwn

Table A.12 - Summary of Test of Significance (Alpha = 0.05) of Regression
for Trend Surface Analysis, Strata Thickness, Back Bay. (NS
= not significant, S = significant)

Fill
Organic Soils

Marine Sands

Boston Blue Clay
Glacial Till
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Table A.13 - Summary of Test of Significance (Alpha = 0.05) of Increase
in Order of Regression for Trend Surfece Analysis, Strata
Tops, Back Bay. (NS = not significant, S = significant)

| Ihcfeaééﬂin‘Or&ef 6f'folynomia1 H

- | | 3tos |
fOrgaﬁic Soils | B NS “
iMarine Sands S NS S |
{ Boston Blue Clay S S S T
{Glacial Till ] S '
S S ‘

Table A.14 - Summary of Test Of Significance (Alpha = 0.05) of Increase
in Order of Regression for Trend Surface Analysis, Strata
Thickness, Back Bay. (NS = not significant, S = significant)

I Increase in Order of Polynomial

1l to 2 2 to 3 3 to 4

NS S S

NS NS

S S S

S S
NS NS i

IFill
|0rganic Soils

[”>]

iMarine Sands
Boston Blue Clay
iGlacial Till
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Table A.15 - Summary of Leverages (Percentage of Points Exceeding 2p/n)
of Regression for Trend Surface Analysis, Strata Tops, Back

Bay.
s .Oraef of Polyndﬁiai T “;
1 |2 3 | 4]

Otgénic”Soils J ‘ 12.2% 12.2§

[Marine Sands i 8.1% 8.13
|Boston Blue Clay : 12.7% 12.7%
§Glacial Till : 14.5% 14.5% |
Rock - | 7 13.0% _13.0%
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Table A.16 - Summary of Jackknifed Trend Surface Residuals, Strata Tops,

Back Bay.
1 o | ' ” Max Min Ran
] Stratum § (ft) (ft) (ft

1al -
forganic 1 9.82 | -11.48
2 10.00 | -11.03 | 21.04
3 10.34 -9.32 19.67
4 10.96 .9.82 | 20.79
1 8.80 -5.60 14.40 |
2 8.49 -3.78 | 12.27
3 15.33 ~4.35 19.68
4 27.44 -9.92 37.37
1 9.11 -10.25 | 19.37
2 10.20 | -10.76 | 20.96
3 8.15 -10.63 | 18.78
4 8.76 -10.36 | 19.12
1 26.01 | -32.45 | 58.46
2 41.79 | -22.22 | 64.01
3 85.84 | -24.23 | 110.29
4 19.98 | -112.53 | 131.51
1 27.57 | -37.16 | 64.73
2 28.98 | -32.69 | 61.67
3 32.07 | -30.48 | 62.55
4 ~.1252 | 7.51 | 18.57 | -26.37 | 44.94
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Table A.17 - Summary Statistics for Jackknifed Residuals for Delaunay
Triangulation Analysis, Strata Tops, Back Bay.

‘fNo.'of'>ﬁéan; [ Sfﬁﬁd;T.Rdnge.”_-Miﬂ; :% Hai:m:
| Pts., | (ft) | Dev. | (ft) ¥ (ft) [ (fr) |
Organic Soils § 141 | -0.04 | 4.18 | 25.27 | -12.25] 13.02 §

Cam—
I35 |
IGlacial Till

Strdtum

Ta' A.18 - Summary Statistics for Jackknifed Residuals for Delaunay
Triangulation Analysis, Strata Thickness, Back Bay.

Stratum No. ofj Mean, Stand. | Range, Min. Max.
Pts., (ft) Dev. (ft) (ft) (fv)

n (ft)
Fill 141 -0.04 5.94 38.81 | -20.82 | 17.98

Organic Soils 141 0.05 4.45 26.59 | -13.09 | 13.50
Marine Sands 141 -0.10 2.15 14.81 -7.03 7.78
BBC 72 -0.20 8.70 49,91 | -30.88 | 19.03

Glacial Till 68 0.21 4.86 24.21 | -11.12 | 13.09 !
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Table A.19 - Summary of Kriging Coefficients, Strata Tops, Back Bay.

Stratum K b b, b b
Organic Soils 0 0 -.1944 - -
Marine Sands 0 4.2213 -.0105 - -
BBC 0 2.4706 -.1311 - -
Glacial Till 0 0 -.4812 - -
Rock 0 0 -.5774 - -

Table A.20 - Summary of Kriging Coefficients, Strata Thickness, Back Bay.

Statum K b, b, Jg b,
0 0 -.4032 - -
0 0 - . 2480 - -
' 0 0 -.0810 - -
[BBC_ j o 0 -.6175 - -
[clacial T111 | 1 | 11.838 0 5.4E-06 - |
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Table A.21 - Summsrg Statistics for Residuals of Jackknifed Kriging Anal-
trata Tops, Back Bay.

Héan, i
(£t) |

ysis,

Or anic Soils

156

Stratum No of:
Pts .

0.04

Stand.

Dev.

4.02

24.95

| (f6)' | (£v) | (fo)

-12.26

12.69 §

37

.Marine Sands

[Bc | 157
[Glacial Ti11 | 76

Table A.22 - Summary Statistics for Standardized Residuals of Jackknifed
Kriging Analysis, Strata Tops,

Stratum Mean, Stand Range,
(ft) Dev (ft)

Back Bay.

275

Or anic Soils 0. 01 1 42 12 16
. 37 0.05 1.07 | 4.82 | -1.65 | 3.18
(550 | 157 | 000 [ 1.03 [ 671 [ -3.25 | 3.45
0.03 | 1.17 | 7.95 [ -4.41 ] 3.55 |
[Rock | 0.00 | 1.33 [ 10.65 [ -6.61 [ 4.04



Case History Area

1970).

The Back Bay Area of Boston (after Aldrich

Figure A.1 -
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NORTH COORDINATE (x 103 f1)

Figure A.2 - Locations of Case History Test Borings (157), Back Bay.
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Figure A.3 - Comparison of Jackkrifed Residual Means and Standard Devi-
ations, Strata Tops, Back Bay.
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Figure A.4 - Hand Drawn Contours of Top of Rock (40 pts.), Back Bay: (a)
Individual #1,
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Figure A.4 - Continued. (b) Individual #2,
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Figure A.4 - Continued. (c) Individual #3,
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Figure A.4 - Continued. (e) Individual #5,
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Figure A.4 - Continued. (f) Iandividual #6,
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Figure A.4 - Continued. (g) Individual #7,
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Figure 4.4 . Continueqd.

(h) Individuaj #8,
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Figure a.4 . Continued, (i) Individual #9.
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APPENDIX B
CAMEBRIDGE CENTER CASE HISTORY

B.1 Introduction

The Cambridge Center site is a 14 acre site located in the Kendall Square
area of Cambridge, Massachusetts (see Figure B.1l). The case history area
is indicated in Figure B.1. Available subsurface data has been summa-

rized and is presented in summary form in the following sections.

The elevations indicated are referenced to the Cambridge City Base Datum,
wherein E1. 0 is 10.84 feet below the National Geodetic Vertical Datum

(NGVD) .
B.2 Subsurface Conditions

The subsurface conditions as indicated by the field explorations consist
of seven discernible strata described as follows (starting from the exis-

ting bedrock):

Bedrock: The bedrock underlying the site is locally known as Cambridge
Argillite. This is the same rock that underlies the Back Bay area. The
upper surface of the rock is extremely weathered in some locations. The

top of rock was observed at elevations ranging from El. -45 to El. -86.

Glacial Deposits: Strata of glacial till and glacial outwash overlie the
bedrock. These strata are not continuous and in some locations are
interbedded. The observed strata range in thickness from 3 to 56 feet.
Although highly variable in composition, the deposits are typically gray

medium to fine sand, silty fine sand, or cobbles and boulders.

Marine Deposits: A stratum of marine clay overlies the glacial deposits.

The marine deposits can be sub-divided into three sub-strata. The major
sub-strata is the gray silty clay deposit known as the Boston Blue Clay
(BBC). In some locations the BBC is overlain by stiff to very stiff,
yellow silty clay, which is actually BBC which has dried out to an extent

and oxidized during periods of lower groundwater levels. A sub-stratum
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of sandy clay or clayey sand may be encountered below the BBC and above
the glacial deposits. The observed total thickness of the marine depos-

its ranged from 24 to 50 feet.

Sand: A continuous layer of sand deposits is found over the marine depos-
its. In very localized areas the continuity of the sand has been dis-
rupted by erosion in the estuarial environment of the harbor or possibly

by excavation to construct the canals which were built in this area.

Organic Sjlt: A discontinuous stratum of organic silt was encountered in
many of the test borings. The maximum observed thickness was 8.5 feet.
In several of the test borings it appeared that there had been some

intermixing of the organic silt and the underlying sand.

Fill: The historical development of the Boston harbor area has included
the placement of considerable fill. A continuocus blanket of fill covers
the Cambridge Center site. The fill material is highly variable in com-

position.

The major soil strata were further sub-divided for analysis. A brief

description of the sub-strata is as follows:

Stratum I: Miscellaneous Fill, variable with location and depth; typi-
cally silty medium to fine sand, little gravel, trace brick, concrete,
cinders; ranges from fibrous peat, little fine sand to coarse to fine

sand, trace silt.

Stratum II: Organic Silt and Peat, variable sand and fiber content;
typically, gray organic silt, trace peat; ranges from brown fibrous peat,
little fine sand to dark gray, clayey organic silt, trace coarse to
medium sand.

Stratum III: Sand, variable with location and depth; tends to become
more coarse grained with depth; typically, gray or brown, medium to fine
sand, trace silt, coarse sand, fine gravel; ranges from brown fine sand

to gray, gravelly coarse to fine sand, trace silt.
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Stratum IVA: Stiff Yellow Clay; typically, stiff to very stiff, yellow-

brown, silty clay, trace fine sand.

Stratum IVR: Silty Clay (BBC); typlcally, gray, silty clay, occasionally
with trace fine sand to coarse to fine sand, usually in lenses and part-

ings, cobbles and boulders were occasionally encountered.

Stratum IVC: Sandy Clay; typically, gray, medium to fine sandy clay,
little gravel, trace coarse sand; sand and gravel content varies with

locatior.

Stratum VA: Glacial Outwash; typically, gray, medium to fine sand, trace
silt, coarse sand, fine gravel to silty fine sand, trace coarse tc medium

sand.

Stratum VB: Glacial Till; Variable with depth and location; typically,
gray, silty, medium to fine sand, little gravel, trace coarse sand;
ranges from cobbles and boulders to gray, medium to fine sandy clay,

trace coarse sand, fine gravel.

Stratum VI: Bedrock; variable with depth and location; upper region
ranges from gray silt (completely decomposed Cambridge Argillite) to mod-
erately hard, slightly weathered, moderately fractured, fine-grained,

gray, Cambridge Argillite.

For ease of reference, the strata in the Cambridge Center case history
are referred te by their Roman numeral designations only throughout the

thesis.
B.3 Field Investigations

Over 130 test borings have been drilled in the process of performing the
subsurface investigations for proposed structures within Cambridge Cen-
ter. For the purposes of this case history, the available test boring
logs were reviewed and eventually 110 test borings were selected for use.
The test borings were selected based on the completeness »>f the test

boring logs, and the detail in the visual descriptions.
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The locations of the test borings selected for inclusion in the Cambridge

Center case history are shown in Figure B.2.

B.4 Summary Statistics

The soil strata information for the Cambridge Center site was analyzed to
determine summary statistics. Summary statistics were calculated for the
top of the soil stratigraphy and the observed thickness of the soil

deposits. The results are given in Tables B.l and B.2.

B.5 Transition Matrix

An embedded Markov chain transition matrix was calculated for the Cam-
bridge Center case history. The transition matrix is shown in Table B.3.
The transition matrix for the Cambridge Center data is considerably more
complex than the matrix for the Back Bay data. There are four strata
that are consistent in transition (0.96 to 1.00). These are II to III,
IVA to IVB, VA to VB, and VB to VI. The rest of the transition matrix
elements, ranging 0.01 to 0.77, indicate that there is considerable

intermixing of some of the strata.
B.6 Trend Surface Analysis

Trend surface analysis was performed on the observed strata top and
thickness data for the Cambridge Center case history. The goodness-of-
fit coefficients for the analysis of the strata tops and thickness, rang-

ing from 0.008 to 0.926, are summarized in Tables B.4 and B.5.
B.7 Delaunay Triangulation Analysis

Delaunay triangulation analysis was performed on the case history data
for the observed top and thickness of the soil strata. It should be
noted that the Delaunay triangulation estimates can not be made for the
exterior points which form the convex hull around the data locations.

The results of the jackknifed Delaunay estimates are summarized in Tabies

B.6 and B.7.
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B.8 Kriging Analysis

Kriging analysis was performed on both the observed top of soil strata
and observed soil strata thickness data. The analysis was performed
using KRM, a modified version of AKRIP. The results are summarized in

Tables B.8 and B.9.

Similar to the Back Bay case history, most of the structural models for
the Cambridge Center case history are based on zero order intrinsic func-
tions. Only the VA and VI stratum top models were first order intrinsic

functions.
B.9 Other Analysis

Probabilistic relaxation analyses were performed on portions of the Cam-
bridge Center case history data. The results of these analyses are dis-

cussed In Chapter 6.
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Table B.1 - Summary Statistics for Strata Tops, Cambridge Center.

No. of Mean Stand. Median Range
Stratum Pts., n (El) Dev. (E1) (ft)
(ft)

11 60 12.20 2.20 12.2 12.0
111 116 9.86 2.33 9.95 12.1
YVA 28 3.03 2.35 2.15 8.2
IVB 116 -1.16 3.32 -0.2 17.2
IVC 27 -29.29 8.99 -31.1 34.3
VA 20 -35.64 5.92 -35.4 24.0
VB 92 -36.04 10.38 -35.95 69.1
\'2¢ 42 -63.56 12.64 -62.55 54.0

Table B.2 - Summary Statistics for Strata Thickness, Cambridge Center.
(] ] indicates values for non-zero data, if no brackets are
shown then all data were non-zero)

Median Range

(ft) (ft)

9.0 12.5

0.25 8.5

[2.5] [8.0]

9.0 21.0

0.0 15.0
[3.25] [14.5]

34.0 53.0
[34.0] [40.5]

0.0 37.0
[6.0] [36.0]

VA 50 3.58 6.22 0.0 23.0
[17] [10.53) [6.40] [1.15] [20.5]

VB 42 25.19 13.18 23.05 56.5
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Table B.3 - Strata Change Transition Matrix, Cambridge Center.

To 1 II f1iv Java Q ivB J ivc | va | vB | vI
From

I o [o.51 0.0i | 0 0 0 0 0

11 0 0 ju.vs| o jo.02[ ¢ 0 0 0
11 | o 0 0 |o.22]0.77] o o |o.oo| o
wal o 0 0 o Jo.96| o o [o0.06] o
VB | o 0 0 0 0o |o0.29]0.15[0.56] o
wec [ o 0 0 0 0 0 {o0.22]/0.70] 0.08
VA 0 0 0 0 0 0 o |1.00] o

VB 0 0 0 0 0 0o Jo.o1f o [o.99
VI 0 0 o | o 0 0 0 0 o |
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Table B.4 - Trend Surface Goodness-of-Fit Values, Strata Tops, Cambridge
Center.

T
Order of Polynomial

1 2 3 4 !

0. 0.123 | 0.265 | 0.424 |
0. 0.221 | 0.271 | 0.346
0. 0.586 | 0.716 | 0.858
0. 0.351 | 0.390 | 0.657
0. 0.511 | 0.598 | 0.755
0. 0.809 | 0.926 | 0.986
0. 0.397 | 0.450 | 0.553
[ 0. 0.734 | 0.761 | 0.818

Table B.5 - Trend Surface Goodness-of-Fit Values, Strata Thickness, Cam-
bridge Center.

Order of Polynmomial I
Stratum : 1 2 3 4 I
0.025 0.104 0.114 0.150
0.073 0.190 0.234 0.263
0.426 0.491 0.555 0.623
0.259 0.465 0.596 0.708
0.289 0.415 0.495 0.583
0.104 0.159 0.238 0.381
0.040 0.195 0.255 0.328
0.347 0.473 0.5190 0.588
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Table B.6 - Summary Statistics for Jackknifed Residuals for Delaunay
Triangulation Analysis, Strata Tops, Cambridge Center.

No. of§ Mean, Stand. §Median, f Range,
Stratum Pts., (ft) Dev. (ft) (ft)
n (ft)

II 53 -0.03 2.45 0.14 13.65
ITI 107 0.13 2.15 0.07 18.21
IVA 21 0.26 1.75 1.98 5.46
IVB 107 0.01 2.37 0.44 13.25
IvVC 19 -0.25 7.62 2.48 32.37
VA 13 -0.07 2.44 2.84 7.84
VB 77 -0.59 10.04 0.11 53.98
VI 33 -0.93 10.04 1.27 51.17

Table B.7 - Summary Statistics for Jackknifed Residuals for Delaunay
Triangulation Analysis, Strata Thickness, Cambridge Center.

' Stand; .Medidﬁ;irR#né;:AE
Dev. (ft) | (fr)
L (fe) 1 N

Stratum

1 2.63 | 0.02 | 14.67
1 109 | -0.32 | 2.18 | -0.22 | 11.47
0.08 | 3.08 | -0.01 | 22.82
20.09 | 2.05 | 0.00 | 15.72
0.71 | 6.71 | 0.38 | 36.62
0.87 | 8.01 | 0.00 | s4.11
0.00 | 7.26 | 0.00 | 34.83
1.47 | 13.45 | 4.48 | 65.97
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Table B.8 - Summary of Kriging Coefficients, Strata Tops, Cambridge Cen-

ter.
Stratum K b b b, b
11 0 0 -.0438 - -
111 0 0 -.0735 - - |
IVA 0 2.0568 | -.0043 - -
IVB 0 0 -.1390 - -
IVC 0 0 -.6000 - -
VA 1 0 0 -2.8E-6 -
V3 0 0 -1.0575 - -
VI 1 0 -.9908 0 -

Table B.9 - Summary of Kriging Coefficients, Strata Thickness, Cambridge
Center.

OO OO |O|O|O|OF
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Figure B.2 - Test Boring Locations (110), Cambridge Center.
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