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ABSTRACT

Chapter 1 studies solution techniques for problems of dynamic
control under uncertainty with linear costs of control. Necessary
conditions for optimality of control policies are derived from a
feasible perturbation argument, and it is shown that under
restrictive conditions the optimal policy can be based on current
events only. A solution is explicitly derived under the assumption
of constant-elasticity functional forms and of uncertainty
described by geometric Brownian motion processes. Under these
assumption, an alternative approach to the solution is proposed,
based on optimal stopping arguments: using well-known financial
tAchniques, the solution can be found via valuation of options to
exercise control at the margin.

Chapter 2 applies the control technique to the problem of
irreversible capital accumulation. Under the realistic assumption
that capital equipment has no value unless used in production, the
optimal investment rule is derived in closed form. It is found
that the degree of uncertainty facing the firm is an important
determinant of the irreversible investment decision: the more
uncertain are future business conditions and the more variable is
the purchase price of capital, the more cautious firme should be
in their investment decisions. The dynamics of the firm's value
and the ergodic distribution of several observable variables are
derived, and a preliminary discussion is offered of the results'
implications for the empirical study of investment.

Chapter 3 studies the effect on labor demand of European
severance pay legislation. The form of firms' employment policies
is derived using the techniques developes in Chapter 1; firms are
more reluctant to hire in the presence of firing costs, but are
more reluctant to fire as well. It is found that employment is, on
average, higher when firing costs are large. The parameters of
stochastic processes taken as exogenous by firms are shown to
affect the employment policy in intuitive ways, and the European
employment experience of the last fifteen years is interpreted
under the assumption that a regime switch in the stochastic
environment of European firms occurred after the first oil shock.

Thesis Supervisor: Rudiger Dornbusch
Title: Professor of economics
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INTRODUCTION

This Thesis studies the optimal dynamic factor demand

policies of firms subject to exogenous uncertainty, under the

assumption that changes in the use of factors of production incur

first-order adjustment costs: the combination of uncertainty and

first-order costs of adjustment is on the one hand quite

realistic, and on the other has far-reaching implications for the

study of many issues in dynamic economics.

If adjustment costs for the use of factors of production did

not exist, the firm's dynamic problem would be uninteresting: all

factors would continuously be adjusted so that their marginal

contribution to profits would at all times be equal to their

rental cost. In reality, of course, the use of factors of

production cannot be costlessly adjusted: machinery and buildings

have to be installed and uninstalled, workers have to be trained,

and severance payments often have to be paid to dismissed workers;

second-hand capital equipment has much lower value than new

capital equipment, and is often so specialized that it can only be

sold to other firms faced by the same exogenous uncertainty. In

such a situation, capital has value only if used in production,

and capital accumulation is irreversible.

Realistic adjustment costs are nonnegligible even for small

adjustments in factors' use; the assumption that they are in fact

linear does less violence to reality than the more usual (and more

easily tractable) assumption of quadratic adjustment costs.
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Linearity of adjustment costs enhances the importance of

uncertainty in the firm's problem. Since adjustment entails

first-order costs, the firm has to be careful in exercising

control over the amount of factors of production it uses. If an

exogenous shock is immediately followed by one of opposite sign,

the firm will congratulate itself if it has not adjusted to the

first shock, and will regret the previous decision if it has;

conversely, if subsequent shocks have the same sign as the first

one, the firm will regret not having adjusted right away. Every

adjustment decision must then balance these possibilities, and has

to take explicit account of risk. The dynamics produced by linear

~djustment costs are very different from those produced by convex

ones. Convex costs of adjustment make it optimal to adjust only

partially to any shock; with linearity, adjustment is complete if

it occurs, but may not occur at all.

Chapter 1 illustrates a set of new techniques that make it

possible to solve fairly complicated and realistic models of tnis

type, and discuss their relationship to earlier economic and

financial literature and to abstract optimal control models in the

mathematical and engineering literature.

The main assumptions needed to obtain the solution are that

exogenous uncertainty be described in continuous time by a process

wi.th independent increments and continuous sample paths, and that

all functions relating exogenous and endogenous variables have

constant-elasticity form. The assumption of independent increments

(random walk) is clE!arly a simplification of reality. But, at
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least, nonstationarity of the stochastic environment of economic

agents can be defended on theoretical grounds <uncertainty about

the future should realistically increase with the forecast

horizon) and, on empirical grounds, cannot be refuted by the

limited time-series data available: tests on most economic data

fail to reject nonstationarity of the underlying stochastic

processes. The assumption of constant ela~ticity (loglinear)

functional forms is consistent with much empirical literature, and

allows construction of fairly complicated models of the firm:

problems with multiple state variables can be reduced to

equivalent problems with only one state variable.

Chapter 1 also shows how optimal risk taking techniques

(option valuation, optimal stopping) can be used to solve

stochastic control problems under first-order adjustment costs. As

noted above, every adjustment entails some risk of regret if there

is ongoing uncertainty, and optimal stopping techniques indicate

how such risky decisions should be taken.

The following two Chapters apply the control technique to

economically interesting problems.

Chapter 2 studies the dynamics of irreversible capital

accumulation r and the implications of irreversibility for

empirical studies of investment: the assumption that the scrap

value of capital be negligible is certainly realistic at the

macroeconomic level, since production facilities have no direct

consumption value; and is a very close approximation for an

individual firm's problem, since capital equipment is usually
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specific to a firm's needs and has little (if any) resale value.

The investment rule has a clossd form under the assumption that

the cost of adjusting capital use downward be prohibitive, and has

intuitive comparative statics properties: firms will be more

reluctant to invest if their environment is very uncertain. The

implications of optimal irreversible investment decisions for

observable quantities are also derived, and it is found (perhaps

surprisingly) that higher uncertainty implies that on average more

capital will ex-post be used if uncertainty is larger and

investment is irreversible. Firms are more reluctant to invest in

such a situation, but the impossibility of decumulating capital

builds a ratchet in the accumulation process and increases the

long-run capital intensity of production.

Chapter 2 then discusses the implications of investment

irreversibility for the behavior of observable variables such as

the value of the firm, investment and Tobin's Q: the dynamics of

all variables are non-standard, and exogenous shocks can

potentially have very long-lasting consequences. The results of

the Chapter are arguably consistent with the empirical evidence

based OIl more standard dynamic and pseudo-dynamic models of

investment. Dynamic models based on convex costs of adjustment are

mispecified if investment is irreversible in reality, and their

poor empirical performance is therefore not surprising, but it is

possible to interpreted their results under the assumption of

investment irreversibility. Quasi-static models of investment,

based on the asssumption of equality (on average) of capital's

marginal profitability to its user cost, are also mispecified if
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capital accumulation is in fact irreversible: and irreversibility

can help explain recent empirical results in this strand of

literature.

Chapter 3 (joint work with Samuel Bentolila) applies the

optimization model of Chapter 1 to dynamic labor demand in the

presence of hiring, and especially firing, costs. The European

unemployment experience has often been partly blamed on

restrictive severance pay legislation, which appears to explain

well some features of the dismal employment-creation record of

most European countries. A formal model shows that firms will

exercise more caution in their employment policies if labor-force

adjustment costs are large and the environment is highly

uncertain: the characteristics of the firm's employment policies

are also related to other parameters, notably the attrition rate

of the employed labor force and the growth rate of desired

production. The implications of high firing costs for observed

employment are also derived: it is found that the size of firing

costs scarcely affects the average level of employment in the long

run (and, via the same ratchet effect found for irreversible

capital accumulation, larger firing costs increase average

employment): but large firing costs have clear dynamic effects,

inducing sluggish adjustment of em~loyment to exogenous events.

The implications of the model are quantitatively evaluated with

r9alistic parameters valu9s for the four large European economies:

the change in firms' stochastic environment that followed the

first oil shock, and the presence of high firing costs, are found

to be by and large consistent with the observed behavior of
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e~ployrnent in those economies, characterized by very little hiring

and firing, but large reductions in employment via labor

attrition.
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CHAPTER 1

DYNAMIC STOCHASTIC PROGRAMMING UNDER UNEAR ADJUSTMENT COSTS
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This Chapter discusses the solution of a class of discounted

dynamic control problems, distinguished by the fact that the cost

of adjusting endogenous state variables is linear in their

displacement - i.e., the marginal cost of adjustment does not

depend on the speed at which adjustment occurs. Problems of this

type have been studied in the Operation Research literature;

economic applications to the theory of the firm could include the

study of inventory processes, pricing in the presence of menu

costs, irreversible investment decisions, and dynamic labor

demand. Two such applications are considered in the following

Chapters, and the set of techniques proposed in this Chapters

should prove useful in future research as well.

The techniques presented below are not totally new, although

their application to economically interesting functional forms is.

The treatment privileges economic intuition over abstract

technical rigor: the thought experiments (feasible perturbations)

underlying optimality conditions are described in economic terms,

and the equivalence among the different approaches should

eventually become clear to economically minded readers.

Section 1 presents the general form of the problem under

study: Section 2 proves necessity of an economically intuitive

first order condition for optimality of a control policy, based on

a feasible perturbation argument. Section 3 proves that the

problem under study can sometimes yield "myopic" policy rules, and

refers the reader to previous work by Arrow[1968] and

Nickell[1974]. Section 4 specializes to functional forms that
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allow explicit solution of the problem under uncertainty, and

derives the solution making use of the necessary conditions

discussed in Section 2. Section 5 proposes an alternative approach

to the same problem, based on optimal stopping rather than on the

feasible perturbation argument, and uses this result to prove

existence of the solution. Section 6 discusses the characteristics

of the solution and reviews related Operations Research literature

on similar control problems.

1 - Statement of the problem

Consider the optimization problem of a firm (or some more

general economic entity, for example Robinson Crusoe or the social

planner whose optimal plan is mimicked by a competitive market)

that tries to maximize a time-separable objective function. The

discount factor is constant and equal to r, but instantaneous

payoffs depend on exogenous factors W
t

(the state of the affairs),

whose probability law the firm knows and takes as given, and on

endogenous state variables Kt which the firm can manipulate. For

simplicity, Kt is assumed to be a scalar. To obtain an interesting

problem, we assume that manipulating Kt is costly, and we ask what

is the firm's optimal adjustment policy.

In order to state the firm's problem formally, some terms are

used whose (rough) definition follows: a a-field is a partition of

the states of nature ~, which are eleJ,ents of the sample space 0;

statements that are made "almost surely" are true in all states of

the world ~, except that they can be false for a set of ~s (an

event) which has zero probability measure. If there is no memory
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loss, observation over time of a stochastic process (a function of

time and of the state of nature ~) generates a finer and finer

sequence of a-fields, i.e. provides ever more detailed information

about the true state of the world; a probability law assigns

probability measure to all sets (events) of the partition; and a

random variable X is said to be Uadapted" to a a-field if

observation of XiS realization does not provide information

further to that provided by the a-field (jf the a-field is

generated by a stochastic process, the adapted random variable X

is "non-anticipat.ory" wi th respect to that stochastic process).

PROBLEM

Given:

- the probability law P for exogenous forcing factors

(WT;OSTsool, and the sequence of a-fields r
T

generated by {WS;SST};

W is a possibly vector-valued stochastic process, i.e. a function

+ n
W(~/T) :00~ ~ that maps every state of nature in w into a

complete sample path for the exogenous variables; we assume that

sample paths are right-continuous.

- the functional form of instantaneous payoffs n{Kt,W t );

- a given instantaneous discount rate r;

- the adjustment cost f[dXT,WT) for each unit displacement of

the endogenous state variable; f(.,.) is assumed to have the

following form:

P(W
T

) , if x ) 0

[1.1] f(X,WT ] = 0 if x = 0

p(W
T

) , if x < a

with P(WT)~P(WT) almost surely for all T;
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- the spontaneous dynamics of the endogenous state variable,

given by

[1.2] dKt = -OKtdt + Xt for all t

where 6 is an exponential depreciation rate, assumed constant for

simplicity;

*~olve for the value function V and the associated optimal

feedback control process {K
T

: K
T

adapted to 7
T

, t~T~T), defined by

[1.3]

where

is the value function, and the conditional (on the information

available at time t) expectation, Et{.. }=J .. dP(~;7t)' is taken

over the joint probability distribution of exogenous variables

{Wt } and endogenous variables {Kt }.

Some remarks on the characteristics of the problem considered

are in order. Since the problem in described in continuous time,

the firm can continuously monitor the state of affairs and act

accordingly; as it is often the case, this turns out to simplify

the solution. Note however that the degenerate stochastic process

(calendar time) XT=T a.s. could well be one of the elements of W,

and the adjustment cost function could then be specified so as to

prevent adjustment at non-integer values of T, for example, or on

Sunday.

Given the assumed form of the adjustment cost function,
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larger displacements of K incur constant marginal adjustment

costs; ttlis produces solutions wi th "bang-bang" character: if

adjustment is undertaken, the speed of adjustment can be

infinitely large, so that the paths of the endogenous variable K

fail to be differentiable functions of time (K "can jump"). The

firm need not continuously adjust the factors that are costly to

move, and can instantaneously displace them by a finite amount

when it does act. Since X
T

can fail to be differentiable, the

second integral in [1.3] is to be interpreted as a Stiltjes

integral, with integrating function dXT=XT+-X
T

_- If the adjustment

costs were strictly convex, then the sample paths of {X,) would be

differentiable, i.e. dXT=xTd T where x, is the rate of control per

unit time.

Note from the form of the first integral above that the

instantaneous payoff n(.,.) is instead restricted to be a flow:

apart from discounti~g, additions to total revenue are n(Kt,Wt)dt

in a small time interval dt. In other words, the problem is

restricted by the assumption that total undiscounted revenues TI=

Jdll can be written as In<t}dt, or that the cumulation of revenues

is differentiable with respect to time. Nondifferentiability of

the total revenue function n would realistically arise if the firm

only sold its product and/or paid variable costs at distinct, and

possibly random, times. This is ruled out in [1.3] for simplicity.

Note that, for now, it is assumed that the problem in [1] is

well defined, i.e. that the integrals and the expectations exist.

This needs to be verified for individual applications: further
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restrictions will be specified in what follows as necessary.

2 - Characterization of the optimal path

It is possible to characterize the optimal path to some

extent (if it exists) without actually solving the problem [2] -

in fact, without finding the value function.

A further assumption is necessary:

Assumption The instantaneous payoff function is twice

differentiable, increasing and strictly concave in the endogenous

state variables:

for all t, almost surely;
a K

t
2a n(Kt,Wt )

< 0 , for all t, almost surely;
a K 2

t

Under these conditions, the following is true:

Proposition 1 (Feasible perturbation)

If the firm adopts the optimal control rule, then whenever control

is taking place the following is true (almost surely):

[2.1]

And when no control is taking place, it must almost surely be the

case that

[2.2]
-(r+O) (T-t) on(K W) }

e T' T dT

OK
T

In other words, the conditions in [2.1] and [2.2] are

16



necessary for optimality of the firm's policy.

PROOF: By assumption, the firm is following the optimal dynamic

*program: let {K
T

; O~T~TI be the stochastic process for the

endogenous variables corresponding to the optimal feedback rule.

"'"We now prove that [2.1,2.2] must almost surely be satisfied by {K
T

: O~TSOOJ, or else the value function would not be attaining the

maximum. Let A be a subset of 0, with p(A»O, such that neither

[2.1] nor [2.2] are satisfied at some T<OO if ~A; note that AEYT ,

i.e. it is known at time T whether or not the true state of the

world is in A ("A occurs"), since all expressions in [2.1] and

[2.2] are observable at T. It is then legitimate to perturb the

*original investment policy (dXt } by a small amount A at time T if

A occurs, without otherwise m~difying the feedback rule (so that

the amount of control for the endogenous variables is the original

one for every time except T and every state of the world except

* ~all ~A: dXT=dXT+A if A occurs, and dXT=dX
T

almost surely for T-T.

Note that the new policy is legitimate in that it is still adapted

to r
t

, i.e. depends on an event that is known when the

perturbation occurs). By integrating equation [1.2] above, if

(K ;OSTSOO) are the endogenous variable paths for the perturbed
T

*policy and (KTiOSTSOOJ are the paths corresponding to the optimal

policy, the perturbed policy under consideration are such that for

*OSTsT K =K almost surely, and for TSTSOO
T T

,. *
occurs, KT=K

T
otherwise.

As long as all integrals and expectations are well defined,

we can exploit their linearity and additivity properties to write,

for any tST,

17



- *[2.3] V(Kt,Wt ) - v (Kt,Wt ) =

T

{J -r(T-t) ( ] }= Et e In(K~ ,wT>-n(KT,wT> dT +

t

<D

Je
-r<T-t)J -r(T-T) [ -0 (T-T) ]= e U(K: + Ae ,W >-niK*,w > dT.. T T T

A T

> Je-r(T-t) [J
A T

-r(T-T}
e

=Je-r(T-t) [J{J
A A T

-r(T-T)
e

18



The inequality above follows from the assumed strict

concavity of n(.,.) in its first argument, and the last equality

uses 't£7T for tST (the law of iterated expectations).

It is now possible to show that A can be chosen to obtain

*V(Kt,Wt ) ) V (Kt,W t ) if the probability is not zero that neither

[2.1] nor [2.2] will be true at some finite time.

*Suppose first that dXT-O but, if A occurs, then

[2.1']
-(r+o) (T-t) on(K W) }

e " T dT

oK
T

= -~ 74 0

contradicting [2.1]; note that, since by assumption it is known at

T that the true state of the world is in A, P(W;;T)=O for ~€{Q\A}

(the complement of A) and therefore

-(r+o) (T-t) on(K ,W )
e T T

8K
T

=J J
Q T

=J J
A T

- (r+o) (T-t) on (K , W )
e T T dT dp(~;'T)

oK
'T

19
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Choose a A with the same sign as ~ and smaller in absolute

*value than dX
T

, so that (recalling the definition of f(.,.)

above) f(dX;+A,WT]=f(dX;,WT]. This choice for A yields, after

insertion of [2.1'] into [2.3],

[2.4] V(K W) V*(K W) Je-r(T-t)A ~ dp(n'·~t)t' t - t' t ) II ~ ~ r

A

But the right hand side of [2.4] is strictly positive if A

has positive probability, which contradicts the assumed optimality

*of the feedback rule which produces {K
T

}.

Suppose instead that dXit=O but [2.2] fails, for example

T

{J
-(r+o) (T-t) 8n(K W) }

[2.1'] p(Wt ) - E
t

e T' T dT = ~ < 0

t OKT

Then set A<O and obtain from [2.3] the inequality

* J -r(T-t)V(Kt,Wt ) - V (Kt,W t » e A ~ dp(~;7t) >0

A

If it is the second inequality in [2.2] to fail, then

choosing a positive A will yield a similar inequality.

We conclude that any failure of [2.1,2.2] that occurs with

positive probability implies that the firm is not following the

optimal feedback rule in its control policy, in that a feasible

feedback policy would yield a strictly larger value function.

[end of proof].

This characterization of the optimal policy rule has a
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straightforward interpretation: whenever the firm is in fact

acting, concavity of the payoff function implies that at the

margin the action does not alter the value of the policy; the

value of the last infinitesimal unit of K. installed or
1

uninstal1ed at the present time\is simply the expected, present

discounted value of the contribution to instantaneous payoffs by

the infinitesimal unit that will 'be marginal at all future times
\
i

(the shadow price of K). If the firm is not acting, that expected,,

present discounted value is (weaklr) less than the certain,
t
\

immediate cost of adjustment.

The firm should then, when de~iding about the amount of

control to be applied at the present time, view the currently

marginal unit as the marginal one t~roughout the planning horizon,

and take future investment decision~ as given in probability

distribution. The very fact that con~itions [2.1] and [2.2] will

be satisfied at all future times then defines the optimal control

policy.

This can be interpreted as an i~plication of the envelope

theorem: the firm is justified in ta~ing future control as given

when deciding on the amount of control to be applied today,

because any effect of today's control on future value has to occur

through a modification of future investment decisions; ~ut these

are assumed to be optimal, hence at the margin a small change in

future control has no effect on the value function.

It should be noted that this characterization can be obtained

imposing very little structure on the problem. Apart from the

assumptions of linearity of the adjustment cost function and of
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concavity of the payoff function, it is only assumed that policies

are non-anticipative with respect to the exogenous variables, that

all the integrals and expect~t~~ns are well-defined and therefore

have the usual linearity and additivity properties. Once again,

exist~nce of the value function needs to be verified for specific

applications.

3 - Myopic policy rules

Recall that it has been assumed above that the exogenous

variables {WtJ have right-continuous sample paths. An additional

assumption will guarantee that p(.), P(.), n(K,.) and an(K,.)/oK

have right-continuous sample paths as well:

Assumption: peW), pew) and n(K,W) are continuously differentiable

in w.

This, together with the characterization obtained above for

the optimal control rule, suffice to obtain an important result:

Proposition 2 (Euler equation)a) If an optimal feedback rule

exists, and dXT-O for TE[t
1
,t

2
) I t

1
<t

2
(i.e.control of the

endogenous variable takes place with probability one between t
1

and t
2
), then

[3.1]
on(K ,W )

T T

oK
T

PROOF: Since control occurs continuously in [t
1
,t

2
), we have from

Proposition 1 that

22



-(r+5) Cr-t) Q1l(K ,W )
e T T

8K
T

almost surely for t E [t
1
,t

2
>

For a fixed w, consider the path-by-path differential of the

two sides of equation [3.2] with respect to t (the differential is

well defined since W - and therefore K - have right-continuous

sample paths) to obtain:

[3 .3] df (dX (c.> , t) , W(c.> , t) ] = 8n(K(Q,t) ,W(~,t» dt

aK(CA>,~-)

- (r+0) (T - t ) ]
(r+5) e Qn(K(c.>,T),W(c.>,T» dT dt

OK((,),T)

which is true for all t E [t
1
,t

2
) and all ~E{Q\AJ, where A is any

subset of 0 such that p(A)=O.

Now integrate both sides of [3.3] over 0 with respect to

P(~:7t)' noting that any ~ such for which [3.3] is not satisfied

belongs to sets that receive zero weight in the integration, and

that K
t

and Wt are known at time t so that integration over states

af nature of the first term on the right-hand side of [3.3]

returns its actual value:

[3.4]
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+ (r+6)
- ( r +0) (T - t ) a11 (K W) }

e T' T dT

oK
T

from which the assertion follows noting from equation [3.2] that

the last term is e~ (r+~~~Xt,Wt}~.~--------------~

[end of proof]

Proposition 2 states the conditions necessary for the firm to

temporarily base its control policy only on current events,

without looking forward and with no need to take the endogenous

variable's process into account. Note that the proof does not go

through as soon as there is any probability that it will be

optimal to abstain from control in the next instant. In

particular, of course, there is no presumption that a condition

like [3.1] should hold when the firm is abstaining from control,

i.e. when dX=O.

The economic interpretation of [3.1] is straightforward: if

control is certainly occurring throughout [t
1
,t

2
), then it must be

distributed along that interval in such a way that [3.1] is true.

Otherwise, a reallocation of control would increase the value of

the firm: in other words, a version of the Euler equation would be

violated.

Arrow[1967] and Nickell[1974] used the equivalent of [3.1] to

characterize investment under linear adjustment costs, assuming

that the exogenous variables in W follow piecewise continuous

paths, about which the firm has no uncertainty: then when
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investment occurs, it occurs continuously over an interval, and

consi~eration of [3.1] is sufficient to solve for the path of the

endogenous variable K. Control (investment) will stop and resume

at points in time where

[3.1']
an (K , W )

'r T

oK
T

dT

a~d knowledge of the exogenous variables' path will suffice to

construct the optimal investment policy: Arrow and Nickell provide

algorithms for this purpose, and show that iI1 general investment

will stop before a cyclical peak is attained and resume after the

cyclical trough.

If control is certain to occur at all times, i.e. the

equations in [2.1] always hold with equality, then [3.1] is always

true and the firm can follow a "myopic" policy rule, varying the

endogenous factor K so as to equate its current marginal payoff to

the current value of the right-hand side of [3.1]. A sufficient

condition for this to be the case is that PCWT)=P(WT ) for all T,

almost surely: then [2.1] and [2.2] collapse to the single

equation

[3.5] , all t

In such a situation, of course, the firm does not need to

solve a truly dynamic problem: use of Kt can be varied

continuously to satisfy [3.1], whose right-hand side is the so
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called liI user cost of capital" (see Jorgenson[1963]) if K is the

installed capital stock.

4 - A class of solvable-problems

Consider the following specialization of the general problem

described in [1] and [2] above:

{Wtl={Wzt,Wptl is taken to be a two-dimensional Brownian

motion process, i.e. each state of the world ~ is associated with

constant elasticitya

two continuous sample paths wi th increments (W,." -w ,." ,W 'Y -w 'Y ;

z.2 z~1 p.2 p.1

T2)T1} which are independent of fW
Z

'Tl'W
pT2

} and have a bivariate

normal distribution given the information available at Tl:

1
[4.1] W(Kt,Zt) = 1+8 K~+8 Zt' -1<8<0,

function of the endogenous and exogenous state variables, with

[4.2] dZ t = ~z Ztdt + Zt U z dWzt ' a univariate geometric Brownian

motion process:

P
t

follows a geometric Brownian motion with stochastic

differential

where dWpt is the increment of

another standard Wiener process with correlation p to dWzt ;

[4.5] P
t

= ~ P
t

, ~ constant, Asl to satisfy the assumption that

ptSPt always.

The problem data are ~, ~ I ~ I U I 0 , P, A, 0 and r: allz p z p

these are assumed to be constant over time.

Note that geometric Brownian motion processes are

particularly convenient since their Markov state space is

completely described by their level alone; and assuming a
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constant-elasticity functional form for the instantaneous payoff

facilitates solution because constant-elasticity functions of

geometric Brownian motion follow geometric Brownian motion.

The restriction -1<8<0 makes Proposition 1 in the previous

section applicable: we then seek a non-anticipative control rule

that satisfies [2.1] and [2.2] at all times: i.e., the optimal

control rule must specify a nonanticipating control process (X
t

)

such that

[4.6]
- (r+o) (T-t) 13

e KT ZT

(J)rr - (r+0) (-r - t ) {3 }
[4.~] E

tLJ
e K-r Z-r d-r = P t if dXt<O

t

With the assumptions made above, it is reasonable to guess

that the optimal control process 'will have the following form: the

endogenous variable should be displaced only as necessary to

obtain

[4.9] or equivalently

where the boundaries a and ~ are constants to be determined. Such

a control rule is obviously nonanticipating, since it only depends

on current values of the exogenous variables, which in turn have

continuous sample paths.
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To verify that the control rule has the form [4.9], and to

find the optimal control barriers ~ and a, it is now necessary to

compute the expectations of di~counted marginal payoff streams

appearing in [4.6]-[4.8].

The problem at hand is to find an expression for the

conditional expectation appearing in [4.6]-[4.8]; the conditional

expectation will, of course, be a function of the current value of

the state variables and of the parameters 0, r, a, .e, {t I {t , a I
p Z

a
p

' n. Define a new variable n t = K~ Zt' and define a functional

expression for the conditional expectation:

(I)

[4.10] f(nt,p
t

; 0, r, {I" t ....J = Et{I nT e-(r+~> (T-t>dT }

t

Of course, the control rule in [4.9] has to be taken into

account when computing the conditional expectation in [4.10]: the

process followed by (ijt) under the control rule needs to be

determined.

Now note that when control is not enacted, i.e. dX
t

is zero,

then dKt =-6 dt, and the derivative of the payoff function with

respect to K follows a geometric Brownian motion, being a constant

f3
elasticity function of geometric processes; define ~t = {Kt Zt;

dXt=Ol, and use Ito's lemma to find its stochastic differential:

a~ a~t 1 [a2~t [ ]2
[4.11] d~t = t dK + ---- dZ + - ---- dK

t
+

oK t aZ t 2 8K 2

t t t
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where ~= -6B + ~ .z

If a control policy of the form [4.9] is adopted, the firm

will prevent {~tJ from ever being larger than a P t or smaller than

~ Pt=~~Pt; the derivative of the payoff function with respect to K

than follows a regulated geometric Brownian motion, with moving

control barriers at a Pt and l A Pt : i.e. the stochastic process

Inti is defined by

[4.12] nt =

where:

(i) {~t} is a geometric Brownian motion process, with stochastic

differential

d~t = ~t P dt + ~t GzdWzt

and initial condition ~O:

(ii) {UtI and {L
t

} are increasing and continuous processes, with

L =u =1:o 0

(iii) {LtJ only increases when q~=i~Pt' and {UtI only increases
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when ijt=ap t , where a and ~ are given positive real numbers and Pt

follows a geometric Brownian motion, with stochastic differential

dPt=~pPt dt + Pt a p dWpt ' dWztdWpt=pazap

and initial condition PO' such that ~APO $ ~O $ aPO~

(iv) ! S ijt s a for all t~O

These four properties uniquely identify (Uti and (Ltl: these

two processes maintain ijt within. the moving barriers us~ng the

minimum amount of control, since they only increase when ijt it at

the frontiers of the region el,a]. Proposition (6), page 22 in

Harrison[19851 proves uniqueness formally for the case of a

regulated linear Brownian motion process, and it is easy to adapt

the proof to the present case of a regulated geometric Brownian

motion process: note that (71t /P t) is a geometric Brownian motion

process regulated between Al and a, implying that fln(ijt/Pt)} is a

linear Brownian motion process regulated between In(A~) and In(a) I

and apply Harrison's proof of uniqueness.

It is now possible to compute the expectations of discounted

marginal profitability streams appearing in equations [4.6]-[4.8],

as a function of the yet to be determined control points t and a,

and of the problem data.

First note that {UtI and (Ltl are processes of finite

variation, since they never decrease: this means that

2 2
(dUt ) =(dLt ) =(dUtdLt)=(dUtd~t)=(dLtd~t)=O.

These relations imply that if we apply Ito's lemma to ~t'

which is a continuously differentiable function of ~t' Ut and Lt ,

all the second order terms vanish to yield:
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L ~
~ d~ + _t dL

U t U t
t t

L L ~t dL
t ~t L t dUt

_t ~t IJ dt + __t G dW t + L
t
-- - --

U
t

u Z Z U
t

L
t

Ut U
tt

= T1
t

lJ dt + 71tC7zdWzt + 71 t

dL t dUt
- - T1 --

L t Utt

Now consider the conditional expectation defined in [4.10],

f(71 t ,Pt) (the dependence of the function on the time-invariant

parameters r, 6, at l ... is suppressed in what follows for

typographical convenience); assume that it is a continuously

differentiable function of ~t and Pt , and apply Ito's lemma again

to obtain (subscripts denote partial derivatives):

where the fact that dL~O only if ~t=~~Pt' and similarly dUt~O
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only if ~t=aPt' is used in obtaining the last equality.

Now recall the Integration By Parts formula found in

Harrison[1985], page 73: if fYt } is an Ito process (i.e. the

stochastic integral IdYt is well defined) and (Xtl is a continuous

process with finite variation, then
lJ lJ

YvXv = YtXt + IYTdXT + IXTdYT

o 0

Apply the Integration by Parts formula to Yv= f(nv'p v ) and

xv=e-(r+5) (v-t) , which always decreases and therefore has finite

-(r+6) (T-t) (r+O) (T-t)
variation; using dee ] = -(r+O)e dT, and

df(~T,PT) from [4.14], one obtains, after rearranging terms,

[4.15] -(r+o)v f ( P) =
e l1 v ' v

v

+Ie-(r+o) (T-t) [f1 (71T ,PT)71TP + f2(71T,PT)i}PPT+ : f u (71 T,PT)a:71;+

t

1
2 f22(71T,PT)a;p~ + f1~(71T,PT)71TPTpazap- (r+O) f(71 T,PT) ] dT +

I f1(A~T,PT) A~PT d~: + I f2(71T,PT)PTO'pdWpT

t T

For the investment rule to be well defined it must be the

case that f(.,.) and its derivatives are always finite; this

implies that
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and, for all v ~ t,

v v

Et { If1 (ijT'PT) ijTCzdWZT } = Et { I f2(ijT,PT)PTCpdWpT} = 0

t t

because the expectation of the integral of a bounded function

against a Wiener process is always zero (see, for example,

Proposition 4.3.7 in Harrison[1985]: this is due to the erratic

behavior of the Wiener process, whose increments after time tare

completely unpredictable, by definition, on the basis of the

information available at t).

Then, let V~ and take the conditional expectation of [4.15]

at t to obtain

[4.16] 0 = e-{r+6) (T-t) [f (TJ P)71 J.l +
1 T' T T

1
f 22 (ijT'PT)C;P; + f(ijT'PT) ) dT } +£12 (77 T ' P T) 77 T P T pazap - (r+o)

2
(J) 00

Et { I £1 (aPT,PT ) aPT
dUT

I
f 1 (A..lpT'PT ) A.lPT

dL
T }-- -

UT L
T

t t

Recall, from [4.10], that
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- (r+O) (T-t) d }
T1 e T •

T '

In light of [4.16], this can be true only if on the one hand

for all nand P such that Als(ij/p)~a , and, on the other hand, the

last expectation in [4.16] vanishes: this requir~s that

[4.18] f (ap,p)ap = f (Alp,P) Alp = 0 for all P
1 1

We conclude that, in general, the conditional expectation

f(ijt'P t ) is defined by the functional equation [4.17] with

boundary conditions [4.18].

The general form of the solution to [4.17] is a linear

combination of power functions and of a linear term,

Imposing the boundary conditions [4.18] on the functional

form in [4.20] we find:

These conditions must be satisfied for all p~O, which

requires that
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[4.22] ~1=1-al, ~2=1-~

[4.23] 0.2-1. 0a =,

In light of [4.22], we can rewrite [4.20] as

and proceed to compute the partial derivatives of this function to

find that, for [4.17] to be satisfied,
1

81-
r+6-IJ

and at, a2 must be solutions of

2o
[4.25] 

2

222
where 0 E a + a - 2po a > 0

z p z p

The quadratic equation [4.25] has two real roots of opposite

sign provided that r+6-~ >0· let cu be the positive root and Q2 bep ,

the negative root:

a1 -

a2-
~

(J

) 0

< 0

1 1 0
2

1+~
Note, for use below, that r > -~ -+ ~ (1 +-) + - impliesza p 8 2 ~2
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that -Bcu)l, as can be verified noting that -Bat is the positive

solution to the quadratic equ3tion

[4.26]

2
o 2 1 1 0

2
1

X - (it - +6 -ft - - - -] X - (r+o--'p] = 0
z 8 p 8 2 B

[4.28] A.f s

The only parameters as yet unsolved for in [4.24] are B
2

and

B3 : but insertion of B
1
= (r+b-p)-1 in [4.23] yields a system of

two linear equations in B2 and B3 , with solution

1 a a2 "Al _ a (A.f)a2

[4.27] B
2 =

r+o-IJ al (aal (:\.f) a2 aa2 (:\.f) al]

«(Al)a! a1
1 - a ;\,-l

B3 =
r+o-11 a2 (aal (:\.f) a2 aa2 (:\.e) a1 ]

This completes the derivation of

(J)

8 _ {J -(r+0) (T- t ) {3 }
f(KtZt,P t : a, l ... ) ; Et e KT ZT dT

t

under the assumption that the firm adopts a control rule that

obtains

13
Kt Zt

P
t

using the minimum amount of control: control dXt is applied to Kt

only when one of the weak inequalities in [4.28] holds with

equality.

To find which constants u and .e characterize the optimal
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f3
control policy, W3 insert f(KtZt,P t : a, l ... ) into the necessary

conditions [4.6]-[4.8]:

[4.6'] f (:\4't' p t a, .e ...J = :\.p (dXt<O .. K~Zt=.f:\pt)t

[4.8'] f ( upt' Pt a, .e ·..J Pt (dXt>O
B

= .. Ktzt=aP t )

Using [4.24], these conditions read

[ 4.6"] B;t-lp B (A.4' ) a1 p l-al+ B (A.lp )a2p l-a.2 =
1 t+ 2 t t 3 t t

P
t

can be eliminated from these equations; then, insertion of

the expressions found above for B1 , B2 , B3 , and some

simplification, yields:

These two equations are highly nonlinear in u and l, but can

be easily solved numerically. Although it does not seem possible
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to prove analytically the uniqueness of their solution, numerical

procedures are not at all sensitive to the starting point of the

iteration, suggesting that the solution is indeed unique.

Closed-form solutions can be found for special cases: if A=l

then the two equations have the same form, and cannot be solved

for distinct « and ~. But with ~=1 [4.6] and [4.8] are infact the

same equation, implying that «=~; then rOff (K
t

,Zt)/8Kt ]/Pt is

constant, and simple integration on [4.6] or [4.8] shows that the

solution to the optimal control problem simply equates the current

marginal contribution of K to the payoffs to the current "user

cost" of K, (r-~p+5)Pt' confirming that when Pt=Pt for all t the

firm will continuously exercise control (see the discussion after

Proposition 2 above).

If ~=O then it is clear that dXt is never negative ([4.8]

never applies) since [8n(K
t

'Zt)/8K t ])O always for K>O: this is the

case of irreversible accumulation of K. The firm only exercises

positive control, and K only decreases via depreciation.

Given that ~O, it is possible to find a closed-form solution

for a. The requirement that f(.,.) be bounded imposes that B3=O in

[4.20] above, since in the absence of negative control ijt can

become arbitrarily close to zero; the boundary condition then

provides a closed-form solution for a. The derivation of the

solution proceeds along the lines discussed above, .. and is no~

reported to save space; the form of a for the case of irreversible

control is reported in the next Chapter (see [R]).
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The next section uses an alternative approach to the solution

of the control problem, and finds a sufficient condition for

existence of a solution (finiteness of the value function).

5 - An alternative approach to the solution:

Marginal Option Pricing

The dynamic program defined in [4.1] above can be decomposed

in a sequence of optimal stopping problems: rather than deciding

how much control should be exercised at any given time, the firm

should decide when each infinitesimal particle of K should be

installed. This approach to the problem (which was first proposed

by Pindyck[1986]) uses more familiar mathematics than the approach

used in the previous section, but is based on somewhat less

economically intuitive thought experiments.

When deciding about the optimal timing for installation of

the K
Lh

marginal unit of capital, the optimal stopping problem

facing the firm is in the form considered by McDonald and

Siegel[1986] for the case of ~=O (no resale possibility) and

extended by Dixit[1987l to the case in which the decision can be

reverted.

The general form of the optimal stopping problem considered

by these authors is as follows: an asset with value v can be

purchased at price P, if not purchased yet, or sold at price p, if

already purchased. McDonald and Siegel assume that both the value
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of the asset v and the purchase price P are uncertain, and follow

geometric Brownian motion: but they impose that no resale be

possible, so that the exchange of the option for the asset is an

irreversible decision. They note that the value of the asset could

simply be equal to the present value, appropriately discounted, of

the dividends it will provide to its owner (but not, of course, to

the holder of the option): the asset must produce dividends, or it

would never be profitable to buy it since it cannot be resold.

Dixit, on the other hand, considers the case of reversible

decisions but restricts P and p to be both fixed (nonstochastic).

In this section the optimal stopping technique is applied to

the decision to install or uninstall the currently marginal unit

of K: it will be shown that the firm's problem can be reduced to a

sequence of stopping problems of the form outlined above.

Consider that at any time, given that the total installed

stock of the endogenous variable is K, installation or

uninstal1ation of an additional (K~h) infinitesimal unit of

capital is possible; installation will produce a stream of

marginal payoffs whose expectation is easy to compute, because it

only depends on the exogenous probability law of Z.

Define the "dividend" provided by installed marginal units of

K (its marginal contribution to the payoff) as

[5.1]

for each K, KE[O,OO).

The next ta~k is computing the "value" of the Kth installed
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unit, i.e. the expectation of the stream of marginal payoffs it

will produce. The presence of depreciation introduces some

complications: note that installation of the Kth unit at time t

· th -t 1 t k t future tl.-me ~ by only e-O(T-t)1ncreases e capl. a 5 oc a any ~

< 1 units, since the unit steadily depreciates at rate 0; then

note that the total capital stock also depreciates at rate 6, and

therefore the depreciation rate appears twice in the expression

for the additional payoff produced by installation of the marginal

unit of the endogenous factor when the current stock is K:

[5.2]

(I)

V(K,Zt) = Et{J

-r(T-t) -0 (T- t) ( -0 (T- t )J13
dT}e e Ke ZT =

t

(J)

J

-(r+O) (T-t) ( -0 (T-t»)13

Et{ZT}d
T= e Ke =

t

(I)

=J

- (r+O) (T- t) [ -0 (T- t ) ] 13 {} (T-t)
z

e Ke Z e d't" =t

t

K{3 Z
t=

r+O-(-' -6(3)
z

TIt
=

r+o-(-' -013)
z

The firm holds the right to pay Pt and acquire, at any time,

the currently marginal unit of K, and forever receive the stream

of marginal payoffs whose discounted expectation is given in

[5.2], reaardless of future control of the endogenous stock; on

the other hand, the firm can always sell the marginal unit of

capital, receiving APt but giving up the stream of marginal

payoffs those units would have produced if left in place.
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If the firm does not purchase the Kt..h unit, a "dividend" is

given up: uninstalled units do not produce, and payoffs are lower.

But if the right to install the Kt..h unit is exercised, the

firm gives up the option to wait and learn information about the

evolution of rZ
t

} and {PtJ: it is often the case, of course, that

installation turns out to be a bad idea ex-post, because Zt or P
t

fall; conversely, uninstallation can turn out to have been a bad

idea if Zt or APt rise. This defines an optimal stopping problem

for the decision to install the currently marginal unit: the firm

has to trade off the foregone dividends and the risk of acting too

soon.

The value of the marginal unit available for installation at

time t has, given that the already installed capital stock K
t

is

depreciating at rate -8, dynamics given by Ito's lemma as

13
d(Kt Zt)

r+o-(" -0(3)
z

=

=

By the assumptions at the beginning of section 5, the
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purchase price of K follows the dynamics given in [4.4] above:

dP t = Pt~pdt + Pt 0pdWpt

and the resale price of K follows:

dAP t = APt~ dt + AP a dW
p t p pt

Therefore, the value of the marginal unit in place, its

purchase cost and its resale price follow geometric Brownian

motion processes; the correlation between the increments of the

first process and the increments of the latter two processes is P,

while the purchase cost and the resale price have perfectly

correlated increments.

Now define a marainal option valuation problem: at any given

time, the firm can exercise the call option to purchase, at price

P
t

, a package containing the currently marginal unit of K and a

put option to sell it at price APt; alternatively, the firm can

exercise the put option to sell, at price APt' the package

containing the currently marginal unit of K and the call option to

install the next unit of K.

Clearly, the value of the two options must, for given K,

depend on the current values of ~t and Pt , which completely

describe the state of the system; denote F(ijt'P t ) the value of the

call option, and f(ijt'P t ) the value of the put option. Ito's lemma

gives the dynamics followed by the two options when "alive" (not

yet exercised). The expected rate of return on any unexercised

option must then, by arbitrage, be such that the their holder

earns the required rate of return: here, again, the presence of

depreciation introduces some complications. The required rate of

return on assets is r in the problem considered in Section 5:
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since the value of the firm is the expected flow of cash-flow

discounted at rate r, the opportunity cost of funds for the firm

is equal to r. But unexercised options to install or uninstall

units of K should instead earn a rate of return equal to r+o: when

such options go unexercised capital depreciates at rate 0, and the

index K of the currently marginal unit steadily decreases. The

optimal stopping problem is defined on a "moving target": the

asset that can be purchased (the marginal option) changes

continuously, a~ capital depreciates.

Imposing then that unexercised options earn an expected rate

of return equal to (r+6 ) , the following functional equations are

obtained for the value of the two options when alive:

(r+O ) f (11, P) = 0

1 1
[5.4] F

1
(71,P)71Jl + F2(71,P)~pP + - Fu (71,P)O:71

2 + - F
22

(71,P)O;p
2

-
2 2

( r+O) F (11 , P ) = 0

where subscripts denote partial derivatives.

The solution of these ordinary differential equations must

satisfy the following boundary conditions:

F(O,P)=O for P>O, because the option that gives its holder

the right to purchase the asset with value ~/(r+o(l+~)-~~) must be

worthless when ~=O forever and the exercise price is positive (0

is an absorbing state for" geometric Brownian motion process);

f(x,P)~ as x~ if P(OO, for the symmetric reason that an

option to sell an asset with very large value at a finite price

must become worthless as the value approaches infinity.
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In view of the parabolic form of the functional equations, we

can guess the following functional form for the two options:

B
1 T/

alp(31
[5.5] F(71,P)=

with a1)O, U2<O to satisfy the boundary conditions above.

The two options will be exercised on loci in (ij,P) space that

* *are implicitly defined by a function ~ =g(P ) for the call option

and ~*=h(P*) for the call option, and satisfy the following

conditions:

* * *F(g(P ),P» + P *= g(P )/(r+6(1+B)-~ ) +
z

* *f(g(P ),P )

These condi tions simpJ.y impose that the exchanges of assets

performed at the exercise points be "fair", i.e. that the value of

options surrendered plus the exercise price be in each case equal

to the value of assets and options received.

To solve the firm's problem, we need to determine g(.) and

h(.): from the definition of ~, knowledge of g(.) and h(.) will

suffice to implement the optimal policy from the observation of

the current values of K, Z and P.

since the value of the assets to be received in exchange for

a price proportional to P is proportional to ij, it is intuitive

(and can be formally proved in the present setting adapting the

arguments of McDonald and Siegel[1986]) that the boundary loci

should be homogeneous of degree 0 in ij and P, i.e. that for some
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constants a and ~

g(p)=ap

h (P) =:\..fp

The following conditions are then obtained:

* * *[5.7] F(ap ,P ) + P *= ap /(r+6(1+fl)-~ ) +
z

* *f (uP , P )

Additional boundary equations are needed for determination of

the boundaries and of the option values: these are the so-called

"smooth pasting" or "high impact" corldi tions I which can be derived

from the fact that the exercise boundary is freely chosen by the

holder of the option to maximize the option's value.

Merton[1973 , footnote 60] proves the necessity of the smooth

pasting condition for a simpler problem (optimal exercise of an

American call option), but his arguments are easily extended to

the present setting where the exercise boundary is common to two

linked option pricing problems (one an American put, one an

American call) and the exercise price is uncertain. Merton notes

that exercise points are chosen to maximize the value of the

options: in the present setting, if extended option values F and f

are defined over the space of possible exercise loci, it is true

that

[5.8] F(~,P)=Max F(~,p,a,l)

a, .e

[5.9] f(~,P)=Max f(ij,p,a,l)
-a, .t.

Replace F and f for F and f in [5.7] and totally

differentiate with respect ~o a: similarly, replace F and f for F
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and f in [5.8] and totally differentiate with respect to l, to

obtain (subscripts denote partial derivatives):

* * *[5.10] F (.u,p , P , a,.e) p
1 =

'* * * * * *P /(r+O (l+f3)-ft
z

+ f
1

(ap ,P ,«,.e)P + f
3

(ap ,P ,a,.e)

Now note that F.=F. and f.=f. (i=1,2) by the definitions in
~ 1 1 1

[5.8] and [5.9]; and, since a and ~ maximize f and F, necessarily

*f.=F.=O (j=3,4). Simplifying P and AP. out of [5.10] and [5.11],
J J

the following additional boundary equations are obtained:

It is now easy (though tedious) to insert the functional

forms in [5.5] and [5.6] into the differential equations [5.3] and

[5.4] and the boundary conditions [5.7], [5.8], [5.12] and [5.13]

to determine the exercise points a and ~, as well as the unknown

constants B1 and B2 and the exponents cu, a2, ~1, ~2. As in

section 4, it is found that ~l=l-CU and ~2=1-a2 necessarily, to

satisfy conditions [5.12] and [5.13] for all positive prices;

replacing the partial derivatives of f{.,.) and F(.,.) into the

functional equations [5.3] and [5.4] determines that al)O and U2<O

47



are the solutions to the same second-order equation found in

Section 4; boundary conditions [5.12] and ~5.13] can be used to

solve for B1 and B2 ; and, finally, [5.7] and [5.8] give, after

sUbstitution of these values for B
1

and B2 , a pair of nonlinear

equations to be solved for U and t that are exactly equivalent to

[4 . 6 II ] and [4. 7 .. ] .

The marginal option pricing approach then gives the same

solution to the firm's problem as the technique proposed in

Section 4, based on the necessary conditions [2.1] and [2.2]. The

economic intuition behind [2.1] and [2.2] is probably more

straightforward than the thought experiment which underlies the

marginal option pricing technique: the reduction of the dynamic

program to a series of optimal stopping problems is awkward,

especially in the presence of depreciation. But the techniques

used in this section are probably more familiar to economists (at

least to financial economists) than the mathematics adopted in

Section 5; and extension of the model (for example to a Leontief

production function as in Pindyck[1986], or to discontinuous

processes for the forcing variables {Wt ) is probably easier if

the marginal option pricing approach is adopted than otherwise.

It is now possible to verify existence of the optimal policy,

i.e. finiteness of the value function, because an useful byproduct

of the option pricing approach is the total value of the firm:

this value must be the integral of the value of all infinitesimal

units of K, both those installed (whose value is v as given in
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13
[5.2] plus the value of the options to Gell them, f(K Zt'P t ) ) and

those that the firm may decide to install in the future (whose

value of these is F(K8 Zt ,Pt) ).

The total value of the firm is then

=

(J)

+ JB1 (x8 Zt]CUp~-a1 dx = =
Kt

__Zt_ [1 1+8]Kt B(z Ja2p l-U2 [ 1
r+o-(~ -08) 1+8 x + 2 t t 1+8a2

z 0

1+1302] Kt
It +

o

<D

( ] [
1 Itl +I3U l]+ B Z atp l-a1

1 t t 1+f3u1
Kt

The first two integrals in [5.14] are easily seen to be

convergent as long as -1<8<0 and a2<O. Convergence of the last

integral requires 1+8cu<O, or al)-1/8: this completes the study

of th~ control program, since the value function (and hence the

optimal policy) is shown to exist if and only if cu)-l/~.

Recalling [4.26], we have the following:

Proposition The control problem proposed at the beginning of

Section 5 has a solution if and only if

1 1
2

1+13a
r ) -It - + it (1 + -) + -z

B
p

B 2 B
2

49



This says that the value of the firm will fail to be finite

unless the expected real interest rate in terms of K, r-~ , is
p

sufficiently small compared to ~ , the expected growth rate of the
z

payoffs for given K. Intuitively, when the payoff function grows

too quickly and/or the price of K falls too fast, control policies

can be devised that produce cash flows streams whose expected

value over the infinite future fails to converge when discounted

at rate r.

6 - The characteristics of the optimal control process;

Connections to the engineering literature

In the previous sections the optimal policy for the firm's

problem under linear costs of control has been found, using

techniques based on economically intuitive thought experiments. In

this section the characteristics of the control process are

discussed, and the technical literature that has studied similar

problems in the abstract is referenced.

The reader should, first of all, be reminded of the

characteristics of the Brownian motion process assumed above for

the exogenous variables in the firm's problem, (P
t

) and {Zt}. The

Wiener process fW
t

), or standard Brownian motion, has the

following important property: W
T1

-W
TO

is distributed independently

of W
T2

-W
T1

for all T2)Tl)TO. This is very convenient, because it

implies that the state of the system is completely described by

the current value of Wt , independently of past events; but if the

process has nonzero variance, this property implies that rWtJ has

infinite variation, i.e. that Brownian motion "fluctuates very
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fast" (which is the reason why (dWt )2=dt, a result repeatedly used

above): Brownian motion moves both up and down in any interval of

time, no matter how small.

It follows that the firm considered in the previous sections

has to exercise control very quickly to maintain ~t/Pt (which

would be driven by Brownian motion in the absence of control)

between the control barriers a and ~~ at all times. In fact, Xt

increases or decreases only when nt/P
t

is equal to one of the

control barriers, and this only happens at distinct moments in

time: control is never exercised throughout the length of any

nonempty interval [Tl,T2]. This is the reason why Proposition 2 in

Section 3 above is completely unapplicable if uncertainty is

described by functions of Brownian motion: whenever control is

exercised, it is known that control will certainly not be applied

in the next instant.

The stochastic process followed by the control process tXt}

is called "singular" in the technical literature, and corresponds

to the "local time" spent at the boundaries by the underlying

Brownian motion process (see for example Harrison[1985] or

Karatzas and Schreve[1988]): though continuous (since it is a

continuous transformation of Brownian motion, which has continuous

sample paths) it only increases or decreases on a time set which

has total measure zero, being a collection of distinct points. The

"singularity" of tXt) 's sample paths lies in the fact that, though

they are continuous, differentiable almost everywhere and with a

derivative always equal to zero, they do decrease or increase so

that P(X
T2

-X
T1

-0)>0 for all Tl(T2. At its points of increase or
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decrease, Xt moves infinitely fast, though it never jumps: the

rate of control is infinite, making it impossible to use the

classic Hamiltonian analysis.

Optimal "singular" control problems have been extensively

studied in the engineering and operations research 1iterature1 .

The abstract "tracking" problem considered by those authors is the

following one: an operator controls the position of an object in ~

with the objective of minimizing the (possibly discounted) time

integral of a convex loss function depending on the distance

between the object and an exogenous stochastic process in

continuous time, assumed to be a function of Brownian motion;

control can be exercised to affect directly the position of the

object in IR, but is costly in both directions ("fuel" is expended

when control is exercised), or is actually prohibitively costly

when exercised in one direction (the so-called "monotone follower"

problem) .

The problem considered at the beginning of Section 4 could be

reduced in that form by the following transformation: a first-best

**policy for use of K could be defined as (K J, some function of

the exogenous processes {Zt} and {Ptl: the firm would then try and

** ."track" {K } by varying K, but would not achieve perfect track1ng

**because {K J has infinite variation (moves up and down infinitely

lSee for example Benes et a1.[1980], Chow et a1.[1985];

Harrison[1985] reports many related results, and proposes

applications to economic problems such as inventory or cash

balances control.
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often), and a control policy with infinite variation is infinitely

costly as long as Pt>P
t

(the purchase price of K is strictly

larger that its resale price). If Pt=Pt then, of course, control

**is costless and the policy that continuously tracks {K } is

feasible.

**Rather than deriving an expression for {K } and invoking the

technical literature, the two approaches taken above use economic

intuition to derive the optimal control boundaries. The technical

literature does note th~ equivalence between the full-fledged

singular control problem and a sequence of optimal stopping

problems 2 , although, once again, the optimal stopping problem is

highly abstract and devoid of economic content.

The technical literature also illuminates the connection

between the "singular control" problem and the more usual

Hamilton-Jacobi-Bellman equation approach to dynamic programming,

which assumes that control 'J ~ always applied at a finite rate:

Chow et al.[1985] show how the "variational inequalities" they use

to solve the singular control problem can be derived by taking the

limit as £~o of the Bellman equation for a penalized-problern, in

which the allowable rate of control is bounded by 1/~: the

penalized problem would have a solution of the "bang-bang" type,

such that control would (continuously) be enacted at the maximum

possible rate when it does take place, on time interval of finite

size; allowing the maximum rate of control to become unbounded,

2see Karatzas and Shreve[1984,1985].
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the time intervals over which control is enacted collapse to

individual points, and the resulting control process is singular.

8- Concluding comments

This Chapter discusses at length the solution to a class of

dynamic control problems, characterized by control costs that are

linear in the displacement of the endogenous state variables. The

solution is derived from first principles, highlighting the

economic intuition underlying the mathematics; the connection to

techniques studied in the technical literature, and to previous

work by economists on factor demand policies, is made clear.

The equivalence between the dynamic programming and optimal

stopping approaches is probably of independent interest. The

latter approach is particularly appropriate in the presence of

uncertainty, because when there are first-order adjustment costs

undertaking any adjustment is a risky proposition: the path of

exogenous variables can always turn out ex-post to be such as to

render adjustment inappropriate, and reversion of the control

decisions is costly. The optimal stopping technique sets out to

minimize the risk implicit in any control decision.

The set of techniques discussed here has wide-ranging

applications in economics: linear costs of adjustment produce

non-certainty equivalence in the firm's factor demand policies,

and models of investment and of labor demand have to be revised in

the light of the results found here.
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CHAPTER 2

IRREVERSIBLE CAPITAL ACCUMULATION AND THE STLJDY OF INVESTMENT
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"Capital" is the durable factor of production. A firm's

decision about use of capital today cannot be unrelated to

decisions about use of capital yesterday or tomorrow. If it were

possible to rent capital services on a smoothly functioning spot

market, firms could continuously adjust the amount of capital used

in production, and the user cost of capita] (Jorgenson[1963])

could be used in modelling demand for capital as the wage rate is

used in modeling demand for labor.

But in reality the use of capital1 cannot always be

costlessly adjusted. To obtain an interesting and tractable

dynamic programming problem, the assump~ion has often been made

that although faster adjustment of the capital stock incurs

increasing costs, the cost of infinitesimal adjustments is zero -

in other words, capital adjustment costs are aseumed to be

strictly convex, and to achieve a minimum at some level (at zero

net investment, at zero gross investment or maybe at some "normal"

level of investment). These adjustment costs may be internal to

the firm, or external to it and due to decreasing returns in

production of investment goods.

Most models of investment assume a certain environment for

the firm, and show that the ratio of the value of the firm to the

replacement cost of its capital cost (Tobin's Q) is the only

determinant of the investment decision if the firm produces under

1 or of labor: see Chapter 3 in this thesis. Modelling the joint
determination of several factor demands under linear costs of
adjustment should have high priority in future research.
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constant returns to scale and is perfectly competitive (see for

example Hayashi[1986]). It is clear that under these assumptions

there would be no reason for individual firms to exist, in partial

equilibrium: the size of the firm is only bounded by the capital

adjustment costs. Under the same assumptions, but allowing for

uncertainty, Abel[1983,1985] provides an explicit solution to the

dynamic investment problem, making simplifying assumptions

(similar to those made below) about the form of the stochastic

process facing the firm, of the demand function and of the

production function. Lucas and Prescott[1971] and Prescott[1973]

prove existence of competitive and oligopolistic equilibria under

uncertainty and convex costs of adjustment, giving some

characterization results. If costs of adjustment are modelled as

quadratic, it is possible to obtain characterizations of the

investment process in the presence of uncertainty (see for example

Sargent[1979a]), because the Euler equation that the optimal

invesmtment rule must satisfy is linear, yielding certainty

equivalence.

The models of investment based on convex adjustment costs

have not been very successful empirically (see Abel and

Blanchard[1986], 8al1[1987]), and one explanation of their poor

performance may be the assumption of a well-behaved adjustment

cost function.

Realistically, investment in productive capital is often

irreversible. From a macroeconomic point of view, industrial

plants are next to worthless unless used in production, because
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their direct consumption value is clearly very low. From a

microeconornic point of view, many productive facilities are

firm-specific, their reconversion to alternative uses being costly

if at all possible. Irreversibility is then potentially very

important for empirical studies of investment behavior.

Moreover, investment irreversibility can provide insights for

the theoretical and empirical treatment of aggregate prices,

production and employment: the dynamic behavior of these variables

will be non-standard if investment decisions are irreversible,

because firms will sometimes find themselves stuck with a Jarger

capital stock than the desired one. Ex-post, the cost of installed

capital is sunk; positive shocks can have very long lasting

consequences if they induce firms to invest and the capital stock

can then only be reduced by depreciation. In an open economy this

is probably relevant to some degree for the medium and long run

effects of exchange rate shocks~ On the other hand investment will

occur in spurts, when costs and prices are favorable enough for

firms to exercise their option to invest; such a nonlinear

investment function is very different from the one assumed in the

standard multiplier-accelerator models, and could give firm

theoretical foundations to Hicksian trade cycle theory.

Arrow [1968], Nickell [1974] and others have studied

irreversible investment decisions in a partial equilibrium,

2see Baldwin and Krugman [1986]· for a seminal treatment of these
issues, and Dixit[1987] for a more sophisticated treatment.
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dynamic optimization framework, assuming however that firms hold

certain expectations about the cyclical path of exogenous

variables. The same certainty equivalence assumption underlies. the

(mostly empirical) literature on "putty-clay" models of

investment, which assume that not only machine tools have no value

unless used in production but the labor requirement of existing

machines is fixed (see for example Ando et al. [1974]).

Sargent [1979b] developed a simple general equilibrium model of

irreversible capital accumulation, adopting a framework similar to

the one in Lucas and Prescctt[1971] and obtaining mostly

qualitative results.

Irreversible investment under uncertainty has been

extensively studied by financial economists (see McDonald and

Siegel [1986] and their references, as well as Ingersoll and

Ross[1987] for the case of interest rate uncertainty). Option

pricing techniques provide elegant solutions in the case of an

individual irreversible investment project with uncertain payoffs:

such a project will be adopted only when the expected discounted

payoff from investment exceeds the cost by an amount that depends

on the level of uncertainty, and can be impressively large for

plausible parameter values. Even risk neutral firms are, in a

sense, reluctant to invest when projects are irreversible and the

future is uncertain: if the irreversible project is adopted the

option to wait for some of the uncertainty to be resolved is given

up, and options are valuable even to risk-neutral agents. These

models primarily study the decision to adopt an individual
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investment project whose payoff is independent of past and future

investment decisions. The results are clearly relevant to the

study of investment from a macroeconomic point of view:

Bernanke[1983] notes that the level of uncertainty perceived by

firms is likely to vary cyclically, and emphasizes that

irreversibility effects are important for the understanding of the

cyclical behavior of aggregate investment.

But most of the option valuation models so far available only

consider the optimal timing for the adoption of an individual

project with given characteristic: neglecting the availability of

many investment projects of different sizes and with different

characteristics at different points in time, they do not provide a

proper dynamic investment model. The important fact that adoption

of an investment project today changes the menu of projects

available tomorrow should be explicitly taken into account to

clarify the relationship of the option pricing models to the more

traditional macroeconomic investment models. Pindyck~19~6]

applies option pricing techniques to the marginal investment

decision: his firm sequentially decides the optimal amount of

capacity to be installed, knowing that future demand (and

production) are uncertain and follow a geometric Brownian motion

stochastic process with known parameters.

This Chapter studies irreversible putty-putty investment

under uncertainty: capital has no value unless used in production,

but can ex-post be optimally combined with other factors to adapt

to news about the variables exogenous to the firm. Using the

60



results of Chapter 1, it is possible to reconcile the option-based

financial literature with Arrow's and Nickell's results under

certainty. The solution to the irreversible capital accumulation

problem has a closed form under a simplifying (but not totally

unrealistic) set of assumptions. Using this closed form solution

permits a straightforward comparison between the behavior of

investment under irreversibility and its behavior in the more

usual convex-costs-of-adjustment models; moreover, the dynamic

behavior and the ergodic distribution of the value of the firm, of

marginal Q and of average Q are easily derived, and the

implications of investment irreversibility for empirical work on

investment can be discussed.

Section 1 describes a simplified model of a firm faced by

exogenous uncertainty. Section 2 obtains the solution to the

investment problem, and discusses the dependence of its form on

the degree of uncertainty facing the firm. Section 3 derives the

long-run characteristics of irreversible capital accumulation;

Section 4 discusses the implications of investment irreversibility

for empirically relevant observable variables: the value of the

firm, the shadow price of capital relative to the purchase price

of capital, and Tobin's Q. Section 5 considers the implications of

the results for the interpretation of empirical evidence on

investment behavior, and comments on the realism and relevance of

the irreversibility constraint. Section 6 concludes.
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1 - A model of production and sales.

In partial equilibrium, a firm is characterized by its

production and demand functions, and by the form of the stochastic

processes it takes as givenu Consider then a firm endowed with a

Cobb-Douglas production function 3 and a constant elasticity demand

function:

O<u<l , 4»0

O</-lep<l

where Q
t

denotes production and sales at instant t (inventories

are assumed away for simplicity); ~ indexes the return to scale in

production: constant returns to scale are given by ~=1. B
t

is the

product price at time t, and ~ indexes the firm's monopoly power:

the inverse of the markup factor is equal to ~, and the firm's

monopoly power increases as ~ approaches zero. For a competitive

firm IJ equals 1. The factor of production L
t

, "labor", is

perfectly flexible and can be rented at the instantaneous price

W
t

: At is an index of technological progress. The capital stock,

3 the Cobb-Douglas production function is of course the workhorse
of investment theory; recent applications related to this Chapter,
in that the uncertainty facing the firm is modeled in continuous
time, include: Dietrich and Heckerman [1980], who solve for the
one-time choice of capital stock by a competitive firm producing
with decreasing returns to scale; Abel [1983, 1985], who studies
the investment problem under constant returns and perfect
competition when there are constant-elasticity costs of capital
stock adjustment; McDonald and Siegel [1985] extend Dietrich and
Heckerman's model to the case where there is a fixed cost for
production, so that the factory may be shut down; and McDonald and
Siegel [1986] derive the value of an investment opportunity in a
Cobb-Douglas plant of fixed size, and the optimal timing of its
adoption.
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K
t

, can be increased at any time by paying the unit price Pt , but

installed capital has no value unless used in production (i.e. its

resale price is zero). The parameter D
t

influences the position of

the demand curve (it may be a function of the consumers' income,

or of a price index for substitutes, that the firm takes as given

in its optimization): if ~=1, Dt=B
t

is simply the market price,

which a competitive firm takes as given.

Define the operating-profits function

subject to [1.1], [1.2]

Since there are no constraints on the adjustment of labor

input, this maximum is always attained by the firm; some algebra

shows that operating profits can be written as

where

f3 -
l-(l-a)4JJ.l

, -1<13<0

{l-a)4J~ 1

Z = at/JIJ [(tPJ.l(1-a)J1-(1-U>4>1J - [4>IJ(l-U>Jl-(l-U)4>IJ] [1+8J
t- l-(l-u)4>1J

1 -(l-a)et>J.l

The variable Zt summarizes at every instant the business

conditions for the firm: it is higher the higher is the demand

63



indicator D
t

, and the lower is the ratio of the flexible-factor

rental cost w
t

to its productivity At-

Uncertainty is introduced in the model by the assumption that

{Wt }, {At} I {Dt } and the purchase price of capital, IP t }, are

stochastic processes described by geometric Brownian motion in

continuous time. In words, it is assumed that wages, price of

capital and demand are always expected to grow at some constant

rate, but the growth rate fluctuates randomly, so that the outlook

farthe£ and farther ahead is increasingly uncertain. Future values

of the exogenous variables are jointly lognormally distributed,

conditional on their current values, with variance proportional to

the length of the forecast interval. 4

It is then easy to show that {Zt J , being a

constant-elasticity function of geometric Brownian motion process,

follows itself a geometric Brownian motion process (multiplicative

functions of lognormally distributed random variables are

lognormally distributed); denote ~z the drift parameter of {ZtJ

and a its standard deviation parameter, and similarly define
z

parameters for the stochastic process of the purchase price of

capital:

[1.5] dZt=Zt~zdt+ZtOzdWzt

[1.6] dPt=Pt~pdt+PtUpdWpt

4All variables shculd of course be expressed in real terms, i.e.
wages and demand should be deflated by the price of the
consumption basket of the firm's owners.
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where dWzt and dWpt are the increments of (possibly correlated)

standard Wiener processes.

The parameters ~ and a are linear combinations of the
z z

drifts, variances and covariances of the wage, productivity and

demand processes, with weights depending on technology and demand

~arameters. In empirical work it would be necessary to estimate

the importance of each source of uncertainty for the firm; but

here (Zt)' the shifter of the reduced-form profit function, is

taken as the primitive exogenous variable in the firm's problem.

The parameter 8 indexes the concavity of the reduced-form

profit function with respect to the installed capital stock. The

shape of the re~uced-form profit function depends on the degree of

monopoly power and returns to scale, as well as on the

Cobb-Douglas share of the flexible factor in production.If ~~=1

then ~=O, and the reduced form profit function is linear in K and

the firm is indifferent to the level of the capital stock; if ~=O

(a unit-elastic demand function), then ~=-1 and arbitrarily large

profits can be obtained by producing arbitrarily small amounts. In

both these cases the value-maximization problem of the firm is

ill-defined.

2 - Optimal irreversible investment decisions

Assume that the objective of the firm's managers is to

maximize the discounted expected value of profits, and that

- r, the required rate of return, is constant;

- the installed capital stock depreciates at the constant exponential
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-r (T-t) [ 1 1+f3e --- K Z dT -
1+/3 T T

rate o.

The firm's problem at any time t is then to choose a

contingent investment rule {Xt }, or - which is the same - a

stochastic process fKtJ, to maximize its value: the state of the

system is completely described by three state variables: the

installed capital stock Kt : the state of affairs Zt: and P
t

, the

price at which additional capital can be purchased. Denote

*V (Kt,Zt'P
t

) the firm's value if the managers follow the optimal

investment rule.

As noted in Chapter 1, lIirreversibility" is implied by the

resale price of capital being equal to (or lower than) zero, given

that the marginal contribution of capital to profits as defined

above is nonnegative: the firm will never discard installed

capital if the resale price is zero, since capital in place cannot

decrease the operating profits. But the ortimality conditions can

be better understood if the irreversibility constraint is

explicitly imposed and constrained maximization theory is used on

the value function.

Define then the value function, and thr~ related optimization

problem, as follows:

00

= ~~:,Et{f
t

subject to dKT= -oKTdT + dX
T

(capital stock dynamics)

and to dX t 2: 0
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Note that jumps in the capital stock are not excluded a

priori: the gross investment rate dXt/dt could well be infinite,

and for this reason the amount of control is not multiplied by dt

in the capital dynamics equation. The second integral in [2.1] is

defined in the Stiltjes sense, with {X
t

} as the integrating

function.

The expectation E
t

in [2.1] is taken ov~r the joint

distribution of the IKtJ, {P t } and {Zt} processes, conditional on

the information available at time t, taking into account that

investment decisions will be taken optimally (subject to the

irreversibility constraint) in the future.

At any time t, the irreversibility constraint imposes that

dXt~O, or, which is the same, Kt+~Kt_: heuristically, the

following Kuhn-Tucker first order conditions with respect to K
t

(or to dXt ) must necessarily hold:

[2.2]
- (r+6) (T-t) fJ

e K"

*The left-hand side of [2.2] and [2.3] is the derivative of V

with respect to K
t

+, the shadow price of capital. These first

order co~ditions are based, as usual, on a feasible perturbation

argument in which all controls except one are assumed given (in

probability distribution): the currently marginal unit of
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installed capital is therefore viewed, allowing for depreciation,

as the marginal unit throughout the infinite future. The firm

knows that conditions like [2.2] and [2.3] will be satisfied at

all future times: this defines the (yet to be found) probability

distribution of future capital stocks, which is used in taking the

expectation in [2.2] and [2.3].

We now provide sufficient conditions for existence of a

solution to [2.1], and sketch a proof of uniqueness of the optimal

investment rule:

Proposition

a) Provided that

1 1
r > (itp (1 + 8) - {J z 8

where

[2.4] <1 2
== <1: + <1; - 2 P <1z<1p P==(dWztdWzt]/dt

is the variance of the rate of increase of the process

{Zt/PtJ, the irreversible investment problem

*has a solution, i.e. the value function V defined in [2.1]

exists (is bounded);

b) if an investment rule [R] can be found that satisfies

[2.2] or [2.3] at all times, then [R] is the unique solution of

the optimization problem [2.1].

Proof:

a) If investment were reversible, so that the firm could at

any time buy or sell capital at price Pt , the risk-neutral

manager's problem would be the same as if there were a rental

68



market for capital, with instantaneous rental rate (r-~p+o}Pt;then

the capital stock would always satisfy the first order condition

(r-t} +6} P
p "r

implying that

and that

Consider the present discounted value of operating profits

under conditions of reversible investment: noting that the order

of expectation and integration can be reversed, by Fubini's

theorem, as long as both operations are well-defined, we have

[2.6]
-r(T-t) 1

e
1+13

-r(T-t) 1 {l+B }
e --- E

t
K

T
ZT dT =

1+13

t

1+8 l+B

I -r (T-t) 1 f )13 {[p ] 13 }= e --- r-~ +0 E
t

T

Z
ZT dT

1+/3" p
T

p 1+f3

Now note that [~] 8 ZT ,being a constant-elasticity
ZT

combination of lognormal variables, is lognorrnally distributed

given the information available at time t(T: ; the easiest way to

find its expectation is to use Ito's lemma, that gives

d[ 1+1/13 -l/fJ
] =Pt Zt

1+1/13 -1/f3
[(~p(l +

1 1
2

1+13 1C1 ) dt += P
t Zt -) - it + -

B
z

13 2 13 8
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13

It follows that

1+f3
+ -- a

p
dW pt

1+13
f3

1 1 0
2

1+8 1
( f1 ( 1+-) - it - + - ~ J(T - t )

P {3 z8 2 8 fJ

e

and it is easy to see that the integral in [2.6] converges if and

only if

[2.7]
1 1

r > [~p(l + 8) - ~z B
0

2
1+/3 1

+ - --- -J ' as was to be shown.
2 B 8

Imposing the irreversibility constraint and subtracting

investment expenditures can only decrease the value of the firm,

which therefore is bounded. 5

b)6 By standard Kuhn-Tucker theory, uniqueness of the optimal
..

investment policy follows from concavity of the maximand, V , at

times when investment is positive: the first order condition [2.2]

is then sufficient as well as necessary. (As to the alternative

first order condition [2.3], it is clearly not optimal to invest

when it applies, since positive investment would immediately

decrease the value of the firm).

*Concavity of V (Kt,Zt) follows from concavity in Kt of the

5 [2.7] turns out to be necessar~, as well as sufficient, for
existence of the value function~ ~ee the expression for the value
of the firm in [4.1] below.

6Ricardo Caballero suggested this line of proof.
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instantaneous operating profit function ll(Kt,Zt); since Kt +

increases linearly with dX t , the instantaneous cash flow function

*n(Kt,Zt)-PtdXtis concave in dX t . The value function V (Kt,Zt)is

the integral of instantaneous cash flows sample paths, over states

of nature and time, with positive measure (the joint probability

measure of density of ZT' P
T

( K
T

, and the discount factor); to

*prove concavity of V (.,.) in its first argument it is sufficient

to show that KT and -dXT are nondecreasing in Kt , t<T.
7

But

investment irreversibility implies that more investment at ·time t,

all else being equal, will never result in a lower K
T

or in a

*higher dXT (T)t), and therefore concavity of V (Kt,Zt)is

guaranteed.

[end of proof]

The firm's dynamic optimization problem is, on the basis of

this proposition, completely solved if an investment rule that

satisfies [2.2] and [2.3] can be found; this is typically a

difficult task, but in our framework the following can be shown to

be true using the results of Chapter 1:

1) Under the assumptions given above, conditions [2.2J and [2.3] are

satisfied if the firm invests following the rule:

7 a nondecreasing function of a concave function is weakly
concave; the current cash flow is strictly concave; and sums (or
integrals) of concave functions are strictly concave if one of the
elements is strictly concave.
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Whenever possible, install more capital so as to satisfy

al1 (K
t

I Zt) 1 K
f3

Z A

(r + 6 + 613 - ~zJ *t[R] = = - c
a K

t
P

t
P

t
A-l

where

2

1(~z -613-~p_:2) 2+2 (r+6-~p)a2[~ -613-~ - :) +- z p
1

8A = > -
2 13

(J

and
2 2 2

a -0 +a -2paa
z p z p

*NOTE: c , the ratio of marginal productivity of capital to the

purchase price of capital at times when investment is positive, is

a constant, i.e. it does not depend on time nor on P
t

nor on Zt-

2) The shadow value of capital is, if the firm adopts rule [R],

[2.8]
- (r+o) (T-t) {3

e KT ZT

K(3 Z
t

r + 0 + 58 - it
z

8 (-I3A) is the positive solution to the quadratic equation

0
2

2 1 1 0
2

1
2132 X - [~z 13 + 6 -~p 13 - ;- 13] X - [r+6-~pJ = 0

and it is pvssible to verify that -~A>l, implying that A>-l/~, as
long as the condition in [2.7] holds.
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3) The value of each installed unit of capital, regardless of the

possibility of installing more capital in the future, is

r+6-(it -6(3)
z

[2.9]

while the value of the opportunity to install capital in the future

· · b 91.5 g1ven y

[2.10]

It is possible to verify that, under the investment rule [R],

whenever investment is positive the shadow value of capital is

equal to P t (so that condition [2.2] is satisfied) and the

following holds true:

which can be interpreted to say that whenever a marginal unit

of capital is installed it is the case that v{.), the expected

discounted 'value of marginal profits from the currently marginal

units, exactly compensates the out-of-pocket cost of installation,

9This formula is the same as that found by McDonald and
Siegel[1986] for a single investment opportunity of given size. As
noted in Chapter 1, each infinitesimal increment of the installed
capital stock defines an investment opportunity (of infinitesimal
size) of the kind considered by McDonald and Siegel's optimal
stopping problem.
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P
t

, plus the opportunity cost of immediate installation, F(.): the

firm could delay installation and learn something about the future

evolution of the business conditions, as summarized by {Zt J I and

of the price of capital {Ptl; this opportunity to wait has value,

because in the immediate future the price of capital might

decrease (making delayed installation of the same unit less

costly) or business conditions might deteriorate, decreasing v(.)

and making installation of the currently marginal unit of capital

unprofitable.

*Figure 1 plots c as a function of a for several values of B;

values for the other parameters are given in the figure. The firm

is more reluctant to invest the higher is th~ variability of its

environment, summarized by a (note that a is a combination of

variances and covariances of the processes for demand, wage,

productivity, and capital price).

This is not surprising, because higher demand variability

worsens the "worst case" scenario, in which the firm regrets the

irreversible investment decision. Higher variance does not

symmetrically improve tlle "best case" scenario: whenever demand

increases, or wage decreases, or price of capital falls, the firm

can easily increase the capital stock. The irreversibility

constraint only binds in the case of adverse realizations of

uncertainty, and from the point of view of the firm effectively

truncates the (lognormal) probability distribution of future

states of nature. Bernanke[1983] refers to this insight as the"

'ba& news principle of irreversible investment' ... of all
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possible future outcomes, only the unfavorable ones have a bearing

on the current propensity to undertake a given project ... tI.

*When a~O it appears from the figure that c ~(r-~ +6), the
p

Jorgenson[1963] rental cost of capital: it can be verified

algebraically (using l'Hopital's rule) that this is indeed the

case as long as

[2.11] ~ -o8-~ > 0
z p

[2.11] implies that, under certainty, the irreversibility

constraint is never binding (the firm's desired dotation of

capital steadily increases).

If [2.11] is not satisfied, in the absence of uncertainty the

firm never wants to increase the capital stock, except when it is

set up and a capital stock is chosen taking the irreversibility

constraint into account: it is again possible to verify that, as

a~o, [R] converges to the appropriate limit for this case if

[2.11] is not true.

The value of the marginal productivity of capital that

triggers investment is higher, for a given a, if 8 is lower in

absolute value, i.e. the instantaneous operating profit function

is less concave in K. The reason for this is that, for a given

6>0, a large 181 implies that the marginal profitability of

capital increases more rapidly when gross investment is zero.

It is of course possible to invert the marginal condition in

[R] and find an expression for the firm's desired capital stock as

a function of the current value of Z and P:
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Recall that ~<O, so the desired capital stock is higher the

higher is Z (i.e. the lower is the wage and the stronger is

demand) I and the lower is Pt - Figure 2 plots the desired capital

stock for given Z and P, as a function of a, for several values of

B: higher uncertainty implies a lower desired capital stock,

because the firm knows 'that the "worst case" is very likely to

occur and hedges against possible decreases in Z or P.af capital

is decreasing in 181 for given P, Z and o. Desired capital

decreases in I~I for given P, Z and a: a firm with high I~I has

more monopoly power and/or more strongly decreasing returns to

scale, hence tends to supply less, and use less capital, to

maximize its profits.

This completes the normative analysis of the irreversible

capital accumulation problem: if the current capital stock K
t

is

*smaller than K (Zt'P t ) I the firm immediately invests so that

* *K =K . if K
t

is larger than K the firm does not invest (and the
t I I

capital stock is reduced by depreciation). Of course, since

downward fluctuations of Z are possible, the firm will sometimes

regret the investment decision; similarly, the firm will regret

having invested when P decreases at a rate higher than the

required rate of return: the same investment opportunity exercised

yesterday could be more profitably exercised today.
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Figure 2 K*
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3 - The steady-state characteristics of irreversible capital

accumulation

The previous section has derived and ~haracterized the

optimal irreversible investment rule, which could be of interests

to some firm's managers. Economists might also be interested in a

somewhat different perspective on the problem: if in fact managers

knew all along the optimal irreversible investment rule (and

therefore did not need to read the previous section), what would

be the empirically observable characteristics of optimal

irreversible capital accumulation?

Usually, normative theory straightforwardly characterizes the

behavior of endogenous variables: agents are provided by a set of

rules that at all times determines their behavior, and agents'

behavior uniquely determines the endogenous variables' paths. But

this is not true of the irreversible investment problem: the

managers of the firm do not continuously control the capital

stock. The model's endogenous variables have autonomous dynamics

most of the time, and determination of the characteristics of the

model from the point of view of an outside observer is of

independent interest.

The dynamic behavior of the model is interesting, though

difficult to describe formally. Investment occurs in spurts,

whenever the price of capital and business conditions are

sufficiently favorable.

This section is more simply concerned with the long-run

characteristics of irreversible capital accumulation: given that
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the firm is following the rule described in the previous section,

what should an observer (who is ignorant of the firm's history)

expect about the relationship of the firm's capital stock to other

observable quantities at any given moment in time?

To answer this, we have to compute the "ergodic" or "steady

staten distribution of some variable. The exogenous processes are

assumed above to be nonstationary, and therefore fail to possess a

steady-state distribution: but there are functions of the exogenous

processes and of the installed capital stock which do possess a

steady state distribution.

The ratio of the marginal profitability of currently

installed capital to the current purchase price of capital plays

an important role in the investment rule: it will be convenient to

define

[3.1]

This quantity follows a regulated geometric Brownian motion

if the firm follows rule [R]i Ito's lemma can be used to derive

the stochastic differential of ~t when the firm is not investing:

d~t = d[ K~ Zt Pt-
1

] =
13-1 -1

= B Kt Zt Pt (-OKtdt) +

1

Denote m the drift parameter of the geometric Brownian motion

process followed by {~t) when no investment takes place, and note
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that a (as defined in [2.4] above) is its standard deviation

parameter:

2m = -ol3+it -{J +0 -po (J
z p p z p

I 2 ~
a = a + a - 2pa a

z p z p

The investment policy [R] imposes on r~t} an upper control

*barrier at c : capital will be installed as necessary to prevent

*~t from being larger than c · ~t is then a geometric Brownian

*motion with a reflecting barrier at C I and applying Ito's lemma

*it can be shown that -In(~t) + In(c ) is a linear Brownian motion

2
process with a control barrier at zero, drift -(m-a /2) and

standard deviation a; the ergodic ditribution for such a process

is known10 to exist as long as the drift is negative, i.e. (from

the definitions above for m and a) as long as

This requires both that {~t} have a tendency to drift

(upwards) towards the investment point, and that there not be too

:2 2
much "noise" in the model: (] and a should be reasonably small

z p

compared to the drift parameters 6, ~ and ~ . If [3.2] is not
z p

*satisfied, the density of (-In(~t) + In(c ) J goes to zero

everywhere in [0,00), implying that the density of ~ degenerates to

a spike arbitrarily close to zero (the log function has infinite

slope at zero, but a geometric Brownian motion process can never

10see for example Cox and Miller[1965] page 225.
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reach zero from positive values): ~ converges to zero in

probability for all initial conditions. Some intuition about this

2
degeneracy can be obtained considering the certainty case: if a =

z
:2 2

a = a =0 and [3.2] is not satisfied, the firm would never
p

undertake a dynamic investment strategy, but would limit itself to

a once-and-for-all acquisition of capital when it is set up

(compare [3.2] with [2.11]): then the ratio of capital's marginal

profitability to its purchase price would certainly converge to

zero as t~. In the presence of uncertainty, the firm would invest

not only at the beginning of time but also at other points in

time, when business conditions and/or the price of capital are

*favorable enough to obtain ~t=c , even though [3.2] is not true;

but in the limit the probability of observing ~>O goes to zero all

the same, because good business condition~ and/or low price of

capital are so very unlikely if [3.2] is not true.

If [3.2] is satisfied, the ergodic distribution of the (~tl

process is well defined and is exponential (see Cox and

Miller(1965] , p.225):

prOb(-ln(~) + In(c*) ~ x] = 1 - l(x~O) e

2
2(m-s /2)

2 x
S

It is then a simple matter to invert the monotonic function

*f{~)=-ln(~t) + In(c ) and find the ergodic cumulative distribution

function of ~:

m

, J -- [Xc.]2~ - 1 ( *J[ 3 • 3] Prob l~ s x lOs xs c
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The steady-state density of ~ is plotted in Figure 3 for

different levels of undertainty. Naturally, if there were no

uncertainty this density would degenerate to a spike located at

(r-~ +6); as uncertainty becomes more important, and the upper
p

/ *
limit of the distribution shifts to the right as c increases,

more and more probability density is located at low values of ~.

Simple integration shows that, in the ergodic steady state,

the mean of ~ is

[3.4]

2

t = r m - a / 2] c * =
l m

2 2
-68+~ -(a /2) - ~ +(0 /2)

z z p p

2
-oa+~ -~ +a -pa a

z p p z p

*c

- *Of course, o<~<c (as long as [3.2] is satisfied and the

*expectation is well defined), since O<~t~C for all t.

~f [3.2] is satisfied, this expression can be shown to be

equal to r+6-~ when there is no uncertainty (0
2 = a

2 = 0), and to
p z p

be strictly less than that when there is uncertainty and the

irreversibility constraint is sometimes binding.

Figures 4a and 4b plot the ergodic mean of ~ as a function of

o and a , for several values of the technology and demand
z p

parameter ~. It is apparent from the figures that when the

parameters are such as to make the firm more reluctant to invest

ex-ante, they are also such that the firm will ex-post be using

more capital compared to the reversible investment case.

The presence of uncertainty, while making the firm more

reluctant ex-ante to undertake irreversible investment, also makes

adverse realizations of business conditions or decreases in the
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price of capital so likely that, ex-post, irreversible capital

accumulation results on average in higher capital int~nsity of

production. The empirical implications of this are discussed in

section 5 below.

4 - The value of the firm, average Q and marginal Q

It is possible to compute the value of the firm by

in~egrating the value of all marginal units of capital, both those

installed and those yet to be installed, given in [2.9] and

[2.10]. If the firm never installed any more capital, each of the

currently installed units would still, while progressively

depreciating, produce a cash-flow with present expected value as

given in [2.9]. Moreover, the firm does hold the option to install

further units: an option is always valuable, since it provides its

owner with the right, but not the obligation, to acquire an asset.

In the framework cOllsidered here, the option's value can be shown

to equal the expression F{~) in [2.10].

Simple integration th~n obtains the following expression for

the firm's value:

dx + JF[XtZttP t ] dx =
K t

=

86

dJt =



=
1 K1+8 Z

t t

1+8 r+6-(~ -68)
z

+

Note that -~A)l is necessary and sufficient for convergence

of the second integral above: this is guaranteed to be true as

long as the condition in [2.7] above is satisfied. If ~A~l, the

value function fails to exist because the value of the options to

install capital in the future does not converge.

*Also note that Kt<K is never observed, because if that were

the case the capital stock would instantaneously be increased to

* *K . The value function is defined over the K<K region as

V*[K*(Zt,Pt>,Zt,Pt]-Pt[K*(Zt,Pt>-K]: if for any reason the firm

* *finds itself with K<K , (K -K) units of capital are immediately

* * *purchased and V (K ,Z,P) is obtained. V is continuously

differentiable, is concave in the relevant region, and its slope

*equals P
t

at or below K (Pt,Zt).

Figure Sa plots the value of the firm against K for several

values of a (the values for the other parameters are given in the
z

figure); and Figure 5b perfurms the same experiment for several

values of n.
For given K, Z and P, the firm is more valuable the more

volatile the business conditions process is: as Pindyck[1986]

notes, when demand is very volatile the options to invest are

worth more. Most of the value of firms faced by high uncertainty

consists of the opportunity to invest in the future (the "growth
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options") .11

It is also worth noticing that firms whose 8 has a low

absolute value (indicating high monopoly power and/or strongly

decreasing returns to scale) have higher value, given K, for the

same value of Z and P: such firms earn large monopoly profits or

inframarginal rents.

It is easy to derive the dynamic behavior of the firm's

value, by Ito's lemma:

1 1 KflA+lzA 1
+ t t [(-O(8A+l)+A~z+(1-A)~p+-2 A(A-l)02]dt

A-1 -8A-l c*A p~-l

+ Aa d~~ t+ (l-A) a dW t ]z z p p

1 2
Noting that -o(BA+l)+A~ +(l-A)~ +- A(A-l)a = r from the

z p 2

definition of A, it is possible to verify that

*This is true by construction, since V is defined in [2.1]

above as the present discounted value of cash flows: the expected

l1Note that we assume here that the demand function completely
describes the market situation of the firm: in particular, if good
business conditions would induce other firms to enter the market,
then the process for the demand index Dt should take this into

account. In practice, it would be difficult to accurately specify
such a demand process for any individual firm, because barriers to
entry are not observable.
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proportional return (cash flow plus capital gains) from holding

the firm's stock for one instant is equal to the required rate of

return.

However, the fluctuations of the return around its expected

values are not normally distributed. In other words, the value of

the firm does not follow a geometric Brownian motion, even though

the processes that characterize the firm's environment do:

*and this expression is not proportional to V •

The firm's value fails to have a conditionally lognormal

distribution because the cash-flow process follows geometric

Brownian motion almost always, but has a singular component at

times of positive gross investment. From another point of view,

the total firm value is given by the sum of discounted operating

profits from currently installed capital and of the "growth

options": each of the components has normally distributed returns

under the assumptions made above, but the relative importance of

the two components varies as the firm finds itself closer or

farther from the investment point.

When far from the investment point, the options to invest in

the future are less valuable and their weight decreases: since the

options are more volatile than the profits from installed capital,

the conditional variance of returns decreases after an increase in
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the price of capital or a deterioration of the business

conditions. Since such occurrences also decrease the total value

of the firm, it appears that investment irreversibility should

imply lower variability of returns after abnormally low

realizations of returns: this is not true in the data (see for

example Nelson[1987]), and more research will be needed to clarify

the relationship between the firms' irreversible investment

decisions and the volatility of stock market returns. 12

The non-normality of returns from holding the firm's stock

implies that r, the required rate of return, cannot be computed by

a simple application of a Capital Asset Pricing Model. Further

research should relate this finding to the Capital Budgeting

literature's "project beta" concept, and obtain a relationship

between the required rate of return en the sum total of the firm's

assets and the rate of re~urn to be used in evaluating the

opportunity of undertaking incremental investment in the firm's

capital stock.

An important variable in empirical research on investment is-

the so-called "Marginal Q", defined as the ratio of the shadow

price of capital to the market price of uninstal1ed capital: Abel

12It will also be necessary to study the implications of the model
proposed here in a richer financial environment, allowing for a
choice of financing instruments (stocks or bonds). There probably
exist dynamic leverage policies that can reconcile the model with
evidence on stock values and produce smooth dividend payments. In
the model above, firms engaged in rapid investment pay negative 8
dividends (issue shares) at times of positive investment, when K Z
dt < dX P.
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and Blanchard[1986] argue that not only should investment be

related to this quantity, but that marginal Q should be the only

determinant of investment decisions.

Under the assumption of investment irreversibility, it is

eas7 to compute marginal Q from the results of the previous

sections of this chapter: recalling the expression for the shadow

value of capital in [2.8] above, and using the definition of ~t in

[3.1] ,

K{3 1 [K13 ZJA-1Z - _ t t KfJ
Ztt t * t 1A c P

t[4. 3] Qm = =
r + 0 + o{3 - (J P

t
z

1 [~~*JA-1~t
A

~t

=
r + 0 + 0/3 - it

z

It is easy to check that, under the investment rule [R] I Q ~1
m

always, and Q =1 when the firm is investing13 : moreover, Q is
m m

~:

monotonically increasing in ~t in the relevant range O<~tSC , and

it is therefore possible to compute the ergodic distribution of Q
m

using ~'s distribution derived above.

Unfortunately, the function Q =Q (~) does not have an iJl1verse
m m

in closed form, and it is necessary to invert it numerically to

find ~=Q-l(q). Differentiating [3.3] above we find the ergodic
m

13the same nonlinear relationship between irreversible investment
and Q is noted by Sargent[1979b], in his general equilibrium model.
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density of ~:

[4. 4]
m

2 - 1)
a

and it is then possible to compute the ergodic density of Q using
m

the relationship:

-1

-1 ] fr, [Q: 1 (q) J
~ ;:Q (q)

m

As long as condition [3.2] holds true, implying that

investment occurs "often" and ergodic distributions exist, the

ergodic density of marginal q has a sharp spike at 1: but lower

values of Q can be observed with positive probability, when firms
m

face very unfavorable business conditions or the price of capital

is very high.

Once numerical values are found for Q 's density, an
m

approximate ergodic mean can be computed by summation rather than

integration: Table 1 reports the results.

The mean of Q is strictly less than one, and is lower for
m

14smaller I~I and larger o. When 0=0 and [3.2] is true, marginal Q

is identically equal to one, since the firm is always investing;

if uncertainty is large, lower values will be more often observed.

14a small Inl implies that the shadow value of capital is only very
slowly decreased by depreciation, and investment is less likely to
occur.
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TABLE 1 - ERGODIC MEAN OF MARGINAL Q

a =0.051 (J =0.101 a =0.13
z z z

(3=-0.25 0.898 0.734 0.568

(3=-0.50 0.929 0.861 0.784

B=-0.75 0.938 0.900 0.856

Note to the table: mean of the ergodic distribution, ob~ained

by numerical approximation of the density; Q (~) was
m

numerically inverted at a grid of ~ points, 0.005

apart. Parameter values: P=l, Z=l, ~ =0.02, a =0.03, r=.15,
p p

0=.07, ~ =.02, P=.3.
z

*The formula f~r V could in principle be used to correct the

specification of empirical investment equations that use stock

market data to compute "average qU. Hayashi [1986] shows in a

convex-costs-of-adjustment model that average q is the correct

independent variable in an ~nvestment equation only under perfect

competition and constant returns to scale. Here it is necessary to

violate at least one of these conditions to obtain the investment

rule, but the results still provide useful insights. Average Q is

*the ratio of the market value of the firm, V , to the replacement

cost of the currently installed capital stock: this can easily

computed, for the model proposed here, as

(3
Kt Zt

1 P
t

1 1 [K8
Z )A

QJ. = +
-8A-l :.p:.1+13 r+6-(lt -6(3) A-l

z
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*Since ~t~ c under [R], and A-l>O, there is an upper bound to

average Q:

1 1

A-l -I3A-l

= + =
A 1 1 A(-{3A-l) + 1

A-l A-l -~A-l (A-i) (-~A-l)

Positive investment is only observed when average Q attains

its maximum value. There is however no lower bound on QA' as there

is no lower bound on Q : a firm can be very unlucky, and
m

experience such a bad drop in Z or such a large increase in P that

as to bring average and marginal Q arbitrarily close to zero.

Since A>l and -~A)l, average Q is a monotonic function of ~t

and therefore, like marginal Q, possesses an ergodic distribution

as long as ~t does. The same numerical procedure that was used for

marginal Q can be used to compute average Q's ergodic distribution

and ergodic mean: the results are reported in Figures 6a and 6b

and in Table 2.
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TABlE 2 - ERGODIC MEAN OF AVERAGE Q

a=0.051 C1 =0.101 a =0.13
z z z

f3=-O.25 1.506 1 .. 625 2.244

13=-0.50 2.538 2.520 2.436

B~-0.75 5.600 5.535 5.447

Note to the table: mean of the ergodic distribution, obtained

by numerical approximation; QA(~) was numerically inverted at

a grid of ~ points, 0.005 apart. The averages reported in

Figure 6 do not correspond exactly to those in Table 2

because a more widely spaced grid was used in constructing

the figure. Parameter values: P=l, Z=l, ~ =0.02, a =0.03,
p p

r=.15, 0=.07, ~ =.02, P=.3.
z

Average Q is very large if n is large in absolute value, as

implied by high monopoly r~wer or strongly decreasing returns to

scale: Hayashi [1986] shows that average Q should fluctuate around

one for perfectly competitive firms operating under constant

returns to scale and convex costs of capital adjustment, while

monopoly power and decreasing returns would produce higher values

of average Q. Empirically, average Q is not very high (see for

example Hoshi and Kashyap[1987]), which would seem to rule out

values of IBI much larger than .5 for the model proposed here if

the other parameters have the values reported in the note to the

figure.

The dispersion of QA's ergodic distribution is larger for

large 0 (see Figure 6), but the value of its ergodic mean is not
z

97



very sensitive to the degree of uncertainty facing the firm15 . This

is not surprising, however, since it has been shown above that

mo~e uncertainty causes more capital to be installed in the

~rgodic steady state, increasing the denominator of QA' but also

implies that the value of the firre is higher for any installed

capital stock, which incraases the numerator of QA- The net effect

of higher uncertainty appears very small.

5 - Implications of investment irreversibility for empirical work

The basic irreversibility ~nsight should prove useful in

empirical work on investment. Naturally, the simple model proposed

in Section 1 should be made more realistic for empirical work,

including for example inventory fluctuations r time-to-build16 (see

Majd and Pindyck[1987]), a downward-sloping supply function for

capital goods, and so on.

This section discusses the relevance of the results reported

15at least, no systematic relationship is found by the computations
reported in Table 2; it might be the case that the numerical
procedure used is not precise enough to uncover a (shallow)
relationship.

16It is straightforward to include fixed delivery lags in the model
proposed above: if the firm knows with certainty that orders will
be filled, say, in a year, then the optimal stopping problem for the
installation of the marginal unit of capital is easy to solve since
the value of orders can be computed by modifying V(Kt,Zt) to be the

expectation of discounted marginal profits from the time of delivery
on. Delivery lags make the firm less reluctant to invest, if
capital can be paid at time of delivery: both good and bad
developments can occur before the time of delivery.
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above for the interpretation of empirical work on iavestment17

based on more traditional theoretical models.

It is not easy to evaluate the quantitative relevance of

capital accumulation irreversibility: the constraint is more

important the more uncertain is the firm's environment, the lower

is the expected rate of growth of the economy, the lower is the

depreciation rate, the steeper is the marginal profitability of

capital schedule. The more binding is the irreversibility

constraint, the less attractive is capital accumulation ex-ante

(firms try to use less capital under severe uncertainty) but,

conversely, the more capital intensive is production ex-post.

In aggregate data, gross investment is positive in all

periods, all countries, all sectors: on the one hand, this is

evidence in favor of investment irreversibility, because if

capital accumulation were in fact reversible negative gross

investment would sometimes be observed. But on the other hand, if

gross investment were in fact continuously positive then the

irreversibility constraint, though present, would never be binding

and would be completely irrelevant to the empirical study of

investment. Aggregate uncertainty is, in fact, sufficiently low

that desired negative aggregate investment is very unlikely for

realistic depreciation rates.

17The potential importance of investment irreversibility for the
interpretation of all economic variables should not be neglected:
adverse shocks will cause the capital stock to be (ex-post) too
large; if flexible factor demands and prices are correlated to the
exogenous processes (wages, demand ... ), a high degree of
permanence in the effects of positive and negative shocks will be
found. Moreover, the response to positive and negative shocks will
be asymmetric if the former induce the firm to invest.
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Of course, even though gross investment is never observed to

be zero, it is conceivable that decreasing the aggregate capital

stock could sometimes be desirable; the mere possibility of a very

bad drop in (say) demand or prices should reduce the desired

capital stock (increase the marginal productivity of capital

required for additions to the existing capital stock to be

desirable) even in periods of positive gross investment, while the

installed capital stock would ex-post turn out to be excessive

after the realization of the bad shock. These effects could in

principle be large, as shown in Figure 4.

More importantly, it is likely that the strict positivity of

gross investment at the aggregate level masks binding

irreversibility constraints at the level of individual firms, or

maybe individual capital goods. After all, it is self-evident that

not all firms invest in all types of capital goods, at all times,

in all locations18 : steel mills in Pittsburgh were left unutilized

when the u.s. steel industry underwent the 70s crisis; and any

firm exposed to international competition must, during the first

half of the 80s, have regretted investment decisions made in the

late 70s. The variability of individual stock prices is 3 or 4

times larger than the variability of aggregate stock price

indexes: and, as documented by Romer [1987] , production and sales

are several times more variable at the industry level than at the

level of the whole manufacturing sector - suggesting that

l8The same point was made by the discussants of Hall[1977].
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uncertainty is even larger at the firm level. Given large

disaggregate uncertainty, the irreversibility constraint will be

more binding the more specific to a firm's needs capital goods

are: trucks can obviously be sold to luckier firms when a negati.ve

idiosyncratic shock hits, but machine tools and plants generally

have very little value unless employed for their original intended

use. This obviously introduces difficult cross-section and time

aggregation problems in the study of aggregate investment, which

are best left to future research.

It should be easier to apply irreversible investment theory

at a more disaggregate level: but to accurately gauge the

parameters in the individual firm's problem it would necessary to

obtain estimates of the elasticity of the reduced-form profit

function to capital (which depends on the elasticity of demand as

well as on the substitutability of more flexible factors to

capital), and of the expected rates of growth and variances of

demand, wages and capital prices. This is clearly a formidable

task: identification of demand disturbances requires a

specification of the market structure, while all the endogenous

variables are jointly determined as functions of all exogenous

variables: even in the simplest model, the relationship between

the variables is highly nonlinear, and sophisticated

identification assumptions would be needed to obtain estimates.

In particular, it should be noted that the characteristics of

the firm's production and demand functions are important in

determining the weights given to the exogenous stochastic
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processes' parameters when deriving the parameters of the

stochastic process followed by the business conditions index Zt:

for example, the rate of wage inflation and its variability are

less important if (l-a), the share of labor in the Cobb-Douglas

production function, is small: and if ~~ is close to zero (the

firm has a lot of monopoly power, or produces under strongly

decreasing returns to scale) the weight given to demand

uncertainty is large. The "degree of uncertainty" facing the firm

depends on the specification of technology and demand.

Leaving the aggregation problems to future research, it is

still possible to comment on the results obtained by empirical

research on aggregate and firm data: researchers often relate

investment in a period to average Q (see Hayashi[1982] and his

reference~) or to marginal Q (see Abel and Blanchard[1986]); other

researchers relate the change in the capital stock to the marginal

profitability of installed capital and to the user cost of capital

(see Jorgenson[1963] and Hall[1986]).

If in fact investment is irreversible at a more disaggregate

level, and idiosyncratic shocks are large compared to aggregate

ones (or, equivalently, there is low correlation among the

evolution of business conditions for different firms), empirical

research should be observing the average of distributions similar

to the ones derived in Sections 3 and 4 above, and depicted in

Figures 6 and 7. The distributions derived above are the

steady-state ones: in every period and sector the spread of
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average and marginal Q for individual firms and individual capital

goods will be determined by the history of idiosyncratic shocks,

while the location of the distribution will be determined by the

history of aggregate shocks.

To fix ideas, think of a researcher trying to explain

investment in a sector by the aggregate value (for the sector) of

observables such as ~ (the ratio of marginal profitability of

capital to its purchase price), Q (marginal Q, the ratio of the
m

shadow price of capital to its purchase cost) or Q
A

(average Q,

the ratio of firm's total value to the replacement cost of their

installed capital stock). News affecting the marginal productivity

of capital and/or its price for the whole aggregate will shift the

distribution of ~t: all the individuals that are then brought

*against the investment barrier c will be prevented from crossing

it by a spurt of investment, and the mean of the distribution of

~t will increase. Idiosyncratic shocks will, on the other hand,

simply "stir" or "mix" the distribution of ~t' without affecting

its location: as individual units get pushed against the

*investment barrier c , noisy movements will be generated in the

investment series, movements completely unrelated to aggregate

observables.

It has been shown above that both Q
A

and Q
m

are monotonically

related to ~t if investment is irreversible: then aggregate (over

time, firms and capital goods) Q and Q should be positively
A m

related to the amount of aggregate investment in any given period.
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In practice, researchers (see for example Hoshi and Kashyap[1987]

for average Q; and Abel and Blanchard[1986] for marginal Q19) do

find that Q has a fair amount of explanatory power when investment

is regressed on it, but observe that much of investment's

variability is left unexplained, that variables other than Q enter

significantly in the regression, and that the implied speed of

adjustment to shocks does not make much sense when interpreted in

the framework of the convex-cost-of-adjustment theoretical models

that underly this empirical literature.

Even admitting that costs of adjustment are in fact convex,

there are of course many explanations for the shortcomings of Q's

explanatory power. But it should be noted that investment

irreversibility is consistent with these findings: while in the

aggregate average and marginal Q should be positively related to

investment, there is no presumption that the functional form of

the relationship should be linear or loglinear, nor that no other

variables should be significant in a linear regression. Operating

cash flow, production and sales are also related to investment

(for a given price of capital), since they are positively related

to the m9rginal profitability of installed capital. Moreover, any

variable related to the idiosyncratic shocks affecting individual

firms and regions could well turn out significant in a regression.

19Abel and Blanchard estimate marginal Q via a vector
autoregression, under restrictive assumptions as to the functional
form of the profit function: without a model of aggregation, it is
not possible to tell whether this is appropriate under investment
irreversibility. The strong nonlinearity of the irreversible
investment model would suggest caution.
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Other researchers (see Hall[1977] for an excellent

exposition) have bypassed the convex-cost~of-adjustmentassumption

and, noting that gross investment is never zero in u.s. aggregate

industry data, have obtained the implication that (since condition

[2.2] above applies at all times) the optimal investment policy

should simply sets the marginal productivity of capital equal to

the Jorgenson[1963] user cost of capital. The implied control

policy is not dynamic; such an investment rule has little hope of

fitting the data, unless supplemented by a (largely unexplained)

lag structure in the relationship between the user cost of capital

and investment: such a lag structure could, of course,

inadvertently fit the complex dynamics implied by investment

irreversibility.

Hall[1986] tests empirically the equality of marginal

productivity and rental cost of capital, looking at long-run

averages of the twC) to eliminate the dynamic issues. He finds

that, in the industries he considers, the former is significantly

lower than the latter, and interprets this finding as evidence of

purposeful overinvestment, possibly as an entry deterrent on the

part of incumbent firms, or as evidence of increasing returns. Of

course, both of these explanations may be true in reality; but the

optimality condition tested by Hall does not hold if capital

accumulation is irreversible at the firm level: as shown above,

investment irreversibility implies that in the long run capital's

marginal profitability should be lower than the conventionally

measured user cost of capital, even under constant returns to
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scale, and this may well explain Hall's empirical finding.

6 - Concluding comments

Sections 1 and 2 of this Chapter propose a solution to the

problem of irreversible sequential investment under uncertainty;

choosing Cobb-Douglas technology and constant elasticity demand,

it is possible to solve for the firm's investment rule in closed

form as special case of the problem solved in Chapter 1.

The rule implies that, under uncertainty, the marginal

productivity of capital that triggeres investment is higher than

the conventionally measured cost of capital, because of investment

irreversibility, even though the firm's owners are assumed to be

risk neutral. A~ noted by Pindyck[1986], there is informal

evideuc~ that managers often discount the expected revenues from

an investment project at a rate far higher than the one implied by

any reasonable risk premium: the model considered here shows that,

under certain conditions, this may indeed be very close to the

optimal investment rule.

But the positive implications of investment irreversibility

are very different from its normative implications: although

ex-ante a higher marginal profitability of capital is needed to

trigger investment, suggesting that investment irreversibility

would make production less capital intensive, Section 3 finds that

ex-post the average marginal productivity of capital is lower if

investment is irreversible.

Section 4 derives expressions for observables variables that

106



are empirically relevant for the study of the firm; and Section 5

offers preliminary considerations about the empirical relevance of

the results.

It seems likely i~hat most investment projects are

i.rreversible tC) a large extent I and that idiosyncratic uncertainty

is large enough to make the irreversibility constraint important;

but to apply these observations and the model proposed in this

chapter to the study of aggregate investment behavior it will be

necessary to solve complex aggregation and estimation problems,

and to devise realistic and tractable assumptions about the degree

of flexibility in the use of installed capital and about used

capital markets.

Apart from the empirical study of investment, irreversibility

should interest macroeconomists by its interesting implications

for the dynamic behavior of prices, production and employment

across "business cycles". Of course, the stochastic process

assumed above corresponds to a random walk with drift, not to a

stationary process around a deterministic trend, and the "cycles"

would have to be redefined accordingly: in the model above

investment occurs repeatedly, possibly generating a fairly regular

cycle.
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CHAPTER 3

FIRING COSTS AND LABOR DEMAND

(Joint with Samuel Bentolila)
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1- Introduction

High unemployment rates have become the major problem for

most European countries in the 1980s. Several factors are behind

the large increases in unemployment after 1973.

The leading cause of the increase in unemployment after the

first oil price shock was probably the rise in real wages to

levels well above those compatible with full employment.

Contractionary demand policies followed by inflation-fighting,

budget-balancing governments surely bear the main responsibility

for the further rise of unemployment in the 19805.

Nevertheless, certain aspects of the European unemployment

experience suggest that a lack of labor market flexibility may

also have contributed to the worsening of the problem. In

particular, it is frequently argued that the adjustment to market

forces is inhibited by a number of features of the welfare state:

generous unemployment benefits, restrictions on hiring and firing,

restrictions on wage competition, etc. Pervasive state

intervention is thought to have led to rigidified, "Eurosclerotic"

-as dubbed by Giersch[1985]- economies, which could not cope with

the big shocks of the 1970s.

Flexibility (or the lack of it) is an ambiguous concept. We

can distinguish be~ween price and quantity rigidity. The first

refers to the unresponsiveness of the wage level and the sectoral

wage structure to labor market disequiliDria. The second refers to

the lack of labor mobility, the existence of restrictions on

hiring and firing by firms and of regulations on the arrangements
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for the utilization of labor (such as rules on the number of hours

per worker or the length of labor contracts). This Chapter

focusses on the second type of rigidity.

Blanchard et al.[1986] argue that in the high and stable

growth scenario of the 19605 firms could costlessly consent to

tenure and severance pay demands by workers, since employment

growth assured that excess hiring was a mistake of at most a few

months. The change to an environment of low and volatile demand

growth after 1973 then made the severance payments and tenure

arrangements set up in the 1960s very costly for firms. As

Dornbusch[1986] stresses, now taking on a worker is making a

near-irreversible investment: dismissing an employee is very

costly and workers seldom quit because of the slim chances of

find1ng another job. Consequently, firms have become much more

reluctant to hire, for fear of high firing costs in downturns.

From this argument these authors and others have derived the

policy recommendation that European labor markets should be made

more flexible.

This Chapter studies the effects of hiring and, especially,

firing costs on labor demand, with an application to four European

countries. It makes two basic contributions. First, a simple

continuous-time model for a firm's labor demand decision in the

presence of adjustment costs and demand uncertainty is provided.

It includes many of the variables that are often mentioned as

being relevant to the European case. Then, based on the

implications of the model and on results from solving the model
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for realistic parameter values, we argue that changes in firing

costs should not be expected to have large effects on hiring

decisions,nor on the average level of employment; rather, the

dynamic response of employment to exogenous shocks should be

strongly affected by the presence and size of firing costs.

The applicability of the model presented below is limited: it

does not deal with unemployment, but only with employment; it is

just partial equilibrium and it does not consider labor supply,

only labor demand at the level of the firm. In consequence,

statements about aggregate magnitudes cannot be made without

heroic aggregation assumptions. Nevertheless, we argue below that

the application of this model to the European unemployment problem

may still be very relevant.

A final caveat is that we do not consider the rationale for

the presence of firing costs or the larger set of labor market

institutions of which they are a part. In this sense, the

restrictions on dismissals may appear here to be "artificial" (in

Piore's[1986] words). The existence of firing costs presumably

reflects the value attached to employment security, and therefore

any comparison with a world with no ~iring costs may not be very

compelling.

The Chapter is structured as follows. The next section

reviews the nature and evolution of firing costs in Europe in the

recent past, discusses why firing costs may be relevant in

explaining the European employment performance, and briefly

surveys previous literature on the subject. Section 3 introduces
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the model and discusses its implications, both in terms of the

marginal propensities to hire and fire, and of average labor

demand. In section 4 we attempt to interpret the European

experience by solving the model for realistic parameter values and

by looking at the effect of firing costs on the dynamics of labor

demand and on its long run average. Section 5 concludes.

2- Facts and Motivation

a) Firing costs in Europe:

The main component of firing costs in many European countries

is the legal regulation of dismissals. Individual dismissal

legislation protects workers from being "unfairly" fired. The

underlying notion is that the employment relationship is ~ermanent

and so a dismissal is fair only if caused by the employee's gross

misconduct or lack of qualifications or by economic reasons

(redundancy). While the first category allows for summary

dismissal without compensation, the latter involve the following

procedures: prenotification to workers, their representatives and

government agencies, consultation with workers' representatives,

rights of appeal of the employer's decision to labor courts, and

severance payments. All these are avoided if the worker quits,

except in Italy, where severance payments are paid regardless of
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whether the worker is fired or quits. 1

The period of notice usually increases, ~mong other things,

with the length of service, which also determines how many months'

wages is the severance payment. If the dismissal is appealed to

the courts and declared unfair (events which are not very likely,

see Appendix 3) the payment is significantly higher.

Whenever a certain minimum number of workers is dismissed

within a certain period of time, collective dismissal legislation

applies, which basically lengthens notice and consultation

periods.

The burden of these regulations varies among countries. 2 The

ordering from less to more restrictive in the countries we focus

3on is: United Kingdom, Germany, France and Italy.

Normally very small firms (1 to 19 e~ployees) are exempted

from the employment security laws. 4 Employment in those firms in

France in 1985 was 25.8% of total employment (up from 23.3% in

lwe neglect this issue in what follows, and therefore probably
overestimate the pecuniary cost of firing in Italy in section 4.
We feel justified in doing so since non-monetary firing costs have
been very large in Italy, due to union militancy and social
custom.

2 'For a summary see Piore[1986] or Emerson[1987].

3This ranking is confirmed by a 1985 employer survey by the E.E.C.
(European Economy[1986]) and by data in Lazear[1987]. The Italian
economy, however, may not be so inflexible, given that State
financed temporary layoffs ("Cassa Integrazione Guadagni") are
possible and given the relative importance of the informal sector.

4In Italy, the threshold is 35 workers.
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1979) and 17.2% in Germany5 in 1970 (Sengenberger and

Loveman[1987]); thus the regulations cover firms representing

around 75% of total employment. The actual coverage is, however,

somewhat smaller because newer, part-time and fixed-term contract

employees are also excluded from this legislation.

As to the evolution over time, employment security provisions

in the law anJ in collective agreements were introduced in the

late 19605, mainly induced by the social unrest in those years.

They were then strengthened around 1975 to protect workers against

the income loss caused by unemployment ..Unions also showed a

strong opposition to mass firings. Finally, in the 19805, new laws

-prompted by the concern with labor market inflexibility- have

tried lowered firing costs and allowed for more unstable forms of

employment (see OECD[1986b]), while the attitude of unions towards

dismissals has also eased.

b) The relevance of firing costs:

In order to understand why firing costs can be relevant for

the explanation of the European unemployment experience, it is

necessary to quickly review a few stylized facts. We provide some

data in ~able 1.

51 to 10 employees.
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Table 1: Labor Market Indicators

FRANCE GERMANY ITALY U.K.

1. Unemployment: 1973 2.6 0.8 6.2 3.0

1986 10.3 6.9 10.Sa 11.5

2. Change in part-time

employment 1973-83 3.3 2.1 -2.0 1.7

3. Labor turnover:

Accessions: 1973 22.0b 34.0 33.0 32.0

1984 13.0 25.0c 8.0c 19.0

Separations: 1973 19.0b 33.0 26.0 31.0

1984 14.0 25.0 c 14.0
c

21.0

4. Long term unernpl.

1979 30.3 19.9 35.8 24.8

1985 46.8 31.0 47.9d 41.0

5. Youth unemployIraent

1980 15.0 3.9 25.2 14.1

1985 25.6 9.5 33.7 21.7

Notes: (a) 1985; (b) 1971; (c) 1982; (d) 1984.

Sources: (1) Standardized unemployment rates from OECD[1987a],
Table R12; (2) OECD[1985], Table 11; (3) Labor turnover (including
mobility between establishments) in the whole economy -in
manufacturing for France and U.K.- from OECD[1986b], Table II-3,
(4) Persons unemployedfor a year or more from OECD[1986b], Table
K; (5) OECD[1986a], Table 10.

The steady increase in unemployment since 1973 and its

acceleration in the 1980s resulted from a growing labor force and

a flat employment level, the latter being the net outcome of

declining agricultural and industrial employment and a slowly·

rising employment in services. We first describe the employment

composition and ~lows and then those of unemployment.
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In the last fifteen years, new jobs in Europe have had two

characteristics: they have been created mainly by small firms and

(except in Italy) they are part-time. Also, labor turnover rates

-for both accessions and separations- have fallen considerably.

There are no data on quits (except for Italy), but the available

information points to a fall in both the quit and the layoff rate.

The composition of unemployment has shifted towards the

unskilled, the young and the long term unemployed. With regard to

the flows in and out of unemployment, the former have

-surprisingly- grown modestly while the latter have dramatically

decreased. As shown by Flanagan[1987] , the likelihood of entering

unemployment has not changed very much but the probability of

finding a job once unemployed has sharply declined.

The review of these facts reveals that European unemployment

is not a problem of excessive job destruction but of lack of job

creation, so that any theory needs to explain why firms have

become more reluctant to hire and/or why the unemployed have

become choosier about jobs.

The interest in firing costs comes from their consistency

with those stylized facts. The change to a bleaker outlook after

1973 made firms want to stop hiring and to dismiss more. But the

increase in firing costs around 1975 would make them fire much

less and alSo hire less, hence the dramatic fall in turnover and

the stagnant employment level.

Second, as pointed out by Krugman[1987], with low flows into

and out of jobs, both the duration of unemployment and youth
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unemployment have to increase. Finally, jobs not covered by

employment protection legislation should increase at the expense

of those covered by it. Hence the rise in small-firm, part-time

and fixed-term contract jobs.

c) Survey of the previous literature:

The quasi-fixity of labor has been recognized by economists

for a long time, starting with the seminal work of Oi[1962j.

Adjustment costs have usually been modeled as being strictly

convex and, more specifically, quadratic;6 then, since faster

adjustment is increasingly costly, the reaction to any shock takes

place over a prolongued period of time.

On the one hand, the convexity assumption is hardly ever

justified in the literature. Holt et al.[1960] say it is a

"tolerable approximation over a range". It is normally used for

ease of computation: the linear-quadratic framework yields

certainty equivalence. As the model we present below makes clear,

this simplification leaves out an important aspect of a firm's

optimization problem: the degree of uncertainty about the future

is in reality one of the main determinants of a firm's employment

policy.

On the other hand, with employment protection laws the main

source of firing costs in Europe today, it seems that a fixed cost

per employee is a better approximation to reality (as noted in

Nickell[1987]). Therefore we use linear asymmetric adjustment

6For example Holt et al.[1960], Solow[1968] or Sargent[1978].
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costs in our model. 7

Some theoretical work has been devoted to model labor demand

with linear adjustment costs. Some models, in continuous time,

ignore uncertainty: Kemp and Wan[1974] , Nickell[1978, 1987] and

Leban and Lesourne[1980]: the latter two study the implications of

such costs on labor demand over the cycle. There are papers that

do consider uncertainty in discrete time: Caplin and Krishna[1986]

study the optimality of the labor demand rule with discrete Markov

shocks and Gavin[1986] has a three-period model with only firing

costs and serially correlated shocks to the marginal product.

Kelsey[1986] and Bentolila[1987] present infinite-horizon models

with uncertainty arising from serially independent shocks. In this

Chapter we model in continuous time the labor demand decision of a

firm subject to nonstationary demand uncertainty.

On the empirical side, apart from the work on quadratic costs

in the U.s.,8 Hamermesh[1987] shows that while the quadratic and

the fixed adjustment costs models cannot be distinguished at the

aggregate level, the latter performs much better at the individual

plant level. Burda[1986] estimates a model with linear and

quadratic adjustment costs, finding the latter non-significant in

several European countries. Finally, Burgess and Dolado[1987]

7It would·be~possible to solve the model under the assumption that
hiring and/or firing entails a fixed cost, independent of the
number of workers involved (the techniques in Harrison et
al.[1983] could be adapted for this purpose). This is certainly
realistic at the firm level, and generates (S,s)-type employment
policies which are the very opposite of the optimal policies under
convex costs of adjustment.

8For example Sargent[1978], Kennan[1979], Pindyck and
Rotemberg[1983] or Shapiro[1986].
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estimate, for U.K. manufacturing, a model of variable quadratic

costs of changing output and find them significant. We present no

econometrics here, but perform some simulations on our model, with

realistic parameter values, in section 4 below.

3- A simple model of firing costs

In this section we propose a model of dynamic labor demand

under uncertainty, and we briefly illustrate the solution

technique.

a) Problem setup:

Consider a firm with a linear constant returns to scale

production technology, that uses only homogeneous labor, L, as a

factor of production, and faces a constant elasticity demand

function:

[1]

[2] o < ~ < 1

where Qt denotes production and sales at instant t (inventories

are ignored), P
t

is the product price and ~ is the inverse of the

markup factor, so that the firm's monopoly power decreases when ~

rises. At is labor productivity, which is assumed to grow at a

deterministic exponential rate ~ .a

The position of the (direct) demand function depends on an

index Zt' which evolves in continuous time as a geometric Brownian

motion with constant mean growth rate ~ and standard deviation a:

[3]
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where Wt is a standard Wiener process. From [3], demand is

expected to grow at exponential rate ~, but fluctuates randomly so

that the outlook further and further in the future is increasingly

uncertain.

The firm pays a wage, 9w , to its workers and it also bears

labor adjustment costs: a hiring cost, H, per new employee and a

firing cost, F, per dismissed worker. However, if the worker

leaves voluntarily, the firm bears no firing cost. 10 The

instantaneous exponential attrition rate is o.

Since the marginal revenue from a ~onstant elasticity demand

function is always positive, equation [1] holds with equality and,

1-11 J1from [1] and [2], revenues are equal to Zt (AtLt ) ·

The firm chooses an employment and pricing policy to maximize

its value, defined as the expected present value of its cash flow

over the infinite future:

where X is a cumulative labor turnover process (dX>O means hiring,

9The wage is assumed constant for simplicity. It would be possible
to allow for a stochastic ~age (a geometric Brownian motion
process) and use the technique proposed in Chapter 1, as long as
firing and hiring costs were proportional to the current level of
the wage.

10As stated above, this is not appropriate for Italy. If capital
markets function well, severance payments like the Italian ones
can be simply modeled in this framework as part of the wage.
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dX<O means firing), r is given rate of return and 1{.) is the

indicator- function. By the usual feasible perturbation argument,

in which the currently marginal worker -allowing for attrition- is

viewed as the marginal worker through the infinit~ future, the

following first order conditions can be derived (see Chapter 1):

{JOO[ [ZT ] 1-11 ] - (r+o) (T-t) }
[4a] E ~A ---- e dT =

t t TAL
T T

w

r+o
- F

[4b]
w

r+O {Jro [ [ZT Jl-Jl ] - (r+o) ('r-t) }
- F < E ~A ---- e dT <t 'r

t ATLT

w
+ H

r+O

if dX =0t

[4c]
- (r+O) (T-t) }

e dT =
w

r+O
+ H

These conditions are easily interpreted. When firing, in

[4a], the firm equates the discounted expected marginal revenue

product (MRP) given up by dismissing a worker to the discounted

wage cost saved from doing so, minus the dismissal cost paid

today. When hiring, in [4c], the firm equates the discounted

expected MRP that the newly hired worker will provide to the

discounted wage cost plus the hiring cost today.

If there were no adjustment costs, the firm would hire
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whenever the expected MRP at the existing labor force was higher

than the future discounted wage cost, and it would fire otherwise.

The equations in [4] would then collapse to the simple rule that

the MRP be at all times equal to the wage. However, with

adjustment costs such a policy is not optimal since it implies a

high turnover, which is now costly. Therefore, the firm does not

necessarily hire immediately if demand picks up, since there are

current hiring costs and future expected firing costs. Conversely,

it is also more cautious before firing after a demand slowdown due

to current firing and future expected hiring costs.

This reasoning explains condition [4b], i.e. a range or

"corridor"ll around the no-cost-of-adjustment labor demand, where

inaction (dXt=O) is optimal. This is shown in Figure 1.

To decide its labor demand, the firm has to calculate the

expectation of the MRP in the future, which will in turn depend on

its employment policy. Concavity of the revenue function makes the

conditions in [4] sufficient as well as necessary to identify the

unique optimal employment policy.

With the assumptions laid out above,12 the optirr.al policy is

simple: allow the MRP to fluctuate between a lower (l) and an

upper (a) control barrier, which are constant (see below}. If the

MRP goes below!, dismiss workers so as to raise the MRP to ~; if

llLeijonhufvcd[1973] coined this word in a different context.
Dornbusch [1987] uses the term in the sense we do here.

12The crucial simplifying assumption is the independence over time
of demand increments. Otherwise, the barriers would be
state-dependent.
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it goes above a, hire new employees to bring the MRP back down to

(1,.

There are two equivalent ways to characterize the rule just

described. First, for a given demand level Zt' there exist two

boundary labor force levels, L
F

and L
H

, which satisfy [4a] and

[4c], respectively (see Figure 1). Suppose the firm has a given

labor force inherited from the previous period, LIe If L1 is

higher than L
F

the firm will fire down to L
F

; if L
1

is lower than

L
H

it will hire up to LH; for L1 between LH and LF it will keep

LIe

A second interpretation is to take the current labor force as

given and define two boundary demand index levels, zF and zH'

which make [4a] and [4c] hold true, respectively. For all values

of Zt below zF the firm will fire, for values above zH it will

hire and for Zt between zF and zH it will stay put.

b) Solution of the model:

The task at hand is to find the optimal resetting points a

and l, as a function of the parameters. It is possible to show (by

Ito's lemma, see e.g. Harrison[1985]) that the MRP follows a

geometric Brownian motion when neither hiring nor firing is laking

place:

with drift m - ~~ +(1-~) (~+6-~U2/2) and instantaneous standarda
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deviation s = (l-p)a. The optimal labor demand policy just

described implies that the firm regulates (in the sense of

Harrison[1985]) the MRP process, not allowing it to go below ~, or

above a.

It is then possible to compute the discounted expectation of

the MRP appearing in the first order conditions, as a special case

(nonstochastic adjustment costs) of the general problem in Chapter

1; the following is proved in Appendix 1 to this Chapter:

be a regulated geornetri~

Brownian motion, with starting value ijO at time 0, upper control

barrier at a and lower, control barrier at ~; then,

{Iro -At
; 11 0 ,a,.e}EO 011 t e dt =

a
1 ( aa2 .ea 2J

a
2 ( a

a
1

a

J.e - - a l.e
"'0 71 0

a 71 0
.e

= + +
:l-m

(a
Ui u

2 a 2 aiJ (a a a aJ
{A-m)u

1
.e - {l. .e (A-m)a

2
a i.e 2 -a 2.e 1

where a
1

and a
2

are (respectively) the positive and negative roots

of the equation (8
2 /2) u2 + (m - 8

2 /2) a - A = O.

We can now insert the expectation of the MRP (a highly

nonlinear expression in a and~) into the conditions in [4], which

then read:

w
[4al f(..f,fL,.f m,s,r+6) = - F

r+6
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[4c]
w

f(a,a,~ ; m,s,r+O) = + H
r+6

If F = H = 0, then it is possible to show that u = l = w

solves [4a,c]. If F ~ w/(r+O) then hiring decisions are

effectively irreversible (firing is never optimal), and a closed

form solution can be found as in Chapter 2. But in general it

is not possible to solve in closed form, and so the two equations

have to be solved numerically. Once a and ~ are known, the

corresponding hiring and firing points for labor (LH and LF ) as a

function of the strength of demand, Zt' and productivity, At' can

be found by inverting the MRP: this completely describes the

firm's dynamic labor demand policy.

We are also interested in finding out where, between the

barriers, is a firm likely to be at any point in time. It is

possible to derive the steady-state distribution of the MRP

between ~ and e13
, along the lines described in Chapter 2. Appendix

1 shows that the ergodic density function of the MRP is a power

function (the logarithm of the MRP is exponentially distributed) ,

with mean given by the following nonlinear function of ~ and ~:

2
[ ~~ ] [ :~ ]

[ m -ms /2]
4J, .e

T/ =

[
2m -1) [ :~ -1)2
S

a - .e

13Labor demand does not possess a steady-state distribution, since
the demand index is nonstationary.
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Of course, since a and ~ are not in closed form, we have to

resort to the numerical calculation of the ergodic mean.

It is also possible to solve the dynamic optimization problem

of the firm by marginal option valuation. When hiring a worker,

the firm is exercising a call option: the option to purchase (at a

price equal to the worker's discounted wage bill, plus a hiring

cost) a package containing an asset which pays dividends equal to

the currently marginal worker's MRP, and a put option to sell the

same asset (at a price equal to the worker's discounted wage bill,

minus the firing cost). When firing a worker the firm engages in

the symmetric operation: it sells the asset-cum-put-option package

and receives the call option. The optimal timing for these

operations can be derived by arbitrage arguments, and it can be

shown that the resulting employment program is the same as that

derived by the dynamic programming arguments above. 14

The analysis below focusses on how the boundary labor levels

L
H

and L
F

and the average labor demand depend on the firing cost,

and also on how the other parameters in the model affect such

dependence.

In what follows it will be assumed that firing costs are

significantly larger than hiring costs, as seems to be the case in

Europe (see section 4 and Appendix 3).

~4See Chapter 1. The model in this Chapter is isomorphic to the
general problem considered there, with Pt=H+w/(r+d) for all t and

Pt=-F+w/(r+o) for all t.
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c) Effects of a reduction in firing costs:

We now study the effects of a decrease in dismissal costs. 15

This is an exercise in comparative dynamics, since we are not

allowing for parameter changes when we solve the firm's problem:

we are comparing unrelated economies, each endowed with a set of

immutable parameter values.

A fall in F makes both current and future firing less

expensive. This makes future firing more likely and, through a

reduced likelihood of inaction, future marginal profits are more

heavily discounted. The narrowing of the corridor makes the

expected time elapsed before hitting a barrier decrease. In the

first order conditions in [4] these effects appear in the marginal

revenue product process and workers' expected tenure length.

For firing decisions (so that [4a] applies), the fall in the

cost of dismissing implies that the expected MRP of the marginal

worker has to be higher, i.e., the firm fires more. The magnitude

of this effect is large, since the current firing cost is neither

uncertain nor discounted.

The impact of a fall in F on hiring decisions is not

immediate from equation [4c], and so we rewrite it with F

appearing explicitly. Define T (a random variable as of time t) as

the first firing time after hiring time t. Then, by an application

of the strong Markov property of Brownian motions (see Appendix 2)

equation [4c] becomes:

15For a detailed exposition of the discrete time case, see
Bentolila[1987].
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[4c' ]

= H +
w

r+o [ {
-<r+6) (T-t)}] {-<r+6)(T-t)}

l-Et e + F E
t

e

This equation has a fairly intuitive interpretation: the firm

will hire a worker when the marginal revenue he is expected to

provide before he is fired (or quits) equals the hiring cost plus

the present value of his wages while in the firm, plus the firing

cost at the (random) firing time T, discounted to the present. The

latter is the "shadow hiring cost" component of firing costs,

which shows that the existence of such costs inhibits hiring.

The reduction in firing costs is the fall in F in the right

hand side; but it also shortens workers' expected tenure, (EtT-t) I

which affects all the other terms in [4c']. More specifically,

since r+o)O, it increases the discount factor multiplying the

firing cost F, reduces that multiplying the wage cost and it also

decreases the number of periods over which the MRP is taken into

account.

The total effect is positive, i.e. a decrease in firing costs

will make the firm less reluctant to hire: but the larger F the

smaller is this effect. The reason is that the larger F, the

longer is expected tenure (EtT is higher), and the smaller is the

discount factor multiplying F <i.e. closer to zero), and so a

given reduction in F will not reduce the right hand side of [4c']

129



as much. Thus, the increase in labor demand will be smaller too.

The implication is that a reduction in firing c~sts need not

have a significant effect on the propensity to hire, while -as

shown above- it will definitely increase the propensity to fire.

On the other hand, the propensity to hire is very much affected by

hiring costs, which are not explicitly dealt with in this section.

Figure 2 shows the asymmetry in the impact of F on the labor

demand boundaries (in terms of the MRP, the graph would be the

mirror image, i.e. a -which corresponds to LH- would slightly

increase while i would strongly decrease). The dashed line is the

steady-state mean of labor demand for a given value of the demand

index z. For the realistic parameters values used in the Figure,

the size of firing cost has practically no influence on average

steady-state employment, which is however slightly higher if

firing costs are large. Similar computations reveal that average

labor demand is a strongly increasing function of firing costs if

the attrition rate 0 and the growth rate a are small, and the

uncertainty parameter a is large.

Figure 3 compares the steady-state distribution of the MRP

(derived in Appendix 1) for economies with different firing costs.

In the absence of both hiring and firing costs, the MRP has a

degenerate distribution: it is a spike at w=l. Small adjustment

costs (in this case F) already cause the distribution to spread

out considerably. Higher F means that in bad times the firm will

be less willing to fire and so the likelihood of observing lower

values of the MRP (higher employment) increases, apd that is why
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the mean of L increases in Figure 2.

The distribution is strongly skewed towards the hiring

barrier because there is a natural tende~cy to hire if,

realistically, the demand growth and attrition rates are positive.

Thus the probability of a dismissal is quite low already at

moderate firing cost levels. This explains the lack of a

discernible effect on the hiring boundary in Figure 2, and makes

the large rise in the firing boundary relatively unimportant: once

firing costs are large, the firm will very seldom be near the

firing barrier.

c) Comparative dynamics:

Once the effects of adjustment costs on labor demand are

known, it is interesting to ask how other parameters enhance or

dampen their impact. Again this is an exercise in comparative

dynamics, i.e. we study the behavior of firms facing different

environments but we do not model the firms' raaction to changes in

the parameters.

An increase in the mean growth rate of demand, ~, reduces the

probability of future desired firing and increases that of future

hiring. Workers' expected tenure increases, making firing costs

less important (but hiring costs more important). This raises

expected marginal profits and thus raises both boundary labor

levels, L
F

and L
H

(see Figure 4). As ~ rises, the firm is more

likely to be near the hiring barrier, therefore the distribution
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skews towards LH and so does its mean (dashed line in the graph) .16

The effect of an increase in the rate of productivity growth,

is qualitatively similar to that of demand growth: both

~ ,
a

productivity and demand growth increase revenues (although price

and quantity are affected differently).

When the variance of demand, a 2 , increases, the likelihood of

large changes in the demand index rises, so that the firm would be

likely to dismiss and hire more often, and both types of

adjustment costs become more important. This discourages both

hiring and firing, and the corridor opens up on both sides in

Figure 5: the firm will start firing at a higher LF and hiring at

a lower LH• With Iowa, F higher than H and positive growth and

attrition, the distribution is skewed towards hiring. As a

increases, the distribution spreads out and so the mean shifts

towards the firing barrier (dashed line in the graph).

An increase in the attrition rate, 6, works very much like

demand growth (Figure 4), making firing costs less relevant

(workers leave voluntarily more often) but hiring costs more

important (there are more quits to replace and train); i.e. both

L d L · 17 A·· k h·· l-k 1 f thF an H 1ncrease. ttr1t10n rna es 1r1ng more 1 e y or e

firm; the mean shifts towards LH and is lower the higher is the

16This is a statement about the steady-state distribution of the
MRP: the picture depicts labor demand for a given Z value. Of
course, an economy with higher a will have higher labor demand
over time as Z will grow faster.

17If H is high enough, LH may fall, as a function of 5, over a

range of high attrition rates.
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attrition rate.

A rise in the required rate of return, r, also ~owers the

weight of future profits, so the impact is like that of an

increase in o.

Finally, consider an increase in ~, the inverse of the markup

factor, i.e. a reduction of the firm's monopoly power. This

reduces the elasticity of the profit function to employment: the

marginal profit curve is flatter. In addition to supplying more

output for any given value of Zt (i.e. the labor demand mean moves

towards the hiring barrier), the firm is not very much hurt by

deviations of employment from the no-frictions optimum, and the

corridor widens.

The combined effects of all parameters are hard to gauge. But

the most interesting interaction is the one between the magnitude

of firing costs and the degree of uncertainty about the future

evolution of demand, which is illustrated in Figure 6: firing

costs are more relevant the more uncertain is the firm's outlook.

The main contribution of the model proposed in this section is the

explicit treatment of uncertainty and dynamics.

4- Numerical solution of the model

a) The two regimes:

We now solve the simple model laid out in the preceding

section, for realistic parameter values, in an attempt to quantify

the effects of firing costs in the European experience.

We take the first oil price shock as a watershed between two
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distinct "regimes". Before 1973 demand growth was quick and

steady, productivity growth was high and workers were not afraid

of quitting, because jobs could easily be found. In contrast,

after 1973 demand growth became low and more volatile,

productivi,ty slowed down and workers became reluctant to qui t

because of the difficulty in finding jobs. Finally, around 1975,

labor security provisions were tightened by governments and unions

trying to avoid massive dismissals.

We define the years from 1961 to 1973 as the first regime and

1975 to 1986 as the second regime. 18 Table 2 shows the sample

period averages for the two regimes. ~ and a are obtained from the

industrial production index. a is equal to three times the

standard deviation for the industrial sector as a whole, as a way

to capture the fact that firms suffer from idiosyncratic shocks

that are averaged out in the aggregate data (for the U.S., this

has been documented by Romer[1987] at the industry level). The

estimate of 6 comes from several sources
19

and we derive rough

proxies for F from the legislation and actual data (see Appendix

3) .20· With two exceptions (0 in Germany and &a- productivity growth

- in U.K.) the stylized facts are confirmed by the data.

18We exclude the year 1974 to have a clean separation of regimes.

19In Italy, the drop in 6 might be exaggerated, since 6 corresponds
to firms with 10 workers or more in Regime 1 and with 50 workers
or more in Regime 2, and there is evidence showing that labor
tttrnover is highest in small firms in Italy, see Contini and
Revelli[1987].

20In the absence of enough data on the rise of F, we set it to one
third.
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Table 2: Parameter values

*Regime
FRANCE

1 2
GERMANY

1 2
ITALY

1 2
U.KINGDOM

1 2

{J

o
{J

a
F

5.5 0.7 4.8 1.4 6.2 1.2 2.9 1.0

6.5 12.4 11.4 10.5 10.0 16.2 8.6 11.6

12.7 7.9 22.0 14.1 14.7 6.5 22.7 12.7

4.9 2.0 4.6 2.9 5.1 2.4 3.4 3.7

.687 .916 .562 .750 .812 1.083 .187 .250

Other parameter values: r=15, ~=.6, H= 1 month's wages (i.e .. 083).
Notes: Parameters are in percentage terms, at annual rate; hiring

and firing costs are in terms of years of wages (see Appendix 3).

* 1=1961 to 1973, 2=1975 to 1986.

The results we are about to present should be taken with

caution. First, ~, a and ~a are calculated from production and

-for ~ - employment, which are the net result of endogenousa

decisions of all firms in the industrial sector.

Second, for complete realism we should consider many sources

of uncertainty (such as energy prices, exchange rates, and

monetary and fiscal policy), and allow the firm to h~ve several

sources of flexibility, such as the substitution of capital or

materials for labor, the use of overtime, temporary layoffs or

subcontracting, and the management of inventories. We think,

however, that industrial production summarizes a firm's stochastic

environment sufficiently well for the exercise performed here, and

we subsume all the firm's flexibility in the single parameter ~,

which determines the instantaneous revenue function's elasticity

to employment.
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Third, legally mandated firing costs started to go down early

in the U.K. (1979) and Italy (1980), so that our regime 2 was in

these two countries much shorter than we assume. Finally, we have

not calibrated the results with the (very scarce) available data

on tenure lengths: with firing costs as large as those reported in

the table, firms should very seldom fire in our model, and this

mayor may not be confirmed by the data.

Let us focus on the effects of the regime change on the

boundary levels LH and LF , shown in Table 3. The changes in ~, ~a

and, especially, a lower the hiring boundary LH, i.e. firms have a

lower labor force before they start hiring. The reason for the

di.?erging impact of 0 is that lower attrition makes hiring costs

matter less.

On the other hand, the reductions in ~, ~a and 6 make LF

fall. With lower expected demand and productivity growth, and less

quitting, firms start firing sooner. The increase in volatility

(0) makes firms be more cautious, so this (small) effect goes in

the opposite way, as does the increase in F, which is the single

most important determinant of L
F

.

The effects on the hiring barrier are smaller than those on

the firing barrier. This is reasonable since the fall in ~, ~a and

6 all make firing costs more important and hiring costs less

relevant. Still, the effect of higher uncertainty and lower growth

on the hiring boundary is far from negligible: in France and

Italy, where firing costs are more important, the change in the

parameters induces a 4-7% lower marginal desired employment in our
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model, with the wage and the demand level given. Although we do

not model the supply side of the labor market, and real wage

stickiness is of course necessary for any unemployment pattern to

be observed, this increased reluctance to hire can probably

explain the prolonged high levels of unemployment even in the

comparatively strong economic environment of the 19805: this is

precisely the point stressed by Blanchard et a1.[1986].

The steady-state average labor demand is hardly affected by

the parameter changes, except marginally for the variance and more

importantly for the at~rition rate. The .combined effect is an

increase in the mean: firms are on average closer to the firing

barrier in regime 2 than in regime 1 (the percentage changes are:

France, 1.8%, Germany, 1.7%: Italy, 4%; and U.K., 2.2%).

Table 4 shows the effects of the change in regime on the

marginal revenue product boundaries a and !. This figures are

interesting because, by reversing their sign, they show by how

much would the wage have to fall to induce hiring or firing at the

same point as before the regime change, other things (such as

demand strength) equal. Finally, Table 5 shows the effects of

different percentage decreases in firing costs on the boundary

labor levels once the economy is in regime 2. It confirms our

previous assertion that a change in firing costs strongly affects

the propensity to fire but not the propensity to hire.
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Table 3: Effects of the change in regime on L
F

and L
H

(%)

u. KINGDOM
LH LF

o

o
it

a
F

All

-0.2 -10.4 -0.2 -5.8 -0.4 -11.0 -0.1 -2.1

-2.1 0.1 0.3 -0.0 -2.8 0.1 -1.0 0.1

0.8 -14.7 1.0 -19.2 1.0 -26.8 1.5 -12.4

-0.2 -9.4 -0.2 -4.4 -0.3 -9.0 0.0 0.5

0.0 32.1 0.0 35.3 0.0 43.7 0.0 11.5

-4.3 -17.3 • 8 -10.9 -6.8 -27.8 -0.2 -6.5

Table 4: Effects of the change in regime on MRP
F

and MRP
H

(%)

(J

o
(J

a
F

All

0.1 4.5 0.1 2.4 0.1 4.8 0.0 0.9

0.9 -0.1 -0.1 0.0 1.1 -0.0 0.4 -0.0

-0.3 6.6 -0.4 9.0 -0.4 13.3 -0.6 5.5

0.1 4.0 0.1 1.8 0.1 3.8 -0.0 -0.2

0.0 -10.5 0.0 -11.4 0.0 -13.5 0.0 -4.3

1.8 7.9 -0.3 4.7 2.9 13.9 0.1 2.7

Table 5: Regime 2- Effects of a fall in firing costs on L
F

and L
H

(%)

10%

20%

50%

0.0 -7.6 0.0 -8.3 0.0 -8.5 0.0 -3.2

0.0 -14.5 0.0 -16.0 0.0 -16.2 0.0 -6.3

0.0 -32.6 0.0 -35.7 0.0 -35.9 0.0 -15.5
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The parameter values in the previous subsection are, at most,

ballpark figures, and correspond to the whole industrial sector.

There may be measurement errors, and individual sectors behave

differently from the aggregate. In providing parameter values for

our solutions, we have tried to get reasonable estimates of

firm-level uncertainty and flexibility. The behavior of sectoral

employment depends on these parameters in a somewhat loose way,

but we leave the treatment of aggregation for future research.

Also, while demand for industrial products has been growing on

average, some industrial subsectors' production has been steadily

declining. Therefore, while the average growth and attrition we

find allow for infrequent firing, negative growth (which is

usually accompanied by very low attrition) means that sectoral

firing will occur, and this would not show up in our calculations

above.

Sensitivity analysis was performed to check the robustness of

the results. These are not reported in detail, given the roughness

of the exercise. The main conclusions are: (a) The fall in LH is

very robust to most parameter values, but sensitive to the values

of 0, 6 and H; the fall in L F is quite sensitive to all

parameters, specially to F. (b) If volatility at the firm level is

higher than we assume, L
H

falls more and LF falls less than in the

baseline, which accords with the European experience (hiring

freeze, not much firing).
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b) - Implications for the European experience:

We now explore the implications of our model for the behavior

of labor demand in Europe. There are two different issues: first,

the change in the steady-state distribution of the MRP inside the

corridor caused by the regime change and, second, the dynamics,

both those caused by movements of z (the fundamental business

conditions) within a regime, and those following the regime

transition ..

Section 3 derived the steady-state distribution of labor's

marginal revenue product: with realistic parameter values, this

distribution is skewed towards the hiring barrier. Out of the

several parameter changes, let us first address the increase in F.

Average long-run labor demand, which is inversely related to

the average MRP, is an increasing function of the magnitude of

firing costs (although the increase is very shallow with realistic

parameter values, it becomes very pronounced if the attrition rate

is small or the demand growth rate is negative). This is at first

sight quite surprising: we are raising firing costs and

keeping the wage fixed, hence increasing the cost of labor, and we

would expect the firm to use labor more sparingly. But firing

costs prevent firing so much more than hiring that they increase

average employment. There is a "ratchet effect" built in the

optimal policy: the firm knows that marginal workers may one day

have a low MRP and/or firing costs will have to be paid, but this

possibility is heavily discounted since hiring occurs in good

times, and bad times are far into the future. Ex-post, firing is
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less likely to occur if firing costs are large, and so average

employment increases -which may be a rationale for workers

organizations' support for severance-pay legislation.

The impact of higher firing costs on the steady-state average

labor demand is almost negligible with the parameters in our Table

2 baselines (which are realistic for the industrial sector of

those European economies). But the effect on the ergodic mean of

the large fall in the attrition rate is high (from 1% in France to

2.1% in the U.K.): in the new environment, firms are much more

reluctant to hire, but now hired workers quit much more rarely.

The positive impact on the long-run mean is also magnified by the

higher degree of uncertainty. In summary, all parameter shifts

tended to lower the average MRP, i.e. raise the mean of labor

demand. Again the interpretation is that firms would in steady

state be likely to be closer to the firing barrier than before.

The latter point, of course, raises the issue of how long it

takes to reach the new steady-state MRP distribution, which leads

to the study of the dynamics implied by the model.

Consider first the dynamic behavior of employment within a

regime: firing costs are clearly not always harmful for

employment. They reduce labor demand in good times (as the firm

requires a higher marginal revenue product to start hiring), but

increase labor demand in bad times. To illustrate this point, in

Figure 7 employment histories of economies with different firing

costs are plotted for the same exogenous demand path. The

implication is that adjustment of employment to exogenous shocks
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is more sluggish in an economy with high firing costs.

From our results it should be clear that large firing costs

do not decrease long-run average levels of employment: rather, the

employment performance of economies where firing costs are large

should be dynamically different. The results in Gordon[1987]

provide some empirical support for this view: the ranking of the

four countries we analyze in terms of the size of the labor input

response to output movements is inversely related to their ranking

in terms of firing cost magnitude. Moreover, the slow speed of

adjustment of labor repeatedly found by researchers (see

Nickel1[1987]) may not be reflecting a smooth path originated by

quadratic adjustment costs (as usually assumed) but the inaction

of firms inside the corridor.

We can then discuss the dynamics implied by a regime change:

what happens if a large, aggregate negative shock occurs, and at

the same time the parameters of the stochastic process and the

firing costs are suddenly and unexpectedly changed, as we think

was the case in the early 1970s?

Assuming that by that time firms were distributed between the

barriers according to the steady-state distribution (shaped like

the ones plotted in Figure 3), most firms would be close to the

hiring barrier. In the aftermath of the first oil price shock, the

negative change in fundamentals (demand, wages) would shift the

whole distribution towards the firing barrier, but only a very

small number of firms would immediately fire, given the

concentration near the hiring barrier and the higher firing cost.
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It is not possible to verify this implication since dismissals are

not distinguished from quits in official data, but casual

empiricism suggests that labor shedding by large European firms

was in fact very small during the 1970s. Thus, given a

slowly-adjusting real wage, employment would had certainly been

lower in Europe had high firing costs not prevented firms from

shedding redundant workers.

Since the bulk of firms that used to be close to the hiring

point before the oil shock were carried far from it by the

negative change in fundamentals, and the hiring barrier itself was

shifted away, in the ensuing years most firms would find their

labor force too high and would just let attrition reduce it. Even

though idiosyncratic uncertainty would be smoothing the

distribution of firms within the new barriers, given the sharply

reduced quit rate it took a long time to bring any firms close to

the hiring barrier. Some firms, on the other hand, were firing.

Changes in aggregate business conditions (demand and real wages)

were in the meantime moving the center of the distribution between

the new hiring and firing barriers; but the mild recovery of the

1980s was, in this framework, not large enough to bring a

significant number of firms to the hiring barrier.

Taking a more general view, are firing costs to blame for the

European malaise of the last fifteen years? Without a general

equilibrium model, we clearly cannot draw conclusions about the

welfare effects of firing costs. But labor demand is more stable

if firing costs are large (see Figure 7), and given that wage
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setters may actually trade off lower wages for higher firing

costs, a case could probably be made that firing costs are

beneficial. If demand fluctuations are not due to smoothly

functioning markets but to Keynesian coordination failures, it is

at least conceivable that high firing costs could improve workers'

welfare in a second-best world: they tend to increase employment

in bad times, without appreciably decreasing its long-run average

level. Of course, the lower flexibility of production decreases

profits and the value of the firm, introducing income distribution

issues if the firms' owners are in fact, as a group, distinct from

the workers.

On the other hand, the microeconomic impact of firing

regulations should not be neglected: a rigid employment structure

hampers microeconomic efficiency, as it inhibits reallocation of

labor in response to idiosyncratic demand and productivity shifts;

inasmuch as such intersectoral ~hifts are not transitory,

desirable employment stabilization has in effect to be traded off

· d 8 bI d·· ff8 8 21 W • th taga1nst un eS1ra e pro uct1ve 1ne 1c~ency. e recogn1ze a

such idiosyncratic uncertainty is important when we assume, above,

that uncertainty at the firm level is three times larger than at

the industry level: but we do not have a good aggregative model,

and therefore cannot, for now, address the issue of allocative

21However, Piore[1986] notes that the very existence of dismissal
restrictions can induce firms to search for more flexible uses of
its labor force, thus attaining a higher degree of "dynamic"
efficiency: firms will respond to disturbances by retraining and
redeploying, rather than shedding, their labor force.
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efficiency. Firing costs also hamper productive efficiency when

employers are imperfectly informed about the quality of individual

workers: in particular, European laws make it hard for employers

to dismiss incompetent workers, who are on the other hand the less

likely to quit. This realistic feature should be taken into

account, and it would probably be found that firing would be more

frequent and firms' reluctance to hire would rise.

5- Conclusions

This Chapter proposes an analysis of labor demand in the

presence of linear firing (and possibly hiring) costs, taking

explicit account of dynamics and uncertainty_ In particular, an

attempt is made to characterize the effects of lower expected

growth and higher uncertainty in post-oil shock Europe on a

typical firm's employment policy. We find that such effects are

non1.~egligible. We do not provide a a complete macroeconomic model,

but our model suggests that dynamics and uncertainty must be taken

into consideration when modeling the European unemployment

problem: the highly regulated nature of European labor markets

constrains the flexibility of a firm's employment pOlicies in such

ways that hiring a worker is definitely a risky proposition, and

the degree of uncertainty about the future is a crucial parameter

in the firm's problem.

We also find that the magnitude of firing costs affects the

firing policy of the firm much more dramatically than its hiring

policy. The effect of firing costs depends on the environment. The

fall in growth and productivity and the increase in volatility
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made these costs more important. But as Table 4 forcefully shows,

a mere reduction in firing costs does not significantly increase

firms' marginal propensity to hire while it strongly raises their

willingness to fire. This implication would seem to be confirmed

by the bout of firing in the U.K. in 1980-82, after flexibility

measures were put up starting in 1979 and by the lack of an

appreciable increase in hiring after similar measures were

established in Germany (1985) and France (1986). Therefore, while

it is reasonable to credit firing costs for the avoidance of mass

firings after the first oil shock, it does not seem accurate to

blame them for the European lackluster employment performance in

the 19805. If it is granted that employment stabilization may be

desirable due to macroeconomic distortions, we find that large

firing costs afford more employment stability than small (but

positive) ones, without appreciably affecting the long run level

of employment.

Our model provides, we think, a useful framework for

discussing the effects of institutional constraints on a firm's

employment pOlicies under uncertainty. Much theoretical and

empirical work will be needed to precisely pin down the relevance

of this Chapter's insight, to provide a more realistic model of

the firm, and to extrapolate our results on individual firms to

the macroeconomy. The set of techniques proposed in this Chapter

can be used, for example, to study the economics of marginal

employment subsidies programs (i.e. a reduction in hiring costs) .

The research agenda includes modeling less flexible productive
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t t f th f e 22 t e b d fe •s rue ures or e 1rm, uneer a1nty a out wages an 1r1ng

costs, capital/labor sUbstitution with interrelated employment and

investment policies , aggregation (with attention to idiosyncratic

uncertainty), and especially considering the supply of as well as

the demand for labor, either using a search-theoretic framework or

modeling wage- and firing-cost setting as a bargaining process.

22For example, labor could be used in fixed proportions with
materials in production: such a Leontief production function would
induce the firm to retain idle workers in its payroll during a
demand slump.
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APPENDIX 1: Expectation of controlled geometric Brownian motion

Consider a regulated geometric Brownian motion with control

barriers at a and l, i.e. a stochastic process {ijt l defined by
r; t L t)1 =

t

where:

(i) {~tJ is a geometric Brownian motion, with stochastic

differential

d~t = ~t m dt + ~t s dWt
(m and s are real constants, Wt is a standard Brownian motion);

(ii) {UtI and (L
t

' are increasing and continuous processes, with

L =U =1:o 0
(iii) {L

t
} only increases when nt=l, and (UtI only increases when

~t=a, where a and ~ are given positive real numbers;

(iv) ~ s ~t s a for all t~O

Harrison[1985]'s arguments can be adapted to show that these

four properties uniquely identify {UtI and {Lt }; these two

processes maintain ~t within the barriers using the minimum amount

of control, in a well-defined sense.

Let f(.) be a twice continuously differentiable function. Note

that {UtI and {Lt } are processes of finite variation, and apply

Ito's lemma to obtain, after using property (iii) above,
1

df(l1 t )= [ m fl ('7 t )l1 t + : fll(l1t)l1~ ] dt + s fl (l1 t )l1 t dWt +

dL dU
+ l f' (.f) ---! - -a f' (tt) ---!

Lt Ut
Now recall the Integration By Parts formula found in

-At
Harrison[1985], pa~e 73, and apply it to ( f(~t) e to obtain:

~ 2

(Al) e-A.tf(~t) = f(11 0 ) + Je-A.V[mf l (l1 v )l1v + : f"(l1v)l1~ - A.f(1J v )]dlJ

o

- 4J,
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Take the expectation at time 0 of (Al) and let t ~ 00; provided

that f(~t) is bounded and the following conditions hold:

[*] .t. f' (.f) = 0

[**] a f I (a) = 0

the result is
00 2

(A2) 0 = f('l]fO) + Eo{Joe-;\'V[mf
t

('l]fv)'l]fv + : ftt('l]fv)'l]f~ - ;\.f('l]fv)]dV}

Now if a function f(.) is found such that
2

s 2
(A3) -TIll = mf' (71 ) 71 + - f" (71 ) 71 -;\. f (71 ).., v v 2 ZJ z; v

and [*], [**l are satisfied, then rearranging (A2) gives

(A4) f(x) = EO{ J: e-;\.t 'l]ft dt 'l]fo = x }

The general solution "to differential equation (A3) is

(AS) f ('l]f) = -=-- [ 'l]f + B1 'l]fat + P'2 'l]fa:A ]
A-m

with

Q.1 -

2
S

) 0

<12=
2

S

< 0

where B1 and B2 are constants of integration to be determined by

the boundary conditions. Conditions [*l and [**l form a system of

two linear equations in 81 and 8 2 , with solution

aa2 t _ ~ la2 a la1 _ aU1 l

Using these values in (AS), and recalling (A4), the result

stated in the main text is proved.
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Now we turn to the steady-state distribution of the MRP.

Harrison [1985, page 90] derives the steady state distribution for

linear regulated Brownian motion: if (~t} is a Brownian motion

with drift H and standard deviation L, regulated at 0 and b>O,

i. e. :

o ~ ~t ~ b d~t= M dt + L dWt
d~ = 0t

if 0 < ~t < b

if ~t=O or ~t=b

then in steady-state it has the following (truncated exponential)

cumulative distribution function:

0

2M
]exp ( 1: 2 ~ - 1

F (~] =
( 2M ]exp 1: 2

b - 1 .

1

~<o

b<~

Noting now that ln (ijt/l ) follows a linear regulated Brownian

motion with drift M=m-s~/2 and standard deviation S, regulated at

o and at b=lnl a / l), it is easy to derive the steady-state

distribution of ~t:

prob(ijSX] = prob(ln(ijt/l)Sln(x/l )] =

x < .e0
:3

[(2m/s ) -1]
(x/ l ) - 1

= 2
[(2m/s ) -1]

(ull) - 1

1 U < x

The steady-state density of ~, the marginal revenue product, is

then
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( :~ -1) ~
[ 2~ -2]

71 s

1( t s 11 sa]£(71)=

[ :~ -1] 2m( -1]2
s

u t

and simple integration gives the following expression for the

ergodic mean of the marginal revenue product process:

2
[ :~ ) [ :~ )

( m -mS 12) -a .f
11 =

[ :~ -1) [ :~ -1)
fJ, - .e.

APPENDIX 2: Derivation of equation [4c']

First rewrite equation [4c] in the text as:

{A7)

w

r+O

For the next step, recall the Strong Markov Property of

(controlled) Brownian motions (see e.g. Harrison[1985]):

Strong Markov Property: Let {Zt} be a (regulated, geometric)

Brownian motion process and let T be a stopping time (the Brownian

motion attains for the first time a predetermined value at T).

Then the random variable T and the stochastic process {z:t>T} are

independent.
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It is then possible to separate the second term on the left

hand side in (A7) into the product of two expectations:

rearranging and taking iterated expectations (recall that t<T) we

get:

(AS)

w=
r+O

{IT [ [ZT J1-11] - (r+0) (T - t ) }
E PA ---- e dT =

t t TAL
T T

(I)

{

- (r+O) (T-t)1 {{J [ (~J l-J..l] - (r+o) (T-T)
Et e ~ Et ET ~A~ e

J T ATLT

Since T is by assumption a firing time, by eq. [4a] in the main

text we get:

(A9)
w

r+6
- F

dX <0

SUbstituting the (nonstochastic) right hand side of (A9) into

(AS), [4c] is finally reduced to [4c ' ] in the text.

APPENDIX 3: Parameter values for the solution baseline

Here we explain the procedures and sources for the baseline

parameter values for the solution of the model in the text.

A) Parameters other than hiring and firing costs:

t: Average percentage change in the first differences of the
logarithm of the index of indu~trial production (IFS tape).

a: Three times the average standard deviation of the first

differences of the logarithm of the index of industrial production

(International Financial Statistics (IFS) tape).

S: France (manufacturing) and Germany (whole economy): Two
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third$ and one half of the separations rate (for the years

available) in regimes 1 and 2, respectively (to capture the

procyclical behavior of quits): from OECD[1986b]. Italy (industry:

after 1976 firms with at least 50 employees): Dell'Aringa[1987].

U.K. (whole economy): Burgess and Nickell[1987l.

~a: Average difference between the change in the first

differences of the logarithm of the index of industrial production

and the logarithm of the index of industrial employment (IFS tape,

for the U.K. the source is OECD[1987b]).

r: Required rate of return on capital or profit rate. Set to

15% for both regimes.

p: Inverse of the markup factor. Set to 0.6, which is the

average of the estimates of this parameter in Burda[1987] for the

four countries we are dealing with.

B) Hiring costs: We only have data for training costs.

Calculations on data in Nollen[1987] give a maximum value of 6.6%

of the average annual wage as the average training cost in Germany

and 5.5% in the U.K., the latter not including on-the-job-training

nor wages lost. We set H to 0.083 (1 months' pay).

C) Firing costs:

a) Notice period: The laws require a number of days per year of

service (p.y.o.s.) with the firm. In terms of the cost, we equate

one month of notice with one month of wage. Since the worker will

be producing during the notice period this is an upper bound,

equal to the payment in lieu of notice that can be made.

b) Expected dismissal cost: This is equal to:

F = N + (l-P )SP + P {(l-P) (SP+LC) + P (UP+LC)}a a u u
where N is the notice c~st, P is the probability of the dismissala
being appealed to the labor courts, P is the probability that theu
dismissal is ruled unfair, SP is the severance payment, LC are

legal costs from going to court and UP is the payment for an

unfair dismissal (we ignore the rare cases where reinstatement of

the worker is mandated). We only have information on legal costs

for the U.K.: Daniel and Stilgoe[1978] quote data equivalent to
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1.8 to 5.6 months pay for these. We take 2 months' pay for all

countries.
The estimates for the parameter values are given in Table Al,

in the following page.
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FRANCE

TABLE A1

GERMANY ITALY I UNITED KINGDOM

NP 2 months 1.5 months 13 months 1 1.5 months
Indiv. dismiss. Minimum for whitelVhite collar: 1 week p.y.o.s.
period= 2 months collar workers !Consult.l/2-4 mo. ITenure profile
Collect. redund. with up to 5 IGovernm. 1 month for 1934 from
consultation: ,Iyears of service I from OECD[1986b]
1-3 months Collect.: 3 mths

SP 9 months' pay 17 months' pay
Law:O.675 of wage Hean of the dis
Improv.=10% mth's tribution in
pay p.y.o.s. from Ochs[1976]
Reynaud-C. [1986] I
Tenure profile inl
OECD[1987a]-1978 I

9.5 months' p2.y
1 month p.y.o.s.
Tenure profile
for 1978 from
OECD[1986b]

1.5 months' I1ay
Nickell[1979]:
4-5 weeks 1969-77

P S,
a

UP 1 year

6.6% 4.25%
Gennard[1985]: Gennard[1985]
Prob[contested/ for 1978-80

works council
exists]=.1 (1977)
Falke et al [1981] I
llorkers covered

by a works coun
cil = 66% (1978)

40' 24'
Sengenberger Gennard[1985]:
[1985]:Cases whe-~Cases not dismi-
re no compromise 88ed:40'
was reached Dismissals decla-
(1981) red unfair: 59% I

(1978-80) I

10 months' pay :1 year's pay
Emerson[1987]: IEmerson[1987]:

1 month p.y.o.s. not less than
Avg. tenure (1978) 5 months' pay

=10 years from I
OECD[1986b]

161

9.23%
Gennard[1985]
for 1983

11'
EIRR[1977]:

8.18% in 1976
Gennard[1985]:

11.06% in 1983

2 months' pay
Nickell[1979l:
6.75 weeks'pay
Mean for 1972-77
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