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The workforce planning problem of hiring, dismissing and promoting has been the perennial difficulty of HR

management. To cope with uncertain attrition, we propose a new approach of finding a course of action that

safeguards against violating organizational target-meeting constraints such as productivity, budget, head-

count, dismissal threshold and managerial span of control. As such, this approach leads to a tractable conic

optimization model that minimizes a decision criterion that is inspired by Aumann and Serrano (2008)’s

index, for which its value can be associated with probabilistic and robustness guarantees in meeting con-

straints under uncertainty. Additionally, our model departs from the literature by considering employees’

time-in-grade, which is known to affect resignations, as a decision variable. In our formulation, decisions and

the uncertainty are related. To solve the model, we introduce the technique of pipeline invariance, which

yields an exact re-formulation that may be tractably solved. Computational performance of the model is

studied by running simulations on a real dataset of employees performing the same job function in the

Singapore Civil Service. Using our model, we are able to numerically illustrate insights into HR, such as the

consequences of a lack of organizational renewal. Our model is also likely the first numerical illustration that

lends weight to a time-based progression policy common to bureaucracies.

1. Introduction

Human Resource (HR) function has recently gained prominence. This is driven by the growing

practice of Strategic HR Management or Strategic Workforce Planning (Ulrich and Dulebohn 2015,

Buyens and De Vos 2001), where human capital is structured to achieve transformational goals of

the organization. Strategic Workforce Planning contrasts against traditional workforce planning;

the former, Ulrich et al. (2012) argue, is tied in with the strategic objectives of the organization.

While this is recognized as a nascent field, we are seeing in-depth surveys that stocktake on the

practice of Strategic Workforce planning, for example a study by KPMG surveyed 37 organization

in the UK with at least half having at least 10,000 employees1. We also see an offering of consul-

tancy services for Strategic Workforce Planning2,3,4,5. These consultancies often provide data-driven
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workforce planning tools or methodologies3. All these point to ambitions to utilize data-driven

tools in linking workforce planning to business strategy, and the actual practice in industry.

While practitioners employ different Strategic Workforce Planning processes, there are often

three stages, as exemplified by the following description from a global management consultancy

firm, “Strategic Workforce Planning enables translation of business drivers into demand for skills

and capabilities, assesses expected supply within the organization and in the labor market to

anticipate gaps or overages, and identifies how to solve them through reskilling, hiring, and

redeployment”2. The process begins with identification of the organization’s strategic objectives

and value-add. As Gartner describes, “The first step in building an effective workforce plan is

understanding the organization’s business strategy and goals”4. By squaring the demand for work-

force, i.e. the workforce resourcing required to support these strategic goals and objectives, against

the supply, i.e. the existing workforce in the organization, planners are able to identify critical areas

of gap to be filled. At this point, many practitioners adopt analytics tools to project the evolution

of the workforce into the future. Such tools can “provide organisations/companies with visibility

into their current workforce (the supply) and how the composition of this workforce is expected to

change over time as a result of workforce dynamics relating to employees joining, moving within

the organisation and leaving”5. Finally, strategies are devised to close this gap, such as hiring,

promotions, transfers, retraining, out-sourcing and co-sharing, to name a few.

Part of the allure of Strategic Workforce Planning lies in the promise that it adopts a data-

driven approach towards the construction of the workforce plan. This is evidenced by how HR

analytics has been introduced in almost every aspect of HR Management (Davenport et al. 2010).

Examples include attrition and flight risk, talent and pipeline management, recruitment analytics

and employee value proposition, under-performance risks, remuneration and benefits, real-time

employee engagement and sentiment analysis, learning and gamification in the workplace, team

performance and social networks, to name only a few.

Linking Data to Strategy

In practice, there are many challenges with executing a data-driven Strategic Workforce Planning

process. Most primarily, it is not straightforward to either determine the gaps in the workforce

that emerge over time, or to deduce the accurate response to close these gaps. For example, an

organization is looking new service, with targetted outcomes within 5 years. What is the required

workforce to support such a function? Should new officers be hired, or should the organization

redeploy and retrain its existing officers? Should more specialized workers or generalists that can

be flexibly deployed but have lower task-specific productivity be employed? Translating these

strategic goals, if they can even be described as productivity targets, into actual workforce figures is
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notoriously difficult amongst practitioners. Moreover, different HR interventions cannot be assessed

separately as it is their combination that affects employees and their behaviors. For example, an

employee’s career management can have downstream effects on their flight risk, under-performance

risk, engagement levels, etc. As such, one needs to plan for this basket of interventions and to

minimize the risk of them not articulating into eventual outcomes of individuals and organizational

units (Paul and Mitlacher 2008).

These challenges persist despite the bountiful data available on employees’ resignation patterns,

performance and learning records, and engagement indicators. This is because HR analytics con-

tinues to struggle to draw the link between human capital and organizational outcomes (Marler

and Boudreau 2017). While data abounds, Strategic Workforce Planning does not immediately

translate into an analysis frame that seamlessly integrates these data and secondary analyses into

trade-offs and risks at the organizational level. As such, organizational leaders have repeatedly

reported the use of data as one of the key hurdles in the Strategic Workforce Planning process1.

In this paper, we hope to make preliminary steps towards this overarching goal. In particular

we would like to concentrate on the topic of workforce planning – how should a business unit hire,

promote, and design its operational structure in order to achieve a targeted productivity level,

while constrained by budget, availability of workforce and managerial span of control? This is

not simple; the trade-offs between different HR decisions may not be at first glance apparent. For

example, the optimal staffing level across different competency bands could depend on both the

productivity targets that the organization aspires to meet and the expectation of employees on

promotion and remuneration.

More specifically, our goal is to propose a data-driven methodology for the Strategic Workforce

Planning process by attempting to address two key capacity planning questions:

1. Given productivity targets on various segments of the workforce, how should staffing levels,

i.e. the number of employees that is required within every job function and level, be decided,

while constrained by the budget and other operating constraints.

2. Over time, how many officers need to be hired and/or promoted in order to achieve these

staffing levels, while carefully managing for loss of employees through resignations that cannot

be controlled.

In contrast, we will not include in the scope of our problem, challenges pertaining to the execution

of the workforce plan. Specifically, we avoid questions on which employees to promote or hire or

fire. We are cognizant that these decisions often lie within the decision domain of HR practitioners

and that we should not readily encroach upon. These decisions depend on many other factors and

considerations that cannot reasonably be articulated, much less optimized. For example, a possible

consideration for recruitment would be the mix of skills and working styles that the new member
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would bring to the team. Such considerations will depend idiosyncratically on the managers and

how they envision operations to be run. Indeed, the HR practitioners that we have interacted with

for this project have also communicated that these decision should lie within their control, while

they are happy for the model to advise on the number of individuals to be promoted.

Literature Review

The workforce planning problem is not new. Davis et al. (2018) motivates the need for workforce

planning in both the context of service continuity and financial planning. Over the last half a

century or so, there have been various approaches, such as a simulation-based or systems dynamics

approach (to raise a few examples: Park et al. 2008, Chung et al. 2010), an econometric approach

(e.g. Roos et al. 1999, Sing et al. 2012), and finally, a mathematical programming approach, which

is the focus of this paper.

The most popular approach has been from the perspective of a Markov model. Bartholomew

et al. (1991) provides a broad overview. Various improvements over the years have incorporated

learning effects and productivity (e.g. Gans and Zhou 2002), inter-departmental flows (Song and

Huang 2008), and staff scheduling (such as Abernathy et al. 1973, Kim and Mehrotra 2015) just

to name a few extensions. The primary goal of the Markov model is to set up the transition

probabilities through the hierarchy and determine the two central questions of attainability (Is

it possible to transit from one organization of work to another?) and sustainability (What is the

minimum cost to do so?). As explained in Guerry and De Feyter (2012), attainability is not always

guaranteed. As such, additional conditions and approximate measures (such as fuzzy sets as in

Dimitriou et al. 2013) have been introduced. Many of these models also require the development

of a heuristic to obtain tractable solutions (as is the case in Gans and Zhou 2002).

At the broader level, some researchers have moved away from the Markov paradigm and

approached the problem via dynamic programming (as in Mehlmann 1980, Flynn 1981, Rao 1990).

In order to balance between competing organizational outcomes, some have adopted a goal pro-

gramming paradigm (Price and Piskor 1972, Georgiou and Tsantas 2002). In more modern lit-

erature, researchers have applied stochastic programming techniques supported by linearisations

and Bender’s decomposition as in Zhu and Sherali (2009), in order to tackle the computational

difficulties. A recent work by De Feyter et al. (2017) considers a multiple objective model to control

for costs and proximity to the desired organizational structure. Their approach, however, does not

consider promotions as part of the decision variables.

Nonetheless, these methods suffer from the curse of dimensionality, and become rapidly unscal-

able with the number of input variables. For example, in Zhu and Sherali’s case, the stochastic

model only solved three out of ten times in computational tests. In the age of data analytics, taking
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as input individual-level machine learning predictions of flight risk and performance risk would

very likely exceed the computational limits of these models. Often, the optimal organizational

structure or production model may also not be known (Valeva et al. 2017, designed a learning

model in the context of uncertain product demand). Moreover, while uncertainty in resignations,

which are known to fluctuate wildly, is accounted for in the Markov structure of the problems,

it is not immediately apparent how these models can be made robust to the wrong estimation of

resignation likelihood from the data.

Most critically, time spent by an employee in a grade (time-in-grade, for short) is often ignored,

though it is known to be a major contributing factor that shapes employee behavior, such as

resignations. Studies drawing the connection between resignations and time-in-organization or

time-in-grade are not in scarce supply (e.g. Iverson 1999, Kuwaiti et al. 2016). The data from our

partnering agency also illustrates the connection, and it is not a linear one. Understanding HR

decisions along the dimensions of time-in-grade is also an important problem (such as Şenerdem

2001, and the subsequent literature). Incorporating them however poses challenges – the uncertainty

at each time period will depend on decisions made in the previous period. Hence, techniques to

deal with it are few and far in between.

One of the earliest attempts was by Bres et al. (1980), which presented a linear goal program-

ming model that decided on the number of promotions where time-in-organization was a factor.

Subsequently, Kalamatianou (1987) retained the Markov framework, by cutting up the population

of employees into those yet-to-be and those ready-to-be-promoted, and estimating the transition

probabilities based on the age distribution. Nonetheless, this did not directly address the inter-

dependence of decision and uncertainty and was a workaround. Finally, Nilakantan and Raghaven-

dra (2008) attempted a Markov model based on both time-in-grade and time-in-organization, but

only under strict assumptions. Unfortunately, they also stopped short of attainability.

We also make a quick note about the literature on learning curves (Shafer et al. 2001). In this

stream, a learning curve is assumed that describes the evolution of the productivity of employees

with time and then optimized under a productivity and cost model. As described by Nembhard

and Bentefouet (2012), non-linear formulations often arise out of optimization problems structured

around learning curves. These models may require heuristics or simplifications to solve. From a

different perspective, Arlotto et al. (2014) instead utilized an infinite-armed bandit model to under-

stand the trade-offs between productivity and the opportunity cost of retaining a poor performing

employee. We note the presence of such literature in learning curves, however, we seek to describe

productivity in a more general fashion and be able to consider decisions that relate promotion

decisions to time-in-grade in a tractable fashion.
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The above literature review identifies a few key gaps in the present literature. First, tractability

of present models is a key consideration. In the first place, attainability is not guaranteed in Markov

models. Moreover, many of the models we examined may only be solved under heuristics or only

for small instances. It is also not clear whether these heuristics provide guarantees on model perfor-

mance. As we move towards greater integration of predictive analytics with HR management where

large amounts of data is ingested by the model, such approaches will rapidly become untenable.

Second, these models cannot be fundamentally extended to take into consideration time-in-grade

without key technical innovations. This is despite the benefits of better accuracy resulting from

greater granularity in the decisions and resignations. This is because decisions and uncertainty

become intertwined. Attempts to model time-in-grade are also extremely limited.

This lack of computational tractability and modeling flexibility limits the ability of HR practi-

tioners to implement a recruitment and progression strategy based on time-in-grade. At its base,

there isn’t even conclusive numerical evidence in support of time-based progression, which is prac-

ticed across many bureaucracies. We aim to fill this gap in this paper.

To address these challenges, we propose to consider approaches based on robust optimization. In

workforce planning, robust optimization has traditionally been applied to staffing and scheduling

problems (e.g. Burke et al. 2004, Lusby et al. 2012, Yan et al. 2017). However, to the best of

our knowledge, we haven’t seen any literature on its application to strategic workforce capacity

planning.

Contributions

First and foremost, our model is a novel robust multi-period optimization framework that considers

time-in-grade as a second timescale. In particular, the uncertainty and decision space have a specific

inter-dependent structure, termed ‘pipeline invariance’. This improves on the literature because:

1. Its decision criterion is based on Aumann and Serrano (2008)’s index, for which its value can be

associated with probabilistic and robustness guarantees in meeting organizational constraints

under uncertainty. Specifically, it is able to handle distributional ambiguity in the estimation

of resignation probabilities.

2. It can be formulated as an exponential conic optimization problem, whose properties can be

exploited to be solved efficiently despite the inter-dependence of uncertainty and decisions.

3. It may be reasonably extended to incorporate data at the individualized level, which can take

as input the results from various predictive analytics models.

Second, we claim that our model provides a novel application in the domain of HR, by providing

a possible means to address the difficulties in Strategic Workforce Planning. Our model can be

applied within a variety of contexts and is customizable to different measures of productivity and
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organizational structure. As such, we can use our model to illustrate insights into HR, in particular,

giving quantitative substantiation for a time-based progression model and the ramifications of a

lack of organizational renewal. The model is utilized in the Singapore Civil Service.

Our work is also closely related to the literature on inventory models and service management.

Specifically, Gans and Zhou (2002) motivated their approach from the context of call centres and

explicitly drew the connections to inventory models in their paper; Fry et al. (2006) described their

workforce model as an adaptation of the newsvendor problem to a decision-dependent context.

Notation

Given N ∈N, let [N ] represent {1, . . . ,N} and denote [N ]0 := {0}∪ [N ]. Let Z+
0 be the non-negative

integers. We use bold-faced characters such as x ∈ RN to represent vectors, while xi denotes its

i-th element. The tilde sign denotes an uncertain or random parameter such as z̃ without explicitly

stating its probability distribution. We use the convention, log 0 =max∅=−∞ and min∅=∞.We

shall use EP[·] to represent the expectation with respect to the reference distribution P over the

uncertainty across all time periods, unless otherwise stated. When the reference distribution is

unambiguous, P is dropped. Where unambiguous, sums are assumed to be over the entire range of

the indices.

Notes

[1] Workforce Strategy Audit Survey Report. Colin Beames. 2015. KPMG. Extracted

on Jan 4, 2021 from https://assets.kpmg/content/dam/kpmg/pdf/2015/08/

workforce-strategy-audit-survey-report.pdf.

[2] Talent | Organization | McKinsey & Company. Extracted on Oct 5, 2020 from https://www.

mckinsey.com/business-functions/organization/how-we-help-clients/talent.

[3] Strategic Workforce Planning brochure by Mercer. Extracted on Oct 5, 2020

from https://www.mercer.com/content/dam/mercer/attachments/global/Talent/

Forecast-brochureStratWrkfcPlan.pdf.

[4] Strategic Workforce Planning page of Gartner. Extracted on Oct 5, 2020 from https://www.

gartner.com/en/human-resources/insights/workforce-planning.

[5] Strategic Workforce Planning brochure by Deloitte. Extracted on Oct 5, 2020

from the link https://www2.deloitte.com/content/dam/Deloitte/za/Documents/audit/za_

strategic_workforce_planning_012019.pdf, available off https://www2.deloitte.com/za/

en/pages/audit/solutions/strategic-workforce-planning.html.
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2. Workforce Planning under Uncertainty

Traditionally, the workforce planning problem is set up over a finite time horizon t ∈ [T ]0, where

t= T is the last time period to be considered. Often, the objective is to attain a known staffing

level. Employees are often split into different department, specializations or job roles. For now,

we assume that the employees belong to just one department or job role. The interested reader is

diverted to Appendix B for details on the general setting.

Let the stock (s̃)t,τl := s̃t,τl denote the number of employees at time t∈ [T ] for all the times up to

the last planning time T , having spent τ ∈ [M ]0 years at grade l ∈ [L]. When t= 0, s0,τl represents

the known initial data. Each employee in grade l and having spent τ years in the grade is paid

wage wτ
l and generates a return of productivity of rτl . The organizational structure is the hierarchy

of grades. Similar to existing literature, we categorize individual contributors into skills strata

l ∈W := [L̄], where L̄ is the highest skills stratum. These contributors are supervised by managers,

limited by the maximum number of employees they can manage, called the span of control cτl . In

our model, managers occupy the higher grades l ∈M := {L̄+1, . . . ,L}, where L is the highest grade

in the hierarchy. Promotion is the movement of employees between adjacent strata. For simplicity,

assume that promotion only occurs between adjacent grades and ignore complications, such as

transfers across departments (see Appendix B for details).

Employees may be lost through attrition. In the literature, attrition is often understood as a

rate – an annual proportion of stock s̃. Instead, we hope to model attrition as a random variable

depending on the decision variables, so as to capture the inter-dependence – employees who were

not promoted have a different chance of leaving compared to those who were. To do so, we need

the following assumption:

Assumption 1 a) Different employees make independent resignation decisions; and,

b) An employee’s probability of resignation depends solely on his/her grade and the time spent

in that grade.

Arguably, Assumption 1 is debatable on both counts. In practice, resignation decisions of different

employees might not be independent. For example, employees from the same department might

leave due to similar reasons, possibly even influencing each other to leave. Moreover, resignation

decisions by employees are also endogenous with the promotion decisions made; for example, it

is conceivable that if there are more employees promoted, there may be a perceived impression

that there are fewer opportunities for advancement amongst the remaining employees, which might

promote higher levels of resignation. In general, part (b) of the assumption would also not be true.

It is well known that resignation decisions depend on a wide range of factors both idiosyncratic to

the employee and shared across all employees, such as organizational culture.
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Despite these reasons, we have chosen to make this assumption for the reason that it does make

the formulation tractable, and additionally, there are some features that we can build into the

model that can alleviate the impact of this assumption. In the discussion after Proposition 1 later,

we will discuss how the definition of the uncertainty set will allow our model to be robust to the

independence assumption. Additionally, we also note that Assumption 1b) is already comparatively

relaxed compared to traditional Markov models that assume that the probability of resignation

depends solely on the grade.

For both of these assumptions, our model permits an additional modification that can mitigate or

reduce their impact. Specifically, our model allows us to group employees into categories i∈ I. This

would amount to adding an index i, that represents these groupings, to every state variable, decision

variable and uncertainty. The benefit of this is that Assumption 1 may be relaxed. For example,

suppose a clustering was first performed on the employee’s likelihood of resignation, using a wide

set of predictors and side information, including past evaluations, demographics, reporting lines

and even engagement scores. Then, Assumption 1b) would now read as “An employee’s probability

of resignation depends solely on his/her grade, the time spent in that grade and the cluster i to

which they belong to”. As such, factors that we believe predict attrition and factors that might

lead to the lack of independence previously, can all be incorporated into the dataset. Based on this,

we can construct clusters i and hence implicitly capture the effect of these factors in our model.

More of this is discussed in Appendix B.

Assumption 1 allows us to model the attrition process via the Binomial distribution, where

Bin(x, q) represents the number of successes under x number of trials, each with success probability

q > 0. In our case, x represents the stock before attrition and q represents the chance an employee

stays within an organization till the next year (also called ‘retention’). Specifically, define qτl as

the probability that an employee that has spent τ time in grade l will voluntarily remain in the

organization till the next year.

HR Decisions

The workforce planner makes two types of decisions in this process, which articulate into the orga-

nizational structure. The first is the promotion of employees. Specifically, let pt,τl ∈ [0,1] represent

the decision variable of the fraction of employees that have spent τ years in grade l at time

t≥ 1 to be retained in grade l. The remaining fraction 1−pt,τl forms both the promotees and those

dismissed.

As such, the Binomial model induces the following dynamics for all t∈ [T ], τ ∈ [M ] and l ∈ [L]:

s̃t,τl ∼Bin
(
s̃t−1,τ−1
l pt−1,τ−1

l , qτl
)
. (1)
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The sequence of events is as follows: Amongst all of the employees s̃t−1,τ−1
l , the planner makes the

decision to only retain s̃t−1,τ−1
l pt−1,τ−1

l of them in this grade. Attrition then sets in, with each of

these employees experiencing a 1− qτl chance of resigning.

The second type of decision to be made is the number of newcomers to each grade l. Notice that

st,0l represents the number of employees who have spent 0 years at grade l at time t≥ 1. This is

precisely the newcomers to grade l. Let this be a decision variable.

As such, we are able to determine the net inflow of employees into the organization at grade l

at time t. Denote this random variable by h̃t
l , and it is given by the following expression. Figure 1

illustrates how this expression is derived.

h̃t
l+1 := st,0l+1 −

∑
τ ′

s̃t−1,τ ′

l

(
1− pt−1,τ ′

l

)
∀t∈ [T ],∀l ∈ [L] (2)

Removed

s̃t−1,0
l (1− pt−1,0

l )

Removed

s̃t−1,1
l (1− pt−1,1

l )
. . .

Promotees &

Dismissals

∑
τ

s̃t−1,τ
l (1− pt−1,τ

l )

Grade l

Dismissals

Promotees

Net inflow

h̃t
l+1

New hires

Newcomers

st,0l+1

Grade l+1

Figure 1 Flow balance amongst hiring, dismissal and promotion decisions

Consequently, whenever h̃t
l+1 ≥ 0, h̃t

l+1 new hires are made to replenish the stock. Otherwise,

−h̃t
l+1 of employees removed from grade l will be dismissed. As an illustration, suppose st,0l+1 = 4

and 5 employees are to be removed from grade l. The interpretation is that out of all the employees

from grade l, HR is to choose 1 to be terminated and 4 to be promoted. In practice, HR can choose

to terminate the worst performing employee in that grade and promote the best 4, or use any other

metric they so desire. Observe that at the boundary, we have st,0L+1 = 0 to denote the situation when

all employees removed from grade L will be dismissed.
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Target-Meeting Constraints

As we motivated in the Introduction, the organization plans for various target-meeting constraints

during the Strategic Workforce Planning process that must be satisfied. These constraints can be

affected by uncertain attrition. These include, inter alia, productivity, budget, headcount, dismissal

threshold and managerial span of control.

1. Productivity constraint :
∑
l,τ

s̃t,τl rτl ≥ Pt, ∀t∈ [T ].

2. Headcount constraint:
∑
l,τ

s̃t,τl ≤Ht, ∀t∈ [T ],

3. Budget constraint:
∑
l,τ

s̃t,τl wτ
l ≤Bt, ∀t∈ [T ].

4. Span of control constraint: For each l ∈M, let Wl ⊆ [l− 1] be the employee grades supervised

by the manager. Then
∑
τ

s̃t,τl cτl ≥
∑

λ∈Wl
τ

s̃t,τλ , ∀l ∈M, ∀t∈ [T ]. We can simplify this by letting

bτl,λ =


−cτl if λ= l

1 if λ∈Wl

0 otherwise

then the constraint may simply be written as
∑
λ,τ

s̃t,τλ bτl,λ ≤ 0, ∀t∈ [T ],∀l ∈M.

5. Dismissal threshold constraint: −h̃t
l+1 ≤ F t

l+1, ∀t ∈ [T ],∀l ∈ [L], meaning that no more than

F t
l+1 ≥ 0 employees ought to be dismissed. Equivalently, this is∑

τ ′

s̃t−1,τ ′

l

(
1− pt−1,τ ′

l

)
− st,0l+1 ≤ F t

l+1 (3)

Table 1 below describes all of the variables and parameters defined above in the model.

On Productivity Constraints

While we only consider a single form for the productivity constraint, the model permits the planner

to include as many productivity constraints as necessary; and they do not need to be in the same

units. The only restriction is that the constraints must be linear in s̃t,τl . This turns out to be

reasonably general – many measures of productivity can be described as such. We describe the

following examples:

1. Quantity / Quality of finished work: Suppose an employee having worked for τ years at grade

l can finish rτl pieces of work in an allocated time, then the total quantity of work completed

is
∑
τ

rτl s̃
t,τ
l . This is in the linear form required.

2. Time (or average time) to complete tasks: Again, if an employee having worked for τ years

at grade l takes uτ
l to finish a task, then

∑
τ

uτ
l r

τ
l s̃

t,τ
l is the total time taken to complete all

the tasks and
∑
τ

uτ
l r

τ
l∑

τ ′
rτ

′
l

s̃
t,τ ′
l

s̃t,τl is the average time to complete tasks. Hence, an average time
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Dimensions

T : Last modelling time

M : Largest possible years-in-grade

L : Largest possible grade

State and decision variables

s̃t,τl : Random variable of the number of employees having spent τ > 0 years at grade l at time t

h̃t
l : Random variable of the net inflow of employees into the organization at grade l at time t

st,0l : Decision variable of the number of newcomers to grade l at time t

pt,τl : Decision variable of the proportion of employees having spent τ > 0 years at grade l to be retained at time t

Parameters

s0,τl : Current employees having spent τ years at grade l

qτl : Retention probability of an officer having spent τ years in grade l

rτl : Productivity rate of having spent τ years in grade l

Pt : Productivity target to be achieved at time t

Ht : Headcount target to be kept within at time t

wτ
l : Wage of an officer having spent τ years in grade l

Bt : Budget target to be kept within at time t

cτl : Span of control of a manager having spent τ years in grade l

F t
l+1 : Target to keep the number of dismissed officers from grade l within at time t

Table 1 List of Parameters and Variables

constraint
∑
τ

uτ
l r

τ
l∑

τ ′
rτ

′
l

s̃
t,τ ′
l

s̃t,τl ≤U t has the equivalent expression
∑
τ

(uτ
l −U t)rτl s̃

t,τ
l ≤ 0, which is in

the linear form as desired.

3. Less common forms of productivity can also be considered, e.g. chance of defective product.

Suppose it is necessary to keep the chance of a defective product under some bound ϵ. Suppose

every employee has an independent probability 1− j
(τ)
l of creating a defective product. Then

the probability that no defective product is created amongst all the goods is
∏
τ

j
(τ)
l

rτl s̃
τ
l
. Then

the constraint becomes
∑
τ

rτl log(j
(τ)
l )s̃τl ≤ log(1− ϵ), which is in the desired form.

In particular, measuring the quality and quantity of finished work could be a daunting task.

Assuming that a dataset of observed work quantities and employee demographics, containing time-

in-grade information, is given, one can, in the simplest case, take an average over all employees in

the same grade and having spent the same time in that grade, to obtain the curve rτl . As this is

subjected to potential noise, an additional smoothing in form of a parametric regression could also

be performed. In the numerical simulations later, we shall see how this could be done. Once rτl is

obtained, the productivity constraint
∑
τ

rτl s̃
t,τ
l ≥Rt could be written.

A common approach to parametrically smooth the curve rτl is via learning curves, for example,

using the form that appears in Shafer et al. (2001). In learning curves, the productivity of the
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employee is assumed to vary with the amount of work experience, in other words, time-in-grade.

As such, learning curves are fully compatible with our model. Using the notation in our paper,

rτl = ηl

(
τ + ν

τ + ν+ψl

)
, (4)

where τ is the accumulated experience, here in the context of our exposition, understood as the

time-in-grade, and ηl, ν and ψl are fitted parameters denoting the maximum asymptotic produc-

tivity that can be reached for that grade l, contribution from prior experience, and a learning rate

term idiosyncratic to the grade l respectively. Similar to the previous case, once the parametric

learning curve model is obtained, one simply needs to iterate over discrete times-in-grade τ ∈ [M ]0

to obtain the vector rτl to compose the productivity constraint
∑
τ

rτl s̃
t,τ
l ≥Rt. We present a simple

case study in Appendix B.1 to illustrate specifically how this is done on a synthetic dataset.

Recently, it has been increasingly popular to use wider sets of employee data to predict employee

performance. With the addition of an index i to represent employee clusters, our model is able to

remain compatible with such data-driven predictive analytics methodologies. More is discussed in

Appendix B.

The above approach assumes the expected productivity rate on each employee. More generally,

it is also possible to model productivity of individual officers as being independently and identically

drawn from a productivity distribution. In this case, we phrase the productivity constraints as∑
l,τ

r̃τl
(
s̃t,τl

)
≥ Pt, (5)

where r̃τl (s), representing the total random productivity contributions by s employees, each with

a random i.i.d. productivity rate of r̃τli, is defined as

r̃τl (s) :=
∑
i∈[s]

r̃τli.

Decision Criterion

In the literature, one might minimize the costs of maintaining a workforce, maximize the total

productivity of employees, or deal with these multiple objectives in the goal programming sense

(for example in Price and Piskor 1972). However, it could be difficult to prescribe the trade-offs

between costs and productivity (e.g. for a maintenance crew), say in goal programming.

It may also be appropriate in some business contexts neither to maximize output nor minimize

operating costs, but to run the least risk of disruption, such as a service centre. Without a clear

objective function, we instead pursue an optimization model which minimizes this risk. It sounds

tempting to minimize the joint probability of constraint violation similar to the P-model proposed
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by Charnes and Cooper (1963), which, often and in particular in this case, has intractable formu-

lations. In fact, our goal doesn’t necessitate the minimization of the chance of constraint violation

per se. Instead, we simply desire a policy that does not fare too poorly, in other words, a course of

action with some guarantees over the risks of violation.

Aumann and Serrano (2008)’s index has this functionality. Let Z be the set of all random

variables on our probability space (Ω,Σ,P). Define the Aumann and Serrano (2008)’s index as the

functional µ :Z →R+
0 ∪{∞}:

µ[z̃] = inf {k≥ 0 :Ck[z̃]≤ 0} , (6)

in terms of the certainty equivalence

Ck[z̃] :=


k log

(
E
[
exp

(
z̃/k
)])

if k > 0

E [z̃] if k=∞

ess sup z̃ if k= 0.

Here, z̃ represents the size of the violation – a positive number constitutes a violation and vice

versa. The exponential disutility penalizes ever larger violations.

Proposition 1 The Aumann and Serrano (2008)’s index obeys the following properties:

1. Satisficing: µ[z̃] = 0 if and only if P[z̃ ≤ 0] = 1.

2. Infeasibility: If E[z̃]> 0, then µ[z̃] =∞.

3. Convexity: µ is convex in z̃.

4. Probabilistic Guarantees: For µ[z̃]> 0 and ϕ≥ 0,

P[z̃ > ϕ]≤ exp(−ϕ/µ[z̃]).

5. Robustness Guarantees: For any probability measure Q absolutely continuous in P and Q ̸= P,

EQ[z̃]

D(Q||P)
≤ µ[z̃],

where D(Q||P) is the Kullback-Leibler divergence of Q from the reference distribution P.

Proof. The first four properties are well established (see, for instance, Brown and Sim 2008).

The last property arises from the dual representation of the certainty equivalence relating to the

Kullback-Leibler (KL) divergence (see, for example, Lim and Shanthikumar 2007) given by

Ck[z̃] = sup
Q

{EQ[z̃]− kD(Q||P))} . (7)

□
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The first property states that there is no risk if there is no chance of violation. The second dictates

that if violations are always expected, then the risk is always infinite. The third requires convexity

and the fourth is our desired guarantee against constraint violation, which is the consequence of

Markov’s inequality. Hence µ[z̃] captures the notion of risk – the lower µ[z̃] is, the sharper the

guarantee against ever larger violations ϕ of the constraint. The last property connects the index

with the notion of robust optimization. It implies that even if the true probability distribution

were to deviate from P, the worst case expectation of the underlying random variable, normalized

by its KL divergence from the reference distribution is bounded below by the index. Intuitively, a

lower index is associated with higher tolerance of distributional ambiguity against the impact of

constraint violation.

Robustness is critical – any model would naturally be sensitive to the specification of the attri-

tion estimates qτl . In reality, estimating qτl from the data could be subject to large errors (see

Figure 3 later). These errors would arise from a few sources. First, there could be factors affecting

resignations that vary over the time span of the dataset, for example, the outlook of the economic

sector the business belongs to. Second, by considering the additional dimension of time-in-grade,

a greater number of data points is required to achieve the same error per estimate. These errors

cannot be fully eradicated even after parsing the estimates through a smoothing model (be it, a

loess regression, such as in Figure 5, or a survival-based model). Without Proposition 1, the model

would suffer from similar model misspecification errors as experienced by assuming the probability

distributions in other stochastic programming approaches in the literature.

Moreover, the robustness guarantee property does also mitigate the independence assumption

(Assumption 1) to some extent. In this case, the reference distribution P would be the assumed

empirical distribution, and that which we have assumed to be independent across employees. Sup-

pose that the true distribution Q was indeed dependent, but with marginals that are identical to

P. The Kullback-Leibler divergence is known to capture this difference (D(Q||P)≥ D(QX ||PX ) +

D(QY ||PY), if P= PXPY is independent, with equality if and only if Q=QXQY is independent, i.e.

the sum of KL-divergences over the marginal distributions is less than the KL-divergence over the

full distributions, which is a consequence of the properties of Shannon entropy, Shannon 1948).

Hence, by being robust over the set of all distributions that are within some radius in terms of

the KL divergence distance from the reference distribution, the model also encompasses dependent

distributions that are not too far away from the reference distribution. In other words, the opti-

mal solution obtained would provide a lower bound in terms of the performance to any solution

obtained using any of these distributions.

While it might have been possible to pick an uncertainty set that does not require the assump-

tion of independence, for example, a moment uncertainty set (such as one that defines the mean
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and variance on the number of employees who resigned), however, it would be difficult to define

a tractable formulation. In particular, it would be difficult to decouple the effects of our deci-

sions (promotions) from the definition of the uncertainty set itself (the mean number of resigning

employees), or to deal with the multi-period and sequential decision nature of the problem. Our

model, by assuming independence, allows us to decompose these two components after some careful

re-formulation. In contrast, we have paid a small cost in exchange for this tractability, because the

robustness property of the model alleviates having confined ourselves to independent distributions.

Aumann and Serrano (2008)’s index fits well to our multi-objective setting where we have to

assess the combined risk of violating any of the operational constraints. Specifically, given a set

of linear constraints, {x̃j ≤ Gj, j ∈ J }, we evaluate the combined risk under uncertainty via the

following decision criterion,

µ∗ =max
j∈J

{
µ

[
x̃j −Gj

θj

]}
= inf

{
k≥ 0 : Ck

[
x̃j −Gj

θj

]
≤ 0 ∀j ∈J

}
, (8)

which picks the value of µ[·] arising from the worst performing constraint j. This criterion gives

rise to the probabilistic guarantees,

P
[
x̃j −Gj

θj
≥ ϕ

]
≤ exp(−ϕ/µ∗) ∀ϕ≥ 0,

and robustness guarantees,
EQ [x̃j −Gj]/θj

D(Q||P)
≤ µ∗ ∀Q,

for all constraints, j ∈J , as a result of Proposition 1.

Across constraints, θj > 0 are the normalization parameters that calibrate the uncertainty aver-

sion of violating each constraint, for example, say to emphasize that the budget constraint is more

critical than the headcount, or across time, such as a stronger aversion to earlier time violation

than in the future as with discounting. In practice, the constraint would be normalized by the

target, for instance, θj = |Gj| and hence, violations are understood as proportional to the target

Gj, making it comparable across different constraints and across different units of measurement.

Model Formulation

We now state our proposed Strategic Workforce Planning under Uncertainty (SWPU) model,

arising from (8):

inf k (9)

s.t. Ck

[
1

θ1t

(∑
l,τ

s̃t,τl −Ht

)]
≤ 0 ∀t∈ [T ]



Jaillet et al.: Strategic Workforce Planning under Uncertainty

Operations Research 17

Ck

[
1

θ2t

(∑
l,τ

s̃t,τl wτ
l −Bt

)]
≤ 0 ∀t∈ [T ]

Ck

[
1

θ3t

(
Pt −

∑
l,τ

s̃t,τl rτl

)]
≤ 0 ∀t∈ [T ]

Ck

[
1

θ4t,l

∑
λ,τ

s̃t,τλ bτl,λ

]
≤ 0 ∀t∈ [T ],∀l ∈M

Ck

[
1

θ5t,l

(∑
τ

s̃t−1,τ−1
l

(
1− pt−1,τ−1

l

)
− st,0l+1 −F t

l+1

)]
≤ 0 ∀t∈ [T ],∀l ∈ [L]

k≥ 0, st,0l ≥ 0, st,0L+1 = 0, 0≤ pt,τl ≤ 1 ∀t∈ [T ],∀l ∈ [L],∀τ ∈ [M ]

where the random variables have the decision dependent marginal distributions presented in (1).

Note that it is not immediately clear whether we can formulate Problem (9) as a tractable opti-

mization problem, since the problem is not convex in the decision variables even if k is fixed.

3. Tractable Conic Optimization Model

To convexify Problem (9), we perform a change of variables to obtain the following formulation.

inf k (10)

s.t. Ck

[
1

θ1t

(∑
l,τ

s̃t,τl −Ht

)]
≤ 0 ∀t∈ [T ]

Ck

[
1

θ2t

(∑
l,τ

s̃t,τl wτ
l −Bt

)]
≤ 0 ∀t∈ [T ]

Ck

[
1

θ3t

(
Pt −

∑
l,τ

s̃t,τl rτl

)]
≤ 0 ∀t∈ [T ]

Ck

[
1

θ4t,l

∑
λ,τ

s̃t,τλ bτl,λ

]
≤ 0 ∀t∈ [T ],∀l ∈M

Ck

[
1

θ5t,l

(∑
τ

s̃t−1,τ−1
l

(
1− d

t,τ
l /dt−1,τ−1

l

)
− dt,0l+1 −F t

l+1

)]
≤ 0 ∀t∈ [T ],∀l ∈ [L]

k≥ 0, dt,0L+1 = 0,0≤ dt,τl ≤ dt−1,τ−1
l , d0,τl = s0,τl ∀t∈ [T ],∀l ∈ [L],∀τ ∈ [M ]

where the underlying random variables have the following dynamics

s̃t,τl ∼Bin

(
s̃t−1,τ−1
l

dt,τl

dt−1,τ−1
l

, qτl

)
∀t∈ [T ],∀τ ∈ [M ],∀l ∈ [L]. (11)

We use the convention that d
t,τ
l /dt−1,τ−1

l
= 0 whenever dt−1,τ−1

l = 0. We call the optimal k∗, the risk

level associated with this specification of constraints.
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Proposition 2 Models (9) and (10) are equivalent. In particular, given an optimal solution to

Problem (10), we can obtain the the corresponding solution to Problem (9) by letting st,0l+1 = dt,0l+1

and pt−1,τ−1
l = dt,τl /dt−1,τ−1

l , with pt−1,τ−1
l = 0 whenever dt,τl = 0.

Proof. Consider the feasible solution in Problem (9), as dt,0l+1 = st,0l+1 and d0,τl+1 = s0,τl+1, we let

dt,τl = pt−1,τ−1
l dt−1,τ−1

l

for all t ∈ [T ], l ∈ [L], τ ∈ [M ]. Observe from (1), whenever pt−1,τ−1
l = 0, then s̃t+t′,τ+t′

l = 0 almost

surely for all t′ ≥ 0. (11) indicates that this is also true for the decision dependent random variables

in Problem (10). Therefore, the solution would also be feasible in Problem (10). Conversely, consider

a feasible solution in Problem (10), and let st,0l+1 = dt,0l+1 and p
t−1,τ−1
l = dt,τl /dt−1,τ−1

l , with pt−1,τ−1
l = 0

whenever dt−1,τ−1
l = 0. By inspection, this solution would be feasible in Problem (9). □

The decision variable dt,τl has the convenient interpretation that it is the number of employees

that have stayed for τ years in grade l in the absence of any attrition:

Proposition 3 For all t ∈ [T ], l ∈ [L], τ ∈ [M ], we have that dt,τl = ess sup s̃t,τl = E
[
s̃t,τl

]
/γτ

l where

γτ
l =

∏
t∈[τ ]

qtl .

Proof. The results follows easily from (11). □

Hence, under Proposition 3, the feasible set of Problem (10) is a polyhedron whenever k =

0 or k = ∞. To obtain non-trivial solutions, we assume that the constraints are such that k ∈

(0,∞), that is, there does not exist a solution that satisfies all constraints with certainty, and

that there exists a solution such that all the constraints can be met in expectation. Organizations

operating in the former regime are overly nonchalant in setting targets, while those operating in

the latter are deemed unrealistic. Subsequently, we will show that for a given k > 0, the feasible

set of Problem (10) is convex in d. As we have explained, quite apart from other approaches,

the decision criterion based on the Aumann and Serrano (2008)’s index, which is associated with

robustness guarantees, permits modest divergence from the above assumptions while ensuring the

organizational constraints are satisfied as well as possible under distributional ambiguity.

Pipeline Invariance

This model turns out to be tractable. We first notice a useful property about the dynamics we

have defined:
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Property 1 (Pipeline Invariance) Let q ∈ (0,1) be fixed. Let s̃(x) ∼ Bin(x, q) be a family of

Binomial-distributed random variables with parameter x ∈ X ⊂ Z+
0 . We say that they are pipeline

invariant when

E [exp(ys̃(x))] = exp
(
x · ρ(y)

)
,∀x∈X ,∀y ∈R, (12)

and ρ(·), which we call the relay function, is given by the expression,

ρ(y) = log (1− q+ qey) . (13)

Pipeline invariance preserves the exponential functional form under the action of taking expecta-

tions. It turns out that pipeline invariance is satisfied by distributions other than the Binomial,

such as the Poisson random variable Pois(x) with rate parameter x, or the Chi-squared distribution

χ2(df) with degrees of freedom df . Moreover, their relay functions are convex over the domain.

As the consequence of pipeline invariance, the constraints in (10) have convex reformulations.

Theorem 1 (Pipeline Reformulation). If integrality of s̃t is relaxed, then for any y ∈R,

Ck

[
ys̃t,τl

]
= inf

ξ
kξt−τ+1,1

l (14)

s.t. dt,τl ρτl (y/k)≤ ξt,τl

dt−t′,τ−t′

l ρτ−t′

l (ξt−t′+1,τ−t′+1
l /dt−t′,τ−t′

l )≤ ξt−t′,τ−t′

l ∀t′ ∈ [min{t, τ}− 1]

where ρτl (y) := log(1− qτl + qτl e
y).

Proof of Theorem 1. We present the proof in Appendix A. □

Remark 1. Relaxing integrality of s̃ is common in the literature (for example, it also appears in

Gans and Zhou 2002). When integrality is relaxed, the random variable z̃ ∼Bin(x, q) is understood

as being defined by the corresponding moment generating function E[exp(z̃t)] = ((1− q)+ q exp(t))
x

and that ess sup z̃ = x. When x is large, integrality is less a concern – inaccuracies arising from the

approximation are minimal.

Remark 2. The constraints in Problem (14) have the form

d log(1− q+ qeζ/d)≤ ξ

when it is defined on d > 0. At d = 0, observe that lim
d↓0

d log(1− q + qeζ/d) = max{0, ζ}, and the

constraint should interpreted as ζ ≤ ξ,0≤ ξ at d= 0.

Proposition 4 (Independence of Pipelines) Under Assumption 1, any two state variables

s̃t,τl and s̃t,τ
′

l′ , l ̸= l′ and τ ̸= τ ′ in the same time t are independent, conditional on decisions{
dt

′,τ
l : t∈ [T ], τ ∈ [M ]0

}
in the previous time periods t′ ≤ t.
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Proof. We relegate the proof to Appendix A. □

Remark 3. a. Notice that this result does not require independence across modelling time t.

This is neither true in general, nor required in Theorem 2.

b. Assumption 1 alone is insufficient for this proposition. The specific definition of dt,0l as a

decision variable is required.

Theorem 1 depends on the repeated application of pipeline invariance. The idea is that the

functional form exp(·) is preserved within the expectation, hence enabling us to evaluate E[exp(·)]

repeatedly over time. In this process, it creates a nested series of relay functions ρ, which being

convex, can be represented as auxiliary variables ξ in epigraph form. This is illustrative of the

concept of pipelines, which the stock in each grade l is aligned in:

P0,0
l = {s0,0l , s̃1,1l , s̃2,2l , . . .}

P0,1
l = {s0,1l , s̃1,2l , s̃2,3l , . . .}

...

P1,0
l = {s1,0l , s̃2,1l , s̃3,2l , . . .}

P2,0
l = {s2,0l , s̃3,1l , s̃4,2l , . . .}

...

An employee belonging to a particular pipeline remains in the same pipeline across time. Attrition

erodes the stock in the pipelines over time and promotion re-distributes across pipelines. Such

an interpretation also explains why the independence result in Proposition 4 works – each state

variable is a stochastic function of its predecessor in its pipeline, that is retraced to its ancestor

which is either an initial condition or a decision variable.

The following results illustrate that considering individual variations in productivity as in (5)

can be accepted under the model formulation (10).

Proposition 5 The general productivity constraints in (5), where individual variations in produc-

tivity is considered, Ck

[
1
θ3t

(
Pt −

∑
l,τ

r̃τl
(
s̃t,τl

))]
≤ 0, has the equivalent form as a normal productiv-

ity constraint,

Ck

[
1

θ3t

(
Pt −

∑
l,τ

s̃t,τl rτl (k)

)]
≤ 0,

where

rτl (k) = θ3t k log

(
E
[
exp

(
r̃τli
θ3t k

)])
.
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Proof of Proposition 5. By Proposition 4, r̃τl
(
s̃t,τl

)
are independent random variables for differ-

ent grade l, and time-in-grade τ . As such, we have

Ck

[
1

θ3t

(
Pt −

∑
l,τ

r̃τl
(
s̃t,τl

))]
= Pt/θ

3
t −
∑
l,τ

Ck

[
r̃τl
(
s̃t,τl

)
/θ3t
]
.

Observe that

Ck

[
r̃τl
(
s̃t,τl

)
/θ3t
]
= k logE

exp
 ∑

i∈[s̃
t,τ
l

]

r̃τli
kθ3t




= k logE
[
exp

(
θ3t k log

(
E
[
exp

(
r̃τli
kθ3t

)]
s̃t,τl

θ3t k

))]
= Ck

[
rτl (k)s̃

t,τ
l /θ3t

]
,

and hence the results follows. □

Theorem 2. If integrality of s̃t is relaxed, then constraints of the form,

Ck

[(∑
l,τ

s̃t,τl uτ
l −Ut

)/
θ

]
≤ 0 (15)

may be reformulated as the convex set of constraints∑
l

st,0l u0
l + k

∑
l

1<t′≤t

ξt
′,1

l + k
∑
l

τ≥t

ξ1,τ−t+1
l ≤Ut (16)

dt,τl ρτl (u
τ
l/kθ)≤ ξt,τl ∀τ ∈ [M ]

dt
′,τ
l ρτl

(
ξ
t′+1,τ+1
l /dt

′,τ
l

)
≤ ξt

′,τ
l ∀t′ ∈ [t− 1], τ ∈ [M − t+ t′]

Proof. Independence as a result of Proposition 4 allows the sum to be taken out of the certainty

equivalence operator Ck[·], which can be evaluated using Theorem 1. □

The remaining challenging is to deal with the dismissal threshold constraint. Thankfully,

Proposition 6 (Re-distribution Constraint) Under the same assumptions as Theorem 2, for

fixed l, the constraint

Ck

[(∑
τ

s̃t−1,τ−1
l

dt−1,τ−1
l − dt,τl

dt−1,τ−1
l

− dt,0l+1 −F t
l+1

)/
θ

]
≤ 0 (17)

is equivalent to the set of equations

dt−1,0
l − dt,1l + k

∑
1<t′<t

ξt
′,1

l + k
∑

τ≥t−1

ξ1,τ−t+2
l ≤ F t

l+1 + dt,0l+1

dt−1,τ
l ρτl

(
d
t−1,τ
l

−d
t,τ+1
l

kθd
t−1,τ
l

)
≤ ξt−1,τ

l ∀τ ∈ [M ]

dt
′,τ
l ρτl

(
ξ
t′+1,τ+1
l

d
t′,τ
l

)
≤ ξt

′,τ
l ∀t′ ∈ [t− 2], τ ∈ [M − t+ t′ +1]

(18)

Proof. The proof is similar to the proof of Theorem 2; as such, it is omitted. Again, note that

for fixed k, the problem remains convex. □
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3.1. Solving the Model

To solve the Strategic Workforce Planning under Uncertainty model, one can perform bisection

search on k. For a fixed k, the feasible set of Problem (10) can be expressed as a conic optimization

problem involving exponential cones.

Proposition 7 The constraint of the form

d log(1− q+ qeζ/d)≤ ξ if d> 0

ζ ≤ ξ,0≤ ξ if d= 0

is equivalent to the following constraints

(1− q)y1 + qy2 ≤ d

(y1, d,−ξ)∈KE (19)

(y2, d, ζ − ξ)∈KE,

for some y1, y2 ∈R, where the exponential cone is defined as

KE := {(x1, x2, x3) : x1 ≥ x2 exp (x3/x2) , x2}∪ {(x1,0, x3 : x1 ≥ 0, x3 ≤ 0}.

Proof. For d> 0, the nonlinear constraint can be expressed as

(1− q)d exp(−ξ/d)+ qd exp(ζ − ξ/d)≤ d

or equivalently as

(1− q)y1 + qy2 ≤ d

d exp(−ξ/d)≤ y1

d exp(ζ − ξ/d)≤ y2

for some y1, y2 ∈R. We can also check that when d= 0, the constraints of (19) requires y1 = y2 = 0

and ξ ≥ 0, ξ− ζ ≥ 0. □

It is well known that exponential cones constraints can be approximated with a series of second-

order cones (see for example Ben-Tal and A. 2001). More recently, there have also been advances

in the efficient computation of exponential cones, especially using interior point methods. A com-

mercial solver, MOSEK ApS (2019) is among the first to include support for exponential cones.

Solvers are already available in MATLAB (CVX Research 2012) and also in Julia/JuMP (e.g. Miles

et al. 2016), extending to MICPs. Our model does not compromise tractability – the number of

constraints does not grow exponentially with time horizon T , or any of the other parameters, such

as grades L or maximum time-in-grade M . Indeed, in Theorem 1, for each t ∈ [T ], the number

of exponential cone constraints required to reformulate one linear constraint is of order O(LMT ).

Hence, in total, O(LMT 2) exponential cone constraints are required.
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Cutting Plane Approach

Even in the absence of nonlinear solvers, we can use the cutting plane approach to solve the conic

optimization problem. This approach has the advantage of keeping the model linear, which has

the benefit of having greater availability of solvers and incorporating discrete decision variables. In

fact, we use this approach to compute the solutions.

We observe that for q ∈ [0,1], the function δ(d, ζ) := d log(1− q + qeζ/d) is jointly convex and

differentiable on d> 0, hence for all d> 0 and ζ ∈R. Hence, we can replace the nonlinear function

by a maximum of an infinite set of affine functions,

δ(d, ζ) = max
d0>0,ζ

{δ(d0, ζ0)+ ∂δ1(d0, ζ0)(d− d0)+ ∂δ2(d0, ζ0)(ζ − ζ0)} ,

where ∂δ1 and ∂δ2 respectively denotes the partial derivatives of δ, with respect to its first and

second argument. These affine functions can be introduced on the fly in a standard cutting plane

implementation. This approach works surprisingly well in our computational studies. Observe that

δ(d, ζ) ≈ d log(1 − q) as ζ → −∞ and δ(d, ζ) ≈ ζ + d log q as ζ → ∞. As such, the behavior of

d log(1− q+ qeζ/d)≤ ξ is asymptotically linear with respect to ζ, alluding to why the cutting plane

method works well in practice.

Lastly, we comment that one can adapt the model, by using a different kj for each constraint,

indexed in a set j ∈ J and then performing a lexicographic minimization on k := (kj)j∈J (see

Waltz 1967, on how to execute this procedure). This methodology may be employed if the decision-

maker is agnostic to the relative risk aversions of each constraint and would prefer the strongest

performance achievable. In this paper, we hope to use θj to control the tightness of each constraint

and to gather insights from how the cost of greater risk aversion in one constraint would affect

other constraints. As such, we do not perform the lexicographic minimization in this paper. We

shall see this at work later when we examine the flexibility of public sector agencies in dismissing

employees in §4.

4. Strategic Workforce Planning in a Firm

In this section, we illustrate the Strategic Workforce Planning under Uncertainty model using real

data of > 5,000 employees in the Singapore Civil Service, who can be safely assumed to have similar

job characteristics and backgrounds, tracked over 6 years. This data is collected periodically at the

individualized level, and for this illustration, we are able to summarize it into the form of the inputs

for our model. This includes their attrition, performance and wage patterns – personnel data that

is similarly collected by most large organizations. Due to confidentiality, we are unable to reveal

more about the nature of the data, though in the subsequent description, we will illustrate some
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features as far as we are able to share. In this illustration, we shall look at a 5-year time window,

T = 5.

We model L = 4 grades in this organization, two ‘individual contributor’ grades labelled IC1

and IC2, which generate a large part of the productivity, and two manager grades, denoted M1

and M2. Progression occurs in this order and skipping of grades is disallowed. We truncate the

maximum number of years that an employee may remain in any grade to M = 20, where thereafter

the employee is assumed to have retired. At each grade l, we assume that employees are paid a

base wage ωl with an annual fixed increment ιl. Hence, wτ
l = ωl + τιl. The parameters ωl and ιl

were statistically estimated from wage data by means of a linear regression, and rounded. Due to

its sensitivity, we are unable to disclose these estimates.

To prescribe the productivity curve of the employees, we directly obtained the average produc-

tivity curve from the data itself. Specifically, we grouped employees into each grade and (discrete)

time-in-grade and then averaged their performances to obtain rτl across time-in-grade. In this

study, the performance data is measured as a composite of both quality and quantity of work done

by the employee. It is ranked and also scaled and normalized across the entire workforce in the

organization. Figure 2 shows the mean productivity by years-in-grade, as obtained from the data.

It rises with more years-in-grade, a reflection of the accumulation of experience, before dipping

with increasing employee boredom and disengagement. Manager span of control is also computed

similarly.

Figure 2 Profile of Performance with Time-in-Grade
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Retention rates qτl were estimated from the data. Figure 3 illustrates the estimates. Where the

data was sparse, fluctuations were severe. Nonetheless, Proposition 1 provides the guarantee that
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Figure 3 Retention Rates with Time-in-Grade
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Table 2 Specification of Constraints

Constraint Equation Target Specification

Headcount
∑
l,τ

st,τl ≤Ht Ht = gthH0 gh = g

Budget
∑
l,τ

st,τl wτ
l ≤Bt Bt = gtbB0 gb = g

Productivity
∑
l,τ

st,τl rτl ≥Rt Rt = gtpR0 gp = 1+1.05(g− 1)

even if we were to wrongly estimate the retention rates, we are still robust as long as the true

distribution is not far off from our estimate. Later, when analyzing the robustness of the model,

we shall explore this further.

Finally, we specify the constraint targets. From here on, the targets shall always be fixed as a

geometric rate of growth g from the initial state at time t= 0. We vary these rates of growth in

different simulations. Table 2 summarizes this. We also require that the productivity target grows

at a slightly faster rate than the headcount and budget targets. We set F t
l ≡ 0, that is, that zero

dismissals is preferred.

Because the certainty equivalence Ck is not scale invariant, we normalized all constraints so as

to ensure equitable comparisons (without having to calibrate θj separately for each constraint). In

other words, the model penalizes the proportional violation of targets equally across constraints.

With this specification, the model seeks to minimize the risk level, k. It returns k, in addition to

optimal solutions for the decision variables of newcomers st,0l (from which we compute net inflow

ht
l) and promotion dt,τl . To simulate the uncertainty and test the model, for each analysis, we

ran 1,000 simulations with the random outcomes of employees’ retention drawn from a binomial

distribution of estimated retention rates, qτl , as the success probability.
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The model was solved using the cutting-plane algorithm as detailed in Algorithm 1. Because

of the asymptotically linear structure of the conic constraints, the algorithm reaches within high

accuracy very quickly. In computational tests, the model always solves within 5 minutes on an

Intel® i7-6650U dual-core processor, with the worst constraint requiring no more than 7 cutting

planes to get within 10−5 accuracy of estimating the constraint.

Robustness

We first examine the robustness properties of the model. By design, the model provides guarantees

against constraint violation. To illustrate this, we compare our model against a deterministic model.

The deterministic model is not intended as a comparative benchmark to ascertain the strength

of our model. Because our robust model recovers the deterministic model as k→ ∞, the latter

is a guidepost for us to understand the degree of performance traded off for robustness. For the

description of the deterministic model, please refer to Appendix A.3.

We first ran the model for growth rate g = 1.02, i.e. the organization is allowed to grow by

2% annually. Our model seeks the minimum risk level k∗. In this case, k∗ ≈ 35, which yields the

exponential envelope of the probability of constraint violation.

In Figure 4, we plot, for the headcount constraint, the actual materialized deviation from target

Ht−
∑
l,τ

st,τl based on the uncertainty. A positive figure indicates that the headcount target was not

exceeded and its magnitude gives the slack; a negative value indicates constraint violation and its

magnitude, the extent. The green line represents the Markov guarantee where the probability of

constraint violation should be no more than one-third. As Figure 4 illustrates, this guarantee is

very loose – only 2% of the simulations exceeded this bound.

Figure 4 Simulated Violation of Headcount Target in Year t=1
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We now compare this against the deterministic model. The simulated deviations from the head-

count target for each model is compared in Table 3. Our model provides guarantees against con-

straint violation, and if violations occur, they do so with a smaller magnitude.

Table 3 Comparison of Constraint Violation in Robust and Deterministic Models

Deviation from H5 Robust Deterministic

Median 8.07 -4.40

Mean 7.18 -5.57

1st Quartile -14.29 -27.42

However, one can expect that the gains in the guarantees may not be universal for different

specification of the targets. To illustrate this, let us vary the productivity target Pt (via gp), while

keeping all other targets fixed. Intuitively, there should be a monotone relationship between Pt and

k∗ – the higher Pt, that is, the higher the productivity target that must be met, the more difficult

it is to do so and hence the risk level k∗ of failing should be expected to rise. We try this for 3

configurations: gp = 1.023 (where k∗ large), gp = 1.021 (an intermediate region), and gp = 1.015

(where k∗ small). Table 4 below summarizes the statistics for these 3 regimes, under a comparison

between the robust and deterministic models.

Table 4 Different Regimes of Tightness of Targets

Tougher target Intermediate Easier target

Growth Rate gp = 1.023 gp = 1.021 gp = 1.015

(Risk level) (k∗ ≈ 232) (k∗ ≈ 35) (k∗ ≈ 10)

Deviation from P5 Robust Deterministic Robust Deterministic Robust Deterministic

Median deviation -4.09 5.43 30.19 96.70 127.10 379.36

Mean deviation -5.16 4.14 29.13 97.63 123.16 379.07

1st Quartile -43.7 -28.60 -1.74 65.59 88.39 344.40

Deviation from H5 Robust Deterministic Robust Deterministic Robust Deterministic

Median deviation 17.95 15.81 41.64 18.39 111.18 14.51

Mean deviation 18.91 16.59 42.02 18.45 113.48 13.92

1st Quartile -14.30 -14.19 12.64 -12.61 82.18 -16.49

In Table 4, we compare two constraints. The first is the productivity constraint at time T .

This was the objective in the deterministic model and hence we should reasonably expect the
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deterministic model to out-perform the robust model in all instances. Their difference can be

understood as the price to pay for robustness. In the second, we compare the headcount constraint.

Across the different regimes, since the deterministic model is agnostic to the risk of constraint

violation, the distribution in the deviation from the headcount target is approximately the same.

Here, however, we can see the action of the robust model.

We observe three kinds of scenarios:

1. When k∗ is very large (first regime), the problem is near infeasible. In this case, the guarantees

on constraint violation erode away and the robust model approximates the deterministic

model. The guarantees are so minimal, it is effectively sub-optimal. In other words, when the

system is near its limits of operability, robustness is a luxury that cannot be afforded.

2. When k∗ is very small, we are in the third regime. Here, the guarantees are very sharp – so

sharp it is over-conservative. As seen in Table 4, the loss in productivity is sizeable. On the

other hand, the deterministic model is not without reproach – a huge trade-off between head-

count and productivity was made, by virtue of the fact that productivity was the objective.

A reasonable course of action at this point is to tighten the target.

3. There is an intermediate region where the trade-off is balanced to some extent. In the second

regime, the robust model does not incur a large cost to productivity, yet provides reasonable

guarantees against constraint violation.

In the last segment of this analysis on robustness, we examine if the optimal solution is robust

to the input parameters of attrition rates. To do so, we smooth the attrition rates (one minus the

retention rates in Figure 3) using a Loess regression and prune negative values. The smoothed

attrition rates are shown in Figure 5. Here, points represent the raw estimates and lines the

smoothed outcome. We then perform the same analysis we have done before.

With smoothing, the risk level rises to k∗ ≈ 44 from the previous k∗ ≈ 35. Additionally, we also

examine the optimal policies for promotion (in Figure 6 which can be compared against the optimal

policy without smoothing in Figure 8) and hiring (in Figure 7 where the original policy is in points

and the smoothed version is lined). We can see that there are only slight differences between the

optimal policies suggested by the two models.

Time-based Progression

In this section, we examine insights that can be gleaned for HR. In the first instance, we are

interested in the question: When is it optimal to promote employees? In other words, how long

should I keep an employee at a particular grade before promoting him/her?

We study pt,τl . Recall that pt,τl , which is equivalent to the ratio dt+1,τ+1
l /dt,τl , is the proportion

of employees at time t whom we retain at grade l for an additional year, having already spent τ
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Figure 5 Loess Smoothed Attrition Rates for each Grade
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Figure 6 Policy for Progressing from IC1 to IC2 under Smoothing
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years at this grade l. As such, the closer this ratio is to 1, the fewer employees we are promoting.

For the purposes of fairness and continuity, HR would set a limit to the maximum proportion of

employees at a grade that may be promoted in any year. Our partners do not wish for their limit

to be shared. As such, for illustrative purposes, we have chosen the bar of 50%: dt,τl /dt−1,τ−1
l ≥ 0.5.

Figure 8 shows the policy for progressing employees at grade IC1 to grade IC2 as prescribed by

the Strategic Workforce Planning under Uncertainty model.

The prescribed policy is a threshold – the model believes that employees should not progress

to the next grade until they have accumulated a minimum number of years, after which, they

should be promoted with haste. There is a certain logic in this. In the early years, the productivity

of employees rises with time spent in that grade due to the learning curve (Figure 2). As such,
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Figure 7 Policy for Hiring across Grade and Time under Smoothing
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Figure 8 Policy for Progressing from IC1 to IC2 at Optimal Solution
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promoting employees too early incurs an opportunity cost of potential productivity. The model

avoids this. After some point, remaining for too long at the same grade can have a disengaging

effect on employees and they may leave the organization (Figure 3). The model also avoids this, by

expediting their promotion after some time. In other words, the model seeks a balance between the

productivity an employee brings, and the risk of losing the employee. This finding lends numerical

support not just to the choice of ‘time-based progression’, but also its rationale.
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Factors Affecting the Risk Level

In this second piece of analysis, we shall examine the impact that the growth rate g has on the

optimal risk level k∗. As before, we fixed the allowed growth rates of headcount, budget and

productivity to be a function of g. Now we vary g. Figure 9 plots the relationship.

Figure 9 Risk Level k∗ at Different Growth Rates g
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From Figure 9, we infer that there is a higher risk level when the growth rate is smaller. This

mirrors common wisdom that it is easier to grow firms than to downsize. The explanation the

model gives is this: Risk originates from the uncertainty – resignations. The higher the growth rate

g, the greater the number of new recruits. Recruitment of employees fills the vacancies created

by those who left and thus mitigates the uncertainty. As such, the more employees that can be

recruited, the larger the capacity of HR to manage the risks arising from resignation, and thus the

lower risk on the overall.

The simple consequence of this is that there are inherent operational risks to a lack of organi-

zational renewal. Yet this is not necessarily a straightforward question to address. For example, in

an organization with a higher attrition level, we can expect two competing forces at work. One,

the higher the attrition, the greater the uncertainty and hence the higher the risk. Two, the higher

the attrition, the greater the capacity to hire since there are more vacancies to replace, hence the

lower the risk. We study which effect really plays out in our dataset.

In our model, qτl represents the retention rate of officers having spent time τ at grade l. Hence,

the attrition rate is ατ
l = 1− qτl . We now artificially suppress or boost the attrition rate by a factor

of a, via ᾱτ
l = a ·ατ

l . If a < 1, the attrition rate is suppressed, and vice versa. As such, we have a

new q̄τl = 1− ᾱτ
l .
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Figure 10 plots what happens to the risk level k∗ as we vary a. With lower attrition, the risk

level k∗ rises. This is a grim consequence for advanced economies where an ageing population

is beginning to take hold. As older employees are often less employable in the workforce, they

tend to move between organizations less frequently than younger employees. As such, with ageing

population, firms can expect to see attrition rates fall across the board. Instead, they will be faced

with ever rising challenges in managing their workforce. This is not to mention that the shrinking

workforce would force many firms to reduce their growth rates, which further heightens the risk.

Figure 10 Risk Level k∗ with Different Scaling of Attrition a
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For the final insight, we look at varying the tightness of a constraint. Specifically, we shall

examine the importance of organizational renewal. For our partners, they were interested to see if

the inherent difficulty of public sector organizations to lay off their employees, and hence a limited

capacity for organizational renewal, would result in greater difficulties in managing their workforce,

and if so, how large are these difficulties. To elucidate this, we perform the following analysis. Recall

that we could calibrate θj to dictate the tightness the bounds for the corresponding constraint j.

Now, we do so for the dismissal threshold constraint. The lower the value of θj, the more averse

the model is to releasing employees. Figures 11 and 12 tell us the consequences of this.

In Figure 11, we can see that the difference between not allowing any and allowing some dismissals

is an almost doubling of the risk level. Figure 12 illustrates the trade-off. We plot here the largest

number of employees released amongst the 1,000 simulations. If this number is negative, it means

that in all the simulations, there wasn’t a single case where an employee was released. At risk level

k∗ ≈ 35 and θ = 1, about 40 employees were released in total across the grades. If the decision-

maker is to refrain from releasing any of these employees, then θ must be decreased to 10−3. This

would incur an almost 50% increase in the risk level.
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Figure 11 Risk Level k∗ with Tightening of Hiring Constraint
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Figure 12 Largest Number of Employees Released in any of the 1,000 Simulations
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This quantifies the natural challenges faced by public sector organizations compared to their

private sector counterparts. In this regard, it is therefore paramount that public agencies find new

and innovative ways to rejuvenate and renew their workforce.

5. Conclusions

We have presented a tractable model for workforce planning. While we illustrate our model on

data from a public agency, the model can still be utilized in some profit-seeking firms. We have

also illustrated HR insights and provided numerical quantification of such risks that firms can face,

such as the need for organizational renewal.
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At its root, the Strategic Workforce Planning under Uncertainty model is an application of

the concept of pipeline invariance under the context of multi-period optimization. The general

intuition is that while it is difficult to perform multi-period optimization, we may alleviate these

difficulties if we declare a formal structure (here, pipeline invariance) on how the decisions and

the uncertainty are related, and hence exploit this structure to gain tractable formulations. On

this note, we hope, in the future, to construct a formal framework for using pipeline invariance in

multi-period optimization problems.
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A. Proofs Omitted from the Main Text

A.1. Proof of Theorem 1

The idea is to show by induction on τ ′ = 1, . . . ,min{t, τ}, that the following relationship holds:

Ck

[
kys̃t,τl /dt,τl

]
=inf

ξ
Ck

[
kξt−τ ′+1,τ−τ ′+1

l s̃t−τ ′,τ−τ ′

l /dt−τ ′,τ−τ ′

l

]
(20)

s.t. dt−t′+1,τ−t′+1
l ρτl

(
y/dt−t′+1,τ−t′+1

l

)
≤ ξt−t′+1,τ−t′+1

l ∀t′ ∈ [τ ′]

Here, we have abused the notation slightly as the Ck operator on the left hand side is an expectation

over all uncertain s̃v,τl until v≤ t, whereas the right hand side is only up till times v≤ t− τ ′.

First, notice that the induction step going from τ ′ to τ ′ + 1 is inherent from the form of (20)

– simply take y = ξt−τ ′+1,τ−τ ′+1
l . As such, it suffices to prove only the step τ ′ = 1. We evaluate as

follows:

Ck[kys̃
t,τ
l /dt,τl ] = k logE

[
exp

(
ys̃t,τl /dt,τl

)]
= k logE≤t−1

[
Et

[
exp

(
ys̃t,τl /dt,τl

)] ]
(21)

= k logE≤t−1

[
exp

(
s̃t−1,τ−1
l

dt,τl

dt−1,τ−1
l

ρτl

(
y

dt,τl

))]
(22)

Here, we have used iterated expectations in (21) and then pipeline invariance in (22). At this point,

notice that dt,τl ρτl (y/d
t,τ
l
) is jointly convex in both y and dt,τl as ρτl is a convex function. As such,

we may represent it in the epigraph format dt,τl ρτl (y/d
t,τ
l
)≤ ξt,τl . Hence, this proves the τ ′ = 1 case.

When τ ′ =min{t, τ}, we achieve the result in the theorem. □

A.2. Proof of Proposition 4

Observe that two state variables s̃t,τl and s̃t,τ
′

l′ , l ̸= l′ and τ ̸= τ ′ in the same time t can be associated

different sets of employees that do not overlap. Hence, under Assumption 1, the random states

should also be independent. We shall do so by induction on t≥ 0. When t= 0, this is trivially true,

since s0 are the initial conditions. Suppose any two different s̃t,τl and s̃t,τ
′

l′ are independent. First,

consider E
[
1{s̃t+1,τ

l
≤i}1{s̃t,τ

′
l′ ≤j}

]
. If τ = 0, then s̃t+1,τ

l is a decision variable, hence this is trivially

true. Suppose now that τ ≥ 1 and that if l′ = l, then τ ′ ̸= τ − 1,

E
[
1{s̃t+1,τ

l
≤i}1{s̃t,τ

′
l′ ≤j}

]
=E

[
E
[
1{s̃t+1,τ

l
≤i}1{s̃t,τ

′
l′ ≤j}

∣∣∣1{s̃t,τ−1
l

≤i′}

]]
(23)

=E
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1
{s̃t,τ

′
l′ ≤j}

E
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1{s̃t+1,τ

l
≤i}

∣∣∣1{s̃t,τ−1
l

≤i′}

]]
(24)

=E
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1
{s̃t,τ

′
l′ ≤j}

]
E
[
E
[
1{s̃t+1,τ

l
≤i}

∣∣∣1{s̃t,τ−1
l

≤i′}

]]
(25)

=E
[
1{s̃t+1,τ

l
≤i}

]
E
[
1
{s̃t,τ

′
l′ ≤j}

]
. (26)
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The line (24) follows because of the independence between s̃t,τ
′

l′ and s̃t,τ−1
l as assumed in the induc-

tion hypothesis; and the equation (25) follows since E
[
1{s̃t+1,τ

l
≤i}

∣∣∣1{s̃t,τ−1
l

≤i′}

]
is just a function

of s̃t,τ−1
l due to the dynamics defined in (11) and thus, independence again allows the splitting of

expectations. Now, we perform the next step. Again, similar logic applies if τ = 0, otherwise,

E
[
1{s̃t+1,τ

l
≤i}1{s̃t+1,τ ′

l′ ≤j}

]
=E

[
E
[
1{s̃t+1,τ

l
≤i}1{s̃t+1,τ ′

l′ ≤j}

∣∣∣1{s̃t,τ−1
l

≤i′}

]]
(27)

=E
[
1
{s̃t+1,τ ′

l′ ≤j}
E
[
1{s̃t+1,τ

l
≤i}

∣∣∣1{s̃t,τ−1
l

≤i′}

]]
(28)

=E
[
1
{s̃t+1,τ ′

l′ ≤j}

]
E
[
E
[
1{s̃t+1,τ

l
≤i}

∣∣∣1{s̃t,τ−1
l

≤i′}

]]
(29)

=E
[
1{s̃t+1,τ

l
≤i}

]
E
[
1
{s̃t+1,τ ′

l′ ≤j}

]
, (30)

where (28) follows because of the independence between s̃t+1,τ ′

l′ and s̃t,τ−1
l as proven in the previous

step, and similarly for (29). □

A.3. Description of the Deterministic Model

We write the deterministic model below. We shall take productivity in the last time period (PT ) as

the objective. Note that from Proposition 3, the deterministic model is obtained from the robust

formulation in the limit k→∞.

max
∑
l,τ

γτ
l d

T,τ
l rτl

s.t.
∑
l,τ

γτ
l d

t,τ
l ≤Ht ∀t∈ [T ]∑

l,τ

γτ
l d

t,τ
l wτ

l ≤Bt ∀t∈ [T ]∑
l,τ

γτ
l d

t,τ
l rτl ≥ Pt ∀t∈ [T ]∑

λ,τ

γτ
l d

t,τ
λ bτl,λ ≤ 0 ∀t∈ [T ],∀l ∈M∑

τ

γτ−1
l

(
dt−1,τ−1
l − dt,τl

)
≤ dt,0l+1 +F 0

l+1 ∀t∈ [T ],∀l ∈ [L− 1]

dt,0L+1 = 0,0≤ dt,τl ≤ dt−1,τ−1
l , d0,τl = s0,τl ∀t∈ [T ],∀l ∈ [L],∀τ ∈ [M ]

(31)

B. Extensions and Generality of the Model

In this subsection, we discuss how the model could be applied to two aspects, the first regarding its

connection to employee archetypes and clustering and the second regarding departmental transfers.

These extensions are made possible because our model permits the categorization of employees

under some index set i ∈ I, by which, we meant that we can append the index i to all of our

state variables s̃t,τl,i , and decision variables dt,τl,i , etc. This is akin to building many copies of the
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organizational structure that do not intersect, but where they operate under common organizational

target-meeting constraints, e.g. headcount
∑
i

∑
l,τ

s̃t,τl,i ≤Ht.

In the most general setting, i could represent each employee, both existing and potential future

hires. In this setting however, all of the parameters would have to be known. These include the

likelihood of resignations 1−qτl,i and productivities rτl,i. This might be more consistent with existing

paradigms in predictive analytics, where one is able to establish predictions for the likelihood of

resignation at different times-in-grade for every employee with different covariates, e.g. given a

data set of side information of employees Xi, one constructs the predictive model qτl,i ∼ qτl |Xi, such

as via a survival model, or qτl,i ∼ ql|Xi, τi, through say a classification methodology, like a random

forest. Such side information Xi could contain information of employees on their demographics,

work environment and outcomes, or job nature, to name a few. The similar may be said about the

productivities, where machine learning could be applied to predict the productivity trajectories of

employees, or via a learning curve (which we shall illustrate in the later subsection).

The drawback of such an approach would be the high dimension of the optimization problem

to be solved, as introduced by the index i, which now increases the complexity by the scale of the

number of employees. Also, there are some subtleties with dealing with how the inflow could be

modelled.

Instead, the more reasonable approach might be to group employees into clusters. Suppose now

that employees are instead labelled as e∈ E , then we can consider a partitioning of the employees

into subsets E =
⋃
i

Ei. These subsets can be constructed either as a demarcated grouping, e.g.

departments, or via data-driven methods, e.g. clustering on side information of the employees i|Xe.

Clustering on employee archetypes. Many organizations understand their employees along the

lines of employee archetypes. In this first application, we can consider i∈ I to represent an employee

archetype. In a broader sense, the concept of using archetypes to understand retention, performance

and hiring preferences is well-established. Moving forward, there will be greater application of data-

driven methods to do so, where the archetypes of employees are constructed through employee side

information. Already, the practice of utilizing latent class analysis to construct archetypes in the

domain of HR has existed (e.g. in Perelman et al. 2019). With the onset of analytics, it is increasing

popular to perform clustering (or any dictionary learning algorithms) in order to construct the

archetypes i ∈ I. These archetypes can have a very high accuracy in predicting the retention of

employees qτi,l or their level of performance rτi,l. Our model fully supports such approaches.

Modelling departmental transfers. Suppose i represents the department that the employee is

in. Recall in our dynamics (3), we had used s̃t−1,τ−1
l

d
t−1,τ−1
l

−d
t,τ
l

d
t−1,τ−1
l

to model the number of employ-

ees removed from grade l, where st,0l+1 represents the number promoted and the difference those

fired (after subtracting for the new hires). Let us introduce the new notation β
t,τ
i,j,l/(dt−1,τ−1

l
−d

t,τ
l ) to
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represent the proportion of employees who are removed from grade l stipulated for transfer from

department i into another department j. Table 5 illustrates the count of all employees under this

notation.

Table 5 Illustration of the Flows under a Departmental Transfer Model

Total: s̃t−1,τ−1
i,l

From department i to j Promoted Retained

s̃t−1,τ−1
i,l

β
t,τ
i,j,l

d
t−1,τ−1
l

st,0i,l+1 −ht
i,l+1 −

∑
j

s̃t−1,τ−1
j,l+1

β
t,τ
j,i,l+1

d
t−1,τ−1
l+1

s̃t−1,τ−1
l

d
t,τ
l

d
t−1,τ−1
l

Fired

s̃t−1,τ−1
i,l

d
t−1,τ−1
l

−d
t,τ
l

−
∑
j

β
t,τ
i,j,l

d
t−1,τ−1
l

−
(
st,0i,l+1 −ht

i,l+1 −
∑
j

s̃t−1,τ−1
j,l+1

β
t,τ
j,i,l+1

d
t−1,τ−1
l+1

)

Notice from Table 5 that the number of employees retained and those transferred from depart-

ment i to j are in the tractable form required for Theorem 2. Similarly, we have the non-positive

constraint applied on the officers fired. When evaluating this under the entropic risk operator,

by independence, each component of the sum will split and we will arrive at a tractability result

similar to Proposition 6. This illustrates how the model may be extended to departmental flows

without losing tractability.

B.1. Describing Productivity using Learning Curves

In this subsection, we illustrate specifically how learning curves may be used within the framework

of our model.

Let each employee be denoted by the index e ∈
⋃
l

El, where El is the collection of all employees

in the grade l. Assume that we have longitudinal past performance data of each employees at time

point t and grade l, denoted Re(l, t). Then the learning curve approach involves fitting the observed

data Re(l, t) to the following form (assuming that of Shafer et al. 2001):

rτ(e) = ηl

(
τ + νe

τ + νe +ψe

)
, (32)
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where τ is the time-in-grade, ηl is the maximum asymptotic productivity that can be reached

for the grade l in which employee e ∈ El is in, νe is employee e’s prior experience and ψe a term

idiosyncratic to employee e.

In this situation, we can compile the productivity estimate for the grade by taking the average

estimated productivities:

rτl =
1

|El|
∑
e∈El

rτ(e) =
1

|El|
∑
e∈El

ηl

(
τ + νe

τ + νe +ψe

)
. (33)

If in the case, where we are assuming that each employee segment i is precisely the employees

themselves, such as in the earlier discussion at the start of this section, then the learning curves may

be directly used: rτl,e := rτ(e). As a brief remark, we note that in order to supply the model enough

information, we would also require the counterfactual estimates of the employee’s performance at

higher grades, l′ > l. This can be obtained in two ways. The first is to find a group of closely

matching employees, in terms of their side information, and to consider a weighted sum of their

productivities as a means of imputing this estimate. The second is to examine the history of

past employees and to estimate the amount of change that the accumulated prior experience νe

and idiosyncratic term ψe would change under promotion. Whichever the case, as our model is

constructed to be robust to wrong estimation in the parameters, the errors in estimation would be

mitigated by the optimization procedure.


